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Optimisation des trajectoires de vol pour un segment ayant une 
contrainte de temps de vol 

 
Radu Ioan DANCILA 

 
RÉSUMÉ 

 
Les investigations présentées dans cette thèse concernent le domaine d’optimisation des 
trajectoires de vol, traité de point de vue de la planification du vol. L’objectif de 
l’optimisation est de trouver le plan de vol optimal qui minimise la fonction coût sélectionnée 
et respecte les contraintes imposées. L’optimisation prend en compte les performances de vol 
de l’avion, la configuration de l’avion (charge, quantité de combustible, etc.), les conditions 
atmosphériques au long de la trajectoire de vol, et les contraintes imposées. La composante 
latérale du plan de vol est composée par des segments obtenus suite à la sélection des nœuds 
adjacents d’une grille de routage. La grille de routage est construite à partir de la route 
orthodromique entre le point de début et la fin du segment à optimiser, d’une déviation 
maximale relative à la route orthodromique, et d’une distance au sol maximale entre deux 
nœuds de la grille. 
 
La première direction de recherche a été l’investigation d’un nouveau modèle d’atmosphère, 
décrivant la variation des paramètres atmosphériques dans des points sélectionnés au long de 
la composante latérale de la trajectoire de vol ou dans les nœuds d’une grille de routage, à 
une altitude sélectionnée, en fonction du temps. Ce modèle est créé à partir des prédictions 
fournies par les organisations météorologiques dans les nœuds d’une grille 4D (coordonnées 
géographiques, altitude, et temps). La valeur d’un paramètre de l’atmosphère dans un point 
de définition des paramètres atmosphériques (point géographique et altitude), à un instant de 
temps voulu, est calculée par une interpolation linéaire. Les tests ont révélé que les valeurs 
des paramètres atmosphériques calculés avec la méthode proposée ont le même niveau de 
précision (des différences d’ordre 10-14) et, en moyenne, sont obtenues six fois plus 
rapidement que celles obtenues à partir du modèle classique et des interpolations 
quadridimensionnelles. Ainsi, le processus d’optimisation est plus rapide, ou donne la 
possibilité d’évaluer plus des plans de vol dans un temps donné, ce qui peut conduire à 
l’obtention des meilleurs résultats d’optimisation. Le modèle d’atmosphère proposé peut être 
élargi en créant des instances du modèle pour un ensemble d’altitudes d’intérêt. 
 
La deuxième investigation évalue la performance d’une nouvelle méthode d’optimisation, 
basée sur des algorithmes génétiques, où l’optimisation est appliquée autant sur la 
composante latérale du plan de vol que sur la composante verticale. La grille de routage pour 
la composante latérale du plan de vol a été construite en utilisant la méthodologie décrite 
dans la première ci-haut direction de recherche. Les composants verticaux de la famille des 
plans de vol ont été construits à partir d’un modèle choisi de structure et de topologie. La 
performance du profil optimal, obtenue suite à l’optimisation, a été comparée avec celle d’un 
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plan de vol de référence, obtenus suite à une optimisation du profil de vitesses au long d’une 
trajectoire (plan de vol latéral et profil d’altitude) d’un vol réel, trouvé sur le site 
«FlightAware». Une investigation additionnelle a évalué les effets sur la performance de 
l’optimisation et le temps de calcul, découlant de la correction des paramètres des plans de 
vol (le profil d’altitudes et vitesses) par rapport aux limites de l’enveloppe de vol de l’avion. 
Des tests ont été effectués pour six valeurs d’indice du coût, et dix essais pour chaque valeur 
d’indice du coût. Les résultats des tests effectués ont montré que la correction des plans de 
vol par rapport à l’enveloppe de vol de l’avion a résulté dans une réduction de la performance 
de l’optimisation et une augmentation de plus de deux fois du temps d’exécution. Par rapport 
au plan de vol de référence, la méthode d’optimisation proposée a produit une diminution des 
coûts totaux entre 1.598% et 3.97% lorsque les plans de vol n’étaient pas corrigés. 
 
Dans la troisième investigation, une nouvelle méthode / une nouvelle approche a été étudié 
pour l’optimisation des plans de vol, dérivé de la méthode Non-dominated Sorting Genetic 
Algorithm II utilisée dans les optimisations multi-objectifs. La méthode proposée traite le cas 
où le temps de passage au point final du segment à optimiser est un instant préféré par le 
planificateur ou le résultat d’une négociation avec le système de gestion du trafic aérien. La 
méthode proposée identifie, en parallèle, un ensemble des plans de vol optimaux, qui 
correspondent à un ensemble des contraintes d’heure d’arrivée requise (fenêtres de temps) 
contigües imposées au point final du segment à optimiser. L’avantage de cette méthode est 
que le décideur peut sélectionner le plan de vol qui correspondant au mieux à ses critères et, 
si le plan de vol est rejeté par le système de gestion du trafic aérien, alors il peut sélectionner 
le suivant meilleur plan de vol sans nécessiter d’effectuer une nouvelle optimisation. L’étude 
a investigue sept variantes de la méthode proposée et 10 tests ont été effectués pour chaque 
variante. Les tests ont évalué le cas où l’ensemble des contraintes d’heure d’arrivée a été 
constitué par 31 valeurs (fenêtres de temps contigües). Les résultats des tests ont montré une 
très bonne convergence des solutions. Pour cinq variantes de la méthode proposée, la 
différence maximale entre la consommation de combustible pour une solution et le minimum 
«global» pour la même valeur de la contrainte de temps d’arrivée (pout toutes les variantes 
de la méthode et tous les tests) a été inférieure à 90 kg de combustible (0.14%). Pour la 
variante la moins performante, les plans de vol optimaux ont donné une consommation de 
combustible avec moins que 321 kg (0.56%) au-dessus du minimum «global». 
 
 
Mots-clés : trajectoire de vol, plan de vol, optimisation des trajectoires de vol, contraintes 
d’optimisation, heure d’arrivée requise (RTA), système de gestion du vol (FMS), système de 
gestion du trafic aérien (ATM), performance de vol de l’avion, modèle de performance de 
l’avion, Base of Aircraft Data (BADA), données atmosphériques, modèle des données 
atmosphériques, modèle des données d’atmosphère GRIdded Binary (GRIB), algorithmes 
d’optimisation, optimisation multi-objectifs, algorithmes génétiques, Non-dominated Sorting 
Genetic Algorithm-II (NSGA-II). 
 



 

Aircraft trajectory optimization for a cruise segment with imposed 
flight time constraint 

 
Radu Ioan DANCILA 

 
ABSTRACT 

 
The work presented in this thesis is applied in the field of aircraft flight trajectory 
optimization, approached as a flight-planning problem. The objective of the optimization is 
to determine an optimal flight plan, which minimizes a selected cost function and satisfies all 
the imposed constraints. The optimization takes into account the particular aircraft 
performance data and flight configuration (load, fuel quantity, etc.), initial and final points 
(latitudes, longitudes, and altitudes) of the flight segment to be optimized, atmospheric 
conditions along the flight trajectory, as well as optimization and navigation constraints. It 
was assumed in this work that the lateral component of a flight plan was composed by a set 
of sub-segments, constructed by selecting adjacent nodes from a routing grid. The routing 
grid was constructed based on the orthodromic route between the initial and final points of 
the segment to be optimized, a selected maximum lateral deviation from the orthodromic 
route, and a maximum sea level distance between the grid nodes. 
 
The first research subject concerned a new atmospheric data model that defines the variation 
of the atmospheric parameters as functions of time in selected points along the lateral flight 
trajectory or in the nodes of a routing grid, at a selected altitude. The model was constructed 
based on the forecast data provided by the Meteorological Agencies, in GRIB2 data format, 
and defined in the nodes of a 4D grid (geographic location, altitude, and time). As a result, an 
atmospheric parameter value in an atmospheric data definition point (geographic location and 
altitude), at the time instance of interest, was obtained by a one-dimensional linear 
interpolation. Test results showed that, compared with the classic four-dimensional linear 
interpolation from the GRIB forecast data, the proposed model yielded identical atmospheric 
parameters values (differences of the order of 10-14) and, on average, it was six times faster. 
Therefore, by using the proposed atmospheric data model it would be possible to perform an 
optimization faster or to evaluate more candidate flight plans during the allotted execution 
time, which would yield better optimization results. The proposed model can be extended by 
generating the model data for each altitude from a set of altitudes of interest. 
 
The second investigation evaluates the performance of a new optimization method, based on 
genetic algorithms, where both the lateral and the vertical components of the flight plan are 
subjected to optimization. In this study, the routing grid for the lateral component of the 
candidate flight plans was constructed according to the methodology presented in the first 
investigation. The family of vertical flight plans was constructed according to a selected 
structure and topology. The results were compared with a reference flight plan, obtained as 
the optimal profile (speed optimization) for a flight along the flight track and altitude profile 
of a real flight, retrieved from the FlightAware website. Subsequently, another investigation 
analyzed the effects of performing flight plan corrections (altitude – speed profile) relative to 
the aircraft flight envelope (correction of the candidate flight plan parameters, so that the 
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aircraft flight parameters would remain within the flight envelope limits), on the optimization 
results and execution time. A total of 60 tests were performed, composed of 10 test runs for 
each of the six cost index values considered in the evaluation. The results showed that, by 
performing the flight plan corrections relative to the aircraft flight envelope, the computation 
times increase by a factor larger than two and the results are less optimal. Relative to the 
reference flight plan, the proposed optimization method, in which the candidate flight plans 
were not corrected, yielded a total cost reduction between 1.598% and 3.97%. 
 
The third investigation evaluates a new flight plan optimization method / approach, derived 
from the Non-dominated Sorting Genetic Algorithm II multi-objective optimization method. 
The proposed method applies to the case where a crossing time is desired / expected to be 
imposed at the final point of the segment under optimization (Required Time of Arrival). The 
time constraint value could be a preferred crossing time instance selected by the flight 
planner or, it could result from a negotiation with the Air Traffic Management System. The 
proposed method identifies, in parallel, a set of optimal flight plans corresponding to a set of 
selected contiguous flight time constraints (“windows”) imposed at the final point of the 
flight segment to be optimized. The advantage of the proposed method is that decision 
makers can select the flight plan that best suits their criteria and, if rejected by the Air Traffic 
Management system, they can select the next best flight plan from the set of solutions 
without having to perform a new optimization. Seven method variants were evaluated, and 
10 test runs were performed for each variant. The tests considered the case where 31 
contiguous time constraint windows were imposed at the final point of the segment under 
optimization. Test results showed a very good convergence of the solutions. For five method 
variants the maximum fuel burn differences relative to the “global” minimum for a time 
constraint value (for all the method variants and all the test runs) were less than 90 kg of fuel 
(0.14%). The worst optimization method found optimal flight plans that yielded fuel burns 
with a maximum of 321 kg (0.56%) more than the “global” optimum. 
 
