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Pivot de Gauss par blocs avec factorisation de Cholesky incrémentales pour les
simulations physiques en temps-réel

Nicolas LEFEBVRE

RÉSUMÉ

Les engins de simulation physiques sont au coeur d’un large éventail d’applications et doivent

faire face à différents défis en fonction du contexte dans lequel ils sont utilisés. La formation

en réalité virtuelle (RV) pour la conduite d’équipement lourd présente souvent des scénarios

impliquants des interactions entre des objets ayant des rapports de masse importants et des

contraintes rigides, comme une charge lourde soulevée par un fil d’acier. Pour avoir de la valeur

en tant qu’outil de formation, ces simulateurs doivent effectuer des calculs très précis tout en

gérant les interactions utilisateur et ce sous une contrainte de performance très stricte. Bien que

rapides, les solveurs linéaires itératifs fonctionnent souvent mal dans de tels cas, conduisant

à des simulations imprécises ou instables. Les solveurs utilisant des méthodes qui impliquent

une factorisation de la matrice système sont préférées. Cependant, la factorisation a un coût

de calcul important qui peut réduire les performances. Dans ce travail, nous présentons un

solveur de système linéaire efficace pour un système avec des contraintes physiques rigides et

des contacts avec friction, modélisé comme un problème de complémentarité linéaire mixte

(MLCP). Notre méthode est basée sur un algorithme de pivot de Guass par block et réutilise

les factorisations précédentes en appliquant des mises à jour de rang un à chaque étape de

pivotement. Les performances sont davantage améliorées en exploitant l’étroitesse de la bande

de la matrice principale. Nous analysons le gain de performance dans divers scénarios difficiles,

certains allant jusqu’à 3,5 fois plus vite par rapport au recalcul de la factorisation à partir de

zéro. Nous explorons aussi la possibilité d’accélérer notre méthode en mettant en cache les

factorisations intermédiaires.

Mots-clés: simulation physique en temps-réel, pivot de Gauss par blocs, complémentarité

linéaire, dynamique, Cholesky, cache





Block Principal Pivoting with Incremental Cholesky Factorizations for Real-time
Multibody Simulations

Nicolas LEFEBVRE

ABSTRACT

Physics engines are at the heart of a wide array of applications and must deal with different

challenges depending on the context in which they are used. Virtual reality (VR) training for

heavy equipment operation often simulates scenarios involving interactions between elements

with large mass ratios and stiff constraints, like a heavy weight lifted by a steel wire. To have

any value as a training tool, simulators must must perform accurate simulations while handling

arbitrary user input under very strict performance constraints. Iterative linear solvers, while being

fast to compute approximate solutions, often perform poorly in such cases leading to inaccurate

or unstable simulations, and so direct methods involving a factorization of the system matrix

are preferred. However, the factorization has a significant computational cost that can reduce

performance. In this work, we present an efficient linear solver for systems with stiff physical

constraints and contacts, where the dynamics are modeled as a mixed linear complementarity

problem (MLCP). Our method is based on a block principal pivoting (BPP) algorithm, and at

each step previous factorizations are reused by applying low-rank downdates at each pivoting step.

We obtain further performance improvements by exploiting the low bandwidth characteristics

of the lead matrix. We analyze the performance gain in various challenging scenarios, some

of which gained up to a 3.5× speed-up when compared to recomputing the factorization from

scratch. We further explore the possibility of accelerating our method by caching intermediary

factorizations.

Keywords: real-time physics simulation, block principal pivoting, LCP, multibody dynamics,

Cholesky, caching
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INTRODUCTION

Physics simulations are used in a wide array of applications such as virtual prototyping, robot

learning, training simulators, digital production, video games, weather prediction and many

more. Some applications, such as weather prediction, require very precise simulation for the

output to have any value. Whereas for other applications, such as video games, the priority

is that the simulations achieve real-time frame rates and produce approximate, but plausible,

physical behaviour. Yet other applications, such as robot learning, virtual reality (VR) and

training simulators, require simulations that are both fast, stable and accurate. Typically in

all of these applications, there is a conflict between precision and performance that must be

considered, and simulation developers must decide where to make trade-offs.

In this thesis, we are interested in interactive VR simulations for training people on heavy

machinery. These simulations are challenging since they involve rigid bodies with large mass

ratios and stiff constraints that can lead to issues with stability (Andrews, Teichmann & Kry, 2017;

Tournier, Nesme, Gilles & Faure, 2015). These simulations also have very tight performance

constraints and must be capable of handling arbitrary input conditions due to a human-in-the-loop.

Motivation

At the heart of every physics engine is the linear solver that is responsible for determining the

constraint forces and velocities that produce realistic behaviour for bodies in a physics simulation.

Iterative solvers are popular for interactive physics simulations, and implementations of these

types of solvers can be found in many off-the-shelf rigid body physics simulators (Coumans, 2019;

Havok, 2019; Smith et al., 2005). While they produce plausible behaviour in a timely manner,

iterative solvers often produce approximate rather than accurate solutions of the underlying

physical model. In some challenging cases, they cannot guarantee convergence to a reasonable

solution
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Conversely, direct solver methods are well-suited to handle numerically challenging linear

systems and produce accurate solutions to the constrained equations of motion. However, the

disadvantage is that direct solver algorithms have a higher computational complexity compared

to iterative methods. For instance, solvers using a Cholesky factorization have a worst case

complexity of O(n3) where n is the number of system variables, and for the pivoting solvers used

by our research partner, CM Labs Simulations, the lead matrix often needs to be refactorized

multiple times per simulation frame. This can mean that they take more time per frame to produce

a solution, thus impacting the real-time frame rate requirements of our target applications.

Research Problem

In this work, we are principally motivated by speeding up complex multibody simulations

involving contacts and stiff constraints in the CM Labs’ physics engine Vortex. Their engine,

developed for training simulators, needs to produce extremely precise results while keeping the

simulation running smoothly. Furthermore, to assure the accuracy of the simulation, Vortex uses

a direct solver which deals gracefully with simulations involving stiffs constraints in joints and

large mass ratios. We aim to accelerate their direct solver by reducing the computation overhead

of factorizing a problem lead matrix, specifically, by reusing previous factorizations within a

time step.

Thesis Organization

The remainder of this thesis is organized as follows:

• Chapter 1 covers the theoretical background on which our methodology is based, and

reviews related literature in the area of multibody dynamics, contact simulation, and linear

solvers;
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• Chapter 2 presents our algorithm for efficient block principal pivoting (BPP) that uses an

incremental downdating strategy to reduce overhead associated with computing the Cholesky

factorization;

• Chapter 3 presents experiments on our attempts to further improve the efficiency of the

algorithm in Chapter 3 by caching previously computed factorization;

• Conclusion summarizes the contributions and presents possible directions for future research

on efficient solvers for rigid body physics solvers.

Published work

The contents of Chapter 2 are largely derived from the article Efficient block pivoting for

multibody simulations with contact (Enzenhoefer et al., 2019) that was published and presented

at the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D 2019). The

contributions of the author of this thesis to this work include the development of the modified

block pivoting algorithm in C++, as well as the analysis and experimentation of the modified

algorithm to demonstrate its viability for the target examples, and finally writing key sections of

the paper.





CHAPTER 1

BACKGROUND AND RELATED WORK

In this chapter, a theoretical background on constrained multibody dynamics and the contact

models used in our physics simulations is presented. Additionally, details of the algorithms

for solving the related LCPs are briefly explained. The chapter also covers related work and

methodologies that have addressed the problem of simulating rigid bodies with contact.

1.1 Rigid body dynamics

The simulations targeted in this thesis involve rigid bodies. A rigid body is an idealized solid

whose size and shape are invariant when forces are applied to it. Because the body is not being

subject to deformation, the distance between any pair of points within the rigid body stays

constant.

