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Surveillance non-intrusive du sommeil à l’aide d’un matelas à capteurs de pression
textiles

Georges MATAR

RÉSUMÉ

Au moins 50% de la population mondiale des personnes âgées, dont le pourcentage est

en croissance rapide, souffre d’un sommeil perturbé. Les études du sommeil sont une

approche servant d’outil de diagnostic aux professionnels de la santé. Actuellement, la

méthode conventionnelle d’étude du sommeil est la polysomnographie (PSG) enregistrée

dans un laboratoire du sommeil. Cependant, la PSG est intrusive, nécessite des techniciens

qualifiés, et nécessite une grande allocation des ressources matérielles et professionnelles. Avec

l’introduction de technologies commerciales dans le domaine médical, des méthodes alternatives

ont été conçues pour essayer de donner une estimation fiable des stades et de la qualité du

sommeil. Cependant le manque de validation ou d’un consensus scientifique concernant la

fiabilité de ces appareils demeure un défi pour les chercheurs et l’industrie. Ces outils peuvent

désormais être utilisés à domicile plusieurs nuits. Les activités cardio-respiratoires et physiques

sont les mesures physiologiques les plus prometteuses pour détecter les stades du sommeil sans

PSG complète. Les impacts et les budgets liés aux troubles du sommeil sont phénoménaux,

ce qui met l’accent sur le fait que le domaine nécessite davantage de recherche. Cette thèse

vise à fournir au lecteur une perspective de recherche multidimensionnelle sur les études du

sommeil et la surveillance des paramètres physiologiques pendant le sommeil à l’aide de

techniques et d’appareils d’acquisition des données non-intrusifs d’acquisition de données.

Dans cette optique, nous présentons une revue exhaustive de la littérature de recherche sur les

développements en matière d’évaluation non-intrusive du sommeil. En outre, une catégorisation

des approches actuelles est présentée en fonction de considérations méthodologiques, allant des

protocoles d’acquisition de données et des mesures physiologiques au traitement de l’information.

Nous examinons trois fonctions physiologiques principales qui pourraient potentiellement être

explorées pour faire avancer les études du sommeil non intrusives basées sur des fonctions du

système nerveux autonomes, principalement l’activité cardiaque, la respiratoire et le mouvement.

Cette dernière revue nous a aidé à réaliser nos trois contributions. Premièrement, nous proposons

une méthode autonome pour classifier les quatre postures du sommeil chez des adultes en bonne

santé: dorsal, abdominal, latéral gauche et droit, sans capteurs ou câbles attachés sur le corps ni

aucune contrainte imposée au sujet, en utilisant un matelas à capteur de pression. Contrairement

à la majorité des travaux similaires antérieurs, les postures dorsale et ventrale ont été séparées

avec succès dans la classification. Nous avons constaté que l’utilisation de l’information sur la

répartition du poids corporel ainsi que sur la forme et les contours du corps contribue à une

meilleure classification et, par conséquent, aide à séparer les postures dorsale et ventrale. Les

résultats sont prometteurs pour une surveillance discrète de la posture de manière satisfaisante.

La méthode peut être utilisée dans les études du sommeil, les procédures post-chirurgicales

ou les applications nécessitant une identification de la posture sur le lit. Deuxièmement, nous

tirons parti des résultats de la classification de la posture fiables pour mettre au point une

surveillance non-intrusive de la fréquence respiratoire au lit adaptive à la posture à l’aide de
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capteurs de pression. Tout au long de cette contribution, nous avons démontré qu’avec un

traitement de signal approprié, le matelas à capteurs de pression pourrait être utilisé de manière

interchangeable avec les ceintures respiratoires agréées pour l’usage médical par l’association

Américaine de la médecine du sommeil (AASM), offrant ainsi une solution plus pratique et

nécessitant moins de ressources pour les sujets et les professionnels de la santé. Et troisièmement,

nous proposons et validons cliniquement une méthode de classification basée sur l’apprentissage

machine profond pour identifier non-intrusivement les stades du sommeil pendant la nuit en

utilisant un matelas à capteurs de pression. Bien que les résultats présentés ne donnent pas

encore satisfaction pour prétendre l’adoption éventuelle de capteurs de pression de drap de lit

en clinique du sommeil, nous estimons que le potentiel d’une telle application mérite d’être

largement reconnu et approfondi. Nous soutenons que la méthode proposée pourrait constituer

une étape vers des études du sommeil non-intrusives nécessitant moins de ressources. Par la

suite, nous formulons des recommandations et des mesures pratiques pour les projets futurs

cherchant à contribuer à des études non-intrusives de sommeil en utilisant des matelas à capteur

de pression. Nous discutons des limites et des défis auxquels sont confrontées les solutions

actuelles, et nous mettons en évidence des domaines de recherche ouverts, qui, nous l’espérons,

ouvriraient la voie à de futurs efforts de recherche sur la question: comment évaluer les stades et

la qualité du sommeil de manière moins intrusive et fiable?

Mots-clés: Surveillance non-intrusive du sommeil, matelas à capteurs de pression, respiration,

mouvements respiratoires, prévention des uclères/plaies, posture du corps humain, cartographie

de la distribution du poids du corps, actigraphie, mouvements du corps, surveillance du patient,

polysomnographie, activité cardiaque.



Unobtrusive sleep monitoring using bed-sheet pressure sensors

Georges MATAR

ABSTRACT

At least 50% of the world’s elderly population, whose range is fast growing, experience disturbed

sleep. Sleep studies have become an extensive approach serving as a diagnostic tool for

health-care professionals. Currently, the gold-standard is Polysomnography (PSG) recorded in a

sleep laboratory. However, it is obtrusive, requires qualified technicians, is time consuming,

and expensive. With the introduction of commercial off-the-shelf technologies in the medical

field, alternatives to the conventional methods which may be now used at home on several

nights have been conceived to ensure sleep stages and sleep quality detection. However, the

lack of validation or scientific consensus regarding the reliability of these devices remains a

challenge for researchers and the industry. Cardio-respiratory and physical activities remain the

most promising physiological measurements to detect sleep stages without complete PSG. The

statistically proven impacts and budgets related to sleep disorders are phenomenal, showing that

the field needs more research. This thesis aims at providing the reader with a multidimensional

research perspective on sleep studies and physiological parameters monitoring during sleep using

unobtrusive data acquisition techniques and apparatus. In this vein, we present an exhaustive

review of developments made in unobtrusive sleep assessment. Additionally, a categorization of

current approaches is presented based on methodological considerations, from data acquisition

frameworks and physiological measurements, to information processing. We discuss the three

main physiological functions that could potentially be explored to advance unobtrusive sleep

studies based on autonomous physiological functions, mainly cardiac, breathing, and movements

activities. The latter review helped us achieve our three contributions. First we propose an

autonomous method for classifying the four state-of-art human body lying postures (HBLP) in

healthy adults subjects: supine, prone, left and right lateral, with no sensors or cables attached on

the body and no constraints imposed on the subject, using a pressure sensor mattress. In contrast

to the majority of previous similar works, prone and supine postures were successfully separated

in the classification. We found that using the body weight distribution along with the shape and

edges contributes to a better classification performance, and hence, helps separate supine and

prone postures. The results are satisfactorily promising towards unobtrusively monitoring the

posture for ulcer prevention. The method can be used in sleep studies, post-surgical procedures

or applications requiring HBLP identification. Second, we leverage the reliable results of

posture classification in order to develop an unobtrusive posture-adaptive in-bed breathing

rate (BR) monitoring system using bed-sheet pressure sensors. Throughout this contribution,

we demonstrated, that with proper signal processing, pressure sensor mattresses could be

used interchangeably with respiratory belts, which have been approved for medical use by the

American Association of Sleep Medicine (AASM), providing a more convenient solution for

both subjects and health professionals. Third, we propose and clinically validate a deep learning

based classification method for unobtrusive identification of sleep stages using bed-sheet pressure

sensors. Although the results presented in this paper are primary and not yet satisfactory to

claim an eventual adoption of bed-sheet pressure sensors in sleep clinics, we believe that the
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potential of such applications is worth being recognized and further explored. We argue that the

proposed method could be a step towards unobtrusive sleep studies that require less resources.

Subsequently, we give recommendations and practical steps for future endeavors seeking to

bring contributions to unobtrusive sleep studies using pressure sensor mattresses. We discuss

limitations and challenges facing current solutions, and we highlight open research areas, which

we hope would pave the way for future research endeavors addressing the question: how to

assess sleep stages and sleep quality less intrusively, and reliably?

Keywords: Unobtrusive sleep monitoring, pressure sensor mattress, respiration, breathing

movements, bed pressure ulcer prevention, human body lying posture, body pressure mapping,

actigraphy, body movements, patient monitoring, polysomnography, cardiac activity.
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INTRODUCTION

According to sleep research, the numbers related to sleep disorders propagation worldwide are

becoming phenomenal where at least half of the people over the age of 65 experience disturbed

sleep (Monane, 1992). With the perpetual increase of the elderly population percentage, as

shown in figure 0.1, this number is expected to fast grow with a tendency to continue, leading to

an increase in sleep disorders around the world with increases in the demanding budgets and

care (United Nations, Department of Economic and Social Affairs, Population Division, 2015).

Researchers have shown the direct socioeconomic impact on the population and the public health,

including work accidents, lack of productivity, isolation, depression and numerous more impacts

were documented (Leger, 2000; Metlaine, Leger & Choudat, 2005; Sigurdson & Ayas, 2007).

(a) (b)

Figure 0.1 Population aging: (a) life expectancy at birth, and (b)

percentage of people aged 60 years or older

Adapted from United Nations, Department of Economic and Social

Affairs, Population Division (2015)

Moreover, sleep disorders are the result of physiological disturbances and an inducing factor to

others, making sleep a very important consciousness state to maintain a healthy well-being and

long-term physiological functions (Altevogt, Colten et al., 2006) and (Barnes & Drake, 2015).

Increased risk of depression, stroke, hypertension, heart attach, obesity, and diabetes, are some of

the deleterious cumulative long-term effects induced by sleep disorders (Medic, Wille & Hemels,
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2017). Over the last decades sleep research has revealed the widespread impacts of sleep

alterations on human health. Altevogt et al. (2006) have reviewed the prevalence, manifestations,

comorbodities, risk factors, and etiology of the most common sleep disorders, including restless

legs syndrome, parasomnias, sleep-related psychiatric disorders, sleep-related neurological

disorders, sleep loss, sleep-disordered breathing, insomnia, circadian rhythm sleep disorders,

and narcolepsy.

Despite the fast spreading and impact of sleep disorders, the majority of people remain not willing

to resorting to the current medical sleep evaluation (LeBlanc, Morin, Bélanger, Ivers & Coté,

2011). The reasons for that reduction include the burdensome physiological signal acquisition

protocols and clinical conditions that alter both comfort and sleep quality of the subjects, the very

high costs of sleep evaluations, and the long waiting lists before exam (Kingshott & Douglas,

2000).

Therefore the need for less constrained sleep evaluations in more ergonomic conditions has

given rise to a prominent research line through which researchers have been trying to propose

unobtrusive alternative solutions to the conventional methods. These alternatives mainly consist

of significantly reducing the large number of sensors attached on the body and making the signal

acquisition process more comfortable. The importance of such methods is that they allow to

measure the ’real sleep’ of the individuals in their home, not the sleep in an hostile or unusual

situation such as in sleep clinics. This is done by targeting unobtrusive physiological signals such

as breathing, cardiac, and movement activities instead of obtrusive conventional measures such

as Electroencephalogram (EEG), Electroocculogram (EOG), and Electromyogram (EMG) that

are all subjected to direct contacts with the subject’s body. With the application of unobtrusive

sleep studies, not only comfort, costs and waiting lists are bound to improve, but also 1) this

gives the option to measure sleep in ecological conditions i.e., at home, through several nights

and 2) it enables the reach of more people with sleep tests where the collected big data can
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constitute an impactful step forward in sleep research. We spend the third of our lifetime sleeping

at home. Subjects’ domicile could become a "laboratory" by assessing peoples general health

through unobtrusive sleep evaluations. In this vein, several algorithms and hardware have been

proposed, implemented, and some of them have succeeded to reach industrial gates, thus they

can be classified in two groups: industrial and academic.

The concept behind these systems is to monitor certain physiological behaviours such as physical

activity, HRV, and BR, and correlate their evolution with the occurrence of sleep stages as

defined by the Polysomnography (PSG), or with general sleep parameters such as total sleep

time (TST) or wake after sleep onset, which is the amount of wake time in minutes during the

attempted sleeping period, after sleep onset has been achieved. However, due to the acquisition

process induced challenges facing signal quality, none of the proposed unobtrusive methods

has succeeded in joining the medico-industrial production who’s typical outcome is a validated,

widely used, and class-defined medical device (Baig, Gholamhosseini & Connolly, 2013) and

(Hao, Xing & Zhou, 2013).

Advancements in the last decade related to the design of alternative solutions for unobtrusive

sleep assessments have shown that an interdisciplinary collaborative work is essential. Thus a

substantial collaboration combining medicine with engineering to assess medical and technical

constraints arising in the hardware integration and signal acquisition as well as in various levels

of signal processing and data communication, is crucial. Previous works have been focusing on

developing unobtrusive sensing devices and hardware (Zheng, Ding, Poon, Lo, Zhang, Zhou,

Yang, Zhao & Zhang, 2014). Thus, several sensing approaches and sensor types have been

conceived and regarded as potential hardware solutions to specific types of parameters or sleep

monitoring like posture identification applications (Ni, Abdulrazak, Zhang & Wu, 2010) and

sleep/wake measurement (Guerrero-Mora, Elvia, Bianchi, Kortelainen, Tenhunen, Himanen,

Méndez, Arce-Santana & Gutiérrez-Navarro, 2012). Although the existing unobtrusive means



4

for sleep evaluation do not provide the necessary information for rigorous classification of sleep

cycling and sleep stage scoring, yet, it can provide general and limited indications on certain

important aspects of sleep such as the physical and cardiac activities during sleep.

Accordingly, the need for more advancement in this fields requires defining the challenges and

opportunities paving this line of research.

In this thesis, we explore unobtrusive sleep monitoring techniques by presenting an exhaustive

literature review. Moreover, we significantly contribute to the field by using a pressure sensor

mattress placed under the subject’s bed-sheet in order to measure physiological data and validate

the measurements with respect to clinical reference. More precisely, the following research

questions are explored in this thesis:

1. From both physiological and technical points of view, how can we measure physiological

signals to monitor sleep from autonomous nervous functions, consequently reducing the

constraints imposed by conventional sleep measurements?

2. To what extent the techniques that have been proposed in the literature to unobtrusively

monitor sleep can be trusted or generalized in order to gradually provide a reliable sleep

stage estimation?

3. How can we provide a reliable unobtrusive sleep posture classification using a pressure

sensor mattress placed under the subject’s bed-sheet, while separating supine and prone

position?

4. How to unobtrusively monitor BR in all sleep postures using a pressure sensor mattress

placed under the subject’s bed-sheet?

5. Is it possible to estimate sleep stages using the body pressure distribution on the mattress

overnight?
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6. What are the future research lines in unobtrusive sleep monitoring and what challenges are

they facing?

In the light of the comprehensive review that we presented, we were able to identify and complete

three contributions to the field.

We propose a set of features and algorithms to classify sleeping postures adaptively, with a

state-of-the-art results while classifying prone and supine postures separately. In fact, sleep

posture is an important factor to consider when studying the dynamic body pressure distribution

on mattress. For illustration purposes, the breathing induced variation of the body pressure

distribution on the mattress is different with posture changes as shown throughout the Chapter

3. Four main postures are considered: prone, dorsal, left, and right lateral. For instance, the

breathing induced pressure variation tends to be ampler in prone position than dorsal one, and

located in different areas on the pressure sensor mattress. Hence estimating the posture before

monitoring the dynamic aspects such as breathing activity is crucial.

We propose an algorithm that, uses the estimated posture to reconstruct a noise-free and

posture-adaptive breathing signal. We then compute the breathing-rate accordingly, achieving

novel results with an exhaustive comparison to the literature.

We conducted experiments at the center for advanced research on sleep medicine (CÉAMS) of

the hôpital du sacré-coeur de Montréal (HSCM). A certificate of ethics compliance was issued

by the ethics committee of the HSCM. The experiments consisted of a simultaneous recording

of the body pressure distribution on the mattress, and the conventional PSG test. A bed-sheet

pressure sensor was placed under the subject’s bed-sheet during sleep overnight, while the PSG

electrodes were attached on the body. A sleep professional labelled the collected data by giving

a sleep stage label for each epoch (time segment) of 30 seconds. We removed the artefacts,

anonymized, and stored the data for unobtrusive sleep monitoring.
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Based on the collected data, we present a bed-sheet pressure based sleep stages classification

method. We validate the method using the conventional PSG criteria and compare the obtained

results with available methods.

The goal of this thesis is to develop an unobtrusive monitoring approach of physiological data

during sleep. This approach could be leveraged to help reduce burdensome signal acquisition

protocols during sleep and tends to optimize resources. The challenge is that using alternative

unobtrusive techniques to measure physiological data is prone to noise and unwanted variations

in the data. For instance, a breathing signal acquired using the body weight distribution on a

pressure sensor mattress could highly vary depending on the sleeping posture, the body shape,

and weight. The specific objectives are listed below:

- Investigate autonomous physiological parameters and monitoring techniques that could be

used to provide reliable unobtrusive sleep monitoring. This also includes also exploring the

physiological changes during sleep and their signification.

- Propose a method to identify the 4 aforementioned HBLP in healthy adults using bed-sheet

pressure sensors. The challenge is to distinguish prone and abdominal postures as two separate

classes while preserving a high accuracy and generalization performance, considering the

importance of classifying the posture to adaptively detect the amplitude and position of

breathing patterns on the mattress.

- Propose a method to unobtrusively monitor the BR using a bed-sheet containing elastic

textile pressure sensors placed under the subject’s bed-sheets, while accounting for posture

change during sleep. The realization of this objective proves that a pressure sensor mattress

could be used interchangeably with a respiratory belt, which makes breathing monitoring

less obtrusive.
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- Create an original database of body pressure distribution on mattress acquired simultaneously

with the conventional PSG signals with sleep stages labelled. The potential of such database

lies in the design and training of a supervised deep learining classifier to build a sleep stages

classification that is automatic and unobtrusive.

- Propose a method of unobtrusive sleep monitoring using bed-sheet pressure sensors by

automatically estimating sleep stages using on-mattress body pressure distribution data.

This thesis is organized into four chapters. Chapter 1 is an exhaustive literature review in which

we give an introduction on sleep physiology, disorders, and monitoring techniques. It presents a

survey of the state-of-the-art techniques of sleep monitoring that constitute the central topic of

this thesis. The following three chapters address each of the aforementioned objectives. The

literature related to each specific topic is reviewed in the corresponding chapter.

In the following, we present the four main contributions we accomplished through this thesis,

presented by chapters and peer-reviewed publications:

Contribution 1: exhaustive review of physiological patterns and measurement techniques
explored in unobtrusive sleep monitoring.

The main objective of this contribution is to present a comprehensive review on the advancements

in unobtrusively measuring autonomous physiological functions, i.e., cardiac activity, breathing

and body movements activity. Technical considerations and challenges encountered in the

acquisition and signal processing steps are discussed while comparing the proposed methods

and algorithms.

The value of this work lies in what it adds to the existing literature in this field. For instance,

previous works have reviewed only devices existing in the market. This work however, covers

the behind-the-scenes researches that have not reached market yet and may have potential

applications. In chapter 1, we present an overview of unobtrusively measurable physiological
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patterns during sleep, and we present and discuss activity based unobtrusive sleep monitoring

technologies in a technical way.

This work has been published in the following peer reviewed journal paper, which has been

already cited 13 times as till 17 february 2020:

Matar, Georges, Jean-Marc Lina, Julie Carrier, and Georges Kaddoum. "Unobtrusive sleep

monitoring using cardiac, breathing and movements activities: an exhaustive review." IEEE

Access 6 (2018): 45129-45152.

Contribution 2: a feature extraction technique and algorithm for in-bed posture classifi-
cation using bed-sheet pressure sensors

Video-surveillance, the conventional method of human body lying posture (HBLP) monitoring,

suffers from various limitations, such as subject’s privacy and field-of-view obstruction. We

propose an autonomous method for classifying four state-of-art HBLPs in healthy adults subjects,

namely supine, prone, left and right lateral, with no sensors or cables attached on the body and

no constraints imposed on the subject. In contrast to the majority of previous similar works,

prone and supine postures were successfully separated in the classification. We found that a

combination of body weight distribution, along with shape and edges features extracted from the

pressure images, contributes to a better classification performance and enables the separation

of supine and prone postures. The results are satisfactorily promising towards unobtrusively

monitoring posture for ulcer prevention. The method can be used in sleep studies, post-surgical

procedures, and applications requiring HBLP identification. We explain this contribution in

chapter 2.

This work has been published in the following peer reviewed publications:

Georges Matar, Jean-Marc Lina, Julie Carrier, Anna Riley, and Georges Kaddoum. "Internet of

Things in sleep monitoring: An application for posture recognition using supervised learn-

ing." In 2016 IEEE 18th International Conference on e-Health Networking, Applications

and Services (Healthcom), pp. 1-6. IEEE, 2016.



9

Georges Matar, Jean-Marc Lina, and Georges Kaddoum. "Artificial neural network for in-bed

posture classification using bed-sheet pressure sensors." IEEE journal of biomedical and

health informatics (2019).
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Contribution 3: a method and algorithm for unobtrusively monitor BR using bed-sheet
pressure sensors

We propose in this contribution an indirect and contactless method to adaptively monitor

breathing movement using a pressure sensor mattress placed under the subject’s bed-sheet. In

addition, we reconstruct the breathing movements signal, and compute the BR over 30 seconds

time windows. A ten-sinusoidal model-based extended Kalman Filter was used to adaptively

estimate the breathing movements signal from the body pressure distribution data. The model is

posture-specific, i.e., the model’s parameters are optimized based on the detected posture. The

artificial neural network (ANN) model developed and detailed in chapter 3, was used to detect

four sleeping postures to perform the optimization step accordingly. Based on the classified

posture, a kalman filter model is selected and the breathing signal is reconstructed to compute

BR. We show and discuss the consistency of the proposed method and the potential usage in

several medical applications requiring respiration monitoring during sleeping or in-bed patients.

Finally, we show that pressure sensor mattresses could be used interchangeably with respiratory

belts which have been approved for medical use by the AASM, providing a more convenient

solution for both subjects and health professionals. We explain this contribution in chapter 4.

This work was submitted in the following peer reviewed journal paper (Under review):

Georges Matar, Jean-Marc Lina, Julie Carrier and Georges Kaddoum. "Kalman filtering for

posture-adaptive in-bed BR monitoring using bed-sheet pressure sensors." Submitted to

IEEE journal of biomedical and health informatics journal in October 2019.

Contribution 4: a method and algorithm for an automatic and unobtrusive classification
of sleep stages using bed-sheet pressure sensors

We propose a method to automatically classify sleep stages using data collected from bed-sheet

pressure sensors. We propose an automatic feature extraction from pressure data divided into

30 seconds epochs using convolutional neural networks and feed the feature to an artificial

deep neural network to classify sleep stages. We collected and labeled pressure and PSG data
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and clinically train and validate the proposed classification model. We conclude that using

the dynamic body pressure distribution on mattress it is possible to identify sleep stages. The

advantage of the presented results lies in the potential application of pressure sensor mattresses,

as an unobtrusive data acquisition method in the field of sleep stages classification.