 
Keywords: flight trajectory, flight plan, flight trajectory optimization, constrained 
optimization, Required Time of Arrival (RTA), Flight Management System (FMS), Air 
Traffic Management (ATM), aircraft flight performance, aircraft performance model, Base of 
Aircraft Data (BADA), atmospheric data, atmospheric data model, Gridded Binary 
atmospheric data model (GRIB), optimization algorithm, genetic algorithm, multi-objective 
optimization, Non-dominated Sorting Genetic Algorithm (NSGA-II). 
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INTRODUCTION 
 
The aviation industry strives to improve their operations, individually and globally, as a 

result of two converging necessities: on one hand is the need to reduce costs, to increase 

economic performance, and on the other hand to reduce polluting emissions, in order to 

protect the environment and observe the environmental regulations.  

 

One way to reduce the costs is to minimize them for each flight, by selecting/flying along a 

flight profile that would be best fit for the aircraft load and flight performance, route, 

atmospheric conditions, etc. The optimal flight profile must observe all aircraft performance 

limitations, navigation regulations and policies, all imposed constraints, and minimizes a 

selected cost function.  

 

The optimal flight profile is defined as a flight plan. As a flight planning problem, the 

optimization objective is to identify the lateral and vertical flight profile components (the 

projection of the trajectory on the Earth’s surface and the altitude speed profile) that offer the 

“best” atmospheric conditions along the flight path and the “best” altitude–speed profile for 

the specific aircraft performance and load. 

 

An optimal flight plan is obtained as a result of search conducted over a set of candidate 

flight plans. Generally, this search requires a large number of flight plan performance 

evaluations (simulations of the flight along the selected candidate flight plans). In order to 

improve the performance of the optimization, it is necessary to increase the precision of the 

input data (aircraft performance model and atmospheric data model) and of the flight 

performance calculations / flight trajectory simulations. In addition, it is necessary to 

improve the methods used for generating and selecting the candidate flight plans 

(optimization methods and algorithms), and reduce the computational complexity so that a 

maximum number of flight profiles can be evaluated in a time interval and/or reduce the 

optimization execution time. As some requirements for the optimization methods/algorithms 

are contradictory (e.g. increased precision versus reduced computational complexity), the 
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adopted optimization methods are specific for the particular optimization problem, and 

represent a tradeoff between the contradictory requirements. 

 

The research presented in this thesis addresses the following main subjects: 

1. The development and evaluation of a new atmospheric data model appropriate for 

constant altitude cruise flight trajectory performance calculations and optimization 

algorithms. This model defines the atmospheric parameters variation as functions of 

time, in selected points along the trajectory or in the nodes of a routing grid, at the 

selected altitude. The first hypothesis is that the proposed atmospheric data model 

would generate the atmospheric parameter values in a node of the routing grid faster 

and with the same precision, relative to the case where they are calculated based on 

the data format provided by the meteorological agencies and 4D linear interpolations. 

The second hypothesis is that for a constant altitude flight trajectory calculation (the 

longest section of a flight) the proposed model would yield important computation 

time reductions. This would be particularly true when the lateral flight plan is 

constructed based on a routing grid having a distance between the grid nodes smaller 

or equal to the integration step used in the flight trajectory performance calculation; 

2. The development and evaluation of an optimization method based on genetic 

algorithms, in which both the lateral and the vertical components of a candidate flight 

plan are subject to optimization. A structure for the lateral and vertical components of 

the candidate flight plans, as well as methods to construct the candidate flight plan 

components and to perform the genetic operations are proposed. The routing grid 

used in the construction of the candidate flight plans and in the flight performance 

calculations is similar to that proposed in the first research. The genetic operations 

(crossover and mutation) applied during the optimization are specific for each 

component of the candidate lateral flight plan, due to the differences between the 

structures and the assumptions / construction rules / limitations considered for each 

component. The first hypothesis is that the proposed optimization method converges 

to a solution that is better (has a lower total cost) than that of a flight plan obtained by 

optimizing the speed profile along an imposed lateral and altitude flight plan 
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components. The second hypothesis is that if the invalid flight plans (which result in 

aircraft flight parameters outside the flight envelope) would be corrected (the flight 

plan parameters are modified so that the aircraft flight parameters are within the flight 

envelope limits) it would improve the optimization results (lower total cost). 

However, the consequence would be a longer execution time due to the additional 

computations required by the flight plan correction process; 

3. The development and evaluation of an optimization method capable to identify a set 

of optimal flight plans, corresponding to a flight segment with a set of contiguous 

Required Time of Arrival (RTA) constraints at the final point. The structures and 

construction of the flight plan components and the atmospheric data model are similar 

to those used in the previous investigation. The proposed optimization method is 

derived from the NSGA-II (Deb, Pratap, Agarwal & Meyarivan, 2002) method used 

in multi-objective optimizations. The first hypothesis is that the method can find 

solutions for all the RTA constraint set values. The second hypothesis is that by 

performing flight plan corrections (relative to the aircraft’s flight envelope) for the 

initial generation of candidate flight plans, more initial tentative flight plan solution 

(which satisfy an RTA constraint from the set) would be identified in the first 

iterations of the optimization. The third hypothesis is that by performing a local 

search (in each iteration adding mutated versions of the tentative solution flight plans) 

the quality of the solutions would be improved. The fourth hypothesis was that, for a 

sufficiently large number of iterations, the optimization method (the search conducted 

in the objective space) converges to “globally optimum” solutions. 

 

The structure of this thesis and the research methodologies used in each of the investigations 

are presented in CHAPTER 2 (APPROACH AND ORGANIZATION OF THE THESIS). 





 

CHAPTER 1 
 
 

LITERATURE REVIEW 
 

1.1 Aircraft flight trajectory 

An aircraft flight trajectory represents the 3D path (geographical locations and altitude) 

followed by an aircraft between the departure and arrival airports. The flight trajectory is the 

result of the aircraft executing a flight plan (FAA, n.d.a). An aircraft’s flight evolution, and 

thus its flight trajectory, is limited by its flight envelope (specific for the aircraft model), 

flight rules and regulations (FAA, n.d.d; FAA, n.d.c), and specific navigation rules and 

regulations. 

 

At an airspace level, the air traffic is managed by the Air Traffic Management System 

(ATM), which monitors all aircraft flights within its area of control in order to detect and 

avoid flight trajectory conflicts, and to increase throughput. Before the flight, each aircraft’s 

flight plan must be submitted for validation by the ATM, which analyzes it for conflicts with 

all active (already validated) flight plans, and compliance with navigation rules and 

regulations. New initiatives, like the Next Generation Air Transport System (NextGen) in US 

(FAA, 2020) and Single European Sky ATM Research (SESAR) in Europe (European 

Commission, 2020) aim to increase the airspace flexibility by allowing aircraft to fly along 

more efficient routes, that would be better adapted to their specific operational needs and to 

aircraft’s capabilities. For example, by 2022, it is expected that a large part of the European 

airspace would implement the Free Route Airspace (FRA) concept (Eurocontrol, 2020) 

where an aircraft no longer has to follow predetermined air corridors. Trajectory Based 

Operations (TBO) (Cate, 2013; Torres & Delpome, 2012) is a 4D air traffic management 

concept where the aircraft fly along 4D routes that are better adapted for their needs. 

 

A flight plan (Altus, 2009; FAA, n.d.a) defines the intended aircraft flight trajectory in a 

compact form, which can be evaluated by the ATM to validate it relative to conflicts with 
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already approved flight plans, and by aircrew to program it into aircraft’s Flight Management 

Systems (FMS).  

 

1.2 Flight trajectory performance calculation 

An aircraft’s flight trajectory and flight performance parameters, used by the ATM for flight 

plan validation, and by flight planners for flight trajectory planning / optimization, are 

determined following an “accelerated” simulation of the planned flight. The results of the 

simulation are the lateral flight path (succession of geographic points) overflown by the 

aircraft, the altitude and speed profile along the lateral flight profile, the crossing time and 

aircraft weight / fuel burned to / fuel available at points along the lateral profile, etc. These 

calculations are performed based on the aircraft’s weight and flight performance data, 

atmospheric conditions, flight plan, flight and navigation rules and regulations, etc. 

 

The accelerated flight simulation is performed by first decomposing the flight plan in phases, 

and then by decomposing each phase into segments on which the mathematical model 

describing the aircraft’s evolution and performance parameters does not change. Each 

segment is further decomposed in sub-segments (integration steps). The accelerated 

simulation is done by successively evaluating the flight performance parameters and aircraft 

evolution on each sub-segment; the aircraft position, flight parameters, and configuration at 

the end of a sub-segment are the input data for the flight simulation / calculations along the 

following sub-segment. For flight planning / optimization applications and in FMS platforms, 

the accelerated flight simulation is performed according to a specific methodology (Schreur, 

1995), described in sub-sections 4.2.5 and 5.3.4. 

 

The aircraft performance model used in the accelerated flight simulation calculations differs 

as a function of the platform on which the simulations are performed (ATM, FMS, research 

environment) and on the intended application. In FMS platforms, where the computational 

power and memory resources are limited, the aircraft performance model is defined by 

interpolation tables (Performance DataBase – PDB) (Murrieta-Mendoza & Botez, 2015a; 
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Sibin, Guixian & Junwei, 2010; Murrieta-Mendoza, Demange, George & Botez, 2015b), 

which are less accurate but less computationally complex than aero-propulsive models.  

 

In research and ATM context, where the computations are performed on more powerful 

systems or where the computation time is not of strict concern, the aircraft performance 

calculations are performed using more complex and more precise aircraft models, such as 

Base of Aircraft Data (BADA) (Eurocontrol, n.d; Eurocontrol, 2010; Nuic, Poles & Mouillet, 

2010a; Nuic, 2010b). Other aircraft performance models are specific for particular phases of 

the flight / flight segment types, or for aircraft performance elements. Dancila, Botez & 

Labour (2013) have proposed an aircraft performance model for the cruise phase, which 

allows to compute the fuel burn for a selected flight time, at a specific speed, on a constant 

altitude cruise segment, or the time necessary to burn a selected fuel quantity. Ghazi, Botez 

& Achigui (2015a) developed a method to create an engine performance model from flight 

tests executed on a level D flight simulator. Ghazi & Botez (2015b) developed a high-fidelity 

aircraft performance model, intended for use in research environment, which uses non-linear 

models for aerodynamic coefficients and actuators. 

 

1.3 Atmospheric data in flight trajectory performance calculations 

The atmospheric data used in flight trajectory performance calculations are based on 

atmospheric data forecast models issued regularly by meteorological agencies, in a GRIdded 

Binary format (GRIB2) (Environment Canada, n.d.g; NOAA, n.d.a). The GRIB2 data define 

the atmospheric parameter values in the nodes of a 4D grid (latitude, longitude, pressure 

altitude, and time). Each environmental agency may issue the atmospheric forecast data in 

various forecast models. These forecast models differ in terms of geographic region covered 

by the forecast, grid type (latitude-longitude or polar stereographic) and resolution, interval 

for which the predictions are made, and update rate. The wind prediction data may be 

provided in terms of speeds and angles, wind components along the North and East 

geographic axes, or both. Global scale forecast models, such as Global Deterministic 

Prediction System (GDPS) (Environment Canada, n.d.a; Buehner et al., 2015) provide the 
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forecast data that cover the entire globe surface. The regional forecasts cover a smaller 

specific area. Examples of regional prediction systems are the Regional Deterministic 

Prediction System (RDPS) (Caron et al., 2015; Environment Canada, n.d.e) and the Rapid 

Update Cycle (RUC) (Schwartz, Benjamin, Green & Jardin, 2000; Cole, Green, Jardin, 

Schwartz & Benjamin, 2000). The RUC forecasts cover a smaller geographic area, are more 

accurate, and are updated more frequently.  