We can describe the 3D kinematics of rigid bodies using a single position and orientation, along

with their derivatives with respect to time, which are the linear and angular velocities. The

reference point for the positions and velocities generally coincides with the center of mass of the

rigid body, although any fixed point on the solid can be use for this purpose.

An in-depth explanation of rigid body dynamics with contact and related methods can be found

in the state-of-the-art report by Bender, Erleben & Trinkle (2014). In the following sections,

details leading up to the specific constrained dynamics formulation and solver methods used by

the Vortex dynamics engine (CM Labs Simulations, 2018) are presented.

1.1.1 Kinematics

In three dimensions, the motion of an unconstrained rigid body can be described by six

parameters known as the degrees of freedom (DoFs). These six parameters correspond to the

three linear coordinates of the body, giving its position, and the three angular coordinates, giving
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its orientation. A body’s position in space, p ∈ R3, is described as a displacement within a

global reference frame along three linearly independent axes x, y, z, such that

p = [px, py, pz]ᵀ . (1.1)

The body’s orientation, θ ∈ R4, is given by a quaternion, such that

θ = [θw, θx, θy, θz]ᵀ . (1.2)

Observe that Equation 1.2 gives a 4-tuple of values, yet only 3 degree of freedoms (DoFs) are

required to describe the angular motion of a body in 3D space. However, one degree of freedom

is removed by the constraint that all rotation quaternions have unit length, such that ‖θ‖ = 1.

Please see the seminal work by Shoemake (1985) for further details on using quaternions to

animate orientations in graphics.

Combining the position and orientation, the rigid body’s configuration in 3D space can be

described by a vector q ∈ R7 that concatenates the two:

q = [pᵀ θ
ᵀ]ᵀ . (1.3)

In a physics simulation, the position and orientation change with time and are therefore functions

of the simulation time t. Computing the first derivative of p(t) and θ(t) with respect to t gives

expressions for the linear and angular velocities, �p ∈ R3 and ω ∈ R3 respectively, such that

�p(t) = δp(t)
dt

ω(t) = Tδθ(t)
dt

.

(1.4)
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Note that computing the angular velocities from
dθ(t)

dt requires a kinematic mapping T ∈ R3x4 due

to the orientations using quaternions. A description of this mapping and an in-depth explanation

can be found in Bender et al. (2014).

Both linear and angular velocities for a body may be combined to give the generalized velocity

of the body as v(t) = [ �p(t)ᵀω(t)ᵀ]ᵀ. Likewise, computing the second derivative with respect to

time, and assuming that �T = 0, gives the generalized acceleration:

a(t) = [�p(t)ᵀ �ω(t)ᵀ]ᵀ . (1.5)

For a system consisting of n rigid bodies, we can redefine the kinematic vectors by simply

concatenating the quantities for each individual body into a global vector for each of the positions,

velocities, and accelerations of the system, such that

q(t) = [q1
ᵀ(t) . . . qn

ᵀ(t)]ᵀ ∈ R7n

v(t) = [v1
ᵀ(t) . . . vn

ᵀ(t)]ᵀ ∈ R6n

a(t) = [a1
ᵀ(t) . . . an

ᵀ(t)]ᵀ ∈ R6n .

(1.6)

1.1.2 Equations of motion

The Newton-Euler equations of motion determine the acceleration of free bodies based on their

mass and forces acting on the bodies. This is a form of Newton’s second law, which for a system

of n bodies may be written as

f(t) =Ma(t) . (1.7)

Here a(t) ∈ R6n contains the acceleration of all system bodies, f(t) ∈ R6n are the generalized

forces, and M ∈ R6n×6n is the mass matrix that encodes their mass and inertia.
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Physical simulations for computer graphics are typically performed using a discrete numerical

integration scheme with time step h. To express Equation 1.7 in terms of velocities, we use the

Taylor series approximation v(t + h) ≈ v(t) + ha(t). For this approximation to be plausible, we

want the time step h to be small. All of our examples use a time step h = 1/60 s, and since the

errors introduced by the linear approximation is of the order O(h2), we can therefore ignore it.

Defining velocities at the end of a time step as v+ = v(t + h), we drop the ·(t) notation as a

function of time and arrive at the following approximation of the accelerations

a = v+ − v
h
. (1.8)

Substituting Equation 1.8 into Equation 1.7 gives the velocity level equations of motion at a

specific time step as

M(v+ − v) = hf . (1.9)

1.2 Kinematic constraints

Meaningful physics simulations involve interactions between bodies. For instance, rigid bodies

should not interpenetrate, and rigid bodies generate friction when they slide against each

other. These rules, or constraints, effectively restrict how bodies in a simulation are allowed

to move relative to each other. They may be used to model articulations, such as hinges and

ball-and-socket joints, but also complex mechanisms, such as chains, cables and even vehicles.

Each constraint equation φ is a scalar function that computes the violation, or error, of constraint

for a specific constrained degree of freedom. It is typically computed as a function of body

positions and orientation, but since the configuration of bodies is dynamic, constraint equations

also depend on time t. More specifically, bilateral constraints are described by equalities of the

form:

φ(q, t) = 0 (1.10)
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They are often used to model the behaviour of joints, such as hinges, ball-and-socket, and

prismatics.

Whereas unilateral constraints take the form of an inequality:

φ(q, t) ≥ 0 (1.11)

Bender et al. (2014) present a constraint classification and detailed examples in their state-of-

the-art paper. Equation 1.10 and Equation 1.11 are position level constraint equations. However,

since we intend to use the velocity level formulation of the rigid body dynamics presented in

Equation 1.9 to perform simulations, it is more convenient to derive a version of the constraint

equations in terms of the velocities. We will explain how this is done for a system of m constraint

equations:

φ(q, t) =
[
φ1(q, t) . . . φm(q, t)

]ᵀ

By D’Alembert’s principle (Lanczos, 2012), the constraint equations will not be violated as long

as no virtual work is done in the direction of the constraint gradients,
∂φ
∂q . Further note that the

gradient may be expressed as a mapping of the body velocities by applying the chain rule, such

that

�φ(q, t) = dφ
dt
=
∂φ

∂q
dq
dt
. (1.12)

Noting that v = ∂q∂t , the velocity level bilateral constraint equations can be stated as

Jv+ = 0 , (1.13)

where J = ∂φ∂q =
[
∂φ1

∂q
∂φ2

∂q · · · ∂φm

∂q

]
∈ Rm×6n is the Jacobian matrix containing gradient

information at configuration q for all m constraint equations in the multibody system.

Although Equation 1.13 can be solved accurately, it is a linear approximation of the constraint

behaviour at a particular configuration, and because numerical errors will inevitably accumulate,

there is no guarantee that a numerical solution for Equation 1.13 will produce error free
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simulations. To this end, constraint stabilization is used to correct constraint errors due to

numerical drift at each time step. A Baumgarte-style stabilization is used to correct constraint

errors (Cline & Pai, 2003), such that

Jv+ = −φ
h
. (1.14)

Intuitively, Equation 1.14 gives a linear feedback term that attempts to “undo” any constraint

error in the system left-over from the previous time step.

1.2.1 Constrained equations of motion

The method of Lagrange multipliers is used to enforce the constraints in the multibody simulation.

