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Réseau profonds contraints appliqué à la segmentation d’imagerie médicale

Hoel KERVADEC

RÉSUMÉ

La segmentation sémantique faiblement supervisée, prenant la forme d’images partiellement

annotées, fait l’object d’une grande attention académie, puisqu’elle peut limiter le besoin

d’annotations (chère à produire) requises par les modèles de réseaux profonds. Imposer des

contraintes globales et non linéaires (sous la forme d’inégalités) aux prédictions d’un réseau de

neurone peut ainsi guider l’entrainement vers des solutions atanomiquement possibles, et ainsi

permettre d’utiliser des informations à priori sur la tâche. Les inégalités sont très flexibles,

puisqu’elles ne requiert pas une information précise et parfaite. L’optimisation Lagrangienne

standard a très peu été utilisée dans le cadre des réseaux de neurone, principalement à cause

du coût de calcul très élevé dû à l’alternance des mises-à-jour explicites entre paramètres et

multiplicateurs. Au cours de cette thèse, nous avons testé différents méthodes – pénalités naïves

et extension de log-barrier plus formelles – afin de contourner les limitations de l’optimisation

Lagrangienne. Les deux méthodes ont produit des résultats significativement meilleurs que les

quelques méthodes existantes (limitées quant à elles à de simples contraintes linéaires), ainsi

qu’un entraineemnt plus stable avec une meilleure convergence. L’extension des log-barrier,
plus puissante, a permis l’utilisation de fonctions plus complexes, et plus compétitives entre-

elles. Nous présentons des expériences robustes et variées, sur une multitude de tâches de

segmentation sémantique ; démontrant à la fois l’efficacité de nos méthodes et la pertinence de

l’entrainement sous contrainte dans le contexte de l’imagerie médicale. Tout le code produit

par cette thèse est disponible en ligne, et peut être réutilisé et modifié librement.

Mots-clés: optimisation sous constraintes, apprentissage profond, imagerie médicale, faible

supervision





Constrained Deep Networks for Medical Image Segmentation

Hoel KERVADEC

ABSTRACT
Weakly supervised image segmentation, in the form of partially labeled images, is attracting

significant research attention as it can mitigate the need for laborious pixel annotations required

by deep learning models. Enforcing high-order, global inequality constraints on the network

outputs can leverage unlabeled data by guiding the training with prior knowledge, restricting

the search space during training to anatomically feasible solutions. A range of possible values

(such as a lower/upper bounds on the size of a organ) can be very valuable to guide training.

However, in the context of deep neural networks, standard Lagrangian optimization has been

largely avoided, mainly due to the instability and computational complexity ensuing from

alternating explicit dual updates and stochastic optimization. Interior point methods, despite

their popularity in convex optimization, are not applicable neither, as they require a feasible

starting point, which is itself a difficult constrained problem for deep neural networks. In this

thesis, we investigate hard inequality constraints in the context of deep networks with both

quadratic penalties and more principled log-barrier extensions. We also investigate methods

to mitigate class-imbalance in segmentation problems, such as in brain lesions dataset, by

constraining the boundary of the predicted segmentation to match the ground-truth boundary.

This thesis produced five different publications as first author, and four papers as co-author. Our

papers received several awards, and we were invited to publish extended versions of our works

in two special issues of Medical Image Analysis (MedIA).

In our first contribution, we propose to introduce a differentiable penalty, which enforces in-

equality constraints directly in the loss function, avoiding expensive Lagrangian dual iterates

and proposal generation. From constrained-optimization perspective, our simple penalty-based

approach is not optimal as there is no guarantee that the constraints are satisfied. However, sur-

prisingly, it yields substantially better results than Lagrangian-based constrained convolutional

neural networks, while reducing the computational demand for training. By annotating only a

small fraction of the pixels, our approach reaches performances comparable to full supervision,

on three separate tasks. While our experiments focused on basic linear constraints such as the

target-region size and image tags, our framework can be easily extended to other non-linear

constraints, e.g., invariant shape moments and other region statistics.

In our second contribution, we propose log-barrier extensions, which approximate Lagrangian

optimization of constrained-CNN problems with a sequence of unconstrained losses. Unlike

standard interior-point and log-barrier methods, our formulation does not need an initial feasible

solution. We report comprehensive weakly supervised segmentation experiments, with various

constraints, showing that our formulation outperforms substantially the existing constrained-

CNN methods, both in terms of accuracy, constraint satisfaction and training stability.

In our third contribution, we enforce constraints on the boundary of predicted segmentation.

Widely used loss functions for CNN segmentation, such as Dice or cross-entropy, are based on



integrals over the segmentation regions. Unfortunately, for highly unbalanced segmentations,

such regional summations have values that differ by several orders of magnitude across classes,

which affects training performance and stability. We propose a boundary loss, which takes the

form of a distance metric on the space of contours, not regions. This can mitigate the difficulties

of highly unbalanced problems because it uses integrals over the interface between regions

instead of unbalanced integrals over the regions. Furthermore, a boundary loss complements

regional information. Inspired by graph-based optimization techniques for computing active-

contour flows, we express a non-symmetric 𝐿2 distance on the space of contours as a regional

integral, which avoids completely local differential computations involving contour points. This

yields a boundary loss expressed with the regional softmax probability outputs of the network,

which can be easily combined with standard regional losses and implemented with any existing

deep network architecture for N-D segmentation. We report comprehensive evaluations on

different unbalanced problems, showing that our boundary loss can yield significant increases

in performances while improving training stability.

In a fourth contribution, we investigates a curriculum-style strategy for semi-supervised CNN

segmentation, which devises a regression network to learn image-level information such as the

size of the target region. These regressions are used to effectively regularize the segmentation

network, constraining the softmax predictions of the unlabeled images to match the inferred label

distributions. Our framework is based on inequality constraints, which tolerate uncertainties in

the inferred knowledge, e.g., regressed region size. It can be used for a large variety of region

attributes. We evaluated our approach for left ventricle segmentation in magnetic resonance

images (MRI), and compared it to standard proposal-based semi-supervision strategies. Our

method achieves competitive results, leveraging unlabeled data in a more efficient manner and

approaching full-supervision performance.

In our fifth and last contribution, we propose a novel weakly supervised framework based on

several global constraints derived from box annotations. Particularly, we leverage a classical

tightness prior to a deep learning setting via imposing a set of constraints on the network outputs.

Such a powerful topological prior prevents solutions from excessive shrinking by enforcing any

horizontal or vertical line within the bounding box to contain, at least, one pixel of the target

region. Furthermore, we integrate our deep tightness prior with a global background emptiness

constraint, guiding training with information outside the bounding box. We demonstrate

experimentally that such a global constraint is much more powerful than standard cross-entropy

for the background class. The ensuing optimization problem is challenging as it takes the

form of a large set of inequality constraints on the network outputs. We solve it with a

sequence of unconstrained losses based on our log-barrier extensions. This accommodates

standard stochastic gradient descent, while avoiding computationally expensive and unstable

Lagrangian dual steps and projections. Extensive experiments over two different public data sets

and applications (prostate and brain lesions) demonstrate that the synergy between our global

tightness and emptiness priors yield competitive performances, approaching full-supervision

performances.

VIII



All the codes ensuing from this thesis are publicly available, and free to reuse and modify. The

functional programming style used makes it easy to integrate new loss functions and constraints,

with little-to-no additional coding efforts.

Keywords: constrained optimization, deep learning, medical imaging, weak supervision
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INTRODUCTION

Computer vision (CV) is an interdisciplinary field that aims to enable computers to “see”,

not simply retrieving and encoding the signal of a photographic sensor (CMOS), but rather

processing and interpreting automatically its content. In other words, computer vision attempts

to get a higher-level understanding of the image, and to mimic the capabilities of the human

visual system. This branch of artificial intelligence 1 has many real-world applications, such

as video-surveillance, autonomous driving, healthcare, industrial processes, image search and

retrieval, and so on. While there might be significant overlap, computer vision does not

necessarily imply or involve machine learning, although most of the recent literature also

belongs to that second category.

Due to the recent advances in deep learning, the past few years have witnessed an unprecedented

progress in the performances of computer vision systems, while lowering the barrier of entry

for new practitioners. Neural networks are not new LeCun, Bottou, Bengio & Haffner (1998),

but their surge in popularity and performance improvements have been enabled by other factors:

- Available computing power, often in the form of Graphical Processing Units (GPUs), reached

a tipping point enabling larger and more complex models to be trained in a reduced amount

of time.

- The multiplication of large public annotated datasets (e.g. ImageNet Russakovsky, Deng,

Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein et al. (2015), PascalVOC

Everingham, Van Gool, Williams, Winn & Zisserman (2010)), have facilitated (pre-)training

of deep models. Availability of these public benchmarks also allows a fair comparison

between methods.

1It was thought in 1966 that it could be done in a single summer project Papert (1966).



If we focus on recognition, there exist three main tasks (from easier to more difficult): image

classification, object detection and semantic segmentation—all of them illustrated in Figure

0.1.

- Image classification (Fig. 0.1). It consists of predicting a label, or a class, for the whole

image: is it a cat, a dog, a boat? Is there a tumor in this medical image, or not? The label can

be a simple binary choice (yes/no question), or take a discrete value (from a set of possible

values). When several objects of interest are present in the same image (a cat next to a dog,

for instance), it becomes difficult to assign a single label to the whole image.

- Object detection (Fig. 0.1). It goes beyond image classification by locating roughly (in the

form of a bounding box) the object. This enables the prediction of multiple (overlapping)

bounding boxes per image, each one with an independent class.

- Semantic segmentation (Fig. ??). It generalizes object detection, being more fine grained,

with the goal of locating the object exactly—it amounts to pixel-wise classification. This

gives a complete delineation of each object, as well as exact shape and size attributes, which

may play a crucial role to precisely interpret the image content. This is the application we

focus on in this PhD dissertation.

For image semantic segmentation, decades of research have produced a wealth of methods

to tackle this challenging task in multiple scenarios, including image pre-processing, thresh-

olding, graphical models Rother, Kolmogorov & Blake (2004), active shape models Cootes,

Taylor, Cooper & Graham (1995), level-sets Boykov & Funka-Lea (2006) or atlases methods

Dolz, Desrosiers & Ayed (2017); Koch, Rajchl, Bai, Baumgartner, Tong, Passerat-Palmbach,

Aljabar & Rueckert (2018). Although efficient in some specific settings, those classical ap-

proaches might be imprecise and/or too slow when dealing with more general and difficult

tasks. As in many other fields, deep learning has in the past few years pushed performances to

2



a) Classification b) Object detection c) Image segmentation

Figure 0.1 Illustration of the difference between the different tasks

new heights2. Fully Convolutional Networks (FCNs) are at the core of every state-of-the-art

method, relying on now standard architectures such as Chen, Papandreou, Kokkinos, Mur-

phy & Yuille (2015); Long, Shelhamer & Darrell (2015); Ronneberger, Fischer & Brox (2015).

Despite some astonishing results of deep learning methods, their main bottleneck remains the

need for huge datasets of labeled data—series of examples, with the corresponding inputs and

correct answers. Those examples have to be produced and assembled by humans, and the time

needed to do so varies between tasks: from a few seconds to annotate an image for classification

to several minutes for segmentation Bearman, Russakovsky, Ferrari & Li (2016). More complex

scenes, such as high-resolution street views, may take more than one hour to annotate, while

annotating a 3D medical scan may take several hours or days. Once a dataset of labeled data is

assembled (often referred to as the training set), the model parameters are tuned automatically

until its predictions match the examples as closely as possible. A change in the training set (be

it addition, omission, label noise, or shuffling) will produce a different model, which in turn

will have different predictions once put into production.

2Natural language processing also had its deep learning revolution, and humans were finally beaten in the

game of Go, to a large extent due to deep learning methods.
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Figure 0.2 https://xkcd.com/1838/

Medical imaging is the field that seeks to produce images of the human body and make it

available to the clinical setting. For the most part of history, medicine has been limited by the

(in)ability to see inside the human body, which makes harder to diagnose, understand, and treat

disease and injuries. A major breakthrough came in the late 19th century, with the discovery of

the X-rays and their medical applications by Wilhelm Röntgen—for which he was awarded the

first Nobel prize of Physics. Noticing that different parts of the human body absorbed (or did

not) different waves-lengths of radiations, it allowed to take a picture of the inside, as showed

by Figure 0.3.

With decades of refinements and cutting-edge research, contemporary imaging methods include:

- Computer tomography (CT). A rotating X-Ray machine performs a series of 2D scans at

different angles, followed by reconstructing a 3D model of the body. Because of the higher

dose of radiation the patient receives, there is safety limits on the frequencies that can be

performed. Naturally, CT-scans can image the same objects as X-rays scans—organs with

4



a) Hand mit Ringen b) Frontal view of a knee

Figure 0.3 Comparison of the first X-ray taken by Wilhem

Röntgen depicting his wife’s hand, and a modern X-ray

a high-water content, such as the brain, remains virtually invisible with it—limiting its

applications.

- Magnetic Resonance Imaging (MRI). The basic concept is that a powerful magnetic field

will excite, with pulses at the correct resonating frequency, nucleis of specific molecules3

(most of the time, the H nuclei of the𝐻2𝑂 molecules). By measuring the change of response,

and the time it takes for the molecules to relax, one is able to deduce the composition of the

scanned area. By changing the targeted molecules, measuring a different signal, or using a

contrastive agent, one is able to measure different features/modalities. As illustrated in Fig.

0.4, different modalities (such as T1 and Flair) react differently to white and gray matter.

Performing a scan remains long, and 3D images (made by stitching a series of 2D scans)

are very sensitive to motion, especially at higher resolutions. Considerable research efforts

continue to improve speed, precision and patient comfort.

- Ultrasounds. As sound waves are (partly) reflected at the accoustic boundary between

tissues (e.g., between different organs), it is possible to emit sound waves and then measure

3As Arthur C. Clarke famously stated, «Any sufficiently advanced technology is indistinguishable from magic

».
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the round-trip time of the reflected waves, making it possible to deduce the tissue layouts4.

This very portable and real-time imaging method remains noisy, and it is difficult to get

sharp images with it.

a) Ultrasound b) CT scan c) MRI (T1 modality) d) MRI (Flair

modality)

Figure 0.4 Illustration of different modern imaging methods

Selecting the best suited modality will depend on several factors: the information required by

the doctors, portability (some patients have limitations to be moved to the room containing the

scan), cost and availability of the machines. Safety can also come into play, due to radiation

exposure or the presence of non-removable metallic implants.

Notice that, contrary to natural images, medical imaging methods work in an indirect and

reactive way. A CMOS sensor will “simply" measure the light-waves emitted and reflected by

the object of interest. On the contrary, the methods we previously described first emit waves or

particules toward the body and, from the response, deduce an image.

When computer vision meets medical imaging

Nowadays, radiologists spend a considerable amount of their time looking at and annotating

medical images (often 3D volumes). Not only time consuming—reducing the experts availabil-

4What is interesting is the scalability of this method, as one can perform the same to image the center of the

Earth.
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ity for patients care or clinical research—those repetitive tasks can be error-prone. Automating

parts of their workflow could facilitate their work, and ultimately improve patients’ outcome.

Semantic image segmentation, as introduced earlier, is of crucial importance in the medical

setting, as it serves the diagnosis, treatment and follow-up of many diseases. For instance, the

segmentation of the left-ventricle in a Cine-MRI (MRI scan over time) can be used to compute

the ventricle volume over time, helping to diagnos cardiac arythmia. In oncology, it can help

target areas to radiate and organs to spare during radiotherapy. A complete segmentation of

a scan can help to design custom-made implants. Moreover, an automatic segmentation is

easier to interpret/understand and useful for quality control. Those applications and advantages

explain the considerable attention that image segmentation receives in the research community,

which translates in numerous publications in conferences in the field (Figure 0.5).

This PhD will focus on two major difficulties of image segmentation: annotations cost and data

imbalance. While natural image segmentation is similarly affected, those difficulties are much

more pronounced in the medical field.

Annotations are expensive to make

As mentioned earlier, training a deep learning model requires to assemble a curated and

annotated set of data; this is often the most expensive step of a machine learning pipeline and

its main bottleneck. For natural images, annotations can be crowd-sourced, with tools such as

ReCaptcha (Fig 0.6), Amazon Mechanical Turk, or other forms of cheap labor. In the medical

field, annotations require high expertise, restricting greatly the pool of capable annotators. As

most of the time medical images are 3D volumes, they take even longer to annotate. Proper

tooling might help, but the expert might still be required to go manually through all 2D slices.

As such, for some tasks, it may take up to one week to annotate a single image (Figure

0.7). Additionally, the difficulty is further accrued by the diversity in acquisition settings
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Figure 0.5 Word cloud of the paper titles from the Medical Imaging with Deep Learning

(Midl) 2020 conference

(manufacturer of the MRI, and its settings), which directly affects generalization performances:

subtle differences between settings might make a network trained on setting A unable to predict

correctly on setting B. A good dataset must, therefore, cover not only many patients but also

several sites, vendors and settings—which adds administrative and regulatory hurdles, as the

sharing of medical data is strictly regulated.

Data imbalance

Data imbalance refers to big discrepancy in distribution between classes of a dataset, with one

class several orders of magnitude more frequent than another. In medical semantic segmentation,

it often happens on brain lesions dataset (but not limited to), where most of the brain is healthy,

as showed in Figure 0.8. If training methods are not modified to mitigate this imbalance, the
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a) Simple task that anyone

can do

b) Non realistic

Figure 0.6 The second case is not realistic to ask to humans

Figure 0.7 Annotating such a scan can take up to one week

for a medical doctor

resulting predictions will over-predict the majority class and completely skip the rest—when

the minority class (the lesions) is the most important one to detect.

Motivations and objectives

While in the natural world, for instance, it is easy to know a car size and shape in great details

from its blueprints—which could guide a segmentation algorithm—it is difficult to use that
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Figure 0.8 Example of a very imbalanced dataset, the White Matter

Hyperintensities (WMH) MICCAI 2017 challenge. Brain lesions make

up for only 0.05% of the total number voxels, with many slices without

any lesion

information in practice. The variety of points of view (orientation, distance) and potential

occlusion creates a lot of variance in the way the object appears in a 2D image. In medical

imaging, acquisition parameters are controlled and consistent across scans: the point of view,

distance and orientation of the patient are all available information—making it easier to translate

textbook knowledge about an organ (approximate size, shape, location, ...) to a 3D scan. The

motivation to use prior knowledge directly into the training is strong: Why re-learn (through

expensive, annotated data) our expensive text-book? Radiological text reports, another existing

source of prior information, could also be used. Managing to embed those priors at training

would reduce the required amount of newly annotated data, although it is not clear how to

achieve it in the context of deep learning.

Our approach was to formulate the training of a deep network with priors as a constrained

optimization problem: the usual error minimization between labels and predictions remains

unchanged, but inequality constraints restrict the search space to only anatomically feasible so-

lutions. While elegant theoretically, it is actually very difficult to solve constrained optimization

problems when dealing with deep neural networks. As we will show in Chapter 1, despite the

extensive literature on how to handle constraints in classical convex optimization, deep learning
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brings new difficulties that are not easily manageable, for computational and memory reasons5.

Novel methods need to be developed with deep learning in mind to be able to effectively use

our prior information.

We can regroup the contributions of this dissertation in two parts, each composed of several

articles published in different conferences and journals. While they can be read independently,

their research and development was intertwined: interesting constraints (such as the ones in

Chapter 6) became apparent only once previous works proved that inequality constraints were

a useful and effective way to embed prior information. Conversely, such complex constraints

were needed to benchmark and push different optimization methods to their limits (as in Chapter

3).

Thesis outline

Background

We start with a dedicated chapter to introduce useful notions for the understanding of this

thesis and its context. Optimization basics and notations are layed down, with an emphasis

on constrained optimization and standard Lagrangian dual methods. We connect this opti-

mization framework to deep learning and standard stochastic gradient descent, highlighting

the optimization difficulties of deep learning and explaining the lack of theoretical guarantees

on convergence and optimality. While we do not cover neural network architectures in great

details, we will introduce some standard training losses and discuss their effects. A connection

to classical Random Fields methods—and how they can be used as post-processing in the deep

learning era—is made. We then present the most common forms of weak labels and supervision.

More specifically, we describe the major differences between proposal based methods (which

attempt to mimic full supervision) and direct-loss methods (which embrace the weak nature of

5As for several areas, it would not be an issue had we infinite time to train our networks.
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the labels). We argue that direct losses, while more difficult to formulate and adapt, are more

suited for weak labels. At last, we discuss the few related methods for constrained optimization

in the context of deep neural networks.

First part: Constraining deep neural networks

Constrained-CNN Losses for Weakly Supervised Segmentation

H. Kervadec, J. Dolz, M Tang, E. Granger, Y Boykov, I. Ben Ayed. Midl 2018 (Selected for

oral presentation), journal extension in MedIA, volume 54, 2019.

Weakly-supervised learning based on partially labelled images or image-tags is currently at-

tracting significant attention in CNN segmentation, as it can mitigate the need for full and

laborious pixel/voxel annotations. Enforcing high-order (global) inequality constraints on the

network output (for instance, to constrain the size of the target region) can leverage unlabeled

data, guiding the training process with domain-specific knowledge. Inequality constraints are

very flexible because they do not assume exact prior knowledge. We propose to introduce a dif-

ferentiable penalty, which enforces inequality constraints directly in the loss function, avoiding

expensive Lagrangian dual iterates and proposal generation. From constrained-optimization

perspective, our simple penalty-based approach is not optimal as there is no guarantee that the

constraints are satisfied. However, surprisingly, it yields substantially better results than the

Lagrangian-based constrained CNNs in Pathak et al. (2015a), while reducing the computational

demand for training. By annotating only a small fraction of the pixels, the proposed approach

can reach performances comparable to full supervision, on three separate tasks. While our

experiments focused on basic linear constraints such as the target-region size and image tags,

our framework can be easily extended to other non-linear constraints, e.g., invariant shape

moments Klodt & Cremers (2011) or other region statistics Lim, Jung & Kohli (2014).

12



Constrained Deep Networks: Lagrangian Optimization via Log-Barrier Extensions

H. Kervadec, J. Dolz, J. Yuan, C. Desrosiers, E. Granger, I. Ben Ayed. Pre-print.

This study investigates the optimization aspects of imposing hard inequality constraints on the

outputs of CNNs. In the context of deep networks, constraints are commonly handled with penal-

ties for their simplicity, despite their well-known limitations. Lagrangian-dual optimization has

been largely avoided, except for a few recent works, mainly due to the computational complex-

ity and stability/convergence issues caused by alternating explicit dual updates/projections and

stochastic optimization. Several studies showed that, surprisingly for deep CNNs, the theoret-

ical and practical advantages of Lagrangian optimization over penalties do not materialize in

practice. We propose a log-barrier extensions, which approximate Lagrangian optimization of

constrained-CNN problems with a sequence of unconstrained losses. Unlike standard interior-

point and log-barrier methods, our formulation does not need an initial feasible solution. We

report comprehensive weakly supervised segmentation experiments, with various constraints,

showing that our formulation outperforms substantially the existing constrained-CNN methods,

both in terms of accuracy, constraint satisfaction and training stability.

Boundary loss for highly unbalanced segmentation

H. Kervadec, J. Bouchtiba, C. Desrosiers, E. Granger, J. Dolz, I. Ben Ayed. Midl 2019

(Runner-up for best-paper award), journal extension in MedIA, volume 67, 2020.

Widely used loss functions for CNN segmentation, such as Dice or cross-entropy, are based on

integrals over the segmentation regions. Unfortunately, for highly unbalanced segmentations,

such regional summations have values that differ by several orders of magnitude across classes,

which affects training performance and stability. We propose a boundary loss, which takes the

form of a distance metric on the space of contours, not regions. This can mitigate the difficulties
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of highly unbalanced problems because it uses integrals over the interface between regions

instead of unbalanced integrals over the regions. Furthermore, a boundary loss complements

regional information. Inspired by graph-based optimization techniques for computing active-

contour flows, we express a non-symmetric 𝐿2 distance on the space of contours as a regional

integral, which avoids completely local differential computations involving contour points. This

yields a boundary loss expressed with the regional softmax probability outputs of the network,

which can be easily combined with standard regional losses and implemented with any existing

deep network architecture for N-D segmentation. We report comprehensive evaluations and

comparisons on different unbalanced problems, showing that our boundary loss can yield

significant increases in performances while improving training stability.

Second part: Constraints for medical image segmentation

Curriculum semi-supervised segmentation

H. Kervadec, J. Dolz, E. Granger, I. Ben Ayed. Miccai 2019.

This study investigates a curriculum-style strategy for semi-supervised CNN segmentation,

which devises a regression network to learn image-level information such as the size of the

target region. These regressions are used to effectively regularize the segmentation network,

constraining the softmax predictions of the unlabeled images to match the inferred label dis-

tributions. Our framework is based on inequality constraints, which tolerate uncertainties in

the inferred knowledge, e.g., regressed region size. It can be used for a large variety of region

attributes. We evaluated our approach for left ventricle segmentation in magnetic resonance

images (MRI), and compared it to standard proposal-based semi-supervision strategies. Our

method achieves competitive results, leveraging unlabeled data in a more efficient manner and

approaching full-supervision performance.
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Bounding boxes for weakly supervised segmentation: Global constraints get close to full
supervision

H. Kervadec, J. Dolz, S. Wang, E. Granger, I. Ben Ayed. Midl 2020 (Selected for oral

presentation).

We propose a novel weakly supervised learning segmentation based on several global con-

straints derived from box annotations. Particularly, we leverage a classical tightness prior to a

deep learning setting via imposing a set of constraints on the network outputs. Such a power-

ful topological prior prevents solutions from excessive shrinking by enforcing any horizontal

or vertical line within the bounding box to contain, at least, one pixel of the foreground re-

gion. Furthermore, we integrate our deep tightness prior with a global background emptiness

constraint, guiding training with information outside the bounding box. We demonstrate exper-

imentally that such a global constraint is much more powerful than standard cross-entropy for

the background class. The resulting optimization problem is challenging as it takes the form

of a large set of inequality constraints on the outputs of deep networks. We solve it with a se-

quence of unconstrained losses based on a recent powerful extension of the log-barrier method,

which is well-known in the context of interior-point methods. This accommodates standard

stochastic gradient descent (SGD) for training deep networks, while avoiding computationally

expensive and unstable Lagrangian dual steps and projections. Extensive experiments over

two different public data sets and applications (prostate and brain lesions) demonstrate that

the synergy between our global tightness and emptiness priors yield very competitive perfor-

mances, approaching full supervision and outperforming significantly DeepCut. Furthermore,

our approach removes the need for computationally expensive proposal generation.
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Code and open-source

The code of all papers is available, free to reuse/modify. While split in different repositories,

all code stem from the same (private) codebase, that expanded over the years of this PhD.

- Constrained-CNN Losses for Weakly Supervised Segmentation https://github.com/LIVIAETS/

SizeLoss_WSS

- Constrained Deep Networks: Lagrangian Optimization via Log-Barrier Extensions

https://github.com/LIVIAETS/extended_logbarrier

- Boundary loss for highly unbalanced segmentation https://github.com/LIVIAETS/surface

-loss

- Curriculum semi-supervised segmentation https://github.com/LIVIAETS/semi_curriculum

- Bounding boxes for weakly supervised segmentation: Global constraints get close to

full supervision https://github.com/LIVIAETS/boxes_tightness_prior

Co-authored publications

In addition to the aforementioned first-author publications, this thesis has also led to the

following co-authored publications.

- Constrained domain adaptation for segmentation M. Bateson, J. Dolz, H. Kervadec, H.

Lombaert, I. Ben Ayed. Miccai 2019.

- Source-Relaxed Domain Adaptation for Image Segmentation M. Bateson, H. Kervadec,

J. Dolz, H. Lombaert, I. Ben Ayed. Miccai 2020.
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- Discretely-constrained deep network for weakly supervised segmentation J. Peng, H.

Kervadec, J. Dolz, I. Ben Ayed, M. Pedersoli, C. Desrosiers. Neural Networks, volume 130,

2020.

- Laplacian pyramid-based complex neural network learning for fast MR imaging H.

Liang, Y. Gong, H. Kervadec, J. Yuan, H. Zheng, S. Wang. Midl 2020.
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CHAPTER 1

BACKGROUND

1.1 Optimization - Background and notations

1.1.1 Unconstrained optimization

Optimization , in very broad terms, consists of finding the ideal value (either a maximum or

minimum) of a function 𝑓0 : dom 𝑓 ⊆ R𝐷 → R with respect to its input 𝑥 ↦→ 𝑓0(𝑥). It has

widespread real-world applications: many decision making or system design problems can be

formulated as an optimization problem. A minimization problem is denoted as1:

min
𝑥∈dom 𝑓

𝑓0(𝑥).

An optimal solution 𝑝∗ := 𝑓0(𝑥
∗) will verify:

∀𝑦 ∈ dom 𝑓 : 𝑝∗ ≤ 𝑓0(𝑦),

while an 𝜖 sub-optimal solution 𝑥 will verify:

𝑓0(𝑥) ≤ 𝑝∗ + 𝜖 .

Apart form trivial functions, finding the optimal 𝑝∗ (or the corresponding optimal input 𝑥∗)

is usually very difficult, and cannot be solved analytically. Trying exhaustively all different

𝑥 ∈ dom 𝑓 is not feasible, more so when dealing with continuous domains and/or high di-

mensions. As finding a global solution 𝑥∗ might not be feasible, one can instead settle for

a local approximation 𝑥: a solution that is minimal in its own local neighborhood. A very

crude approach consists of starting with an initial guess 𝑥0, and then refining it with an existing

1A maximization problem can simply be transformed into a minimization problem by putting a minus sign

(−) in front of 𝑓0.



algorithm—for instance a gradient descent2. As the gradient ∇ 𝑓 (𝑥) is the slope of the function

at that point, a simple method is to follow it: go up if we maximize 𝑓0, go down if we minimize

it. The procedure is described in more details in Algorithm 9. When 𝑓0 is convex3 we have

the guarantee that 𝑥 = 𝑥∗: a global optimum—see Figure ??. If not (as in Fig. ??), the slope

pushes back toward 𝑥; it is stuck in that local minima and more complex optimization methods

are needed.

Algorithm 1.1 Overview of the gradient descent algorithm.

1 Input: Given step update 𝛾, Given stopping criterion 𝜂
2 Output: Current solution 𝑥 := 𝑥𝑡

3 Init 𝑥0 to some value in dom 𝑓 ,
4 Init 𝑡 ← 0

5 while 𝜂 is not met do
6 Δ𝑥 ← ∇ 𝑓0(𝑥

𝑡)

7 𝑥𝑡+1 ← 𝑥𝑡 − 𝛾Δ𝑥
8 𝑡 ← 𝑡 + 1

9 end

Optimization methods for convex problems are quite mature and robust. Convex problems are,

typically, quite straightforward to optimize. However, as highlighted by Boyd Boyd & Vanden-

berghe (2004), optimizing a non-convex problem is more akin to art than technology; there

is no standard method that works for everything. On the contrary, for convex problems, the

art resides in the difficulty to identify or reformulate the problem as convex. Since there exist

much more numerically efficient algorithms for convex problems, a decent strategy for some

non-convex problems might be to minimize a convex upper bound, and then refine locally the

convex upper bound.

2There is a whole subset of optimization research that focused on gradient-free optimization, but this is both

out of scope, and not applicable to deep neural networks. Here, we assume that 𝑓0 is derivable (at least once) over

its domain.

3A function is convex when, ∀𝑥, 𝑦 ∈ dom 𝑓 , 𝛼 + 𝛽 = 1 : 𝑓0 (𝛼𝑥 + 𝛽𝑦) ≤ 𝛼 𝑓0 (𝑥) + 𝛽 𝑓0 (𝑦). In other words, the

line (chord) between 𝑓0 (𝑥) and 𝑓0 (𝑦) is always above 𝑓0.
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a) Non-convex function b) Convex function

Figure 1.1 Depending on the starting point, a gradient descent will find a different

local minima for non-convex functions.

1.1.2 Constrained optimization: Lagrangian and duality

In some situations, we want not only to minimize 𝑓0, but also to enforce some conditions on the

solution; those are constraints on the optimization process, which the solution should satisfy.

Formally, constraints can be written as follows4:

min
𝑥

𝑓0(𝑥) (1.1)

subject to 𝑓1(𝑥) ≤ 0

...

𝑓𝑃 (𝑥) ≤ 0.

A basic algorithm for constrained optimization comes from Joseph-Louis Lagrange (1736-

1813), who introduced the Lagrangian-dual problem. A simplistic way to reformulate Equation

(1.1) into a unconstrained optimization problem would be to use a infinite penalty function

when the constraints are not satisfied:

min
𝑥

𝑓0(𝑥) +
𝑃∑
𝑖=1

∞[ 𝑓𝑖 (𝑥)>0] , (1.2)

4An equality constraint 𝑓𝑛 (𝑥) = 0 can be written with two inequality constraints: 𝑓𝑛 (𝑥) ≤ 0 and 𝑓𝑛 (𝑥) ≥ 0.
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where ∞[𝑎] takes the value 0 when axioms 𝑎 is False, and the value +∞ when 𝑎 is True. It

will not come as a surprise that such a discontinuous function is horrible to optimize. But first,

we can notice that:

∀𝑖 : ∞[ 𝑓𝑖 (𝑥)>0] = max
𝝀�0

𝜆𝑖 𝑓𝑖 (𝑥).