 

Various studies analyzed the accuracy of the atmospheric data predictions. Schwartz et al. 

(2000) performed an analysis of the RUC forecasts by comparing the forecasted data with the 

real atmospheric conditions encountered by aircraft, retrieved from Aircraft Communications 

Addressing and Reporting System (ACARS). They have found that the forecast errors vary 

function of the difference between issuing time and the instance for which the atmospheric 

parameter is evaluated (increases when the difference increases), increases when the 

forecasted wind is larger or the altitude is higher, and varies function the time of the day and 

period of the year. In a similar study conducted by Cole et al. (2000), the wind error 

probability distribution and the percentage of instances when the error surpassed 10 m/s were 

analyzed. The authors found that the wind errors are larger during the Winter season, when 

the winds are stronger; they also noted that there are spatio-temporal regions where errors are 

large, but not shown in the statistical analysis data due to the small region where they occur. 

 

Stohl, Wotawa, Seibert & Kromp-Kolb (1995) analyzed the precision of various interpolation 

methods (linear weighted distance, nearest neighbor, bilinear, cubic) to compute the 

atmospheric data in a point; they concluded that the higher order methods (bicubic 

interpolation) gave the best accuracy, however they have the disadvantage to be the most 

computationally intensive and to require the highest execution time. The authors noted that, 

in strong wind fields, the time interpolation results were more affected by the interpolation 

method and, thus, required a higher order interpolation method to reduce the errors. Fukuda, 

Shirakawa & Senoguchi (2010) compared the ground speed recorded by aircraft with its 

value computed using atmospheric data computed by spline interpolation from the forecast 

data. The authors concluded that the ground speed estimation error due to the atmospheric 
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parameter estimation error was smaller than the ground speed estimation error resulted from 

aircraft speed error (scheduled versus real speed). In flight trajectory simulations and flight 

planning applications, the atmospheric parameters are computed by use of multi-dimensional 

linear interpolations from the forecast data (Rubio & Kragelund, 2003; De Smedt & Berz, 

2007; Zhang & McGovern, 2008; Bronsvoort, McDonald, Potts & Gutt, 2011; 

Wickramasinghe, Harada & Miyazawa, 2012; Wynnyk, 2012), as a tradeoff between 

accuracy and computational complexity. 

 

The atmospheric data can be considered as having both deterministic and stochastic 

components. Depending on the platform (ATM, FMS, research) and context (flight plan 

validation, flight trajectory optimization, etc.) the atmospheric data is considered having only 

a deterministic component or both components (deterministic and stochastic). In current FMS 

and ATM / flight planning / optimization applications, the atmospheric data is considered as 

having only a deterministic component.  

 

The atmospheric data model used in FMS platforms defines the atmospheric parameters as 

deterministic and stationary, at selected locations along the flight trajectory (Waypoints – 

WPT), at a limited set of altitudes. The atmospheric parameters in other locations than the 

WPTs and/or the altitudes where they were defined are computed by linear interpolations (De 

Smedt & Berz, 2007; Stell, 2010a; Stell, 2010b; Bronsvoort et al., 2011). 

 

Bronsvoort et al. (2011) present a wind model, generated on ground-based platforms, tailored 

for the descent phase of the flight. The wind model, adapted for specific FMS platform 

atmospheric data calculations, is generated based on high resolution forecast data, aircraft 

flight plan and landing procedure, so that the interpolation errors are minimized during the 

descent phase. 

 

Vaddi, Tandale & Cheng (2011) present a wind model that considers both the deterministic 

and stochastic components. The stochastic component is constructed using an autoregressive 
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model based on forecast data and aircraft flight data from the same airspace, and a time lag 

smaller than 15 min. 

 

1.4 Flight trajectory optimization 

A flight trajectory optimization can be performed at airspace level, in order to ensure the safe 

operations and increase the aircraft throughput, or at aircraft level, to minimize / maximize an 

objective function. An aircraft trajectory optimization can be performed on ground-based 

platforms, in the planning phase, or, to a limited extent, on the FMS platforms. 

 

The high-level flight trajectory optimization is performed by ATM systems. The ATM 

performs accelerated simulations of the flight along the submitted flight plans in order to 

detect flight trajectory conflicts and to ensure minimum lateral, vertical, and time separations 

between aircraft.  

 

The objective of an aircraft trajectory optimization problem, defined as a flight-planning 

problem, is to identify an optimal flight plan. The flight trajectory resulted from the “flight 

plan execution” must observe aircraft’s flight envelope limitations and flight and navigation 

regulations and rules (FAA, n.d.b; FAA, n.d.c; FAA, n.d.d).The optimization can be 

conducted only along the lateral flight plan component (the projection of the flight trajectory 

on the Earth’s surface), along the vertical flight plan component (the “altitude – speed” 

profile), or along both the lateral and vertical flight plan components. 

 

A review of the on-board flight trajectory optimization algorithms, strategies, and patents, 

performed on FMS platforms, conducted by Di Vito, Corraro, Ciniglio & Verde (2009), 

presents an analysis of proposed optimization methods, their features, advantages, and 

disadvantages. 

 

Zillies et al. (2014) studied the efficiency increase to be obtained if the flight trajectories are 

optimized for the atmospheric conditions. The study performed the optimization of constant 
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altitude and speed cruise segments, by use of a Dijkstra algorithm. In each iteration, a new 

point is added at the half point along the orthodromic route between the aircraft location at 

the current iteration and the final point, until a minimum distance between the current and 

final point is reached. The new point is selected among five equally spaced nodes across the 

orthodromic route. The optimized routes resulted in fuel and flight time reductions relative to 

the orthodromic route. 

 

Dancila & Botez (2016a) proposed a method to select the maximal optimal geographic area 

for flight trajectory routing, with a limit on maximum ground distance. The selected area is 

an ellipsoid with parameters computed based on the departure and the arrival points, placed 

in its focal points. A method for reducing the vertical flight profile calculations is proposed 

by Dancila & Botez (2018). The authors constructed and computed, in advance, based on the 

specific optimization problem data (departure and destination points, aircraft load, set of 

considered speeds, set of estimated landing weights, etc.), a set of vertical flight segments for 

each flight phase, that cover the entire aircraft flight envelope. 

 

Zhou, Duan, Li & Di (2013) developed a flight planning method based on differential 

evolution, where in each iteration a chaotic search is performed in the vicinity of the best 

solution identified so far (up to that iteration) in order to escape local minima and improve 

the results by increasing the probability to find the global minima. 

 

Patrón, Berrou & Botez (2015b) proposed an optimization method based on genetic 

algorithms, where the lateral flight profiles are constructed by selecting nodes from a routing 

grid formed by a planned track and four parallel tracks; each track was divided in n sub-

segments. The optimization is performed in three steps. First, the optimal climb vertical 

profile, along the planned track, was identified by evaluating all possible speed values. Then, 

a genetic algorithm identified the optimum cruise track for the planned vertical profile. 

Finally, the descent phase was optimized by an exhaustive evaluation of the descent for all 

scheduled speed combinations.  
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Murrieta-Mendoza, Beuze, Ternisien & Botez (2017b) presented a vertical flight profile 

optimization using a Beam Search Algorithm, where the optimization problem was defined 

as a discrete optimization problem modeled as a “decision tree”. The tree nodes are visited 

successively and, in each node, non-optimal branches are determined using an optimistic cost 

heuristic and are pruned in order to reduce the number of profile calculations. 

 

Gardi, Sabatini & Ramasamy (2016) presented a review of flight trajectory optimization 

approached as a control problem with multiple and conflicting objectives. These conflicting 

objectives could be operational (costs, fuel burn, airspace congestion) and environmental 

(noise, contrails, polluting emissions). An example of flight trajectory optimization 

approached as control problem could be the optimization (to minimize the fuel burn) of a 

cruise flight trajectory at constant altitude, in the presence of winds, where the control 

variables are the aircraft heading and speed. 

 

Ramasamy, Sabatini, Gardi & Kistan (2014) presented a concept of operations for the next 

generation FMS, that was developed for 4D Intent Base Operatations / Trajectory Based 

Operations. The optimization algorithm uses a point of mass aircraft model with 3 degrees of 

freedom and variable mass. The optimization is performed as a “control problem”, where the 

control variables are the engine power, load factor, and bank angle. The authors perform an 

evaluation of the errors impacting the trajectory calculations and their magnitudes. 

 

Hagelauer & Mora-Camino (1998) presented an optimization method based on dynamic 

programming, that identifies an optimal cruise flight profile for a flight with multiple time 

constraints, in various points along the flight trajectory.  

 

1.5 Multi-objective optimization 

Multi-objective optimization algorithms identify solutions that represent a tradeoff between 

competing and contradictory objectives. A survey of the multi-objective optimization 

methods used in Engineering is presented by Marler & Arora (2004). Miettinen (2001) 
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presents various concepts, approaches, and methods for conducting multi-objective 

optimizations.  

 

Fonseca & Fleming (1993) present an analysis of multi-objective optimization methods 

based on genetic algorithms. Methods for conducting multi-objective optimizations for 

problems with multiple constraints, by use of evolutionary algorithms, are proposed by 

Fonseca & Fleming (1998a) and Fonseca & Fleming (1998b). Examples of multi-objective 

optimization methods based on genetic algorithms are Multi-Objective Genetic Algorithm 

(MOGA) (Murata & Ishibuchi, 1995) and local search methods (Ishibuchi & Murata, 1996; 

Ishibuchi & Murata, 1998).  

 

An elitist multi-objective optimization method, called Non-dominated Sorting Genetic 

Algorithm II (NSGA-II), was proposed by Deb et al. (2002). This method performs the 

optimization using genetic algorithms and non-dominated population sorting. Jensen (2003) 

proposes a new non-dominated population sorting that is more efficient. This method reduces 

the number of comparisons between the population members and, thus, reduces the 

computation time. 

 





 

CHAPTER 2 
 
 

APPROACH AND ORGANIZATION OF THE THESIS 
 

The research presented in this thesis, pertaining to the field of flight planning / flight 

trajectory optimization, was conducted in the following sequence of steps / phases: 

1.  A literature review in which were analyzed existing methods for performing 

atmospheric data and flight trajectory performance calculations, and flight trajectory 

optimization. This research identified areas in which improvements / new approaches 

could be considered; 

2. Statement of the objectives to be addressed in the research; 

3. Investigation of a new atmospheric data model for constant altitude cruise segments; 

4. Investigation of a new flight plan / flight trajectory optimization method based on 

genetic algorithms, in which the lateral flight plan components are defined by nodes 

of a routing grid, and where the vertical flight plan components have a selected 

structure (set of altitude-speed segments types, construction rules, and constraints). 

