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DYNAMIC OPTIMIZATION OF CLASSIFICATION SYSTEMS FOR ADAPTIVE
INCREMENTAL LEARNING

Marcelo Nepomoceno KAPP

ABSTRACT

An incremental learning system updates itself in response to incoming data without reexam-
ining all the old data. Since classification systems capable of incrementally storing, filtering,
and classifying data are economical, in terms of both space and time, which makes them im-
mensely useful for industrial, military, and commercial purposes, interest in designing them
1s growing. However, the challenge with incremental learning is that classification tasks can
no longer be seen as unvarying, since they can actually change with the evolution of the data.
These changes in turn cause dynamic changes to occur in the classification system’s parameters
If such variations are neglected, the overall performance of these systems will be compromised
in the future.

In this thesis, on the development of a system capable of incrementally accommodating new
data and dynamically tracking new optimum system parameters for self-adaptation, we first ad-
dress the optimum selection of classifiers over time. We propose a framework which combines
the power of Swarm Intelligence Theory and the conventional grid-search method to progres-
sively identify potential solutions for gradually updating training datasets. The key here is to
consider the adjustment of classifier parameters as a dynamic optimization problem that de-
pends on the data available. Specifically, it has been shown that, if the intention is to build
efficient Support Vector Machine (SVM) classifiers from sources that provide data gradually
and serially, then the best way to do this is to consider model selection as a dynamic process
which can evolve and change over time. This means that a number of solutions are required,
depending on the knowledge available about the problem and uncertainties in the data. We
also investigate measures for evaluating and selecting classifier ensembles composed of SVM
classifiers. The measures employed are based on two different theories (diversity and margin)
commonly used to understand the success of ensembles. This study has given us valuable
insights and helped us to establish confidence-based measures as a tool for the selection of
classifier ensembles.

The main contribution of this thesis is a dynamic optimization approach that performs incre-
mental learning in an adaptive fashion by tracking, evolving, and combining optimum hypothe-
ses over time. The approach incorporates various theories, such as dynamic Particle Swarm
Optimization, incremental Support Vector Machine classifiers, change detection, and dynamic
ensemble selection based on classifier confidence levels. Experiments carried out on synthetic
and real-world databases demonstrate that the proposed approach outperforms the classifica-
tion methods often used in incremental leaming scenarios.



OPTIMISATION DYNAMIQUE POUR L’APPRENTISSAGE INCREMENTAL
ADAPTATIF DES SYSTEMES DE CLASSIFICATION

Marcelo Nepomoceno KAPP

RESUME

Lors de I'arrivée de nouvelles données, un systeme d’apprentissage incrémental se met a jour
automatiquement sans réexaminer les anciennes données. Lors d’un apprentissage incrémen-
tal, les paramétres des systémes de classification ne sont plus considérés comme invariants
puisqu’ils peuvent évoluer en fonction des données entrantes. Ces changements causent des
variations dans I’ajustement des parameétres du systéme de classification. Si ces variations sont
négligées, la performance finale dun tel systeme peut étre ultérieurement compromise. De tels
systemes, adaptés au probleme de classification, sont trés utiles a des fins industrielles ou mili-
taires car ceux-ci sont a la fois rapides d’exécution et peu gourmands en mémoire. On observe
en conséquence un intérét grandissant a 1’élaboration de tels systemes.

L’objectif principal de cette these est de développer un systéme capable de s’adapter de fagon
incrémentale a 'arrivée de nouvelles données, de suivre et d’analyser dynamiquement les
parametres du systéme optimal pour ainsi permettre son adaptation automatique a de nouvelles
situations. Pour ce faire, nous commengons par aborder le probléme de la sélection optimale
des classificateurs en fonction du temps. Nous proposons une architecture qui combine la
puissance de la théorie de I'intelligence des essaims avec la méthode plus conventionnelle de
recherche par grilles.

Des solutions potentielles sont progressivement identifices et mises en évidence pour des bases
de données graduellement mises a jour. L'idée principale ici est de considérer I’ajustement
des parametres du classificateur comme un probléme d’optimisation dynamique dépendant des
données présentées au systeme de maniére continue. En particulier, nous avons montré que si
I’on cherchait a élaborer un classificateur SVM (Support Vector Machines) efficace a partir de
sources de données différentes, graduelles ou en séries, mieux valait considérer le processus de
sélection de modeles comme un processus dynamique qui peut évoluer et changer. Ainsi, les
différentes solutions sont adaptées au fil du temps en fonction 1’évolution des connaissances
accessibles sur le probléme de classifications et de I'incertitude sur les données.

Ensuite, nous étudions aussi des mesures pour I’évaluation et la sélection d’ensembles de clas-
sificateurs composés de SVMs. Les mesures employées sont basées sur les théories de la
diversité et la marge communément utilisées pour expliquer la performance des ensembles de
classificateurs. Cette étude révele des informations précieuses pour 1’élaboration de mesures
de confiance pouvant servir pour la sélection des ensembles de classificateurs.

Finalement, la contribution majeure de cette thése est une approche d’optimisation dynamique
qui réalise un apprentissage incrémental et adaptatif en suivant, faisant évoluer et combinant



les hypotheses d’optima en fonction du temps. L’approche fait usage de concepts issus de dif-
férentes théories expérimentales, telles qué I’optimisation dynamique de particules d’essaims,
les classificateurs SVM incrémentaux, la détection de changement et la sélection dynamique
d’ensembles a partir de niveaux de confiance des classificateurs. Des expériences menées sur
des bases de données synthétiques et réelles montrent que 1’approche proposée surpasse les
autres méthodes de classification souvent utilisées dans des scénarios d’apprentissage incré-
mental.



CONTENTS

Page

INTRODUCTION . .o e e e e e et 1

CHAPTER 1 PATTERN CLASSIFICATION IN IMPRECISE ENVIRONMENTS ..... 9

1.1 Incremental Learning Definition ... 9

1.2 CONGEPL DL TSSHES v o v cvsvnnnnnnnnsnnsnmmmvininmisisinmmmsmsmsrsmsisn s s s a s s 2 o8 s s 885 8800 11

CHAPTER 2 RELATED APPROACHES ... 15

2.1 INStance SeleCtion .. .......ooiii it 16

22 Instance Welghting . ........oiiii e 17

2:3 Ineremental CIaSSIEE 5 ovosims0ss s s s omumamsnmmess s ey 45 55555 05§55 5 5§53 3 FER0 17

2.4 Ensemble Learning ... 19

2.4.1  Dynamic COMDBINETS .....ooiiiiiii e 21

242 Incremental Ensemble ... 22

2.5 SUPPOLT VECTOT VAGRINGS « 1152555555 5.5 a0 smsmmssomnssmemmiae s £ 558 ¥ 58580485 544§ b 25

2.6 Incremental Support Vector Machines ..., 29

2.7 DISCUSSION .« ¢ ettt ettt ettt 31
CHAPTER 3 A PSO-BASED FRAMEWORK FOR THE DYNAMIC SVM

MODEL SELECTION (DMS) ...ttt 35

3.1 SVM Model Selection as a Dynamic Optimization Problem....................... 38

3.2 The Proposed Dynamic SVM Model Selection Method (DMS) ................... 45

3.2.1  Framework for the Dynamic Selection of SVM models .................. 47

3.2.1.1 Change Detection Module ... 48

3.2.1.2 Adapted Grid-Search .............oooii i 49

3.2.1.3 Dynamic Particle Swarm Optimization - DPSO ................. 51

33 Experimental Protooal. . ..o 56 s ssssamsemmemamuemmsn s 405157558195 65005 mnwaseing 59

3.3.1 SVM Model Selection Strategies Tested ............ccoovii... 60

3.3.2  Experiments Parameters Setting...................oiiiii 61

333  DAASEES .ottt 62

3.3.4  Parallel proCesSing . .....o.ueeniiiiiit it 64

8,35 Obtaitict RESUIIS ... . o0 commbimmomsiaions 55555 55 555555 5 5 00 bumainimonsamin s s o0 e 1 0 64

34 D SIS SAOT  cnomsncwmenss s 5 #5555 53545 3 5 § Sk SRISRIREESGRAIS § 54 £ 8B ¥ 5565 5§ 4 5 5 ANEHEEHEEABE L5 o snnrn 69
CHAPTER 4 TOWARDS TO THE EVALUATION AND SELECTION OF

ENSEMBLE OF CLASSIFIERS . ... o 71

4.1 Bias-Variance Decomposition of Error ... 712

4.2 Dhiveretty BUBRBUIEE o viovessonssnns ummamammeut 16 A6T5 1568855 55 56 Sikbmmmmiiod . s %2298 74

4.2.1 Pairwise MEASUIES ... .vttit ittt et e e e e e e 74



VII

4211 Qaverage (1) «oovrrre e 75

4.2.1.2 Digagresment EasRIBAT) »s suvsmssmnonminssornesnsvisss s onsmmsmne 73

4.2.1.3 Double-fault measure () ......oovvveieiiiiiiiiiiiiiiiiaan 75

4.2.2 NON-pairwise MEaASUIES ... ...\ttt ettt 75

4.2.2.1 Kohavi-Wolpert (KW) variance (1)......ccoovviiiiiiiiiiain.. 76

4.2.2.2 Generalized diversity (T) ...vvvviierrreeeeeiiiieeieeeeianiinaannns 76

4223 Ambiguity (1) coovviiii it 76

4.2.2.4 Difficulty (1) ..o 76

43 Margin TheOTY ... i)
4.3.1  Margin-Related Measures ... 78

4.4 Experimental Protocol ........ ... 79
44,1  ODbtained RESUILS nucsssovescsssanrsisssnsssiospammmmmanis iisesssississsanims 81

4.4.1.1 Diversity results ...ttt 82

4.4.1.2 Marginresults ... 84

4.5 D ISEUESION ..« » .« winsemismisseiosaomosmimsasnsesst s w3 55+ o o 0.8 3 8 vormcsom mpasma st . .08 8 58 ¢ 5 o 3 momcarmaos 93

CHAPTER 5 A DYNAMIC OPTIMIZATION APPROACH FOR ADAPTIVE

INCREMENTAL LEARNING IN STATIC ENVIRONMENTS .......... 95
5.1 The Proposed Approach ....... ... 98
5.1.1  Framework for Adaptive Incremental Learning (AIL) .................... 98
5.1.2  Additional modules ... 100
5.1.2.1 Incremental Support Vector Machine Module ................... 100
5.1.2.2 Decision Fusion Module ... 102
5.2 Expeninentil PIOIOGO] sesamarasanss 1ue5:0555535 55558 5 imibommsmismomnto s nevnssrnssssssos 104
5.2.1  Strategies Tested ..o 105
52.1.1 BatchSVM-PSO ... 105
5.2.1.2 Incremental no-less classifiers (1-Nearest Neighbor (1-NN)
and Naive Bayes (NB)) ... 105
5.2.1.3 Incremental SVM (ISVM) ... ..o 105
5.2.1.4 Optimized Random Aggregation (ORA-DMS).................. 105
5.2.1.5 Single Incremental SVM (IS-AIL) ..., 106
5.2.1.6 Incremental EoC-DMS Swarm-based (IEoC-AIL) .............. 106
5.2.2  Experiments Parameters Setting...................ooooi i 106
5.2:3  ODbIAINE RESUILS covmmunssisnssisssis855 88 smmmmmmsmuem o oo s s s s 0ssns oo 107
5.2.3.1 Performance evaluation ...............c.ooooiiiiii 107
5.2.3.2 Data storage and complexity of models generated............... 109
5.2.3.3 On the system parameters’ dynamism............................ 113
5.2.3.4 On the selection and fusion of solutions into ensembles ........ 116
5.3 B Te10 L5 T) 1 122
CONCLUSION . 123

APPENDIX I DATABASES ... i e 127



VI

APPENDIX II  ADDITIONAL DYNAMIC MODEL SELECTION RESULTS .......... 132
APPENDIX I BIAS-VARIANCE DECOMPOSITION OF ERROR RESULTS........ 135
APPENDIX IV EXPERIMENTS WITH CLASSIFIER ENSEMBLE SELECTION .... 140
APPENDIX 'V ADDITIONAL ADAPTIVE INCREMENTAL LEARNING RESULTS 147

B DT AT &« comvmvonans 5008102595 51 58 birh S8 aasHRSaEass 204 £4 13 % § 15 15 95 5257 % SIESSSIU0TS 160



Table 2.1

Table 2.2
Table 2.3

Table 3.1

Table 3.2

Table 3.3

Table 3.4

Table 3.5

Table 3.6

Table 4.1

Table 4.2

Table 4.3

Table 4.4

LIST OF TABLES

Page
Compilation of some related works reported in the literature by
outlining the base classifiers, the type of concept drift involved, and
APProach AdOPIE A cummmemennssirsssssnsszessssnssmmpnpmnnmmassais 4575885835558 88 25
Compilation of the most common kernels ............................oooee. 27
Compilation of incremental SVM methods ... 30
Compilation of some related works on SVM model hyper-
parameters selection in terms of the type of kernel used, the search
method, and the objective function..............ccooiiiiiiiiiiiiii 39
Specifications on the datasets used in the experiments......................... 64
Mean error rates and standard deviation values over 10 replications
when the size of the dataset attained the size of the original training
set. The best results are showninbold....................... . 65

Mean of support vectors and standard deviation values obtained over
10 replications when the size of the dataset attained the size of the
original training set. The best results for each data set are shown in bold .... 65

Mean computational time spent (hh:mm:ss) for model selection
processes over all sequences of datasets. Results with FPSO over
the whole databases (FPSO-all data) are also reported......................... 66

Mean of number iterations attained and standard deviation values
for each optimization algorithm over 10 replications. The results
for the Full and Chained PSO strategies were computed over all
datasets. In contrast, the results for the DPSO module were

computed considering only the datasets where it was activated ............... 69
Information on the databases ...t 80
Best results obtained for each measure evaluated on the P2 database ......... 83

Best results obtained for each measure evaluated on the Satimage database . 83

Best results obtained for each measure evaluated on the Letter database .. ... 84



Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table 5.5

Table 5.6

Table 5.7

Specifications on the datasets used in the experiments........................ 104

Mean and standard deviation of error rates obtained after leaming
from all subsets available.  The best results concerning the
incremental strategies are shown in bold. Values underlined indicate
when an incremental strategy was significantly better than the
others. Results were computed over mean values draw from 10 replications 108

Mean and standard deviation of number of support vectors obtained
after learning from all subsets available .....cuwwemmesssree v viississmmmens 111

Training set size reduction (%) by using incremental learning
instead batch mode calculated over the last set (first column).
Proportion of relevant samples (%) inside the last incremental
TraININg SEL USEA ..ottt 112

Frequencies (%) of AIL modules’ activations over all the training datasets .116

EoC-AIL cardinality after dynamic ensemble selection on the last
JEAIMINE SEEP .ottt ettt eeee e e e ee e s e e e 121

Mean errors obtained with IEoC-AIL concerning different
combination functions and ensemble selection rules after learning
from all series of datachunks available



Figure 1.1

Figure 1.2

Figure 2.1

Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

LIST OF FIGURES

Page

Examples of variations between handwritting styles.  1.1(a)
Handwritten digits from North American (NIST SD-19 database)
and 1.1(b) handwritten digits from a Brazilian database of checks [84]. .... 12

[lustrations of different kinds of data drifting. (a) Initial. Data

drifting in (b) Priors, (c) Class densities, (d) Posterior probability. .......... 14
General overview of techniques for developing adaptive

Classification SYSLEIMS. ... .viuutt ettt et 15
I1lustration of the instance selection approach. ...............ocoiiiiian. 17
I1lustration of the incremental learning process. .............ccoovvviiiiia.. 18

[llustration of the incremental learning process based on ensemble learning.24
[lustration of SVM optimal hyperplane separating two classes. ............. 27

Illustration of changes in the objective function. In a first moment
(k), solutions are approximated for a parameter . Next, due to
some unexpected change, e.g. new data, noise, etc.,the objective
function changes and the solutions (gray circles) stay trapped in a
local minimum, what requires some kind of reaction to adapt the
solutions to the new function and optimal (dark point) in kA + 1.............. 41

Overview of the SVM model selection task seen as an optimization
process and the possible uncertainties involved. ...................... L 41

[llustration of the P2 classification problem. .................................. 42

Hyper-parameter search space for P2 problem with different
NUMDETOL SAMPIES. 152555555 5550050t anmmmins vs s wr s e n 20 22 woaressisssssismsrsosions o « 5 5 55 55 54 43

Input spaces and resulting decision boundaries produced by
training SVM models with different hyperparameters values and
number of samples for the P2 problem. (a) Decision boundaries
obtained after training with the solution s, and 40 samples. (b)
Decision boundaries obtained for the same optimum solution s,
for 40 samples, but now training over 922 samples. (¢) Final result
achieved for the best solution s, regarding 922 samples. ..................... 44



Xl

Figure 3.6 Overview of the proposed model selection strategy (conceptual
idea). Optimum solutions for a current dataset D(k) are pointed
out by switching among three search strategies: 1) use the best
solution s*(A — 1) found so far, 2) search for a new solution over
an adapted grid composed of a set of solutions S(k — 1), or 3) start
a dynamic optimization process. The symbols represent different
solutions from a swarm. The best solution selected for a dataset lies
above the dashed line. The white circles in S(0) denote randomly
initialized solutions. Dark and white symbols indicate solutions

from different SWarms............ooooiii i 46
Figure 3.7 General framework for the dynamic SVM model selection................... 47
Figure 3.8 [lustration of the change detection mechanism. In this case, as

the new fitness is situated outside the expected region, a new

optimization is carried out in order to find a new better solution. ............ 50
Figure 3.9 The traditional grid must try a higher number of combinations

than the adapted grid, which profits from the already optimized

solutions S(k) provided by DPSO. s*(k) denotes the best solution. ......... 51
Figure 3.10  Example of a particle’s trajectory during position updating. ................. 53

Figure 3.11 Case study: Operation of the proposed method, Dynamic Model
Selection (DMS). In (a), we show an overview of searching
processes for SVM models based on the proposed method and
on full optimization processes over sequences of incoming data.
We can see that DMS can approximate performing solutions by
requiring fewer iterations than full optimization processes. The
dashed vertical lines indicate when more data were injected and
how many iterations were needed to accomplish the searching
tasks. Next, in (b) and (c), we show a zoom on the proposed
method’ activities and generalization errors.  These figures
empirically depict an analogy to the general concept illustrated in
DEETIER SU « oo v 01 000 94 nrommsmomse s 5 £ 1350 H 1055 MORRENSERSTAEE 1§ 859 54 64 Ammmee 58

Figure 3.12  Error and support vectors rates. For the databases, Ship ((a) and
(b)) and Satimage ((c) and (d)). The results were obtained over 10
TOPICAIOIIS. < oy cosxvnsnsmommmmmmmmmsss 855555785555 BASEEEAAEERE K8 55 1 2 01 0 s 2mowasecnons 67

Figure 3.13  Average of frequencies which indicates how many times each
module was responsible for pointing out the final solution. .................. 68

Figure 4.1 Results for ensembles with the best combinations of C' and ~
parameters on two different perspectives over the P2 database. (a)



Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 5.1

Figure 5.2

Ensembles with the best (' value fixed and varying ~, and vice-
versa in (b). The vertical dashed lines indicate where the minimal

generalization error was attained. ................. ...

Some results obtained for ensembles with the best combinations
of C' and v parameters on two different perspectives over the
Satimage database. (a) results for ensembles with the best
combination by fixing and varying the C' and ~ parameters,
respectively. (b) results obtained by fixing the best v parameter
found and varying C'. The vertical dashed lines indicate where the

minimal generalization error was attained. ...............................

Similar results to that depicted in Figure 4.2 but with the second
margin definition (Equation 4.17), i.e. with the max. rule.
Vertical dashed lines point out the region in which the optimum

generalization error Was achieved. : «ssuumsssnsssnmmsnnmnnsuns sisiaesesss

Some results obtained for ensembles with the best combinations of
C' and ~ parameters on two different perspectives over the Letter
database. (a) results for ensembles with the best combination by
fixing and varying the C' and ~ parameters, respectively. (b) results
obtained by fixing the best 4 parameter found and varying C'.
The vertical dashed lines outline where the minimal generalization

error was achieved. ...

Similar results to those shown in Figure 4.4 but now with the
second margin definition denoted by Equation 4.17. The vertical

XII

..... 85

..... 86

..... 87

..... 88

dashed lines indicate where the minimal generalization error was attained. . 89

Some cumulative margins distributions computed on the Satimage problem.91

Histograms of the margins frequencies from ensembles with
the largest average margin ((a) and (c)), and with the lowest
generalization error ((b) and (d)) from Tables 4.3 and 4.4 for the

Satimage and Letter problems, respectively. ...,

Examples of different classifiers” decision boundaries in (b), (c),
and (d) trained from three optimized solutions, i.e. sy, S5, and s3 in

(a) on the same small training set of 84 samples. .................... ...

General framework of the proposed method for incremental
learning with dynamic SVM model selection. A represents a set
of data sv* composed of support vectors and relevant samples rs
selected during the training of final model M from best particle
s*. So A = {sv* U rs}, where sv* means support vectors obtained

..... 92

...... o7



Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

Figure 5.11

X1V

specifically from final model M trained with hyper-parameters
found by best particle s* and SV = {sv;}!_, denotes the set of
support vectors sv from models obtained after final training of all
P particles from @ SWarm S{E — 1}: coonscimmmnmmmmnnns sonssssssssrs asnasuniss 100

Example of regions defined around the SVM margin separating two
classes (circles and squares) in which relevant samples are selected from. . 101

Case study: Comparison among generalization error results for
batch and the most promising incremental strategies......................... 110

Comparison between the number of training samples used by the
proposed method and batch mode. The number of training samples
retained during system’s updating processes depends on factors
such as the overlapping between classes, margin width, and density
Of SaMIPlEs TN TheSE TERTONS: 1515556655 smmmmnnnhesbasisnona iss et sse s i5assoinio 112

Comparison between the number of training samples used by the
proposed method and batch mode. The number of training samples
retained during system’s updating processes depends on factors
such as the overlapping between classes, margin width, and density
of samples in these regions. ...t 113

Trajectory covered by the best solution found (circles) from
incremental steps for each new dataset D(k). The circles’ sizes
illustrate how the solutions’ fitness can vary. Symbol “*" depicts
a best solution position found if the whole training data is used at
once (batch mode). ... 114

Case study: example on how the solutions were pointed out for
each dataset D(k), C, and 5 hyper-parameters when using IS-AIL. ........ 115

Example of results involving performances and cardinalities for
each dataset D(k) for a given replication comparing AIL in single
model (IS-AIL) and ensembles dynamically selected (IEoC-AIL).......... 117

Examples of classifiers selected and their original pools distributed
over the search space for datachunks outlined by the first square
(left side) in Figure 5.9. The entire sequence of swarms for each
dataset D(k) is presented in the appendix V... 118

Examples of classifiers selected and their original pools distributed
over the search space for datachunks outlined by the square (right
side) in Figure 5.9. The entire sequence of swarms for each dataset
D(k) is presented in the appendix V. ... 119



XV

Figure 5.12  Results of EoC cardinalities obtained for each dataset D(k) over
10 replications over different databases. ........................oooiii. 120



LIST OF ABBREVIATIONS

AlL Adaptive Incremental Learning

AG Adapted Grid-Search

BK Best Solution Kept

CV Cross-Validation

CPSO Chained Particle Swarm Optimization
DFe Data Feeding

DMS Dynamic Model Selection

DPSO Dynamic Particle Swarm Optimization
DT Decision Tree

FPSO Full Particle Swarm Optimization
GA Genetic Algorithm

GS Grid-Search

HS Hyper-parameter selection

ISVM Incremental Support Vector Machine
KNN K Nearest Neighbors

LOO Leave-One-Out

MLP Multi-Layer Perceptron

MSS Manipulating Sample Set Approaches

NB Naive Bayes



NIST

OAA

OAO

ORA

PKC

PSO

SMO

SVM

VC

National Institute of Standards and Technology
One Against All

One Against One

Optimized Random Aggregation

Preserving Karush-Kuhn-Tucker Approaches
Particle Swarm Optimization

Radial Basis Function

Sequential Minimal Optimization

Support Vector Machine

Vapnik-Chemovenkis Dimension

XVl



n

w

LIST OF SYMBOLS

Time index, i.e. hk=1,..., ¢

Dimension of feature space

Data sample in N-dimensional feature space

Class label

Data sample with label associated

Number of training samples

A particular training data chunk received at time £, i.e. Dy = (X,, y:),
A training dataset state at time k, i.e.: D(k) = {Dy, - , Dy},
Dataset transition state in interval of time

Test set

Training dataset size, e.g. 1W(D(k))

Weight vector orthogonal to optimal hyperplane

Bias term

Slack variable associated to x;

Lagrangian multiplier associated to x;

Number of support vectors

Dot product

Eucledian hyperspace

Mapping function ® : RY — H



1%

q

sia(k, q)
Sk, q)
siq(k, q)
net(-)

k,q)

/
Snet(z,/\)(

XIX

A kernel function

Penalty parameter of the error term

Radial Basis Function kernel parameter

Polynomial kernel parameters

Sigmoid kernel parameter

Number of classes in problem

Set of SVM hyper-parameters, e.g. © = {C. v}

SVM decision function

Objective function

Number of PSO particles employed to solve an optimization problem
Set of solutions, i.e S = {s;, $;, s/},

DPSO current iteration index

Particle ¢’s current position (i.e. a solution )

Particle /'s velocity

Particle ¢’s individual best position

Particle ¢’s current position at dimension d, iteration ¢, time &
Particle /’s velocity at dimension d, iteration ¢, time &

Particle ¢’s individual best position at dimension d, iteration ¢, time A
Index of particle’s best informant in its neighborhood.

Best solution from particle /’s informant neighborhood, i.e. net()\), at time

k, iteration q



A

O mar

20.9

XX

Best solution at time &, iteration ¢ in S(k)

Best solution at time & in S(k)

Best previous solution found, 1.e. at time A — 1

Set of solutions at time A

Set of solutions at time k — 1

Dynamic combiners methods’ user pre-defined parameter

Weight assigned to the classifier.

Clerc’s constriction coefficient

Clerc’s constant

Maximum number of connections in swarm communication topology
Index of best particle informant

Random values in [0,1]

Training process

SVM classifier, i.e. M = U(s*(k), D(k))

Generalization error estimation, e.g. ¢((\/), Q)

Number of folds used in the cross-validation procedure

v-Cross validation generalization error estimation, e.g. €, (s*(+), D(k))
Max. difference between the objective functions values

Variance between two errors by using a Normal approximation to the Bino-

mial distribution

Standard value at the 90% confidence level



DS

DF

DF

KTV

GD

DY

Expected loss for a sample x

Bias of an ensemble for a sample x

Variance of an ensemble for a sample x

Net variance of an ensemble for a sample x
Unbiased variance of an ensemble for a sample x
Biased variance of an ensemble for a sample x
Main ensemble’s prediction

Optimal prediction

The prediction provided by the model M,
Pairwise diversity measure average

Average diversity

Diversity between a pair of classifiers

Q Average

Disagreement measure

Double-Fault measure

Difficulty measure

Kohavi-Wolpert (KW) variance

Generalized diversity

Ambiguity

Difficulty

XXI



Cl

Uy

u(-)

rs

SV

XXII

Margin-based measure

Number of votes for the true class

Number of votes for for any other class

Measure of margin computed for a sample x with label y
Mean function

Set of support vectors of a classifier

Set of relevant samples

Set of samples composed of support vectors and relevant samples
Set of support vectors of all classifiers into an ensemble
Maximum number of ensemble members

A classifier ensemble

A classifier ensemble member

Best ensemble selected



INTRODUCTION

Pattern classification systems have been devised for many applications and in many fields in
the past. Intended for different purposes but sharing the same principles, these systems are
designed to teach computers to solve problems based on past experiences. To build a pattern
classification system, a considerable amount of data is processed and compared with patterns
already stored in memory. In the last four decades, remarkable advances have been made in a
number of recognition fields, e.g. recognition, speech, handwriting, etc. In fact, nowadays, if
sufficient data are provided, it is possible to make an almost perfect classifier for any pattern

classification problem.

However, despite the advances, most of these systems have been built using real-world data that
are considered to be stationary. In other words, their development is based on the assumption
that the available training data are always adequate, representative, and available in sufficient
quantity. Consequently, once the classification system has been trained in a laboratory phase,
the assumption is that it will be capable of classifying new, future instances indefinitely in the
real world, i.e. in its operational phase. However, the incompleteness of training data is a com-
mon problem when developing many real-world applications. For instance, in face recognition
applications, due to the large variation in facial expressions, lighting conditions, makeup, and
hairstyles, it is very difficult to collect data on all the possibilities in advance. Likewise, there
are unlimited ways of writing and speaking when developing handwriting or speech recogni-
tion systems. Thus, even with the knowledge that the performances of classification systems
are highly dependent on data, to wait until the entire acquisition and storage process has been
complete would be impractical, uneconomical, or even impossible. An alternative would be to

implement systems capable of learning incrementally.

Incremental learning systems update trained models in response to incoming data during their
operational phase, without reexamining all the old data. As a result, they are economical, in
terms of both space and time, which makes them immensely useful for industrial, military,

and commercial purposes. Because of this, interest in designing classification systems capable



of incrementally storing, filtering, and classifying data is growing. At the same time, there
is a challenge with incremental learning, which is that classification tasks can be no longer
seen as unvarying, since they can actually change according to the evolution of data. These
changes make the adjustment of a classification system’s parameters a dynamic process. If
such variations are neglected, the overall performance of these systems will be compromised
in the future, resulting in the defeat of even the most successful conventional machine learning

techniques, because they are not capable of adapting.

In light of this, a classification system must be able to incrementally accommodate new data
and dynamically adapt itself in order to better maintain its optimality with respect to internal
parameters, computational cost, and generalization performance. This brings us to the central
topic of this thesis, which is to contribute, with new solutions and breakthroughs, to the im-
plementation of an adaptive incremental system based on dynamic optimization techniques. In
particular, experiments are carried out using Support Vector Machine (SVM) classifiers as base
classifiers, and synthetic and real-world databases involving different types of applications,
such as: handwritten digits, multisensor remote-sensing images, forward-looking infrared ship
images, etc. Therefore, databases with different numbers of classes, features, and training
samples are used when testing approaches with different learning strategies (i.e. gradual and

incremental) in a supervised learning context.
Problem Statement

A fundamental problem with incremental learning in static environments is that the best set
of a classification system’s parameters can vary over time, owing to changes in the incoming
data. Such changes can, for example, be minor fluctuations (random or systematic [70]) in
the underlying probability distributions. These usually result from either sample shifting or
the natural evolution of classification problems, considering that new knowledge comes in part
from new observations at different times. Therefore, the sample distributions of training data
chunks may change and affect the system in several ways, since its decision boundaries are

estimated according to those distributions. In the literature, these possible data changes are



defined as population drifts [58, 109]. The problem in incremental learning scenarios is that
they are unavoidable, even though the application environment seems to be static (i.e. where

the numbers of classes, features, etc. remain constant).

Consequently, the incremental updating of a classification system might require not only re-
viewing its existing models in terms of knowledge acquired and new data, but also in terms of
its internal parameters set with respect to such data variations. Otherwise, the whole system
may become obsolete and so fail to achieve a better adaptation in the future. This assumption
might explain why, even though significant research has been conducted to design incremental
learners [13, 109, 93, 26, 88], the results are not often as satisfactory as those for batch mode
learners (i.e. when all data are considered). Taking this into account, we propose to optimize
the traditional incremental learning approaches that consider the adjustment of parameters as
a static process (1.e. constant parameter values are employed infinitely) over time, to increase

the system’s power of generalization and decrease its complexity.