When maximizing over 𝝀 � 0 for some 𝑓𝑖 (𝑥), the optimal solution is 0 when 𝑓𝑖 (𝑥) < 0. When

𝑓𝑖 (𝑥) is positive, the optimal 𝜆 value is +∞. We can plug this reformulation back into our poorly

conditioned minimization problem (1.2):

min
𝑥

max
𝝀�0

𝑓0(𝑥) +
𝑃∑
𝑖=1

𝜆𝑖 𝑓𝑖 (𝑥). (1.3)

This problem is still difficult to optimize, but less so if we swap the minimization and maxi-

mization:

max
𝝀�0

min
𝑥

𝑓0(𝑥) +
𝑃∑
𝑖=1

𝜆𝑖 𝑓𝑖 (𝑥). (1.4)

While easier to solve, it does not have the same optimum as the original Eq (1.3) (more on that

shortly). For a fixed 𝝀, we can optimize 𝑥, this is the Lagrangian dual function:

L(𝝀) = min
𝑥

𝑓0(𝑥) +
𝑃∑
𝑖=1

𝜆𝑖 𝑓𝑖 (𝑥). (1.5)

We can easily show thatL(𝝀) ≤ 𝑝∗. Indeed, for a feasible solution 𝑥, ∀𝑖 ∈ {1, ..., 𝑃} : 𝜆𝑖 𝑓𝑖 (𝑥) ≤

0. Therefore,

𝐿(𝝀) ≤ 𝑓0(𝑥) +
𝑃∑
𝑖=1

𝜆𝑖 𝑓𝑖 (𝑥) ≤ 𝑓0(𝑥) ≤ 𝑓0(𝑥
∗) = 𝑝∗.

The non-negative difference 𝑝∗ − L(𝝀) is called the duality gap. By alternating optimization

with respect to 𝝀 and 𝑥, we decrease the duality gap, and eventually reach a gap of zero—if the

Karush-Kuhn-Tucker (KKT) conditions are met Boyd & Vandenberghe (2004). If so, strong-

duality holds and 𝑥 = 𝑥∗. This is generally not the case, and not always true even for convex

settings.
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1.2 Deep neural networks

1.2.1 High-level overview

Deep neural networks (and their ancestors the perceptron and multi-layer perceptron) are

originally inspired from a very simplified model of biological neurons. At their core, neural

networks are parametric functions, performing matrix multiplications between their inputs and

their parameters—their weights. It is those weights that we want to optimize5. Modern networks

are usually regrouped in layers, which are composed together. To increase expressiveness and

ability for the network to model more complex functions, non-linearity are added on top of the

core dot products. As such, a high-level description6 of a neural network N can be:

N(𝑥; 𝜽) := 𝑙𝑝 ◦ ... ◦ 𝑙0(𝑥), (1.6)

where each 𝑙𝑖 (𝑥) involves different operations and weights. The overall structure of a single

layer is often in the form:

𝑤𝑖, 𝑏𝑖 := 𝜽𝑖

𝑙𝑖 (𝑥; (𝑤𝑖, 𝑏𝑖)) := 𝑔(𝑥𝑤𝑖 + 𝑏𝑖),

where 𝑔 is a non-linear, derivable function. Some layers might be much simpler, whose purpose

is to reduce the dimensionality of the data (by averaging, max-pooling, or other methods).

In the context of computer vision, the convolution operation—inspired from signal processing,

where the same operation is performed on a subset of the input, in a sliding window fashion—is

at the core of many architectures. Convolutional Neural networks proved to be very effective in a

breadth of difficult computer vision tasks. Defining the network architecture (the final function

5We often read in the (scientific) literature that neural networks are trained. This terminology is actually

very close to what Alan Turing describes in his seminal paper Turing (1950) on the imitation game, where he

discusses the idea of creating an artificial kid and teaching it to be adult. While being a very interesting read,

it remains a though experiment. Using the word training for an optimization problem might be perceived as

anthropomorphism, and not necessarily very scientific.

6For the sake of simplicity here, we do not model skip connections, without any loss of generality.
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composition) is, however, not enough, as the weights 𝜽 need to be tuned for the network to

perform well. This cannot be done by hand: the weights are in a very high dimensionional

space, and the network function is quite impervious to mathematical analysis. The current

preferred method consist of first initializing the parameters randomly and then tune them over

a training set via a descent-based optimization scheme.

Let D = {(𝑥𝑛,𝑌𝑛)}𝑁𝑛=1
be a set of (input, label) pairs, where the input is fed to the

network and label is the desired output of the network. A loss function is designed in such a

way that it is minimized when the network predictions match perfectly the labels. This loss is

then optimized with respect to the network parameters 𝜽:

arg min
𝜽

∑
(𝑥𝑛,𝑌𝑛)∈D

L(N (𝑥𝑛; 𝜽), 𝑦𝑛).

Once "trained" (i.e., when the optimization procedure cannot find a better solution), we can use

those parameters for inference/deployment.

The resulting optimization problem is highly non-convex and very difficult to optimize. Using a

standard gradient descent might work decently in theory, but the resulting optimization problem

is still beyond computing capabilities of modern hardware:

min
𝜽

∑
(𝑥𝑛,𝑦𝑛)∈D

L(N (𝑥𝑛; 𝜽), 𝑌𝑛).

Performing the updates of Alg. 9 would require to store all the gradients for each data point at the

same time, which would exhaust the memory of most computers. Instead, a slight modification

of the algorithm perform a similar update, but on a different random subset of the dataset (a

batch) at each iteration. This is the Stochastic Gradient Descent (SGD): sub-batches B ⊂ D

are sampled, and we do one update with respect to that batch. The algorithm is succinctly

described in Algorithm 11.

For classification tasks, 𝑌 take a value among a set of discrete labels K = {1, ..., 𝐾}, and the

network is designed in such a way that N(·; 𝜽) ∈ R𝐾 . The class predicted by the network is the
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Algorithm 1.2 Overview of the stochastic gradient descent algorithm.

1 Input: Given step update 𝛾, Given batch size 𝐵, Given stopping criterion 𝜂
(convergence, or quality of the result), Given distribution Π, Given uniform
distribution𝑈

2 Output: Current solution 𝜃 := 𝜃𝑡

3 Init 𝜃 ∼ Π
4 Init 𝑡 := 0

5 while 𝜂 is not met do
6 Sample B ∼ 𝑈 (0, 𝑁)𝐵

7 𝐿 =
∑
𝑏∈B L(N (𝑥𝑏; 𝜃), 𝑌 𝑏)

8 Δ𝜃 = ∇𝐿
9 𝜃𝑡+1 := 𝜃𝑡 − 𝛾Δ𝜃

10 𝑡 = 𝑡 + 1

11 end

index of the output vector with the highest value:

𝑌𝑛 = arg max
𝑘∈K

N (𝑥𝑛; 𝜽)𝑘 .

This works at inference. However, during training, the arg max function is not derivable, which

makes it incompatible with gradient descent. Instead of having discrete network outputs, during

training, we use continuous probabilities: the network outputs are vectors in R𝐾 and within the

probability simplex (all the values of a simplex vector are between 0 and 1, and sum to 1). It is

easy to obtain a vector of probabilities from the raw network outputs, with the popular softmax

function:

𝑠𝑛𝜽 :=
1

𝑍
eN(𝑥𝑛;𝜽)𝑘 ,

where 𝑍 =
∑
𝑘 ′∈K eN(𝑥𝑛;𝜽)𝑘

′

is a normalizing constant. The final result 𝑠𝑛𝜽 : Ω → [0, 1]𝐾 is a

vector of continuous probabilities, within the simplex (
∑𝐾
𝑘=1 𝑠

𝑛
𝜽 (𝑘) = 1), but not necessarily on

its vertices. An exact solution will predict a probability of 1 for the class 𝑌 , and 0 for all others.
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The labels 𝑌 can similarly be re-encoded as a 𝐾 length one-hot vector, such as:

𝑦𝑛 (𝑘) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 𝑘 = 𝑌𝑛

0 otherwise.

While not required explicitly, representing the label in this way will make the operations

much simpler to define. To summarize, 𝑦𝑛 : Ω → {0, 1}𝐾 is the one-hot encoded label, and

𝑠𝑛𝜽 : Ω→ [0, 1]𝐾 is the softmax output of the network, both vectors summing to 1.

1.2.2 Neural networks for image segmentation

Image semantic segmentation is in essence pixel-wise segmentation. Let us first defineΩ ⊂ R2,3

the image spacial domain of our dataset D = {(𝑥𝑛, 𝑦𝑛)}𝑁𝑛=1
, 𝑥𝑛 being the input images and 𝑦𝑛

their corresponding one-hot encoded ground truth. For semantic segmentation, the network

architecture is designed in such a way that its output matches the dimension of the inputs:

𝑥𝑛 : Ω→ R𝑀

𝑦𝑛 : Ω→ {0, 1}𝐾

𝑠𝑛𝜽 : Ω→ [0, 1]𝐾,

where 𝑀 represent the number of modalities7 of the input.

This thesis does not focus on networks architectures, and all formulations presented are

architecture-agnostic. For readability reasons, we will simply denote onwards 𝑠𝑛𝜽 for the

softmax predictions, without referring to N(·; 𝜽) each time. We will describe losses dedicated

for semantic segmentation shortly, in Section 1.2.3. Once trained, the predicted segmentation

7Often called channels for natural images—3 in the case of RGB images, 1 for grayscale.
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can be drawn (as in the case of classification) with the arg max function:

𝑌𝑛 := [𝑌𝑛 (𝑝) ∀𝑝 ∈ Ω] (1.7)

𝑌𝑛 (𝑝) := arg max
𝑘∈K

𝑠𝑛𝜽 (𝑝, 𝑘) (1.8)

1.2.3 Training losses for segmentation

In the previous section, we discussed how the SGD algorithm will minimize a loss. There is

several standard losses used in image segmentation. As all of them are averaged over the current

batch 𝑏, for readibility reasons we will denote in this section 𝑠𝑛𝜽 (𝑝)𝑘 as 𝑠
𝑝,𝑘
𝜽 and 𝑦𝑛 (𝑝)𝑘 as 𝑦𝑝,𝑘 .

1.2.3.1 Common losses

L2 Loss is one of the simplest choices, where one minimizes the L2 norm between the one-hot

vector encoding the ground-truth and the network-predicted probability vector:

LL2(𝑠𝜽 , 𝑦) =
𝐾∑
𝑘=1

∑
𝑝∈Ω

|𝑠
𝑝,𝑘
𝜽 − 𝑦𝑝,𝑘 |2

Cross-entropy loss takes the following form, and could be viewed as the KL divergence between

the label distribution and the predicted distribution:

LCE(𝑠𝜽 , 𝑦) = −
∑
𝑘

∑
𝑝∈Ω

𝑦𝑝,𝑘 log(𝑠
𝑝,𝑘
𝜽 )

It reaches its minimum at 0, when 𝑦𝑝,𝑘 matches 𝑠
𝑝,𝑘
𝜽

Dice loss is a modification of the the common DSC index, used to measure the overlap

between two segmentations (usually the ground-truth segmentation and the predicted one). The
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formulation is relaxed to use the predicted continuous probabilities 𝑠𝜽 instead of binary labels:

L𝐷𝑆𝐶 (𝑠𝜽 , 𝑦) =
𝐾∑
𝑘=1

−
2

∑
𝑝∈Ω 𝑠

𝑝,𝑘
𝜽 𝑦𝑝,𝑘∑

𝑝∈Ω 𝑠
𝑝,𝑘
𝜽 +

∑
𝑝∈Ω 𝑦

𝑝,𝑘
.

As we want to maximize the DSC in a minimization setting, we simply add a minus sign in

front of the formula.

Notice that L𝐿2 and L𝐶𝐸 treat semantic segmentation as a purely independent pixel-wise

classification problem—the formulation is exactly the same as in other settings. L𝐷𝑆𝐶 is

slightly different in that aspect, as the loss takes into account the predictions over the whole

image.

1.2.3.2 Losses gradients

As we perform a gradient descent on those losses to train our neural network, it is interesting to

compare the range of values that the gradients (wrt. the softmax probabilities 𝑠𝜽) can take—as

it can influence the training and behavior in major ways:

𝜕L𝐿2

𝜕𝑠
𝑝,𝑘
𝜽

= 2(𝑠
𝑝,𝑘
𝜽 − 𝑦𝑝,𝑘 ) (1.9)

𝜕L𝐶𝐸

𝜕𝑠
𝑝,𝑘
𝜽

= −
𝑦𝑝,𝑘

𝑠
𝑝,𝑘
𝜽

(1.10)

𝜕L𝐷𝑆𝐶

𝜕𝑠
𝑝,𝑘
𝜽

= −
2(𝑦𝑝,𝑘U𝑘 − I𝑘 )

U𝑘2
, (1.11)

where I𝑘 =
∑
𝑝∈Ω 𝑠

𝑝,𝑘
𝜽 𝑦𝑝,𝑘 and U𝑘 =

∑
𝑝∈Ω 𝑠

𝑝,𝑘
𝜽 +

∑
𝑝∈Ω 𝑦

𝑝,𝑘 , corresponding to the intersection

and union of the two segmentations, respectively. The gradients for some ground truth and

softmax predictions are plotted in Figure 1.2.

We can easily see that −2 ≤ 𝜕L𝐿2

𝜕𝑠
𝑝,𝑘
𝜽

≤ 2 and −∞ ≤
𝜕L𝐶𝐸

𝜕𝑠
𝑝,𝑘
𝜽

≤ 0. The ranges of values are different

from one loss to the other, and it is interesting to see how each loss will push a probability
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a) 𝑦𝑝,𝑘 b) 𝑠𝑝,𝑘𝜽

c) 𝜕L𝐶𝐸

𝜕𝑠
𝑝,𝑘
𝜽

d) 𝜕L𝐿2

𝜕𝑠
𝑝,𝑘
𝜽

e) 𝜕L𝐷𝑆𝐶

𝜕𝑠
𝑝,𝑘
𝜽

Figure 1.2 Partial derivatives of commons losses wrt. 𝑠
𝑝,𝑘
𝜽 . Notice the variation in the

scale of the gradients in (c), (d), (e). Best viewed in colors at high DPI.

"down" if needed8: L𝐿2 will push it directly down with its positive gradient. On the contrary,

L𝐶𝐸 will do it in an indirect way, by pushing up the probabilities for 𝑘′ ≠ 𝑘 . One can also

notice that, for each pixel, the gradient depends solely on the pixel, and is not influenced in any

manner by its neighbors or other pixels in the image.

The case of 𝜕L𝐷𝑆𝐶

𝜕𝑠
𝑝,𝑘
𝜽

is quite different, and we can quickly see that 𝜕L𝐷𝑆𝐶

𝜕𝑠
𝑝,𝑘
𝜽

∈
{
−2

U𝑘 ,
2I𝑘

U𝑘2

}
. While the

values of U𝑘 and I𝑘 will vary between images, we can notice that the gradient boils down to

a weighted negative of the ground truth 𝑦. Furthermore, it can be shown easily (notice that I𝑘

and U𝑘 are bounded by
∑
𝑝∈Ω 𝑦

𝑝,𝑘 and |Ω|) that while −2 ≤ 𝜕L𝐷𝑆𝐶

𝜕𝑠
𝑝,𝑘
𝜽

≤ 2, values in practice will

be much closer to 0 than −2 and 2 (see the scale of values in Figure 1.2). Those small gradients

might, therefore, require to use a higher learning rate than for L𝐿2 or L𝐶𝐸 if we want to achieve

a similar convergence speed.

8As we perform a gradient descent, the gradient needs to be positive to push the probability down.
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1.2.3.3 Modified losses for imbalanced tasks

For tasks with a big data imbalance (where there is orders of magnitude more background

than foreground pixels, for instance), using an unmodified standard loss can make the training

unstable, or produce a network predicting everything as background. As the vast majority of

gradients will push the predicted probabilities down, 𝑠𝜽 will naturally remain very close to 0

over the whole image. This can cause the cross-entropy, for instance, to produce values going

to infinity for the few foreground pixels, as − log(0) = +∞.

Some modified losses have been proposed Milletari, Navab & Ahmadi (2016); Ronneberger

et al. (2015); Sudre, Li, Vercauteren, Ourselin & Cardoso (2017) to deal with this problem,

often weighting the components of the losses to give a higher priority to the few foreground

pixels. As an example, the often used Generalized Dice Loss (GDL) Sudre et al. (2017):

L𝐺𝐷𝐿 =
∑
𝑘∈K

−2
𝑤𝑘
𝐹

∑
𝑝∈Ω 𝑠

𝑝,𝑘
𝜽 𝑦𝑝,𝑘 + 𝑤𝑘

𝐹

∑
𝑝∈Ω(1 − 𝑠

𝑝,𝑘
𝜽 ) (1 − 𝑦𝑝,𝑘 )

𝑤𝑘
𝐹

(∑
𝑝∈Ω 𝑠

𝑝,𝑘
𝜽 𝑦𝑝,𝑘

)
+ 𝑤𝑘

𝐵

(∑
𝑝∈Ω(1 − 𝑠

𝑝,𝑘
𝜽 ) (1 − 𝑦𝑝,𝑘 )

) ,
where 𝑤𝑘

𝐹 = 1

(
∑

𝑝∈Ω 𝑦
𝑝,𝑘)

2 and 𝑤𝑘
𝐵 = 1

(
∑

𝑝∈Ω (1−𝑦
𝑝,𝑘 ))

2 .

1.3 Regularization and random fields in classical computer vision

1.3.1 Random fields: basics

Discrete random fields—also known as Markov random field (MRF) or conditional random

field (CRF)—have been very popular in computer vision for a long time Blake, Kohli & Rother

(2011), as they can be applied to a variety of applications and easily embed prior knowledge.

A discrete Random Field is a weighted graph G = 〈V, E〉 representing the segmentation

of an image: each node correspond to a single pixel, with an associated hidden variable

(the labels, 𝑦(𝑝)), and weighted undirected edges modelling the relationship between pixels.

E𝑝 = {𝑞 ∈ V|(𝑝, 𝑞) ∈ E} represent the set of neighbors of 𝑝—its adjacent nodes. CG

represents the set of cliques of G.
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Each node has an inherent weight, its unary potentials Φ𝑢, representing the likelihood for a

pixel to belongs to a specific target class, and can be derived from another algorithm (such as

the output of a neural network, as we will see later in Section 1.3.2).

The edges weights, called pairwise potentials Φ𝑝, can model different relationships between

pixels: "how much" they look alike, if their labels are compatible, or how far are they located

from each others—it can be used to model priors that we have about the problem. For instance,

a common prior in computer vision is about proximity: close pixels tend to have the same class.

Another one is that boundaries between classes tends to be smooth.

With those potentials, we can compute the probability of a segmentation 𝑌 (taking the form of

a Gibbs distribution):

𝑃(𝑌 |𝐼) =
1

𝑍 (𝐼)
𝑒
∑

𝑐∈CG
𝜙(𝑌𝑐 |𝐼) , (1.12)

where 𝜙(𝑌𝑐 |𝐼) is the potential of clique 𝑐 conditionned over the image 𝐼, and 1
𝑍 (𝐼) is a normalizing

constant9. Similarly, we can define the graph energy such as:

𝐸 (𝑌 |𝐼) =
∑
𝑐∈CG

𝜙𝑐 (𝑌𝑐 |𝐼) (1.13)

=
∑
𝑖∈V

𝜙𝑢 (𝑌 (𝑖) |𝐼) +
∑
(𝑖, 𝑗)∈E

𝜙𝑝 (𝑌 (𝑖), 𝑌 ( 𝑗) |𝐼). (1.14)

In other words, the graph energy represent the cost of a segmentation: assigning an unlikely

label is still possible, but it is not free. By balancing this cost across all pixels with respect to all

unary and pairwise potentials, we obtain the most likely segmentation for this specific graph. If

properly defined, the label assignment𝑌 ∗ that maximize 𝑃(𝑌 |𝐼) will produce the most desirable

output—for instance by fitting the image edges snuggingly, or having a smooth contour. An

example is given in Figure 1.3, comparing a plain segmentation (which uses unary potentials

only) and a regularized segmentation with a MRF that minimizes the length of the segmentation.

The process of finding this optimal segmentation is called the Maximum A Posteriori (MAP),

9In this section, for clarity and avoid confusion, we will refer as 𝐼 : Ω → R𝑀 as an input image. Similarly,

we will note: 𝜙(𝑌𝑐) := 𝜙(𝑌𝑐 |𝐼). The same will applies for 𝜙𝑢 and 𝜙𝑝 .
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which is an NP-hard problem:

𝑌 ∗ = arg max
𝑌

𝑃(𝑌 |𝐼) (1.15)

= arg min
𝑌

𝐸 (𝑌 |𝐼). (1.16)

a) Input image b) Using unary potentials

only

c) Final segmentation

Figure 1.3 Illustration of the regularizing effect that a MRF can have, by removing

noisy areas in the segmentation. 𝑆1 is the foreground to segment, while 𝑆0 the

background to remove.

Depending on how the potentials are defined, and the graph topology, different methods exist.

For binary assignments and sparse graphs (|E𝑖 | << |Ω|)—most commonly a Grid CRF—

methods such a Graph Cut Boykov & Funka-Lea (2006) are proved to find a global optimum

at a reasonable polynomial complexity. For fully connected graphs (|E𝑖 | = |Ω| − 1)—which

can model more complex relationships between pixels at longer spatial distances—solving

Equation (1.15) exactly becomes intractable. DenseCRFKrähenbühl & Koltun (2011b) presents

an efficient solution to compute an approximation of the solution, with convergence guarantee

of the algorithm. We detail it in the next section.
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1.3.2 Random fields as post-processing: the case of DenseCRF

CNNs for segmentation tend to have coarse outputs, due to the way the final segmentation map

𝑌 is obtained. As showed in Equation (1.7), each pixel is maximized independently and spatial

consistency is completely ignored. This can be mitigated with additional post-processing. We

present here the method of Krahenbühl et al. Krähenbühl & Koltun (2011b), which, as a

post-processing, was popularized by DeepLab Chen et al. (2015). While not solving the MAP

exactly, it computes an approximation of the problem, with convergence guarantees. First, let

us present the potentials that they use. When re-using existing softmax probabilities, the unary

potentials are simply:

𝜙𝑝 (𝑌𝑝; 𝑠𝜽) := − log
(
𝑠𝜽 (𝑝,𝑌𝑝)

)
.

The pairwise potentials take into account pixel appearances and their spatial distances:

𝜙𝑝,𝑞 (𝑌 (𝑝), 𝑌 (𝑞); 𝑥) := 1[𝑌 (𝑝)=𝑌 (𝑞)]
2∑

𝑚=1

𝑤 (𝑚)𝜅 (𝑚) (𝑝, 𝑞)

𝜅 (1) (𝑝, 𝑞) := 𝑤 (1)𝑒
−
|Ω𝑝−Ω𝑞 |

2

2𝜔2
𝛼

−
|𝑥 (𝑝)−𝑥 (𝑞) |2

2𝜔2
𝛽

𝜅 (2) (𝑝, 𝑞) := 𝑤 (2)𝑒
−
|Ω𝑝−Ω𝑞 |

2

2𝜔2
𝛾 ,

whereΩ𝑝 are the pixel coordinates and 𝑥(𝑝) their intensity,𝑤 (𝑚) are hyper-parameters balancing

the kernels. 𝜅 (1) is an appearance kernel: it ensures local consistency for similarly looking

pixels. 𝜅 (2) is a smoothness kernel, suppressing small isolated regions that are due to noise.

Informally, the final segmentation boundary has to align with the image edges, while being

smooth.
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Since solving the equation (1.15) is an NP-Hard problem, a standard method to facilitate it is

to introduce an approximate distribution 𝑄 and to minimize it’s KL divergence with 𝑃:

𝑌 := arg min
𝑌

KL(𝑄(𝑌 ) | |𝑃(𝑌 )) (1.17)

𝑄(𝑌 ) :=
∏
𝑖∈𝜈

𝑄𝑖 (𝑌𝑖)

𝑄𝑖 (𝑌𝑖 = 𝑘) :=
1

𝑍𝑖
𝑒−𝜙𝑢 (𝑌𝑖=𝑘)−

∑
𝑘 ′∈K

∑
𝑗∈𝜖𝑖

𝜙𝑝 (𝑌𝑖=𝑘,𝑌 𝑗=𝑘 ′)𝑄 𝑗 (𝑌 𝑗=𝑘 ′) .

As 𝑄 is the product of independent components, each 𝑄𝑖 can be maximized in parallel, with a

message passing algorithm such as Algorithm 1.3. The �̃� (𝑚)
𝑖 update can be accelerated even

further, by first downsampling the graph using gaussian filtering, performing the update, and

then upsampling it again.

Algorithm 1.3 Overview of Krähenbühl & Koltun (2011b) main algorithm.

1 Input: Init 𝑄𝑖 (𝑌𝑖) ←
1
𝑍𝑖
𝑒−𝜙𝑢 (𝑌𝑖) ∀𝑖

2 Output: Current solution 𝑄𝑖

3 while 𝑄𝑖 not converged do
4 �̃� (𝑚)

𝑖 (𝑘) ←
∑

𝑗∈𝜖𝑖 𝜅
(𝑚) (𝑖, 𝑗)𝑄 𝑗 (𝑘) ∀𝑖 ∈ Ω,∀(𝑚),∀𝑘 ∈ K

5 �̂�𝑖 (𝑘) ←
∑
𝑘 ′∈K 1[𝑌𝑖=𝑘 ′]

∑2
𝑚=1 𝑤

(𝑚)�̃� (𝑚)
𝑖 (𝑘) ∀𝑖,∀𝑘

6 𝑄𝑖 (𝑘) ←
1
𝑍𝑖
𝑒−𝜙𝑢 (𝑌𝑖)−�̂�𝑖 (𝑌𝑖) ∀𝑖,∀𝑘

7 end

Because of its good results and rather fast runtime, DenseCRF is now very popular and is

used in many current methods as either post-processing or internal regularizer Arnab, Zheng,

Jayasumana, Romera-Paredes, Larsson, Kirillov, Savchynskyy, Rother, Kahl & Torr (2018);

Chen et al. (2015); Rajchl et al. (2017). Some limitations remains, as the implementation is

CPU bound (which makes it slower to interract with GPU-based deep learning methods), and

the complete procedure is not derivable. The high number of hyper-parameters (such as 𝜔𝛼

and 𝜔𝛽 controling the appearance kernel, 𝜔𝛾 controlling the distance kernel, and 𝑤 (1) and 𝑤 (2)
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balancing the two) requires careful tuning on a new datasets, especially when there is a big

discrepancy in contrast and edge sharpness between samples.

1.4 Weakly supervised image segmentation

1.4.1 Partial annotations

The losses that we described in Section 1.2.3 are defined for fully annotated images, i.e., 𝑦𝑝

is known ∀𝑝 ∈ Ω. As those labels are very time consuming to produce, some faster (though

imperfect) alternatives can be envisioned, as illustrated in Figure 1.4. They can be regrouped

in two broad categories: semi-annotations and weak-annotations. Let us denote Ω𝐿 ⊆ Ω the

set of labeled pixels, and Ω𝑈 ⊆ Ω the set of unlabeled pixels, such as Ω𝐿 ∪ Ω𝑈 = Ω and

Ω𝐿 ∩Ω𝑈 = {∅}.

Semi-annotations

With those annotations, only a subset Ω𝐿 of pixels is annotated, but there is certainty about

those. Examples of such annotations include scribbles and points annotations. The rest is

unknown. Notice that Ω𝐿 = Ω correspond to the full annotation case.

Weak-annotations

In those cases, the information provided is uncertain, and often correspond to a Multiple

Instance Learning setting. This is the case, for instance, of an image-tags or bounding-boxe

annotation. For the latter, no pixels outside the bounding box belong to the object, but some

pixels inside do, although we are not certain about which ones. Other forms of weak labels may

include higher-level information, such as size, shape moments, or information derived from

radiological reports.

Certainty and uncertainty must be taken into account when designing a method that uses weak

labels.
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1.4.2 Training with partial labels

Losses from section 1.2.3 cannot be used directly, even on the restrained subset of annotated

pixels Ω𝐿 (doing so simply gives very poor results). Methods designed to use semi- and weak-

labels can be split in two broad categories: proposal based methods and direct losses methods.

Full supervision

The optimization model in full supervision takes the following general form:

min
𝜽

∑
𝑝∈Ω

L(𝑦(𝑝), 𝑠𝜽 (𝑝)),

whereL will simply one or a combination of the standard supervised-learning losses introduced

earlier.

Proposal based methods

As they attempt to mimic full supervision, proposal based methods takes the following general

form:

min
𝜽 ,�̃�

∑
𝑝∈Ω

L( �̃�(𝑝), 𝑠𝜽 (𝑝)),

where �̃� are pseudo-labels or proposals. These methods attempt to generate a full mask, and

then train on it—often alternating between the two. Methods will vary in the way they generate

the proposals, and how often they update it—it quickly involve a high number of heuristics and

hyper-parameters that must be very carefully tuned. For instance, DeepCut and other methods

Dai, He & Sun (2015); Khoreva, Benenson, Hosang, Hein & Schiele (2017); Papandreou,

Chen, Murphy & Yuille (2015); Rajchl et al. (2017) use either DenseCRF or GraphCut to

update their proposals, and might initialize the proposals with GrabCut Rother et al. (2004).

Simple-does-it Khoreva et al. (2017) adds additional heuristics, by discarding proposals where

the segmentation size goes below a certain threshold. In those methods, the proposals are

updated every few epochs. Pathak et al. Pathak et al. (2015a) introduce a proposal to enforce
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linear constraints on it, and simustaneously update network predictions and proposals at each

iteration.

Direct loss methods

The general form is simpler compared to the previous one, as there is only one variable to

optimize:

min
𝜽

∑
𝑝∈Ω𝐿

L(𝑦(𝑝), 𝑠𝜽 (𝑝)) + 𝛼R(𝑠𝜽),

where R is a regularizer and 𝛼 a scalar balancing the two objectives. Regularizers might

take different forms, such as a CRF Tang, Djelouah, Perazzi, Boykov & Schroers (2018a);

Tang, Perazzi, Djelouah, Ben Ayed, Schroers & Boykov (2018b); Zheng, Jayasumana, Romera-

Paredes, Vineet, Su, Du, Huang & Torr (2015), which can rectify erroneous segmentations

when training from scribbles only. ScribbleSup Lin, Dai, Jia, He & Sun (2016) uses super-

pixels to enforce consistency over patches of similar-looking pixels, while enabling them to

directly supervise a higher fraction of the image. The authors of Qu, Wu, Huang, Yi, Riedlinger,

De & Metaxas (2019) leverage point annotations in the context of histopathology images. From

labeled points, they derived additional information in the form of a voronoi diagram to generate

coarse labels for nuclei segmentation. Their objective function integrated the cross-entropy

with coarse labels and the conditional random field (CRF) loss in Tang et al. (2018b).

Advantages of a direct loss

We argue that proposal based methods are inherently more unstable than direct loss methods,

as early mistakes in �̃� can reinforce themselves by training the network with contradicting

information. As convolutional layers are designed to have the same activation for similar

looking patches of images, it is implicitely expected they have the same label. When this

is not the case, at the back-propagation step, the layer will be updated with two contradicting

informations—cancelling each others. On the contrary, direct losses might supervise less pixels

directly, but in a more reliable way. In this context, less is more. Dealing with those inherent
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limitations can be done only with many heuristics, ad-hoc regularizers and careful tuning of

the hyper-parameters. This is not just hypothetical, but verified experimentally in several of our

papers, where comparing to proposal based methods showed the same pattern of instability and

collapsing predictions, as showed in Figure 1.5.

a) Image b) Full mask c) Tags

d) Dot e) Scribbles f) Bounding box

Figure 1.4 Illustration and comparison of different semi- and weak-annotations. Blue

represents the background class, red the foreground class, and black is undetermined.

Figure 1.5 Evolution of the proposals from DeepCut Rajchl et al. (2017) on the

PROMISE12 dataset Litjens et al. (2014): the prostate segmentation gradually disappears

over time.
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1.5 Constrained deep networks

1.5.1 Challenges of standard Lagrangian optimization

Let us first remember the general formulation of constrained optimization in Equation (1.1),

and adapt it to a deep learning setting:

min
𝜽

∑
𝑛∈D

L(𝑠𝑛𝜽 , 𝑦
𝑛) (1.18)

subject to 𝑓1(𝑠
𝑛
𝜽) ∀𝑛 ∈ D

...

𝑓𝑃 (𝑠
𝑛
𝜽) ∀𝑛 ∈ D .

In this case, we have 𝑃 constraints to enforce on every single sample. The Lagrangian corre-

sponding to (1.18) would be:

max
𝝀�0

min
𝜽

∑
𝑛∈D

L(𝑠𝑛𝜽 , 𝑦
𝑛) +

𝑃∑
𝑖=1

𝑁∑
𝑛=1

𝜆𝑛𝑖 𝑓𝑖 (𝑠
𝑛
𝜽) (1.19)

where 𝝀 ∈ R𝑃×𝑁+ is the dual variable (or Lagrange-multiplier) vector, with 𝜆𝑛𝑖 the multiplier

associated with constraint 𝑓𝑖 (𝑠
𝑛
𝜽) ≤ 0. A standard Lagrangian would alternatively optimize

with respect to network parameters 𝜽 and dual variable 𝝀.