The genetic operations (crossover and mutation) performed during the optimization 

are specific for each flight plan component; and 

5. Investigation of a new flight plan / flight trajectory optimization method that 

identifies a set of optimal flight plans for a flight segment. Each flight plan is 

determined as the optimal solution for a particular RTA constraint value from a set of 

selected contiguous RTA constraints imposed at the final point of the segment. 

 

Following the first research phase, two main directions of investigation were considered. The 

first direction concerned the improvement of the atmospheric data model used in flight 

trajectory performance calculations for the cruise phase, in order to reduce the computational 

complexity and the execution time. The second direction was related to the flight trajectory 

optimization, considered as a flight-planning problem.  

 

In the third phase, a new atmospheric data model was proposed. The new atmospheric data 

model defines the atmospheric parameters variation as a function of time in points 
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(geographic locations) along the cruise segment and at the selected cruise altitude. This 

investigation evaluated the performance of the model when it is used in the context of flight 

trajectory optimization, in which the lateral component of the candidate flight trajectory is 

constructed based on a routing grid. The model for the atmospheric parameter variation as 

functions of time, as well as the construction and the parameters of the routing grid, were 

developed following a research regarding the methodologies used for the atmospheric 

parameters calculations in flight trajectory performance calculations, and the methodologies 

used for constructing candidate flight trajectories in flight trajectory optimization algorithms. 

The atmospheric data and computation time using the new proposed method were compared 

with their values obtained by four-dimensional interpolation from the forecast data. Another 

analysis evaluated the memory requirements of the proposed model, and the computational 

time reduction for a flight profile performance parameters calculation. 

 

The fourth phase consisted in the development and analysis of a new flight trajectory 

optimization method based on a genetic algorithm, which identified the optimal flight plan 

that minimizes the total cost for the flight. The novel elements of this investigation were: 

1. The construction of the candidate lateral flight plan segments according to the 

methodology and based on the routing grid devised in the first investigation;  

2.  The proposed structure of the vertical component of the candidate flight profiles; and 

3. The genetic operators (crossover and mutation) specific for each flight plan 

component.  

 

Ten tests were performed for each of six Cost Index (CI) values; for each test, the total cost 

of the optimal flight plan identified by the proposed method was compared with the total cost 

of a reference flight plan, that was created based on a real flight trajectory. The set of tests 

were performed twice, in order to investigate the effects of correcting invalid flight plans, 

with respect to the altitude – speed flight envelope, on optimization performance. 

 

In the fifth phase, a new approach and method for optimizing the flight plan of a flight 

trajectory segment were presented. The optimization method / approach considers the case 
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where the time of arrival at the final point of the optimized segment is the result of a 

negotiation between the flight planner and the ATM. The optimization method, derived from 

the NSGA-II method used in multi-objective optimization, identifies a set of optimal flight 

plans corresponding to a set of contiguous RTA constraints (domains), selected by the flight 

planner. The lateral and vertical flight plan components, as well as the atmospheric data 

model, are similar with those used in the previous two phases. Seven variants of the proposed 

optimization method were evaluated in order to investigate the influence of different 

procedures employed during the optimization.  

 

These investigations resulted in a set of three papers written as main author, presented in 

Chapters 3 to 5. The three papers were submitted for publication in peer-reviewed journals, 

and the first paper was already published. Dr. Ruxandra Botez, Ph.D. advisor and co-author 

of the papers, supervised the research. 

 

The first research paper was published in the “Proceedings of the Institution of Mechanical 

Engineers, Part G: Journal of Aerospace Engineering”, in August 2020: “New Atmospheric 

Data Model for Constant Altitude Accelerated Flight Performance Prediction Calculations 

and Flight Trajectory Optimization Algorithms” (Dancila & Botez, 2020a). This paper 

presents a method for constructing an atmospheric data model, adapted for use in constant 

altitude cruise segment calculations, that reduces the atmospheric parameters calculation 

complexity and time. This new atmospheric data model provides the same data accuracy as 

when calculated by four-dimensional interpolation from GRIB forecast data. The proposed 

atmospheric data model was conceived based on the GRIB forecast data model and on the 

associated mathematical equation used for computing an atmospheric parameter in a 

geographical location, at a selected altitude and time. A new method is proposed for 

constructing an orthogonal routing grid between the initial and final points of the segment; 

the main axis of the routing grid is the direct route (orthodrome) between the two points. The 

grid node locations, along the two axes, are selected so that the distance between two 

adjacent nodes would be smaller than the integration step used in the flight trajectory 

performance calculation. Tests were performed using four routing grids (grid node step 
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distances along the two axes, and maximum node deviations from the main axis) and an 

atmospheric data time domain of 12 hours. The memory space requirements (for the same 

geographic area, altitude, and time domain), and the computation time for an atmospheric 

parameter in a grid node, were compared with those obtained under same conditions (for an 

identical geographic location, altitude, and time) using the GRIB forecast data model. 

Another test evaluated the flight trajectory performance computation time reduction obtained 

when the atmospheric data in the nodes of the routing grid were computed using the 

proposed method relative to the case where they were computed by four-dimensional 

interpolation from the GRIB data. 

 

The second research paper, called “New Flight Trajectory Optimization Method using 

Genetic Algorithms”, was accepted for publication in “The Aeronautical Journal” on 

November 15, 2020. This paper proposes a new methodology for constructing the flight plan 

candidates, where their lateral and vertical components are constructed based on the routing 

grid presented in the first research paper. The paper also proposes a template / structure for 

the vertical and lateral flight plan candidates, as well as specific crossover / mutation 

operations adapted for the structure of the lateral and vertical flight plan components. A 

subsequent investigation evaluates the influence of performing flight plan parameters 

(altitude and speed) corrections, relative to the aircraft’s flight envelope, on the optimization 

performance. The performance of the optimization method was evaluated using a set of 12 

tests: for six CI values, with and without flight plan corrections. The optimal profiles 

identified by the proposed method were compared with their corresponding reference 

profiles. The reference profiles were obtained through a speed optimization of a lateral flight 

plan and an altitude profile of a real flight, retrieved from FlightAware 

(www.flightaware.com), under identical conditions (aircraft weight, fuel quantity, CI value, 

etc.).  

 

The third research paper, “New Fight Plan Optimization Method Utilizing a Set of 

Alternative Final Point Arrival Time Targets (RTA Constraints)”, was submitted for 

publication to “The Aeronautical Journal”, in November 2020. First, the paper presents the 



19 

context and statement of the optimization problem, and defines its assumptions and 

limitations. Then, it describes the methodology used to construct the candidate flight plans 

and to perform the crossover and mutation operations, as well as the atmospheric data used in 

the calculations, which are similar with those presented in the first two papers. Next, the 

paper presents an overview of the methodology used to perform the accelerated flight 

simulation and to compute the performance parameters for a flight along a flight plan 

candidate. Then, an analysis of the relationship between the dependent variables of interest 

(fuel burn and flight time) and the independent variables (flight plan parameters, initial 

aircraft weight and fuel, atmospheric conditions, etc.) is performed, and an optimization 

method derived from the NSGA-II multi-objective optimization method is presented. Seven 

variants of the proposed method were considered in order to evaluate different strategies (e.g. 

local search, initial population flight plan correction, population members fitness assignment 

methods, etc.) employed during the optimization. Finally, 70 test runs were performed (10 

identical test runs for each method) to evaluate and compare the performance of the method 

variants. The test scenario was constructed based on a real flight track data, that was 

retrieved from the site FlightAware. 
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Résumé 
 
Cet article présente une nouvelle méthode pour stoker dans la mémoire et calculer les 

données atmosphériques utilisées dans des calculs de performance pour des segments de vol 

en croisière, à une altitude constante. Cette méthode a été conçue pour les applications avec 

contraintes de temps de calcul, tels que les calculs de prédiction des paramètres de 

performance dans les systèmes de gestion du vol et/ou optimisation des trajectoires de vol. 

Le modèle proposé a été construit à partir des prédictions atmosphériques fournies par les 

services météorologiques, dans un format GRIB2, ainsi qu’un ensemble des points de 

cheminement qui définissent la composante latérale du (des) profil(s) de vol évalué(s). Le 

modèle de données atmosphériques peut être construit/mis au jour en arrière-plan ou hors-

ligne, lorsque des nouvelles prédictions atmosphériques sont disponibles. Les résultats 

obtenus en utilisant le modèle proposé ont montré que les valeurs des paramètres 

atmosphériques sont identiques (des différences d’ordre 10-14) aux celles calculées par une 

interpolation linéaire quadridimensionnelle et en moyenne les calculs sont six fois plus 

                                                 
 
1 The paper presented in this chapter contains minor modifications relative to the version printed in Proceedings 
of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Paper No. 945555, DOI: 
10.1177/0954410020945555, on August 14, 2020. These modifications were made at the request of the 
members of the Board of Examiners. 
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rapides. Des tests ont montré aussi une réduction importante du temps de calcul des 

paramètres de performance des trajectoires de vol quand le modèle d’atmosphère proposé est 

utilisé dans les calculs. Le modèle proposé peut-être étendu pour un ensemble d’altitudes 

(habituellement un multiple de 1,000 ft). 

 

Abstract 
 
This article presents a new method for storing and computing the atmospheric data used in 

time-critical flight trajectory performance prediction calculations, such as flight performance 

prediction calculations in flight management systems and/or flight trajectory optimization, of 

constant altitude cruise segments. The proposed model is constructed based on the forecast 

data provided by Meteorological Service Agencies, in a GRIB2 data file format, and the set 

of waypoints that define the lateral component of the evaluated flight profile(s). The 

atmospheric data model can be constructed/updated in the background or off-line, when new 

atmospheric prediction data are available, and subsequently used in the flight performance 

computations. The results obtained using the proposed model show that, on average, the 

atmospheric parameter values are computed six times faster than through 4D linear 

interpolations, while yielding identical results (value differences of the order of 10-14). When 

used in flight trajectory performance calculations, the obtained results show that the proposed 

model conducts to significant computation time improvements. The proposed model can be 

extended to define the atmospheric data for a set of cruise levels (usually multiple of 

1,000 ft). 

 

3.1 Introduction 

The large number of aircraft in operation today, combined with the forecasted air traffic 

increase (EEA, 2018) strengthen the necessity to identify new means and methods to increase 

the levels of air traffic safety and efficiency. A larger number of aircraft will determine an 

increase in fuel consumption and, as a consequence, in green house gas (GHG) emissions, 

with a negative impact on the environment. From the point of view of air traffic security and 
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efficiency, a larger number of aircraft, within the same airspace, will require new and better 

flight planning and flight performance estimation methods, in order to increase the airspace 

throughput while maintaining the required level of separation and reducing the potential of 

flight trajectory conflicts. 