This work was submitted in the following peer reviewed journal paper (under review):

Georges Matar, Jean-Marc Lina, Julie Carrier and Georges Kaddoum. "Deep learning based

unobtrusive sleep stages classification using bed-sheet pressure sensors." Submitted to

biomedical signal processing and control journal in November 2019.





CHAPTER 1

LITERATURE REVIEW

1.1 An overview of sleep stages, disorders, and monitoring techniques

1.1.1 Sleep stages

Sleep is a physiological state defined by specific characteristics (Roehrs, 2000). Being periodic,

naturally-occurring, reversible, recurring and involving suspension or reduction of alertness

and muscular activity, it has always been a subject of interest for researchers, even regarding

the question ’why humans need to sleep?’ a scientific consensus has not been reached yet

(Cirelli & Tononi, 2008).

The sleep architecture is a sequence of sleep cycles, where each one is formed by different

sleep stages. Each stage is characterized by specific physiological changes. There are 4 sleep

stages: Rapid eye movement (REM) sleep, and three non-REM (NREM) stages: NREM1,

NREM2, and NREM3 reflecting the progression from lighter (NREM1) to deep (NREM3) sleep.

In 1968, Rechtschaffen and Kales (R/K) proposed the ”Manual of Standardized Terminology,

Techniques, and Scoring System for Sleep Stages of Human Subjects” to score sleep stages based

on pre-defined criteria of the physiological parameters measured during sleep (EA, 1969). The

AASM issued the latest version to date (v.2.5.0) of the manual of sleep scoring and associated

events in 2018 that is based on the R/K and researchers’ recent findings (Berry, Brooks, Gamaldo,

Harding, Marcus & Vaughn, 2018). The manual is continuously upgraded. Moser, Anderer,

Gruber, Parapatics, Loretz, Boeck, Kloesch, Heller, Schmidt & Danker-Hopfe (2009) compared

the effects of both scoring systems on the derived scoring parameters and the overall scoring

outcome. Fig. 1.1 shows a brief description of the physiological parameters changes with respect

to each sleep stage, as well as the transition-specific physiological changes that are noted during

transitions between sleep stages.
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Figure 1.1 Physiological changes during sleep stages in accordance with the AASM

For instance, cardiac, breathing, and body movement activities that could be measured unobtru-

sively are shown separately from the conventional polygraphic EEG, EOG, and EMG signals

that are the gold standard used to score sleep stages, and derive the evolution of sleep stages

over time, i.e., sleep hypnogram.

1.1.2 The burdensome impact of sleep disorders

There exist seven major categories of sleep disorders, according to the latest international

classification of sleep disorders (ICSD-3) (Sateia, 2014). They can be classified as follows:

1) sleep-related breathing disorders, 2) insomnia disorders, 3) circadian rhythm sleep/wake

disorders, 4) central disorders of hyper-somnolence, 5) parasomnias, 6) sleep-related movement

disorders and 7) other sleep disorders. Numerous physiological dysfunctions underlaying sleep

disorders have been described in the literature. Among these are neurological factors such as

narcolepsy and periodic limb movement disorder (PLMD), or sleep breathing disorder (SBD)

such as obstructive sleep apnea (OSA).

The negative physiological impacts of sleep disorders are serious. Accordingly, studies have

shown that one night of sleep deprivation can cause impairments to insulin sensitivity equivalent
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to a six months of a high-fat diet (Broussard & Brady, 2010). Moreover sleep disorders can

alter pain tolerance in humans (Onen, Alloui, Gross, Eschallier & Dubray, 2001), can cause

heart dysfunctions such us ischemic heart disease (Knutsson, Jonsson, Akerstedt & Orth-

Gomer, 1986), and cause a wide range of health issues such as metabolism impairment and

hormonal disturbances leading to severe physiological alterations and bad consequences (Naitoh,

Kelly & Englund, 1990).

Sleep disorders are not only known to induce short and long-term health issues and have bad

physiological consequences (Harvey Moldofsky, 2001; Manocchia, Keller & Ware, 2001), but

they are also a consequence of physiological disturbances (Misra & Malow, 2008). In fact,

occurrences of sleep disorders could also be a manifestation or a symptom displaying autonomous

physiological function abnormalities that, if left untreated, could cause severe health conditions

(Ribeiro, Hampton, Morgan, Deacon & Arendt, 1998). Beside health related problems, sleep

disorders were shown to have a potential sociological, professional (Léger, Guilleminault, Bader,

Lévy & Paillard, 2002), and economical (Hillman, Murphy, Antic & Pezzullo, 2006) impact

on the world population. For instance, around 150 Million people are estimated to have sleep

disorders. In the United States, 50-70 million adults have a sleep disorder, 48.0% report snoring,

and 37.9% reported unintentionally falling asleep during the day at least once in the preceding

month (Leger, 2000; Metlaine et al., 2005; Sigurdson & Ayas, 2007). Motivated by this major

prob, numerous studies were designed to make the acquisition protocol during sleep studies less

obtrusive, including home-based solutions, wearable textiles, and electronic gadgets. In the next

sub section, we give a brief classification of the devices types based on their relative clinical

significance, and based on the world-wide established medical devices classification (Cheng,

2003).

1.1.3 State-of-the-art sleep monitoring techniques

In this subsection, we classify the devices currently used in sleep studies in both research and

clinical environments into four categories. Sleep studies are medical examinations performed to

evaluate the sleep quality of people based on scoring schemes. The aim of sleep monitoring is
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to explore a person’s abnormal sleeping state that is a result of some health issues, and a cause

of others. Hence sleep monitoring techniques serve as a diagnostic tool and an identifier for

several health problems. Depending on the application, sleep monitoring devices can be divided

into four main types ranging from 1 to 4. In general terms they can be described as follows:

- Type 1: trust-worthiest among others for sleep diagnosis. Operate in attended sleep tests

that take place in clinical places, the most known among them is PSG (Fig. 1.2) (Douglas,

Thomas & Jan, 1992b).

ECG

EOG

EEG

Spirometry

EMG

RIP

Oxymetry

92 %

Text

0 Sleep
interpretation

by the
physician

Sleep
report
written

containing
results
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based on the

measured
parameters

and the
derived

Hypnogram

Figure 1.2 Typical acquisition protocol and general workflow in a

PSG procedure. 22 sensors and wires, attached on the body

- Type 2: being able to carry out the full spectrum of PSG signals in an unattended signal

acquisition protocol, type 2 devices provide the advantage of longer term PSG recording,

which makes them suitable to diagnose an important range of sleep disorders, with lower yet

acceptable precision in the results (Fry, DiPhillipo, Curran, Goldberg & Baran, 1998; Iber,

Redline, Gilpin, Quan, Zhang, Gottlieb, Rapoport, Resnick, Sanders & Smith, 2004).

- Type 3: unattended, physiological parameters specific, e.g, respiratory monitoring devices,

such as continuous positive airway pressure (CPAP) machines.

- Type 4: unattended, portable non-medical devices delivering highly unobtrusive measure-

ments at the expense of accuracy and reliability, also referred to as electronic gadgets.
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Several types of conventional sleep quality assessment methods exist. Each of them is prescribed

depending on the person’s health status and the aim behind the study. Some are very specific

and designed to measure somnolence and specific sleep characteritics. These include the

multiple sleep latency test (Carskadon, 1986) and the maintenance of wakefulness test (Littner,

Kushida, Wise, G. Davila, Morgenthaler, Lee-Chiong, Hirshkowitz, Loube, Bailey, Berry,

Kapen & Kramer, 2005). Meanwhile, others are designed to measure sleep quality in general

such as home-based portable monitor (Ajilore, Stickgold, Rittenhouse & Hobson, 1995) and the

most widespread PSG test (Douglas et al., 1992b). In addition, more specialized sleep studies

exist with a relatively narrow and focused application. Instead of aiming to classify sleep stages,

such tests are only used to diagnose specific parameters such as breathing activity. The most

common among them are the ones dedicated to analyze obstructive sleep apnea syndrome (OSAS)

such as CPAP or CPAP Titration (Berkani, Lofaso, Chouaid, d’Ortho, Theret, Grillier-Lanoir,

Harf & Housset, 1998), Bi-Level Titration (Kasai, Narui, Dohi, Ishiwata, Yoshimura, Nishiyama,

Yamaguchi & Momomura, 2005), and Split Study for severe OSAS cases (Dernaika, Tawk, Nazir,

Younis & Kinasewitz, 2007). Moreover, there are some modifications to the nocturnal PSG test

(Robinson, Walsleben, Pollack & Lerner, 1998) such as the expanded EEG sleep recording test

(Bonnet & Arand, 2000), where a recording of a full montage of EEG is required to analyze not

only sleep disorders but also the existence of nocturnal seizures, and the nocturnal PSG Test

with End Tidal CO2 (Vos, Folgering & Van Herwaarden, 1993).

Being the most accurate and trust-worthy among all other means to conduct sleep studies for

general sleep disorders, the PSG abides, the decisive and far-reaching approach in many cases

(McGregor, Weitzman & Pollak, 1978). Fig. 1.2 illustrates the sensors attached to the body

and the general procedure followed in a PSG test. During a PSG procedure, the movement of

the chest and abdominal wall, the blood O2 saturation, the brain and heart electrical activities,

the eye movements, the respiration, the limb and the chin muscles’ activities are measured.

Data is partitioned into 30 seconds epochs based on the criteria defined by the manual to score

sleep stages (Berry et al., 2018). Afterwards, the scoring results are sent to the physician
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for interpretation. However it remains a complex, high demanding and obtrusive procedure

especially for some people having a low requirement for a sleep assessment. For example, for a

suspicious diagnosis that need to be ensured, and mostly for adult and elderly people that for

some reason need to be health-monitored during sleep, such as people having unjustified and

frequent laziness, increased sleep propensity along day, or abnormal sleeping behaviour.

1.2 Unobtrusively measurable physiological patterns during sleep

During sleep monitoring, in order to detect abnormalities and irregularities, it is important to

take into consideration the normal sleep patterns, or physiological changes that are supposed to

occur during each stage. Monitoring the brain activities provides the most useful information

about sleep regulation. In a PSG procedure, this is directly measured through EEG recording.

The brain’s electrical activity measurements is in the range of a few hundreds of micro-volts,

making it hard to measure using unobtrusive apparatus, i.e., sensors requiring a minimal

contact with the subject and maintaining comfort during acquisitions. On the other hand,
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Unattended Polysomnography
All conventional PSG

measurements involved, with
less obtrusive acquisition but

remain a constrained test

Monitoring of selected
general sleep
parameters

Monitoring of specific
breath disorders

related parameters

Brain electrical
activity

Physical
activity

Cardiac
activity

Respiration Heart rate
ECG

graph

Body/
Limbs

movement

Sleep
posture

Tossing
and

turning

Selected EEG
channels
graphs

Color/Depth
Camera 

Pressure
sensor Ballistography Actigraphy ConductiveCapacitive

Physical parameters Cardiac parameters

All category 2
measurements could be

included, with some
specific unobtrusive

measurements modalities

Galvanic

EDR

1 2 3

Microphony

Snore
detection

Respiration related
physical activity

Plethysmography 

Spirometry
Nasal/oral

airflow sensor

SDB
parameters

AHI BR RERARDI

Category

Target 

Method 

Monitoring 

Figure 1.3 Unobtrusive sleep monitoring methods



19

since the autonomic nervous system is highly influenced by the activity of the central nervous

one (Shannahoff-khalsa & Yates, 2000), autonomic physiological functions such as blood

pressure, muscular activity, movements, and the cardiac activity are affected and altered by the

central nervous system. In addition, these autonomic functions are displayed in ample variations

(millivolts for ECG, movements, or breathing) compared to the EEG’s small amplitude variations,

which makes them less sensitive to noise and more suitable for unobtrusive measurement apparatus

that require less stable contact with the body. Hence, unobtrusive sleep monitoring consists

of capturing physiological changes such as breathing and body activity, that are alternative to

conventional PSG measures such as brain and muscles activities, but without interfering with the

subject’s comfort during sleep. For instance, vagal activity related features have been showing

promising results that could lead to a reliable estimation of sleep hypnogram using unobtrusively

acquired physiological signals. The diagram depicted in Fig. 1.3 shows three categories of sleep

monitoring methods that will be addressed in this chapter: monitoring of breath disorders related

parameters, monitoring of selected general sleep parameters, and unattended PSG. For each

monitoring method, the physiological behavior, the acquisition method and hardware, and the

obtained physiological parameters are given. In this section, each of the three activity patterns

and its relationship with sleep cycles and staging is described and discussed in details.

1.2.1 Breathing activity patterns

The respiratory effort has been used to analyze sleep in humans using several characteristics

such as the spectral power features variations in respiratory rate and the respiratory effort’s

signal regularity (Douglas, White, Pickett, Weil & Zwillich, 1982). Patterns of body movement

are induced by breathing over time, and they depend on the posture of the body on the mattress

(Oksenberg & Silverberg, 1998). Therefore, it is possible to continuously monitor the respiratory

movement in order to calculate the respiration rate (BPM) and other characteristics such as

regularity and depth of the signal. Several aspects make breathing activity a physiological

activity to study during sleep:
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1. sleep stages estimation: respiratory patterns have been shown to vary during different sleep

stages which makes it possible to combine respiration with other parameters to improve the

estimation of sleep stages and related hypnograms. Benarroch (2019)

2. SDB are one of the most widespread sleep disorders and they could be detected and identified

by monitoring breathing.

3. BR is one of the five vital signs that provide measurements of the body’s most basic

functions, thus an irregular BR may be a symptom of other medical conditions, which

makes it a very interesting behavior to monitor during sleep to unveil abnormal conditions.

Researchers have shown that respiratory rate variability (RRV) analysis during sleep could give

potential insights on sleep stages. This latter is modelled in (Gutierrez, Williams, Alrehaili,

McLean, Pirouz, Amdur, Jain, Ahari, Bawa & Kimbro, 2016) as follows:

RRV = (100 − H1

DC
)%, (1.1)

where H1 and DC are the spectral amplitude of the first harmonic peak and the zero frequency

peak, respectively. For instance, as defined by (1.1), RRV is proven to have different values at

each sleep stage, with the lowest occurring in NREM3, followed by NREM2, NREM1, REM,

and wake that has a higher value than all the other sleep stages, including REM (Gutierrez et al.,

2016).

During wake, breathing becomes irregular if the eyes are open and tends to be more regular

with closed eyes. During NREM1. In NREM 2 and 3, breathing becomes regular with few

disturbances or some variations in rate. In the REM phase, breathing becomes irregular with

short breathing breaks.

It is worth noting that, as for the respiratory amplitude, the volume of inhaled air is more

irregular with a smaller tidal volume during REM than NREM stages (Tabachnik, Muller,

Bryan & Levison, 1981).
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1.2.2 Body movement patterns

Body movements occur in specific stages of sleep with patterns, durations, and frequencies,

that indicate the state of the person and can provide insights on further physiological changes.

The movements can be analyzed and a variety of parameters can be used to monitor sleep or

diagnose sleep disorders.

In this chapter, the term body’s physical condition during sleep is used to designate the absence

or presence of physical activity of the body and limbs. Specific behaviors characterize a normal

and abnormal body’s physical condition during sleep:

Normal physical conditions during sleep: random, periodic, and absence of movements that

occur naturally and are not associated with any disorder, including:

- Major body movements: can be defined as body movements and muscular activity that

are characterize of arousals and are used to discern wake periods from sleep. For instance,

if they occur for more than 15 seconds during a 30 seconds epoch of sleep, the epoch is

classified as wake state.

- Minor body movements: lighter body or limb movements that occur during sleep and do

not induce the identification of the corresponding epoch as a wake state. After deep sleep at

NREM3, a transition to lighter sleep stages, NREM2 then NREM1, is accompanied by the

occurrence of possible minor body movements.

- Periodic movements: periodic patterns of minor chest movements are induced by breathing

due to the change of the diaphragm’s volume during the recurring periodic inspiratory and

expiratory phases. An increase, then a pause followed by a decrease of volume are induced

by inspiration, inspiratory hold and expiration, respectively.

- Body paralysis: during REM sleep, the body and members undergo a muscular atonia with

occurring muscular twitches, also referred to as paralysis, which can be used as one of the

biomarkers of the REM sleep state in both conventional and unobtrusive sleep monitoring

techniques.
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Abnormal physical conditions during sleep: includes all types of random and periodic

movements or movements that are not supposed to occur naturally. These movements are

associated with well known disorders and physiological disturbances. For instance, the REM

behavior disorder (RBD), where people physically act their dreams, could be potentially

dangerous (Schenck & Mahowald, 2002). Another disorder is the periodic limb movement

disorder (PLMS) and occurs commonly with ageing. It is one of the most widespread among sleep

movement disorders and consists of repetitive movements of the limbs that occur sporadically,

more often in the legs i.e., PLMS, than arms i.e., periodic arms movement disorder. These

movements often involve an extension of the big toe accompanied by an occasional slight bend of

the hip and knee, and a dorsiflexion of the ankle. They do not prevent the person from sleeping;

however, they affect sleep quality. They can last between 0.5 to 5 seconds with a period of

20 to 40 seconds, where the process could be repeated for few minutes to an hour. Although

they are not supposed to occur naturally, they are not considered as a disorder unless they

severely affect sleep and daily life. In this case, then they are known as PLMD. REM SBD was

shown to impact body movement patterns and muscle tone (Cygan, Oudiette, Leclair-Visonneau,

Leu-Semenescu & Arnulf, 2010), such as punching, kicking, arm falling, or jumping from bed,

in response to action-filled dreams. Several other sleep movement disorders exist such as hypnic

jerks, bruxism, rhythmic movement disorder and nocturnal leg cramps (Merlino & Gigli, 2012).

1.2.3 Cardiac activity patterns

There exists a considerable number of works aiming to discuss and assess the relationship between

HRV, or the physiological cardiac changes, and the evolution of sleep stages (Bonnet & Arand,

1997; Brandenberger, Buchheit, Ehrhart, Simon & Piquard, 2005; Hall, Vasko, Buysse, Ombao,

Chen, Cashmere, Kupfer & Thayer, 2004; Lee, Chou, Lai, Liu & Chiu, 2005). Authors in

(Jurysta, Van De Borne, Migeotte, Dumont, Lanquart, Degaute & Linkowski, 2003) and (Ako,

Kawara, Uchida, Miyazaki, Nishihara, Mukai, Hirao, Ako & Okubo, 2003) have studied the

correlation between EEG power spectrum and HRV. Jurysta et al. (2003) have shown that

the HRV’s high frequency power normalized with respect to the total frequency power (low
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frequency+high frequency) is linked to all EEG power bands, and that delta band changes in

the EEG signal is preceded by a significant change in the cardiac vagal activity. In fact, the

aforementioned electro-cardiac changes are correlated with cycling of sleep stages and could be

measured and evaluated through a HRV analysis, which can help to a sleep quality assessment

as it will be described in this section.

ECG, which has been used for decades as a partial measure and a part of the combination

of signals needed to be acquired and analyzed. However, for non-diagnosis uses of sleep

assessments, i.e., where a general insight on sleep and not detailed diagnosis of cardiac activity

is required, ECG can be used as a standalone approach along with HRV analysis.

Figure 1.4 HRV changes with sleep stages. R-R intervals plotted

over time during: Wake, Light (Including stages 2 or 3), deep

(stages 3), and REM sleep Adapted from Togo & Yamamoto (2001)

Currently used conductive ECG electrodes requires a direct contact with the skin that should

remain stable all night, which is a severe limitation for unobtrusive applications. Moreover,

tosses involving posture changes are not allowed during conventional ECG acquisitions. Using

unobtrusive means of acquiring ECG signals can overcome such limitations and should take into

account unavoidable tosses that are a part of sleep. Precisely, unobtrusive acquisitions could

take advantage and exploit, position changes, and tosses as an indicators that help the sleep

assessment instead of altering it.
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Sleep staging using HRV analysis

HRV analysis consists of assessing how much variability the time-duration between consecutive

heart-beats can undergo over time (Saykrs, 1973). The time interval between two beats is

referred to as R-R interval, where R is the peak of the QRS complex. Several methods have

been used in the literature to show the strength of correlation between HRV and autonomic

physiological functions (Laude et al, 2004) and (Carney et al, 2001). The first to observe

beat-to-beat variability was Hon (1965). He noticed that R-R intervals were the only parametric

variation to occur before a fetal distress. Since then, researchers have been trying to explore

HRV by proposing hypothesizes to be tested, methods, and algorithms (Rajendra Acharya,

Paul Joseph, Kannathal, Lim & Suri, 2006). Different types of HRV analysis methods exist.

Time-frequency methods of HRV analysis consist of extracting time and/or spectral parameters

from the ECG signal, such as time lapses between two consecutive R peaks. Time-frequency

methods are the most widespread, whereas spectral methods yield the best results in sleep

staging procedures. Several types of noise that should be taken into account can be found in

unobtrusively acquired ECG signals. For instance, in applications where there is no direct

contact between the electrodes and the person’s skin, e.g., capacitive coupling in which we have

to acquire ECG signals from a subject that is not in a clinical room, a high input impedance for

the system is induced due to the body-electrode poor contact interface (Stein & Pu, 2012).

1.3 Physical activity based unobtrusive sleep monitoring technologies

Acitivity based sleep monitoring methods have been existing since 1922 (Orthner, 1969),

including systems that use slow motion cinematography (Cooper, 1965), motion induced

ultrasonic interruption (Peacock & Williams, 1962), and many others.

Previous works have tried to compare between several acquisition methods such as video moni-

toring and actigraphy (Borazio & Van Laerhoven, 2012) and (Sitnick, Goodlin-Jones & Anders,

2008). Here, only the widespread systems that are still used in modern research and sleep studies

are covered and discussed, i.e., actigraphs, cameras and IR.
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1.3.1 Sleep actigraphy

Sleep actigraphy consists of recording the body’s movements during sleep. Depending on the

application, the recorded data can be used to predict some insights on the neurobehavioral

state, infer sleep or discern wake periods. By counting the number of body movements and

assessing their amplitudes, sleep parameters, such as quality, latency, duration, efficiency, and

fragmentation, circadian rhythms, sleep and wake periods, and activity levels (Gorny & Spiro,

2001). Actigraphy is convenient in sleep studies because it is a low-cost unobtrusive method that

could be used in both clinics and subjects’ homes. Hence, actigraphy can be used for acquiring

sleep related data in situations where PSG is logistically impractical, or for long acquisition

periods in the patients home.

The AASM indicates in it’s practice guidelines that actigraphy is reliable in measuring sleep for

healthy adults (Morgenthaler, Alessi, Friedman, Owens, Kapur, Boehlecke, Brown, Chesson Jr,

Coleman, Lee-Chiong et al., 2007). Moreover, actigraphy was shown to be sufficiently sensitive

to be used in more specific applications of sleep studies. For instance, monitoring sleep

changes following treatment for insomniac patients has been explored in (Brooks III, Friedman,

Bliwise & Yesavage, 1993) and (Hauri & Wisbey, 1992). In 2015, the SBSM has published a

guide to actigraphy monitoring, to assist clinicians and researchers using actigraphy, citing more

than 150 actigraphy based works, including many on sleep applications (Ancoli-Israel, Martin,

Blackwell, Buenaver, Liu, Meltzer, Sadeh, Spira & Taylor, 2015). Despite their usefulness

in specific applications, sleep actigraphy systems have limitations such as inaccuracies in the

number of activity accounts, and lack of clinical validation (Matar, Lina, Carrier & Kaddoum,

2018).