Lagrangian optimization has several well-known theoretical and practical advantages over

penalty methods Fletcher (1987); Gill, Murray & Wright (1981): it finds automatically the

optimal weights of the constraints, acts as a barrier for satisfied constraints and guarantees

constraint satisfaction when feasible solutions exist. Unfortunately, in the case of deep net-

works, solving exactly the Lagrangian would require to retrain completely the neural network

twice at each iteration, alternating the optimization of a CNN for the primal with SGD, and

projected gradient-ascent iterates for the dual. Due to the time-scales already at play to train

a neural network once (from a few hours to several days), it is simply not feasible. Another
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important difficulty in Lagrangian optimization is the interplay between stochastic optimization

(e.g., SGD) for the primal and the iterates/projections for the dual. Basic gradient methods have

well-known issues with deep networks, e.g., they are sensitive to the learning rate and prone

to weak local minima. Therefore, the dual part in Lagrangian optimization might obstruct the

practical and theoretical benefits of stochastic optimization (e.g., speed and strong generaliza-

tion performance), which are widely established for unconstrained deep network losses Hardt,

Recht & Singer (2016). This is in line with the results reported by the authors of Márquez-Neila,

Salzmann & Fua (2017) in the context of 3D human pose estimation. In their case, replacing

the equality constraints with simple quadratic penalties yielded better results than Lagrangian

optimization.

1.5.2 Challenges of interior point methods

Interior point methods, such as the barrier methods Boyd & Vandenberghe (2004); Fiacco & Mc-

Cormick (1990), gained a lot of popularity in 60s, as they can bypass the expensive dual-updates

of Lagrangian optimization—while still providing convergence and optimality guarantees. The

requirement for interior-point methods is to start with a feasible point (𝜽 in the case of deep

learning), such as all constraints are satisfied. Then, the original problem can be optimized with

an added barrier that gets close to infinity when the constraints approach their upper bound

(as shown in Figure 1.6). To update the example from Equation (1.18), the new optimization

problem will take the following form:

min
𝜽

∑
𝑛∈D

⎡⎢⎢⎢⎢⎣L(𝑠𝑛𝜽 , 𝑦𝑛) +
𝑃∑
𝑝=1

𝜓𝑡
(
𝑓𝑝 (𝑠

𝑛
𝜽)

)⎤⎥⎥⎥⎥⎦ (1.20)

𝜓𝑡 (𝑧) := −
1

𝑡
log(−𝑧), (1.21)

where 𝑡 > 0 is a scalar value the starts small and is gradually increased over time. Notice that

lim𝑡→+∞ 𝜙𝑡 = +∞[𝑧<0] . The reader will quickly notice that 𝜙𝑡 is undefined for 𝑧 ≥ 0, and

the infinite penalty as 𝑧 → 0 prevents the optimization procedure to ever go out of bounds.

Depending on the problem to be solved, finding a strictly feasible starting point might not be
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Figure 1.6 Parameterized

log-barrier, for different 𝑡 values.

doable analytically. In classical optimization, a first step called Phase I is required, and consists

of finding a starting point that satisfies the constraints, without considerations for optimality.

Then, a Phase II optimization will refine this starting point, using the most adapted optimization

algorithm for the task.

When dealing with deep networks, where initial weights have to be randomaly initialized, a

feasible starting point cannot be found easily. Moreover, solving the Phase I problem for deep

network is as difficult as solving Phase II. The interior point method becomes self-defeating for

deep networks: in order to solve this constrained optimization problem, one has to first solve it.

1.5.3 ReLU Lagrangian modification Nandwani et al. (2019)

To accelerate training with a Lagrangian setting, one might decide to relax the alternating

updates: for instance, re-using the parameters from the previous iteration, and updating 𝜆

less frequently—every few epochs. This not only adds arbitrary cut-offs, but also introduces

some new instabilities. As 𝜆𝑛𝑖 is updated less frequently, it can remain positive even when the

constrained function 𝑓𝑖 is satisfied ( 𝑓𝑖 (𝑠
𝑛
𝜽) ≤ 0). Because of this, the SGD on 𝜽 will continue to

minize that term, even though is should be "out of the way".
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To manage this new problem, Nandwani et al. Nandwani et al. (2019) proposed a ReLu

modification of the Lagrangian term, avoiding completely the projection steps for the dual

variables. The dual variables 𝜆𝑛𝑖 ∀𝑛 ∈ D are also regrouped into a single 𝜆𝑖 for each constrained

function 𝑓𝑖, in an attempt to save memory:

max
𝝀

min
𝜽

L(𝑆𝜽 , 𝝀) = E(𝜽) +
𝑃∑
𝑖=1

𝜆𝑖

𝑁∑
𝑛=1

max(0, 𝑓𝑖 (𝑠
𝑛
𝜽)). (1.22)

Since the gradient ∇𝝀 is always positive, 𝝀 can only increase over time. This, we argue, can

make updates and training unstable, especially when there is a high number of competing

constraints to satisfy.

1.5.4 Lagrangian with proposals Pathak et al. (2015a)

Another approach by Pathak et al. was introduced in the context of weakly supervised image

segmentation, to constraint the size of the predicted segmentation. The problem they are trying

to solve is therefore:

min
𝜽

∑
𝑛

L𝐶𝐸 (𝑦
𝑛, 𝑠𝑛𝜽) (1.23)

s.t. 𝑠𝑛𝜽
�𝑎1 − 𝑏1 � 0 ∀𝑛 ∈ D

...

𝑠𝑛𝜽
�𝑎𝑃 − 𝑏𝑃 � 0 ∀𝑛 ∈ D,

where 𝑦𝑛 is partially or completely unknown, 𝑎1, ..., 𝑎𝑃 ∈ R
|Ω| and 𝑏1, ..., 𝑏𝑃 ∈ R

𝐾 . The authors

first insight was to rewrite 𝑦𝑛 as a continuous variable (∈ [0, 1]𝐾×|Ω|), and to introduce a latent
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variable �̃�𝑛 ∈ [0, 1]𝐾×|Ω|, on which they imposed the linear constraints:

min
�̃�,𝜽

∑
𝑛

KL( �̃�𝑛 | |𝑠𝑛𝜽) (1.24)

𝑠.𝑡. �̃�𝑛�𝑎1 − 𝑏1 � 0 ∀𝑛 ∈ D

...

�̃�𝑛�𝑎𝑃 − 𝑏𝑃 � 0 ∀𝑛 ∈ D

1� �̃�𝑛𝑝 = 1 ∀𝑛 ∈ D,∀𝑝 ∈ |Ω|.

where KL denotes the KullbackLeibler divergence.

The corresponding Lagrangian is:

max
𝝀,𝝂

min
�̃�,𝜽

∑
𝑛

���KL( �̃�𝑛 | |𝑠𝑛𝜽) +
𝑃∑
𝑖=1

𝜆𝑛𝑖 ( �̃�
𝑛�𝑎𝑖 − 𝑏𝑖) +

∑
𝑝∈Ω

𝜈𝑛𝑝 (1� �̃�𝑛𝑝 − 1)
��� (1.25)

𝑠.𝑡. 𝝀 � 0,

where 𝝀 ∈ R
𝑃×|D|
+ and 𝝂 ∈ R|D|×|Ω| are the Lagrangian dual variables. Minimizing �̃�, for

constant 𝜽 , 𝝀, 𝝂, can be solved analytically. Updating 𝝀 and 𝝂 requires to perform a projected

gradient ascent10. Pathak et al. (2015a) concluded that is was best to perform this at each

minibatch, for the corresponding samples. While limited to linear functions, it could in theory

be extended to any function 𝑓𝑖. However, minimizing �̃� would not be analytically solvable

anymore, and would (in most cases) requires a dedicated descent procedure. The introduction

of latent variable �̃�𝑛 makes Pathak et al. (2015a) a proposal based method, with the same

limitations and caveats: early mistakes in the training process can reinforce themselves, or

make the training unstable when partial labels (such as scribbles) are available.

10We detail the whole algorithm and equations in the Supplemental material 4.
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Abstract

Weakly-supervised learning based on, e.g., partially labelled images or image-tags, is currently

attracting significant attention in CNN segmentation as it can mitigate the need for full and

laborious pixel/voxel annotations. Enforcing high-order (global) inequality constraints on the

network output (for instance, to constrain the size of the target region) can leverage unlabeled

data, guiding the training process with domain-specific knowledge. Inequality constraints

are very flexible because they do not assume exact prior knowledge. However, constrained

Lagrangian dual optimization has been largely avoided in deep networks, mainly for computa-

tional tractability reasons. To the best of our knowledge, the method of Pathak et al. Pathak

et al. (2015a) is the only prior work that addresses deep CNNs with linear constraints in weakly

supervised segmentation. It uses the constraints to synthesize fully-labeled training masks

(proposals) from weak labels, mimicking full supervision and facilitating dual optimization.

We propose to introduce a differentiable penalty, which enforces inequality constraints directly

in the loss function, avoiding expensive Lagrangian dual iterates and proposal generation. From

constrained-optimization perspective, our simple penalty-based approach is not optimal as there

is no guarantee that the constraints are satisfied. However, surprisingly, it yields substantially

better results than the Lagrangian-based constrained CNNs in Pathak et al. (2015a), while

reducing the computational demand for training. By annotating only a small fraction of the



pixels, the proposed approach can reach a level of segmentation performance that is comparable

to full supervision on three separate tasks. While our experiments focused on basic linear

constraints such as the target-region size and image tags, our framework can be easily extended

to other non-linear constraints, e.g., invariant shape moments Klodt & Cremers (2011) and

other region statistics Lim et al. (2014). Therefore, it has the potential to close the gap between

weakly and fully supervised learning in semantic medical image segmentation. Our code is

publicly available.

2.1 Introduction

In the recent years , deep convolutional neural networks (CNNs) have been dominating semantic

segmentation problems, both in computer vision and medical imaging, achieving ground-

breaking performances when full-supervision is available Dolz, Desrosiers & Ben Ayed (2018);

Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian, van der Laak, van Ginneken & Sánchez

(2017); Long et al. (2015). In semantic segmentation, full supervision requires laborious

pixel/voxel annotations, which may not be available in a breadth of applications, more so when

dealing with volumetric data. Furthermore, pixel/voxel level annotations become a serious

impediment for scaling deep segmentation networks to new object categories or target domains.

To reduce the burden of pixel-level annotations, weak supervision in the form partial or uncertain

labels, for instance, bounding boxes Dai et al. (2015), points Bearman et al. (2016), scribbles

Lin et al. (2016); Tang et al. (2018a), or image tags Pinheiro & Collobert (2015); Wei, Liang,

Chen, Shen, Cheng, Feng, Zhao & Yan (2017), is attracting significant research attention.

Imposing prior knowledge on the networks output in the form of unsupervised loss terms

is a well-established approach in machine learning Goodfellow, Bengio & Courville (2016);

Weston, Ratle, Mobahi & Collobert (2012). Such priors can be viewed as regularization terms

that leverage unlabeled data, embedding domain-specific knowledge. For instance, the recent

studies in Tang et al. (2018a,1) showed that direct regularization losses, e.g., dense conditional

random field (CRF) or pairwise clustering, can yield outstanding results in weakly supervised

segmentation, reaching almost full-supervision performances in natural image segmentation.
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Surprisingly, such a principled direct-loss approach is not common in weakly supervised

segmentation. In fact, most of the existing techniques synthesize fully-labeled training masks

(proposals) from the available partial labels, mimicking full supervision Kolesnikov & Lampert

(2016); Lin et al. (2016); Papandreou et al. (2015); Rajchl et al. (2017). Typically, such

proposal-based techniques iterate two steps: CNN learning and proposal generation facilitated

by dense CRFs and fast mean-field inference Krähenbühl & Koltun (2011a), which are now the

de-facto choice for pairwise regularization in semantic segmentation algorithms.

Our purpose here is to embed high-order (global) inequality constraints on the network outputs

directly in the loss function, so as to guide learning. For instance, assume that we have some

prior knowledge on the size (or volume) of the target region, e.g., in the form of lower and upper

bounds on size, a common scenario in medical image segmentation Gorelick, Schmidt & Boykov

(2013); Niethammer & Zach (2013). Let 𝐼 : Ω ⊂ R2,3 → R denotes a given training image,

with Ω a discrete image domain and |Ω| the number of pixels/voxels in the image. Ω𝐿 ⊆ Ω is a

weak (partial) ground-truth segmentation of the image, taking the form of a partial annotation

of the target region, e.g., a few points (see Figure 2.2). In this case, one can optimize a partial

cross-entropy loss subject to inequality constraints on the network outputs Pathak et al. (2015a):

min
𝜽

H(𝑆) s.t 𝑎 ≤
∑
𝑝∈Ω

𝑆𝑝 ≤ 𝑏 (2.1)

where S = (𝑆1, . . . , 𝑆 |Ω|) ∈ [0, 1] |Ω| is a vector of softmax probabilities1 generated by the

network at each pixel 𝑝 and H(𝑆) = −
∑
𝑝∈Ω𝐿

log(𝑆𝑝). Priors 𝑎 and 𝑏 denote the given upper

and lower bounds on the size (or cardinality) of the target region. Inequality constraints of

the form in (2.1) are very flexible because they do not assume exact knowledge of the target

size, unlike Boykov, Isack, Olsson & Ayed (2015); Jia, Huang, Eric, Chang & Xu (2017);

Zhang, David & Gong (2017a). Also, multiple instance learning (MIL) constraints Pathak et al.

(2015a), which enforce image-tag priors, can be handled by constrained model (2.1). Image

1The softmax probabilities take the form: 𝑆𝑝 (𝜽 , 𝐼) ∝ exp 𝑓𝑝 (𝜽 , 𝐼), where 𝑓𝑝 (𝜽 , 𝐼) is a real scalar function

representing the output of the network for pixel 𝑝. For notation simplicity, we omit the dependence of 𝑆𝑝 on 𝜽
and 𝐼 as this does not result in any ambiguity in the presentation.
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tags are a form of weak supervision, which enforce the constraints that a target region is present

or absent in a given training image Pathak et al. (2015a). They can be viewed as particular cases

of the inequality constraints in (2.1). For instance, a suppression constraint, which takes the

form
∑
𝑝∈Ω 𝑆𝑝 ≤ 0, enforces that the target region is not in the image.

∑
𝑝∈Ω 𝑆𝑝 ≥ 1 enforces

the presence of the region.

Even though constraints of the form (2.1) are linear (and hence convex) with respect to the

network outputs, constrained problem (2.1) is very challenging due to the non-convexity of

CNNs. One possibility would be to minimize the corresponding Lagrangian dual. However,

as pointed out in Márquez-Neila et al. (2017); Pathak et al. (2015a), this is computationally

intractable for semantic segmentation networks involving millions of parameters; one has to

optimize a CNN within each dual iteration. In fact, constrained optimization has been largely

avoided in deep networks Ravi, Dinh, Lokhande & Singh (2019), even thought some Lagrangian

techniques were applied to neural networks a long time before the deep learning era Platt & Barr

(1988); Zhang & Constantinides (1992). These constrained optimization techniques are not

applicable to deep CNNs as they solve large linear systems of equations. The numerical

solvers underlying these constrained techniques would have to deal with matrices of very large

dimensions in the case of deep networks Márquez-Neila et al. (2017).

To the best of our knowledge, the method of Pathak et al. Pathak et al. (2015a) is the only

prior work that addresses inequality constraints in deep weakly supervised CNN segmentation.

It uses the constraints to synthesize fully-labeled training masks (proposals) from the available

partial labels, mimicking full supervision, which avoids intractable dual optimization of the

constraints when minimizing the loss function. The main idea of Pathak et al. (2015a) is to model

the proposals via a latent distribution. Then, it minimize a KL divergence, encouraging the

softmax output of the CNN to match the latent distribution as closely as possible. Therefore, they

impose constraints on the latent distribution rather than on the network output, which facilitates

Lagrangian dual optimization. This decouples stochastic gradient descent learning of the

network parameters and constrained optimization: The authors of Pathak et al. (2015a) alternate

between optimizing w.r.t the latent distribution, which corresponds to proposal generation
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subject to the constraints2, and standard stochastic gradient descent for optimizing w.r.t the

network parameters.

We propose to introduce a differentiable term, which enforces inequality constraints (2.1) di-

rectly in the loss function, avoiding expensive Lagrangian dual iterates and proposal generation.

From constrained optimization perspective, our simple approach is not optimal as there is no

guarantee that the constraints are satisfied. However, surprisingly, it yields substantially better

results than the Lagrangian-based constrained CNNs in Pathak et al. (2015a), while reducing

the computational demand for training. In the context of cardiac image segmentation, we

reached a performance close to full supervision while using a fraction of the full ground-truth

labels (0.1%). Our framework can be easily extended to non-linear inequality constraints, e.g.,

invariant shape moments Klodt & Cremers (2011) or other region statistics Lim et al. (2014).

Therefore, it has the potential to close the gap between weakly and fully supervised learning in

semantic medical image segmentation. Our code is publicly available 3.

2.2 Related work

2.2.1 Weak supervision for semantic image segmentation

Training segmentation models with partial and/or uncertain annotations is a challenging problem

Buhmann, Ferrari & Vezhnevets (2012); Vezhnevets, Ferrari & Buhmann (2011). Due to

the relatively easy task of providing global, image-level information about the presence or

absence of objects in an image, many weakly supervised approaches used image tags to learn a

segmentation model Verbeek & Triggs (2007); Vezhnevets & Buhmann (2010). For example,

in Verbeek & Triggs (2007), a probabilistic latent semantic analysis (PLSA) model was learned

from image-level keywords. This model was later employed as a unary potential in a Markov

random field (MRF) to capture the spatial 2D relationships between neighbours. Also, bounding

boxes have become very popular as weak annotations due, in part, to the wide use of classical

2This sub-problem is convex when the constraints are convex.

3The code can be found at https://github.com/LIVIAETS/SizeLoss_WSS

49



interactive segmentation approaches such as the very popular GrabCut Rother et al. (2004). This

method learns two Gaussian mixture models (GMM) to model the foreground and background

regions defined by the bounding box. To segment the image, appearance and smoothness are

encoded in a binary MRF, for which exact inference via graph-cuts is possible, as the energies

are sub-modular. Another popular form of weak supervision is the use of scribbles, which

might be performed interactively by an annotator so as to correct the segmentation outcome.

GrabCut is a notable example in a wide body of “shallow” interactive segmentation works that

used weak supervision before the deep learning era. More recently, within the computer vision

community, there has been a substantial interest in leveraging weak annotations to train deep

CNNs for color image segmentation using, for instance, image tags Papandreou et al. (2015);

Pathak et al. (2015a); Pathak, Shelhamer, Long & Darrell (2015b); Pinheiro & Collobert

(2015); Wei et al. (2017); Xu, Schwing & Urtasun (2014), bounding boxes Dai et al. (2015);

Khoreva et al. (2017); Rajchl et al. (2017), scribbles Lin et al. (2016); Tang et al. (2018a,1);

Vernaza & Chandraker (2017); Xu, Schwing & Urtasun (2015) or points Bearman et al. (2016).

Most of these weakly supervised semantic segmentation techniques mimic full supervision by

generating full training masks (segmentation proposals) from the weak labels. The proposals

can be viewed as synthesized ground-truth used to train a CNN. In general, these techniques

follow an iterative process that alternates two steps: (1) standard stochastic gradient descent

for training a CNN from the proposals; and (2) standard regularization-based segmentation,

which yields the proposals. This second step typically uses a standard optimizer such mean-

field inference Papandreou et al. (2015); Rajchl et al. (2017) or graph cuts Lin et al. (2016).

In particular, the dense CRF regularizer of Krähenbühl and Koltun Krähenbühl & Koltun

(2011a), facilitated by fast parallel mean-field inference, has become very popular in semantic

segmentation, both in the fully Arnab et al. (2018); Chen et al. (2015) and weakly Papandreou

et al. (2015); Rajchl et al. (2017) supervised settings. This followed from the great success of

DeepLab Chen et al. (2015), which popularized the use of dense CRF and mean-field inference

as a post-processing step in the context fully supervised CNN segmentation.

50



An important drawback of these proposal strategies is that they are vulnerable to errors in the

proposals, which might reinforce themselves in such self-taught learning schemes Chapelle,

Schölkopf & Zien (2006), undermining convergence guarantee. The recent approaches in Tang

et al. (2018a,1) have integrated standard regularizers such as dense CRF or pairwise graph

clustering directly into the loss functions, avoiding extra inference steps or proposal generation.

Such direct regularization losses achieved state-of-the-art performances for weakly supervised

color segmentation, reaching near full-supervision accuracy. While these approaches encourage

pairwise consistencies between pixels during training, they do not explicitly impose global

constraint as in (2.1).

2.2.2 Medical image segmentation with weak supervision

Despite the increasing amount of works focusing on weakly supervised deep CNNs in semantic

segmentation of color images, leveraging weak annotations in medical imaging settings is

not simple. To our knowledge, the literature on this matter is still scarce, which makes weak-

supervision approaches appealing in medical image segmentation. As in color images, common

settings for weak annotations are bounding boxes. For instance, DeepCut Rajchl et al. (2017)

follows a similar setting as Papandreou et al. (2015). It generates image proposals, which

are refined by a dense CRF before being re-used as “fake” labels to train the CNN. Using the

bounding boxes as initializations for the Grab-cut algorithm, the authors showed that, by this

iterative optimization scheme, one can obtain a performance better than the shallow counterpart,

i.e., GrabCut. In another weakly supervised scenario Rajchl, Lee, Schrans, Davidson, Passerat-

Palmbach, Tarroni, Alansary, Oktay, Kainz & Rueckert (2016), images were segmented in

an unsupervised manner, generating a set of super-pixels Achanta, Shaji, Smith, Lucchi, Fua,

Süsstrunk et al. (2012), among which users had to select the regions belonging to the object

of interest. Then, these masks generated from the super-pixels were employed to train a CNN.

Nevertheless, as proposals are generated in an unsupervised manner, and due to the poor contrast

and challenging targets typically present in medical images, these “fake” labels are likely prone

to errors, which can be propagated during training, as stated before.
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2.2.3 Constrained CNNs

To the best of our knowledge, there are only a few recent works Jia et al. (2017); Márquez-

Neila et al. (2017); Pathak et al. (2015a) that addressed imposing global constraints on deep

CNNs. In fact, standard Lagrangian-dual optimization has been completely avoided in modern

deep networks involving millions of parameters. As pointed out recently in Márquez-Neila

et al. (2017); Pathak et al. (2015a), there is a consensus within the community that imposing

constraints on the outputs of deep CNNs that are common in modern computer vision and

medical image analysis problems is impractical: the direct use of Lagrangian-dual optimization

for networks with millions of parameters requires training a whole CNN after each iterative

dual step Pathak et al. (2015a). To avoid computationally intractable dual optimization, Pathak

et al. Pathak et al. (2015a) imposed inequality constraints on a latent distribution instead of

the network output. This latent distribution describes a “fake” ground truth (or segmentation

proposal). Then, they trained a single CNN so as to minimize the KL divergence between

the network probability outputs and the latent distribution. This prior-art work is the most

closely related to our study and, to our knowledge, is the only work that addressed inequality

constraints in weakly supervised CNN segmentation. The work in Márquez-Neila et al. (2017)

imposed hard equality constraints on 3D human pose estimation. To tackle the computational

difficulty, they used a Kyrlov sub-space approach and limited the solver to only a randomly

selected sub-set of the constraints within each iteration. Therefore, constraints that are satisfied

at one iteration may not be satisfied at the next, which might explain the negative results

in Márquez-Neila et al. (2017). A surprising result in Márquez-Neila et al. (2017) is that

replacing the equality constraints with simple 𝐿2 penalties yields better results than Lagrangian

optimization, although such a simple penalty-based formulation does not guarantee constraint

satisfaction. A similar 𝐿2 penalty was used in Jia et al. (2017) to impose equality constraints

on the size of the target regions in the context of histopathology segmentation. While the

equality-constrained formulations in Jia et al. (2017); Márquez-Neila et al. (2017) are very

interesting, they assume exact knowledge of the target function (e.g., region size), unlike the
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inequality-constraint formulation in (2.1), which allows much more flexibility as to the required

prior domain-specific knowledge.

2.3 Proposed loss function

We propose the following loss for weakly supervised segmentation:

H(𝑆) + 𝜆 C (𝑉𝑆), (2.2)

where 𝑉𝑆 =
∑
𝑝∈Ω 𝑆𝑝, 𝜆 is a positive constant that weighs the importance of constraints, and

function C is given by (See the illustration in Fig. ??):

C(𝑉𝑆) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(𝑉𝑆 − 𝑎)

2 , if 𝑉𝑆 < 𝑎

(𝑉𝑆 − 𝑏)
2 , if 𝑉𝑆 > 𝑏

0, otherwise

(2.3)

Now, our differentiable term C accommodates standard stochastic gradient descent. During

back-propagation, the term of gradient-descent update corresponding to C can be written as

follows:

−
𝜕C(𝑉𝑆)

𝜕𝜽
∝

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(𝑎 −𝑉𝑆)

𝜕𝑆𝑝
𝜕𝜽 , if 𝑉𝑆 < 𝑎

(𝑏 −𝑉𝑆)
𝜕𝑆𝑝
𝜕𝜽 , if 𝑉𝑆 > 𝑏

0, otherwise

(2.4)

where
𝜕𝑆𝑝
𝜕𝜽 denotes the standard derivative of the softmax outputs of the network. The gradient

in (2.4) has a clear interpretation. During back-propagation, when the current constraints are

satisfied, i.e., 𝑎 ≤ 𝑉𝑆 ≤ 𝑏, observe that
𝜕C(𝑉𝑆)
𝜕𝜽 = 0. Therefore, in this case, the gradient

stemming from our term has no effect on the current update of the network parameters. Now,

suppose without loss of generality that the current set of parameters 𝜽 corresponds to 𝑉𝑆 < 𝑎,

which means the current target region is smaller than its lower bound 𝑎. In this case of constraint

violation, term (𝑎 − 𝑉𝑆) is positive and, therefore, the first line of (2.4) performs a gradient
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ascent step on softmax outputs, increasing 𝑆𝑝. This makes sense because it increases the

size of the current region, 𝑉𝑆, so as to satisfy the constraint. The case 𝑉𝑆 > 𝑏 has a similar

interpretation.

Figure 2.1 Illustration of our differentiable

loss for imposing soft size constraints on the

target region.

The next section details the dataset, the weak annotations and our implementation. Then, we

report comprehensive evaluations of the effect of our constrained-CNN losses on segmentation

performance. We also report comparisons to the Lagrangian-based constrained CNN method

in Pathak et al. (2015a) and to the fully supervised setting.

2.4 Experiments

2.4.1 Medical Image Data

In this section, the proposed loss function is evaluated on three publicly available datasets, each

corresponding to a different application—cardiac, vertebral body and prostate segmentation.

Below are additional details of these data sets.
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Left-ventricle (LV) on cine MRI

A part of our experiments focused on left ventricular endocardium segmentation. We used the

training set from the publicly available data of the 2017 ACDC Challenge4. This set consists

of 100 cine magnetic resonance (MR) exams covering well defined pathologies: dilated car-

diomyopathy, hypertrophic cardiomyopathy, myocardial infarction with altered left ventricular

ejection fraction and abnormal right ventricle. It also included normal subjects. Each exam

contains acquisitions only at the diastolic and systolic phases. The exams were acquired in

breath-hold with a retrospective or prospective gating and a SSFP sequence in 2-chambers,

4-chambers and in short-axis orientations. A series of short-axis slices cover the LV from the

base to the apex, with a thickness of 5 to 8 mm and an inter-slice gap of 5 mm. The spatial

resolution goes from 0.83 to 1.75 mm2/pixel. For all the experiments, we employed the same

75 exams for training and the remaining 25 for validation.

Vertebral body (VB) on MR-T2

This dataset contains 23 3D T2-weighted turbo spin echo MR images from 23 patients and the

associated ground-truth segmentation, and is freely available from 5. Each patient was scanned

with 1.5 Tesla MRI Siemens scanner (Siemens Healthcare, Erlangen, Germany) to generate T2-

weighted sagittal images. All the images are sampled to have the same sizes of 39×305×305

voxels, with a voxel spacing of 2×1.25×1.25 mm3. In each image, 7 vertebral bodies, from T11

to L5, were manually identified and segmented, resulting in 161 labeled regions in total. For

this dataset, we employed 15 scans for training and the remaining 5 for validation.

Prostate segmentation on MR-T2

The third dataset was made available at the MICCAI 2012 prostate MR segmentation challenge6.

It contains the transversal T2-weighted MR images of 50 patients acquired at different centers

4https://www.creatis.insa-lyon.fr/Challenge/acdc/

5http://dx.doi.org/10.5281/zenodo.22304

6https://promise12.grand-challenge.org
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with multiple MRI vendors and different scanning protocols. It is comprised of various diseases,

i.e., benign and prostate cancers. The images resolution ranges from 15 × 256 × 256 to

54× 512× 512 voxels with a spacing ranging from 2× 0.27× 0.27 to 4× 0.75× 0.75mm3. We

employed 40 patients for training and 10 for validation.

2.4.2 Weak annotations

To show that the proposed approach is robust to the strategy for generating the weak labels,

as well as to their location, we consider two different strategies generating weak annotations

from fully labeled images. Figure 2.2 depicts some examples of fully annotated images and the

corresponding weak labels.

Erosion

For the left-ventricle dataset, we employed binary erosion on the fully annotations with a kernel

of size 10×10. If the resulted label disappeared, we repeated the operation with a smaller kernel

(i.e., 7×7) until we get a small contour. Thus, the total number of annotated pixels represented

the 0.1% of the labeled pixels in the fully supervised scenario. This correspond to the second

row in Figure 2.2.

Random point

The weak labels for the vertebral body and prostate datasets were generated by randomly

selecting a point within the ground-truth mask and creating a circle around it with a maximum

radius of 4 pixels (fourth and sixth row in Fig. 2.2), while ensuring there is no overlap with

the background. With these weak annotations, only 0.02% of the pixels in the dataset have

ground-truth labels.
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Figure 2.2 Examples of different levels of supervision. In the fully labeled

images (top), all pixels are annotated, with red depicting the background

and green the region of interest. In the weakly supervised cases (bottom),

only the labels of the green pixels are known. The images were cropped for

a better visualization of the weak labels. The original images are of size 256

× 256 pixels.
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2.4.3 Different levels of supervision

Training models with diverse levels of supervision requires that appropriate objectives be

defined for each case. In this section, we introduce the different models, each with different

levels of supervision.

2.4.3.1 Baselines

We trained a segmentation network from weakly annotated images with no additional infor-

mation, which served as a lower baseline. Training this model relies on minimizing the

cross-entropy corresponding to the fraction of labeled pixels: H(𝑆) = −
∑
𝑝∈Ω𝐿

log(𝑆𝑝). In the

following discussion of the experiments, we refer to this model as partial cross-entropy (CE).

As an upper baseline, we resort to the fully-supervised setting, where class labels (foreground

and background) are known for every pixel during training (Ω𝐿 = Ω). This model is referred to

as fully-supervised.

2.4.3.2 Size constraints

We incorporated information about the size of the target region during training, and optimized

the partial cross-entropy loss subject to inequality constraints of the general form in Eq. (2.1).

We trained several models using the same weakly annotated images but different constraint

values.

Image tags bounds

Similar to MIL scenarios, we first used image-tag priors by enforcing the presence or absence

of a the target in a given training image, as introduced earlier. This reduces to enforcing that

the size of the predicted region is less or equal to 0 if the target is absent from the image, or
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larger than 0 otherwise. To simplify the implementation, we can represent the constraints as:

𝑎, 𝑏 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, |Ω| if target is present (Ω𝐿 ≠ ∅)

0, 0 otherwise

. (2.5)

While being very coarse, these constraints convey relevant information about the target regions,

which may be used to find common patterns in the case of region absence or presence.

Common bounds

The next level of supervision consists of using tighter bounds for the positive cases, instead of

(1, |Ω|). To this end, the complete segmentation of a single patient is employed to compute

the minimum and maximum size of the target region across all the slices. Then, we multiplied

these minimum and maximum values by 0.9 and 1.1, respectively, to account for inter-patient

variability. In this case, all the images containing the object of interest have the same lower and

upper bounds. As an example, this results in the following values for the ACDC dataset:

𝑎, 𝑏 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
60, 2000 if target is present (Ω𝐿 ≠ ∅)

0, 0 otherwise

. (2.6)

Individual bounds

With common bounds, the range of values for a given target may be very large. To investigate

whether a more precise knowledge of the target is helpful, we also consider the use of individual

bounds for each slice, based on the true size of the region:

𝜏𝑌 =
∑
𝑝∈Ω

𝑌𝑝,
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with 𝑌 = (𝑌1, ..., 𝑌|Ω|) ∈ {0, 1}|Ω| denoting the full annotation of image 𝐼. As before, we

introduce some uncertainty on the target size, and multiply 𝜏𝑌 by the same lower and upper

factors, resulting in the following bounds:

𝑎, 𝑏 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.9𝜏𝑌 , 1.1𝜏𝑌 if target is present (Ω𝐿 ≠ ∅)

0, 0 otherwise

. (2.7)

2.4.3.3 Hybrid training

We also investigate whether combining our proposed weak supervision approach with fully

annotated images during the training leads to performance improvements. For this purpose,

considering we have a training set of 𝑚 weakly annotated images, we replace 𝑛 (𝑛 < 𝑚) among

these by their fully annotated counterparts. Thus, the training amounts to minimizing the cross-

entropy loss for the 𝑛 fully annotated images, along with the partial cross-entropy constrained

with common size bounds for the remaining 𝑚 − 𝑛 weakly labeled images. To examine the

positive effect of size constraints in this scenario (referred to as Hybrid), we compare the results

to a network trained with the 𝑛 fully annotated images (without constraints).

2.4.4 Constraining a 3D volume

We can extend our formulation to constrain a 3D volume as follows:

∑
𝑆∈B

H(𝑆) + 𝜆C(𝑉B), with 𝑉B =
∑
𝑆∈B

𝑉𝑆
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where 𝑉B denotes the target-region volume, B = ((𝑌1, 𝑆1), ..., (𝑌 |𝐵|, 𝑆 |𝐵|)) denotes a training

batch containing all the 2D slices of the 3D volume7, and the 3D constraints are now given by:

𝑎, 𝑏 = 0.9𝜏B, 1.1𝜏B, with 𝜏B =
∑
𝑌∈B

𝜏𝑌

Notice that, with constraints on the whole 3D volume, we have less supervision than the 2D

scenarios from 2.4.3.2, where all the 2D slices have independent supervision (e.g., the image

tags).