This approach computes a multiplier λ that represents the magnitude of a force that acts in

the direction of the constraint gradient J. The constraint forces are computed in the space of

generalized coordinates of the bodies as Jᵀλ. Intuitively, the constraint forces will work to

resolve constraint errors at the end of the time step, and since they are physical quantities, they

can be included in the equations of motion as impulses

Mv+ − hJTλ = hf +Mv . (1.15)

Rewriting Equation 1.15 and Equation 1.14 in block matrix form gives the constrained equations

of motion

⎡⎢⎢⎢⎢⎣
M −Jᵀ

J 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
v+

hλ+

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
Mv + hf

−φ
h

⎤⎥⎥⎥⎥⎦
. (1.16)

The system in Equation 1.16 is potentially ill-conditioned, which occurs often during complex

contact simulations. However, a common technique to improve the numerical properties of the

linear system is adding positive coefficients along the diagonal of the lower-right block. These



11

coefficients act to regularize the linear system and permit the use of numerical methods that

rely on having a full-rank linear system. Cline & Pai (2003) further demonstrate how these

coefficients may be chosen to “soften” constraints, behaving much like a compliance for the

constraint forces. Physics engines such as the Open Dynamics Engine (Smith et al., 2005) also

call this constraint force mixing, since constraint forces are added to the constraint equations.
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This leads to a modified linear system

⎡⎢⎢⎢⎢⎣
M −Jᵀ

J C

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
v+

hλ+

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
Mv + hf

−φ
h

⎤⎥⎥⎥⎥⎦
, (1.17)

where C ∈ Rm×m is the diagonal matrix of positive coefficients. The linear system can be further

simplified by using the Schur complement of the upper left block

(C + JM−1Jᵀ)︸������������︷︷������������︸
A

hλ+ = −(φ
h
+ hJM−1f + Jv)

︸���������������������︷︷���������������������︸
b

, (1.18)

that results in a reduced linear system in which only the constraint impulses hλ+ ∈ Rm need

to be solved. The generalized velocities can later be recovered by substituting the constraint

impulses into the first line of Equation 1.17 and directly computing v+ =M−1(Mv+hf+hJᵀλ+).
Note that the block diagonal form of M makes it trivial to invert, and furthermore since C is a

diagonal matrix with only positive values, the matrix A is positive definite and symmetric.

1.2.2 Linear complementarity problem

Since our simulations involve contact, some of the constraints in Equation 1.18 are used to model

non-interpenetration and friction between bodies. These special type of constraints require

that we introduce feasibility and complementarity conditions on the values of λ+. Feasibility

means that some variables have upper and lower bounds on the range of acceptable values,

i.e. λlo ≤ λ+ ≤ λhi. Whereas complementarity means that velocity must be considered

when solving for certain constraint impulses, which requires introducing a vector of residual

velocities w ∈ Rm. The “slack” variable w is further decomposed into non-negative components,

i.e. 0 ≤ w+ ⊥ w− ≥ 0, giving the linear system

Aλ+ − b = w+ − w− . (1.19)
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Finally, combining feasibility and complementarity conditions gives the mixed linear comple-

mentarity problem (MLCP)

Aλ+ − b = w = w+ − w− (1.20a)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 ≤ w+ ⊥ (λ+ − λlo) ≥ 0

0 ≤ w− ⊥ (λhi − λ+) ≥ 0
, (1.20b)

where λhi and λlo are upper and lower bounds on the constraint forces, respectively.

Friction cone
normal

tangent

Figure 1.1 Coulomb friction cone

Frictional contact in rigid body simulations is often modeled using a Coulomb cone (see

Figure 1.1), and constraint forces are physically valid only if they lie in the boundaries defined

by the cone. For instance, in the case of non-interpenetration acting perpendicular to the contact

surface, the constraint forces can only push bodies apart, and so λlo = 0 and λhi = ∞. Whereas

for the lower and upper limits of the friction forces that act tangentially to the contact surface,

limits are defined by the coefficient of friction times the normal forces, such that

λhi = μλN

λlo = −μλN ,
(1.21)
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where μ is the static coefficient of friction and λN is the corresponding non-interpenetration

force that is perpendicular to the collision surface.

1.3 Numerical Methods

Solving the MLCPs from Section 1.2.2 requires special numerical methods due to the feasibility

and complimentarity conditions, and indeed our focus is on improving the efficiency of solvers

for these types of problems. There are three classes of solvers for MLCPs covered: (i) iterative

methods, (ii) pivoting based methods, and (iii) hybrid approaches that combine aspects of the

first two types. Each of these is briefly discussed in the sections below, including the algorithm

for which an extension is proposed in Chapter 2.

1.3.1 Iterative methods

Physics engines such as Bullet (Coumans, 2019) and Box2D (Catto, 2018) are popular among

developers of interactive and real-time applications since they use iterative algorithms to solve for

the constraint impulses. These algorithms have the benefit that they can produce an approximate

solution quickly, and the algorithm may be terminated after only a small number of iterations.

Fixed-point algorithms, such as the Projected Gauss-Seidel (PGS) method (Erleben, 2007) and

Sequential impulses (Guendelman, Bridson & Fedkiw, 2003), are popular due to their ease of

implementation. However, previous work has noted that fixed-point algorithms converge slowly

when the lead matrix is ill-conditioned, as is the case for many of our target examples, or when

the solution is poorly initialized (Erleben, 2004). Poorly conditioned linear systems are typical

in our target applications due to large mass ratios between bodies that are coupled by constraints.

However, ill-conditioning may also be caused by numerical degeneracy when the regularization

coefficients in C are very small.

Erleben (2007) developed a specialized PGS algorithm to treat large stacks, which are notorious

for producing degenerate linear systems. The projected Jacobi method is a related algorithm and

it has been popularized due to ease of parallelization, but is known for its poor convergence when
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compared to PGS. Recent work has used Chebyshev polynomials (Wang, 2015) and a Nesterov

momentum term (Mazhar, Heyn, Negrut & Tasora, 2015) to accelerate the convergence of this

class of algorithms. Tonge, Benevolenski & Voroshilov (2012) introduced a mass splitting scheme

for large scale parallel simulations on the GPU, whereas Fratarcangeli, Tibaldo & Pellacini

(2016) applied a graph coloring scheme to parallelize PGS solvers and dramatically improve

performance and convergence.

1.3.2 Pivoting methods

Pivoting methods try to find a partitioning of the system presented in Section 1.2 into free (basic)

and tight (non-basic) variables. Unlike iterative methods, they do not make monotonic progress

toward a solution and therefore terminating the algorithm early with an approximate solution is

often not possible.

The free label indicates that a variable is within bounds, and thus its value is unknown, whereas

the tight label indicates the value of the variable is equal to the bound, and is therefore assumed

to be known. The labeling for all variables is referred to as the index set. If the index set changes

between iterations or pivoting steps, the system matrix needs to be updated and its factorization

must be recomputed if a direct linear solver is being used. Therefore, complex simulations

requiring a large number of pivoting steps may be intractable for interactive applications. Unlike

iterative methods, pivoting methods with a direct solver are able to find an exact solution to the

linear complementarity problem (LCP).

One of the most well known pivoting methods is Lemke’s algorithm (Cottle, Pang & Stone,

1993), which is a simplex algorithm wherein a single variable is treated at each iteration. The

algorithm is guaranteed to converge if a solution exists to the LCP, but requires many steps for

complex problems. An efficient version of Lemke’s algorithm was developed by Lloyd (2005)

and the algorithm achieves nearly linear complexity under the assumption of a fixed size problem,

although typically a complexity of O(m3) is expected. Dantzig’s algorithm (Cottle & Dantzig,

1968) has been previously used by interactive computer graphics work (Baraff, 1994), and the
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algorithm is offered as an alternative solver in the Open Dynamics Engine (ODE) toolkit (Smith

et al., 2005).

