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Commande prédictive non linéairebasée sur un réseau neuronal pour une turbine à gaz

industrielle

Ibrahem Mohamed Atia IBRAHEM

RÉSUMÉ

Les turbines à gaz sont largement utilisées actuellement dans l’aviation, les applications pétrol-

ières et gazières et la production d’électricité. Avec cette utilisation croissante dans une large

gamme d’applications, les turbines à gaz sont conçues pour fonctionner dans une large plage

de fonctionnement. Typiquement, la température ambiante peut varier considérablement d’une

chaude journée d’été à une froide nuit d’hiver. Aussi, différents types de carburant peuvent

être utilisés. De plus, les performances d’un turbomoteur se détériorent à l’usage en raison

de la dégradation des composants provoquée par l’érosion et la corrosion. Ces exigences pour

garantir des niveaux de performance élevés tout en maintenant la stabilité et un fonctionnement

sûr avec un coût global minimal imposent de grands défis à la conception du système de com-

mande. Dans cette thèse, de nouvelles approches pour la modélisation de turbines à gaz et

la conception de contrôleurs avancés multivariables sont étudiées. Une approche de contrôle

prédictif non linéaire (NMPC) basée sur un ensemble de réseaux neuronaux récurrents (NN)

est utilisée pour atteindre les objectifs de contrôle d’un moteur à turbine à gaz aérodérivé à

trois bobines Siemens SGT-A65 utilisé pour la production d’électricité. Une nouvelle méthode

d’ensemble est proposée, qui aboutit à un modèle NN adaptatif. Les résultats de la simula-

tion montrent une amélioration de la précision et de la robustesse en utilisant l’approche de

modélisation proposée. En outre, un autre gain important est le temps d’exécution très faible

(40,5 μs), qui peut permettre de nombreuses applications en temps réel qui nécessitent une

conception de contrôle basée sur un modèle.

Pour la commande en boucle fermée, un contrôleur prédictif non linéaire (NMPC) à entrées

multiples et sorties multiples (MIMO) et avec contraintes est développé sur la base de l’algori-

thme de contrôle prédictif généralisé (GPC) en raison de sa capacité à gérer les problèmes

MIMO dans un même algorithme. Dans ce contrôleur, une nouvelle approche de compromis

entre l’utilisation d’un modèle non linéaire et des approches de linéarisation successives est

utilisée afin de réduire l’effort de calcul et en même temps d’augmenter la robustesse du con-

trôleur. L’estimation des réponses libres et forcées du GPC est réalisée sur la base du modèle

NN de la turbine à chaque instant d’échantillonnage. En outre, la procédure de programmation

quadratique (QP) de Hildreth est utilisée pour résoudre le problème d’optimisation quadratique

du contrôleur NNGPC, qui offre simplicité et fiabilité dans la mise en œuvre en temps réel. Une

comparaison entre les performances du contrôleur proposé (NNGPC) et du contrôleur actuel du

moteur SGT-A65 (le contrôleur min-max) est effectuée. Les résultats de la simulation montrent

que le NNGPC donne des réponses de sortie supérieures avec moins de comportement oscilla-

toire et des actions de contrôle plus douces aux variations soudaines de la charge électrique que

celles observées pour le contrôleur min-max existant. De plus, le contrôleur NNGPC nécessite

moins d’effort de contrôle que le contrôleur min-max pour atteindre les objectifs souhaités.

La minimisation de l’effort de commande a des répercussions pratiques importantes car elle
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réduit l’intensité de l’usure mécanique des actionneurs, ce qui conduit à une augmentation de

la sécurité fonctionnelle, de la durée de vie et de l’économie du processus contrôlé. De plus,

le temps de calcul nécessaire pour résoudre le problème d’optimisation était suffisamment plus

rapide que la fréquence d’échantillonnage, ce qui rend possible une implémentation en temps

réel du contrôleur NNGPC.

Mots-clés: Modèle NARX, Turbine à gaz, Modélisation, Réseaux de neurones, Ensemble,

GPC, NMPC, NNGPC.
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Ibrahem Mohamed Atia IBRAHEM

ABSTRACT

Gas turbines are now extensively used in aviation, oil and gas applications and power gen-

eration. With this increasing use in a diverse range of applications, gas turbine engines are

designed to operate in a wide operating envelope. Typically, the ambient temperature can vary

substantially from a hot summer day to a cold winter night. In addition, different fuel types

may be used. Furthermore, the performance of a turbine engine deteriorates with use because

of component degradation caused by erosion and corrosion. These requirements for guaran-

teed high performance levels while maintaining stability and safe operation with minimum

overall cost impose severe challenges on control system design. In this dissertation, new ap-

proaches for gas turbine engine modelling and multivariable advanced controller design are

investigated. A nonlinear model predictive control (NMPC) approach based on an ensemble

of recurrent neural networks (NN) is utilized to achieve the control objectives for a Siemens

SGT-A65 three spool aeroderivative gas turbine engine used for power generation. A novel

ensemble method is proposed, which results in an adaptive NN model. The simulation results

show improvement in accuracy and robustness by using the proposed modelling approach.

Also, another important gain is the very rapid execution time (40,5 μs), which can support

many real time applications that require model-based control design.

For the closed-loop control, a constrained multi-input multi-output (MIMO) nonlinear model

predictive controller (NMPC) is developed based on the generalized predictive control (GPC)

algorithm because of its ability to handle MIMO problems in one algorithm. In this controller,

a novel trade-off approach between the usage of a non-linear model and successive lineariza-

tion approaches is used in order to reduce the computation effort and at the same time increase

the robustness of the controller. Estimation of the free and forced responses of the GPC are per-

formed based on the NN model of the plant at each sampling time. In addition, the Hildreth’s

Quadratic Programming (QP) procedure is utilized to solve the quadratic optimization problem

of the NNGPC controller, which offers simplicity and reliability in real-time implementation.

A comparison between the performance of the proposed controller (NNGPC) and the current

controller of the SGT-A65 engine (min-max controller) is performed. The simulation results

show that the NNGPC has demonstrated superior output responses with less oscillatory behav-

ior and smoother control actions to sudden variations in the electric load than those observed

in the existing min-max controller. Furthermore, the NNGPC controller requires less con-

trol effort than the min-max controller to achieve the desired objectives. The minimization

of control effort has significant practical repercussions because it reduces the intensity of me-

chanical wear of the actuators, which leads to an increase in the functional safety, lifetime, and

economics of the controlled process. In addition, the computation time required to solve an op-

timization problem was sufficiently shorter than the sampling period which makes a real-time

implementation of the NNGPC controller possible.
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ŷ The predicted output

w The reference output



XXVII

u The Manipulated input

N2 The maximum prediction horizon

N1 The minimum predictive horizon

Nu The control horizon

Ts The sampling time

Λ The control-weighting factor

λ The Lagrangian multiplier

yyyconstr The constraint output vector

ycontr The controlled output vector

kg Kilogram

s Second

ms Milliseconds

K Kelvin

MW Mega watt

ppm Parts per million

pph Pounds per hour

rpm Revolution per minute

Hz Hertz

T • The rate of change of temperature

P• The rate of change of pressure

U• The rate of change of internal energy





INTRODUCTION

Gas Turbine is a complex system with highly nonlinear dynamics and a large operating range.

Gas turbine engines and their related technologies represent one of the most efficient forms

of propulsion and power generation, with applications in various areas: as prime movers in

planes, in power plants for electricity generation, ground-based vehicle and marine ships for

propulsion. Increasing demands for gas turbine engines usage in many fields have caused

different design requirements such as, improving performance, more efficiency, reliability, and

the reduction of development costs and time. As a result, the cost of research, development and

implementation of new technology in gas turbine systems is becoming prohibitively expensive.

Moreover, one of the main reasons of this high development cost is the need to perform many

hardware tests of the physical engine. Therefore, the needs for exploring the performance

of gas turbine engines to reduce the initial cost of designing new engines and improve the

performance has led to the raise of research on modelling and simulation of gas turbine engines.

Effective simulation models can be developed without any prototypes being needed at the very

early stages of the design. In addition, modelling of gas turbine engines can be used in the

design of engine’s controller. Based on the fact that gas turbine engines are highly non-linear

and operate very close to their thermal and mechanical limits, many layers of complexity are

added to the controller design operation which emphasizes the need for sophisticated control

systems. Also, modifications to the control system become the desired path in the development

field of gas turbines because it is easier to change the control logic and the corresponding code

rather than to redesign, re-manufacture, and reinstall new engine components. The objective of

the control system is to achieve good thrust or shaft power response qualities while maintaining

critical engine outputs within safety limits. The design of controllers capable of delivering this

objective represents a challenging problem (Richter, 2011).
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Problem Statement

Gas turbine engine, as mentioned above, is a highly non-linear plant due to the large range

of operation conditions and the power levels experienced during a typical mission. Also gas

turbine engine operation is restricted due to the following constraints as shown in Figure 0.1.

1. Mechanical limitation.

2. Aerodynamic limitation.

3. Thermal limitation.

4. Flow limitation.

Figure 0.1 Gas turbine engine operation envelope

Based on gas turbine engine operating envelope, there are many challenges in the area of gas

turbine engine’s controller design to ensure the safe operation of the engine and at the same

time get the maximum performance. The first challenge is the change of the surrounding

conditions. The performance of the gas turbine engine is dependent on the mass of air entering
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the engine. At a constant speed, the compressor pumps a constant volume of air into the engine

with no regard for air mass or density. If the density of the air decreases, the same volume of

air will contain less mass, so less power is produced. If air density increases, power output also

increases as the air mass flow increases for the same volume of air. Atmospheric conditions

affect the performance of the engine since the density of the air will be different under different

conditions [−60oC to 40oC air temperature]. On a cold day, the air density is high, so the mass

of the air entering the compressor is increased. As a result, higher horsepower is produced. In

contrast, on a hot day, or at high altitude, air density is decreased, resulting in a decrease of

output shaft power.

The second challenge is quick engine start. Quick engine starts and rapid accelerations are

also desirable. To provide higher power with low specific fuel consumption and acceptable

starting and acceleration characteristics, it is necessary to operate as close to the surge region

as possible. To prevent compressor stall or surge, fuel flow must be properly metered during

the start and acceleration cycle of any gas turbine engine. To accomplish this, we need a very

accurate engine controller.

The third challenge: On the emissions side, the challenge is to increase turbine inlet temper-

atures while at the same time reduce peak flame temperature in order to achieve lower NOx

emissions and meet the latest emission regulations. In addition, reliable fuel switching capa-

bilities in industrial gas turbine engines should be taken in consideration.

The fourth challenge: With respect to components lifetime, and performance degradation,

there are big challenges in this area because customers need to increase components lifetime in

order to decrease the cost but at the same time ensure the safe, reliable and high performance

of the engine operation. Therefore, these requirements put more complexity on the design

operation of the gas turbine engine controller. In addition, every gas turbine engine has its

own signature even for the same engine’s configuration over time. The gas turbine engine
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controller should take into consideration the effect of performance degradation due to repair

and maintenance of the engine.The controller must therefore be re-tuned after any maintenance

operation to recover the engine performance. Customers needs this tuning operation of the

engine controller to be automated to save time and money and have high engine performance

at the same time.

The fifth challenge: The engine control system must handle some engine monitoring func-

tions. Traditionally, engine monitoring functions have been a part of the modern control system

functionality. To monitor engine health state and maintain high engine availability, an engine

monitoring system must be able to detect incipient failures and predict how much longer the

engine can operate with the "known" degradation before the failure becomes so severe that the

engine performance becomes unacceptable (Jaw & Mattingly, 2009).

The concept of a more intelligent gas turbine engine aims at actively controlling engine opera-

tion to increase efficiency, durability and safety, while maintaining the high level of reliability

required for aeronautic and industrial applications. Today engine manufacturers are investigat-

ing the potential of intelligent technologies for the next engine generation to meet the previous

challenges. The design of controllers capable of satisfying the previous requirements represents

a challenging problem (Figure 0.2) ; classical feedback is no longer suitable as a paradigm for

the development of advanced propulsion control concepts.

Research objectives

The research project is based on Siemens requirements, which include:

1. Real-time model based control.
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Figure 0.2 New competitive area of gas turbine engine control system

Run good fidelity transient thermodynamic models of its GT in a real-time machine, which

is to be connected in real-time to the engine controller in order to improve overall reliability

(soft sensors) and also open new possibilities with model based control.

2. Machine learning and physics based hybrid models.

Couple physics based thermodynamic models with AI/machine learning in order to opti-

mize their fidelity (self-tuning) and explore letting AI/machine learning algorithms take

control over portions of the engine to optimize performance and emissions.

We can see that Siemens’s objectives are to address the above five challenges. Therefore, we

can summarize our research objective by the following points:

• Objective (1): Demonstration of the capability of data based model approach in capturing

complex non-linear dynamics of gas turbines.
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• Objective (2): Development of advanced controller based on good fidelity transient models

of Gas Turbines (GT) in order to improve the performance and overall reliability of the

machine.

• Objective (3): Implementation of these benefits in real time using working prototypes of

Siemens GT and their edge-computing platform.

Methodology

Different approaches are used and proposed throughout this thesis. In the following, the main

methodologies are categorized:

1. To address objective 1, Chapter 3 presents a novel data-driven neural networks based

model approach, which is used for modelling of a three-spool aero-derivative gas turbine

engine (ADGTE) used for power generation during its loading and unloading conditions.

An ensemble of MISO NARX models is used to develop this model in MATLAB environ-

ment using operational closed-loop data collected from Siemens (SGT-A65) ADGTE. The

following procedure is used during the modelling operation:

a. Data preprocessing and estimation of the order of these MISO models were per-

formed.

b. A computer program code was developed to perform a comparative study and to

select the best NARX model configuration, which can represent the system dynamics.

c. The most accurate MISO-NARX model with minimum RMSE during testing opera-

tion is selected.

d. A homogeneous ensemble for each output parameter of the engine is generated based

on the best selected structure of the MISO-NARX model from the last step, and diver-
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sity among them is ensured by altering the training datasets which represent different

operation conditions.

e. The major challenge of the ensemble generation is to decide how to combine re-

sults produced by the ensemble’s components. In this study, a novel hybrid dynamic

weighting method (HDWM) is proposed. The verification of this method was per-

formed by comparing its performance with three of the most popular basic methods

for ensemble integration: basic ensemble method (BEM), median rule, and dynamic

weighting method (DWM).

f. Finally, the generated ensembles of MISO NARX models for each output parameter

were evaluated using unseen data (testing data).

2. To address objective 2, Chapter 4 presents a novel approach to implement the constrained

MIMO NMPC based on neural network model. The implementation of NMPC of ADGTE

in real time has two challenges: Firstly, the design of an accurate non-linear model which

can run many times faster than real time. Secondly, the usage of a rapid and reliable

optimization algorithm to solve the optimization problem in real time. To solve these

issues, the following approaches are proposed:

a. The NN model of the engine obtained using methodology 1 presented above was

used as a base model of the NMPC to predict the process output. As shown in the

results from Step 1-f of methodology 1, the ensemble of MISO-NARX models can

represent the ADGTE during the full operating range with good accuracy even with

different input scenarios from different operation conditions. This proves the high

generalization characteristic of the ensemble. Also, another important gain was the

very low execution time, which can support many real time applications like model

based controller design.
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b. A constrained MIMO NMPC is developed based on the generalized predictive control

(GPC) algorithm because of its simplicity, ease of use, and ability to handle problems

in one algorithm. The usage of a non-linear model within GPC changes the optimiza-

tion problem from a convex quadratic problem to a nonconvex non-linear one. As

a consequence of that, there is no guarantee that the global optimum can be found

especially in real-time control when the optimum solution has to be obtained in a

prescribed time. To overcome this issue, a novel trade-off approach between the us-

age of a non-linear model and successive linearization approaches is used in order to

reduce the computation effort and at the same time increase the robustness of the con-

troller. Estimation of the free and forced responses of the GPC are performed based

on the NN model of the plant each sampling time. It reduces the neural network gen-

eralized predictive control (NNGPC) optimization problem to a linear optimization

problem at each sampling step. Therefore, the optimization problem can be solved us-

ing quadratic programming which will improve the computation time and reliability

of the solution.

c. The Hildreth’s Quadratic Programming (QP) procedure is utilized to solve the quadratic

optimization problem of the NNGPC controller, which offers simplicity and relia-

bility in real-time implementation. The maximum number of iterations within this

algorithm is calculated by trial and error and is limited to 100 iterations to avoid in-

creasing of computation time. This implies that in some cases the optimum solution

may not be reached and the algorithm will use a suboptimal solution.

d. The NNGPC tuning parameters have a great effect on the performance and computa-

tion effort of the controller. The computation effort decreases with the decrease in the

prediction horizon. However, the response speed and the computation effort increase

with increasing prediction horizon. Consequently, a trade-off is required to find the
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effective values of the tuning parameters. In this study, a trial and error method is

employed to find the best values of the tuning parameters.

3. To address objective 3, Chapter 5 presents a comparison between the performance of the

NNGPC controller developed in this study and the existing min-max controller of the

engine and is performed to demonstrate the effectiveness of this advanced controller. This

test is performed in MATLAB/Simulink environment. As a result of the current epidemic

(Covid-19) situation, implementation of the NNGPC controller in real time using working

prototypes of Siemens GT and their edge-computing platform is replaced by validation in

MATLAB/Simulink environment using experimental data.

Thesis Contribution

Guided by the research objectives and using the methodologies proposed above, this thesis

presents the following important and novel contributions:

1. Proposing a novel methodology for the development of data driven based model of ADGTE,

in order to simulate the dynamic performance of the ADGTE during the full operating

range in real time. Inspired by the way biological neural networks process information

and by their structure which changes depending on their function, MISO NARX models

with different configurations were used to represent each of the ADGTE output parameters

with the same input parameters.

2. Proposing a novel approach for the real time performance prediction of ADGTE through

system identification using ensemble methods.

3. Proposing a novel hybrid dynamic weighting method (HDWM) to combine results pro-

duced by the ensemble’s components.
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4. Proposing a novel approach to implement the constrained MIMO NMPC based on en-

semble of neural network models, in order to control an ADGTE during its loading and

unloading conditions.

5. Proposing a novel method to estimate the free and forced responses of the GPC based on

the NN model of the plant each sampling time. It reduces the NNGPC optimization prob-

lem to a linear optimization problem at each sampling step and improves the computation

time and reliability of the solution.

6. Using Hildreth’s quadratic programming algorithm to solve the quadratic optimization

problem within the NNGPC controller, which offers simplicity and reliability in real-time

implementation. Furthermore, Hildreth’s method may be useful to implement on non-PC

platforms like programmable logic controllers or embedded machine which do not support

linear algebra libraries.

Outline of the thesis

This thesis consists of five Chapters. Chapter 1 presents the basic aero-thermodynamic princi-

ples of gas turbines in general, and of ADGTEs in particular. It also includes the mathematical

model of a three spool SGT-A65 Siemens ADGTE used for power generation. Chapter 2

presents a comprehensive overview of the most significant researches in the field of modelling,

simulation and control of ADGTEs. It covers both physics based and data driven based models

of ADGTEs. In addition, it presents a survey of the historical development of GTE control and

the most significant publications in the field of advanced controller design for industrial GTEs.

In Chapter 3, a novel data-driven neural networks based model approach is used for mod-

elling of a three-spool aero-derivative gas turbine engine (ADGTE) used for power generation

during its loading and unloading conditions. An ensemble of MISO NARX models is used

to develop this model in MATLAB environment using operational closed-loop data collected
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from Siemens (SGT-A65) ADGTE. Chapter 4 provides a novel approach for the design of a

constrained MIMO NMPC based on neural networks. Chapter 5 presents the development of

NNGPC controller for the three spool SGT-A65 ADGTE based on ensembles of MISO NARX

models of that engine. Finally, the conclusion and suggestions for future work are presented at

the end of the thesis.





CHAPTER 1

GAS TURBINE - OVERVIEW

1.1 Introduction

This chapter provides an overview of gas turbine engine technology and principle of oper-

ation with reference to several research publications in this field. Firstly, the basic aero-

thermodynamic principles of gas turbines in general and in particular that of ADGTEs are

introduced. This includes the mathematical model of Siemens SGT-A65 three spool ADGTE

used for power generation.

1.2 Gas turbine principle of operation

Gas turbine is a type of internal combustion engine, which converts chemical energy to me-

chanical work by rotating shafts in power generation plants or thrust for propulsion. The ther-

modynamic working cycle for the GTE is based on Brayton cycle, which consists of four pro-

cesses, including compression, heat addition, expansion and heat rejection as shown in Figure

1.1 .

Figure 1.1 Gas turbine cycle and T − s and p−V diagram

for Brayton cycle

Taken from Asgari & Chen (2015)
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Gas turbine engines consists of three main components, compressor, combustion chamber, and

turbine. The set of these components is called engine core or gas generator. As shown in

Figure 1.2, air from intake enters the compressor and air is compressed through passing the

compressor. Then, the hot and compressed air enters the combustor. In combustor, fuel is

mixed with air and ignited. The hot gases that are the product of combustion are forced into

the turbine that provides the required energy for rotation of compressor and other auxiliary

systems that need mechanical power. In 1930, Sir Frank Whittle was awarded his first patent

for using a gas turbine to produce a propulsive jet. Sir Frank Whittle made the first ground run

of his W.1 (Figure 1.3) engine in April 1937 (Royce, 2015).

Figure 1.2 Gas turbine engine components

Taken from Administration (2011)

Gas turbine engines can be classified into two main types, aero-gas turbine engines and sta-

tionary (or industrial) GTEs. In aero-gas turbines, gas turbine is used as propulsion system to

generate thrust and move an airplane through air. There exist four types of aero-gas turbine

engines: Turbojet, Turbofan, Turbo shaft and Turboprop engine as shown in Figure 1.4. In

stationary gas turbines, gas turbine is used as prime mover to generate a mechanical power re-

quired to rotate electrical generator, pump or compressor. If the main shaft of the stationary gas

turbine is connected to an electrical generator (i.e. constant speed operation of the load), it can

be used to produce electrical power. On the other hand, if the main shaft of the stationary gas

turbine is connected to pump or process compressor (where the speed of the driven equipment
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Figure 1.3 A Whittle-type turbo-jet engine

Taken from Royce (2015)

can vary with load), it can be used in mechanical drive applications (pumping applications for

gas and oil transmission pipelines). There exist two big markets for stationary gas turbines

(Effiom et al., 2017). One for heavy duty gas turbines (100-570 MW output power and 30 - 46

% efficiency) designed for land based applications and found in large power generation units.

The other is aero derivative gas turbine engines (up to 200 MW output power and 35-45%

efficiency) which characterized by its light weight and compact size.

Figure 1.4 Types of gas turbine engines
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1.3 Aero-derivative gas turbine engine

The ADGTEs were created from aero-gas turbine engines, which give them lighter weight,

faster response and a smaller footprint compared with their heavy duty GTE counterparts.

They can operate on a very wide range of fuels (natural gas and liquid fuel) with low NOx

emissions (below 25 ppm) using DLE combustors or water injection (Gülen, 2019). They are

usually offered as packaged units with prefabricated accessory modules for rapid installation.

Their modular design also enhances their operability and maintainability. ADGTEs are often

seen as a good choice in smaller-scale (up to 200 MW) energy generation.

The conversion from aero GTE to ADGTE is accomplished simply in a single shaft GTEs by

replacing the nozzle with a free turbine, for example the Rolls-Royce Avon (Fletcher, 1963).

In two shaft turbofan GTEs, the conversion operation includes removal of the fan, modification

of the LPC to overtake the duty of the removed fan, modify the LPT to drive the modified LPC,

and add a new power turbine as shown in Figure 1.5, for example the LM 5000 ADGTE based

on the CF6-50 turbofan GTE (Haaser & Casper, 1991). However, the conversion of a big three

shaft turbofan GTE has followed another approach. In this approach, the intermediate pressure

and high pressure cores are retained, the LPC is redesigned (essentially taking the place of fan

root and the original LPC), and a new LPT is redesigned to act as a drive for the new LPC and

the load (Horlock, 1997). The three shaft Siemens SGT-A65 ADGTE which was derived from

Rolls Royce RB211 Trent 60 represents an example to this approach.