2.4.5 Training and implementation details

For the experiments on the left-ventricle and vertebral-body datasets, we used ENet Paszke,

Chaurasia, Kim & Culurciello (2016), as it has shown a good trade-off between accuracy and

inference time. Due to the higher difficulty of the prostate segmentation task, we employed a

fully residual version of U-Net Ronneberger et al. (2015), similar to Quan, Hildebrand & Jeong

(2016).

For the three datasets, we trained the networks from scratch using the Adam optimizer and

an initial learning rate of 5 × 10−4 that we decreased by a factor of 2 if the performances

on the validation set did not improve over 20 epochs. All the 3D volumes were sliced into

256 × 256 pixels images, and zero-padded when needed. Batch sizes were equal to 1, 4, and

20 for the left-ventricle, prostate and vertebral body, respectively. Those values were not tuned

for optimal performances, but to speed-up experiments when enough data were available. The

weight of our loss in (2.2) was empirically set to 1×10−2. Due to the difficulty of the task, data

augmentation was used for the prostate dataset, where we generated 4 copies of each training

image using random mirroring, flipping and rotation.

7For readability, we simplify a batch as a list of labels 𝑌 and associated predictions 𝑆.
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All our tests were implemented in Pytorch Paszke, Gross, Chintala, Chanan, Yang, DeVito, Lin,

Desmaison, Antiga & Lerer (2017). We ran the experiments on a machine equipped with a

NVIDIA GTX 1080 Ti GPU (11GBs of video memory), AMD Ryzen 1700X CPU and 32GBs

of memory. The code is available at https://github.com/LIVIAETS/SizeLoss_WSS. We used

the common Dice similarity coefficient (DSC) to evaluate the segmentation performance of

trained models.

Modification and tweaks for Lagrangian proposals

For a fair comparison, we re-implemented the Lagrangian-proposal method of Pathak et al.

Pathak et al. (2015a) in PyTorch, to take advantage of GPU capabilities and avoid costly transfers

between GPU and CPU. Lagrangian proposals reuse the same network and loss function as

the fully-supervised setting. At each iteration, the method alternates between two steps. First,

it synthesizes a ground truth 𝑌 with projected gradient ascent (PGA) over the dual variables,

with the network parameters fixed. Then, for fixed 𝑌 , the cross-entropy between 𝑌 and 𝑆 is

optimized as in standard fully-supervised CNN training. The learning rate used for this PGA

was set experimentally to 5 × 10−5, as sub-optimal values lead to numerical errors. We found

that limiting the number of iterations for the PGA to 500 (instead of the original 3000) saved

time without affecting the results. We also introduced an early stopping mechanism into the

PGA in the case of convergence, to improve speed without impacting the results (a comparison

can be found in Table 2.5). The constraints of the form 0 ≤ 𝑉𝑆 ≤ 0 required specific care, as

the formulation from Pathak et al. (2015a) is not designed to work on equalities, unlike our

penalty approach, which systematically handles equality constraints when 𝑎 = 𝑏. In this case,

the bounds for Pathak et al. (2015a) were modified to −1 ≤ 𝑉𝑆 ≤ 0.

2.5 Results

To validate the proposed approach, we first performed a series of experiments focusing on

LV segmentation. In Sec. 2.5.1, the impact of including size constraints is evaluated using

our direct penalty. We further compare to the Lagrangian-proposal method in Pathak et al.
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(2015a), showing that our simple method yields substantial improvements over Pathak et al.

(2015a) in the same weakly supervised settings. We also provide the results for several degrees

of supervision, including hybrid and fully supervised learning in Sec. 2.5.2. Then, to show

the wide applicability of the proposed constrained loss, results are reported for two other

applications in Sec. 2.5.3: MR-T2 vertebral body segmentation and prostate segmentation task.

We further provide qualitative results for the three applications in Sec. 2.5.4. In Sec. 2.5.5, we

investigate the sensitivity of the proposed loss to both the lower and upper bounds. Finally, the

efficiency of different learning strategies are compared (Sec. 2.5.6), showing that our direct

constrained-CNN loss does not add to the training time, unlike the Lagrangian-proposal method

in Pathak et al. (2015a).

2.5.1 Weakly supervised segmentation with size constraints

2D segmentation

Table 2.1 reports the results on the left-ventricle validation set for all the models trained with

both the Lagrangian proposals in Pathak et al. (2015a) and our direct loss. As expected,

using the partial cross entropy with a fraction of the labeled pixels yielded poor results, with

a mean DSC less than 15%. Enforcing the image-tag constraints, as in the MIL scenarios,

increased substantially the DSC to a value of 0.7924. Using common bounds increased the

results marginally in this case, slightly increasing the mean Dice value by 1%. The Lagrangian

proposal Pathak et al. (2015a) reaches similar results, albeit slightly lower and much more

unstable than our penalty approach (see Figure 2.3).

The difference in performance is more pronounced when we employ individual bounds instead.

In this setting, our method achieves a DSC of 0.8708, only 2% lower than full supervision.

However, the Lagrangian-proposal method achieves a performance similar to using common

(loose) bounds, suggesting that it is not able to make use of this extra, more precise information.

This can be explained by its proposal-generation method, which tends to reinforce early mistakes

(especially when training from scratch): the network is trained with conflicting information—
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i.e., similar-looking patches are both foreground and background according the the synthetic

ground truth—and is not able to recover from those initial mis-classifications.

3D segmentation

Constraining the size of the 3D volume of the target region also shows the benefit of our penalty

approach, yielding a mean DSC of 0.8580. Recall that, here, we are using less supervision than

the 2D case. Since we do not use tag information in this case, these results suggest that only a

fraction of all the slices may be used when creating the labels, allowing annotators to scribble

the 3D image directly instead of going through all the 2D slices one by one.

Table 2.1 Left-ventricle segmentation results with different levels of supervision. Bold

font highlights the best weakly supervised setting.

Model Method DSC (Val)

Weakly

supervised

Partial CE 0.1497

CE + Tags Lagrangian Proposals Pathak et al. (2015a) 0.7707

Partial CE + Tags Direct loss (Ours) 0.7924

CE + Tags + Size* Lagrangian Proposals Pathak et al. (2015a) 0.7854

Partial CE + Tags + Size* Direct loss (Ours) 0.8004

CE + Tags + Size** Lagrangian Proposals Pathak et al. (2015a) 0.7900

Partial CE + Tags + Size** Direct loss (Ours) 0.8708
CE + 3D Size** Lagrangian Proposals Pathak et al. (2015a) N/A

Partial CE + 3D Size** Direct loss (Ours) 0.8580

Fully

supervised
Cross-entropy 0.8872

*Common bounds / ** Individual bounds

2.5.2 Hybrid training: mixing fully and weakly annotated images

Table 2.2 and Figure 2.4 summarize the results obtained when combining weak and full supervi-

sion. First, and as expected, we can observe that adding 𝑛 fully annotated images to the training

set (Hybrid_𝑛) improves the performances in comparison to the model trained solely with the

weakly annotated images, i.e., Weak_All. Particularly, the DSC increases by 4%,5% and 6%
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Figure 2.3 Evolution of the DSC during training for the left-ventricle validation set,

including the weakly supervised learning models and different strategies analyzed, with

also the full-supervision setting. As tags and common bounds achieve similar results, we

plot only common bounds for better readability.

when 𝑛 is equal to 5,10 and 25, respectively, approaching the full-supervision performance with

only 25% of the fully labeled images.

Nevertheless, it is more interesting to see the impact of adding weakly annotated images (i.e.,

Hybrid_𝑛) to a model trained solely with fully labeled images (i.e., Full_𝑛). From the results,

we can observe that adding weakly annotated images to the training set significantly increases

the performance, particularly when the amount of fully annotated images (i.e., 𝑛) is limited. For

instance, in the case of 𝑛 equal to 5, adding weakly annotated images enhanced the performance

by more than 30% in comparison to full supervision with 𝑛 equal to 5. Despite the fact that this

gap decreases with the number of fully annotated images, the difference between both settings

(i.e., Full and Hybrid) remains significant. More interestingly, training the same model with a

high amount of weakly annotated images and no or a very reduced set of fully labeled images

(for example Weak_All or Hybrid_5) achieves better performances than employing datasets

with much higher numbers of fully labeled images, e.g, Full_25.
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These results suggest that a good strategy when annotating a new dataset might be to start with

weak labels for all the images, and progressively complete full annotations, should ressources

become available.

Table 2.2 Ablation study on the amounts of fully and weakly labeled

data. We report the mean DSC of all the testing cases, for all the

settings and using the same architecture.

Name Training approach
# Fully/Weakly

annotated images
DSC

Weak_All Weak supervision* 0/150 0.8004

Full_5 Full supervision 5/0 0.5434

Hybrid_5 Full + weak supervision* 5/145 0.8386

Full_10 Full supervision 10/0 0.6004

Hybrid_10 Full + weak supervision* 10/140 0.8475

Full_25 Full supervision 25/0 0.7680

Hybrid_25 Full + weak supervision* 25/125 0.8641

Full_All Full supervision 150/0 0.8872

*Common bounds

2.5.3 MR-T2 vertebral body and prostate segmentation

The results obtained for the vertebral-body dataset (Table 2.3) highlight well the differences in

the performances of different levels of supervision. Using tag bounds produces a network that

roughly locates the object of interest (DSC of 0.5597), but fails to identify its boundaries (as seen

in Figure 2.6, third column). Employing the common size strategy achieves satisfactory results

for the slices containing objects with a regular shape but still fails when more difficult/irregular

targets are present, resulting in an overall improvement of DSC (0.7900). However, when using

individual bounds, the network is able to satisfactory segment even the most difficult cases,

obtaining a DSC of 0.8604, only 3% lower than full supervision.

For the prostate dataset, one can observe that common bounds still improve the results obtained

with tags (+3%), but the difference is much smaller than the case of vertebral-body segmentation.

Using individual bounds increases the DSC value by 10%, reaching 0.8298, a behaviour similar
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Figure 2.4 Mean DSC values over the number of fully annotated patients

employed for training.

Table 2.3 Mean Dice scores (DSC) for several degrees of supervision,

using the vertebral-body and prostate validation sets. Bold font

indicates the best weakly supervised setting for each data set.

Method Vertebral body DSC Prostate DSC

Partial CE 0.1155 0.0320

Partial CE + Tags 0.5597 0.6911

Partial CE + Tags + Common size 0.7900 0.7214

Partial CE + Tags + Individual size 0.8604 0.8298
Fully supervised 0.8999 0.8911

to what we observed earlier for the other datasets. Nevertheless, in this case, the gap between

full and weak supervision with individual bounds constraints is larger than what we obtained

for the other datasets.
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2.5.4 Qualitative results

To gain some intuition on different learning strategies and their impact on the segmentation, we

visualize some results sampled from the validation sets in Fig. 2.5, 2.6 and 2.7 for LV, VB and

prostate, respectively.

LV segmentation task

We compare 4 methods to the ground truth: full supervision, Lagrangian proposals Pathak et al.

(2015a) with common bounds, direct loss with common bounds and direct loss with individual

bounds. We can see that, for the easy cases containing regular shapes and visible borders, all

methods obtain similar results. However, the methods employing common bounds can easily

over-segment the object, especially when their size is considerably smaller; see for example the

last row in Figure 2.5. Since individual bounds are specific to each image, a model trained with

these bounds will not suffer in such cases, as shown in the figure.

Vertebral-body segmentation task

In this case, we visualize the results of full supervision, tag bounds, common bounds and

individual bounds. In line with results reported in Table 2.3, we can visually observe the gap in

performances between each setting, which clearly highlights the impact of the different values

of the bounds during the optimization process. Using only tags, the network learn to roughly

locate the object. When size bounds are included as common size information, the network is

able to somehow learn the boundaries, but only for object shapes that are within the standard

variability of a typical vertebral body shape. As it can be observed, the model fails to segment

the unusual shapes (last three rows in Figure 2.6). Lastly, a network trained with individual

sizes is able to better handle those cases, while still being imprecise on some regions.
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Figure 2.5 Qualitative comparison of the different methods using examples from the LV

dataset. Each column depicts segmentations obtained by different methods, whereas each

row represents a 2D slice from different scans (Best viewed in colors).

Prostate segmentation task

As in the previous case, we depict the results of full supervision, tag bounds, common bounds

and individual bounds. Both the tags and common bounds locate the object in a similar fashion,

but both have difficulties finding a precise contour, typically over-segmenting the target region.

This is easily explained by the variability of the organ and the very low contrast on some images.

As shown in the last column, using individual bounds greatly improves the results.
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Figure 2.6 Qualitative comparison using examples from the VB dataset. Each column

depicts segmentations obtained by different levels of supervision, whereas each row

represents a 2D slice from different scans (Best viewed in colors).

2.5.5 Sensitivity to the constraint boundaries

In this section, an ablation study is performed on the lower and upper bounds when using

common bounds, and investigate their effect on the performance on the vertebral-body segmen-

tation task. Results for different bounds are reported in Table 2.4. It can be observed that

progressively increasing the value of the upper bound decreases the performance. For example,

the DSC drops by nearly 12% and 16% when the upper bound is increased by a factor of 5

and 10, respectively. Decreasing the lower bound from 80 to 0 has a much smaller impact than

the upper bound, with a constant drop of less than 1%. These findings are aligned with visual

predictions illustrated in Figure 2.6. While a network trained only with tag bounds tends to

over-segment, adding an upper bound easily fixes the over-segmentation, correcting most of

the mistakes. Nevertheless, for the same reason, i.e., over-segmentation, very few slices benefit

from a lower bound.
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Figure 2.7 Qualitative comparison of the different levels of supervision. Each row

represents a 2D slice from different scans. (Best viewed in colors)

2.5.6 Efficiency

In this section, we compare the several learning approaches in terms of efficiency (Table

2.5). Both the weakly supervised partial cross-entropy and the fully supervised model need
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Table 2.4 Ablation study on the lower and upper bounds of

the size constraint using the vertebral body dataset.

Bounds Mean DSC

Model Lower (a) Upper (b)

Weak Sup. w/ direct loss 0.9𝜏𝑌 1.1𝜏𝑌 0.8604

Weak Sup. w/ direct loss 80 1100 0.7900

Weak Sup. w/ direct loss 80 5000 0.6704

Weak Sup. w/ direct loss 80 10000 0.6349

Weak Sup. w/ direct loss 0 1100 0.7820

Weak Sup. w/ direct loss 0 5000 0.6694

Weak Sup. w/ direct loss 0 10000 0.6255

Weak Sup. w/ direct loss 0 65536 0.5597

to compute only one loss per pass. This is reflected in the lowest training times reported in

the table. Including the size loss does not add to the computational time, as can be seen

in these results. As expected, the iterative process introduced by Pathak et al. (2015a) at

each forward pass adds a significant overhead during training. To generate their synthetic

ground truth, they need to optimize the Lagrangian function with respect to its dual variables

(Lagrange multipliers of the constraints), which requires alternating between training a CNN

and Lagrangian-dual optimization. Even in the simplest optimization case (with only one

constraint), where optimization over the dual variable converges rapidly, their method remains

two times slower than ours. Without the early stopping criteria that we introduced, the overhead

is much worse with a six-fold slowdown. In addition, their method also slows down when

more constraints are added. This is particularly significant when there is many classes to

constrain/supervise.

Generating the proposals at each iteration also makes it much more difficult to build an efficient

implementation for larger batch sizes. One either needs to generate them one by one (so the

overhead grows linearly with the batch size) or try to perform it in parallel. However, due to

the nature of GPU design, the parallel Lagrangian optimizations will slow each other down,

meaning that there may be limited improvements over a sequential generation. In some cases

it may be faster to perform it on CPU (where the cores can truly perform independent tasks
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in parallel), at the cost of slow transfers between GPU and CPU. The optimal strategy would

depend on the batch size and the host machine, especially its available GPU, number of CPU

cores and bus frequency.

Table 2.5 Training times for the diverse supervised learning strategies

with a batch size of 1, using tags and size constraints.

Method Training time (ms/batch)

Partial CE 112

Direct loss (1 bound) 113

Direct loss (2 bounds) 113

Lagrangian proposals (1 bound) 610

Lagrangian proposals (2 bounds) 675

Lagrangian proposals (1 bound), w/ early stop 221

Lagrangian proposals (2 bounds), w/ early stop 220

Fully supervised 112

2.6 Discussion

We have presented a method to train deep CNNs with linear constraints in weakly supervised

segmentation. To this end, we introduce a differentiable term, which enforces inequality con-

straints directly in the loss function, avoiding expensive Lagrangian dual iterates and proposal

generation.

Results have demonstrated that leveraging the power of weakly annotated data with the proposed

direct size loss is highly beneficial, particularly when limited full annotated data is available.

This could be explained by the fact that the network is already trained properly when a large

fully annotated training set is available, which is in line with the values reported in Table

2.2. Similar findings were reported in Bai, Oktay, Sinclair, Suzuki, Rajchl, Tarroni, Glocker,

King, Matthews & Rueckert (2017); Zhou, Wang, Tang, Bai, Shen, Fishman & Yuille (2019c),

where authors exhibited an increased of performance when including non-annotated images in

a semi-supervised setting. This suggests that including more unlabelled or weakly labelled data

can potentially lead to significantly improvements in performance.
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Findings from experiments across different segmentation tasks indicate that highly competitive

performance can be obtained with a rough estimation of the target size. This is especially the

case on well structured problems where the size and/or shape of the object remains consistent

across subjects. If more precise size bounds are provided, the proposed approach is able to

reach performances close to full supervision, even when the size and shape variability across

subjects is large. For difficult tasks, where the gap between our approach and full supervision is

larger, such as prostate segmentation, including an unsupervised regularization loss Tang et al.

(2018a,1) to encourage pairwise consistencies between pixels may boost the performance of

the proposed strategy. A noteworthy point is the robustness of our method to the weak-label

generation. While the weak labels were generated from a ground-truth erosion for the first

dataset, with seeds always in the center of the target region, they were randomly generated and

placed for the other two datasets. Thus, the results showed consistency in the behaviour of the

different methods, regardless of the strategy used.

Even though the proposed method has been shown to provide good generalization capabilities

across three different applications, the segmentation of images with severe abnormalities, whose

sizes largely differ from those seen in the training set, has not been assessed. Nevertheless, the

ablation study performed on the values of the size bounds, and the results obtained with common

bound sizes suggest that the proposed approach may perform satisfactorily in the presence of

these severe abnormalities, by simply increasing the upper bound value. In addition, if a

greater ‘precise’ estimation of the abnormality size is given, our proposed loss may improve

segmentation performance, as demonstrated by the results achieved by the individual bounds

strategy. It is important to note that, even in the case of full supervision, if a new testing image

contains a severe abnormality much larger than the objects seen during the training phase, the

network will likely to poorly segment the region of interest.

Our framework can be easily extended to other non-linear (fractional) constraints, e.g., invariant

shape moments Klodt & Cremers (2011) or other statistics such as the mean of intensities within

the target regions Lim et al. (2014). For instance, a normalized (scale invariant) shape moment

of a target region can be directly expressed in term of network outputs using the following

74



general fractional form:

𝐹𝑆 =

∑
𝑝∈Ω 𝑓𝑝𝑆𝑝∑
𝑝∈Ω 𝑆𝑝

(2.8)

where 𝑓𝑝 is a unary potential expressed in term of exponents of pixel/voxel coordinates. For

example, the coordinates of the center of mass of the target region are particular cases of

(2.8) and correspond to first-order scale-invariant shape moments. In this case, potentials 𝑓𝑝

correspond to pixel coordinates. Now, assume a weak-supervision scenario in which we have a

rough localization of the centroid of the target region. In this case, instead of a constraint on

size representation 𝑉𝑆 as in Eq. (2.3), one can use a cue on centroid as follows: 𝑎 ≤ 𝐹𝑆 ≤ 𝑏.

This can be embedded as a direct loss using differentiable penalty C(𝐹𝑆). Of course, here,

𝐹𝑆 is a non-linear fractional term unlike region size. Therefore, in future work, it would be

interesting to examine the behaviour of such fractional terms for constraining deep CNNs with

a penalty approach. Finally, it is worth noting that the general form in Eq. (2.8) is not confined

to shape moments. For instance, the image (intensity) statistics within the target region, such

as the mean8, follow the same general form in (2.8). Therefore, a similar approach could be

used in cases where we have prior knowledge on such image statistics.

Our direct penalty-based approach for inequality constraints yields a considerable increase in

performance with respect to to Lagrangian-dual optimization Pathak et al. (2015a), while being

faster and more stable. We hypothesize that this is due, in part, to the interplay between stochas-

tic optimization (e.g., stochastic gradient descent) for the primal and the iterates/projections

for the Lagrangian dual9. Such dual iterates/projections are basic (non-stochastic) gradient

methods for handling the constraints. Basic gradient methods have well-known issues with

deep networks, e.g., they are sensitive to the learning rate and prone to weak local minima.

Therefore, the dual part in Lagrangian optimization might obstruct the practical and theoretical

benefits of stochastic optimization (e.g., speed and strong generalization performance), which

are widely established for unconstrained deep network losses Hardt et al. (2016). Our penalty-

8Notice that the mean of intensity within the target region can be represented with network output using

general form (2.8), with 𝑓𝑝 corresponding to the intensity of pixel 𝑝
9In fact, a similar hypothesis was made in Márquez-Neila et al. (2017) to explain the negative results of

Lagrangian optimization in the case of equality constraints.
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based approach transforms a constrained problem into an unconstrained loss, thereby handling

the constraints fully within stochastic optimization and avoiding completely the dual steps.

While penalty-based approaches do not guarantee constraint satisfaction, our work showed that

they can be extremely useful in the context of constrained CNN segmentation.

2.7 Conclusion

In this paper, a novel loss function is present for weakly supervised image segmentation, which,

despite its simplicity, performs significantly better than Lagrangian optimization for this task.

We achieve results close to full supervision by annotating only a small fraction of the pixels,

across three different tasks, and with negligible computation overhead. While our experiments

focused on basic linear constraints such as the target-region size and image tags, our direct

constrained-CNN loss can be easily extended to other non-linear constraints, e.g., invariant

shape moments Klodt & Cremers (2011) or other region statistics Lim et al. (2014). Therefore,

it has the potential to close the gap between weakly and fully supervised learning in semantic

medical image segmentation.
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Abstract

This study investigates the optimization aspects of imposing hard inequality constraints on the

outputs of CNNs. In the context of deep networks, constraints are commonly handled with penal-

ties for their simplicity, and despite their well-known limitations. Lagrangian-dual optimization

has been largely avoided, except for a few recent works, mainly due to the computational com-

plexity and stability/convergence issues caused by alternating explicit dual updates/projections

and stochastic optimization. Several studies showed that, surprisingly for deep CNNs, the theo-

retical and practical advantages of Lagrangian optimization over penalties do not materialize in

practice. We propose log-barrier extensions, which approximate Lagrangian optimization of

constrained-CNN problems with a sequence of unconstrained losses. Unlike standard interior-

point and log-barrier methods, our formulation does not need an initial feasible solution. Fur-

thermore, we provide a new technical result, which shows that the proposed extensions yield an

upper bound on the duality gap. This generalizes the duality-gap result of standard log-barriers,

yielding sub-optimality certificates for feasible solutions. While sub-optimality is not guaran-

teed for non-convex problems, our result shows that log-barrier extensions are a principled way

to approximate Lagrangian optimization for constrained CNNs via implicit dual variables. We

report comprehensive weakly supervised segmentation experiments, with various constraints,

showing that our formulation outperforms substantially the existing constrained-CNN methods,



both in terms of accuracy, constraint satisfaction and training stability, more so when dealing

with a large number of constraints.

3.1 Introduction

Deep convolutional neural networks (CNNs) are dominating in most visual recognition prob-

lems and applications, including semantic segmentation, action recognition, object detection

and pose estimation, among many others. In a standard setting, CNNs are trained with abun-

dant labeled data without any additional prior knowledge about the task (apart from model

architecture and loss). However, in a breadth of learning problems, for example, semi- and

weakly-supervised learning, structured prediction or multi-task learning, a set of natural prior-

knowledge constraints is available. Such additional knowledge can come, for example, from

domain experts.

In the semi-supervised setting, for instance, several recent works Kervadec, Dolz, Tang, Granger,

Boykov & Ayed (2019b); Nandwani et al. (2019); Zhou, Li, Bai, Wang, Chen, Han, Fish-

man & Yuille (2019a) showed that imposing domain-specific knowledge on the network’s

predictions at unlableled data points acts as a powerful regularizer, boosting significantly the

performances when the amount of labeled data is limited. For instance, the recent semi-

supervised semantic segmentation works in Kervadec et al. (2019b); Zhou et al. (2019a) added

priors on the sizes of the target regions, achieving good performances with only fractions of

full-supervision labels. Such prior-knowledge constraints are highly relevant in medical imag-

ing Litjens et al. (2017), and can mitigate the lack of full annotations1. Similar experimental

observations were made in other application areas of semi-supervised learning. For example,

in natural language processing, the authors of Nandwani et al. (2019), among other recent stud-

ies, showed that embedding prior-knowledge constraints on unlabled data can yield significant

boosts in performances. 3D human pose estimation from a single view Márquez-Neila et al.

1In semantic segmentation, for instance, full supervision involves annotating all the pixels in each training

image, a problem further amplified when such annotations require expert knowledge or involves volumetric data,

as is the case in medical imaging.
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(2017) is another application example where task-specific prior constraints arise naturally, e.g.,

symmetry constraints encode the prior that the two arms should have the same length.

Imposing prior knowledge in the form of hard constraints on the output of modern deep CNNs

with large numbers of parameters is still in a nascent stage, despite its clear benefits and breadth

of applications. As discussed in several recent works Kervadec et al. (2019b); Márquez-Neila

et al. (2017); Nandwani et al. (2019); Pathak et al. (2015a); Ravi et al. (2019); Zhou et al.

(2019a), there are several challenges that arise from optimization perspectives, particularly

when dealing with deep networks involving millions of parameters.

3.1.1 General Constrained Formulation

Let D = {𝐼1, ..., 𝐼𝑁 } denotes a partially labeled set of 𝑁 training images, and 𝑆𝜽 = {𝑠1
𝜽 , ..., 𝑠

𝑁
𝜽 }

denotes the associated predicted networks outputs in the form of softmax probabilities, for both

unlabeled and labeled data points, with 𝜽 the neural-network weights. These could be class

probabilities or dense pixel-wise probabilities in the case of semantic image segmentation. We

address constrained problems of the following general form:

min
𝜽

E(𝜽) (3.1)

𝑠.𝑡. 𝑓1(𝑠
𝑛
𝜽) ≤ 0, 𝑛 = 1, . . . 𝑁

. . .

𝑓𝑃 (𝑠
𝑛
𝜽) ≤ 0, 𝑛 = 1, . . . 𝑁

where E(𝜽) is some standard loss over the set of labeled data points, e.g., cross-entropy, and

𝑓𝑖 are a series of derivable function whose output we want to constraint for each data point

𝑛. Inequality constraints of the general form in (3.1) can embed very useful prior knowledge

on the network’s predictions for unlabeled pixels. Assume, for instance, in the case of image

segmentation, that we have prior knowledge about the size of the target region (i.e., class)

𝑘 . Such a knowledge can be in the form of lower or upper bounds on region size, which

is common in medical image segmentation problems Gorelick et al. (2013); Kervadec et al.
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(2019b); Niethammer & Zach (2013). In this case, 𝐼𝑛 : Ω ⊂ R2 → R could a partially labeled or

unlabeled image, with Ω the spatial support of the image, and 𝑠𝑛𝜽 ∈ [0, 1]
𝐾×|Ω| is the predicted

mask. This matrix contains the softmax probabilities for each pixel 𝑝 ∈ Ω and each class 𝑘 ,

which we denotes 𝑠𝑛𝑘,𝑝,𝜽 . A constraint in the form of 𝑓𝑖 (𝑠
𝑛
𝜽) =

∑
𝑝∈Ω 𝑠

𝑛
𝑘,𝑝,𝜽 − 𝑎 enforces an

upper limit 𝑎 on the size of target region 𝑘 . Such constraints could be also very useful for

imposing tightness priors in the context of box-based weakly supervised segmentation Hsu,

Hsu, Tsai, Lin & Chuang (2019). There exist many other application areas where constraints

arise naturally, including in natural language processing (NLP), where prior knowledge on the

language structure exists and could be incorporated into the training with constraints on network

softmax predictions Nandwani et al. (2019).

3.1.2 Related Works and Challenges in Constrained CNN Optimization

As pointed out in several recent studies Kervadec et al. (2019b); Márquez-Neila et al. (2017);

Nandwani et al. (2019); Pathak et al. (2015a); Ravi et al. (2019); Zhou et al. (2019a), imposing

hard constraints on deep CNNs involving millions of trainable parameters is challenging. This

is the case of problem (3.1), even when the constraints are convex with respect to the outputs of

the network. In optimization, a standard way to handle constraints is to solve the Lagrangian

primal and dual problems in an alternating scheme Boyd & Vandenberghe (2004). For (3.1), this

corresponds to alternating the optimization of a CNN for the primal with stochastic optimization,

e.g., SGD, and projected gradient-ascent iterates for the dual. However, despite the clear benefits

of imposing global constraints on CNNs, such a standard Lagrangian-dual optimization is mostly

avoided in modern deep networks. As discussed recently in Márquez-Neila et al. (2017); Pathak

et al. (2015a); Ravi et al. (2019), this might be explained by the computational complexity and

stability/convergence issues caused by alternating between stochastic optimization and dual

updates/projections.

In standard Lagrangian-dual optimization, an unconstrained problem needs to be solved after

each iterative dual step. This is not feasible for deep CNNs, however, as it would require

re-training the network at each step. To avoid this problem, Pathak et al. Pathak et al. (2015a)
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introduced a latent distribution, and minimized a KL divergence so that the CNN output matches

this distribution as closely as possible. Since the network’s output is not directly coupled with

constraints, its parameters can be optimized using standard techniques like SGD. While this

strategy enabled adding inequality constraints in weakly supervised segmentation, it is limited

to linear constraints. Moreover, the work in Márquez-Neila et al. (2017) imposed hard equality

constraints on 3D human pose estimation. To alleviate the ensuing computational complexity,

they used a Kyrlov sub-space approach, limiting the solver to a randomly selected subset of

constraints within each iteration. Therefore, constraints that are satisfied at one iteration may

not be satisfied at the next, which might explain the negative results obtained in Márquez-Neila

et al. (2017). In general, updating the network parameters and dual variables in an alternating

fashion leads to a higher computational complexity than solving a loss function directly.

Another important difficulty in Lagrangian optimization is the interplay between stochastic

optimization (e.g., SGD) for the primal and the iterates/projections for the dual. Basic gradient

methods have well-known issues with deep networks, e.g., they are sensitive to the learning rate

and prone to weak local minima. Therefore, the dual part in Lagrangian optimization might

obstruct the practical and theoretical benefits of stochastic optimization (e.g., speed and strong

generalization performance), which are widely established for unconstrained deep network

losses Hardt et al. (2016). More importantly, solving the primal and dual separately may lead

to instability during training or slow convergence, as shown recently in Kervadec et al. (2019b).

To alleviate the instability caused by the dual part in Lagrangian optimization, Nandwani et

al. Nandwani et al. (2019) introduced a ReLu modification of the Lagrangian term, avoiding

completely the projection steps for the dual variables.

3.1.2.1 Penalty approaches

In the context of deep networks, “hard” inequality or equality constraints are typically handled

in a “soft” manner by augmenting the loss with a penalty function He, Liu, Schwing & Peng

(2017); Jia et al. (2017); Kervadec et al. (2019b). Such a penalty approach is a simple

alternative to Lagrangian optimization, and is well-known in the general context of constrained
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optimization; see Bertsekas (1995), Chapter 4. In general, penalty-based methods approximate

a constrained minimization problem with an unconstrained one by adding a term (penalty)

P( 𝑓𝑖 (𝑠𝜽)), which increases when constraint 𝑓𝑖 (𝑠𝜽) ≤ 0 is violated. By definition, a penalty

P is a non-negative, continuous and differentiable function, which verifies: P( 𝑓𝑖 (𝑠𝜽)) = 0

if and only if constraint 𝑓𝑖 (𝑠𝜽) ≤ 0 is satisfied. In semantic segmentation Kervadec et al.

(2019b) and, more generally, in deep learning He et al. (2017), it is common to use a quadratic

penalty for imposing an inequality constraint: P( 𝑓𝑖 (𝑠𝜽)) = [ 𝑓𝑖 (𝑠𝜽)]
2
+, where [𝑥]+ = max(0, 𝑥)

denotes the rectifier function. Penalties are convenient for deep networks because they remove

the requirement for explicit Lagrangian-dual optimization. The inequality constraints are fully

handled within stochastic optimization, as in standard unconstrained losses, avoiding gradient

ascent iterates/projections over the dual variables and reducing the computational load for

training Kervadec et al. (2019b). However, this simplicity of penalty methods comes at a price.

In fact, it is well known that penalties do not guarantee constraint satisfaction and require careful

and ad hoc tuning of the relative importance (or weight) of each penalty term in the overall

function. More importantly, in the case of several competing constraints, penalties do not act

as barriers at the boundary of the feasible set (i.e., a satisfied constraint yields a null penalty

and null gradient). As a result, a subset of constraints that are satisfied at one iteration may

not be satisfied at the next. Take the case of two competing constraints 𝑓1 and 𝑓2 at the current

iteration (assuming gradient-descent optimization), and suppose that 𝑓1 is satisfied but 𝑓2 is not.

