
Unsupervised Speech Representation Learning

by

Gilles BOULIANNE

THESIS PRESENTED TO ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

IN PARTIAL FULFILLMENT FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Ph.D.

MONTREAL, AUGUST 27, 2020

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

UNIVERSITÉ DU QUÉBEC

Gilles Boulianne, 2020

This Creative Commons license allows readers to download this work and share it with others as long as the

author is credited. The content of this work cannot be modified in any way or used commercially.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mr. Pierre Dumouchel, Thesis Supervisor

Department of Software and IT Engineering, École de technologie supérieure

Mr. Éric Granger, President of the Board of Examiners

Department of Systems Engineering, École de technologie supérieure

Ms. Sylvie Ratté, Member of the Jury

Department of Software and IT Engineering, École de technologie supérieure

Mr. Douglas O’Shaughnessy, External Independent Examiner

Centre Énergie Matériaux Télécommunications, Institut national de la recherche scientifique

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

ON JULY 14, 2020

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

ACKNOWLEDGEMENTS

I would like to thank first my thesis supervisor, Pierre Dumouchel, for his unwavering confidence

through so many years.

My thanks also go to the board of examiners, for spending time and effort to review and comment

my thesis. I am very grateful to them for accepting this extra burden on their already loaded

schedules.

I would also like to mention Patrick Kenny, former colleague and mentor, who sparked my

interest for the whole field of Bayesian and generative modelling. Discussions between me, the

engineer, and him, the mathematician, were always deep and instructive.

But my deepest gratitude goes, without question, to my partner in life, Jacinthe, who encouraged

and supported me unfailingly during the whole course of this long adventure.

Finally, this work would not have been possible without CRIM’s (Centre de recherche informa-

tique de Montréal) support and its high performance computing software and infrastructure.

Apprentissage non supervisé de représentations distribuées pour la parole

Gilles BOULIANNE

RÉSUMÉ
Les représentations distribuées visent à extraire l’information de haut niveau contenue dans des

données brutes, habituellement sous forme de vecteurs de faible dimension. Lorsqu’utilisées

comme entrée pour des tâches de classification, elles réduisent la complexité du classificateur,

et facilitent l’apprentissage par transfert et l’adaptation au domaine. La représentation est

dite interprétable lorsqu’elle saisit des facteurs sous-jacents compréhensibles; elle est alors

utile pour explorer et comprendre les données, ou résoudre des problèmes mettant en jeu ces

facteurs. En traitement automatique du langage naturel (TALN), des représentations telles que les

plongements de mots ou de phrases ("embeddings") sont récemment devenues incontournables.

Ces représentations peuvent être apprises sans supervision, sur de grands ensembles de données

non annotées, rendant possible l’entraînement de modèles puissants capables de saisir les

relations sémantiques requises pour plusieurs problèmes de TALN. En traitement de la parole,

des représentations telles que les paramètres à goulot d’étranglement ("bottleneck features")

et x-vecteurs ont été proposées, mais leur apprentissage doit être entièrement ou partiellement

supervisé avec des annotations, et elles ne visent pas à extraire des facteurs sous-jacents

interprétables.

Une représentation non supervisée de la parole, qui serait apprise directement sur un grand corpus

enregistré, sans transcription, aurait un impact majeur sur plusieurs applications du traitement de

la parole. La transcription est une tâche manuelle coûteuse et se révèle souvent une contrainte

importante, particulièrement dans le cas des langues à faibles ressources. Une représentation

découplant la variabilité due au locuteur de celle due au contenu phonétique permettrait d’éliminer

une des sources principales de confusion, que ce soit pour la transcription automatique ou bien

la reconnaissance du locuteur. Malgré ce potentiel intéressant, l’apprentissage non supervisé

d’une représentation pour la parole a été moins étudié que l’apprentissage supervisé.

Dans cette thèse, nous présentons un modèle génératif capable d’apprendre une représentation

interprétable sans supervision. Plus précisément, nous proposons plusieurs extensions au

modèle d’autoencodeur variationnel (VAE), une approche probabiliste qui conjugue l’approche

générative et les réseaux neuronaux profonds. Pour inciter le modèle à capturer des facteurs

sous-jacents interprétables et découplés, nous lui imposons des biais inductifs inspirés des

théories acoustiques et articulatoires de la production de la parole.

Nous proposons d’abord le filtrage temporel comme biais induisant une représentation avec

une échelle temporelle différente pour chacune des variables latentes. Il permet de répartir les

variables latentes sur une échelle continue, au lieu de l’opposition binaire ou de la structure

hiérarchique qui ont été proposées antérieurement.

Nous montrons également comment imposer des distributions a priori multimodales afin de

capturer des variables latentes discrètes, et nous présentons pour le VAE deux nouvelles fonctions

VIII

de pertes applicables aux variables discrètes, utilisant la réestimation espérance-maximisation

avec divergence pairée et l’échantillonnage de la divergence.

De plus, nous proposons l’auto-attention pour ajouter au modèle VAE la capacité de prédire des

suites, à notre connaissance la première application de l’auto-attention pour de l’apprentissage

non supervisé en parole.

Avec des données simulées, nous confirmons que le modèle proposé peut retrouver exactement

les facteurs sous-jacents correspondants à des locuteurs et à des phonèmes. Nous observons

qu’en utilisant en entrée seulement des banques de filtres logarithmiques, complexes et de grande

dimension, le modèle récupère les facteurs utilisés pour la génération des données, et que deux

variables, aux niveaux local et global, sont essentielles pour une reconstruction exacte et une

représentation bien découplée.

Sur TIMIT, un corpus de parole lue, en anglais, les biais proposés encouragent les représentations

à découpler les locuteurs et les phonèmes, comme le montrent les résultats de classification

obtenus en aval à l’aide d’un simple classificateur k-means non supervisé. L’optimisation

conjointe de plusieurs variables latentes, avec chacune son biais propre, permet de découpler

des facteurs sous-jacents qu’une seule variable ne peut représenter simultanément.

Nous avons exploré quelques-uns des facteurs sous-jacents potentiellement utiles aux applications

pour lesquelles peu ou pas de données annotées sont disponibles. L’approche proposée dans

cette thèse, qui encourage un modèle génératif à apprendre des représentations interprétables et

découplées, ouvre la porte à l’exploration d’autres facteurs et biais inductifs.

Mots-clés : apprentissage non-supervisé, représentation distribuée, traitement de la parole,

autoencodeur variationnel

Unsupervised speech representation learning

Gilles BOULIANNE

ABSTRACT

Representations aim to capture significant, high-level information from raw data, most commonly

as low-dimensional vectors. When considered as input features for a downstream classification

task, they reduce classifier complexity, and help in transfer learning and domain adaptation.

An interpretable representation captures underlying meaningful factors, and can be used for

understanding data, or to solve tasks that need access to these factors. In natural language

processing (NLP), representations such as word or sentence embeddings have recently become

important components of most natural language understanding models. They are trained

without supervision on very large, unannotated corpora, allowing powerful models that capture

semantic relations important in many NLP tasks. In speech processing, deep network-based

representations such as bottlenecks and x-vectors have had some success, but are limited to

supervised or partly supervised settings where annotations are available and are not optimized

to separate underlying factors.

An unsupervised representation for speech, i.e. one that could be trained directly with large

amounts of unlabelled speech recordings, would have a major impact on many speech processing

tasks. Annotating speech data requires expensive manual transcription and is often a limiting

factor, especially for low-resource languages. Disentangling speaker and phonetic variability in

the representation would eliminate major nuisance factors for downstream tasks in speech or

speaker recognition. But despite this potential, unsupervised representation has received less

attention than its supervised counterpart.

In this thesis, we propose a non-supervised generative model that can learn interpretable speech

representations. More specifically, we propose several extensions to the variational autoencoder

(VAE) model, a unified probabilistic framework which combines generative modelling and deep

neural networks. To induce the model to capture and disentangle meaningful underlying factors,

we impose biases inspired by articulatory and acoustic theories of speech production.

We first propose time filtering as a bias to induce representations at a different time scale for

each latent variable. It allows the model to separate several latent variables along a continuous

range of time scale properties, as opposed to binary oppositions or hierarchical factorization that

have been previously proposed.

We also show how to impose a multimodal prior to induce discrete latent variables, and present two

new tractable VAE loss functions that apply to discrete variables, using expectation-maximization

reestimation with matched divergence, and divergence sampling.

In addition, we propose self-attention to add sequence modelling capacity to the VAE model, to

our knowledge the first time self-attention is used for learning in an unsupervised speech task.

X

We use simulated data to confirm that the proposed model can accurately recover phonetic and

speaker underlying factors. We find that, given only a realistic high-dimensional log filterbank

signal, the model is able to accurately recover the generating factors, and that both frame

and sequence level variables are essential for accurate reconstruction and well-disentangled

representation.

On TIMIT, a corpus of read English speech, the proposed biases yield representations that

separate phonetic and speaker information, as evidenced by unsupervised results on downstream

phoneme and speaker classification tasks using a simple k-means classifier. Jointly optimizing

for multiple latent variables, with a distinct bias for each one, makes it possible to disentangle

underlying factors that a single latent variable is not able to capture simultaneously.

We explored some of the underlying factors potentially useful for applications where annotated

data is scarce or non-existent. The approach proposed in this thesis, which induces a generative

model to learn disentangled and interpretable representations, opens the way for exploration of

new factors and inductive biases.

Keywords: unsupervised learning, speech representation, representation learning, variational

autoencoder

TABLE OF CONTENTS

Page

INTRODUCTION . 1

CHAPTER 1 UNSUPERVISED LEARNING . 7

1.1 Unsupervised classification . 7

1.1.1 K-means . 8

1.1.2 Gaussian Mixture Model . 9

1.1.3 Latent Dirichlet Allocation . 9

1.2 Weak supervision . 10

1.3 Representations . 12

1.3.1 Sequences . 15

1.4 Unsupervised representations . 16

1.5 Summary . 19

CHAPTER 2 THE VARIATIONAL AUTOENCODER . 21

2.1 Inference in VAE . 22

2.1.1 VAE objective . 22

2.1.2 Expected lower bound derivation . 23

2.1.3 Reconstruction and representation . 24

2.1.4 Posterior and prior choice . 26

2.1.5 Discrete latent variables . 27

2.2 Interpretability and disentanglement . 28

2.3 Sequence learning . 29

2.4 Application to speech . 30

CHAPTER 3 EXTENDING THE VAE MODEL . 33

3.1 Introduction . 33

3.1.1 Underlying factors in speech . 33

3.1.2 Short-term variability: discrete prior . 35

3.1.3 Long-term variability: sequence modelling . 36

3.1.4 Summary . 36

3.2 Conventional VAE . 38

3.2.1 Functional diagram . 38

3.3 Mixture VAE . 39

3.3.1 Expected lower bound . 41

3.4 Multimodal VAE . 43

3.4.1 E-M reestimation . 44

3.4.1.1 Matched KL divergence . 45

3.4.2 Divergence sampling . 47

3.4.3 Summary for multimodal VAE . 48

XII

3.5 Sequence and frame levels . 49

3.5.1 Tying and pooling . 51

3.5.2 Filtering . 52

3.5.3 Attention . 55

3.6 Multiple filtered latent variables (MFL) VAE . 57

3.7 Preliminary experiments . 58

3.8 Summary . 61

CHAPTER 4 EXPERIMENTAL RESULTS . 63

4.1 Datasets . 63

4.2 Model implementation . 63

4.3 Methodology . 64

4.3.1 Accuracy computation . 65

4.3.1.1 Confidence interval estimation . 66

4.3.2 Data preparation . 66

4.3.3 Training and evaluation . 67

4.4 Experiments on simulated vowels . 69

4.4.1 Vowel signal generation . 69

4.4.2 Synthetic subsets . 73

4.4.3 Model parameters . 74

4.4.4 Results . 75

4.5 Experiments on TIMIT . 80

4.5.1 Data preparation . 80

4.5.2 Baseline results . 81

4.5.3 Experimental results . 83

4.5.3.1 Time filtering . 84

4.5.3.2 Multiple latent variables . 87

4.5.3.3 Self-attention . 89

4.5.4 Visualizations . 90

4.6 Summary . 92

CHAPTER 5 DISCUSSION . 95

CONCLUSION AND RECOMMENDATIONS . 99

APPENDIX I HYPERPARAMETERS .103

LIST OF REFERENCES .104

LIST OF TABLES

Page

Table 4.1 Formant frequencies of simulated vowels (Hz), step 1 . 71

Table 4.2 Synthetic vowel datasets . 73

Table 4.3 Default parameters for experiments . 74

Table 4.4 Multimodal VAE accuracy with and without sequence level variable 76

Table 4.5 Frame-wise accuracy for baseline phoneme and speaker classifiers on

TIMIT development and test sets, with filterbank features spliced ±2 81

Table 4.6 Plain VAE and β-VAE representations and the effect of filtering on

TIMIT development set, filterbank features spliced ±2 . 85

Table 4.7 Multiple variables modelling on TIMIT development set, filterbank

features spliced ±2 . 87

Table 4.8 Multiple variables modelling on TIMIT development set, filterbank

features spliced ±5 . 88

Table 4.9 MFL-VAE with self-attention, on TIMIT development set, filterbank

features spliced ±5 . 89

Table 4.10 Phoneme confusion matrix, TIMIT dev set, model 7 from Table 4.9 92

LIST OF FIGURES

Page

Figure 1.1 Representation learning. Top: training, Bottom: use . 12

Figure 1.2 Classical autoencoder. Hidden layers in white, bottleneck in grey 17

Figure 2.1 VAE graphical model. Top: generator (decoder), bottom: recognizer

(encoder) . 21

Figure 2.2 Deeper network’s impacts in VAE models. Upper: representation

of latent variable. Lower: ground truth (odd columns) and

reconstruction samples (even columns) . 25

Figure 3.1 VAE functional diagram and closed-form divergence . 39

Figure 3.2 Generative model (decoder) for mixture VAE . 40

Figure 3.3 Posterior model (encoder) for mixture VAE . 41

Figure 3.4 VAE with E-M reestimation . 44

Figure 3.5 VAE with sampling divergence . 47

Figure 3.6 Generative model (decoder) for N sequences of length Ln. The

frame-level variable is z, and the sequence-level variable is s 49

Figure 3.7 Posterior model (encoder) with N sequences of length Ln 50

Figure 3.8 Proposed VAE model architecture with filtering layers. Only latent

variable z is illustrated for simplicity . 53

Figure 3.9 (a) Single-head attention block, for frame t. (b) Multi-head attention

using single-head attention blocks. K, Q, and V mean key, query,

value, respectively . 56

Figure 3.10 Multiple latent variables model. Filtering layers are not illustrated 58

Figure 3.11 Modelling synthetic vowels with frame and sequence latent variables.

Top row, from left to right: original filterbank features, frame-level

prior, sequence-level prior. Bottom row: reconstructed signal,

samples of frame-level variable, samples from sequence-level

variable . 60

Figure 4.1 Evaluation of development FPA and FSA for two latent variables 67

XVI

Figure 4.2 Observed vowel triangle for eight standard Indonesian speakers 70

Figure 4.3 Steps of the vowel simulation process . 70

Figure 4.4 Simulated vowel triangle for 5 randomly chosen speakers, step 3 71

Figure 4.5 Modulated spectrum envelope over 512 FFT bins, step 4 . 72

Figure 4.6 Simulated spectrograms of 40 mel-filterbank features. Five vowels

ordered from left to right, with each vowel produced by 40 speakers,

step 6 . 73

Figure 4.7 Sequential VAE on vowels_4 test set, sequence length 20, accuracy

99.6% . 77

Figure 4.8 Sequential VAE on vowels_2, 3, 4, 5 test sets . 78

Figure 4.9 Multimodal VAE on vowels_4 test set, no sequence modelling,

accuracy 76.8% . 79

Figure 4.10 Conventional VAE on vowels_4 test set, no sequence modelling,

accuracy 28.5% . 79

Figure 4.11 Modelling TIMIT dev set with frame and sequence variables c
and s. Top row, from left to right: Mel filterbank features, c prior

and s prior. Bottom row, from left to right: reconstructed signal,

c samples colored by phoneme, s samples colored by speaker 84

Figure 4.12 Batch FPA and FSA on the TIMIT validation set with varying filter

lengths . 86

Figure 4.13 t-SNE projection of raw features (left) and s representation. Each

point is one frame of 40 utterances from TIMIT development set.

Colors represent speakers . 90

Figure 4.14 t-SNE projection of raw features (left) and c representation. Each

point is one frame of 40 utterances from TIMIT development set.

Colors represent phonemes . 91

LIST OF ABBREVIATIONS

AAE Adversarial Auto Encoder

AIC Akaike Information Criterion

BIC Bayesian Information Criterion

BLSTM Bidirectional Long Short-Term Memory network

CNN Convolutional Neural Network

DNN Deep Neural Network

ELBO Evidence Lower Bound

EM Expectation Maximization

FFT Fast Fourier Transform

FHVAE Factored Hierarchical Variational AutoEncoder

FMLLR Feature Maximum Likelihood Regression

FPA Framewise Phoneme Accuracy

FSA Framewise Speaker Accuracy

GAN Generative Adversarial Network

GMM Gaussian Mixture Model

HMM Hidden Markov Model

JFA Joint Factor Analysis

KL Kullback-Leibler divergence

LDA Latent Dirichlet Allocation or Latent Discriminant Analysis

XVIII

LSTM Long Short-Term Memory network

MAP Maximum A Posteriori

MCMC Monte Carlo Markov Chains

MFCC Mel Frequency Cepstral Coefficients

MFL Multiple filtered Latent variables

ML Maximum Likelihood

MLP Multilayer Perceptron

MMD Maximum Mean Discrepancy

NLP Natural Language Processing

NN Neural Network

PLDA Probabilistic Linear Discriminant Analysis

PLP Perceptual Linear Prediction

RBM Restricted Boltzmann machine

RNN Recurrent Neural Network

SAT Speaker Adaptive Training

SGD Stochastic Gradient Descent

SVI Stochastic Variational Inference

SGVB Stochastic Gradient Variational Bayes

TDNN Time-Delay Neural Network

UBM Universal Background Model

XIX

VAE Variational Auto Encoder

VT Vocal Tract

LIST OF SYMBOLS AND UNITS OF MEASUREMENT

Bern Bernoulli distribution

Cat Categorical distribution

Dir Dirichlet distribution

E Expectation

LE LBO Expected lower-bound

DKL Kullback-Leibler divergence

μ Mean vector

N Normal distribution

R Real number set

σ Variance vector

INTRODUCTION

Representations aim to capture significant, high-level information from raw data, most commonly

as low-dimensional vectors. When considered as input features for a downstream classification

task, they reduce classifier complexity, and help in transfer learning and domain adaptation. An

interpretable representation is one which captures underlying meaningful factors, and can be

used for understanding data, or to solve tasks that need access to these factors. A disentangled

representation is also able to place different underlying factors, for example style and content,

into separate vector dimensions, so that even factor combinations that were not seen in training

can be well represented.

In natural language processing (NLP), word embeddings such as word2vec (Mikolov, Sutskever,

Chen, Corrado & Dean, 2013), or sentence embeddings as in ELMO (Clark, Lee, Zettlemoyer,

Peters, Neumann, Iyyer, Gardner, Clark, Lee & Zettlemoyer, 2018), are examples of repre-

sentations that have become important components of many natural language understanding

models. Two main factors explain this success. Firstly, these representations are trained

without supervision, so they can exploit very large, unannotated text corpora, allowing more

powerful models than those limited to smaller, annotated corpora. Secondly, they have a

meaningful interpretation as their vector space encodes analogies, as in the vector equation

king − queen = man − woman (Pennington, Socher & Manning, 2014). This ability to capture

underlying relations to some degree is key to their success in a number of tasks where semantics

plays an important role.

Representations have also been used in speech processing, where deep neural network based

representations such as bottleneck and tandem features (Knill, Gales, Ragni & Rath, 2014)

have been used to complement more classical speech features. In speaker recognition (Snyder,

Garcia-Romero, Povey & Khudanpur, 2016b) speaker representations are derived from linear

layers before the last output layer of a neural network. Speaker embeddings have also been used

2

for other tasks such as speaker diarization (Garcia-Romero, Snyder, Sell, Povey & McCree,

2017) and speech recognition (Povey, Hadian, Ghahremani, Li & Khudanpur, 2018). However,

in contrast with NLP, these speech representations must be trained with supervision, using

speech frames labelled by speaker, or with semi-supervision using the text transcription of the

speech. Furthermore, in general these approaches do not aim for interpretable representations.

0.1 Problem statement and motivation

An unsupervised representation for speech, i.e., one that could be trained directly with large

amounts of unlabelled speech recordings, and could disentangle the main factors underlying

speech variability, would have a major impact on many speech processing tasks, for the following

reasons.

Labelling of data for speech is done through manual transcription and is very expensive.

Transcribing an audio recording into a time-aligned text requires between 40 and 100 hours of

work for each hour of recording (Seifart, Evans, Hammarström & Levinson, 2018). Collecting a

reasonable amount of labelled data can even be infeasible for some languages where there are

simply not enough transcribers available. On the other hand, large collections of unannotated

recordings are readily available, even for rare and endangered languages: this disproportion

between the ease of collecting audio recordings, and their transcription cost, has been termed

the "transcription bottleneck" (Seifart et al., 2018). Leveraging large amounts of untranscribed

speech through unsupervised representations would extend speech recognition to tasks that are

not currently feasible, for example low-resource languages.

Major sources of variability in speech are often described as phonetic, speaker and channel

related, because of their impact on speech recognition (Lippmann, 1997), speaker recogni-

tion (Kenny, Boulianne, Ouellet & Dumouchel, 2007b) or emotion detection (Cummins, Epps,

Sethu & Krajewski, 2014). These claims are supported by empirical studies of speech variability

3

in the spectral domain, such as Kajarekar, Malayath & Hermansky (1999), which conclude that

phonemes and phonetic context account for 59.7% of total variability, while speaker and channel

variability accounts for 40.3%. In speech-to-text, spoken term retrieval, or language recognition,

speaker variations are a nuisance factor that degrade performance, while for speaker diarization

or text-independent speaker verification, it is the phonetic content which must be ignored

or compensated for. These tasks would all benefit from a representation able to disentangle

speaker and phonetic variations. Feeding the downstream classifier only the relevant part of the

representation frees the classifier from dealing with unrelated variability, allows it to be simpler

and reduces its annotated data requirements.

Unsupervised representation learning for speech has received less attention, compared to

supervised representations, with most previous work relying on generative models that represent

underlying factors of variation, but which do not produce disentangled and interpretable

representations. Modified objective functions have been used to encourage disentangling, such

as β-VAE (Higgins, Matthey, Pal, Burgess, Glorot, Botvinick, Mohamed & Lerchner, 2017) and

mutual information (Chen, Duan, Houthooft, Schulman, Sutskever & Abbeel, 2016; Phuong,

Welling, Kushman, Tomioka & Nowozin, 2018).

However, as noted in Locatello, Bauer, Lucic, Rätsch, Gelly, Schölkopf & Bachem (2018),

purely unsupervised learning of disentangled representations is not possible without inductive

biases on both the model and data. Some recent work (Chorowski, Weiss, Bengio & van den

4

Oord, 2019; Hsu, Zhang & Glass, 2017b; Li & Mandt, 2018) has used an inductive bias in the

form of a binary opposition of frame vs. utterance levels.

0.2 Research objectives and contributions

Given the potential of unsupervised speech representation, and the relatively small amount of

related previous work, the objective of this research is to develop an unsupervised model that

can learn interpretable and disentangled representations for speech.

The leading approach to unsupervised representation learning uses generative models (East-

wood & Williams, 2018). In our early work, we started with posteriorgram representations based

on Gaussian mixture models (GMMs), aiming to capture phonetic content and exclude speaker

variability (Boulianne, 2015). However GMMs are not the model of choice when large amounts

of data are available, and deep neural networks offer more capacity and diversity of architecture.