1.3.2 Sleep video monitoring

Several types of sensors have been used for video monitoring during sleep studies to monitor

different physiological aspects such as posture, body and limb movements, breathing activity,

and sleep/wake states (Yang, Cheung, Chan & Stankovic, 2014). Depending on the application,
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the targeted measures and the clinical and environmental constraints, RGB, IR, or thermal

cameras, are used as a standalone or in combination in the data acquisition steps (Falie,

Ichim & David, 2008; Gade & Moeslund, 2014; Lee & Nevatia, 2007; Li, Yadollahi & Taati,

2017; Procházka, Schätz, Vyšata & Vališ, 2016; Shotton, Sharp, Kipman, Fitzgibbon, Finocchio,

Blake, Cook & Moore, 2013; Yang et al., 2014; Yang, Cheung, Stankovic, Chan & Ono, 2017).

Despite its limited clinical applications, sleep video monitoring offers several advantages over

other conventional or unobtrusive methods, especially when used for specific applications

such as periodic limb detection. Some of the main advantages of sleep video monitoring over

conventional methods can be resumed as follows:

- Unobtrusive; requires no direct contact with the subject; does not induce skin discomfort

caused by electrodes; does not limit or constraint movements; and can be adopted outside

supervised clinical conditions.

- Apart from tibials, where EMG electrodes are applied (Berry, Brooks, Gamaldo, Harding,

Marcus, Vaughn et al., 2012), some legs muscles activity are often missed by EMG. This

information is preserved in 3D methods of video monitoring (Garn, Kohn, Dittrich, Wiesmeyr,

Kloesch, Stepansky, Wimmer, Ipsiroglu, Grossegger, Kemethofer & Seidel, 2016).

- EMG signals are sensitive to tonic muscle contractions leading to an over detection of limb

movements in most PSG procedures caused by signal deflections over time. Moreover,

an alteration of skin-electrodes contact causes signal deflections and false movements

annotations, which can affect sleep/wake detection and an overestimation of the PLM index

(number of PLM per hour of sleep time). These problems can be avoided in video monitoring.

Next, we will present the two widely used video-based monitoring methods.

1.3.2.1 Posture and movement monitoring

Researchers have been trying to develop and validate materials and methods to make video-

surveillance a potential solution for posture and movement analysis and quantification during

sleep. Image processing based approaches are essential to extract the human body from
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the captured images during video-surveillance. Several approaches have been proposed and

implemented such as skin and edge segmentation and skin color detection in order to provide

a reliable estimate of sleep/wake states and further sleep parameters and behaviours such as

sleep latency, TST, sleep efficiency, PLM index, and awakenings by detecting and tracking

human body movement (Al-Tairi, Rahmat, Saripan & Sulaiman, 2014; Garn et al., 2016;

Ghimire & Lee, 2013; Heinrich, Geng, Znamenskiy, Vink & de Haan, 2014). Moreover,

some works have succeeded to reach further levels of sleep analysis by providing a relatively

acceptable classification of the five sleep stages in question (N1, N2, N3, W and REM) (Scatena,

Dittoni, Maviglia, Frusciante, Testani, Vollono, Losurdo, Colicchio, Gnoni, Labriola et al.,

2012). Despite the advantages this method can provide, it suffers from weaknesses when used in

posture and/or movement detection. For instance, lower limbs are harder to detect in some cases

such as sleep-monitoring a female wearing a one-piece sleep dress, or a person covered by a

blanket, leading to a posture misclassification and in some cases, movement underestimation due

to undetected limbs, especially for skeleton-based video tracking. Moreover, the required vision

to detect some joints can be occluded and confusion may occur for some postures classification

as well (Booranrom, Watanapa & Mongkolnam, 2014). Researchers have also been trying to

identify posture and estimate sleep stages using bed sheets containing textile based pressure

sensors (Walsh, McLoone, Ronda, Duffy & Czeisler, 2017; Waltisberg, Amft, Brunner & Tröster,

2017). In our previous work, a support vector machine algorithm has been developed and tested

to automatically identify postures (Matar, Lina, Carrier, Riley & Kaddoum, 2016). Unlike other

methods including camera surveillance, the advantage of the proposed method lies in its ability

to recognize postures without interfering with the subject’s comfort. Precisely, some types of

clothes or blankets may obstruct the view of cameras and impact the performance, which is not

the case with pressure sensor mattresses.

1.3.2.2 Breathing activity monitoring

sleep video monitoring has been used to monitor breathing activity and detect specific breathing

disorders (AL-Khalidi, Saatchi, Burke, Elphick & Tan, 2011a). For instance, the physiological



28

changes induced by breathing, discussed in section 1.2.1, could be detected via several methods

and algorithms. There are two main approaches in the literature to monitor breathing using

video surveillance:

Depth information based monitoring: consists of dynamically using the skin-IR sensor

distance via points or patches of interest, in order to have a surrogate measure of the volume

change induced by breathing.

Skeleton tracking: consists of detecting joints in the human body and monitoring their periodic

displacement in the frequency range of respiration in order to correlate this change with breathing.

Applications of such approaches vary from simple BR monitoring to more complex identification

such as apnea and hypopnea events.

Authors in (Tataraidze, Anishchenko, Korostovtseva, Kooij, Bochkarev & Sviryaev, 2015) have

classified wake, REM, and NREM using respiratory features extracted from plethysmographic

data and achieved an accuracy of 80.30% with a cohen’s kappa coefficient of approximately

κ = 0.65. Another approach that could be used for unobtrusive moniroting of breathing activity

and that has been merely explored by researchers is based on dynamically acquiring the body

pressure distribution on the mattress during sleep. We acquired pressure images of the body

during sleeping positions at a frame rate of 10 Hz in order to extract breathing activity information

from the data. The algorithm developed in (Matar et al., 2016) has been used to identify sleep

postures, and accordingly select a collection of pressure sensors that are believed to be involved

in acquiring the volume changes induced by breathing i.e., the chest area. Fig. 1.5 shows a

sample of the obtained signal for dorsal posture.
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Figure 1.5 Respiratory effort signal derived using a pressure

sensor mattress from a subject sleeping in a dorsal position

1.4 Cardiac based unobtrusive sleep monitoring methods

1.4.1 HRV Analysis in sleep studies

Researchers have tried to classify sleep stages using several types of HRV features such as

time and frequency domain, geometric, and non linear methods (Ebrahimi, Setarehdan, Ayala-

Moyeda & Nazeran, 2013; Rajendra Acharya et al., 2006). For instance, wake and REM stages

have been proven distinguishable using a combination of non-linear features and a global increase

of linear HRV features (Jovic & Bogunovic, 2011). Xiao, Yan, Song, Yang & Yang (2013) have

interestingly obtained an accuracy of 88.67% with a cohen’s kappa coeffitient of κ = 0.7393

while trying to classify three states, i.e., wake, REM, and NREM, using a combination of 41

features including time and frequency domain, and geometric features. Time and frequency

domain feature extraction methods for sleep studies are briefly discussed in this chapter.

Frequency domain methods: consist of counting and assigning the number of N-N intervals

that belong to the specific pre-defined frequency ranges.

There exist several methods in the literature that serve in extracting these parameters, such as the

classical PSD estimation (also called power spectral estimation), Lomb-Scargle periodigram
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and wavelet entropy measures (İşler & Kuntalp, 2007). Among them, fast fourrier transform

based methods which include parametric and non-parametric methods are the most widespread.

- Non-parametric methods consist of finding a reliable estimate of the PSD by performing

some operations such as smoothing and averaging, applied directly on the autocorrelation

function of the signal or its periodigram. No prior information or assumption is made on

how the data is produced. Classic methods include The Barlett (Bartlett, 1948), The Welch

(Welch, 1967) and The Blackman and Turkey method (Blackman & Tukey, 1958). Being

data-driven techniques, non parametric methods offer advantages such as algorithm simplicity

and computation speed but require a high amount of data to obtain a consistent HRV analysis.

- Parametric methods frequency domain parametric methods consist in modeling the data as

an output of a linear system that is driven by white noise. Hence, the estimation problem

becomes estimating the model parameters. The most widespread method consists of modeling

the data using an autoregressive (AR) model. Several approaches have been proposed to

estimate the AR model parameters such as Yule-Walker, Burg, foward-backward least squares,

and maximum likelihood estimators (Percival & Walden, 1993). Alternatives to the AR

model include maximum entropy spectral estimation, moving average (MA) and AR MA

estimators (Akaike, 1969; Bingham, Godfrey & Tukey, 1967). In special cases, e.g., the

signal is relatively short, parametric methods could yield higher resolutions, leading to

smoother spectral components. One limitation of these methods is validating the suitability

of the chosen model and model complexity (e.g., order).

Time domain methods it is noteworthy that a time-varying form of AR models has also been

used in time-domain methods (Bianchi, Mainardi, Meloni, Chierchiu & Cerutti, 1997). Unlike

frequency domain methods, time domain methods for analyzing cardiac variability consist of

calculating statisfical parameters from the ECG signal over time, hence no signal transformation

to frequency domain is required. Although less used than frequency domain methods in general

sleep stage identification purposes, time domain methods have been used for specific applications

where the amplitude of physiological changes are more ample than those occurring between

sleep stages, such as sleep-related breathing disorders. For instance, the authors in (Roche,
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Gaspoz, Minini, Pichot, Duverney, Costes, Lacour, Barthélémy et al., 1999) used time domain

methods to feed a classifier in order to identify OSAS patients. Computed parameters in time

domain methods include SDNN, mean of the standard deviations of all N-N intervals for the

consecutive 5-minutes segments (SDNN index), square root of the mean of the sum of the

squares of differences between consecutive RR intervals, SD of the averages of N-N intervals in

all 5-minute segments, and standard error of N-N intervals.
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2.1 Abstract

Pressure ulcer prevention is a vital procedure for patients undergoing long-term hospitalization.

A human body lying posture (HBLP) monitoring system is essential to reschedule posture

change for patients. Video-surveillance, the conventional method of HBLP monitoring, suffers

from various limitations, such as subject’s privacy, and field-of-view obstruction. We propose

an autonomous method for classifying the four state-of-art HBLPs in healthy adults subjects:

supine, prone, left and right lateral, with no sensors or cables attached on the body and no

constraints imposed on the subject. Experiments have been conducted on 12 healthy adults

(age 27.35 ± 5.39 years) using a collection of textile pressure sensors embedded in a cover

placed under the bed-sheet. Histogram of oriented gradients (HoGs) and local binary patterns

(LBPs) were extracted and fed to a supervised ANN classification model. The model was trained

based on the scaled conjugate gradient back-propagation. A nested cross-validation with an

exhaustive outer validation-loop was performed to validate the classification’s generalization

performance. A high testing prediction accuracy of 97.9% with a Cohen’s Kappa coefficient of

97.2% have been interestingly obtained. Prone and supine postures were successfully separated

in the classification, in contrast to the majority of previous similar works. We found that using

the information of body weight distribution along with the shape and edges contributes to a better

classification performance, and the ability to separate supine and prone postures. The results are
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satisfactorily promising towards unobtrusively monitoring posture for ulcer prevention. The

method can be used in sleep studies, post-surgical procedures or applications requiring HBLP

identification.

2.2 Introduction

Bed pressure ulcers, also known as bedsores or decubitus ulcers are a serious health disease

caused by remaining long period of time in the same posture. This results in a partial or complete

soft tissue’s blood flow obstruction, leading to damage in the skin and/or underlying tissue.

Every year, more than 2.5 million people develop bed pressure ulcers in the United States, and

more than 10% of nursing home residents suffer from bed ulcers (Soban, Hempel, Munjas,

Miles & Rubenstein, 2011). In European and Canadian hospitals, the percentage of hospitalized

patients developing bed ulcers range from 8% to 23% and 26%, respectively. Bed pressure

ulcers are a risk factor for death. For instance, there were 30000 documented deaths globally

in 2013 because of pressure ulcers (McInnes, Jammali-Blasi, Bell-Syer, Dumville & Cullum,

2011; Ostadabbas, Yousefi, Nourani, Faezipour, Tamil & Pompeo, 2012). A general prevention

procedure consists of three main steps: 1) monitoring the patient and acquiring body posture

data (using hardware like cameras or infrared) and/or on-mattress body pressure map, 2)

analyzing the acquired data and taking a decision to act, and 3) changing the body’s posture

or redistributing the pressure over different body regions. Figure 2.1 shows a diagram of

the prevention procedure using a pressure sensor mattress. Thus one of the essential mea-

sures in pressure ulcer prevention is a frequent redistribution of the body pressure on the mattress.

This procedure is usually done by means of manual intervention of caregivers that keen to change

subjects HBLP continuously. For instance, continuously keeping track of the body posture for a

group of patients in an intensive care unit becomes a laborious task. For optimally using hospital

human resources, automatic systems are employed in units where pressure bed ulcers are likely

to occur. These systems use a HBLP identification hardware and software, along with data log

to save a record of the subjects HBLP history.



35

Action 

Collection of body
pressure distribution

on mattress using
bed-embedded

pressure sensors

Data
acquisition

Patient's room

Analysis 

Central station
(Display) 

Caregiver or automatic
feedback 

Body posture
classification and

pressure map

Caregiver: repositioning
by changing posture 
Automatic system:

pressure redistribution 

Figure 2.1 A three steps general work-flow diagram showing bed

pressure ulcer prevention using a pressure sensor mattress: from

data acquisition to analysis and action

HBLP has been one of the essential physiological behaviors to monitor during and after medical

procedures both in clinic and domicile. Researchers have been trying to identify HBLPs

by proposing several data acquisition hardware and processing algorithms. We presented in

a previous work an exhaustive review of these methods in the context of unobtrusive sleep

monitoring (Matar et al., 2018). Among them, the most widespread systems are based on

camera and near-infrared sensors or inertial sensors such as accelerometers, magnetometers,

wireless devices and gyroscopes (Chang, Yu, Luo, Duan, Tu, Zhao, Nagraj, Rajiv, Priebe,

Wood & Stachura, 2018; Liao & Yang, 2008; Nakajima, Matsumoto & Tamura, 2000). For

instance, Nuksawn, Nantajeewarawat & Thiemjarus (2015) have proposed a posture detection

method using a tri-axial accelerometer worn by the subject in the chest region. 4 HBLPs along

with 3 more postures, i.e., standing, sitting and walking, have been identified with an overall

detection accuracy of 85.68%.
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Various methods based on pressure distribution data have been proposed. Yousefi, Ostadabbas,

Faezipour, Farshbaf, Nourani, Tamil & Pompeo (2011) have proposed a HBLP identification

method using a PCA based algorithm. They obtained an overall classification accuracy of 80%.

Huang, Wai, Foo, Biswas, Hsia & Liou (2010) have used both camera and Force Sensitive

Resistor (FSR) based pressure sensing in order to prove the high performance improvement in

accuracy detection when compared with standalone systems such as an FSR pressure mattress

or camera.

Several methods proposed have ignored classifiying separately supine and prone postures. Hsia

et. al have proposed a method for HBLP detection using FSR made pressure sensor arrays (Hsia,

Hung, Chiu & Kang, 2008). Having only the dorsal region covered by sensors, they were able to

separate between three classes, i.e., supine, left and right. In addition to posture identification,

two or three positions of the hands with respect to the body were identified. An average accuracy

of 81.3% was obtained for the three postures classification. The feature vector chosen, i.e., images

kurtosis and skeweness, is sensitive to rotation and body angle, which explains the relatively low

classification accuracy obtained. Ostadabbas, Pouyan, Nourani & Kehtarnavaz (2014); Pouyan,

Birjandtalab, Heydarzadeh, Nourani & Ostadabbas (2017) have similarly proposed a method

for identifying 3 HBLPs while ignoring the prone posture. Matar et al. (2016) have proposed

a posture detection methodology using the body pressure distribution on mattress based on

binary images. Only three postures have been identified: left, right, and one class for supine

and prone postures together. Although the good performance of the algorithm with a Cohen’s

Kappa coefficient of 86.6%, supine and prone postures have not been identified separately due

to two main factors: the strong shape similarity between both postures and the missing weight

distribution information as the images were binary and do not contain the pressure values.

For instance, a challenge has been facing researchers in automatic classification of HBLP:

the compromise between accuracy and the number of classes to be identified. A relatively

lower accuracy has accompanied 4 classes classification, i.e., where prone posture is classified

separately than supine, while a better one has been obtained in 3 classes ones, i.e., posture and

prone postures are considered as one class.
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To tackle this challenge, we conduct a preliminary experiment in healthy adult subjects to

propose a novel approach for identifying the 4 most common HBLPs used for ulcer prevention

procedures: supine, prone, left and right lateral, using unobtrusive data acquisition protocol, i.e.,

body pressure distribution. It consists of a combination of features that we extract, i.e., HoGs

and LBPs from data in order to perform the classification learning. We demonstrate throughout

the paper the impact of this extraction on the classification performance. We show that our

method is able to preserve a high accuracy and generalization performance in the 4 classes

classification, prone posture included, which gives a consistent resolution to the compromise

that has been faced in this task in the literature. An exhaustive comparative table is presented

at the end of the paper, stating the state-of-the-art works in the literature in order to compare

results and show our contribution.

At the hardware level, a bed-sheet containing textile-made pressure sensors is placed under the

subject’s bed-sheet. The sensor type is chosen to prevent any discomfort with the subject, with

highly elastic sensors that have no direct contact with the body. At the software level, a data

pre-processing scheme has been carried out in order to feed a neural network based machine

learning algorithm. An extensive validation procedure is presented in order to validate the

choice of hyper-parameters and model’s data independence with regards to prediction accuracy.

Other key sub-contributions can be summarized as follows:

- Discriminative features: we propose a novel combination of extracted features (HoG+LBP)

associated with pressure images posture shapes and body weight distribution that could

help identifying 4 HBLPs in healthy adults without any direct contact with the body, while

preserving high classification accuracy and generalization performance.

- Model consistency: we perform a nested cross-validation with an exhaustive outer loop to

validate model’s performance on a high number of data sets in order to demonstrate the

model’s consistent generalization performance.
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- Number of classes: we extract the 4 most common classes of HBLPs, while being able to

separate prone and supine postures, which could be a crucial step in clinical ulcer prevention

frameworks.

The subsequent sections are structured as follows: section 2.3 describes the methodology

including data acquisition, pre-processing and feature extraction, the learning model and

validation procedure. Section 2.4 presents the conducted experimentation and the obtained

results. A discussion of the results and an exhaustive comparison to the state-of-the-art works

that are based on pressure distribution data to identify postures are presented in section 2.5.

In section 2.6, concluding remarks, future perspectives and open related research areas are

highlighted.

2.3 Materials and methods

This section presents all the methodology stages from hardware used and data acquisition to

software and classification’s output.

2.3.1 System

The hardware used for data acquisition is a pressure sensor mattress manufactured by Sensor

Products® (Sensor Products). It consists of a 2.5 mm thick bed-sheet containing a matrix of

64×27 textile made piezo-resistive pressure sensors placed under the bed-sheet of the subject,

i.e., no direct contact with the body. The measurable pressure ranges between 0 and 2 PSI.

Each sensor has a size of 25.4×25.4 mm covering a total sensing area of 1854×762mm out of

1950×863 mm of the total area of the bed-sheet. The sampling frequency could reach up to 35

Hz. The data processing was performed using Matlab software on a data processing machine

with a CPU of 3.4 GHz. The connection between the bed-sheet and the computer station is done

through a Wi-Fi unit for wireless connection.
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Table 2.1 Database structure table: number of frames for each

posture, and the average number of frames per subject per posture

Supine Prone Right Left

Number of frames per posture

296 279 255 286

Average number of frames per subject for

each posture: Mean (± Standard deviation)

≈ 24.67

(±7.19)
≈ 23.25

(±1.42)
≈ 21.25

(±6.09)
≈ 23.83

(±3.80)

2.3.2 Data acquisition

A set of experiments has been conducted in order to collect the data required for learning,

validating, and testing the model. The experimentation is ethic-compliant and has been accredited

a certificate of ethics (Number: H20170503) by the research ethics committee at the École de

technologie supérieure university. The experiment consisted of collecting pressure images of

the body of each subject lying in each of the 4 postures: supine, prone, right and left lateral.

A total of 12 adult healthy subjects (10 males and 2 females, mean age 27.35 ± 5.39 years)

have participated in the experiments. To make sure that the model performance generalizes

to different body types, the selected participants had a large variance of weights and heights

i.e., inter-subject variations for weight and height were between 110 and 286 lbs, and 5 feet 1

inch and 6 feet 1 inch respectively. It is noteworthy that the gender unbalance present in the

data has no effect on the experiment or the model to be built, knowing that men and women

have the same body shape and body pressure distribution on mattress except differences that

are slightly detectable in the prone posture exclusively. Since the subjects are healthy adults,

the scope of this paper can be limited to healthy young subjects. A set of specific instructions

has been given to participants during the experiments in order to make sure that 1) inter-frame

variance is preserved in the collected data, and 2) a maximum possible number of posture

variants are collected. No single posture variant was collected twice for a specific subject. For
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instance, several combinations of different angles with respect to the body, of the four limbs

have been used at slightly different angles between users e.g., one of the prone posture variants

was: left arm up (above shoulder), right arm down (close to hip), left leg folded, and right leg

unfolded, or one of the left posture variants was curled up body, arms folded, and legs folded. In

addition to limbs position combinations, different on-mattress body locations and orientations

have been tried e.g., body on the extreme left of the mattress, and body’s angle is 70 degrees

instead of 90 with respect to the horizontal axis of the mattress. On average, for each of the four

postures for each subject, around 23 different frame variants have been collected to enhance the

generalization performance of the classifier by recognizing the more possible variants of each

of the 4 postures. Labels for classes were assigned as follows: 1,2,3 and 4 for supine, prone,

right and left lateral, respectively. After acquisition, a frames selection procedure has been then

adopted to avoid taking a duplicate pressure frame of the same posture of a specific subject.

Hence the database consisted of a total number of N = 1116 collected frames divided per

posture and per subject as shown in Table 2.1. As shown in equation (2.1), for each subject

Z = 1,2, ...,12, for each image Φ(i)
Z , i = 1,2, ...,N , the m × n matrix of pressure values was

converted to a feature vector Φ
(i)
Z11

...Φ
(i)
Zmn

having a size of 1728, where m=64 and n=27, and

where Φ
(i)
Z jk

represents the pixel value of the jth row, kth column of the ith sample belonging to

the subject Z in the database matrix.

Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ
(1)
Z11
Φ
(1)
Z12
Φ
(1)
Z13
. . . Φ

(1)
Zmn

Φ
(2)
Z11
Φ
(2)
Z12
Φ
(2)
Z13
. . . Φ

(2)
Zmn

. . . . . . . . . . . . .