As can be seen, the objective of the conversion operation is to keep as high commonality with

the original aero GTE. This will minimize the number of parts that need to be redesigned

and hence reduce the cost of conversion. In addition, less modification from the parent en-

gine means less conversion time, which may accelerate the supply chain and benefits both the

manufacturer and customers.

The gas generator of ADGTE generates a high-energy gas stream that can be used to provide

shaft power which is determined by fuel flow and the management of airflow through the

compressor stages. The engine control system must ensure that the desired power output is
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Figure 1.5 Turbofan engine and its aero derivative engine

Taken from Gülen (2019)

achieved. However, the engine control system must also protect the engine from exceeding

any design limits under both dynamic and steady-state conditions throughout the operational

envelop. These limits include component speeds, temperatures and operating regions which

can result in compressor surge. The control strategy normally involves a set point and the

control system drives the engine towards the set point. There are two types of controls in

ADGTE (Gülen, 2019):

• Speed control (governor).



18

• Temperature control.

A speed control system can operate in either the isochronous mode or the droop mode. In

general, droop mode is applicable to operations when the engine is connected to a grid. On the

other hand, isochronous mode is applicable when the engine is not connected to the grid and

operates in an isolated or islanded mode (Nguyen, 2000). In the isochronous mode, the control

system maintains a constant reference speed regardless of load. When a load change occurs,

there is a momentary change in speed during the transient, but the speed will always return

to the same reference speed value as shown in Figure 1.6. On the other hand, in the droop

mode the reference speed varies with load. Again, during transient conditions, there will be

momentary speed change, but after the transient the speed will settle at a new reference speed

value determined by the droop % of the generator. The droop % is defined as the ratio of the

relative change in system frequency to the relative change in generator power output as shown

in Equation (1.1) (Gülen, 2019),

d =

Δ f
f

ΔPW
PW

∗100 (1.1)

Figure 1.6 Isochronous mode
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Figure 1.7 Droop mode

As shown in Figure 1.7, speed decreases with an increase in load. If a generator operates at

4% droop, the frequency will decrease 4% when the load is increased from zero to 100%.

For a generator set running at 60 Hz at no load, the frequency will drop 4% (3 Hz) to 57 Hz

when the load increases from zero to 100%. This mode allows synchronous ADGTEs to run

in parallel, so that loads are shared among ADGTEs with the same droop curve in proportion

to their power rating. The concept of a droop governor is not intuitive, so that this can be best

understood by an analogy to a simple physical system shown in Figure 1.8. Four men pull a

100 unit load, which is analogous to a 50 Hz electric grid. Consequently, the four men are

analogous to four ADGTEs. Each man provides a certain fraction of the load. Suddenly, a 20

unit load block falls off. The difference between the force provided by the four men and the

load would increase the system speed (for grid analogy, frequency increase by 0.4 Hz). So,

in droop mode with d = 4%, each man knows exactly how much load correction he needs to

make. As shown in Figure 1.8, for man A, using Equation 1.1, the output correction is 6 units.

However, if the men were operated on isochronous mode, they would try to correct the load on

their own, which would lead to utter chaos and system breakdown (Gülen, 2019).
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Figure 1.8 Physical analogy to ADGTE with a droop mode

Taken from Gülen (2019)

1.3.1 Siemens SGT-A65 ADGTE - Overview

1.3.1.1 Engine configuration

The Siemens SGT-A65 is one of the world’s leading ADGTE used in the power generation

and oil-and-gas compression industries. It is the industrial version of the Rolls-Royce Trent

60 high by-pass-ratio aero GTE, which has high efficiency, and in service on the Airbus A330

and Boeing 777. The SGT-A65 is capable of producing 65 MW at thermal efficiency of 42%

(H.I.H. Saravanamuttoo, 2017). Figure 1.9 shows the aero and industrial version of the Rolls-

Royce Trent 60 engine.

Siemens SGT-A65 DLE three spool ADGTE is used as a case study in this dissertation (Fig-

ure 1.10). It has a two-stage low pressure, eight-stage intermediate pressure and six-stage high

pressure compressor, with DLE combustion. Furthermore, both high pressure and low pressure

turbines consist of a single stage each, and the power turbine has five stages used to drive the

low pressure compressor and the power generator at fixed speed (3600 rpm used for power gen-

eration at 60 Hz). Figure 1.11 shows a sketch of SGT-A65 ADGTE with its stations numbers.

In addition, the engine specifications are illustrated in Table 1.1. To simplify the definition of
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Figure 1.9 Turbofan engine and its aero derivative engine

Taken from H.I.H. Saravanamuttoo (2017)

stations within the gas turbine where performance parameters are quoted, a numbering system

is used as shown in Table 1.2.

Table 1.1 Gas turbine technical data

Parameter Value
Exhaust mass flow rate 171kg/s

Output power 65MW
Power turbine speed 3600rpm

Total compression ratio 38 : 1

Exhaust temperature 437oC

To prevent the possibility of compressor surge within the LPC when operating at low power

and engine transient, spilling compressed air to the atmosphere is used. Low power air spillage

is accomplished by means of a modulating low pressure bleed-off valves system. This system

comprises of eighteen hinged bleed doors located on the compressor case. All bleed doors are

opened in unison to vent LPC exit air, and controlled by means of a modulating four hydraulic

arms (actuators). LPBOV represents the opening percentage of low pressure bleed-off valves,

it goes from a minimum position of 8% to a maximum position of 105%. Indeed, The LPC

variable inlet guide vanes are used to regulate the amount of airflow reaching the engine core.

This is necessary due to the fact that the LPC runs at a constant speed, causing a mismatch

between the airflow swallowing capacity of the LPC and that of the engine core. The LPC
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Table 1.2 Engine station numbering

Station Description
0 Ambient conditions

20 Engine Intake

22 LPC Inlet

23 LPC Exit

24 IPC Inlet

25 IPC Exit

26 HPC Inlet

30 HPC Exit

31 Combustor Inlet

38 Combustor Exit

40 HPT NGV Inlet

415 HPT Exit

42 IPT NGV Inlet

435 IPT Exit

44 LPT Inlet

454 LPT Exit

5 Gas Turbine Exit / Volute Inlet

52 Volute Exit

variable inlet guide vanes are required to maintain peak performance and an adequate surge

margin in the LPC during off-design operating conditions. The VIGV position goes from a

minimum (closed) position of 88.088% to a maximum (open) position of 5.65%. To achieve

a safe operation of the IPC, three variable stator vanes are modulated to maintain peak per-

formance and an adequate surge margin of IPC during off-design operating conditions. The

IPVSV position goes from a minimum position of 1.207% to a maximum position of 95.58%.

Intermediate and High pressure bleed off valves are used to maintain an adequate surge margin

across the IPC and HPC during partial power conditions. The IPC and HPC bleed systems con-

sist of 4 and 3 ON/OFF valves respectively. NOIPBOV and NOHPBOV represent the number

of the opened valves in the IPC and HPC bleed systems.
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Figure 1.10 Siemens SGT-A65 DLE ADGTE

Figure 1.11 Sketch of three spool aero derivative gas turbine

engine (SGT-A65)

1.3.1.2 Engine control system

The SGT-A65 ADGTE control system schedules the fuel flow to maintain the engine power

or speed at a predetermined speed (3600 rpm). As the electrical load demand on the LPT

increases, additional torque is applied on the LPT shaft decreasing its speed. The control

system responds to the change in speed by increasing the fuel flow to the combustion chamber,

to bring the speed back to the preset value. As the load demand decreases, lowering the torque

applied on the LPT, allowing the speed to increase. The control system responds by decreasing

the fuel to the combustion chamber, to bring the speed back to the preset value.

The control laws of the engine control system are the algorithms or control logic which govern

the operation of the engine. This logic is embedded within software installed in a microproces-
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sor based electronic controller. The software handles the processing of all inputs from the var-

ious sensors (thermocouples, pressure transducers and speed inputs) laid out across the engine.

The software calculates the scheduling of the various gas metering valves, pressure regulating

valves, vent valves, air valves, and variable geometry and controls them by outputting signals

to multiple actuators via torque motors and solenoids. Figure 1.12 shows schematic drawing

of the SGT-A65 engine with its control system.

Figure 1.12 The SGT-A65 engine control system

The ECS of SGT-A65 engine in a power generation application carries out three primary func-

tions: Start/stop sequencing, Control, and Protection. Start/Stop sequencing function controls

the engine start and stop operation by providing the proper signal required for normal and

safe operation. In addition, it is pushing the engine to shut down under all possible abnormal

conditions like equipment or control system failure. The start sequence proceeds through five

different states before the engine achieves the synch-idle condition: Dry cranking, Purging,

Light up, Sub-synchronous idle, and Synch idle. Synch idle is defined as the condition where

the LP spool speed matches the frequency of the grid with which it will have to be synchronised

(3600 rpm for 60 Hz, 3000 rpm for 50 Hz) while in a no load condition. Figure 1.13 shows

rotational speeds versus time for the SGT-A65 engine during starting phase. With respect to

the control and protection functions, the ECS controls the engine LP shaft speed or load at
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a predetermined value (set point), while at the same time protects the engine from improper

operation like over speed, over temperature, and surge. This is done primarily by controlling

the fuel flow and the airflow through the engine.

The control function of the ECS is different depending on whether it is in grid mode operation

(Droop mode) or in isochronous mode operation. In the isochronous mode the control system

controls LP spool speed rather than power. As the load increases, the LP spool will droop from

its reference until the engine can produce enough power to match the load and return the LP

spool back to its synchronous (steady state) speed. Conversely, if load is removed, the LP spool

speed will overshoot its reference and engine power will have to reduce to return the LP spool

back to its synchronous (steady state) speed. In the droop mode the steady-state speed varies

with load. More details about the engine control architecture will be presented in chapter 4.

Figure 1.13 The SGT-A65 engine start sequences

Taken from Walsh & Fletcher (2004)
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1.3.2 SGT-A65 ADGTE mathematical model

This section presents the mathematical model of Siemens SGT-A65 three spool ADGTE. Al-

though this research is based on the data-driven approaches, part of the data used for the pur-

pose of simulations is generated by Siemens high fidelity thermodynamic simulation program.

Thus, it is necessary to review the engine mathematical model.

The ADGTE consists of several key components such as:

• Inlet.

• Compressor.

• Combustor.

• Gas generator turbine.

• Power turbine.

• Exhaust nozzle.

A detailed description of each of these components and ways to model them will be covered in

the following parts. In addition, the steady state and transient model will be included.

1.3.2.1 Inlet

The purpose of the engine intake is to transform the inlet free stream flow conditions into

the required air conditions at the entrance to the engine compressor. The inlet component is

assumed to be a duct and no work was done on the flow through this duct. In addition, the

performance of the inlet is defined by the pressure recovery from the free stream to the engine

(inlet pressure losses). For a given input parameters to the inlet component P0 , T0, and ΔPRin,

the total temperature and pressure at the inlet component exit are calculated as shown in the

following equations,
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T20 = T0 ∗ (1+ γa −1

2
∗M2) (1.2)

With M=0

T20 = T0 (1.3)

P22 = (1−ΔPRin)∗P20 (1.4)

1.3.2.2 Compressor

The purpose of a compressor is to increase the total pressure of the air to that required value by

the engine while absorbing the minimum shaft power possible. Temperature of the incoming

air also increases with pressure in the compressor. The work done by the compressor on the

gas is extracted from the turbine on the same shaft with the compressor. The compressor

characteristics can be obtained from the compressor map, which represents one of the major

obstacle in developing a non-linear dynamic model.

Once the compressor geometry has been fixed at the design point, the compressor map may be

generated experimentally by the manufacturers to define its performance under all off design

conditions. Figure 1.15 shows the form of the compressor map. Pressure ratio and isentropic

efficiency are plotted versus corrected flow (m•√θ
δ ) for a series of lines of constant relative

speed. The advantage of using a compressor map is that it includes all the losses for a particular

design case. However, the compressor map is not always available because the manufacturers

prevent publishing of its maps. In order, to overcome this problem, a map scaling technique

can be used to scale known published component map into new component map. Map scaling

method was developed by Sellers and Daniele during the development of a steady-state and

transient performance program called DYNGEN (Sellers & Daniele, 1975). The engine com-

pressor maps should be digitized and loaded to the simulation program in the form of look-up

tables, which is the best flexible way to represent a component map in simulation. To facilitate

loading compressor map into an engine simulation model beta lines are used. Beta lines are

arbitrary lines, which are drawn approximately equispaced and parallel to the surge line on
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the map as shown in Figure 1.14. Once the beta line were added to the compressor map, the

compressor characteristics could be obtained as function of the relative speed and beta value

as shown in the following equations (for example LPC),

πLPC = f n(βLPC,%NLPC) (1.5)

(
m•√θ

δ

)
LPC

= f n(βLPC,%NLPC) (1.6)

ηLPC = f n(βLPC,%NLPC) (1.7)

where,

θ =
T20

288.15
(1.8)

δ =
P20

101325
(1.9)

Figure 1.14 The axial compressor map

Taken from Walsh & Fletcher (2004)
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Figure 1.15 The compressor map and beta lines

Taken from Walsh & Fletcher (2004)

Once the compressor characteristics are available, all of the compressor exit conditions can be

calculated as follows:

The LPC mathematical model,

P23 = πLPC ∗P22 (1.10)

T23 = T22 ∗
⎡
⎣1+

πLPC
( γa−1

γa )−1

ηLPC

⎤
⎦ (1.11)

m•
22 =

(
m•√θ

δ

)
LPC

∗ δ√
θ

(1.12)

m•
32 = m•

22(1−BLPC) (1.13)

WLPC = m•
22 ∗ cpa ∗ (T32 −T22) (1.14)

These equations can be repeated to IPC and HPC.
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1.3.2.3 Combustor

The purpose of the combustor is to further increase the potential energy content of the working

fluid through combustion of a gaseous fuel and air mixture. The combustor exit parameters

can be calculated based on the combustor inlet conditions, the combustion efficiency, and the

combustor total pressure loss as follows:

m•
38 = m•

31 +WF (1.15)

T38 =
m•

31 ∗ cpa ∗T31 +WF ∗LHV ∗ηCC

m•
38 ∗ cpg

(1.16)

P38 = P31 ∗ (1−ΔPRCC) (1.17)

1.3.2.4 Gas generator turbine

Turbine is used to extract sufficient energy from the hot gases of the combustor to drive the

compressor and other auxiliary power equipment. As with compressors, to calculate the gas

generator turbine exit conditions, it is required to know the turbine inlet conditions and the

turbine characteristics (mass flow rate, pressure ratio, and isentropic efficiency) for a given

spool speed and beta line value (Turbine map). Once the turbine characteristics are available,

all of the turbine exit conditions can be calculated as follows:

The HPT mathematical model,

P415 =
P40

πHPT
(1.18)

T415 = T40 ∗
[

1−ηHPT (1−πHPT

(
γg−1

γg

)
)

]
(1.19)

m•
415 = m•

40 +(1−BHPC)m•
26 (1.20)

WHPT = m•
40 ∗ cpg ∗ (T40 −T415) (1.21)

These equations can be repeated to IPT.
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1.3.2.5 Power turbine

Power turbine is used to extract sufficient energy from the hot gases of the combustor to drive

the LPC and external load (generator for power generation application). All of the power

turbine exit conditions can be calculated as follows:

P454 =
P44

πLPT
(1.22)

T454 = T44 ∗
[

1−ηLPT (1−πLPT

(
γg−1

γg

)
)

]
(1.23)

m•
454 = m•

44 +(1−BHPC to PT )m•
26 +(1−BIPC to PT )m•

24 (1.24)

WPT = m•
44 ∗ cpg ∗ (T44 −T454) (1.25)

1.3.2.6 Exhaust nozzle

The purpose of the exhaust duct in the aero derivative gas turbine engines is typically to direct

the exhaust gases into the atmosphere, which is different from exhaust nozzles in aero gas

turbine engines. There is no work done of the flow through the exhaust duct. In addition,

the performance of the exhaust nozzle is defined by the pressure recovery from the engine to

the free stream (exhaust nozzle pressure loses). The exhaust nozzle output parameters can be

calculated as shown in the following equations,

T5 = T52 (1.26)

P52 = (1−ΔPRex)∗P5 (1.27)
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1.3.2.7 Load

The load characteristic is an important piece of the dynamic modelling because the load applied

to the power turbine affects on steady state and transient performance parameters such as surge

margins, spool speeds, and turbine inlet temperature.

1.3.2.8 Engine dynamics

The engine is said to be in a steady-state, when the internal state of the GTE (P, T, N) reaches

a thermodynamic equilibrium. That means, there is no change in their values and the work

generated by the turbine equal to the required work for the engine compressor and external

load on the same shaft. However, if there is an imbalance of power on the same engine shaft

required to acceleration or deceleration operation, the engine is said to be in a transient state.

There are three main phenomena particular to the transient performance of the turbine engine:

shaft dynamics caused by the inertial effect, pressure dynamics caused by the mass storage

effect, and temperature dynamics caused by the energy storage. Shaft dynamics represents

the simplest and the most important dynamic behavior of the GTE. Based on the principle of

Newtonian mechanics, the shaft dynamic equations for the three spool ADGTE (SGT-A650)

are represented by the following equations,

dNLPC

dt
=

3600

4∗π2 ∗NLPC ∗ JLPC
[WLPT −WLPC −Load] (1.28)

dNIPC

dt
=

3600

4∗π2 ∗NIPC ∗ JIPC
[WIPT −WIPC] (1.29)

dNHPC

dt
=

3600

4∗π2 ∗NHPC ∗ JHPC
[WHPT −WHPC] (1.30)

To capture the pressure and thermal dynamics, a control volume is inserted between each pair

of engine modules to allow for the mass and energy storage, which gives rise in pressure

and temperature dynamics. Figure 1.16 shows a control volume with temperature, pressure,

and density are assumed to be constant throughout the control volume and equal to the outlet
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values. In addition, m is the mass of air/gas trapped inside the volume, and V is the volume

of the element. To derive the pressure dynamic equation, assuming that the air/gas within the

control volume behaves like a perfect gas (equation (1.31)). So, the rate of change of mass

inside the volume is proportional to rate of change of pressure and temperature as shown in

equation (1.32).

PV = mRT (1.31)

P•
2 =

mR
V

∗T •
2 +

RT2

V
∗m• (1.32)

In equation (1.32), the temperature derivative can be neglected in comparison to the mass

derivative term (Jaw & Mattingly, 2009). So that, equation (1.32) can be written as,

P•
2 =

RT2

V
∗m• (1.33)

From the law of conservation of mass, the rate of change of mass m trapped inside the control

volume is determined by the difference between the amount of mass flow rate entering and

leaving the element as shown in equation (1.34),

m• = m•
1 −m•

2 (1.34)

Substituting by equation (1.34) into equation (1.33). Then, the rate of change of pressure within

the control volume is given by,

P•
2 =

RT2

V
∗ [m•

1 −m•
2] (1.35)

With respect to the temperature dynamics, based on the conservation of energy law, the rate of

change of the internal energy of the control volume can be given by,

U• = m•
1cpT1 −m•

2cpT1 +Enet (1.36)
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Figure 1.16 An air/gas control volume

where, Enet is the net energy entering or leaving the control volume.

From thermodynamics, the internal energy of the control volume is given by equation (1.37).

By differentiating equation (1.37) with respect to T and m, the rate of change of internal energy

of the control volume can be represented by equation (1.38),

U = m∗ cv ∗T (1.37)

U• = m∗ cv ∗T •
2 + cv ∗T2 ∗m• (1.38)

By substituting equation (1.36) and equation (1.34) into equation (1.38), the rate of change of

the temperature within the control volume can be given as follows,

T •
2 = R∗T2

[
m•

1cpT1 −m•
2cpT1 +Enet − cvT2 [m•

1 −m•
2]

cvV ∗P2

]
(1.39)

Now, to build a complete dynamic model of the SGT-A65 ADGTE, seven control volumes are

inserted between each pair of engine components as shown in Figure 1.17. The dynamics of

each control volume can be represented by two state variables: pressure as given by equation

(1.35), and temperature as given by equation (1.39). Consequently, the total number of state

variables for the seven control volumes is 14. Adding to this number the three state variables

representing the LP, IP, and HP shaft speeds, a total of 17 state variables are needed to represent

the engine dynamic model. The general non-linear dynamic system is expressed as non-linear
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functions of state and input variables as follows,

X• = f (X ,WF, IPV SV,V IGV,LPBOV, IPBOV,HPBOV ) (1.40)

where, X is the state variable vector that is represented as follows,

X = [NLPC,NIPC,NHPC,P24,P26,P31,P40,P42,P44,P5,T24,T26,T31,T40,T42,T44,T5]
T (1.41)

Figure 1.17 Computational flow diagram of a three spool ADGTE

Steady state calculations are obtained when dX/dt=0. The resulting non linear system of alge-

braic equations may be solved using any iterative method (e.g. the Newton-Raphson method).

This iterative method requires guessing a certain number of variables and improving them us-

ing the residuals of the same number of error equations. When dynamics are considered the

system of non-linear differential equations is to be integrated in time using any integration

formula.

1.4 Summary

In this chapter, a review of the gas turbine engine was presented, while focusing on ADGTE

construction and principle of operation. It also reviews background information on the SGT-

A65 ADGTE including its structure, control system, and its mathematical modelling.
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As can be seen, the complete thermodynamic dynamic model of the SGT-A65 ADGTE is very

complicated and requires an iterative solution that occurs at the expense of computation time.

The purpose of this chapter was to foster a basic understanding of a gas turbine as relevant

to this project, and highlight the reason why it is imperative to use a data-driven model of

the SGT-A65 three spool engine for real-time model-based applications instead of the highly

complicated thermodynamic model.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Modelling and simulation of gas turbines plays a key role in manufacturing and improving

performance of gas turbine engines. In recent years, the importance of ADGTEs in the energy

industry has sparked a great interest among manufacturers to improve the performance and

increase the reliability of the engine, which in turn requires an accurate and real time model

to simulate the engine dynamics during the full operating range. This chapter presents a com-

prehensive overview of the most significant studies in the field of modelling, simulation and

control of ADGTEs. It covers both physics based and data driven based models of ADGTEs.

This chapter also presents a survey of the historical development of GTE control systems. Be-

sides, it emphasizes on the most significant publications in the field of advanced controller

design for industrial GTEs . The concluding remarks from the literature review are presented

at the end of this chapter.

2.2 Modelling and simulation of gas turbine engines

Before making a gas turbine engine model, some basic factors should be carefully considered

such as modelling objectives, GTE type, GTE configuration, and modelling methods. These

factors are considered among the most important criteria at the beginning of the modelling

process. There are different objectives for making a GTE model. A GTE can be modelled

for condition monitoring, fault detection and diagnosis, sensor validation, system identifica-

tion, design optimization and improvement of control systems. Thus, a clear statement of the

modelling objectives is necessary to make a successful GTE model (Asgari & Chen, 2015). A

real-time simulation can be used as a powerful tool in developing, testing and tuning control

devices of GTEs (Camporeale et al., 2006). In addition, it can be used to simulate critical

transients scenarios that should be avoided on the actual plant due to risk of damage.
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The first step of modelling a GTE is defining the type and configuration of the engine which

is to be modelled. It is necessary to get enough information about the input/output param-

eters, engine specifications, and engine configuration. GTEs can be classified according to

their applications to aero GTEs and stationary GTEs. More details about the GTEs types and

configuration will be mentioned in the next chapter.