Baraff (1994) notes that an incremental factorization can be used for the inner pivoting loop, and

thus an overall complexity close to O(m2) is achievable. They hint that low-rank modifications of

the LU factorization of the lead matrix are possible, but provide few details or analysis. However,

in our work, we perform an in-depth analysis regarding performance and accuracy for a variety

of complex 3D simulations, and motivate our approach using empirical evidence. Furthermore,

our approach applies only a series of low-rank downdates to the Cholesky factorizaton (rather

than both updating and downdating), which we found improves numerical stability.

Murty & Yu (1988) proposed a Bard-type pivoting method that preserves complementarity

between variables at all times and changes the index sets for a single pair of complementary

variables at each step (single pivoting). This algorithm is proven to converge for LCPs with

positive definite lead matrices, although convergence is slow. Keller’s method (Keller, 1973)

preserves complementarity and nonnegativity of the LCP solution variables and is said to be

more efficient for LCPs with large positive semi-definite lead matrices (Júdice, 1994).

Júdice & Pires (1994) introduced a block version of Murty’s method which is much more

efficient for large problems since it allows changing many index sets in a single algorithm

iteration. This block version is proven to converge as it switches to single pivoting (Murty’s

method) if the number of variables out of bounds does not decrease in a user-defined number of

iterations. However, in practice, the algorithm mostly performs block pivots and switches to

single pivoting only for degenerate problems. An extensive survey of the most common pivoting

methods can be found in Júdice (1994).

The BPP algorithm is used by the Vortex dynamics engine (CM Labs Simulations, 2018) due

to its improved accuracy compared to iterative methods, and improved efficiency compared to

single pivoting approaches. In Chapter 2, we present the BPP algorithm in further detail and

propose an extension of the algorithm using low-rank adjustments to the Cholesky factorization

of the lead matrix.
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1.3.3 Hybrid methods

Direct linear solvers, involving a Cholesky or LU decomposition of the system matrix, are

heavily utilized by pivoting methods when exact solutions are required. However, direct solvers

have received much less attention from the computer graphics community. This is due mainly to

the higher computational overhead associated with these solvers compared to iterative techniques.

Lacoursière (2007) proposed a splitting method that iterates between a direct block pivoting

solve for the combined sub-set of articulation and non-interpenetration constraints, followed

by an iterative solve for non-interpenetration and friction constraints. This method guarantees

accurate solutions for stiff joint and contact normal forces while compromising the accuracy of

the friction forces in order to reach better performance than direct solvers. However, Enzenhoefer,

Andrews, Teichmann & Kövecses (2018) noted problems with this approach for simulations

where accurate friction forces are required.

In their article on subspace minimization, Silcowitz-Hansen, Niebe & Erleben (2010) formulate

contact simulation as a non-linear complementarity problem (NLCP) to reduce the resources

needed to resolve contact forces and to reduce artefacts, such as viscosity or overly “soft” contact

responses caused by slow convergence. Briefly, they find an approximate value for a set of active

contact constraints with PGS in order to find the active constraints and then use the conjugate

gradient method to solve the active constraints. In the second phase, they update the linear

system by excluding constraints at each iteration that reach a feasibility or complementarity

limit.

1.3.4 Low-rank matrix updates

Our work relies on efficient low-rank modifications of a Cholesky factorization, specifically a

row deletion corresponding to a rank-1 downdate. In other words, we change the lead matrix A

by a modification of the form Ã = A − uuᵀ, where u is computed such that it corresponds to a

row removal operation (i.e., when a variable is pivoted from the free to tight index set).
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Davis & Hager (2005) provide a thorough treatment of low-rank modifications for both dense and

sparse Cholesky factorizations, and indeed we used theirs as a starting point for our work. Seeger

(2004) also demonstrated that low-rank modifications to a Cholesky factorization can improve

stability versus modifications to the system matrix using the Sherman-Morrison-Woodbury

formula.

A method for low-rank modifications of the Cholesky factorization of a 3D mesh has recently

been proposed Herholz & Alexa (2018). They re-use the factorization of the full mesh to

efficiently perform operations on sub-meshes. Similar to their work, we use the so-called

left-looking algorithm to compute our Cholesky factorizations, although in our case the domain

is the constraints of a multibody system rather than a mesh operator.



CHAPTER 2

EFFICIENT BLOCK PIVOTING

In this chapter, we begin by providing algorithmic details of the BPP method proposed by

Júdice & Pires (1994), which are covered in Section 2.1. We then explain how the Cholesky

factorization used by the baseline BPP method may be modified using low-rank downdates in

Section 2.2.1, and revise the baseline BPP algorithm to improve efficiency with a skyline data

structure in Section 2.2.

2.1 Block principal pivoting

Recall that the BPP algorithm combines a fast block strategy with Murty’s single principal

pivoting algorithm (Murty & Yu, 1988), with the main difference being that BPP exchanges

multiple variables simultaneously during changes to the index set. At each iteration in the

algorithm, the constraint variables are labeled as belonging to either the free (F) or tight (T)

index set. Tight variables have reached a lower or upper bound, and therefore their value is

defined by the feasibility conditions, whereas free variables have not exceeded these bounds,

and therefore wi = 0, ∀ i ∈ F. For instance, when a frictional contact is “sticking”, the constraint

impulse is within bounds, and thus free. However, once the contact begins sliding, the constraint

impulse is determined by the limits of the friction model, and thus the index set changes to tight.

A pivoting step is the process of proposing a candidate solution and determining if the index set

is correct. Based on an assumption of the index set, a candidate solution of the linear system

in Equation 1.18 is computed. If the assumption is correct, all variables satisfy feasibility and

complementarity conditions. If not, the index set of all variables i which do not satisfy the
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conditions are changed, such that

i ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

F , if λlo < λi < λhi and wi = 0

Tlo , if λi ≤ λlo and wi > 0

Thi , if λi ≥ λhi and wi < 0

. (2.1)

The algorithm terminates with success if the index sets between two consecutive pivoting steps

do not change.

Note that in Equation 2.1 the tight set is decomposed into both lower (Tlo) and upper (Thi)

bounded variables, and together these form the complete tight set, such that T = Tlo ∪ Thi . The

system matrix and right-hand side vector in Equation 1.18 can be regrouped according to the

index set, such that

⎡⎢⎢⎢⎢⎣
AFF AFT
ATF ATT

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
λF

λT

⎤⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎣
bF
bT

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
wF
wT

⎤⎥⎥⎥⎥⎦
. (2.2)

Observe that for tight variables the value of λT is known, and that for free variables the residual

velocity wF = 0, by definition of the LCP. This means that we only need to solve for λF at each

step in the algorithm

AFFλF = bF − AFTλT . (2.3)

Assuming that the lead matrix is positive definite, which is true for the multi-body systems

in our target simulations, a Cholesky factorization may be used to solve the linear system in

Equation 2.3 where AFF = LFFLFFᵀ and LFF is a lower triangle matrix. Pseudo-code for the

BPP algorithm using a Cholesky factorization is given in Algorithm 2.1. Observe that the matrix

AFF must be refactored whenever the index sets change (i.e., at each step of the algorithm). This

can be costly, since the Cholesky factorization can have a worst-case complexity of O(m3).
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Algorithm 2.1 Block principal pivoting (Júdice & Pires, 1994)

Block principal pivoting algorithm

Input: A, b, λhi, λlo

Output: w, λ

1 initialize F and T

2 k ← 0

3 do
4 LFF ← Cholesky(AFF)
5 ∀ i ∈ Tlo, λi ← λlo,i
6 ∀ i ∈ Thi, λi ← λhi,i
7 solve LFFLFFᵀλF = bF − AFTλT
8 w = Aλ − b
9 update F,T according to Eq. 2.1

10 k ← k + 1

11 while (k < max steps) and (index sets F,T changed)

However, if the tight set is small, a more efficient approach would be to modify the original

factorization A = LLᵀ using a series of low-rank updates to obtain LFF, and this is precisely the

approach we propose.