In addition, as we use the SVM classifier here, because of its robustness against the well known
curse of dimensionality [38], the task of searching for optimum hyper parameter values is a
primary problem that must be faced, the so-called SVM model selection problem. Solving
this problem is important because, although SVMs are very powerful classifiers in theory, their
efficiency in practice relies on the optimal selection of hyper parameters. This is because a
naive or ad hoc choice of values for its hyper parameters can lead to poor performance in
terms of generalization error, as well as high complexity in terms of the number of support
vectors identified. In recent years, many model selection approaches have been proposed in
the literature. They differ basically in two aspects: (1) the selection criterion; and (2) the
searching methods used. The selection criterion, i.e. the objective function, is a measure that
guides the search. Some of these criteria are specifically related to the SVM formulation,
such as radius margin bound [118], span bound [19], and support vector count [117]. Others
are classical, such as the well-known cross validation and hold-out estimations. The most
common searching methods applied are the gradient descent techniques [27, 20, 3], the grid-

search techniques [18, 47, 49], and the evolutionary techniques, such as genetic algorithms



(GA) [22, 25, 107, 21], the covariance matrix adaptation evolution strategy (CMA-ES) [40],

and, more recently, Particle Swarm Optimization (PSO) [29, 52].

Although some of these methods have practical implementations, e.g. gradient descent, their
application is usually limited by hurdles in the model selection process. For instance, the
gradient descent methods require a differentiable objective function with respect to the hyper
parameters and the kernel, which needs to be differentiable as well. Similarly, multiple local
minima in objective functions are a nightmare for gradient descent-based methods. To over-
come this, the application of grid-search or evolutionary techniques is a very attractive option.
Unfortunately, in the case of the grid-search method, a good discretization of the search space
in fixed values is crucial for achieving high performances. So, the main challenges in the SVM
model selection research field are considered to be: (1) the choice of objective function, (2)
the presence of local minima in the search space, and (3) the computational time required for
model selection task. In addition to these typical parameter estimation difficulties, the esti-
mation of parameters over time from incoming data at different times aggravates the model
selection problem. This is because, when knowledge of the problem is limited, or the data
are noisy or arrive in batches over time, the model selection task and its performance can pro-
gressively degrade. So, we consider a gradual learning scenario (i.e. when historical data are
not discarded) in order to study the dynamism of the parameter search space with respect to

different levels of uncertainty.

An interesting alternative for improving the performance of single classifiers is the fusion of
classifier decisions into ensembles, especially when the level of uncertainty is high, i.e. when
only small sample sets are available [116]. However, despite all these efforts, our understand-
ing of the effectiveness of the ensemble methods is still lacking, and is driving new research
on classifier fusion. As a result, several works on ensembles of classifiers (EoC) have been
conducted to find measures that could be well correlated with ensemble accuracy and so used
to evaluate and select the best classifier ensembles [67, 99, 36, 28, 125, 96, 69, 73,122, 9, 116,
110]. Nevertheless, there is a consensus in the literature indicating that some diversity exists

between ensemble members, and that this diversity is the main source of possible improve-



ment in overall performance [28, 69, 73, 122, 9]. Although it is well accepted that diversity
is, as far as we know, a necessary condition for improving overall accuracy, there is no general
agreement on how to quantify it or deal with it. Thus, even though the application of EoC is
clearly advantageous, the search for an efficient objective function for selecting the best en-
semble from a pool of classifiers is still a persistent problem. This is a particularly important
issue with respect to the development of an incremental learning system, as considered in this

thesis.
Research Goals and Contributions

In our effort to implement an adaptive classification system, we accomplish three major goals.
The first is to develop a method for searching for optimum values for SVM hyper parameters
over time. We face two main challenges in this endeavor: (1) overcoming common difficulties
involving optimization processes, such as the presence of multimodality or discontinuities in
the parameter search space, and (2) quickly identifying optimum solutions that fit both histori-
cal data and new, incoming data. If we do not meet these challenges, the processes for searching

hyper parameters over sequences of datasets could perform poorly or be very time-consuming.

To tackle these two issues, we first study the SVM model selection task as a dynamic opti-
mization problem considering a gradual learning context in which the system can be tested
with respect to different levels of uncertainty. In particular, we introduce a Particle Swarm
Optimization-based framework which combines the power of Swarm Intelligence Theory with
the conventional grid-search method to progressively identify and evaluate potential solutions
for gradually updated training datasets. The key idea is to obtain optimal solutions via re-
evaluations of previous solutions (adapted grid-search) or via new dynamic re-optimization
processes (dynamic Particle Swarm Optimization, or DPSO). Experimental results demonstrate
that the proposed method outperforms the traditional approaches, while saving considerable

computational time. This framework was presented in [57, 55].

The second goal is to experimentally investigate several objective functions for the evaluation

and selection of EoC. This is an important step in improving the applicability of SVM en-



sembles in the classification system proposed here. In this study, we analyze classifier fusion
empirically through the relationship between two theories related to an ensemble’s success,
L.e. diversity measures and margin theory, with ensemble accuracy. In order to achieve this,
we first survey some classical diversity measures and some measures related to margin theory.
Then, an experimental protocol similar to that introduced in [116] for characterizing SVM en-
sembles is employed to evaluate the measures and draw results. Then, from a discussion on
those results, we try to answer some questions currently arising from the literature, such as the
following: Which measure offers the best guidance in classifier fusion evaluation? How are the
diversity measures related to each other? Is there a relationship among diversity, margins, and
ensemble accuracy? What are the best measures for observing such a relationship? Finally, we
conclude this study with valuable insights on methods for fusion evaluation and selection of
EoC. These investigations are very important, since it has been demonstrated in the literature
that the fusion of classifier decisions into ensembles can actually improve the performance of
single classifiers, even SVMs [116]. However, despite these efforts, our understanding of the
effectiveness of ensemble methods continues to perplex, and this is driving new research on
classifier fusion [67, 99, 36, 28, 125, 96, 69, 73, 122, 9, 116, 110]. Most importantly, this
study provides valuable insights on how these two theories can influence each other and shows
us how confidence-based measures can be of greater interest than diversity measures for the

selection of EoC. A study of this nature was presented in [54].

The final goal is to propose a classification system that performs adaptive incremental learn-
ing. The method is implemented based on the following two principles: (1) the incremental
accommodation of new data by updating models, and (2) the dynamic tracking of new, opti-
mum system parameters for self-adaptation. Our aim is to overcome a problem that arises with
incremental learning, which is the obsolescence of the best set of classification system parame-
ters as a result of incoming data. In particular, the proposed method relies on a new framework
incorporating various techniques, such as single incremental SVM (ISVM) classifiers, change
detection, DPSO. and, finally, dynamic selection of EoC. The goal of our method is to update,

evolve, and combine multiple heterogeneous hypotheses (i.e. models with different parame-



ters and knowledge) over time, and hence to maintain the system’s optimality with respect to
internal parameters, computational cost, and generalization performance. As a result, adapta-
tions are realized in two levels, beyond what is achieved by the incremental learning aspect
alone and into the levels of base mode parameters and decision fusion. Thus, unlike the tra-
ditional incremental learning approaches, which consider classifier parameter adjustment as a
static process (i.e. constant parameter values are employed to update the system infinitely), we
are suggesting that they be optimized over time to increase their power of generalization and
decrease their complexity. In order to achieve this, our underlying hypothesis, set out here,
1s to consider the incremental learning process as a dynamic optimization process, in which

optimum hypotheses are dynamically tracked, evolved, and combined over time.

The proposed method is validated and demonstrates its efficiency through experiments with
synthetic and real-world databases. Results in single and multiple classifier configurations are
compared with those obtained with these strategies: SVM optimized with PSO in batch mode,
ISVM with parameter values fixed beforehand, and two increment-capable classifiers (1-NN
and Naive Bayes), which are widely applied in incremental learning studies. The performances
of these classifiers are considered “no less™ than those of their batch versions [87]. An incre-
mental ensemble strategy with optimized parameters and different combination rules is also
employed for comparison. As additional objectives of this study, we try to verify whether or
not: (1) incremental learning with SVM can achieve similar performances to those obtained
in batch mode; (2) adaptation of the system’s parameters over time is actually a dynamic opti-
mization problem, and, if so, it is important to achieve high performances; and (3) the dynamic
selection of EoC can lead to better results than simply combining all the pools of classifiers

available. We introduce this method and results in [56].

The additional contributions of this work are to provide insights on strategies for optimizing
and selecting classifiers, on the use of memory-based mechanisms, and on dynamic optimiza-

tion methods.



Organization of the thesis

The thesis consists of four chapters. Chapter 1 and chapter 2 present a brief literature review
of the main research topics and works related to the development of classification systems
capable of performing incremental learning. The notion of data changes is also described.
Then, general approaches and classifiers that have been proposed to build classification systems
capable of learning incrementally are surveyed. The research directives adopted in this thesis

are also discussed.

In chapter 3, we empirically demonstrate that the SVM model selection problem performed
over time can, in fact, be treated as a dynamic optimization problem. Based on this assumption,
a PSO-based framework, which combines the power of Swarm Intelligence Theory with the
conventional grid-search method is introduced. Experimental results with this method and with

traditional approaches are presented.

In chapter 4, we investigate nine measures from two different theories (diversity measures
and margin theory) to be employed in the evaluation and selection of SVM ensembles. From
empirical results, discussions on how these two theories can influence each other and on the

application of margin-based measures are described.

In chapter 5, the proposed adaptive incremental learning method is presented. We describe each
additional module composing the framework, and explain the various strategies for adaptation
and performance improvement, such as dynamic parameter optimization and the selection of
ensembles based on their respective confidence levels . Experiments and results obtained are

reported. Finally, we outline our conclusions and suggest guidelines for future work.



CHAPTER 1

PATTERN CLASSIFICATION IN IMPRECISE ENVIRONMENTS

The development of classification systems capable of performing adaptive incremental learn-
ing requires an understanding of the challenges inherent to classification in imprecise envi-
ronments, 1.e. environments where the uncertainty level in the incoming data is usually high
and where different types of data change can be involved. In this chapter, the two main con-
cepts regarding pattern classification in such environments are introduced: (1) the capability of

incremental learning; and (2) the various changes that can occur in the data.

1.1 Incremental Learning Definition

Incremental learning means learning new data over time without keeping all the old data for
subsequent processing, thereby reducing training time and computational effort. However, an
incremental learner should be able to adapt to new information without corrupting or forget-
ting previously learned information. In other words, it must deal with the so-called stability-
plasticity dilemma, which describes the state where a stable classifier will preserve existing
knowledge, but will not accommodate new information, while a completely plastic classifier

will learn new information, but will not conserve prior knowledge [93].

Incremental learning approaches are very attractive for solving several real world classifica-
tion problems, especially those where: (1) the data acquisition process is expensive, and so
only a few samples become available over time; (2) the data generation process is itself time-
dependent, as in time series data; or (3) the training data available are too large to be loaded
into computer memory [109]. Basically, in agreement with Polikar et al. [93], an incremental

learning algorithm must meet the following criteria:

a. It should be able to learn additional information from new data;

b. It should not require access to the original data used to train the existing classifier;



c. It should preserve previously acquired knowledge, i.e. it should not suffer from catas-

trophic forgetting;

d. It should be able to accommodate new classes that may be introduced with new data.

It is important to note that incremental learning as referred to here is a process of updating
a classification system with suitably sized samples of datasets at a time, i.e. block by block,
and not one sample at a time, which is called online learning or instance-by-instance learning
[109]. In the literature, a generic algorithm for incremental learning may be defined in five

steps [77]:

1) Learn rules from examples;

[3S]
~

Store rules, discard examples;

3)  Use rules to predict, navigate, etc.;

4)  When new examples arrive, learn new rules using old rules and new instances;

5)  Gotostep 2.

To summarize, the general idea behind incremental learning is that the knowledge base is in-
creased incrementally as each new piece of information is obtained. For this reason, classifica-

tion systems with incremental learning capabilities can more accurately represent the manner

in which humans learn.

Unfortunately, as new small pieces of information arrive at different times during incremental
learning, the whole learning/classification process can suffer disturbances, depending on the

changes occurring in the data. We explain the possible changes to the data in the next section.
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1.2 Concept Drift Issues

In many real world problems, a huge quantity of new information is created dynamically mo-
ment by moment; for example, applications involving data streaming: spam filtering, financial
prediction, credit card fraud protection, network intrusion and surveillance video streams, stock
market trend analysis, etc. Most of the time, these data must be stored, filtered. or organized in
some way. Such tasks demand powerful computers and systems capable of dealing with huge

volumes of data and data distributions that may change over time.

A persistent challenge with incremental updating is that possible variations in problem data
distributions can affect system performance. In the literature, these changes in the data are
called concept drifts, specifically population drifts or real drifts, depending on the type of

change. We explain these changes below:

. Real drifts: Real drifts refer to changes in the target concepts (e.g. class labels) [58].
This kind of data drifting occurs for a category of real-world problems. For example, in
object tracking or user-interest-guided applications, the class of interest varies over time.
This means that, in order to efficiently predict data, the system might incrementally learn
data about the current concept, and, at the same time, remove old, conflicting concepts.
Thus, in real-drift situations, the incremental learning process must cope with population
drifts resulting from updating phases, and also with changes inherent to the nature of the
problem, which can sometimes even invalidate the knowledge already acquired by the

system.

. Population drifts: Population drifts refer to hidden changes in the underlying data dis-
tributions intrinsically related to the incremental learning process. This is because they
result, for example, from sampling shifting, which depends on the order and the repre-
sentativity of samples present in the incoming data. In such cases, the concepts (classes)
are usually predefined, but their distributions can evolve when new data arrive. For exam-
ple, the frequency of new types of spam mails and their features may change drastically

over time, which causes variations in the data distributions and decision boundaries that



distinguish whether or not a message is spam [31]. This means that population drifts are
unavoidable in the incremental learning process, even when the application environment

seems to be static or when real drifts are involved.

Several examples involving real-world applications can be provided to better illustrate
population drifts. For example, handwriting recognition systems are usually trained from
a fairly large amount of data. Nevertheless, there are unlimited ways of writing a charac-
ter, and it would be impractical, if not impossible, to collect and store every possibility.
In this connection, a problem arises when systems implemented from specific user styles
are exposed to other styles, e.g. different populations and regions. The systems would
certainly not achieve the same success for both styles. To illustrate, in Figure 1.1, we
show some isolated digits handwritten in the North American and Brazilian styles. It is
easy to see that variations in the two styles, e.g. for the numbers 1, 2, 7, etc., could be
reflected in changes to the data distribution classes, which would require updating of the

system in order to prevent compromising future classifications.
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Figure 1.1 [Examples of variations between handwritting styles. 1.1(a)
Handwritten digits from North American (NIST SD-19 database) and 1.1(b)
handwritten digits from a Brazilian database of checks |84].



13

In probabilistic terms, the changes that may occur in a classification problem are related to

[58, 70]:

@ Prior probabilities for the ¢ classes, P(wy), ..., P(w.);
. Class-conditional probability distributions, p(z|w;),, i = 1,...,¢; or
. Posterior probabilities P(w;|z), 7 =1,..., e

Population drifts result from changes that occur in the P(w;) and p(r|w;) of classes, while real
drifts are related to changes in the P(w;|z) of classes. Figure 1.2 depicts these types of concept
drifts in probabilistic terms. Consider the class densities for two classes: w; and w-, and the
optimal decision boundary of separation regarding one input variable ., as illustrated in Figure
1.2(a). The effect on the decision boundary of the various kinds of drifts mentioned previously
are subsequently depicted in Figures 1.2(b), 1.2(c), and 1.2(d). Figure 1.2(b) illustrates a drift
caused by the priors. Then, Figure 1.2(c) depicts a drifting in class density resulting from a
sampling shift for the class w; between the x values 0.65 and 0.8, for example. Finally, a
drifting in the posterior probability of the class w;, and also between the = values 0.65 and 0.8,

is shown in Figure 1.2(d).

Now that the definition of incremental learning has been presented and the difficulties it com-
monly encounters explained, in the next section we survey the main approaches introduced in

the literature to deal with these data changes and for incremental learning to occur.
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CHAPTER 2

RELATED APPROACHES

In the previous chapter, the definition of incremental learning was presented, along with the
challenges involved in keeping a classification system up to date. In addition, we have seen
that population drift is a common difficulty which needs to be faced by incremental learning
processes with the presence, or not, of real drifts. Taking this into account and for the sake of
clarity, a literature review is provided in this chapter on the main approaches and techniques

that have been employed for dealing with these situations.

First, the main approaches applied in this research area are surveyed: (1) instance selection,
(2) instance weighting, (3) incremental classifiers, and (4) ensemble of classifiers. We start by
giving a general overview of these approaches, as illustrated in Figure 2.1. They are then sum-
marized, with reference to their respective related works. Finally, we present a discussion on
the research directives adopted in our thesis for the implementation of an adaptive incremental

learning method, which is the research domain at issue here.

Approaches for Learning and
Handling Data Changes Overtime

! !

Instance Instance Incremental Ensemble
Selection Weighting Classitier Learning
i
Dynamic Incremental
Combiners Ensembles

{ i .
Re—using of Filtering of ~ Chunking of
Data Data Data

Figure 2.1 General overview of techniques for developing adaptive
classification systems.
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2.1 Instance Selection

Instance selection-based methods handle data changes, especially those related to real drifts, by
learning from a “time-window" of relevant examples. The relevance of the examples is usually
measured by their ““age" or correctness, depending on the strategy. A generic example of this
method is depicted in Figure 2.2. Consider an existing learner and a selection criterion; the
instance selector carefully selects relevant examples from the data stream and stores them in a
time-window. When the number of examples in that window reaches a maximum of 7 items,
the learner is entirely recreated or incrementally updated from the window. Older examples, or

examples that are no longer relevant, are discarded.

Related works we can cite are those of Schlimmer and Granger [100], Widmer and Kubat
[121], Maloof and Michalski [78], and Lazarescu et al. [75]. Schlimmer and Granger [100]
introduced the STAGGER system, which maintains a set of concept descriptions (sets of sym-
bols numerically weighted by Bayesian weighting measures). When the system fails to predict
a membership class for a new instance, a new, more complex concept description is built by

the iterative use of feature construction, where the most relevant concept is selected.

In [121], Widmer and Kubat introduced the FLORA algorithm, which learns current concepts
by implementing a rule system from a window of recent examples. The algorithm learns new
instances incrementally, while “forgetting" the oldest ones. Algorithm variants (FLORA 2,
3, and 4) have been also been implemented with different characteristics, such as: the use
of an adaptive window size, a store of “stable" concepts, etc. In this same vein, Maloof and
Michalski [78] have introduced a partial memory system, called AQ-PM, which tests training
instances and selects only misclassified examples to store in the window for future learning
phases. A user-defined threshold controls a forgetting mechanism. Klinkenberg and Joachims
[64] suggest dynamically adjusting the window size by monitoring the system’s performance
on the last chunk of data. The authors train the Support Vector Machine (SVM) classifier
with different window sizes from previous data and select the window size that maximizes

the accuracy on the last chunk of data. Another variation of the original instance selection



approach has been introduced by Lazarescu et al. [75], which uses an unsupervised algorithm
and not one, but three multiple competing windows of different sizes to give the method more

flexibility.
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Figure 2.2 Illustration of the instance selection approach.

2.2 Instance Weighting

Instance weighting methods assign weights to instances according to their age and/or their
influence in the current concept. Unlike instance selection methods, where examples are con-
sidered equally relevant in the window, these methods try to create different degrees of rele-
vance for each example by computing weights for all instances, even the relevant ones. This
approach has not often been applied, probably because it calls for learning algorithms capable
of processing weighted instances. For example, in [62, 65], the authors implemented instance
weighting by employing an SVM classifier. Furthermore, they have a tendency to overfit the

data, as observed in [63].

2.3 Incremental Classifier

The incremental classifier approach refers to incremental model maintenance. In other words,
approaches in this group employ a classifier algorithm capable of being continually updated.
The incremental learning process with a single classifier can be summarized as illustrated in

Figure 2.3. Let D(1), D(2), ..., D(n) be datasets available to the learning algorithm at instants
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A= 1.2...., n. The learning algorithm starts with an initial classifier (hypothesis) M (1)
trained from D(1). Then, M(1) is updated to M(2) on the basis of D(2), and M(?2) is updated

to .M (3) on the basis of D(3), and so on for future iterations.
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Figure 2.3 Illustration of the incremental learning process.

Below. we summarize some single classifiers capable of incremental learning:

o Learning vector quantization (LVQ): a simple and successful online learning algorithm
also originating from the neural network literature [70];

. Naive Bayes Classifier: a very suitable method for updating an existing classifier, since
the sample frequencies required for calculating the prior probabilities can simply be in-
creased as new examples arrive;

. Nearest Neighbor: a classifier that is both intuitive and accurate. The training set can be

built by storing each labeled sample x as it arrives;

. Neural Networks: while generally suffering from catastrophic forgetting [93], a particu-

lar neural network family is capable of incremental learning: ARTMAPs [13, 16, 15];

° Decision Tree: a classical batch classifier that has been modified to accommodate new

data over time. An interesting version can be found in [50];



. Support Vector Machine (SVM): a classifier that tries to find a good representation of the
boundary between classes. It has the advantage of being readily suited to incremental
learning tasks. More details about incremental versions of the SVM are provided in the

next section.

2.4 Ensemble Learning

An ensemble is a set of classifiers (e.g. decision trees (DT), artificial networks neural (ANN),
support vector machines (SVM), etc.) organized in such a way that their individual decisions
are combined to obtain the ensemble prediction when a new example is to be classified. The
goal is to combine difterent classifier decisions to decrease the variance and the error among

single solutions obtained by training from a dataset D.

Ensembles of Classifiers (EoC) have become very popular, as they often outperform single
models. Consequently, the literature on EoC has grown extensively with the objective of un-
derstanding them better and improving their results [67, 99, 36, 28, 125, 96, 69, 73,122, 9, 116,
110, 54]. Because of this interest, EoC are now widely applied in diverse pattern recognition

applications.

The construction of an EoC involves the design of classifier members and choosing a fusion
function to combine their decisions. Classifier members can be designed in different ways [33],

such as the following:

. Manipulating training examples: These methods vary the training samples in order to
generate different datasets for training the ensemble members. Some examples are: Bag-

ging (Bootstrap Aggregating [5]) and Boosting ([98]).

. Manipulating input features: Methods in this group manipulate the features to obtain
diversity among members. Their goal is to provide a partial view of the training dataset
to each ensemble member, so that they become different from one another. Examples are

the Random Subspace method [46] and the feature subset selection strategies [111].



® Manipulating output targets: In this strategy, the labels of training samples are manip-
ulated to produce different classifiers. For instance, using the Error Correcting Code
method [34]), a multi-class problem is transformed into a set of binary problems. At
each new iteration, a different binary division of the training dataset is used to train a

new classifier.

Along with these three categories, there are also some methods that manipulate ensemble mem-
bers (i.e. producing heterogeneous ensembles, the members of which can actually be different
classifiers [97] or represent variations of some aspects of a given classifier, such as the topology

for neural networks [102] or hyperparameters for SVMs [115], etc).

At the same time, the choice of fusion function depends on what kind of information is obtained
(e.g. labels, probability estimation, etc.) from the individual models. Among the most common
options found in the literature are: majority voting, simple average, sum, product, maximum,
minimum, weighted average, Naive-Bayes combination, Decision Templates (DT), etc. [61,
72, 71]. For more information about combination functions and classical methods for the

creation of ensembles, a comprehensive survey with examples can be found in [71].

In addition, different combination architectures can be defined, according to classifier arrange-
ment. There are several related topologies or structures in the literature, such as conditional,

serial, parallel, etc. Lam [74] proposed a classification of these topologies as follows:

° Conditional: This topology is based on confidence level, and it works in two ways. A
base structure is used to measure the confidence level. If there is a rejection, or if the
classification is made with a low level of confidence, a secondary structure is used which
is more specialized in the particular problem. This secondary structure, which is usually

more complex than the first, is only used for more difficult patterns.

. Serial: The classifiers are arranged in series. Each classifier produces a reduced set of

possible classes or values that are used by posterior classifiers.
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. Parallel: This topology consists of a set of classifiers consulted in parallel. First, an EoC
operates in parallel to produce classifications of a pattern, and then their decisions are

combined by a fusion function.

o Multistage: In this topology, the classifiers are arranged in different stages, such as hybrid

combinations of parallel-serial or serial-parallel architectures.

In the same way, inspired by the success of the conventional EoC methods introduced above,
which are traditionally applied over a single dataset, similar techniques have been proposed
to perform incremental learning. Based on the original idea, EoC methods for incremental
learning also generate and combine sets of classifiers. However, the creation of base classifiers

is slightly different, i.e. rather than fixed datasets, now new datachunks can arrive over time.

A comprehensive survey on the various ensemble techniques for dynamic environments is
presented in Kuncheva [70]. Based on that study and [31], the next two sections present a com-
pilation of the proposed strategies found in the literature in two groups: dynamic combiners

and incremental ensemble approaches.
2.4.1 Dynamic Combiners

Dynamic combiners train ensemble members in advance and then changes (i.e. concept drifts)
are tracked by updating the combination rule with respect to new data. Therefore, the adapta-
tion is performed only at the decision fusion level, since existing classifiers are never retrained.
Methods in this group are commonly called "horse racing" algorithms. We outline some of

these algorithms below:

a. Weighted Majority: This algorithm is composed of four steps [70]: 1 - Initialize all
weights {u; }]L:1 = 1, assigning to each base classifier a classifier ensemble C. 2 - For
each new training sample x, compute the support for each class as the sum of the weights
of all classifiers that suggest its respective class labels for x. Label as x the class with

the largest support. 3 - Check the true label of x and update the weights of all experts
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with an incorrect prediction as u; = [u;, where 3 € [0, 1] is a user predefined parameter.

4 - Continue from Step 2.

b.  Hedge [3: The same updating rule as in the Weighted Majority algorithm is employed.
However, instead of taking decisions based on the weighted majority, this method uses
the prediction from a selected classifier as the ensemble decision. The selection process

is based on a probability distribution defined by the normalized weights.

c. Winnow: This method is similar to the Weighted Majority algorithm, but has a different
updating rule. In this algorithm, the weights are recomputed only if the ensemble pro-
vides an incorrect prediction for the current input x. In addition, the weight u of each
classifier is updated, as follows: If the correct label for x is obtained by a given classifier,
its weight is increased, becoming u; = Ju; (promotion step), otherwise it is decreased,
becoming u; = u;/3 (demotion step). In this way, base classifiers are promoted or

punished according to the ensemble errors.

d. Mixture of Experts: Unlike the previous dynamic combiner methods, this strategy repre-
sents a special case in which the fusion decision rule and a selected classifier are updated
from each new example. Therefore, it is important to note that the base classifiers must

support incremental learning.

Although the dynamic combiner methods are attractive from an implementation point of view,
the main problem with such an approach is their failure to adapt to new data at the base classifier
level, since they must be trained in advance. This is a disadvantage, because it may compromise
the performance of the whole system when exposed to an environment where no adequate

classifier has been previously trained.

2.4.2 Incremental Ensemble

Unlike dynamic combiners, the Incremental Ensemble methods are flexible, since they consider

the updating of ensemble size, member knowledge, and a combination rule. The key here is



how to assign the data to subsets in order to train the base classifiers. This decision also
determines how new examples are learned by the ensemble. Basically, they can be categorized

into three groups [70]:

a. Updated training data: The methods in this group use fresh data to make online updates

of the ensemble members, where the combination rule may or may not change.

e Reusing data points: As described by Oza [86], an online bagging algorithm is used
to converge to batch bagging as the number of training examples and the number of
classifiers tend to infinity. The training samples for the classifiers in the ensemble
are created incrementally. The base classifiers are trained using online classifier

models.

e Filtering: Training sets are formed for the consecutive classifiers as the data flows
through the system. The basic idea is to build the ensemble members progressively
using portions of a training set. Examples of this kind of approach are variants of
the traditional Boosting method [98], e.g. in [82] or the Pasting-small-votes [7]

method.

e  Using data blocks or chunks: The ensemble is updated using batch mode training
on a "chunk" of data. That chunk can be treated as a single item of data, because
the ensemble is trained on the most recent block, on a set of past blocks, or on the

whole set of blocks.

b. Updating ensemble members: The classifiers in the incremental ensemble can be up-

dated online or retrained in batch mode when blocks of data are available.

c.  Structural changes to the ensemble This strategy creates an individual classifier from
each new data chunk available. Then, whenever a change in the environment is detected,
they are re-evaluated and the worst or oldest classifier is replaced by a new classifier

trained on the most recent data. A general overview of this approach is depicted in



Figure 2.4. The idea here is to divide data streams into chunks of data for learning.
For each chunk of data, a new base classifier is trained and combined with preceding
ones for future predictions. This scheme is also called "block evolution” in [41]. The
decision’s fusion of classifiers is usually realized by weighted voting, where the weights
arc computed from the most recent data. Figure 2.4 depicts the key idea and the variants

that can be suggested naturally based on this idea.
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Figure 2.4 Illustration of the incremental learning process based on ensemble learning.

Despite this categorization of the approaches, it is important to note that combinations between
them are possible. In order to provide a better overview of the approaches and related works

that we have cited in this chapter, we summarize this information in Table 2.1.

In this table, we can see the base classifier, the type of data change studied when learning
over time, and the approach employed. We provide more details on these aspects and works
in section 2.7. We now turn our focus to the base classifier employed in this paper, which is

described in the next section.



Table 2.1

Compilation of some related works reported in the literature by

outlining the base classifiers, the type of concept drift involved, and

approach adopted.

Related works Base classifier Drift Type  Approach applied
Schlimmer and Granger [100] Rule-based learning Real Instance selection
Widmer and Kubat [121] Rule-based learning Real Instance selection
Maloof and Michalski (78] Rule-based learning Both Instance sclection
Klinkenberg and Joachims [62] Support Vector Machine Real Instance selection
Klinkenberg and Riiping [65] Support Vector Machine Real Instance weighting
Syed etal. [109, 108] Support Vector Machine (SVM)  Population  Incremental classifier
Ruping Androutsopoulos et al. [2] | Naive Bayes (NB) Population Instance selection
Street and Kim [106] Decision Trees (DT) Both Ensemble learning
Hulten et al. [50] Decision Tree Real Incremental classifier
Kolter and Maloof [68] Decision Tree, Naive Bayes Real Ensemble learning
Stanley [105] Decision Trees Real Ensemble learning
Wang et al. [119] Decision Trees, Naive Bayes Both Ensemble learning
Delany et al. [31] Instance-based (A -NN) Population Instance selection
Wang et al. [120] Decision Tree Real Incremental classifier
Cohen et al. [26] Decision Tree Population  Incremental classifier
Tsymbal et al. [112] Decision Trees Population Ensemble learning
Mohammed et al. [81] Multi-Layer Perceptron (MLP)  Population Ensemble learning
Muhlbaier and Polikar [82] MLP, NB, SVM Real Ensemble learning
Parikh and Polikar [88] Multi-Layer Perceptron Population Ensemble learning
Tsymbal et al. [113] Decision Trees Both Enscmble learning

2.5 Support Vector Machines

The SVM classifier is a machine learning approach based on the structural risk theory intro-

duced by Vapnik in [117]. In particular, an SVM classifier is capable of finding the optimal

hyperplane that separates two classes. This optimal hyperplane is a linear decision bound-

ary separating the two classes and leaving the largest possible margin between the samples of

the two classes. Unlike most learning algorithms based on empirical risk, the SVM does not

depend on probability estimation. This characteristic makes it more robust against the well-

known curse of dimensionality, mainly for small datasets, since classification success does not

depend on the dimensions of the input space. Because of this, it can be very promising for

incremental learning situations, and so we employ it here.