Throughout the years many methods were developed to simulate GTE dynamic response. In-

vestigating GTE dynamic response began around the early 1950s, and ranged from a simple

linear models (Otto & Taylor III, 1951; Rowen, 1983) to a real time high fidelity non-linear

models (Camporeale et al., 2006; Gazzetta Junior et al., 2017; Montazeri-Gh et al., 2018;

Petkovic et al., 2019).

GTE modelling methods can be categorized into two main groups including physics based

modelling methods (white-box models) and data driven based modelling methods (black-box

models). In some cases, the expression of gray-box model may also be used as a combination

of the last two methods (Asgari et al., 2014). The next subsections present a comprehensive

overview of the most significant studies in white and black box modelling, including their

characteristics, benefits, and limitations.

2.2.1 Physics based modelling of GTEs

Physics based models are based on first principles such as the law of physics, chemistry, etc

(Nguyen, 2000). This approach has been widely used over many years in order to model gas

turbine engines (Ballin, 1988; Duyar et al., 1995; Bettocchi et al., 1996; Saleh, 2017; Tahan

et al., 2017; Petkovic et al., 2019). However, this approach can only be used when there

is enough information about the physics of the system. In addition, a white box model has

traditionally a high number of non linear equations requiring iterative solutions which occur at

the expense of computation time. The computation time challenge of the physics based model

is a big problem for real time modelling, especially when the system to model consists of a

high number of subsystems as in case of three spool GTEs.
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Gas turbine physics model consists of both an off-design steady-state model and an off-design

dynamic model. Both types of models are derived based on the first principles of physics

(Jaw & Mattingly, 2009). When the internal state of an engine reaches a thermodynamic

equilibrium, that is, there is no change in the values of state variables, the engine is said to be

in a steady state. However, dynamic or transient model determines the time history of engine

state and path followed by the engine from its existing steady state to the new steady-state

condition because of a disturbance in load demand and/or ambient conditions (Sanghi et al.,

2000). Off-design conditions refer to the state where the GTE is operated in conditions which

are beyond the standard designed condition.

All off-design steady-state calculations depend on satisfying the essential conditions of match-

ing of mass flow across two adjacent stations, rotational speed and power balance between the

compressor, turbine, and load on the same shaft. These are often referred to as component

matching calculations (H.I.H. Saravanamuttoo, 2017). To generate an off-design steady-state

model of the GTE, a set of non-linear thermodynamic algebraic equations are solved iteratively

to ensure that there is a match between each engine components. This iteration can be achieved

either via serial nested loops method, or via a matrix method. For both iteration methods, there

are several matching guesses, and an equal number of matching constraints (matching of mass

flow and work). During iteration the matching guesses are continually updated until the match-

ing constraints are satisfied. For serial nested loops method, the matching guesses parameters

and matching constraints are paired and solved in a nested sequence. Whereby for each pass

through higher loop, each loop within it is repeated until convergence. This technique is often

easier to understand physically, and to implement via personal computer programs. However,

this technique becomes computationally inefficient for more than five nested loops (Muir et al.,

1989; Kyprianidis & Kalfas, 2008; H.I.H. Saravanamuttoo, 2017; Yazar et al., 2017). On the

other hand, in the matrix iteration method, the overall interaction is recognized and the con-

straint equations are set and solved simultaneously. This requires a numerical method, such

as Newton-Raphson, which is utilizing partial derivatives. These partial derivatives represent

the effect of changing each matching guess individually on the errors in all the matching con-
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straints (Walsh & Fletcher, 2004). The matrix iteration method is now more common and a

powerful method for simulation of advanced GTEs (Gaudet, 2008; Gu et al., 2016; Zhou et al.,

2020). However, this numerical solver has shown some limits when applied to real time sim-

ulation due to the need of calculation of the Jacobian matrix in every iteration. To save some

time, the Broyden method may be used to replace the Newton method derivative by a finite dif-

ference. So, the Jacobian matrix will be calculated only at the first iteration and to do rank-one

updates at other iterations. Even though, the total number of system evaluations is generally

much lower and the total computation speed faster than for the Newton-Raphson, the rate of

convergence is smaller than for the Newton–Raphson method with a Jacobian determined by

difference quotients (Krummrein et al., 2018).

As stated above, steady-state response relied on the fact that compatibility of flow and compat-

ibility of work must be satisfied at all time. However, during transient operations, a mismatch

of work between the compressor, turbine, and load is required to allow the engine to accelerate

or decelerate. Therefore the assumption of compatibility of work and flow is no longer valid

during transient operations (Fawke & Saravanamuttoo, 1971). GTEs have three main types of

dynamics which should be considered during dynamics modelling: shaft dynamics, pressure

dynamics, and temperature dynamics. To model these dynamics phenomenons, there are two

methods for treating flow and work imbalance during dynamic modelling: Constant mass flow

iterative (CMF) method (Kong et al., 1999; Thirunavukarasu, 2013; Forhad & Bloomberg,

2015), and Inter-component volume (ICV) method (Camporeale et al., 2006; Petkovic et al.,

2019). In the CMF method, shaft dynamics can be modelled only. The CMF approach assumed

that the mass flow of the air (or gas) entering an engine component must equal the mass flow

leaving the same component (Zhu & Saravanamuttoo, 1992). As stated, the basic assumption

in the CMF approach is that flow compatibility is maintained at all times. So that, to predict

the engine behavior during a transient, the calculation proceeds as follows: An initial guess is

made for certain engine parameters. After that, a single run through the engine calculations

is made. The error in mass flows are then noted and progressively minimized by improving

the initial guess through a numerical method such as the Newton–Raphson method. So, many
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iterations are performed until the error value reached to the required degree of accuracy. Once

flow compatibility was achieved, the work imbalance on the engine shaft may be used to rep-

resent the shaft dynamics as shown in equation (2.1), and an integration method may be used

to predict the shaft speed. On the other hand, to represent the pressure and thermal dynamics

of the GTE, the ICV method can be used. The ICV method always assumes flow mismatch

and work mismatch between engine components during transient performance. This is done by

inserting a control volume between engine components and applying the conservation of mass

and energy laws as shown in equations (2.2) and (2.3). A comprehensive expatiation of these

equations were presented in the previous chapter. Moreover, the ICV method is considered as a

popular and accurate choice for transient performance prediction. In (Tsoutsanis et al., 2013),

hybrid CMF-ICV approaches were used to model the dynamic performance of an industrial

GTE. The employment of both the ICV and CMF methods improves the computational time

and the prediction accuracy of the engine model.

The differential equations that define the engine dynamics ( equations (2.1) to 2.3)) may be

solved by employing integration methods such as the Euler method (Gaudet, 2008; Wang,

2016), Runge-Kutta method (Kim et al., 2001; Petkovic et al., 2019), etc. However, these

integration methods have shown some limits when applied to real time simulation due to con-

straints on step time. The step time should be no greater than one-tenth the magnitude of the

smallest time constant the user wants to observe. Stamatis et al. (2001) stated that, the fre-

quency range over which the GTE model is representative can vary between 1 Hz for models

with only shaft dynamics to 30-50 Hz with pressure dynamics included, and so integration time

step can vary between 50 ms for the lower order models to 1 ms for high order models. There-

fore, a larger step time can be used in the CMF method, which decreases the computation time.

On the other hand, in the ICV method, a shorter step time is necessary for correct prediction

of the transient, which increases the computation time. In order to obtain a real time execution

of the model, the integration of this set of differential equations, at each step time, must be

completed by the computer within a time shorter than the assumed step time.

dN
dt

=
3600

4∗π2 ∗N ∗ J
[WT −WC −Load] (2.1)
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dP
dt

=
R∗T

V
∗ [m•

in −m•
out ] (2.2)

dTout

dt
= R∗Tout

[
m•

incpT1 −m•
outcpTin +Enet − cvTout [m•

in −m•
out ]

cvV ∗Pout

]
(2.3)

As can be seen, the physics based model of the GTE consists of a mixed set of non-linear al-

gebraic equations and ordinary differential equations. In order to obtain a real time execution

of this model, all the calculations of the iterative procedure and solution of differential equa-

tions must be completed by the computer within a time shorter than the assumed time step.

Real-time simulation can be used as a powerful tool in developing, testing and tuning con-

trol devices of gas turbines. Moreover, it can be possible to simulate critical manoeuvres that

should be avoided on the actual engine due to risk of damage. However, a problem that arises

when using physical performance model for real time simulation is that the computational time

varies at each time step due to the necessary iterations. Furthermore, the iterative method

produces noise on the output parameters due to solutions at each time step are falling at ran-

dom places within the permitted tolerance band. This noise may prevent assessment of system

stability, due to the perturbations produced (Walsh & Fletcher, 2004). The fastest achievable

sampling rate depends on the complexity of the engine, the degree of detail of the modelling,

and on the available computing power. Therefore, to enable calculation in real time, software

and hardware approaches have been proposed by many researchers.

For software approaches, in order to reduce the computational time, techniques based on the

simplification of the detailed thermal model (physics based model), the utilization of more

efficient iteration techniques, and the utilization of more efficient integration techniques may

be used. The simplification of the physics model includes the usage of the reduced-order

thermal model (Crainic et al., 1997; Rosini et al., 2019). However, this leads to a decreasing of

model accuracy. It is also possible to simplify the detailed engine model by linearizing the non-

linear model around selected operating points (Rowen, 1983; Montazeri-Gh & Abyaneh, 2017;

Chen et al., 2019). However, the linearized models should be used only in the neighbourhood

of the working point about which the linearization has been carried out. If simplifications to

the non-linear model can’t be made easily then one may have to resort to efficient iteration
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and numerical methods. The most effective way to keep optimizing the execution time of a

simulation is to limit the maximum number of iterations the solver takes through the simulation

logic (Lietzau & Kreiner, 2001; Fuksman & Sirica, 2012). Another extremely powerful feature

of the iteration method which improves both convergence success rate and time until reach the

solution is the selection of the starting point close to the final solution (Gazzetta Junior et al.,

2017). Also, the usage of the Broyden method to update the Jacobian matrix in the Newton-

Raphson method may reduce the model computation time (Krummrein et al., 2018). With

respect to the integration methods, Stamatis et al. (2001) developed a real time engine model

of two spool GTE. They carried out a comparison between explicit and implicit integration

methods in order to study its impact on the execution time. They concluded that no obvious

advantage is noticed between explicit and implicit integration. However, for smaller number

of fixed iterations implicit integration seems to be faster than explicit integration, while the

opposite is valid when increasing the number of fixed iterations. Moreover, one iteration of the

code costs about 0.25-0.3 ms using implicit or explicit Euler integration method in Pentium

450 MHz and 2-3 ms in a Pentium 90 MHz. In another effort, Lin et al. (1999) presented a

hybrid integration method for real time simulation of single spool GTE. The hybrid integration

method allowed to enlarge the time step to 20 ms and the integration still remains stable. In

some cases, the most desirable approach to achieve real-time simulation is speeding up the

calculations though expensive and faster hardware (Sanjawadmath & Suresh, 2017) or parallel

processing. Finally, the implementation of real-time models must also balance the constraints

of cost and execution time.

As can be seen, the computation time challenge is a big problem for real time modelling of

the physics based model, especially when the system to model consists of a high number of

subsystems as in our case: (SGT-A65) is a three spool ADGTE, the execution time study for

Siemens’s high fidelity thermodynamic model resulted in exceeding the sampling time (10

ms) in real time simulation for ramp and step load change using Speedgoat performance real

time target machine with Intel Quad-Core i7 3770K @ 3.5 GHz CPU, 4096 MB of RAM. An

alternative to white box models is given by data-driven based models.
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2.2.2 Data driven based modelling of GTEs

Data-driven based model (or black box model) is one of the modelling approaches which can

be used when no or little information is available about the physics of the system. In this case,

a data driven model can disclose the relations between system variables using the obtained

operational input and output data from the system. Artificial neural network is one of the

most significant methods in data-driven based modelling (Asgari et al., 2013). It presents

high computation speed, which allows for real time applications. It is a fast-growing method,

which has been used in different fields of industry in recent years. It is also being heavily

used in machine learning and artificial intelligence applications. The main idea behind ANN

is to create a model based on a human brain in order to solve complex scientific and industrial

problems in a variety of areas.

Linear NN were first proposed by Widrow and Hoff in the 1960s with the name ADALINE

(Widrow & Hoff, 1960), and have been used as the typical NN architecture until the cre-

ation of the back propagation algorithm (BP), which provides a tool for training non-linear

multi-layer perceptron neural networks (MLP) in the late 1980s Rumelhart et al. (1985). Cy-

benko(Cybenko, 1989) proved that a neural network with one hidden layer of sigmoid or hy-

perbolic tangent units and an output layer of linear units is capable of approximating any con-

tinuous function. The network is described by the magnitude of the weights and biases and

is determined by training the network with the operational or simulated data. In the area of

modelling and simulation of industrial gas turbine engines, there are many sources in the liter-

ature. Asgari et al. (Asgari et al., 2013) presented a general overview of essential basic criteria

that need to be considered for making a satisfactory model and control system of a gas turbine

engine. It covers both white-box and black box modelling approaches.

Neural networks can be classified into two main categories: static and dynamic neural net-

works(Ibrahem et al., 2019). Static neural networks are the simplest neural networks, and are

characterized by memoryless non linear equations, which means that there are no feedback

elements and no delays in the network input. Therefore, the output parameters from the static
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NN depend only on the current values of the input parameters as shown in Figure 2.1a. The

multi layer feed forward neural networks (MFFNN) are considered as static neural networks

because they have only feed forward transformation of the information from the input layer to

the output layer. Recently, many research activities have been carried out towards the devel-

opment of neural models of gas turbine engines used for performance simulation and engine

diagnosis (Bettocchi et al., 2004; Khalili & Karrari, 2017; Talaat et al., 2018). In these works,

the most common structure of the static NNs used is a feed forward NN, with a single hidden

layer, tansig activation function and different numbers of neurons while NN was trained by

using trainlm algorithm.

a) Static NN b) Dynamic feed forward NN with input delay

c) Dynamic with feedback NN

Figure 2.1 Neural network types

On the other hand, dynamic neural networks attracted many researchers due to their ability to

represent the dynamics of gas turbine engines. In the case of dynamic neural networks, output

parameters from the network depend not only on the current input parameters of the network,

but also on the previous input and output parameters of the network. Furthermore, dynamic

neural networks can be divided into two categories: those that have only feedforward connec-

tions (input/output delays) as shown in Figure 2.1b, and those that have feedback or recurrent

connections as shown in Figure 2.1c. A significant number of studies across different appli-
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cations have stated the advantages of dynamic NNs by introducing different methodologies

(Tayarani-Bathaie et al., 2014; Yu & Shu, 2017). Among the existing dynamic NN modelling

methods, the non-linear autoregressive network with exogenous inputs (NARX) modelling ap-

proach is considered one of the most popular. It has been used in the modelling of gas turbine

engines by several researchers Mehrpanahi et al. (2018); Salehi & Montazeri-Gh (2018); Tarik

et al. (2017); Bahlawan et al. (2017).

NARX is a recurrent dynamic network with feedback connections enclosing several layers of

the network. Note that static neural networks (feed forward) have no feedback elements and

contain no delays; the output depends only on the current value of the input to the network.

However, in dynamic neural networks, the output depends on the current and previous inputs

and outputs of the network. In addition, dynamic networks can be divided into two categories,

those that only have a tapped delay line on the input but no feedback connections and those

that have feedback or recurrent connections and tapped delay line on the input (such as NARX

networks) (Ibrahem et al., 2019). NARX model is based on the linear ARX model, which

is commonly used in time-series modelling, and is used in many applications such as multi

step ahead prediction and modelling of non-linear dynamic systems. Equation(2.4) defines a

NARX model and represents the relation between the model output and its input parameters

(Beale et al., 2015),

y(t) = f (y(t −1), · · · ,y(t −ny),u(t −nk), · · · ,u(t −nk −nu +1)) (2.4)

where, ny and nu are the lags of the output and input of the system respectively. nk is the system

input-output delay and f is a non-linear function.

As can be seen, the major challenge to the application of ANNs is to find the best structure

of the network which can represent the system. In this regard, usage of single neural model

may not be able to provide accurate prediction when it operates outside the field in which it

was trained. Besides, gas turbine engines operate in non-stationary operation conditions which

may cause unseen scenarios in the observed data. As a result, this increases the complexity of
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the modelling operation since the NN needs to be trained with a data as large enough to cover

the entire operation conditions. This in turn increases the training time and the possibility of

network over-fitting. To address this problem, we consider to train multiple ANNs in parallel

to fit the data instead of a single model. This leads to an ensemble of neural network models.

Ensemble learning approach refers to a set of models working in parallel on tasks such as

classification or regression, and they are combined together in some way to obtain the final

output (de Sousa et al., 2012). The ensemble development process can be divided into three

main steps. The first step is ensemble generation, which refers to generation of ensemble base

models. The second step is ensemble pruning, which consists of selecting a subset of the best

models from the original set of models based on generalization error. Finally, ensemble inte-

gration, a strategy to combine the base models is defined. For regression problems, ensemble

integration is done using a linear combination of the base models outputs (de Sousa et al.,

2012),

fen(x) =
K

∑
i=1

[wi(x)∗ fi(x)] (2.5)

where, wi(x) denotes the weight for the ith model, K is the number of models in the ensemble,

fi(x) denotes the output of the ith model corresponding to input x and fen(x) represents the

ensemble output. Diversity is a very important key in the ensemble generation. If all ensem-

ble members provide the same output, there is nothing to be gained from their combination

(Zhang & Ma, 2012). Therefore, the ensemble members should be different from each other

while each must maintain acceptable accuracy level (Amozegar & Khorasani, 2016). Two dif-

ferent methodologies can be considered for creating diversity among ensemble members. The

first method is heterogeneous ensemble in which ensemble members have different architec-

tures( such as number of neurons, training algorithm ). The second method is homogeneous

ensemble in which ensemble members have the same architectures but trained with different

data sets (Brown et al., 2005). The integration of a set of learned models to improve accuracy

and generalization is another important step in the ensemble generation. Ensemble integration

approaches can be divided into two categories,constant and non-constant weighting functions

(Merz & Pazzani, 1999). Examples of the constant weight approach are basic ensemble method
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(BEM), generalized ensemble method (GEM), linear regression (LR) and median method. For

the second category, the weights vary according to performance of each ensemble member

such as dynamic weighting (DW), dynamic weight with selection (DWS)(Rooney & Patterson,

2007) and dynamic and on-line ensemble regression (DOER)(Soares & Araújo, 2015).

In recent years, the ensemble approach attracted many researchers and good results have been

reported (de Sousa et al., 2012; Amozegar & Khorasani, 2016). The advantage of ensembles as

compared to single models has been presented in terms of increase of robustness and general-

ization (Zhang & Ma, 2012). In the area of gas turbine engines, (Wang et al., 2014; Wen et al.,

2019; Lu et al., 2019; Behera et al., 2019; Li et al., 2019) used ensemble learning for tack-

ling the fault detection identification (FDI) problem and prediction of the RUL of gas turbine

engine. (Amozegar & Khorasani, 2016; Xu et al., 2017) developed ensemble of multiple learn-

ers to identify the gas turbine engine dynamics. In this thesis, we will focus on the ensemble

generation for regression.

2.3 Advanced control of gas turbine engine

Control technology has a key role in development and progressing the performance, reliability,

operating life, and safety of modern GTEs. The power output from a GTE is determined by fuel

flow, and the control system must ensure that the desired power output is achieved. However,

the control system must also protect the engine from exceeding any design limits. These limits

include component speeds, temperatures and operating regions which can result in compressor

surge (Razak, 2007). So that, the control system for a typical gas turbine in a power generation

application carries out three primary functions: Engine staring and shut-down sequencing,

Control, and Protection.

The implementation of GTE control systems has changed dramatically over the past half-

century. Since 1950s, the computing section and the fuel metering section of the control system

were incorporated into a hydro-mechanical system in which fuel passing through the unit pro-

vided the necessary hydraulic actuation of a variety of pistons, bellows and levers which me-
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tered the required fuel to the combustion system. Of necessity, the implemented control strate-

gies must be fairly simple. As control complexity increased, the traditional hydro-mechanical

systems became increasingly bigger, heavier, and relatively expensive. As a result, in the

early 1970s, electronic control units (ECU) were designed to replace the hydro-mechanical

systems. Such ECU results in higher engine operating efficiency by allowing tighter engine

control through the use of higher loop gains and improved strategies to reduce transient over-

shoot or undershoot. Moreover, it allows implementation of control algorithms which would

be difficult to implement mechanically (Spang III & Brown, 1999). Today, almost all modern

GTE systems employ a full authority digital electronic control (FADEC) for the fuel control

computation function. To give some perspective to this commentary, Figure 2.2 shows some of

the major technology milestones regarding the application of electronics in engine fuel control

systems.

Figure 2.2 History of engine control technology

Taken from MacIsaac & Langton (2011)
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New designs and operations of modern GTEs are increasingly complex, where several con-

straints and control modes should be satisfied simultaneously to achieve a safe and optimal

performance for the engine. There are several control strategies proposed to deal with these

requirements dating back to 1952. A comprehensive review and analysis on the history of

GTEs control strategies could be found in (Jaw & Mattingly, 2009). The Min–Max control

strategy is commonly used as the control architecture for GTEs to provide desired power, and

prevent the engine from exceeding any safety or operational limits. This strategy is known as

a practical algorithm to satisfy all engine control modes simultaneously without any error and

malfunction. A min-max controller composed of several control loops (steady state loop, max

acceleration loop, max shaft loop speed, max temperature loop, and min deceleration loop),

each of which takes the task of observing a different engine controlling mode. These loops

are in parallel and at any moment, according to a predefined fuel control strategy, one of them

is selected and undertakes the observation (Spang III & Brown, 1999; Montazeri-Gh et al.,

2016; Salehi & Montazeri-GH, 2020). Many studies have done for performance improvement

of the min-max strategy (Chipperfield & Fleming, 1996; Montazeri-Gh & Jafari, 2011; Esfa-

hani & Montazeri, 2016; Jafari & Nikolaidis, 2018). However, in all these studies the final

selection strategy between the transient control loops are kept fixed. Moreover, limit violation

may occur for some variables during transient operation. Recent studies have shown that, there

is no guarantee for min-max algorithm with linear compensator to protect engine limits during

transient state(Imani & Montazeri-Gh, 2017; Montazeri-Gh & Rasti, 2019).

With the desire to have more robustness and flexibility of the next generation of the GTE

control systems to achieve ambitious targets and severe limitations set by governments and or-

ganizations such as reduction of NOx emission, reduction of fuel consumption, and increase of

engine life time, the industry is interested in developing another advanced control strategy that

will satisfy the mentioned requirements. MPC is an advanced model-based controller which

has attracted the attention of researchers in recent years. The application of MPC to control

GTE is introduced by Vroemen and Essen (Vroemen et al., 1999; Van Essen & De Lange,

2001). The philosophy behind the construction of MPC laws is radically different from tra-
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ditional error-feedback control approaches. Instead of producing a control action in response

to the current and past errors, MPC makes a prediction of future system behavior based on its

open loop model, the current system state, the input trajectory, or a disturbance entering the

system. Then, it selects the best possible input action according to a cost function. To do this it

has to solve an optimization problem, subject to possible constraints. Finally, it applies the first

element of the optimal selected input sequence to the plant. At each time step, this procedure is

repeated, which introduces the so-called receding horizon principle (Richter, 2011). MPC used

in a wide variety of application areas including power plants, chemical industries and etc. The

main reason for this is its constraint handling capacity. Unlike most other traditional control

strategies, constraints on inputs and outputs can be incorporated into the MPC optimization.

Another benefit of MPC is its ability to predict future events as soon as they enter the prediction

horizon. Finally, MPC is an essentially multi-variable control strategy, implying that control

loops do not need to be decoupled, because all interactions between multiple inputs and outputs

are accounted for by the model (Camacho & Alba, 2013).