2.2 Modified BPP algorithm

Pseudo-code for our proposed modification to the BPP algorithm is provided in Algorithm 2.2.

The primary contribution is that the Cholesky factorization is computed only once per simulation

step, rather than once per iteration of the pivoting algorithm. Instead, at each pivoting step, we

copy the initial factorization and apply a sequence of low-rank downdates to the matrix L, one

for each tight variable in the system. Constraint impulses λT are known and may be transferred

to the right-hand side of Equation 2.3. We therefore need to remove the rows and columns in L

associated with these variables.
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Algorithm 2.2 Efficient block principal pivoting

Efficient BPP algorithm

Input: A, b, λhi, λlo

Output: w, λ

1 procedure SolveLCP(A, b, λhi, λlo)
2 L0 ← Cholesky(A)
3 s ← Skyline(L0)
4 initialize index sets F and T

5 k = 0

6 do
7 L = L0

8 for each i ∈ T do
9 σ = Li+1...m,i

10 L ← Downdate(i,L,σ, s)
11 end – for
12 ∀ i ∈ Tlo, λi ← λlo,i
13 ∀ i ∈ Thi, λi ← λhi,i
14 λF ← CholSolve(L, bF − AFTλT, F, s)
15 w = Aλ − b
16 update F,T according to Eq. 2.1

17 k = k + 1

18 while (k < max steps) and (index sets F,T changed)
19 end – procedure

2.2.1 Downdating the Cholesky factorization

In a left-looking Cholesky factorization, a change to the ith column of the factorization affects

only the sub-block L̃, formed by the rows and columns with indices in the range i + 1 . . .m (see

Figure 2.1). When a constraint variable pivots to the tight set T, a downdate of the original

factorization L can be performed by modifying only the entries in L̃. In order to remove the row

and the column corresponding to the ith variable, we downdate using the vector σi, and this

process is repeated for each variable i ∈ T sequentially. The cost of recomputing the Cholesky

factorization can therefore be reduced by copying the original factorization L and updating

in-place the sub-matrix L̃, eventually giving LFF for indices in F .
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Algorithm 2.3 Modified downdating procedure for a LLᵀ factorization

Downdating procedure

Input: A valid decomposition L
The index of the variable whose contribution is to be removed i

Output: The updated L decomposition

1 procedure Downdate(L, i)
2 β← 1

3 σi ← Li+1...m,i
4 for j ← 1 ... (m − i) do
5 k ← i + j
6 x ← σ j
7 y ← Lk,k

8 z ← y2 + x2

β

9 γ ← β y2 + x2

10 Lk,k ←
√

z
11 β← β + x2

y2

12 if m − k > 0 then
13 j1 ← j + 1, j2 ← m − i
14 k1 ← k + 1, k2 ← m
15 σ j1... j2 ← σ j1... j2 − x

yLk1...k2,k

16 Lk1...k2,k ← Lk1...k2,k +
√

z x
γ σ j1... j2

17 end
18 end
19 return L
20 end – procedure

The computation of the downdate vector is based on the dense row deletion algorithm given

by Davis & Hager (2005), where vector σi = Li+1...m,i consists of the rows below the diagonal

of the ith column. Vector σi is then used to perform a rank-1 downdate of the lower right

sub-block of the Cholesky factorization. Note that L is not resized during this process. Matrix

elements are modified in place when the downdate is performed, and during the Cholesky solve

in line 14 in Algorithm 2.2; rows and columns corresponding to tight variables are skipped. The

DownDate routine in Algorithm 2.3 gives pseudo-code to downdate L for a single variable at

index i. This routine is similar to low-rank modification routines which are commonplace in



24

Figure 2.1 Effect of pivoting the ith column of a Cholesky factorization

linear algebra frameworks, e.g. Eigen (2018). However, we note that an important difference with

our implementation is that only the sub-matrix corresponding to lower right block in Figure 2.1

is modified.

2.2.2 Analysis of index sets

In order to justify the use of a downdating scheme for our target simulations, we evaluated the

index set behaviour across many time steps for several typical scenarios. Figure 2.2 presents a

screenshot from each example simulated using our efficient block pivoting method: a mobile

crane lifting a concrete pipe (top left); a winch spooling a chain (top center); a light armored

vehicle driving over obstacles (top right); a knuckle boom crane on a ship lifting a subsea module

(bottom right); a forklift lifting a crate and driving around cones (bottom center); a forwarder

picking up a log (bottom right). Each one is modeled as a multibody system with hundreds of

constraints, stiff contacts, and large mass ratios.
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Figure 2.2 Examples simulated using our efficient block pivoting method

The evaluation shown in Figure 2.3 suggests that the size of T is often small compared to the

total number of variables, even for complex scenarios. This indicates that, beginning from an

initial factorization, only a small number of low-rank modifications are required to obtain LFF.

As a next step, we performed a number of experiments on randomly generated symmetric

positive-definite matrices of various sizes using a dense matrix storage in order to determine the

threshold for which the downdating scheme becomes inefficient. We computed the Cholesky

factorization L for the full matrix and randomly select variables to be pivoted into the tight set

according to a pre-defined percentage of tight variables with respect to all variables. We then

compared the time required to downdate L versus the time spent to recompute the factorization

AFF = LFFLFFᵀ.
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Figure 2.4 illustrates the speed gain obtained by using low-rank downdates instead of recomputing

the Cholesky factorization of AFF with respect to the size of A. Each curve corresponds to a

different percentage of tight variables. It demonstrates that a speed-up can be realized when the

percentage of tight variables is less than 15%. Revisiting Figure 2.3, we observe that this is the

case for most of the simulation frames in our target examples. We also note that the speed-up

factor remains nearly constant for a fixed percentage of tight variable even if the overall matrix

size increases or decreases. Encouraged by these results, we proceeded to develop a modified

version of the BPP algorithm incorporating low-rank downdates.
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Figure 2.5 Fill-in pattern of the system matrices

2.2.3 Skyline coding

We further improve the efficiency of the block pivoting algorithm exploiting matrix sparsity

using a skyline coding of the factorization. As a pre-process, constraint variables are reordered
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Figure 2.6 Visualization of the skyline data structure

according to a traversal of the constraint graph using the reverse Cuthill-McKee (RCM)

algorithm (Cuthill & McKee, 1969). This reduces the envelope of the system matrix and, thus,

reduces fill-in for L giving an overall reduced bandwidth. Figure 2.5 shows reordering constraint

variables of the system matrices creates a fill-in pattern with smaller bandwidth. The plots

show the system matrices for the largest connected island in each simulation. Furthermore,

we note that since we only remove, but never add rows and columns, the bandwidth of AFF
never increases relative to A. The bandwidth of the matrix may therefore be efficiently encoded

using a skyline data structure s, which stores the bandwidth at each column of L relative to the

diagonal. In other words, each si stores the row index of the last non-zero entry of column Li

(see Figure 2.6).