The gradient of a penalty P w.r.t the term of satisfied constraint 𝑓1 is null, and the the penalty

approach will focus solely on satisfying 𝑓2. Therefore, due to a null gradient, there is nothing

that prevents satisfied constraint 𝑓1 from being violated. This could lead to oscillations between

competing constraints during iterations, making the training unstable (we will give examples

in the experiments).
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3.1.2.2 Lagrangian approaches

3.1.2.2.1 Standard Lagrangian-dual optimization

Let us first examine standard Lagrangian optimization for problem (3.1):

max
𝝀

min
𝜽

L(𝑆𝜽 , 𝝀) = E(𝜽) +
𝑃∑
𝑖=1

𝑁∑
𝑛=1

𝜆𝑛𝑖 𝑓𝑖 (𝑠
𝑛
𝜽) (3.2)

𝑠.𝑡. 𝝀 � 0

where 𝝀 ∈ R𝑃×𝑁+ is the dual variable (or Lagrange-multiplier) vector, with 𝜆𝑛𝑖 the multiplier

associated with constraint 𝑓𝑖 (𝑠
𝑛
𝜽) ≤ 0. The dual function is the minimum value of Lagrangian

(3.2) over 𝜽: 𝑔(𝝀) = min𝜽 L(𝑆𝜽 , 𝝀). A standard Lagrangian would alternatively optimize w.r.t

the network parameters 𝜽 and dual variable 𝜆.

Lagrangian optimization can deal with the difficulties of penalty methods, and has several well-

known theoretical and practical advantages over penalty methods Fletcher (1987); Gill et al.

(1981): it finds automatically the optimal weights of the constraints, acts as a barrier for satisfied

constraints and guarantees constraint satisfaction when feasible solutions exist. Unfortunately,

as pointed out recently in Kervadec et al. (2019b); Márquez-Neila et al. (2017), these advantages

of Lagrangian optimization do not materialize in practice in the context of deep CNNs. Apart

from the computational-feasibility aspects, which the recent works in Márquez-Neila et al.

(2017); Pathak et al. (2015a) address to some extent with approximations, the performances

of Lagrangian optimization are, surprisingly, below those obtained with simple, much less

computationally intensive penalties Kervadec et al. (2019b); Márquez-Neila et al. (2017). This

is, for instance, the case of the recent weakly supervised CNN semantic segmentation results in

Kervadec et al. (2019b), which showed that a simple quadratic-penalty formulation of inequality

constraints outperforms substantially the Lagrangian method in Pathak et al. (2015a). Also, the

authors of Márquez-Neila et al. (2017) reported surprising results in the context of 3D human
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pose estimation. In their case, replacing the equality constraints with simple quadratic penalties

yielded better results than Lagrangian optimization.

3.1.2.2.2 ReLU Lagrangian modification Nandwani et al. (2019)

One of the main problems of the standard Lagrangian-dual optimization in deep CNNs is its

instability due, in part to dual variables 𝜆𝑛𝑖 , which could remain positive while the constrained

function 𝑓𝑖 is satisfied ( 𝑓𝑖 (𝑠
𝑛
𝜽) ≤ 0). Because of this, the SGD on 𝜽 keeps minimizing the con-

strained term, although no modification should be made anymore. Nandwani et al. Nandwani

et al. (2019) devised a trick to alleviate this problem, by putting the constrained function into a

rectified linear unit first. They also regroup the constraints by function 𝑓𝑖, sharing the same 𝜆𝑖

for all samples of dataset D2:

max
𝝀

min
𝜽

L(𝑆𝜽 , 𝝀) = E(𝜽) +
𝑃∑
𝑖=1

𝜆𝑖

𝑁∑
𝑛=1

max(0, 𝑓𝑖 (𝑠
𝑛
𝜽)). (3.3)

Since the gradient ∇𝝀 is always positive, 𝝀 can only increase over time.

3.1.2.2.3 Lagrangian with proposals Pathak et al. (2015a)

This is another approach, introduced by Pathak et al., to deal with the limitations of standard

Lagrangian with deep neural networks, in the context of weakly supervised image segmentation

Pathak et al. (2015a). We want the softmax probabilities 𝑠𝑛𝜽 to match as closely as possible some

binary labels 𝑦𝑛 ∈ {0, 1}𝐾×|Ω| such as
∑
𝑘 𝑦

𝑛
𝑘,𝑝 = 1 ∀𝑝 ∈ Ω. Their first insight was to rewrite 𝑦𝑛

as a continuous variable (∈ [0, 1]𝐾×|Ω|), and to introduce a latent variable �̃�𝑛 ∈ [0, 1]𝐾×|Ω| on

2This, we argue that this is unwarranted and may introduce several problems, as we explain in great details in

our supplemental material 3.
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which they imposed linear constraints:

min
�̃�,𝜽

∑
𝑛

𝐾𝐿 ( �̃�𝑛 | |𝑠𝑛𝜽) (3.4)

𝑠.𝑡. �̃�𝑛�𝑎1 − 𝑏1 � 0 ∀𝑛 ∈ D,

...

�̃�𝑛�𝑎𝑃 − 𝑏𝑃 � 0 ∀𝑛 ∈ D,

1� �̃�𝑛𝑝 = 1 ∀𝑛 ∈ D,∀𝑝 ∈ |Ω|,

where 𝑎1, ..., 𝑎𝑃 ∈ R
|Ω| and 𝑏1, ..., 𝑏𝑃 ∈ R

𝐾 . The corresponding Lagrangian is:

max
𝝀,𝝂

min
�̃�,𝜽

∑
𝑛

���𝐾𝐿 ( �̃�𝑛 | |𝑠𝑛𝜽) +
𝑃∑
𝑖=1

𝜆𝑛𝑖 ( �̃�
𝑛�𝑎𝑖 − 𝑏𝑖) +

∑
𝑝∈Ω

𝜈𝑛𝑝 (1� �̃�𝑛𝑝 − 1)
��� (3.5)

𝑠.𝑡. 𝝀 � 0,

where 𝝀 ∈ R
𝑃×|D|
+ and 𝝂 ∈ R|D|×|Ω| are the Lagrangian dual variables. Minimizing �̃�, for

constant 𝜽 , 𝝀, 𝝂, can be solved analytically. Updating 𝝀 and 𝝂 requires to perform a projected

gradient ascent3. Pathak et al. (2015a) concluded that is was best to perform this at each

minibatch, for the corresponding samples. While limited to linear functions, it could in theory

be extended to any function 𝑓𝑖. However, minimizing �̃� would not be analytically solvable

anymore, and would probably requires a dedicated stochastic gradient descent.

3.1.3 Contributions

Interior-point and log-barrier methods can approximate Lagrangian optimization by starting

from a feasible solution and solving unconstrained problems, while completely avoiding ex-

plicit dual steps and projections. Unfortunately, despite their well-established advantages over

penalties, such standard log-barriers were not used before in deep CNNs because finding a fea-

sible set of initial network parameters is not trivial, and is itself a challenging constrained-CNN

3We detail the whole algorithm and equations in the Supplemental material 4.
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problem. We propose log-barrier extensions, which approximate Lagrangian optimization of

constrained-CNN problems with a sequence of unconstrained losses, without the need for an

initial feasible set of network parameters. Furthermore, we provide a new theoretical result,

which shows that the proposed extensions yield a duality-gap bound. This generalizes the stan-

dard duality-gap result of log-barriers, yielding sub-optimality certificates for feasible solutions

in the case of convex losses. While sub-optimality is not guaranteed for non-convex problems,

our result shows that log-barrier extensions are a principled way to approximate Lagrangian

optimization for constrained CNNs via implicit dual variables. Our approach addresses the

well-known limitations of penalty methods and, at the same time, removes the explicit dual up-

dates of Lagrangian optimization. We report comprehensive weakly supervised segmentation

experiments, with various constraints, showing that our formulation outperforms substantially

the existing constrained-CNN methods, both in terms of accuracy, constraint satisfaction and

training stability, more so when dealing with a large number of constraints.

3.2 Background on Duality and the Standard Log-barrier

This section reviews both standard Lagrangian-dual optimization and the log-barrier method for

constrained problems Boyd & Vandenberghe (2004). We also present basic concepts of duality

theory, namely the duality gap and 𝜖-suboptimality, which will be needed when introducing our

log-barrier extension and the corresponding duality-gap bound. We also discuss the limitations

of standard constrained optimization methods in the context of deep CNNs.

Let us consider again the Lagrangian-dual problem in Eq. (3.2). A dual feasible 𝝀 ≥ 0

yields a lower bound on the optimal value of constrained problem (3.1), which we denote E∗:

𝑔(𝝀) ≤ E∗. This important inequality can be easily verified, even when the problem (3.1) is

not convex; see Boyd & Vandenberghe (2004), p. 216. It follows that a dual feasible 𝝀 gives a

sub-optimality certificate for a given feasible point 𝜽 , without knowing the exact value of E∗:

E(𝜽) −E∗ ≤ E(𝜽) −𝑔(𝝀). Nonnegative quantity E(𝜽) −𝑔(𝝀) is the duality gap for primal-dual

pair (𝜽 , 𝝀). If we manage to find a feasible primal-dual pair (𝜽 , 𝝀) such that the duality gap is

less or equal than a certain 𝜖 , then primal feasible 𝜽 is 𝜖-suboptimal.
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Definition 1. A primal feasible point 𝜽 is 𝜖-suboptimal when it verifies: E(𝜽) − E∗ ≤ 𝜖 .

This provides a non-heuristic stopping criterion for Lagrangian optimization, which alternates

two iterative steps, one primal and one dual, each decreasing the duality gap until a given

accuracy 𝜖 is attained4. In the context of CNNs Pathak et al. (2015a), the primal step mini-

mizes the Lagrangian w.r.t. 𝜽 , which corresponds to training a deep network with stochastic

optimization, e.g., SGD: arg min𝜽 L(𝑆𝜽 , 𝝀). The dual step is a constrained maximization of the

dual function5 via projected gradient ascent: max𝝀 𝑔(𝝀) s.t 𝝀 ≥ 0. As mentioned before, direct

use of Lagrangian optimization for deep CNNs increases computational complexity and can

lead to instability or poor convergence due to the interplay between stochastic optimization for

the primal and the iterates/projections for the dual. Our work approximates Lagrangian-dual

optimization with a sequence of unconstrained log-barrier-extension losses, in which the dual

variables are implicit, avoiding explicit dual iterates/projections. Let us first review the standard

log-barrier method.

3.2.1 The standard log-barrier

The log-barrier method is widely used for inequality-constrained optimization, and belongs to

the family of interior-point techniques Boyd & Vandenberghe (2004). To solve our constrained

CNN problem (3.1) with this method, we need to find a strictly feasible set of network parameters

𝜽 as a starting point, which can then be used in an unconstrained problem via the standard log-

barrier function. In the general context of optimization, log-barrier methods proceed in two

steps. The first, often called phase I Boyd & Vandenberghe (2004), computes a feasible point

by Lagrangian minimization of a constrained problem, which in the case of (3.1) is:

min
𝑥,𝜽

𝑥 (3.6)

s.t. 𝑓𝑖 (𝑠
𝑛
𝜽) ≤ 𝑥 ∀𝑖 ∈ {1, . . . , 𝑃},∀𝑛 ∈ D

4Strong duality should hold if we want to achieve arbitrarily small tolerance 𝜖 . Of course, strong duality does

not hold in the case of CNNs as the primal problem is not convex.

5Notice that the dual function is always concave as it is the minimum of a family of affine functions, even

when the original (or primal) problem is not convex, as is the case for CNNs.
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For deep CNNs with millions of parameters, Lagrangian optimization of problem (3.6) has

the same difficulties as with the initial constrained problem in (3.1). To find a feasible set of

network parameters, one needs to alternate CNN training and projected gradient ascent for the

dual variables. This might explain why such interior-point methods, despite their substantial

impact in optimization Boyd & Vandenberghe (2004), are mostly overlooked in modern deep

networks6, as is generally the case for other Lagrangian-dual optimization methods.

The second step, often referred to as phase II, approximates (3.1) as an unconstrained problem:

min
𝜽

E(𝜽) +
𝑃∑
𝑖=1

𝑁∑
𝑛=1

𝜓𝑡
(
𝑓𝑖 (𝑠

𝑛
𝜽)

)
(3.7)

where 𝜓𝑡 is the log-barrier function: 𝜓𝑡 (𝑧) = −1
𝑡 log(−𝑧). When 𝑡 → +∞, this convex,

continuous and twice-differentiable function approaches a hard indicator for the constraints:

𝐻 (𝑧) = 0 if 𝑧 ≤ 0 and +∞ otherwise. The domain of the function is the set of feasible points.

The higher 𝑡, the better the quality of the approximation. This suggest that large 𝑡 yields a good

approximation of the initial constrained problem in (3.1). This is, indeed, confirmed with the

following standard duality-gap result for the log-barrier method Boyd & Vandenberghe (2004),

which shows that optimizing (3.7) yields a solution that is 𝑃𝑁/𝑡-suboptimal.

Proposition 1. Let 𝜽∗ be the feasible solution of unconstrained problem (3.7) and 𝝀∗ ∈ R𝑃×𝑁 ,

with 𝜆∗𝑖,𝑛 = −1/(𝑡 𝑓𝑖 (𝑠
𝑛
𝜽)). Then, the duality gap associated with primal feasible 𝜽∗ and dual

feasible 𝝀∗ for the initial constrained problem in (3.1) is:

E(𝜽∗) − 𝑔(𝝀∗) = 𝑃𝑁/𝑡

Proof: The proof can be found in Boyd & Vandenberghe (2004), p. 566.

An important implication that follows immediately from proposition (1) is that a feasible

solution of approximation (3.7) is 𝑃𝑁/𝑡-suboptimal: E(𝜽∗) − E∗ ≤ 𝑃𝑁/𝑡. This suggests a

6Interior-point methods were investigated for artificial neural networks before the deep learning era Trafalis,

Tutunji & Couellan (1997).
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simple way for solving the initial constrained problem with a guaranteed 𝜖-suboptimality: We

simply choose large 𝑡 = 𝑃𝑁/𝜖 and solve unconstrained problem (3.7). However, for large

𝑡, the log-barrier function is difficult to minimize because its gradient varies rapidly near the

boundary of the feasible set. In practice, log-barrier methods solve a sequence of problems of

the form (3.7) with an increasing value 𝑡. The solution of a problem is used as a starting point

for the next, until a specified 𝜖-suboptimality is reached.

3.3 Log-barrier Extensions

We propose the following unconstrained loss for approximating Lagrangian optimization of

constrained problem (3.1):

min
𝜽

E(𝜽) +
𝑃∑
𝑖=1

𝑁∑
𝑛=1

�̃�𝑡
(
𝑓𝑖 (𝑠

𝑛
𝜽)

)
(3.8)

where �̃�𝑡 is our log-barrier extension, which is convex, continuous and twice-differentiable:

�̃�𝑡 (𝑧) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1
𝑡 log(−𝑧) if 𝑧 ≤ − 1

𝑡2

𝑡𝑧 − 1
𝑡 log( 1

𝑡2
) + 1

𝑡 otherwise

(3.9)

Similarly to the standard log-barrier, when 𝑡 → +∞, our extension (3.9) can be viewed a smooth

approximation of hard indicator function 𝐻. However, a very important difference is that the

domain of our extension �̃�𝑡 is not restricted to feasible points 𝜽 . Therefore, our approximation

(3.8) removes completely the requirement for explicit Lagrangian-dual optimization for finding

a feasible set of network parameters. In our case, the inequality constraints are fully handled

within stochastic optimization, as in standard unconstrained losses, avoiding completely gradient

ascent iterates and projections over explicit dual variables. As we will see in the experiments,

our formulation yields better results in terms of accuracy and stability than the recent penalty

constrained CNN method in Kervadec et al. (2019b).
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In our approximation in (3.8), the Lagrangian dual variables for the initial inequality-constrained

problem of (3.1) are implicit. We prove the following duality-gap bound, which yields sub-

optimality certificates for feasible solutions of our approximation in (3.8). Our result7 can be

viewed as an extension of the standard result in proposition 1, which expresses the duality-gap

as a function of 𝑡 for the log-barrier function.

Proposition 2. Let 𝜽∗ be the solution of problem (3.8) and 𝝀∗ ∈ R𝑃×𝑁 the corresponding vector

of implicit Lagrangian dual variables given by:

𝜆∗𝑖,𝑛 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1
𝑡 𝑓𝑖 (𝑠

𝑛
𝜽∗
)

if 𝑓𝑖 (𝑠𝑛𝜽∗) ≤ −
1
𝑡2

𝑡 otherwise
. (3.10)

Then, we have the following upper bound on the duality gap associated with primal 𝜽∗ and

implicit dual feasible 𝝀∗ for the initial inequality-constrained problem (3.1):

E(𝜽∗) − 𝑔(𝝀∗) ≤ 𝑃𝑁/𝑡

Proof: We give a detailed proof of Prop. 2 in the Supplemental material.

From proposition 2, the following important fact follows immediately: If the solution 𝜽∗ that

we obtain from unconstrained problem (3.8) is feasible and global, then it is 𝑃𝑁/𝑡-suboptimal

for constrained problem (3.1): E(𝜽∗) − E∗ ≤ 𝑃𝑁/𝑡.

Finally, we arrive to our constrained CNN learning algorithm, which is fully based on SGD.

Similarly to the standard log-barrier algorithm, we use a varying parameter 𝑡. We optimize

a sequence of losses of the form (3.8) and increase gradually the value 𝑡 by a factor 𝜇. The

network parameters obtained for the current 𝑡 and epoch are used as a starting point for the next

𝑡 and epoch. We can summarize the fundamental differences between our log-barrier extension

and a standard penalty function as follows:

7Our result applies to the general context of convex optimization. In deep CNNs, of course, a feasible solution

of our approximation may not be unique and is not guaranteed to be a global optimum as E and the constraints are

not convex.
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a) A penalty does not act as a barrier near the boundary of the feasible set, i.e., a satisfied

constraint yields null penalty and gradient. Therefore, at a given gradient update, there is

nothing that prevents a satisfied constraint from being violated, causing oscillations between

competing constraints and making the training unstable. On the contrary, the strictly positive

gradient of our log-barrier extension gets higher when a satisfied constraint approaches violation

during optimization, pushing it back towards the feasible set.

b) Another fundamental difference is that the derivatives of our log-barrier extensions yield

the implicit dual variables in Eq. (3.10), with sub-optimality and duality-gap guarantees,

which is not the case for penalties. Therefore, our log-barrier extension mimics Lagrangian

optimization, but with implicit rather than explicit dual variables. The detailed proof of Prop.

2 in the Supplemental material clarifies how the 𝜆∗𝑖,𝑛’s in Eq. (3.10) can be viewed as implicit

dual variables.

3.4 Experiments

Most of the existing methods8—and the proposed log-barrier – are compatible with any dif-

ferentiable function 𝑓𝑖, including non-linear and fractional terms, as in Eqs. (3.11) and (3.12)

introduced further in the paper. However, we hypothesize that our log-barrier extension is better

for handling the interplay between multiple competing constraints. To validate this hypothesis,

we compare all strategies on the joint optimization of joint segmentation constraints related to

region size and centroid. We will test the Lagrangian with proposals from Pathak et al. (2015a)

when the experiments allows it, i.e., when the functions constrained are linear and the number

of total constraints per image is not too high9.

8The only and notable exception being Pathak et al. (2015a).

9As their complexity is linear to the number of constraints, their method quickly becomes intolerably slow

with high number of constraints, making it not feasible to train a neural network in a timely fashion.
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Region-size constraint

We define the size (or volume) of a segmentation for class 𝑘 as the sum of its softmax predictions

over the image domain:

V𝑛
𝑘,𝜽 =

∑
𝑝∈Ω

𝑠𝑛𝑘,𝑝,𝜽 (3.11)

We use the following inequality constraints on region size: 0.9𝜏V𝑛
𝑘
≤ V𝑛

𝑘,𝜽 ≤ 1.1𝜏V𝑛
𝑘
, where,

similarly to the experiments in Kervadec et al. (2019b), 𝜏V𝑛
𝑘
=

∑
𝑝∈Ω 𝑦

𝑛
𝑘,𝑝 is determined from

the ground truth 𝑦𝑛 of each image.

Region-centroid constraints

The centroid of the predicted region can be computed as a weighted average of the pixel

coordinates:

C𝑛𝑘,𝜽 =

∑
𝑝∈Ω 𝑠

𝑛
𝑘,𝑝,𝜽𝑐𝑝∑

𝑝∈Ω 𝑠
𝑛
𝑘,𝑝,𝜽

, (3.12)

where 𝑐𝑝 ∈ N
2 are the pixel coordinates on a 2D grid. We constrain the position of the centroid

in a box around the ground-truth centroid: 𝜏C𝑛
𝑘
− 20 ≤ C𝑛𝑘,𝜽 ≤ 𝜏C𝑛

𝑘
+ 20, with 𝜏C𝑛

𝑘
=

∑
𝑝∈Ω 𝑦

𝑛
𝑘,𝑝𝑐𝑝∑

𝑝∈Ω 𝑦
𝑛
𝑘,𝑝

corresponding to the bound values associated with each image.

Bounding box tightness prior

This prior Hsu et al. (2019); Lempitsky, Kohli, Rother & Sharp (2009) assumes that any

horizontal or vertical line inside the bounding box of an object of class 𝑘 will eventually cross

the object. This can be generalized with segments of width 𝑤 inside the box, that will cross at

least 𝑤 times the object. This prior can be easily reformulated as constraints. If S𝑛
𝐿 := {𝑠𝑛𝑙 }

denotes the set of parallel segments to the sides of the bounding box for sample 𝑛, the following

set of inequality constraints is trivial to define:

∑
𝑝∈𝑠𝑛

𝑙

𝑦𝑛𝑘,𝑝 ≥ 𝑤 ∀𝑠𝑛𝑙 ∈ S
𝑛
𝐿,∀𝑛 ∈ D . (3.13)
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If we define the inside of the bounding box as Ω𝐹 , and the outside as Ω𝐵 (such as Ω = Ω𝐹 ∪Ω𝐵

and Ω𝐹 ∩Ω𝐵 = {∅}), we can define two other useful constraints for each image:

∑
𝑝∈Ω𝐵

𝑠𝑛𝑘,𝑝,𝜽 ≤ 0 ∀𝑛 ∈ D, (3.14)∑
𝑝∈Ω

𝑠𝑛𝑘,𝑝,𝜽 ≤ |Ω𝐹 | ∀𝑛 ∈ D . (3.15)

There is some interplay between constraint (3.13) and constraint (3.14), as they have competing

trivial solutions: 𝑠𝑛𝑘,𝑝,𝜽 = 1 ∀𝑝 would satisfy constraint (3.13) perfectly, whereas 𝑠𝑛𝑘,𝑝,𝜽 = 0 ∀𝑝

would satisfy (3.14). While constraint (3.15) is there to balance the two and limit the shift to

extremes, this setting remain a good benchmark to evaluate the interplay of multiple, competing

constraints simultaneously.

3.4.1 Datasets and Evaluation Metrics

Our evaluations and comparisons were performed on three different segmentation scenarios

using synthetic and medical images. The data sets used in each of these problems are detailed

below.

Synthetic images

We generated a synthetic dataset composed of 1100 images with two different circles of the

same size but different intensity values, where the darker circle is the target region (Fig. 3.1,

first column). Furthermore, different levels of Gaussian noise were added to the images. We

employed 1000 images for training and 100 for validation. The objective of this simple dataset

is to compare our log-barrier extension to other methods when several functions are constrained,

e.g., size and centroid. Imposing these constraints individually is not sufficient to learn which

circle is the target, since no pixel annotation is used during training. However, if the two

constraints are combined, it should be enough to identify the correct circle.
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This setting will evaluate how different methods behave when there exist interplay between two

different constraints.

Medical images

We use the dataset from the MICCAI 2012 prostate segmentation challenge Litjens et al.

(2014). This dataset contains Magnetic Resonance (MR) images from 50 patients, from which

we employ 10 patients for validation and use the rest for training. We investigate two different

settings on this dataset. Setting I) we test the combinations of constraints (3.13), (3.14) and

(3.15), with bounding boxes derived from the ground truth. Setting II) we test the setting of

Kervadec et al. (2019b), where weak labels derived from the ground truth by placing random

dots inside the object of interest (see Figure in appendix 2) and a region-size constraints in the

form of (3.11) is imposed.

Evaluation

We resort to the common Dice index (DSC) =
2|𝑆

⋂
𝑌 |

|𝑆 |+|𝑌 | to evaluate the performance of tested

methods. Furthermore, we evaluate the effectiveness and stability of the constrained optimiza-

tion methods. To this end, we first compute at each epoch the percentage of constraints that are

satisfied. Second, we measure the stability of the constraints, i.e., the percentage of constraints

satisfied at epoch 𝑡 that are still satisfied at epoch 𝑡 + 1. And last, we simply measure the time

taken to run a single epoch for each method, including the proposal generation of Pathak et al.

(2015a) and the 𝝀 update for the Standard Lagrangian and the ReLU Lagrangian Nandwani

et al. (2019).

3.4.2 Training and implementation details

Since the two datasets have very different characteristics, we considered a specific network

architecture and training strategy for each of them.
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For the dataset of synthetic images, we used the ENet network Paszke et al. (2016), as it has

shown a good trade-off between accuracy and inference time. The network was trained from

scratch using the Adam optimizer and a batch size of 1. The initial learning rate was set

to 5 × 10-4 and decreased by half if validation performance did not improve for 20 epochs.

Softmax temperature value was set to 5. To segment the prostate, we used the same settings as

in Kervadec et al. (2019b), reporting their results for the penalty-based baselines.

For the standard and ReLU Lagrangian, we alternate between one epoch (one update for each

sample of the dataset) of SGD to optimize 𝜽 , then one epoch to update 𝝀. We set to 5 the initial

𝑡 value of our extended log-barrier. We increased it by a factor of 𝜇 = 1.1 after each epoch.

This strategy relaxes constraints in the first epochs so that the network can focus on learning

from images, and then gradually makes these constraints harder as optimization progresses. All

experiments were implemented in Python 3.8 with PyTorch 1.4 Paszke et al. (2017). All the

experiments were carried out on a server equipped with a NVIDIA Titan RTX. The code is

publicly available10.

3.4.3 Results

Quantitative results

Results in terms of DSC are reported in Table 3.1. The first thing we can observe is that

the standard Lagrangian, despite the introduction of a dedicated learning rate for its 𝝀 update,

is not able to learn when multiple constraints enter in competition, i.e, DSC of 0.005 in the

synthetic example. In addition, the ReLU Lagrangian approach proposed by Nandwani et al.

(2019) can better handle multiple constraints than a simple penalty He et al. (2017); Kervadec

et al. (2019b), but it performs similarly if only one constraint is enforced, such as in the

case of the size constraint on the PROMISE12 dataset. On the other hand, with the high

number of constraints and trivial solutions to balance, the proposed log-barrier extension learns

successfully based on the information given by the constraints, compared to the other methods,

10https://github.com/LIVIAETS/extended_logbarrier
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achieving the best DSC across the three settings. The behavior of the ReLU Lagrangian is very

interesting, which highlights one of the drawbacks of the ReLU introduced in their Lagrangian

formulation. As 𝝀 can only increase—which happens when a constraint is not satisfied—when

trying to balance each constraint, all 𝝀 keep increasing, making the subtle balance more and

more difficult to achieve. For instance, the constraint (3.14) started with 𝜆 = 0 and after 200

epochs it had reached an average value of 350 million across the whole dataset (PROMISE12),

despite the introduction of a learning rate to slow down its increase. The lower performance of

penalty-based methods can be explained by the high-gradients generated when constraints are

not satisfied, which leads to big and simplistic updates.

Table 3.1 Mean DSC and standard deviation of the last 10 epochs on the validation on

the toy example and PROMISE12 datasets.

Method Synthetic dataset
PROMISE12

Setting I Setting II

Lagrangian proposal Pathak et al. (2015a) NA NA 0.740 (0.018)

Standard Lagrangian 0.005 (0.014) 0.000 (0.000) 0.752 (0.007)

ReLU Lagrangian Nandwani et al. (2019) 0.798 (0.006) 0.000 (0.000) 0.790 (0.007)

Penalty He et al. (2017); Kervadec et al. (2019b) 0.712 (0.022) 0.000 (0.000) 0.817 (0.006)

Log-barrier extensions (ours) 0.945 (0.001) 0.813 (0.024) 0.823 (0.003)

Full supervision 0.998 (0.000) 0.880 (0.001)

Qualitative results

A visual comparison of the predicted results on the toy example is depicted in Figure 3.1. In

this figure we can first observe that standard Lagrangian generates noisy segmentations, which

is in line with the quantitative results reported in Table 3.1. Both ReLU Lagrangian Nandwani

et al. (2019) and penalty-based methods obtain better target segmentations. Nevertheless, as

observed in the case of penalties, they cannot handle efficiently the interplay between multiple

constraints. While the size constraint is apparently satisfied, the centroid constraint is not

properly enforced (e.g., the non-target circle contains segmented regions). Last, the proposed

extended log-barrier demonstrates a strong ability to handle several constraints simultaneously,

which is reflected in the circle segmentation close to the ground truth.
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Figure 3.1 Results on the synthetic dataset (background in red and foreground in green).

Constraints satisfaction and stability

We further evaluated our method in terms of how the constraints are satisfied across epochs

and the stability during training, whose results are shown in Fig. 3.2. We can first notice that

on top of the better absolute performances, the proposed log-barrier extension is also more

stable during training, both in performance and constraints satisfaction. The gap between the

proposed approach and prior work is more significant on the synthetic dataset, where multiple

constraints are enforced simultaneously. Other methods that perform satisfactorily in terms

of DSC metric, i.e., quadratic penalty or ReLU Lagrangian, tend to present a higher variance

across epochs when the constraints satisfaction and stability is evaluated. This indicates that our

method not only achieves the best segmentation performance, but also satisfies the constraints

better than known approaches.

Computational cost and efficiency

Penalties and the proposed log-barrier extension have negligible cost compared to optimizing

the base-loss E(𝜽) alone (up to 5% slowdown when the number of constraints becomes very

high). In contrast, Lagrangian methods incur in higher computational cost. For example, in the

standard and ReLU Lagrangian, it amounts to nearly a 25% slowdown (due to the extra loop

over the training set to perform the 𝝀 update). The Lagrangian with proposals in Pathak et al.

(2015a) is much slower (about three times slower in the studied setting).
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Figure 3.2 Constraints satisfaction, stability and DSC evolution on different settings.

3.5 Conclusion

We proposed log-barrier extensions, which approximate Lagrangian optimization of constrained-

CNN problems with a sequence of unconstrained losses. Our formulation relaxes the need for

an initial feasible solution, unlike standard interior-point and log-barrier methods. This makes

it convenient for deep networks. We also provided an upper bound on the duality gap for

our proposed extensions, thereby generalizing the duality-gap result of standard log-barriers

and showing that our formulation has dual variables that mimic implicitly (without dual pro-

jections/steps) Lagrangian optimization. Therefore, our implicit Lagrangian formulation can

be fully handled with SGD, the workhorse of deep networks. We reported comprehensive
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constrained-CNN experiments, showing that log-barrier extensions outperform several other

types of Lagrangian methods and penalties, in terms of accuracy and training stability.

While we evaluated our approach in the context of weakly supervised segmentation, log-barrier

extensions can be useful in breadth of problems in vision and learning, where constraints

occur naturally. This include, for instance, adversarial robustness Rony, Hafemann, Oliveira,

Ben Ayed, Sabourin & Granger (2019), stabilizing the training of GANs Gulrajani, Ahmed,

Arjovsky, Dumoulin & Courville (2017), domain adaptation for segmentation Zhang, David,

Foroosh & Gong (2019), pose-constrained image generation Hu, Yang, Salakhutdinov, Qin,

Liang, Dong & Xing (2018), 3D human pose estimation Márquez-Neila et al. (2017), deep

reinforcement learning He et al. (2017) and natural language processing Nandwani et al. (2019).

To our knowledge, constraints (either equality11 or inequality) in these problems, among others

in the context of deep networks, are typically handled with basic penalties. Therefore, it will

be interesting to investigate log-barrier extensions in these diverse contexts.

11Note that our framework can also be used for equality constraints as one can transform an equality constraint

into two inequality constraints.
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Abstract

Widely used loss functions for CNN segmentation, e.g., Dice or cross-entropy, are based on

integrals over the segmentation regions. Unfortunately, for highly unbalanced segmentations,

such regional summations have values that differ by several orders of magnitude across classes,

which affects training performance and stability. We propose a boundary loss, which takes the

form of a distance metric on the space of contours, not regions. This can mitigate the difficulties

of highly unbalanced problems because it uses integrals over the interface between regions

instead of unbalanced integrals over the regions. Furthermore, a boundary loss complements

regional information. Inspired by graph-based optimization techniques for computing active-

contour flows, we express a non-symmetric 𝐿2 distance on the space of contours as a regional

integral, which avoids completely local differential computations involving contour points. This

yields a boundary loss expressed with the regional softmax probability outputs of the network,

which can be easily combined with standard regional losses and implemented with any existing

deep network architecture for N-D segmentation. We report comprehensive evaluations and

comparisons on different unbalanced problems, showing that our boundary loss can yield

significant increases in performances while improving training stability. Our code is publicly

available.



4.1 Introduction

Recent years have witnessed a substantial growth in the number of deep learning methods for

medical image segmentation Dolz et al. (2018); Ker, Wang, Rao & Lim (2018); Litjens et al.