There are various MPC algorithms only differ among themselves in the onboard model used

to represent the controlled process. If a linear model is used for prediction, The MPC ap-

proaches which use for prediction linear models are usually named linear MPC algorithm

(LMPC) (Mu & Rees, 2004; Ghorbani et al., 2008a; Pandey et al., 2018). However, If a non-

linear model is used for prediction, The MPC approaches which use for prediction non-linear

models are usually named non-linear MPC algorithm (NMPC) (Brunell et al., 2002; Kim et al.,

2013; Pires et al., 2018b). In recent years, there have been extensive interests in the general-

ized predictive control (GPC) algorithm, which is one of the most popular predictive control

algorithms and has been successfully applied in industry, particularly in chemical processes,

power, and gas turbines (Mu & Rees, 2004; Aly & Atia, 2012; Ye et al., 2017). The basic idea

of GPC is to calculate a sequence of future control signals in such a way that it minimizes a

cost function defined over a prediction horizon. The index to be optimized is the expectation

of a quadratic function measuring the distance between the predicted system output and some

predicted reference sequence over the prediction horizon plus a quadratic function measuring
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the control effort (Camacho & Alba, 2013). Moreover, the GPC is applicable to the systems

with non-minimal phase, unstable systems in open loop, systems with unknown or varying

dead time and systems with unknown order (Pivoňka & Nepevnỳ, 2005).

Ghorbani et al. (2008b) used a linear ARX model in a multi-variable MPC strategy for a gas

turbine power plant, and the same authors used the same model type in a constrained MPC

strategy for a heavy-duty gas turbine power plant (Ghorbani et al., 2008a). Mohamed et al.

(2016) presented a strategy for implementing LMPC to a large gas turbine power plant. A

generalized state space model for that engine was used as an onboard model within the LMPC.

Also, Pandey et al. (2018) designed a MIMO linear state-space model to simulate the response

of 5 MW industrial GTE at certain operating condition, then be used to design a LMPC for

this engine. Based on the fact that GTE is inherently non-linear. The inherent non-linearity

together with higher product quality specifications, increasing productivity demands, tighter

environmental regulations, and demanding economical considerations require to operate sys-

tems over a wide range of operating conditions and often near the boundary of the safe region.

Under these conditions linear models are often not sufficient to describe the process dynamics

adequately and non-linear models must be used. This inadequacy of linear models is one of

the motivations for the increasing interest in NMPC.

Pires et al. (2018a) designed a NMPC to reduce the NOx emissions of a single-shaft industrial

GTE. The non-linear dynamic behavior of the engine is modelled using the academic DESTUR

program, a comprehensive first principle computational modelling tool. Four optimization al-

gorithms are used to minimize the objective function, and their performances are compared:

differential evolution, particle swarm, genetic algorithm, and pattern search method. The au-

thors concluded that, the computational effort is higher for the MIMO system. However, The

four algorithms perform well and are viable for the SISO system implementation.

Kim et al. (2013) proposed a NMPC to control the speed and temperature of a 166 MW a

single-shaft heavy-duty gas turbine power plant. A reduced order model with 1 sec sampling

rate is used to simplify calculations. As can be seen, the usage of a non-linear physics based
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model within the NMPC changes the control problem from a convex quadratic program to

a nonconvex non-linear problem. Furthermore, in this situation, there is no guarantee that

the global optimum can be found especially in real-time control when the optimum has to be

obtained in a prescribed time. Besides, the physics based model should be run many times

faster than real time to allow usage of this model as model based inside the MPC algorithm.

Therefore, a set of efficient approaches that try to avoid the problems associated to nonconvex

optimization has appeared in recent years. One of the simplest ways of dealing with process

non-linearities is to perform successive linearization about a nominal operating point. Every

sampling period an updated linear model is derived from an underlying non-linear model. In

recent years, the successive linearization approach attracted many researchers and good re-

sults have been reported (Van Essen & De Lange, 2001; Mu & Rees, 2004; Niu & Liu, 2008;

Theoklis et al., 2019; Montazeri-Gh & Rasti, 2019). The advantage of using this method over

conventional non-linear design is the avoidance of the problem of local minimums. However,

this could result in a large computational load for MIMO systems. Furthermore, the lineraized

model is only an approximation of the original non-linear one. Therefore, the obtained control

quality may be unsatisfactory for non-linear systems, in particular when the operating point is

changed significantly and fast.

As can be seen, the generation of accurate model which can run many times faster than real

time, is a big challenge in NMPC design. The use of the ANN in NMPC has been recognized as

a effective tool for handling some difficult control process problems, and has recently attracted

a great deal of attention (Rusnak et al., 1996; Sørensen et al., 1999), primarily because ANN

appear to provide a convenient means for modelling complex non-linear processes with good

accuracy and less computational complexity. Two main approaches were used to utilise non-

linear neural model in a predictive control scheme (Aly & Atia, 2012). The first idea is to use

the non-linear optimization to get the optimum control (Lazar & Pastravanu, 2002). The other

is to linearize the non-linear neural model every time step to get the discrete linearized model

(Mu & Rees, 2004; Mu et al., 2005). Pivoňka & Nepevnỳ (2005) designed a constrained GPC

based on NN model. Authors stated that the designed controller is adaptive, as it based on NN
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model which can observe system changes and adapt itself. Rusnak et al. (1996) presented the

GPC algorithm based on ANN plant model. To obtain the step and the free process responses

which are needed in the GPC, the feed-forward ANN model was used to estimate the free

and forced responses. The system free response is obtained instantaneously from ANN model

while forced response is obtained from instantaneous linearization of the ANN model. This

method considered as a trade-off between NMPC and successive linearization approach.

In contrast to LMPC, where convex quadratic programs are mostly solved exactly at each sam-

pling time, NMPC faces an issue: either the non-linear iteration procedure is performed until a

pre-specified convergence criterion is met, or the procedure is stopped prematurely with only

an approximate solution, so that a pre-specified computation time limit can be met. In (Diehl

et al., 2009), the authors gave an overview of Newton type methods for online solution of non-

linear optimal control problems. The two big families of Newton type optimization methods,

SQP and Interior-point methods were presented. The authors concluded that, NMPC results in

improved control performance and allows the direct use of physics based models. However,

the consideration of non-linear models also poses challenging theoretical, computational, and

implementational problems especially for real time applications. Pires et al. (2018b) stated

that, computation of the gradient may not be feasible or cost-effective when using a non-linear

model within NMPC. Therefore, search methods or heuristic methods become attractive. The

maximum number of iteration is an important parameter for theses methods. The control per-

formance could be improved with the increase in the maximum iteration number. However, it

will be computationally expensive.

2.4 Conclusion of literature

This chapter presented a comprehensive overview of the literature in the field of modelling,

simulation, and control of gas turbines. As it can be seen from the literature, there is a great

gain from the research in this field like gas turbine performance evolution and optimization

before and after design and manufacture processes. Therefore, the most relevant scientific
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sources and significant research activities in this area for different kinds of gas turbines were

discussed and summarized. Based on the literature survey, we can note the following issues:

1. There are different approaches to model a dynamic system such as gas turbine. Various

kinds of models have been built so far from different perspectives and for different pur-

poses. Mathematical models can be classified according to several different criteria as

shown in Figure 2.3.

Figure 2.3 Gas turbine modelling approaches

2. The physics based model is very complicated and requires iterative solution, which occurs

at the expense of computation time. So that, to enable calculation of the physics based

models in real time, software and hardware approaches have been proposed by many re-

searchers:

• Hardware modification, such as:

- Application of parallel processing.

- Utilization of faster computer.
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• Software modification, such as:

- Utilization of more efficient iteration techniques.

- Utilization of simple models (neglecting the secondary effect parameters).

- Permitting increased off-line calculation, and thus reducing the required on-line

calculations.

3. The computation time challenge is not a big problem for the performance applications.

However, this is not the case for the model-based applications. In the case of model based

application, the physics based model should be accurate. Besides that, it must run many

times faster than real time. An alternative to physics based models is given by data-driven

based models, which can represent dynamics of non-linear systems with good accuracy

and very low computation effort. So that, the data-driven based models are recommended

by many researchers for using in model based applications.

4. Most of static and dynamic ANN research activities on gas turbine engines used a certain

structure of neural networks namely, a feed forward neural network, one hidden layer

with a number of neurons in this layer ranging from nine to twelve, a tansig activation

function in the hidden layer and purelin activation function in the output layer. Finally,

Levenberg-Marquardt algorithm is used as a training algorithm. It is important therefore to

test other combinations, and to perform an extensive performance comparative study using

a combination of different network architectures, training algorithms, activation functions,

system order and different number of neurons. This will be done in this study.

5. In the area of MIMO ANN model of gas turbine engines, the research activities used

mostly one of the following two methods to generate a nonlinear model for the MIMO

engine: Either, by building a neural network model for each output parameter (MISO)

with the same structure for each one of them and trained with the same training algorithm

(Bahlawan et al., 2017), or by building one block neural model to represent the MIMO

system (Tarik et al., 2017; Mehrpanahi et al., 2018; Salehi & Montazeri-Gh, 2018). How-

ever, it is more powerful, as will be shown in this study, to use a different neural network’s
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structure for each output (MISO). The idea of using different NN structures for different

outputs comes from analysis of the structure of the human brain based on its function.

Human brain consists of many complex biological neural networks; each has to perform a

certain function [talk, walk, breath and so on] as shown in Figure 2.4. The main compo-

nent of these neural networks are neurons. The shape and number of the neurons in each

network depend upon the function of the network. For example, a single sensory neuron

from your fingertip has an axon that extends the length of your arm, while neurons within

the brain may extend only a few millimetres. They also have different shapes depending

on their functions (Khan, 2018). Motor neurons that control muscle contractions have a

cell body on one end, a long axon in the middle and dendrites on the other end. Sensory

neurons have dendrites on both ends, connected by a long axon with a cell body in the

middle. Inter-neurons, or associative neurons, carry information between motor and sen-

sory neurons as shown in Figure 2.5. Based on these facts, to generate a neural network

model for an ADGTE, we propose to build MISO neural network model for each output.

Moreover, the structure of each neural model is different according to the function of the

model (output type).

6. As can be seen, the usage of single neural model may not be able to provide accurate

prediction when it operates outside the field in which it was trained. Besides, gas turbine

engines operate in non-stationary operation conditions, which may cause unseen scenarios

in the observed data. This increases the complexity of the modelling operation since the

NN needs to be trained with a data as large enough to cover the entire operation conditions.

This in turn increases the training time and the possibility of network over-fitting. To

address this problem, we consider to train multiple ANNs in parallel to fit the data instead

of a single model. This leads to an ensemble of neural network models.

7. According to the literature, most works on ensemble approach focus on classification ap-

plications for tackling the FDI problem in gas turbine engines (Wang et al., 2014; Wen

et al., 2019; Lu et al., 2019; Behera et al., 2019; Li et al., 2019). However, little research

has been done on the use of ensemble approach for gas turbine engine real time perfor-
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Figure 2.4 Functions of the human brain

Taken from CASTRO (2018)

mance prediction (Amozegar & Khorasani, 2016; Xu et al., 2017). Based on that, this

thesis will focus on the ensemble generation for regression. A novel approach for the per-

formance simulation of ADGTE through system identification using ensemble methods is

proposed.

8. The Min–Max control strategy is the most widely used control algorithm for industrial

GTEs. This strategy uses minimum and maximum mathematical functions to select the

winner of different engine control loops at any instantaneous time. However, recent studies

(Imani & Montazeri-Gh, 2017; Montazeri-Gh & Rasti, 2019) indicate that this method with

linear compensators suffers from lack of safety guarantee in fast load demands. On the

other hand, MPC method, which incorporates input/output constraints in its optimization

process, has the potential to fulfill the control requirements of an industrial GTEs.

9. The LMPC algorithms are simple to design and are computationally uncomplicated. Un-

fortunately, the obtained control quality may be unsatisfactory for nonlinear systems, in

particular when the operating point is changed significantly and fast. In such cases non-
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Figure 2.5 Basic neuron types

Taken from Khan (2018)

linear models are straightforward, but their identification is more demanding. Furthermore,

complexity of NMPC algorithms is higher than that of the classical linear ones. The im-

plementation of NMPC of ADGTE in real time has two challenges: Firstly, the design of

accurate non-linear model which can run many times faster than real time. Secondly, the

usage of rapid and reliable optimization algorithm to solve the optimization problem in

real time.

10. The resulting implementation of NMPC based on NN model is able to eliminate the most

significant obstacles encountered in non-linear predictive control applications by facilitat-

ing the development of non-linear models and providing a rapid, reliable solution to the

control algorithm.

11. The use of NN models together with the GPC algorithm is a promising technique. Most

applications of GPC algorithm based on NN model have used instantaneous linearization

of the NN model at each time step. In this thesis, to design an NMPC of ADGTE, a trade-

off approach between usage of non-linear model and successive linearization approach is
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used in order to reduce the computation effort. In addition, in order to solve this prob-

lem, Hildreth’s quadratic programming procedure is utilized which offers simplicity and

reliability in real-time implementation.



CHAPTER 3

NEURAL NETWORKS MODELLING APPROACH

3.1 Introduction

This chapter embodies the real core of this work, which makes it the most extensive chapter

of the thesis. At the next step, ANN model building process including system analysis, data

acquisition and preparation, network architecture, as well as network training and validation

are explained. The last part of the chapter is focused on the generation of ensembles of NN

models.

3.2 Neural network basics

ANN is a non-linear statistical data modelling tool mimicking the neural structure of the human

brain. NNs are composed of simple elements operating in parallel. These elements are inspired

by biological nervous systems. As in nature, the network function is determined largely by the

connections between elements. ANN is trained to perform a particular function by adjusting

the values of the connections (weights) between elements. Each such single element is called

a neuron. Neurons are arranged in different layers including input layer, hidden layer(s) and

output layer. The number of neurons and layers in an ANN model determine the degree of

complexity of the network. Figure 3.1 shows a simple structure of a simple NN with four

inputs, one output and four neurons in two hidden layers.

3.3 ANN modelling approach

There are many challenges in the building operation of neural networks model, which can be

summarized as follows:

• Finding the best neural network type.
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Figure 3.1 A simple structure

of an ANN with input, hidden

and output layers

• Finding the best training algorithm.

• Finding the best activation function.

• Finding the system order.

• Finding the number of the neurons in the hidden layer.

This thesis presents a novel methodology for modelling ADGTE using ensembles of NARX

neural networks. This is a general methodology which can be used in generation of accurate,

generalized and real time black box models, and has the advantage of greatly reducing the

network training time. The flow diagram of the modelling approach is illustrated in Figure 3.2.

3.3.1 Data acquisition and preprocessing

Data acquisition is the first step and a vital part of ANN modelling approach. The required

closed loop engine data can either be collected directly from testing of the actual GT engine (if

it is available) or with the help of a high fidelity simulation model that is as realistic as possible.

The later possibility is of special interest for collecting data on critical transients scenarios that

should be avoided on the actual plant due to risk of damage.

The closed loop datasets which were used in this study are time series datasets consisting of

six input parameters (WF, VIGV, LPBOV, IPVSV, IPBOV, and HPBOV) and seven output

parameters (NL, NI , NH , PW , T30, P30, and T GT ) representing the engine operation from the
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Figure 3.2 The flow diagram of

the modelling approach

Synch-Idle or Synch speed (3600 rpm) with no load (unloading) regime to Synch speed with

full load regime (loading). The starting and shutdown regimes are not represented in this work.

Note that, these datasets were taken at different operation conditions: ambient temperature

Tamb[C], ambient pressure Pamb[kPa], fuel lower heating value LHV[kJ/kg] and engine’s ther-

mal efficiency ηth. The thermal efficiency was used to represent the performance degradation

of the engine, which is defined as the ratio between the output shaft energy to the added en-

ergy as shown in equation (3.1) (H.I.H. Saravanamuttoo, 2017). The only available closed loop

experimental data from testing of SGT-A65 engine was collected at a specific operation condi-

tion. More data was needed however to train NN models at different operation conditions and

use those models to generate the NN ensemble. To generate data at different operation con-

ditions we used Siemens high fidelity thermodynamic model. The accuracy of this model has

been well validated by Siemens, so combining experimental data with high fidelity simulated

data was the best solution given the limited availability of experimental data. Table 3.1 shows
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more details about these datasets, where TR is the training dataset and TS is the testing dataset.

ηth =
PW

WF ∗LHV
(3.1)

Table 3.1 Time series datasets

Dataset No of samples TTT amb PPPamb LLLHHHVVV ηηη th
T R1exp 21983 26 101.32 48360 0.32

T S1exp 8117 26 101.32 48360 0.32

T S2exp 17186 26 101.32 48360 0.32

T S3exp 3551 26 101.32 48360 0.32

T R2sim 15132 30 101.32 47826 0.4231

T S2sim 17231 30 101.32 47826 0.4231

T R3sim 22480 15 101.32 47826 0.4067

T S3sim 12890 15 101.32 47826 0.4067

T R4sim 13172 0 101.32 47826 0.4236

T S4sim 12067 0 101.32 47826 0.4236

T R5sim 16691 -15 101.32 47826 0.4038

T S5sim 8816 -15 101.32 47826 0.4038

T R6sim 8732 30 101.32 35717 0.3931

T S6sim 3700 30 101.32 35717 0.3931

T R7sim 8820 15 101.32 35717 0.4061

T S7sim 12750 15 101.32 35717 0.4061

T R8sim 15044 -15 101.32 35717 0.4092

T S8sim 21065 -15 101.32 35717 0.4092

The experimental time series datasets T R1exp and T S1exp are used for pre-processing operation

for extracting the most valuable information about the system dynamics to use in identification

of ANN models. Firstly, the experimental datasets T R1exp and T S1exp are cleaned by filtering

any measurement noise. A simple second order low pass Butterworth digital filter with cut-off

frequency 0.5 Hz was used to remove noise from experimental datasets. After that, cleaned

datasets [T R1exp and T S1exp] were re-sampled at a lower frequency Fs =10 Hz instead of high

sampling frequency 20 Hz to avoid aliasing effects and to avoid having the poles of the discrete

models being very close to the +1 point on the unit circle. In addition, the lower sampling

rate reduces the number of data points which reduces the computation time during training
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operation and reduces data collinearity. The selection of the sampling rate was performed

based on the Nyquist sampling criterion, which requires setting the sampling rate at least twice

the highest frequency of the system.

3.3.2 System order and delay estimation

T R1exp and T S1exp datasets are used in this step after cleaning and re-sampling. Selecting the

model order and delay is a key first step towards the goal of identification of non-linear NNs

model. A selection procedure is frequently implemented by developing several NN models

with different orders and delays and comparing models to evaluate their performance. How-

ever, the influence of NN parameters such as number of neurons, training algorithm and activa-

tion function may lead to an inappropriate selection. In addition, this method is time consum-

ing. Another approach was used in this thesis, which starts by estimation of the time delays

from inputs to outputs nk by using a non-parametric estimate of the impulse response using

MATLAB® routine impulseest. This gives good starting points in identification because it

requires minimal user specification (Alves et al., 2013). Figure 3.3 represents the impulse re-

sponse for WF and NH input-output data. There is a clear indication that the impulse response

"takes off" (leaves the confidence region represented by the shaded area in the figure) after one

sample (red circle), this points to a delay of one sampling interval.

Secondly, estimation of the system order by generation of a set of candidate MISO ARX mod-

els and determining the best model order in the set. The ARX model structure is one of the

simplest parametric structures and it is considered a good starting point for identification pro-

cess because of its simplicity. The general structure of MISO ARX model is shown in equation

(3.2).

A(q−1)y(t) = B1(q−1)u1(t −nk1
)+ · · ·+B j(q−1)u j(t −nk j) (3.2)

A(q−1) = 1+a1q−1 + · · ·+anyq
−ny (3.3)

B(q−1) = b1 +b2q−1 + · · ·+bnuq−nu+1 (3.4)
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Figure 3.3 Impulse response from WF to NH used to estimate

the input-output delay

where A(q−1) and B(q−1) are coefficient’s polynomials to be estimated by using the prediction

error method (PEM). MATLAB® routine struc is used to generate a set of model-order com-

bination of MISO ARX model estimation. The routine struc changes nu and ny for all inputs

and outputs from one to five, as higher-order models result in excessive computational effort

and pose the risk of losing particular physical meaning of the model, and uses the input-output

delay values nk from delay estimation step. After that, MATLAB® routine arxstruc uses the

set of model order combination to estimate a set of MISO ARX models based on the T R1exp

dataset. The Final Prediction Error (FPE) evaluates model quality, where the model is tested

on another dataset T S1exp. Such a procedure is known as cross validation. The most accurate

model has the smallest FPE. The FPE equation is defined by the following equation:

FPE =
1+ d

N

1− d
N

V (3.5)

where d is the total number of estimated parameters and N is the length of the data record.

V is the loss function (quadratic fit) for the structure in question. Finally, checking Pole-Zero

Cancellations for this selected ARX model is performed. MATLAB allows plotting estimated

pole-zeroes with their confidence intervals, which allows you to detect any pole-zero cancella-
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tions (confidence ellipse overlap). Removing these provides a trimmed model order. Table 3.2

summarizes the results from delay and order estimation process for all MISO models for all

output parameters of the engine and uses these results in the non-linear NN identification pro-

cess. This will be illustrated in the next subsection.

Table 3.2 System order and delay estimation results

Output parameter nnnyyy nnnuuu nnnkkk
NH 4 [4 4 4 4 4 4] [1 0 2 0 0 0]

NI 4 [4 4 4 4 4 4] [1 1 3 0 0 0]

NL 4 [4 4 4 4 4 4] [0 2 1 1 0 0]

PW 4 [2 2 4 4 4 4] [1 0 3 0 0 0]

T GT 4 [1 4 4 1 1 4] [1 0 0 0 0 0]

T30 4 [3 1 4 2 1 1] [6 2 4 3 0 0]

P30 4 [1 2 2 1 1 4] [0 0 2 1 0 0]

3.3.3 NARX model configuration

This subsection describes the development of multiple MISO NARX models with different

configurations to represent each of the engine output parameters. Constructing the MISO

NARX model requires determination of network parameters. Such as (i) number of neurons,

(ii) number of hidden layers, (iii) hidden layer activation function and (iv) training algorithm.

To limit the network complexity, the number of hidden layers is limited to one. Besides, Cy-

benco Cybenko (1989) proved that NN with one hidden layer of hyperbolic tangent or sig-

moid activation function and one output layer of linear activation function could simulate any

non-linear system. Another important parameter in the NARX configuration is the training ar-

chitecture. The NARX network training can be implemented via two architectures: (i) series-

Parallel architecture (S&Pr), where the network is trained in open loop mode then transformed

to closed loop mode for validation operation, (ii) parallel architecture (Pr), where the network

is trained and validated in closed loop mode. In this thesis, to get the optimal NARX model

structure which can represent the ADGTE dynamics, we performed an extensive comparative

performance study using different combinations of NARX neural network architectures, train-
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ing algorithms and activation functions while using different numbers of neurons. As a result,

a comprehensive computer program was developed in the MATLAB environment. Figure 3.4

shows the flow diagram of the comprehensive computer program for the MISO NARX model

of the ADGTE. This program generates 240 NARX models with different structures by per-

forming the following:

1. Changing of the number of neurons from 1 to 20.

2. Usage of two activation functions logsig and tansig.

3. Usage of three training algorithms trainlm, trainscg and trainbr.

4. Training the network with series-parallel architecture and parallel architecture.

One of the problems that occur during NN training is network over-fitting. The early stopping

and cross validation are the default methods for improving network generalization and reduce

occurrence of over-fitting during the training operation. When the network begins to over-fit

the data, the validation error begins to increase, and after a certain number of iterations, the

training is stopped, and the weights and biases at the minimum validation error is fixed.