Here we select the variational autoencoder (VAE) as it combines generative modelling and deep

neural networks in a unified framework. The generative model has latent variables that have a

natural explicative function. Deep neural networks can model complex non-linear relationships

between these latent variables and the observed real-world signals. In this work, we extend the

variational autoencoder (VAE) model to an arbitrary number of latent variables, each with its

own prior, so we can incorporate inductive biases as prior distributions on these variables. The

main contributions of this thesis are:

1. We propose time filtering as a bias to induce representations at a different time scale for each

latent variable, on a continuum that is not limited to a binary frame vs. utterance dichotomy;

2. We show how to impose a multimodal prior for discrete latent variables, and present two

new tractable VAE loss functions using expectation-maximization with matched divergence,

and divergence sampling;

5

3. Using a realistic simulated vowel dataset, we examine how well time scale and discreteness

biases encourage latent variables to recover the underlying vowel and speaker factors used

to generate the audio features;

4. On a real English speech database, TIMIT, we evaluate disentangling and interpretability

of the proposed representation with downstream phoneme and speaker classification tasks

using a simple k-means classifier. Jointly estimating the latent variables is shown to be

crucial for better disentangling;

5. We propose self-attention to add sequence modelling capacity to the VAE model. This is

the first time self-attention is used for learning in an unsupervised speech task.

6. A manuscript was submitted to the IEEE/ACM Transactions on Audio, Speech and Language

Processing, with contents mostly taken from Chapter 3 and 4; currently it requires minor

revisions for English usage before acceptance.

0.3 Thesis outline

Together, the first two chapters constitute a literature review. Chapter 1 covers unsupervised

learning and representations, while Chapter 2 concentrates on the variational autoencoder

and the approaches previously proposed in this framework. In Chapter 3, we introduce our

proposed model and derivations for multiple latent variables, time-scale biases, multimodal

priors, and sequence modelling, along with their deep neural network implementation. Chapter 4

presents our experimental results on simulated data and TIMIT, with a detailed methodology

for evaluating interpretability and disentanglement of the representations, using downstream

phoneme and speaker classification tasks. We discuss our results in Chapter 5 and conclude in

Chapter 6. A detailed list of model hyperparameters, as they were used in the experiments, is

provided in Appendix I.

CHAPTER 1

UNSUPERVISED LEARNING

The recent success of deep learning in speech was obtained with supervised methods, which

depend on large amounts of labelled data in the form of text transcriptions. This dependency is

a limiting factor for many applications where large amounts of labelled data are not available. It

is difficult to find large labelled corpora for very specialized domains, for example conversations

between a control tower and airplane pilots, as was the case in the recently held Airbus Air

Traffic Control challenge (Delpech, Laignelet, Pimm, Raynal, Trzos, Arnold & Pronto, 2018). In

fact, it is a real problem for a lot of the world’s languages, which are qualified as "low-resource

languages" because they lack the amount of labelled recordings required to get good performance

with current speech models, a problem that the IARPA Babel program (IARPA, 2012) specifically

addresses. However, today it is relatively easy to obtain large amounts of unlabelled recorded

video and speech, even for specialized applications and low-resource languages. Could it be

possible to learn from large amounts of unlabelled data, i.e., in an unsupervised manner, to

obtain models as powerful as our current supervised models?

This question has generated a large body of literature in machine learning, ever since its beginning.

We don’t attempt here a full review, but limit ourselves to the main topics which form the

supporting background for the material to be introduced in the following chapters. This chapter

will present a literature review of three important approaches: unsupervised training, partly

supervised training, and representation learning.

1.1 Unsupervised classification

Among the earliest strategies proposed for unsupervised learning we find clustering, whose goal

is to discover natural groupings (clusters) in the unlabelled data. Although there exist algorithms

which find hierarchies of nested clusters, we will consider here algorithms that partition data

without imposing a hierarchical structure.

8

The most well-known of these partitional algorithms is the classical K-means algorithm which

was introduced about 50 years ago (Jain, 2010).

1.1.1 K-means

Given a number N of objects (observations) represented by features of dimension D, K-means

clusters objects into K groups such that observations within a group are closer than observations

across groups. To evaluate closeness, conventional K-means relies on the Euclidean distance

measure. More precisely, it groups observations such that the sum of the squared error between

the empirical mean of a cluster and the observations in the cluster is minimized. The resulting

clustering can be used for classification, data visualization, or as an initialization for more

expensive clustering algorithms.

The K-means algorithm has several advantages: it is simple and scalable, easy to implement,

and works well for a variety of applications (Kulis & Jordan, 2012). Its time complexity is linear

in N , D and K . It also has well-known limitations: it can only detect compact hyperspherical

clusters, the number of clusters must be specified in advance, each observation is assigned to a

single cluster with a hard decision, and it converges to a local minimum of its objective function.

Several extensions to K-means have been proposed to overcome these limitations: selection of

the number of clusters with the Bayesian Information Criterion (BIC) or Akaike Information

Criterion (AIC) (Pelleg & Moore, 2000), use of other distance measures such as Mahalanobis,

L1 or Itakura-Saito (Celebi, Kingravi & Vela, 2013), and a large spectrum of initialization

methods (Celebi et al., 2013). Spectral clustering for K-means (Zha, He, Ding & Simon, 2001)

and kernel K-means (Scholkopf, Smola & Muller, 1996) were introduced mainly to allow more

arbitrary shaped clusters, but can be shown to be equivalent (Dhillon, Guan & Kulis, 2005).

Spectral clustering has been used in speech enhancement (Hershey, Chen, Le Roux & Watanabe,

2016). As an unsupervised learning method in speech, K-means has had some early suc-

cesses (Astrahan, 1970) but it was quickly replaced with a better performing approach, Gaussian

Mixture Models (GMMs).

9

1.1.2 Gaussian Mixture Model

The Gaussian Mixture Model is a generative model: observations are assumed to be sampled

from a mixture of gaussian distribution, of which each gaussian component is specified by a mean

and a covariance. The generative process is to first sample an index for the component (from a

prior distribution of component indices), then sample an observation from the associated gaussian

distribution, thus giving rise to a mixture of gaussians. To find which mixture component

was used in generating each observation (the per-observation component assignment), so that

the overall likelihood of observations is maximized, the most commonly used algorithm is

Expectation Maximization (EM). EM has been shown to be a probabilistic generalization of

K-means by (Welling, 2009) and (Kulis & Jordan, 2012). Thus clustering with a GMM is closely

related to K-means, but differs by replacing hard cluster assignments with probabilities and

using a covariance-based distance measure.

In speech, GMMs have been used as part of Hidden Markov Models (HMMs) in the GMM-HMM

globally supervised speech recognition model (Deng & Jaitly, 2016). As an unsupervised

learning method, their most common use is in speaker recognition as a Universal Background

Model (UBM) for i-vector extraction (Dehak, Kenny, Dehak, Dumouchel & Ouellet, 2011).

1.1.3 Latent Dirichlet Allocation

In some applications, the assumption that each observation belong to a single cluster is not

realistic. For example, in document classification, it is natural to assume that each document

can be labelled with several topics. Mixed-membership models were introduced to relax this

assumption, so that each observation may belong partly to several categories, instead of belonging

to a single cluster (Airoldi, Blei, Erosheva & Fienberg, 2014).

A very successful mixed-membership model is Latent Dirichlet Allocation (LDA) (Blei & Laf-

ferty, 2009). LDA reshaped the topic modelling community and has become a standard tool

in document analysis (Kulis & Jordan, 2012). LDA pushes the idea of latent variables in a

generative model to a two-level hierarchy. Each document is assumed to be generated from

10

multiple topics, where a topic is a particular distribution of words in the vocabulary. The

hidden variables are the per-document topic proportions and the per-word topic assignments.

These hidden variables have been used as features for language model adaptation in speech

recognition (Deena, Hasan, Doulaty, Saz & Hain, 2016).

K-means, GMMs, and LDA introduced the main ideas that still underlie the more recent purely

unsupervised learning methods: natural groupings can be found in the data, not at the superficial

level of features, but in deeper, latent factors, that can even form a hierarchy.

1.2 Weak supervision

Now we turn to other approaches that seek some help to assist unsupervised learning and fall

under the general term of weak supervision. Zhou (2018) recognizes three typical types of weak

supervision: incomplete, inexact and inaccurate.

Incomplete supervision (or semi-supervised learning) combines small amounts of explicit

classification information from the labelled data with large amounts of implicit information from

unlabelled data.

Generative models formulate incomplete supervision as a missing data imputation task for the

classification problem (Barber, 2016). In a generative model, the observed data distribution

is modelled by a parametric distribution, whose parameters are treated as unobserved random

variables. Incomplete supervision is naturally handled by also treating class labels as unobserved

random variables. Unobserved label variables are marginalized, and for labelled observations,

the corresponding latent variable probability is set to one (if discrete) or to a delta function

(when continuous) (Barber, 2016).

Self-training is another example of incomplete supervision. It starts with a supervised classifier

that is trained on a small training set, then iteratively retrained on new examples labelled by

the current classifier. To avoid "training bias" (badly labelled examples will make the model

drift farther), it is common to strictly filter auto-labelled examples with some criteria e.g., active

11

learning. Self-training is a wrapper method in the sense that it can be applied to any supervised

learning algorithm, but it needs good confidence predictions in order to work (Tanha, van

Someren & Afsarmanesh, 2017). Co-training takes the same approach with two supervised

classifiers that provide each other labels for the unlabelled instances.

Some unsupervised deep learning models allow incorporation of explicitly labelled examples in

their training set, and this has been applied with the Variational Autoencoder (Kingma & Welling,

2014) and Adversarial Autoencoder (Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley,

Ozair, Courville & Bengio, 2014), which will be described in more details in Chapter 2.

In transfer learning, unsupervised models trained on an auxiliary task are used to train supervised

models on another task, as an initialization for deep supervised networks e.g., Boltzmann

machines (Hsu, Hwang, Wu, Tsao & Wang, 2017a)), or to simulate additional labelled training

data (Dai & Le, 2015). Representation learning, a special case of transfer learning, has become

so important recently that it is deferred to next section wholly devoted to it.

Inexact supervision corresponds to the case where supervision is available only indirectly. In

multi-instance learning, labels are not available for individual instances, but only for groups of

instances (Foulds & Frank, 2010). Even when no labels at all are available, groupings themselves

are informative: siamese networks (Gundogdu & Saraclar, 2017; Zeghidour, Synnaeve, Usunier,

Dupoux & Etudes, 2016) can exploit knowledge about speech observation in word pairs.

Similarly, observation triples are used in triplet loss (Bredin, 2017), or even larger groupings

that partition the data in groups with common factors of variation (Rudolph, Ruiz, Athey & Blei,

2017).

Finally, inaccurate supervision concerns situations where labels may contain errors or noise,

as when labels are obtained from crowdsourcing. One approach is to identify potentially

mislabelled instances and correct them, as in data editing (Muhlenbach, Lallich & Zighed, 2004).

12

1.3 Representations

Input features are an important part of classifier performance, and a lot of research efforts have

been dedicated to feature design and tuning (feature engineering). While any features extracted

from data can be thought of as a form of data representation, what is usually meant in the

context of “representation learning” is a more complex transformation, learned in a supervised

or unsupervised way, which transforms low-level input features into higher-level features. For

example, consider a deep neural network model with many hidden layers trained for a task, the

auxiliary task in Figure 1.1. As we go from input to output, each layer is a more and more

complex transformation of the input. Since each layer is the sole input for the following layers, it

represents all of the information that the network can use to perform the task. Thus each hidden

layer in the deep network can potentially play the role of a representation, in the form of a low

dimensional vector of real numbers. Typically a linear layer close to the output layer is chosen,

like layer h3 at top of Figure 1.1.

h1 h2 h3 auxiliary task
y1

h4 main task
y2

x

Figure 1.1 Representation learning. Top: training, Bottom: use

Such learned feature transformations are also known as embeddings, or distributed representations

(as opposed to local representations such as clustering, which classify observations in one

of K classes) (Bengio, Courville & Vincent, 2013). Representations typically have smaller

dimensions than input features, capture a lot of the information / redundancy, and eliminate

13

feature engineering. They are claimed to lead to better performance, make learning easier

with reduced training time, require smaller number of examples, offer better convergence and

overcome classifier limitations, as argued in Bengio et al. (2013); Le, Ranzato, Monga, Devin,

Chen, Dean, Corrado & Ng (2012).

The idea of representation learning can be traced backed to a long history in machine learning.

As seen in the previous section, spectral clustering and kernel K-means attempt to find more

complex-shaped clusters in the feature space by operating in a simpler, underlying space. Good

representations learned from data can be used for various tasks such as data visualization,

summarization and exploration (Ridgeway, 2016), or as an input for a subsequent step of

classification, for example in generative modelling and semi-supervised learning (Kingma,

Rezende, Mohamed & Welling, 2014; Maaløe, Sønderby, Sønderby & Winther, 2017b; Rezende,

Mohamed & Wierstra, 2014).

In feature transfer, a representation learned to perform one task is used for another, different

task. In Figure 1.1, a first deep neural network is trained on an auxiliary task (top), and the

representation learned is then used to train a second, shallow supervised classifier on the main

task (bottom).

This special case of transfer learning (Lacoste, Oreshkin, Chung, Boquet, Rostamzadeh & Krueger,

2018) is useful when only small amounts of training data are available for the main task, but an

auxiliary task with large amounts of training data is available.

Recently, this approach has had a large success in many fields, to the point where representation

learning has become a field in itself in the machine learning community (Bengio et al., 2013;

Clark et al., 2018).

For example, in image recognition, features trained on ImageNet were shown to generalize to

other tasks (Donahue, Jia, Vinyals, Hoffman, Zhang, Tzeng & Darrell, 2013). In this case, the

auxiliary task is supervised, i.e. a large set of one million images with labels. Feature transfer

14

was shown to surpass fine-tuning of a pretrained network for image classification (Mahajan,

Girshick, Ramanathan, He, Paluriixuan, Li, Bharambe & van der Maaten, 2018).

In natural language processing (NLP), word embeddings have obtained similar successes:

GloVe (Pennington et al., 2014), FastText (Bojanowski, Grave, Joulin & Mikolov, 2016),

ELMO (Clark et al., 2018), and the most widely used word2vec developed by Mikolov et al.

(2013). These representations are obtained by training a recurrent neural network with large

amounts of text, to predict the next word given its current hidden state. Note that in this case,

the auxiliary task is unsupervised. A softmax activation output layer encodes the predicted

probability for each word in the vocabulary. The linear layer just before the output activation is

taken as the low-dimensional representation of a word. In the more recent approaches (such as

ELMO), the embeddings represent whole sequences of words rather than a single one (Clark

et al., 2018).

In speech recognition, bottleneck and tandem features (Knill et al., 2014) are used to replace, or

to supplement, respectively, more classical features such as MFCC and PLP. Posteriorgrams have

been obtained from supervised phonetic models for spoken term detection (Hazen, Shen & White,

2009), from Deep Neural Networks (DNNs) for mispronunciation detection (Lee, Zhang & Glass,

2013), or siamese networks trained on text-audio pairs for keyword search (Gundogdu & Saraclar,

2017).

In speaker recognition, the auxiliary task is usually speaker classification (Bhattacharya,

Alam & Kenny, 2017; Li, Chen, Shi, Tang & Wang, 2017; Snyder et al., 2016b). In that case,

representations are derived from linear layers located before the last output layer. Such speaker

representations followed by a simple classifier offer comparable or better performance than

state-of-the-art i-vector/PLDA systems (Wang, Li, Tang & Zheng, 2017). Speaker embeddings

have also been used for other tasks such as speaker diarization (Garcia-Romero et al., 2017;

Rouvier, Bousquet & Favre, 2015), the latter author using super-vectors as input features.

15

1.3.1 Sequences

Speech is a time series, and most tasks in speech processing can be described as translating from

a sequence of frames representing the speech time-series to another sequence of words or classes.

For speaker recognition, emotion detection, or language identification, an ideal representation

would capture information about a variable-length input sequence in a single, fixed-dimension

vector.

Such a representation is obtained with Joint Factor Analysis (JFA) or i-vectors, which convert a

whole sequence of speech frames to first-order statistics and derive a low-dimension vector (Dehak

et al., 2011). A recurrent neural network (RNN or LSTM) can also be applied to this problem:

the history from last recurrent layer is a summary of the whole input sequence (Weiss, Chorowski,

Jaitly, Wu & Chen, 2017). Convolutional neural networks (CNN or TDNN) can also successively

reduce a varying-length input to a fixed dimension (Cyrta, Trzciński & Stokowiec, 2018;

Hsu & Glass, 2018b). These methods preserve temporal ordering information. When temporal

order can be ignored, one can combine outputs of several frame-level hidden layers with a

simple average, or max-pooling, or use an attention model (Bhattacharya et al., 2017), where the

optimal weight for each time-step is learned.

Recently, self-attention has been proposed as a different mechanism that can take into account

large contexts and produce state-of-the-art results, but is much faster to train than recurrent

networks (Chowdhury, Wang, Moreno & Wan, 2018; Sperber, Niehues, Neubig, Stüker & Waibel,

2018). In the seminal "Transformer" paper by Vaswani, Shazeer, Parmar, Uszkoreit, Jones,

Gomez, Kaiser & Polosukhin (2017), self-attention was used as a supervised learning method,

given pairs of sentences in source and target language. Training is done by predicting future

target words given past source words, with an encoder/decoder tandem. Training can also be

framed as an unsupervised task, if input and output sentences are the same, for learning a

language model, for example (Al-Rfou, Choe, Constant, Guo & Jones, 2019).

Attention was historically introduced for supervised learning in text processing, and has been

since applied to speech recognition and speaker recognition, but always in supervised settings

16

(Chorowski, Bahdanau, Serdyuk, Cho & Bengio, 2015; Chowdhury et al., 2018; Povey et al.,

2018; Sperber et al., 2018; Wang, Okabe, Lee, Yamamoto & Koshinaka, 2019; Zeinali, Burget,

Rohdin, Stafylakis & Cernocky, 2019; Zhu, Ko, Snyder, Mak & Povey, 2018).

1.4 Unsupervised representations

Most examples we have seen up to now learn a representation through an auxiliary supervised

task. Unsupervised representations are based on models that can be trained without labelled

data, such as generative models. Today, a significant fraction of unsupervised representation

learning research is driven by generative modelling (Chen et al., 2016; Rouvier et al., 2015).

Generative models explicitly incorporate simple latent variables which generate observations

with complicated distributions in feature space. Their goal is to learn a posterior latent vari-

able distribution that explains the observed data well (Bengio et al., 2013); latent variables

potentially constitute an ideal representation. Generative modelling has become one of the

leading approaches to unsupervised representation learning, with several recent works imposing

additional learning constraints to encourage the model to learn disentangled representations (East-

wood & Williams, 2018). Today, the most commonly used models for this task are GMMs,

autoencoders and variational autoencoders.

For GMMs, the vector of posterior probabilities, which represents the estimated responsibility

of each component, is also called a "posteriorgram". Posteriorgrams have been used in

spoken content retrieval (Zhang & Glass, 2009), zero-resource speech recognition (Muscariello,

Gravier & Al, 2011), and passphrase verification (Boulianne, 2015). Some approaches treat the

GMM supervector1, estimated on a frame sequence, as input features for a downstream task,

such as learning a representation for language identification (Zhang & Hansen, 2018), or speaker

diarization (Rouvier et al., 2015).

In speaker recognition, the i-vector (Dehak et al., 2011) is another representation derived from a

GMM and has been the mainstream approach up to now. This generative model assumes that

1 Concatenation of the component means of a GMM obtained by adaptation of a UBM.

17

the observed supervector for each utterance is sampled from a supervector distribution, whose

mean depends on an utterance-specific, low-dimensional, latent vector called an i-vector. The

model was derived from JFA (Kenny, Boulianne, Ouellet & Dumouchel, 2007a) by ignoring the

speaker label supervision. Each i-vector summarizes a whole speech sequence.

Another main unsupervised approach is the classical autoencoder (Hinton & Salakhutdinov,

2006). It is a deep neural network whose objective is to reconstruct its output x′ from its input x,

as illustrated in Figure 1.2. The reconstruction task acts as a weak supervision, similar in spirit

to the word prediction task in word2vec. When x′ = x (output is same as input), a narrow hidden

layer (bottleneck layer) is used to avoid the trivial solution of just copying the input, and provides

a low-dimensional, high-level representation of the input. Other solutions include making x′ a

noisy version of x, as in the denoising autoencoder (Vincent, Larochelle, Bengio & Manzagol,

2008), or adding a sparsity cost to the objective (Le et al., 2012), or using for x′ a different

observation from the same class as x (Zhang & Hansen, 2018). Note that in the classical

autoencoder, the input, model parameters and reconstruction costs are all deterministic values.

In speech emotion recognition Deng, Xu, Zhang, Fruhholz & Schuller (2018) demonstrated with

an autoencoder the importance of reconstruction error as a regularizer when learning with few

labelled examples.

x x′

Figure 1.2 Classical autoencoder. Hidden

layers in white, bottleneck in grey

A third approach is represented by the variational autoencoder (VAE) of Kingma & Welling

(2014). Despite its underlying similarity with the denoising autoencoder (Rezende et al.,

18

2014), the VAE has a very different objective, based on the variational principle: reduce the

Kullback-Leibler (KL) divergence between an estimated posterior distribution and true posterior

distribution (Bishop, 2006). Deep neural networks with non-linearities are used to define

complex distributions from simpler, random variables. Stochastic gradient descent is used to

find model parameters that optimize the variational objective cost. With auto-differentiation,

there is no need to derive gradient equations. These methods expand the range of distributions

that can be handled beyond simple conjugate priors, as previous Bayesian models were, and

importantly, scale to large datasets (Blaauw & Bonada, 2016).

Following introduction of the VAE, many similar generative models have been introduced with

various objective functions. The Generative Adversarial Networks (GAN) (Goodfellow et al.,

2014) keep the generative network of an autoencoder but replace the recognition network with a

discriminator that distinguishes between real and generated samples; GANs are optimized for

generative tasks and bypass inference of latent variables (Hsu et al., 2017b). In order to infer latent

variables, the Adversarial AutoEncoder (AAE) (Makhzani, Shlens, Jaitly, Goodfellow & Frey,

2015) keeps both recognition and generative networks, but adds a third network whose role

is to distinguish between samples generated by the model and true samples; the network is

trained with a dual objective that combines reconstruction error and an adversarial criterion. As

shown in Makhzani et al. (2015), AAE and VAE only differ on the specific objective function

that is used to match the posterior to the prior. Deep Latent Gaussian Mixtures (DLGMM),

introduced by Nalisnick, Hertel & Smyth (2016), add a Dirichlet process prior and a differentiable

approximation to the discrete posterior to solve difficulties in mixture model inference.

A Restricted Boltzmann machine (RBM) is another unsupervised network, with a single

layer. Stacking individual RBM layers yields the Deep Belief Network (DBN) (Bengio,

Lamblin, Popovici & Larochelle, 2006). This undirected probabilistic model is limited to binary

variables (Blaauw & Bonada, 2016) and is trained layer-by-layer with Contrastive divergence. Its

use has been limited to initialize deep supervised models. In contrast, the VAE has continuous

latent variables, in an easier to interpret Bayesian framework, with a simple approximation to

true likelihood.

19

1.5 Summary

Unsupervised learning has been pursued in the field of machine learning since its beginning,

with methods such as K-means and GMMs. Representation learning with deep neural networks

has generated growing interest; it allows unsupervised classification and transfer learning from

large amounts of unlabelled data to a low-resource supervised classification task. Generative

models inherently support unsupervised or partly supervised learning. Recently, VAEs have

emerged at the intersection of both fields, integrating generative and deep learning in a unified

framework, and have become the model of choice for unsupervised representation learning.

CHAPTER 2

THE VARIATIONAL AUTOENCODER

The literature on VAE has literally exploded in recent years1. Hence this chapter is devoted

to an overview of previous work and current directions in VAE research. A detailed technical

description is also given to make it easier to follow developments in the literature.

The classic VAE was first introduced by Kingma & Welling (2014) and Rezende et al. (2014). It

has the general structure illustrated by the graphical model shown in Figure 2.1.

xz
N(μθ (z),σ

2
θ (z))

θ

N

x z
N(μφ (x),σ

2
φ (x))

φ

N

Figure 2.1 VAE graphical model. Top: generator (decoder),

bottom: recognizer (encoder)

The top part shows observation x generated from latent variable z so that pθ(x, z) = pθ(x |z)p(z).

The parametric distribution pθ(x |z) is modeled with a Gaussian distribution N(μθ(z), σ2
θ (z))

where μθ and σθ are non-linear functions specified by a deep neural network, with parameters θ,

applied to z. This represents the generative part of the model, also called the decoder, since it

uses the code z to produce a distribution for values of x.