 

One of the means to improve the aircraft operations efficiency is to improve the aircraft 

performance characteristics: better engines that use less fuel and generate fewer polluting 

emissions, better airframes with lighter materials and structures, and better aerodynamic 

characteristics. For example, current research in the field of structures and aerodynamics 

investigate new methods and techniques that could allow in-flight shape modification for 

elements of the aircraft’s structure (morphing structures) (Koreanschi et al., 2016a; 

Koreanschi et al., 2016b; Koreanschi et al., 2016c; Grigorie, Botez & Popov, 2016) in order 

to obtain the optimal profile for each phase of the flight (reduce the drag without affecting 

the lift) and to improve the stall characteristics. The result is a reduction of the required thrust 

and, thus, a reduction of fuel burn and GHG emissions. 

 

In the field of aircraft model development, the focus is on methodologies that can identify 

high fidelity engine (Ghazi et al., 2015a) and aircraft (Ghazi & Botez, 2015b) performance 

models from flight data. These models are intended for use as research tools, for aircraft 

performance evaluation, and in-flight trajectory optimization algorithms. 

 

Another important reduction of the fuel consumption and the GHG emissions can be 

obtained by implementing a new operational paradigm, known as trajectory-based operations 

(TBO), where each aircraft flies along an optimal flight trajectory, adapted to the specific 

flight (route, load, aircraft performance, and company operational criteria) and atmospheric 

conditions (winds and air temperature profile). The flight trajectory optimization can be 

performed on-ground, by the operational department of aircraft operators, or, to a limited 

extent, on-board by flight management system (FMS). Herndon, Cramer & Nicholson (2009) 

analyzed the differences between the implementation of the navigation procedures in several 

FMS platforms produced by different manufactures, and the effects that these differences 
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have on the air traffic management, predictability of the air traffic, and the execution of 

navigation procedures. 

 

The FMS computes the various aircraft flight performance parameters (fuel burn, 

climb/descent horizontal distance, optimal altitude, optimal speed, etc.) using an aircraft 

performance model based on performance tables (Murrieta-Mendoza et al., 2015b) and 

multi-dimensional linear interpolations. New aircraft performance models can add new 

capabilities and functionalities. For example, the constant altitude and speed cruise flight fuel 

burn model, presented in Dancila et al. (2013) provides a means to compute, faster and with 

more precision, the fuel burned in a given flight time and the flight time necessary to burn a 

given fuel quantity. This functionality is very helpful when evaluating, for example, the 

earliest moment when the aircraft can initiate a step climb. 

 

Both the FMS platforms and the flight trajectory optimization algorithms perform, 

iteratively, accelerated simulations of the flight: 

1. Along the programmed flight trajectory (and the programmed alternate flight route), 

from the current aircraft location to destination (in the case of FMS); 

2. Along the set of candidate flight profiles (in the case of flight trajectory optimization). 

in order to determine, among others, the estimated time of arrival (ETA), estimated time en-

route (ETE), fuel burn to (available fuel at) different points along the route, verify that the 

aircraft flight parameters do not exceed the flight envelope limits, and that navigation 

constraints, such as required time of arrival (RTA), imposed for points along the flight 

trajectory are observed. In flight trajectory optimization algorithms, the results of the iterative 

accelerated flight performance prediction calculations are used to determine the best solution 

among the candidate flight profiles (the flight profile that minimizes the selected cost 

function). 

 

Faster flight performance prediction calculations will determine an increase of the number of 

flight profiles evaluated per allotted time and/or less time required for the evaluation of a 

given number of flight profiles. In the FMS platform, the flight performance prediction 
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calculations are time-critical: they are performed repeatedly, according to a schedule, and 

within an imposed time window. In flight trajectory optimization algorithms, faster flight 

performance prediction calculations would result in a faster optimization process and/or 

better optimization solutions. 

 

The accelerated flight performance prediction calculations are performed progressively, step 

by step, by decomposing the flight profile in small sub-segments (integration steps) and, 

then, on each sub-segment the performance data are computed considering that the 

parameters that intervene in the calculations are constant (e.g. air temperature, wind, 

speed/acceleration, aircraft weight, fuel burn rate, etc.). This decomposition into sub-segment 

is done using a heuristic method that offers a trade-off between the computation time and 

precision. As a result, during each flight performance evaluation, the atmospheric parameters 

need to be evaluated at multiple points along the flight trajectory. 

 

The moment when the aircraft reaches a geographic location and altitude is function of the 

trajectory followed by the aircraft (speed and altitude profiles, and flight track) from the 

departure point to that location. Therefore, for better flight performance estimations, the 

atmospheric parameters data model should take into account the variation function of time. In 

the traditional implementation of FMS platforms, the atmospheric parameters are associated 

to waypoints (WPTs) along the flight profile. In each WPT, the atmospheric parameters are 

considered stationary (defined as pre-set values that do not vary as a function of time), at a 

selected set of altitudes (Bronsvoort et al., 2011). The atmospheric parameters in points 

situated on a segment determined by two WPTs and/or altitudes different that those where 

they were defined are computed through linear interpolation. 

 

The aircraft’s avionics system can determine, based on the data acquired from the aircraft’s 

sensors and navigation systems, the difference between the estimated and the real 

atmospheric conditions at the current location (dead reckoning). The differences are 

considered stochastic components of the atmospheric parameters, and can be used to correct 

the forecasted atmospheric data, to a limited extent, as the chaotic nature of the atmospheric 
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flows and atmosphere’s anisotropy make it irrelevant for locations situated far away and/or 

reached much later. 

 

National meteorological service agencies create and publish analyses and forecasts, for a set 

of atmospheric parameters, at specific geographic locations, pressure altitudes, and time 

instances. These forecasts are numerical models (Numerical Weather Prediction [NWP]), 

provided in a gridded binary (GRIB2) (Environment Canada, n.d.g; NOAA, n.d.a) file 

format, and describe the atmosphere at various scales (global (Environment Canada, n.d.a; 

Buehner et al., 2015) or regional (Environment Canada, n.d.e; Caron et al., 2015)), map 

projections (polar-stereographic or latitude-longitude), resolutions (map grid sizes), time 

frames, and with specific forecast refresh rates. For each forecast type (defined by the 

prediction scale, map projection and grid resolution), the forecast provides the atmospheric 

parameter values at the nodes of a 4D grid - at a predetermined set of latitude and longitude 

locations, pressure altitudes (isobaric levels), and forecast time instances. The forecast data 

files are retrieved using specific software tools (wget (Environment Canada, n.d.f) and 

wgrib2 (NOAA, n.d.b)), which provide the means to select the types of atmospheric 

parameters, geographic area, isobaric altitudes, and time domain for which the data are 

imported, and to perform grid size changes (regrid). A regional scale forecast is issued for a 

reduced geographic area, on a more refined grid and with a higher refresh rate than the global 

scale forecasts. An example of regional scale forecast is the regional deterministic prediction 

system (RDPS) (Environment Canada, n.d.d), issued by Environment Canada Meteorological 

Service. 

 

Due to the chaotic nature of the atmosphere, forecasts issued by the meteorological agencies 

are subject to errors and do not necessarily reflect the real conditions encountered at the 

prediction points (location and time). The magnitude of the errors varies function of the time 

of the year, time of day (day or night), region, how long ahead in time is the prediction made 

for, etc. This impacts the accuracy of the atmospheric parameter estimations, relative to what 

an aircraft will encounter, and, as a result, the flight trajectory and flight performance 

parameters’ (flight time, fuel burn, etc.) estimations. 
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A study of the air particle trajectory computation models from wind observations and 

predictions, the error sources and the accuracy for different forecast data sources, models and 

interpolation methods are presented in Stohl (1998). The authors found that the most accurate 

wind predictions are the NWP. An analysis of the nearest neighbour, linear weighted 

distance, bilinear, quadratic, and bicubic interpolation methods applied to wind interpolation, 

presented in Stohl et al. (1995), concludes that, for the horizontal wind components, the 

higher order methods are more precise: among the evaluated methods the bicubic 

interpolation is the most precise, but the most computing intensive. Regarding the time 

interpolation, the authors conclude that the linear interpolation yields the best results when 

the wind forecast time resolution is 6 h or less, and that the precision of the time interpolation 

is affected more when performing the calculations in strong wind fields, thus, it is necessary 

to employ a higher wind forecast temporal resolution to compensate this effect. 

 

In Schwartz et al. (2000), 13 months of real atmospheric conditions encountered by aircraft, 

reported through the Aircraft Communications Addressing and Reporting System (ACARS), 

were compared with atmospheric data predictions generated by 4D linear interpolations, from 

rapid update cycle (RUC) forecasts. Based on the prediction accuracy for 20 min ahead 

forecast, the authors noted that the forecast error varies function of the time of the year, time 

of the day, and increases with forecast time increase, when the forecasted wind is larger 

and/or altitude is higher. 

 

Different authors evaluated the incertitude associated with the atmosphere data prediction. 

Vaddi, Tandale & Lin (2013) present a method to create an uncertainty model for the wind 

forecasts based on the difference between the forecast data and the real wind encountered by 

aircraft, retrieved from ACARS data. The model has realistic spatio-temporal correlations 

and can be used in stochastic analysis of flight trajectories, to generate random wind 

predictions for Monte Carlo simulations. In Lee, Weygandt, Schwartz & Murphy (2009), the 

uncertainty for each of the North and East wind component predictions are considered to be 

the standard deviations from the average of the set of forecasted values in a given location 

and altitude. The authors note that the uncertainty decreases when the forecast lag time 
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decreases. A study regarding the magnitude and source of wind prediction errors, presented 

in Cole et al. (2000), analyzed the difference between RUC predictions and actual wind data 

encountered by aircraft. The study evaluated the percentage of wind speed error larger than 

10 m/s, the wind error probability distribution, and the time domains when most of the large 

wind prediction errors occur. It was noted that the rate of wind prediction error increases 

during winter, when the winds are stronger. Another observation was that there are small 

spatio-temporal regions where the errors are important; however, due to the domain’s small 

size, they are not reflected in the statistical analysis of the forecast accuracy. 

 

The atmospheric parameters can be considered as having two components: one deterministic 

and the other stochastic, accounting for the chaotic nature of the atmosphere/prediction 

incertitude. A review of the literature showed that the atmospheric data model used in flight 

trajectory performance calculations varies function of the context in which the flight 

trajectory performance calculations are performed: FMS, air traffic management system 

(ATM), flight planning, flight trajectory simulation, or control law/guidance algorithms. 

 

The more complex atmospheric models are used in studies regarding flight 

planning/trajectory optimization strategies, optimal flight control/guidance, conducted 

offline, on computer platforms, where there are limited or no calculation time constraints. 

The flight planning and optimization problems presented in literature (Soler-arnedo, Olivares 

& Staffetti, 2010; Soler, Olivares, Staffetti & Bonami, 2011; Soler, Olivares & Staffetti, 

2015) consider the wind components (North and East) stationary, deterministic, and 

computed through polynomial regression from RUC predictions. In Vaddi, Sweriduk, 

Tandale & Cate (2012), closed-loop tests evaluate the robustness of a descent guidance 

algorithm to atmospheric data uncertainties. The wind is considered to have two components: 

a deterministic component, obtained from the forecast data and assumes it only has a linear 

variation with altitude, and a stochastic component constructed using an autoregressive 

model (Vaddi et al., 2011) based on forecast data and flight data from the same airspace and 

a lag of no more than 15 min. A trajectory prediction model presented in Fukuda et al. (2010) 

computes the ground speed using atmospheric parameters calculated by spline interpolation 
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from prediction data. A comparison with the ground speed computed based on the 

atmospheric data recorded by the aircraft showed that the ground speed error due to the 

atmospheric parameter estimation error is smaller than the error due to the difference 

between the aircraft’s scheduled speed and real speed. 