We use the skyline to limit the amount of work done in the DownDate routine, since it helps to

avoid unnecessary updates on zero sub-blocks of the Cholesky factorization. We also use the
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Algorithm 2.4 Direct solver using an LLᵀ Cholesky decomposition

Direct Cholesky solver

Input: A valid decomposition L
The impulse vector of the free variable bF
The free index set F

Output: The updated impulse vector of the free set λF

1 procedure CholSolve(L, bF, F)
2 λF ← bF
3 for each i ∈ F do 
 forward substitution Ly = bF
4 λi ← λi

Li,i

5 F
�← {x ∈ F | x > i} 
 set of indices in F following i

6 while j ← min(F�) do 
 smallest index in F�

7 λ j ← λ j − L j,iλi
8 F

�← F�\ { j } 
 exits on F�= �
9 end – while

10 end – for
11 for each i ∈ F do 
 backward substitution LᵀλF = y
12 F

�← {x ∈ F | x > i} 
 set of indices in F following i
13 while j ← min(F�) do 
 smallest index in F�

14 λi ← λi − L j,iλ j
15 F

�← F�\ { j } 
 exits on F�= �
16 end – while
17 λi ← λi

Li,i

18 end – for
19 return λF
20 end – procedure

skyline to reduce the amount of work during the forward/backward substitution of the Cholesky

solve (see CholSolve in Algorithm 2.4).

2.3 Results

Our implementation uses the Vortex physics engine (CM Labs Simulations, 2018) for collision

detection, computing constraint information, and the dynamics integration. The solver is

implemented in C++ using double precision and the Eigen linear algebra library (Eigen, 2018)
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Table 2.1 Simulation

parameters used in our

experiments

Friction coefficient μ = 1.0

Gravity [m/s2] g = 9.81

Constraint compliance [N/m] 10−6 to 10−10

Step size [s] h = 1/60

Simulation duration [s] t = 20

Max solver iterations k = 35

for matrix multiplications and storage. We choose a column-wise dense matrix storage format to

have full control over the matrix traversal and skyline coding in our modified BPP algorithm.

The memory for the m × m matrix is allocated, but for the skyline version of our downdating

algorithm we only iterate over elements within the envelope. We initialize all index sets as free

when starting all versions of the BPP algorithm.

2.3.1 Examples

Figure 2.2 shows the six examples we use to evaluate our modified BPP algorithm. We

summarize the simulation and modeling parameters for these examples in Table 2.1. Additional

information for each selected example, such as the maxima for mass ratio, number of constraints,

and condition number for each example are presented in the Table 2.2. Note that unconnected

systems are split into multiple independent partitions, or “island”, and an MLCP is formulated

and solved for each such island. The supplementary video1 also shows a side-by-side comparison

of our modified BPP algorithm versus simulating with the full Cholesky decomposition. The

results are qualitatively identical. Below, we highlight characteristics of each example.

2.3.1.1 Forklift

A 3,000 kg warehouse forklift picks up a 100 kg crate, accelerates then makes a 360 degree turn

around a traffic cone while frictional contact ensures that the crate remains stable on the fork.

1 https://youtu.be/JSstcHdz3FU
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The wheels start skidding during the turn which leads to a increase of variables in the tight set to

up to 5 % of all variables.

2.3.1.2 Mobile crane

A 30,000 kg mobile crane hoists a 2,000 kg concrete pipe segment with a 70 kg steel cable

attached to a 70 kg hook. Contacts are created when the hook touches the pipe, which causes

the solve time to momentarily spike.

2.3.1.3 Vehicle parkour

A simulation involving a 15,000 kg light armored vehicle (LAV) traversing various obstacles

(stairs, small rectangular bumps, hills). The power train of the vehicle is modeled using multiple

unilateral constraints connecting the vehicle shafts, wheels, differentials, and engine, which

creates a highly coupled mechanical system (see sparsity pattern in Figure 2.5).

2.3.1.4 Offshore

A 50,000 kg offshore knuckle boom crane is rigidly attached to a 5,500,000 kg ship hoisting a

15,000 kg subsea module with lightweight steel cable. Each cable segment has mass < 1 kg.

Frictional sliding (tight) occurs between the ship hull and the subsea module, as well as cable

bodies.

2.3.1.5 Forwarder

A forwarder with a 16-link 1,900 kg gripper arm is used to grasp a 400 kg wooden log and lift it

in the air by raising its boom. This scenario is challenging since a stable grasp without sliding

is required, and a non-negligible friction impulse is acting between log and claw due to arm

rotation. The hydraulics, hydraulics cables, and the vehicle are solved independently from the

main mechanical components of the gripper arm.
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Table 2.2 Mass ratio, constraint count, and condition

numbers for our examples

Scenario Mass Number of Condition
ratio constraints number

Crane 6,300:1 430 109

Winch 400:1 370 108

Vehicle parkour 20,000:1 260 1019

Offshore 4,400,000:1 350 109

Forklift 2,700:1 300 108

Forwarder 6,500:1 250 1011

2.3.1.6 Winch

A chain, consisting of 50×1 kg links modeled using capsules and connected by spherical joints,

is attached to a 400 kg winch and wound at a constant angular velocity. As the chain is dragged

along the ground, many of the frictional constraints transition to a sliding mode (tight).

2.3.2 Performance comparison

Table 2.3 shows the average solve time per frame for the original BPP algorithm performing a

full Cholesky factorization of AFF, alongside our modified BPP algorithm performing low-rank

downdates to L with and without taking into account the skyline. Table 2.4 shows numerical

error introduced by downdating L versus computing LFF. The two rows show the error when

downdating is performed without (first row) and with (second row) skyline information.

Figure 2.7 shows the CPU time required to solve Equation 1.20 at each time step for the examples

used in our experiments. From left to right, top row: mobile crane and winch with chain. Middle

row: vehicle parkour and offshore crane. Bottom row: forklift and logging forwarder. All

simulations were performed on an Intel Core i7-5820K (3.3 GHz) with 16 GB of RAM. Our

modified BPP algorithm with low-rank downdates and skyline gives the best performance for all

test cases, followed by the algorithm using low-rank downdates without skyline information

(except for the winch simulation). For simplicity, we do not parallelize the computations of
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Table 2.3 Average dynamics solve time and speed-up

for the test scenarios

Scenario Full Downdating Downdating
Cholesky Skyline
Crane 12.4 ms 4.7 ms (2.7 ×) 3.4 ms (3.6 ×)

Winch 2.0 ms 2.4 ms (0.9 ×) 1.6 ms (1.3 ×)

Vehicle parkour 3.0 ms 2.2 ms (1.4 ×) 2.1 ms (1.4 ×)

Offshore 6.7 ms 4.0 ms (1.7 ×) 2.9 ms (2.3 ×)

Forklift 1.2 ms 1.0 ms (1.3 ×) 0.8 ms (1.5 ×)

Forwarder 3.1 ms 2.5 ms (1.2 ×) 2.0 ms (1.6 ×)

Table 2.4 Numerical error introduced by downdating

Scenario Min Max Mean Median
Crane 6.74e-12 3.00e-10 4.77e-11 3.80e-11

6.76e-12 2.50e-10 4.84e-11 3.88e-11

Winch 0.00e+00 7.29e-11 6.60e-13 1.31e-13

0.00e+00 7.34e-11 6.07e-13 1.28e-13

Vehicle parkour 3.17e-13 1.81e-09 4.93e-12 7.18e-13

2.71e-13 7.99e-10 1.85e-12 7.36e-13

Offshore 0.00e+00 2.00e-08 1.50e-09 6.55e-11

0.00e+00 1.00e-08 1.30e-09 5.55e-11

Forklift 0.00e+00 5.74e-11 1.50e-12 1.46e-12

0.00e+00 1.17e-11 1.35e-12 1.36e-12

Forwarder 1.11e-10 7.00e-08 4.04e-09 3.22e-09

1.11e-10 7.00e-08 4.04e-09 3.22e-09

multiple unconnected islands, i.e. the presented solve times are the sum of the dynamics solve

times of all islands. Note that Table 2.3 and Table 2.4 exclude frames for which there are no

tight variables, i.e. no pivoting, since the BPP algorithms using full Cholesky or downdating are

equivalent in this case.