(2017); Shen, Wu & Suk (2017). Widely used loss functions for segmentation, e.g., Dice or

cross-entropy, are based on regional integrals, which are convenient for training deep neural

networks. In practice, these regional integrals are summations over the segmentation regions of

differentiable functions, each directly invoking the softmax probability outputs of the network.

Therefore, standard stochastic optimizers such as SGD are directly applicable. Unfortunately,

difficulties occur for highly unbalanced segmentations, for instance, when the size of target

foreground region is several orders of magnitude less than the background size. For example, in

the characterization of white matter hyperintensities (WMH) of presumed vascular origin, the

foreground composed of WMH regions may be 500 times smaller than the background (see the

typical example in Fig. 4.1). In such cases, quite common in medical image analysis, standard

regional losses contain foreground and background terms with values that differ considerably,

typically by several orders of magnitude, potentially affecting performance and training stability

Milletari et al. (2016); Sudre et al. (2017).

Segmentation approaches based on convolutional neural networks (CNN) are typically trained

by minimizing the cross-entropy (CE), which measures an affinity between the regions defined

by probability softmax outputs of the network and the corresponding ground-truth regions. The

standard regional CE has well-known drawbacks in the context of highly unbalanced problems.

It assumes identical importance distribution of all the samples and classes. To achieve good

generalization, it requires a large training set with balanced classes. For unbalanced data, CE

typically results in unstable training and leads to decision boundaries biased towards the majority

classes. Class-imbalanced learning aims to mitigate learning bias by promoting the importance

of infrequent labels. In medical image segmentation, a common strategy is to re-balance

class prior distributions by down-sampling frequent labels Havaei, Davy, Warde-Farley, Biard,

Courville, Bengio, Pal, Jodoin & Larochelle (2017); Valverde, Cabezas, Roura, González-Villà,

Pareto, Vilanova, Ramio-Torrenta, Rovira, Oliver & Lladó (2017). Nevertheless, this strategy
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limits the information of the images used for training. Another common practice is to assign

weights to the different classes that are inversely proportional to the frequency of the correspond-

ing labels Brosch, Yoo, Tang, Li, Traboulsee & Tam (2015); Kamnitsas, Ledig, Newcombe,

Simpson, Kane, Menon, Rueckert & Glocker (2017); Long et al. (2015); Ronneberger et al.

(2015); Yu, Yang, Chen, Qin & Heng (2017). In this scenario, the standard cross-entropy (CE)

loss is modified so as to assign more importance to the rare labels. Although effective for some

unbalanced problems, such weighting methods may undergo serious difficulties when dealing

with highly unbalanced datasets, as seen with WMH segmentation. The CE gradient computed

over the few pixels of infrequent labels is typically noisy, and amplifying this noise with a high

class weight may lead to instability.

The well-known Dice overlap coefficient was also adopted as a regional loss function, typically

outperforming CE in unbalanced medical image segmentation problems Milletari et al. (2016);

Milletari, Ahmadi, Kroll, Plate, Rozanski, Maiostre, Levin, Dietrich, Ertl-Wagner, Bötzel

et al. (2017); Wong, Moradi, Tang & Syeda-Mahmood (2018). Sudre et al. Sudre et al. (2017)

generalized the Dice loss Milletari et al. (2016) by weighting according to the squared inverse of

class-label frequency. Despite these improvements over CE Milletari et al. (2016); Sudre et al.

(2017), regional Dice losses may encounter difficulties when dealing with very small structures.

In such highly unbalanced scenarios, mis-classified pixels may lead to large decreases of the

loss, resulting in unstable optimization. Furthermore, Dice corresponds to the harmonic mean

between precision and recall, implicitly using the arithmetic mean of false positives and false

negatives. False positives and false negatives are, therefore, equally important when the true

positives remain the same, making this loss mainly appropriate when both types of errors are

equally high. The recent research in Abraham & Khan (2019); Salehi, Erdogmus & Gholipour

(2017) investigated losses based on the Tversky similarity index in order to provide a better

trade-off between precision and recall. It introduced two parameters that control the importance

of false positives and false negatives. Other recent advances in class-imbalanced learning for

computer vision problems have been adopted in medical image segmentation. For example,

inspired by the concept of focal loss Lin, Goyal, Girshick, He & Dollár (2018), Dice and
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Tvserky losses have been extended to integrate a focal term, which is parameterized by a value

that controls the importance of easy and hard training samples Abraham & Khan (2019); Wong

et al. (2018). Furthermore, the combination of several of these regional losses has been further

investigated Zhu, Huang, Zeng, Chen, Liu, Qian, Du, Fan & Xie (2019). The main objective

of these losses is to balance the classes not only in terms of their relative class sizes, but also

by the level of segmentation difficulty.

a) Ground truth b) GDL c) GDL + boundary loss

Figure 4.1 A visual comparison that shows the positive effect of our boundary loss

on a validation data from the WMH dataset. Our boundary loss helped to recover

small regions that were otherwise missed by the model trained with the generalized

Dice loss (GDL). Best viewed in colors.

More recently, Karimi et al. Karimi & Salcudean (2019) proposed a novel loss function that

attempts to directly reduce the Hausdorff distance (HD). This relaxed loss based on the HD

is shown to bring improvements when combined with the DSC loss. Nevertheless, its main

drawback is the high computational cost of computing the distance transforms. Particularly, at

each training epoch, the new distance maps have to be recomputed for all the images, which

incurs in a computationally costly process. This issue is further magnified in the case of 3D

volumes, which heavily increases the computational burden.
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4.1.1 Contributions

In this paper, we propose a boundary loss that takes the form of a distance metric on the space of

contours (or shapes), not regions. We argue that a boundary loss can mitigate the issues related

to regional losses in highly unbalanced segmentation problems. Rather than using unbalanced

integrals over the regions, a boundary loss uses integrals over the boundary (interface) between

the regions. Furthermore, it provides information that is complementary to regional losses. It

is, however, challenging to represent the boundary points corresponding to the regional softmax

outputs of a CNN. This difficulty may explain why boundary losses have been avoided in the

context of deep segmentation networks. Our boundary loss is inspired by techniques in discrete

graph-based optimization for computing gradient flows of curve evolution Boykov, Kolmogorov,

Cremers & Delong (2006). Following an integral approach for computing boundary variations,

we express a non-symmetric 𝐿2 distance on the space of shapes (or contours) as a regional

integral, which avoids completely local differential computations involving contour points.

This yields a boundary loss expressed as the sum of linear functions of the regional softmax

probability outputs of the network. Therefore, it can be easily combined with standard regional

losses and implemented with any existing deep network architecture for N-D segmentation.

We evaluated our boundary loss in conjunction with various region-based losses on two chal-

lenging and highly unbalanced segmentation problems—the Ischemic Stroke Lesion (ISLES)

and the White Matter Hyperintensities (WMH) benchmark datasets. The results indicate that

the proposed boundary loss yields a more stable learning process, and can bring significant

gains in performances, in terms of Dice and Hausdorff scores.

4.2 Formulation

Let 𝐼 : Ω ⊂ R2,3 → R denotes a training image with spatial domain Ω, and 𝑔 : Ω → {0, 1} a

binary ground-truth segmentation of the image: 𝑔(𝑝) = 1 if pixel/voxel 𝑝 belongs to the target

region 𝐺 ⊂ Ω (foreground region) and 0 otherwise, i.e., 𝑝 ∈ Ω \ 𝐺 (background region)1. Let

1We focus on two-region segmentation to simplify the presentation. However, our formulation extends to the

multi-region case in a straightforward manner.
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𝑠𝜃 : Ω → [0, 1] denotes the softmax probability output of a deep segmentation network, and

𝑆𝜃 ⊂ Ω the corresponding segmentation region: 𝑆𝜃 = {𝑝 ∈ Ω | 𝑠𝜃 (𝑝) ≥ 𝛿} for some threshold

𝛿. Widely used segmentation loss functions involve a regional integral for each segmentation

region in Ω, which measures some similarity (or overlap) between the region defined by the

probability outputs of the network and the corresponding ground-truth. In the two-region case,

we have an integral of the general form
∫
Ω
𝑔(𝑝) 𝑓 (𝑠𝜃 (𝑝))𝑑𝑝 for the foreground, and of the

form
∫
Ω
(1 − 𝑔(𝑝)) 𝑓 (1 − 𝑠𝜃 (𝑝))𝑑𝑝 for the background. For instance, the standard two-region

cross-entropy loss corresponds to a summation of these two terms for 𝑓 = − log(·). Similarly,

the generalized Dice loss (GDL) Sudre et al. (2017) involves regional integrals with 𝑓 = 1,

subject to some normalization, and is given as follows for the two-region case:

L𝐺𝐷𝐿 (𝜃) = 1 − 2
𝑤𝐺

∫
𝑝∈Ω

𝑔(𝑝)𝑠𝜃 (𝑝)𝑑𝑝 + 𝑤𝐵

∫
𝑝∈Ω

(1 − 𝑔(𝑝)) (1 − 𝑠𝜃 (𝑝))𝑑𝑝

𝑤𝐺
∫
Ω
[𝑠𝜃 (𝑝) + 𝑔(𝑝)]𝑑𝑝 + 𝑤𝐵

∫
Ω
[2 − 𝑠𝜃 (𝑝) − 𝑔(𝑝)]𝑑𝑝

(4.1)

where coefficients 𝑤𝐺 = 1/
(∫
𝑝∈Ω

𝑔(𝑝)𝑑𝑝
)2

and 𝑤𝐵 = 1/
(∫

Ω
(1 − 𝑔(𝑝))𝑑𝑝

)2

are introduced to

reduce the well-known correlation between the Dice overlap and region size.

Regional integrals are widely used because they are convenient for training deep segmentation

networks. In practice, these regional integrals are summations of differentiable functions,

each invoking directly the softmax probability outputs of the network, 𝑠𝜃 (𝑝). Therefore,

standard stochastic optimizers such SGD are directly applicable. Unfortunately, extremely

unbalanced segmentations are quite common in medical image analysis, where, e.g., the size

of the target foreground region is several orders of magnitude smaller than the background

size. This represents challenging cases because the foreground and background terms have

substantial differences in their values, which affects segmentation performance and training

stability Milletari et al. (2016); Sudre et al. (2017).

Our purpose is to build a boundary loss Dist(𝜕𝐺, 𝜕𝑆𝜃), which takes the form of a distance

metric on the space of contours (or region boundaries) in Ω, with 𝜕𝐺 denoting a representation

of the boundary of ground-truth region 𝐺 (e.g., the set of points of 𝐺, which have a spatial

neighbor in background Ω \ 𝐺) and 𝜕𝑆𝜃 denoting the boundary of the segmentation region

106



defined by the network output. On the one hand, a boundary loss should be able to mitigate

the above-mentioned difficulties for unbalanced segmentations: rather than using unbalanced

integrals within the regions, it uses integrals over the boundary (interface) between the regions.

Furthermore, a boundary loss provides information that is different from and, therefore, compli-

mentary to regional losses. On the other hand, it is not clear how to represent boundary points

on 𝜕𝑆𝜃 as a differentiable function of regional network outputs 𝑠𝜃 . This difficulty might explain

why boundary losses have been mostly avoided in the context of deep segmentation networks.

a) Differential b) Integral

Figure 4.2 The relationship between differential and

integral approaches for evaluating boundary change

(variation).

Our boundary loss is inspired from discrete (graph-based) optimization techniques for comput-

ing gradient flows of curve evolution Boykov et al. (2006). Similarly to our problem, curve

evolution methods require a measure for evaluating boundary changes (or variations). Consider

the following non-symmetric 𝐿2 distance on the space of shapes, which evaluates the change

between two nearby boundaries 𝜕𝑆 and 𝜕𝐺 Boykov et al. (2006):

Dist(𝜕𝐺, 𝜕𝑆) =
∫
𝜕𝐺
‖𝑦𝜕𝑆 (𝑝) − 𝑝‖2𝑑𝑝 (4.2)
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where 𝑝 ∈ Ω is a point on boundary 𝜕𝐺 and 𝑦𝜕𝑆 (𝑝) denotes the corresponding point on

boundary 𝜕𝑆, along the direction normal to 𝜕𝐺, i.e., 𝑦𝜕𝑆 (𝑝) is the intersection of 𝜕𝑆 and the

line that is normal to 𝜕𝐺 at 𝑝 (See Fig. 4.2.a for an illustration) ‖.‖ denotes the 𝐿2 norm. In fact,

this differential framework for evaluating boundary change is in line with standard variational

curve evolution methods Mitiche & Ben Ayed (2011), which compute the motion of each point

𝑝 on the evolving curve as a velocity along the normal to the curve at point 𝑝. Similarly to any

contour distance invoking directly points on contour 𝜕𝑆, expression (4.2) cannot be used directly

as a loss for 𝜕𝑆 = 𝜕𝑆𝜃 . However, it is easy to show that the differential boundary variation

in (4.2) can be approximated using an integral approach Boykov et al. (2006), which avoids

completely local differential computations involving contour points and represents boundary

change as a regional integral:

Dist(𝜕𝐺, 𝜕𝑆) ≈ 2

∫
Δ𝑆
𝐷𝐺 (𝑞)𝑑𝑞 (4.3)

where Δ𝑆 denotes the region between the two contours and 𝐷𝐺 : Ω → R+ is a distance map

with respect to boundary 𝜕𝐺, i.e., 𝐷𝐺 (𝑞) evaluates the distance between point 𝑞 ∈ Ω and the

nearest point 𝑧𝜕𝐺 (𝑞) on contour 𝜕𝐺: 𝐷𝐺 (𝑞) = ‖𝑞− 𝑧𝜕𝐺 (𝑞)‖. Fig. 4.2.b illustrates this integral

framework for evaluating the boundary distance in Eq. (4.2). To clarify approximation (4.3),

notice that integrating the distance map 2𝐷𝐺 (𝑞) over the normal segment connecting a point 𝑝

on 𝜕𝐺 and 𝑦𝜕𝑆 (𝑝) yields ‖𝑦𝜕𝑆 (𝑝) − 𝑝‖2, via the following variable change:∫ 𝑦𝜕𝑆 (𝑝)

𝑝
2𝐷𝐺 (𝑞)𝑑𝑞 =

∫ ‖𝑦𝜕𝑆 (𝑝)−𝑝‖

0

2𝐷𝐺𝑑𝐷𝐺 = ‖𝑦𝜕𝑆 (𝑝) − 𝑝‖2

Thus, from approximation (4.3), the non-symmetric 𝐿2 distance between contours in Eq. (4.2)

can be expressed as a sum of regional integrals based on a level set representation of boundary

𝜕𝐺:

1

2
Dist(𝜕𝐺, 𝜕𝑆) =

∫
𝑆
𝜙𝐺 (𝑞)𝑑𝑞 −

∫
𝐺
𝜙𝐺 (𝑞)𝑑𝑞 =

∫
Ω
𝜙𝐺 (𝑞)𝑠(𝑞)𝑑𝑞 −

∫
Ω
𝜙𝐺 (𝑞)𝑔(𝑞)𝑑𝑞 (4.4)
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where 𝑠 : Ω → {0, 1} is binary indicator function of region 𝑆: 𝑠(𝑞) = 1 if 𝑞 ∈ 𝑆 belongs to

the target and 0 otherwise. 𝜙𝐺 : Ω → R denotes the level set representation of boundary 𝜕𝐺:

𝜙𝐺 (𝑞) = −𝐷𝐺 (𝑞) if 𝑞 ∈ 𝐺 and 𝜙𝐺 (𝑞) = 𝐷𝐺 (𝑞) otherwise. Now, for 𝑆 = 𝑆𝜃 , i.e., replacing

binary variables 𝑠(𝑞) in Eq. (4.4) by the softmax probability outputs of the network 𝑠𝜃 (𝑞),

we obtain the following boundary loss which, up to a constant independent of 𝜃, approximates

boundary distance Dist(𝜕𝐺, 𝜕𝑆𝜃):

L𝐵 (𝜃) =
∫
Ω
𝜙𝐺 (𝑞)𝑠𝜃 (𝑞)𝑑𝑞 (4.5)

Notice that we omitted the last term in Eq. (4.4) as it is independent of network parameters.

The level set function 𝜙𝐺 is pre-computed directly from the ground-truth region 𝐺. In practice,

our boundary loss in Eq. (4.5) is the sum of linear functions of the regional softmax probability

outputs of the network. Therefore, it can be easily combined with standard regional losses (L𝑅)

and implemented with any existing deep network architecture for N-D segmentation:

L𝑅 (𝜃) + 𝛼L𝐵 (𝜃), (4.6)

where 𝛼 ∈ R is a parameter balancing the two losses.

It is worth noting that our boundary loss uses ground-truth boundary information via pre-

computed level-set function 𝜙𝐺 (𝑞), which encodes the distance between each point 𝑞 and 𝜕𝐺.

In Eq. (4.5), the softmax for each point 𝑞 is weighted by the distance function. Such distance-

to-boundary information is omitted in widely used regional losses, where all the points within

a given region are treated equally, independently of their distances from the boundary.

Notice that the global minimum (smallest possible value) of our boundary loss (4.5) is reached

when all the negative values in the distance function are included in the sum (i.e., the softmax

predictions for the pixels within the ground-truth foreground are equal to 1) and all the positive

values are omitted (i.e., the softmax predictions within the background are equal to zero). This

means that the global optimum is reached for softmax predictions that correspond exactly to

the ground truth, which confirms the meaningfulness of our boundary loss. It is also worth
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noticing that the gradient of our loss is 𝜙𝐺 multiplied the gradient of the softmax predictions.

This results in negative factors for the pixels in𝐺, which encourages 𝑠𝜃 to increase during SGD,

with the magnitude (strength) of the factors depending on the distance between the pixel and

the ground-truth boundary (the further the pixel from the boundary, the higher the magnitude

of the factor). Positive factors for pixels within the background (Ω \𝐺) encourage the softmax

predictions to decrease.

As we will see in our experiments, it is important to use our boundary loss in conjunction with

a regional loss for the following technical facts. As discussed earlier, the global optimum of our

boundary loss corresponds to a strictly negative value, with the softmax probabilities yielding a

non-empty foreground region. However, an empty foreground, with approximately null values

of the softmax probabilities almost everywhere, corresponds to very low gradients. Therefore,

this trivial solution is close to a local minimum or a saddle point. This is why we integrate

our boundary loss with a regional loss: the regional loss guides training during the first epochs

and avoids getting stuck in such trivial solutions. In the next section, we will discuss various

scheduling strategies for updating the weight of the boundary loss during training, with the

boundary loss becoming very dominant, almost acting alone, towards the end of the training

process. It is also worth noting that this behaviour of boundary terms is conceptually similar

to the behaviour of classical and popular contour-based energies for segmentation, e.g., level

set Geodesic Active Contours (GAC) Caselles, Kimmel & Sapiro (1997) or discrete Markov

Random Fields (MRFs) for boundary regularization and edge alignment Boykov & Funka-Lea

(2006), which require additional regional terms to avoid trivial empty-region solutions.

4.3 Experiments

In this section, we perform two sets of experiments. First, we perform comprehensive evalua-

tions demonstrating to positive effect of integrating our boundary loss with different regional

losses L𝑅. Then, we perform a study on the different strategies for selecting and schedul-

ing weight 𝛼 in (4.6), showing its impact on performances and good default values for new

applications.
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4.3.1 Datasets

To evaluate the proposed boundary loss, we selected two challenging brain lesion segmentation

tasks, each corresponding to highly unbalanced classes.

ISLES

The training dataset provided by the ISLES organizers is composed of 94 ischemic stroke

lesion multi-modal scans. In our experiments, we split this dataset into training and validation

sets containing 74 and 20 examples, respectively. Each scan contains Diffusion maps (DWI)

and Perfusion maps (CBF, MTT, CBV, Tmax and CTP source data), as well as the manual

ground-truth segmentation. The spatial resolution goes from 0.8𝑚𝑚 × 0.8𝑚𝑚 × 4𝑚𝑚 to

1𝑚𝑚 × 1𝑚𝑚 × 12𝑚𝑚. More details can be found in the ISLES website2.

WMH

The public dataset of the White Matter Hyperintensities (WMH)3 MICCAI 2017 challenge

contains 60 3D T1-weighted scans and 2D multi-slice FLAIR acquired from multiple vendors

and scanners in three different hospitals. The spatial resolution goes from 0.95𝑚𝑚×0.95𝑚𝑚×

3𝑚𝑚 to 1.21𝑚𝑚 × 1𝑚𝑚 × 3𝑚𝑚 for each volume. In addition, the ground truth for the 60 scans

is provided. From the whole set, 50 scans were used for training, and the remaining 10 for

validation.

4.3.2 Compared losses

As stated previously, our proposed boundary loss can be combined with any standard regional

loss. In the following experiments, we evaluated different popular ones:

2http://www.isles-challenge.org

3http://wmh.isi.uu.nl
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GDL Sudre et al. (2017)

We use the binary case of this loss, described in Equation (4.1). This is also the baseline loss

that we use for the experiments on the selection of 𝛼. An important advantage of this loss is

that it is hyper-parameter free.

Distance weighted cross-entropy Ronneberger et al. (2015)

UNet original paper proposed this loss as a way to integrate spatial information during the

training. It is a modified weighted cross-entropy loss, where the weight for each pixel depends

both on the class distribution, and its distance to the two cells closest boundaries. We adapted

it for our case, where we take into account only one distance:

LUNET(𝜃) = −
∫
𝐶

∫
Ω
𝑢𝑐 (𝑝) log 𝑠𝑐𝜃 (𝑝)𝑑𝑝𝑑𝑐,

where 𝐶 is the set of classes and 𝑠𝑐𝜃 (𝑝) are the network predictions for class 𝑐. 𝑢𝑐 (𝑝) is defined

as:

𝑢𝑐 (𝑝) = 𝑔𝑐 (𝑝)

[
𝑤𝑐 + 𝑤0𝑒

−𝐷𝐺 (𝑝)2

2𝜎2

]
,

where 𝑤𝑐 =
∫
Ω 𝑔𝑐 (𝑝)𝑑𝑝

|Ω| , and 𝑤0 = 10 and 𝜎 = 5 are two hyper-parameters. We kept the paper’s

default values.

Focal loss Lin et al. (2018)

The idea of this loss is to give hard examples a more important weight:

LFOCAL = −
∫
𝐶

∫
Ω
(1 − 𝑠𝑐𝜃 (𝑝))

𝛾𝑔𝑐 (𝑝) log 𝑠𝑐𝜃 (𝑝)𝑑𝑝𝑑𝑐,

with 𝛾 = 2 as default hyper-parameter. Therefore, during training, pixels correctly classified

with a high confidence will have little to no influence.
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Hausdorff loss Karimi & Salcudean (2019)

This closely related loss is also designed to minimize some distance between the two boundaries,

but through a different path. We refer to this loss as L𝐻𝐷 .

L𝐻𝐷 =
∫
Ω
(𝑔(𝑝) − 𝑠𝜃 (𝑝))

2(𝐷𝐺 (𝑝)
𝛽 + 𝐷𝑆 (𝑝)

𝛽)𝑑𝑝,

where 𝐷𝑆 denotes the distance function from predicted boundary 𝑆, after thresholding 𝑠𝜃 . 𝛽 is

a hyper-parameter, which the authors of Karimi & Salcudean (2019) set to 2 following a grid

search. Unlike our boundary loss, computing 𝐷𝑆 cannot be done in a single step before training.

The distance needs to be re-computed at each epoch during training, for all the images. It also

requires to store the whole volume Ω in memory, as we cannot compute the distance map for

only a subset of Ω. These might be important computational and memory limitations, more so

when dealing with large images, as is the case for 3D distance maps.

4.3.3 2D and 3D distance maps

While the main experiments resort to a distance map computed from each individual 2D slice,

we evaluate the proposed boundary loss with a distance map computed from the whole initial

3D segmentation mask. Equation (4.5) enables us to have only a subset of Ω at each update,

making it possible to use a 3D distance map with mini-batches of 2D slices.

4.3.4 Selection of alpha

We study several strategies for selecting 𝛼, and its effect on the performances. On top of

a constant pre-selected 𝛼, we evaluated simple scheduling strategies to update it during the

training.
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Constant 𝛼

The simplest method would be to use a constant during the whole training, but this might require

careful tuning of its value.

Increase 𝛼

We start with a low value of 𝛼 > 0, and increase it gradually at the end of each epoch. The

weight of the regional loss L𝑅 remains constant over time. At the end of the training, the two

losses have the same weight.

Rebalance 𝛼

First we rewrite our combined loss as (1 − 𝛼)L𝑅 + 𝛼L𝐵. As for the increase strategy, we start

with a low 𝛼 > 0, and increase it over time. In this way, we give more importance to the

regional loss term at the beginning while gradually increasing the impact of the boundary loss

term. Note that we make sure that the weight for L𝑅 never reaches 0; the two losses are used

at all times during training.

4.3.5 Implementation details

Data pre-processing

While the scans are provided as 3D images, we process them as a stack of independent 2D

images, which are fed into the network. In fact, the scans in some datasets, such as ISLES,

contain between 2 and 16 slices, making them ill-suited for 3D convolutions in those cases.

The scans were normalized between 0 and 1 before being saved as a set of 2D matrices, and

re-scaled to 256×256 pixels if needed. When several modalities were available, all of them were

concatenated before being used as input to the network. We did not use any data augmentation

in our experiments.
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Architecture and training

We employed UNet Ronneberger et al. (2015) as deep learning architecture in our experiments.

To train our model, we employed Adam optimizer, with a learning rate of 0.001 and a batch size

equal to 8. The learning rate is halved if the validation performances do not improve during 20

epochs. We did not use early stopping.

To compute the level set function 𝜙𝐺 in Eq. (4.5), we used standard SciPy functions4. Note

that, for slices containing only the background region, we used a zero-distance map, assuming

that the regional loss is sufficient in those cases. For the increase and rebalance 𝛼 scheduling

strategies, we start with 𝛼 = 0.01 and increase it by 0.01 at the end of each epoch. For all

the experiments comparing different losses, we use the same rebalance strategy, with the same

hyper-parameters.

In addition, we evaluated the performance when the boundary loss is the only objective, i.e.,

𝛼 = 0.

For our implementation, we used PyTorch Paszke et al. (2017), and ran the experiments on a

machine equipped with an NVIDIA GTX 1080 Ti GPU with 11GBs of memory. Our code

(data pre-processing, training and testing scripts) is publicly available5. As Karimi & Salcudean

(2019) did not release their code, we relied on the re-implementation from Ma, Wei, Zhang,

Wang, Lv, Zhu, Chen, Liu, Peng, Wang et al. (2020)6.

Evaluation

For evaluation purposes, we employ the common Dice Similarity Coefficient (DSC) and modi-

fied Hausdorff Distance7 (HD95) metrics.

4https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.morphology.distance_transform

_edt.html

5https://github.com/LIVIAETS/surface-loss

6https://github.com/JunMa11/SegWithDistMap

7We report the 95th percentile distance value instead of the maximum-distance value.
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4.3.6 Results

4.3.6.1 Comparison of regional losses

In this section, we detail the results that we obtained when using different regional losses L𝑅.

Quantative evaluation

Table 4.1 reports the DSC and HD performances for our experiments using four different choices

of L𝑅, with each regional term used either alone or in conjunction with our boundary loss in

Eq. (4.6), on the ISLES and WMH datasets. In most of the settings, adding the boundary loss

during training improves the performances, as reflected in the significantly better DSC and HD

values. For instance, on the ISLES segmentation task, adding the boundary loss yielded about

13% improvement in DSC over using Generalized Dice loss alone, and about 3% improvement

over using UNet cross-entropy or focal loss alone. The discrepancy of the improvements the

boundary loss brings might be due to the difference in the difficulty of the tackled tasks. The

more difficult the tasks (i.e., when regional terms have difficulty achieving good performances),

the larger the gain boundary loss brings (as it complements regional information). GDL/ISLES

is a noticeable case, where boundary loss corrected substantially the performance of the GDL

regional loss, making it the winning competitor (although, without boundary information, it is

the worse-performing regional loss).

The mixed results with the UNet cross-entropy (improvement on ISLES, but stall on WMH), and

the difference on the HD95 metrics can potentially be explained by a toxic interplay between

the two losses: both of them are trying to use the distance from the boundary information,

potentially counter-acting each others, and introducing instability.

Computing the distance map from the 3D volume rather than from the 2D slices gives a small

boost in performance (about 1% DSC), and is more noticeable on the training curve for WMH

(Figure 4.3). This difference could be explained by the spacing between the slices on the 𝑧 axis:

they are quite close (and correlated) in the case of WMH. However, in the case of ISLES, the
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big spacing (around 1cm) makes slices quite independent. Adding 3D information in this case

is less helpful.

While the Hausdorff loss Karimi & Salcudean (2019) also improves the results over the GDL

alone (around 7% on ISLES), its performance is not always at the same level as boundary loss

(similar performance on WMH, but lower on ISLES). This is consistent with the findings of

Ma et al. (2020), which found that the differences in performances are dataset dependent.

Table 4.1 Average DSC and HD95 values (and standard deviation over three

independent runs) achieved on the validation subset. Best results highlighted in bold.

Loss
ISLES WMH

DSC HD95 (mm) DSC HD95 (mm)

L𝐵 NA NA NA NA

L𝐻𝐷 NA NA 0.638 (NA) 4.578 (NA)

GDL 0.511 (0.016) 5.320 (1.742) 0.768 (0.051) 3.634 (2.570)

w/ L𝐵 (2D) 0.644 (0.026) 4.795 (3.712) 0.793 (0.006) 2.039 (1.834)

w/ L𝐵 (3D) 0.659 (0.001) 2.725 (2.196) 0.818 (0.003) 1.702 (1.982)
w/ L𝐻𝐷 0.582 (0.015) 4.126 (1.634) 0.805 (0.015) 2.151 (2.100)

UNet cross-entropy Ronneberger et al. (2015) 0.608 (0.025) 4.572 (0.675) 0.757 (0.015) 4.355 (3.388)

w/ L𝐵 (2D) 0.631 (0.016) 5.961 (2.291) 0.756 (0.022) 2.887 (2.629)

Focal loss Lin et al. (2018) 0.631 (0.046) 4.989 (2.775) 0.808 (0.026) 1.816 (1.370)

w/ L𝐵 (2D) 0.650 (0.019) 1.770 (0.549) 0.786 (0.031) 2.258 (2.513)

Using the boundary loss alone does not yield the same competitive results as a joint loss (i.e.,

boundary and region), making the network collapse quickly into empty foreground regions,

i.e., softmax predictions close to zero8. We believe that this is due to the following technical

facts. In theory, the global optimum of the boundary loss corresponds to a negative value, as

a perfect overlap sums only over the negative values of the distance map. In this case, the

softmax probabilities correspond to a non-empty foreground. However, an empty foreground

(null values of the softmax probabilities almost everywhere) corresponds to low gradients.

Therefore, this trivial solution is close a local minimum or a saddle point. This is not the case

when we use our boundary loss in conjunction with a regional loss, which guides the training

during the first epochs and avoids getting stuck in such a trivial solution. The scheduling method

then increases the weight of the boundary loss, with the latter becoming very dominant towards

8For this reason, we do not report metrics in this case, as it would be meaningless.
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the end of the training process. This behaviour of boundary terms is conceptually similar to

the behaviour of classical and popular contour-based energies for level set segmentation, e.g.,

geodesic active contours Caselles et al. (1997), which also require additional regional terms to

avoid trivial solutions (i.e., empty foreground regions).
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The learning curves depicted in Figure 4.3 show the gap in performances between using a

regional loss L𝑅 alone and when augmented with our boundary loss, for different choices of

L𝑅. In most of the settings, the difference becomes significant at convergence. This behaviour

is most visible when L𝑅 = LGDL, and is consistent for both metrics and both dataset, which

clearly shows the benefits of employing the proposed boundary loss term.

Figure 4.3 Evolution of DSC values on validation subsets, for different base losses, on

both ISLES and WMH. Best viewed in colors.
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4.3.6.1.1 Qualitative evaluation

Qualitative results are depicted in Fig. 4.4. Inspecting these results visually, we can observe that

there are two major types of improvements when employing the proposed boundary loss. First,

as the methods based on DSC losses, such as GDL, do not use spatial information, prediction

errors are treated equally. This means that the errors for pixels/voxels in an already detected

object have the same importance as the errors produced in completely missed objects. On the

contrary, as our boundary loss is based on the distance map from the ground-truth boundary

𝜕𝐺, it will penalize much more such cases, helping to recover small and far regions. This

effect is best illustrated in Fig. 4.1 and Fig. 4.4 (third row). False positives (first row in Fig.

4.4) will be far away from the closest foreground, getting a much higher penalty than with the

GDL alone. This helps in reducing the number of false positives. Additional qualitative results

for other base losses, and their combination with the proposed boundary loss, are depicted in

Figures 4.5, 4.6. These figures also show failure cases (last column) of the boundary loss.

4.3.6.1.2 Computational complexity

It is worth mentioning that, as the proposed boundary loss term involves an element-wise

product between two matrices—i.e., the pre-computed level-set function 𝜙𝐺 and the softmax

output 𝑠𝜃 (𝑝)—the complexity that it adds is negligible as showed in Table 4.2. Contrary, the

Hausdorff loss Karimi & Salcudean (2019) introduces around 10% of slowdown in the training

process. This will be further magnified if we generalize to multi-class problems, where an

individual distance map should be computed for each class.

4.3.6.2 Selection of alpha

Table 4.3 reports the performances of the proposed approach on the ISLES segmentation task

for different 𝛼 values and scheduling techniques. Figure 4.3 shows a subset of the learning

curves related to 𝛼 selection strategies in Table 4.3. This is an indication that, while our

boundary loss can benefit from a tuned balance between the two losses, even a sub-optimal
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Figure 4.4 Visual comparison on two different datasets from the validation set.