 

In ATM and online flight planning applications, the atmospheric data models consider only 

the deterministic components. Other flight trajectory simulations/flight planning studies use a 

simplified atmospheric model, where the atmospheric parameters are considered stationary 

and are computed using multi-dimensional linear interpolations (3D and 4D) based on the 

forecast data (Rubio & Kragelund, 2003; Zhang & McGovern, 2008; Wynnyk, 2012; 

Wickramasinghe et al., 2012; Jensen, Tran & Hansman, 2015). 

 

In FMS platforms, the atmospheric data model is simplified, only a deterministic component 

is considered. The wind is considered stationary and, depending on the platform, the wind 

value can be defined as constant for the flight phase or segment, or as a set of constant values 

at specific altitudes in WPTs along the flight trajectory and computed by linear interpolations 

(De Smedt & Berz, 2007; Stell, 2010a; Stell, 2010b; Bronsvoort et al., 2011). During the 

flight, the stochastic components of the atmospheric conditions are calculated as the 

difference between the values computed based on the forecast data and the values measured 

by the avionics. A heuristic method (wind blending) applies the wind differences as 

corrections to the predicted values, to estimate the wind values to be used in the performance 

calculations (Stell, 2010a; Stell, 2010b). In order to improve the predictability of continuous 

descent arrival flight trajectories computed in FMS platforms, a tailored descent forecast 

wind approach is proposed in Bronsvoort et al. (2011). The tailored wind forecast is 

computed by an on-ground platform, based on the aircraft’s flight plan, the landing procedure 

for the selected runway, and updated high resolution forecasts, and then uploaded into FMS. 

The tailored winds are a representation of the wind structure along the descent profile, in 

FMS specific model format, computed so that it minimizes the descent profile interpolation 

error. Methods as the one presented in Bronsvoort et al. (2011) can be used for increasing the 
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atmospheric data precision only for the case when there is a short lag between the forecast 

and the times instance of the wind prediction used in the flight profile calculation. 

 

3.2 Methodology 

The research presented in this article investigates a new dynamic atmospheric data model 

suitable for use in time-critical tasks, such as accelerated flight trajectory performance 

prediction calculations and/ or optimization of constant altitude cruise segments, in the FMS 

platforms and in flight trajectory optimization algorithms. 

 

The proposed model is derived from, and based on, the atmospheric forecast data published 

by the meteorological agencies. The advantage of the proposed atmospheric data model is 

that it computes the atmospheric data, in the selected set of WPTs, with the same accuracy as 

when: 

1. Computed by 4D linear interpolation, using the original (GRIB) data; or 

2. Computed through linear time interpolation, based on the atmosphere parameter 

values calculated in the set of WPTs, at time instances that encompass the time 

instance of interest. 

while requiring fewer computations. 

 

The atmospheric data for a specific flight trajectory performance prediction and/or 

optimization problem can be precompiled offline or in the background, each time a new 

forecast data is available, and uploaded/updated in the target platform. The proposed model 

can be extended to define the atmospheric data for a set of cruise altitude of interest, 

generally a multiple of 1,000 ft. 

 

This section is structured as follows: the first sub-section analyzes the forecast data issued by 

the meteorological service agencies, the second sub-section describes the 4D linear 

interpolation method that is the basis for the proposed atmospheric data model and, finally, 

the last sub-section presents the new atmospheric data model, the methodology used to 
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generate it, and its typical utilization to compute an atmospheric parameter in a node of a 

flight profile routing grid. 

 

3.2.1 The GRIB atmospheric data forecast mode 

This research was conducted using the forecast data provided by Environment Canada 

Meteorological Service. The article presents the methodology for the case when the data 

model is constructed based on a global deterministic prediction system (GDPS) (Buehner et 

al., 2015) forecast. GDPS is a global level forecast that uses a latitude – longitude map 

projection, and is available for two grid resolutions: 0.25º x 0.25º (Environment Canada, 

n.d.b) and 0.6º x 0.6º (Environment Canada, n.d.c). The GDPS forecasts are issued twice a 

day, at 00h and 12h universal coordinate time (UTC), with predictions made at 3 h intervals, 

up to 240 h for the 0.25º x 0.25º grid, and 144 h for the 0.6º x 0.6º grid. For both grids, the 

atmospheric parameters are provided at a fixed set of 27 isobaric levels. From hereon, in this 

article, GRIB designates the atmospheric data model containing the data extracted from these 

forecast data files. The proposed methodology can also be applied for RDPS forecast data, 

when the geographic area of interest is completely within the geographic area covered by the 

specific RDPS. 

 

Figure 3.1 and Figure 3.2 are an illustration of a wind profile and air temperature GDPS 

forecast, with a 0.6º x 0.6º grid resolution, issued by Environment Canada on 14 June 2016 at 

00 h UTC, for 03 h UTC and isobaric level 275 hPa (approx. 32,000 ft). The plots present the 

atmospheric data cropped to a region covering a large part of the North Atlantic (between 

longitudes W78 and E1.8, and latitudes N22.8 and N67.2). It can be noted that the 

atmospheric parameters have a complex variation as function of the geographic location (and 

altitude and time, not illustrated in Figure 3.1 and Figure 3.2), which cannot be globally 

described using simple mathematical models. The GRIB format forecasts are reduced 

complexity models that approximate the atmospheric parameters values and their space–time 

evolution. 
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Figure 3.1 Wind forecast over the North Atlantic 
for 14 June 2016 at 03 h UTC and isobaric level 

275 hPa, issued by Environment Canada 
on 14 June 2016 - 00 h UTC, in a GDPS forecast 

with a 0.6º x 0.6º grid resolution 
 

 
 

Figure 3.2 Air temperature forecast over the 
North Atlantic for 14 June 2016 at 03 h UTC 

and isobaric level 275 hPa, issued by 
Environment Canada on 14 June 2016 – 00 h UTC, 
in a GDPS forecast with a 0.6º x 0.6º grid resolution 

 

The size of the GRIB atmospheric model data used in the calculations is a function of the 

selected geographic domain (latitude and longitude), isobaric levels, and time domains that 
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cover the range of possible geographic coordinates, altitudes, and flight times encountered 

along the evaluated flight trajectory. Even for constant altitude flight profiles, except the case 

when the altitude of interest corresponds to one of the atmospheric data isobaric levels, the 

atmospheric data model must contain at least two isobaric levels. 

 

Let NLAT, NLON, NPS, and NT be the number of latitude, longitude, isobaric level, and time 

domain intervals of the GRIB data that cover the range of data necessary for a flight 

trajectory performance calculation, respectively. Let NV be the number of atmospheric 

parameter data types of interest. In this study NV = 3, the atmospheric parameters of interest 

are the air temperature (T), and the wind expressed as speed components along the 

geographic axes (North wind component WU and East wind component WV). Based on set of 

data provided in the GDPS GRIB files (the set of latitude, longitude, isobaric level, and time 

instances where the atmospheric data is defined and the resolution of atmospheric parameter 

values) the amount of memory necessary to store the data can be computed as follows: 

1.  (NLAT + 1) single precision values for the latitude domain limits; 

2. (NLON + 1) single precision values for the longitude domain limits; 

3. (NPS + 1) 16 bit unsigned integer (uint16) values for the isobaric level domain limits; 

4. (NT + 1) 8 bit unsigned integer (uint8) values for the time domain limits; 

5. NV x (NLAT +1) x (NLON + 1) x (NPS + 1) x (NT + 1) single precision values for the 

atmospheric parameter values. 

 

In the case where the GRIB atmospheric data model is defined in points that have the same 

value (constant) along a GRIB data grid axis, and the constant value is equal with a domain 

limit along that axis, the corresponding N value is equal to 0. For example, if the isobaric 

level is constant and equal with a GRIB grid node definition isobaric level then NPS equals 

to 0. 
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3.2.2 Four-dimensional linear interpolation 

The GRIB data model defines the atmospheric parameters’ values in the nodes of a 4D grid, 

where the four axes are the latitude (lat), longitude (lon), isobaric level (ps), and time (t). A 

parameter value in a point other than a grid node is computed through interpolation. 

 

Given the increasing incertitude of the forecast atmospheric data as a function of time, and 

the large time span generally covered by a flight profile relative to the forecast issue time, it 

is difficult to determine if the more complex and computationally intensive interpolation 

methods (such as polynomial, bicubic, spline, and kriging (Li & Heap, 2008) interpolations), 

theoretically more precise, are justified by the increase in precision relative to 4D 

interpolation, especially for time instances very far from the prediction issue time. 

 

Although polynomial, bicubic, spline, and kriging interpolation are theoretically more precise 

than a 4D linear interpolation, in this case, they are impractical for the applications envisaged 

in this article due to: 

1. Computational complexity/execution time constraints; 

2. A larger number of forecast data points/model parameters that need to be used in the 

computations for (especially for an accurate kriging interpolation); 

3. The chaotic nature of the atmospheric flows, with local anisotropies that change with 

time and location, and, as a result, requiring different interpolation models as a 

function of time and location domain where the interpolation is performed; 

4. The large span of the time and geographic location domains covered by the evaluated 

flight profiles(s). 

 

The 4D linear interpolation is an extension of the bilinear interpolation, used in current FMS 

platform to compute the atmospheric parameters, to a 4D domain. 

 

Let the point of interest be P(lat, lon, ps, t), situated at latitude lat, longitude lon, isobaric 

level ps, and at moment t. Let V be the atmospheric parameter value computed in the point P. 
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The first step of the 4D linear interpolation is to identify the 4D GRIB data domain, 

delimited by [lati lati +1], [lonj lonj+1], [psk psk+1], and [tm tm+1], containing the point P. 

 

Then, linear interpolations are performed iteratively, along each axis. In each of the 

iterations, the interpolations are performed along a selected axis, and the resulted number of 

values (thus, linear interpolations to be performed in the next step) is halved (see in the 

paragraph below). Therefore, the total number of linear interpolations required to compute an 

atmospheric parameter in a point that is not a grid node are: 

 

 𝑁ூ = 2ସ − 1 = 15 (3.1) 

 

These calculations are based on the parameter’s values defined in n GRIB data grid nodes, 

where n is: 

 

 𝑛 = 2ସ = 16 (3.2) 

 

 
 

Figure 3.3 Illustration of the first set of 4D linear interpolation steps required for 
computing an atmospheric parameter - interpolation over latitude, 

longitude, and isobaric altitude at the moment tm 
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Figure 3.4 Illustration of the last step of the 4D linear interpolation - the interpolation 
along the time axis 

 

A graphical illustration of the 4D linear interpolation process is presented in Figure 3.3 and 

Figure 3.4.  