The most significant speed-up is experienced for the mobile crane, in particular when the

crane hook is in contact with the pipe in the beginning of the simulation (0-5 s). The offshore

simulation, which resembles the mobile crane example, also achieves a significant performance

improvement. In practice, one would only perform low-rank downdates if the number of tight
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Figure 2.7 Time to solve the constrained dynamics equations for our examples

variables is sufficiently small in order to guarantee to be always at least as fast as the original

algorithm applying the full Cholesky factorization. In our tests, we obtain a slow-down for the

winch example since we always use the downdating strategy.
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Algorithm 2.5 Downdating an LLᵀ factorization with skyline

Downdating procedure with skyline

Input: A valid decomposition L
The index of the variable whose contribution is to be removed i
The matrix skyline vector s

Output: The updated L decomposition

1 procedure Downdate(L, i, s)
2 β← 1

3 σ ← Li+1...m,i
4 for j ← 1 ... (m − i) do
5 k ← i + j
6 x ← σ j
7 y ← Lk,k

8 z ← y2 + x2

β

9 γ ← β y2 + x2

10 Lk,k ←
√

z
11 β← β + x2

y2

12 if (sk − k) > 0 then 
 skyline check

13 j1 ← j + 1, j2 ← j + (sk − k)
14 k1 ← k + 1, k2 ← k + (sk − k)
15 σ j1... j2 ← σ j1... j2 − x

yLk1...k2,k

16 Lk1...k2,k ← Lk1...k2,k +
√

z x
γ σ j1... j2

17 end
18 end
19 return L
20 end – procedure
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Algorithm 2.6 Modified LLᵀ Cholesky decomposition with skyline

Direct Cholesky solver with skyline

Input: A valid decomposition L
The right hand side vector of the free variable bF
The free index set F

The matrix skyline vector s
Output: The updated impulse vector of the free set λF

1 procedure CholSolve(L, bF, F)
2 λF ← bF
3 for each i ∈ F do 
 forward substitution Ly = bF
4 λi ← λi

Li,i

5 F
�← {x ∈ F | x > i ∧ x < si} 
 skyline check

6 while j ← min(F�) do 
 smallest index in F�

7 λ j ← λ j − L j,iλi
8 F

�← F�\ { j } 
 exits on F�= �
9 end – while

10 end – for
11 for each i ∈ F do 
 backward substitution LᵀλF = y
12 F

�← {x ∈ F | x > i ∧ x < si} 
 skyline check

13 while j ← min(F�) do 
 smallest index in F�

14 λi ← λi − L j,iλ j
15 F

�← F�\ { j } 
 exits on F�= �
16 end – while
17 λi ← λi

Li,i

18 end – for
19 return λF
20 end – procedure



CHAPTER 3

FACTORIZATION CACHING

The results from the downdating method presented in Chapter 2 demonstrate that the approach

is viable for complex problems where only a small percentage of variables are pivoted at each

frame. We also observed that from one pivoting step to the next (line 16, Alg. 2.2), often only a

few variables will pivot. Yet our algorithm computes a downdated factorization starting from the

original factorization L0. This means we recompute the same intermediate factorizations several

times each frame. Therefore, we considered if it was possible to accelerate the computation by

caching the downdated decomposition L from a pivot to the next. In other words, for a tight set

T, would saving the intermediate state of L after downdating each variable reduce the amount of

computation and thus further speed up the BPP algorithm? In this chapter, we provide details on

a caching algorithm and results of experiments obtained using the test scenarios.

There are two new operations required to realize caching for the downdating algorithm. First, we

need to determine which Cholesky factorization in the cache most closely matches the current

index set. Second, we need to save intermediary factorizations after every downdate operation.

The pseudo-code of the modified version of SolveLCP procedure is presented in Algorithm 3.1.

Essentially, when the tight set changes, the cache is searched for an intermediary factorization

that will minimize the amount of computation required to obtain the factorization corresponding

to the new index set. The steps to find the right factorization are encapsulated in the method

FindClosestEntry (see Algorithm 3.2) whose role is further described in Section 3.2.

3.1 Caching data structure

We identify each factorization by the set of tight variables T. The cache is a map of key-value

pairs {K,L} where the keys are unique index sets corresponding to a signature of tight variables,

and the value is a downdated factorization that has already been encountered during a previous

pivoting step. Because the original decomposition, L0, includes all variables, we start by

initializing the cache with the tuple {�, L0}. Each time L is downdated, we get a factorized
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Algorithm 3.1 Modified pivoting algorithm using caching

Efficient BPP algorithm with caching

Input: A positive definite matrix A, b, λhi, λlo,C;

Output: w, λ;

1 procedure SolveLCP(A, b, λhi, λlo)
2 L ← Cholesky(A)
3 K← � 
 original decomposition has no tight variable

4 C← { {K, L} } 
 save decomposition to the cache; e.i. L0

5 initialize index sets F and T

6 k ← 0

7 do
8 {K, L} ← FindClosestEntry(C,T)
9 for each i ∈ T \ K do 
 run through set in ascending order

10 L ← Downdate(i,L)
11 K← K ∪ { i }
12 C← C ∪ { {K, L} }
13 end – for
14 ∀ i ∈ Tlo, λi ← λlo,i
15 ∀ i ∈ Thi, λi ← λhi,i
16 λF ← CholSolve(L, bF − AFTλT, F)
17 w = Aλ − b
18 update F,T according to Eq. 2.1

19 k = k + 1

20 while (k < max steps) and (index sets F,T changed)
21 end – procedure

matrix corresponding to tight variables being pivoted, and at each pivot the newly downdated

matrix with tight index key is stored in the cache map.

We demonstrate how the cache data structure is built with an example. At the beginning of

the algorithm, the cache is initialized with the factorization L0 and a key that corresponds

to the empty set K = �, meaning that all variables are free. However, consider that after

the first pivoting step, the tight index set becomes T = {1, 2, 5}. Our downdating algorithm

from Chapter 2 then incrementally downdates the initial factorization. First, the key-value

pair {{1},L{1}} is added to the cache. Note that we use the subscript to denote variables that
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Algorithm 3.2 Procedure used to find the cache entry

1 procedure FindClosestEntry(C,T)
2 K← �
3 L ← { y | {x, y} ∈ C ∧ x = K } 
 i.e. L0

4 for each i ∈ T do 
 run through set in ascending order

5 K
�← K ∪ { i } 
 incrementally add tight indices

6 if ∃ {x, y} | {x, y} ∈ C ∧ x = K� then
7 K← K�
8 L ← y

9 else
10 return {K, L}

11 end
12 end – for
13 return {K, L}

14 end – procedure

have been pivoted in the factorization. When the next variable is pivoted, the key-value pair

{{1, 2},L{1,2}} is added to the cache, and finally {{1, 2, 5},L{1,2,5}} for the last pivot. Now the

cache contains four entries– one for the initial factorization and three for each of the intermediate

pivots that are computed by incremental downdating.

3.2 Cached efficient BPP

Rather than downdating L from L0, we compute it by starting with the factorization sharing the

greatest amount of consecutive tight indices. In order to find the closest entry in the cache to the

current tight index set T, we build the key incrementally. We start with a key representing no

tight indices, K = �, which corresponds to the original decomposition L0. Then, we create a

tentative key K�by adding the first tight index in T. If that key exists in the cache, we update

the key K← K�and keep track of the corresponding factorization. We then add the next index

and repeat this process until either K� is not found in C, or until all the indices in T have been

inserted in K. In the case of the latter, this means that the exact index set already exists in the

cache, and no downdating is required. The pseudo-code to find the cache entry is presented



40

in the method FindClosestEntry of Algorithm 3.2. Once the closest cache entry has been

determined, the method returns the closest factorization and its corresponding tight index key.