Table 4.2 Training time required by different losses.

We report the average and standard deviation batch time

in seconds for each method.

Loss
Time (s) per batch

ISLES (Batch size = 4) WMH (Batch size = 8)

GDL 0.187 (0.129) 0.345 (0.132)

w/ L𝐵 0.190 (0.128) 0.345 (0.129)

w/ L𝐻𝐷 0.210 (0.108) 0.392 (0.092)

𝛼 can already provide improvement over the regional loss alone. Observe that increasing the

weight of constant 𝛼 yields better performances, up to a certain value, with the performances

decreasing starting from 𝛼 = 1.5. With 𝛼 = 2,the performance is similar to a network trained
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with the boundary loss alone. In contrast, using any of the two proposed scheduling strategies

(increasing 𝛼 or re-balancing) yields better results than any constant 𝛼, without having to

explore many configurations.

From the learning curves (Figure 4.7), we can notice that the GDL alone and the GDL with a

small constant 𝛼 = 0.001 have a similar training DSC over time, but that their validation DSC

are significantly different. A similar behaviour can be observed by examining the results with

constant 𝛼 = 1 and the rebalanced 𝛼: while the rebalancing training DSC is slightly higher

during the whole training, the validation DSC becomes significantly better around half the

training time, where the high constant 𝛼 performances starts decreasing.

The rebalancing strategy was used in all other experiments, and as showed in Table 4.1, proved

to be a good default strategy to integrate the boundary loss with another regional loss.
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Figure 4.5 Visual comparison on the WMH dataset for different training losses. The last

column depicts a failure case, where the proposed loss does not enhance the regional loss

performance. Best viewed in colors.
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Figure 4.6 Visual comparison on the ISLES dataset for different training losses. The last

column depicts a failure case, where the proposed loss does not enhance the regional loss

performance. Best viewed in colors.
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Table 4.3 Results on ISLES validation set for different 𝛼.

Strategy
ISLES

DSC HD95

GDL only 0.511 (0.016) 5.320 (1.742)

Constant 𝛼

𝛼 = 0.001 0.545 (0.020) 4.778 (1.546)

𝛼 = 0.01 0.566 (0.019) 5.052 (1.395)

𝛼 = 0.05 0.606 (0.015) 5.326 (1.712)

𝛼 = 0.1 0.605 (0.010) 5.762 (1.782)

𝛼 = 0.5 0.604 (0.006) 9.234 (10.463)

𝛼 = 1 0.628 (0.023) 2.462 (0.706)

𝛼 = 1.5 0.565 (0.074) 3.335 (1.164)

𝛼 = 2 0.549 (0.084) 20.275 (16.603)

Increase 𝛼 0.622 (0.004) 4.952 (1.773)

Rebalance 𝛼 0.644 (0.026) 4.795 (3.712)

Figure 4.7 Comparison of the training and validation DSC curves for different 𝛼
selection strategies. For readability, not all settings from Table 4.3 have been included.

Best viewed in colors.

4.4 Conclusion and future works

We proposed a boundary loss term that can be easily combined with any standard regional loss,

to tackle segmentation tasks in highly unbalanced scenarios. Furthermore, the proposed term

can be implemented with any existing deep network architecture and for any N-D segmentation

problem. Our experiments on two challenging and highly unbalanced datasets demonstrated
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the benefits of including our boundary loss during training. It consistently improved the

performances, and by a large margin on one data set, with enhanced training stability.
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In this work, we evaluated the proposed boundary loss in the context of class imbalance. How-

ever, there are other interesting avenues for extending and evaluating our approach. For instance,

our boundary loss has a spatial regularization effect because it is based on distance-to-boundary

information. In particular, we observed experimentally that it yield contours, which are, typi-

cally, smoother than those obtained with regional losses. Focused on the important problem of

unbalanced segmentation, our experiments did not fully investigate the benefits of such a spatial

regularization. An interesting future research avenue will be to explore such a regularization

effect in applications with challenging imaging noise, which may prevent regional losses from

generating smooth contours, e.g., ultrasound imaging. Another limitation of our formulation

and experiments is that they were limited to binary (two-region) segmentation problems. It

will be interesting to investigate extensions of boundary loss to the multi-region scenario, with

competing distance maps from multiple structures and various/complex topological constraints

(e.g., one structure fully included within another).
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Abstract

This study investigates a curriculum-style strategy for semi-supervised CNN segmentation,

which devises a regression network to learn image-level information such as the size of the

target region. These regressions are used to effectively regularize the segmentation network,

constraining the softmax predictions of the unlabeled images to match the inferred label dis-

tributions. Our framework is based on inequality constraints, which tolerate uncertainties in

the inferred knowledge, e.g., regressed region size. It can be used for a large variety of region

attributes. We evaluated our approach for left ventricle segmentation in magnetic resonance

images (MRI), and compared it to standard proposal-based semi-supervision strategies. Our

method achieves competitive results, leveraging unlabeled data in a more efficient manner and

approaching full-supervision performance.

5.1 Introduction

In the recent years , deep learning architectures, and particularly convolutional neural networks

(CNNs), have achieved state-of-the-art performances in a breadth of visual recognition tasks.

These architectures currently dominate the literature in medical image segmentation Litjens

et al. (2017). The generalization capabilities of these networks typically rely on large and

annotated datasets, which, in the case of segmentation, consist of precise pixel-level annotations.

Obtaining expert annotations in medical images is a costly process that also requires clinical

expertise. The lack of large annotated datasets has driven research in deep segmentation models



that rely on reduced supervision for training, such as weakly Kervadec et al. (2019b); Khoreva

et al. (2017); Lin et al. (2016); Pathak et al. (2015a) or semi-supervised Bai et al. (2017); Sedai,

Mahapatra, Hewavitharanage, Maetschke & Garnavi (2017) learning. These strategies assume

that annotations are limited or coarse, such as image-level tags Papandreou et al. (2015); Pathak

et al. (2015a), scribbles Tang et al. (2018b) or bounding-boxes Rajchl et al. (2017).

In this paper, we focus on semi-supervised learning, a common scenario in medical imaging,

where a small set of images are assumed to be fully annotated, but an abundance of unlabeled

images is available. Recent progress of these techniques in medical image segmentation has

been bolstered by deep learning Bai et al. (2017); Baur, Albarqouni & Navab (2017); Ganaye,

Sdika & Benoit-Cattin (2018); Nie, Gao, Wang & Shen (2018); Sedai et al. (2017); Zhou,

Wang, Tang, Bai, Shen, Fishman & Yuille (2019b). Self-training is a common semi-supervised

learning strategy, which consists of employing reliable predictions generated by a deep learning

architecture to re-train it, thereby augmenting the training set with these predictions as pseudo-

labels Bai et al. (2017); Pathak et al. (2015a); Rajchl et al. (2017). Although this approach

can leverage unlabeled images, one of its main drawbacks is that early mistakes are propagated

back to the network, being re-amplified during training Chapelle, Scholkopf & Zien (2009);

Zhu & Goldberg (2009). Several techniques were proposed to overcome this issue, such as

co-training Zhou et al. (2019b) and adversarial learning Dong, Kampffmeyer, Liang, Wang,

Dai & Xing (2018); Mondal, Dolz & Desrosiers (2018); Zhang, Yang, Chen, Fredericksen,

Hughes & Chen (2017b). Nevertheless, with these approaches, training typically involves

several networks, or multiple objective functions, which might hamper the convergence of such

models.

Alternatively, some weakly supervised segmentation approaches have been proposed to con-

strain the network predictions with global label statistics, for example, in the form of target-

region size Jia et al. (2017); Kervadec et al. (2019b); Pathak et al. (2015a). For instance, Jia

et .al Jia et al. (2017) employed an L2 penalty to impose equality constraints on the size of the

target regions in the context of histopathology image segmentation. However, their formula-

tion requires the exact knowledge of region size, which limits its applicability. More recently,
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Kervadec et al. Kervadec et al. (2019b) proposed using inequality constraints, which provide

more flexibility, and significantly improves performance compared to cases where learning

relies on partial image labels in the form of scribbles. Nevertheless, the values used to bound

network predictions in Kervadec et al. (2019b) are derived from manual annotations, which is a

limiting assumption. Another closely related work is the curriculum learning strategy proposed

in the context of unsupervised domain adaptation for urban images in Zhang et al. (2017a). In

this case, the authors proposed to match global label distributions over source (labelled) and

target (unlabelled) images by minimizing the KL-divergence between distributions. Finally, it

is worth noting that the semi-supervised learning technique in Ganaye et al. (2018) embeds

semantic constraints on the adjacency graph of a given region.

Inspired by this research, we propose a curriculum-style strategy for deep semi-supervised

segmentation, which employs a regression network to predict image-level information such

as the size of the target region. These regressions are used to effectively regularize the

segmentation network, enforcing the predictions for the unlabeled images to match the inferred

label distributions. Contrary to Zhang et al. (2017a), our framework uses inequality constraints,

which provides greater flexibility, allowing uncertainty in the inferred knowledge, e.g., regressed

region size. Another important difference is that the proposed framework can be used for a

large variety of region attributes (e.g., shape moments). We evaluated our approach in the

task of left ventricle segmentation in magnetic resonance images (MRI), and compared it to

standard proposal-based semi-supervision strategies. Our method achieves very competitive

results, leveraging unlabeled data in a more efficient manner and approaching full-supervision

performance. We made our code publicly available1.

5.2 Self-training for semi-supervised segmentation

Let 𝑋 : Ω ⊂ R2,3 → R denotes a training image, with Ω its spatial domain. Consider a semi-

supervised scenario with two subsets: S = {(𝑋𝑖,𝑌𝑖)}𝑖=1,...,𝑛 which contains a set of images

𝑋𝑖 and their corresponding pixel-wise ground-truth labels 𝑌𝑖, and U = {𝑋𝑗 } 𝑗=1,...,𝑚 a set of

1https://github.com/LIVIAETS/semi_curriculum
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unlabeled images, with 𝑚 � 𝑛. In the fully supervised setting, training is formulated as

minimizing the following loss with respect to network parameters 𝜽:

L𝑌 (𝜽) = −
∑
𝑖∈S

∑
𝑝∈Ω

𝑌𝑖,𝑝 log 𝑆(𝑋𝑖 |𝜽)𝑝 (5.1)

where 𝑆(𝑋𝑖 |𝜽)𝑝 represents a vector of softmax probabilities generated by the CNN at each

pixel 𝑝 and image 𝑖. To simplify the presentation, we consider the two-region segmentation

scenario (i.e., two classes), with ground-truth binary labels 𝑌𝑖,𝑝 taking values in {0, 1}, 1

indicating the target region (foreground) and 0 indicating the background. However, our

formulation can be easily extended to the multi-region case. Common approaches for semi-

supervised segmentation Bai et al. (2017); Papandreou et al. (2015) generate fake full masks

(segmentation proposals)𝑌 for the unlabeled images, which are then used iteratively for network

training by adding a standard cross-entropy loss of the form in Eq. (5.1): min𝜽 L𝑌 (𝜽) + L𝑌 (𝜽).

The process consists of alternating segmentation-proposal generation and updating network

parameters using both labeled data and the new generated masks. Typically such proposals

are refined with additional priors suh as dense CRF Tang et al. (2018b). However, errors in

such proposals may mislead training as the cross-entropy loss is minimized over mislabled

points and, reinforcing early mistakes during training, as is well-known in the semi-supervised

learning literature Chapelle et al. (2009); Zhu & Goldberg (2009).

5.3 Curriculum semi-supervised learning

The general principle of curriculum learning consists of solving easy tasks first in order to

infer some necessary properties about the unlabeled images. In particular, the first task is to

learn image-level properties, e.g. the size of the target region, which is easier than learning

pixelwise segmentations within an exponentially large label space. Then, we use such image-

level properties to facilitate segmentation via constrained CNNs. Fig. 5.1 depicts an illustration

of our curriculum semi-supervised segmentation. We first use an auxiliary network that predicts

the target-region size for a given image. Particularly, we train a regression network 𝑅 (with
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parameters 𝜽) by solving the following minimization problem:

min
𝜽

∑
𝑖∈S

���𝑅(𝑋𝑖 |𝜽) −
∑
𝑝∈Ω

𝑌𝑖,𝑝
���

2

. (5.2)

This amounts to minimizing the squared difference between the predicted size and the actual

region size.

Now we can define our constrained-CNN segmentation problem using auxiliary size predictions

𝑅(𝑋𝑖 |𝜽):

min
𝜽

L𝑌 (𝜽) (5.3)

s.t. (1 − 𝛾)𝑅(𝑋𝑖 |𝜽) ≤
∑
𝑝∈Ω

𝑆(𝑋𝑖 |𝜽)𝑝 ≤ (1 + 𝛾)𝑅(𝑋𝑖 |𝜽) ∀𝑖 ∈ U,

where the inequality constraints impose the learned image-level information (i.e., region size)

on the outputs of the segmentation network for unlabeled images, and 𝛾 is a hyper-parameter

controlling constraints tightness. We use a penalty-based approach Kervadec et al. (2019b) for

handling the inequality constraints, which accommodates standard stochastic gradient descent.

This amounts to replacing the constraints in (5.3) with the following penalty over unlabeled

samples:

LU(𝜽) =
∑
𝑖∈U

C
���
∑
𝑝∈Ω

𝑆(𝑋𝑖 |𝜽)𝑝
��� (5.4)

C(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(𝑡 − (1 − 𝛾)𝑅(𝑋𝑖 |𝜽))

2 if 𝑡 ≤ (1 − 𝛾)𝑅(𝑋𝑖 |𝜽)

(𝑡 − (1 + 𝛾)𝑅(𝑋𝑖 |𝜽))
2 if 𝑡 ≥ (1 + 𝛾)𝑅(𝑋𝑖 |𝜽)

0 otherwise

(5.5)

This gives our final unconstrained optimization problem: min𝜽 L𝑌 (𝜽) + 𝜆LU(𝜽), with 𝜆 a

hyper-parameter controlling the relative contribution of each term.
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Figure 5.1 Illustration of our curriculum semi-supervised segmentation strategy.

5.4 Experiments

5.4.1 Setup

5.4.1.0.1 Data

Our experiments focused on left ventricular endocardium segmentation. We used the training

set from the publicly available data of the 2017 ACDC Challenge Bernard, Lalande, Zotti,

Cervenansky, Yang, Heng, Cetin, Lekadir, Camara, Ballester et al. (2018). This set consists

of 100 cine magnetic resonance (MR) exams covering well defined pathologies: dilated car-

diomyopathy, hypertrophic cardiomyopathy, myocardial infarction with altered left ventricular

ejection fraction and abnormal right ventricle. It also included normal subjects. Each exam

only contains acquisitions at the diastolic and systolic phases. We sliced and resized the exams

into 256 × 256 images. No additional pre-processing was performed.
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5.4.1.0.2 Training

For the experiments, we employed 75 exams for training and the remaining 25 for validation.

From the training set, we consider that n images are fully annotated and the pixel-wise annota-

tions of the remaining 75-n images are unknown. The n images, and their corresponding ground

truth, are employed to train both the auxiliary size predictor and the main segmentation network,

in a separate way. To validate both networks, we split the validation set into two smaller subsets

of 5 and 20 exams, respectively. The training set undergoes data augmentation only to train the

size regressor, by flipping, mirroring and rotating (up to 45◦) the original images, obtaining a

training set that is 10 times larger.

5.4.1.0.3 Implementation details

We employed ResNeXt 101 Xie, Girshick, Dollár, Tu & He (2017) as the backbone architecture

for our regressor model, with the squared L2 norm as the objective function. We trained via

standard stochastic gradient descent, with a learning rate of 5 × 10−6, a momentum of 0.9 and

a weight decay of 10−4, for 200 epochs. The learning rate was halved at epochs 100 and 150.

We used a batch size of 10. We used ENet Paszke et al. (2016) as the segmentation network,

trained with Adam Kingma & Ba (2015), a learning rate of 5 × 10−4, 𝛽1 = 0.9 and 𝛽2 = 0.99

for 100 epochs. The learning rate was halved if validation DSC did not improve for 20 epochs.

We used a batch size of 1, and 𝛾 from Eq. (5.4) is set at 𝛾 = 0.1. We did not use any form of

post-processing on the network output.

5.4.1.0.4 Comparative Methods

We compare the performance of the proposed semi-supervised curriculum segmentation ap-

proach to several models. First, we train a network using only n exams and their corresponding

pixel-wise annotations, which is referred to as FS. Then, once this model is trained, and follow-

ing standard proposal-based strategies for semi-supervision, e.g., Bai et al. (2017), we perform

the inference on the remaining 75-n exams, and include the CNN predictions in the training set,
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which serve as pseudo-labels for the non-annotated images (referred to as Proposals). In this

particular case, the training reduces to minimizing the cross-entropy over all the pixels in the

manually annotated images and over the pixels predicted as left-ventricle in the pseudo-labels.

Since we investigate how to leverage unlabeled data only by learning from the subset of labeled

data, we do not integrate any additional cues during training, such as Conditional Random

Fields (CRF)2. Finally, we train a model with the exact size derived from the ground truth for

each image, as in Kervadec et al. (2019b), which will serve as an upper bound, referred to as

Oracle.

5.4.1.0.5 Evaluation

We resort to the common dice (DSC) overlap metric between the ground truth and the CNN

segmentation to evaluate the performances of the segmentation models. More specifically, we

report the mean and standard deviation of the validation DSC over the last 50 epochs of training.

5.4.2 Results

We report in Table 5.1 and Fig. 5.2 the quantitative evaluation of the different segmentation

models. First, we can observe that integrating the size predicted on unlabeled images by the

auxiliary network improves the performance compared to solely training from labeled images.

The gap is particularly significant when few annotated images are available, ranging from nearly

15 to 25% of difference in terms of DSC. As more labeled images are available, the proposed

strategy still improves the performance of the fully supervised counterpart, but by a smaller

margin, which goes from 1 to 3%. Compared to the Oracle, our method achieves comparable

results as the number of training samples increases. This suggests that, when few annotated

patients are available, having a better estimation of the size helps to better regularize the network.

It is noteworthy to mention that in the Oracle, the exact size is known for each image, which

results in extra supervision compared to the proposed method. The proposals method achieves

the same or worse results than its FS counterpart, for all the 𝑛 values evaluated. These results

2Note that the proposal-based methods in Bai et al. (2017) use CRF to boost performance.
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indicate that 𝑛 patients are not sufficient to train an auxiliary network that generates usable

pseudo-labels, due to the difficulty of the segmentation task. This confirms that training a

network on an easier task, e.g., learning the size of the target region, can guide the training in a

semi-supervised setting.

Table 5.1 Quantitative results for the different models. Values represent the mean Dice

(and standard deviation) over the last 50 epochs.

# of labelled

patients

Method

FS Proposals Proposed Oracle Kervadec et al. (2019b)

5 24.8 (4.9) 8.1 (0.8) 53.1 (3.0) 74.3 (2.5)

10 44.4 (8.3) 43.9 (2.9) 58.5 (3.6) 75.7 (3.9)

20 71.7 (3.2) 49.1 (5.0) 72.7 (1.6) 79.0 (2.5)

30 73.1 (1.7) 62.6 (4.4) 75.4 (1.6) 77.0 (1.9)

40 75.8 (2.4) 68.8 (5.6) 76.3 (2.1) 80.4 (2.1)

75 81.6 (1.9) NA NA NA

Evolution of DSC on the validation set over training for some models is depicted in Fig. 5.3.

From these plots, we can observe that the auxiliary network facilitates the training of a harder

task, consistently achieving higher performance and better stability than its FS counterpart,

especially when few labeled images are available. Regarding the instability of the FS method,

it may be caused by the small number of samples employed for training, with no other source

of information that regularizes the network.

Qualitative results are depicted in Fig. 5.4. Particularly, we show the prediction on the same

slice with the different methods and for increasing 𝑛. We first observe that predictions of the

FS model are very unstable, not clearly improving as more labeled images are included in the

training, which aligns with the results found in Fig. 5.3. Then, the Proposals approach fails to

generate visually acceptable segmentations, even with 30 pixel-wise labeled patients. Although

its performance improves with the number of labeled patients used in training, its results are not

visually satisfying for any value of n. Our curriculum semi-supervised segmentation approach

achieves decent results from n=5. It only requires 20 patients to yield comparable segmentations

to those of the Oracle and the manual ground truth.
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Figure 5.2 Mean DSC per method and for several 𝑛 annotated patients.

Figure 5.3 Validation DSC over time, with a subset of the evaluated models.
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Figure 5.4 Visual comparison for the different methods, with varying number of fully

annotated patients used for training. Best viewed in colors
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Abstract

We propose a novel weakly supervised learning segmentation based on several global constraints

derived from box annotations. Particularly, we leverage a classical tightness prior to a deep learn-

ing setting via imposing a set of constraints on the network outputs. Such a powerful topological

prior prevents solutions from excessive shrinking by enforcing any horizontal or vertical line

within the bounding box to contain, at least, one pixel of the foreground region. Furthermore,

we integrate our deep tightness prior with a global background emptiness constraint, guiding

training with information outside the bounding box. We demonstrate experimentally that such

a global constraint is much more powerful than standard cross-entropy for the background

class. Our optimization problem is challenging as it takes the form of a large set of inequality

constraints on the outputs of deep networks. We solve it with sequence of unconstrained losses

based on a recent powerful extension of the log-barrier method, which is well-known in the

context of interior-point methods. This accommodates standard stochastic gradient descent

(SGD) for training deep networks, while avoiding computationally expensive and unstable La-

grangian dual steps and projections. Extensive experiments over two different public data sets

and applications (prostate and brain lesions) demonstrate that the synergy between our global

tightness and emptiness priors yield very competitive performances, approaching full supervi-

sion and outperforming significantly DeepCut. Furthermore, our approach removes the need

for computationally expensive proposal generation. Our code is publicly available.



6.1 Introduction

Semantic segmentation is of paramount importance in the understanding and interpretation of

medical images, as it plays a crucial role in the diagnostic, treatment and follow-up of many

diseases. Even though the problem has been widely studied during the last decades, we have

witnessed a tremendous progress in the recent years with the advent of deep convolutional neural

networks (CNNs) Dolz et al. (2018); Litjens et al. (2017); Rajchl et al. (2017); Ronneberger

et al. (2015). Nevertheless, a main limitation of these models is the need of large annotated

datasets, which hampers the performance and limits the scalability of deep CNNs in the

medical domain, where pixel-wise annotations are prohibitively time-consuming. Weakly

supervised learning has gained popularity to alleviate the need of large amounts of pixel-

labeled images. Weak labels can come in the form of image tags Pathak et al. (2015a),

scribbles Lin et al. (2016), points Bearman et al. (2016), bounding boxes Dai et al. (2015);

Hsu et al. (2019); Khoreva et al. (2017) or global constraints Jia et al. (2017); Kervadec

et al. (2019b). A common paradigm in the weakly supervised learning setting is to employ

weak annotations to generate pseudo-masks or proposals. These proposals are ‘’fake" labels,

which are generated iteratively to refine the parameters of deep CNNs, thereby mimicking full

supervision. Unfortunately, as discussed in several recent works Kervadec et al. (2019b); Tang

et al. (2018b), proposals contain errors, which might be propagated during training, affecting

severely segmentation performances. Furthermore, iterative proposal generation increases

significantly the computation load for training. More recently, several studies investigated global

loss functions, e.g., in the form of constraints on the target-region size Bateson, Kervadec, Dolz,

Lombaert & Ayed (2019); Jia et al. (2017); Kervadec et al. (2019b); Pathak et al. (2015a). This

can be done by constraining the softmax outputs of deep networks, leveraging unlabeled data

with a single loss function and removing the need for iterative proposal generation. Nevertheless,

despite the good performances achieved by these works in certain practical scenarios, their

applicability might be limited by the assumptions underlying such global constraints, e.g.,

precise knowledge of the target region size.
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Among different weak supervision approaches, bounding box annotations are an appealing

alternative due to their simplicity and low-annotation cost. In practice, bounding boxes can be

defined with two corner coordinates, allowing fast placement and light storage. Furthermore,

they provide localization-awareness, which spatially constrains the problem. This form of

supervision has indeed become popular in computer vision to initialize shallow segmentation

models, whose outputs are later used to train deep networks, as in full supervision Dai et al.

(2015); Khoreva et al. (2017); Papandreou et al. (2015); Pu, Huang, Guan & Zou (2018). A

naive use of bounding boxes amounts to generating pseudo-labels by simply considering each

pixel within the bounding box as a positive sample for the respective class Papandreou et al.

(2015); Rajchl et al. (2017). However, in a realistic scenario, a bounding box also contains

background pixels. To account for this, some advanced foreground extraction methods are

employed. Particularly, the very popular GrabCut Rother et al. (2004) is a standard choice to

generate segmentation masks from bounding boxes, even though alternative approaches such as

Multiscale Combinatorial Grouping (MCG) Pont-Tuset, Arbelaez, Barron, Marques & Malik

(2017) were recently used for the same purpose Dai et al. (2015).

6.1.1 Contributions

We propose a novel weakly supervised learning paradigm based on several global constraints

derived from box annotations. First, we leverage the classical tightness prior in Lempitsky et al.

(2009) to a deep learning setting, and re-formulate the problem by imposing a set of constraints

on the network outputs. Such a powerful topological prior prevents solutions from excessive

shrinking by enforcing any horizontal or vertical line within the bounding box to contain, at

least, one pixel of the foreground region. Furthermore, we integrate our deep tightness prior

with a global background emptiness constraint, guiding training with information outside the

bounding box. As we will see in our experiments, such a global constraint is much more

powerful than standard cross-entropy for the background class. Our optimization problem is

challenging as it takes the form of a large set of inequality constraints, which are difficult to

handle in the context of deep networks. We solve it with sequence of unconstrained losses based
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on a recent powerful extension of the log-barrier method Kervadec, Dolz, Yuan, Desrosiers,

Granger & Ben Ayed (2020), which is well-known in the context of interior-point methods.

This accommodates standard stochastic gradient descent (SGD) for training deep networks,

while avoiding computationally expensive and unstable Lagrangian dual steps and projections.

Extensive experiments over two different public data sets and applications (prostate and brain

lesions) demonstrate that the synergy between our global tightness and emptiness priors yield

very competitive performances, approaching full supervision and outperforming significantly

DeepCut Rajchl et al. (2017). Furthermore, our approach removes the need for computationally

expensive proposal generation.

Figure 6.1 Example of weak labels on two different tasks: prostate

segmentation and stroke lesion segmentation.
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6.2 Related works

6.2.1 Weakly supervised medical image segmentation

Despite the increasing interest in weakly supervised segmentation models in the computer

vision community, the literature on these models in medical imaging remains scarce. The

authors of Qu et al. (2019) leverage point annotations in the context of histopathology images.

From labeled points, they derived additional information in the form of a voronoi diagram, so

as to generate coarse labels for nuclei segmentation. Their objective function integrated the

cross-entropy with coarse labels and the conditional random field (CRF) loss in Tang et al.

(2018b). Similarly to previous works in computer vision, Nguyen, Pica, Rosa, Hrbacek, Weber,

Schalenbourg, Sznitman & Cuadra (2019) used classification activation maps (CAMs) derived

from the networks as a pseudo-masks to train a CNN in a fully supervised manner. To constrain

the location of the target, they employed an Active Shape Model (ASM) as a prior information.

Nevertheless, this method presents two limitations. First, as in similar works, inaccuracies of

the pseudo-masks may lead to sub-optimal performances. Second, the ASM is tailored to this

specific application, as its generation for novel classes is dependent on the segmentation masks.

More recently, Wu, Du, Luo, Wen, Shen & Feng (2019) proposed to refine the generated CAM

with attention, with the goal of generating more reliable pseudo-masks. Alternatively, other

recent methods investigated how to constrain network predictions with global statistics, for

instance, the size of the target region Bateson et al. (2019); Jia et al. (2017); Kervadec, Dolz,

Granger & Ben Ayed (2019a); Kervadec et al. (2019b). This type of prior information can be

imposed as equality Jia et al. (2017) or inequality Bateson et al. (2019); Kervadec et al. (2019b)

constraint. Although such constrained-CNN predictions achieved outstanding performances

in a few weakly-supervised learning scenarios, their applicability remains limited to certain

assumptions.
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6.2.2 Bounding box supervision

Most CNN-based methods under the umbrella of bounding-box supervision fall under the

category of proposal-based methods. In these approaches, the bounding box annotations are

exploited to obtain initial pseudo-masks, or proposals, typically with a shallow segmentation

method, e.g., the very popular GrabCut method Rother et al. (2004). Then, training typically

follows an iterative scheme, which involves two steps, one updating the network parameters

and the other adjusting the pseudo-labels Dai et al. (2015); Khoreva et al. (2017); Papandreou

et al. (2015). To further refine the pseudo-labels generated at each iteration, several works

Rajchl et al. (2017); Song, Huang, Ouyang & Wang (2019) used the popular DenseCRF

Krähenbühl & Koltun (2011b) or other heuristics. While this might be very effective on some

datasets, DenseCRF typically assumes that all the training images have consistent and strong

contrast between the foreground and background regions. Finding the optimal DenseCRF

parameters1 is difficult when the contrast of the object edge varies significantly within the same

dataset. Moreover, the ensuing training is not end-to-end, as it still relies on a DenseCRF post-

processing, even at inference time. Another drawback of those bounding-box based learning

approaches—which is also shared by other proposal-based methods in general—is that early

mistakes will re-enforce themselves during training. For example, in DeepCut Rajchl et al.

(2017), while the pseudo-labels cannot grow beyond the bounding box, the inner foreground

may gradually disappear. More recently, Hsu et al Hsu et al. (2019) employed a Multiple

Instance Learning (MIL) framework to impose a tightness prior in the context of instance

segmentation of natural images. Focusing on instance segmentation, the method used bounding

boxes generated by R-CNN. In such MIL framework, positive bags are composed of box lines

while negative bags correspond to lines outside the box. The MIL loss function is defined so

as to push the maximum predicted probability within each positive bag to 1, and the maximum

predicted probability within each negative bag to 0. This MIL loss is integrated with a GridCRF

loss Marin, Tang, I. & Y. (2019) to ensure consistency between neighboring pixels. As many

other works, the final predictions are refined with DenseCRF Krähenbühl & Koltun (2011b).

1Several hyper-parameters controls the edge sensitivity of popular DenseCRF Krähenbühl & Koltun (2011b),

mostly 𝜃𝛽 and 𝜃𝛾 , but also 𝜔1, 𝜔2 and 𝜃𝛼 to some extent.
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a) Tightness

prior

b) Generalized tightness prior

Figure 6.2 (a) Illustration of the tightness prior: any vertical (red) or horizontal (blue)

line will cross at least one (1) pixel of the camel. (b) This can be generalized, where

segments of width 𝑤 cross at least 𝑤 pixels of camel.

6.3 Method

6.3.1 Preliminary notations

Let 𝑋 : Ω ⊂ R2,3 → R denotes a training image, and Ω its corresponding spatial domain. In

a standard fully supervised setting, we can denote the training set as D = {(𝑋,𝑌 )}𝐷 , where

𝑋 ∈ RΩ are input images and 𝑌 ∈ {0, 1}Ω their corresponding pixel-wise labels. In the context

of this work, however, labels 𝑌 take the form of bounding boxes (as shown in Figure 6.1, third

column). Thus, we use Ω𝑂 and Ω𝐼 to define the area outside and inside the bounding box,

respectively, with Ω𝑂 ∪ Ω𝐼 = Ω. Let 𝑠𝜽 ∈ [0, 1]Ω denote the probabilities predicted by the

CNNs, where 0 and 1 represent background and foreground, respectively. In fully supervised

setting, one would typically optimize the standard cross-entropy loss:

min
𝜽

LCE(𝜽) := −
∑
𝑝∈Ω

[
𝑦𝑝 log(𝑠𝜽 (𝑝)) + (1 − 𝑦𝑝) log(1 − 𝑠𝜽 (𝑝))

]
.
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6.3.2 Dealing with box annotations

Certainty outside the box

As shown in Figure 6.1, we certainly know that all pixels 𝑝 outside a given bounding box (Ω𝑂)

belong to the background. A straightforward solution would be to employ the cross-entropy,

but only partially for each of those pixels outside the bounding box:

LMCE := −
∑
𝑝∈Ω𝑂

log(1 − 𝑠𝜽 (𝑝)).

Alternatively, notice that the size of the predicted foreground2, when computed over the back-

ground pixels (Ω𝑂), should be equal to zero. This gives the following global constraint for our

optimization problem, which enforces that the background region is empty:

∑
𝑝∈Ω𝑂

𝑠𝜽 (𝑝) ≤ 0. (6.1)

We will refer to this constraint as the emptiness constraint, L𝐸𝑀𝑃. L𝑂 will denote either LMCE

or LEMP.

Uncertainty inside the box

While bounding box annotations provide cues about the spatial location of the target regions,

pixel-wise information still remain uncertain. However, the bounding box can be further

exploited to impose a powerful topological prior, referred to as tightness prior Lempitsky et al.

(2009). This global prior assumes that the target region should be sufficiently close to each of

the sides of the bounding box. Therefore, we can expect that each horizontal or vertical line

will cross at least one pixel of the target region (as illustrated in Figure 6.2), and for any region

shape. Furthermore, we can regroup the lines into segments of width 𝑤, each containing 𝑤

2Here we refer the size as the sum of the softmax probabilities, as it is easy to compute and differentiable.