 

In this example, the first set of interpolations is performed along the isobaric level axis, 

between pairs of nodes with the same latitude, longitude and time grid coordinates (the 

vertical edges in Figure 3.3). The resulting intermediary points (designated in Figure 3.3 as 

I11 to I14) correspond to the parameter’s value at the set of latitude, longitude, and time 

combination that delimit the grid domain in which the point of interest is located, and at the 

isobaric level of interest. 

 

If Vi,j,k,m denotes a parameter value in the GRIB data node [lati, lonj, psk, tm], then the 

parameter’s value calculated by linear interpolation in point I11 (Figure 3.3) can be expressed 

as: 

 

 𝐼ଵଵ = 𝑉൫𝑙𝑎𝑡௜ , 𝑙𝑜𝑛௝ ,𝑝𝑠, 𝑡௠൯ =  𝑉௜,௝,௞,௠ + 𝑉௜,௝,௞ାଵ,௠ − 𝑉௜,௝,௞,௠𝑝𝑠௞ାଵ − 𝑝𝑠௞  ሺ𝑝𝑠 − 𝑝𝑠௞ሻ= 𝑉௜,௝,௞,௠ + 𝑉௜,௝,௞ାଵ,௠ − 𝑉௜,௝,௞,௠𝑝𝑠௞ାଵ − 𝑝𝑠௞  ∆𝑝𝑠  (3.3) 
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where ∆ps is the isobaric pressure difference between the pressure altitude (ps) for which the 

parameter is calculated, and the GRIB domain reference pressure level value (psk). 

 

In the second iteration, the interpolations are performed along the longitude axis, between the 

points with the atmospheric parameter values I11 to I14, and produce the values corresponding 

to the points I21 and I22. In the third step, the interpolation is performed along the latitude 

axis, between the values I21 and I22. It produces I31, the atmospheric parameter value at the 

latitude, longitude, and the isobaric altitude of interest. However, this value does not 

correspond to the time instance of interest. Figure 3.3 illustrates the interpolation process for 

one of the two time instances that bracket the time interval where the atmospheric parameters 

are calculated. The three interpolation steps presented in the previous paragraph are repeated, 

and produce I32, the atmospheric parameter values into the other time instance that defines 

the forecast domain containing the point of interest. The last interpolation step, illustrated in 

Figure 3.4, performs the interpolation along the time axis, between the values I31 and I32, the 

parameter’s values computed for (lat, lon, ps, tm) and (lat, lon, ps, tm+1) - the blue dots in 

Figure 3.4. The resulting value (the red point in Figure 3.4) is the parameter value in the 

point of interest: V(lat, lon, ps, t). 

 

By performing the 4D linear interpolation and, at each step, by replacing the interpolated 

values with their expressions relative to the GRIB domain’s grid reference values, it results: 

 

 𝑉ሺ𝑙𝑎𝑡, 𝑙𝑜𝑛, 𝑝𝑠, 𝑡ሻ = 𝑉൫𝑙𝑎𝑡௜ + ∆𝑙𝑎𝑡, 𝑙𝑜𝑛௝ + ∆𝑙𝑜𝑛,𝑝𝑠௞ + ∆𝑝𝑠, 𝑡௠ + ∆𝑡൯= 𝑉௜,௝,௞,௠ + 𝐶௜  ∆𝑙𝑎𝑡 + 𝐶௝  ∆𝑙𝑜𝑛 + 𝐶௞  ∆𝑝𝑠 + 𝐶௠ ∆𝑡 +𝐶௜௝  ∆𝑙𝑎𝑡 ∆𝑙𝑜𝑛 + 𝐶௜௞  ∆𝑙𝑎𝑡 ∆𝑝𝑠 + 𝐶௜௠ ∆𝑙𝑎𝑡 ∆𝑡 +𝐶௝௞  ∆𝑙𝑜𝑛 ∆𝑝𝑠 + 𝐶௝௠ ∆𝑙𝑜𝑛 ∆𝑡 + 𝐶௞௠ ∆𝑝𝑠 ∆𝑡 +𝐶௜௝௞  ∆𝑙𝑎𝑡 ∆𝑙𝑜𝑛 ∆𝑝𝑠 + 𝐶௜௝௠ ∆𝑙𝑎𝑡 ∆𝑙𝑜𝑛 ∆𝑡 +𝐶௜௞௠ ∆𝑙𝑎𝑡 ∆𝑝𝑠 ∆𝑡 + 𝐶௝௞௠ ∆𝑙𝑜𝑛 ∆𝑝𝑠 ∆𝑡 +𝐶௜௝௞௠ ∆𝑙𝑎𝑡 ∆𝑙𝑜𝑛 ∆𝑝𝑠 ∆𝑡
 (3.4) 

 

where: 

1. The C coefficients (their expressions are summarized in Table 3.1) are functions only 

of the 4D grid domain limits and the parameter’s values in these nodes; and 
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2. The ∆ values are the offsets of the calculation point’s coordinates (latitude, longitude, 

isobaric level or time) relative to the reference point of the GRIB domain 

P(lati, lonj, psk, tm) - e.g. ∆ps = ps - psk. 

 

Table 3.1 4D linear interpolation coefficients 
 

4D linear interpolation coefficient expressions 
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To summarize, for each atmospheric parameter calculation it is necessary to perform: 

1. Four data domains limit list searches, in order to identify the latitude, longitude, 

isobaric level, and time values that bound the atmospheric data grid domain where the 

point of interest is situated; 

2. Four subtractions to compute the domain value span along each GRIB axis; 

3. Fifteen linear interpolations - each interpolation requires a subtraction, a 

multiplication, and a division. 

 

3.2.3 The proposed new dynamic atmospheric data model 

The proposed Atmospheric Data Model, from here on designated as ADM, is intended for 

time-critical flight performance prediction calculations, which perform accelerated 

simulations of the flight along the flight profile. 

 

In order to conduct efficient accelerated flight trajectory prediction calculations and/or flight 

trajectory optimizations (fast and accurate), it is essential to use an atmospheric data model 

with a low computational workload, and that would be the most precise possible. 

 

The ADM is derived from and computed based on the GRIB data model, and is adapted for 

constant pressure altitude (isobaric level) flight trajectories performance calculations, where 

the flight profile definition parameters are the sub-segment speeds and the lateral flight 

profile. However, the model can be easily extended to define the atmospheric data for a set of 

cruise altitudes by instantiating it for each altitude of interest. 

 

The ADM can be computed/updated offline or in the background, when new GRIB 

prediction data are available, and stored in memory. The proposed model will be analyzed to 

evaluate the computational workload necessary to compute the atmospheric parameters, 

precision relative to a 4D linear interpolation, the memory storage requirements, and the 

computational workload required to generate the model. 
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This ADM was developed for the case where a lateral profile is constructed as a succession 

of sub-segments, where each sub-segment connects two adjacent WPTs from a grid (routing 

grid) - similar with the model presented in Rodionova, Delahaye, Sbihi & Mongeau (2014). 

The grid of WPTs is constructed in such a way that, for each segment, the performance 

parameters are calculated in a single integration step (do not require further decomposition in 

sub-segments): the segment lengths are smaller than a selected threshold. The segment 

lengths are selected to be smaller or equal to the integration step size used in accelerated 

flight simulation of the cruise phase. The integration step size is selected as a tradeoff 

between the accuracy of the results and the computation time. Small integration steps (e.g. 1 

n.m.) would yield more accurate estimations of the aircraft flight performance, however, in 

this case, a higher number of segment calculations will be performed and, thus, the 

computation time will increase. 

 

The ADM defines the atmospheric parameter data in the nodes (WPTs) of the routing grid, at 

the selected cruise altitude (pressure altitude), as a function of time. An atmospheric 

parameter’s value in a routing grid node (WPT) and time instance is calculated through linear 

interpolation, based on the parameter values defined for the WPT at predetermined instances 

of time. This article presents the case when the ADM data for the set of WPTs and reference 

times are computed based on the 4D linear interpolation method. However, the model data 

(coefficients) can be computed offline using other, more complex and computationally 

intensive interpolation methods (e.g. polynomial, bicubic, spline, kriging, etc.). 

 

This section presents case when the model is constructed and used in flight trajectory 

optimization algorithms. The case when the model is used for in-FMS flight profile 

performance prediction is an equivalent case, where the atmosphere definition points (the 

routing grid) are a set of points defined so that they comprise the active lateral flight profile 

and the possible/selected alternate route(s). 
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Figure 3.5 Example of a grid of waypoints that can be 
used in candidate creation 

 

 
 

Figure 3.6 Example of two lateral profile trajectories that can 
reach a geographic location at different times 

 

In the example presented in Figure 3.5, the grid is constructed based on the orthodromic 

route between the initial and final WPTs of the cruise segment under optimization. First, the 

orthodrome is decomposed in equal sub-segments of a selected length. Then, from each WPT 
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on the orthodrome, a perpendicular great circle is constructed and WPTs are placed at a 

selected constant distance from each other, up to a selected maximum deviation from the 

orthodrome. 

 

The time instance when an aircraft reaches a WPT (e.g. point A in Figure 3.6) depends on the 

path (set of sub-segments) taken to that WPT and the aircraft’s speed on each previous sub-

segment. Given that the locations of each WPT (latitudes and longitudes) are fixed, and that 

the pressure altitude is also constant, the atmospheric data model needs only to describe the 

atmospheric parameter’s variation with time at each WPT location. 

 

For simplicity, in this section, the ADM model’s coefficients denoted as DV (with 

components DV_0 and DV_m) and the atmospheric data parameter denoted as V are used as 

generic designations. An ADM that models three atmospheric parameters, such as T, WU, 

and WV, will have three sets of D coefficients: DT (with components D0_T and Dm_T), DWU 

(with components D0_WU and Dm_WU), and DWV (with components D0_WV and Dm_WV). 

 

It can be noted that, when a coordinate of the 4D point where the atmospheric parameter is 

calculated does not change, its corresponding ∆ value in equation (3.4) is constant. The 

expression of the atmospheric parameter value V can therefore be simplified by factoring the 

elements of equation (3.4). 

 

The new expression for V is given in equation (3.5). The expressions for the coefficients DV 

are summarized in equation (3.6). 