As for any generative model, the aim is to estimate the true posterior distribution pθ(z |x). The

VAE approximates this true posterior with a parametric posterior distribution qφ(z |x). The

bottom of Figure 2.1 shows how this approximate posterior is specified by N(μφ(x), σ2
φ(x)),

1 In March 2019, Google Scholar reported approximately 5600 papers with "variational autoencoder" in

the title, of which about 2600 were published just since the beginning of 2018.

22

where μφ and σφ are computed by another deep neural network, with parameters φ, operating

on x. This is the recognition part of the model, also called the encoder, since for each data point

x it produces a distribution of possible codes z that could have generated x.

2.1 Inference in VAE

Estimating the posterior distribution in Bayesian models have traditionally relied on methods

that are computationally expensive (Blei, Kucukelbir & McAuliffe, 2016) such as Monte Carlo

Markov Chains (MCMC) and Gibbs sampling. Variational mean-field approximation turns this

inference problem into an optimization problem and is much less expensive (Barber, 2016). Both

MCMC and mean-field inference can only be applied to relatively small datasets. Stochastic

variational inference (SVI) (Hoffman, Blei, Wang & Paisley, 2013) is able to follow noisy

gradient estimates obtained from minibatches and scales to large datasets. Since most Bayesian

models have as many local parameters as observations, the inference cost is still linear with

respect to dataset size.

The variational objective of the VAE is fully differentiable and thus amenable to gradient-based

optimization. Furthermore, parameters to be estimated, θ and φ, are global (shared for all

observations) rather than local. Exploiting this property on top of SVI Kingma & Welling

(2014) proposed Stochastic Gradient Variational Bayes (SGVB) for VAE inference, amortizing

inference cost over the dataset, and using a reparameterization trick to reduce variance of the

loss estimate. With these improvements, VAE inference becomes scalable to very large datasets.

2.1.1 VAE objective

Here we give a full derivation of the model, following Huszár (2017) and Kingma & Welling

(2014).

We have N i.i.d. observations X = {x1, · · · , xN } and we assume each observation is generated by

a two-step process involving an unobserved continuous variable z. First, a value zn is generated

from a prior distribution p(z); then, an observation xn is generated from a conditional distribution

23

pθ(x |z). The parameters θ and values of the latent variable zn are not observable but we want to

estimate them. In the general case, the model pθ(x) and true posterior pθ(z |x) are intractable;

therefore, we introduce qφ(z |x), a parametric approximation to the true posterior.

2.1.2 Expected lower bound derivation

The model evidence (or marginal likelihood) is the product of the marginal likelihoods of

individual observations xn, so that:

log pθ(X) = log pθ(x1, · · · , xN) =

N∑

n=1

log pθ(xn) (2.1)

In variational inference, each of these individual likelihoods is decomposed into the following

sum (see for example eq. (10.2) in Bishop (2006)):

log pθ(x) = LE LBO(θ, φ; x) + DKL[qφ(z |x) ‖ pθ(z |x)] (2.2)

where

LE LBO(θ, φ; x) = Eqφ(z |x)[log pθ(x, z) − log qφ(z |x)] (2.3)

The index n has been dropped and will not be used in what follows unless needed. In that case,

just recall that on the whole observation set X , we have:

LE LBO(θ, φ; X) = Epdata(x)Eqφ(z |x)[log pθ(x, z) − log qφ(z |x)] (2.4)

ELBO stands for "Evidence Lower Bound": since KL divergence is positive, LE LBO is a lower

bound to pθ(x), and is maximized when the approximate posterior qφ(z |x) exactly matches the

true posterior pθ(z |x), making the KL divergence vanish.

24

Using the generative model pθ(x, z) = pθ(x |z) p(z), LE LBO can be rewritten:

LE LBO(θ, φ; x) = Eqφ(z |x)[log pθ(x |z) + log p(z) − log qφ(z |x)] (2.5)

Grouping posterior qφ(z |x) with corresponding prior p(z) and using the definition of KL

divergence as −DKL(q ‖ p) = −Eq(log p− log q), LE LBO can be reduced to an expression which

contains only tractable values:

LE LBO(θ, φ; x) = Eqφ(z |x)[log pθ(x |z)] − DKL[qφ(z |x) ‖ p(z)] (2.6)

The right-hand side contains two terms: the first is a reconstruction term and the second is a

regularization term that we will call z-prior term.

The reconstruction term is an expectation that can be approximated by Monte Carlo sam-

pling (Anderson, 1999):

Eqφ(z |x) log pθ(x |z) ≈
1

L

L∑

l=1

log pθ(x | zl) (2.7)

with L samples zl ∼ qφ(z |x).

The z-prior term can be efficiently computed using the closed-form definition of DKL , i.e.,

directly from the parameters of qφ(z |x) and p(z) rather than from sampled values.

2.1.3 Reconstruction and representation

First VAEs used shallow networks that showed good performance on image datasets such as

MNIST (Kingma et al., 2014), so improvements were expected with deeper networks to generate

more complex distributions. Instead, it can be observed (Zheng, Yao, Zhang & Tsang, 2018)

that a deeper decoder leads to better reconstruction, but produces latent variable representations

which are less meaningful and more difficult to classify, as can be seen comparing the first two

models on the left of Figure 2.2.

25

Figure 2.2 Deeper network’s impacts in VAE models.

Upper: representation of latent variable. Lower: ground truth (odd

columns) and reconstruction samples (even columns)

Taken from Zheng et al. (2018, p. 1)

On the other hand, a deeper encoder produces better representations but worse reconstruction

quality (third model in Figure 2.2). And when both networks are deep, both reconstruction and

representation are worse than for a shallow VAE (rightmost model of Figure 2.2).

In fact Chen, Kingma, Salimans, Duan, Dhariwal, Schulman, Sutskever & Abbeel (2017) show

that if a powerful enough decoder is used, the VAE objective will favor the degenerate solution

qφ(z |x) = p(z), where the latent variable is not used at all.

Several attempts have been made to overcome this degeneration: annealing the KL term (Sønderby,

Raiko, Maaløe, Sønderby & Winther, 2016), using free bits (Kingma, Salimans, Jozefowicz, Chen,

Sutskever & Welling, 2016), Cluster-aware Generative Models (Maaløe, Fraccaro & Winther,

2017a), or using skip connections in the neural networks (Zheng et al., 2018).

To balance between reconstruction error and representation quality, explicit control of the

amount of information captured in the latent code was explored, by weighting the KL term

in β-VAE (Higgins et al., 2017) or using a mutual information constraint in the Mutual

autoencoder (Phuong et al., 2018). Recently, the VAE objective of Equation (3.1) has been

decomposed in up to six sub-terms (Esmaeili, Wu, Jain, Bozkurt, Siddharth, Paige, Brooks,

Dy & van de Meent, 2018); by weighting each sub-term’s contribution to the total objective,

26

one can control independently several properties of the model, such as disentanglement,

reconstruction quality, or the tendency to ignore the latent code.

An alternative approach to avoid the qφ(z |x) = p(z) degeneration is to use a more flexible prior

p(z) (Section 2.1.4).

2.1.4 Posterior and prior choice

The ability of a VAE to handle non-conjugate priors and arbitrary non-linear mappings of

random variables distributions leaves open many design choices.

The VAE approximate posterior qφ(z |x) is usually chosen as a product of diagonal Gaussian

distributions (mean-field approximation). This variational approximation is one of two com-

ponents at the origin of the inference gap (Cremer, Li & Duvenaud, 2018), i.e. the difference

between LE LBO and the true log posterior. The other component is the amortization gap, which

results from global parameters estimated over the whole training, rather than local parameters

optimized for each training example individually.

The variational gap is addressed by improvements in expressiveness of approximate posteriors:

normalizing flow (Rezende & Mohamed, 2015) and inverse autoregressive flow (Kingma et al.,

2016). These methods open the door to arbitrarily complex posterior densities; in particular,

inverse autoregressive flow is well suited to high-dimensional latent variables.

The prior p(z) for VAE is usually chosen as a simple Gaussian N(0, I), based on the assumption

that the latent variables should have a simple distribution. This could also drive the solution

towards qφ(z |x) = p(z) by over-regularization through the KL term in the LE LBO, Equation (3.1).

To avoid that, more flexible prior distributions have been proposed, such as mixtures of Gaus-

sians (Dilokthanakul, Mediano, Garnelo, Lee, Salimbeni, Arulkumaran & Shanahan, 2017;

Jiang, Zheng, Tan, Tang & Zhou, 2017), multimodal priors coupled to the variational posterior

(VampPrior) (Tomczak & Welling, 2018), nonparametric stick-breaking distributions (Nalis-

nick & Smyth, 2017a), hyperspherical priors (Davidson, Falorsi, De Cao, Kipf & Tomczak,

27

2018), automatically derived reference priors (Nalisnick & Smyth, 2017b), flexible priors

obtained from generator inversion (Kilcher, Lucchi & Hofmann, 2017), or the variational lossy

autoencoder (VLAE) using an autoregressive prior (Chen et al., 2017). Such priors yield better

representations not only on datasets which have a latent structure matching the prior, but also on

those which do not have an obvious matching underlying structure (Davidson et al., 2018).

2.1.5 Discrete latent variables

Some tasks are naturally expressed by discrete variables with a categorical distribution2. A

classic example is the MNIST digit classification (Lecun, Bottou, Bengio & Haffner, 1998), in

which an image obviously represents one of ten discrete classes (digits 0 to 9), with continuous

variations in style, width, etc. Clustering is another important problem described by categorical

variables.

Several efforts have attempted to incorporate discrete latent variables into the VAE framework.

However, inference with discrete variables is prone to several well-known problems in mixture

models, such as identifiability (symmetry breaking) and difficulty of mixing (Barber, 2016).

Discrete distributions also preclude use of the reparametrization trick, and of gradient descent,

because these apply only to differentiable operations.

Nevertheless, a VAE directly modelling discrete latent variables with multimodal priors was

proposed by Makhzani et al. (2015) using an Adversarial VAE; however, the modes found do not

correspond well to natural clusters in the dataset (Rolfe, 2017). Other approaches use a smoothed

RBM (to handle binary variables) coupled with a hierarchical approximate posterior (Rolfe, 2017),

or marginalize the discrete latent variables, as in Cluster-aware Generative Models (Maaløe

et al., 2017a).

Another approach, relaxation, replaces discrete variables with continuous variables that have

approximately equivalent distributions. The Gumbel-softmax distribution (Jang, Gu & Poole,

2017) or the Concrete distribution (Maddison, Mnih & Teh, 2017) are continuous distributions

2 Which describes possible results of a random variable that can take one of K possible values.

28

that approximate a categorical distribution more closely as their temperature parameter is

made smaller3. However, in the context of VAEs, care must be taken since the approximation

introduces an additional mismatch between the true and approximate posteriors (Aitchison,

Adam & Turaga, 2018). In addition, relaxation introduces a large number of local minimums

and makes the optimization problem much harder unless explicitly encouraged to find a more

global minimum (Murray & Ng, 2010).

Finally, combining a Dirichlet process prior and a Kumaraswamy approximation to the Dirichlet

marginal yields a fully differentiable approximation which produces better latent representations

on MNIST than the single Gaussian prior, as shown with Deep Latent Gaussian Mixtures

(DLGMM) (Nalisnick et al., 2016).

2.2 Interpretability and disentanglement

An interpretable representation is one which captures underlying meaningful factors, and can be

used for understanding data, or to solve tasks that need access to these factors. In NLP, word or

sentence embeddings have shown their ability to capture meaningful relations between words,

as in the vector equation king − queen = man − woman (Pennington et al., 2014).

A disentangled representation is also able to place different underlying factors, for example style

and content, into separate vector dimensions, so that even factor combinations that were not

seen in training can be well represented. For example, a pink elephant is easily pictured by a

human even if he has never seen such a combination. Feeding the downstream classifier only the

relevant part of a disentangled representation frees the classifier from dealing with unrelated

variability, allows it to be simpler and reduces its annotated data requirements.

Interpretability can be imposed with partial or weak supervision in several ways: semi-

supervision (Kingma et al., 2014), weak supervision (Siddharth, Paige, van de Meent, Desmaison,

Goodman, Kohli, Wood & Torr, 2017), triplet supervision (Karaletsos, Belongie & Rätsch,

3 This approach is implemented in Tensorflow through the RelaxedOneHotCategorical distribution.

29

2016), paired occurrences (Rudolph, Ruiz, Mandt & Blei, 2016), or grouping data according to

an implicit task rather than labelling samples (Bouchacourt, 2017).

The VAE has the potential to learn disentangled and interpretable representations, since it

explains observations with a hierarchy of stochastic latent variables and explicit dependencies,

from local to global features. Thus fully unsupervised interpretability has been attempted

with various modifications of the VAE objective, as discussed in Section 2.1.3, including

β-VAE (Higgins et al., 2017) and mutual information (Chen et al., 2016; Phuong et al., 2018).

However, as noted in Locatello et al. (2018), purely unsupervised learning of disentangled

representations is not possible without inductive biases on both the model and data. A clustering

example can be used to illustrate the problem (Jain, 2010): when classifying animals, different

groupings of mammals vs birds, or predators vs non-predators, are both equally valid and uncover

meaningful structures, but the choice depends on the end goal of the user. So inductive bias can

force the unsupervised representation to select factors of interest among all the possible ones.

In more recent work, some approaches explicitly use the sequence versus observation level

distinction as an inductive bias, and model the distinction with latent variables, such as the

Factorized Hierarchical Variational AutoEncoder (FHVAE) (Hsu & Glass, 2018b; Hsu et al.,

2017b) and the Sequential AutoEncoder (Li & Mandt, 2018). FHVAE uses a hierarchical prior

where the sequence level variable is allowed to capture sequence level information, while the

other latent variable encodes other residual information.

2.3 Sequence learning

Solutions presented in the previous chapter that derive representations for sequences can also be

applied for the VAE: averaging, max-pooling, attention. For example Tan & Sim (2017) use max

pooling over frame-level hidden layer activations to obtain parameters for an utterance-level

representation variable.

30

A more Bayesian approach is to consider each sequence as a context, a dataset or a task. The

Neural statistician (Edwards & Storkey, 2017) collapses samples in a group with a pooling

operation. Similarly, ML-VAE (Bouchacourt, 2017), SVAE (Johnson, Duvenaud, Wiltschko,

Datta & Adams, 2016) have group-level and observation-level variables. Another solution

proposed for tasks (Lacoste et al., 2018) also applies to sequences: a posterior which factorizes

independently over all tasks, reducing the joint ELBO to a sum of ELBO. Several works

explicitly capture the sequence versus observation level distinction in latent variables, such as the

FHVAE (Hsu & Glass, 2018b; Hsu et al., 2017b) and the sequential autoencoder (Li & Mandt,

2018).

Using sequence capable networks in the VAE, such as recurrent or convolutional networks,

has also been proposed. In NLP, generative modelling of text with a variational encoder has

been tried with RNN (Bowman, Vilnis, Vinyals, Dai, Jozefowicz & Bengio, 2016), or Dilated

CNN (Yang, Hu, Salakhutdinov & Berg-Kirkpatrick, 2017). Hsu, Zhang & Glass (2017d) model

speech with an encoder/decoder of 2-layer LSTMs : the latent variable z is obtained from a

fully connected Gaussian parameter layer which uses both LSTM layer outputs concatenated

as its input. z is then input to a 2-layer LSTM which generates the output sequence. In

another work Hsu, Zhang & Glass (2017c) used convolutional layers to successively reduce

a variable-length input sequence to a fixed dimension which forms the input to the parameter

generating network.

2.4 Application to speech

Publications that applied VAE on speech were not so frequent up to and including 2018. Among

them, we find:

• voice reconstruction and interpolation in the latent space (Blaauw & Bonada, 2016) in a

non-sequential way (independent frames);

• speech generation and transformation (Hsu et al., 2017a);

• speech synthesis (Henter, Wang & Yamagishi, 2018);

• voice conversion (Chou, Yeh, Lee & Lee, 2018; Hsu et al., 2017c);

31

• speech emotion classification (Latif, Rana, Qadir & Epps, 2017);

• speaker verification with VAE using i-vectors as input features and sequences modelled by

pooling representations (Villalba, Brümmer & Dehak, 2017);

• S-vectors (Hsu et al., 2017d) obtained with a hierarchical factorization into sequence-level

and utterance-level latent variables;

• speech recognition with VAE to derive features added to conventional ones in training a

DNN speech recognizer (Tan & Sim, 2017);

• unsupervised domain adaptation for speech recognition by augmenting training data with

VAE generated data for out-of-domain speech (Hsu et al., 2017d; Hsu, Tang & Glass, 2018),

and distant speech (Hsu & Glass, 2018a).

CHAPTER 3

EXTENDING THE VAE MODEL

3.1 Introduction

Previous chapters have presented the general theory behind variational autoencoding and the

large number of variants that have been proposed to improve its perceived weaknesses. Now we

turn to the question of how to apply VAE to unsupervised representation learning for speech.

What latent variables should we postulate, what kinds of distributions should we select for the

prior and posterior, and how should we formulate the objective function? The previous chapters

have shown how flexible VAE can be and the large number of possible designs. Fortunately,

research in speech has already explored a large spectrum of modelling approaches, and in the

next section we will be guided by this prior knowledge in our modelling choices.

3.1.1 Underlying factors in speech

As mentioned in the introduction, major sources of variability in speech are often described

as phonetic, speaker and channel related, because of their impact on various speech tasks, and

phonemes and phonetic content account for most of the total spectral variability.

Since phonemes are the main source of variability and are discrete information-bearing units in

speech, discreteness would be a natural candidate for main underlying factors in speech. Indirect

evidence for this also comes from the human categorical perception of phonemes, in which

discrete labels are perceived even though the stimuli range on a continuous scale (Liberman,

Harris, Howard & Griffith, 1957). We can also hypothesize that underlying factors are

low-dimensional: speech production models are limited to a few free parameters offered by

physiological articulators such as tongue, lips, jaw, and larynx.

Finally, phonetic underlying factors are short-term. We can roughly estimate the temporal

scale of phonetic variations. At usual rates, speech contains from 10 to 20 phones per second,

34

which corresponds to 50 ms to 100 ms duration. In spectral analysis, speech is considered a

quasi-stationary process over windows (also called frames) of around 25 ms.

The other major sources of speech variability, speaker and channel, are factors which vary on

a longer term. Speaker characteristics come from physiological characteristics (vocal-tract

length, fundamental frequency) and behavioural characteristics (speech rate, prosody), which

can be best described as inhabiting a continuous space. Each speaker is a sample from that

continuous multidimensional space. For example, the distribution of formant frequencies is

strongly correlated with vocal-tract length on theoretical as well as empirical grounds (Labov,

Ash & Boberg, 2006) and shows a strong correlation with body size (Fitch & Giedd, 1999).

Channel variability includes microphone characteristics as well as environmental conditions such

as background noise level and reverberation, which also clearly vary along continuous scales.

Also note that both speaker and channel characteristics can be considered constant or only slowly

changing during an utterance or over several seconds. The field of speech recognition boasts

many examples of successes based on assuming long-term underlying factors such as utterance-

based speaker adaptation (MAP and FMLLR) (Gales, 1998), or i-vector adaptation for DNNs

per utterance (Gupta, Kenny, Ouellet & Stafylakis, 2014) or with 3-second windows (Snyder,

Garcia-Romero & Povey, 2016a). Thus we will say utterance-level or sequence-level when

speaking of long-term variations, such as over 3 second windows, in contrast to frame-level

variations occurring in less than 50 ms.

In summary, speech can be described as a sequence of observations, with variability induced

by latent variables at the frame and utterance levels. Frame-level variables are short-term,

low-dimensional, and have a distribution with multiple modes corresponding to phoneme-like

discrete units. Utterance-level continuous variables underlie the long-term variations.

Note that similar assumptions underlie the success of JFA (Kenny et al., 2007a) and i-vector (De-

hak et al., 2011) approaches for speaker verification, which are models that assume an underlying

Gaussian mixture distribution (a collection of means) at the frame-level, modified for each

35

utterance by a low-dimensional, linear transformation corresponding to the speaker and channel

factors (JFA) or all combined factors of variability (i-vectors).

3.1.2 Short-term variability: discrete prior

As discussed in Section 2.1.4 of Chapter 2, there has been a lot of previous work on the choice of

a prior in VAE (VAMP, hyperspherical, flexible, reference prior). These studies have shown that

priors other than the simple Gaussian often yield more interpretable representations, especially

priors that match the data’s underlying structure (Davidson et al., 2018). Also, work on β-VAE

also shows that reducing the relative contribution of the simple prior improves disentangling in

the representation (Burgess, Higgins, Pal, Matthey, Watters, Desjardins & Lerchner, 2017).

Thus according to our discussion about underlying factors in speech, we should use a multimodal

prior for short-term phonetic latent variables, rather than the single Gaussian prior used in

conventional VAE. However, a multimodal prior introduces discrete latent variables, which are

difficult to integrate in the VAE framework. This is illustrated by the many approaches listed in

Section 2.1.5 of Chapter 2: relaxation, Gumbel-Softmax, or adversarial learning.

The problem stems from the non-differentiability of the sampling operation for discrete variables.

In the usual stochastic variational formulation, expectations of random variables are computed

through Monte Carlo sampling. A significant contribution of the Kingma & Welling (2014)

seminal paper was to show how this obstacle can be circumvented for continuous random

variables, through the so-called reparameterisation trick. The solution converts the sampling

operation, from a parametric distribution, into a transformation of a parameter-free distribution,

making it possible to compute gradients for the parameters, and thus to apply stochastic gradient

descent (SGD) for learning.

For the discrete case, there is no equivalent of the reparameterisation trick. Thus the proper

treatment of discrete variables for VAE is still an open research problem (Pineau & Lelarge,

2018; Rolfe, 2017).

36

One can sidestep the issue of an explicit discrete variable by using marginalization, a well-known

technique used in mixture model estimation. The idea is to compute expectation using a sum

over all possible discrete values rather than use Monte Carlo sampling. Such a sum is simple for

a discrete variable that indexes mixture components. In Section 3.3, we will show how to derive

the ELBO for a VAE with a discrete latent variable, using marginalization.

3.1.3 Long-term variability: sequence modelling

Modelling long-term variations implies that part of the representation changes slowly or stays

constant within an utterance, for example. Such a long-term representation is useful to summarize

a whole sequence with a single vector, similar to sentence embedding in NLP, or i-vectors in

speaker or emotion recognition.

While a continuous prior is a good match for slowly changing continuous underlying factors,

the difficulty lies in the pooling operation required to convert frame-level variables into

sequence-level ones.

The many approaches that have been proposed to produce a single vector out of a sequence

were summarized in Section 2.3. Usually, frame-level vectors are aggregated by averaging,

max-pooling, or weighted combinations (attention). Another approach uses sequence-capable

neural networks, such as RNN or LSTM, to produce history vectors that embed information about

the whole sequence up to the current observation. A third solution is to consider sequence-level

and frame-level variables as part of a hierarchical Bayesian model, which provides a principled

way to pool sequence statistics.

3.1.4 Summary

In coming-up Section 3.2, we will revisit the conventional VAE model and provide a functional

diagram view. We will present the mixture VAE, in Section 3.3 , in which a discrete latent

distribution is inferred through conventional marginalization. We will then introduce two novel

37

approaches, which allow a multimodal prior: one based on expectation maximization (E-M) and

one based on divergence sampling, in Section 3.4.1 and Section 3.4.2.

For sequence modelling, we will first extend the proposed multimodal models to a two-level

hierarchical Bayesian model, using pooling and tying. We will generalize this approach to

arbitrary time scales using filtering layers, and propose self-attention as a mechanism to model

sequential dependencies.

The chapter will conclude with a preview of experimental results on simulated vowel signals,

to illustrate the potential of the proposed model to capture frame and sequence level factors

underlying a complicated, real world-like signal.

38

3.2 Conventional VAE

A description of the conventional VAE and its objective function was given in Chapter 2. Recall

that the best approximate posterior qφ(z |x) is found by minimizing its KL divergence with true

posterior distribution pθ(z |x), which gives rise to the variational objective, or expected lower

bound objective (ELBO), written as (Bishop, 2006):

LE LBO(θ, φ; x) = Eqφ(z |x)[log pθ(x |z)] − DKL[qφ(z |x) ‖ p(z)] (3.1)

In Equation (3.1), the first term reflects how well the model can reconstruct an observation x

given the latent variable z. The second term prevents the approximate posterior from moving

arbitrarily away from the latent prior p(z), and thus acts as a regularizer that discourages the

trivial solution of memorizing each observation as the latent code.