Φ
(N)
Z11
Φ
(N)
Z12
Φ
(N)
Z13
. . . Φ

(N)
Zmn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.1)

In order to be able to validate on new subejcts, the subscript Z is preserved to identify the group

of samples belonging to one subject.
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Figure 2.2 Feature extraction work-flow diagram showing HoG

and LBP feature vectors extraction to decode shape and patterns

information in the sample pressure images

2.3.3 Feature extraction

To extract a complementary information from the sample images in order to perform posture

recognition, a set of features able to exhibit shape or edges, contrast and texture information

has been computed following the diagram shown in Figure 2.2. Thus the feature extraction

consisted of three main steps: computation of HoG and LBP descriptors followed by a principal

component analysis (PCA) to project the data to a lower dimensional but more informative space

by considering only the features having significant inter-sample variances in the analysis.
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2.3.3.1 Histogram of oriented gradients

HoG features extraction aims at characterizing objects by quantifying the orientations of gradients

in an image, which represent the edges directions. The approach behind HoG features has been

first proposed by McConnell (1986) and became widespread in computer vision applications

in 2005 when Dalal & Triggs (2005) published their work on pedestrian detection using HoG

features. The results obtained have shown that this descriptor is very well adapted for this

task. Given the data similarity and the objective behind both HBLP and original human shape

detection, we decided to extract HoG feature descriptors from pressure images in order to

identify HBLP. The HoG feature descriptor is calculated as follows:

For each image i, for each pixel (x,y), the intensity value Φ
(i)
Z (x, y) is used to:

- Calculate gradient:

G(i)
Z,x(x, y) = Φ

(i)
Zx+1,y

− Φ(i)
Zx−1,y

G(i)
Z,y(x, y) = Φ

(i)
Zx,y+1

− Φ(i)
Zx,y−1

(2.2)

- Compute gradient’s magnitude Mag and direction θ:

Mag(i)Zx,y
=

√
G(i)

Z,x(x, y)
2
+ G(i)

Z,y(x, y)
2

θ
(i)
Zx,y

= arctan
G(i)

Z ,x(x,y)
G(i)

Z ,y(x,y)

(2.3)

A multi-scale approach is applied on the image in order to analyze shapes and patterns as follows:

1) Cells: the image is first divided into rectangular regions of pixels groups called cells. Each

cell has a ΛCx × ΛCy pixels size.

Having θ ∈ [0, 180], the range θ is divided into υ gradient orientation bins as follows:[
υ×180
υTotal

, (υ+1)×180

υTotal

]
,where υ = 0, ..., υTotal − 1. A υTotal-bins HoGs is then calculated by applying

a cell-wise weighted voting, as follows:
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h[υ] h←− [υ] + Mag(i)Zx,y
.
[
1 − |θ(i)Zx,y

− Cυ |. υTotal

180

]
. (2.4)

Where h[υ] denotes the histogram value for the bin range υ, and Cυ denotes the center of the

bin υ. Hence for each pixel, the magnitude Mag(i)Zx,y
of the gradient orientation θ

(i)
Zx,y

is divided

into two values based on its contribution ratio to the two closest bins, which is defined by the

distance between θ
(i)
Zx,y

and the centers of the bins.

This is done by adding the Mag value for each bin that contains the corresponding θ of the pixel

intensity. This process of histogram calculation is then repeated for each cell of the image.

2) Blocks: then the image is divided into wider regions called blocks, where each block is a

group of [ΛBx,ΛBy ] cells. Blocks are overlapped then normalized in order to ensure adequate

contrast normalization and robustness to illumination changes:

hnorm(υ) = h(υ)√
| |h(υ)| |2

2
+ ε

(2.5)

where | |.| |2 denotes the Euclidean norm operator and ε denotes a small constant added to avoid

division by zero, i.e., ε = 10−5. The size of blocks overlapping, e.g., 2 cells horizontally and 1

cell vertically, determines both how much information would be captured from the image and

the size of the feature vector. A larger overlapping leads to a greater geometrical resolution to

detect edges and a larger feature vector.

The size of the HoG feature vector can be calculated as follows: ηHoG = ζ × υ × γ, where ζ , υ

and γ are the block size, i.e., the number of cells per block, the number of calculated orientation

gradients and the number of blocks per image, respectively. γ can be calculated as follows:

γ =
⌊((ΛIx,y � ΛCx,y ) � ΛBx,y ) � (ΛBx,y � ΛOx,y ) + 1

⌋
(2.6)
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where � and � denote element wise division and subtraction, respectively. ΛXx,y = [ΛXx,ΛXy ]
denotes image (X = I), Cell (X = C), block (X = B) and overlapping (X = O) sizes in the x

and y dimensions, respectively.
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Figure 2.3 A diagram showing the FFANN architecture with weights,

activation functions, and the input-output parameters and layers

2.3.3.2 Local Binary Patterns

LBP is a feature extraction method that aims at encoding local texture information in the image.

The modern generic LBP has been first proposed in (Ojala, Pietikainen & Harwood, 1994). LBP

feature descriptors have shown a robustness in image classification tasks. Moreover, combining

LBP with HoG features has shown a particular improvement in the human shape detection

efficiency (Wang, Han & Yan, 2009). LBP feature descriptors have been extracted from the

pressure images as follows:

For each pressure image:

- Divide the image into Nclbp cells, where each cell contains Λ′cx × Λ′cy pixels
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- For each cell:

for each pixel, consider a neighborhood of a Λ′N pixels inside a disc centered at the pixel vp.

Hence, compare the intensity value vp to each one of its neighbor pixels v(p+i), where i = 1

,..., Λ′N . If v(p+i) ≥ vp, then v(p+i) ← 1, or v(p+i) ← 0, otherwise.

- The resulting neighboring pixel values (0s and 1s) are concatenated in a binary number. This

number is then converted to decimal.

- Each pixel in the neighborhood of vp has an assigned decimal value, the process is repeated

for all pixel neighborhoods in a cell.

- An histogram is then calculated for each cell. Histogram values are then concatenated to

form the LBP feature vector of size ηLBP.

The size of each extracted HoG + LBP feature vector is equal to M = ηHoG + ηLBP. Let φ be

the N × M database matrix containing the concatenated HoG + LBP extracted features for each

sample φ
(i)
Z , i = 1, ...,N = 1116‘ respectively.

2.3.3.3 Principal Component Analysis

PCA is a feature selection technique that allows to keep the features having the most variance

(Hotelling, 1933). PCA usage aims at reducing the dimensionality of data by making a set

of possibly correlated variables, linearly uncorrelated. A high variance is preserved in the

transformed data by applying a selection of features based on the associated variance.

The mean of each column of the matrix φ is calculated, then subtracted from each one of the

feature values, in order to center the data, let the centered database matrix be φ. The reduced

dimensions data matrix X is obtained by projection of the original data matrix φ as follows:

X = 1√
N−1φ

T
V = UΣ, where 1√

N−1φ
T
= UΣVT , and X is a N × M matrix having the same

dimensions of the original data matrix φ. Hence, the columns of V are the principal components

of φ, and are arranged by descending order based on the corresponding elements of Σ, called

eigen values. Let X (i)
Z (a) be the ath element (a = 1, ...,K) of the ith sample (row) that belongs
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to subject Z. Hence, L = N × K will be the dimension of the new space in which the data

is projected, where K represents the number of selected eigenvalues and vectors to be taken

into consideration. The PCA was applied on each training-testing data split according to the

proposed nested cross-validation scheme.

2.3.4 Feed-Forward ANN (FFANN)

FFANN has been widely used in classification problems as it has several advantages: the ability

to process a large number of inputs and infer complex and hidden non-linear relationships, and

the ability to generalize its prediction performance on new unseen data. Moreover, FFANNs

usage do not impose constraints on the data and does not require knowing beforehand the data

probabilistic distribution. Instead, a parametric form of basis functions is used by fixing only

the number of basis functions while allowing their parameter values to be adaptive in order to

learn non-linear relationships from the data. Although FFANNs have a minor drawback, i.e., the

likelihood function used in training is not a convex function of the model parameters making the

training more time-consuming and complex, however, they result in compact models that are

easy to evaluate during the prediction on new data, or the testing phase. Hence computational

resources and time used in training (once) are often worth creating an easy-to-evaluate model

during new predictions performance (Bishop, 2006).
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2.3.4.1 Network Architecture

A set of several parameters define the network architecture. Figure 2.3 shows the network used

in this paper. The input layer takes the K inputs X (i)
Z (1), ...,X (i)

Z (K) of each sample, that are

the features kept in the PCA procedure, the hidden layer has h hidden nodes H1, ...,Hh, and

the output layer has the four output classes y(i)Z,1(X
(i)
Z ), ..., y(i)Z,4(X

(i)
Z ) that represents the supine,

prone, right and left HBLP, respectively. Network architecture plays a crucial role in defining

the performance of the model and its approximation properties. Researchers have explored

methods in order to define rules for optimal parameters selection (Bishop, 2006). The universal

approximation is a well-known theorem in ANN’s mathematical theory that states that an ANN

with a single hidden layer having a finite sufficient number of nodes is a universal approximator

among continuous functions of Rn (Csaji, 2001). As shown in Figure 2.3, a one hidden layer

was used in this paper.

One of the common rules when determining the optimal number of hidden nodes states that this

number usually lies between the number of input and output layers (Heaton, 2008). Accordingly,

the optimal number of nodes in a hidden layer that gives the best performance in terms of

minimal error classification is usually between the number of output classes, i.e., 4 in HBLP

detection, and the number of inputs, i.e., K. A batch optimization technique has been adopted

to determine the optimal h, setting the boundaries as follows: 4 ≤ h ≤ K for each data split

through the nested cross-validation scheme.

The hyperbolic tangent transfer function, i.e., H(a) = e(a)−e(−a)
e(a)+e(−a) and the normalized exponential

transfer function, also called softmax, σk =
eak∑
j eaj , where a is a given input, and k = 1, ...4, is

the output class, were used as activation functions for each of hidden and output layers nodes,

respectively. Hence, the overall network function can be written as follows:

yk = σk
���

h∑
j=1

w
(2)
k j H

(
K∑

l=1

w
(1)
jl X (i)

Z (K) + w(1)
j0

)
+ w

(2)
k0

��� (2.7)
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2.3.4.2 Training and error back-propagation scheme

Basic FFANN training consists of adjusting the network weights in order to minimize the error

function. The Cross-Entropy (CE) error function (eq. 2.8) was used in evaluating the model’s

performance, as faster training and improved generalization performance could be reached by

minimizing the CE error function instead of the sum of error squares.

E(w) = −
K∑

i=1

(ti ln yi + (1 − ti) ln (1 − yi)) (2.8)

where ti, and yi are the target value, and the predicted (Eq. 2.7) value for the sample X (i)
Z ,

respectively. Moreover, the supervised learning algorithm based on the scaled conjugate gradient

(SCG) was used in back-propagating the CE errors. SCG’s performance has been benchmarked

against state-of-art algorithms such as conjugate gradient backpropagation, and has yielded

better results in terms of convergence, computation time and complexity (Møller, 1993). While

considered as one of the conjugate gradient methods (CGMs), SCG differs from CGMs in two

keypoints making it a faster and more accurate method: 1) to determine the stepsize during

optimization procedure, instead of approximating the Hessian matrix at each iteration with a

time-consuming line search procedure like in CGMs, SCG estimates the second derivative matrix

E′′(w). 2) CGMs require the positive definiteness of the hessian matrix, which could prevent the

algorithm reaching a good performance, while in SCG, a coefficient λ is added to the solution,

and raised by a constant factor whenever the hessian matrix is not positive-definite following the

Levenberg-Marquardt algorithm, a λ = 1.e−5 was chosen in our algorithm (Fletcher, 2013).

2.3.5 Nested Cross-Validation

Model selection and evaluation is one of the most essential steps that make model predictions

reliable and trustworthy. The nested validation consists of using two distinct sets, called validation

set and test set, when selecting the model’s optimal hyper-parameters and when evaluating the

model performance respectively, avoiding optimistically biasing the model evaluation.
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(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

Figure 2.5 Body pressure distribution images of 4 postures:

supine (a) to (d), left (e) to (h), prone (i) to (l), and right (m) to (p)

By fitting a model to each training set in the inner loop, the prediction performance is approxi-

mately maximized, and directly maximized by selecting the optimal model hyper-parameters in

the validation set. In the outer loop, several test splits are performed in order to test the generaliza-

tion performance of the selected model and make sure that data-dependency is avoided. Figure

2.4 illustrates the nested validation scheme we adopted in this paper. In the outer loop, data frames

belonging to the 4 postures of 7 subjects have been used for training, and the remaining part of

the data for testing. In the inner loop, a Leave-Subject-Out cross-validation has been applied, in

order to train the FFANN on 6 subjects data, and validate on 1, where all the 7 possible combina-

tions of training-validation sets were tested by leaving at each time one subject data for validation.

Hence on average, i.e., while taking into account the slight imbalanced number of instances

between classes, outer loop’s data is divided as follows: 7
12

≈ 58% for training, and 5
12

≈ 42%
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Figure 2.6 Training (a) and testing (b) confusion matrices of the

selected classifier model, showing the classification accuracy and

confusion for each of the 4 classes in terms of percentage (%) and

number of samples

for testing, while the inner loop’s data is divided as follows: 6
7
≈ 86% for training, and 1

7
≈ 14%

for validation.

2.4 Experimental Results

Figure 3.2 shows 4 samples of pressure images acquired from different subjects laying in one of

the four postures. Two important aspects regarding the data distribution can be noticed when

comparing samples belonging to different classes. First, considering only the shape information,

samples like (i) - (k) and (n) - (o) give a concrete example of the large intra-class variance, while

(b) - (k) and (a) - (l) give an example of large inter-class similarity. Second, by considering only

the weight information which is explicitly displayed by the pixels intensities and patterns, the

intra-class variance can be appreciated by comparing (e) - (g) and (m) - (n), and an inter-class

similarity by considering (c) - (n), and (p) - (g). Such variability in the data distribution makes
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the classification a challenging task using only the shape information, specially when considering

inter-class similarity and intra-class variance.

In section 2.3, the parameters that play an important role in the network performance have

been specified and described e.g., the number of the network hidden layers and nodes, along

with the adopted validation scheme. A batch optimization procedure has been performed in

order to select the parameters involved in the feature selection step and in building the neural

network model. Thus regarding the HoG feature extraction, the parameters selected were as

follows: number of histogram bins υTotal = 9, number of pixels per cell ΛCx,y = [8,8], number

of cells per block ΛBx,y = [2,2], number of cells overlapping between two consecutive blocks

ΛOx,y = [1,1], giving a HoG feature vector size ηHoG = 504. It is noteworthy that the results of

the optimization procedure were in accordance with the recommendations given by Dalal and

Triggs regarding HoG parameters selection for human shape detection (Dalal & Triggs, 2005).

As for the LBP feature extraction, the size of the neighboring circular window considered for

each pixel, and the number of cells, lead to insignificant impact on the performance, but imposed

an important change to the feature vector length. Accordingly, the smaller circular window size

and cells number per image were selected i.e., the neighboring 8 pixel to the current one Λ′N = 8,

and 1 cell per image were selected Nclbp = 1 in order to capture information over larger regions.

Hence the obtained LBP feature vector size is ηLBP = 75, and the overall feature vector size

is M = ηHoG + ηLBP = 579. With a kept explained variance of he dimensionality reduction

procedure with PCA has led to a notably smaller feature vector size K = 46.

Figure 2.6 shows the training (a) and testing (b) confusion matrices. As shown, a relatively high

true positive scores were obtained in both training and testing steps, with a slight but acceptable

decrease in performance between training and testing due to testing the model on data that

has never been seen before, i.e., belonging to new subjects. An overall classification accuracy

of 99.4 and 97.9% were obtained for training and testing, respectively. In order to assess the

reliability of the results, the agreement by chance has been calculated and ignored through a



52

20 30 40 50 60 70 80 90 100
Mean testing prediction accuracy (%)

0

20

40

60

80

100

120

140

160

180

Fr
eq

ue
nc

y
Outer validation testing results

Bin Count: 161

Bin Center: 95.3
Bin Edges: [93.8, 96.8]

Bin Count: 118

Bin Center: 92.2
Bin Edges: [90.7, 93.8]

Bin Count: 67

Bin Center: 98.3
Bin Edges: [96.8, Inf]

Bin Count: 35

Bin Center: 89.2
Bin Edges: [87.7, 90.7]

Figure 2.7 Histogram of mean testing prediction accuracy performed

in the outer loop of the nested validation, showing the number of models

that yield to corresponding classification accuracy

Cohen’s kappa calculation. The obtained testing Cohen’s Kappa coefficient was 97.2% which

reflects the high intended agreement.

Figure 2.7 shows the histogram of average testing prediction accuracy (0-100%) over a total

of 396 randomly selected models that were built in the outer validation loop of the carried out

nested validation. As shown by the plot more than 86% of the models have given a prediction

accuracy of more than 91% which shows 1) the effectiveness of the adopted feature selection

procedure and the used learning criteria to build the classifier, and 2) the model’s independence

with respect to the data and the prevention of over-fitting the weights to a specific data-set.

2.5 Discussion

In this section, we compare the obtained results to previous works, and we discuss the proposed

method.
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Table 2.2 An exhaustive comparison of the proposed method to

the state-of-the-art methods that use pressure sensor mattresses to

classify body posture unobtrusively

Author name,
year Database Pressure sensor

type
Feature

extraction
Classification

method
Number of
identified
postures

Accuracy

Prone and supine postures not separated, but merged or prone posture excluded.
Enokibori & Mase

(2018).

nT = 19,

m̂ = 42.89,

nF = 448

3200 uniformly

distributed pressure

sensor.

No feature

extraction.

Deep neural

networks.

3, prone

excluded.
99.7%.

Heydarzadeh

et al. (2016).

nT = 10, m̂ = n/a,

nF = n/a

2048 uniformly

distributed Force

sensing array (FSA)

sensors.

HoG features.
Deep neural

networks.

3, prone

excluded.
98.06%.

Yousefi et al.
(2011).

nT = 6, m̂ = n/a,

nF = n/a

2048 uniformly

distributed Force

sensing array (FSA)

sensors.

Eigenspace

projection of the

pre-processsed

pressure images.

K nearest

neighborhood.

5, prone

excluded.
97.7%.

Pouyan et al.
(2013).

nT = 20, m̂ = n/a,

nF = 160

2048 uniformly

distributed FSA

sensors.

Posture binary

signature.

K nearest

neighborhood.

8, prone

excluded.
97.1%.

Huang et al.
(2017).

nT = n/a,

m̂ = n/a,

nF = 360

6 modules

containing a matrix

of FSR sensors each.

Resistance

values.

Template

matching by

minimum mean

squared error.

3, prone

excluded.
96.1%.

Metsis et al.
(2011).

nT = 3, m̂ = n/a,

nF = 1800

256 uniformly

distributed FSA.

Pressure values

and pressure

images central

moments.

Hidden Markov

Model.
3. 90.40%.

Hsia et al.
(2009).

nT = 8, m̂ = n/a,

nF = n/a
2048 uniformly

distributed FSA

sensors.

Kurtosis and

Skeweness of

pressure

distribution.

Support vector

machines.

5, prone

excluded.
83.5%.

Hsia et al.
(2008).

nT = 2, m̂ = n/a,

nF = n/a
16 FSR sensors

distributed in the

upper region.

Kurtosis and

Skeweness of

pressure

distribution.

Bayes. 3. 78.7%.

Prone and supine postures are identified as two separate classes
Enokibori & Mase

(2018).

nT = 19,

m̂ = 42.89,

nF = 448

3200 uniformly

distributed pressure

sensor.

No feature

extraction.

Deep neural

networks.
4. 97.1%.

Xu et al. (2015).
nT = 14, m̂ = n/a,

nF = 1848

uniformly distributed

FSR.

Vertical and

horizontal

projection of

pressure

distribution.

K nearest

neighborhood.
6. 90.6%.

Liu et al. (2014).

nT = 14,

m̂ = 27.78,

nF = 3360

8192 uniformly

distributed FSR.

Spatial and body

part features.

Minimum class

residual

classifier.

6. 83.02%.

Mineharu et al.
(2015).

nT = 10,

m̂ = 22.6,

nF = 270

1768 uniformly

distributed pressure

sensors.

Spatial features.
Support vector

machines.
9. 77.14%.

Our method.
nT = 12,

m̂ = 27.35,

nF = 1116

1728 uniformly
distributed FSR

sensors.
HoG + LBP

features. FFANN.

4 most
common
postures,

prone
included.

97.9%.

Table 2.2 presents an exhaustive comparison of the obtained results to the state-of-the-art works

that claim to be unobtrusive and use the same acquisition hardware, i.e., pressure sensor mattress.
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In order to unify the evaluation criterion, from each of the presented works, the classification

accuracy value has been calculated using the usual formula TP+T N
TP+T N+FP+FN , where TP, T N ,

FP, and FN are the true positive, true negative, false positive, and false negative predictions,

respectively. While evaluating the results of the proposed methods, it is important to take into

consideration two criteria that reflect the compromise facing researchers:

1. Is the method able to identify at least the 4 common postures, i.e., prone, supine, left, and

right lateral, i.e., identifying prone and supine postures separately? Given the body shape

similarity on the mattress between supine and prone, the proposed methods have whether

merged these two classes into one during the classification task, or discarded the prone

posture as a class to be identified.

2. Is the obtained classification precision rate high enough to rely on? Although there is no

consensus on a standard threshold value to determine whether a classification precision rate

is reliable, when comparing classification methods, a straightforward rule can be adopted:

the higher rate the better performance.

By looking at Table 2.2, one can understand the compromise researchers have been facing in

this classification task. It is noteworthy that classifying prone and supine positions separately

such as in (Liu et al., 2014; Mineharu et al., 2015; Xu et al., 2015) has yielded relatively

lower classification precision rates when compared to merging the two classes in one class, or

excluding prone posture such as in (Hsia et al., 2009,0; Huang et al., 2017; Metsis et al., 2011;

Pouyan et al., 2013; Yousefi et al., 2011). The proposed method has been able to identify prone

and supine positions separately, while yielding the highest classification precision rate (97.9%)

when compared to previous works, despite the multilevel differences between each one of the

compared methods, such as the number of sensors used in the acquisition, the feature selection

and classification method.

It is noteworthy that the body tissues being exposed to long-term pressure and damage when the

subject is lying on his back, are different to the ones when is lying in a prone posture, making the

classification of prone and supine postures separately, i.e., as two different classes, a mandatory
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step in pressure ulcer prevention schemes. On the other hand, almost the same body tissues are

exposed to long-term pressure when the subject is lying in different variants of a specific one of

the four postures considered in this paper, making the classification of these variants as separate

classes, an inconsequential step in the prevention of pressure ulcers.

Since the proposed method has been developed using a relatively limited number of subjects,

i.e., 12, the generalization performance could be reduced if the system was tested on a much

larger database. Moreover, the system has not been tested under special conditions, such as on

subjects who underwent limb amputations, or subjects lying in spurious positions that are not

variants of the 4 proposed postures, e.g., an important part of the body or limbs are not covering

the pressure sensor mattress.

For application in clinical settings, the proposed system could be used in a quasi-real time

acquisition, in which data is continuously processed. For instance, x minutes blocks of pressure

images data-streams are continuously fed to the classifier. x could be adapted depending on the

application, based on the required monitoring time-resolution, and how critical the patient’s

situation is. History logs of the classified postures are then fed to a function that draws a four

levels curve, a level for each posture in order to keep the patient’s posture history. Patient’s

posture history can help health professionals keep track of the least posture adapted which

helps in the decision taking process such as body repositioning to avoid the development of

ulcers. An output alarm could be sent to the central workstation at each time the same posture

is encountered for more than a threshold of a certain amount of time, that could be adapted

depending on the application. The output trigger could be used in several uses, such as sending

alarms or messages for the health professionals in order to allow remote monitoring.

Regarding employment costs, the proposed system could significantly improve care, reduce the

required human resources, and make it easier to remotely monitor patients, with a relatively low

cost solution. For instance, purchasing such a system include a computer workstation, a pressure

sensor mattress, and a local connection.
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Hence, with the right choice of posture classes, the adopted pre-processing, feature selection,

classification learning, and the nested cross-validation, our method provides a solution to over-

come the challenge of compromising accuracy and including prone posture in the classification

task, giving a promising solution to make unobtrusive sleeping posture identification using bed

pressure sensor mattress reliable.