In particular, the training of an SVM classifier can be summarized as follows. Consider a set
of labeled training samples represented by D=(x1,11).. .., (X,,y,), where x, € R? denotes
a d-dimensional vector in a space, and y; € {—1,+1} is the label associated with it. The
SVM training process, which produces a linear decision boundary (optimal hyperplane) that

separates the two classes (-1 and +1), can be formulated by minimizing the training error:

R SR TITY) n
min ;| w|*+C) ._,&,
2 || H Z =15 (21)
subjectto y;((wTx,) +b) > 1§, & >0, i=l,...,n
while maximizing the margin separating the samples of the two classes. w is a weight vector
orthogonal to the optimal hyperplane, b is the bias term, C' is a tradeoff parameter between
error and margin, and §; is a non negative slack variable for x;. The optimization problem in

Equation 2.1 is usually solved by obtaining the Lagrange dual, which can be reformulated as:

1 n 1
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subjectto 0 < o, < C, ST ayy; =0

(2.2)

where (a,);e, are Lagrangian multipliers computed during the optimization for each training
sample. This process selects a fraction [ of training samples with a; > 0. These samples
are called support vectors and are used to define the decision boundary. In extreme cases, the
number of support vectors will be the same as the number of samples contained in the training
set. As a result, the w vector can be denoted as Z:‘ oy Figure 2.5 illustrates the general.
idea of the decision boundary computed by the SVM, where there are two classes (circles
and squares) separated by an optimal hyperplane. The training samples that were selected as

support vectors are located under and between the dashed lines (margin).

However, this SVM formulation only works for linearly separable classes, and, since real-world
classification problems are almost never solved with a linear classifier, an extension is needed
for nonlinear decision surfaces. To solve this problem, the dot products (x;.x;) in the linear

algorithm are replaced by a nonlinear kernel function A'(.), where A'(x;, x;) = ®(x;).®(x;),
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Figure 2.5 lllustration of SVM optimal hyperplane separating two classes.

and ® is a mapping function ® : R¢ +— H. Such a replacement constitutes the so-called
"kernel trick" [10]. In order to work, the kernel function K'(x;,x;) must satisfy the Mercer
condition [117]. The kemnel trick enables the linear algorithm to map the data from the original
input space ¢ to some different space H (possibly infinitely dimensional). called the feature
space. In this space, nonlinear SVMs can be generated, since linear operations in that space are
equivalent to nonlinear operations in the input space. The most common kemels used for this
task and their parameters (v, 7, u and 7) are listed in Table 2.2. The decision function derived
by the SVM classifier for a test sample x and training samples x; can be computed as follows,

for a two-class problem:

l
sign(f(x)) with f(x) = oy (xi,x) + b (2.3)

Table 2.2  Compilation of the most common kernels

Kernel Inner Product Kernel
Linear K(x;,x;) = xTx;
Polynomial K(x,x;) = (yxIx;, + )% u>0

Radial Basis Function (RBF) | A'(x;,X;) = cup(—7]|x; — x,||*),y > 0
Sigmoid K(x;,x;) = tanh(yxIx; + 7)




In the same way that this extension deals with nonlinear problems, the primary SVM formu-
lation requires additional modification to solve multiclass problems (¢ > 2). There are two

approaches for handling this:

° One-Against-One (OAO): This strategy arranges pairs of classifiers into separate classes,
and is also called a pairwise scheme, where the total number of classifiers is ¢(c — 1) /2.
Given a test sample, the classification result is obtained by comparing the pairs and

assigning the class with the maximum number of votes to it.

. One-Against-All (OAA): In contrast, the one-against-all strategy yields one classifier for
each class ¢ that separates that class from all the other classes. The final decision is made
by the winner-takes-all method, in which the classifier with the highest output function

designates the class.

In this work, we use the OAO strategy, since it has been demonstrated to be faster to train
and uses fewer support vectors than the OAA approach [47]. Overall, the SVM is a powerful
classifier with strong theoretical foundations and good generalization performance. However,
even though it occurs in most machine learning algorithms, training it requires fine-tuning of its
hyperparameter set (i.e. kernel parameters and the regularization parameter C'). For instance, C
is a penalty parameter of the error term, e.g. a high value punishes the errors too much, and the
SVMs can either overfit the training data or underfit them. Kernel parameters that are not well
tuned can also lead to underfitting or overfitting of the data. In our case of interest, if the RBF
kernel parameter ~ is improperly set, the SVMs easily over- or underfit the training data, while
a bad (' setting can cause an explosion in the number of support vectors identified, thereby
increasing the complexity of the classifiers obtained. So, tuning the SVM hyperparameters
controls the classifier’s power of generalization. The problem now is to find their best values,
which is a non trivial task (the so-called “model selection" problem). In the next chapter, we

explain this problem and relate it to dynamic optimization problems.



2.6 Incremental Support Vector Machines

The SVM classifier has robust theoretical fundamentals, and often demonstrates good empir-
ical results in the literature. Unfortunately, its training process is very time-consuming when
dealing with large or noisy datasets. This is mainly because the original SVM formulation
involves solving a quadratic programming problem, which requires that all training samples be
loaded into computer memory at once. For this reason, many incremental support vector meth-
ods (ISVM) have been proposed to provide options for updating an existing model that will
minimize the computational cost in terms of memory and processing time. Without ISVMs,
the application of SVMs could be unviable in these situations. Here, we have grouped the most
incremental SVM approaches found in the literature into two categories, according to the way

in which they conduct the incremental process:

. Manipulating Sample Sets (MSS): These ISVM methods update a classifier by merging
new data, old support vectors, and, optionally, additional samples considered relevant in
an iterative training procedure. Other non important samples are discarded after training,
or used for recursively testing the models generated [108, 109, 80, 123, 35, 1]. Other

approaches even filter samples before retraining the model [91].

° Preserving Karush-Kuhn-Tucker Conditions (PKC): These ISVM training algorithms at-
tempt to incrementally approximate an optimal decision boundary by adding a new sam-
ple to the solution and "adiabatically" updating Lagrange coeflicients (a,), and retaining
the Karush-Kuhn-Tucker conditions on all previously seen data [32, 103]. A sample-
discarding procedure is implemented based on a kind of leave-one-out estimate of gener-
alization error on the whole training set. Despite incremental training, the leave-one-out

procedure makes these methods computationally expensive.

We have compiled some related works in Table 2.3. Most of the ISVM methods were in-

troduced in order to reduce training time over a dataset, and so no special techniques, like
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Sequential Minimal Optimization (SMO) or chunking-based optimization, were used in the

Table 2.3  Compilation of incremental SVM methods

Description

Requirements/data feeding (DFe)/Hyper-parameters
selection (HS)/general comments

Current support vectors are merged with new data for classificr
updating.

No. / DFe: Chunks. / HS: No.

Based on condensed nearest neighbor classification technique,
it exchanges samples between two extra sets w.rt. their cor-
rectness and distance to separating hyperplane. The process
stops whether a user specified level of accuracy 1s reached on a
extra test sct or one of the sets become exhausted.

Validation set, pre-seting of accuracy level intended,
number of ncarest neighbors, multiple incremental scs-
sions. / DFe: One training sct, i.c. no chunks. / HS:
No.

This approach uscs three sample scts during the process, sam-
ples are classified, selected and exchanged between extra sets.

o, 3,v,Ad, d controls storage and performance rates;
multiple incremental sessions. / DFe: Chunks. / HS: No

The idca is to train an ISVM from samples that represent ver-
tices from convex hulls for cach class. It 1s impractical, since
the complexity of convex hull computation can be huge de-
pending on the input space dimension.

Impractical, the complexity of convex hull computation
can be huge w.r.t. sample space dimension. No experi-
ments were performed. / DFe: It could be from chunks.
/ HS: No.

It tries to rctain the Karush-Kuhn-Tucker (KKT) conditions on
all previously seen data, while “adiabatically" adds a new sam-
ple to the solution. Leave-one-out is performed for “unlearn-
ing" samples.

Leave-one-out estimation for discarding samples. / DFe:
One training sct, 1.c. no chunks. / HS: No. No experi-
ments were performed.

Four strategics are compared in this work. Error-driven tech-
nique, which keeps only the misclassified data. Fixed-partition
that is similar to [108]. Excceding-margin that keeps new sam-
ples that exceed the margin defined by the current SVM model
And finally, a combination of exceeding-margin+errors-driven
technique.

DFe: Chunks / HS: Cross-validation to set parameters
over the first chunk, but used values were not mentioned
/ Reported results indicate that the fixed partition [108]
overcomes the other strategics.

This method attempts to re-learn only a neighborhood from
new data and update weights of old data.

Two extra parameters: number of neighbors and a well
suited crror estimate.  Multiple incremental sessions.
DFe: One dataset, no chunks. HS: No.

This method works similarly to [108]. However, 1t changes the
SVM formula to compute the loss function by adding a weight
to punish errors on previous support vectors.

Extra parameter to weight previous support vectors.
DFe: Chunks / HS: No.

The authors expand the work introduced n [17] to enable
hyper-parameters updating during incremental learning ses-
sions.

Leave-one-out estimation for discarding samples. DFe:
One training set, 1.c. no chunks. / HS: Yes, through
gradient-based scarch. / One databasc is used (PIMA
from UCI), no performance results were reported.

The 1dea 1s to reduce SVM training time by filtering a large
training dataset and training a SVM only from filtered samples.
In order to achieve this, the authors usc a clustering algorithm.

There are extra paramcters for the clustering algorithm
and a lincar SVM is used (i.¢. no kernel parameters, just
lincar decision function) / DFe: Chunks / HS: No.

The authors propose a modification to adapt the SMO algo-
rithm for online learning.

The approach has serious limitations, since it works only
for binary features and lincar SVMs. Besides, often
with little degradations of performance can be observed.
DFe: Chunks. / HS: No.

It pre-extracts support vectors candidates from new data to re-
duce computational training time. The pre-extraction is done
bascd on a relative distance between samples to optimal hyper-
planc and a correctness rate of test over all previous data.

Relative distance, multiple incremental sessions for one
chunk. / DFe: Chunks. / HS: No.

Like 1n [108], the previous SVs replaces all historical samples
in the retraming process. In contrast, new chunks are “filtered"
and only some samples are considered for training. The impor-
tance of a samplc 1s measured w.r.t. an adaptive distance to the
hyperplane.

No mention on how to implement, set, or measure such a
distance adaptively. Some experiments with user graph-
ics. DFe: Chunks. / HS: No.

process.
Ref. | Grp.
[108]] MSS
[80] | MSS
[123]| MSS
[11] | MSS
[17] | PKC
[35] | MSS
[94] | MSS
[95] | MSS
[32] | PKC
[124]| MSS
[101]| MSS
[1 MSS
[91] | MSS
[103]| PKC

As in [17], this method also works based on updates at the level
of samples coefficients

While updating hyper-parameters, previous data must be
uscd. / DFe: One training sct, i.e. no chunks. / HS: Yes,
gradient-bascd scarch,
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The term “incremental" is used to describe the process of building models incrementally based
on recursive procedures (training and testing) applied to a selection of samples from different
subsets and the large original training set. Their goal is to generate a final model more quickly
than by solving a larger quadratic optimization problem. Also, it is important to note that SVM
hyperparameters are usually set beforehand, without using more sophisticated methods, such

as evolutionary computation, for example.

In addition, the terms exact or approximate SVM usually appear in the literature in connection
with ISVM methods. These terms are specifically related to the resolution of the quadratic
problem for building the final SVM classifier. If, for example, the final SVM solutions are
found using all the training samples during the resolution of the quadratic optimization prob-
lem, the SVM is described as exact. The chunking decomposition method and SMO are exam-

ples of other methods that provide an exact solution.

By contrast, when the algorithm considers finding the SVM solution by employing one sample
at a time (single pass), it is called an approximate ISVM. This is because they do not check
other samples, and so the final solution is not optimal. Taking this into account, we suggest
in our proposed method a modified version of Syed et al.’s method [108, 109], which we
will introduce in section 5.1.2.1. In addition, the SVM implementation used in this thesis
already provides mechanisms to accelerate SVM training through SMO. Such a technique is
very efficient and demands less computational effort than traditional quadratic programming

solvers, as shown in [92].
2.7 Discussion

This chapter surveyed the main approaches for developing mechanisms to learn from impre-
cise environments. From this literature review, we note that the former methods were proposed
based on the instance selection and weighting approaches. In recent years, though, more so-
phisticated methods have been developed using incremental classifier and ensemble learning
approaches. Furthermore, when dealing with real-drift scenarios, most works use only lin-

early separable synthetic classification problems (e.g. SEA concepts, rotating hyperplane, etc.)



[68, 119, 120]. By contrast, population drifts have been studied in more realistic scenarios, i.c.

with real-world data [26, 112, 88].

Most importantly, we have seen that the main incremental learning approaches introduced in
the literature are based on different techniques: (1) single incremental learning classifiers; or
(2) ensemble of classifiers. We have noted that some authors have adapted traditional machine
learning algorithms when using single classifiers, e.g. DTs [50] and SVMs [109], to support
incremental learning. In the former approach, the methods update a learner from blocks of
data, while the second approach usually uses the serial combination of several individual clas-
sifiers. In this thesis, in order to make our system more robust and capable of achieving high
performances, we adopt an ensemble of incremental learners in a parallel structure that com-
bines optimized members over time. Our system also employs the concept of relevant samples,

inspired by the idea underlying the instance selection approach.

In addition, the choice of a base learner for a classification system is very important. Through
this literature review, for example, it can be seen that several incremental versions of classical
classifiers have been implemented. So, in order to select a specific classifier, characteristics
such as power of generalization, computational complexity, and storage space required by the
learner must be analyzed. LVQ and Nearest Neighbors may be easily employed as incremental
algorithms for this purpose. However, they demand a great deal of storage space if problems
with large databases are considered. The Naive Bayes classifier is very suitable for updating
an existing classifier as it learns quickly, but it usually produces more generalization errors.
By contrast, although the SVM classifier is relatively more computationally complex, it is
asymptotically much better than the Naive Bayes and other classifiers. As for neural networks
with incremental capabilities, they often have several parameters to fit and are very sensitive
to the order in which examples are presented. For these reasons, we have selected the SVM

classifier as part of the core of the system proposed in this thesis.

From our literature review, it can also be noted that, no matter what the incremental learning

approach, no consideration has been given to tuning the system parameters over time. In other
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words, system updating is always performed based on the same fixed parameter values, or
at the classifier combination levels in the ensemble approaches. Thus, updating classifiers
with the adaptation of their parameters has not yet been investigated. Moreover, recent results
indicate that using well-tuned incremental learners could achieve better performances than just

moderate ones [88].

We can see from the above that the incremental updating of existing classifiers without com-
promising their performances remains a major challenge. This is because it can be affected
by possible variations in a problem’s data distributions (i.e. population drifts), which disturb
the process of selection of system parameters, and hence the estimation of decision boundaries
at different times. This occurs mainly when classification problems involve complex decision

boundaries or overlapping between classes.

In order to overcome this challenge, an incremental learning system must be able to accommo-
date new data at no detriment to knowledge already learned [93], but it must also better adapt its
parameters. The approach we propose for adaptive incremental learning takes this into account
by regarding incremental learning as a dynamic optimization process. In particular, it employs
knowledge acquired from previous optimization processes to decrease the computational cost

of frequent reoptimization.

From an optimization point of view, our assumption is that the natural data changes mentioned
above are sources of uncertainty reflected in dynamic changes to the parameter search space.
Such uncertainties become even more intense when the search for optimum parameter values
must be performed over time. In the literature, dynamic optimization problems are categorized
into three types: (I) the location of the optimum changes over time and the amount of shift is
quantified by a severity parameter; (1) the location remains fixed, but the value of the objective
function changes; and (I1I) both the location and the value change [83]. In this thesis, we
demonstrate empirically that the reoptimization of classifiers over time can be seen as a type

III problem.
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Moreover, from the analysis of SVM ensembles presented in [116], which shows that the per-
formances of a single SVM classifier can be improved over small datasets by combining "het-
erogeneous”" SVMs in terms of parameters, the proposed approach is implemented for evolving
and combining a population of optimum solutions. Likewise, we explore the use of multiple

classifiers to try to achieve better performances than with a single incremental learner.

However, instead of picking up parameter values from an arbitrary grid of options, as in [116],
the proposed method explores the self-organization power of the swarm intelligence theory and
dynamic optimization techniques. In this way, the proposed approach is able to dynamically
move a population of solutions towards optimum regions in the system parameter search space.
Finally, the aim is to combine an optimized population of hypotheses that are well placed over
the search space and that can even be multimodal, and so become a more robust system than
when only single models are used. In the next section, we introduce the first steps in the
development of the system, which are to study the SVM model selection problem performed

over time as a dynamic optimization problem, and to propose a solution to it.



CHAPTER 3

A PSO-BASED FRAMEWORK FOR THE DYNAMIC SVM MODEL SELECTION
(DMS)

In the previous chapter we outlined that the Support Vector Machine (SVM) is a very powerful
classifier. However, we also mentioned that its efficiency in practice relies on the optimal
selection of hyper-parameters. The search process for optimal values for its hyper-parameters

1s the so-called SVM model selection problem.

In this chapter we propose a strategy to select optimal SVM models in a dynamic fashion in
order to address this problem when knowledge about the environment is updated with new
observations and previously parameterized models need to be re-evaluated, and in some cases
discarded in favor of revised models. This strategy combines the power of swarm intelligence
theory with the conventional grid search method in order to progressively identify and sort out

potential solutions using dynamically updated training datasets.

Despite of some search methods have practical implementations, e.g. gradient descent, they
usually are limited by difficulties related to the model selection process. For example, the
gradient descent methods require a differentiable objective function with respect to the hyper-
parameters and the kernel. In this case, the kernel is also required to be differentiable. Like-
wise, multiple local minima in objective functions also represent a hard challenge for gradient
descent based methods. To tackle this, the use of grid-search and evolutionary techniques are
interesting alternatives. However, the grid-search method needs a good discretization of the
search space in fixed values, which is crucial to reach high performances. Thus, the determi-
nation of objective function to be employed, the presence of local minima in the search space,
and the computational time required for model selection task have been considered the main

challenges in the field.

Additionally to these difficulties, the availability of updates on the knowledge related to the

pattern recognition problem to be solved represents a challenge too. These updates typically
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take the form of data arriving in batches which become available for updating the classification
system. In fact, the quality and dynamics of training data can affect the general model selection
process in different ways. For example, if knowledge on the problem is limited, or the data are
noisy or are arriving in batches over time, the model selection task and its performance can
progressively degrade. In order to avoid the negative effects of uncertainties associated with
either the training data or the updates, we believe that an efficient option is to allow on-line
re-estimation of the current model’s fitness and if required to allow the production of a new

classification model more suitable to both historical and new data.

This is important issue because, if the goal is to obtain a performing single classifier, the
model selection process must be able to select dynamically optimal hyper-parameters and train
new models from new samples added to existing batches. In this chapter, we first study the
general SVM model selection task as a dynamic optimization problem in a gradual learning
context, where solution revisions are required online to either improve existing models or re-
adapted hyper-parameters to train new classifiers from incoming data. These considerations
are especially pertinent in applications for which the acquisition of labeled data is expensive,
e.g. cancer diagnosis, signature verification, etc., in which case the data available may initially

not be available in sufficient quantity to perform an efficient model selection.

However, more data may become available over time, and new models can gradually be gener-
ated to improve performance. In contrast, as previously mentioned, not only is the optimality
of the models estimated a relevant factor, but also the computational time spent to search for
their parameter values. Most of related work in the literature has considered cases involving
only a fixed amount of data in systems aimed at producing a single best solution. In these
approaches whenever the training set is updated with more samples, the entire search process

must be restarted from scratch.

The proposed method is a Particle Swarm Optimization (PSO) based framework to select op-
timal models in a dynamic fashion over incoming data. The general concept underlying this

approach is to treat the SVM model selection process as a dynamic optimization problem,
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which can have multiple solutions, since its optimal hyper-parameter values can shift or not
over the search space depending on the data available on the classification problem at a given
instant. This means that the proposed method can also be useful for real-world applications
requiring the generation of new classifiers dynamically in a serial way, e.g. those involving
streaming data. The key idea is to obtain solutions dynamically over training datasets via three
levels: re-evaluations of previous solutions, dynamic optimization processes, or even by keep-
ing the previous best solution found so far. In this way, by shifting among these three levels,
the method is able to provide systematically adapted solutions. We implement the proposed
method based on three main principles: change detection, adapted grid-search, and swarm
intelligence theory (for self-organization capability), where the goal is to solve the model se-
lection by overcoming the constraints of the methods described above. In addition, we try to

answer the following questions:

. Is PSO really efficient to select optimal SVM models?

° Can the proposed method be more efficient than the traditional grid-search or even a PSO

based strategy?

. [s it possible to obtain satisfactory results by spending less computational time than is

required for the application of PSO for each set of data?

o What is the impact in terms of classification errors, model complexities, and computa-

tional time for the most promising strategies?

This chapter is organized as follows. In section 3.1 we explain the relation between the model
selection problem and dynamic optimization problems. Our proposed method is introduced
in section 3.2. Finally, the experimental protocol and results are described in section 3.3.

Discussions and conclusions are presented in section 3.4.
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3.1 SVM Model Selection as a Dynamic Optimization Problem

In order to generate high performing SVM classifiers capable of dealing with continuously
updated training data an efficient model selection method is required. The model selection task

can be divided into two main phases: the searching phase and the final training/test phase.

The searching phase involves solving an optimization problem whose goal is to find optimal
values for the SVM hyper-parameters considered in this paper (C' and ~) with respect to some
preference, or selection criterion. In our case this criterion is expressed as an objective function
F evaluated over a training dataset D, in terms of the cross-validation error €. So, our model
parameter selection problem takes the following form min(e((C,v), D)), or for simplification
purposes here, min(e(s, D)). The final training/test phase in concerned with the production and
evaluation on a test set of the final SVM model created based on the optimal hyper-parameter
set found so far in the searching phase. On the other hand, the final training and test phase con-
cerns the production and evaluation of the final SVM model M created based on the optimal
hyper-parameter set found so far in the searching phase. In other words, the common process

related to these two phases can be summarized in five steps:

a. Collect training data;

b. Start the search for solutions;

e Find the hyper-parameters that perform best;

d.  Train the final model with the best hyper-parameters;

€. Assess the performance of the final model using the test set.

In Table 3.1 we summarize examples of SVM model selection methods found in the literature
organized according to the type of kernel, search methods, and objective functions employed.

We note that the RBF kernel has been investigated the most, perhaps due to the fact that the

kernel matrix using sigmoid function may not be positive defined. Besides, even though the
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polynomial kernel may be an attractive alternative, but numerical difficulties tend to arise if a
high degree is used, for example, a power of some minor value that 1 tends to 0 and of a major
one that tends to infinity. Furthermore, the RBF kernel has often achieved a superior power of
generalization with lower complexity than the polynomial kernel [115]. Because of this, the

RBF kernel is considered in this study.

Table 3.1 Compilation of some related works on SVM model
hyper-parameters selection in terms of the type of kernel used, the search
method, and the objective function

Ref. Kernel' | Search method Objective function

[35] RBF Grid-search (GS) v-Cross-validation

[20] RBF Gradient descent (GD) Radius-margin, Span
bounds, Leave-one-out

[18,47] RBF Grid-search (GS) v-Cross-validation error
(V)

[22] RBF Genetic algorithm (GA) Radius-margin bound

[25] RBF Genetic algorithm (GA) v-Cross-validation error
(CV)

[3] RBF Gradient descent (GD) Hold out error, radius-

margin, Generalized Ap-
proximate CV error (GACV)

[32] RBF Gradient descent (GD) Leave-one-out (LOO), span
bound
[116] RBF,POL | Grid-search (GS) v-Cross-validation
[103] POL Gradient descent (GD) Generalization error estima-
tion bound
[107] RBF Multi-objective GA | Modified radius-margin
(MOGA) bounds
[29] RBF Particle Swarm Optimiza- | Hold out error, £ v-estimator
tion (PSO), Grid-search
(GS)
[49] RBF Uniform design (UD), | v-Cross-validation
Grid-search (GS)
[52] RBF Particle swarm optimiza- | False Acceptance (FA)
tion (PSO)

“RBF: Radial Basis Function kernel whose hyper-parameter is 7, POL: Polynomial kernel which hyper-
parameters are the degree u and coefficient 7. Kernel hyper-parameters and the regularization parameter C' are
optimized simultaneously.
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Most of effort associated with the approaches listed in Table 3.1 concentrated on solving the
complex SVM model selection problem from one static training dataset available at time A. In
this case, it should be convenient to use perfect, i.e. noise-free, data and in a fair amount in

order to reach high performances.

By contrast, data from real-world applications are usually far from perfect, which gives the
model selection process itself the potential for many types of uncertainty. In general, uncer-
tainty 1s a multifaceted concept which usually involves vagueness, incompleteness, missing
values, or inconsistency. Here, we assert that some uncertainties related to the machine learn-
ing area, such as missing features, random noise, or data insufficiency, generate uncertainties
that can disturb the optimization process responsible for model selection. This is because un-
certainties may produce some dynamism in the objective function, and so it is important to

understand SVM model selection as a dynamic optimization problem.

Dynamic optimization problems are complex in which the optimal solution can change over-
time in different ways [53]. The changes can result from variations in the objective function,
which implies in fitness dynamism. Figure 3.1 depicts a conceptual example of fitness dy-
namism, and its consequences, and shows why dynamic optimization techniques are claimed.
One can see that in a first moment (k), the optimization process approximates some solutions

for a parameter .

Then, due to some unexpected change related to the optimization task, e.g. new data, noise,
etc., the objective function changes, and the solutions become outdated and trapped into a local
minimum in the future (e.g. in & + 1). This requires that the optimization algorithm be capable
of re-adapting the solutions to new functions. By way of illustration, we depict in Figure 3.2
an overview of the SVM model selection task seen as an optimization process and the possible

uncertainties involved.



Obj. Function

Y

Parameter y

Figure 3.1 Illustration of changes in the objective function. In a first
moment (~), solutions are approximated for a parameter . Next, due to
some unexpected change, e.g. new data, noise, etc.,the objective function
changes and the solutions (gray circles) stay trapped in a local minimum,

what requires some kind of reaction to adapt the solutions to the new

function and optimal (dark point) in £ + 1.
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Figure 3.2 Overview of the SVM model selection task seen as an
optimization process and the possible uncertainties involved.




To demonstrate this fact, we depict a case study in Figure 3.4 regarding the imin(e(s. D(k)))
mentioned above for a two-class (I and II) classification problem called P2, which is depicted
in Figure 3.3. More details about the construction of this synthetic classification problem can

be found in the appendix 1.

Figure 3.3 Illustration of the P2 classification problem.

So first, in Figure 3.4(a) we can see an SVM hyper-parameter search space and optimal solu-
tions obtained with a certain number of data samples from a classification problem. Then, the
entire search space was recomputed with the same objective function (five-fold cross-validation

average error), but this time from more data.

The resulting search space is shown in Figure 3.4(b). It can be seen that the search space and the
optimal solutions may actually change depending on the amount of knowledge available about
the problem. This applies to both objective function values, since the new objective values of
previous optimal solutions s* have worsened from ¢ = 10% (e.g. s; and s3) or improved (to
s». for example), once a new optimal solution emerged, that is, sy, = (6.93,6.23). Through this
example, it is easy to see that the search space and optimal points may change in terms of both

fitness values and positions.
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Figure 3.4 Hyper-parameter search space for P2 problem with different
number of samples.

In order to show the effect that these hyperparameters changes produce in obtaining a final
SVM model, we depict in Figure 3.5, for this same example, the input spaces and the respective
decision boundaries produced by SVM models trained with different hyperparameters values

and number of samples.
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From these results, we can see that despite of s, adequately separates the classes given a certain
knowledge about the problem (Figure 3.5(a)), it is not capable of producing the same satisfatory

results (Figure 3.5(b)) that a new best evaluated solution (i.e. sy) can achieve (Figure 3.5(c)) if

more samples are considered.
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Figure 3.5 Input spaces and resulting decision boundaries produced by
training SVM models with different hyperparameters values and number of
samples for the P2 problem. (a) Decision boundaries obtained after training

with the solution s, and 40 samples. (b) Decision boundaries obtained for

the same optimum solution s for 40 samples, but now training over 922

samples. (c) Final result achieved for the best solution s, regarding 922

samples.
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Moreover, regarding the real-world situations addressed in this paper, the model selection pro-
cess must also be designed to perform over time, i.e. for many datasets or incoming data. This
is another reason why the SVM model selection problem can be seen as a dynamic optimization
problem, in which solutions (i.e. hyper-parameters) must be checked and selected over time,
since optimal hyper-parameter values can change dynamically depending on the incoming data

at different times A.

Thus, in addition to the approaches mentioned above which may only partially solve the prob-
lem and in order to attend to real-world applications needs, especially for updating and/or gen-
erating new models, this problem claims for more sophisticated methods capable of adapting
new solutions and saving computational time, rather than for example, starting seach processes

from scratch every time.

3.2 The Proposed Dynamic SVM Model Selection Method (DMS)

The goal of the proposed méthod is to point out dynamically optimum solutions for sequences
of datasets D(k) by switching among three levels: 1) use the best solution s*(k — 1) found so
far, 2) search for a new solution over an adapted grid composed of a set of solutions S(k — 1),
or 3) start a dynamic optimization process. In this thesis, each solution s will represent a PSO
particle, which codifies an SVM hyper-parameter set, e.g. (C',~v). The switching among the
levels is governed by change detection mechanisms which monitor novelties in the objective
function F. Such changes correspond to degradation of performance or no improvement at all

(stability) with respect to new data, which will indicate whether or not the system must act.

An overview of the general concept proposed is depicted in Figure 3.6. First, a population
of solutions (swarm) S(0) is initialized by the optimization algorithm to search for solutions
for the dataset D(1), after which the optimization process finishes and, a set of optimized
solutions S(1) is stored for future use. Based on fitness re-estimation or according to some
other criterion related to the problem, the current status of the best solution (dark circle) will
be examined on new data. Following the example, we suppose that the fitness re-estimated

from the previous best solution s*(1) for the dataset D(2) is still satisfactory, and apply the
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same solution to train a new classifier. However, more data can be available and the goodness
of the best solution s*(1) may no longer be guaranteed, e.g. between datasets D(3) and D(-).
To solve this, we suggest performing a fine search over the set of optimized solutions S(1). We
call this process an adapted grid-search, since it applies solutions already optimized, which
are probably located over a good deal of the search space, and are not guessed values as occurs

in the traditional grid-search.

The advantage is that, in the most of the time, the adapted grid-search can indeed gain in perfor-
mance if compared with traditional grid methods and also save computational time if compared
with full optimization processes. On the other hand, when it is not possible to identify a sat-
isfactory solution even after an adapted grid search, the method starts a dynamic optimization
process, as denoted for the dataset D(7). As a result, a new population of solutions, surely

better adapted to the problem, will be available for the future. We introduce the framework of

the proposed method below.