3.2.1 Functional diagram

Let’s revisit the conventional VAE model with a functional diagram rather than a graphical

model. Such a diagram is shown in Figure 3.1. It highlights functional dependencies, rather than

conditional probabilistic dependencies. Observation x is fed to a NN which outputs parameters

of distribution qφ(z |x), which is sampled to produce z. This sample is input to another NN which

yields parameters of distribution pθ(x |z). The KL divergence is computed from the parameters

of qφ(z |x) and p(z), using a closed-form formula.

In a conventional VAE, the distributions are Gaussian with diagonal variances:

pθ(x |z) = N(μθ(z), σ2
θ (z))

qφ(z |x) = N(μφ(x), σ2
φ(x)) (3.2)

where μθ , σθ , μφ and σφ are computed by neural networks. Parameter sets φ and θ are estimated

with SGD, by minimizing the negative of LE LBO from Equation (3.1).

39

qφ(z |x)
x sample pθ(x |z)

z
sample

p(z) DKL

x̂

Figure 3.1 VAE functional diagram and closed-form divergence

3.3 Mixture VAE

In this section, we will describe a VAE in which the prior for the continuous z variable is an

explicit mixture of Gaussian distributions with a discrete latent variable y. For each observation,

y selects one of K mixture components, which then constitutes the prior for the z latent variable.

Several authors have followed this line of inquiry, for example Dilokthanakul et al. (2017).

However none of these publications provide the full derivation, so here we will make explicit all

crucial steps. Extending the VAE to the hierarchical model is helpful to understand it in more

detail, and this knowledge will help to follow other derivations in this thesis.

Let’s start by defining the generative model, where observation x depends on latent variable z,

which itself depends on a mixture with discrete variable y:

pβ,θ(x, z, y) = pθ(x |z) pβ(z |y) p(y) (3.3)

The dependencies expressed in Equation (3.3) are illustrated by the graphical model of Figure 3.2,

and the generative process can be described in terms of ancestral sampling:

40

xzy
N(·)N(·)

θβ

N

Figure 3.2 Generative model (decoder) for mixture VAE

• For each observation, pick a value for mixture component y among k ∈ 1, . . . ,K according

to a prior categorical distribution Cat(·).

• Given this component, select a mean μβ(y = k) and a variance σβ(y = k) from a collection

of components defined by parameters β.

• Sample z ∼ N(μβ(y = k), σβ(y = k)).

• Sample x ∼ N(μθ(z), σθ(z)). As for the VAE model, the observation x is generated from

latent variable z through neural networks with parameters θ.

Following the VAE approach, we define approximate posterior distributions according to

Equation (3.4):

qφz,φy (z, y |x) = qφz (z |x, y) qφy (y |x) (3.4)

The resulting graphical model is depicted in Figure 3.3. These dependencies were not chosen

arbitrarily. They are constrained by the expression of the ELBO in terms of KL divergence:

for every latent variable distribution defined in the generative model, we need a corresponding

posterior distribution conditioned on x.

41

x z

y
Cat(·)

N(·)

φy

φz

N

Figure 3.3 Posterior model (encoder) for mixture VAE

3.3.1 Expected lower bound

To make this clear, let’s derive the ELBO using the generative and posterior models defined in

Equations (3.3) and (3.4). The starting expression is (Dilokthanakul et al., 2017):

LE LBO = Eqφz,φy (z,y |x)[log pβ,θ(x, z, y) − log qφz,φy (z, y |x)] (3.5)

This ELBO for mixture VAE is comparable to the ELBO for the conventional VAE in Equa-

tion (2.3). Expanding pβ,θ(x, z, y) and qφz,φy (z, y |x) using our generative and posterior models,

Equation (3.3) and Equation (3.4), the ELBO can be rewritten:

LE LBO = Eqφz,φy (z,y |x)[log pθ(x |z) + log pβ(z |y)

+ log p(y) − log qφz (z |x, y) − log qφy (y |x)] (3.6)

By grouping posteriors and their corresponding priors as in −DKL(q ‖ p) = −Eq(log p − log q)

and applying Eqφz,φy (z,y |x) = Eqφ(z)Eqφy (y |x), we obtain:

LE LBO = (3.7)

Eqφ(z)Eqφy (y |x) log pθ(x |z) (reconstruction term)

− Eqφy (y |x)DKL[qφz (z |x, y) ‖ pβ(z |y)] (z-prior)

− Eqφ(z)DKL[qφy (y |x) ‖ p(y)] (y-prior)

42

The right-hand side contains three terms: a reconstruction term, a z-prior term and a y-prior

term.

The y-prior term does not depend on qφ(z) so it reduces to:

Eqφ(z)DKL[qφy (y |x) ‖ p(y)] =DKL[qφy (y |x) ‖ p(y)] (3.8)

The z-prior term is an expectation over the discrete distribution qφy (y |x), which can be computed

by marginalization, i.e., summing over all possible values of the discrete variable y:

Eqφy (y |x)DKL[qφz (z |x, y) ‖ pβ(z |y)] = (3.9)

K∑

k=1

qφy (y = k |x)DKL[qφz (z |x, y = k) ‖ pβ(z |y = k)]

Similarly, the reconstruction term is an expectation over the discrete variable and can be

computed by summing. Inside the sum, the expectation of pθ(x |z) is approximated by Monte

Carlo sampling of z, as done in a conventional VAE:

Eqφy (y |x)Eqφ(z) log pθ(x |z) =
K∑

k=1

qφy (y = k |x) Eqφz (z |x,y = k) log pθ(x |z)

≈

K∑

k=1

qφy (y = k |x)
1

L

L∑

l=1

log pθ(x | z(l,k)) (3.10)

with L samples z(l,k) ∼ qφz (z |x, y = k).

Our final expression for the mixture VAE ELBO is thus:

LE LBO = −DKL[qφy (y |x) ‖ p(y)] +
K∑

k=1

qφy (y = k |x)
[
LE LBO(y = k)

]
(3.11)

43

where

LE LBO(y = k) =
1

L

L∑

l=1

log pθ(x | z(l,k)) − DKL[qφz (z |x, y = k) ‖ pβ(z |y = k)] (3.12)

Note that all KL divergences are now expressed in terms of the parametric distributions qφy (y |x),

p(y), qφz (z |x, y) and pβ(z |y) so they can be efficiently computed in closed form, i.e., directly

from distribution parameters rather than from sampled values.

However, when we did preliminary experiments on pinwheel and MNIST datasets, we found

this model was difficult to train, had trouble identifying modes, easily dropped components, etc.

Similar problems are observed in general when estimating mixture models (Barber, 2016).

3.4 Multimodal VAE

In this section, we introduce two novel approaches which allow a multimodal prior to be

estimated, one based on expectation maximization (E-M) and one based on divergence sampling.

Recall that in a conventional VAE, the KL term is computed from parameters of qφ(z |x) and

p(z), generated by neural networks, as was illustrated in the functional diagram of Figure 3.1. In

a conventional VAE, both qφ(z |x) and p(z) are assumed to be Gaussian distributions, and while

qφ(z |x) changes with each observation, the prior p(z) is fixed.

To attain our objective of a multimodal prior distribution for z, instead of positing a mixture

model with a discrete latent variable, as was done in the previous section, could we just represent

qφ(z |x) and p(z) directly as multimodal distributions? For example, since a Gaussian mixture

model is fully described by parameters Πk, μk, σk for k in [0, . . . ,K], we could have a NN

produce these parameters for qφ(z |x) and p(z) and estimate these parameters with SGD?

Although there is no explicit discrete variable in this approach, there are two major problems.

First, KL divergence cannot be computed in closed form between Gaussian mixtures, although

approximations exist (Durrieu, Thiran & Kelly, 2012; Hershey & Olsen, 2007). More importantly,

44

there is a sampling step that produces z, and as sampling from a mixture is not differentiable, it

prevents the gradient from being propagated back to update the φ parameters defining qφ(z |x).

In the following sections, we introduce novel solutions to these two problems, which allow

a multimodal prior in VAE without an explicit discrete variable and without recourse to

marginalization. The solutions are based on two insights.

3.4.1 E-M reestimation

The first insight is that, even though qφ(z |x) is a Gaussian, it is conditioned on x. When

aggregated over all data, the aggregated posterior q̂(z) is:

q̂(z) = Epdata(x)[qφ(z |x)] (3.13)

where pdata(x) denotes the empirical distribution. A different Gaussian is sampled for each obser-

vation; thus, in effect, the aggregated posterior q̂(z) is a mixture (Lopez, Regier, Jordan & Yosef,

2018).

qφ(z |x)
x sample pθ(x |z)

z
sample

p(z) DKL q̂(z |x)

x̂

Figure 3.4 VAE with E-M reestimation

Figure 3.4 shows how this insight can be used to impose a multimodal prior. We keep qφ(z |x)

as a Gaussian (per observation), which allows us to compute the gradient when sampling z to

reconstruct x. We set up the prior p(z) as a mixture of Gaussians with fixed parameters.

45

We approximate the posterior distribution qφ(z |x) over all the data with a Gaussian mixture,

which we estimate as a parametric distribution q̂(z |x) using the sampled z values. More precisely,

the mixture components and weights of q̂(z |x) are reestimated using one cycle of the E-M

algorithm (Bishop, 2006), where component responsibilities are computed using current means

and variances, then means and variances are updated using component responsibilities1. q̂(z |x)

is initialized with p(z) so that the components of q̂(z |x) and p(z) are matched. Then the KL

divergence is a sum of individual divergences between matched components, and the individual

divergences can be computed in closed form from the distribution parameters, as illustrated

by the two inputs of the DKL box in Figure 3.4. We derive the expression for matched KL

divergence in the following subsection.

3.4.1.1 Matched KL divergence

The matched component condition allows us to compute a KL divergence between two Gaussian

mixtures, which otherwise is not possible in general.

Consider two Gaussian mixtures p and q, where individual components are single Gaussians

Nq(·; i) and Np(·; j):

q =
K∑

i=1

πq(i)Nq(·; i) (3.14)

p =
K∑

j=1

πp(j)Np(·; j) (3.15)

Their KL divergence is:

DKL[q ‖ p] = Eq[log(q) − log(p)]

= Eq[log
∑

i

πq(i)Nq(·; i) − log
∑

j

πp(j)Np(·; j)] (3.16)

1 In practice, for each minibatch, before computing the KL divergence, q̂(z |x) is reestimated with the z
values sampled for the minibatch.

46

According to the generative process for mixture q, each observation is generated from a

component i selected from prior distributions i ∼ πq(i) and similarly, j ∼ πp(j) for mixture

p. Crucially, we further assume that i and j are not selected independently for each mixture,

but that the observation is generated from the same index i = j = k in both mixtures q and p.

Ignoring all components except the matching ones, the sum over components is replaced by a

single value for i = j = k:

DKL[q ‖ p] = Eq[log
∑

i=k

πq(i)Nq(·; i) − log
∑

j=k

πp(j)Np(·; j)]

= Eq[Ek[log πq(k)Nq(·; k) − log πp(k)Np(·; k)]] (using k ∼ πq)

= Eq[
∑

k

πq(k)[logNq(·; k) − logNp(·; k) + log πq(k) − log πp(k)]]

=
∑

k

πq(k)Eq[logNq(·; k) − logNp(·; k) + log πq(k)] + log πq(k) − log πp(k)

=
∑

k

πq(k)[DKL(Nq(·; k) ‖ Np(·; k)) + log πq(k) − log πp(k)] (3.17)

This final expression for matched component KL Equation (using k ∼ πq) is thus the expectation

over k of KL divergences of individual mixture components. Applying this to our reestimation

model in Figure 3.4, we obtain:

DKL[q̂(z |x) ‖ p(z)] =
K∑

k=1

πq̂(k)[DKL(Nq̂(k) ‖ Np(k)) + log πq̂(k) − log πp(k)] (3.18)

where k is the index of a mixture component and πq̂(k) and πp(k) are the component weights for

q̂(z |x) and p(z) respectively, and Nq̂(k) and Np(k) are K individual Gaussian distributions. This

expression is the same as the K-L approximation proposed in (Goldberger, Gordon & Greenspan,

2003) for Gaussian mixtures with matching components for the particular case where the

matching function is an identity mapping.

47

3.4.2 Divergence sampling

The second insight uses sampling to estimate a KL divergence between two arbitrary distributions.

More precisely, the KL divergence between qφ(z |x) and p(z) being an expectation (by definition),

it can be estimated by sampling L values of z (Hammersley & Handscomb, 1964):

DKL[qφ(z |xn) ‖ p(z)] = Ez∼qφ(z |xn)[log qφ(z |xn) − log p(z)]

≈
1

L

L∑

l=1

[log qφ(zl |xn) − log p(zl)] (3.19)

with L samples zl ∼ qφ(z |xn) (we use all observations in a minibatch, i.e., L equal to the

minibatch size). Note that here, we average values of KL divergence between two parametric

distributions, and each distribution is evaluated at sample points defined by zl .

This expression is valid for any arbitrary qφ(z |xn) and p(z) (given some weak constraints about

the support of each). If prior p(z) is a Gaussian mixture, minimizing Equation (3.19) forces the

aggregated posterior to match a Gaussian mixture.

qφ(z |x)
x sample pθ(x |z)

z
sample

p(z) DKL

x̂

Figure 3.5 VAE with sampling divergence

The implementation follows the functional diagram of Figure 3.5. At the end of each minibatch,

z values are sampled from qφ(z |x) and fed into Equation (3.19) together with the parameters of

qφ(z |x) and p(z). Note the three inputs to the DKL box.

48

This approach can be related to Maximum Mean Discrepancy VAE (MMD-VAE), as proposed

in (Zhao, Song & Ermon, 2017). MMD-VAE replaces the KL divergence in the conventional

ELBO Equation (2.4) by a distance measure that compares a batch of samples z from encoded x

observations, with a batch of samples from p(z) = N(0, 1):

LMMD−VAE = MMD(qφ(z)‖p(z)) + Epdata(x)Eqφ(z |x) [log pθ(x |z)] (3.20)

In contrast, here, we use a KL divergence, but estimate it using Equation (3.19):

LELBOdata
= Epdata(x)[−KL(qφ(z |x)‖p(z))] + Epdata(x)Eqφ(z |x) [log pθ(x |z)] (3.21)

The crucial difference here is that our KL estimate depends on two parametric distributions and

should be less noisy than MMD, which relies on pairs of sampled values. To our knowledge,

MMD-VAE is used only with simple Gaussian priors, and has never been applied to allow

multimodal priors.

3.4.3 Summary for multimodal VAE

Three possible approaches were proposed: one with explicit discrete variables using marginal-

ization, and two with implicit multimodal posteriors. Marginalization has been shown in

the past to be difficult in the case of mixtures (Maaløe et al., 2017a). The implicit posterior

E-M approach might suffer from similar problems, since the E-M cycle is based on a similar

marginalization of an implicit discrete indicator variable. The divergence sampling is elegant

and less computationally expensive, but its variance as an estimator is not known.

49

3.5 Sequence and frame levels

Now we turn to the problem of distinguishing short-term and long-term underlying factors.

We split the latent variable in the VAE into a frame-level component, which changes for every

observation, and a sequence-level component, which stays fixed for the duration of a sequence,

to model longer term variations.

xz

s

N(·)

θ

Ln

N

Figure 3.6 Generative model (decoder) for N
sequences of length Ln. The frame-level

variable is z, and the sequence-level variable is s

Given N sequences, n = 1, . . . , N , each of length Ln with observations xl, l = 1, . . . , Ln, we can

set up a two-level generative process as illustrated in the graphical model of Figure 3.6. The

sequence-level variable s has a different value for each of the N sequences, while frame-level z

changes with each of the Ln observations in the sequence.

In this graphical model, x depends on both z and s, which are independent, and we can write:

pθ(x, z, s) = pθ(x |z, s)p(z)p(s) (3.22)

The corresponding posterior model is shown in Figure 3.7, and the posterior distribution is:

qφz,φs (z, s |x) = qφz (z |x)qφs (s |x) (3.23)

50

x
s

z
N(·)

pool N(·)

φz

φs

Ln

N

Figure 3.7 Posterior model (encoder) with N
sequences of length Ln

Note the pool operation used on observations x1, . . . , xLn to generate a single distribution for

the sequence. This will be explained in Section 3.5.1.

Given these generative and posterior models, we can derive the ELBO in the same way as for to

the mixture VAE Equation (3.5):

LE LBO = Eqφz,φs (z,s |x)[log pθ(x, z, s) − log qφz,φs (z, s |x)] (3.24)

Following a derivation similar to the one in Section 3.3, we arrive at the following expression by

grouping posteriors and their corresponding priors as in −DKL(q ‖ p) = −Eq(log p − log q) and

applying Eqφz,φs (z,s |x) = Eqφz (z |x)Eqφs (s |x) to obtain:

LE LBO = (3.25)

Eqφz (z |x)Eqφs (s |x) log pθ(x |z, s) (reconstruction term)

− DKL[qφz (z |x) ‖ p(z)] (z-prior)

− DKL[qφs (s |x) ‖ p(s)] (s-prior)

51

3.5.1 Tying and pooling

Note that in Figure 3.6, a sequence-level variable s (in the N plate) is combined with a frame-level

variable z (in the Ln plate). Similarly, Figure 3.7, x in plate Ln enters a functional in plate N .

How should we handle these transitions between levels?

To answer, we have to reintroduce observation and sequence indices on the observations and

variables. Given N sequences of length Ln, n = 1, . . . , N , the ELBO over the whole dataset X is:

LE LBO(θ, φ; X) = −
1

N

∑

n

1

Ln

Ln∑

l=1

DKL[qφzn,l (zn,l |xn,l) ‖ p(z)] (3.26)

+
1

N

∑

n

1

Ln

Ln∑

l=1

(
log pθ(xn,l |zn,l, sn) − DKL[qφsn (sn |xn,l) ‖ p(s)]

)
(3.27)

Now we have variables zn,l and xn,l indexed by both sequence number n and position l in the

sequence, while sn is only indexed by sequence number n.

The reconstruction cost appears as the leftmost term in Equation (3.27) and corresponds to the

decoder of Figure 3.6. xn,l is conditioned on a single sn for l = 1, . . . , Ln, so this distribution

is straightforwardly represented as neural network by tying its input sn across Ln frames in a

sequence:

sn,l = sn for l = 1, . . . , Ln (3.28)

In other words, the Ln values of sn,l are tied to the single value sn and the sums run over l and

n. This provides a natural way to account for sequence-level contributions to the ELBO at the

frame-level, with the proper scaling.

To handle the rightmost term in Equation (3.27) (encoder of Figure 3.7), we must condition a

single sequence-level sn on Ln frame-level variables xn,l . This is problematic, as it requires for

qφsn (sn |xn,l) a neural network with an input that varies in length from sequence to sequence.

52

A frequently used approach to solve this problem is pooling by averaging, in which the different

xn,l are approximated by a single variable which is their average over the sequence n:

xn =
1

Ln

Ln∑

l=1

xn,l (3.29)

This approach was used successfully in speaker recognition by Cai, Chen & Li (2018); Snyder

et al. (2016b); Villalba et al. (2017).

3.5.2 Filtering

Together, the tying Equation (3.28) and pooling Equation (3.29) suggest a more general approach.

Let us approximate sn using a moving average over W frames:

sn ≈ s̃n,l =
1

W

w=+ 1
2
W∑

w=− 1
2
W

sn,l+w, (3.30)

where the additional subscript l indicates a separate variable for each frame. We can use

a frame-based sn,l variable everywhere in the model and replace sn by its averaged version

s̃n,l when computing the loss in Equation (3.27). We obtain a completely frame-based loss

expression, where all variables are indexed by n, l. As we just did for sn,l and Equation (3.27),

we can also replace zn,l by its averaged version z̃n,l in loss Equation (3.26).

Using averaged variables, the ELBO simplifies to:

LE LBO = Eqφz (z |x)Eqφs (s |x) log pθ(x | z̃, s̃) − DKL[qφz (z̃ |x) ‖ p(z)] − DKL[qφs (s̃ |x) ‖ p(s)]

(3.31)

where indices were dropped without loss of generality. With averaged variables, the ELBO

includes a soft pooling/tying parametrized by the averaging filters’ window lengths.

53

With Equation (3.31), we can use a different averaging window length for z̃ and s̃. For example,

a short window captures short-term information in z and a long window captures long-term

information in s. We are no longer limited to either frame-level or sequence-level variables, as

we can choose a filter of any length from single frame to length of a whole sequence.

x splice

h1 h2 h3 h4

μz, σz
z

h1 h2 h3 h4

μx, σx

x̂
x

Figure 3.8 Proposed VAE model architecture with filtering layers.

Only latent variable z is illustrated for simplicity

In a neural network, a moving average filter such as Equation (3.30) is naturally implemented as

an averaging layer. This is illustrated in Figure 3.8, which depicts how the frame-based ELBO

of Equation (3.31) can be implemented with frame-based neural network layers, i.e., where each

frame of input produces one frame of output.

In the figure, a frame is represented by one vertical column, with its height proportional to

its dimensionality. Frames of the input sequence x appear in red on the left. A splicing layer

combines several input frames into a single vector for the current frame. This is followed by

hidden layers h1, h2, h3, h4 and the output layer of the encoder (in blue), which produces the

mean and variance of z. Sampling produces z, which is input to the decoder consisting of hidden

layers h1, h2, h3, h4 and an output layer, in blue, for the mean and variance of the reconstructed

signal. Finally, sampling reconstructs one frame of output x̂, that becomes part of the whole

output sequence, in red.

54

The averaging layers are shown in green. They combine several adjacent frames with the current

frame into a single vector for the current frame. Even though their original purpose is to provide a

convenient way of computing the ELBO for latent variables with different time scales, averaging

filters seen as simple layers can easily be moved to different locations along the depth of the

network. Figure 3.8 illustrates two possible locations: one right after the last hidden layer of the

encoder, and the other between two hidden layers of the decoder.

Filtering in the decoder can be motivated by asking how the model could generate smooth

transitions in the observed signal. Even though the latent variable is transformed by a stack of

non-linear layers, without a filter, it would have to exhibit smooth transitions itself. A low-pass

filter inserted after the latent variable should allow it to have sharp transitions and still generate

a smooth observed output. We can make here an analogy with the speech production model,

where discrete underlying phoneme commands are executed by slow articulators, followed by

the nonlinear vocal-tract to sound function. Smooth articulatory transitions can be converted to

sharp acoustic changes at critical points (Stevens & Keyser, 2010).

Filtering in the encoder can be motivated by the need for a larger context than the current

frame. A filter provides indirect access to the information left and right of the current frame,

depending on its length, and is especially important for a sequence-level variable that seeks to

capture information that depends on the whole sequence.

Since there are good motivations both for decoder and encoder locations, the question needs be

explored experimentally.

The averaging filter was designed to induce, in the latent variable, a bias towards a particular time

scale. It is tempting to replace the simple averaging filter by a more general filter, for example

one with learnable weights, such as a one-dimensional convolution layer. However, relaxing the

constraints put on the latent variable also removes the bias. Indeed, preliminary experiments

showed that when a 1-D convolution is used in place of an averaging layer, it greatly improves

reconstruction quality, but degrades the usefulness of the latent variable as a representation for a

downstream phoneme classification task.

55

3.5.3 Attention

The model proposed so far makes use of time scale to bias latent variables towards useful

representations. However the generative model assumes independence between latent variables

(as in Figure 3.6). So it lacks a mechanism to learn long-term dependencies across a sequence

of short-term variables, for example to learn probable phoneme sequences. Indeed, the most

successful "unsupervised" model for learning phonemes (Chen, Tsai, Liu, Lee & Lee, 2019;

Yeh, Chen, Yu & Yu, 2018) uses a phoneme language model as a weak supervision2.

Approaches that have been used to model sequences include recurrent neural networks (RNN),

in particular bidirectional long short-term memory (BLSTM) models, which have been used in

the FHVAE model (Hsu et al., 2017b). However, they are slow to train, and have a too limited

effective memory (Al-Rfou et al., 2019; Sperber et al., 2018).