2.6 Conclusion and future perspectives

Pressure bed ulcers have a serious impact on the patients, requiring a specialized care procedure

that causes a burden on the health-care systems in terms of professional and material resources

and costs. While the presented work does not offer a comprehensive solution to the problem,

it presents a potential technique to make a fundamental step towards prevention, i.e., posture

classification, automated and requiring less resources. And most importantly, making the data

acquisition step less obtrusive for the patient on two levels, 1) acquiring physiological data

without causing discomfort or imposing constraints on the patient, and 2) preserving patient’s

privacy by substituting cameras with textile pressure sensors embedded in the bed-sheet. The

easy-to evaluate classifier is able to identify 4 different HBLPs with a high predictive accuracy

and a validated generalization performance.

Ulcer prevention has barely advanced over the past decades and the techniques adopted in the

majority of clinical and residential units are still insufficient. Therefore the field has open issues

and needs more research efforts. Future works will aim for acting according to diagnosis. Hence

using the proposed method, feeding a central monitoring station with the classification results or

an automated feedback system with body pressure mapping, and consequently changing posture

or redistributing pressure, respectively.

Moreover, the proposed methodology has a potential use in several other medical fields that

requires in-bed posture identification such as non or partial anesthetic surgical procedures,

orthopaedic applications, and medical imaging techniques.
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3.1 Abstract

BR is one of the vital signs used in physiological monitoring. Conventional methods to calculate

BR consist in attaching wired canula/thermistor on the buco-nasal area to measure air-flow,

which induces mild to severe subject discomfort to the subject. Abdominal/thoracic belts are

also used to detect breathing movements whereas esophageal pressure is the gold standard to

measure breathing effort. In this paper, we validate the consistency of BR monitoring in healthy

adult subjects using bed-sheet pressure sensors. We demonstrate throughout the paper that this

approach could be used interchangeably with respiratory belts which have been approved for

medical use by the AASM, providing a more convenient solution for both subjects and health

professionals. In this vein, we reconstruct the breathing movements signal then compute the BR

over 30 seconds time windows. A ten-sinusoidal model-based extended Kalman Filter was used

to adaptively estimate the breathing movements signal from the body pressure distribution data.

The model is posture-specific, i.e., the model’s parameters are optimized based on the detected

posture. An ANN model was used to detect four bed postures to perform the optimization

step accordingly. Recordings were conducted on 12 healthy adults (mean age ≈ 27 ± 5 years)

to acquire data with the pressure mattress and a conventional respiratory belt placed on the

abdomen region, used as a reference. To validate the proposed method as a surrogate measure, a

BA analysis has been performed on both pressure sensor and respiratory belt data, and the linear
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relationship has been evaluated using Pearson Correlation Coefficient (PCC). A high inter-rater

agreement rate, with an average maximum of 1.93 BrPM of difference, and a confidence interval

of 95%, along with a strong linear relationship of 95.8% on average between the two methods

have been interestingly obtained. With such results for measuring BRs for the different postures,

we show and discuss the consistency of the proposed method and the potential usage in medical

applications requiring respiration monitoring.

3.2 Introduction

BR is one of the physiological vital signs to measure during patient monitoring in clinical

applications. Medical technologies have been proposed to monitor breathing such as belts,

cannulas, and thermistors (AL-Khalidi, Saatchi, Burke, Elphick & Tan, 2011b). For instance,

end-tidal carbon dioxide levels are measured with capnometry, which is used for both detecting

BR and hypoventilation. Depending on the application, these methods suffer from cumbersome

sensors and apparatus that constraint the monitoring, the subject’s comfort, and the professional’s

operation (Folke, Cernerud, Ekström & Hök, 2003). Alternatives to the conventional measures

have been proposed in order to make the process of breathing monitoring less obtrusive. For

instance, the measuring device should satisfy certain criteria such as 1) allowing the unprovoked

and natural behavior of the subject, like body and limb movements and tosses, 2) requiring

less direct contact with the body, and 3) reducing the number of sensors and cables worn by

the subject (Folke et al., 2003; Matar et al., 2018). The monitoring of alternative physiological

behaviors such as the volume of the abdomen to infer breathing movements in lying positions,

adds new types of noises to the acquired signals during unobtrusive respiration monitoring,

such as the impact of the posture on the abdominal volume magnitude. A large spectrum of

non-invasive methods of breathing monitoring can be found in the literature (Folke et al., 2003).

Current techniques include respiratory belts, cameras, accelerometers, and infra-red sensors

(Matar et al., 2018; Ranta, Aittokoski, Tenhunen & Alasaukko-oja, 2019). The acquisition

methods, technologies and processing algorithms employed to monitor breathing are briefly

reviewed in this section.
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1. Airflow sensing-based: devices that quantify airflow by measuring temperature, humidity,

acoustic and carbon dioxide through the bucco-nasal area.

2. Volume, movement, and tissue composition sensing-based: devices that quantify volume

or volume change mechanically or optically such as strain gauge transducers, mutual

inductance, magnetometers, and sensors in a mattress, cameras, wireless and radar devices

and all types of plethysmographs, e.g., transthoracic impedance, inductance, and fiber-optic

plethysmography.

3. Blood gas sensing-based: devices that measure the gas composition of the blood, they

include: pulse oximetry and end-tidal carbon dioxide measurement.

Respiratory inductance plethysmographs (RIP) have been proposed, implemented and clinically

validated by researchers as a surrogate measurement method of the exchanged air volume to

monitor inhalation and exhalation phases (Fiamma, Samara, Baconnier, Similowski & Straus,

2007). During RIP, the breathing induced volume change in the abdominal region is measured.

Similar acquisition approaches for the same target measure have been proposed in the literature

(AL-Khalidi et al., 2011b). In the same line of research, several methods have been proposed

to track respiration activity using bed sheet embedded pressure sensors. Bed pressure sensors

have been proven to be able to track several physiological behaviors such as respiration, activity

level and body movements (Azimi, Gilakjani, Bouchard, Bennett, Goubran & Knoefel, 2017;

Gilakjani, Azimi, Bouchard, Goubran & Knoefel, 2018; Harada, Sakata, Mori & Sato, 2000;

Jones, Goubran & Knoefel, 2006; Liu, Huang, Xu, Zhang, Stevens, Alshurafa & Sarrafzadeh,

2015; Samy, Huang, Liu, Xu & Sarrafzadeh, 2014). However, the existing methods have still

not yet successfully produced a reliable BR estimation for the four different bed postures due to

the following challenges and shortcomings:

- Improper selection of sensors: that lack adaptability to the subject’s behavior, or are

sensitive to body movements. These methods consist of selecting all sensors on the mattress

and then summing pressure values to reconstruct the respiratory signal (Samy et al., 2014),
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or choosing a pre-defined and fixed area on the mattress (geometrical methods), on which

the abdominal region or the head is more likely to be (Harada et al., 2000).

- Lack of validation: researchers have been validating their proposed methods using the PCC

to assess the relationship with a reference method such as belt measures (Azimi et al., 2017) ,

or by self validating using auto-correlation without using any reference method (Jones et al.,

2006). Although the information that linear relationship to the reference method is bound to

give, no insights on the precision, or distance to truth can be given using this metric. Another

concern regarding validation, is that researchers have been only considering true positive

respiratory counts detection and ignoring false negatives, which is likely to give optimistic

results that do not reflect the practical percentage of true detections, which leads to under- or

over-estimating the counts, giving a less reliable BR (Harada et al., 2000).

- Posture limitations: researchers have whether ignored the posture effect on the respiratory-

induced abdominal volume changes or restricted the posture changes during the data

acquisition phase of their experiments (Azimi et al., 2017; Gilakjani et al., 2018). It is

known that the relationship between the measured quantity, e.g., pressure distribution, and

the breathing effort signal represented by the thoracic volume change is subject to different

types of added noises and variations depending on factors such as the body posture on the

mattress, the regions of the body whos movements represent the most the respiration, and

added limb and body movements that interfere with the respiratory induced pressure-volume

changes. Moreover, researchers have limited the possibility of subjects to change postures

during experiments or have totally ignored the notion of posture, which influences the ability

to have posture-specific, and adaptive results with regards to BR computations (Azimi et al.,

2017; Gilakjani et al., 2018).

We mitigate each of the aforementioned challenges by proposing solutions in the processing

steps throughout our method. The objective of this paper is to validate the consistency of

BR monitoring in healthy adult subjects using bed-sheet pressure sensors. We aim as well to

demonstrate using the Bland Altman (BA) plotting technique, that the proposed method could

be used interchangeably with respiratory belts which have been approved for medical use by the
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Figure 3.1 Work-flow diagram of bed pressure ulcer prevention

using a pressure sensor mattress

AASM, providing a more convenient breathing monitoring solution for both subjects and health

professionals. The main contribution of this work is to propose and evaluate a posture-adaptive

approach to unobtrusively monitoring of BRs using a high spatial and temporal sampling of the

body pressure during sleep. This elastic textile pressure sensors is placed under the individual’s

bed-sheet and a signal processing will allow to monitor the respiration without constraining the

subjects’s movement, without any direct contact or sensor on the body.

The whole contribution can be summarized as follows:

- Adaptively select pressure sensors corresponding to body regions involved in respiratory

induced pressure changes and movements.

- Adaptively isolate and remove noises added by the subject’s body and limb movements to

avoid interference with the breathing signal.
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- Estimate and reconstruct the breathing movements signal using pressure data with a multi-

sinusoidal model based extended Kalman filtering.

- Adaptively select Kalman filter error and measurement noises depending on the posture of

the subject on the bed.

- Adaptively derive BR over 30 seconds time windows using the reconstructed signal’s spectrum

analysis.

- Validating both deviation and correlation with respect to the reference method.

Section 3.2 gives a brief introduction and review of unobtrusive breathing monitoring literature,

along with the contribution and objective of this paper. We develop the methodology adopted

to build the BR prediction model and test it in section 3.3. We show and discuss the obtained

experimental results in section 3.4. In section 3.5, a conclusive observation based on the obtained

results is given, and future perspectives and open research areas are highlighted.

3.3 Methodology

The work-flow diagram presented in figure 3.1 shows the methodology we used in general steps.

Experiments were conducted on 12 healthy adults subjects to generate the pressure and belt data.

Using the pressure data, pixels corresponding to the sensors involved in sensing the breathing

activity were adaptively selected to reconstruct the raw breathing movements signal. Signal drift

was removed, and frequency filtering was applied to remove unwanted frequencies. An ANN

posture classifier was then used to detect posture, in order to adaptively select the Kalman filter

parameters based on the detected posture. BRs were then calculated from both kalman filtered

pressure sensor signal, and belt signal. The present section details hardware specifications, and

the steps adopted to acquire, pre-process, and analyze the data along with how the prediction

model was built and its parameters were initialized.
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3.3.1 System hardware

A pressure sensor mattress and a respiratory belt have been used simultaneously for data

acquisition. The pressure sensor mattress used is Tactilus® made by Sensor Products Inc (Sensor

Products). It consists of a rectangular bed-sheet containing a 2-dimensional matrix of 64 ×
27 textile made piezoresistive pressure sensors covering a total area of 1.95 x 0.863 m. The

mattress has a sampling frequency of up to 35 Hz and is connected to the workstation with a

USB cable or a Wi-Fi module for a wireless connection.

Several types of sensors, including piezo-electric, inductive, and capacitive, have been used in

the literature to monitor volume changes in such medical applications (Gal, 2011; Hoskulds-

son & Gudmundsson, 2015). The respiratory belt used our experiment is TN1132/ST made

by AD instruments (AD Instruments, 2019). It consists of an textile made belt that contains a

capacitive sensing element. The output voltage of the system is linearly proportional to changes

in the length of the sensing element. During inhalation, the abdominal volume increases leading

to an increase of the belt placed around this area, followed by a decrease in abdominal volume

and belt length during exhalation, leading to an increase in voltage proportional to the volume

change during inhalation and a decrease during exhalation. The belt sensor TN1132/ST has

been used and validated in research as a consistent measurement technique of the breathing

movements signal, and further has been used to calculate more specific parameters such as the

exchanged breathing volume (AD Instruments, 2019; Chalaye, Goffaux, Lafrenaye & Marchand,

2009). Its built-in signal pre-processing module and interface through the Lab-chart software,

helps removing induced noises during the experiments, which improves accuracy of detection.

The device is accessible, easy to deploy, and gives accurate measurements. The TN1132/ST is

widely used in research with references in more than 152 peer reviewed scientific articles (AD

Instruments, 2019).
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3.3.2 Experimental protocol

The conducted set of experiments has been certified as ethics-compliant. 12 healthy adult

subjects (2 females and ten males), mean age ≈ 27 ± 5 years, have participated in the experiments.

Weight and height inter-subject variability were intentionally high, to preserve a generalization

performance regarding body pressure images on the mattress. Hence, subjects’ body weights

and heights varied between 110 and 286 lbs, and 5 feet 1 inch and 6 feet 1 inch, respectively.

Gender unbalance are generally of no effects on the data, knowing that men and women have

similar body shape and weight distribution except for few variations slightly detectable in prone

position (Matar, Lina & Kaddoum, 2019). Subjects were recorded in 4 different postures for

5 minutes each: dorsal, prone, left and right lateral. Before the experiments started, subjects

were instructed to breathe normally during the acquisition, without trying to control the pace or

depth of their breathing. Breathing activity was monitored with the belt and the pressure sensor

mattress simultaneously.

During the experiments, the subjects were lying on the pressure sensor mattress covering the bed,

while wearing the respiratory belt around the umbilical region of their body. To make sure that

different variants of a specific posture were recorded, specific instructions were given to subjects

regarding the body and limbs orientations on the mattress during the recording in a way that a

high inter-subject variance is preserved for a specific posture, e.g., subject 1 lied on his right side

with his body curled and legs folded, while subject 2 lied on his right side with his body and

legs straight. An overall 12 variant of each of the 4 postures were recorded, combining different

limb and body position and orientation on the mattress. The dynamic body pressure distribution

on the mattress and the abdominal volume were acquired simultaneously with the two systems

at a unified 11 Hz sampling frequency. The 11 Hz sampling frequency was chosen based on

empirical trials, and the literature’s recommendations (10-11 Hz). Lower sampling frequencies

led to a poorer signal quality. The selected 11 Hz frequency we chose was in compliance with

previous methods that used the same sampling frequency (Jones et al., 2006).
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3.3.3 Dataset

The belt’s respiratory signal and the mattress’s pressure distribution data were saved using AD

instruments’ PowerLab and the Tactilus software. For the pressure data, 3D matrix was created

for each of the 12×4=48 recordings to save the pressure distribution data in a way that each

matrix contained the 64×27 2D pressure images stacked along the third dimension of a length of

5×60×11=3300 frames. The respiratory signal data for each of the 48 recordings was saved in

a 1x3300 1D array. Belt data was saved separately using a different 1D array containing the

breathing movements signal for each of the 48 recordings.

3.3.4 Data pre-processing

Band-power computation: out of the 1728 pressure sensors embedded in the mattress, only

some are involved in acquiring pressure information that is related to the abdominal volume

change due to the breathing activity. We performed a frequency analysis in a pre-defined

breathing frequency band to select pressure sensors that will be used to derive the breathing

signal. The signal band power of each pressure sensor that has positive pressure values (i.e.,

is under the subject’s body) is calculated on frequency band using the Welch power spectrum

density (PSD) estimation in the [0.14-1] Hz range as recommended by an observational studies

that included young adults (Garde, Karlen, Ansermino & Dumont, 2014). The Welch method has

been widely used to estimate PSDs of non-stationary signals (Lin & Qu, 2000). Time-windows

in which the band power frequencies are calculated have a 30 seconds length and a 50% overlap.

For each 30-seconds window, a band power map was computed for the pixels that correspond to

the sensors under the subject’s body.

Sensors selection and signal computation: only the pressure sensors that have a band-power

value lying in the 95th percentile were selected when computing the raw signal. For instance, at

each acquisition frame, the pixel values corresponding to the selected sensors were algebraically

summed to form the signal. In the next paragraphs, we describe how the resulting signal is
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pre-processed to improve its quality, then is fed to a Kalman filter to reconstruct the breathing

signal.

Signal’s logarithmic drift compensation: usually before the acquisition, the mattress surface

is at room temperature. When the acquisition begins, an increase of the temperature occurs in the

mattress region under the subject due to the body’s temperature (Meyer, 2008). This temperature

increase gradually occurs over a period of 5 to 10 minutes, according to several simulation trials

we conducted before data collection. Such increase is more likely to occur at the beginning of

the recording, and during posture changes or body movements that involve changing contact

areas between the mattress and the body. The temperature increase in such situations is induced

in a new area of the mattress, that is at room temperature initially, and becomes in contact with

the body that is at a higher temperature. Such temperature change affects the pressure sensors’

sensitivity to pressure, and a logarithmic drift is seen in the time-series output pressure values

leading to a logarithmic drift in the computed raw signal (Meyer, 2008). A polynomial curve

fitting method was adopted to eliminate this logarithmic drift before we calculate the sum of the

individual signals selected by the band-power method (Mecozzi, 2014).

Frequency-based signal filtering: the obtained signal was then filtered using a third order

Chebychev band pass filter with a bandwidth of [0.15-0.6]. The bandwidth was chosen to make

all the respiratory activity frequency range detectable, based on a review of related research

literature (Zhihao Chen,Doreen Lau, 2014). The bandpass filtering was performed to remove

1) the high-frequency components present in the signal due to the acquisition hardware noise,

and 2) the constant bias or the lower frequencies induced by slow movements which do not

correspond to breathing activities, or low frequency pressure variations caused by temperature

variation such as blanket use.
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3.3.5 Breathing movements signal prediction model

The motion-induced breathing movements signal s(t) can be modeled as a multi-sinusoidal

contribution (George, Vedam, Chung, Ramakrishnan & Keall, 2005; Lujan, Larsen, Bal-

ter & Ten Haken, 1999), thus:

s(t) =
N∑

i=1

Aisin(2π fit + Φi) + b1.t + b0, (3.1)

where s(t) is the signal model of the abdominal volume change induced by respiration, N is

the number of frequencies fi; Ai and Φi are the corresponding amplitudes and phases of the

sinusoidal components, respectively, and b1 and b0 are the linear and constant drifts, respectively.

The Kalman filter is governed by two equations:

1) The first describes the relationship l between Ck and Ck−1 given a process noise V (Eq. (3.2)).

V represents the error on the assumptions made when modelling the signal.

Ck = l(Ck−1, k) + Vk−1, (3.2)

where Ck is the sinusoidal components vector at instant k containing the states variables:

amplitudes Ak , frequencies fk , and phase shifts Φk of the sinusoids, and the coefficients b0,k and

b1,k which represent the constant and linear drifts of the signal over time.

Ramrath, Schlaefer, Ernst, Dieterich & Schweikard (2007), random drift could describe the

variation of the amplitudes and frequencies, but the phase shift could be modeled as a function

of the last frequency state added to a random variation, and the linear drift c1 varies randomly

as the constant drift c0 depends on the last c1. Equation (3.3) shows the relationships between
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these states in two consecutive instants.

(Ak)i = (Ak−1)i + (Vk−1)3(i−1)+1

( fk)i = ( fk−1)i + (Vk−1)3(i−1)+2

(Φk)i = (Φk−1)i + 2π( fk−1)iΔt + (Vk−1)3i (3.3)

b0,k = b0,k−1 + b1,k−1Δt + (Vk−1)3N+1

b1,k = b1,k−1 + (Vk−1)3N+2

Where Δt is the time difference between two consecutive measurements. For instance, the states

transition between two consecutive instants can be expressed as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Ak)i
( fk)i
(Φk)i
b0,k

b1,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦︸��︷︷��︸
Ck

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 1 0 0 0

0 2πΔt 1 0 0

0 0 0 1 Δt

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Ak−1)i
( fk−1)i
(Φk−1)i
b0,k−1

b1,k−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦︸������������������������������������︷︷������������������������������������︸
l(Ck−1, k)

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Vk−1)3(i−1)+1

(Vk−1)3(i−1)+2

(Vk−1)3i

(Vk−1)3N+1

(Vk−1)3N+2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦︸�������������︷︷�������������︸
Vk−1

(3.4)

Let the pre-processed respiratory signal extracted from the pressure sensor mattress be p. 2)

Inspired by the respiratory signal model shown in Eq. (3.1), the second equation of the Kalman

filter is the measurement equation, that describes the relationship between the states components

Ck and the measurement p as follows:

pk =

N∑
i=1

A(N)
k sin(2π f (N)

k Δt + Φ(N)
k ) + b1,kΔt + b0,k︸������������������������������������������������������︷︷������������������������������������������������������︸

d(Ck, k)

+ωk, (3.5)

where ω is the measurement noise that combines hardware and pre-processing induced noises,

and d(Ck, k) is the measurement model, that maps the measurements to the model’s state
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variables. Vk and wk are considered to follow zero-mean gaussian multivariate distributions,

uncorrelated, and their respective covariance matrices are Qk and Rk ∈ R(3N+2)×(3N+2).

In order to model the non-linear relationship between the measurement pk and the states

components (Eq. (3.4)), the extended version of Kalman filtering is used. It consists of

replacing l(Ck−1, k) and d(Ck, k) by their respective jacobians matrices Lk−1 =
δl
δC

���
Ck−1 |k−1,Δt,k−1

and Dk =
δd
δC

���
Ck |k−1,Δt,k

. Hence the transition matrices L and D can be expressed as stipulated

in Eq. (3.6). and Eq. (3.7), respectively, where Lk ∈ R(3N+2)×(3N+2), DT
k ∈ R(3N+2), and

i, j = 1, ...,3N + 2.

(Lk)i,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if i = j

Δt, if i = 3N + 1, & j = 3N + 2

2πΔt, if i = j + 1, & i ≡ 0 mod 3

0, otherwise

(3.6)

(Dk)i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin(2π(Ck)i+1Δt + (Ck)i+2), if i ≡ 1 mod 3&i ≤ 3N

2πΔt(Ck)i−1cos(2π(Ck)iΔt + (Ck)i+1), if i ≡ 2 mod 3, & i ≤ 3N

(Ck)i−2cos(2π(Ck)i−1Δt + (Ck)i) i ≡ 0 mod 3&i ≤ 3N

1, if i = 3N + 1

Δt, if i = 3N + 2

(3.7)

Hence, at instant k, for a time-window of δ samples, the prediction function could be expressed

as:

ŝk+δ =

N∑
i=1

A(N)
k sin(2π f (N)

k (1 + δ)Δt + Φ(N)
k ) + b1,kΔt + b0,k + ωk (3.8)
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3.3.6 Parameters selection and initialization

We describe in this subsection the parameters selection procedure concerning N , Q and R, and

the initialization applied to A, f , and Φ.

We set a fixed value of N = 10 that minimized the average Kalman RMS for each of the 4

postures, allowing up to 10 components to be taken into consideration, such as small irregularities

or ripples.

As the relationship between posture changes and the amplitude variation of the reconstructed

respiratory signal does not remain the same, including new types of noises both in the model

and the measurement, the model and measurement noise matrices are selected according to

the posture. We note Q and R the noise covariance diagonal matrices. Let q and r be the

coefficients values to be multiplied by the unit matrices to form Q and R respectively. Hence a

batch optimization procedure has been performed on each of the subjects for each of the four

postures, in order to determine the optimal values of q and r for each of the postures using an

exhaustive search. In order to detect posture to perform the q and r selection optimization, a

batch of pressure distribution frames in a 30 seconds epochs window is selected, posture is

identified in each of the frames, then the posture having the most votes out of the 4 is selected

as the corresponding posture for the current 30 seconds window. Then based on the identified

posture, Kalman filter parameters are selected and initialized accordingly to reconstruct the

breathing movements signal, in order to derive BRs.