DPSO { f DPSO

3 4 5 6 7 8 9 10 Datasets D(-)
———
Best kept Adapted Grid—Search

Figure 3.6 Overview of the proposed model selection strategy (conceptual
idea). Optimum solutions for a current dataset D(k) are pointed out by
switching among three search strategies: 1) use the best solution s*(k — 1)
found so far, 2) search for a new solution over an adapted grid composed of
a set of solutions S(k — 1), or 3) start a dynamic optimization process. The
symbols represent different solutions from a swarm. The best solution
selected for a datasct lies above the dashed line. The white circles in S(0)
denote randomly initialized solutions. Dark and white symbols indicate
solutions from different swarms.
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3.2.1 Framework for the Dynamic Selection of SVM models

As we mentioned previously, the ideal method of creation of an SVM classifier is composed of
two phases: model selection and training/test phases. The first is responsible for searching for
the best SVM hyper-parameters and the second phase uses the best hyper-parameters found to
train and test a final SVM model M.

In this work, based on the conceptual idea depicted in Figure 3.6 and also by concepts of
dynamic optimization problems introduced in section 3.1, we propose a framework for the

dynamic selection of SVM models over time.

In particular, our general framework for the dynamic selection of SVM models is composed of
three main modules: change detection, adapted grid-search, and dynamic particle swarm opti-
mization (DPSO). Figure 3.7 depicts its general idea. In addition, we summarize its working

in Algorithm 1.

Details on each one of these modules are described in the next sections. The upgrade_stm and
recall stm functions are respectively responsible for storing and retrieving optimized solutions

from the system’s Short Term Memory (STM).
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Figure 3.7 General framework for the dynamic SVM model selection.
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Algorithm 1 Dynamic SVM Model Selection

Input: A training set of data D(k).
Output: Optimized SVM classifier.
recall stm(s*(k — 1),S(k — 1))
if there isa S(A — 1) then
Check the preceding best solution s*(k — 1) regarding the dataset D (k)
if Change Detection(s*(k — 1),D(k)) then
Activate the adapted grid-search module and get solution s’ (k)
8: if Change Detection(s'(k),D(k)) then
9: Activate the DPSO module
10: end if
11:  endif
12: else
13:  Activate the DPSO module
14: end if
15: upgrade stm(s*(+),S(+))
16: Train the final SVM classifier from D(k) by using the optimum solution found so far.

P Ogh Ty b e

3.2.1.1 Change Detection Module

The change detection module controls the intensity of the search process by pointing out how
the solutions are found thereby the levels of the framework. In particular, it is responsible for
simultaneously monitoring the quality of the model selection process and avoiding “unneces-

sary" searching processes.

We implement it by monitoring differences in the objective function values, in this case error
estimations ¢ obtained for a best solution s* on the datasets D(k — 1) and D(k), for example.
We denote this fact as ¢(s*, D(k — 1)) and e(s*, D(k)), respectively. If the solution found is
not to be satisfactory for the process, then a further searching level is activated. The adequacy
of a solution can be measured in several ways. In this work, as we are interested in finding
performing solutions, we consider that further searches are needed if the objective function

value computed does not lie in a “stable" region.

The stable region is computed through the maximum expected difference §,,,. between the
objective function values at the 90% confidence level using a normal approximation to the

binomial distribution (see Equations 3.1 and 3.2) [26]. In this setting, if there is a degradation
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of performance (¢(s*, D(k—1)) < e(s*, D(k))) or significant variation in the objective function
(ie. | e(s*,D(k — 1)) — €(s*, D(k)) |> Omar). then other levels are activated for additional

searches.

Figure 3.8 depicts an illustration of the 4,,,, stable region idea. In order to make this criterion
more robust when small datasets are used, we combine it with a rule related to the compres-
sion capability of the classifier. The compression capability is calculated as the proportion of
support vectors over the number of training samples. If the 0,,,,, rule and a minimal compres-
sion required are attained, the situation is characterized as stable and no further searches are

computed. Otherwise, the model selection process continues by activating the other modules.

Omaz = 20.9 XV 0 = 1.282 x\/o (3.1)

Where o is computed by, where 1 (+) is the dataset size:

_e(s*,D(k - 1)) x (1 —€(s*, D(k — 1))) 5 e(s*, D(k)) x (1 —¢(s*,D(k))) (3.2)
o= WDk - 1)) W (D(k)) -

So, the change detection module may sometimes denote a trade-off controller between com-
putational time spent and the quality of solutions. For instance, if we ignore this module, then
dynamic re-optimization processes will be always conducted, which can produce indeed good

results but to be unnecessarily time consuming for stable cases.

3.2.1.2 Adapted Grid-Search

The adapted grid search module provides optimum solutions by re-evaluating the knowledge
acquired from previous optimizations performed by the DPSO module. This knowledge is
represented by a set S(k — 1) of optimized solutions which are stored in the short term memory

(STM). Usually, this method finds better solutions than the traditional grid-search method.

Unlike the traditional grid-method, which depends on the discretization of values and requires

the evaluation of several combinations (see Figure 3.9 for two hyper-parameters (C' and 7)), the
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Figure 3.8 Illustration of the change detection mechanism. In this case, as
the new fitness is situated outside the expected region, a new optimization is
carried out in order to find a new better solution.

adapted grid-search module reduces the number of trials by focusing the search in an optimal

region. As a result, this module can save a considerable computational time.

Basically, this module uses the best positions of preceding optimized solutions as a grid of
new possible candidate solutions to be evaluated over the current data D(k). At the end of
the process, the best candidate is selected. Although we employ this implementation, we can
suggest other modifications, such as moving the particles by using a complete iteration of PSO,
for example. Such a process seems interesting, but costs more in terms of processing time than

simply re-evaluating the best particles’ positions, which in most of cases may be enough.

Nevertheless, it is important to note that the module’s results are related to the quality of the
previous optimizations. Therefore, it is efficient when the current population of solutions is
positioned on optimal regions. Otherwise, it may produce sub-optimum solutions that will be
not satisfactory for final learning purposes. In light of this, we apply the change detection a
second time in order to ensure the quality of the solution obtained at the end of this process,
as indicated in the framework in Figure 3.7. If the current solution is still not considered

satisfactory, the dynamic optimization module is activated.
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Figure 3.9 The traditional grid must try a higher number of combinations
than the adapted grid, which profits from the already optimized solutions
S(k) provided by DPSO. s*(k) denotes the best solution.

3.2.1.3 Dynamic Particle Swarm Optimization - DPSO

The DPSO module is responsible for finding new solutions by means of re-optimization pro-
cesses.. We implement it based on the Particle Swarm Optimization (PSO) algorithm combined

with dynamic optimization techniques.

The Particle Swarm Optimization (PSO) method was firstly introduced by Kennedy and Eber-
hart in 1995 [59]. Briefly, it is a population-based optimization technique inspired by the social
behavior of flocks of birds or schools of fishes. It is applied in this work because it has many
advantages that make it very interesting when compared with other population-based opti-
mization techniques, e.g. genetic algorithms (GA). For instance, PSO belongs to the class of
evolutionary algorithms that does not use the “‘survival of the fittest" concept. It does not utilize
a direct selection function, and so, particles with lower fitness can survive during the optimiza-
tion and potentially visit any point in the search space. Furthermore, the population size usually
employed in PSO gives it another advantage over GA, since the lower population size in PSO
favors this algorithm regarding the computational time cost factor [60]. Nonetheless, two main
additional characteristics give us further motivation for using it. First, PSO has a continuous

codification, which makes it ideal for the search of optimal SVM hyper-parameters. Second,



the potential for adaptive control and flexibility (e.g. self-organization and division of labor)
provided by the swarm intelligence makes PSO very interesting to be explored for solving

dynamic optimization problems.

In this section, we simplify the index notation (e.g. for time or datasets) and use only those
needed to understand the PSO technique well. In particular, the standard PSO involves a set
S = {s;. 8.8/}, of particles that fly in the search space looking for an optimal point in a
1 2

i

given d-dimensional solution space. The s; = (s;, s

t

..., s%) which is a vector that contains
the set of values of the current hypothesis. It represents the current location of the particle in
the solution space, where the number of dimensions is problem dependent. The vector §, =

(81, 82,.. ., 5%) which stores the velocities for each dimension of the vector s,. The velocities

i

are responsible for changing the direction of the particle. The vector s/ = (s/1, s/, ... s/

)isa
copy of the vector s; which produced the particle’s individual best fitness. Together, s’ and s;
represent the particles’ memories. Regarding the model selection problem, the vector positions

s; encode the SVM hyper-parameter set to be optimized and s* denotes the best solution found.

PSO starts the search process by initializing the particles’ positions randomly over the search
space. Then, it searches for optimal solutions iteratively by updating them to fly through a
multidimensional search space by following the current optimum particles. The direction of

the particle’s movement is governed by the velocity vector $;, which is denoted by the sum of

/

the information from the best particle’s informant found in its neighborhood (i.e. Snetin (@)

where A is the number of neighbors which communicate with particle index 7) and the particle’s

own experience s,. For a new iteration ¢+ 1 and dimension d, the update is computed as follows:

8i(q +1) = x(57(q) + ¢r1(si(a) = 51(a)) + Ora(sheei 0y (9) = 57(a))) (3.3)

where \ is the constriction coefficient introduced by Clerc [24], and r; and r, are random

values. Constriction coefficient values of x = 0.7298 and ¢ = 2.05 are recommended [60].

"We use this functional notation for sake of generality. The equivalent to traditional PSO would be: & =
{3y viis Pl
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Eventually the trajectory of a particle is updated by the sum of its updated velocity vector
%,(g+1) to its current position vector s,(g) to obtain a new location, as depicted in Equation 3.4.

Figure 3.10 depicts an illustration of particle’s trajectory during position updating. Therefore,
d

each velocity dimension s¢ is updated in order to guide the particles’ positions s¢ to search

across the most promising areas of the search space. In Algorithm 2 we summarize the standard

PSO method.

d o .d
si(q+1) = si(q) +57(g + 1) (.4
individual best si(q)
position current
s (‘H,‘ pum;lc s
i position
A
I
S'net(a \|(’I)\\ :
global or | s.(q)
local best ; ; Y current
=l R VelGoily,
S;(¢g+1)
sad ) : new velocity
new particle’s
position

Figure 3.10 Example of a particle’s trajectory during position updating.

Algorithm 2 Standard PSO Algorithm

Input: PSO parameters.
Output: Optimized solutions.
Randomly initialize the particles
g0
repeat
for all particles ¢ such that 1 <7 < P do
Compute fitness value for the current position s, (¢)
Update si(g) if position s,(g) is better (s;{q) — s.(q))
end for
Select the best fitness s/(q)
for all particles ¢ such that 1 </ < P do
Update velocity s;(g) (Equation 3.3) and current position s,(q) (Equation 3.4)
end for
14 g=q+1
15; until maximum iterations or another stop criteria be attained
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In the canonical PSO formulation, an entire swarm is considered as a single neighborhood
where particles share the best information discovered by any member of the swarm, the so-
called gbest topology. The main disadvantage is that it forces the particles towards a single
best solution, which causes the swarm to lose the ability to explore the search space in parallel
more locally. Moreover, it has a premature convergence tendency [60]. Because of this, we
implement this module based on PSO with a more sophisticated topology called local best
(/best) [60]. This topology creates a neighborhood for each individual containing itself and its

A nearest neighbors in the swarm.

The neighborhoods can overlap and every particle can be in multiple neighborhoods. As a re-
sult, it allows interactions among the neighborhoods and eventually more series of events may
be discovered. With this characteristic, this module 1s capable of exploring multiple regions in
parallel and therefore fits better for functions with possible multiple local optima. Such a par-
allelism allows distant neighborhoods to be explored more independently, which is important
for multi-modal problems. Moreover, the particles are placed in potentially more promising
regions, which can allow faster recovery from variations between searching processes and also

allow them to be used by the adapted grid search module.

Nevertheless, even though PSO is a powerful optimization method, if the optimization problem
suffers some change in the objective function, for example between blocks of data, the particles
can get stuck in local minima (see Figure 3.4). To avoid this, an alternative should be to start
a full PSO optimization process from scratch each time that the module is activated. However,
it would be very time consuming and even at times unnecessary if the changes occur around
the preceding optimum region. Taking this into account, we enable the module to restart opti-
mization processes from preceding results in order to save computational time. To implement
this mechanism, we combine two dynamic optimization techniques: re-randomization and re-
evaluation of solutions, and apply them into our PSO based module. In fact, both techniques
were already applied in the PSO literature [12, 48] to solve dynamic optimization problems,

but separately and using the gbest topology.
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In particular, these PSO variants are commonly called DPSO (Dynamic PSO), so for the sake of
simplicity, we name this module as DPSO to refer such a combination of approaches. Neverthe-
less, it is important to distinguish that existing dynamic PSO algorithms apply such techniques
and change detection mechanisms in each iteration, since they suppose that objectch function
changes can happen during the optimization. In here, as the optimization over a dataset D (k) at
a given instant £ is indeed static, we apply these dynamic techniques to prepare the optimiza-
tion module for transitions from preceding optimizations knowledge to launch new ones. As a
result, we take advantage of these techniques to provide diversity in the solutions and clues on
optimal starting points before the optimization. Thus, unlike actual dynamic PSO versions, no
extra computational effort is added at each iteration. In light of this, in Figure 3.7 and in the
rest of this paper, our DPSO module represents the application of these dynamic techniques to

cooperate with the optimization algorithm, but not in its interior in each iteration.

The focus now shifts to the whole implementation, which involves two main steps related
to the way that the optimization process restarts. The main steps are listed in Algorithm 3.
First of all, once the DPSO module is activated, which uses information from the system’s
memory (STM) as well, every fitness is updated from the re-evaluation of the current position
s; and best position s, of each particle s, in the swarm S(k) (steps: 3 to 6). This is done to
prevent the particle’s memory from becoming obsolete [12]. In fact, the fitness of the best
positions p; can be profited from the preceding level (adapted grid-search), what dispenses a
second evaluation. Thereafter, a re-optimization process is launched by keeping p% of the best
particles positions from the swarm S(k— 1), which was computed in the previous optimization,
and by randomly creating new particles over the search space [48]. Some of these particles
located near to the previous optimum region. In this manner, we guarantee that fine searches
are realized based on previous information, which can adapt more quickly to new data than
full optimization processes (steps 7 and 8). At the same time, we add more diversity to the
algorithm for searching new solutions, which enable us to avoid situations in which the whole
swarm has already converged to a specific area. Finally, steps 9 to 23 correspond to the main

steps of the PSO implementation, but are slightly modified by adding a mechanism that updates
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the connections among the particles, 1f no improvement is observed between iterations (steps

19 to 21). These latter steps were suggested as an alternative by Clerc [23] to improve the

adaptability, and hence the performance, of the swarm.

Algorithm 3 Our implementation of Dynamic PSO

9:
10:
11:

12:

13:
14:

15:
16:
17:
18:
19:

20:

2
2
2

19—

3i

Input: PSO parameters and previous swarm S(k — 1).
Output: Optimized solutions.
for all particles / from S(A — 1) such that 1 < < P do
Compute fitness values for s, using D (k)
Update s’ if's; is better (s] « s,)
end for
Initialize dynamically the new swarm S(k) by keeping p% of the best information (posi-
tions s!) from the preceding swarm S(k — 1) and by creating new particles.
Initialize the links among the particles based on a nearest neighborhood rule according to
the topology chosen.
q—0;
repeat
for all particles 7 such that 1 < i < P do
Compute fitness value for the current position s,(q)
Update s/ (q) if position s;(g) 1s better (s!(q) < s,(q))
end for
Select the best fitness of this iteration ¢, i.e. s/(q)
for all particles ¢ such that 1 <7 < P do
Update velocity $,(q) (Equation 3.3) and current position s,(q) (Equation 3.4)
end for
if F(s*(q)) = F(s*(¢ — 1)) {No improvement. Change particle communication struc-
ture} then
Randomly change the particles’ links based on the topology chosen.
end if
g=q+1
until maximum iterations or other stop criteria be attained

So, through the use of these modules, the proposed method allows the searching process to

evolve and adapt itself dynamically. Even though this framework has unique features, there is

still room for authors to investigate new strategies for the adapted grid search module, detection

mechanisms, and even strategies to re-optimize solutions.

In order to clarify the whole concept, we illustrate the proposed method in a case study in

Figure 3.11. This case study represents an empirical reference to the general concept illustrated



57

in Figure 3.6. In particular, it depicts overviews of searching processes carried out by the
proposed method and full optimization processes over cumulative sequences of data increased
logarithmically from the Satimage database. Based on these results, it 1s shown in Figure 3.11
(a) that the proposed method can achieve similar results to those obtained by full optimization
processes with PSO (Full PSO), but more quickly and in fewer iterations iterations if the whole

sequence is considered.

Exploring this case study further, we compile a list of activities performed by the proposed
method during the searching processes and their effects in terms of the generalization error
on a test set, as shown in Figure 3.11 (b). It is easy to see which module of the framework
was responsible for selecting the final solution. In addition, we list the results of searching
processes between the datasets D(6, 13) in a table in order to provide more details. Basically,
the results in the table include the use of the optimized swarm S(6), resulting from a DPSO
execution, as a pool of hypotheses for additional datasets, where a particle s, is selected as the
best one, according to some criteria and via: keeping the same previous best (BK), adapted

grid (AG), or DPSO processes.

Some of the main results are depicted in the table in Figure 3.11 (c), where we have selected the
ten most performing particles and presented their best positions in a logarithmic scale. Then,
for each set, we indicate the solution pointed out by the method by highlighting its fitness in
gray. When a previous best solution remains the same for the next dataset, no evaluation is

performed for the other particles.

Assuming that the solutions are well-placed in the search space, we have started by reporting
the results for the dataset D(6), where the best solution sg in swarm S(6) was found by DPSO.
Next, the solution sg found over the dataset D(6) has been kept for dataset D(7). We note that
the current best solution experienced a decrease in performance between datasets D(7,8) (in

next column), which is denoted as a negative behavior.

As a consequence, the adapted grid-search module 1s activated to try to find another satisfactory

solution. Following evaluation, the adapted grid module elects a new solution s- and no further
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Figure 3.11 Case study: Operation of the proposed method, Dynamic
Model Selection (DMS). In (a), we show an overview of searching processes
for SVM models based on the proposed method and on full optimization
processes over sequences of incoming data. We can see that DMS can
approximate performing solutions by requiring fewer iterations than full
optimization processes. The dashed vertical lines indicate when more data
were injected and how many iterations were needed to accomplish the
searching tasks. Next, in (b) and (c¢), we show a zoom on the proposed
method’ activities and generalization errors. These figures empirically
depict an analogy to the general concept illustrated in Figure 3.6.
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searches are carried out, since the best current result has improved and there is no indication of
any big changes that would justify additional optimizations. Next, between datasets D(8,9),
the change detection rule is re-activated, and again a fine search is carried out over the other
solutions to check whether or not there is a better solution. The new solution returns to sy and
another application of the rule over the two best results indicates that the DPSO module does
not need to be activated. Thereafter, between dataset D(9, 10), the current best particle sq was

preserved since no relevant variation has occurred.

On the other hand, the same behavior between datasets D(8,9) occurs among the datasets
D(10,12), resulting in s, and s7, respectively. Afterwards, the searching process continues
by re-activating DPSO for the dataset D(13), which results in a new swarm S(13) with a new
best solution sg. Therefore, dynamic optimizations are employed whenever the method judges
it necessary to update the swarm. Mainly due to performance degradation, or for instance,
when the adapted grid is activated and the results are neither improved nor do they characterize

changes in the search space.

3.3 Experimental Protocol

A series of experiments were carried out to test the effectiveness of the proposed method.
In particular, we have compared our method with other model selection strategies under a
gradual learning scenario. In the latter, an SVM classifier must be built gradually from scratch
whenever more data become available. We have used datasets generated from synthetic and
real-world problems. For each dataset, the following experimental setup was conceived: First
of all, the original training sets were divided into sets of data. The total number of samples for
each dataset was progressively increased according to a logarithmic rule [45], from about 16
examples per class to the total number of samples available in the dataset. For datasets in which
the original distribution of samples was unbalanced among the classes, we have maintained the

original class-priors for each dataset.

Then we have applied each SVM model selection strategy over the datasets. Once the model

for each dataset has been selected, the performance of the classifiers was assessed in terms of its
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generalization error on the test set after each simulation. The generalization error was estimated
as the ratio of misclassified test set samples over the total number of test samples. This made
it possible to observe the effect of the training dataset size for each model selection approach
and the final test performance attained. As some strategies tested use stochastic algorithms, the
results represent averages drawn over 10 replications. The kernel chosen for the SVM classifier
was the RBF (Radial Basis Function), and so, the model selection methods were carried out
to find optimal values for the hyper-parameter set (C',y). Additional specifications on the

approaches tested and information on the datasets are provided in next section.
3.3.1 SVNMI Model Selection Strategies Tested

We have compared the following SVM model selection strategies:

. Traditional Grid-Search (GS): This method selects the best solution by evaluating several
combinations of possible values. The best combination is kept to train the final SVM
classifier. In this study, we consider a grid of 70 (7x10) positions, where the possible
combinations lie within these values: C'= {0.01, 0.1, 100, 150, 170, 250, 600}, and ~ =
{0.08, 0.15, 15, 20, 50, 100, 300, 500, 1000, 1500} .

° Ist Grid-Search (1st-GS): This strategy applies a traditional grid-search only over the

first dataset and retains the same solution found for the subsequent subsets.

o Full Particle Swarm Optimization (FPSO): The optimal hyper-parameter values are se-

lected by the standard PSO algorithm for each new set of data.

° Chained PSO (CPSO): PSO is applied by this strategy to search for optimal solutions.
However, the solutions here are optimized among sequences of datasets in a chained way,
like a serial process. This means that the optimization process is performed continuously

over the datasets, and not by fully re-initializing the swarm between sets.

. Dynamic Model Selection (DMS): This strategy is the proposed method introduced in

Section 3.2.
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3.3.2 Experiments Parameters Setting

The following parameters setting was used in the experiments.

° Optimization Algorithms Parameters: The maximum number of iterations and the swarm
size were set to 100 and 20, respectively. The dimensions of each particle are denoted by
hyper-parameter values for C' and 7, where the maximum and minimum values of such

dimensions were set to [276, 2], [271% 210] respectively.

The topology used in PSO and DPSO was lbest with A = 3. This topology was selected
because unlike the gbest topology, which has a tendency towards premature convergence
because all the particles are influenced by the same global source, the lbest topology is
more sophisticated for exploring multiple regions in parallel [60]. Furthermore, the par-
allelism of the (best topology allows distant neighborhoods to be explored more indepen-
dently. Basically, this topology creates a neighborhood for each individual comprising
itself and its A nearest neighbors in the swarm. A neighborhood may consist of some
small group of particles, where the neighborhoods overlap and every particle can be in

multiple neighborhoods.

Two stop criteria were implemented for the optimization processes. The first was imple-
mented based on the maximum iteration permitted. As a result, the optimization might
finish whenever the number of iterations reaches the maximum value (100). However,
the second criterion was built based on the best fitness value. Generally speaking, if
the best fitness value did not improve over 10 consecutive iterations, then the optimiza-
tion process was stopped. In fact, this last stop criterion was the most active, since the

simulations never attained to the maximum number of iterations.

. Objective Function: Several objective functions have been proposed in the literature for
searching for optimal hyper-parameters, e.g. radius margin bound [118], span bound

[19], support vector count [117], etc. More information about them can be found in [20].



Unfortunately, these measures usually depend on certain assumptions, e.g. they are valid

for a specific kernel or require a separation of the training set without error.

The problem is that these assumptions are quite strong for real-world problems. Thus,
the best alternative is to use as objective function measures related to the performance
of the classifiers, since no assumptions are needed [40]. Taking this into account, the
minimization of the generalization error from cross-validation (CV) procedures over a
training set is a good option. In the v-CV procedure, the original training set is firstly
divided into v portions of data, and then sequentially one dataset is tested by using a
classifier trained from the remaining v — 1 portions of data. To sum up, it means that
each instance of the entire training set is predicted once, and the final generalization
error i1s computed as an average over the test errors obtained. In fact, a v-CV 1is the
best option since it results in a better generalization error estimation than by separating
a small dataset into a hold-out procedure and being less computationally expensive than
by using leave-one-out procedure (v=total number of training samples), for example. In
this work, we have used v = 5 (five-fold cross-validation), since it is the most commonly

used and 1s also suggested in [18].

3.3.3 Datasets

We have used nine synthetic and real-world datasets in the experiments. They are listed in
Table 3.2 along with more details. The synthetic problems used were the well-known Circle-
in-Square (CiS) [14] and P2 [116] problems. The CiS problem consists of two classes, where
the decision boundary is nonlinear and the samples are uniformly distributed in ranges from
0 to 1. A circle inside a square denotes one class, while the other class is formed by the area
outside the circle. The area of the circle is equal to half of the square. The P2 problem is also a
two-class problem, where each class is defined in multiple decision regions delimited by one or
more than four simple polynomial and trigonometric functions. As in [45], one of the original

equations was modified such that the areas occupied by the classes become approximately
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equal. In both problems, the classes are nested without overlapping, so the total probability of

error 1S 0%.

The real-problems employed are described as follows. The Adult dataset represents a two-class
problem from the UCI Repository [4]. The task is to predict whether or not income exceeds
$50K/yr based on census data. The DNA, German Credit, and Satimage datasets are from the
Statlog Project [79]. The DNA dataset is a multi-class problem where each class represents
a different protein. The German Credit dataset is a binary-classification problem, where the
goal is to classify people as good or bad credit risks based on a set of attributes. The Satimage
dataset consists of multi-spectral values of pixels in a satellite image, where the aim is to predict

the class of central pixels in 3x3 neighborhoods, given the multi-spectral features.

The Nist-Digits is a dataset composed of samples from the NIST Digits Special database 19
(NIST SD19). Composed of handwritten samples of 0 to 9 digit images, this dataset is one
of the most popular real-world databases employed to evaluate handwritten digit recognition
methods. We have used two distinct test sets denoted as Nist-Digits 1 (60,089 samples) and
Nist-Digits 2 (58,646 samples) in this paper. Both are partitions of the NIST’s Special Database
19: hsf-4 and hsf-7, respectively. The former is considered to be more difficult to classify than
the latter. Samples from hsf-0123 partitions were used as training set. The feature set employed
is the same as that suggested by Oliveira ef al. [85]. Basically, the features are a mixture of
concavity, contour and character surface, where the final feature vector is cbmposed of 132

components normalized between 0 and 1.

Finally, the IR-Ship database is a military database which consists of Forward Looking Infra-
Red (FLIR) images of eight different classes of ships. The images were provided by the U.S.
Naval Weapons Center and Ford Aerospace Corporation. The same feature set employed by
Park and Sklansky [89] was used in this work. More details on the synthetic, Nist-Digits, and

[R-Ship databases can be found in the appendix 1.
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Table 3.2 Specifications on the datasets used in the experiments

Database Number of Number of Number of Number of Number of

Classes Features  Training Samples Sets Test Samples
Adult 2 123 3,185 19 29,376
Circle-in-Square 2 2 3,856 21 10,000
DNA 3 180 1,400 15 1,186
German Credit 2 24 800 13 200
IR-Ship 8 11 1,785 10 760
Nist-Digits 10 132 5,860 16 60,089/58,646
P2 2 2 3,856 21 10,000
Satimage 6 36 4,435 15 2,000

3.3.4 Parallel processing

In order to speed up the execution of our experiments, we have implemented the PSO algorithm
and our proposed method in a parallel processing architecture (a Beowulf cluster with 20 nodes

using Athlon XP 2500+ processors with 1GB of PC-2700 DDR RAM (333MHz FSB)).

The optimization algorithms were implemented using LAM MPI v6.5 in master-slave mode
with a simple load balance. It means that while one master node executes the main operation
related to the control of the processes, like the updating of particles’ positions/velocities, and
then switching between the different levels (e.g. adapted grid, DPSO), the evaluations of fit-
ness are performed by several slave processors. The results obtained are given in subsequent

sections.
3.3.5 Obtained Results

The results are reported in Tables 3.3, 3.4, and 3.5, in terms of generalization error rates,
number of stored support vectors, and computational time spent, respectively. It is important
to mention that these results were tested on multiple comparisons using the Kruskal-Wallis
nonparametric statistical test by testing the equality between mean values. The confidence
level was set to 95% and the Dunn-Sidak correction was applied to the critical values. The best

results for each classification problem are shown in bold.
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From the results, we can see how important a careful selection of hyper-parameters is to gener-
ate high performing classifiers. For instance, the results for the GS and 1st-Grid approaches in
Table 3.3 show us that searching for optimal hyper-parameters given a new dataset can achieve
better results, in both classification accuracy and model complexity, than those that apply a

searching process just once.

Table 3.3  Mean error rates and standard deviation values over 10
replications when the size of the dataset attained the size of the original
training set. The best results are shown in bold

Database GS  1st-GS FPSO CPSO  DMS

Adult 1754 24.06 15.55(0.06) 23.85(0.01) 15.56 (0.05)
CiS 034  0.67  0.14(0.03) 0.19(0.03)  0.13(0.03)
Dna 12.82 4224  5.13(0.18) 6.37(0.44)  5.16 (0.56)
German Credit | 30.00  35.00  26.6 (0.21)  30.10 (0.32) 26.65 (0.31)
IR-Ship 6.05 750  4.86(0.35) 5.66(0.45)  4.72(0.29)

Nist-Digits 1 2.82 6.84 2.75(0.04)  3.02(0.23)  2.74(0.14)
Nist-Digits 2 7.38 1430  6.68 (0.15)  7.33(0.59)  6.72 (0.39)
P2 1.79 3.71 1.64 (0.10)  2.03(0.29)  1.69 (0.14)
Satimage 10.20  10.50  8.06 (0.13) 14.32(0.30) 8.26 (0.22)

Table 3.4  Mean of support vectors and standard deviation values
obtained over 10 replications when the size of the dataset attained the size of
the original training sct. The best results for each data set are shown in bold

Database GS 1st-GS FPSO CPSO DMS
Adult 1508 1572 1176.50 (12.53) 3075.00 (10.00) 1174.80 (12.66)
CiS 64 476 35.40 (6.47) 43.30 (12.18) 37.40 (8.36)
Dna 1906 1914 628.40 (32.50)  436.10 (42.83)  810.60 (31.69)
German Credit | 800 516 418.40 (3.63) 776.50 (74.31) 421.30 (9.74)
IR-Ship 443 661 320.70 (13.34)  671.40 (21.74) 318.70 (9.53)
Nist-Digits 880 2912 898.40 (30.45)  1556.30 (62.56)  947.40 (55.09)
P2 226 430 161.40 (26.12)  383.50 (77.37) 152.80 (8.47)
Satimage 1117 1073 1888.00 (93.51) 1384.10 (60.64) 1849.00 (99.64)

In addition, we have observed that PSO based approaches are very promising, since their results
have overtaken those of the two grid-search methods (see in Tables 3.3 and 3.4. Furthermore,
the most important fact is that the proposed method (DMS) was able to attain similar results, but
~ was less time consuming, than the full PSO (FPSO) strategy. As previously mentioned, because

some of the model selection strategies (FPSO, CPSO, and DMS) use stochastic algorithms, we
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have replicated the experiments 10 times. Therefore, the results for these strategies represent

averages over 10 replications.