Recently, self-attention has been proposed as a different mechanism that can take into account

large contexts and produce state-of-the-art results, but is much faster to train than recurrent

networks (Chowdhury et al., 2018; Sperber et al., 2018). In the seminal "Transformer" paper

by Vaswani et al. (2017), self-attention was used as a supervised learning method, given pairs

of sentences in source and target language. Training is done by predicting future target words

given past source words, with an encoder/decoder tandem. Training can also be framed as an

unsupervised task, if input and output sentences are the same, for learning a language model, for

example (Al-Rfou et al., 2019).

Attention was historically introduced for supervised learning in text processing, and has been

since applied to speech recognition (Chorowski et al., 2015; Povey et al., 2018; Sperber et al.,

2018) and speaker recognition (Chowdhury et al., 2018; Povey et al., 2018; Wang et al., 2019;

Zeinali et al., 2019; Zhu et al., 2018), but always in supervised settings. Here, we present the

first use of self-attention for unsupervised learning in speech.

2 The language model has to be trained on text phoneme sequences, but as these texts need not be

related to the audio, the authors still consider their model as unsupervised.

56

Figure 3.9 (a) Single-head attention block, for frame t.
(b) Multi-head attention using single-head attention blocks. K, Q,

and V mean key, query, value, respectively

Taken from Povey et al. (2018, p. 5876)

Figure 3.9 (a) illustrates part of a single-head attention block. In our model, the full input

sequence t = 0, · · · ,T is supplied to the attention block. The key, query and value (K , Q, V) are

learnable, linear projections of the input frame x. At time t, Qt is computed from xt , and its dot

product with keys Kt for t = 0, · · · ,T produces a set of weights α(t) (which are normalized to

sum to one). The output yt is formed by the weighted sum
∑T

t=0 α(t)Vt . This configuration is

called self-attention, since at each time, different parts of the input sequence can be emphasized

to produce the current output, based on the current frame of the input sequence itself.

This kind of self-attention can be motivated again by considering the speech production viewpoint.

Anticipatory coarticulation, for example, can happen when some articulator is not involved

in the current phoneme and is free to anticipate its movement in preparation for a following

phoneme which may be quite far in the future (Browman & Goldstein, 1992). For example, lips

can anticipate rounding of a round vowel /u/ several phonemes in the future when producing

an /s/, provided they are not involved until /u/ is reached, and this will strongly affect the /s/

sound produced. In this case, the identities of both the current phoneme and a phoneme far in

the future are needed to correctly reconstruct the signal. Self-attention, when applied to the

latent variable intended to capture phoneme identity, has access to the current and all future

phoneme identities (as well as all past ones) in the sequence. In principle, a query derived from

57

/s/ could match a future key derived from /u/ to return a value that would add "roundness" in the

concatenated output.

Multi-head attention is illustrated in Figure 3.9 (b) and simply consists of multiple single-head

attention blocks operating in parallel. The multiple outputs are concatenated, and projected to a

smaller dimension (this projection is not illustrated in the figure). Each head has the ability to

capture a different relation between different parts of the input sequence.

A multi-head attention layer can be inserted in the model stack of network layers just as a filtering

layer, and in fact would look just like the averaging layer in Figure 3.8, except that it has access

to the whole utterance. However, since its role is to capture long-term dependencies between

successive latent variables, we apply it to the encoder output i.e., μz and σz form the input of the

attention layer.

3.6 Multiple filtered latent variables (MFL) VAE

To summarize the preceding sections, the ELBO for multiple latent with V variables can be

generalized from Equation (3.31):

LE LBO = Eqφz,φs log pθ(x | z̃1, · · · , z̃V) −

V∑

v=1

βv DKL[qφv (z̃v |x) ‖ pv(z)], (3.32)

where variables z̃1, · · · , z̃v are filtered versions of the latent variables.

We call this model the MFL VAE. Note that for more generality, we introduce a βv weighting

term in the sum of KL divergences, as used with success to yield better disentangling in the

β-VAE model (Burgess et al., 2017; Higgins et al., 2017).

The corresponding functional diagram appears in Figure 3.10, where priors and DKL divergences

have been omitted for simplicity. Each latent variable is sampled from its posterior distribution

qφv (zv |x) and concatenated with the other latent variables before being fed to the decoder that

estimates pθ(x |z1, · · · , zV).

58

qφ1
(z1 |x) ∼

.

qφV (zV |x) ∼

·
z1

·

·
zV

. . . pθ(x |z1, · · · , zV)
x

∼
x̂

Figure 3.10 Multiple latent variables model. Filtering layers are

not illustrated

Each latent variable zv has its own pair of posterior and prior pv(z) distributions, so we can use

a mix of discrete and continuous priors (using the adequate form of DKL for each prior).

If we use only one latent variable (V = 1), a single Gaussian prior, and β1 = 1.0, we recover

the conventional VAE model of Kingma & Welling (2014). Then, relaxing β1 reproduces the

β-VAE model of Higgins et al. (2017). Using a mixture of Gaussians as a prior implements the

multimodal VAE of Section 3.4. When V = 2, we can use a short and a long filter to implement

the two-level, filtered model of Section 3.5.2.

3.7 Preliminary experiments

When proposing a new model, it is crucial to be able to verify the correctness of its implementation,

and its ability to recover latent variables from the observed data.

Using real speech does not allow that, as it introduces an additional unknown, which is the match

between assumptions and actual speech. With real speech, it is not possible to distinguish a

model failing because of a wrong implementation or because of wrong modelling assumptions.

Before going into other modelling propositions, we need to be able to test modelling assumptions

in a more controlled way than with real datasets. For example, while MNIST observations

correspond to discrete underlying units (digits), continuous factors of variations such as slant

59

and boldness are not explicitly given and in fact, are often just visual judgments superimposed

after the fact on classification results. Furthermore, the notions of sequence and observation

levels are not represented in these databases.

A theoretical framework proposed by Eastwood & Williams (2018) quantitatively measures how

well the representation learned by a model is disentangled and interpretable. To apply it, we

need synthetic data for which the ground-truth latent structure is known. At the same time, the

synthetic data must be realistic enough so that capturing underlying factors is as difficult as for

actual data.

We generate random synthetic vowel data using a simplified speech production model3. We

specify each of 5 vowels by three mean canonical formant frequencies. Speakers are represented

as a single, continuous variable that determines vocal-tract length and fundamental frequency.

We then generate sequences of signal frames by randomly sampling a vowel and a speaker,

modify formants according to vocal-tract length, convert them to spectral envelope, convolve

it with a source excitation dependent on fundamental frequency, and convert the source-filter

output to frames of log Mel filterbank features. Thus each generated frame is a highly non-linear

transformation of latent random vowel and speaker variables. For vowels, the latent variable

resides at 5 discrete locations in 3-dimensional space, and for speakers, along a 1-dimensional

continuum.

Figure 3.11 shows how well our model retrieves latent variables from the log Mel filterbank

features of a development set, after training without any supervision. The top row is the model

input. On the top left, Mel filterbank features are displayed as a spectrogram. 25 individual

sequences of 4 frames per vowel are shown, forming 100 adjacent frames for each vowel. High

variability within a vowel and overlaps in frequencies across different vowels are observed. The

top middle and right plots display samples from the prior distributions of the two latent variables

in the model, a short-term Gaussian mixture4 and a long-term single Gaussian, respectively.

3 Full details will be presented in Section 4.4

4 With 7 means to show that the model has some freedom in the number of modes it finds.

60

Figure 3.11 Modelling synthetic vowels with frame and sequence latent

variables. Top row, from left to right: original filterbank features, frame-level

prior, sequence-level prior. Bottom row: reconstructed signal, samples of

frame-level variable, samples from sequence-level variable

The bottom row is the model output on the development set. On the left is the reconstructed

signal sampled from the decoder output. The middle plot shows samples from the posterior

distribution obtained for the first latent variable, coloured by vowel identity: the samples form

well-defined clusters that match vowels. The right plot shows samples from the posterior

distribution of the second latent variable, coloured by speaker identity. Samples form small

clusters with a single speaker colour; clusters are arrayed along a well defined 1-dimensional

manifold in the two-dimensional space.

So our model does indeed appear to correctly recover the latent variables used to generate the

data. Full experimental results in Chapter 4 will show that the proposed time scale filtering is

essential for capturing separately frame-level and sequence-level variables such as the vowel and

speaker identity.

61

3.8 Summary

We relied on past empirical observations of speech properties to formulate variational autoen-

coding models with the specific objective of unsupervised representation learning in speech. We

discussed the need to bias models towards meaningful representations based on time scale and

type of prior for the latent variables. We proposed several extensions to current VAE models

and a unified multiple filtered variables VAE model that encompasses all our propositions.

In closing this chapter, we gave a preview of preliminary results with synthetic vowels, generated

according to the source-filter speech production model, that confirm our model’s capacity to

infer latent factors used to generate the data. From now on, for conciseness, we will refer to our

proposed VAE model with multiple, filtered latent variables as the MFL VAE.

CHAPTER 4

EXPERIMENTAL RESULTS

The objective of our experiments is to verify that the proposed MFL VAE model yields

representations that capture meaningful and disentangled underlying factors, as measured by

the accuracy of a downstream unsupervised classification task. More specifically, for each

representation that the model generates, we use unsupervised K-means clustering, and measure

classification accuracy of this clustering against the target unit for the representation, for example

phoneme accuracy, speaker accuracy, or accuracy of any other target unit.

4.1 Datasets

In this chapter, we will report results on two datasets.

Simulated vowels is a toy dataset that we created by sampling from a generative model that

includes a simplified vocal-tract to sound nonlinearity. Since we know the exact underlying

generating distributions, we can test the model capacity to recover these hidden generative

factors given the realistic, observed signal.

TIMIT is a corpus of broadband read speech from 630 speakers from 8 major dialects of American

English with time-aligned manual phonetic transcription and speaker labels (Lee & Hon, 1989).

An often used benchmark, it allows comparison with large amounts of previously published

results, for supervised and unsupervised phoneme and speaker recognition.

4.2 Model implementation

We implemented the most general MFL VAE model following the description in Section 3.6.

With appropriate hyper-parameters to specify latent variables, prior type, number and location

of filtering layers, this model can instanciate VAE models that include conventional, mixture,

multimodal, multilevel and time-filtered variants described in previous sections.

64

Both encoder and decoder neural networks have one input layer followed by N hidden layers with

nonlinearity, ending with a linear activation that generates mean and log variance parameters

for the output distribution. Latent and observed variables are then sampled from the output

distribution.

Hidden layers have all the same size for both the encoder and decoder. Nonlinear layers use leaky

ReLU activation and residual connections from input to output, as well as batch normalization.

Self-attention layers also use a residual connection. These elements were all found to be essential

to convergence whenever more than one hidden layer was involved.

Filtering layers can be inserted between any two layers in the network, but only some locations

were tested, in the encoder after the input layer and after each hidden layer, and after sampling

the latent variable (before concatenation).

The model, training and evaluation scripts and analysis software were written in Python,

with the help of PyTorch (Paszke, Gross, Chintala, Chanan, Yang, DeVito, Lin, Desmaison,

Antiga & Lerer, 2017) and scikit-learn (Pedregosa, Varoquaux, Thirion, Grisel & Blondel, 2011)

libraries.

Parametric distributions are diagonal multivariate Gaussian or Gaussian mixtures. They are

implemented as Python classes with parameters for means, variances, and component weights in

the mixture case. They provide methods to compute probability of an observation, to generate

samples from the distribution using the reparameterisation trick (Kingma & Welling, 2014), and

to evaluate gradients of these operations (when they exist).

4.3 Methodology

In our experiments, we evaluate informativeness (Eastwood & Williams, 2018) of the latent

representations by using them in a downstream classification task. Classification accuracy

measures the ability of the representation to cluster data into meaningful discrete groups. The

better the representation maps to reference labels, the more interpretable it will be.

65

Classification accuracy can also be used to judge disentanglement, i.e., the degree to which a

representation separates different types of information. In our case, a disentangled phoneme

representation should have high phoneme classification accuracy but low speaker classification

accuracy. Inversely, a disentangled speaker representation should have high speaker classification

accuracy, but low phoneme classification accuracy.

Among many unsupervised classification algorithms that would be appropriate for the task, we

use K-means as a simple unsupervised classifier, as it is well known and easy to reproduce and

has been used in similar previously published work (Liu, Chen, Lee & Lee, 2018; Yeh et al.,

2018).

We report framewise phoneme accuracy rather than just phoneme accuracy. The latter is based

on the number of correct and reference phoneme segments, and requires the frame label sequence

to be converted into a sequence of phoneme segments, which is in itself a difficult problem.

Some authors invoke a segmentation oracle (Yeh et al., 2018), but since our objective is to

evaluate representations rather than a whole phoneme recognition system, we choose not to

include the segmentation problem in our evaluation, and report accuracy based on frames.

4.3.1 Accuracy computation

When using unsupervised K-means as the downstream task, classification results in anonymous

cluster labels (modes). We do not know the relationship between cluster and reference labels,

since cluster labels are subject to an arbitrary permutation. How then can we measure the

classification accuracy?

The optimal solution examines all possible permutations (Dimitriadis & Fousek, 2017) and selects

the one with the lowest Hamming distance. This solution has time complexity O(n!) and quickly

becomes impractical with more than a few classes. The Kuhn-Munkres algorithm (Munkres,

1957), also known as the Hungarian method, gives an optimal solution but has a time complexity

O(n4). Here, we use a greedy algorithm to compute a suboptimal solution: we count all pairs of

mode-vowel labels, and sort them by most frequent first; starting from the most frequent pair, we

66

associate the mode with the corresponding vowel, then use the second pair, etc. until all modes

are associated. All unused pairs remaining count as errors. This suboptimal solution achieves

results that agree closely with the optimal solution for practical values of n (Lewellen, 2017).

Thus accuracy is computed from the results of this greedy cluster mapping as:

Accuracy = 1 −
Number of errors

Total number of reference labels
(4.1)

4.3.1.1 Confidence interval estimation

For each result, a number of experiments are run to compute mean and 95% confidence interval

for the mean, using Student’s t-distribution, assuming samples are drawn independently from a

normal distribution with unknown standard deviation. This confidence interval is unbiased for

small samples (Young & Lewis, 1997).

4.3.2 Data preparation

We extract log Mel filterbank features with 40 channels from the audio utterances, with a frame

advance of 10 ms. Another common practice is to use 40-dimensional MFCCs, but in the

literature, not much difference is observed between these high resolution MFCCs and log Mel

filterbank features, which is understandable since the first are a linear combination (through a

discrete cosine transform) of the second. Log Mel filterbank features are also easy to display for

visualizing reconstruction in the frequency domain.

"Spliced" features are obtained by concatenating the feature vector of a central frame and the

vectors of the left N frames and right N frames. For example, filterbank features with 40 filters

spliced with ±2 frames result in a feature vector of dimension 5 × 40 = 200.

Sequences of similar lengths are collected into buckets and padded to one common length per

bucket, to minimize the effect of padding and improve efficiency. Minibatches are created

67

on-the-fly, with random shuffling. Each minibatch is normalized to a zero mean and unit

variance, as this was found to improve the results in preliminary experiments.

4.3.3 Training and evaluation

For each experiment, given a set of model hyper-parameters such as the number of latent

variables, their dimensions, etc., we do SGD training with minibatches to find model parameters

that will minimize the loss function, which is the negative of the ELBO as in Equation (3.32).

Training is done for a fixed number of epochs, there is no early stopping. Each epoch represents

going through the whole training dataset once.

Dev

audio

trained

MFL

VAE

c

s

k-means

k-means

map map

map map

Dev

phonemes

Dev

speakers

FPA

FSA

FPA

FSA

Figure 4.1 Evaluation of development FPA and FSA for two latent variables

Models are evaluated according to the process illustrated in Figure 4.1. An already trained model

is applied on development audio to extract latent representations, such as the short-term c and

long-term s variable shown in the figure. K-means clusters are trained on each representation1.

Clusters are then mapped to phonemes for computing phoneme frame accuracy (FPA) or to

speaker labels for computing speaker frame accuracy (FSA), using reference labels from the

development set. Accuracy is the byproduct of mapping, as explained in Section 4.3.1.

1 K-means is trained with a different number of clusters depending on which accuracy is being evaluated.

68

There are two experimental modes in which we use K-means to evaluate representations.

For full evaluation, each experiment consists of training with a fixed set of hyperparameters, on

the full training set, with 10 different random initializations. The model with the lowest total

loss on the training set is selected for evaluation. We compute development frame accuracy on

the development set for this model, as illustrated in Figure 4.1. When reporting results, we use

the average and confidence interval over 10 such experiments, all run with the same fixed set of

hyperparameters. Test frame accuracy is obtained in the same way but using the test set.

For hyperparameter tuning, we hold out 5% of the training set as a validation set, and train a

model with a given set of hyperparameters. We evaluate batch frame accuracy on the validation

set after a fixed number of training epochs: a single validation minibatch is used to train K-means

clusters and map them to the reference labels. Grid search is used to explore ranges of values for

a few hyperparameters at a time. Hundreds of experiments can be run in this fashion to select

architecture and hyperparameters. Only a small fraction of these are selected for full evaluation.

Selection of model architecture and hyperparameters is based on this validation set only.

Although we agree with Locatello et al. (2018) that it is impossible to do truly unsupervised

model selection, we believe that setting architecture and hyperparameters with such a small

fraction of the training set, and transferring them "as is" to the development or test set for

evaluation, does not constitute a significant supervision signal. The matter can only be resolved

by testing the resulting architecture and hyperparameters on a variety of other datasets, which

we are not yet in a position to do.

69

4.4 Experiments on simulated vowels

Our aim in these experiments is to simulate speech signals as realistically as possible, but

in accordance with our main assumptions: discrete variables control short-term frame-level

variations, while continuous variables define long-term, sequence-level variations. In addition,

to be realistic, observations need to have a complicated distribution in a high-dimensional space,

even if generated from discrete underlying units and low-dimensional continuous factors.

The source-excitation model of spoken vowel production provides us with a well-defined

simulation path starting from a low-dimensional, discrete vowel description and ending with a

complex, high-dimensional set of filterbank features.

4.4.1 Vowel signal generation

Human perception of vowel identity depends mainly on two properties of the speech signal

called the F1 and F2 formants, which corresponds to frequencies of the first two vocal-tract

resonances. Formant values do not directly correspond to peaks in the spectral envelope, as

the envelope is a combination of the vocal-tract response with the glottal excitation, which

produces peaks located at fundamental frequency harmonics. Measurements of formant values

are made by visual examination of the spectrogram and auditory confirmation, since automatic

identification is not entirely reliable (Labov et al., 2006).

For a given vowel, formant values produced by a speaker are subject to some variation, but

variability across speakers is even larger. Figure 4.2 illustrates how average values of F1 and F2

differ between individual speakers. Note that in the F1-F2 space, a vowel from a given speaker

can sometimes overlap a different vowel from another speaker. A simple scaling of the frequency

axes called log-mean normalization (Labov et al., 2006) can be applied so that when plotted

in this new two-dimensional space, vowels from different speakers are more concentrated in a

single spot.

70

Figure 4.2 Observed vowel triangle for eight

standard Indonesian speakers

http://drammock.github.io/phonR

(Retrieved, January, 2019)

1.

F1, F2, F3

2.

Speaker

VT

3.

Formant

frequencies

4.

Spectrum

envelope

.
.

F0

5.

Mel

filter

bank

log|·|

Figure 4.3 Steps of the vowel simulation process

We simulated speech data with natural-looking variations due to vowel identity and speaker

characteristics using the processing flow graph depicted in Figure 4.3, with the following steps:

71

Step 1: Canonical formant frequencies are set for each of the 5 simulated vowels. Their values

are listed2 in Table 4.1. Formant bandwidths are fixed for all vowels at 100 Hz, 100

Hz, 200 Hz, and amplitudes at 1.0, 0.5, 0.2 for F1, F2 and F3, respectively.

Table 4.1 Formant

frequencies of simulated

vowels (Hz), step 1

Vowel F1 F2 F3

/i/ 240 2400 3500

/a/ 850 1610 3500

/u/ 250 595 3000

/@/ 585 1710 3200

/o/ 500 700 3200

Step 2: For each speaker, a vocal-tract factor (VT) is generated with a value sampled from

a uniform distribution in the interval [0.8, 1.2], which corresponds to a variation of

±20%, a range observed in actual data (Labov et al., 2006).

Figure 4.4 Simulated vowel triangle for 5

randomly chosen speakers, step 3

2 From https://en.wikipedia.org/wiki/Formant

72

Step 3: For each vowel to be produced by a speaker, the canonical formant frequencies are scaled

by the inverse of VT, simulating the inverse of log-mean formant normalization (Labov

et al., 2006). Resulting formant frequencies are shown in Figure 4.4 for 5 randomly

chosen speakers. This figure can be compared to actual observed frequencies of

Figure 4.2 (although for slightly different vowel set) and looks broadly similar.

Figure 4.5 Modulated spectrum envelope

over 512 FFT bins, step 4

Step 4: The formant bandwidths, amplitudes and frequencies for a given speaker and vowel are

used to generate a power spectrum envelope over 512 FFT bins. We then multiply the

spectrum envelope with the spectrum of a periodic excitation source. The fundamental

frequency of this source is set to a value of 120 Hz scaled by the inverse of the VT

factor, so that it is lower for male speakers and higher for female speakers. A typical

result is shown in Figure 4.5. Notice how the periodic modulation due to the source

creates a large number of narrow peaks within broad formant peaks.

Step 5: The 512 FFT bins are grouped into 40 filterbanks with Mel-spaced center frequencies,

using standard speech signal processing software (Povey, et al., 2011). The end result

is a 40-dimensional vector for each instance of a vowel by a particular speaker.

Step 6: The end result can be visualized as a spectrogram, arranging the 40 Mel-filterbank

outputs in vertical columns and displaying each output as a gray-coloured square (from

black for low energy to white for high energy). Such a display is shown in Figure 4.6,

where the vertical axis represents filterbank index and horizontal axis represents time.

73

Figure 4.6 Simulated spectrograms of 40 mel-filterbank features. Five vowels

ordered from left to right, with each vowel produced by 40 speakers, step 6

The left fifth of the display shows the first vowel uttered by 40 different speakers. Then

the 2nd fifth shows the 2nd vowel, etc. until all 5 vowels of Figure 4.4 are produced.

4.4.2 Synthetic subsets

Synthetic vowels were generated for five vowels as described in the previous section. Table 4.2

shows the subsets generated while varying the sequence length L and number of speakers, and

how each set was divided into training and development subsets. For each subset, a number of

frames were synthesized as sequences of length L frames, each sequence uttered by a single

speaker, in this case a single VT factor chosen at random in the [0.8, 1.2] interval. Each frame

in the sequence represents a different vowel selected at random among the five vowels. The

reference label for the frame is the vowel used in generating the sample x for the frame.

Note that in these experiments, development sets were used solely as test sets, to measure

accuracy after training. They were not used during training for early stopping or for selecting an

initialization.

Table 4.2 Synthetic vowel datasets

Set Train frames Dev frames N. sequences L N. speakers

vowels_1 30,000 1000 1000 1 1000

vowels_2 30,000 1000 100 10 100

vowels_3 30,000 1000 50 20 50

vowels_4 30,000 1000 20 50 20

vowels_5 30,000 1000 10 100 10

74

4.4.3 Model parameters

We experimented on simulated vowels with an early version of the full MFL model, with one or

two latent variables, one discrete at the frame level, and a continuous one at the sequence level.

For the frame-level variable, no filtering was applied (equivalent to an averaging filter of length

one), and the sequence-level variable was averaged over the sequence (equivalent to pooling and

tying for the whole sequence). This simplification is consistent with the assumptions underlying

the vowel simulation: no speech dynamics are modelled, i.e., vowels parameters are switched

abruptly between vowel instances, and the speaker factor is fixed for the sequence.

Table 4.3 summarizes hyperparameters and their default values used in experiments.

Table 4.3 Default parameters for experiments

Parameter Description Value

Model

β Frame-level KL weight 10.

β2 Sequence-level KL weight 1

data dim Input feature dimension 40

H Hidden layer size in encoders and decoder 800

D Latent variables dimension 2

K N. of modes in multimodal prior 7

kl type Type of KL used for multimodal prior empirical

Training

batch size N. of sequences in minibatch 150

seq len Length of sequences 20

nepochs N. times through the whole training set 1000

optimizer Algorithm for gradient-descent optimization Adam with β1 = 0.9, β2 = 0.999

other lr General learning rate 1e-4

qz2 lr Learning rate for sequence level 1e-4

qz lr Learning rate for frame level 2e-05

Prior distributions

prior type Prior distribution GaussianMixture

init means Geometry of means for multimodal prior circular

spread Spacing of means for multimodal prior 0.1

75

When used, the multimodal prior was a Gaussian mixture with K equal mixture weights, K

means uniformly spaced in a circle of radius one, and K variances equal to the square of

spread. Other possible arrangements for the multimodal mixture was to have means arrayed in

a horizontal or vertical line, or along the vertices of a hypercube.