The cached algorithm then proceeds to downdate the factorization as presented in Algorithm 3.1,

using the factorization returned by FindClosestEntry and starting from the first index in T

that isn’t in K. As explained in Chapter 2, the downdating operation consists of incrementally

modifying the factorization one variable at a time. Once a variable is effectively removed and

the matrix is downdated, we save the result in the cache.

Expanding on the example in Section 3.1, if the tight index set now becomes T = {1, 2, 6, 7},
we would compute the downdated factorization L{1,2,6} by starting with L{1,2} and pivoting the

variable at index 6, then adding the key-value pair {{1, 2, 6},L{1,2,6}} to the cache, and repeating

the process until all indices in T have been considered.

Recall that indices are sorted by ascending order, and while it is true that we can permute the

index of the constraints in A the sequence of variables used for downdating must be processed

in order because of the nature of a left-looking Cholesky decomposition. In essence, each value

in a column i is computed from the values of the previous i − 1 columns. This means the order

of the indices are extremely important. Furthermore, we can only start from a key K ⊂ T since

pivoting a column i modifies entries of the proceeding the n − i + 1 columns. For instance, if the

tight set becomes T = {2, 6, 7} then there would be no way to use the entries computed for the

sequence {1, 2, 6, 7} since the first variable index is different.

3.3 Experimentation

We compared the performance of the cached efficient BPP algorithm to the version presented

in Chapter 2 using selected frames from the test scenarios. For this comparison, skyline

optimization was not used. Speed up due to the caching algorithm as a function of time for our

examples is presented in Figure 3.1. We notice that the cached algorithm is several times slower.

Note that gaps in the plots of the Stack of boxes example correspond to time steps where no

variables are tight (i.e. free falling bodies). Furthermore, the Forklift test used only 22 frames of
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simulation, and the Log tower example was cut short because the application ran out of memory.

The size of the cache’s data structure in RAM as a function of time is shown in Figure 3.2.

Again, a limited amount of data was available for the log tower and forklift examples, but we can

see the amount of memory needed can vary wildly from time step to time step. From Table 3.1,

observe that even seemingly simple examples, such as the Stack of boxes, generate many more

contacts and constraints than the Forklift. Simulations involving unstructured piles of bodies

therefore require a significantly greater number of cache entries.

Table 3.1 Caching algorithm statistics

Examples Mean size of A Average size of C

(# of variables m) (# of entries)

Chain 528.9 272.5

Forklift 162.0 115.6

Log tower 829.9 3100.5

Stack of boxes 333.9 1351.9

3.4 Discussion

Although it was anticipated that the the amount of memory needed to run the caching algorithm

was going to be very large, the hypothesis was that the memory footprint could be sacrificed for

performance. After all, the algorithm is meant to run on dedicated high-end simulation machines.

However, Figure 3.1 clearly show that caching L after every pivot is not a good strategy to boost

performance. This is because caching this information has a cost: the matrix A is typically

very large which means we need a large amount of random-access memory (RAM), which

implies copying a large number of entries. Furthermore, it means that only a small number of

whole matrices can be contained in the CPU cache resulting in diminished performance due

to cache thrashing. The speed up potential is therefore hampered by the overhead required to

store and copy all the matrices, even when the cache memory is pre-allocated. We expect a

modified version of the algorithm using the skyline would partially mitigate this problem if the

factorization has a very narrow bandwidth since this would reduce the amount of data copied for

each matrix, but not completely eliminate the problem.
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Also, we observe that based on the stack of boxes example in Figure 3.1, the size of the cache can

vary wildly. While the boxes are in free fall, no variables are tight and thus the cache contains

only the original factorization. Every time a box makes contact with the floor or another object,

we observe witness spikes in the size of the cache due to the new contacts being introduced and

the complexity of the simulation increases. An improved caching algorithm should take these

performance “spikes” into consideration.

Finally, observe from Table 3.1 that the number of constraints m in a simulation does not

necessarily correlate with the size of the cache. Another interesting feature is to see how large

the cache grows for the Log tower and the Stack of boxes examples. For disorganized piles of

objects, the amount of redundant constraints is expected to be extremely large, which causes

variables related to contact constraints to frequently jump from the free to tight and back several

times and further causes large growth of the cache. This is a well known problem for these types

of scenarios and makes them challenging for direct solvers.





CONCLUSION

Training simulations developed by CM Labs require highly accurate solutions of complex

scenarios at real-time frame rates. Their simulations are characterized by stiff multi-body

systems with large mass ratios. Pivoting algorithms using direct methods show great potential

for solving this category of systems, but struggle to achieve real-time frame rates for extremely

complex scenarios.

In order to accelerate the solver and reduce overhead associated with the computation of

dynamics, we render the BPP algorithm more efficient by updating the Cholesky factorization

with incremental downdates. We have demonstrated that our approach, which uses a sequence of

rank-one downdates, doesn’t impact the accuracy of the simulation and results in performance

improvements of 1.5-3× speed-up in solving the dynamics. We also identified by an empirical

process a threshold where, if the number of variable becomes too large, there is no performance

gain using our algorithm and the solver can safely fall back to the original BPP algorithm. We

have demonstrated the utility of the modified algorithm with complex examples, and for many

simulation frames the examples match the threshold for applying our algorithm.

We also note that the lead matrix’s bandwidth reduction resulting from a RCM (Cuthill & McKee,

1969) permutation of variables is transferable to the Cholesky factorization. Therefore,

performance is further improved by using a skyline data structure to eliminate unnecessary

computations.

Further observing that within a time step only a small number of constraint variables will

continue to change after the first few iterations of the algorithm, we inferred that a significant

amount of computational effort is spent recomputing factorizations from previous iterations, and

we hypothesized that the solver could be further accelerated by caching and reusing intermediate

factorizations. Unfortunately, this requires swapping large amounts of data in memory, and the

resulting algorithm ended up being much slower.
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4.1 Future work

Other work has used elimination trees of sparse matrices to reduce the amount of computation

needed to get the factorization (Herholz & Alexa, 2018). We briefly explored the possibility of

using such a data structure in the context of a pivoting solver, but after some preliminary analysis

realized it would not be compatible with the systems we target. This is because the lead matrix

in our target systems are reordered using RCM, which does not necessarily reduce matrix fill-in.

The reordering step narrows the lead matrix bandwidth, which results in changes to the structure

of the underlying elimination tree. For example, by analyzing one of our target examples,

Figure 4.1 demonstrates the effect of applying RCM versus a minimum degree reordering (MDR)

algorithm. RCM results in a narrow, degenerate tree with very low branching factor. This would

offer no benefit when computing and reusing Cholesky factorizations.

Figure 4.1 Eliminations trees for different permutations of the lead matrix

An avenue of future research would be to explore if elimination trees could offer an acceleration

for our target systems with different permutations. However, this could introduce additional

overhead due to sparsity analysis and the creation of the elimination tree. Also, due to the size
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of our system (100s to 1000s of variables), sparse data structures may offer no benefit, and such

a strategy may only benefit very large scale simulations. A comparison of matrix reordering

methods for multibody simulation by Torres-Moreno, Blanco, López-Martínez & Giménez-

Fernández (2013) found that simple reordering strategies, specifically the column approximate

minimum degree method (COLAMD), outperformed graph partitioning algorithms for medium

sized systems (i.e., 50 to 2000 variables). This indicates that more sophisticated fill-in reducing

algorithms may hinder, rather than improve, performance.

Finally, we hypothesize that an efficient implicit integration technique could be realized by using

our downdating approach, where changes to the lead matrix JM−1Jᵀ due to perturbations of the

constraint Jacobian J could be computed efficiently by reusing a Cholesky factorization at the

beginning of the time step or even the previous time step.
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