In order to mitigate the effect of posture change on the relationship between the breathing activity

and the dynamic pressure distribution, we need to identify the posture, and adaptively choose

the right Kalman filter parameters, i.e., Q and R. In a previous work, we built an ANN posture

classifier using body pressure distribution data (Matar et al., 2019). The model was trained on a

dataset of 1116 pressure distribution frames collected as follows: from each of the 12 subjects,

23 frames were collected for each of the 4 postures. In order to preserve inter-frames variance

and the generalization performance of the classifier, subjects were given specific instructions

during the experiments to lay on the bed in different variants of each of the 4 postures. For
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instance, one of the prone posture variants was: right arm down (below shoulder), left arm up

(beside the hip), right leg unfolded, and left leg folded, or one of the right posture variants was

arms and legs folded, and curled up body. Also, orientation and location of the body on mattress

have been varied, e.g., body on the far left, far right, or body in a diagonal position relatively to

bed. The used ANN classifier consisted of a single hidden layer with 30 hidden nodes. The

training of the ANN classifier was done using the scaled conjugate back-propagation technique

with the CE as an evaluation criteria of the error. A feature vector containing the HoGs and LBPs

features. The feature vector, initially having a size of 579, was reduced to 46 using the singular

value decomposition based PCA, with an explained variance of 95%. Nested cross-validation

with an exhaustive outer loop has been applied to maintain both good prediction accuracy and

generalization performance. Hence, the algorithm takes as input the body pressure distribution

images and returns a label corresponding to one of the four state-of-art bed postures, i.e., prone,

dorsal, right, and left lateral. Prior to Kalman selection parameters, the ANN classifier model

was used to classify each of the postures in a 30 seconds windows, and votes were given to each

of the 4 postures. The posture having the most number of votes was chosen as a posture for the

30 seconds window, which allows to even improve classification performance by avoiding small

mis-classification probabilities, i.e., less than 3% for each of the four postures.

The raw respiratory breathing movements reconstructed as described in section 3.3.4 is used to

calculate the power spectrum density over a training window of M=30 samples. The first 10

most dominant frequencies, i.e., the frequencies having the highest amplitudes in the spectrum,

are set as initial values for fi, i = 1, ...,10. The corresponding amplitudes Ai were initialized as

the average signal amplitudes for the 30 samples window, and the corresponding phases Φi as

zero.

3.3.7 Validation methodology

We detail in this subsection the approach we adopt in order to validate the proposed model.

A conventional respiratory belt plethysmograph was used as a reference for validation during the

experiments. In order to compare our system to the plethysmograph, we derived BRs using both
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Table 3.1 Testing confusion matrix of the ANN posture classifier

Target class
Supine Prone Right Left

Output
class

Supine 96.8% 0.0% 0.0% 0.0%

Prone 0.0% 99.2% 1.0% 0.0%

Right 3.2% 0.8% 99.0% 3.3%

Left 0.0% 0.0% 0.0% 96.7%

Testing prediction accuracy: 97.9%

systems based on the following procedure:

(a) (b) (c) (d)

Figure 3.2 Body pressure distribution images of 4 postures:

supine (a), prone (b), left (c), and right (d)

The Fast Fourrier Transform (FFT) based power spectrum density was computed from the

Kalman filtered breathing movements signals derived from the pressure sensor system and the
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belt. The computation was performed on 30 seconds windows for each of the 12 subjects,

with a total recording length of 5 minutes, for each of the 4 postures, i.e., for each posture, a

total of 5
0.5 × 12 = 120 BR value for pressure data, and 120 for belt data to be compared. The

comparison between the two set of values was done using two metrics: 1) the PCC, that reflects

the linear correlation between the two measurements. Although giving insights about linear

relationship and how the measurement varies with respect to each others, the PCC does not show

the difference of the values measured, and is not recommended to be used for evaluating the

comparability between two measurement methods. Hence, 2) we use BA plots: BA analysis

is a well-established method of assessing agreement between two measurement methods in

order to validate if they could be used interchangeably without leading to practical problems

(Bland & Altman, 1986; Mantha, Roizen, Fleisher, Thisted & Foss, 2000).

3.4 Experimental results and discussion

In this section, we present and discuss the resulting parameters that were selected during

the experimentation, along with the obtained simulation results, and compare our results to

state-of-art studies addressing unobtrusive BR monitoring using bed-sheet pressure sensors.

The considered bed postures are shown in figure 3.2. Different variants of the same posture have

been recorded in the dataset, where the body and limbs orientation and location on the mattress

have changed between frames belonging to the same posture. The testing confusion matrix of

the used ANN posture classifier is presented in table 3.1 (Matar et al., 2019). A relatively high

true positive rate has been obtained when testing the model on new data, showing its accurate

classification performance. We additionally performed a Cohen’s Kappa calculation in order to

assess the reliability of the results and ignore the agreement by chance, we obtained a κ = 97.14%,

reflecting the high intended agreement. The advantage of using this classifier is its high classifi-

cation accuracy and its ability to separately classify prone and supine postures using both body
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Figure 3.3 BA plots for the BRs calculated over 30 seconds

windows for the 12 subjects (a color per subject) lying in each of

the 4 postures

shape and weight distribution by extracting both HoG and LBP feature vectors (Matar et al., 2019).



75

Table 3.2 Posture-wise optimal q and r coefficients

Dorsal Prone Right
Lateral

Left
Lateral

q 0.76 0.98 0.58 0.31

r 0.93 0.58 0.69 0.27

Table 3.2 presents the results of the exhaustive search technique used in order to find an optimal

choice of the value of both model and measurement noise matrices for each of the 4 detected

postures ,i.e., the ones that minimize the RMS value. Different ranges of RMS values have been

obtained for each of the postures with a relatively different extensity between minimum and

maximum RMS values.

The obtained differences between the optimal q and r values can be theoretically explained for

both Q and R matrices as follows: the error made on the assumption of modeling the respiratory

signal using a multi-sinusoidal model is indeed not the same for the 4 bed postures. For instance,

the variation of the body pressure distribution on mattress differs between right lateral and

prone positions, where the direct contact with the mattress is larger in the latter and the detected

changes are more pronounced, which explains the changes in both model and measurement

noises.

The BA plots of the BRs derived from both measurement systems for the 12 subjects lying in

each of the 4 postures: supine (a), prone (b), left (c), and right (d) are illustrated in Figure

3.3. This plot shows for each of the four postures, for each of the 12 subjects (a color per

subjects), the difference between the derived BR values using belt and pressure sensor mattress.

The Line of equality (LOE) line shows the constant value, at which the two measurements

are equal or have zero differences. The mean difference line d̄ shows the average difference

value between the two measurements. The LOA lines show the upper and lower limits of

agreeements, which were clinically predefined to set the maximum allowable differences between

the two measurement methods. The lower and upper LOAs are expressed as: d̄ − 1.96.SD,

and d̄ + 1.96.SD, respectively, where SD is the standard deviation. Although the clinically

accepted inter-rater limits of difference between two BRs measurement methods lie around ±
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Table 3.3 Existing methods that focus on breathing monitoring

during sleep using bed pressure sensors

Author
name,
year

Dataset Pressure
sensor type Methodology Validation

Number of
identified
postures

Results

Jones et al.
(2006).

n = 2,

adults,

tT = 13

hours.

24 fiber optics

sensors,

distributed on

24 x 90 cm.

Data driven

clustering of 24 RR

estimations.

No validation to a a

reference method.
Unspecified.

Average reliability:

88%.

Azimi

et al.
(2017).

n = 1

72 sensors,

uniformly

distributed

from head to

hip.

- PCC.

- Minimum-

Variance Dis-

tortionless Re-

sponse (MVDR).

Validation of the

correlation to belt

with regression.

1: supine.

- PCC: 97.16 %.

- MVDR: 96.7 %.

Gilakjani

et al.
(2018).

n = 2,

adults,

tT = 13

hours.

24 fiber optics

sensors,

distributed on

24 × 90 cm.

Movement

detection,

movement

suppression, and

sensor selection.

Validation with belt.

Comparison to (Jones

et al., 2006).

1: supine.

- Average reliabil-

ity: 75.92 %.

- Best average

PCC to belt

(SNR-max

method): 73.4

%.

Samy et al.
(2014).

n = 7,

tT = 50

hours.

8192 pressure

sensors,

distributed on

125 × 250 cm.

Sum of all pressure

values, and

frequency filtering.

Validation with belt. Unspecified.
No quantitative

results given.

Liu et al.
(2015).

n = 12

8192 pressure

sensors,

distributed on

125 × 250 cm.

Torso localization,

respiratory signal

extraction, and peak

detection.

Validation of TP RC

with visual inspection

from video

recordings.

3. No

posture

change

allowed.

Average percentage

of breaths detection:

97.63 %.

Our
method

n = 12,

m̂ =
27.35±5.39

1728 uniformly

distributed

pressure

sensors

Posture based

Kalman filtering +

BR computation

Comparison of BR

results to belt using:

- PCC

- BA analysis

4, supine

and prone

included,

posture

adaptive RR

estimation

Average PCC:

95.78%. Average

BR deviation with

95% CI: 1.76 BrPM

5 BrPM (Parker, Weir, Rubio, Rabinovich, Pinnock, Hanley, McCloughan, Drost, Mantoani,

MacNee & McKinstry, 2016), we decided to narrow this agreement limit to around 2.5 BrPM

in order to aim for more accuracy and consistency in the evaluation of the two measurement

values. As shown in the plots, the average derived BR values range from 6 and 23 BrPM, while

the maximum difference between the two sets of values, on a 95% of a confidence interval, is

around 2.47 BrPM, with an average of 1.93 BrPM. It is noteworthy that the d̄ line is relatively

close to the LOE, and that the LOE lies exactly in the middle distance between the two LOA
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showing that the absolute differences are approximately equally spreaded around the equality

line. The strong agreement between the two methods can be also regarded by inspecting the data

points spreading with respect to both the upper and lower limits of agreements. For instance, the

fact that the majority of the data points lie between these two limits shows that the difference

between the BR calculated from the two methods is bound to have a maximal value of 2.5 BrPM,

which is an acceptable value that lies within inter rater agreement according to clinical practices

(Parker et al., 2016). Previous methods of unobtrusive breathing monitoring using modalities

such as ZigBee have obtained a 95% of around 10 BrPM, which makes this method far more

accurate (Hillyard, Luong, Abrar, Patwari, Sundar, Farney, Burch, Porucznik & Pollard, 2018).

The same given remarks apply for each of the four BA plots of the BR derived from the two

methods for the subjects lying in the four postures, as illustrated in figure 3.3 (a), (b), (c), and (d).

Table 3.4 PCC values calculated on the BRs derived from the two

measurement methods for each of the four postures

PCC Dorsal Prone Right Lateral Left Lateral
93.51 96.29 97.61 95.69

The PCC values for each of the four postures are shown in table 3.4. With at least 93.51% of

PCC value, and a mean of 95.78%, the table shows the strong linear relationship between the two

sets of BR values, showing that our method of unobtrusively monitoring BR is highly linearly

correlated to the reference measurement.

A high agreement, and a high linear correlation, both established by the BA analysis, and by

the PCC calculation, respectively, show that the two methods could be used interchangeably

for the derivation of the BR. Being less obtrusive, more autonomous and convenient, and more

suitable for home use than the belt, the pressure sensor mattress is a reliable alternative to BR

monitoring.

Under-sampling the number of sensors used in the mattress by half introduced a bias, resulting

in an average maximum difference of BRs of 2.72 BrPM, instead of 1.93 BrPM when using the
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full sensors matrix. The posture detection was slightly affected by the under-sampling operation,

with a reduction of the average detection accuracy of 0.3%. We choose to use the full pressure

sensor matrix to the system, in order to preserve the minimal BrPM difference between the belt

and pressure sensor mattress.

It is noteworthy that, regardless of the posture, the measurements from both methods remained

comparable and consistent, which shows the posture-specific adaptive behavior of the proposed

model. This is due to both the posture recognition procedure implemented, and the sensors

selection used to reconstruct the breathing signal.

Table 3.3 shows an exhaustive review of the existing methods that focus on breathing monitoring

using bed pressure sensors, along with our method. In order to establish a set of comparison

criteria between the methods, it is crucial to take into account some considerations that will be

discussed in the subsequent sections.

3.4.1 Posture-adaptivity:

Tosses form an integral part of body movements on bed, which makes it important to validate

the ability of the model to estimate BRs while the subject is lying in the four postures due

to the dependence of the breathing induced pressure changes with the lying posture (Matar

et al., 2018,1). It is one of the main challenges that researchers have been facing for several

reasons, mainly, the ability to classify supine and prone postures separately while having a high

classification accuracy. This is a question we addressed in a previous work, by combining weight

and shape information in the classification task, which allowed us to deal with this problem and

propose a posture-adaptive BR estimation model. As shown in table 3.3, previous works have

either considered only one posture in the validation, or 3 postures at most (Liu et al., 2015),

excluding supine posture due to the shape similarity induced confusion with the prone posture.



79

3.4.2 Clinical validation:

Model validation has to meet clinical validation criteria. Some of the previous works have

whether missed validation to a reference method (Gilakjani et al., 2018), or validated with

respect to belt but gave no quantitative validation results (Samy et al., 2014), and others gave

only used PCC correlation, that shows that the methods are linearly correlated (Azimi et al.,

2017). Other methods validated with a percentage of detection breaths, giving no insights on the

correlation or linear relationship with a reference method used, neither on the false negative and

false positive detections, comparing only the total number of detection over a time window with

the reference method (Liu et al., 2015). In our paper, we derive the inter-rater agreement on BR

estimation by calculating the difference between our method and the conventional belt system,

and we show that the results are clinically accepted (Parker et al., 2016).

3.4.3 Inter-subject variance:

Body shape and weight distribution vary between different subjects, and hence, could have

an impact on the dynamic pressure distribution on the mattress. It is therefore important to

clinically validate the model on different subjects in order to grant a relatively high generalization

performance of the BR estimations. Previous works have validated their models with respect

to 1 or 2 subjects, except for (Samy, Huang, Liu, Xu & Sarrafzadeh, 2014), and (Liu et al.,

2015), where 7 and 12 subjects were recruited, respectively. In our experiments, we recruited 12

subjects, and made sure that equal recording duration was performed.

3.4.4 Pressure sensor mattress choice:

it is an important choice that could affect the prediction model due to the acquisition of incomplete

images of the subject’s body. This incomplete information does not allow the system to take into

account limb movements or body parts that are not covered by the mattress region, which makes

movement suppression and body posture recognition harder. For instance, previous works have

used pressure sensor mattresses that covered a part of the body, mainly between head and hip
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(Azimi et al., 2017; Gilakjani et al., 2018; Jones et al., 2006). Some researchers however, used a

very dense sensor matrix i.e., more than 8000 sensors distributed over the mattress region (Liu

et al., 2015; Samy et al., 2014) . In the benchmark stage of our project, we made sure that the

whole mattress area is covered, with a sufficient number of sensors to allow us to have reliable

predictions for both posture and BRs.

3.5 Conclusion and future perspectives

Monitoring breathing activity is a vital procedure for a wide range of medical applications.

We described and evaluated a new unobtrusive approach to monitor the BR using a bed-sheet

pressure sensors. The main contributions of this work consist in: unlike literature works, 1)

adaptively selecting and isolating the sensors reflecting breathing activity in the raw signal

reconstruction step, which reduces added noise and unwanted body movements pressure changes,

and 2) considering the posture effect in the model’s optimization step, which reduces posture

induced noise on the pressure-sensed abdominal volume changes. We validated the obtained

results to a belt sensor used as a reference using the BA plotting technique. We compared the

proposed method to state-of-the-art methods in the literature using several comparison criteria,

while presenting the validation procedure adopted and whether the posture was accounted for in

the experiments or not. Unobtrusive breathing monitoring using a pressure sensor mattress, could

be a potential solution for both home and clinical use. We demonstrated throughout the paper that

with proper signal processing, a pressure sensor mattresses could be used interchangeably with

respiratory belts. For information regarding the investment, a clinical unit has to made to acquire

the system, the reader could refer to the manufacturer’s website (Sensor Products). The system

requires no after-sale recurring expenses or periodic maintenance. The hardware consists in a

pressure sensor mattress, and a processing station to execute the model. The software consists in

the developed algorithm installed on the station and a control interface. The connection between

the mattress and the station can be accomplished using the Wi-Fi communication module or the

USB cable, which makes the application wider in several clinical places, e.g., where Wi-Fi is

not allowed, or a cable-less connection is required. The system could be used both in clinics or
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in the subject’s place as no clinical intervention is required during the data acquisition step. The

system could be used in parallel with other medical devices or sensors attached on the body.

The mattress contains elastic FSR sensors, powered by a low voltage (5 Volts), thus no potential

physical harm or discomfort could be induced by the mattress.

Future work has to focus on extending the proposed method on further applications such as whole

nights recording during polysomnographic procedures, which would give a push towards a wider

use of such unobtrusive hardware in applications such as sleep monitoring, hospital environment,

police custodies, elderly houses and at home for elderly and people with disabilities. In addition,

future steps would be addressing special clinical conditions such as gross body movements

that influence the signal’s quality for certain categories of patients. Moreover, customizing the

method to specific applications could optimally leverage its outcomes and serve the medical

community.
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4.1 Abstract

Objective: A variety of deep learning studies for automatic sleep stages classification exploit

data measured through conventional signal acquisition techniques, mainly PSG. In the light

of broad evidence demonstrating the potential of autonomic nervous system (ANS) based

physiological changes to be bio-markers for sleep stages identification, we propose to extend this

understanding to the yet-unexplored field of unobtrusive sleep studies using bed-sheet pressure

sensors. Methods: We present a sleep stages classification method using data acquired using

bed-sheet pressure sensors placed under the subject. An automated feature extraction step is

performed using three dimensional convolutional neural networks (3D-CNN). Experiments:

A whole-night recording experiments during sleep using PSG and bed-sheet pressure sensors

are conducted on 12 healthy adults subjects. A team of sleep technologists labeled the data

based on the American Academy of Sleep Medicine (AASM) scoring manual, giving a sleep

stage classification for each 30 seconds epochs. We propose a supervised deep learning

architecture, which we train, validate and test using this labeling. We compare the obtained

performance to state-of-the-art methods of unobtrusive sleep stages classification using bed-sheet

pressure sensors. Results: For a classification between 3 classes, namely Rapid Eye Movement

(REM), non-REM (NREM), and wake, we obtained an average classification accuracy of

74.27%, a precision of 72.54%, and a recall of 62.86%, which demonstrates the relatively high
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classification performance of the proposed method. Conclusion: Using the dynamic body

pressure distribution on a mattress, it is possible to identify sleep stages. Significance: We

argue that the proposed method could be a step towards unobtrusive sleep studies that require

less resources allocation. We give recommendations and practical steps for future endeavors

seeking to bring contributions to unobtrusive sleep studies using bed-sheet pressure sensors.

4.2 Introduction

Sleep studies are overnight tests that allow sleep professionals to monitor the brain and body

states during sleep. Over the last decades, PSG defined the clinical standard of studying sleep as

it has shown the promise of providing a reliable estimation of hypnogram, which is the cycling

diagram of sleep stages. Sleep stages are cyclic states in which specific physiological functions

occur (Douglas, Thomas & Jan, 1992a). The sleep architecture is formed by different sleep

stages, each characterized by specific physiological changes such as breathing irregularities or

body paralysis in REM stage. There exist 4 sleep stages: rapid eye movement (REM), and three

non-REM (NREM) stages: NREM1, NREM2, and NREM3 reflecting the progression from

lighter NREM1 to deep NREM3 sleep. Despite the consistent estimation of sleep stages that

PSG provides, the PSG suffers from a cumbersome acquisition protocol. For the patients, it is an

obtrusive investigation that requires attaching tens of cables and sensors to the body during sleep

for one or several nights, which affects the patient’s comfort and the sleep quality to be evaluated

(Byun, Kim, jin Moon, Motamedi & Cho, 2019). As a result, although the persistent increase of

sleep disorders in the world’s population, where at least one in two elderly experience disturbed

sleep, an excessively low willingness to resort to medical tests is documented (Charles, Mélanie,

Lynda, Hans & Chantal, 2011; Monane, 1992). Figure 4.1 illustrates the usually used sensors

for signal acquisition during PSG: the brain electrical activity, eyes movements, breathing, chin

and limb muscles activities, cardiac electrical activity, breathing induced chest and abdomen

movements, and blood oxygen saturation are measured using EEG, EOG, spirometer, EMG, ECG,

Respiratory inductance plethysmograph (RIP) or breathing belt, and oxymeter, respectively. For

the health-care system, PSG requires, after data acquisition and storage, and a sleep professional
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who spends hours to manually classify sleep stages by visually inspecting the recorded signals

in order to build a sleep hypnogram, a diagram showing the cycling of sleep stages during sleep.

Such factors made PSG an expensive test that requires a large amount of professional resources

and costs, and where there are long waiting lists before exam [9].

However, and most importantly, the non-ecological aspect of PSG remains the scientific barrier

to a natural sleep estimation. During a PSG investigation, the body and the brain are exposed

to new conditions i.e., room, temperature, mattress, pillow, and at least 22 sensors and cables

attached on the body. This prevents the sleep stages estimation and sleep evaluation in natural

conditions, and leads to adding physiological biases to the test. For instance, when we evaluate

the sleep quality of a subject in the PSG lab, it is most likely that the subject actually sleeps

better at home, in natural conditions. The sleep, being the unique period of time where the

brain is freely operating, lessening perturbations and constraints on its operation could provide

unexplored information. Here comes the importance of developing an unobtrusive home sleep

monitoring method that could allow to explore the unexplored aspect of natural sleep. Based on

the aforementioned description of PSG, two main problems need to be addressed in the current

form of sleep evaluation, where each problem is related to a different phase of the test. First,

the cumbersome acquisition protocol needs to be the less obtrusive as possible. This can be

accomplished by finding means of reducing the number of sensors and cables attached on the

body, and try to do the test at home, where the subject’s sleep is natural and more representative

of the real sleep. And second, in the post-acquisition step, the sleep stage classification needs

to become less time and resources consuming. This can be accomplished by developing an

automatic classification method that is tested and validated with respect to PSG labeled data,

which avoids sleep technicians spending hours to score a sleep night manually.

Therefore, to address the two problems, a prominent research line has came to light, aiming to

make sleep tests less obtrusive by investigating several approaches, ranging from the way the

physiological data is measured, to how the sleep staging is performed.

In this context, in our previous work (Matar et al., 2018), we shown how researchers have

explored new sensors and materials, such as cameras and actigraphy monitors, to unobtrusively
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Figure 4.1 Conventional PSG acquisition protocol and sensors placement on the body

measure physiological data during sleep, and consequently reduce 1) the number of sensors and

cables attached on the body, 2) the constraints on body movements during sleep, and 3) general

obtrusivity for the subject being monitored. These techniques have reached industrial gates and

leaded to a global sales convincing a large number of subjects the promise of having sleep stages

classifications at home (Philips). The main problem of usual available techniques, as discussed

in details in (Matar et al., 2018), is the lack of exhaustive clinical validation with respect to the

gold standard, i.e, PSG. This has been an important barrier for such methods which prevented

them from being deployed in clinics and adopted as alternatives to conventional acquisition

protocols, or be classified as medical devices.