4.4.4 Results

The main results are reported in Table 4.4, in terms of mean accuracy and confidence interval,

for the frame level variable. Accuracy is measured on the development set separately for each

minibatch and averaged over one epoch3. For each result, 10 experiments are run and their

individual results are averaged. The column ± reports the 95% confidence interval for the

mean, using Student’s t-distribution, assuming samples are drawn independently from a normal

distribution with unknown standard deviation.

The first two rows of Table 4.4 correspond to the situation where only a frame level variable

can be used, as frames are considered individually and not as part of a sequence. The batch

framewise phoneme accuracy is much lower than for the following rows, where frames are part

of a sequence and there is a sequence level variable.

When interpreting these results, we must keep in mind that the models are trained without

supervision, and that latent variables have only two dimensions; in contrast, classification results

in the VAE literature are often obtained with partial supervision and higher latent dimensions

between 10 and 50 (Kim & Mnih, 2018; Kingma & Welling, 2014).

Our main findings from these preliminary experiments are:

• a sequence level variable is essential for disentangling speaker and vowel factors;

• a relatively large value of β is necessary, otherwise reconstruction loss dominates z KL

divergence and we obtain good reconstruction but bad classification;

• a slower learning rate for z helps to slow convergence on suboptimal modes, so the rest of

the model can settle first into a good reconstruction;

3 This is different from the development FPA reported elsewhere in this thesis.

76

Table 4.4 Multimodal VAE accuracy

with and without sequence level

variable

Sequence length β Batch FPA

1 1.0 0.770 ±0.050

1 10.0 0.493 ±0.090

20 1.0 0.900 ±0.047

20 5.0 0.933 ±0.055

20 10.0 0.991 ±0.060

10 10.0 0.972 ±0.046

50 10.0 0.983 ±0.017

• there is no significant difference between pooling the hidden layer or the output layer of the

neural net that computes qφs (s |x).

Posterior distributions obtained with the model are illustrated in plots such as the one in Figure 4.7.

The plot contains 6 sub-figures. The top row illustrates the model input. The upper-left is a

spectrogram representation of a batch of test data, with five vowels arranged from left to right,

each one represented by many examples spoken by different speakers. The upper-middle shows

samples from the 2-dimensional multimodal prior p(z)4, and the upper-right shows samples

from the 2-d normal prior p(z2). The colours represent true vowel identities.

The bottom row shows the model output. The bottom left is a spectrogram reconstructed by

sampling from the model posterior distribution p(x |z). Reconstruction accuracy can be assessed

by comparing the top and bottom spectrograms. The bottom middle shows samples of the

frame-level latent variable z taken from the estimated posterior distribution q(z |x). Each sample

is coloured by the ground-truth vowel label so we can see how the modes of q(z |x) correspond

to underlying vowels. Finally, the bottom right is a plot of z2 sequence-level latent variable

samples from q(z2 |x), coloured by the sequence id, or equivalently, speaker label since each

sequence is generated by a different speaker.

4 The number of mixture components must be set at minimum to the number of modes expected to be

found, but can be set slightly higher without affecting the results, as shown in this example.

77

Figure 4.7 Sequential VAE on vowels_4 test set, sequence length 20, accuracy 99.6%

This figure shows how frame-level variable z does indeed capture vowel identity, as the accuracy

of 99.6% demonstrates. This accuracy is reported for the displayed development minibatch.

The sequence-level variable z2 is distributed along a continuous, one-dimensional manifold,

as we would expect: in our simulation, speaker identity depends on VT, a single, continuous,

one-dimensional factor. A more magnified view would show that different vowels from the same

speaker are clustered together along the manifold.

Figure 4.8 shows various outcomes of the model with various spreads in the prior modes, and

different sequence lengths. In each case, the z2 variable was able to capture the single-dimension,

continuous factor that represents speaker variation. Frame-level z clustered along five distinct

modes, even though some are elongated where speaker variation crept in.

Multimodal VAE model without sequential modelling (β2 = 0 and fixed z2) plots appear in

Figure 4.9 and show that z does not cluster into well-delimited modes, as it tries to account for

78

a) Sequence length 10, accuracy 100%.
b) Sequence length 20, accuracy 99.6%.

c) Sequence length 50, accuracy 99.9%. d) Sequence length 100, accuracy 100%.

Figure 4.8 Sequential VAE on vowels_2, 3, 4, 5 test sets

both speaker and vowel factors. The accuracy suffers accordingly, and reconstruction is also

badly affected.

Finally, conventional VAE plots (with β = 0 and fixed z) are shown in Figure 4.10. As for the

non-sequential multimodal model, both sequence and frame-level factors are entangled within

the representation offered by the single latent variable. Note here that accuracy is meaningless

since classes are derived from the z variable which is not trained in this case.

79

Figure 4.9 Multimodal VAE on vowels_4 test set, no

sequence modelling, accuracy 76.8%

Figure 4.10 Conventional VAE on vowels_4 test set, no

sequence modelling, accuracy 28.5%

80

4.5 Experiments on TIMIT

We use TIMIT as the main corpus for our next series of experiments, since it provides utterances

labelled with phonemes and speakers. Because it is read speech recorded at 16 kHz in

clean conditions, it represents a small step towards more realistic speech, without introducing

additional problems due to acoustic conditions (noise, reverberation), spontaneous speech

(hesitations, repairs) or conversation (overlaps, background channel). Manual time-aligned

phonetic transcriptions and speaker labels allow us to compute accurate framewise measures. In

addition, there are large amounts of published results on TIMIT, for supervised and unsupervised

phoneme and speaker recognition.

4.5.1 Data preparation

The dataset is split following the standard TIMIT partition (Lee & Hon, 1989) into a training set

of 3696 utterances and 168 speakers, a full test set of 1344 utterances and 168 speakers, and a

core test set of 192 utterances and 24 speakers. As is usually done, a development set of 400

utterances is also derived from the full test set, according to the Kaldi TIMIT recipe5. Speakers

do not overlap between the training, test and development sets. We further split the training set

by holding out 5% of the training utterances to use as a validation set, for small experiments.

All the results we report here were obtained by training on the full training set and evaluating on

the development set; any hyperparameter tuning was performed using only the small held-out

validation set.

We extracted log Mel filterbank features with a standard configuration in Kaldi recipes: no

energy, 8 filters/octave which yield 40 filters (for a 16 kHz sampling frequency), and splicing

with ±2 or ±5 frames on the left and right.

5 https://github.com/kaldi-asr/kaldi/tree/master/egs/timit/s5

81

Each utterance in TIMIT varies in duration from 0.91 to 7.8 seconds, and corresponds to a

sequence having from 91 frames to 780 frames. Using bucket boundaries of (99, 210, 260, 290,

310, 340, 400) resulted in 6 buckets with roughly same number of utterances.

As is customary for TIMIT since Lee & Hon (1989), modelling is done using 48 phoneme

classes, but accuracy is measured after mapping these 48 classes to a smaller 39 phoneme

inventory.

To compute framewise phoneme classification accuracy, we obtain the phoneme label for each

frame from manual phoneme transcriptions included in TIMIT, mapped to the 39 phoneme set.

For speaker accuracy, we use utterance speaker labels to assign the same speaker label to all

frames in an utterance.

For tuning, we use "automatic" framewise phoneme labels from a GMM-HMM recognizer

trained following the standard Kaldi recipe for TIMIT6, up to the "tri3" models (LDA + MLLT

+ SAT). These models yield a phoneme error rate of 20.7% on the dev set and 21.6% on the

test set. They were used in a forced alignment using only the phoneme labels from the TIMIT

transcriptions provided.

4.5.2 Baseline results

Table 4.5 Frame-wise accuracy for baseline phoneme and speaker classifiers on

TIMIT development and test sets, with filterbank features spliced ±2

Classifier Dev FPA Dev FSA Test FPA Test FSA

Random 0.121 ±0.003 0.021 ±0.004 0.118 ±0.004 0.041 ±0.004

Single 0.121 ±0.003 0.020 ±0.005 0.118 ±0.005 0.038 ±0.008

K-means 0.362 ±0.002 0.122 ±0.002 0.339 ±0.003 0.151 ±0.004

Random (480, 500) 0.121 ±0.003 0.023 ±0.003 0.118 ±0.004 0.050 ±0.004

Random (4800, 5000) 0.122 ±0.003 0.040 ±0.002 0.123 ±0.004 0.079 ±0.003

Random (48000, 50000) 0.158 ±0.003 0.103 ±0.004 0.199 ±0.009 0.187 ±0.011

Random (480000, 500000) 0.414 ±0.026 0.393 ±0.029 0.611 ±0.037 0.618 ±0.037

Random (4800000, 5000000) 0.888 ±0.008 0.889 ±0.008 0.945 ±0.007 0.946 ±0.006

6 See footnote 5.

82

Table 4.5 gives results obtained with trivial or simple unsupervised classifiers. Even though the

development set is larger, and was not used in tuning, we report results for both development

and test sets for easier comparison with other published results.

The random classifier produces a random label for each frame. For phonemes, there are 48

possible labels, which are mapped to the 39 phoneme set using the greedy mapping described

in Section 4.3.1. There are 50 distinct speakers in the development set, 24 in the test set, and

each speaker contributed 8 recordings in both sets. For K-means, we used 100 clusters for

development and 48 clusters for test.

The single classifier predicts the same label for all frames, this label being chosen as the most

frequent in the development or test set.

Note that naively, with 39 phonemes to predict, one would expect a random guess accuracy of

1
39
= 0.026 and similarly, with 50 distinct speakers to predict, one would expect a random guess

accuracy of 1
50
= 0.02 on the development set. However, recall that cluster labels are mapped to

actual labels using the greedy algorithm, Section 4.3.1; so by mapping all random guesses to the

most frequent reference phoneme, it is always possible to achieve at least the same accuracy

as the single classifier. In contrast, the number of speakers is balanced so speakers are equally

likely. So both random and single best classifier achieve very close batch and development

accuracies, around 0.121 for phonemes and 0.021 for speakers.

The K-means classifier is trained on Mel filterbank features, with a splicing context of ±2.

These features of dimension 200 are projected with LDA to a dimension of 20, which provides

the best accuracy on the development set.

The best unsupervised framewise phoneme accuracy for TIMIT is reported by Yeh et al. (2018),

who describes a fully unsupervised model evaluated on the same TIMIT test set, using the same

39 phoneme inventory. The model is obtained in a fully unsupervised fashion, using no oracle

phoneme boundaries, but uses a language model. With the weaker "non-matching LM" derived

from an held-out third of the training sentences, the reported FPA is 0.484.

83

So the K-means classifier with filterbank features is not so trivial a baseline, as it achieves an

accuracy of 0.339 while the best reported mostly unsupervised model gets 0.484.

To put these baselines into perspective, some supervised framewise phoneme accuracies have

also been published on the same TIMIT dataset. For example Shulby, Ferreira, de Mello & Aluisio

(2019) gives 0.570 FPA for an hybrid CNN-MLP model, and 0.580 for an hybrid MLP-HMM

model (both using a 61 phoneme set).

The second part of Table 4.5 shows random classifiers with 480 to 4.8M phoneme classes, and

500 to 5M speaker classes, to illustrate how error rate can be reduced arbitrarily as the number

of classes is increased. In the limit, each of the development set 1.38 M frames is assigned a

separate class that can be mapped to the correct reference. This is in contrast to Chorowski et al.

(2019), who uses a similar mapping to compute frame accuracy, and claims that increasing the

number of classes does not trivially improve accuracy. Here we have empirical support to show

that increasing the number of classes does artificially improve accuracy, and makes all errors

vanish in the limit. However, the effect is small until the number of classes reaches about half

the number of frames in the dataset.

4.5.3 Experimental results

In this section, we evaluate the impact of our proposed improvements over previous conventional

and β-VAE models. In particular, we will see how well time-filtering and multiple latent

variables allow representations to disentangle phoneme and speaker information. Finally, we

will report the effect of self-attention in both encoder and decoder.

Figure 4.11 provides an example of representations obtained on the TIMIT developement set by

an MFL VAE model with short-term c and long-term s continuous latent variables (only the first

two dimensions are plotted).

Recall that in the tables that will follow, each entry is generated by running 10 experiments with

a given set of fixed hyperparameters, in order to compute a confidence interval. In each of these

84

Figure 4.11 Modelling TIMIT dev set with frame and sequence variables c and s.

Top row, from left to right: Mel filterbank features, c prior and s prior.

Bottom row, from left to right: reconstructed signal, c samples colored by phoneme, s
samples colored by speaker

experiments, 10 models are trained from different initializations, and the model with lowest

total training loss is selected for evaluation. Evaluation consists of using the model to generate

representation vectors for the whole development or test set. We then train a K-means classifier

on the set of representations, unsupervised, and use the corresponding clusters to label the batch

or development set. We compute the framewise phoneme and speaker accuracy of the cluster

labels against the reference labels with the greedy algorithm mentioned in Section 4.3.1.

4.5.3.1 Time filtering

The first series of experiments compares conventional and β VAE, which both have a single

latent variable with a Gaussian prior, and the effect of filtering as a bias to induce phoneme and

speaker representation.

Table 4.6 reports the development and test framewise phoneme and speaker accuracies. In the

first row are the K-means baseline results from Table 4.5 for reference. Column "Dim" shows

the latent variable dimensions that yields the best FPA in the tuning phase, expressed as a tuple

where each element is the dimension of one latent variable. Column "Filter" shows the filter

85

Table 4.6 Plain VAE and β-VAE representations and the effect of filtering on

TIMIT development set, filterbank features spliced ±2

Model Dim Filter Dev FPA Dev FSA Test FPA Test FSA

K-means - - 0.362 ±0.002 0.122 ±0.002 0.339 ±0.003 0.151 ±0.004

VAE 15 0 0.178 ±.002 0.037 ±.000 0.178 ±.001 0.067 ±.000

β-VAE 15 0 0.387 ±.004 0.148 ±.002 0.371 ±.003 0.209 ±.003

VAE+f 15 4 0.381 ±.003 0.167 ±.003 0.355 ±.004 0.250 ±.008

β-VAE+f 15 2 0.387 ±.004 0.153 ±.003 0.369 ±.004 0.219 ±.003

VAE+f 40 500 0.166 ±.004 0.579 ±.011 0.182 ±.002 0.691 ±.016

β-VAE+f 40 500 0.173 ±.003 0.694 ±.020 0.191 ±.003 0.823 ±.016

used in each experiment, also as a tuple where each element is the filter length, in frames, for

one latent variable. Only hyperparameters of interest are listed here; the other hyperparameters

are from the default7 configuration. In each column, bold characters emphasize the best value.

Note that there may be several equivalent, best values, when they fall within the confidence

interval of each other.

Conventional vs β-VAE: In Table 4.6, VAE with filter length 0 corresponds to the conventional

VAE model of Kingma & Welling (2014), with a Normal prior, β = 1.0, and no filtering. Its

FPA and FSA values do not even reach the K-means baseline, so as a representation for phoneme

or speaker, it is not even as good as filterbank features used in baseline.

β-VAE with filter length 0 has β = 0.1 and corresponds to a β-VAE model (Burgess et al., 2017;

Higgins et al., 2017). It yields better FPA than the K-means baseline in Table 4.5 but with a Dev

FSA of less than 0.2, it still fails to capture significant speaker information.

Time-scale filtering: The following rows VAE+f and β-VAE+f in Table 4.6 show the impact

of inserting an averaging filter of 4 and 2 frames after the latent variable sampling stage. For

VAE+f and filter length 4, phoneme accuracy surpasses the baseline K-means FPA, while for

β-VAE+f with filter length 2, FPA is also improved over its non-filtered version β-VAE.

7 For VAE with no filter, only 3 hidden layers were used, since convergence was not possible with 4.

86

The last two rows of Table 4.6 show that a filter of 500 frames dramatically improves speaker

representation, as shown by FSA values. However, a long filter improves speaker accuracy at the

expense of phoneme accuracy: FPA is dramatically reduced compared to the short filter FPA for

both VAE+f and β-VAE+f. Clearly, with a single latent variable, there is a trade-off between

phoneme and speaker accuracy.

Figure 4.12 Batch FPA and FSA on the TIMIT

validation set with varying filter lengths

This trade-off is illustrated more clearly in Figure 4.12, which plots FPA and FSA on a validation

batch, as a function of filter length. A length of 1 (no filtering) is not the best for FPA, which

peaks at intermediate lengths between 6 and 8. The best FSA is obtained with a length of 500,

which is longest than the average TIMIT utterance. There is no value of filter length that is good

simultaneously for FPA and FSA.

Location of filtering layer: The filtering layer can be located just after the input layer, after

each of the hidden layers, or right after sampling the latent variable (see Section 3.5.2). This

can have a large impact on the performance, especially for speaker accuracy. For experiments

reported in Table 4.6, the best location was found to be after sampling. However, this was also

true for most other model variants and conditions that we tested. As the filtering layer is moved

closer to the input (from after sampling to the 2nd hidden layer), accuracy is slightly degraded,

similarly for both latent variables.

87

In summary, we confirm, as reported in previous studies, that β-VAE produces better representa-

tions than its conventional VAE counterpart. The new finding here is that time-scale filtering

improves representations even more, especially for speakers. A short filter makes the VAE

latent variable a better low-dimensional representation for phonemes compared to filterbank

features. A long filter makes the VAE latent variable a better low-dimensional representation for

speakers. However, there is a trade-off which prevents the VAE latent variable from being good

at representing both phoneme and speaker information at the same time.

4.5.3.2 Multiple latent variables

Table 4.7 examines the effect of using multiple, filtered latent variables, as in our proposed

MFL-VAE model. In this table, for MFL-VAE, FPA is reported only for the short-term latent

variable, and FSA only for the long-term variable, for easy comparison with previous β-VAE+f

results shown in the first two rows, where both FPA and FSA are reported for the single variable8.

Table 4.7 Multiple variables modelling on TIMIT development set, filterbank

features spliced ±2

Model Dim Filter Dev FPA Dev FSA Test FPA Test FSA

β-VAE+f 15 2 0.387 ±.004 0.153 ±.003 0.369 ±.004 0.219 ±.003

β-VAE+f 40 500 0.173 ±.003 0.694 ±.020 0.191 ±.003 0.823 ±.016

MFL-VAE 10, 40 6, 500 0.392 ±.003 0.950 ±.009 0.375 ±.004 0.986 ±.004

For MFL-VAE, multiple latent variables are modelled jointly (as described in Section 3.6). A

dimension of 10, with a filter length of 6 frames is used for the "phoneme variable", and a

dimension of 40, with a filter length of 500, for the "speaker" variable, as shown in the Dim

and Filter columns. Note that from the modelling point of view, the two latent variables are

treated exactly the same, except for their dimension and filter length, so the names "phoneme"

and "speaker" variables are used only for convenience.

8 Dev FPA is 0.161 for the long-term variable and Test FSA 0.132 for the short-term variable.

88

Each accuracy in MFL-VAE can be compared to the best accuracy in the same column, in the first

and second rows of the table, which report the best single latent variable models from Table 4.6.

The accuracy of each variable in MFL-VAE is better than the best accuracy of any individual

model, showing that both representations benefit from the joint modelling. This is especially

marked for speaker classification: Dev FSA is improved from 0.694 to 0.950 by MFL-VAE, and

Test FSA from 0.823 to 0.986. FPA slightly improves both for development and testing.

Table 4.8 Multiple variables modelling on TIMIT development set, filterbank

features spliced ±5

Model Dim Filter Dev FPA Dev FSA Test FPA Test FSA

β-VAE+f 15 6 0.397 ±.003 0.159 ±.002 0.375 ±.003 0.230 ±.007

MFL-VAE 10, 40 4, 500 0.398 ±.004 0.948 ±.008 0.388 ±.004 0.972 ±.012
MFL-VAE+d 8, 40 8, 500 0.382 ±.011 0.941 ±.032 0.382 ±.017 0.972 ±.039

Size of receptive field: Table 4.8 presents results for a larger input receptive field. Input features

were the concatenation of the central frame plus the preceding and following 5 frames, resulting

in a receptive field of 11 frames. The second row confirms the MFL-VAE results observed with

±2 splicing (Table 4.7) but with higher phoneme and comparable speaker accuracy.

Target of reconstruction: when splicing with ±2 or ±5 frames, one may wonder if the

reconstruction loss should be based only on the central frame or on the whole receptive field. We

found that a 3-frame window, including the central frame plus the left and right frame, worked

best. We did not obtain better results with a target reconstruction field offset in the future relative

to the input field, even with overlap.

Multimodal prior: the last line of Table 4.8 shows the best result we could obtain using a mul-

timodal prior on the "phoneme" variable, despite a lot of experimentation with hyperparameters.

The best FPA result was obtained with a Gaussian mixture of 64 components, arranged in an

8-dimensional hypercube. Surprisingly, phoneme accuracy is degraded relative to a continuous

variable, but speaker accuracy remains as good as the model with a unimodal short-term prior.

89

4.5.3.3 Self-attention

Table 4.9 explores the use of attention layers, which we introduced with the goal of modelling

sequences of short-term representations. Column "Heads" shows the number of heads used in

the self-attention layer, expressed as a tuple where each element is the number of heads for one

latent variable. The first two rows (1 and 2) are taken from the best β-VAE+f and MFL-VAE

Table 4.9 MFL-VAE with self-attention, on TIMIT development set,

filterbank features spliced ±5

Model Heads Dev FPA Dev FSA Test FPA Test FSA

1 β-VAE+f 0 0.397 ±.003 0.159 ±.002 0.375 ±.003 0.230 ±.007

2 MFL-VAE 0, 0 0.398 ±.004 0.948 ±.008 0.388 ±.004 0.972 ±.012

3 β-VAE+f 1 0.393 ±.005 0.162 ±.003 0.370 ±.003 0.247 ±.004

4 MFL-VAE 1, 0 0.409 ±.003 0.927 ±.015 0.383 ±.003 0.976 ±.010

5 MFL-VAE 6, 0 0.405 ±.005 0.926 ±.009 0.386 ±.005 0.978 ±.007

6 MFL-VAE 6, 6 0.406 ±.004 0.934 ±.013 0.387 ±.005 0.983 ±.007

7 MFL-VAE 6, 12 0.408 ±.003 0.933 ±.010 0.392 ±.005 0.987 ±.003

models in Table 4.8, for reference. Adding one attention head to the single variable of β-VAE+f

does not improve the results (row 3 compared to row 1). Adding 1 or 6 heads to MFL-VAE

(rows 4 and 5) improves FPA, but slightly degrades FSA. The degradation in FSA is somewhat

compensated by also adding attention to the speaker variable, with 6 or 12 heads (rows 6 and 7).

Even though self-attention obtains the best Dev FPA results reported in this thesis, its performance

is not consistent across development and test. It seems that adding attention to both variables is

important to avoid degrading FSA. Positional sine/cosine encoding, in the form proposed by

Vaswani et al. (2017), was tested both with sum and concatenation but was found to degrade the

results. Restricting attention to a local context around the current frame (Povey et al., 2018) was

also tried but did not improve the results.

90

4.5.4 Visualizations

Figures 4.13 and 4.14 shows 2-dimensional projections. On the left, raw filterbank features, and

right, one of the latent representations from the model from row 7 of Table 4.9. The projections

are obtained with t-SNE (van der Maaten & Hinton, 2008). A random subset 10% of TIMIT

development is plotted; each point is one frame. For clarity silence frames are not plotted.

Figure 4.13 t-SNE projection of raw features (left) and s representation. Each point

is one frame of 40 utterances from TIMIT development set. Colors represent speakers

Figure 4.13 shows projected filterbank features on the left and s representation on the right,

both colored by reference speaker label. Speakers in the s representation are located in well

separated clusters, within which micro-clusters corresponding to individual sessions are visible.

With raw features, each speaker is largely distributed over all the representation space. This is

not surprising, given that a K-means classifier only obtains a development FSA of 0.122 with

filterbank features, compared with 0.933 for the s representation.