In this thesis, the network training parameters are defined as: (i) the mean square error (mse)

performance function which is minimized until it reaches a sufficiently low cut-off value of

(0.01), (ii) the maximum number of training epochs (1000) which represents the number of

times that all the training patterns are presented to the NN and (iii) the maximum number

of validation increase (100) which represents the number of successive epochs in which the

performance function fails to decrease. Training operation was repeated three times for the

same neural network with the same input data set to increase the accuracy of the network.

The T R1exp dataset is partitioned into 80% used for training the network and 20% used for

cross validation. After finishing the network training operation, the T S1exp dataset is used for

testing the network and evaluating its generalization performance. (RMSE) was used for the

evaluation of the network performance in the training and testing operation. It was calculated
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Figure 3.4 Flow diagram of

the generated computer code for

NARX model of the ADGTE

for the whole set of data of each output parameter from the NN, and defined according to

equation (3.6),
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RMSE =

√
1

N

N

∑
i=1

(
ym − y
ymax

)2 (3.6)

where, ym is the actual output and y is the predicted output. The results of each computation

cycle were recorded in a matrix form which includes the network structure, the root mean

square error (RMSE) for training process, (RMSE) for testing process, and training time. The

summary of the network constructions for NH is shown in Table 3.3. Next, the best NN was se-

lected based on the minimum value of (RMSE) during testing operation. This will be illustrated

in the next subsection.

Table 3.3 Summary of construction of MISO-NARX models for NH

No of
Neurons

Training
Algorithm

S & Pr /
Pr

Activation
Function

RMSE
Train

RMSE
Test

Training
Time (s)

3 trainscg Pr tansig 0.3264 0.3251 10.622

3 trainbr S & Pr logsig 0 0.0029 2.57

3 trainbr S & Pr tansig 0 0.0063 2.6

3 trainbr Pr logsig 0.0008 0.0141 22.895

3 trainbr Pr tansig 0.9356 0.9644 1.561

4 trainlm S & Pr logsig 0 0.0043 3.65

4 trainlm S & Pr tansig 0 0.1024 2.851

4 trainlm Pr logsig 0.0276 0.0333 1.517

4 trainlm Pr tansig 0.0395 0.0479 1.542

4 trainscg S & Pr logsig 0.0009 0.1072 11.838

4 trainscg S & Pr tansig 0.0009 0.1194 12.356

4 trainscg Pr logsig 0.0368 0.0312 21.65

4 trainscg Pr tansig 0.0528 0.0389 13.003

4 trainbr S & Pr logsig 0 0.0054 2.919

4 trainbr S & Pr tansig 0 0.0659 2.916

4 trainbr Pr logsig 0.2192 0.258 1.569

4 trainbr Pr tansig 0.1241 0.1245 1.565

5 trainlm S & Pr logsig 0 0.0056 3.491

5 trainlm S & Pr tansig 0 0.0554 3.373



71

3.3.4 The best model selection process

In order to find the best NN model for the SGT-A65 engine, the output data from the developed

computer program was divided into four groups as follows:

First group series-parallel NARX models with tansig activation function, different numbers

of neurons, and different training algorithms.

Second group series-parallel NARX models with logsig activation function, different numbers

of neurons, and different training algorithms.

Third group parallel NARX models with tansig activation function, different numbers of neu-

rons, and different training algorithms.

Fourth group parallel NARX models with logsig activation function, different numbers of

neurons, and different training algorithms.

Finally, the most accurate MISO-NARX model with minimum RMSE during testing operation

is selected. Table 3.5 to Table 3.11 summarize the results from each group for each output

parameters of the SGT-A65 engine. Table 3.4 summarizes the selected MISO NARX models

for each output parameters of the SGT-A65 engine. Figure 3.5 and Figure 3.6 show networks

structure for all output parameters of SGT-A65 engine.

Table 3.4 The best MISO NARX models configuration

Output
parameter

NO of
neurons

Training
Algo-
rithm

S & Pr /
Pr

Activation
Function

Training
RMSE

Testing
RMSE

NH 2 trainbr S & Pr logsig 0 0.0022

NI 3 trainscg S & Pr logsig 0.0002 0.0018

NL 2 trainlm Pr logsig 0.0006 0.0007

PW 15 trainscg S & Pr logsig 0.0004 0.0107

T GT 11 trainscg S & Pr logsig 0.0002 0.0011

T30 15 trainlm S & Pr logsig 0.0002 0.0076

P30 5 trainscg S & Pr logsig 0.0041 0.005
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a) MISO-NARX model of NH b) MISO-NARX model of NI

c) MISO-NARX model of P30 d) MISO-NARX model of PW

Figure 3.5 MISO-NARX models of SGT-A65 engine

The comparison between engine output and the selected NN output for all engine output pa-

rameters during both training and testing operation are shown in Figure 3.7 through Figure

3.13. As can be seen, the outputs from the MISO-NARX models followed the targets precisely

and can predict the reaction of the system to changes in input parameters with high accuracy

and reliability. The following subsections summarize the results for each output parameters of

the SGT-A65 engine.
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a) MISO-NARX model of T GT b) MISO-NARX model of T30

c) MISO-NARX model of NL

Figure 3.6 MISO-NARX models of SGT-A65 engine

3.3.4.1 MISO-NARX model of NH

Table 3.5 summarizes the results from each group for NH during network construction opera-

tion. Figure 3.7 shows the comparison between actual engine output and the selected MISO-

NARX model output during both training and testing operation. As can be seen, the outputs

from the MISO-NARX model followed the targets precisely and can predict the reaction of the

system to changes in input parameters with high accuracy.



74

Table 3.5 The best MISO NARX models configuration for NH

No of
Neurons

Training
Algorithm

S & Pr /
Pr

Activation
Function

RMSE
Train

RMSE
Test

Training
Time

2 trainbr S & Pr tansig 0 0.0023 12.031

1 trainlm S & Pr tansig 0 0.0024 1.098

12 trainscg S & Pr tansig 0.0004 0.0063 1.609

1 trainlm S & Pr logsig 0 0.0024 1.114

2 trainbr S & Pr logsig 0 0.0022 2.126

1 trainscg S & Pr logsig 0.0005 0.0036 0.97

18 trainlm Pr tansig 0.0007 0.0028 1544.236

1 trainscg Pr tansig 0.0023 0.003 10.138

2 trainbr Pr tansig 0.0017 0.0037 17.237

2 trainlm Pr logsig 0.0008 0.0028 16.333

19 trainscg Pr logsig 0.0009 0.0028 281.202

2 trainbr Pr logsig 0.0019 0.0027 15.962

a) Training b) Testing

Figure 3.7 MISO-NARX model prediction and the actual engine output for NH :

(a) Training , (b) Testing

3.3.4.2 MISO-NARX model of NI

Table 3.6 summarizes the results from each group for NI during network construction operation.

Figure 3.8 shows the comparison between actual engine output and the selected MISO-NARX

model output during both training and testing operation. As can be seen, the outputs from the

MISO-NARX model followed the targets precisely and can predict the reaction of the system

to changes in input parameters with high accuracy.
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Table 3.6 The best MISO NARX models configuration for NI

No of
Neurons

Training
Algorithm

S & Pr /
Pr

Activation
Function

RMSE
Train

RMSE
Test

Training
Time

4 trainbr S & Pr tansig 0 0.0033 85.258

14 trainlm S & Pr tansig 0 0.0045 45.118

19 trainscg S & Pr tansig 0.0005 0.0408 4.132

4 trainlm S & Pr logsig 0 0.0043 62.661

14 trainbr S & Pr logsig 0 0.0038 50.719

3 trainscg S & Pr logsig 0.0002 0.0018 1.588

1 trainlm Pr tansig 0.0019 0.003 10.798

4 trainscg Pr tansig 0.0016 0.0025 152.564

5 trainbr Pr tansig 0.0007 0.0019 296.101

3 trainlm Pr logsig 0.0007 0.002 21.749

3 trainscg Pr logsig 0.0008 0.0018 161.729

20 trainbr Pr logsig 0.0005 0.0022 1965.554

a) Training b) Testing

Figure 3.8 MISO-NARX model prediction and the actual engine output for NI :

(a) Training , (b) Testing

3.3.4.3 MISO-NARX model of NL

Table 3.7 summarizes the results from each group for NL during network construction opera-

tion. Figure 3.9 shows the comparison between actual engine output and the selected MISO-

NARX model output during both training and testing operation. As can be seen, the outputs

from the MISO-NARX model followed the targets precisely and can predict the reaction of the

system to changes in input parameters with high accuracy.
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Table 3.7 The best MISO NARX models configuration for NL

No of
Neurons

Training
Algorithm

S & Pr /
Pr

Activation
Function

RMSE
Train

RMSE
Test

Training
Time

2 trainbr S & Pr tansig 0 0.0095 0.032

10 trainlm S & Pr tansig 0 0.0695 0.185

1 trainscg S & Pr tansig 0.0002 0.0024 0.836

19 trainlm S & Pr logsig 0 0.0109 0.04

11 trainbr S & Pr logsig 0.0001 0.0128 0.59

15 trainscg S & Pr logsig 0.0001 0.0037 1.787

1 trainlm Pr tansig 0.0007 0.0009 9.036

9 trainscg Pr tansig 0.0013 0.0042 84.208

1 trainbr Pr tansig 0.0029 0.0029 10.109

2 trainlm Pr logsig 0.0006 0.0007 16.451

4 trainscg Pr logsig 0.0011 0.0008 85.18

1 trainbr Pr logsig 0.0007 0.0009 10.246

a) Training b) Testing

Figure 3.9 MISO-NARX model prediction and the actual engine output for NL :

(a) Training , (b) Testing

3.3.4.4 MISO-NARX model of PW

Table 3.8 summarizes the results from each group for PW during network construction opera-

tion. Figure 3.10 shows the comparison between actual engine output and the selected MISO-

NARX model output during both training and testing operation. As can be seen, the outputs

from the MISO-NARX model followed the targets precisely and can predict the reaction of the

system to changes in input parameters with high accuracy.
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Table 3.8 The best MISO NARX models configuration for PW

No of
Neurons

Training
Algorithm

S & Pr /
Pr

Activation
Function

RMSE
Train

RMSE
Test

Training
Time

17 trainbr S & Pr tansig 0.0014 0.0255 1.439

20 trainlm S & Pr tansig 0.0012 0.0169 0.043

19 trainscg S & Pr tansig 0.0017 0.0473 1.375

14 trainlm S & Pr logsig 0.0016 0.0274 0.12

20 trainbr S & Pr logsig 0.0013 0.0115 0.046

15 trainscg S & Pr logsig 0.0004 0.0107 0.037

1 trainlm Pr tansig 0.0115 0.0151 7.62

1 trainscg Pr tansig 0.0116 0.0156 12.332

16 trainbr Pr tansig 0.0021 0.0125 11.722

15 trainlm Pr logsig 0.0017 0.0107 723.589

9 trainscg Pr logsig 0.0041 0.099 19.349

5 trainbr Pr logsig 0.0024 0.081 451.322

a) Training b) Testing

Figure 3.10 MISO-NARX model prediction and the actual engine output for PW :

(a) Training , (b) Testing

3.3.4.5 MISO-NARX model of T GT

Table 3.9 summarizes the results from each group for T GT during network construction oper-

ation. Figure 3.11 shows the comparison between actual engine output and the selected MISO-

NARX model output during both training and testing operation. As can be seen, the outputs

from the MISO-NARX model followed the targets precisely and can predict the reaction of the

system to changes in input parameters with high accuracy.
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Table 3.9 The best MISO NARX models configuration for T GT

No of
Neurons

Training
Algorithm

S & Pr /
Pr

Activation
Function

RMSE
Train

RMSE
Test

Training
Time

6 trainbr S & Pr tansig 0.0001 0.0416 0.041

4 trainlm S & Pr tansig 0.0002 0.0223 0.496

12 trainscg S & Pr tansig 0.0004 0.0288 7.639

7 trainlm S & Pr logsig 0.0001 0.0193 0.044

9 trainbr S & Pr logsig 0.0001 0.0357 0.031

11 trainscg S & Pr logsig 0.0002 0.0011 14.767

3 trainlm Pr tansig 0.0039 0.013 163.542

19 trainscg Pr tansig 0.0067 0.014 232.231

1 trainbr Pr tansig 0.0049 0.0079 5.13

5 trainlm Pr logsig 0.0016 0.0047 24.344

13 trainscg Pr logsig 0.0054 0.01 44.745

4 trainbr Pr logsig 0.003 0.0063 5.908

a) Training b) Testing

Figure 3.11 MISO-NARX model prediction and the actual engine output for T GT :

(a) Training , (b) Testing

3.3.4.6 MISO-NARX model of T30

Table 3.10 summarizes the results from each group for T30 during network construction opera-

tion. Figure 3.12 shows the comparison between actual engine output and the selected MISO-

NARX model output during both training and testing operation. As can be seen, the outputs
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from the MISO-NARX model followed the targets precisely and can predict the reaction of the

system to changes in input parameters with high accuracy.

Table 3.10 The best MISO NARX models configuration for T30

No of
Neurons

Training
Algorithm

S & Pr /
Pr

Activation
Function

RMSE
Train

RMSE
Test

Training
Time

13 trainbr S & Pr tansig 0.0002 0.0299 0.033

15 trainlm S & Pr tansig 0.0002 0.028 0.031

10 trainscg S & Pr tansig 0.0002 0.0081 2.426

15 trainlm S & Pr logsig 0.0002 0.0076 0.034

17 trainbr S & Pr logsig 0.0002 0.0134 0.091

10 trainscg S & Pr logsig 0.0002 0.0218 9.413

2 trainlm Pr tansig 0.0033 0.0079 11.131

2 trainscg Pr tansig 0.0147 0.0162 29.046

1 trainbr Pr tansig 0.0051 0.0098 8.368

3 trainlm Pr logsig 0.0016 0.0087 14.32

1 trainscg Pr logsig 0.007 0.0111 105.507

4 trainbr Pr logsig 0.0016 0.0083 17.161

a) Training b) Testing

Figure 3.12 MISO-NARX model prediction and the actual engine output for T30 :

(a) Training , (b) Testing
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3.3.4.7 MISO-NARX model of P30

Table 3.11 summarizes the results from each group for P30 during network construction opera-

tion. Figure 3.13 shows the comparison between actual engine output and the selected MISO-

NARX model output during both training and testing operation. As can be seen, the outputs

from the MISO-NARX model followed the targets precisely and can predict the reaction of the

system to changes in input parameters with high accuracy.

Table 3.11 The best MISO NARX models configuration for P30

No of
Neurons

Training
Algorithm

S & Pr /
Pr

Activation
Function

RMSE
Train

RMSE
Test

Training
Time

11 trainbr S & Pr tansig 0.0003 0.0145 0.027

10 trainlm S & Pr tansig 0.0003 0.0316 0.029

14 trainscg S & Pr tansig 0.0042 0.0276 3.78

19 trainlm S & Pr logsig 0.0004 0.0346 0.045

14 trainbr S & Pr logsig 0.0004 0.0126 0.045

5 trainscg S & Pr logsig 0.0041 0.005 1.749

1 trainlm Pr tansig 0.0151 0.0224 10.079

1 trainscg Pr tansig 0.0144 0.0214 67.258

1 trainbr Pr tansig 0.015 0.0217 7.191

5 trainlm Pr logsig 0.0045 0.005 25.666

20 trainscg Pr logsig 0.0033 0.0073 284.564

7 trainbr Pr logsig 0.0026 0.0077 32.614
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a) Training b) Testing

Figure 3.13 MISO-NARX model prediction and the actual engine output for P30 :

(a) Training , (b) Testing

3.3.5 Ensemble generation

The generation of ensemble system can be generally divided into three steps as shown in Figure

3.14. It often happens that a number of redundant models are generated during ensemble

generation. The next step is ensemble pruning where the pool of generated models are trimmed

in order to achieve maximum diversity among the base models. Finally, the selected base

models are combined in the ensemble integration step, where the final prediction is formed

based on the base models prediction.

Figure 3.14 Ensemble generation steps

Taken from de Sousa et al. (2012)

In this subsection, a homogeneous ensemble for each output parameter of the engine is gener-

ated based upon the best selected structure of the MISO-NARX model from the last subsection,

and diversity among them is ensured by altering the training datasets which represent differ-
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ent operation conditions. Therefore, the ensemble for each output parameter consists of eight

MISO NARX models with the same structure. Each model is retrained individually using

different training dataset, which represent certain operation condition. In this work, eight oper-

ation condition datasets [T R1−T R8] were generated to represent the ADGTE operation space.

The retraining operation is performed in the same way as mentioned before. Figure 3.15 shows

inside of each ensemble model. Note that, each model represent certain operation condition.

Figure 3.15 Inside of an ensemble model

Figure 3.16 through Figure 3.22 show that, the outputs from each model inside each generated

ensemble are different from each other, which explains the ensemble diversity. In this work, the

input space is partitioned into eight subspaces, each one represents certain operation conditions,

and each model in the ensemble is then assigned to one of these sub-spaces. In another word,

we used a mixture of experts to develop a homogeneous ensemble, which can represent the

engine at different operation conditions.
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Figure 3.16 NH ensemble models prediction - T S1exp

Figure 3.17 NI ensemble models prediction - T S1exp
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Figure 3.18 NL ensemble models prediction - T S1exp

Figure 3.19 PW ensemble models prediction - T S1exp
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Figure 3.20 T GT ensemble models prediction - T S1exp

Figure 3.21 T30 ensemble models prediction - T S1exp
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Figure 3.22 P30 ensemble models prediction - T S1exp

3.3.6 Ensemble integration

Now that we have generated the ensemble for each engine output parameter, we move to the

next step. How to combine the identifications that were made for each model in the ensemble

and constructing the final output. Four approaches are used to handle the ensemble integration.

Firstly, the basic ensemble method (BEM) defined by equation (3.7) below. The BEM is a sim-

ple approach to aggregating network outputs by average them together. Secondly, the median

method, which is less affected by outliers and skewed data than the mean one. An outlier is an

extreme value that differs greatly from other values.

fBEM =
1

K

K

∑
i=1

fi(x) (3.7)

Thirdly, a dynamic weighting method (DWM) is considered. Note that, the previous two meth-

ods are considered as a constant weighting methods, while, DWM is considered as a non-

constant weighting method. The weights are adjusted dynamically to be proportional to the
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performance of ensemble members (MISO NARX models), a greater weight will be assigned

to the ensemble member with better performance. Finally, the proposed HDWM is performed

as follows:

1. Calculation of the performance of each ensemble member as described in equation (3.8),

ei = (
ym − yi

ymax
)2 (3.8)

2. Calculation of the median value of the models’ errors

MED = median(e1e2 · · ·eK) (3.9)

3. The weight of each model fi is calculated according to its error as described in Eqn. (3.10),

which calculate the weights in such a way: the model i with error ei around the median

value MED receives a weight close to 1. While, models with ei lower than MED have their

weights exponentially increased, and models with ei larger than MED have their weights

exponentially decreased.

wi = exp(−ei −MED
MED

) (3.10)

4. The ensemble output fen is obtained as,

fen =
∑K

i=1[wi(x)∗ fi(x)]

∑K
i=1 wi(x)

(3.11)

5. Calculation of the error of the ensemble output with respect to the real output, and com-

parison this error with the minimum error from the all ensemble members. If fen <

min(e1 · · ·eK), then the final output will be the ensemble output. Otherwise , the final

output will equal to the output from the ensemble member which has the minimum error

value.



88

As we can see, the HDWM is a hybrid method which combines two integration approaches,

the fusion approach and the selection approach. The former, combines the ensemble mem-

bers outputs in order to obtain the final output by weighting each model output based on its

performance. The latter, selects from the ensemble the most promising model only.

In order to verify the performance of the proposed ensemble integration method (HDWM), a

comparative study was performed between four integration algorithms to measure their impact

on the ensemble performance with respect to T S1exp data set. A summary of results of the

four integration algorithms presented in Table 3.12. Indeed, Figure 3.23 to Figure 3.29 show

estimation of all engine output parameters by ensemble for each output parameter with different

integration algorithms and tested with T S1exp data set. As we can see, the proposed HDWM

has demonstrated superior performance over the other integration methods.

Table 3.12 RMSE of ensemble of MISO NARX models with

different integration methods - T S1exp

Output parameter HDWM DWM BEM Median
NH 0.00005 0.00151 0.04283 0.02877

NI 0.00043 0.01319 0.03669 0.03482

NL 0.00004 0.00033 0.00534 0.00054

PW 0.00180 0.02960 0.44110 0.07860

T GT 0.00351 0.00926 0.02067 0.03183

T30 0.00389 0.02237 0.05820 0.05870

P30 0.00004 0.00262 0.00240 0.00931

Finally, the Black box model of the SGT-A65 engine is presented by eight homogeneous en-

sembles of MISO NARX models as shown in Figure 3.30.
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Figure 3.23 NHensemble regression with different integration

methods - T S1exp

Figure 3.24 NI ensemble regression with different integration

methods - T S1exp
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Figure 3.25 NL ensemble regression with different integration

methods - T S1exp

Figure 3.26 PW ensemble regression with different integration

methods - T S1exp
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Figure 3.27 T GT ensemble regression with different integration

methods - T S1exp

Figure 3.28 T30 ensemble regression with different integration

methods - T S1exp
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Figure 3.29 P30 ensemble regression with different integration

methods - T S1exp

Figure 3.30 Ensemble model of SGT-A65 engine
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3.4 Comparison between single MISO-NARX model and ensemble of MISO-NARX
models

To show the advantages of using an ensemble in the prediction of engine performance instead

of using an individual neural model, we generated a single MISO NARX for each engine output

parameters, and trained them with the same approach as mentioned earlier. Indeed, concate-

nated data from different operation conditions is used for training operation. Figure 3.31 to

Figure 3.44 show the comparison between the ensemble of MISO NARX models and the sin-

gle MISO NARX models for all engine output parameters at different operation conditions.

This demonstrates that ensembles of diverse models aggregated with HDWM method can pro-

vide higher accuracy and higher robustness in real time than the single MISO NARX neural

model approach. One can observe that the ensemble model demonstrates a significantly better

performance in identification of the gas turbine engine dynamics than the individual neural

model, as it results in an improvement in accuracy of nearly 90%, compared with the single

neural model.