Table 3.5

Mean computational time spent (hh:mm:ss) for model selection
processes over all sequences of datasets. Results with FPSO over the whole
databases (FPSO-all data) are also reported

‘ Database ] FPSO-all data FPSO CPSO DMS
Database FPSO-all data FPSO CPSO DMS ;
Adult 01:28:07 (00:38:13)  02:41:36 (00:02:53) 01:37:21 (00:01:07)  00:32:31 (00:02:50) ‘
CiS 02:56:15 (00:55:41)  05:07:17 (00:09:59)  2:23:10 (00:06:12)  01:35:45 (00:08:34)
Dna 00:34:59 (00:15:59)  01:07:58 (00:01:34)  00:42:27 (00:00:39)  00:14:21 (00:01:01)
German Credit | 00:07:51 (00:00:57) 00:13:43 (00:00:06) 00:11:36 (00:00:02)  00:13:17 (0:00:05)
IR-Ship 00:19:08 (00:07:41)  00:30:42 (00:01:01)  00:15:17 (00:04:09) 00:11:26 (00:05:00)
NistDigit 06:47:51 (02:22:15)  13:46:00 (00:16:04) 03:46:24 (00:08:33) 00:56:38 (00:05:34)
P2 06:02:28 (00:48:29)  16:04:54 (00:17:44)  10:21:50 (00:13:47)  05:35:55 (00:33:24)
Satimage 01:45:55 (00:38:40) 02:46:18 (00:03:41) 01:41:29 (00:02:22)  01:31:03 (00:05:04) |

All these results, mainly comparing GSvs1st-GS and CPSOvsDMS, are particularly interesting
because they confirm the importance of tracking optimal solutions when new data are available
and show the relevance of the proposed method. By analyzing the results, we can say that by
shifting between re-evaluations and re-optimizations of previous swarms can be quite effective

for building new solutions.

The adapted grid module is less time consuming and performs better than evaluating, a grid
randomly composed of 70 different combinations (GS), for instance, or starting a whole new
optimization process (FPSO). Besides, it was shown that the DPSO algorithm is capable of
tracking optimal solutions by resetting the particles’ memories and injecting diversity. To
better visualize the performance of the methods, we also report the mean error rates across all

the subsets and over the 10 replications for two case studies in Figure 3.12.

For a deeper analysis of the proposed method, we have depicted in Figure 3.13 the frequencies
of at which a module was responsible for the selection of the final solution. From these results,
it is even possible to guess the different degrees of difficulty among the databases. For example,

databases whose the final solutions were pointed out more often by the DPSO module, e.g.



67

German Credit and DNA, seem to have a major degree of uncertainty, due perhaps a greater

overlapping between classes, than other databases, such as Nist-Digits and CiS, for example.
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Figure 3.12 Error and support vectors rates. For the databases, Ship ((a)
and (b)) and Satimage ((c¢) and (d)). The results were obtained over 10
replications.

By comparing the optimization approaches directly, we can see that the results reported in Ta-
ble 3.6 demonstrate that our DPSO implementation is advantageous, mainly in terms of the
processing time demanded to search for solutions. Unlike FPSO, which requires several itera-
tions, because it starts a new search randomly every time, our dynamic version saves time by

applying dynamic optimization techniques, such as: the use of previous knowledge, increasing
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diversity, etc. As a result, when the DPSO module is activated, it converges faster and with

similar results to those obtained with FPSO and better than those obtained with CPSO.
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Figure 3.13 Average of frequencies which indicates how many times each
module was responsible for pointing out the final solution.

The results also reveal an important advantage of our dynamic model selection strategy (DMS)
over the common used FPSO strategy. While a huge amount of computational time was re-
quired for the FPSO optimization approach to perform the model selection processes, our pro-
posed method was capable of finding satisfactory solutions in less computational time, by

mainly considering it for each set of data.

This is because the FPSO strategy requires a large number of evaluations than the proposed
method, especially over each dataset, or still because when applied gradually over the datasets,
the proposed method usually accelerates the searching process by approximating solutions

before reaching the total size of training sets.

Based on these results, we can see that the proposed method, DMS, has spent less computa-

tional time than the other strategies. Besides, it can also be noted that sometimes the applica-
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tion of DMS gradually over subsets of data can be even faster than realizing a full optimization

process over the entire original training set.

Table 3.6 Mean of number iterations attained and standard deviation
values for each optimization algorithm over 10 replications. The results for
the Full and Chained PSO strategies were computed over all datasets. In
contrast, the results for the DPSO module were computed considering only
the datasets where it was activated

Database Full PSO Chained PSO | DPSO Module
Adult 18.63 (7.04)  12.00 (1.04) 14.66 (4.37)
CiS 23.53 (7.52) 17.71 (2.92) 17.05 (6.10)
Dna 23.18 (7.07) 1595 (5.47) 17.08 (5.09)
German Credit | 21.48 (7.44)  12.61 (2.14) 14.07 (4.34)
IR-Ship 30.45(8.78)  15.82(5.34) 17.38 (5.20)
Nist-Digits 31.60 (8.44) 14.17 (4.74) 15.72 (6.41)
P2 27.39 (9.26)  20.72 (5.81) 15.50 (4.61)
Satimage 24.86 (8.19) 16.78 (6.53) 18.14 (6.48)

Thus, the efficiency of the proposed method was demonstrated through the results. Even though
the strategies sometimes perform similarly in terms of generalization errors, as in the case of
the CiS database, the proposed method is clearly superior with respect to other factors, e.g.
the model complexity (number of support vectors) and computational time. Furthermore, by
taking fewer iterations and having adaptation capabilities, the use of the proposed method in a
fully dynamic environment is very promising, mainly in those applications where the system

must adapt itself to new data (time-series data, for example).
3.4 Discussion

In this chapter we presented the SVM model selection problem as a dynamic optimization
problem which depends on available data. In particular, it was shown that if one intends to
build efficient SVM classifiers from different, gradual, or serial source of data, the best way
is to consider the model selection process as a dynamic process which can evolve, change,
and hence require different solutions overtime depending on the knowledge available about the
problem and uncertainties in the data. In order to solve the model selection problem and also

take into account this dynamism, we proposed a PSO-based framework (DMS) based on the
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ideas of self-organization, change detection, and dynamic optimization techniques to track the
optimal solutions and save computational time. The relevance of the proposed method was

confirmed through experiments conducted on nine databases.

Briefly, the results have shown that: (1) if PSO is applied sequentially over datasets as a whole
optimization process (Chained PSO) with the purpose of saving computational time, the re-
sulting optimized solutions may stay trapped in local minima after successive hyper-parameter
model selection processes. By contrast, (2) although full optimization processes with PSO
(Full PSO strategy) constitute an efficient way to achieve good results, they are very time con-
suming, particularly when applied to each new dataset. (3) DMS was very similar to full opti-
mization processes, but less computationally expensive, mainly due to the use of the dynamic

optimization techniques.

Above all, we examined the SVM model selection problem in a gradual learning context where
hyper-parameters must be re-estimated in order to retrain an SVM classifier from data at differ-
ent times £ in a cumulative fashion, as occurs in applications where data collection is expensive,
such as cancer diagnosis, signature verification, etc. The proposed method is also particularly
useful for real-world applications requiring the generation or updating of dynamically in a se-
rial way (e.g. those involving streaming data). We present some more additional results that

restate our conclusions concerning the strategies tested in the appendix I1.

Nevertheless, even considering that the optimization of a single classifier is important to in-
crease its performances, we know that the use of an ensemble of classifiers can improve the
overall performance of a classification system. Especially when the members composing the

ensemble are especially selected, which makes them still more accurate.

Taking this into account, the evaluation and selection of such classifiers depend on the choice
of an adequate objective function. Therefore, in order to better understand and apply classi-
fier ensembles to compose our adaptive incremental system in the context of this thesis, we
investigate a series of measures, based on different theories, to achieve such tasks in the next

chapter.



CHAPTER 4

TOWARDS TO THE EVALUATION AND SELECTION OF ENSEMBLE OF
CLASSIFIERS

The fusion of classifier decisions into ensembles has been widely applied to improve the per-
formance of single classifiers. Over the last years, several efforts on ensembles of classifiers
have been conducted to find measures that could be well correlated with ensembles’ accuracy
[67, 99, 36, 28, 125, 96, 69, 73, 122, 9, 116, 110]. However, despite of the efforts, the under-

standing of the effectiveness of ensembles methods has still intrigued many authors.

A consensus in the literature indicates the presence of some diversity between the ensembles
members as the main factor for improving the overall performance [28, 69, 73, 122, 9]. Even
though it is well accepted that diversity 1s a necessary condition for improving the majority
vote accuracy, there is no general agreement on how to quantify or to deal with it. On the
other hand, bias-variance and margin theory has also allured some attention in the literature,
since it may cast the study of ensembles of classifiers into a large margin classifiers context. In
particular, the margin theory was first applied by Schapire et al. [99] to provide an explanation
on how the boosting method works. After that, other authors have used this theory to create

new ensemble methods [6, 8].

The main goal of this chapter is, through an empirical study, to investigate measures for the
evaluation and selection of ensemble members. This is important because sometimes, mainly
for those situations in which only small datasets are available, the use of ensemble accuracy
over such data may not provide sufficient information to select the best ensemble. The conclu-
sions obtained in this chapter help us on the choice of the best objective function to be used in

our adaptive incremental learning system.

In order to achieve this, we start our study by surveying measures from some classical theories:
bias-variance, diversity measures, and margin theory for ensembles. Afterwards, an experi-

mental protocol similar to one introduced by Valentini [116] for characterizing ensembles of



Support Vector Machines is employed to evaluate the measures. In addition, a discussion on
the obtained results is also offered, in which we try to answer some questions currently found

in the literature, such as:

° Which measure could offer the best guidance to evaluate the classifiers fusion?
@ How are the diversity measures related to each other?

° Is there a relationship between diversity, margins, and ensemble accuracy?

. Which are the best measures for observing such relationship?

This chapter is organized as follows. In Section 4.1 we summarize the bias-variance theory
for ensemble according to Domingos’ theoretical framework [36]. Section 4.2 surveys classi-
cal measures to estimate diversity for classification fusion. Section 4.3 introduces the margin
theory for ensemble of classifiers and measures related to it. Section 4.4 describes the exper-
imental protocol applied and the obtained results. Finally, we discuss results and outline the

conclusions in Section 4.5.
4.1 Bias-Variance Decomposition of Error

In general, zero-one loss functions are the only option to be applied to classification problems.
In order to analyze bias-variance in this context, an alternative is to use the unified bias-variance
decomposition of the error proposed by Domingos [36]. In this theory, regarding a free noise
case, the expected loss F'L(-) for a sample x is basically decomposed into two terms: the bias
B(-) and the variance V'(-). Therefore, following the same notation introduced by Valentini in

[116], the expected loss is computed as:

EL(z) = B(x) + V(x) (4.1)
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B(x) = E(ym,y.) represents the bias of an ensemble of L classifiers on an example x. The
bias 1s the loss E(.) incurred by the main prediction y,, with respect to the optimal prediction
y.. Therefore, for the 0/1 loss, the bias is always 0 or 1 and computed by:

1 if | m x
B(x) = 79 (4.2)

0  ify,=uy.

For an ensemble composed of { M, } [ classifiers, the variance of errors is considered according
to two opposite aspects: the unbiased and biased variance. The unbiased variance V, (x) is the
variance when B(x) = 0, it is responsible for increasing the error. On the other hand, biased
variance V,(x) represents the variance when B(x) = 1, hence it is responsible for decreasing

the error. These variances are calculated as:
1L
Va(x) = 7 3 [ = 42) A (U # yan)] (43)

1 L
V(%) = 7 D [ # ) A (W # yan,)] (4.4)

where y4, is the prediction provided by a classifier M,.

Finally, the net variance V,,(x) is defined in order to combine the effects of unbiased and biased
variance V, (x) = V,(x) — V,(x). From this point of view, variance can be seen as a measure

of diversity, where its effects on error are related to the type of the variance [115, 116].

This decomposition for a sample x can be generalized to a whole dataset by defining E|[.].
This way the average bias £y [B(x)], the average unbiased variance Ey[V,(x)], and the aver-
age biased variance E[Vj(x)] compose the expected loss of generalization over all dataset is
redefined to:

Ex[EL(x)] = Ex[B(x)] + Ex[Vu(x)] — Ex[V5(x)] (4.5)
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Overall, the bias-variance decomposition of error theory allows to understand the working of
ensembles. Unfortunately, as it is defined by a set of metrics, the use of the bias-variance theory

for the selection of ensembles is more complex.

By contrast, the margin theory can express the same concepts, but in a more compact way,
since the increasing of margins denotes the decreasing of the bias and variance terms together
[36]. In light of this, we focus on the margin theory and diversity measures. However, for
sake of clarity, we also present results based on bias-variance analysis with two problems in

appendix I1I.
4.2 Diversity Measures

Diversity has been quantified in several ways for classification fusion. As a result, different
measures have been proposed in the literature. In this section, we describe seven well-known
diversity measures which are usually grouped into two types: pairwise and non-pairwise [73].
Their values vary in a range of 0 and 1. Moreover, in here each diversity measure name is
accompanied with a downward arrow | or upward arrow T indicating if the diversity obtained

is decreasing or increasing with its value.
4.2.1 Pairwise Measures

In pairwise measures, firstly the diversity between all pairs of classifiers is calculated. There-

after, the overall diversity measure values are computed as the mean of the pairwise values.
. . . Lx(L—1 .. . .. .

For instance, given L classifiers, ¥ pairwise diversities d,; are measured between pairs

of classifiers, and then the final diversity d is defined by an average:

- 2
a = m Z . dz,j (46)

1,)=1,
1#£)

In general for a pairwise measure, n is the total number of samples, n'! is the number of times

that both classifiers are correct, n% represents the number of times that both classifiers are
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incorrect, and n' and n°! denote the number of times when just the first or second classifier is

correct, respectively. Below, we describe some pairwise measures applied in this work.

‘.

4.2.1.1 Q average (|)

With this measure, classifiers that tend to recognize the same samples correctly will have posi-

tive values of (). This measure is computed for pairs of classifiers 7 and j as:

‘I'L“I‘LOO o ”01”10

Qi; = (4.7)

”’11”’00 + no1 ILlO

4.2.1.2 Disagreement measure (])

This measure denotes the ratio between the number of observations where one classifier is
correct and the other is incorrect with respect to the total number of observations [104]. For a

pair of classifiers ¢ and j, it is computed by:

w10 w101
Dg =1 10 (4.8)

7 n

4.2.1.3 Double-fault measure (|)

The double-fault measure estimates the probability of coincident errors for a pair of classifiers.

It is defined for a pair of classifiers 7 and j as [104, 42]:

'ILUO

| DF;j = — (4.9)

n

4.2.2 Non-pairwise Measures

Unlike pairwise measures, non-pairwise measures are not calculated by comparing pairs of
classifiers, but by comparing all L classifiers as a whole. Below there are some examples of

these types of measures:
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4.2.2.1 Kohavi-Wolpert (KW) variance (])

Let [(x;) be the number of classifiers that correctly recognize x;. From the formula for the

variance [67], the diversity measure becomes:

n

_
KW = — ;{;/(xj)(L-—l(xj)) (4.10)

4.2.2.2 Generalized diversity (7)

Let Z be a random variable to represent the proportion of classifiers that are incorrect on a
randomly drawn sample x, p; is the probability that Z = /L, and p(7) is the probability that ¢
randomly chosen members will be wrong on a randomly chosen x. The generalized diversity

is defined as [90]:
N =L ii—1)
p) =D 7p PR)=D TP (4.11)

¢p=1-22 (4.12)

4.2.2.3  Ambiguity ()

The ambiguity measure was proposed by Zenobi and Cunningham [125]. Basically, it measures
the disagreement among the classifiers predictions y; with respect to the majority prediction

Ym» Where the factor correctness is not important. The ambiguity measure can be defined as:
L

A= % YD lyim # ) (4.13)

i=1l j=1

4.2.2.4 Difficulty (])

Unlike the ambiguity measure, the difficulty measure [44] like most of the measures is calcu-

lated taking into account the base classifiers’ correctness. The goal is to measure the degree of
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classification difficulty of samples. Basically, this measure is defined to be the variance of a X

random variable which denotes the proportion of classifiers that correctly classify a sample x:

DY = o*(X).
4.3 Margin Theory

The margin theory was originally applied to develop the Support Vector Machines theory [117]
and to explain the success of Boosting [99]. In the former, Vapnik [117] has introduced the idea
that the generalization error of a classifier can be decreased by maximizing the separation mar-
gin between classes. Basically, the margin of a sample x represents a degree of confidence in
its classification. Here, in order to provide a global understanding of this theory, we summarize

the different ways to compute the margin regarding a sample.

First, the margin of a single classifier based on some discriminate function f(.) over a sample

(x,y) withy € [-1,1] and f(x) — [—1, 1] can be computed by:

T(x,y) =y f(x) (4.14)

Second, if the classifier is based on some probabilistic model, so the margin can be defined as:

7(x,y) = P(ylx) — maz(P(y # jlx)) (4.15)

where j is any other class related to the classification problem. Next, for ensembles of clas-
sifiers, the concept of the margin follows the same idea introduced by Schapire et al. [99].
In general, the margin of a sample x can be computed by Equation 4.16 or by Equation 4.17
[43, 110], where v, is the number of votes for the true class, v; is the number of votes for any

other class, and ¢ 1s the maximum number of classes in the problem:

X, ) = 7w Z vy (4.16)
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1
7%, y) = I vy, — argmax uv; (4.17)
g=lcume
J#FY

The main difference between these two definitions for ensembles is that, while the first one
applies a sum operation, the second one computes a max operation. Based on the first margin
definition, when dealing with multi-class problems the margins can even assume negative val-
ues for correct ensemble decisions, i.e. when there 1s a plurality but not a majority [43]. By
contrast, following the second definition, which is a special case of the first one, the margins
are always positive when the ensemble is correct and negative otherwise. Thus, for the sake of
clarity, in this chapter, we employ both definitions and show that in fact they perform similarly

and converge to the same regions.

4.3.1 Margin-Related Measures

Naturally, the definition of margin for a sample x can also be generalized and employed to other
measures applied over a dataset D = (x;,y;)/_,. In particular, there are two main measures

related to this theory:

o Minimum Margin(T): The minimum margin of an ensemble of classifiers on a dataset D
is defined as the smallest value of margin obtained to any correct label [43]. Therefore,

the minimum margin is governed by:

o(D) = arg min(T(x;,v:)), (4.18)
1<i<n
° Average Margin(1): the average margin denotes the mean of all margins obtained over

samples of a given dataset D. This measure can be calculated as:

1 n
u(D) == 7(x, ) (4.19)
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In addition to these two typical margin-based measures, another measure has been proposed
from the margin theory. In here, we denote this measure as CI measure, since it was derivate
from the Chebishev’s Inequality. This measure represents a generalization bound suggested in

[8]. In particular, assuming an average margin (D) > 0, this measure is defined as:

o(7(D))

=Ty

(4.20)
This measure establishes a relation between the strength of the base classifiers (average margin)
and the dependence between them for predicting the generalization error. This is because, it has
been proven that the variance of the margins is lower or equal to the average of the correlation

coeflicients of pairs of classifiers times an average of variance between them [8].

Finally, the use of cumulative margin distribution graphics is also an efficient tool to observe
the ensembles’ behaviors. They can be computed by two simple steps. First, the set of mar-
gin values from a dataset is sorted. Next, for each possible value of margin is calculated the
percentage of the samples whose margins are lower or equal to the current value. Graphics of
cumulative distribution of margins were firstly introduced by Schapire et al. [99] to demon-
strate that Boosting maximizes margins. Once that the definitions of diversity and margin
theories were already presented, we describe the experimental protocol adopted and the results

obtained in the next section.
4.4 Experimental Protocol

In order to investigate the measures previously introduced as objective functions, we have
carried out an experimental protocol similar to one realized by Valentini [115, 116] for charac-

terizing ensembles of Support Vector Machines (SVM).

The experimental setup has been organized into two steps. First of all, we have selected
the complex synthetic problem denoted P2 and two other multi-classes real-world problems,

Satimage and Letter, from Satlog collection [79]. P2 [115] is a classification problem that
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consists of two classes (I and /1), where the decision region for each class is delimited by
one, two, or even more than four equations and without overlapping between the distributions.

More details about this synthetic problem can be found in the appendix L

We summarize some information about the three classification problems used in Table 4.1. For
the P2 problem, a large dataset was generated and splited into a small training set and a large
testing set composed of 100 and 10,000 samples respectively. For the real-world problems, the

same original distributions of samples for training and test sets were used.

Table 4.1 Information on the databases
Database | Number of Number of Number of Number of
Classes Features  Training Samples Test Samples
P2 2 2 100 10,000
Satimage 6 36 3,104 1,331
Letter 26 16 10,500 4,500

Thereafter, ensembles of SVMs with RBF-kernel varying the C' and v parameters were built
based on the Bagging method [5]. Therefore, ensemble members were created by taking ran-
dom samples with replacement from a given original training set D, and by building them
on different bootstrapped subsets. The total number of 50 classifiers was generated for each

problem.

For each test sample x, the final classification decision was made by taking the majority vote
over the class labels produced by each ensemble member. A SVM one-against-one strategy
was employed when dealing with the multi-class problems. Moreover, a RBF kernel was used
because it nonlinearly maps samples into a higher dimensional space. Furthermore, this kernel
has also obtained superior power of generalization and lower complexity than the Polynomial

kernel [115], for example. The variations of the C' and  parameters were done based on these
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values:

v € {10000, 2500, 100, 25, 4,1,0.25,0.04,0.01, 25¢03,
4e04, 1e04, 25¢05, 11€05, 6¢06, 1¢06, 106}
C e {0.01. 0.1,1,2,5,10, 20,50, 100, 200, 500, 1000}

Therefore, 204 different combinations of models were trained and evaluated on each subset of
data totalizing more than 30,600 different RBF-SVMs for all databases. Finally, the measures
introduced in Sections 4.2 and 4.3 were evaluated over the ensembles generated and compared
with their average loss and generalization errors. The average loss of predictions 1s computed
between base classifiers outputs y; and a true class y;. In particular, it represents the mean

error rate between the ensemble members as defined in Equation 4.21.

L

R . .
A.Loss:EZZ[yu ] (4.21)

=1 j=1

While the generalization error of the ensembles is computed according to Equation 4.22, where
Y denotes the majority vote. It corresponds to the actual error of the ensemble after combining

the base classifiers.

, 1 ¢ .
G.Error = < ;[y,-m # 7] (4.22)

4.4.1 Obtained Results

From the obtained results we could observe very interesting relationships among diversity mea-
sures, margin theory, and majority vote accuracy. In order to better examine them, we start by
analyzing the best results for each measure previously mentioned regarding each theory and
classification problem tested. The results are reported in Tables 4.2, 4.3, and 4.4. In these
tables, we can see the optimum value reached for each measure, their corresponding ensemble
configuration, and generalization power yielded. i.e. in terms of individual errors (i.e. average

loss) and generalization error after combination.
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In Figures 4.1, 4.2, and 4.4, we can also observe the behavior of all measures concerning
two different perspectives of the ensembles with the best performances, i.e. with the lowest
generalization error. In the first one, results of different ensembles are plotted by fixing the
value of the parameter C' and varying the parameter v. By contrast, in a second perspective,
the parameter v is fixed while C' is varied. Based on all this information, we examine each
experimental result with respect to the majority vote accuracy, and finally discuss details on
their use as objective function for ensemble selection. This analysis is described in the next

sections.

4.4.1.1 Diversity results

The results have shown that diversity is very important for accuracy of EoCs, since ensembles
with the lowest average loss of predictions between their members have not reached the lowest

generalization error. This can be seen in all Tables 4.2-4.4 and Figures 4.1-4.5.

For example, in Table 4.3, the ensemble composed of the highest performing classifiers, i.e.
with parameters C' = 5 and v = 1, did not produce the most performing combination, which
was obtained when C' = 20 and same 7 value. It means that individual performances of
members are one factor that contributes to the overall ensemble performances, but they are not
sufficient. Thus, some diversity is requested to get the highest majority vote performances, as

also pointed out in [66].

However, as we have mentioned before, the relationship between diversity and ensemble accu-
racy may be very complex. In fact, we could see that the results for some diversity measures
were more ambiguous in relation to the ensemble accuracy. This is because, for several en-
sembles, they have assumed the same values, even if the ensembles had different average loss
(i.e. mean error rates) or generalization error (i.e. majority vote error). As examples, we can
relate mainly those focused on the increasing of the variance between the base classifiers out-
puts, such as: Q average, Disagreement, Ambiguity, and Kohavi-Wolpert variance measures,
as shown in Figures 4.1 - 4.5. Above all, these results revealed that the diversity measures

can be categorize into two groups according to their relationship with ensemble accuracy. In
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Table 4.2  Best results obtained for each measure evaluated on the P2 database

Measures C v  Value | Average Generalization
Loss(%) Error (%)
Average Loss (]) 2 100 0.1719 17.19 12.78
Generalization Error (|) 1 100 0.1274 17.59 12.74
Difficulty (]) 0.1 25 0 35.06 28.91
Ambiguity (1) 0.1 25 0.2563 35.06 2891
Double Fault (|) 2 100 0.1006 17.19 12.78
Disagreement (T) 0.1 25 0.3508 35.06 28.91
Kohavi-Wolpert (T) 0.1 25 0.1719 | 35.06 2891
Generalized Diversity (1) | 0.1 25 0.5003 35.06 28.91
Q Average () 0.1 25 0.3100| 35.06 28.91
Minimum Margin (1) 0.1 25 0 35.06 28.91
Average Margin () 2 100 0.6561 17.19 12.78
CI(]) 2 100 0.6734 17.19 12.78

Table 4.3 Best results obtained for each measure evaluated on the Satimage database

Measures ¢ ~ Value | Average Generalization
Loss(%) Error (%)
Average Loss D 1 0.1091 10.91 9.92
Generalization Error 20 1 0.0969 11.06 9.69
Difficulty (|) 0.1 0.25 0.1586| 15.37 15.10
Ambiguity (1) 200  6e06 0.0800 | 32.94 29.30
Double Fault () 50 1 0.0816 11.08 9.77
Disagreement () 1000 0.25 0.0787 | 12.37 10.59
Kohavi-Wolpert (1) 1000 0.25 0.0386 | 12.37 10.59
Generalized Diversity (1) 1000 0.25 03181 | 12.37 10.59
Q Average (]) 1000 0.25 0.9568 | 12.37 10.59
Minimum Margin (sum rule) (T) 50  1e04 0.2000 26.59 26.52
Average Margin (sum rule) (1) S 1 0.7818 10.91 9.92
CI (sumrule) () 50 1 0.4622 11.08 9.77
Minimum Margin (max. rule) (T) | 50  0.01 0.2000 | 26.59 26.52
Average Margin (max. rule) (1) 5 1 0.7853 10.91 9.92
CI (max. rule) (]) 50 1 0.4442 11.08 9.77

the first one, we can group diversity measures that were “weakly" related, such as: Qaverage,

Disagreement, Ambiguity, and Kohavi-Wolpert variance measures. On the other hand, Gen-
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Table 4.4  Best results obtained for each measure evaluated on the Letter database

Measures C o Value | Average Generalization
Loss(%) Error (%)
Average Loss 10 1 0.0456 4.56 3.44
Generalization Error 20 1 0.0336 4.58 336
Difficulty () 5 1 0.1298 4.71 3.80
Ambiguity (1) 1 25 0.1685 29.94 24.93
Double Fault (]) 20 1 0.0275 4.58 3.36
Disagreement (T) 1 25 0.1247 29.94 24.93
Kohavi-Wolpert (T) 1 25 0.0611 29.94 24.93
Generalized Diversity (T) 500 0.25 0.4063 6.02 431
Q Average (|) 2 25  0.9526 28.79 23.78
Minimum Margin (sum rule) (T) | 10 4 -0.2000 4.77 3.47
Average Margin (sum rule)(T) 10 1 0.9088 4.56 3.44
CI (sum rule) (|) 20 1 0.1247 4.58 3.36
Minimum Margin (max. rule)(T) | 20 0.25 0 4.69 345
Average Margin (max. rule)(T) 10 1 0.9142 4.56 3.44
CI (max. rule)(]) 20 1 0.1086 4.58 3.36

eralized Diversity, Difficulty, and Double-Fault measures belong to the second group denoted
as “strongly" related. Yet concerning this last group, Double-Fault measure was more related
to the ensemble accuracy, followed by the Difficulty and Generalize Diversity measures which
were slightly less correlated to the ensemble errors. Similar conclusions about the behaviors of

the Double-Fault and Difficulty measures have been also outlined in [69].

4.4.1.2 Margin results

In particular, we have evaluated the main measures provided by the margin theory: minimum
margin, cumulative margins distributions, average margin, and C'/. Based on the results, we
could observe some interesting insights on this theory and the majority vote accuracy. For
instance, in the literature, the maximization of margins on training data is commonly pointed

out as responsible for decreasing the generalization error on future test sets [99].

So, in a first moment, we would expect that maximizing the minimum margin for ensembles

should be accompanied with the minimum generalization error. However, the fact is that the
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The vertical dashed lines indicate where the minimal generalization error
was attained.

minimum margin measure have shown great instability. This is because, as it can be seen

in Figure 4.2 (a), the tracking of the maximum minimum margin can be quite difficult, since
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many different values can be achieved even around the best ensemble. In light of this, the greed

maximization of the minimum margin may not be satisfactory for searching the best ensembles.

On the other hand, the results reported with cumulative margins distributions have shown us
such relation. As examples, we have plotted some results involving high and less performing
ensembles over the Satimage problem in Figure 4.6. From these resuts, it can be seen that the
ensembles with the best performances (i.e. composed of the parameters C' = 20 and v = 1
and C' = 50 and ¥ = 1), have actually reached larger margins than ensembles with lower
performances (e.g with C' = 1000 and v = 0.25 pointed out by some diversity measures),
since their margin values are more concentrated at the maximum value (i.e. around 1, which

produces the lowest curves).

In addition, the results with the average margin measure have also demonstrated that classifier
ensembles with large margin values are very performing. In fact, we have observed that this
measure is very stable. Thus, we can particularly assert that is more relevant to concentrate on

the average margin than only on the minimum one.

However, although the average margin over test instances represents an estimate of expected
margin for a classification problem [111], after an analysis of the results, it is clear that this
measure is strictly related to the average loss (mean error rate) of the base classifiers composing
an ensemble and not exactly to its generalization error. To illustrate this, we can see that

the maximum values of average margin correspond to the minimum values of average loss in

Tables 4.2, 4.3, and 4.4, and also in Figures 4.1, 4.2, and 4.4.

Therefore, maximizing the average margin points out the ensembles composed of the strongest
individual members in a given pool. In general, this fact is not much interesting because there
is a great tendency that in a limit of the highest possible individual performances, the base
classifiers will be very similar, with so low diversity that their team may not reach the maximum
majority vote accuracy. As a consequence, despite of most of the times the maximum values of
average margins accompany the minimum values of generalization error for some ensembles,

usually those with the maximum average margin and minimum generalization error (majority
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Figure 4.6 Some cumulative margins distributions computed on the Satimage problem.

vote error) in the extreme cases may slight diverge. It can be seen in all results listed in Tables

4.2,4.3,and 4.4).

Taking this into account, based on two case studies, we have examined more carefully the
relationship between the expected generalization error rate and the margins of the ensembles
with the lowest average loss and generalization error, respectively. In order to achieve this
analysis, we compare their histograms formed by frequencies of margins defined by Equation
4.16 computed for all samples in the test set. They are depicted in Figures 4.7 (a)-(d) for the

Satimage and Letter problems.