Figure 4.14 compares the filterbank features (left) with the c representation (right), this time

colored by reference phoneme class9, either vowel, stop, fricative, approximant or nasal. The

9 Following TIMIT documentation, except jh,ch were considered as fricatives rather than affricates.

91

Figure 4.14 t-SNE projection of raw features (left) and c representation. Each point is

one frame of 40 utterances from TIMIT development set. Colors represent phonemes

difference is not expected to be as large as for the s representation: Dev FPA is 0.362 for filterbank

features and 0.408 for c. Indeed, fricatives (green) and stops (orange) form distinct clusters in

both representations. However, in c, nasals (magenta) are better grouped; approximants (red)

and vowels (blue) are more separated, while in the filterbank representation they are mixed

together.

A phoneme confusion matrix obtained on one minibatch of the TIMIT development set is shown

in Table 4.10. Each row is a phoneme obtained from the short-term representation of the model,

each column is a reference phoneme from manual transcription. Each entry represents how

many times the model phoneme was correctly mapped to the reference phoneme, as a fraction of

all occurrences of the model phoneme (rows sum to 1). Correct mappings are highlighted in

blue. Only phonemes with entries > 0.18 are shown individually, the others are aggregated in

the last column, under the name "rest".

Most frequent confusions can be found by identifying the largest non-highlighted number in

a given row. Vowels are more frequently confused with other vowels from a similar class, for

92

example /ae/ and /eh/, or /iy/ and /ih/. Among the more frequent confusions, we find /k/ with

/f,sil,t/, /m/ with /n/, /s/ with /z/, and /sh/ with /s/. This is anectodal evidence but it appears that

even when the representation is mapped to the wrong reference by K-means, it is still close to a

phonetically related neighbor.

Table 4.10 Phoneme confusion matrix, TIMIT dev set, model 7 from Table 4.9

aa ae eh er f ih iy k l m n r s sh sil t w z rest

aa 0.29 0.06 0.03 0.02 0.00 0.02 0.00 0.00 0.09 0.01 0.01 0.03 0.00 0.00 0.02 0.00 0.02 0.00 0.41

ae 0.04 0.26 0.23 0.01 0.00 0.08 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.36

er 0.05 0.03 0.04 0.39 0.00 0.05 0.01 0.00 0.00 0.02 0.02 0.23 0.00 0.00 0.02 0.00 0.01 0.00 0.14

f 0.00 0.00 0.00 0.01 0.54 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.09 0.02 0.06 0.03 0.00 0.04 0.17

ih 0.01 0.06 0.09 0.04 0.01 0.25 0.05 0.00 0.02 0.01 0.06 0.03 0.02 0.00 0.02 0.01 0.00 0.02 0.30

iy 0.00 0.02 0.02 0.01 0.00 0.15 0.40 0.00 0.01 0.02 0.05 0.01 0.00 0.00 0.04 0.00 0.00 0.00 0.27

k 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.23 0.01 0.01 0.00 0.01 0.02 0.00 0.12 0.06 0.01 0.00 0.37

l 0.05 0.00 0.01 0.01 0.00 0.06 0.01 0.00 0.35 0.05 0.05 0.00 0.00 0.00 0.04 0.00 0.05 0.00 0.31

m 0.01 0.01 0.01 0.01 0.00 0.04 0.01 0.00 0.01 0.33 0.26 0.02 0.00 0.00 0.09 0.00 0.01 0.00 0.19

n 0.00 0.00 0.01 0.01 0.00 0.07 0.03 0.00 0.01 0.10 0.57 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.16

s 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.61 0.02 0.02 0.01 0.00 0.26 0.04

sh 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.41 0.01 0.01 0.00 0.11 0.15

sil 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.03 0.00 0.01 0.04 0.00 0.02 0.00 0.65 0.05 0.00 0.02 0.13

t 0.00 0.00 0.01 0.00 0.05 0.02 0.00 0.13 0.00 0.00 0.00 0.00 0.11 0.08 0.02 0.23 0.00 0.04 0.29

w 0.13 0.00 0.01 0.02 0.01 0.00 0.00 0.01 0.18 0.02 0.01 0.01 0.00 0.00 0.06 0.00 0.31 0.00 0.23

z 0.05 0.00 0.00 0.08 0.00 0.01 0.00 0.04 0.00 0.00 0.00 0.00 0.14 0.00 0.01 0.19 0.00 0.36 0.13

4.6 Summary

In this chapter we verified that our proposed multiple filtered variables model could produce

low-dimensional representations that capture meaningful information such as phoneme and

speaker.

In a first series of experiments, we measured directly how well the model could infer posterior

distributions of known underlying vowel and speaker factors that were used for generating a

synthetic vowel dataset. We found that, given only a realistic high-dimensional log filterbank

signal, our model was able to fully recover the generating factors. In addition, we showed that

having both frame and sequence level latent variables was essential to this recovery.

The second series of experiments was done with TIMIT, a corpus of recorded speech from 630

speakers. We evaluated representations through a downstream classification task: representations

were clustered with K-means into discrete labels, which were mapped to reference labels.

Phoneme and speaker framewise classification accuracies were used to measure how much

phoneme or speaker information was captured in the representation.

93

We first established some baseline results with random and raw filterbank representations, which

highlighted that K-means with filterbank features is a non-trivial baseline for unsupervised

phoneme classification. We also set additional baselines with plain VAE and β-VAE represen-

tations. Although some of these were somewhat better than filterbank features for capturing

phoneme information, they all failed at representing speaker information.

We then showed how time filtering was acting as a bias to induce meaningful representations, by

improving phoneme accuracy with short filters and speaker accuracy with long filters. However

separate models were needed for phoneme and speaker representations, since a single latent

variable was not able to capture both at the same time. A discrete inductive bias was tested, but

could not be made to work as expected on TIMIT.

By introducing multiple latent variables in a single model, we obtained representations that were

good at capturing both phoneme and speaker identity. Jointly modelling two latent variables was

shown to improve over separately modelling them. We were able to improve this model further

with a larger receptive field, a selective target for reconstruction, and self-attention. Our best

MFL VAE model achieves a test framewise phoneme accuracy of 0.392 and speaker accuracy of

0.987, on the TIMIT development set, using self-attention with 6 heads in both encoder and

decoder, with completely unsupervised training.

CHAPTER 5

DISCUSSION

Although many generative models similar to VAE have been introduced for unsupervised

learning, most notably GANs and AAE, as described in Section 1.4, these models optimize good

reconstruction but not interpretability or disentangling of underlying factors. Some previous

works use the sequence vs. observation level distinction, such as FHVAE and the sequential

autoencoder mentioned in Section 2.2. These two approaches assume one underlying factor that

varies independently from frame to frame, and one that is constant across the utterance. Note

that Chorowski et al. (2019) also has a sequence-level variable, but trains it with supervision. In

contrast, we proposed here a model where each latent variable has its own filter that controls the

time scale of captured information independently, without being limited to a binary opposition.

Separating underlying factors in the representation is obtained by assigning a separate latent

variable to each factor, yielding a global representation where each factor occupies a strict subset

of the dimensions.

Time-scale biases have been succesful in the separation of phoneme and speaker factors, but

the separation is still incomplete. As mentioned in Section 4.5.3.2, for the MFL-VAE model

results, the short-term variable has a phoneme accuracy of 0.392, but its speaker accuracy is

still 0.132, better than the MFCC baseline of 0.122. So the short-term variable does captures a

little of the speaker information. A possible explanation would be a failure of the long-term

encoder to fully capture speaker-dependent speech dynamics, even though it has access to an

input spanning several frames. Similarly, the long-term variable has a speaker accuracy of 0.950,

yet a relatively high phoneme accuracy of 0.161, so it still contains phoneme information. This

may be due to speaker characteristics that are phoneme-dependent, which forces the long-term

variable to encode this information. In the model, the latent variables are assumed independent

from one another. This result suggests that a speaker variable should perhaps be conditioned

on a phoneme variable; in other words, knowledge of phonetic content would yield a better

disentangled speaker representation.

96

The dimension of the phoneme latent variable is small and acts as a strong bottleneck; it is

another inductive bias. Notably, it seems to be relatively invariant across the databases that were

explored in this work. The optimal was 5 for simulated vowels, and approximately 10 to 15 for

TIMIT. This is consistent with the range generally posited to generate phonetic content in speech

production models such as Stevens & Keyser (2010).

To put these results into perspective, the best "unsupervised" framewise phoneme accuracy

reported for TIMIT with the same TIMIT development set and 39 phoneme classes, is 0.484 (Yeh

et al., 2018) with the provision that Yeh et al. (2018) used a language model trained from manual

transcriptions (so not a completely unsupervised setting). This particular result is reported as

51.6% FER in Yeh et al. (2018) and was obtained for the second iteration of their proposed

model without oracle phoneme boundaries, using the weaker "nonmatching" 5-gram language

model derived from an held-out third of the training sentences.

Self-attention seems promising, but much more work is needed. Using attention both in the

encoder and decoder, as is done in NLP transformers (Vaswani et al., 2017), did yield small

improvements, but that was rather disappointing. We would expect that giving sequence

modelling power to the model, which has none otherwise, would result in larger improvements.

Note that we did not have success with positional encoding, while it seems that positional

information should play an important role in predicting coarticulation, for example. So positional

encoding needs more investigation, as we did not try some of the several positional encoding

schemes that have been proposed for speech (Povey et al., 2018; Sperber et al., 2018). Similarly,

as implemented here, attention spans the whole utterance. In practice, to handle very long

utterances, attention would need to be restricted to a reasonable context, and this constraint might

even have some benefits, as results from Povey et al. (2018) seem to suggest. Also intriguing is

the recent proposal by Dai, Yang, Yang & Carbonell (2019), where a recurrent state propagates

information from the previous segment, a mechanism that would provide a way to handle very

long utterances as sequences of segments.

97

An important negative result was obtained in the TIMIT experiments: multimodal priors were

not helpful in inducing phoneme representations. This is surprising, given the underlying

discreteness of phonemes. Furthermore, recent results from Chorowski et al. (2019) support the

idea that a discreteness constraint is helpful in deriving a phoneme representation, although that

result was obtained with supervision about the speaker variable. It must be noted, however, that

even for simulated vowels, convergence to a good solution was difficult, for example it required

careful tuning of relative learning rates of the latent variables and of the means spacing for the

multimodal prior. So there are two plausible explanations here. One is that difficult convergence

and the existence of many local minimas due to the multiple modes (see Section 2.1.5) could

have led to suboptimal results for TIMIT, while for simulated data these problems were easier to

overcome. The second one is that the learned representation did cluster around the prior modes,

which indeed appears to be the case visually, but that these clusters did not correspond well to

phonemes, so K-means classification results reflect this less than perfect correspondence. More

work would be needed to clarify this point.

Silence removal at beginning and end of utterances (endpointing) has a big effect on overall

framewise phoneme accuracy. Before endpointing, silence intervals represent 34% of all frames,

and in this situation silence is easily detected (a typical MLF model would have a silence frame

accuracy of 80% or more). After removal, silence frames represent a more reasonable 12%

and silence frame accuracy is approximately 60%, in a range similar to the accuracy for /s/ or

/f/. Unfortunately, papers that report framewise phoneme accuracy seldom mention whether

endpointing was applied.

In TIMIT, each recording session is a single utterance from one speaker, and sessions from

the same speaker are just randomly shuffled in the data. Thus in TIMIT, there is no actual

distinction between session and speaker, so we expect the long-term latent variable to represent

speaker/session pairs rather than just the speaker. However, qualitative results illustrated

in Figure 4.13 show that all utterances from the same speaker do cluster together in the long-term

representation. A quantitative evaluation of the speaker and session disentangling would require

a database where each recording session includes several speakers taking turns.

CONCLUSION AND RECOMMENDATIONS

In previous work, unsupervised low-dimensional representations for speech have been applied

to various tasks such as speaker verification and emotion detection from speech. But these

representations capture simultaneously different sources of variability, and that is why i-vectors

are also called "total variability" vectors. The consequence is that the same representation can

be used for different applications, and i-vectors have been used for speaker verification, emotion

detection, personality classification, etc. But it also means that for any particular application, a

downstream classifier must be trained to extract the information of interest, and in general, this

must be done with supervised training.

In the current work, we demonstrated that imposing biases such as time scales and multimodal

priors can induce representations that separate different information into distinct latent variables,

without requiring any supervision.

6.1 Summary of contributions

In Chapter 3, we proposed a multiple filtered latent variables VAE model, in which we introduced

time filtering as a bias to induce representations at a different time scale for each latent variable.

We showed how to impose a multimodal prior for discrete latent variables, and derive two

tractable variants of the VAE loss function: E-M reestimation with matched KL divergence, and

KL divergence sampling. We also described how self-attention layers can be used to provide for

sequence modelling.

In Chapter 4, using simulated vowels, we examined how well the proposed time-scale and

discreteness biases encouraged posterior distributions to recover underlying vowel and speaker

factors that were used to generate audio features. We found that, given only a realistic high-

dimensional log filterbank signal, the model accurately recovered the generating factors. In

100

addition, we showed that both frame- and sequence-level variables were essential for accurate

reconstruction as well as well-disentangled representation.

With TIMIT, a corpus of recorded speech from 630 speakers, we evaluated unsupervised

representations through a downstream classification task: representations were clustered with

K-means into discrete labels, which were mapped to reference labels. Phoneme and speaker

framewise classification accuracies measured how much phoneme or speaker information was

captured in each representation. We showed that plain VAE and β-VAE representations are

somewhat better than filterbank features for capturing phoneme information, but completely

fail at representing speaker information. Time filtering as a inductive bias to induce a phoneme

representation had its largest impact on plain VAE, bringing it to the same level of performance

as β-VAE while having a negligible effect on β-VAE. In contrast, time filtering on a long-term

scale was critical for inducing speaker representation. Jointly optimizing for multiple latent

variables with a distinct bias for each one made it possible to disentangle underlying factors that

a single latent variable cannot capture simultaneously. Finally, self-attention did provide a small

improvement but not as much as could be expected from adding sequence modelling.

The proposed extensions to VAE and experimental results obtained with this model are the subject

of a manuscript submitted to the IEEE/ACM Transactions on Audio, Speech and Language

Processing, currently requiring minor revisions for English usage before acceptance.

6.2 Limitations and recommendations

In this work, we did not concentrate on the design of the low-level, first layers of the neural

networks. For example, we did not try complex convolutional architectures, as is usually done

for speech processing. Here, the focus was on exploring inductive biases to obtain interpretable

representations, rather than obtaining high performance but uninterpretable representations. The

results obtained here could possibly be improved by adding more complex signal preprocessing

101

layers; however, it is also possible that these approaches are only effective when training is

supervised.

Multimodal priors did not seem to improve phoneme representations. This result suggests

that more work is needed in that direction, a conclusion that is also partly supported by recent

supervised results from Chorowski et al. (2019).

Finally, extending this work to a more challenging dataset with multiple speakers in each

recording would be of special interest, as there was only one speaker per recording in TIMIT.

Trying to separate speakers and recording would verify the model’s capacity to include a third

factor at a different time scale, with potential applications to domain adaptation and speaker

diarization.

APPENDIX I

HYPERPARAMETERS

Table-A I-1 Model hyperparameters

Typical values Description

attention (6, 0) Number of attention heads for each latent variable

attention_layer ((3, 3), (-1, -1)) Hidden layers where attention is applied for each latent variable

batch_norm True Batch normalisation on hidden layers (true or false)

batch_norm_affine True Train affine transform for batch norm (true or false)

beta (0.1, 0.1) Beta value for each latent variable

code_dim (12, 48) Dimension of each latent variable

data_dim 440 Encoder input size (depends on source_slice)

data_dim_out 120 Decoder output size (dependes on target_slice)

dataset Timit39M2spl Timit39M2spl

dataset_batch_size 15 Minibatch size (n. of sequences in minibatch)

dataset_buckets (71,...,350) Max. sequence length for each dataset bucket

dataset_padded True Use padding in dataset

dataset_root Experiments/data Root directory of dataset

dataset_suffix fbank5-nosil_train Detailed specification for dataset

device cuda Device where to run model (cpu or gpu)

drop_out_p 0 Dropout probability for hidden layers

em_iters 0 Estimate matched KL with this number of iterations

front_end none Front-end feature processing: cnn or tdnn or none

h_dim (200, 200) Hidden layer size for each latent variable

init_means hypercube Type of initial mixture prior: random, circular, hypercube, etc. for each latent variable

kernel_len (6, 500) Filter length for each latent variable

kl_type (,) Type of KL estimation for each latent variable

kmeans_nclusters (48, -1) N. of k-means clusters for accuracy, for each label type (-1 uses n. of classes in reference)

lat_types (c, s) Names of latent variables

mnorm True Use batch mean normalization of input features (true or false)

model S_VAE Model class (S_VAE = multiple filtered latent variational autoencoder

n_epochs 101 N. of training epochs

n_labels 350 (unused)

n_layers 3 N. of hidden layers

num_components 64 N. of components in Gaussian mixture priors

optimizer Adam Optimizer used in training (Adam, RMSprop, etc.)

optimizer_eps 1e-08 Optimizer epsilon parameter

other_lr 0.001 Learning rate for nonencoder variables

output_dir Experiments/out Output directory for intermediate results

pooled (c, s) List of latent variables to be filtered

pooled_layer (-1, -1) Layers where filtering is applied, maybe several, for each latent variable

pooling (avg, avg) Type of pooling for each filtered variable (average or convolutional)

positional_encoding none Use positional encoding in attention (true of false)

prior_type (Normal, Normal) Prior type for each latent variable (Normal, Gaussian mixture, etc.)

qz_lr (0.0001, 0.0001) Learning rate for encoder variables

rep_layer -1 Hidden layer from which representation is extracted

scheduler_gamma 1 Gamma parameter of scheduler (1. means no effect)

scheduler_milestones (20, 40, 60, 80) Apply scheduler gamma after each of these number of epochs

source_slice (0, 440) Begin, end of feature slice for encoder input

spread (0.25, 0.25) Spread of mean values for mixture priors

superv_indices (-1, -1) For supervised experiments, indices of supervision labels to use

target_slice (160, 280) Begin, end of feature slice for decoder output

vnorm True Use batch variance normalization of input features (true or false)

xavier_init False Use xavier initialization (true or false)

LIST OF REFERENCES

Airoldi, E. M., Blei, D. M., Erosheva, E. A. & Fienberg, S. E. (2014). Introduction to mixed

membership models and methods. In Handbook of Mixed Membership Models and Their
Applications (ch. 1, pp. 3–14). Chapman & Hall/CRC.

Aitchison, L., Adam, V. & Turaga, S. C. (2018). Discrete flow posteriors for variational inference
in discrete dynamical systems. arXiv e-print. Consulted at http://arxiv.org/abs/1805.10958.

Al-Rfou, R., Choe, D., Constant, N., Guo, M. & Jones, L. (2019). Character-Level Language

Modeling with Deeper Self-Attention. Proc. AAAI Conference on Artificial Intelligence,

pp. 3159–3166.

Anderson, E. C. (1999). Monte Carlo Methods and Importance Sampling. Lecture Notes for

Statistical Genetics 578C.

Astrahan, M. M. (1970). Speech Analysis by Clustering, or the Hyperphoneme Method. Stanford
Artificial Intelligence Project Memorandum, AIM-124, 22.

Barber, D. (2016). Bayesian Reasoning and Machine Learning. Cambridge University Press.

Bengio, Y., Lamblin, P., Popovici, D. & Larochelle, H. (2006). Greedy Layer-Wise Training of

Deep Networks. Proc. NIPS, pp. 153–160.

Bengio, Y., Courville, A. & Vincent, P. (2013). Representation Learning: A Review and New

Perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8),

1798–1828.

Bhattacharya, G., Alam, J. & Kenny, P. (2017). Deep Speaker Embeddings for Short-Duration

Speaker Verification. Proc. Interspeech, pp. 1517–1521.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. New York: Springer.

Blaauw, M. & Bonada, J. (2016). Modeling and transforming speech using variational

autoencoders. Proc. Interspeech, pp. 1770–1774.

Blei, D. M., Kucukelbir, A. & McAuliffe, J. D. (2016). Variational Inference: A Review for

Statisticians. Journal of the American Statistical Association, 112(518), 859–877.

Blei, D. M. & Lafferty, J. (2009). Topic models. In Text mining: classification, clustering, and
applications (pp. 101–124). Chapman & Hall/CRC.

106

Bojanowski, P., Grave, E., Joulin, A. & Mikolov, T. (2016). Enriching Word Vectors with

Subword Information. Transactions of the Association for Computational Linguistics, 5,

135–146.

Bouchacourt, D. (2017). Task-Oriented Learning of Structured Probability Distributions. (Ph.D.

thesis, University of Oxford).

Boulianne, G. (2015). Language-independent voice passphrase verification. Proc. ICASSP,

pp. 4490–4494.

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Jozefowicz, R. & Bengio, S. (2016).

Generating Sentences from a Continuous Space. CoNLL, pp. 10–21.

Bredin, H. (2017). TristouNet: Triplet loss for speaker turn embedding. Proc. ICASSP,

pp. 5430–5434.

Browman, C. P. & Goldstein, L. (1992). Articulatory Phonology: An Overview. Phonetica,

49(3-4), 155–180.

Burgess, C. P., Higgins, I., Pal, A., Matthey, L., Watters, N., Desjardins, G. & Lerchner, A.

(2017). Understanding disentangling in β-VAE. Proc. NIPS, pp. 1–11.

Cai, W., Chen, J. & Li, M. (2018). Exploring the Encoding Layer and Loss Function in

End-to-End Speaker and Language Recognition System. Proc. Odyssey, pp. 74–81.

Celebi, M. E., Kingravi, H. A. & Vela, P. A. (2013). A comparative study of efficient initialization

methods for the k-means clustering algorithm. Expert Systems with Applications, 40(1),

200–210.

Chen, K.-Y., Tsai, C.-P., Liu, D.-R., Lee, H.-Y. & Lee, L.-s. (2019). Completely Unsupervised

Phoneme Recognition By A Generative Adversarial Network Harmonized With Iteratively

Refined Hidden Markov Models. Proc. Interspeech, pp. 1–5.

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I. & Abbeel, P. (2016). InfoGAN:

Interpretable Representation Learning by Information Maximizing Generative Adversarial

Nets. Proc. NIPS, pp. 2172–2180.

Chen, X., Kingma, D. P., Salimans, T., Duan, Y., Dhariwal, P., Schulman, J., Sutskever,

I. & Abbeel, P. (2017). Variational Lossy Autoencoder. Proc. ICLR, pp. 1–17.

Chorowski, J., Bahdanau, D., Serdyuk, D., Cho, K. & Bengio, Y. (2015). Attention-based

models for speech recognition. Proc. NIPS, pp. 577–585.

107

Chorowski, J., Weiss, R. J., Bengio, S. & van den Oord, A. (2019). Unsupervised speech
representation learning using WaveNet autoencoders. arXiv e-print. Consulted at http://

arxiv.org/abs/1901.08810.

Chou, J.-C., Yeh, C.-C., Lee, H.-Y. & Lee, L.-S. (2018). Multi-target Voice Conversion without

Parallel Data by Adversarially Learning Disentangled Audio Representations. Proc.
Interspeech, pp. 501–505.

Chowdhury, F. A. R., Wang, Q., Moreno, I. L. & Wan, L. (2018). Attention-Based Models for

Text-Dependent Speaker Verification. Proc. ICASSP, pp. 5359–5363.

Clark, C., Lee, K., Zettlemoyer, L., Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark,

C., Lee, K. & Zettlemoyer, L. (2018). Deep contextualized word representations. Proc.
NAACL-HLT, pp. 2227–2237.

Cremer, C., Li, X. & Duvenaud, D. (2018). Inference Suboptimality in Variational Autoencoders.

Proc. ICML, pp. 1–12.

Cummins, N., Epps, J., Sethu, V. & Krajewski, J. (2014). Variability compensation in small

data: Oversampled extraction of i-vectors for the classification of depressed speech. Proc.
ICASSP, pp. 970–974.

Cyrta, P., Trzciński, T. & Stokowiec, W. (2018). Speaker diarization using deep recurrent

convolutional neural networks for speaker embeddings. Advances in Intelligent Systems
and Computing, 655, 107–117.

Dai, A. M. & Le, Q. V. (2015). Semi-supervised Sequence Learning. Proc. NIPS, pp. 3079–3087.