3.4.1 Ensemble model of PW

Figure 3.31 and Figure 3.32 show the comparison between PW estimated by the ensemble of

MISO NARX models and the single MISO NARX model. This demonstrates that ensembles

of diverse models aggregated with HDWM method can provide higher accuracy and higher

robustness in real time than the single MISO NARX neural model approach. A summary of

comparison results is shown in Table 3.13.
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Table 3.13 Regression performance [RMSE] of

single MISO NARX model and ensemble

of eight MISO NARX models - PW

Data set Single MISO-NARX
model

Ensemble of MISO-
NARX models

T S1exp 0.0522 0.0018

T S2sim 0.0211 0.00045

T S3sim 0.0165 0.00081

T S4sim 0.0158 0.0020

T S5sim 0.0144 0.0029

T S6sim 0.0299 0.0097

T S7sim 0.0284 0.0090

T S8sim 0.0326 0.0010

a) T S1exp b) T S2sim

c) T S3sim d) T S4sim

Figure 3.31 The comparison between the performance of ensemble of MISO NARX

models and single MISO NARX model using T S1exp to T S4sim datasets - PW
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a) T S5sim b) T S6sim

c) T S7sim d) T S8sim

Figure 3.32 The comparison between the performance of ensemble of MISO NARX

models and single MISO NARX model using T S5sim to T S8sim datasets - PW

3.4.2 Ensemble model of NH

Figure 3.33 and Figure 3.34 show the comparison between NH estimated by the ensemble of

MISO NARX models and the single MISO NARX model. This demonstrates that ensembles

of diverse models aggregated with HDWM method can provide higher accuracy and higher

robustness in real time than the single MISO NARX neural model approach. A summary of

comparison results is shown in Table 3.14.
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Table 3.14 Regression performance [RMSE]

of single MISO NARX model and ensemble

of eight MISO NARX models - NH

Data set Single MISO-NARX
model

Ensemble of MISO-
NARX models

T S1exp 0.0056 0.00017

T S2sim 0.0024 0.00015

T S3sim 0.0020 0.00069

T S4sim 0.0038 0.00052

T S5sim 0.0028 4.64e-5

T S6sim 0.0051 0.00081

T S7sim 0.0020 0.00063

T S8sim 0.0024 0.00107

a) T S1exp b) T S2sim

c) T S3sim d) T S4sim

Figure 3.33 The comparison between the performance of ensemble of MISO NARX

models and single MISO NARX model using T S1exp to T S4sim datasets - NH
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a) T S5sim b) T S6sim

c) T S7sim d) T S8sim

Figure 3.34 The comparison between the performance of ensemble of MISO NARX

models and single MISO NARX model using T S5sim to T S8sim datasets - NH

3.4.3 Ensemble model of NI

Figure 3.35 and Figure 3.36 show the comparison between NI estimated by the ensemble of

MISO NARX models and the single MISO NARX model. This demonstrates that ensembles

of diverse models aggregated with HDWM method can provide higher accuracy and higher

robustness in real time than the single MISO NARX neural model approach. A summary of

comparison results is shown in Table 3.15.
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Table 3.15 Regression performance [RMSE]

of single MISO NARX model and ensemble

of eight MISO NARX models - NI

Data set Single MISO-NARX
model

Ensemble of MISO-
NARX models

T S1exp 0.0051 0.00088

T S2sim 0.0065 0.00061

T S3sim 0.0048 0.00026

T S4sim 0.0041 4.67e-5

T S5sim 0.0107 0.0008

T S6sim 0.0036 0.0028

T S7sim 0.0038 4.74e-5

T S8sim 0.0067 0.00082

a) T S1exp b) T S2sim

c) T S3sim d) T S4sim

Figure 3.35 The comparison between the performance of ensemble of MISO NARX

models and single MISO NARX model using T S1exp to T S4sim datasets - NI
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a) T S5sim b) T S6sim

c) T S7sim d) T S8sim

Figure 3.36 The comparison between the performance of ensemble of MISO NARX

models and single MISO NARX model using T S5sim to T S8sim datasets - NI

3.4.4 Ensemble model of NL

Figure 3.37 and Figure 3.38 show the comparison between NL estimated by the ensemble of

MISO NARX models and the single MISO NARX model. This demonstrates that ensembles

of diverse models aggregated with HDWM method can provide higher accuracy and higher

robustness in real time than the single MISO NARX neural model approach. A summary of

comparison results is shown in Table 3.16.
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Table 3.16 Regression performance [RMSE]

of single MISO NARX model and ensemble

of eight MISO NARX models - NL

Data set Single MISO-NARX
model

Ensemble of MISO-
NARX models

T S1exp 0.0037 8.85e-5

T S2sim 0.0074 8.11e-5

T S3sim 0.0013 4.77e-5

T S4sim 0.0486 0.00026

T S5sim 0.0099 3.29e-5

T S6sim 0.0147 0.0010

T S7sim 0.0103 6.02e-5

T S8sim 0.0053 0.00033

a) T S1exp b) T S2sim

c) T S3sim d) T S4sim

Figure 3.37 The comparison between the performance of ensemble of MISO NARX

models and single MISO NARX model using T S1exp to T S4sim datasets - NL
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a) T S5sim b) T S6sim

c) T S7sim d) T S8sim

Figure 3.38 The comparison between the performance of ensemble of MISO NARX

models and single MISO NARX model using T S5sim to T S8sim datasets - NL

3.4.5 Ensemble model of T GT

Figure 3.39 and Figure 3.40 show the comparison between T GT estimated by the ensemble of

MISO NARX models and the single MISO NARX model. This demonstrates that ensembles

of diverse models aggregated with HDWM method can provide higher accuracy and higher

robustness in real time than the single MISO NARX neural model approach. A summary of

comparison results is shown in Table 3.17.
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Table 3.17 Regression performance [RMSE]

of single MISO NARX model and ensemble

of eight MISO NARX models - T GT

Data set Single MISO-NARX
model

Ensemble of MISO-
NARX models

T S1exp 0.0202 0.0093

T S2sim 0.0302 0.0008

T S3sim 0.0257 0.0055

T S4sim 0.0274 0.0020

T S5sim 0.0320 0.0241

T S6sim 0.1044 0.0032

T S7sim 0.0377 0.0006

T S8sim 0.0400 0.0330

a) T S1exp b) T S2sim

c) T S3sim d) T S4sim

Figure 3.39 The comparison between the performance of ensemble of MISO NARX

models and single MISO NARX model using T S1exp to T S4sim datasets - T GT
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a) T S5sim b) T S6sim

c) T S7sim d) T S8sim

Figure 3.40 The comparison between the performance of ensemble of MISO NARX

models and single MISO NARX model using T S5sim to T S8sim datasets - T GT

3.4.6 Ensemble model of T30

Figure 3.41 and Figure 3.42 show the comparison between T30 estimated by the ensemble of

MISO NARX models and the single MISO NARX model. This demonstrates that ensembles

of diverse models aggregated with HDWM method can provide higher accuracy and higher

robustness in real time than the single MISO NARX neural model approach. A summary of

comparison results is shown in Table 3.18.
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Table 3.18 Regression performance [RMSE]

of single MISO NARX model and ensemble

of eight MISO NARX models - T30

Data set Single MISO-NARX
model

Ensemble of MISO-
NARX models

T S1exp 0.0272 0.0031

T S2sim 0.0319 0.00021

T S3sim 0.0301 0.0054

T S4sim 0.0819 0.0001

T S5sim 0.1205 0.0007

T S6sim 0.0585 0.0012

T S7sim 0.0754 0.0001

T S8sim 0.1641 0.0013

a) T S1exp b) T S2sim

c) T S3sim d) T S4sim

Figure 3.41 The comparison between the performance of ensemble of MISO NARX

models and single MISO NARX model using T S1exp to T S4sim datasets - T30
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a) T S5sim b) T S6sim

c) T S7sim d) T S8sim

Figure 3.42 The comparison between the performance of ensemble of MISO NARX

models and single MISO NARX model using T S5sim to T S8sim datasets - T30

3.4.7 Ensemble model of P30

Figure 3.43 and Figure 3.44 show the comparison between P30 estimated by the ensemble of

MISO NARX models and the single MISO NARX model. This demonstrates that ensembles

of diverse models aggregated with HDWM method can provide higher accuracy and higher

robustness in real time than the single MISO NARX neural model approach. A summary of

comparison results is shown in Table 3.19.
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Table 3.19 Regression performance [RMSE]

of single MISO NARX model and ensemble

of eight MISO NARX models - P30

Data set Single MISO-NARX
model

Ensemble of MISO-
NARX models

T S1exp 0.0796 0.00012

T S2sim 0.0134 0.0023

T S3sim 0.0125 0.00026

T S4sim 0.0282 0.0021

T S5sim 0.0400 0.0052

T S6sim 0.0419 0.0065

T S7sim 0.0220 0.0017

T S8sim 0.0383 0.0004

a) T S1exp b) T S2sim

c) T S3sim d) T S4sim

Figure 3.43 The comparison between the performance of ensemble of MISO NARX

models and single MISO NARX model using T S1exp to T S4sim datasets - P30



107

a) T S5sim b) T S6sim

c) T S7sim d) T S8sim

Figure 3.44 The comparison between the performance of ensemble of MISO NARX

models and single MISO NARX model using T S5sim to T S8sim datasets - P30

3.5 Summary

Artificial neural network has been used as a robust and reliable technique for system iden-

tification and modelling of complex systems with non-linear dynamics such as gas turbines.

It can provide outstanding solutions to the problems that cannot be solved by conventional

mathematical methods.

This chapter presents a novel methodology for the development of data driven based model of

ADGTE, in order to simulate the dynamic performance of the ADGTE during the full operat-

ing range in real time. An ensemble of multiple MISO NARX neural models was introduced

to predict the ADGTE output parameters in real time. First, Data collection and preparation
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was performed, which includes collection of closed loop data from operational testing of the

SGT-A65 ADGTE and the high fidelity simulation program of Siemens at different operation

conditions. After that, data cleaning and re-sampling was performed to generate eight datasets

for system identification. Secondly, estimation of the system order and delay were done by

identification of linear ARX models based on the experimental datasets. This represents a key

step before identification of the non-linear neural model. Third, the NARX neural network

was chosen to be a base model of the ensemble of ADGTE due to its capability in the simu-

lation and prediction of the response of non-linear systems. Moreover, multiple MISO NARX

models for each output parameter from the ADGTE were generated. Each NARX model has a

configuration that is different from the other ones and is based on the function of this model.

A comprehensive computer program was used to select the best structure of MISO NARX

model for each output parameter. After that, retraining operation of the selected MISO-NARX

models was performed with training datasets from different operation conditions. As a result,

seven homogeneous ensembles each one consisting of eight MISO NARX models were devel-

oped to predict the seven output parameters from the ADGTE at different operation conditions.

The last and most important step in the ensemble generation is the combination of the outputs

from the eight diverse models in each ensemble. A novel hybrid dynamic weighting method

(HDWM) was proposed to perform this task, and verification of this method was performed

by comparing its outputs with the output from three common integration methods. The results

presented a superior performance of the new integration method. Finally, testing of the gener-

ated ensembles which use the HDWM method was performed at different operation conditions

to measure the prediction accuracy and generalization property of the ensembles.

As shown in the results, the ensemble of MISO-NARX models can represent the ADGTE dur-

ing the full operating range with a good accuracy even with different input scenarios from dif-

ferent operation conditions which prove the high generalization characteristic of the ensemble.

Also, another important gain was the very low execution time (40.5 μs as compared to more

than 10 ms using the same real time machine), which can support many real time applications

like model based controller design, sensor fault verification and engine health monitoring. In
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this study, this model will be used to design a model based controller to improve the perfor-

mance of the ADGTE.

On the other hand, estimation of the NN model order by generating different ARX models

and estimation of the input/output delay, before generation of NN model, are very important

steps. These steps save more iterations required to find the best structure of the NN and con-

sequently save more time required for NN model generation. In addition, data cleaning and

resampling step significantly reduce training time. The lower sampling rate reduces the num-

ber of data points, which reduces the computation time during training operation and reduces

data co-linearity. In (Asgari, 2014), in order to find the best model for the gas turbine engine,

the generated code was run in MATLAB and 18720 different ANN structures were trained.

However, this number was reduced to 240 different ANN structures by using the proposed

approach.





CHAPTER 4

NON-LINEAR MODEL PREDICTIVE CONTROLLER

4.1 Introduction

The objective of an ADGTE control system is to provide required power as well as protection

against physical and operational limits. NMPC approach is an attractive approach as compared

to the classical min-max algorithm, and incorporates input/output constraints in its optimization

process to fulfill the control requirements of the engine. However, due to heavy computational

burden of NMPC, the real-time implementation of this algorithm is challenging and selection

of NMPC design parameters is crucial. A novel method to solve this problem is presented in

this chapter. The constrained MIMO GPC strategy based on NN model of a plant is proposed

to implement the NMPC of the system. The theoretical foundation of the MPC algorithm is

presented as well as the formulation of the unconstrained and constrained GPC algorithm for

both SISO and MIMO cases. After that, a detailed derivation of the GPC algorithm based on

adaptive non-linear ANN model (NNGPC) is presented in detail, showing the general proce-

dure to obtain the control law and its most outstanding characteristics.

4.2 The Concept of the MPC

The methodology of all the controllers belonging to the MPC family is characterised by the

strategies represented in Figure 4.1. Model predictive control is a form of control in which

the current control action is obtained by solving, at each sampling instant, a finite horizon

open-loop optimal control problem, using the current state of the plant as the initial state; the

optimization yields an optimal control sequence and the first control in this sequence is applied

to the plant. An important advantage of this type of control is its ability to cope with hard

constraints on controls and states. It has, therefore, been widely applied in industrial appli-

cations where satisfaction of constraints is particularly important because efficiency demands

operating points on or close to the boundary of the set of admissible states and controls.
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Figure 4.1 The MPC Strategy

Taken from Montazeri-Gh & Rasti (2019)

In order to implement this strategy, the basic structure shown in Figure 4.2 is used. A prediction

model is used to predict the future plant outputs over a prediction horizon based on past and

current values and on the proposed optimal future control actions. These actions are calculated

by the optimizer taking into account the cost function, where the future tracking error is con-

sidered as well as the constraints. The objective of the MPC is minimisation of the predicted

output errors by adjusting control actions over a given horizon.
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Figure 4.2 Block diagram of a model predictive controller

4.3 Generalized Predictive Control

Generalized Predictive Control (GPC), first introduced by Clarke et al. (1987a), is one of a class

of MPC algorithms. This method is popular not only in industry, but also in academia. Few

advanced control methods have had as much influence, widespread acceptance, and success

in industrial applications as the GPC approach. The success of this technique is due to its

capabilities of controlling a process with:

• Variable time delay and model order.

• Over-parameterization (plant/model mismatch).

• Unstable zeros (non-minimum phase).

• Unstable poles.

• Load-disturbances.

A model is the center for any kind of model-based control design. The model used in GPC

design is the Controlled Autoregressive and Integrated Moving Average (CARIMA) model as
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shown in equation (4.1),

A(z−1)y(t) = B(z−1)u(t −1)+C(z−1)
e(t)
Δ

(4.1)

where y(t) is the process output, u(t) is the input , and e(t) is the white noise. The difference

operator Δ = 1− z−1 in the denominator of the noise term is widely assumed, as it forces an

integrator into the controller in order to eliminate offset between the measured output and its

set point. A(z−1), B(z−1) and C(z−1) are the polynomials in the backward-shift operator z−1

with the orders of ny, nu and nk respectively:

A(z−1) = 1+a1z−1 +a2z−2 + · · ·+anaz−ny

B(z−1) = b0 +b1z−1 +b2z−2 + · · ·+bnbz−nu

C(z−1) = 1+b1z−1 + c2z−2 + · · ·+ cncz
−nk

(4.2)

The GPC strategy is based on applying a control sequence that minimizes a quadratic cost

function measuring the control effort and the distance between the predicted system output and

desired outputs over the prediction horizon, i.e.

J (N1,N2,Nu) =
N2

∑
j=N1

[ŷ(t + j|t)−w(t + j)]2 +Λ
Nu

∑
j=1

[Δu(t + j−1)]2 (4.3)

subjected to Δu(t + j) = 0 when j > Nu

where ŷ is the predicted output from the system model, and w is the reference output. u(t + j−
1) is the sequence of future control action that is to be determined. N1, N2 are the minimum,

maximum horizon, and Nu is the control horizon. Λ is a weighting factor penalizing changes in

the control inputs. The tuning parameters of the GPC are N1, N2, Nu, and Λ, which determine

the stability and performance of the GPC controller. Notice that, N1 ≥ 1, N2 ≥ N1, and N2 ≥
Nu ≥ 1 . In addition, some guidelines for selecting those parameters exist in (Clarke et al.,

1987b; Clarke & Mohtadi, 1987).
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In order to derive the GPC control law, the optimal prediction of y(t + j) for N1 ≤ j ≤ N2

will be obtained first. According to (Camacho & Alba, 2013) the future output value of SISO

system is given by equation (4.4),

ŷ(t + j|t) = G j(z−1)Δu(t + j−1)+Γ j(z−1)Δu f (t −1)+Fj(z−1)y f (t). (4.4)

In equation(4.4), the polynomials G j(z−1), Γ j(z−1), and Fj(z−1) are calculated by solving the

Diophantine equations:

C(z−1)

ΔA(z−1)
= E j(z−1)+ z− jFj(z−1)

B(z−1)E j(z−1)

C(z−1)
= G j(z−1)+ z− j Γ j(z−1)

C(z−1)

(4.5)

The superscript f in equation (4.4) denotes filtering by 1/C(z−l). As can be seen in equation

(4.4), the last two terms depend only on the previous states. So that, we can include those terms

into one term f . Then, the equation of the predictor can be written in more compact form as

follows:

ŷ(t + j|t) = G j(z−1)Δu(t + j−1)+ f (t + j) (4.6)

where f (t + j) is the free response of the system if the input remains constant at the last

computed value u(t−1) and G j(z−1)Δu(t+ j−1) represents the forced response of the system

which depends on the future control actions yet to be determined. The polynomial G j(z−1)

contains the system step response coefficients of the system as shown in equation (4.7),

G j(z−1) = E j(z−1)B(z−1) = g0 +g1z−1 + · · ·+g j−1z−( j−1). (4.7)
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To simplify the following derivation of the GPC control law, let N1 = 1. Now consider the

following set of j step ahead optimal predictions:

ŷ(t +1|t) = G1(z−1)Δu(t)+ f (t +1)

ŷ(t +2|t) = G2(z−1)Δu(t +1)+ f (t +2)

...

ŷ(t +N2|t) = GN2
(z−1)Δu(t +N2 −1)+ f (t +N2)

(4.8)

Hence, the predictor in vector notation can be written as:

ŷ = GΔu+ f (4.9)

where

ŷ =

⎡
⎢⎢⎢⎢⎢⎢⎣

ŷ(t +1|t)
ŷ(t +2|t)

...

ŷ(t +N2|t)

⎤
⎥⎥⎥⎥⎥⎥⎦
[N2X1]

, Δ u =

⎡
⎢⎢⎢⎢⎢⎢⎣

Δu(t)

Δu(t +1)
...

Δu(t +Nu −1)

⎤
⎥⎥⎥⎥⎥⎥⎦
[NuX1]

,

f =

⎡
⎢⎢⎢⎢⎢⎢⎣

f (t +1)

f (t +2)
...

f (t +N2)

⎤
⎥⎥⎥⎥⎥⎥⎦
[N2X1]

& G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g0 0 · · · 0

g1 g0 · · · 0
...

...
...

...

gNu−1 · · · g1 g0

...
...

...
...

gN2−1 gN2−2 · · · gN2−Nu

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[N2XNu]

For SISO systems, the matrix G is a lower triangular matrix of dimension [N2XNu]. Besides,

the first column of G can be calculated as the step response of the system when a unit step is

applied to the manipulated variable.
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Secondly, the cost function equation (4.3) can be written in matrix form as:

J = (ŷ−W )T (ŷ−w)+Λ ΔuT Δu (4.10)

where w = [w(t+1),w(t+2), · · · ,w(t+N2)]
T . Substituting equation (4.9) into equation (4.10)

yields:

J = (GΔu+ f −w)T (GΔu+ f −w)+Λ ΔuT Δu (4.11)

Equation (4.11) can be rewritten in matrix form:

J =
1

2
ΔuT HΔu+bT Δu+ f0 (4.12)

where the gradient b and Hessian H are defined as:

H = 2(GT G+Λ I)

bT = 2( f −w)T G

f0 = ( f −w)T ( f −w)

(4.13)

For the unconstrained case, the minimization of the cost function (equation (4.12)) can be

solved by setting the derivative of J with respect to Δu to zero, which leads to:

Δu =−H−1b = (GT G+Λ I)−1GT (w− f ) (4.14)

As the GPC is a receding-horizon control strategy, only the first control increment in Δu (equa-

tion (4.14)) is applied to the system and the whole algorithm is recomputed at time t +1.

The MIMO version of the GPC is a direct extension of the SISO GPC described above. The

matrix and vector elements are not scalars but vectors and matrices themselves. If m-inputs

and n-outputs are considered, then matrix GGG has dimension of [n ∗N2Xm ∗Nu], and it can be
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obtained as:

GGG =

⎡
⎢⎢⎢⎢⎢⎢⎣

G11 G12 · · · G1m

G21 G22 · · · G2m
...

...
. . .

...

Gn1 Gn2 · · · Gnm

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.15)

where each matrix Gi j of dimension [N2XNu] contains the coefficients of the ith step response

corresponding to the jth input. The vector of predicted outputs, future control signals, free

response, and outputs set-point vector are respectively defined as:

ŷyy =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ŷ1(t +1|t)
...

ŷ1(t +N2|t)
...

ŷn(t +1|t)
...

ŷn(t +N2|t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[n∗N2X1]

, ΔΔΔuuu =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δu1(t)
...

Δu1(t +Nu −1)

Δum(t)
...

Δum(t +Nu −1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[m∗NuX1]

,

fff =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1(t +1)
...

f1(t +N2)
...

fn(t +1)
...

fn(t +N2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[n∗N2X1]

& www =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1(t +1)
...

w1(t +N2)
...

wn(t +1)
...

wn(t +N2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[n∗N2X1]

(4.16)

The control weighting matrix ΛΛΛ is with positive elements on its diagonal, i.e.

ΛΛΛ = diag(Λ1,Λ2, · · · ,Λm)

As can be seen, one of the advantages of MPC is that multi-variable processes can be handled

in a straightforward manner.
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4.4 Constrained GPC

The advantages of GPC become evident mainly when constraints are contemplated. The con-

straints acting on a process can originate from amplitude limits in the control signal, slew rate

limits of the actuator, and limits on the output signals. These constraints can be described

respectively by:

umin ≤ u(t)≤ umax

Δumin ≤ Δu(t)≤ Δumax

ymin ≤ y(t)≤ ymax

(4.17)

where umin and umax are the lower and upper bounds on the manipulated input amplitude. Δumin

and Δumax are the lower and upper bounds on the future control increment. ymin and ymax are

the lower and upper bounds on the process output amplitude.

To this end, we need to formulate the predictive control problem (equation (4.9)) as an opti-

mization problem that takes into account the constraints present. Therefore, the key here is

to parametrize the constrained variables (equation (4.17)) using the same parameter Δu as the

ones used in the design of the GPC control law.

For the input amplitude constraints, we can write the control input predictions in terms of the

future control increments as follows:

u(t) = Δu(t)+u(t −1)

u(t +1) = Δu(t +1)+u(t)

= Δu(t +1)+Δu(t)+u(t −1)

u(t +2) = u(t +1)+Δu(t +2)

= Δu(t +2)+Δu(t +1)+Δu(t)+u(t −1)

...

u(t +Nu −1) = Δu(t +Nu −1)+Δu(t +Nu −2)+ · · ·+Δu(t)+u(t −1)

(4.18)
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Now, the input amplitude constraints over the control horizon Nu can be rewritten as follows:

The input amplitude constraint at time t is:

umin ≤ u(t)≤ umax (4.19)

Replacing u(t) with Δu(t)+u(t −1) from equation (4.18)) and re-arranging the terms yields:

umin −u(t −1)≤ Δu(t)≤ umax −u(t −1) (4.20)

Advancing t by one step gives:

umin ≤ u(t +1)≤ umax

umin −u(t −1)≤ Δu(t +1)+Δu(t)≤ umax −u(t −1)
(4.21)

Advancing t+1 by one step once more and performing the same substitution gives:

umin ≤ u(t +2)≤ umax

umin −u(t −1)≤ Δu(t +2)+Δu(t +1)+Δu(t)≤ umax −u(t −1)
(4.22)

A clear pattern arises, allowing us to write the entire set of input constraints over the control

horizon Nu in matrix form as follows:

(umin −u(t −1))

⎡
⎢⎢⎢⎢⎢⎢⎣

1

1
...

1

⎤
⎥⎥⎥⎥⎥⎥⎦
≤

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · ·
1 1 0 · · ·
...

...
...

...

1 1 1 · · ·

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

Δu(t)

Δu(t +1)
...

Δu(t +Nu −1)

⎤
⎥⎥⎥⎥⎥⎥⎦
≤

⎡
⎢⎢⎢⎢⎢⎢⎣

1

1
...

1

⎤
⎥⎥⎥⎥⎥⎥⎦
(umax −u(t −1))

(4.23)
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If the following definitions are introduced:

Tu =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0

1 1 0 · · · 0
...