Based on these results, it is possible to observe that ensembles with the lowest generalization
error (Figures 4.7 (b) and (d)) have obtained margins with more plurality of values than those
ensembles with the lowest average loss (Figures 4.7 (a) and (c)). Thus, it is clear that while
ensembles with very performing members reach high values of margins, ensembles with the

lowest generalization error obtain margins relatively high, but also tend to produce values more



92

08 08
< St 0 [ "
07 5| 07
06F | 06
05 \ 05 |
| ‘
04 1\ 04 ot '
pat- 5 03 [ ”
02 m.[ 02F ooost
7 l.u,l.ull,.ml.”l.lllllll . | ..|l.|-|llll-l||||“||l |
01 1 Q 102 1 08 N« 6 07 [ i \’ 01 14 1 2 03 ¢ E E 3 |
‘ \
I ; e ) B ey sl
01 0 01 02 03 04 05 06 07 08 09 1 01 0 01 02 03 04 05 06 07 0B 09 1
Margins Margins
(a) Satimage (C = 5,7=1) (b) Satimage (C = 20,y =1)
09 09
L od ¢
08 - 08
07} ossl i 07 i
| | |
06 noxst ‘l 0B 50t ‘\
| \ |
05} oot ! 05f oot !
04 005} i 04
03 RS Il 03 oo II\
0 I 0
,,4441;11._l,ullhlll_l“|“ Uy ...;lnl._unll.llll“”l \
. ; Y ; e | " R ; i ; : ’
| |
[0 - - M | I o . e _l
02 0 02 04 06 08 1 02 0 02 04 06 08 1
Margins Margins
(c) Letter (C = 10,y=1) (d) Letter (C =20.v=1)

Figure 4.7 Histograms of the margins frequencies from ensembles with the
largest average margin ((a) and (c)), and with the lowest generalization
error ((b) and (d)) from Tables 4.3 and 4.4 for the Satimage and Letter

problems, respectively.

varied. These results have demonstrated how important is a balance between the increasing of
the margins accompanied of some variance between the ensemble members. This explains why
the results obtained with the Cl-measure were the most correlated with the ensemble accuracy
regarding all measures tested. Now, after reporting the evaluation of all measures and relating
their results to the ensemble accuracies, we present a discussion on the relationship between

these two theories and their application as objective function to ensemble selection processes.
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4.5 Discussion

In this chapter we have tested various measures for the evaluation of classifier ensembles. In
particular, we could observe that the most appropriate diversity measures to evaluate or select
ensembles are: Generalized Diversity, Difficulty, and Double-Fault measures. The other mea-
sures that regard only the variance of the outputs and not the individual members performances,
such as Disagreement, Ambiguity, Kohavi-Wolpert, etc have been proved to be inadequate for
such tasks. Thus, we can assert that the relationship between most of diversity measures and
accuracy is not so strong. This fact explains why seeking diversity explicitly may be inef-
fective to point out ensembles with optimal generalization performance. Besides, it confirms
the Accuracy-Diversity dilemma, which states that highly accurate classifiers cannot be very
diverse [69]. In other words, it means that the base classifiers are strong, but also with some

variance among them.

On the other hand, we could observe that only the increasing of the margins over a dataset may
be an interesting option for selecting classifier ensembles. In contrast, the minimum margin
measure seems not to be stable, and average margins indicated just ensembles composed of the

strongest individual classifiers, but not with the best answers combined.

By analyzing the results we have also seen that the diversity measure Double-Fault and the
margin-based measure Cl-measure were the two measures more related to the generalization
error over all the problems. From this point of view, the relationship between the diversity and
margin theories becomes strong. This is because, the generalization error can be well estimated
by the combination of high performing base classifiers (i.e. with high average margins) and a

relative diversity between them.

Taking this into account, both Double-Fault and Cl-measure seem promising to be used as
objective functions for the selection of classifier ensembles. This is probably because strong
classifiers were available and both measures tries to decrease the probability of identical er-
rors. However, as Double-Fault is a pair-wise measure, the cardinality of the final ensemble

selected must be specified in advance. Otherwise, the resulting ensemble will always have the
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minimum number of classifiers, i.e. 2. On the other hand, the Cl-measure does not share the
same problem. The boundary provided by the Cl-measure seems to be a good measure for the
selection of ensembles. Besides, it has the advantage that the balance between accuracy and
diversity is explicit: while the average margin is related to the strength of the base classifiers,
the variance of the margins can be seen as diversity represented by the variance between the
base classifiers. In light of all these results, and based on experimental results presented in the
appendix 1V, we have decided to employ this measure as part of our decision module respon-
sible for the selection of ensembles, which is described with our framework presented in next

chapter.



CHAPTER S

A DYNAMIC OPTIMIZATION APPROACH FOR ADAPTIVE INCREMENTAL
LEARNING IN STATIC ENVIRONMENTS

In the previous chapters we have studied important aspects in order to develop an adaptive
classification system. Regarding the former, we have seen the importance of well tuning and
updating the parameters of classifiers overtime, since they can vary depending on the data
available. So, the aim was at developing a method able to search for optimum parameters
values, and at the same time efficient to adapt new solution if needed. Then, considering that
the use of ensemble of classifiers can overperform single models, especially when its members
are selected and the level of uncertanity is high, we have investigated several measures to
evaluate and select ensemble. The results showed that measures based on the margin theory
are promising to deal and select ensembles, once they regard directly the degrees of confidence

of classifiers.

From these standing points, in this chapter we propose a method to perform adaptive incre-
mental learning based on these two principles: (1) to incrementally accommodate new data
by updating models, and (2) to dynamically track new optimum system’s parameters for self-
adaptation. Thus, the underlying hypothesis herein is also to consider the incremental lcéming
process as being a dynamic optimization process, in which optimum hypotheses are dynam-
ically tracked, evolved, and combined overtime. Likewise, we have achieved with the SVM

model selection processes carried out overtime in a gradual learning scenario.

In particular, the proposed method relies on a new framework incorporating different tech-
niques, such as single incremental Support Vector Machine (ISVM) classifiers, change detec-
tion, dynamic Particle Swarm Optimization (DPSO), and finally dynamic selection of classi-
fier ensembles (EoC). Thus, the goal is to update, evolve and combine multiple heterogeneous
hypotheses (i.e. models with different parameters and knowledge) overtime to maintain the

system’s optimality w.r.t. internal parameters, computational cost, and generalization perfor-
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mance. As mentioned before, the use of ISVM ensembles in this study is justified based on
two main evidences found in literature. First, as the classification success of SVMs does not
depend on the dimensions of the input space, SVM is a robust classifier against the well known
curse of dimensionality mainly involving small data sets. Therefore, it is very advantageous
for incremental learning situations. Second, SVMs ensembles are employed because they can
often overcome single models’ performances, especially when heterogeneous (in terms of hy-
perparameters values) base classifiers are used and the level of uncertainty is high, i.e. when
only small sample sets are available [116]. We illustrate this concept with an example in Fig-
ure 5.1, which shows that three different optimized solutions, i.e. s;, s2, and s3 can produce
different classifiers™ decision boundaries in (b), (¢). and (d) based on a same small training set
of 84 samples. Because of this, the use of multiple solutions is very interesting, since each op-
timized solution may represent the same problem in different ways. Eventually, the proposed
framework provides contributions on strategies to optimize and overproduce classifiers, as well
as the application of memory-based mechanisms for solving dynamic optimization processes.

This latter is a promising and ongoing research area [37].

In addition. we validate the proposed method and show its efficiency through experiments with
synthetic and real-world databases. Results in single and multiple classifiers configurations are
compared with those obtained with these strategies: SVM optimized with PSO in batch mode,
incremental SVM with parameter values beforehand fixed, two incremental capable classifiers
(1-NN and Naive Bayes) widely applied in incremental learning studies. These classifiers are
tested because their performances are considered “no-less" with respect to their batch versions
[87]. An incremental ensemble strategy with optimized parameters and different combination

rules is also employed for comparisons.

As additional purposes, we try to verify if (1) incremental learning with SVM can achieve
similar performances to those obtained in batch mode, (2) the adaptation of system’s parame-
ters over time is actually a dynamic optimization problem and hence important to achieve high
performances, (3) the dynamic selection of ensemble can lead to better results than by simply

combining all pool of classifiers available.
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The remaining of this chapter is organized as follows. In section 5.1 we introduce the proposed
method for adaptive incremental learning. Experimental results and discussions are reported in

sections 5.2 and 5.3, respectively.
5.1 The Proposed Approach

So far, we have seen that, traditionally, researches on incremental learning regard the classi-
fiers’ parameters setting as a static process. i.e.. parameters values are initially set (e.g. based
on standard values or estimated over the first datachunk available), and kept infinitely fixed.
However, optimum hyper-parameters values may shift over the search space during the evolu-
tion of the data. As a consequence, classifiers with obsolete internal parameters (mainly those
related to regularization) will disturb and ruin the system’s updating in terms of generalization

power and complexity of models.

The proposed method herein for adaptive incremental learning optimizes, selects, and com-
bines incremental SVM classifiers overtime. More specifically, it is designed to dynamically
point out optimum solutions for sequences of datasets D (k) by using the best solutions found
so far, or by starting new dynamic optimization processes. As we employ incremental support
vectors machines as our base classifiers and dynamic particle swarm optimization for search-
ing optimum hyper-parameter values, each solution s represents a particle codifying an SVM
hyper-parameter set, e.g. {C,v}. Change detection mechanisms monitors novelties in the ob-
jective function F, and indicate how the system must act. The models generated are updated
from incoming data, and then dynamically selected and combined into an ensemble C*. Details

on the framework of proposed approach are described below.

5.1.1 Framework for Adaptive Incremental Learning (AIL)

Our framework for adaptive incremental learning is composed of five main modules, as shown
in Figure 5.2 and listed in Algorithm 4: change detection, adapted grid-search, dynamic particle
swarm optimization (DPSO), incremental support vector machines, and decision fusion. In

particular, this framework represents many upgrades in relation to our first version introduced
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in [57], such as the use of incremental classifiers, dynamic selection and building of ensembles

from optimized models. Below, details on each module are provided.

The upgrade stm and recall _stm functions are respectively responsible for storing and retriev-
ing optimized solutions and important data from the system’s Short Term Memory (STM). A
represents a set of data su composed of support vectors and relevant samples 7s selected dur-
ing the training of the final classifier from the best particle s*. Therefore, A = {sv* U rs},
where sv” means support vectors obtained from the final incremental model M* trained with
hyper-parameters found by best particle s*. SV denotes the set of support vectors sv from
incremental models obtained after final training of all P particles from a Swarm S(k — 1), i.e.

SV = {sv; }le. C represents an ensemble composed of all models (i.e. classifiers) M.

So, C = {M,},, where P is the maximum number of optimized solutions. Finally, for
sake of simplicity, in the equations, D(k) represents the merge of new data and the current
knowledge stored by the method (i.e. A, as defined above, is composed of relevant samples

and support vectors detected by the best solution found so far).

Algorithm 4 Adaptive Incremental Learning (AIL)

Input: A training set of data D (k).
Output: Optimized SVM classifier/ensemble.
recall_stm(s*(k —1),S(k — 1))
if there isa S(k — 1) then
Check the preceding best solution s*(A — 1) regarding the dataset D (k)
if Change Detection(s*(k — 1),D(k)) then
Activate the adapted grid-search module and get solution s'(k)
if Change Detection(s’(k),D(k)) then
Activate the DPSO module
end if
end if
. else
Activate the DPSO module
- end if
- upgrade stm(s*(-),S(+))
. Train/update/combine the final incremental SVM classifiers from incoming data D(k),
A(k),and SV.

—_— e e e e e
wn B W N - O
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Figure 5.2 General framework of the proposed method for incremental
learning with dynamic SVM model selection. A represents a set of data sv*
composed of support vectors and relevant samples rs selected during the
training of final model M from best particle s*. So A = {sv* U rs}, where
su* means support vectors obtained specifically from final model M trained
with hyper-parameters found by best particle s* and SV = {sv;}7_, denotes
the set of support vectors sv from models obtained after final training of all
P particles from a swarm S(k — 1).

5.1.2 Additional modules

As this new framework is built based on similar components already introduced in our first
framework presented in chapter 3, for sake of simplicity, in this chapter we outline only the
major modifications added to its original version. Such modifications are mainly related to
the creation of two modules: one for incremental learning with support vector machines and

another to fusion and select classifiers into optimized ensembles. They are both decribed below.

5.1.2.1 Incremental Support Vector Machine Module

In this thesis, we implement an incremental SVM version based on the Syed et al. method
[109] due to three reasons: (1) it focus on the updating of models over sequences of datasets
overtime, (2) this method has produced the best results in this comparative study [35], and (3)
it does not require the tuning of extra-parameters, which may need a careful setting, as it occurs

in [80, 95, 91, 35, 94, 1].
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This latter is important because the setting of extra parameters can be very critical. It is be-
cause they control when samples might be either exchanged among temporary sets or when
learning processes should stop. Moreover, the SVM implementation used in here [18] already
provides mechanisms to accelerate the SVM training through the Sequential Minimal Opti-
mization (SMO) technique. Therefore, it demands less computational efforts than traditional

quadratic programming solvers, as shown in [92].

Like in [109], an incremental SVM model M;(k) is trained on the current training datachunk
D(k) and its historical support vectors sv(k — 1) identified from a previous learning at a given
time . However, unlike in [109] where only support vectors are stored, our incremental SVM
module also retains additional training samples relying in a “relevant region" which excecds

the SVM margins in half of their sizes.

Region of relevant
i+ | Y ) samples -

14

Mafgin

Figure 5.3 Example of regions defined around the SVM margin separating
two classes (circles and squares) in which relevant samples are selected from.
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It is interesting to note that, even if we fix this region as being half of the margins, the size
of this region varies according to difficulties of classification problems (e.g. complex decision
boundaries, overlapping between classes, etc.) and hyper-parameters selected. Although the
storage of additional samples is not a desirable property in incremental learning algorithms
[93], it is necessary because these additional samples can become support vectors during opti-

mizations of SVM hyper-parameters in the future.

Algorithm 5 The incremental SVM module

1: Input: Current datachunk D(k), relevant samples rs(k — 1), model M, (A — 1).
2: Qutput: SVM model M, (k — 1) updated.

3: sv =selected support vector(M;(k — 1))

4: working set = D(k)U sv(k—1)Urs(k —1)

5: M, (k — 1) =train_svm(working set)

5.1.2.2 Decision Fusion Module

The decision fusion module dynamically selects, and combines incremental classifiers into
ensembles. Our dynamic selection strategy is implemented based on a generalization bound

introduced in [8]. which we first studied its application for “static" SVM ensembles in [54].

In this dynamic strategy, only classifiers whose combination minimizes this bound (called here
C'I measure) are selected to compose the final ensemble. In particular, this measure is com-
puted as C'I = o(7)/u(7)?, where o and jz denotes the variance and the average calculated

over the set of margins 7 from samples of the current training set, respectively.

The margin of a sample x; represents a degree of confidence in its classification. Basically, it
is calculated as the difference between the decision support ) assigned to the true class t minus
the highest support estimated for any other class j, i.e. 7, = U;(x;) — max;=1_ {0;(x;)}.
In here, for a single classifier, the decision support for a class j is denoted as Tile posterior
probability assigned to it. In the same way, for an ensemble composed of classifiers with output
probabilities, the decision support for a class j is the average over the posterior probabilities

assigned to it by each member.
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The selection process is performed as follows. First of all, the pool of classifiers C(k) gener-
ated from S(£) are sorted according to their respective individual confidence levels (average
margins). Then, the selection process starts by adding a classifier at time until reach the max-
imum number of classifiers, i.e. number of particles P. Each time a classifier is added, the
C'I selection criterion is recomputed. The best ensemble selected C* is that whose C'I value is

minimal.

Thus, the key idea is to select the ensemble with the strongest, i.e. the highest confidences, and
less correlated classifiers over the current training set. Finally, once the best ensemble C~ is
selected, they are combined using weighted average voting based on classifiers’ performances.
Although with different criteria, forward searches for best ensembles seem to be very promising

[114].

In order to calibrate the outputs of the SVM in estimates of probabilities, we use the approach
introduced by Wu et al [39], which is implemented in the LIBSVM software [18]. In such
approach, given k classes of data, for any z, the goal is to estimate p, = p(y = i|z),1 =
1,..., k. The estimated pairwise class probabilities for multi-class classification is defined as
rij=ply=ily=ior j x), that is, using the implementation of Lin et al. [76]:

N 1
~ 0 =l eAf+B’

(5.1)

i

where A and B are estimated by minimizing the negative log-likelihood function using known

training data and their decision values f The p; from all r; ; is obtained by solving:

ming, s S > ;2T — i jp;)?  subject to S pi=1,p>0,Vi (5.2)

Based on this framework, therefore, the proposed method is capable of evolving and accommo-
dating new data by automatically selecting internal hyper-parameters, updating, and combining
incremental SVM classifiers. The experimental protocol and results obtained are described in

next section.
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5.2 Experimental Protocol

In order to validate the concept of adaptive incremental learning system as well as to show
efficiency of proposed method, the following experimental protocol has been carried out. First
of all, to characterize with more impact the occurrence of population drifts, the original train-
ing sets were divided into small datasets. The total number of datasets and their sizes were
determined based on a minimum amount of samples required for each class, which was set
to at least 16. The distribution of samples were firstly separated for the class with the minor
number of samples, and then proportionally for the other classes. Such procedure determined
the total number of chunks. Thus, the same original proportion of samples per class was kept
in each datachunk. In other words, it means that if the original problem contains unbalanced

classes, this same real scenario is simulated in this experimental protocol.

Therefore, as in most of the incremental learning approaches, this experimental protocol fo-
cused on incremental learning from datachunks with suitable-size of samples at time, i.e. block
by block, and not one sample at a time, which is called online, or instance by instance learning
[109]. A detailed description of the datasets and number of chunks used are listed in Table 5.1.
We have employed classification problems with different number of features, classes, training
and testing samples. As the proposed method uses a stochastic algorithm, the results represent

averages drawn over 10 replications.

Table 5.1  Specifications on the datasets used in the experiments

Databases Number of Number of Number of Number of Number of
Classes Features chunks Training Samples  Test Samples
Adult 2 123 48 3,185 29,376
Circle-in-Square 2 2 120 3,856 10,000
DNA 3 180 29 2,000 1,186
German 2 24 15 800 200
IR-Ship 8 11 8 1,785 760
Nist-Dig 1/2 10 132 36 5,860 60,089/58,646
P2 2 2 120 3,856 10,000
Satimage 6 36 25 4,435 2,000




5.2.1 Strategies Tested

The following incremental learning strategies were tested:

5.2.1.1 Batch SVM-PSO

In this strategy, the whole original training datasets are used for selecting of optimum SVM
hyper-parameters and training the final model. The hyper-parameter selection process is carried
out with the PSO algorithm. This strategy represents an empirical lower bound computed for
each problem, which allows us to compare the results obtained for incremental strategies with

a batch strategy.

5.2.1.2 Incremental no-less classifiers (1-Nearest Neighbor (1-NN) and Naive Bayes (NB))

These two classifiers were tested because they are widely employed in the incremental learn-
ing/concept drift literatures [119, 30, 87], since they are considered 7o less incremental learn-

ers, 1.e. their results in incremental mode are similar to those obtained in batch mode [87].

5.2.1.3 Incremental SVM (ISVM)

In this approach, an incremental SVM classifier tailored from [109] is updated from successive
datachunks D(k). Its hyper-parameters are firstly tuned with PSO over the first datachunk
D(1), and then kept fixed over all the other datachunks. No relevant samples are kept during

incremental learning process.

5.2.1.4 Optimized Random Aggregation (ORA-DMS)

This method represents a common incremental ensemble approach, more specifically, a ran-
dom aggregation approach as described in section 2.4. In here, it consists of combining SVM
classifiers with optimum hyper-parameters values trained from independent datachunks in a
serial way (i.e. one classifier by datachunk) [119]. Two combination rules were tested with
this scheme: majority and simple average voting. We set the maximum ensemble size to 20.

When the total number is reached, the oldest model is replaced for the new one.
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5.2.1.5 Single Incremental SVM (IS-AlIL)

This approach denotes the proposed method in single classifier mode (i.e. only the best solution
found so far is used by the decision fusion module). In other words, when only one incremental

SVM classifier and its respective hyper-parameters are updated from every datachunk D(k).

5.2.1.6 Incremental EoC-DMS Swarm-based (IEoC-AIL)

The proposed approach in EoC mode presented in section 5.1. Therefore, it is employed with
its full capacity, i.e., dynamically updating, selecting, and combining the ISVMs into ensem-

bles.

5.2.2 Experiments Parameters Setting

We have used these parameters setting:

@ Optimization Algorithms Parameters: The maximum number of iterations and the swarm
size was set to 100 and 20, respectively. The dimensions of the parameters (C' and v)
search space, where the maximum and minimum values were set to [27°, 2], [2715 210],
respectively. The DPSO topology used was the (best with A = 3. We also consider to
stop the optimization if the best value of fitness does not improve over 10 consecutive

iterations.

. Objective Function: Several objective functions have been proposed for searching for
optimum SVM hyper-parameters, e.g. radius margin bound, span bound, etc. [20].
Unfortunately, these measures depend on certain assumptions, e.g. they are related to a
specific kernel or require a separation of the training set without error, which are quite
strong for real-world problems. Thus, the minimization of the generalization error from
v-cross-validation procedure is a good option. A v = 5 is used here as suggested in [18].

The results for each strategy are presented in next section.
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5.2.3 Obtained Results

The obtained results are presented in this section as follows. First of all, we examine the per-
formance of each strategy tested by evaluating their generalization errors achieved on each
database. Then, we analyze the data storage required and complexity of models generated.
Finally, we discuss results related to the adaptation of hyperparameters and combination/selec-

tion of ensembles regarding different functions and methods.

5.2.3.1 Performance evaluation

The generalization errors achieved by each strategy tested are reported in Table 5.2. These re-
sults were tested with multiple comparisons using the Kruskal-Wallis nonparametric statistical
test by testing the equality between mean values. The confidence level was set to 95% and the
Dunn-Sidak correction was applied to the critical values. The best results for each classifica-
tion problem and incremental learning strategy are shown in bold. Values underlined indicate

when an incremental strategy was significantly better than the others.

By analyzing the results in this table, we can see that SVM is very promising for incremen-
tal learning, since there is a relevant difference between results on the first datachunks, i.e.
SVM-PSO (D(1)), and results after learning all datachunks. It occurs even if with its hyper-
parameters were kept fixed with value found on D(1) (ISVM). Most importantly, we could
observe the efficiency of the proposed method as well as conclude that adaptive incremental
learning clearly leads to better performances. That is because the single classifier version of
our proposed method (IS-AIL) has obtained better results than the common ISVM strategy. It
shows the importance of the adaptation of hyper-parameters and of the use of relevant sam-
ples during the incremental learning process. Besides, it could be observed that the proposed
method (IEoC-AIL) has achieved results similar to, and sometimes, even better than SVM-
PSO in batch mode. The latter proves that the dynamic selection and combination of optimum
solutions can actually improve the overall performance of the system. Figures 5.4 (a) and (b)
illustrate these results with two case studies concerning these generalization error results with

the most performing strategies during different incremental learning steps at times k.
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Moreover, it could be seen that serial incremental ensemble approaches (i.e. the ORAs strate-
gies, ORA-MV and ORA-SA) performed well especially on noisy data (e.g. as for the Adult
database), although not statistically superior than the proposed method in these tests. By con-
trast, the need of setting a maximum number of classifiers is determinant for the performance
of these methods, since some knowledge may be lost when the oldest classifier is replaced for a
new one. This is a drawback, because the results with a single incremental learner (ISVM) were
better than these two ensemble approaches for some problems (e.g. IR-Ship, German). These
results indicate that the updating of an existing ISVM classifier might be very advantageous
in relation to only combine batch learners (ISVMvsORAs). The results with the ORA-SA ap-
proaches (ORA-SA and ORA-MV) have shown that the simple average fusion function was
superior than the majority vote rule. Eventually, the classical “non-less" incremental learners
NB and 1-NN have achieved the worst performances. The only exception occurred for the
CiS and P2 databases, where the 1-NN classifier outperformed the other methods tested, but of

course, with the inconvenience of storing all data.

5.2.3.2 Data storage and complexity of models generated

Concerning now the complexity factor of the ISVM classifiers generated, Table 5.3 summarizes
some results regarding the mean number of support vectors stored up to the end of the incre-
mental learning process. By comparing these results, we can notice that the dynamic adaptation
of the hyper-parameters during the incremental learning process (IS-AIL) seemed to converge
to the results obtained in batch mode (SVM-PSO). In other words, it tends to identify about the

same number of support vectors than when the whole data are available for training.

In contrast, the incremental single SVM classifier strategy with constant hyper-parameters
(ISVM) did not adjust its models as effect as the other SVM-PSO and IS-AIL strategies.
Of course, these results are related to the single classifier strategies. On the other hand, the
complexity of the ensemble version IEoC-AIL may be relatively higher, once the number of
classifiers is dynamically selected between 1 and P. Thus, in spite of the fact that the proposed
method (IEoC-AIL) supplied remarkable improvements in terms of generalization power, it

can also turn the system more complex.
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Table 5.3  Mean and standard deviation of number of support vectors
obtained after lecarning from all subsets available

Databases Approaches tested
Batch - PSO ISVM IS-AIL
Adult 1176.50 (12.54) 1140.40 (57.85)  1178.7 (70.36)
CiS 35.40 (6.47) 24.50 (11.19) 30.10 (6.11)

Dna 628.40 (32.50)  385.90 (55.82) 640.90 (56.49)
German 306.7 (5.94) 735.80 (74.47) 426.20 (55.24)

IR-Ship | 320.70 (13.34)  291.10(5.51) 347 (13.88)
NistDig | 898.40 (30.45)  729.00 (21.56) 913 (27.56)
P2 161.40 (26.12) 82,50 (10.90)  113.00 (63.44)

Satimage | 1888.00 (93.51) 825.00 (66.92)  1855.30 (167.12)

In addition, from these experiments, it can be seen one of the most attractive advantage of
incremental learning approaches, which is its capability of reducing the training set size. The

results are shown in Table 5.4.

The training size reduction rate was computed as follows: the total database size minus the
total number of updating samples used by the proposed method in the last incremental learning
step divided by the total database size. It can be seen that the reduction can be very expressive
for some problems, especially with two classes and no overlapping, such as for the CiS prob-
lem. The training size reduction is interesting because it accelerates the updating of classifiers,

mainly for multi-class problems (e.g. for NistDig with a reduction rate of 61.23%).

Additionally in the same Table 5.4, we also report the percentage of relevant samples stored
by the proposed method with respect to the current total number of support vectors stored
and incomming data in the last incremental leaming process. We can see that the number of
relevant samples may vary depending on each problem, number of classes, data distributions,

and density of samples in such relevant regions defined by the incremental module.

To better illustrate this reduction effect, we show comparisons between the number of training
samples used by the proposed method and what should be stored if batch mode was employed
involving two problems in Figure 5.5. It can be noticed that the number of training samples

retained during system’s updating processes can vary depending on the problem and number of
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samples. For example in Figure 5.5 (a), the number of samples is smaller than in batch mode,
but it seems that the values will always increase. However, as it can be observed in Figure
5.5 (b) for another problem, when more samples are learned after a longer period of time, the
number of samples stored may tend to saturate. Other two examples with the lowest and the

largest number of samples employed are depicted in Figures 5.6 (a) and (b), respectively.

Table 5.4  Training set size reduction (%) by using incremental learning
instead batch mode calculated over the last set (first column). Proportion of
relevant samples (%) inside the last incremental training set used

Datasets | Training set size reduction (%) Proportion of relevant samples (%)
Adult 47.28 7.97
CiS 97.86 19.56
DNA 44.59 18.02
German 31.40 12.54
IR-Ship 44.86 44.69
NistDig 61.23 53.59
P2 95.56 16.18
Satimage 19.85 45.71
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Figure 5.5 Comparison between the number of training samples used by
the proposed method and batch mode. The number of training samples
retained during system’s updating processes depends on factors such as the
overlapping between classes, margin width, and density of samples in these
regions.
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Figure 5.6 Comparison between the number of training samples used by
the proposed method and batch mode. The number of training samples
retained during system’s updating processes depends on factors such as the
overlapping between classes, margin width, and density of samples in these
regions.

5.2.3.3 On the system parameters’ dynamism

These experiments also confirm empirically our underlying hypothesis about the importance
of concerning the incremental learning process as a dynamic optimization problem. In order to
demonstrate this, we have depicted some results to exhibit the shifting and tracking of optimum
solutions over the search space given sequences of datasets D(-). Through a case study in
Figure 5.7, we show that the hyper-parameters selection process represents actually a dynamic

optimization problem of type III.

In this example, the search space covered by optimum solutions (denoted here as circles) is
depicted for each dataset D(k) from the Satimage database in one replication. The different
sizes of circles represent how the fitness varied between values of 14.38% and 4.56%. The
symbol “*" indicates a best solution position found when the whole training data was used in

the searching process.

It can be observed that optimum solutions s(k)* can vary in both fitness and hyper-parameters

values depending on incoming data at different incremental learning steps. For instance, they
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can be located in a region for a given intervals of datachunks, e.g. between D(1) and D(7),
and then move to others, e.g. for D(8) and D(17), and finally for D(25). This fact, therefore,
demonstrates that this problem must be dealt as a dynamic optimization problem. It also ex-
plains why approaches with fixed parameters (i.e. on D(1)) might perform in a sub-optimum

way, as shown in Table 5.2 when IS-AIL is compared with ISVM).
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Figure 5.7 Trajectory covered by the best solution found (circles) from
incremental steps for each new dataset D(4). The circles’ sizes illustrate
how the solutions’ fitness can vary. Symbol “*" depicts a best solution
position found if the whole training data is used at once (batch mode).

Additionally, Figures 5.8 (a) and (b) report details on which module has pointed out these
solutions for each dataset D(k) and C' and ~ hyper-parameters, respectively. It can be seen
that in most of times, the best values for the hyper-parameters have changed and tracked by the
DPSO module. By contrast, in more stable cases, optimized solutions stored in the system’s
memory could be profited for new learning process by being kept (BK) or selected from the

adapted grid-search (AG) module. The frequencies of the AIL modules’ activations are listed in
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Table 5.5. In these experiments, the dynamic optimization module has produced more often the

final hyper-parameter values solution, followed by searches over previous solutions (adapted

grid search or keeping the best one).
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Figure 5.8 Case study: example on how the solutions were pointed out for
each dataset D(k), C, and v hyper-parameters when using IS-AIL.
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Table 5.5  Frequencies (%) of AIL modules’ activations over all the training datasets

Datasets | Best Kept Adapted Grid DPSO
Adult 28.13 15.42 56.45
CiS 7.33 1159 81.08
DNA 16.90 8.97 74.13
German 12.00 18.66 69.34
IR-Ship 24.45 10.47 65.08
NistDig 6.67 10.56 82.77
P2 9.66 15.09 75.25
Satimage 17.60 10.80 71.60

5.2.3.4 On the selection and fusion of solutions into ensembles

Turning now the focus on the dynamic selection of ensemble issue. So far in Table 5.2 we have
seen that combining solutions improves the overall system’s performance. In this section, the
effect of our decision fusion module devoted to this task is outlined. First, Figure 5.9 depicts
a case study with the performances and cardinalities of the proposed method in single and

ensemble mode over a sequence of datachunks D(%) from one replication.