Dai, Z., Yang, Z., Yang, Y. & Carbonell, J. (2019). Transformer-XL: Attentive Language
Models Beyond a Fixed-Length Context. arXiv preprint. Consulted at https://arxiv.org/

pdf/1901.02860.

Davidson, T. R., Falorsi, L., De Cao, N., Kipf, T. & Tomczak, J. M. (2018). Hyperspherical
Variational Auto-Encoders. arXiv preprint. Consulted at http://arxiv.org/abs/1804.00891.

Deena, S., Hasan, M., Doulaty, M., Saz, O. & Hain, T. (2016). Combining feature and

model-based adaptation of RNNLMs for multi-genre broadcast speech recognition. Proc.
Interspeech, pp. 2343–2347.

Dehak, N., Kenny, P. J., Dehak, R., Dumouchel, P. & Ouellet, P. (2011). Front-End Factor

Analysis for Speaker Verification. IEEE Transactions on Audio, Speech, and Language
Processing, 19(4), 788–798.

108

Delpech, E., Laignelet, M., Pimm, C., Raynal, C., Trzos, M., Arnold, A. & Pronto, D. (2018). A

Real-life , French-accented Corpus of Air Traffic Control Communications. Language
Resources and Evaluation Conference (LREC), pp. 1–5.

Deng, J., Xu, X., Zhang, Z., Fruhholz, S. & Schuller, B. (2018). Semisupervised Autoencoders

for Speech Emotion Recognition. IEEE/ACM Transactions on Audio Speech and Language
Processing, 26(1), 31–43.

Deng, L. & Jaitly, N. (2016). Deep discriminative and generative models for speech pattern

recognition. In Handbook of Pattern Recognition and Computer Vision (ch. 1.2, pp. 25–72).

World Scientific.

Dhillon, I., Guan, Y. & Kulis, B. (2005). A Unified View of Kernel k-means, Spectral Clustering

and Graph Cuts. Computational Complexity, 25(5), 1–20.

Dilokthanakul, N., Mediano, P. A. M., Garnelo, M., Lee, M. C. H., Salimbeni, H., Arulkumaran,

K. & Shanahan, M. (2017). Deep Unsupervised Clustering with Gaussian Mixture

Variational Autoencoders. Proc. ICLR, pp. 1–12.

Dimitriadis, D. & Fousek, P. (2017). Developing on-line speaker diarization system. Proc.
Interspeech, pp. 2739–2743.

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E. & Darrell, T. (2013).

DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition. Proc.
ICML, pp. 647–655.

Durrieu, J. L., Thiran, J. P. & Kelly, F. (2012). Lower and upper bounds for approximation

of the Kullback-Leibler divergence between Gaussian mixture models. Proc. ICASSP,

pp. 4833–4836.

Eastwood, C. & Williams, C. K. (2018). A framework for the quantitative evaluation of

disentangled representations. Proc. ICLR, pp. 1–15.

Edwards, H. & Storkey, A. (2017). Towards a Neural Statistician. Proc. ICLR, pp. 1–13.

Esmaeili, B., Wu, H., Jain, S., Bozkurt, A., Siddharth, N., Paige, B., Brooks, D. H., Dy,

J. & van de Meent, J.-W. (2018). Structured Disentangled Representations. arXiv e-print.

Consulted at http://arxiv.org/abs/1804.02086.

Fitch, W. T. & Giedd, J. (1999). Morphology and development of the human vocal tract: A study

using magnetic resonance imaging. The Journal of the Acoustical Society of America,

106(3), 1511–1522.

109

Foulds, J. & Frank, E. (2010). A review of multi-instance learning assumptions. Knowledge
Engineering Review, 25(1), 1–25.

Gales, M. J. F. (1998). Maximum likelihood linear transformations for HMM-based speech

recognition. Computer Speech and Language, 12(2), 75–98.

Garcia-Romero, D., Snyder, D., Sell, G., Povey, D. & McCree, A. (2017). Speaker Diarization

Using Deep Neural Network Embeddings. Proc. ICASSP, pp. 4930 – 4934.

Goldberger, J., Gordon, S. & Greenspan, H. (2003). An efficient image similarity measure based

on approximations of KL-divergence between two gaussian mixtures. Proc. International
Conference on Computer Vision, pp. 487–493.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,

A. & Bengio, Y. (2014). Generative Adversarial Nets. Advances in Neural Information
Processing Systems 27, 2672–2680.

Gundogdu, B. & Saraclar, M. (2017). Similarity learning based query modeling for keyword

search. Proc. Interspeech, pp. 3617–3621.

Gupta, V., Kenny, P., Ouellet, P. & Stafylakis, T. (2014). I-vector-based speaker adaptation of deep

neural networks for French broadcast audio transcription. Proc. ICASSP, pp. 6334–6338.

Hammersley, J. G. & Handscomb, D. C. (1964). Monte Carlo Methods. London, UK: Fletcher

& Son Ltd, Norwich.

Hazen, T. J., Shen, W. & White, C. (2009). Query-by-example spoken term detection using

phonetic posteriorgram templates. IEEE Workshop on Automatic Speech Recognition and
Understanding, pp. 421–426.

Henter, G. E., Wang, X. & Yamagishi, J. (2018). Deep Encoder-Decoder Models for
Unsupervised Learning of Controllable Speech Synthesis. arXiv e-print. Consulted

at http://arxiv.org/abs/1807.11470.

Hershey, J. R. & Olsen, P. A. (2007). Approximating the Kullback Leibler divergence between

Gaussian mixture models. Proc. ICASSP, pp. 317–320.

Hershey, J. R., Chen, Z., Le Roux, J. & Watanabe, S. (2016). Deep clustering: Discriminative

embeddings for segmentation and separation. Proc. ICASSP, pp. 31–35.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S. & Lerchner,

A. (2017). β-VAE: Learning Basic Visual Concepts with a Constrained Variational

Framework. Proc. ICLR, pp. 1–22.

110

Hinton, G. E. & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural

networks. Science, 313(5786), 504–507.

Hoffman, M. D., Blei, D. M., Wang, C. & Paisley, J. W. (2013). Stochastic variational inference.

The Journal of Machine Learning Research, 14(1), 1303–1347.

Hsu, C. C., Hwang, H. T., Wu, Y. C., Tsao, Y. & Wang, H. M. (2017a). Voice conversion

from unaligned corpora using variational autoencoding wasserstein generative adversarial

networks. Proc. Interspeech, pp. 3364–3368.

Hsu, W.-N. & Glass, J. (2018a). Extracting Domain Invariant Features by Unsupervised

Learning for Robust Automatic Speech Recognition. Proc. ICASSP, pp. 5614–5618.

Hsu, W.-N. & Glass, J. (2018b). Scalable Factorized Hierarchical Variational Autoencoder

Training. Proc. Interspeech, pp. 1462–1466.

Hsu, W.-N., Zhang, Y. & Glass, J. (2017b). Unsupervised Learning of Disentangled and

Interpretable Representations from Sequential Data. Proc. NIPS, pp. 1876–1887.

Hsu, W. N., Zhang, Y. & Glass, J. (2017c). Learning latent representations for speech generation

and transformation. Proc. Interspeech, pp. 1273–1277.

Hsu, W.-N., Zhang, Y. & Glass, J. (2017d). Unsupervised Domain Adaptation for Robust

Speech Recognition via Variational Autoencoder-Based Data Augmentation. Proc. ASRU,

pp. 16–23.

Hsu, W.-N., Tang, H. & Glass, J. (2018). Unsupervised Adaptation with Interpretable

Disentangled Representations for Distant Conversational Speech Recognition. Proc.
Interspeech, pp. 1576–1580.

Huszár, F. (2017). Variational Inference using Implicit Distributions. arXiv preprint. Consulted

at http://arxiv.org/abs/1702.08235.

IARPA. (2012). The IARPA Babel Program. Web page. Consulted at https://www.iarpa.gov/

index.php/research-programs/babel.

Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters,
31(8), 651–666.

Jang, E., Gu, S. & Poole, B. (2017). Categorical Reparameterization with Gumbel-Softmax.

Proc. CLR, pp. 1–13.

111

Jiang, Z., Zheng, Y., Tan, H., Tang, B. & Zhou, H. (2017). Variational deep embedding: An

unsupervised generative approach to Clustering. Proc. IJCAI, pp. 1965–1972.

Johnson, M. J., Duvenaud, D., Wiltschko, A. B., Datta, S. R. & Adams, R. P. (2016). Composing

graphical models with neural networks for structured representations and fast inference.

Proc. NIPS, pp. 2946–2954.

Kajarekar, S. S., Malayath, N. & Hermansky, H. (1999). Analysis of sources of variability in

speech. Proc. Eurospeech, pp. 343–346.

Karaletsos, T., Belongie, S. & Rätsch, G. (2016). Bayesian representation learning with oracle

constraints. Proc. ICLR, pp. 1–16.

Kenny, P., Boulianne, G., Ouellet, P. & Dumouchel, P. (2007a). Joint factor analysis versus

eigenchannels in speaker recognition. IEEE Transactions on Audio, Speech and Language
Processing, 15(4), 1435–1447.

Kenny, P., Boulianne, G., Ouellet, P. & Dumouchel, P. (2007b). Speaker and Session Variability

in GMM-Based Speaker Verification. IEEE Trans. Audio Speech and Language Processing,

15(4), 1448–1462.

Kilcher, Y., Lucchi, A. & Hofmann, T. (2017). Flexible Prior Distributions for Deep Generative
Models. arXiv e-print. Consulted at http://arxiv.org/abs/1710.11383.

Kim, H. & Mnih, A. (2018). Disentangling by Factorising. arXiv preprint. Consulted

at http://arxiv.org/abs/1802.05983.

Kingma, D. P. & Welling, M. (2014). Auto-Encoding Variational Bayes. arXiv e-print. Consulted

at http://arxiv.org/abs/1312.6114.

Kingma, D. P., Rezende, D. J., Mohamed, S. & Welling, M. (2014). Semi-Supervised Learning

with Deep Generative Models. Proc. NIPS, pp. 3581–3589.

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I. & Welling, M. (2016).

Improved Variational Inference with Inverse Autoregressive Flow. Proc. NIPS, pp. 4743–

4751.

Knill, K. M., Gales, M. J., Ragni, A. & Rath, S. P. (2014). Language independent and

unsupervised acoustic models for speech recognition and keyword spotting. Proc.
Interspeech, pp. 16–20.

Kulis, B. & Jordan, M. I. (2012). Revisiting k-means: New Algorithms via Bayesian

Nonparametrics. Proc. ICML, pp. 291–299.

112

Labov, W., Ash, S. & Boberg, C. (2006). The Atlas of North American English. De Gruyter

Mouton.

Lacoste, A., Oreshkin, B., Chung, W., Boquet, T., Rostamzadeh, N. & Krueger, D. (2018).

Uncertainty in Multitask Transfer Learning. arXiv e-print. Consulted at http://arxiv.org/

abs/1806.07528.

Latif, S., Rana, R., Qadir, J. & Epps, J. (2017). Variational Autoencoders for Learning Latent
Representations of Speech Emotion. arXiv e-print. Consulted at http://arxiv.org/abs/

1712.08708.

Le, Q. V., Ranzato, M., Monga, R., Devin, M., Chen, K., Dean, J., Corrado, G. S. & Ng, A. Y.

(2012). Building high-level features using large scale unsupervised learning. Proc. ICML,

pp. 8595–8598.

Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. (1998). Gradient-Based Learning Applied to

Document Recognition. Proceedings of the IEEE, 86(11), 2278–2324.

Lee, A., Zhang, Y. & Glass, J. R. (2013). Mispronunciation detection via dynamic time warping

on deep belief network-based posteriorgrams. Proc. ICASSP, pp. 8227–8231.

Lee, K. F. & Hon, H. W. (1989). Speaker-Independent Phone Recognition Using Hidden

Markov Models. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(11),

1641–1648.

Lewellen, G. (2017). A Greedy Approximation Algorithm for the Linear Assignment Problem.

The Antimatroid. Consulted at https://antimatroid.wordpress.com/2017/03/21/a-greedy

-approximation-algorithm-for-the-linear-assignment-problem/.

Li, L., Chen, Y., Shi, Y., Tang, Z. & Wang, D. (2017). Deep Speaker Feature Learning for

Text-independent Speaker Verification. Proc. Interspeech, pp. 1542–1546.

Li, Y. & Mandt, S. (2018). Disentangled Sequential Autoencoder. Proc. ICML, pp. 5656–5665.

Liberman, A. M., Harris, K. S., Howard, S. H. & Griffith, B. C. (1957). The Discrimination

of Speech Sounds within and Across Phoneme Boundaries. Journal of Experimental
Psychology, 54(5), 358–368.

Lippmann, R. (1997). Speech perception by machines and humans. Speech Communication,

22(1), 1–15.

Liu, D. R., Chen, K. Y., Lee, H. Y. & Lee, L. S. (2018). Completely unsupervised phoneme

recognition by adversarially learning mapping relationships from audio embeddings. Proc.

113

Interspeech, pp. 3748–3752.

Locatello, F., Bauer, S., Lucic, M., Rätsch, G., Gelly, S., Schölkopf, B. & Bachem, O.

(2018). Challenging Common Assumptions in the Unsupervised Learning of Disentangled
Representations. arXiv e-print. Consulted at http://arxiv.org/abs/1811.12359.

Lopez, R., Regier, J., Jordan, M. I. & Yosef, N. (2018). Information Constraints on Auto-Encoding

Variational Bayes. Proc. NeurIPS, pp. 6114–6125.

Maaløe, L., Fraccaro, M. & Winther, O. (2017a). Semi-Supervised Generation with Cluster-aware
Generative Models. arXiv e-print. Consulted at http://arxiv.org/abs/1704.00637.

Maaløe, L., Sønderby, C. K., Sønderby, S. K. & Winther, O. (2017b). Auxiliary Deep Generative

Models. Proc. ICLR, pp. 1–9.

Maddison, C. J., Mnih, A. & Teh, Y. W. (2017). The Concrete Distribution: A Continuous

Relaxation of Discrete Random Variables. Proc. ICLR, pp. 1–20.

Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluriixuan, M., Li, Y., Bharambe,

A. & van der Maaten, L. (2018). Exploring the Limits of Weakly Supervised Pretraining.

Proc. ECCV, pp. 181–196.

Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I. & Frey, B. (2015). Adversarial Autoencoders.
arXiv e-print. Consulted at http://arxiv.org/abs/1511.05644.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. & Dean, J. (2013). Distributed Representations

of Words and Phrases and their Compositionality. Proc. NIPS, pp. 3111–3119.

Muhlenbach, F., Lallich, S. & Zighed, D. A. (2004). Identifying and Handling Mislabelled

Instances. Journal of Intelligent Information Systems, 22(1), 89–109.

Munkres, J. (1957). On the assignment and transportation problems. Journal of the Society for
Industrial and Applied Mathematics, 5(1), 32–38.

Murray, W. & Ng, K.-M. (2010). An algorithm for nonlinear optimization problems with binary

variables. Computational Optimization and Applications, 47(2), 257–288.

Muscariello, A., Gravier, G. & Al, E. (2011). Zero-resource audio-only spoken term detection

based on a combination of template matching techniques. Proc. Interspeech, pp. 921–924.

Nalisnick, E. & Smyth, P. (2017a). Stick-Breaking Variational Autoencoders. Proc. ICLR,

pp. 1–12.

114

Nalisnick, E. & Smyth, P. (2017b). Variational Reference Priors. ICLR Workshop, pp. 1–4.

Nalisnick, E., Hertel, L. & Smyth, P. (2016). Approximate Inference for Deep Latent Gaussian

Mixtures. Proc. NIPS Workshop on Bayesian Deep Learning, pp. 1–4.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A.,

Antiga, L. & Lerer, A. (2017). Automatic differentiation in PyTorch. Proc. NIPS, pp. 1–4.

Pedregosa, F., Varoquaux, G., Thirion, B., Grisel, O. & Blondel, M. (2011). Scikit-learn:

Machine Learning in Python. Journal of Machine Learning R, 12, 2826–2830.

Pelleg, D. & Moore, A. (2000). X-means: Extending K-means with efficient estimation of the

number of clusters. Proc. ICML, pp. 727–734.

Pennington, J., Socher, R. & Manning, C. (2014). Glove: Global Vectors for Word Representation.

Proc. EMNLP, pp. 1532–1543.

Phuong, M., Welling, M., Kushman, N., Tomioka, R. & Nowozin, S. (2018). The Mutual

Autoencoder: Controlling Information in Latent Code Representations. Proc. ICLR,

pp. 1–12.

Pineau, E. & Lelarge, M. (2018). InfoCatVAE: Representation Learning with Categorical
Variational Autoencoders. arXiv preprint. Consulted at http://arxiv.org/abs/1806.08240.

Povey, D., et al. (2011). The Kaldi speech recognition toolkit. Proc. ASRU.

Povey, D., Hadian, H., Ghahremani, P., Li, K. & Khudanpur, S. (2018). A time-restricted

self-attention layer for ASR. Proc. ICASSP, pp. 5874–5878.

Rezende, D. J. & Mohamed, S. (2015). Variational Inference with Normalizing Flows. Proc.
ICML, pp. 1–10.

Rezende, D. J., Mohamed, S. & Wierstra, D. (2014). Stochastic Backpropagation and

Approximate Inference in Deep Generative Models. Proc. ICML, pp. 1278–1286.

Ridgeway, K. (2016). A Survey of Inductive Biases for Factorial Representation-Learning.

arXiv preprint. Consulted at http://arxiv.org/abs/1612.05299.

Rolfe, J. T. (2017). Discrete Variational Autoencoders. Proc. ICLR, pp. 1–33.

Rouvier, M., Bousquet, P.-M. & Favre, B. (2015). Speaker Diarization through Speaker

Embeddings. Proc. EUSIPCO, pp. 2127–2131.

115

Rudolph, M., Ruiz, F., Athey, S. & Blei, D. (2017). Structured Embedding Models for Grouped

Data. Proc. NIPS, pp. 250–260.

Rudolph, M. R., Ruiz, F. J. R., Mandt, S. & Blei, D. M. (2016). Exponential Family Embeddings.

Proc. NIPS, pp. 478–486.

Scholkopf, B., Smola, A. & Muller, K. R. (1996). Nonlinear Component Analysis as a Kernel

Eigenvalue Problem. Neural Computation, 10(5), 1299–1319.

Seifart, F., Evans, N., Hammarström, H. & Levinson, S. (2018). Language documentation

twenty-five years on. Language, Journal of the Linguistic Society of America, 94,

e324–e345.

Shulby, C. D., Ferreira, M. D., de Mello, R. F. & Aluisio, S. M. (2019). Theoretical learning

guarantees applied to acoustic modeling. Journal of the Brazilian Computer Society,

25(1), 1–12.

Siddharth, N., Paige, B., van de Meent, J.-W., Desmaison, A., Goodman, N. D., Kohli, P., Wood,

F. & Torr, P. H. S. (2017). Learning Disentangled Representations with Semi-Supervised

Deep Generative Models. Proc. NIPS, pp. 5925–5935.

Snyder, D., Garcia-Romero, D. & Povey, D. (2016a). Time delay deep neural network-based

universal background models for speaker recognition. Proc. ASRU, pp. 92–97.

Snyder, D., Garcia-Romero, D., Povey, D. & Khudanpur, S. (2016b). Deep Neural Network-

Based Speaker Embeddings For End-To-End Speaker Verification. Proc. IEEE Spoken
Language Technology Workshop (SLT), pp. 165–170.

Sønderby, C. K., Raiko, T., Maaløe, L., Sønderby, S. K. & Winther, O. (2016). How to Train

Deep Variational Autoencoders and Probabilistic Ladder Networks. Proc. ICML, pp. 1–10.

Sperber, M., Niehues, J., Neubig, G., Stüker, S. & Waibel, A. (2018). Self-attentional acoustic

models. Proc. Interspeech, pp. 3723–3727.

Stevens, K. N. & Keyser, S. J. (2010). Quantal theory, enhancement and overlap. Journal of
Phonetics, 38(1), 10–19.

Tan, S. & Sim, K. C. (2017). Learning utterance-level normalisation using variational

autoencoders for robust automatic speech recognition. IEEE Workshop on Spoken
Language Technology (SLT), pp. 43–49.

Tanha, J., van Someren, M. & Afsarmanesh, H. (2017). Semi-supervised self-training for

decision tree classifiers. Int. J. Mach. Learn. & Cyber., 8, 355–370.

116

Tomczak, J. M. & Welling, M. (2018). VAE with a VampPrior. Proc. AISTATS, pp. 1–16.

van der Maaten, L. & Hinton, G. (2008). Visualizing Data using t-SNE. Journal of Machine
Learning Research, 9, 2579–2605.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. & Polo-

sukhin, I. (2017). Attention Is All You Need. Proc. NIPS, pp. 5998–6008.

Villalba, J., Brümmer, N. & Dehak, N. (2017). Tied variational autoencoder backends for

i-vector speaker recognition. Proc. Interspeech, pp. 1004–1008.

Vincent, P., Larochelle, H., Bengio, Y. & Manzagol, P.-A. (2008). Extracting and composing

robust features with denoising autoencoders. Proc. ICML, pp. 1096–1103.

Wang, D., Li, L., Tang, Z. & Zheng, T. F. (2017). Deep Speaker Verification: Do We Need End

to End? Proc. APSIPA ASC, pp. 177–181.

Wang, Q., Okabe, K., Lee, K. A., Yamamoto, H. & Koshinaka, T. (2019). Attention Mechanism

in Speaker Recognition: What Does it Learn in Deep Speaker Embedding? Proc. SLT
Workshop, pp. 1052–1059.

Weiss, R. J., Chorowski, J., Jaitly, N., Wu, Y. & Chen, Z. (2017). Sequence-to-sequence models

can directly translate foreign speech. Proc. Interspeech, pp. 2625–2629.

Welling, M. (2009). Bayesian K-Means as a “Maximization-Expectation” Algorithm. Neural
Computation, 21(4), 1145–1172.

Yang, Z., Hu, Z., Salakhutdinov, R. & Berg-Kirkpatrick, T. (2017). Improved Variational

Autoencoders for Text Modeling using Dilated Convolutions. Proc. ICML, pp. 3881–3890.

Yeh, C.-K., Chen, J., Yu, C. & Yu, D. (2018). Unsupervised Speech Recognition via Segmental

Empirical Output Distribution Matching. Proc. ICLR, pp. 1–14.

Young, K. D. & Lewis, R. J. (1997). What is confidence? Part 2: Detailed definition and

determination of confidence intervals. Annals of Emergency Medicine, 30(3), 311–318.

Zeghidour, N., Synnaeve, G., Usunier, N., Dupoux, E. & Etudes, H. (2016). Joint Learning of

Speaker and Phonetic Similarities with Siamese Networks. Proc. Interspeech, pp. 1295–

1299.

Zeinali, H., Burget, L., Rohdin, J., Stafylakis, T. & Cernocky, J. H. (2019). How to Improve

Your Speaker Embeddings Extractor in Generic Toolkits. Proc. ICASSP, pp. 6141–6145.

117

Zha, H., He, X., Ding, C. & Simon, H. (2001). Spectral Relaxation for K-means Clustering.

Proc. NIPS, pp. 1057–1064.

Zhang, Q. & Hansen, J. H. (2018). Language/Dialect recognition based on unsupervised deep

learning. IEEE Transactions on Audio Speech and Language Processing, 26(5), 873–882.

Zhang, Y. & Glass, J. R. (2009). Unsupervised spoken keyword spotting via segmental DTW

on Gaussian posteriorgrams. Proc. ASRU, pp. 398–403.

Zhao, S., Song, J. & Ermon, S. (2017). InfoVAE: Information Maximizing Variational
Autoencoders. arXiv preprint. Consulted at http://arxiv.org/abs/1706.02262.

Zheng, H., Yao, J., Zhang, Y. & Tsang, I. W. (2018). Degeneration in VAE: in the Light of
Fisher Information Loss. arXiv e-print. Consulted at http://arxiv.org/abs/1802.06677.

Zhou, Z. H. (2018). A brief introduction to weakly supervised learning. National Science
Review, 5(1), 44–53.

Zhu, Y., Ko, T., Snyder, D., Mak, B. & Povey, D. (2018). Self-Attentive Speaker Embeddings

for Text-Independent Speaker Verification. Proc. Interspeech, pp. 3573–3577.