Therefore, it accommodates standard Stochastic Gradient Descent.
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lines. In this case, we can assume that at least 𝑤 pixels of the object will be crossed by the

segment. Formally, we can write this as a set of inequality constraints:

∑
𝑝∈𝑠𝑙

𝑦𝑝 ≥ 𝑤 ∀𝑠𝑙 ∈ S𝐿 (6.2)

where S𝐿 := {𝑠𝑙} is the set of segments parallel to the sides of the bounding boxes. This can

be easily translated into inequality constraints on the outputs of the CNN, where the sum of

the softmax probabilities for each segment should be greater or equal to its width. The set of

segments S𝐿 can be efficiently pre-computed; only the masked softmax sum is required during

training.

6.3.3 Additional regularization: constraining the global size

The first two parts of the loss are biased toward opposed, trivial solutions: L𝑂 trivial solution

is to predict the whole image as background, while the easiest way to satisfy the tightness

constraints (6.2) is to predict everything as foreground. But there is more information that we

can exploit from the boxes: their total size gives an upper bound on the object size. We can

also assume that a small fraction 𝜖 of the box belongs to the target region, which yield another

lower bound. This takes the form of region-size constraint similar to Kervadec et al. (2019b):

min
𝜽

L1(𝜽) + ... + L𝑛 (𝜽) (6.3)

s.t. 𝜖 |Ω𝐼 | ≤
∑
𝑝∈Ω

𝑠𝜽 (𝑝) ≤ |Ω𝐼 |.
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6.3.4 Lagrangian optimization with log-barrier extensions

OptimizingL𝑂 with the constraints from sections 6.3.2 and 6.3.3 gives the following constrained

optimization problem:

min
𝜽

L𝑂 (𝜽) (6.4)

s.t.
∑
𝑝∈𝑠𝑙

𝑠𝜽 (𝑝) ≥ 𝑤 ∀𝑠𝑙 ∈ S𝐿

𝜖 |Ω𝐼 | ≤
∑
𝑝∈Ω

𝑠𝜽 (𝑝) ≤ |Ω𝐼 |.

This formulation involves a large number of competing constraints. Recent optimization works

on constrained CNNs Kervadec et al. (2020) suggest that, in the case of multiple competing

constraints, log-barrier extensions provide approximations of Lagrangian optimization in the

form of sequences of unconstrained losses, which removes completely expensive and unstable

primal-dual steps in the context of deep networks, handling the multiple constraints fully within

SGD. Therefore, log-barriers can accommodate the interplay between multiple competing con-

straints, unlike naive penalty-based methods. These desirable properties are consistent with

well-established interior-point and log-barrier methods in convex optimization Boyd & Vanden-

berghe (2004).

For an inequality constraint in the form of 𝑧 ≤ 0, the log-barrier extension can be defined as

follows:

𝜓𝑡 (𝑧) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1
𝑡 log(−𝑧) if 𝑧 ≤ − 1

𝑡2

𝑡𝑧 − 1
𝑡 log( 1

𝑡2
) + 1

𝑡 otherwise,

(6.5)

where 𝑡 is a parameter that raise the barrier over time (i.e., during training). The main difference

with a penalty (such as max(0, 𝑧)2, used by Kervadec et al. (2019b)) is that (6.5) acts as a barrier

even when the constraint is satisfied (𝑧 ≤ 0), with a gradient getting more aggressive when

approaching constraint-violation boundary. This makes the training more stable, and prevents

already satisfied constraints from being violated during the next training epochs. Using a
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penalty could oscillate, alternating between zero and a high-penalty values Kervadec et al.

(2020).

6.3.5 Final model

Using the log-barrier extension, we obtain the final unconstrained optimization problem, which

can be optimized with standard SGD:

min
𝜽

L𝑂 (𝜽) + 𝜆

⎡⎢⎢⎢⎢⎣
∑
𝑠𝑙∈S𝐿

𝜓𝑡

(
𝑤 −

∑
𝑝∈𝑠𝑙

𝑠𝜽 (𝑝)

)⎤⎥⎥⎥⎥⎦
+ 𝜓𝑡

���𝜖 |Ω𝐼 | −
∑
𝑝∈Ω

𝑠𝜽 (𝑝)
��� + 𝜓𝑡 ���

∑
𝑝∈Ω

𝑠𝜽 (𝑝) − |Ω𝐼 |
��� . (6.6)

𝜆 is a real number balancing the tightness prior with respect to the other parts of the loss. Notice

that all log-barrier extensions 𝜓𝑡 use the same 𝑡, with a common scheduling strategy for 𝑡. This

limits the number of hyper-parameters and simplifies the model.

6.4 Experiments

6.4.1 Datasets and evaluation

We evaluate our method on two different tasks: prostate segmentation in MR-T2 and brain lesion

segmentation in MR-T1. Among these tasks, lesion segmentation is particularly challenging,

due to the heterogeneity of the lesions and high imbalance in the number of foreground and

background pixels.

Prostate segmentation on MR-T2

The first dataset that we use was made available at the MICCAI 2012 prostate MR segmenta-

tion challenge3 Litjens et al. (2014). It contains the transversal T2-weighted MR images of

3https://promise12.grand-challenge.org
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50 patients acquired at different centers, with multiple MRI vendors and different scanning

protocols. The images include patients with benign diseases, as well as with prostate cancer.

Images resolution ranges from 15× 256× 256 to 54× 512× 512 voxels, with a spacing ranging

from 2 × 0.27 × 0.27 to 4 × 0.75 × 0.75mm3. We employed 40 patients for training and 10 for

validation.

Brain lesion segmentation on MR-T1

We also evaluated the proposed method on the Anatomical Tracings of Lesions After Stroke

(ATLAS) Liew, Anglin, Banks, Sondag, Ito, Kim, Chan, Ito, Jung, Khoshab et al. (2018), an

open-source dataset of stroke lesions. It contains 229 T1-weighted MR images, coming from

different cohorts and different scanners. All the images have a resolution of 197 × 233 × 189

pixels, with a spacing of 1 × 1 × 1 mm. The annotations were done by a team of 11 experts,

who received a standardized training. We retained 26 images for validation, while the rest were

used for training.

Evaluation

To compare quantitatively the performances of the different methods, we employed the Dice

similarity coefficient, a standard performance metric in medical image segmentation. In addition

to the baseline models, we also perform comprehensive comparisons with DeepCut Rajchl et al.

(2017), whose learning setting is also based on bounding box annotations.

6.4.2 Implementation details

To evaluate our method under different settings, we experimented with a differnt network

architecture for each task. We employ a residual version of the well-known UNet Ronneberger

et al. (2015) to segment the prostate, whereas ENet Paszke et al. (2016) was a backbone

architecture in the stroke lesion segmentation experiments. The models were trained with

ADAM Kingma & Ba (2015), an initial learning rate of 5 × 10−4 and a batch size of 4 for the
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prostate and 32 for stroke lesions. While we employed offline data augmentation (i.e., mirroring,

flipping, rotation) to augment the PROMISE12 dataset, no augmentation was performed on the

ATLAS dataset. The reason for this is the low number of images on the PROMISE12 dataset

compared to ATLAS.

The log-barrier parameters were set following Kervadec et al. (2020), and were shared across all

the log-barrier instances. We set 𝜆 (from Eq. (6.6)) as 0.0001 for both datasets. The DenseCRF

hyper-parameters are the same as in Rajchl et al. (2017), and the proposals are updated every

10 epochs for PROMISE12, and every 5 epochs for ATLAS. We empirically found that changes

on the width 𝑤 of the segments for the tightness constraints did not have a significant impact

on the results. Therefore, 𝑤 was set to 5 in all the experiments.

All methods are implemented in PyTorch, with the exception of the DenseCRF Krähen-

bühl & Koltun (2011b) which uses the Python wrapper PyDenseCRF 4. To speed the proposal

generation of DeepCut, the CRF inference is parallelized using the standard Python multipro-

cessing module, with a careful use of SharedArrays to avoid un-necessary and costly copies of

arrays between the processes. The code is available online5.

6.4.3 Sensitivity study on box-annotation precision

While the main experiments are performed on tight boxes (i.e., the gap between the target

regions and the bounding-box sides is not significant), we perform additional experiments

where a margin 𝑚 of 10 pixels was added on each side. This enables us to evaluate the

robustness of each model to imprecise bounding-box placement. Robustness to placement is

of significant importance, since perfect annotation of all bounding boxes might be unrealistic.

Furthermore, robustness to imprecision also alleviates the problem of annotator subjectivity.

4https://github.com/lucasb-eyer/pydensecrf

5https://github.com/LIVIAETS/boxes_tightness_prior
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6.5 Results

6.5.1 Main experiment

The results of the segmentation experiments are reported in Table 6.1. We can observe that

the proposed method consistently outperforms DeepCut Rajchl et al. (2017) across the two

datasets. The differences in performance range from 1% in the PROMISE12 dataset to 10% in

the case of ATLAS. Furthermore, the results obtained from the two loss functions designed to

deal with the background constraints indicate that the proposed global emptiness constraint is

more effective in our setting. We hypothesize this is due to several factors. First, employing

the emptiness constraint on background pixels results in all the constraint losses being on the

same scale, which has very nice properties from an optimization perspective. Second, the

imbalance nature of the segmentation task in the ATLAS dataset makes the use of the cross-

entropy over all the background pixels a suboptimal alternative, forcing solutions that encourage

empty segmentations. Finally, we can observe that the proposed method achieves performances

comparable to full supervision, particularly in the task of stroke lesion segmentation. Using

only a subset of the losses does not give optimal results, showing their synergy.

Table 6.1 Results on the validation set for the proposed method,

and the different baselines in both PROMISE12 and ATLAS

datasets. The best results in the weakly supervised setting are

highlighted in bold. NA means that the network didn’t learn to

segment anything meaningful.

Method
PROMISE12 ATLAS

DSC DSC

Deep cut Rajchl et al. (2017) 0.827 (0.085) 0.375 (0.246)

Tightness prior

w/ emptiness constraint NA 0.161 (0.145)

Tightness prior + box size 0.620 (0.100) 0.146 (0.134)

w/ masked cross-entropy (LMCE) 0.774 (0.045) 0.159 (0.203)

w/ emptiness constraint (LEMP) 0.835 (0.032) 0.474 (0.245)
Full supervision (Cross-entropy) 0.901 (0.025) 0.489 (0.294)
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Figure 6.3 depicts the validation results over training of the different models. Even though

DeepCut achieves similar results as the proposed approach in the PROMISE12 dataset, we can

see that it is very unstable during training, as is the case generally for proposal-based methods.

Additionally, its performance degrades over time. This effect is even more noticeable on the

ATLAS dataset, where it collapses to empty segmentations after 25 epochs. This behaviour is a

clear example of the instability of proposal-based methods, since we observed similar findings

on the training images. More details about this issue are provided in Appendix 1.

Figure 6.3 Evolution the validation DSC values over time for both PROMISE12 and

ATLAS, and for different methods.

Qualitative segmentation results are depicted in Fig 6.4. We can observe how the proposed

method with masked CE achieves satisfactory visual results on the prostate (first two rows),

but fails to properly segment stroke lesions (last two rows). In contrast, when background

segmentations are optimized with the proposed emptiness constraint, we observe how the

segmentation results approach full supervision performance in both datasets. This is in line

with the results reported in Table 6.1. On the other hand, DeepCut succeeds to segment the

prostate but it is not able to obtain satisfactory segmentations for brain lesions. Looking closer

at these segmentations, we can observe that they do not reliably follow the target boundaries.

This can be explained by the fact that denseCRF assumes strong contrasts between foreground

and background regions, which is not the case in many of these images. Furthermore, the

results provided by denseCRF are sensitive to its hyper-parameters 𝜃𝛽, 𝜃𝛾, 𝜔1 and 𝜔2, which

control the edge sensitivity. Since the set of hyper-parameters were fixed across all the images
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in the whole dataset, it might happen that an optimal set of hyper-parameters for a given image

performs sub-optimally for another image.

Figure 6.4 Predicted segmentation on the validation set for the two tasks.

Table 6.2 Sensitivity study wrt. the box margins

on the PROMISE12 dataset. Best results

highlighted in bold.

Method Margin=0 Margin=10

DeepCut 0.827 (0.085) 0.684 (0.069)

Ours (emptiness constraint) 0.835 (0.032) 0.778 (0.047)
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6.5.2 Resilience to box imprecision

Results of the sensitivity study on the box precision are reported in Table 6.2. While all methods

were able to reach similar performances when the bounding box annotation is nearly perfect

(despite stability issues for some methods), their performance degrades as the margin between

the region of interest and the borders of the bounding box increases. Specifically, if a margin

𝑚 of 10 pixels is added on each side, the performance of the proposed method only drops by

5%, in terms of DSC, whereas DeepCut performance decreases by 14%.

Finally, the computational cost of the different methods is discussed in more details in Appendix

2.

6.6 Conclusion

In this paper we proposed a novel weakly-supervised learning paradigm based on several global

constraints, which are derived from bounding box annotations. First, the classical tightness

prior is integrated into a a deep learning framework by reformulating the problem as a set of

constraints on the outputs of the network. Second, a global background emptiness constraint is

employed to enforce empty segmentations outside the bounding box, which is demonstrated to

be more powerful than standard cross-entropy for handling the background class. Integration of

such a large set of inequality constraints on deep networks represents a challenging optimization

problem.

We solve it with sequence of unconstrained losses, which are based on a recent extension of the

log-barrier method. Since this formulation accommodates standard stochastic gradient descent,

it can be easily trained on deep networks. We performed comprehensive experiments on two

public benchmarks for the challenging tasks of prostate and brain stroke lesion segmentation,

and demonstrated that the proposed approach outperforms state-of-the-art approaches with

bounding-box supervision. Furthermore, quantitative and qualitative results indicate that the

proposed approach has the potential to close the gap between bounding-box annotations and

full supervision in semantic-segmentation tasks.
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The sensibility study showed that the proposed method is resilient to imprecision in the box

tightness. Future works will investigate the use of 3D bounding boxes as annotations, which will

make the corresponding 2D boxes looser. Such a workflow could further speed up the annotation

process. The proposed framework could also be extended to 3D-CNN, by generating segments

for the tightness prior along the three axes. Furthermore, our approach is also compatible with

multi-class segmentation problems, even when bounding boxes of different classes overlap.
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CONCLUSION

In this dissertation , we addressed the problem of enforcing global inequality constraints during

the training of deep convolutional neural networks. By using either simple quadratic penalties

or more principled log-barrier extensions, we were able to bypass expensive and difficult primal-

dual steps in standard Lagrangian optimization. Through our papers, we demonstrated that the

log-barrier extension is the best method for complex settings, and performs significantly better

than other methods in the literature. These algorithmic developments enabled us to test various

priors and constraints, improving performances in semi- and weakly-supervised segmentation.

Our work has limitations and open problems, especially when dealing with global constraints

over 3D (or larger) image domains. For constraints that involve non-linear functions of summa-

tions over the input domains, our framework may become intractable for mini-batch training

of deep networks; it requires storing of and performing summations over all the pointwise

gradients within the input-image domain. This is often not feasible with current hardware for

very big inputs. Methods for such images often sub-patch the image, processing only a part

of it at a time. This cannot accommodate all the global constraints that we used, such as size

or centroid (Chapter 3). Managing to enforce global constraints on very large inputs for the

processing hardware is still an open problem for future research.

Some of the most interesting constraints remain to investigate, like spatial relationships Deng,

Todorovic & Jan Latecki (2015), very relevant to multi-organ segmentation, where prior infor-

mation about the organs position is text-book knowledge. We did not investigate multi-class

settings, which could bring interesting constraints (For example, the myocardium encompass

the left-ventricle cavity). Our work could also trigger future investigations beyond image seg-

mentation. Indeed, the powerful and general log-barrier extensions from Chapter 3 can be used

in other domains Nandwani et al. (2019), constraining either the network output, or regularizing

the inner layers of a network.

Chapter 4 has already proved to be a useful work for the community, with many positive

feedbacks and reports of improved performances on various tasks. Yet, this boundary-loss



work focused only on the binary setting and Euclidean distance. The multi-class setting would

be very interesting to investigate, as it naturally removes the trivial solutions that exist in the

binary case (i.e., empty foreground predictions): A trivial solution for one class would be a

non-suitable solution for another class (and vice-versa), mitigating each other errors naturally.

This is illustrated in Figure 6.5, where preliminary results show the boundary loss alone can

learn to segment a 4-class setting. Other distance functions could be a way to use image content

and edge information, potentially enabling its use for weakly annotated images.

a) Ground truth b) LCE c) LDSC d) LB

Figure 6.5 Results on the ACDC, a 4-classes dataset, when training with

different losses. Unlike in the binary case, here the boundary loss is able to learn

to segment the object properly.
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APPENDIX I

ADDITIONAL MATERIALS FOR CHAPTER 3

1. Proof of Proposition 2

In this section, we provide a detailed proof for the duality-gap bound in Prop. 2. Recall our

unconstrained approximation for inequality-constrained CNNs:

min
𝜽

E(𝜽) +
𝑃∑
𝑖=1

𝑁∑
𝑛=1

�̃�𝑡
(
𝑓𝑖 (𝑠

𝑛
𝜽)

)
(A I-1)

where �̃�𝑡 is our log-barrier extension, with 𝑡 strictly positive. Let 𝜽∗ be the solution of problem

(A I-1) and 𝝀∗ ∈ R𝑃×𝑁 the corresponding vector of implicit dual variables given by:

𝜆∗𝑖,𝑛 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1
𝑡 𝑓𝑖 (𝑠

𝑛
𝜽∗
)

if 𝑓𝑖 (𝑠
𝑛
𝜽∗) ≤ −

1
𝑡2

𝑡 otherwise

(A I-2)

We assume that 𝜽∗ verifies approximately1 the optimality condition for a minimum of (A I-1):

∇E(𝜽∗) +
𝑃∑
𝑖=1

𝑁∑
𝑛=1

𝜓′𝑡
(
𝑓𝑖 (𝑠

𝑛
𝜽∗)

)
∇ 𝑓𝑖 (𝑠

𝑛
𝜽∗) ≈ 0 (A I-3)

It is easy to verify that each dual variable 𝜆∗𝑖,𝑛 corresponds to the derivative of the log-barrier

extension at 𝑓𝑖 (𝑆𝜽∗):

𝜆∗𝑖,𝑛 = 𝜓
′
𝑡

(
𝑓𝑖 (𝑠

𝑛
𝜽∗)

)
Therefore, Eq. (A I-3) means that 𝜽∗ verifies approximately the optimality condition for the

Lagrangian corresponding to the original inequality-constrained problem in Eq. (3.1) when

𝝀 = 𝝀∗:

∇E(𝜽∗) +
𝑃∑
𝑖=1

𝑁∑
𝑛=1

𝜆∗𝑖,𝑛∇ 𝑓𝑖 (𝑠
𝑛
𝜽∗) ≈ 0 (A I-4)

1When optimizing unconstrained loss via stochastic gradient descent (SGD), there is no guarantee that the

obtained solution verifies exactly the optimality conditions.



It is also easy to check that the implicit dual variables defined in (A I-2) corresponds to a

feasible dual, i.e., 𝝀∗ > 0 element-wise. Therefore, the dual function evaluated at 𝝀∗ > 0 is:

𝑔(𝝀∗) = E(𝜽∗) +
𝑃∑
𝑖=1

𝑁∑
𝑛=1

𝜆∗𝑖,𝑛 𝑓𝑖 (𝑠
𝑛
𝜽∗),

which yields the duality gap associated with primal-dual pair (𝜽∗, 𝝀∗):

E(𝜽∗) − 𝑔(𝝀∗) = −
𝑃∑
𝑖=1

𝑁∑
𝑛=1

𝜆∗𝑖 𝑓𝑖 (𝑠
𝑛
𝜽∗) (A I-5)

Now, to prove that this duality gap is upper-bounded by 𝑃𝑁/𝑡, we consider three cases for each

term in the sum in (A I-5) and verify that, for all the cases, we have 𝜆∗𝑖,𝑛 𝑓𝑖 (𝑠
𝑛
𝜽∗) ≥ −

1
𝑡 .

- 𝑓𝑖 (𝑠
𝑛
𝜽∗) ≤ −

1
𝑡2

: In this case, we can verify that 𝜆∗𝑖,𝑛 𝑓𝑖 (𝑠
𝑛
𝜽∗) = −

1
𝑡 using the first line of (A I-2).

- − 1
𝑡2
≤ 𝑓𝑖 (𝑠

𝑛
𝜽∗) ≤ 0: In this case, we have 𝜆∗𝑖,𝑛 𝑓𝑖 (𝑠

𝑛
𝜽∗) = 𝑡 𝑓𝑖 (𝑠

𝑛
𝜽∗) from the second line of

(A I-2). As 𝑡 is strictly positive and 𝑓𝑖 (𝑠
𝑛
𝜽∗) ≥ − 1

𝑡2
, we have 𝑡 𝑓𝑖 (𝑠

𝑛
𝜽∗) ≥ −1

𝑡 , which means

𝜆∗𝑖,𝑛 𝑓𝑖 (𝑠
𝑛
𝜽∗) ≥ −

1
𝑡 .

- 𝑓𝑖 (𝑠
𝑛
𝜽∗) ≥ 0: In this case, 𝜆∗𝑖,𝑛 𝑓𝑖 (𝑠

𝑛
𝜽∗) = 𝑡 𝑓𝑖 (𝑠

𝑛
𝜽∗) ≥ 0 > −1

𝑡 because 𝑡 is strictly positive.

In all the three cases, we have 𝜆∗𝑖,𝑛 𝑓𝑖 (𝑠
𝑛
𝜽∗) ≥ −

1
𝑡 . Summing this inequality over 𝑖 gives:

−

𝑃∑
𝑖=1

𝑁∑
𝑛=1

𝜆∗𝑖,𝑛 𝑓𝑖 (𝑠
𝑛
𝜽∗) ≤

𝑃𝑁

𝑡
.

Using this inequality in (A I-5) yields the following upper bound on the duality gap associated

with primal 𝜽∗ and implicit dual feasible 𝝀∗ for the original inequality-constrained problem:

E(𝜽∗) − 𝑔(𝝀∗) ≤ 𝑃𝑁/𝑡
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This bound yields sub-optimality certificates for feasible solutions of our approximation in

(A I-1). If the solution 𝜽∗ that we obtain from our unconstrained problem (A I-1) is feasible,

i.e., it satisfies constraints 𝑓𝑖 (𝑠
𝑛
𝜽∗) ≤ 0, ∀𝑖,∀𝑛, then 𝜽∗ is 𝑃𝑁/𝑡-suboptimal for the original in-

equality constrained problem: E(𝜽∗) − E∗ ≤ 𝑃𝑁/𝑡. Our upper-bound result can be viewed as a

generalization of the duality-gap equality for the standard log-barrier function Boyd & Vanden-

berghe (2004). Our result applies to the general context of convex optimization. In deep CNNs,

of course, a feasible solution for our approximation may not be unique and is not guaranteed to

be a global optimum as E and the constraints are not convex.

2. Qualitative results on PROMISE12

Examples of the labels used are shown in Figure I-1, and qualitative comparisons between

methods are available in Figures I-1.

Figure-A I-1 Full mask of the prostate (left) and the generated

point and box annotations (middle and right) on PROMISE12.

The background is depicted in red and the foreground in green. No

color means that no information is provided about the pixel class.

The figures are best viewed in colors.

3. Analysis of the dual step for the ReLU Lagrangian

As pointed out by Nandwani et al. (2019), when imposing 𝑃 different constraints on each

data point, we end-up with a dual variable 𝝀 ∈ R𝑃×𝑁 . The authors of Nandwani et al. (2019)

mentioned that this could be an issue for scalability. Here, we argue that, from a computational

perspective, this is not a very significant issue.
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Figure-A I-2 Results on the PROMISE12 dataset. Images are

cropped for visualization purposes. The background is depicted in red,

and foreground in green. The figures are best viewed in colors.

Assuming 2 different constrained functions per datapoint, each with a lower and upper bound,

we have 4 float value to store per data point. If each value is represented as a float32 (which
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is very reasonable, as the extra precision of a float64 is rarely used in Deep Learning), this

yields a total of 128 bits per datapoint, or 16 bytes. This gives 16MB to store per million

datapoint, which is within the reach of modern computers. While it is true that fetching the

current 𝜆𝑖,𝑛 for each 𝑛 adds some complexity in the code, it only adds a constant and a negligible

cost with respect to 𝑁 .

However, regrouping𝜆𝑖,𝑛 ∀𝑛 into a single𝜆𝑖 (so that 𝝀 ∈ R𝑃) introduces the following, potentially

undesirable property during the 𝝀 udpates:

∇𝜆𝑖 =
∑
𝑛

max(0, 𝑓𝑖 (𝑠
𝑛
𝜽)) ≥ max

𝑛
max(0, 𝑓𝑖 (𝑠

𝑛
𝜽))

=⇒

∃𝑚 ∈ D : 𝑓𝑖 (𝑠
𝑚
𝜽 ) > 0 ⇒ 𝜆𝑡+1

𝑖 > 𝜆𝑡𝑖

In other words, if a single data point has an unsatisfied constraint, 𝜆𝑖 will keep increasing for

the whole dataset. This may make the balancing of competing constraints very difficult, as

shown by our experiments (especially on PROMISE12 with Setting I). 𝝀 kept increasing until

reaching very high values, making constraint balancing difficult to reach.

4. Lagrangian with proposals: process and equations

The method of Pathak et al. (2015a) optimize Equation (3.5). For a sample 𝑛2:

L𝑛 ( �̃�, 𝝀, 𝝂) = 𝐾𝐿 ( �̃�
𝑛 | |𝑠𝑛𝜽) +

𝑃∑
𝑖=1

𝜆𝑛𝑖 ( �̃�
𝑛�𝑎𝑖 − 𝑏𝑖) +

∑
𝑝∈Ω

𝜈𝑛𝑝 (1� �̃�𝑛𝑝 − 1), (A I-6)

4.1 Updating �̃�

2Each L𝑛 is independent, and this makes the notation easier to read.
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Optimizing (A I-6) w.r.t. �̃� is convex ; strong duality holds if a feasible points exist. In this

case, the solution of the primal problem (A I-6) is the same as the dual problem:

min
�̃�

max
𝝀≥0,𝝂

L𝑛 ( �̃�
𝑛, 𝝀, 𝝂) = max

𝝀≥0,𝝂
min
�̃�𝑛

L𝑛 ( �̃�, 𝝀, 𝝂) (A I-7)

Therefore, the global optimum can be obtained by setting the derivative equal to 0. Notice that

L𝑛 is separable over variable �̃�𝑛𝑝. In fact, we can write L𝑛 (up to a constant) in the form of sum

of independent functions, each corresponding to one pixel 𝑝 ∈ Ω:

− �̃�𝑛�𝑝 log 𝒔𝑛𝑝,𝜽 + �̃�
𝑛�
𝑝 log �̃�𝑛𝑝 +

∑
𝑖

𝜆𝑖,𝑛 ( �̃�
𝑛�
𝑝 𝑎𝑖) + 𝜈𝑝,𝑛1� �̃� 𝑝 . (A I-8)

Setting the derivative w.r.t. �̃�𝑛𝑝 equal to zero gives:

− log 𝒔𝑛𝑝,𝜽 + log �̃�𝑛𝑝 +
∑
𝑖

𝜆𝑖,𝑛𝑎𝑖 + (𝜈𝑝,𝑛 + 1)1 = 0 (A I-9)

This yields the following closed-form solution:

�̃�𝑛∗𝑘,𝑝 = 𝑒
−

∑
𝑖 𝜆𝑖,𝑛𝑎𝑖,𝑘+log 𝒔𝑛𝑘,𝑝,𝜽𝑒−𝜈𝑝,𝑛−1

�̃�𝑛∗𝑘,𝑝 = 𝒔𝑛𝑘,𝑝,𝜽𝑒
−

∑
𝑖 𝜆𝑖,𝑛𝑎𝑖,𝑘 𝑒−𝜈𝑝,𝑛−1, (A I-10)

where 𝑘 represent the class number.

4.2 Computing the dual function

We want to maximize the dual function, which is given by

𝑔𝑛 (𝝀, 𝝂) = min
�̃�𝑛

L𝑛 ( �̃�
𝑛, 𝝀, 𝝂) = L𝑛 ( �̃�

𝑛∗, 𝝀, 𝝂).

The dual function is concave w.r.t. dual variables 𝝀, 𝝂 (minimum of linear functions). Maxi-

mizing 𝑔𝑛 w.r.t. 𝝂 can be done in closed-form by setting the derivative of 𝑔𝑛 (𝝀, 𝝂) w.r.t. each
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Algorithm I-1 Overview of Pathak et al. (2015a) method.

1 Output: Network parameters 𝜽 Init 𝝀 to 0

2 Init �̃�𝑛 with the image level label

3 while �̃�𝑛 not converged do
4 𝜽 𝑡 = arg min𝜽 LCross-entropy( �̃�

𝑛, 𝑠𝑛𝜽))

5 while Not converged do
6 Solve �̃�𝑛∗ analytically with Equation (A I-12)

7 Update 𝝀 with projected gradient descent in Equation (A I-13)

8 end
9 �̃�𝑛 = �̃�𝑛∗

10 end

𝝂𝑝,𝑛 equal to zero, which yields simplex constraints 1� �̃�𝑛𝑝 − 1 = 0 ∀𝑝. Plugging (A I-10) into

the simplex constraint yields the following closed-form optimality condition over each 𝜈𝑝:

1� �̃�𝑛∗𝑝 − 1 = 0

⇔
∑
𝑘

�̃�𝑛∗𝑘,𝑝 = 1

⇔ 𝑒−𝜈𝑖,𝑛−1 =
1∑

𝑘 𝒔
𝑛
𝑘,𝑝,𝜽𝑒

−
∑

𝑖 𝜆𝑖,𝑛𝑎𝑖,𝑘
(A I-11)

Plugging back into (A I-10) yields the following solution:

�̃�𝑛∗𝑘,𝑝 =
𝒔𝑛𝑘,𝑝,𝜽𝑒

−
∑

𝑖 𝜆𝑖,𝑛𝑎𝑖,𝑘∑
𝑘 ′ 𝒔

𝑛
𝑘 ′,𝑝,𝜽𝑒

−
∑

𝑖 𝜆𝑖,𝑛𝑎𝑖,𝑘 ′
(A I-12)

Now the dual function depends only on 𝝀: 𝑔𝑛 (𝝀) = L𝑛 ( �̃�
𝑛∗, 𝝀).

Now, again, the dual function is concave w.r.t. 𝝀 and, therefore, can be optimized globally with

projected gradient ascent. The gradient of the dual function w.r.t. to 𝝀 is

∇𝐿𝑛𝝀 =
𝜕L𝑛 ( �̃�

𝑛∗, 𝝀)

𝜕𝝀
= �̃�𝑛∗�𝑎𝑖 − 𝑏𝑖
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4.3 Projected gradient ascent

To solve 𝑚𝑎𝑥𝝀�0L𝑛 ( �̃�
𝑛∗, 𝝀), we use a projected gradient ascent ; we simply choose the point

nearest to 𝝀𝑡 + ∇L𝑛𝝀 ( �̃�
𝑛∗, 𝝀) in the set {𝝀 � 0}. This gives the following updates:

𝝀𝑡+1 =

⎧⎪⎪⎨⎪⎪⎩
𝝀𝑡 + ∇L𝑛𝝀 ( �̃�

𝑛∗, 𝝀𝑡) if ∇L𝑛𝝀 ( �̃�
𝑛∗, 𝝀) � 0

0 otherwise
(A I-13)

The overall algorithm is summarized in Algorithm I-1.
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APPENDIX II

ADDITIONAL MATERIALS FOR CHAPTER 6

1. DeepCut training instability

We investigated the generated pseudo-labels (as showed in Figure II-1) by DeepCut, and the

main culprit is when the proposal under-segment the object inside the box. This forces, at the

next training step, the network to segment the object as background. This kind of conflicting

feedback to the network (some other proposal label similar looking patches as foreground)

makes the training unstable, and slowly skew the network toward empty predictions. This will

cause the next batch of proposals to be even smaller, until the network outputs empty foreground

for all the images.

Figure-A II-1 Progression of the pseudo-labels from DeepCut: only a few of those cases

can make the training very unstable.

2. Implementation and performances

Performances were measured on a machine equipped with an AMD Ryzen 1700X, 32GB of

RAM (frequency did not affect speed) and an NVIDIA Titan RTX. They are reported in Table

II-1. The settings and hyper-parameters are the same as described in Section 6.4.2.

Most of the extra time introduced by our model comes from the naive log-barrier implementation

that we used. Instead of leveraging if/else switch and code vectorization we used a standard

Python for loop over all constraints. This could be improved using the recent PyTorch

development of its JIT compiler. The width parameter of the segments will affect the overhead



of our method: wider segments means less of them, which, in turns, results in less constraints

to handle.

Notice that implementing the DenseCRF post-processing in a parallel and efficient fashion

introduces a lot of software engineering uncommon in modern learning frameworks. While

the DenseCRF implementation itself is highly efficient, it remains a single process that can

handle only one image at a time. Performing it in parallel should be easy in theory, but is

actually not very efficient with Python standard multiprocessing tools. In practice, all the arrays

(containing either the image or probabilities) are pickled and copied across processes. Those

back-and-forth copies can add up quickly and slow-down the processing substantially, on top

of filling the computer memory more quickly. The solution is to carefully use SharedArray1,

which will contain all the batch in a single object. The sub-processed will read and write only

a subset of those SharedArrays, corresponding to their assigned batch item.

Table-A II-1 Comparison in training speed between the different

methods on the two datasets, PROMISE12 (Pr) and ATLAS (At).

Time per epoch (s) Proposals update (s) Total (h)
Method Pr At Pr At Pr At

Full supervision 150 235 - - 4.2 3.3

Ours 170 325 - - 4.7 4.5

DeepCut 150 235 440 3120 6.6 11.9

1Carefully, because they are not concurrency safe.
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