On the other hand, further efforts have been made to automate the classification of sleep stages

once the data is acquired using PSG apparatus (Boostani, Karimzadeh & Nami, 2017). In

this vein, both, model-based methods relying on the exploration of temporal and frequency

domains of physiological signals, and data-driven models using machine learning algorithms

(Biswal, Kulas, Sun, Goparaju, Westover, Bianchi & Sun, 2017; Chambon, Galtier, Arnal,

Wainrib & Gramfort, 2018; Mikkelsen & de Vos, 2018), have shown the promise of reliably

providing an estimation of sleep stages in clinical environments. The potential application of
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such systems is the deployment in a semi-automatic configuration, where the sleep professional

has to approve the output of the classifier in order to make a final sleep stages classification

(Anderer, Gruber, Parapatics, Woertz, Miazhynskaia, Klösch, Saletu, Zeitlhofer, Barbanoj,

Hopfer-Danke, Himanen, Kemp, Penzel, Grötzinger, Kunz, Rappelsberger, Schlögl & Dorffner,

2005; Punjabi, Shifa, Dorffner, Patil, Pien & Aurora, 2015). As a good clinical validation has

been accomplished, these algorithms help in the automation of sleep stages classification for the

professionals; however, the main problem of these solutions is that, since the conventional PSG

signals are still used in these solutions, the cumbersome acquisition protocol that PSG imposes

on the subjects being monitored remains unsolved, despite the sleep stages classification task

being automated.

Recent studies have started to clinically validate with respect to PSG, a number of unob-

trusive sleep stages classification methods (Kalkbrenner, Brucher, Kesztyüs, Eichenlaub,

Rottbauer & Scharnbeck, 2019; Rao, Ali & Cesar, 2019; Samy et al., 2014). Sensors used

during data acquisition include accelerometers, actigraphs, microphones, ballistocardiographs,

and bed-sheet pressure sensors. With the introduction of artificial intelligence, and the ability to

leverage big data in the automation of prediction and classification tasks, this research direction

has gained researchers’ interest. As we later discuss in section 4.4, the field remains in its early

stages, and so do the presented literature results, which prevented to-date proposed methods

from reaching clinical applications.

In this paper, we aim to contribute to the unobtrusive sleep stages classification field using bed-

sheet pressure sensors. We propose and validate a solution that tackles both of the aforementioned

problems, by reducing the acquisition protocol intrusiveness, while automating the sleep stages

classification task. Instead of the cables and sensors attached on the body in the conventional

PSG procedure, we placed a bed-sheet containing textile pressure sensors under the subject’s

bed-sheet, and monitor the dynamic body pressure distribution on the mattress. Simultaneously

with the acquisition of the body pressure distribution on the mattress, a PSG recording served as

a reference in order to generate sleep stages labels and supervise the model learning task. A deep

ANN classifier architecture is proposed, where the classifier consists of a 3D CNN to extract
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spatio-temporal features from the data, and a multi-layer perceptron for further classification.

The main contribution of this paper is a validated method of unobtrusive sleep stages classification

using bed-sheet pressure sensors. Other key sub-contributions can be summarized as follows:

- The simultaneous measurement and exploration of the body pressure distribution on a

mattress and polygraphic signals in a sleep clinic on 12 healthy adults using bed-sheet

pressure sensors and a PSG system connected according to AASM rules.

- Proposition of a new feature extraction to explore the body dynamics on a mattress in all

three dimensions of a 3D-CNN, and leveraging this information in classifying sleep stages.

We show the difference of considering the body physical activity and the body pressure

distribution on the mattress, and we discuss the relevant information that each provides in the

context of sleep stages classification.

- Designing and testing a new 3D-CNN architecture followed by an artificial deep neural

network to classify sleep stages using the body pressure distribution on mattress.

- Showing state-of-the-art results in unobtrusive sleep monitoring and sleep stages classification.

- Giving key recommendations for future endeavors based on the challenges and limitations

we faced in our experimentation, in order to improve and yield better results in unobtrusive

sleep monitoring.

The subsequent sections are structured as follows: section 4.3 describes the methodology

including data acquisition, pre-processing, and feature extraction, the learning model, and

validation procedure. Section 4.4 presents the simulation trials we conducted and the obtained

results. A discussion of the results and a comparison to the state-of-the-art works that are

based on pressure distribution data to classify sleep stages are also presented. In section 4.5,

concluding remarks and recommendations are given, along with future perspectives and open

related research areas are highlighted.
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Figure 4.2 Work-flow diagram of unobtrusive sleep stage classification using

bed-sheet pressure sensors

4.3 Materials and methods

The work-flow that leaded to the proposed model design and validation is illustrated in a diagram

in Figure 4.2. The proposed model uses a 3D CNNs applied on a dataset of body pressure

distribution on mattress. The data was collected in a PSG procedure where the body pressure

distribution was measured simultaneously. The proposed model is trained, validated, and tested

on never-seen data recorded from new subjects. In this section, we describe the methodology and

materials used in the proposed method, namely subjects selection and recruitment, data collection,

preprocessing, model design and selection, and criteria selection for results comparison to

state-of-the-art methods.

4.3.1 Subjects recruitment

As the aim here was to prove the existing correlation between body and limb movements, and

breathing activities with sleep stages, 13 healthy adults were recruited to sleep a whole night at

the center for advanced research of sleep medicine in order to collect the data. For instance, a data

with healthy sleep patterns prevents learning biased or alternated hypnograms, affecting training

and validation of the model. A certificate of ethics (Number: 2018-1481) was obtained from

the ethics committee of the hôpital Sacré-Cœur de Montréal hospital. Subjects were excluded
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if they were younger than 18 or older than 45, having sleep, psychological or neurological

disorders, and under medication. Prospective subjects had to go through a screening interview

at least one week before the experiment in order to assess their sleep quality and make sure

they were admissible. During the interview, subjects answered the The Pittsburgh sleep quality

index (PSQI), a standard self-rated questionnaire which we used to assess sleep quality and

disturbances in subjects over the last week (Buysse, Reynolds, Monk, Berman & Kupfer, 1989).

Only subjects that had no sleep disorders in general or disturbances over the last week were

included to participate in the experiment. Selected subjects were asked to keep normal physical

activity and eating habits, and reduce as much as possible caffeine and alcohol intakes. To

make sure that sleep quality is maintained regular and normal, one week before the experiments,

subjects had to answer daily morning and evening questionnaires to describe their day and night,

regarding sleep, physical activity, irregular somnolence, fatigue, caffeine, and alcohol intakes.

Because the experiment consisted of a one night sleep per subject, this night served both for

screening and recording. For instance, due to a sleep disordered breathing, one of the subjects

had during the experiment, the collected data was excluded from the study, and the data of the

12 remaining subjects was stored for processing.

4.3.2 Materials and experimental procedure

PSG and bed-sheet pressure sensors were used in the whole night experiments in the sleep clinic

as follows:

Bed-sheet pressure sensors: placed under the subject, the bed-sheet pressure sensors is used to

measure the dynamic evolution of the body weight distribution on the mattress. The bed-sheet

pressure sensors used is Tactilus® made by Sensor Products Inc (Sensor Products). It consists of

a rectangular bed-sheet containing a 2-dimensional matrix of 64 × 27 textile made piezoresistive

pressure sensors covering a total area of 1.95 x 0.863 m. The mattress has a sampling frequency

of up to 35 Hz, where 8 Hz was used in the acquisitions. The mattress is connected to the

workstation with a USB cable or a Wi-Fi module for a wireless connection. The software

interface allows to export data in various file formats including comma separated values (CSV)
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files.

PSG: the PSG system used is Xltek® Brain Monitor Amplifier by Natus® technology (Natus).

The system allows 50 electrodes inputs to be recorded simultaneously. The sampling rate we

used was 512 Hz, According to the recommendations of the American Society of Sleep Medicine

(AASM), and the data acquisition protocol adopted in the laboratory, the following signals were

recorded in order to be able to label sleep stages for every 30 seconds epoch (Berry et al., 2018):

- ECG: measures the cardiac activity. Two standard ECG electrodes were applied in a modified

lead II format adopted in the Einthoven triangle, i.e., one electrode is placed under the right

collarbone and one near the left hip.

- EEG: measures brain activity, which is the main biomarker for tracking wakefulness, bursts

and sleep stages. 8 glued scalp electrodes were used in the following referenced montage:

F3-A2, F4-A1, C3-A2, C4-A1, O1-A2, O2-A1.

- EOG: measures eye movement to identify the onset of sleep by monitoring slow eye

movements that occur with the transition to NREM1 stage. In addition, EOG data is used

for the characterization of REM sleep stage, also called paradoxical sleep, where rapid eye

movements take place. Two electrodes are placed 1 cm above the outer canthus of one eye,

and 1 cm below the outer canthus of the other. The placement distance of the 2 electrodes

must be the same with respect to each eye canthus (symmetrical).

- Chin EMG: determines the level of muscle tone, which significantly decreases during

REM sleep and can also be reduced with the onset of sleep. This channel also provides

additional information on the movements and excitation levels of patients and can be useful

for distinguishing the artifact in other channels. Here, 3 chin EMG electrodes were used: 1

at the center of the chin and the other 2 on each side ± 2 cm away from the center electrode.

- Legs EMG: additional causes of sleep disorders that need to be identified and treated

are periodic limb movements during sleep (PLMS). These movements are often visually

detectable during the monitoring process of the anterior tibial muscles which allows to

determine the severity of the disorder by quantifying the rate of movements as well as the
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correlation with EEG awakening. We recorded leg EMG to exclude subjects having PLMS

from the study as we intend to collect data from sleep disorders-free subjects. A PLMS index

greater or equal to 10 per hour associated with micro-arousals lead to discarding the data of

the subject. Here, 2 EMG electrodes were placed longitudinally on the anterior tibial muscle

of each leg and secured with tape.

- Flow and snore sensor: used during standard PSG to monitor breathing, and specifically

the occurrence of events such as respiratory effort related arousal (RERA), apneas, and

hypopneas. 1 oronasal thermistor, as well as a cannula on the nose, were placed at the nostrils

entrance. The apnea-hypopnea index (AHI) is the average number of apneas and hypopneas

per hour of sleep. An AHI greater or equal than 15 per sleeping hour leads to an exclusion of

the subject from the study. Apneas were measured using the oronasal thermistor and the

hypopneas using a canula.

- Respiratory belts: used to calculate RERAs and assist the detection of other sleep-related

breathing events such as helping determine the nature of apnea events, when they occur, and

whether they are central, obstructive, or mixed. One belt is placed around the rib cage under

the armpits and the other around the abdomen at the level of the umbilicus (belly button).

- Microphone: records sounds associated with snoring behaviors. Snoring can be an indicator

of sleep disordered breathing (SDB) disorders. A snoring microphone was attached on the

neck.

- Pulse oxymeter: measures oxygen saturation in the blood (spO2). SpO2 helps detect a drop

of oxygen level in the blood which could be the result of apnea or hypopnea events or other

sleep breathing problems. A spo2 sensor was attached on the index finger. Fs = 25 Hz.

- Camera: records a continuous visual display of the patient sleeping with no lights using

infrared sensing.

Subjects wearing their usual sleep clothes, slept one night each between 7 and 9 hours, with

an an average of 7 hours and 41 minutes ± 24 minutes per subject. During the night, data was



93

collected and stored simultaneously using the bed-sheet pressure sensors and the PSG systems.

A sleep professional monitored the real-time progress of the experiment in order to make sure

that the recording went as planned, and that special events are reported in a subject-specific

experiment report.

Figure 4.3 Pressure images in the first row and differences of

pressure images in the second row for dorsal (a), prone (b), right (c),

and left (d) positions. Image dimensions are in pixels, and colorbar

unit is PSI

Subjects were allowed to use the toilet during the night, after being disconnected from the

PSG system by the sleep professional. In order to form the so called hypnogram, a sleep

professional inspected the collected PSG data and classified sleep stages during the night by

giving a numerical value corresponding to one of the 4 categorical labels: light sleep (NREM1

& NREM2), deep sleep (NREM3), REM, Wake, or Interruption (disconnection from PSG), to
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each 30 seconds time segment. Pressure data and PSG labels were extracted and stored in csv

file formats and stored for processing.

4.3.3 Data pre-processing

Table 4.1 shows statistics related to both the physiology and sleep parameters of the 12 subjects

included in the experiment. The parameters shown are age, sex, height, weight, body mass index

(BMI), sleep latency (SL: the number of minutes subjects took to switch from being awake to

falling sleep), TST (the number of minutes subjects spent in bed), and the sleep efficiency (SE:

evaluated as the ratio between the time slept and TST).

Table 4.1 Average age, height, weight, BMI, SL, TST, SE

calculated for the 12 subjects

Metric Value (Mean ± standard
deviation)

Age (years) 24.1 ± 3.78

Sex 6 males, 6 females

Height (m) 1.694 ± 0.10

Weight (Kg) 67.89 ± 10.41

BMI (Kg/m2) 23.62 ± 3.05

Sleep latency (Mins) 16.8 ± 23.59

TST (Mins) 461.25 ± 24.27

Sleep efficiency (%) 91.88 ± 7.64

Data were collected and stored in 30 seconds windows separated intervals called epochs. The

stored data was cleaned by removing epochs where the subject was not, for some reason, on

the mattress and/or disconnected from the PSG for the complete epoch. In order to account for

future unseen data processing, an automatic cleaning method was implemented to remove the

epochs that have been labelled by the sleep professional as interruption and, epochs where the

sum of pressure values given by the 64 × 27 = 1728 sensors was less than 10% of the sum of

presssure corresponding to an average body weight, i.e., 255 PSI. Due to the hardware nature

of the bed-sheet pressure sensors, and random mattress folding, very low pressure values can

still be detected even if the subject is not on the mattress, which explains the aforementioned
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10% threshold value, in order to rise the good detection of a body on the mattress. Overall, 40

epochs were removed from the data during the cleaning phase. The clean data contained a total

of 11525 epochs. Due to imperfections in the sampling frequency setting of the pressure sensor

mattress, the number of frames per epochs varied between 231 and 240. To unify the epochs’

third dimension in order to use unified convolution operations, we retained only the first 231

frames of each epoch for analysis. Hence, each epoch, or sample consists of a 30 seconds of

data, namely a (231 x 64 x 27) 3D matrix or video containing 240 pressure images stacked along

the third dimension, and a categorical label indicating the epoch’s sleep stage.

The clean dataset consisted of 11640 samples, with an average of 970 ± 51 sample per subject.

Dynamic body pressure distribution gradient images:

The main physiological behaviors that we aim to quantify and explore in this work are the

breathing activity and the dynamic body state which includes body and limb movements,

acceleration, or absence of movements. The collected pressure data contains two dimensional

images of the body over time stacked in the third dimension. Therefore, only the third dimension

gives information about the variation of the body pressure distribution over time, while the first

two dimensions give information about the posture on the mattress. Considering the fact that

the body posture feature doesn’t have the sleep stages discriminating power that breathing and

physical activity (such as breathing movements and body and limbs movements) have, we chosen

to use the three dimensions to explore body dynamics in the following way: the difference

between consecutive pressure images was calculated to form the new pressure data-set. Such

information represents for each pixel value p(t, x, y), where the t is the frame number from 1 to

230, x and y are the pixel locations on the mattress, represents the velocity of movements, or

the first gradient �p(t, x, y). The new data set contains epochs of 230 frames (difference between

consecutive 231 frames). Hence the resulting data consists of two dimensional images containing

the amplitude and location of the pressure variation, hence movement on the mattress, including

the body, limbs, and breathing-related chest area. The pressure amplitude variation of these

images stacked in the third dimension is the second order gradient, or the acceleration, that

represents the variability of the detected movements over time, which further helps explore the
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dynamic aspect of the body over time. As a result, the new data-set provides information on the

physical activity in three dimensions, and is ready to be explored using the 3D-CNN in order to

form higher dimensional feature maps and classify sleep stages accordingly. Figure 4.3 shows

pressure images in the first row and differences of pressure images in the second row for dorsal,

prone, left, and right positions. As depicted in the image, depending on posture, the highest

pressure areas in the pressure images are usually associated to pelvic and/or shoulders. However,

it is not the case for pressure difference images, whereas the highest pressure areas correspond

to the chest and limb areas, where movement occurs most frequently, i.e., breathing induced

activity and limb movements.

4.3.4 Network architecture

We propose a 3D-CNN model for sleep stages classification using differences between consecutive

images of the body pressure distribution on the mattress. The architecture consists of multiple

3D convolutional layers used for spatio-temporal feature extraction, followed by a deep neural

network made of multiple dense layers, and a three classes soft-max activation function for

classification.

Data is fed to the network in a 3 dimensional matrices format representing 30-seconds samples

of pressure images. Let a data sample be X ∈ IRs,k,d,r,c, where s = 12 is the number of subjects,

k is the number of video samples per subject, d = 230 is the number of pressure differences

frames per sample, r = 64 is the number of rows, and c = 27 is the number of columns in a

frame. Figure 4.4 shows an illustration of the network. Several network architectures were tested

to obtain a relatively high performance based on the obtained accuracy metrics in the validation

and testing.

The model consists of three convolutional stages.

The output shape of each layer is illustrated in table 4.2, where None represents the variable

number of samples (epochs of 230 frames), a,b and c the volume size, and d the number of layers

in (None,a,b,c,d) notation. While each stage has its own number of 3D-CNN kernels (16, 16,

and 32 respectively), a unique architecture was adopted for the three convolutional stages, which
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16 16 16

Convolution + ReLu

32 32 32

Layers

Normalization

Maximum pooling

Fully connected + ReLu
Dropout=50%

Fully connected + Softmax
Flattened feature vector

-Conv3D:
16 x(3,3,3), s=1
-ReLu
-Batch norm
-Maxpool:
16 x(3,2,2), s=2

-Conv3D:
16 x(4,4,4), s=1
-ReLu
-Batch norm
-Maxpool:
16 x(3,2,2), s=2

-Conv3D:
32 x(3,3,3), s=1
-ReLu
-Batch norm
-Maxpool:
32 x(3,2,2), s=2

1024 128 3

NREM

REM

Wake

Sleep stages

Automatic feature extraction Deep neural network ClassificationData input

230x64x27

Feature input Dense layers

Matrices of 
pressure differences

16 16 16

Figure 4.4 Classification network’s architecture: 3D-CNN + deep

ANN layers

can be described as follows: three dimensional filters with a (3 × 3 × 3) kernel size, a stride of

(1 × 1 × 1), and a same padding were used to extract spatio-temporal feautres. A rectified linear

unit (ReLU) was used as the activation function given by (He, Zhang, Ren & Sun, 2015):

f (x) = max(0, x)

. The main advantage of using ReLU lies in its ability to bypass the vanishing gradient problem

in the optimization step, and where a faster convergence is more likely to occur.

A batch normalization was applied on the activation function’s output. In a batch normalization

procedure, each batch of data is normalized by subtracting its mean and dividing by the square

root of its co-variance for each of the batch samples. Batch normalization was shown to improve

and speed-up the learning process while having a slight regularization effect as it adds some

noise to each layer, which reduces over-fitting. In addition, batch normalization allows each

layer to change its weights more independently from other layers (Ioffe & Szegedy, 2015). A

three dimensional maximum pooling layer was added after the normalization layer. Maximum

pooling consists of down-sampling the input feature by binning over striding windows in order

to make assumptions and extract features while lowering the data dimensionality. A maxpool
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Table 4.2 Detailed summary of the output shapes of the

classification network’s layers

Layer (type) Output Shape
InputLayer (None, 230, 64, 27, 1)

conv3d_1 (None, 230, 64, 27, 16)

batch_normalization_1 (None, 230, 64, 27, 16)

max_pooling3d_1 (None, 115, 32, 14, 16)

conv3d_2 (None, 115, 32, 14, 32)

batch_normalization_2 (None, 115, 32, 14, 32)

max_pooling3d_2 (None, 58, 16, 7, 32)

conv3d_3 (None, 58, 16, 7, 32)

batch_normalization_3 (None, 58, 16, 7, 32)

max_pooling3d_3 (None, 29, 8, 4, 32)

flatten_1 (None, 29696)

dense_1 (None, 1024)

activation_1 (None, 1024)

batch_normalization_4 (None, 1024)

dropout_1 (None, 1024)

dense_2 (None, 128)

activation_2 (None, 128)

dropout_2 (None, 128)

dense_3 (None, 3)

activation_3 (None, 3)

size of (3 × 2 × 2), a strides of (2 × 2 × 2), and a same padding are used. The output of the

convolutional layers is flattened into a feature vector and fed to a three layers fully connected

neural networks having 1024, 128, and 3 nodes, respectively. Each node of the fully connected

layers is connected to a ReLU activation function, and a 50% dropout layer. Dropout layers

randomly select a percentage of the hidden nodes in a layer while ignoring the remaining nodes.

Dropout layers have a regularization effect as they ensure that every data point is used in the

training of a random subset of the hidden neurons. Hence, for a specific layer, the network

is trained by averaging an ensemble of individual neural networks, instead of the whole layer

nodes in a single network. The final stage of the classifier consists of a three nodes output layer

followed by a softmax activation function for classification of the three sleep stages, i.e., REM,

NREM, and wake.
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Table 4.3 Model training parameters and computational resources

Weights initialization Convolutional/ Dense layers Xavier uniform
Batch size Training/Testing 4

GPU Brand Nvidia Tesla P100

Memory 12 GB HBM2

Number 4

CPU Brand Intel® Xeon® Processor

E5-2650 v4

Memory 123 GB Ram

Frequency 2.2 GHz

Number 6

Loss function Type Categorical CE

Focal loss: γ
Class-weighted: α

Early stopping Patience 10

Monitored value Validation loss

Stopping threshold 0.001

Optimizer Name Adam

Learning rate 0.001

Beta 1 0.9

Beta 2 0.999

4.3.5 Model training

The network’s learning parameters and the computational resources used for the training are

shown in table 4.3. Xavier uniform initialization was used to initialize the weights of the

convolutional and fully connected layers at the beginning of the training. The Xavier uniform

initialization consists of drawing random samples from a uniform distribution within −l and

+l, where l =
√

6
fin+ fout

, fin and fout are the number of input and ouput units (Glorot & Bengio,

2010). A batch size of 4 samples was used in the training to fit the available computational

capacity. We used four Nvidia Tesla P100 graphical processing units (GPUs), with a memory

of 12 GB HBM2 each, and six Intel® Xeon® Processor E5-2650 v4 central processing units

(CPUs) rated at 2.2 GHz, with a 123 GB-RAM of memory.
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The loss function used to adjust weights during training is the categorical CE function:

−
3∑

c=1

yo,c log
(
po,c

)
(4.1)

where o is the current observation, c is the class, yo,c is equal to 1 if the classification is correct

and 0 if not, and po,c is defined as follows:

po,c =

⎧⎪⎪⎨⎪⎪⎩
p if yo,c = 1

1 − p otherwise
(4.2)

where p ∈ [0,1] is the predicted probability that observation o belongs to class c. Two weighting

factors αo,c, and
(
1 − po,c

)γ
, were added to the loss function presented in equation (4.1). αo,c is

the class weight factor, used to equalize the weight of the three classes which is imbalanced due

to the non-equal number of instances between the three classes in the data-set. For a given class,

αo,c =
nβ
nc

, where nβ is the number of instances in the classes having the largest proportion of

instances, and nc is the number of instances in the current class c.
(
1 − po,c

)γ
allows to further

reshape the loss function in order to down-weight samples that are easily classified (obvious),

and give more weight to harder samples, hence giving a higher chance for these samples to be

accurately classified. The resulting loss function is written as follows:

−
3∑

c=1

−αo,c
(
1 − po,c

)γ
log

(
po,c

)
(4.3)

Following training trials and literature recommendations, we used γ = 2 (Lin, Goyal, Girshick,

He & Dollar, 2017). An early stopping technique was adopted as a regularization step in order to

help prevent over-fitting. The validation loss was monitored over the model training procedure,

and the model was told to stop learning when loss on the validation set has decreased by less

than 0.001 over 10 epochs, even if the training loss is still decreasing. In such areas in the loss

function, the loss is likely to stay stable or even increase if not stopped (Girosi, Jones & Poggio,

1995). The optimizer used to minimize the loss function is Adam (Reddi, Kale & Kumar,

2018). According to Goodfellow et al, Adam’s algorithm combines the advantages of other
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optimization algorithms and is generally robust to the choice of hyper-parameters (Goodfellow,

Bengio & Courville, 2016).