...
...

...
...

1 1 1 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎦
[NuXNu]

, Lu =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

1
...

1

⎤
⎥⎥⎥⎥⎥⎥⎦
[NuX1]

(4.24)

then equation (4.23) can be expressed as:

dumin ≤ TuΔu ≤ dumax (4.25)

where dumin = (umin − u(t − 1))Lu and dumax = (umax − u(t − 1))Lu. Now, the complete set of

input amplitude constraints can be compactly represented as:

TuΔu ≤ dumax

−TuΔu ≤−dumin

(4.26)

A reasonable approach to output constraint handling is the requirement that predicted outputs

satisfy the constraints over the prediction horizon N2. Substituting equation (4.9) in output

constraints over N2 yields:

yminLy ≤ GΔu+ f ≤ ymaxLy (4.27)

where Ly = [1,1,1, · · · ,1]T is a vector of dimension [N2 X 1].

The complete set of output constraints can be compactly represented as:

GΔu ≤ ymaxLy − f

−GΔu ≤−yminLy + f
(4.28)



122

The complete set of input slew rate constraints over Nu can be expressed as:

IΔu ≤ ΔumaxLu

−IΔu ≤−ΔuminLu

(4.29)

where I is the identity matrix of dimension [NuXNu].

From equations (4.26), (4.28) and (4.29), input and output constraints can be combined in a

single inequality on Δu as:

MCΔu ≤ dC (4.30)

where

MC =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I

−I

Tu

−Tu

G

−G

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, dC =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΔumaxLu

−ΔuminLu

dumax

−dumin

ymaxLy − f

−yminLy + f

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.31)

MC is a matrix representing the constraints with its number of rows equal to the number of

constraints and the number of columns equal to the dimension of vector Δu.

For an m-input n-output system with constraints acting over a prediction horizon N2 and control

horizon Nu, the similar mathematical formula can be derived.

The complete set of m-input slew rate constraints over Nu can be expressed as:

IIIΔΔΔuuu ≤ ΔΔΔuuumaxLLLuuu

−IIIΔΔΔuuu ≤−ΔΔΔuuuminLLLuuu

(4.32)
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where

III =

⎡
⎢⎢⎢⎢⎢⎢⎣

I[NuXNu] 0 0 · · ·
0 I[NuXNu] 0 · · ·
...

...
. . .

...

0 0 · · · I[NuXNu]

⎤
⎥⎥⎥⎥⎥⎥⎦
[m∗NuXm∗Nu]

,ΔΔΔuuumax =

⎡
⎢⎢⎢⎢⎢⎢⎣

Δu1max

Δu2max

...

Δummax

⎤
⎥⎥⎥⎥⎥⎥⎦
[mX1]

,

LLLuuu =

⎡
⎢⎢⎢⎢⎢⎢⎣

Lu[NuX1]
0 0 · · ·

0 Lu[NuX1]
0 · · ·

...
...

. . .
...

0 0 0 Lu[NuX1]

⎤
⎥⎥⎥⎥⎥⎥⎦
[m∗NuXm]

& ΔΔΔuuumin =

⎡
⎢⎢⎢⎢⎢⎢⎣

Δu1min

Δu2min
...

Δummin

⎤
⎥⎥⎥⎥⎥⎥⎦
[mX1]

The complete set of m-input amplitude constraints over Nu can be expressed as:

TTT uuuΔΔΔuuu ≤ dddumax

−TTT uuuΔΔΔuuu ≤−dddumin

(4.33)

where

TTT uuu = LLLuuu

⎡
⎢⎢⎢⎢⎢⎢⎣

Tu[NuXNu]
0 0 · · ·

0 Tu[NuXNu]
0 · · ·

...
...

. . .
...

0 0 · · · Tu[NuXNu]

⎤
⎥⎥⎥⎥⎥⎥⎦
[m∗NuXm∗Nu]

,

dddumax = LLLuuu

⎡
⎢⎢⎢⎢⎢⎢⎣

u1max −u1(t −1)

u2max −u2(t −1)
...

ummax −um(t −1)

⎤
⎥⎥⎥⎥⎥⎥⎦
[mX1]

& dddumin = LLLuuu

⎡
⎢⎢⎢⎢⎢⎢⎣

u1min −u1(t −1)

u2min −u2(t −1)
...

ummin −um(t −1)

⎤
⎥⎥⎥⎥⎥⎥⎦
[mX1]
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The complete set of n-output constraints over N2 can be expressed as:

GGGΔΔΔuuu ≤ yyymaxLLLyyy −−− fff

−GGGΔΔΔuuu ≤−yyyminLLLyyy +++ fff
(4.34)

where

LLLyyy =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ly[N2X1]
0 0 · · ·

0 Ly[N2X1]
0 · · ·

...
...

. . .
...

0 0 0 Ly[N2X1]

⎤
⎥⎥⎥⎥⎥⎥⎦
[n∗N2Xn]

,yyymax =

⎡
⎢⎢⎢⎢⎢⎢⎣

y1max

y2max

...

ynmax

⎤
⎥⎥⎥⎥⎥⎥⎦
[nX1]

&yyymin =

⎡
⎢⎢⎢⎢⎢⎢⎣

y1min

y2min
...

ynmin

⎤
⎥⎥⎥⎥⎥⎥⎦
[nX1]

From equations (4.32), (4.33), and (4.34) m-input and n-output constraints can be combined in

a single inequality on ΔΔΔuuu as:

MMMCCCΔΔΔuuu ≤ dddCCC (4.35)

where

MMMCCC =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

III

−III

TTT uuu

−TTT uuu

GGG

−GGG

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, dddCCC =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΔΔΔuuumaxLLLuuu

−ΔΔΔuuuminLLLuuu

dddumax

−dddumin

yyymaxLLLyyy − fff

−yyyminLLLyyy + fff

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.36)

4.5 Non-linear model predictive control algorithm (NMPC)

The MPC algorithm based on linear models is a mature control technique with multiple ap-

plications in the process industry. The next natural step in this area is the development of

predictive control based on non-linear models. The use of controllers that take into account the

non-linearities of the plant implies an improvement in the performance of the plant by reducing
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the impact of the disturbances and by improving the tracking capabilities of the control system.

However, the usage of a non-linear model within the NMPC changes the control problem from

a convex quadratic problem to a nonconvex non-linear one. Furthermore, in this situation, there

is no guarantee that the global optimum can be found especially in real-time control when the

optimum solution has to be obtained in a prescribed time. Therefore, a novel method that tries

to avoid these problems has been presented in the following parts of this chapter.

4.5.1 The neural network generalized predictive controller (NNGPC)

An investigation of a novel approach to implement the NMPC based on neural network model

is reported in this study. A constrained MIMO NMPC is developed based on the GPC algorithm

because of its simplicity, ease of use, and ability to handle problems in one algorithm. Future

control actions are determined by minimizing the predicted errors without violating input and

output constraints. The NN model, which was generated in the previous chapter, is used as a

base model for the GPC controller to predict the future process outputs.

The design of the GPC demands the construction of a predictor (equation (4.9)). Hence, for the

calculation of the predicted future output ŷ only two characteristics of the system are needed:

step (forced) and free responses. To obtain the step and the free process responses which are

needed in the generalized predictive control strategy we iteratively use an ensemble of MISO-

NARX models as a multi-step-ahead predictor.

The proposed control scheme in Figure 4.3 consists of a non-linear NN model of the system to

be controlled in the form of ensembles of MISO-NARX models and the GPC algorithm block.

The neural model is trained off-line as shown in the previous chapter. This model works as a

predictor which produces the free and forced responses, that are used as an input to the GPC

algorithm block. The GPC algorithm produces an output that is either used as an input to the

plant or the predictor. The double pole double throw switch, S, is set to the plant when the

GPC algorithm has solved for the best control input, u(k), that will minimize a specified cost

function. Between samples, the switch is set to the predictor where the GPC algorithm uses
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this predictor to calculate the next control input, u(k+1), by making prediction of the response

over the prediction horizon N2 from the predictor. Once the cost function is minimized, this

input is passed to the plant. This algorithm is outlined below.

Figure 4.3 Block diagram of NMPC system

An approximation of the predicted future output is given by:

ŷ = GΔu+ f (4.37)

In this expression at each sampling time the vectors G(t) and f (t) are reconstructed. The free

response f depends only on past inputs and outputs. Therefore, to get the free response the

prescribed predictor is given a zero increment vector Δu i.e.

u(t) = u(t +1) = · · ·= u(t +N2 −1) = u(t −1) (4.38)
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Hence, the predictor (ensembles of MISO-NARX models) output will be the system free re-

sponse.

y f ree(t + i|t) = F(y(t + i−1), · · · ,y(t + i−ny), · · · ,u(t + i−1), · · · ,u(t + i−nu))

with : u(k) =

⎧⎪⎨
⎪⎩

u(t −1), if k > t −1

u(k), otherwise

(4.39)

where F(.) represents the NN response.

The estimation of the step response coefficients to construct G matrix is obtained as follows:

gk−1 =
ystep(t + k|t)− y f ree(t + k|t)

δu(t)

For k = 1, · · · ,N2

(4.40)

where δu represents the step size, and ystep represents the predictor step response which can

be obtained by:

ystep(t + k|t) = f (y(t + k−1), · · · ,y(t + k−ny), · · · ,u(t + k−1), · · · ,u(t + k−nu))

with : u(k) =

⎧⎪⎨
⎪⎩

u(k), if k ≤ t −1

u(t −1)+δu(t), if k > t −1

(4.41)

The main difficulty to obtain an accurate estimate of the step response around some operating

point is to select an appropriate value for the amplitude and the sign of the step δu(t), because

the step response of a non-linear system is determined by the operating point, the size and the

sign of the step signal (Oviedo et al., 2006). There are two important requirements that should

be taken into consideration during the selection of step δu:

• It is very important that the value u(t − 1) + δu(t) does not saturate the actuators in the

model. Even though the constraints are not taken into account for the optimization, the sat-

uration constraints on the actuators must be taken into account. Failing to consider these sat-
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uration points can lead to an underestimated step response and this will generate a response

from the controller larger than needed, thereby possibly generating unstable behavior.

• The δu(t) should be selected close to the predicted Δu(t). Since this value is only known

after the optimization, a good choice is to select δu(t) equal to Δu(t − 1) obtained in the

previous optimization step (t −1). However, if Δu(t) = 0 as the system reaches the steady

state, equation (4.40) will be badly conditioned. For this reason, a δumin vector should be

defined with the minimum value of δu, so that the estimation of step response coefficients

is reliable.

Once f and G have been obtained from the response of the predictor (ensemble of MISO-

NARX models), the gradient b and Hessian H of the GPC quadratic cost function (equa-

tion(4.12)) can be calculated based on equation(4.13).

It is important to remark that, the implementation of constrained MIMO NMPC is achieved by

the usage of a NNGPC algorithm. In this algorithm, the estimation of free and forced response

of the GPC predictor was derived from the non-linear model instead of linear CARIMA model

or instantaneous linearization of the non-linear model. Therefore, by using this approach, the

optimization problem can be solved as a linear optimization problem instead of a nonconvex

and non-linear programming problem and this will improve the computation time and reliabil-

ity of the solution. In the next subsection , we will talk about the optimization algorithm used

in solving this quadratic optimization problem.

4.5.2 Numerical solutions using quadratic programming

A significantly important part of MPC with constraints are algorithms of numerical optimiza-

tion. Reduction of the computational complexity of the optimization methods has been widely

researched. The reason is that in certain cases of predictive control of fast dynamics processes,

an optimization algorithm may not be feasible within the sampling period time. This situation

occurs particularly when requirements on control are more complex, e.g. in the multivariable

control. The Active Set method, Primal-Dual Interior Point method, and Hildreth’s QP proce-
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dure are some examples of QP methods that handle optimisation solutions involving constraints

(Wang, 2009; Luenberger & Ye, 2016).

In the Active Set method, the active constraints (constraints that meet the condition MCΔu =

dC) need to be identified along with optimal control decision variable Δu. The Active Set

method requires an iterative updating procedure to test the constraint conditions (active or

inactive) before solving for optimal decision variable. The main drawback of the Active Set

method is that it produces quite a high computation load if many constraints are imposed on

the optimisation problem.

A Primal-Dual method systematically identifies the constraints that are not active. They can

then be eliminated in the solution. The Hildreth’s method is based on numerical iterations,

in which particular subresults are gradually improving. This method can be categorized as a

dual optimization method, which manipulates with the Lagrangian multipliers. In this study,

Hildreth’s quadratic programming procedure is utilized which offers simplicity and reliability

in real-time implementation (Wang, 2009). Furthermore, Hildreth’s method may be useful to

implement on non-PC platforms like programmable logic controllers or embedded machine

which do not support linear algebra libraries.

From equations (4.13) and (4.30) the NNGPC optimization problem can be expressed as a

quadratic cost function with linear inequality constraints as:

J =
1

2
ΔuT HΔu+bT Δu+ f0

sub ject to

MCΔu ≤ dC

(4.42)

where H, b, f0, MC, and dC are defined in equations (4.12) and (4.31).
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For the unconstrained case, the minimization of the cost function (equation (4.42)) can be

found by setting the derivative of J with respect to Δu to zero, which leads to:

Δu =−H−1b = (GT G+Λ I)−1GT (w− f ) (4.43)

In order to minimise the objective function (equation (4.43)) subject to inequality constraints,

the following Lagrange expression is considered::

J =
1

2
ΔuT HΔu+bT Δu+ f0 +λ T (MCΔu−dC) (4.44)

where λ is a column vector called Lagrange multiplier. The number of its components is

equal to the number of inequality equations. The Lagrange Multiplier λ indicates whether a

constraint is either active or inactive. Based on Karush-Kuhn-Tucker conditions (Gill et al.,

2019), if the element in the Lagrange Multiplier vector λi is strictly positive, the corresponding

ith constraint is active. In contrast, if the element is λi is zero then the ith constraint is inactive

(which indicates that a solution has satisfied the constraint condition MCΔu ≤ dC ).

A dual method can be used to identify the constraints that are not active as proposed in (Wang,

2009). Assuming feasibility (i.e. there is a Δu that satisfies MCΔu ≤ dC), the dual problem to

the original QP problem can be derived as follows:

max
λ≥0

min
Δu

[
1

2
ΔuT HΔu+bT Δu+ f0 +λ T (MCΔu−dC)] (4.45)

The minimization over Δu is assumed unconstrained and the optimal solution is given by:

Δu =−H−1b−H−1MT
C λ (4.46)

Substituting equation (4.46) into equation (4.45), the dual problem becomes:

max
λ≥0

[−1

2
λ T Lλ −λ T Z − 1

2
bT H−1b] (4.47)
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where the matrices L and Z are given by:

L = MCH−1MT
C (4.48)

Z = MCH−1b+dC (4.49)

Thus, equation (4.47) is also a QP problem with λ as the decision variable. So, equation (4.47)

is equivalent to:

min
λ≥0

[
1

2
λ T Lλ +λ T Z +

1

2
dT

C H−1dC] (4.50)

The set of optimal Lagrange multipliers that minimize the dual objective function equation

(4.50) are denoted as λ �. Using the value of λ �, the decision variable Δu is obtained for the

NNGPC control using equation (4.46) where λ is replaced by λ �.

In order to obtain λ �, the Hildreth’s quadratic programming procedure can be used to solve the

dual problem (equation (4.50)). The iteration expression of Hildreth’s Quadratic Programming

Procedure is given in the following equation:

λ k+1
i = max(0,ωk+1

i ) (4.51)

where,

ωk+1
i =

−1

Zii
[Li +

i−1

∑
j=1

Zi jλ k+1
j +

n

∑
j=i+1

Zi jλ k
j ] (4.52)

and k is the kth iteration, the scalars Zi j and Zii are the i jth elements and the diagonal of the

matrix Z respectively, while the scalar Li is the ith element in the vector L.

Now, The Hildreth’s algorithm procedure used in this study can be summarized as follows:

1. The program finds the global optimal solution (equation (4.43)) and checks if all the con-

straints are satisfied. If so, the program returns the optimal solution. If not, the program

begins to calculate the dual variable (Go to step 2).

2. At k = 0 and λ k
i = 0
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3. k = k+1

4. Compute ωk+1
i using equation (4.52)

5. λ k+1
i = max(0,ωk+1

i ), (equation (4.51))

6. If ||λ k+1 −λ k|| ≥ ξ Go to step 2

else Δu =−H−1b−H−1MT
C λ � , Stop

The iteration of Hildreth’s QP procedure converges monotonically to an optimal Lagrange mul-

tiplier λ � (contains either zero for inactive constraints or positive values for active constraints)

over a finite number of iterations. The requirements for the dual variables λ � to converge to

a set of fixed values are based on the conditions that the active constraints are linearly inde-

pendent and their number remains less than or equal to the number of decision variables Δu

(Wang, 2009). However, If these conditions are violated, the iteration will terminate when the

loop reaches its predefined maximum value.

4.6 Summary

In this chapter, the theoretical foundation of the NNGPC algorithm was presented. This algo-

rithm was proposed in order to overcome the computational limitation of the NMPC. Different

components of the NNGPC algorithm such as: the predictor, formulation of the free and forced

responses by using the onborad NN model, optimisation and constraints handling of the MPC

algorithm were discussed. The association of the GPC algorithm NN model is computation-

ally simple and suitable for control of nonlinear and complex processes. In the next chapter,

the simulation results of the proposed system NNGPC algorithm are presented to validate the

feasibility of the NNGPC algorithm in controlling an ADGTE used for power generation ap-

plication.



CHAPTER 5

SGT-A65 ENGINE ADVANCED CONTROLLER DESIGN

5.1 Introduction

This chapter presents the validation results of the proposed NNGPC based on the NN model

discussed in Chapter 4. The algorithm is implemented in MATLAB/Simulink with the per-

spective of future implementation on a Programmable Logic Controller (PLC). In this chapter,

different components of the NNGPC algorithm such as: the predictor, formulation of the free

and forced responses by using the onborad NN model, optimisation and constraints handling

of the NNGPC algorithm are discussed. Moreover, an ensemble of MISO-NARX models with

seven input parameters including power demand are generated to simulate the actual engine

during the NNGPC controller testing. In addition, several tests have been conducted in the

early parts of controller development to identify the control tuning parameters such as N2, Nu,

and Λ, that would produce satisfactory control performance. In addition, a brief introduction

to the structures of current controller of the SGT-A65 engine is introduced. Finally, to verify

the performance, a comparison between the performance of NNGPC controller and the perfor-

mance of the existing controller is performed.

5.2 SGT-A65 engine current min-max control system architecture

The Industrial Trent (SGT-A65) engine control system schedules the fuel flow to maintain the

engine power or speed to the desired level (3600 rpm). While, maintaining the other parameters

of the engine, such as spool speeds, temperatures and pressures within its operating limits at

all times. The min-max controller with PI compensator in each loop is currently used for the

SGT-A65 ADGTE.

The overall control architecture of the SGT-A65 engine is shown in Figure 5.1. As can be seen,

the fuel control system is based on multiple SISO independent loops all vying for control of

the engine fuel flow (WF) through the loop selection logic, which is a series of highest and



134

lowest wins gates (min-max algorithm). The basis of this algorithm is to control a main output

using a single control input while maintaining the other intended outputs within their limits.

The min-max controller gives PI control action for all the loops in the selector algorithm. The

proportional and integral gains are taken from a lookup tables. These gains are tuned in order

to provide the required bandwidth and stability margins across the operating envelope.

Figure 5.1 Engine fuel control system using min-max controller

In addition, to protect the engine during the acceleration or deceleration operation, five ma-

nipulated parameters were used by the ECS to protect engine as shown in Figure 5.1. These

manipulated parameters are defined as follows:

• IPVSV is scheduled as a function of corrected shaft speed NI to maintain peak performance

and adequate surge margin during off-design operating conditions.

• LPVIGV and LPBOV are scheduled as a function of corrected shaft speed NL and corrected

power to prevent the possibility of compressor surge within the LPC.

• IPBOV and HPBOV consist of 4 and 3 ON/OFF valves respectively. Each of the bleed

valves is commanded closed when the corrected shaft sped (NI for IPBOV and NH for HP-
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BOV) exceeds the individual thresholds at which the valves are commanded to close. They

are required to maintain an adequate surge margin across the IPC and HPC respectively.

As can be seen, the min-max controller solves the non-linear constrained problem using multi-

ple SISO loops to protect against engine limits. However, the strong non-linearity of the engine

can not always be handled adequately by the min-max controller with linear compensator es-

pecially during the fast load change Imani & Montazeri-Gh (2017); Montazeri-Gh & Rasti

(2019). In this study, we propose solving this problem using MIMO NMPC method, which

handles the MlMO non-linearities and constraints explicitly and in a single control formula-

tion.

5.3 NNGPC design for SGT-A65 engine

In this work, The NNGPC is implemented in MATLAB®/SIMULINK environment. As shown

in Figure 5.2, the NNGPC controller substitutes the seven control loops in the min-max con-

troller by one NNGPC multi-variable controller. The first objective of the NNGPC is to main-

tain the low pressure spool speed NL at a certain set point (3600 rpm) as the generator load

changes. The second objective considered is to ensure that NH , NI , T GT , and P30 stay below

their maximum limits so as not to damage the gas turbine. These two objectives are achieved

by manipulating three controlling variables: WF , IPV SV , and LPBOV . Table 5.1 illustrates

the input and output parameters cross-correlation based on T R1exp data set. The highest cor-

relation among input and output parameters of the SGT-A65 ADGTE is observed between the

input parameters (WF , IPV SV , and LPBOV ) and the output parameters (NH , NI , NL, T GT ,

P30, PW , and T30). However, the input parameters (V IGV , IPBOV , and HPBOV ) do not have

a strong correlation with the output parameters.

In addition to these two objectives, we also introduce input constraints on amplitude and slew

rate of the controlling variables (WF , IPV SV , and LPBOV ) to ensure safe acceleration and

deceleration of the engine. In practice, input and output constraints are not necessarily fixed

values. It is possible that constraints change with a certain parameter variable. Acceleration
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Figure 5.2 The NNGPC for SGT-A65

Table 5.1 Input and output parameters cross correlation

NNNHHH NNNIII NNNLLL TTT GGGTTT PPP30 PPPWWW TTT 30

WF 0.9767 0.9811 -0.1811 0.9711 0.9907 0.9870 0.9531

IPV SV 0.9908 0.9881 -0.1464 0.9800 0.9681 0.9611 0.9517

LPBOV 0.9457 0.9494 -0.0690 0.9377 0.9493 0.9520 0.9197

V IGV -0.2152 -0.2265 0.0152 -0.2257 -0.2490 -0.1937 -0.2563

IPBOV -0.9125 -0.8953 0.0578 -0.9059 -0.8864 -0.8880 -0.8967

HPBOV 0.0043 -0.0036 0.2541 0.0359 -0.0151 -0.0147 0.0534

is limited by a WF/P30 schedule according to NH . The maximum WF/P30 schedule is sim-

ply multiplied by the current value of P30 to obtain the maximum allowable fuel flow request

WFmax. In addition, deceleration is limited by a WF/P30 schedule according to NH . The mini-

mum WF/P30 schedule is simply multiplied by the current value of P30 to obtain the minimum

allowable fuel flow request WFmin. WFmin and WFmax are used as the lower and upper limits

respectively of the fuel flow demand inside the NNGPC controller. Beside that, the T GTmax is

scheduled according to ambient temperature and relative humidity. This value is used as the

upper limit of the T GT inside NNGPC controller. Table 5.2 summarizes the input and output

parameters constraints.
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Table 5.2 Input and output

parameters constraints

Parameter Lower limit Upper limit
WF WFmin WFmax

IPV SV 1.2067 % 95.5823 %

LPBOV 8 % 105.05 %

ΔWF -100 pph/s 200 pph/s

ΔIPV SV -2 %/s 4 %/s

ΔLPBOV -2 %/s 3 %/s

NH - 10531 rpm

NI - 6833.74 rpm

T GT - T GTmax
P30 - 580 psi

In practical situations such as our case, the controlled variables may not be subject to con-

straints, and the constrained outputs may not need to be controlled. Based on that, three ac-

tuators are used to control a single output, namely NL. Four other variables, namely NH , NI ,

T GT , and P30 are considered as constrained outputs. This implies that different sets of G and

f matrices must be used, according to whether an output is controlled or constrained. So that,

the input vector, incremental input vector, the controlled outputs vector, and the constrained

output vector are defined as follows:

uuu = [WF, IPV SV,LPBOV ]T

ΔΔΔuuu = [ΔWF,ΔIPV SV,ΔLPBOV ]T

ycontr = [NL]

yyyconstr = [T GT,NH ,P30,NI]
T

(5.1)
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The free response of the controlled parameter NL can be expressed as:

fcontr =

⎡
⎢⎢⎢⎢⎢⎢⎣

fNL(t +1)

fNL(t +2)
...

fNL(t +N2)

⎤
⎥⎥⎥⎥⎥⎥⎦
[N2X1]

(5.2)

where fNL is the output from the NL ensemble due to input uuu as explained in equation (4.39).