Based on these results, and others already listed in Table 5.2, it is first demonstrated that the
dynamic selection of hyper-parameters and ensembles is very advantageous to provide stability
during the incremental learning process and hence to achieve higher performances. Then, in
Figures 5.10 and 5.11, we can see some classifiers selected and original pools distributed over

the search space for datasets outlined by squares in (a).

We can observe that ensembles with different cardinalities were selected for each time £, when
either the optimized swarm S (k) stays in the same position 5.10 or moves over the search space
5.11. That will depend on the problem complexity and current data. In the appendix V, we
present the whole sequence of swarms for each dataset D(£) and complementary results that

confirm these same conclusions regarding another case study.

Table 5.6 reports some results on the final cardinalities obtained thereafter the last incremen-
tal learning processes. In addition, we also report the variations of cardinalities over all the

datasets and replications for three different databases in Figure 5.12.
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From these results, we can see that the number of classifiers selected in the ensemble varied
around the mean size of the original pool of 20 members. However, more variation among other
datachunks were noticed, what indicates that the dynamic selection of classifiers in incremental

learning mode is an open issue worth of deeper investigations.
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Figure 5.9 Example of results involving performances and cardinalities for
each dataset D(k) for a given replication comparing AIL in single model
(IS-AIL) and ensembles dynamically selected (IEoC-AlL).
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Table 5.6

Dataset | Mean (Std) Median
Adult 13.40 (5.72) 15
CiS 13.00 (2.83) 12
DNA 7.60 (4.62) 8
German | 10.60 (5.80) 11
IR-Ship | 11.00(6.46) 13
NistDig | 8.80 (4.94) 11
P2 10.60 (6.98) 10
Satimage | 9.80(6.12) 8

EoC-AIL cardinality after dynamic ensemble selection on the
last learning step

Ending, Table 5.7 lists some results obtained for different configurations investigated when

building our decision fusion module. Three combination functions were employed (i.e. major-

ity vote, simple average, and weighted vote), and also three selection criteria, such as none at

all (all P classifiers are combined), half-best (the P/2 best classifiers), and the C/ introduced in

section 5.1.2.2). By analyzing these results, as occurred for the ORAs strategies in Table 5.2,

the simple average combination function achieved better results than the majority vote rule and

similar to, or slightly worse than, the weighted vote applied to dynamically selected ensembles.

Moreover, these results illustrate the importance of dynamic selection of ensembles, since it

improved the results in relation to whole ensembles combined with majority voting. This is

possible because they ignore classifiers that could insert some bias in the ensemble’s decision

and disturb their performances.

Table 5.7

Mean errors obtained with IEoC-AIL concerning different

combination functions and ensemble selection rules after learning from all
series of datachunks available

Databases Approaches
Majority vote Simple Average Weighted vote
All P half best All P half best CI CI

Adult 2403 (0.16) 24.02(0.15) | 23.62(1.39) 21.58(1.54) 20.52(1.71) | 20.52(1.60)
CiS 2.76 (1.49)  2.64(1.47) | 236(1.18) 235(1.19) 2.26(1.12) 1.35(0.29)
Dna 4.87(0.22) 4.71(0.26) | 4.72(0.26) 4.65(0.29) 4.61(0.27) 4.61(0.27)
German 30.00(0.24) 30.00(0.24) | 30.05(0.15) 29.95(0.49) 28.95(0.36) | 28.15(0.56)
IR-Ship 4.17(0.15)  4.20(0.13) | 4.12(0.26) 4.07(0.23)  4.03(0.32) 4.03 (0.30)
NistDig -1 | 2.65(0.04)  2.65(0.04) | 2.65(0.05) 2.65(0.04)  2.64(0.03) 2.64(0.01)
NistDig -2 | 6.28(0.60)  6.27(0.09) | 6.27(0.07) 6.27(0.07)  6.27(0.07) 6.27 (0.07)
P2 8.76 (7.43)  6.58(5.12) | 545(4.32) 494(341) 4.18(1.56) 3.17(0.56)
Satimage 8.34(0.19) 831(0.22) | 8.18(0.16) 8.17(0.16)  8.14(0.18) 8.14(0.17)




5.3 Discussion

We proposed a modular dynamic optimization approach to perform adaptive incremental learn-
ing. The proposed method generates classifiers from optimum regions of parameters search
space, and then dynamically selects ensembles based on the classifiers’” confidence levels to
improve the overall results. Different from classical methods considering the incremental sys-
tem’s parameters setting in a static way, we showed that this process should be treated as a
dynamic optimization process. This is because their optimum parameters values may shift

over the search space depending on incoming data.

Through experiments on different synthetic and real-word databases, we empirically demon-
strated that the dynamic optimization of an incremental classification system could improve its
performances, so that they could overcome classifiers without adaptation and other classical
methods. Therefore, the performance of a classification system depends further than on updat-
ing of existing models only, but also on adapting its internal parameters. Furthermore, it was
seen that the application of the latter with a multiple classifier approach becomes the classifi-
cation system more flexible and, at the same time, robust for performing incremental learning

and dealing with population drifts.



CONCLUSION

This thesis focused on the implementation of a classification system to perform adaptive in-
cremental learning. Towards the building of the system, our efforts were concentrated on the
problems of efficiently accommodation new data, adaptation of internal system’s parameters,
and combination of multiple hypotheses. We have seen that solving these problems is crucial

to increase the overall performance of the system.

In our first investigation, we have seen that a well tuning and updating of classifier’s parameters
with respect to new data is very important to reach high performance overtime. In order to
solve this problem, two main challenges were involved: (1) to overcome common difficulties
involving optimization processes, such as the presence of multi-modality or discontinuities
in the parameter search space, and (2) to quickly identify optimum solutions which fit both
historical and new incoming data. To cope with these two issues, the SVM model selection
problem was undertaken as a dynamic optimization problem which depends on available data.
In particular, it was shown that if one intends to build efficient SVM classifiers from different,
gradual, or serial source of data, the best way is to consider the model selection process as
a dynamic process which can evolve, change, and hence require different solutions overtime

depending on the knowledge available about the problem and uncertainties in the data.

In particular, we introduced a Particle Swarm Optimization based framework which combines
the power of the swarm intelligence theory with the conventional grid-search method to pro-
gressively identify and sort out potential solutions for gradually updated training datasets. The
idea was to obtain optimal solutions via re-evaluations of previous solutions (adapted grid-

search) or via new dynamic re-optimization processes (dynamic particle swarm optimization).

The relevance of the proposed method was confirmed through experiments conducted on six
databases. Briefly, the results have shown that: (1) if PSO is applied sequentially over datasets
as a whole optimization process (Chained PSO) with the purpose of saving computational time,
the resulting optimized solutions may stay trapped in local minima after successive hyper-

parameter model selection processes. On the other hand, (2) although full optimization pro-



cesses with PSO (Full PSO strategy) constitute an efficient way to achieve good results, they
are very time consuming, particularly when applied to each new dataset. (3) The performance
of DMS was very similar to full optimization processes, but less computationally expensive,
mainly due to the use of the dynamic optimization techniques. Thus, the experimental results
demonstrate that the proposed method outperforms the traditional approaches tested against
it while saving considerable computational time. However, even if the optimization of a sin-
gle classifier is important to increase its performances, the combination of different members
can improve the overall performance of a classification system. Mainly when the members

composing the ensemble are especially selected, which makes them still more accurate.

Taking this into account, the evaluation and selection of such classifiers depend on the choice of
an adequate objective function. Therefore, in order to better understand and employ classifier
ensembles for composing our adaptive incremental system in the context of this thesis, the
investigation of measures to perform such tasks proceeded this work. We have empirically
analyzed several objective functions for the evaluation and so the selection of ensembles of
classifiers. In order to achieve this, we empirically investigated classifiers fusion through the
relationship between two theories related to ensemble’s success, i.e. diversity measures and
margin theory, with ensemble accuracy. Most importantly, they revealed valuable insights on
how these two theories can influence each other and showed us how confidence based measures

can be more interesting than diversity measures for the selection of classifier ensembles.

Finally, we proposed a modular dynamic optimization approach to perform adaptive incremen-
tal learning. It was implemented based on these two principles: to incrementally accommodate
new data by updating models and to dynamically track new optimum system’s parameters for
self-adaptation. Thus, the goal was to overcome a problem that occurs when performing in-
cremental learning, which is the obsoleting of best set of classification system’s parameters
according to incoming data. The proposed method relied on a new framework based on the
ideas and components mentioned above. The use of a modified version of incremental Sup-
port Vector Machine (ISVM) classifier and a dynamic strategy for the selection of classifier

ensembles were the main innovations in relation to our base framework. In particular, from



this framework, the system’s optimality in respect to internal parameters, computational cost,
and generalization performance could be maintained through the generation of classifiers from
optimum regions of parameters search space and the dynamic selection of ensembles based on

the classifiers’ confidence levels.

As a result, adaptations are realized in two levels, further than by the incremental learning
aspect only, but also in the levels of base model parameters and decision fusion. Thus, un-
like classical methods considering the incremental system’s parameters setting in a static way,
we showed that this process should be treated as a dynamic optimization process. This is be-
cause their optimum parameters values may shift over the search space depending on incoming
data. As additional contributions, we provided insights on strategies to optimize and select
classifiers, on the use of memory-based mechanisms, and methods for dynamic optimization

processes.

The proposed approach was validated and showed its efficiency through experiments with syn-
thetic and real-world databases, e.g. involving handwritten digits, multisensor remote-sensing
images, forward-looking infra-red ship images, etc. Results in single and multiple classifiers
configurations demonstrated that the proposed approach actually outperformed classification
methods often used in incremental learning scenarios. Moreover, they also demonstrated that
the dynamic optimization of an incremental classification system could improve its perfor-
mances, so that they could overcome classifiers without adaptation and other classical meth-
ods. Therefore, the performance of a classification system depends further than on updating
of existing models only, but also on adapting its internal parameters. Furthermore, we have
observed that the application of the multiple classifier approach becomes the classification sys-
tem more flexible and, at the same time, robust for performing incremental learning and dealing

with population drifts.



Future Works

The results obtained in this thesis were very encouraging and also provide strong foundation
for future works. However, some issues were not investigated due to time constraints. Thus,

probing deeper, the next stage and future directions of this research might involve:

° Determining new strategies for making the system adaptable to real drifts. In this case,
the design of mechanisms to “forget" samples from the system’s memory must be con-

sidered to discard old samples that be conflicting with new concepts.

° Carrying on with population drifts situations, but using semi-supervised learning to over-
come the dependency of labeled data. This direction requires the developing and embed-
ding of an approach in the framework to label the data before these be used by the other

modules.

° Investigating new strategies for the selection of relevant samples and ensembles. The use

of information from different times % could be also employed.

° Creating other strategies for better managing the system’s memory. As an example,
instead of using only a short term memory, the implementation of an additional long
term memory could reduce even more the time for searching for new solutions in those

situations in which data changes become recurrent.

Therefore, by following these directions the system surely will be even more versatile.



APPENDIX I

DATABASES

In this appendix we describe more details about some synthetic and real-world databases em-

ployed in this thesis.
1 Synthetic Problems

Synthetic problems are useful tools to evaluate learning algorithms. In our experiments, we

have used two synthetic problems already employed in the machine leamning literature:

. Circle-in-Square (CiS) [14]: This problem consists of two classes. The decision bound-
ary is nonlinear, and the samples are uniformly distributed between the range of 0 to 1.
One class is represented by a circle inside a square, while the second class is formed of
data from the area outside the circle (see Figure 1.1). The area of the circle is equal to

half of the square [14].

Circle-in-Square

09

0B

07

06

04r

03

02f

Figure 1.1  Illustration of the Circle-in-Square problem.

o P2[115]: The P2 problem also consists of two classes (I and I7). Each decision region

is delimited by one or more of the four simple polynomial and trigonometric functions
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(i.e. Eqi_4(2)) belongs to one of two classes (see Figure 1.2). We consider the same
modification on E¢(.r) suggested in [45], so that the classes have the same area without
overlapping. The samples are uniformly distributed between ranges of 0 to 10, and then

normalized between 0 and 1.

Eq(r) = infu )+5
= (r—2)°
Egy(r) = (r (1)
Egs(x) = —0.12° +06><s/n(11)+
Eqa(r) = =190 4 7,902

Figure 1.2 lustration of the P2 problem.

The data generated were normalized into a range of [0,1] according to min-max technique
defined by Equation 1.2. «} and «, are normalized and non-normalized values of the ith feature;

min; and ma.r; are the minimum and maximum value of the ith feature in the entire dataset.

; a, — mn;
a4 =—-— (L.2)

max; — N

As in the literature, each class w; is represented by 50% of the samples, that is, P(w;) = 0.5.



2  Real-world Problems

In this section we summarize two special real-world problems employed in the thesis: NIST-

SD19 and the IR-SHIP.

. NIST-SD19: 1t is one of the most popular real-world databases used to evaluate hand-
written digit recognition methods. Basically, it is composed of images of handwritten
samples forms (hsf) from 0 to 9 organized in eight series. In the literature, it is com-
monly divided into 3 sets hsf-0123, hsf-4, and hst-7, for training, validation, and test
respectively. Table 1.1 depicts the number of samples for each digit class in the test set,
where the total number of samples i1s 60,089. In this work, the maximum number of

samples used for training is 5860 (586 samples per class).
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Figure 1.3 Examples of isolated digits from the NIST-DIG database [85].

The features set extracted from the images of isolated digits were the same suggested by
Oliveiraet al. [85]. Basically, the features are a mixture of concavity, contour and surface
of characters, where the final feature vector is composed of 132 components normalized

between 0 and 1. Oliveira et al. have obtained with this features set a recognition rate of
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99.13% on the test set samples from hsf-7 using a Multilayer Perceptron Neural Network

and a training set of 195,000 samples from hsf-0123.

Table 1.1~ Number of samples for each digit class in the test set (hsf-7)- NIST-SD19

Class 0 1 2 3 4 S 6 i) 8 9
# 5893 6,567 5967 6,036 5873 5,684 5900 6254 5889 5813

IR-SHIP: The IR-SHIP database is a military database that consist of 2545 Forward
Looking Infra-Red (FLIR) images of eight different classes of ships. The images were
provided by the U.S. Naval Weapons Center and Ford Aerospace Corporation. Images
and descriptions of the eight classes of ship are depicted in Figure 1.4. In particular,
we use the same features set employed by Park and Sklansky [89], which implies in 11
attributes for each FLIR image. In particular, the first seven attributes represent moments
and the others four remaining denoted parameters from an auto regressive model. More
information about this database can be encountered in [51]. Table 1.2 lists the total
number of samples for each class. In here, we divided the entire original dataset into

80% and 20% samples for training and test, respectively.

Table 1.2 Number of samples for cach class in the IR-SHIP database

Class | 1 2 3 4 5 6 7 8
# 340 455 186 490 348 279 239 208
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Figure 1.4 Examples of FIR images from the IR-SHIP database [51].
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APPENDIX 11

ADDITIONAL DYNAMIC MODEL SELECTION RESULTS

In this appendix we summarize some additional results related to our PSO-based framework
for the dynamic selection of SVM models over five different databases. A brief description on

the databases is listed in Table I1.1.

Segment, Splice, Mushrooms, and Usps are also databases from [4]. The Segment database
contains instances randomly drawn from outdoor images. Each instance is a 3x3 region, where
each region represents a class, such as: brickface, sky, foliage, etc. The Splice database is
composed of samples of DNA sequences, where the problem is to classify them into IE (in-
tron/exon) or El (exon/intron) boundaries. The Mushrooms database includes descriptions of
samples corresponding to 23 species of gilled mushrooms. Each species is identified as defi-
nitely edible or poisonous. The Usps database is composed of images of isolated digits with
300 pixels/in in 8-bit gray scale on a high-quality flat bed digitizer. Finally, the Svmguide

problem is a two-class database that involves an astroparticle application [18].

The results are presented according to the same criteria investigated in chapter 3. First, we
report the results involving generalization error rates, number of support vector, and computa-
tional time required in Tables 11.2, I1.3, and 11.4, respectively. Then, the average of frequencies

that each module was employed to identify the final solution are depicted in Figure 11.1.

Table 1.1  Databases’ descriptions.

Database Number of Number of Number of Number of Number of
Classes Features  Training Samples Sets Test Samples
Segment 7 19 1,848 12 462
Svmguide 2 4 3,089 20 4,000
Splice 2 60 1,000 15 2,175
Mushrooms 2 112 6,498 24 1,626
Usps 10 256 7,291 17 2,007
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Table 1.2 Mean error rates and standard deviation values over 10
replications when the size of the dataset attained the size of the original
training set. The best results for each data set are shown in bold.

Database GS 1st-GS FPSO CPSO DMS
Segment 2.81 433 2.78 (0.52) 4.87(2.04) 2.80(0.9)
Svmguide 13.15 50 3.10 (0.01) 3.97(0.02) 3.11 (0.07)
Splice 12.38 1238  10.40(0.92) 11.9(2.10) 10.45(1.10)
Mushrooms | 0.00 0.00 0.00 0.00 0.00
Usps 10.16 10.21 6.44 (0.15) 8.41(0.19) 6.35(0.08)

Table I1.3 Mean of support vectors and standard deviation values
obtained over 10 replications when the size of the dataset attained the size of
the original training set. The best results for each data set are shown in bold.

Database | GS  1st-GS FPSO CPSO DMS
Segment 251 298 218.30 (79.39)  381.3 (135.85)  281.7 (72.75)
Svmguide | 2801 3003  245.50 (7.90) 254.5 (3.44) 246.8 (5.37)
Splice 959 959  499.80(176.85)  326.10 (32.17)  444.50 (22.39)
Mushrooms | 1102 1102 240.80 (89.15)  245.10 (30.48)  244.30 (38.21)
Usps 4200 4199 111520 (91.74) 1702.20 (164.70) 1152.50 (58.40)

Table 11.4 Mean computational time spent (hh:mm:ss) for model selection
processes for the entire sequences of datasets with the most promising
strategies. Results for the FPSO strategy over the entire databases
(FPSO-all data) are also reported.

[ Database FPSO-all data FPSO CPSO DMS
Segment 00:01:51 (00:00:38)  00:04:15 (00:00:44)  00:02:11 (00:00:31)  00:00:38 (00:00:43)
Svmguide 00:43:24 (00:33:39)  01:44:03 (00:38:15) 01:10:12 (00:17:43)  00:41:30 (00:39:07)
Splice 00:00:39 (00:00:12)  00:01:35 (00:00:20)  00:01:35 (00:00:15)  00:00:51 (00:00:23)
Mushrooms | 00:51:40 (00:07:37)  02:02:21 (00:08:53)  01:37:23 (00:03:17)  00:01:39 (00:01:27)
Usps 06:10:53 (02:14:33)  14:13:41 (03:05:37)  12:35:26 (03:28:36)  05:31:42 (02:46:18)
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Figure 11.1 Average of frequencies which indicates how many times each
module was responsible for pointing out the final solution.
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APPENDIX 111

BIAS-VARIANCE DECOMPOSITION OF ERROR RESULTS

In this appendix we depict some results related to the Bias-Variance Decomposition of the
Error theory for ensemble of classifiers introduced by Domingos [36]. We have used two
classification problems in the experiments: a synthetic one (P2) and another with real-world

data (Satimage).

From this theory, we could observe that the lowest bias corresponds not always to the lowest
expected average loss. In fact, the best ensembles have obtained a higher variance, which
demonstrates that some variations among the ensemble members 1s important to achieve better
performances. Results illustrating this fact are listed in Tables III.1 and II1.2. Therefore, a

balance between bias-variance is indeed crucial for developing performing ensembles.

In addition, the Domingos’s decomposition of the variance component into unbiased and biased
variances allows to analyze the cases in which every measure seems to provide the same result
with different ensembles. For instance, in Table 111.1 we have two different ensembles, i.e. with
C' = 5 and C' = 10, that present similar generalization errors. In this case, through this theory
we can see that the former ensemble with C' = 5 and 4 = 100 should be diagnosticated as better
than the second one because it has a slightly higher unbiased variance. In other words, both
ensembles provided correct answers, but the first one provided with more variated opinions

regarding the same dataset.

Furthermore, as demonstrated in [115, 116], we have also observed that the value of the ('
and ~ hyperparameters can actually determine different regions of transition with high bias
or stabilized ones for both two-classes and multi-classes problems. Some examples of these
regions can be seen in Figures III.1 and 111.2. Moreover, we can also see the influence of
the hyperparameter values when composing ensembles. For example, for the P2 problem,
while lower values of regularization (i.e. for C') results almost in no learning (Figure 111.1(a)),

the increasing of such parameters notably changes the behavior of the ensembles (Figures
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I11.1(b)-111.1(d)). The same observations can be outlined for the real-word multi-class database,

Satimage, in Figures 111.2(a)-111.2(d).

Table III.1 P2 problem

C | ~ Loss Bias Net Variance Unbiased Variance Biased Variance {
2 | 100 0.171912  0.1278 0.044517 0.070218 0.025698
5 1100 0.171568  0.1295 0.042071 0.068568 0.026497
10 | 100 0.171568  0.1295 0.042068 0.068468 0.026400
20 [ 100 0.172191 0.130400 0.041791 0.069552 0.027764
Table I11.2 Satimage problem
C |~ Loss Bias Net Variance Unbiased Variance Biased Variance
511 0.109076 0.099174 0.009902 0.022404 0.014455
10 {1 0.109572 0.098422 0.011149 0.024493 0.015357
20 1 0.110578  0.09692 0.013659 0.026521 0.014831
5011 0.110834 0.097671 0.013163 0.026702 0.015582
Table I11.3 Letter problem
G | Loss Bias Net Variance Unbiased Variance Biased Variance
10 | 1 0.045618 0.034444 0.011173 0.017773 0.009596
20 | 1 0.045849 0.033556 0.012293 0.018880 0.009698
S0 |1 0.046587 0.035556 0.011031 0.018520 0.010676
100 | 1 0.046680 0.035333 0.011347 0.018702 0.010582
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APPENDIX 1V

EXPERIMENTS WITH CLASSIFIER ENSEMBLE SELECTION

The goal of this appendix is to present some results related to the selection of classifier ensem-

bles using the margin-based measure and the ensemble accuracy studied in chapter 4.

In order to achieve this, we employ a common strategy called: overproduce and choose [42].
In this strategy, several classifiers are created by some ensemble generation method and then a
selection process is applied to choose the best ensemble. The aim is, therefore, to (1) improve
the overall performance or/and to (2) decrease the complexity of the ensemble by reducing the

number of members.

In here, as we are interested in obtaining strong classifiers with low bias, we considered the
adjustment of parameters before creating our ensembles. Thus, this experimental protocol can
be summarized as follows. First, the parameters of a base classifier were set based on a grid-
search. In other words, given a set of parameters and the original training set, a five-fold cross

validation was employed to find the best parameter values for a base classifier.

Second, once the best parameters have been defined, individual classifiers were built based on
the Bagging ensemble generation method [5]. In this method, ensemble members are trained
from L subsets composed of bootstrapped samples from the original training data. Therefore,
if the original training set has n examples, a bootstrap replicate of it is constructed by taking
n samples with replacement from it, where each example has a probability of 1/n of being

selected at each turn.

Third, once that the pool of base classifiers were already generated, the minimization of the
ensemble generalization error rate and the Cl-measure were tested as objective functions for the
selection process. The margins used by the Cl-measure were computed according to Equation
4.17. In addition, our ensemble selection process was implemented as an optimization process,
which employs a genetic algorithm (GA) and an optimization set of samples. Finally, thereafter

the best ensembles were selected for each database, they were tested on the respective test sets.
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The description of each database used is listed in Table IV.1. As Naive Bayes, KNN and SVM
with RBF kernel were employed as base classifiers, we also indicate the best values found for
I\, C and 7 in the same table for each database. The values tested for the SVM hyperparameters

are described in chapter 4, and for i\’ were 1,3,5. The final results represent averages over 30

replications.
Table IV.1 Information on the databases
Database | Number of Number of Training Optimization Test Best  Best
Classes Features Set size Set size Setsize K C,y
P2 2 2 100 100 10,000 1 10,100
Satimage 6 36 3,104 1,331 2,000 5 10,1
Letter 7 19 770 770 770 1 20,1

For each database, ensembles composed of 50 members were built through the bagging method,
as previously explained. In addition, the genetic algorithm parameters were set as listed in Ta-

ble IV.2.

Table I1V.2 Genetic algorithm parameter setting

Parameter Value
Population size 128
Chromosome size (L) 50
Probability of crossover 0.8
Probability of mutation | 1/L, i.e. 0.02

As each gene of a chromosome represents a classifier, if all bits were selected, all classifiers
composed the ensemble. The operations of crossover and mutation were implemented based
on the one-point crossover and bit-flip mutation, respectively. The results obtained and the

conclusions drawn from these experiments are presented in the next section.

1 Results

The results obtained in this experiment are reported for each database, single classifiers (K-
NN, NB, and SVM) in Tables IV.3, IV.5, IV.7. Results for the original pool of classifiers and

objective function employed are reported in Tables IV.4, V.6, IV.8. The best results for each
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database are in bold and underlined if they are significantly better than the others. Additionally,
Figures IV.1, IV.2, IV.3 depict the generalization error rates and cardinalities achieved by each

ensemble type and objective function.

From these results, we can see that in general the minimization of the Cl-measure 1is very
promising for selection purposes because it selected very performing ensembles, and some-
times even better than those ensembles selected through the minimization of the generalization
error. In addition, regarding the complexity of the ensembles, this measure also selected en-
sembles with the lowest cardinalities concerning all types of classifier ensembles tested, i.e
with NB, KNN, or even SVMs. Thus, it seems to be very advantageous for both accuracy

improvement and ensemble reduction size.

Table IV.3 Obtained results with a single classifier on the P2 problem.

Classifier | Generalization Error (%)
K-NN 14.01
NB 28.80
SVM 13.90

Table IV.4 Obtained results with ensemble of classifiers on the P2 problem.

EoC | Average Loss (%) Generalization Error (%)

Sggg'“a' KNN 17.38 13.70
NB 30.50 26.29
SVM 17.23 13.04
Obj. Func. | EoC | Average Loss (%) | Generalization Error (%) | Cardinality
Gen. KNN 17.63 (0.30) 13.53 (0.63) 17
Error NB 30.79 (0.49) 25.75(1.25) 15
() SVM 18.86 (0.88) 12.53 (0.46) 21
KNN 17.39 (0.20) 13.52 (0.38) 9
CI()) NB 30.58 (0.39) 2593 (1.10) 12
SVM 17.40 (0.10) 12.46 (0.20) 8




Table IV.5 Obtained results with a single classifier on the Satimage problem.

Table 1V.6  Obtained results on the Satimage problem.

Classifier | Generalization Error (%)
K-NN 10.70
NB 18.95
SVM 9.55
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Original EoC | Average Loss (%) Generalization Error (%)
FoC KNN 12.14 10.40
NB 18.97 18.70
SVM 10.23 9.40
Obj. Func. | EoC | Average Loss (%) | Generalization Error (%) | Cardinality
Gen. KNN 12.03 (0.05) 10.40 (0.17) 19
Error NB 18.82 (0.08) 18.55(0.13) 16
(1) SVM 10.26 (0.05) 9.26 (0.14) 19
KNN 11.94(0.02) 10.26 (0.06) 15
CI(]) NB 18.66 (0.03) 18.31 (0.02) 8
SVYM 10.24 (0.00) 9.24 (0.00) 9

Table IV.7 Obtained results with a single classifier on the Letter problem.

Classifier | Generalization Error (%)
K-NN 5.46
NB 30.90
SVM 3.26

Table IV.8 Obtained results on the Letter problem.

Oeghua EoC | Average Loss (%) Generalization Error (%)
EoC KNN 7.19 5.45
NB 31.40 30.54
SVYM 4.30 3.08
Obj. Func. | EoC | Average Loss (%) | Generalization Error (%) | Cardinality
Gen. KNN 7.17 (0.04) 5.47(0.07) 16
Error NB 31.28 (0.07) 30.15(0.18) 20
(1) SVYM 4.27 (0.02) 3.04 (0.07) 24
KNN 7.14 (0.00) 5.45(0.04) 19
CI(]) NB 30.96 (0.03) 29.82 (0.12) 14
SVYM 4.26 (0.01) 3.06 (0.03) 20
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APPENDIX V

ADDITIONAL ADAPTIVE INCREMENTAL LEARNING RESULTS

In this appendix we report complementary results involving our adaptive incremental learning

strategy presented in chapter 5.

1 Satimage - Swarm Results

In this section, we have depicted from Figure V.2 to V.6 the entire sequence of swarms in-
volving the case study presented in Figure V.1 in section 5.2.3.4. Through this example, it can
be clearly seen (1) the dynamism concerning the moving of the particles and (2) the different

classifier ensembles selected from several datasets D(k).
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Figure V.1 Results concerning generalization errors and cardinalities for
each dataset D (k) for a given replication comparing AIL in single model
(IS-AIL) and ensembles dynamically selected (IEoC-AIL).




148

log(y)

log(y)

log(y)

- . - —eq » *n
T
5 s
0 - of d
¢ ¢
o, F @
o 3 Non-selected classifiers| o
5 J 5l é Single bes! classifier
Selected classifiers
Non-selecled classifiers|
é Single best classifier
%0 Selected classifiers 4 10k
e T T T S T P Ba S AT e R A
log(C) log(C)
(a) D(1) - DPSO/C*(11) (b) D(2) - DPSO/C*(13)
@ . * L) —g— —
o oL
5 g sH 1
0 1 o g
L ¢
@, @,
Non-selected classifiers Non-selecied classifiers|
- § Single best classffier ] Al i Single best classifier ]
Selected classifiers Selected classifiers
10! -1 10 -
15 L . L . s L L oo 15 L L L 1 1 L 1
K -4 -2 0 4 6 8 10 12 q s -4 0 2 4 6 8 10 ?z-q’n
log(C) log(C)
(c) D(3) - BK/C*(T) (d) D(4) - BK/C*(13)
10 + T T ¥ T L —& T 10 T T T T L 4 T
Non-selected classifiers| (1] . Non-selected classfiers| e 3 L]
§ Single best classifier § Single best classiier
8 Selected classiers 8 Selected classffiers
6 sk
4 ab i
2 _ 2
g
0 0 ¢ o 3 L]
-2 Q Q.. 2t 0 Q Q
° o ° .
= g
L]
% s}
= A 1 n L L L L L = L L . L L L " L
9 95 10 105 " ns 12 125 5] 135 14 ] 95 105 1 "5 12 125 13 135 14
log(C) log(C)

(e) D(5) - DPSO/C*(7)

(f) D(6) - AG/C*(5)

Figure V.2 Sequence of swarms and corresponding particles selected as
ensembles between the datasets D(1) and D(6). The sequence continues in
Figures V.3, V.4, V.5, and V.6



149

log(n)

log(v)

log(n

10 T T T T — w7 —&— o8 10 T T T T — T T .5 T )
Non-selectad classifiers e * Non-selected classfiers| L b
Single best classifier Single best classiier |
8 Selected classifiers Ll Salected classifiers
6 6F
4t a
2 g 2+
g
o} S Q of o ¢
2t Q Q 0 2 s} 0 Q
Q
o Q
ik af
° ]
s 6|
8 L L L L L s L s -8 L s L L L L s ) L
9 95 10 105 1" 15 12 125 13 135 ] 9 95 10 105 1" s 12 125 13 135 "
log(C) 1og(C)
7% 7%
(a) D(7) - BK/C*(10) (b) D(8) - AG/C*(15)
10 T == T T L *— 10 T T T &>
L]
Non-salected classifiers| L4 ] ? ° L L °®
Single best classffier
8r Selected classiiars 1 8l
6 Non-selected classdiers|
6F Single best classifier
Selected classfiers
al
4t
2+
ELE
oF 0 . g
of s} Y [ ]
i 8] Q Q = o
L]
Q 2 (]
al
=]
-6} s
° [ ]
-8 " ) L L It L L n s & s L L s L
9 95 10 105 " 15 12 125 13 135 14 " 15 12 125 13 135 14
log(C) log(C)
* * (K
(c) D(9) - BK/C*(11) (d) D(10) - DPSO/C*(5)
10 T T T T — o e ® 10 T T T T T T T ® L)
Non-selected classifers| oo O L4
Single best classiier O
Selected classifiers o
8 g
ST Non-selacted classiiers
Single bes! classifier
Selected classfiers
6 1
0%
o8
Pho Og
=
G 4f
2
s d
2t 4
10 ¢ o o %
of
o e
L]
15 s L s L o L 2 L L L L L n L s
] 9 10 1 1 13 14 15 5 6 7 8 9 10 1 12 13 14
log(C) 1og(C)

(e) D(11) - DPSO/C*(11)

(f) D(12) - DPSO/C*(9)

Figure V.3 Sequence of swarms and corresponding particles selected as
ensembles between the datasets D(7) and D(12). The other swarms are
depicted in Figures V.4, V.5, and V.6.