4.4 Experimentation results and discussion

Training (11) Testing (1)

Full data (12 subjects)

Training
(10)

Validation
(1)

Selected training data in outer loop 1:

Inner validation: train/validate splitOuter validation: Leave one subject out cross validation

Figure 4.5 Leave one subject out cross validation scheme

In order to train, validate and test the model, the data was split into three subsets: training,

validation, and testing sets. The subject label is preserved in the training process in order to make

sure that the network model’s performance is validated and tested on never-seen subjects. The

validation scheme is illustrated in figure 4.5. Leave one subject out cross validation (LOSOCV)

was used, where twelve different data splits were used to train and test the model, leaving one

subject for testing. In each data split, one out of the eleven subjects’ data used for training was

used for validation in order to optimize the model’s parameters on a new subject’s data. This

validation paradigm was shown to evaluate the model’s generalization performance where the

obtained classification results are not subject dependent (Arlot & Celisse, 2010).

In order to calculate the average performance of the classifier, percentage confusion matrices

were calculated for each of the LOSOCV splits, then the average confusion matrix was calculated

by multiplying the average percentage confusion matrix by the average number of sample per

subject. An overall average classification accuracy of 74.27% was obtained, with a precision

of 72.54% and a recall of 62.86%, showing the relatively high classification accuracy of the

proposed method. In order to assess the reliability of the results, and take into account the

agreement by chance, we performed a Cohen’s kappa calculation. The obtained testing Cohen’s
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Kappa coefficient was 45.4% which reflects a moderate intended agreement (Landis & Koch,

1977).

In the following paragraph, we compare the obtained results to the literature. We class literature

methods of unobtrusive sleep monitoring in two categories: 1) general monitoring methods,

which include sensors such as actigraphs, microphones, accelerometers, and ballistocardiographs,

and 2) bed-sheet pressure methods, that compare more to our method. To the best of our

knowledge, one research paper has presented a method for the unobtrusive classification of sleep

stages using bed-sheet pressure sensors. Precisely, Samy et al have interestingly used bed-sheet

pressure sensors to estimate sleep stages using handcrafted features (Samy et al., 2014). They

manually calculated the respiration rate, respiration rate variability, number of leg and body

movements, posture, and body orientation features for each 30 seconds epoch. The extracted

features were fed to the classifier in order to estimate three sleep stages Wake, REM, and NREM.

Before comparing and discussing our and their approach, we briefly present the results. Table

Table 4.4 A comparative table showing the average confusion

matrix we obtained, and the precision and recall values using our

method and those obtained by Samy et al. (2014) for two-stages and

one-stage classifications

Predicted

Wake NREM REM Our Precision

Precision by

Samy et al:

2 stages

classification

Precision by

Samy et al:

1 stage

classification

A
ct

u
al

Wake 59.34 25.40 1.82 69.41% 87.84% 79.41%

NREM 48.99 540.27 131.66 75.10% 27.45% 7.84%

REM 7.642 36.71 117.97 73.12% 55.88% 23.52%

Our recall 51.75% 89.85% 46.98%
Recall by

Samy et al:

for 2 stages

classification

100% 38.18% 17.43%

Recall by

Samy et al:

for 1 stage

classification

96.17% 10.61% 5.97%
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4.4 illustrates the average testing confusion matrices using LOSOCV, obtained by Samy et al

for Support vector machines (SVM) based (a) two stage, and (b) one stage classification, and

(c) for the confusion matrix we obtained using the approach proposed in this paper. Moreover,

detailed evaluation metrics are given i.e., precision and recall values for each of the classes. Due

to the different sample size considered for each subject, percentage confusion matrices were first

calculated for each of the LOSOCV splits, before being averaged and multiplied by the average

number of samples per subject.

As shown in table 4.4, a better overall classification performance was obtained, and a less severe

precision and recall disparity between classes due to the data’s class-imbalance. In order to

understand the results, we show: the number of the subjects recruited in the data nS, the ratio

of the number of males and the number of females rMF , the data size represented by the total

number of recording hours collected from all subjects nH , the bed-sheet pressure sensors type

and density, i.e. number of sensors embedded in the mattress, the feature extraction technique,

the classification method, and the obtained results: accuracy, precision, and recall. It is noted

that the results presented in table 4.4 correspond to the SVM algorithm presented in table 4.5.

Table 4.5 presents a comparison of method along with the obtained results for both general and

bed-sheet pressure sensors including our method.

By comparing bed-sheet pressure sensors methods, as shown in the table, we were able to get a

relatively better accuracy, precision, and recall on average for the three classes classification with

a validation on approximately double the recording hours and the number of recruited subjects,

and using ≈ 1
5

of the number of pressure sensors.

A more detailed discussion on bed-sheet pressure sensors methods is presented in the next

section in order to cover the criteria presented in table 4.5. Samy et al conducted experiments on

7 subjects, with 4 males and three females, and a total of 50 recording hours. Since we believe

that a larger data-set is better for the model’s generalization performance, in our experiments,

we recruited 12 subjects, 6 males and 6 females, and approximately the double or a total of 92.5
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recording hours. We used a 1728 FSR bed-sheet pressure sensors, which is approximately ≈ 1
5

the bed-sheet pressure sensors used by Samy et al.

Table 4.5 A comparison of the proposed method to the

state-of-the-art methods that use pressure sensor mattresses to

classify sleep stages. n/a : metric not available, nS : number of

subjects, rMF : number of males over number of females, and nH :

total number of recording hours contained in the data

Author,
year Data Acquisition

hardware
Feature
extrac-

tion
Classification

method
Number

of
classes

Accuracy Precision Recall Cohen
Kappa

General methods

Kalkbrenner

et al.
(2019).

nS = 53,

rMF =

1.65,

nH =

22207,

Actigraph

abdominal

belt & neck

microphone

30 hand-

crafted

cardio-

respiratory

and

movement

features

Linear

discriminant

analysis

3 76.3% n/a n/a 0.42

Rao et al.
(2019).

nS = 4,

rMF =

0.66,

nH =

186,

Fit-bit wrist

accelerome-

ter

1D-CNN +

bi-LSTM
Deep ANN 4 63% n/a n/a n/a

Rao et al.
(2019)

nS = 25,

rMF =n/a,

nH =n/a,

Dozee

Ballistocar-

diograph

1D-CNN +

bi-LSTM
Deep ANN 4 74% 73% 74% n/a

Bed-sheet pressure sensors methods

Samy et al.
(2014).

nS = 7,

rMF =

1.33,

nH = 50,

8192

uniformly

distributed

piezoresis-

tive pressure

sensors

Handcrafted

features of

breathing

and move-

ments

K nearest

neighbor-

hood

3 67.12% 55.9% 56.9% n/a

Samy et al.
(2014).

nS = 7,

rMF =

1.33,

nH = 50,

8192

uniformly

distributed

piezoresis-

tive pressure

sensors

Handcrafted

features of

breathing

and move-

ments

Support

vector

machines

3 70.33% 67.7% 68.6% n/a

Samy et al.
(2014).

nS = 7,

rMF =

1.33,

nH = 50,

8192

uniformly

distributed

piezoresis-

tive pressure

sensors

Handcrafted

features of

breathing

and move-

ments

Naïve Bayes 3 72.20% 70.3% 71.1% n/a

Our
method.

nS = 12,

rMF = 1,

nH = 92.25,

1728
uniformly
distributed

FSR
pressure
sensors.

3D-CNN Deep ANN 3 74.27% 72.54% 62.86% 0.454



105

Samy et al manually extracted physiological features as follows: they constructed the respiratory

signal by summing all 8192 pressure values and applying a frequency filtering technique to the

obtained signal, in order to compute BR and its variability. Legs movements were counted by

summing pressure values only in the legs region, and applying a threshold to detect significant

pressure drop or increase. Body movements were also detected and counted using the same

technique by using a threshold pressure value’s amplitude. 32 more physical body features were

added to explore posture, and limbs location on the mattress. In our method, we make the feature

extraction step automatic, with 2 steps: 1) calculating the difference between consecutive body

pressure images, and 2) computing the feature vector with consecutive learnable parameters

using three dimensional convolutional layers. The advantages of using this technique are: 1)

more advanced hidden patterns and complex non-linearities in the data distribution can be

handled and used in classifiying sleep stages efficiently, and 2) using less static features, such as

posture, hips, and limbs location on mattress, and the body shape, and more dynamic features

such as movements and breathing activities, and the variability of this activity during an epoch.

It is indeed known that these dynamic features are much more co-varying with sleep stages

than posture and limbs orientation and location on the mattress. Regarding the classification

method used to output a sleep stage class using the input features, Samy et al have explored two

data-driven algorithms: K-nearest neighborhood (KNN), support vector machines (SVM), and

one model-based method: naïve bayes.

In our method, we used a 3DCNN followed by a deep ANN in order to perform the classification

task. The advantages of this classification method are: 1) the data driven nature of the model,

and the ability of the classifier to adapt and learn from clinical data and learn data noise and

imperfections, which improves the generalization performance for future instances classification,

2) the relatively high scalability of the model; for instance, if more hours of data recording

from different subjects becomes available in the future, more convolutional and fully connected

layers could be added, hence more trainable parameters can be introduced, and the model could

potentially have more complex classes boundaries and a better performance. These results could

be applied to different kind of mattresses and different subjects due to the two respective reasons:

the data is normalized with respect to its variance and not absolute amplitude, and the sleeping
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paradigm and architecture is known to follow the same pattern in different subjects. Hence,

training data from different mattresses and subjects could be used in order to increase the data

sample size and enhance the robustness of the model. Such wide validation techniques are likely

to increase the generalization performance of the algorithm and the classification precision and

accuracy due to the potential increase of model complexity with bigger data sizes.

We expand the comparison to general methods of unobtrusive sleep monitoring cited in table

4.5, that use other sensors to measure the body movements and the cardio-respiratory activity.

Kalkbrenner et al used a combination of actigraphy sensor attached to an abdominal belt and a

microphone attached to the neck to collect physiological data during sleep (Kalkbrenner et al.,

2019). The method can be considered unobtrusive with respect to PSG, and less unobtrusive

when compared to bed-sheet pressure sensors, where no cables or sensors attached to the body.

Kalkbrenner et al used a relatively a high amount of 22207 total recording hours to validate their

approach. 30 features were manually extracted that characterize cardio-respiratory and body

movement features. The results obtained for the classification of NREM REM and Wake were

76.3% for accuracy, and 0.42 for Cohen’s Kappa coefficient, compared to a 74.27% and 0.454,

respectively, using our proposed method. Rao et al, proposed a method for unobtrusive sleep

stages classification using a fit-bit wrist accelerometer. They used a 1D-CNN in combination

with a bi-directional long short-term memory bi-LSTM for feature extraction, along with a deep

ANN as classifier. The method was validated with respect to PSG on 4 subjects for a total of

186 hours of sleep recording. Although the results are preliminary, they reach a classification

accuracy of 63% for 4 classes classification Rao et al. (2019). Furthermore, Rao et al used the

same classifier architecture on ballistocardiography data acquired from a relatively large data-set

of 25 subjects. They reported a 74%, 73%, and 74% for accuracy, precision, and recall. In both

results reported by Rao et al, no information was provided on Cohen’s Kappa coefficient to

assess the intended agreement and compare the performance of the classification. An important

aspect that could be noticed by inspecting the table 4.5, is that the classification performance

is further improved with a larger data-set, specially when collected from a higher number of

subjects. This is logically due to the increase of the data variance when increasing the number of
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subjects during the training phase. The importance of data size and structure is further discussed

in this section 4.5, where practical steps and recommendations are given to improve performance

with data. With respect to the application, the proposed method could be further adapted to

improve performance. The stored weights of the 3D-CNN and the deep neural networks classifier

model could be loaded and retrained on additional data samples that could be recorded in the

future. This could increase the variance of the data and improve the classification performance.

However, the input dimensions of the model should be respected as described in section 4.3.

Hence for body pressure distribution recording on a different bed-sheet pressure sensors, having

different shape, dimensions, or sampling frequency, the data could be transformed in order to be

a compatible input to the presented method. Geometrical transformations and undersampling in

the three dimensions could be applied on the 3D samples corresponding to 30 seconds epochs

of pressure images. In what follows, we discuss future challenges and perspectives and the

steps to a wider clinical validation and use of the presented method. Although the results

presented in this paper are preliminary and not yet satisfactory to claim an eventual adoption

of bed-sheet pressure sensors in sleep clinics, we believe that the potential of this application

is worth being widely recognized and further explored. One of the immediate needs for such

sleep monitoring approach to reach clinical use lies in the data availability. More data allows

the increase of the model complexity, i.e, the number of trainable parameters. For instance,

increasing the classification model complexity i.e., to the conovlutional or fully connected layers,

can increase the accuracy and the model’s ability to have a better generalization performance

and separate sleep stages more rigorously. In this vein, we believe in the potential of such

method due to the ease of data acquisition. During our experiments, the bed-sheet pressure

sensors was placed under the bed-sheet, not adding any constraint or discomfort to the subject

undergoing the PSG test. For the future, a practical approach of gathering massive data that

could be considered, is the use of bed-sheet pressure sensors to acquire pressure images during

conventional PSG tests. This would not require any changes to the PSG procedure, and does

not add any biases or constraints to how the data is acquired. Through this approach, as sleep

professional labels sleep stages over the night, in 30 seconds epochs, where the corresponding

pressure data is automatically labelled and ready to use for supervised deep learning algorithms
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due to recorded time stamps. A further step is to create a platform, among the world’s sleep

clinics, in order to unify efforts and form an online database, where researchers can find data and

bring contributions to unobtrusive sleep monitoring using the cutting-edge methods of machine

learning and the collected big data.

4.5 Conclusion and future perspectives

The growing interest and emerging devices and technologies have undeniably made unobtrusive

sleep monitoring a prominent research lines, in which several open research directions and

challenges need to be addressed. Clinical validation and access to data are the main challenges

researchers are currently facing. In this paper, we propose a new method for an automatic and

unobtrusive monitoring of sleep stages using bed-sheet pressure sensors. We use the dynamic

body pressure distribution on the mattress and the PSG’s polygraphic signals to train a 3D-CNN

artificial deep neural networks classifier. We were able to classify NREM, REM, and Wake

stages with a 74.27%, 72.54%, and 62.86% average accuracy, precision, and recall, respectively.

We noticed that using the pressure difference between consecutive pressure images as input to the

network instead the raw pressure images considerably improves the classification performance.

Although the results presented in this paper are preliminary, and not yet satisfactory to claim

an eventual adoption of bed-sheet pressure sensors in sleep clinics for unobtrusive sleep stages

classification, we believe that the potential of such application is worth being widely recognized

and further explored. Deep learning and CNN networks have demonstrated their potential of

providing a consistent and accurate classification performance when a large data-set is provided.

Future work has to focus on the simultaneous data acquisition of pressure and PSG data to make

a larger data-set. This can be accomplished during conventional PSG tests held in sleep clinics,

where the bed-sheet pressure sensor could be placed under the subject’s bed-sheet during the

test, introducing no measurement biases, discomfort, or constraints to the PSG test. A promising

step could be a collective online platform where sleep clinics can upload their pressure + PSG

data with a description of the subject’s health status, allowing researchers to apply big-data

algorithms for a wider clinical validation of a more complex unobtrusive sleep stage classifier.
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Finally, a potential contribution is the combination of another unobtrusive measure such as the

HRV using watch actigraphy sensors, which could add relevant information to the classification

sleep stages.





CONCLUSION AND RECOMMENDATIONS

The purpose of the present thesis was 1) to improve the understanding of the field of unobtrusive

sleep studies and 2) to contribute to the field by proposing physiological behaviors monitoring

methods during sleep using a bed-sheet containing textile pressure sensors.

Four objectives were achieved throughout this work:

The first objective was to investigate unobtrusively measurable physiological changes during

sleep and review and discuss unobtrusive sleep monitoring techniques. The second objective

was to provide an unobtrusive method of monitoring bed-postures using bed-sheet pressure

sensors. The third objective was to provide an unobtrusive method of BR monitoring during

sleep using bed-sheet pressure sensors. The fourth objective was to provide an unobtrusive

method for classifying sleep stages using bed-sheet pressure sensors.

The main findings we were able to draw from this thesis can be summarized as follows:

We found that unobtrusive sleep monitoring research works have not yet succeeded to reach

clinical approval due to a lack of clinical validation. We found a combination of features

that involves weight and shape information in the classification of bed-posture and achieves an

accuracy that is superior to what reported in the state-of-the-art works results. The method could

be used in sleep applications and other applications such as ulcer prevention in hospitalized

patients. We found that it is possible to reconstruct raw breathing signals using the body pressure

distribution on the mattress. Moreover we showed that by building posture specific respiration

models, it is possible to compensate for posture effect on the reconstructed breathing signal

and provide a BR monitoring system that overcomes what is reported in the literature. We

found that exploring the dynamic body pressure distribution on the mattress using convolutional

neural networks and artificial deep neural networks could provide a more accurate classification

performance of sleep stages then hand-crafted features.
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Contributions

Conclusively, we can state the contributions brought by this thesis as follows:

Contribution 1: We presented an exhaustive literature review that provides the reader with

a multidimensional perspective on both unobtrusively monitored physiological parameters

and patterns, and unobtrusive sleep monitoring techniques. We were able to conclude that

unobtrusive monitoring methods have not yet succeeded in obtaining a clinical approval or

consensus, and consequently have not been classified as medical devices according to FDA or

CE. This is due to several factors, mainly lack of validation, and access to clinical data. Based

on this exhaustive review, that has been published and quoted as an original contribution in the

field, we provided recommendations for specific potential research lines where we believe future

endeavors should bring contributions in order to advance the field.

Contribution 2: We proposed a feature extraction method, and a classification algorithm to

unobtrusively classify sleeping postures from a pressure measurement. Works in the sleep

literature have not been able to successfully classify prone and supine postures separately, due to

the similar shape of the body in the two postures when lying on the mattress. We based our

contribution on the idea that weight distribution, or shape information, are not enough to classify

prone and dorsal postures. Thus from the pressure images, we extracted the HoGss and LBP

features in the aim of involving both body weight and shape information in the classification. We

found that this feature extraction helped us classify prone and dorsal posture classes successfully

with a high accuracy for all four sleeping postures.

Contribution 3: We proposed a method to unobtrusively monitor the BR during sleep using

bed-sheet pressure sensors, while allowing and taking into consideration posture changes. When

using bed-sheet pressure sensors, the correlation between breathing activity and body pressure
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distribution on the mattress does not remain the same with different postures. Previous related

works have not been able to successfully monitor the BR while the posture changes. We proposed

a method that uses the posture detection algorithm proposed in contribution 2, in order to select

the optimal parameters of a multi-sinusoidal model based extended Kalman filter that we used

to reconstruct the breathing signal and compute the BR accordingly. Based on a Bland-Altman

validation procedure with respect to a respiratory belt, we obtained an agreement that has not

been yielded in the literature, showing that respiratory belt and bed-sheet pressure sensors could

be interchangeably used in BR monitoring during sleep.

Contribution 4: In this work we developed a method for unobtrusive sleep stages classification

using bed-sheet pressure sensors. We used the dynamic body pressure distribution on mattress

and PSG’s polygraphic signals to train and test a 3D-CNN deep neural neural network classifier.

We were able to classify NREM, REM, and Wake stages with a relatively high average accuracy,

precision, and recall. We noticed that using the pressure difference between consecutive pressure

images as input to the network instead the raw pressure images has helped us further explore the

body dynamics on the mattress, which has considerably improved the classification performance.

Although the results presented in this contribution are primary and not yet satisfactory to claim

an eventual adoption of bed-sheet pressure sensors alone in sleep clinics for unobtrusive sleep

stages classification, we believe that the potential of this method could be further recognized by

the availability of a larger data-set, which is likely to yield better and consistent results on a

larger population in an ecological perspective of sleep evaluation.

5.1 Recommendations and remarks for future works

Based on what is presented in this thesis, our conclusive recommendations and remarks for

future directions can be summarized as follows:
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- Clinical experimentation and database availability: the lack of reliable data is a major

issue facing two of the most crucial steps towards an unobtrusive sleep monitoring: 1)

validation, and hence medical devices monitoring sleep unobtrusively, and 2) "teaching"

machines to perform autonomous tasks, and lessening medical interventions and assistance

requirements. A potential line of research leading to advancements in this area consists

of conducting clinical experiments in order to collect physiological data during sleep. For

instance, a simultaneous data acquisition using both the experimental device and the standard

system i.e., PSG, is bound to give the opportunity for researchers to compare, analyze, teach

machines, and validate with respect to the standard measurements leading to substantial

advancements.

- Clinical validation with respect to standards: researchers have been focusing on proposing

methods and devices for giving insights on sleep behavior leading to a larger spectrum of

unobtrusive sleep monitoring techniques. However, a number of studies have shown that these

techniques have been rarely validated with respect to PSG in a significant and reliable way

(Roomkham, Lovell, Cheung & Perrin, 2018) and (Baroni, Bruzzese, Di Bartolo & Shatkin,

2016). Clinical validation is an inevitable phase for approving a medical device and adopting

it in clinics. Hence, future efforts are bound to work on this line of research in order to

validate the applicability of a broad range of existing devices and acquisition techniques.

- Machine learning applications in unobtrusively acquired data during sleep: this line

of research consists of using the growing knowledge in machine learning techniques in

the application of sleep studies. In an era where both the computation speed and deep

neural networks are evolving in a tremendously fast pace, high dimensional patterns could

potentially be leveraged in estimating sleep hypnograms, classifying apnea events and

scoring sleep quality (Biswal et al., 2017). This direction has recently started gaining

researchers’ interests (Chambon, Galtier, Arnal, Wainrib & Gramfort, 2018; Xia, Li, Jia,

Wang, Chaudhary, Ramos-Murguialday & Birbaumer, 2015; Zhang, Wu, Bai & Chen,
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2016). However, the existing works have covered the classification of sleep stages based on

obtrusive and conventional data. Hence, this highlights the need to conduct similar research

using autonomous physiological functions such as cardiac, breathing, and body movements

activities in order to bring advancements in unobtrusive sleep monitoring.

- Assessing conformity of the proposed techniques to norms and regulations: it is one

of the essential requirements resulting in a potential medical device. It consists of a

systemic evaluation of the regulations and norms as early as during the design phase to

the implementation and validation. As previously established in the thesis, the proposed

unobtrusive sleep monitoring techniques have rarely succeeded in reaching industrial gates,

who’s outcome is a class-defined medical device. Thus a substantial work has to be done in

this area in order to transfer the existing knowledge to the medical field.

- Exploring hardware, smart clothes, wearables, and E-textiles for data acquisition Last

but not least, exploring potential and new ways of acquiring physiological data without

imposing constraints on the subject is a tremendous need in the field of sleep studies. Future

works needs to be done on two levels: 1) propose new methods and apparatus: although a

wide spectrum of methods and devices have been proposed, proposing new solutions could

make it considerably much easier for unobtrusive sleep monitoring to reach the medical field;

and 2), improve the existing systems in what is related to hardware performance optimization

and parameterization. This includes for instance, only improving electrodes positioning in

capacitive ECG sensing eventhough by using same electrodes types, has improved potentially

the signal quality and HRV analysis, leading to a better correlation with sleep stages (Dossel,

Schneider & Muller, 1998).
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