On the other hand, the free-response of the constrained parameters can be expressed as:

fconstr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fT GT (t +1)
...

fT GT (t +N2)

fNH (t +1)
...

fNH (t +N2)

fP30
(t +1)
...

fP30
(t +N2)

fNI(t +1)
...

fNI(t +N2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[nc∗N2X1]

(5.3)

where nc = 4 is the number of constrained outputs, and fT GT , fNH , fP30
, and fNI are the output

from the T GT , NH , P30, and NI ensembles respectively due to input uuu as explained in equation

(4.39).

The step response matrix of the controlled parameter NL can be expressed as:

GGGcontr =
[
GNLWF

GNLIPV SV
GNLLPBOV

]
[N2Xm∗Nu]

(5.4)
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where m = 3 is the number of the controlling parameters, and GNLWF
, GNLIPV SV

, and GNLLPBOV

are the NL step response matrices due to step input in WF , IPV SV , and LPBOV respectively.

Indeed, the GNLWF
matrix can be defined as follows:

GNLWF
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

gNLWF0
0 · · · 0

gNLWF1
gNLWF0

· · · 0

...
...

...
...

gNLWFNu−1
· · · gNLWF1

gNLWF0

...
...

...
...

gNLWFN2−1
gNLWFN2−2

· · · gNLWFN2−Nu

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[N2XNu]

(5.5)

where the step response coefficients of the GNLWF matrix are obtained as follows:

gNLWFk−1
=

NLWFstep(t + k|t)− fNL(t + k|t)
δWF(t)

For k = 1, · · · ,N2

(5.6)

where NLWFstep represents the NL ensemble step response due to input uuu (equation (5.7)) with

a step input in WF of magnitude δWF . Note that, δWF(t) equals to ΔWF(t −1), which was

obtained in the previous optimization step (t − 1). However, if ΔWF(t) = 0, as the system

reaches the steady state, δWF(t) will be equal to δWFmin = 0.01∗WFmin.

uuu(k) =

⎧⎪⎨
⎪⎩
[WF(k), IPV SV (k),LPBOV (k)]T , if k ≤ t −1

[WF(t −1)+δWF(t), IPV SV (t −1),LPBOV (t −1)]T , if k > t −1

(5.7)

The GNLIPV SV , and GNLLPBOV matrices are calculated in the same way like the GNLWF ma-

trix. However, we use the input uuu with a step input in IPV SV of magnitude δ IPV SV when

calculating GNLIPV SV , and the input uuu with a step input in LPBOV of magnitude δLPBOV

when calculating GNLLPBOV . Note that, δ IPV SVmin = 0.01 ∗ IPV SVmin, and δLPBOVmin =

0.01∗LPBOVmin.



140

With respect to the step response matrix of the constrained parameters, it can be presented as

follows:

GGGconstr =

⎡
⎢⎢⎢⎢⎢⎢⎣

GT GTWF GT GTIPV SV GT GTLPBOV

GNHWF
GNHIPV SV

GNHLPBOV

GP30WF
GP30IPV SV

GP30LPBOV

GNIWF
GNIIPV SV

GNILPBOV

⎤
⎥⎥⎥⎥⎥⎥⎦
[nc∗N2Xm∗Nu]

(5.8)

where GT GTWF , GT GTIPV SV , and GT GTLPBOV are the T GT step response matrices due to step input

in WF , IPV SV , and LPBOV respectively. GNHWF
, GNHIPV SV

, and GNHLPBOV
are the NH step

response matrices due to step input in WF , IPV SV , and LPBOV respectively. GP30WF
, GP30IPV SV

,

and GP30LPBOV
are the P30 step response matrices due to step input in WF , IPV SV , and LPBOV

respectively. GNIWF
, GNIIPV SV

, and GNILPBOV
are the NI step response matrices due to step input

in WF , IPV SV , and LPBOV respectively. Each step response matrix in the GGGconstr matrix is

calculated in the same way that it was used in calculation of GNLWF
matrix.

As mentioned earlier, the NNGPC is implemented in MATLAB®/SIMULINK environment.

Figure 5.3 presents the SIMULINK block of the NNGPC controller. This block consists of

two main components: the predictor SIMULINK block which is used to generate the required

fff and GGG matrices to solve the quadratic optimization problem, and the optimizer MATLAB

function, which presents the optimization algorithm. This optimization algorithm is solved

by using Hildreth’s QP. The outputs from the optimizer MATLAB function are the optimum

control actions (WF , IPV SV , and LPBOV ) required to achieve the NNGPC objectives.

Figure 5.4 shows more details about the predictor block. The predictor block consists of four

main blocks, which are iterated N2 times each sampling time by using the For-iteration block.

The first block inside the predictor is the f-block, which is used to calculate the free response for

each controlled and constrained parameters as shown in Figure 5.5. In addition, the MATLAB

function in the f-block is used to store the output from the ensemble (the onboard model) at each

iteration and arranged them in the form of column vector of dimension [N2 X 1] ( for example

fNL in equation (5.2)). Indeed, to align the onboard model (MISO-NARX ensembles) with the

actual engine, the S switch allows feedback from output of the actual engine every sampling
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Figure 5.3 The NNGPC SIMULINK block

time. However, between samples, S switch allows feedback from output of the onboard model

as shown in Figure 5.6. The other three blocks inside the predictor block calculate the step

response for each controlled and constrained parameters. The G−WF block, the G− IPV SV

block, and the G−LPBOV block calculate the step response due to step input in WF , IPV SV ,

and LPBOV respectively. All of the step response blocks have the same structure like free

response block. However, the step response blocks have input incremental block to generate a

step input in controlling variables each sampling time as shown in Figure 5.7.

On the other hand, for the simulation of NNGPC controller, two different engine models have

to be implemented, one representing the actual engine and one representing the onboard engine

model. The usage of two identical models would mean a perfect matching between the engine

and the onboard model and would thus not lead to realistic results. Therefore, another ensemble

of MISO NARX models was generated in the same approach as mentioned earlier in chapter 4

to simulate the actual engine during the controller testing phase. However, this actual engine

model differs from the onboard model in terms of the number of input parameters. the actual
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Figure 5.4 The Predictor block

Figure 5.5 The free response block

engine model has a seven input parameters: WF , IPV SV , LPBOV , V IGV , IPBOV , HPBOV ,

and PWdem as shown in Figure 5.8. Figure 5.9 through Figure 5.15 present the testing results

of the actual engine model by using experimental dataset T S2exp. As can be seen, the outputs
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Figure 5.6 The NL ensemble block

Figure 5.7 The step response block

from the actual engine model followed the targets precisely and can predict the reaction of the

system to load changes with high accuracy and reliability.
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Figure 5.8 Integration of onboard model and actual engine model

Figure 5.9 The actual engine model testing results: NH
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Figure 5.10 The actual engine model testing results: NI

Figure 5.11 The actual engine model testing results: NL

Figure 5.12 The actual engine model testing results: PW
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Figure 5.13 The actual engine model testing results: T30

Figure 5.14 The actual engine model testing results: P30

Figure 5.15 The actual engine model testing results: T GT
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5.4 The NNGPC tuning

The proposed NNGPC design consists of three tuning parameters that need to be properly

tuned to achieve good controller performance. The tuning parameters that influence the closed

loop response of the system include the prediction horizon N2, the control horizon Nu, and the

weighting factor Λ. In this study, the NNGPC tuning parameters are obtained by trial and error.

The selection of MPC tuning parameters in gas turbine application has already been studied in

previous studies (Ghorbani et al., 2008b; Richter, 2011). A higher N2 and Nu can result in better

performance of the plant. However, it results in increasing of computation time, which makes

the implementation of NNGPC in real time more difficult. In addition, changes in Λ have a

strong influence on the simulation outcome. Low values tend to produce faster responses with

actuator saturation, and very high values may penalize control activity excessively, resulting

in poor transient response. In order to measure the computational efforts required for the

NNGPC, the CPU time that is required to execute the calculations of the controller, is used as

the characterization of computational efforts. In addition, all simulation cases run on the same

computer, which is composed of 3.31 GHz Intel(R) Xeon (R) CPU E3-1225 v6 machine with

64 GB RAM running Microsoft Windows 10. The Matlab/Simulink version is Matlab R2018b.

It is assumed that the simulation time is 100 s for all cases, and Ts = 0.01 s.

Figure 5.16 through Figure 5.20 show the effect of changing N2 for fixed values of Nu = 3 and

Λ = [0.5 15 65] with the summary of controller performance given in Table 5.3. It is observed

that performance improvement is initially obtained by increasing N2 , but further changes have

no effect beyond N2 = 10. However, the computational efforts increases about 85 % when the

N2 is increased from 5 to 10. Indeed, Nu is selected at 3 sample steps. However, no detectable

improvement occurs beyond Nu equal 3.

Changes in Λ have a strong influence on the simulation outcome. Low values tend to produce

faster responses with controlling parameters saturation, and very high values may penalize

control activity excessively, resulting in slow transient response. Finally, the best controller

performance was obtained with N2 = 5, Nu = 3 and Λ= [0.5 15 65].
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Table 5.3 The control performance comparison with various N2 values

Output parameter NNN222 Settling time (s) Overshoot (%) Computation time (s)

PW
3 18.63 4.1 15.39

5 7.6 4 35.34

10 7.5 15.7 245.68

NL

3 10.27 9.4 15.39

5 3.7 4 35.34

10 3.61 3.8 245.68

Figure 5.16 Effect of prediction horizon on PW
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Figure 5.17 Effect of prediction horizon on NL

Figure 5.18 Effect of prediction horizon on WF
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Figure 5.19 Effect of prediction horizon on IPV SV

Figure 5.20 Effect of prediction horizon on LPBOV
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5.5 Results

To demonstrate the performance of the NNGPC controller, we have simulated its response to

a load rejection disturbance, i.e., a sudden load fall related to power failure due to a lightning

strike or mechanical failure, and sudden load acceptance disturbance, i.e., a sudden increase in

load demand. The operation conditions during this test are Tamb = 15oC , Pamb = 101.325 kPa,

LHV = 47826 kJ/kg, and ηth = 0.4. For this test, we will change the generator load and look

at the corresponding changes in the input and output parameters. The generator load profile is

indicated in Figure 5.21. This load change will be applied to the actual engine model.

Figure 5.21 The generator load profile

The simulation results with the above operation conditions are presented in Figure 5.22 through

Figure 5.31. As can be seen, the NNGPC controller realizes the control objectives. Figure 5.22

shows demand load and produced power changes. As the figure indicates, response overshoot

during load accept is 4.2 % and the NNGPC controller could bring the response to the desired

value in about 9.12 s settling time (the settling time is calculated when the response settles
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within the 2 % settling time threshold). Indeed, the response undershoot during load reject is

2.1 % and the NNGPC controller could bring the response to the desired value in about 5.15 s

settling time.

The low pressure turbine speed NL changes is shown in Figure 5.23. As seen, the maximum

overshoot and undershoot of the NL is about 4.1 % during load reject disturbance and 5.45 %

during load accept disturbance respectively. As the figure indicates, the NNGPC controller

could bring the response to the set point value (3600 rpm) with deviation of ±0.02% in about

4.21 s. Figure 5.24 through Figure 5.28 show all output parameters variation during load

change, which indicate that all constrained variables were maintained below the predetermined

maximum limits even when a large disturbance was introduced to the system instantaneously.

On the other hand, the variations of controlling parameters are shown in Figure 5.29 through

Figure 5.31. In Figure 5.29, the load dependent maximum and minimum fuel flow constraints

are indicated. As can be seen, the NNGPC controller could keep WF within the predetermined

constraints during engine acceleration and deceleration. In addition, Figure 5.30 and Figure

5.31 show the IPV SV and LPBOV variation respectively. The figures show both controlling

parameters are within the predetermined minimum and maximum constraints.
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Figure 5.22 The PW response during load change

Figure 5.23 The NL response during load change
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Figure 5.24 The NH response during load change

Figure 5.25 The NI response during load change
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Figure 5.26 The T GT response during load change

Figure 5.27 The P30 response during load change
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Figure 5.28 The T30 response during load change

Figure 5.29 The WF response during load change
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Figure 5.30 The IPV SV response during load change

Figure 5.31 The LPBOV response during load change
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To assess the performance of the NNGPC developed in this study, we have compared the re-

sponse of the NNGPC controller to that of the existing min-max controller due to the same load

disturbance. For this comparison, the experimental dataset T S3exp has been used. The simula-

tion results of this test are presented in Figure 5.32 through Figure 5.41 with the summary of

comparison results given in Table 5.4. As can be seen, The NNGPC has demonstrated output

responses with less oscillatory behaviour and smoother control actions to the sudden variation

in the electric load than those observed in the existing min-max controller. In addition, both

controllers have the ability to maintain all constrained parameters below the predetermined

maximum limits. However, the time constant of min-max controller response is lower than

that of the NNGPC controller, which resulted in faster response by using min-max controller.

In Figure 5.33, the NL achieves 1.087 ( overshoot is 8.7 %) with the NNGPC controller, which

is within % 10 of its nominal value, in accordance with the load rejection test criterion. In

addition, the NNGPC controller brought back NL to its set point value in the course of 4.2 s.

However, the min-max controller could bring the response to the set point value in about 12.79

s with overshoot of 8.4 %.

Table 5.4 The controller performance comparison under

load rejection test

Output parameter Controller Settling time (s) Overshoot (%) Time constant (s)

PW
NNGPC 3.22 2.6 1.16

min-max 3.01 11.2 0.01

NH
NNGPC 4.99 n/a 2.7

min-max 3.1 6.17 0.19

NI
NNGPC 3.76 1.2 2.68

min-max 3.12 5.94 0.17

T GT
NNGPC 4.66 1.75 3.18

min-max 9.24 n/a 1.62

P30
NNGPC 1.5 2.97 0.31

min-max 4.1 23.56 0.23

T30
NNGPC 6.1 3.59 2.25

min-max 12.91 n/a 3.1
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As shown in Figure 5.39 through Figure 5.41, the control movements resulted from the NNGPC

controller show smoother variations in WF , IPV SV , and LPBOV parameters than those result-

ing from the min-max controller. As a consequence of that, the NNGPC controller requires less

control effort than the min-max controller to achieve the desired objectives. The minimization

of controller effort has significant practical repercussions because it reduces the intensity of

mechanical wear of the actuators. Therefore, the minimization of control effort indicators has

an impact on the increase of the functional safety, life time, and economics of the controlled

process.

Moreover, Figure 5.39 shows that the fuel flow rate WF calculated by the min-max controller

exceeds the minimum fuel limit during the load rejection test. This is because the bleed valves

are opened very rapidly and hence all of a sudden much less air gets to the combustion chamber.

So, if the fuel flow was not reduced quick enough, we will have a rich flameout. In addition,

The minimum fuel flow limit violation by the min-max controller may occur as a result of the

strong non-linearity of the engine, which can not always be handled adequately by the classical

controller especially during the fast load change. In fact, this result coincides with the opinion

found in recent studies, which have shown that there is no guarantee for min-max algorithm

with linear compensator to protect engine limits during fast transient state (Imani & Montazeri-

Gh, 2017; Montazeri-Gh & Rasti, 2019). However, the NNGPC controller could keep WF

within the minimum and maximum fuel flow limits.

Finally, the computational efforts required for the NNGPC to execute the calculations of the

controller during this test is 5.153 s, knowing that, the test simulation time is 35.5 s. Therefore,

the computation time required to solve an optimization problem was sufficiently faster than

the sampling rate (Ts = 0.01 s) by applying Hildreth’s quadratic programming algorithm. This

efficient algorithm would allow NNGPC to be implemented via real-time optimization for gas

turbine power plants in a fast and robust manner.
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Figure 5.32 Comparison between NNGPC controller and

min-max controller performance during load disturbance - PW

Figure 5.33 Comparison between NNGPC controller and

min-max controller performance during load disturbance - NL
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Figure 5.34 Comparison between NNGPC controller and

min-max controller performance during load disturbance - NH

Figure 5.35 Comparison between NNGPC controller and

min-max controller performance during load disturbance - NI
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Figure 5.36 Comparison between NNGPC controller and

min-max controller performance during load disturbance - T GT

Figure 5.37 Comparison between NNGPC controller and

min-max controller performance during load disturbance - P30



163

Figure 5.38 Comparison between NNGPC controller and

min-max controller performance during load disturbance - T30

Figure 5.39 Comparison between NNGPC controller and

min-max controller performance during load disturbance - WF
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Figure 5.40 Comparison between NNGPC controller and

min-max controller performance during load disturbance - IPV SV

Figure 5.41 Comparison between NNGPC controller and

min-max controller performance during load disturbance -

LPBOV
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5.6 Summary

The simulation results for the SGT-A65 engine controlled by the NNGPC controller was pre-

sented in this chapter. As can be seen, the simulation results show that although NNGPC can

not produce faster response, in terms of time constant, than min-max controller, it resulted in

less oscillatory behaviour and smoother control actions to the sudden variation in the electric

load than those observed in the existing min-max controller. In addition, computation time

required to solve an optimization problem was sufficiently faster than the sampling rate that al-

low a real time implementation of the NNGPC controller. Moreover, the use of controllers that

take into account the non-linearities of the plant implies an improvement in the performance of

the plant by reducing the impact of the disturbances and by improving the tracking capabilities

of the control system.

In addition, a larger prediction horizon can make a faster response and better control qual-

ity. However, it will also greatly increase the calculation and affect real time performance of

NNGPC controller. So that, as an indication of forthcoming research, it is intended to use an

optimization approach to perform NMPC tuning and find the best tuning parameters based on

the desired performance characteristics.





CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

This thesis focuses on solving important challenges in the area of gas turbine engine’s con-

troller design to ensure the safe operation of the engine and at the same time get the maxi-

mum performance. The system identification and advanced control algorithms based on NN

methodology were developed to control an ADGTE used in power generation application under

loading and unloading condition. The main results can be summarized as follows;

1. A novel methodology for the development of real time data driven based model of ADGTE

was presented in Chapter 3 to address the first objective. An ensemble of multiple MISO-

NARX neural models was introduced to predict the ADGTE output parameters in real time.

Inspired by the way biological neural networks process information and by their structure

which changes depending on their function, multiple-input single-output (MISO) NARX

models with different configurations were used to represent each of the ADGTE output

parameters with the same input parameters.

2. Estimation of the NN model order by generating different ARX models and estimation of

the input/output delay, before generation of NN model, are very important steps. These

steps save more iterations required to find the best structure of the NN and consequently

saving more time required for NN model generation. In addition, data cleaning and resam-

pling step significantly reduced training time. The lower sampling rate reduces the number

of data points, which reduces the computation time during training operation and reduces

data collinearity.

3. Usage of a single neural network to represent each of the system output parameters may not

be able to provide an accurate prediction for unseen data and as a consequence, provides

poor generalization. To overcome this problem, an ensemble of MISO NARX models was



168

used to represent each output parameter. The major challenge of the ensemble generation

is to decide how to combine results produced by the ensemble’s components. A novel

hybrid dynamic weighting method (HDWM) was proposed to perform this task.

4. A comparison between the ensemble of MISO NARX models and the single MISO NARX

models for all engine output parameters at different operation conditions showed that, the

ensemble of MISO-NARX models can represent the ADGTE during the full operating

range with a good accuracy even with different input scenarios from different operation

conditions which prove the high generalization characteristic of the ensemble. Also, an-

other important gain was the very low execution time (40.5 μs), which can support many

real time applications like model based controller design, sensor fault verification and en-

gine health monitoring. Moreover, one can observe that the ensemble model demonstrates

a significantly better performance in identification of the gas turbine engine dynamics than

the individual neural model, as it resulted in an improvement in accuracy of nearly 90%,

compared with the single neural model.

5. With the desire to have more robustness and flexibility of the next generation of the GTE

control systems to achieve ambitious targets and severe limitations set by governments and

organizations, Chapter 4 outlined the NMPC controller design problem.

6. One of the key features of the NNGPC algorithm is the novel approach used to estimate the

free and forced responses of the GPC algorithm based on NN model. It reduces the NMPC

based optimization problem to a linear optimization problem at each sampling step. That

will improve the computation time and reliability of the solution.

7. In addition, a significantly important part of the constrained NNGPC controller is the nu-

merical optimization algorithm. The Hildreth’s QP procedure was utilized which offers

simplicity and reliability in real-time implementation (Wang, 2009). Furthermore, Hil-
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dreth’s method may be useful to implement on non-PC platforms like programmable logic

controllers or embedded machine which do not support linear algebra libraries.

8. A comparison between the performance of NNGPC controller and the performance of the

existing min-max controller was performed. The NNGPC has demonstrated superior out-

put responses with less oscillatory behaviour and smoother control actions to the sudden

variation in the electric load than those observed in the existing min-max controller. In ad-

dition, computation time required to solve an optimization problem was sufficiently faster

than the sampling rate that allow a real time implementation of the NNGPC controller.

6.2 Recommendations

Some recommendations for further studies are outlined below:

1. As the only available experimental data from the real engine testing was collected at a

specific operation conditions, future work will involve looking at the NNGPC controller

performance over a different operation conditions and different transient scenarios and de-

termining what modifications are required to obtain acceptable robust performance. Once

the control algorithm is proven, we will focus on implementing the controllers we show-

cased here on Programmable Logic Controller (PLC) with the aim of eventually being

able to test it in a real life test bed environment. This process will involve converting the

NNGPC algorithm to structured text for implementation on a PLC.

2. In this thesis we studied the homogeneous ensemble models, where source of diversity was

the variation in the training data. An alternative would be studying heterogeneous ensem-

ble in which ensemble members have different architectures such as number of neurons,

number of layers, and training algorithm.



170

3. In this thesis, off-line learning techniques are applied for identifying the GTE dynamics.

A potential future work is to study the on-line ensemble learning to identify the GTE

dynamics while the engine is operating.

4. In this thesis, the max number of iterations in the Hildreth’s QP procedure was fixed to

100 iterations. In addition, we used the Lagrange multipliers values to identify the active

and inactive constrains. An investigation would be needed to study the effect of iteration

number and the significance of the Lagrange multipliers values obtained in the proposed

approach on the convergence speed and solution stability.

5. In this thesis the tuning of the NNGPC controller was performed by using the trial and

error method. However, there is still a need for a more systematic approach to perform

MPC tuning and find the best tuning parameters based on the desired performance charac-

teristics. MPC tuning is usually performed ad-hoc based on some experience. Most of the

time, several simulation runs are performed to check if the chosen tuning parameters are

suitable. Automated tuning procedures using genetic algorithm can be applied to reduce

the manual operations.
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