150

log(y)

log(y)

log(v)

T T v =% 10 T T T T T v~ T = L 4
Non-selected classifiers| L] [ ]
Single bast classiier L] 9t 1
Selected classifiers L |
st 8t * g
7k
of %0 g C & o
s}k § at 1
35 Non-selected classiiers 1
§ Single best classiier
Selected classiiers
10k 1 2t 1
1+ > 4
15 L L s L ) L PR 0 ¢ ) ., 069 s L n o et 43
5 6 7 8 0 " 12 13 14 5 6 7 8 ) 10 " 12 13 1
log(C) log(C)
(a) D(13) - DPSO/C*(13) (b) D(14) - DPSO/C* (9)
10 T T * ) 10 - 3 - ®
e T ® X ) Non-selectad ciassifiers| ° (]
Single bes! classiier Single best classifier L]
Selected classdiers Salectid clasifars
8 L]
sk
6F
o.0® . © e® o g 09
4t 9 %
sk 4
2+ 1
Q Q
(] Qo o 10H
oL@ ¢ Oq 9
= L ) s s L H . 15 L L L P L s "
6 7 8 9 10 " 12 13 14 6 7 8 9 10 1 12 1 14
1og(C) log(C)
(c) D(15) - DPSO/C*(9) (d) D(16) - DPSO/C* (5)
10 * T T 10 — T T
°® °®
8t 8-
Non-selected classfiers| Non-selected classfiers|
§ Single best classfier é Single best classifier
6f Selected classfiers 6 Selected classifiers
4t ar
g
2f 2t
o %o © Q Og
Al 000 ¢ o 40 %
-2b 2k
% s " L L i " L ~4 L L L L L L L
6 7 8 9 10 " 12 13 14 6 7 8 9 10 " 12 13 14
log(C) log(C)

(e) D(17) - DPSO/C*(13)

(f) D(18) - AG/C*(13)

Figure V.4 Sequence of swarms and corresponding particles selected as
ensembles between the datasets D(13) and D(18). The final swarms are
depicted in Figures V.5 and V.6. )




151

log(1)

log(y)

leg(n)

(e) D(23) - DPSO/C*(15)

10 3 ~ - 10 T c
e ot Se 0 § e geearid o
8 5 zx:::‘t‘z‘:' o Selected classifiers j
6 «
ar «
sk 1
2F ~
0 =
e € o0 Sy o 3
Q
2t E o S o 0
Al ¢ Les) o]
| U J o
oe!
-6} ]
-8
2 At Ui ) feto e Sy el
VS 6 7 8 10 " 12 123 4 52 4 6 8 10 12 14
10g(C) Iog(C)
(a) D(19) - DPSO/C™(19) (b) D(20) - DPSO/C* (17)
10 T T T o i T T T
Non-selected classifiers| [J L Non-selecled dassifiers| ‘
Single best classiier § Single bes! classifier LJ »
A7 Selected classifiers W 8r Selected dassifiers ° o 4
[ ]
B 6 1
aF H
4+ <
2F
2F §
ot 0° 9 o =2 3 0 Meee &
o L e = o) ]
2|
b il
-af 4
-4} 4
s}
L ]
-8} ] 61 A
L] o -
7 L . L L . 4 . . . L . L
2 B 6 8 10 12 14 0 2 4 6 8 10 12 14
10g(C) 10g(C)
(c) D(21) - DPSO/C*(11) (d) D(22) - DPSO/C*(11)
- - r —® —e 10 -
"% N asmc castey Se
i Single best classifier g Single best classiier
Selected classifiers Selected classfiars
st g sk 1
s} J [+
L o o © &P < e Al Bo oo 00
=
g
s ] il
Q
10+ - 10F
'50 ; ; 5 1.0 |‘Z o_‘4 7‘50 ; : é ; 1.0‘0 “2 14
log(C) log(C)

(f) D(24) - DPSO/C*(13)

Figure V.5 Sequence of swarms and ensembles selected between the
datasets D(19) and D(2.1). The last swarm is depicted in Figure V.6




co o4& Ge

Figure V.6 Last swarm of the sequence. D(25) - DPSO/C*(7)
2 Case Study - DNA results

This section presents further results and evidences on the system parameters’ dynamism and se-
lection of solutions into ensembles for an additional case study, which corresponds to the DNA
database. The results are presented through illustrations following the same way employed in

chapter 5 (sections 5.2.3.3 and 5.2.3.4).

First of all, we depict in Figure V.7 the trajectory covered by the best solution found for each
incremental learning process over different datasets D(k). Next, Figure V.8 shows an example

on how the solutions were found for each dataset D(k) hyper-parameters when using IS-AIL.

Finally, the generalization errors obtained by combining the solutions found are plotted in
Figure V.9. The sequences of swarms computed for each dataset D(L) are listed in Figures
V.10, V.11, and V.12. Overall, these results also confirm the same conclusions discussed in this

thesis and exposed in chapter 5.
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dataset D(k) for a given replication compared to AIL in single model
(IS-AIL) and ensembles dynamically selected (IEoC-AlIL).
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datasets D(1) and D(6). The sequence continues in Figure V.11
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Figure V.11 Swarms and particles selected as ensembles between the
datasets D(7) and D(12). The sequence continues in Figure V.12
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Figure V.12 Swarms and particles selected as ensembles between the
datasets D(13) and D(18). The sequence continues in Figure V.13
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Figure V.13 Swarms and particles selected as ensembles between the
datasets D(19) and D(24). The sequence continues in Figure V.14




159

log(y)

. ; : . ; 9 ® :
L]
o o
L] 5 °
o °
i
K 1
Non-selected classiiers,
Single bes! classfier
of Selected classifiers
Non-selected classifiers)
Single bes! classifier g 2} ! : 2 ]
Selecled classifiers
L
0
00 gegp 08 * 2B epo
8 9 10 " 12 13 4 7 8 9 10 n 12 13 14
log(C) log(C)

(a) D(25) - DPSO/C*(11) (b) D(26) - DPSO/C* (15)

log(y)

—@ T T T L 10 T T T T T T
° kY .
o 8l L
s | ®
Al
e
Non-selected classifiers| Non-selected classiiers|
Single best classiier Single best classier
Selected classifiers B oF Selected classifiers -
Al ]
i ]
) » Q0B
0% Qo0 6°% oo
8 9 10 " 12 13 14 7 8 9 10 " 12 13 14
109(C) 1og(C)

(c) D(27) - BK/C*(7) (d) D(28) - BK/C*(17)

T i T T T T L &
Non-selected classifiers| ®e
Single bes! classfier
Selected classfiers
s
of 1
5
K]
s o %o P
10
15 L L Lo e oL L
7 8 9 10 " 12 13 1

log(C)

(e) D(29) - DPSO/C*(13)

Figure V.14 Last swarms and particles sclected as ensembles between the
datasets D(25) and D(29).



BIBLIOGRAPHY

[1] Jin-Long An, Zheng-Ou Wang, and Zhen-Ping Ma. Incremental learning algorithm for
support vector machine. In Proceedings of the 2nd International Conference on
Machine Learning and Cybernetics, pages 1153—-1156, 2003.

[2] Ion Androutsopoulos, Georgios Paliouras, Vangelis Karkaletsis, Georgios Sakkis, Con-
stantine D. Spyropoulos, and Panagiotis Stamatopoulos. Learning to filter spam
e-mail: A comparison of a naive bayesian and a memory-based approach. In Pro-
ceedings of the 4th Workshop on Machine Learning and Textual Information Access,
pages 1-13, 2000.

[3] N.E. Ayat, M. Cheriet, and C.Y. Suen. Automatic model selection for the optimization of
SVM kemels. Pattern Recognition, 38(10):1733-1745, October 2005.

[4] C. L. Blake and C. J. Merz. UCI repository of machine learning databases., 1998.
[5] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.

[6] Leo Breiman. Arcing the edge. technical report, Department of Statistics, University of
California, Berkeley, CA, 1997.

[7] Leo Breiman. Pasting small votes for classification in large databases and on-line. Machine
Learning, 36(1-2):85-103, 1999.

[8] Leo Breiman. Random forests. Machine Learning, 45(1):5-32,2001.

[9] Gavin Brown, Jeremy L. Wyatt, Rachel Harris, and Xin Yao. Diversity creation methods:
a survey and categorisation. /nformation Fusion, 6(1):5-20, 2005.

[10] Christopher J.C. Burges. A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery, 2:121-167, 1998.

[11] Doina Caragea, Adrian Silvescu, and Vasant Honavar. Incremental and distributed learning
with support vector machines. In Proceedings of the AAAI Conference on Artificial
Intelligence, page 1067, 2000.

[12] A. Carlisle and G. Dozier. Tracking changing extrema with adaptive particle swarm opti-
mizer. In Proceedings of the 5th Biannual World Automation Congress, pages 265—
270, Orlando, USA, 2002.



161

[13] Gail A. Carpenter, Stephen Grossberg, Natalya Markuzon, John H. Reynolds, and David B.
Rosen. Fuzzy ARTMAP: A neural network architecture for incremental supervised

learning of analog multidimensional maps. IEEE Transactions on Neural Networks,
3(5):698-713, 1992.

[14] Gail A. Carpenter, Stephen Grossberg, and John H. Reynolds. ARTMAP: Supervised real-
time learning and classification of nonstationary data by a self-organizing neural
network. Neural Networks, 4(5):565-588, 1991.

[15] Gail A. Carpenter and Natalya Markuzon. ARTMAP-ic and medical diagnosis: Instance
counting and inconsistent cases. Neural Networks, pages 323-336, 1998.

[16] Gail A. Carpenter and William D. Ross. Art-emap: A neural network architecture for ob-
ject recognition by evidence accumulation. /EEE Transactions on Neural Networks,
6(4):805-818, 1995.

[17] G. Cauwenberghs and T. Poggio. Incremental and decremental support vector machine
learning. In Advances in Neural Information Processing Systems, pages 409-415.
MIT Press, 2001.

[18] C. C. Chang and C.J. Lin. Libsvm: a library for support vector machines, 2005.

[19] Olivier Chapelle and Vladimir Vapnik. Model selection for support vector machines. /n
Advances in Neural Information Processing Systems, pages 230-236, 1999.

[20] Olivier Chapelle, Vladimir Vapnik, Olivier Bousquet, and Sayan Mukherjee. Choosing
multiple parameters for support vector machines. Machine Learning, 46(1-3):131—
159, 2002.

[21] C. Chatelain, S. Adam, Y. Lecourtier, L. Heutte, and T. Paquet. Multi-objective optimiza-
tion for SVM model selection. In Proceedings of the 9th International Conference
on Document Analysis and Recognition, pages 427-431, 2007.

[22] Zheng Chunhong and Jiao Licheng. Automatic parameters selection for SVM based on
GA. In Proceedings of the 5th World Congress on Intelligent Control and Automa-
tion, pages 1869-1872, 2004.

[23] Maurice Clerc. Particle Swarm Optimization. ISTE, London, 2006.

[24] Maurice Clerc and James Kennedy. The particle swarm - explosion, stability, and con-
vergence in a multidimensional complex space. [EEE Transactions on Evolutionary
Computation, 6(1):58-73, 2002.



[25] Gilles Cohen, Melanie Hilario, and Antoine Geissbuhler. Model selection for support
vector classifiers via genetic algorithms. An application to medical decision support.
In Proceedings of the Sth International Symposium on Biological and Medical Data
Analysis, pages 200-211, 2004.

[26] Lior Cohen, Gil Avrahami-Bakish, Mark Last, Abraham Kandel, and Oscar Kipersztok.
Real-time data mining of non-stationary data streams from sensor networks. /nfor-
mation Fusion, 9(3):344-353, 2008.

[27] N. Cristianini and J. Shawe-Taylor. 4n Introduction to Support Vector Machines and Other
Kernel-Based Learning Methods. Cambridge University Press, 2000.

[28] Padraig Cunningham and John Carney. Diversity versus quality in classification ensembles
based on feature selection. In Proceedings of the 11th European Conference on
Machine Learning, pages 109—116, London, UK, 2000. Springer-Verlag.

[29] Bruno Feres de Souza, Andre C. P. L. F. de Carvalho, Rodrigo Calvo, and Renato Porfirio
[shii. Multiclass SVM model selection using particle swarm optimization. In Pro-

ceedings of the 6th International Conference on Hybrid Intelligent Systems, pages
31-34, 2006.

[30] S. J. Delany, P. Cunningham, A. Tsymbal, and L. Coyle. A case-based technique for
tracking concept drift in spam filtering. Knowledge-Based Systems, 18(4-5):187—
195, 2005.

[31] S.J. Delany, P. Cunningham, A. Tsymbal, and L. Coyle. A case-based technique for track-
ing concept drift in spam filtering. In Proceedings of the XII Applications and Inno-
vations in Intelligent Systems, pages 3—16, 2004.

[32] Christopher P. Diehl and Gert Cauwenberghs. SVM incremental learning, adaptation and
optimization. In Proceedings of the International Joint Conference on Neural Net-
works, pages 2685-2690, 2003.

[33] Thomas G. Dietterich. Ensemble methods in machine learning. Lecture Notes in Computer
Science, 1857:1-15, 2000.

[34] Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems via error-
correcting output codes. Journal of Artificial Intelligence Research, 2:263-286,
1985,



163

[35] Carlotta Domeniconi and Dimitrios Gunopulos. Incrementat support vector machine con-
struction. In Proceedings of the International Conference on Data Mining, pages
589-592, 2001.

[36] Pedro Domingos. A unified bias-variance decomposition and its applications. In Pro-
ceedings of the Seventeenth International Conference on Machine Learning, pages
231-238, San Francisco, CA, USA, 2000.

[37] Weilin Du and Bin Li. Multi-strategy ensemble particle swarm optimization for dynamic
optimization. /nformation Sciences, 178(15):3096 — 3109, 2008.

[38] R.O. Duda, P.E. Hart, and David G. Stork. Pattern classification - Second Edition. Wiley
Interscience, NY, 2000.

[39] Ting fan Wu, Chih-Jen Lin, and Ruby C. Weng. Probability estimates for multi-class
classification by pairwise coupling. Journal of Machine Learning Research, 5:975—
1005, 2003.

[40] Frauke Friedrichs and Christian Igel. Evolutionary tuning of multiple SVM parameters. In
Proceedings of the 12th European Symposium on Artificial Neural Networks, pages
519-524, 2004.

[41] Venkatesh Ganti, Johannes Gehrke, and Raghu Ramakrishnan. Mining data streams under
block evolution. ACM SIGKDD Explorations Newsletter, 3(2):1-10, 2002.

[42] Giorgio Giacinto and Fabio Roli. An approach to the automatic design of multiple classifier
systems. Pattern Recognition Letters, 22(1):25-33,2001.

[43] Adam J. Grove and Dale Schuurmans. Boosting in the limit: maximizing the margin
of learned ensembles. In Proceedings of the fifieenth national/tenth conference on
Artificial intelligence/Innovative applications of artificial intelligence, pages 692—
699, Menlo Park, CA, USA, 1998.

[44] L. K. Hansen and P. Salamon. Neural network ensembles. [EEE Trans. Pattern Anal.
Mach. Intell., 12(10):993-1001, 1990.

[45] P. Henniges, E. Granger, and R. Sabourin. Factors of overtraining with fuzzy ARTMAP
neural networks. In Proceedings of the International Joint Conference on Neural
Networks, pages 1-4, 2005.

[46] Tin Kam Ho. The random subspace method for constructing decision forests. IEEE Trans.
Pattern Anal. Mach. Intell., 20(8):832-844, 1998.



164

[47] Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multiclass support vector
machines. /EEE Transactions on Neural Networks, 13(2):415-425, March 2002.

[48] Xiaohui Hu and Russell C. Eberhart. Adaptive particle swarm optimization: Detection
and response to dynamic systems. In Proceedings of the Congress on Evolutionary
Computation, pages 1666—1670, 2002.

[49] Chien-Ming Huang, Yuh-Jye Lee, Dennis K.J. Lin, and Su-Yun Huang. Model selection
for support vector machines via uniform design. Computational Statistics & Data
Analysis, 52(1):335-346, September 2007.

[50] Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining time-changing data streams.
In Proceedings of the 17th International Conference on Knowledge Discovery and
Data Mining, pages 97-106, 2001.

[51] Khaled Jabeur and Adel Guitouni. Automated learning multi-criteria classifiers for FLIR

ship imagery classification. In International Conference on Information Fusion,
pages 200-211, 2007.

[52] M. Jiang and X. Yuan. Construction and application of PSO-SVM model for personal
credit scoring. In Proceedings of the International Conference on Computational
Science, Lecture Notes in Computer Science, pages 158-161, 2007.

[53] YaochuJin and J. Branke. Evolutionary optimization in uncertain environments - A survey.
IEEE Transactions on Evolutionary Computation, 9(3):303-317, 2005.

[54] Marcelo N. Kapp, Robert Sabourin, and Patrick Maupin. An empirical study on diversity
measures and margin theory for ensembles of classifiers. In Proceedings of the 10th
International Conference on Information Fusion, pages 1-8, 2007.

[55] Marcelo N. Kapp, Robert Sabourin, and Patrick Maupin. A dynamic model selection
strategy for support vector machine classifiers. Submitted to Pattern Recognition,
2009.

[56] Marcelo N. Kapp, Robert Sabourin, and Patrick Maupin. A dynamic optimization ap-
proach for adaptive incremental learning in static environments. Submitted to Infor-
mation Science, 2009.

[57] Marcelo N. Kapp, Robert Sabourin, and Patrick Maupin. A PSO-based framework for
dynamic SVM model selection. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 1227-1234, 2009.



165

[58] M. G. Kelly, D. J. Hand, and N. M. Adams. The impact of changing populations on classi-
fier performance. In Proceedings of the 5th International Conference on Knowledge
Discovery and Data Mining, pages 367-371, 1999.

[59] J. Kennedy and R. C. Eberhart. Particle swarm intelligence. In Proceedings of the Inter-
national Conference on Neural Networks, pages 1942-1948, 1995.

[60] James Kennedy. Some issues and practices for particle swarms. In Proceedings of the
IEEE Swarm Intelligence Symposium, pages 801-808, 2007.

[61] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas. On combining classifiers. /[EEE Transac-
tions on Pattern Analysis and Machine Intelligence, 20:226-239, 1998.

[62] R. Klinkenberg and T. Joachims. Detecting concept drift with support vector machines.
In Proceedings of the 17th International Conference on Machine Learning, pages
487494, 2000.

[63] Ralf Klinkenberg. Learning drifting concepts: Example selection vs. example weighting.
Intelligence Data Analysis., 8(3):281-300, 2004.

[64] Ralf Klinkenberg and Thorsten Joachims. Detecting concept drift with support vector ma-
chines. In Proceedings of the ICML-00, 17th International Conference on Machine
Learning, pages 487-494, 2000.

[65] Ralf Klinkenberg and Stefan Ruping. Concept drift and the importance of examples. Text
Mining - Theoretical Aspects and Applications, pages 55-77, 2002.

[66] Albert Hung-Ren Ko, Robert Sabourin, and Alceu de Souza Britto Jr. Compound diversity
functions for ensemble selection. /nternational Journal of Pattern Recognition and
Artificial Intelligence, 23(4):659-686, 2009.

[67] Ron Kohavi and David H. Wolpert. Bias plus variance decomposition for zero-one loss
functions. In Lorenza Saitta, editor, Proceedings of the Thirteenth International
Conference on Machine Learning, pages 275-283. Morgan Kaufmann, 1996.

[68] J. Kolter and M. Maloof. Dynamic weighted majority: A new ensemble method for track-
ing concept drift. In Proceeding of the International Conference on Data Mining,
pages 123-130, 2003.

[69] Ludmila Kuncheva, Marina Skurichina, and Robert P. W. Duin. An experimental study
on diversity for bagging and boosting with linear classifiers. Information Fusion,
3(4):245-258, 2002.



166

[70] Ludmila I. Kuncheva. Classifier ensembles for changing environments. In Proceedings of
the 5th International Workshop on Multiple Classifier Systems, pages 1-15, 2004.

(71] Ludmila 1. Kuncheva. Combining Pattern Classifiers. John Wiley & Sons, Inc., New
Jersey, 2004.

[72] Ludmila 1. Kuncheva, James C. Bezdek, and Robert P.W. Duin. Decision templates

for multiple classifier fusion: An experimental comparison. Pattern Recognition,
34(2):299-314, 2001.

[73] Ludmila I. Kuncheva and Christopher J. Whitaker. Measures of diversity in classifier en-
sembles and their relationship with the ensemble accuracy. Mach. Learn., 51(2):181—
207, 2003.

[74] Louisa Lam. Classifier combinations: Implementations and theoretical issues. In Multiple
Classifier Systems, pages 77-86, 2000.

[75] Mihai Lazarescu, Svetha Venkatesh, and Hai Hung Bui. Using multiple windows to track
concept drift. Intelligent Data Analysis Journal, 8(1):29-59, 2004.

[76] H.-T. Lin, C.-J. Lin, and R. C. Weng. A note on Platt’s probabilistic outputs for support
vector machines. Technical report, Department of Computer Science and Informa-
tion Engineering, National Taiwain University, 2003.

[77] M. Maloof. Incremental rule learning with partial instance memory for changing concepts.
In Proceedings of the International Joint Conference on Neural Networks, pages
2764-2769, 2003.

[78] M. Maloof and R. Michalski. Selecting examples for partial memory learning. Machine
Learning, 41:27-52, 2000.

[79] D. Michie, D. J. Spiegelhalter, and C. C. Taylor. Machine learning. Neural and Statistical
Classification. ftp.ncc.up.pt/pub/statlog/.

[80] Pabitra Mitra, C. A. Murthy, and Sankar K. Pal. Data condensation in large databases
by incremental learning with support vector machines. In Proceedings of the 15th
International Conference on Pattern Recognition, pages 708—711, 2000.

[81] H.S. Mohammed, J. Leander, M. Marbach, and R. Polikar. Comparison of ensemble tech-
niques for incremental learning of new concept classes under hostile non-stationary
environments. In Proceedings of the IEEE International Conference on Systems,
Man and Cybernetics, pages 4838—4844, 2006.


ftp://ftp.ncc.up.pt/pub/statlog/

167

[82] Michael Muhlbaier and Robi Polikar. An ensemble approach for incremental learning
in nonstationary environments. In International Workshop on Multiple Classifiers
Systems, pages 490-500, 2007.

[83] A.Nickabadi, M. M. Ebadzadeh, and R. Safabakhsh. DNPSO: A dynamic niching particle
swarm optimizer for multi-modal optimization. In Proceedings of the IEEE Congress
on Computational Intelligence, pages 26-32, 2008.

[84] L. S. Oliveira. Automatic Recognition of Handwritten Numerical Strings. PhD thesis,
Ecole de Technologie Supérieure, Canada, 2003.

[85] L.S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen. A methodology for feature selec-
tion using multi-objective genetic algorithm for handwritten digit string recognition.
International Journal of Pattern Recognition and Artificial Intelligence, 17(6):903—
930, 2003.

[86] Nikunj Chandrakant Oza. Online Ensemble Learning. PhD thesis, University of California,
California, Berkeley, 2001.

[87] S. Ozawa, S. Pang, and N. Kasabov. Incremental learning of chunk data for online pattern
classification systems. [EEE Transactions on Neural Networks, 19(6):1061-1074,
2008.

[88] D. Parikh and R. Polikar. An ensemble-based incremental learning approach to data fu-
sion. [EEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
37(2):437-450, April 2007.

[89] Y. Park and J. Sklansky. Automated design of linear tree classifiers. Pattern Recognition,
23:1393-1412, 1990.

[90] D. Partridge and W. Krzanowski. Design of effective neural network ensembles for image
classification purposes. Software diversity: practical statistics for its measurement
and exploitation, 39(10):707-717, 1997.

[91] Binbin Peng, Liu Wenyin, Yin Liu, and Guanglin Huang. An SVM-based incremental
learning algorithm for user adaptation of sketch recognition. /nternational Journal
of Pattern Recognition and Artificial Intelligence, 18(8):1529-1550, 2004.

[92] J.C. Platt. Advances in Kernel Methods - Support Vector Learning. MIT Press, New York,
1999.



168

[93] Robi Polikar, Lalita Udpa, Satish S. Udpa, and Vasant Honavar. Learn++: An incremental
learning algorithm for supervised neural networks. /EEE Transactions on Systems,
Man, and Cybernetics, 31(4):497-508, 2001.

[94] Liva Ralaivola and Florence d’Alché Buc. Incremental support vector machine learning: A
local approach. In Proceedings of the International Conference on Artificial Neural
Networks, pages 322-329, 2001.

[95] Stefan Riiping. Incremental learning with support vector machines. In Proceedings of the
IEEE International Conference on Data Mining, pages 641-642, 2001.

[96] Dymitr Ruta and Bogdan Gabrys. A theoretical analysis of the limits of majority voting
errors for multiple classifier systems. Pattern Anal. Appl., 5(4):333-350, 2002.

[97] Dymitr Ruta and Bogdan Gabrys. Classifier selection for majority voting. Information
Fusion, 6(1):63 — 81, 2005.

[98] Robert E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197-227,
1990.

[99] Robert E. Schapire, Yoav Freund, Peter Barlett, and Wee Sun Lee. Boosting the mar-
gin: A new explanation for the effectiveness of voting methods. In Proceedings of
the Fourteenth International Conference on Machine Learning, pages 322-330, San
Francisco, CA, USA, 1997.

[100] J. C. Schlimmer and R. H. Granger. Incremental learning from noisy data. Machine
Learning, 1(3):317-354, 1986.

[101] D. Sculley and Gabriel M. Wachman. Relaxed online svms for spam filtering. In Pro-
ceedings of the 30th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 415-422. ACM, 2007.

[102] A.J. C. Sharkey. Combining Artificial Neural Nets : Ensemble and Modular Multi-Net
Systems (Perspectives in Neural Computing). Springer Verlag, 1999.

[103] Alistair Shilton, M. Palaniswami, Daniel Ralph, and Ah Chung Tsoi. Incremental training
of support vector machines. [EEE Transactions on Neural Networks, 16:114-131,
2005.

[104] D. B. Skalak. The sources of increased accuracy for two proposed boosting algorithms.
In Working Notes of the AAAI Workshop on Integrating Multiple Learned Models,
pages 120-125, 1996.



169

[105] K. O. Stanley. Learning concept drift with a committee of decision trees. Technical Report
Al-03-302, Department of Computer Sciences, University of Texas at Austin, USA,
2003.

[106] W. Nick Street and YongSeog Kim. A streaming ensemble algorithm (sea) for large-scale
classification. In Proceedings of the 17th International Conference on Knowledge
Discovery and Data Mining, pages 377-382, 2001.

[107] Thorsten Suttorp and Christian Igel. Multi-objective optimization of support vector ma-
chines. In Multi-Objective Machine Learning, volume 16 of Studies in Computa-
tional Intelligence, pages 199-220. 2006.

[108] N. Syed, H. Liu, and K. Sung. Incremental learning with support vector machines. In
Proceedings of the International Conference on Artificial Intelligence, 1999.

[109] Nadeem Ahmed Syed, Huan Liu, and Kah Kay Sung. Handling concept drifts in incremen-
tal learning with support vector machines. In Proceedings of the 5th International
Conference on Knowledge Discovery and Data Mining, pages 317-321, 1999.

[110] E. K. Tang, P. N. Suganthan, and X. Yao. An analysis of diversity measures. Machine
Learning, 65(1):247-271, 2006.

[111] Alexey Tsymbal, Mykola Pechenizkiy, and Padraig Cunningham. Dynamic integration
with random forests. In ECML, pages 801-808, 2006.

[112] Alexey Tsymbal, Mykola Pechenizkiy, Padraig Cunningham, and Seppo Puuronen. Han-
dling local concept drift with dynamic integration of classifiers: Domain of antibiotic
resistance in nosocomial infections. In Proceedings of the 19th IEEE Symposium on
Computer-Based Medical Systems, pages 679-684, 2006.

[113] Alexey Tsymbal, Mykola Pechenizkiy, Padraig Cunningham, and Seppo Puuronen. Dy-
namic integration of classifiers for handling concept drift. /nformation Fusion,
9(1):56-68, 2008.

[114] Aydin Ulas, Murat Semerci, Olcay Taner Yildiz, and Ethem Alpaydin. Incremen-
tal construction of classifier and discriminant ensembles. /Information Sciences,
179(9):1298-1318, 2009.

[115] G. Valentini. Ensemble methods based on bias-variance analysis. PhD thesis, University
of Genova, Genova, Italy, 2003.



170

[116] Giorgio Valentini. An experimental bias-variance analysis of SVM ensembles based on
resampling techniques. /EEE Transactions on Systems, Man, and Cybernetics, Part
B, 35(6):1252-1271, 2005.

[117] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, NY,
1995.

[118] Vladimir N. Vapnik. Statistical Learning Theory. Wiley, NY, 1998.

[119] Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han. Mining concept-drifting data streams
using ensemble classifiers. In Proceedings of the 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 226-235, 2003.

[120] Peng Wang, Haixun Wang, Xiaochen Wu, Wei Wang, and Baile Shi. On reducing classifier
granularity in mining concept-drifting data streams. In Proceedings of the 5th IEEE
International Conference on Data Mining, pages 474-481, 2005.

[121] G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden contexts.
Machine Learning, 23:69-101, 1996.

[122] Terry Windeatt. Vote counting measures for ensemble classifiers. Pattern Recognition,
36(12):2743-2756, 2003.

[123] Rong Xiao, Jicheng Wang, and Fayan Zhang. An approach to incremental SVM learning
algorithm. In Proceedings of the 12th IEEE International Conference on Tools with
Artificial Intelligence, pages 268-273, 2000.

[124] Hwanjo Yu, Jiong Yang, and Jiawei Han. Classifying large data sets using SVMs with hier-
archical clusters. In Proceedings of the 9th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 306-315, 2003.

[125] Gabriele Zenobi and Padraig Cunningham. Using diversity in preparing ensembles of
classifiers based on different feature subsets to minimize generalization error. In
Proceedings of the 12th European Conference on Machine Learning, pages 576—
587,2001.