 

 𝑉ሺ𝑙𝑎𝑡, 𝑙𝑜𝑛,𝑝𝑠, 𝑡ሻ =  𝐷௏_଴ + 𝐷௏_௠∆𝑡,
𝑤ℎ𝑒𝑟𝑒 ൞𝑙𝑎𝑡 = 𝑙𝑎𝑡௜ + ∆𝑙𝑎𝑡 = 𝑐𝑡𝑙𝑜𝑛 = 𝑙𝑜𝑛௝ + ∆𝑙𝑜𝑛 = 𝑐𝑡𝑝𝑠 = 𝑝𝑠௞ + ∆𝑝𝑠 = 𝑐𝑡𝑡 = 𝑡௠ + ∆𝑡  (3.5) 
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Another method to compute the DV coefficients is to compute the atmospheric parameter 

values, through 4D interpolation, for the time domain limits and then use these values to 

compute the DV coefficients using equation (3.7): 

 

 

⎩⎪⎪⎨
⎪⎪⎧𝐷଴ = 𝑉௜,௝,௞,௠ + 𝐶௞ ∆𝑝𝑠 + 𝐶௜  ∆𝑙𝑎𝑡 + 𝐶௝  ∆𝑙𝑜𝑛 +𝐶௜௞ ∆𝑙𝑎𝑡 ∆𝑝𝑠 + 𝐶௝௞ ∆𝑙𝑜𝑛 ∆𝑝𝑠 + 𝐶௜௝  ∆𝑙𝑎𝑡 ∆𝑙𝑜𝑛𝐶௜௝௞ ∆𝑙𝑎𝑡 ∆𝑙𝑜𝑛 ∆𝑝𝑠 +𝐷௠ = 𝐶௠ + 𝐶௞௠ ∆𝑝𝑠 + 𝐶௜௠ ∆𝑙𝑎𝑡 + 𝐶௝௠ ∆𝑙𝑜𝑛 +𝐶௜௞௠ ∆𝑙𝑎𝑡 ∆𝑝𝑠 + 𝐶௝௞௠ ∆𝑙𝑜𝑛 ∆𝑝𝑠 + 𝐶௜௝௠ ∆𝑙𝑎𝑡 ∆𝑙𝑜𝑛 +𝐶௜௝௞௠ ∆𝑙𝑎𝑡 ∆𝑙𝑜𝑛 ∆𝑝𝑠

 (3.6) 

 

 ቐ𝐷௏_଴ = 𝑉ሺ𝑙𝑎𝑡, 𝑙𝑜𝑛, 𝑝𝑠, 𝑡_𝑚ሻ𝐷௏_௠ = 𝑉ሺ𝑙𝑎𝑡, 𝑙𝑜𝑛, 𝑝𝑠, 𝑡௠ାଵሻ − 𝑉ሺ𝑙𝑎𝑡, 𝑙𝑜𝑛,𝑝𝑠, 𝑡௠ሻ 𝑡௠ାଵ − 𝑡௠  
(3.7) 

 

However, this method of computing the DV coefficients requires two 4D interpolations and, 

therefore, is slower than the proposed method - equation (3.6). As a result, the ADM 

creation/update time when the coefficients are computed using equation (3.7) is longer than 

when computed using equation (3.6). 

 

Since the ADM defines the atmospheric parameter values at given grid WPTs, the 

atmospheric data can be organized in the same way as the WPT data grid or stored as part of 

the WPT data. This way, the retrieving of the atmospheric information can be done without 

any overhead - based on information already available (e.g. selected WPT indexes or WPT 

data). 

 

Further a WPT is from the initial (starting) WPT, the later is the earliest time and the larger is 

the time window when the aircraft can reach the WPT. The range of possible crossing times 

for the set of WPTs of the routing grid, and therefore the range of time for which the model 

should be defined, can be estimated using a heuristic. The stored data and the computation 

time (model data instance generation and parameters calculations) would be thus reduced. 
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Let NWPT be the number of WPTs in the grid, NV the number of atmospheric parameters of 

interest, and NT the number of GRIB time domain intervals that span the possible flight times 

between the initial and final WPT. The amount of memory necessary to store the atmospheric 

data is: 

1.  (NT + 1) uint8 values, for the time domain limit values - unique for all WPTs 

atmospheric data; 

2. 2 x NWPT x NV x NT double precision values, for the two coefficients (DV_0 and DV_m) 

stored for each WPT, each atmospheric parameter, and each time domain, organized 

as follows: 

a. NWPT data structures, where each structure stores the atmospheric data for a 

WPT; 

b. Each WPT data structure contains NV data structures, corresponding to the NV 

atmospheric parameters; 

c. Each atmospheric parameter data structure contains two vectors of length NT, 

one for each of the D coefficients that defines the parameter’s time variation. 

 

A graphical description of the method used to compute the atmospheric parameter value V in 

an ADM grid WPT WPTij and a time instance t is presented in Figure 3.7. 

 

An atmospheric parameter calculation is performed in four steps: 

1. From the list of ADM time domain limits, find the index (idx_t) of the time domain 

containing the time instance (t) of interest and the reference time value (tref) for the 

ADM time domain (the inferior time value delimiting the ADM time domain); 

2. Compute the time offset (∆t) between the time instance of interest (t) and the ADM 

time domain reference value (tref): ∆t =  t - tref; 

3. From the ADM data corresponding to the WPT of interest (identified by idx_WPTij), 

retrieve the DV coefficients for the time domain (idx_t) that contains the time instance 

(t), for which the calculation is performed: DV_0(idx_WPTij, idx_t) and 

DV_m(idx_WPTij, idx_t). This step is a memory data read since the waypoint index(es) 
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is(are) known from the flight trajectory WPT selection phase, and the time domain 

index has been determined in the first step of the calculation; 

4. Compute the atmospheric parameter value using equation (3.5): a multiplication and a 

summation. 

 

 
 

Figure 3.7 Atmospheric parameter calculation in a waypoint identified by 
index idx_WPTij, at a constant isobaric level, and at time instance t 

 

The atmospheric parameter values calculated using ADM should be as precise as those 

calculated through 4D linear interpolation from GRIB data. In fact, from the point of view of 

data processing (from forecast data to the atmospheric parameter’s value at a certain geo- 

graphic location, altitude and time), the two are equivalent. The only source of difference is 

the precision of the data type used for storing the model’s DV coefficients. 

 

The methodology used to construct the ADM is presented in Figure 3.8 and Figure 3.9. In 

order to construct the ADM, it is necessary to: 

1. Retrieve and store the vector containing the GRIB data time domain limits that 

encompass the maximum range of flight times between the initial and final WPT of 

the flight trajectory; 

2. For each WPT: 
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a. Identify the GRIB data domains that correspond to WPT’s latitude, longitude, 

isobaric level, and time range of interest; 

b. For each of the GRIB data domains, compute and store the DV_0 and DV_m 

coefficients (using the formulas presented in equation (3.6) and Table 3.1). 

 

 
 

Figure 3.8 ADM construction workflow for constant isobaric altitude and for a 
set of fixed waypoints: global level (for the set of waypoints) 
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Figure 3.9 ADM construction workflow for constant isobaric altitude and for a 
set of fixed waypoints: (detailed workflow for a waypoint 

 

3.3 Results 

This section presents the results of a comparison between the performances of the proposed 

ADM, in terms of speed, precision and required memory, and the performance of the GRIB 

data model. 

 

The ADM evaluation considers the case of a constant altitude cruise segment optimization, 

for which the candidate lateral flight profiles are constructed as a succession of sub-segments 
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that connect adjacent WPTs from a grid (see sub-section 3.2.3). First, the flight profile of a 

real flight was retrieved from FlightAware - chosen to be the flight TSC601 (FlightAware, 

2016) Nantes to Montreal, flown on 14 June 2016. The cruise altitude, the locations (latitude 

and longitude coordinates), and flyover times for the initial and final positions of the cruise 

phase were retrieved from the flight track data (Table 3.2). The atmospheric data forecasts 

issued by Environment Canada are referenced to UTC. Therefore, the flyover times at the 

initial and final cruise WPTs (referenced to Eastern daylight time - EDT) were converted to 

UTC (EDT + 4), and added to the reference data in Table 3.2. It should be noted that the 

cruise phase of the real flight included a step climb later during the cruise, and a step descent 

back to 30,000 ft before the end of the cruise. The cruise altitude was retained as the initial 

cruise altitude of 30,000 ft in order to evaluate the time requirement for data model 

generation for a long cruise segment and, as a consequence, a large routing grid (number of 

WPTs). 

 

Table 3.2 Reference data for the cruise phase of the flight TSC601 
of 14 June 2016 (retrieved from FlightAware (2016)) 

 
Waypoint Reference data 

Latitude Longitude Altitude (ft) Time (EDT) Time (UTC) 
Initial cruise WPT N47 55’40.80” W003 06’28.80” 30,000 09:39:39 13:39:39 
Final cruise WPT N46 32’3.480” W071 45’32.940” 30,000 15:47:06 19:47:06 

 

Next, the orthodromic route between the initial cruise WPT and the final WPT was 

generated, and divided in 55 equal length segments (56 WPTs). The locations of the WPTs 

along the orthodrome were chosen so that they yield the minimum number of equal length 

segments that are shorter or equal to 50 n.m. Then, in each WPT along the orthodrome a 

great circle was generated, perpendicular to the orthodrome in that WPT, and a set of WPTs, 

situated at a distance dSTEP of each other, were placed on both sides of the orthodrome 

(similar with the grid presented in Figure 3.5). It was assumed that the aircraft always moves 

forward along the grid, to a WPT situated one step forward along the orthodrome, at the same 

deviation on the perpendicular great circle, or up to NSTEP grid node (WPTs) lateral 

deviations (on either side) relative to the current deviation from the orthodrome. Therefore, 
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the grid started with one point, the initial cruise WPT, and increased by NSTEP WPTs on each 

side of the orthodrome as we travel along the great circle, up to a maximum distance 

deviation dMAX. At the other end, the number of offset WPTs started to decrease by up to 

NSTEP WPTs on each side of the orthodrome until it ended with only one WPT - the final 

cruise WPT. 

 

In order to evaluate the time necessary to generate the atmospheric data for various grid 

complexities, four grids were generated as a combination of two lateral step values (dSTEP), 

number of lateral deviations NSTEP, and maximum lateral deviations (dMAX). Table 3.3 

contains the characteristics for each of the four grids constructed for a flight trajectory 

between the WPTs given in Table 3.2. Grids 1 and 3 correspond to higher resolution grids, 

which allow a more refined evaluation of the optimal lateral profile. 

 

Table 3.3 Selected routing grid characteristics 
 

Grid 

Routing grid characteristics GRIB data 

dMAX 
(nm) 

dSTEP 
(nm) NSTEP 

Total 
number of 
grid WPTs 

Geographic area covered 
by the grid 

Number of 
GRIB 

domains 
covering the 

grid 
Min LAT Max LAT Min LON Max LON Lat Lon 

1 250 10 2 2,180 N46 
32'3.480” 

N56 
48'44.835636 " 

W071 
45'32.940” 

W003 
06'28.80” 18 115 

2 250 20 1 1,148 N46 
29'59.845” 

N56 
58'44.408577 " 

W071 
45'32.940” 

W003 
06'28.80” 18 115 

3 500 10 2 3,056 N44 
12'8.510617" 

N60 
58'34.15914" 

W071 
45'32.940” 

W003 
06'28.80” 29 115 

4 500 20 1 1,556 N44 
12'8.510617" 

N60 
58'34.15914" 

W071 
45'32.940” 

W003 
06'28.80” 29 115 

 

The forecast time interval for the GRIB data was determined based on the real track flyover 

time at the initial and final WPTs of the cruise segment. A buffer was added to the two limits 

in order to cover for all the possible flight time variations due to the lateral profile and 

ground speed differences along the various selected flight trajectories. It was estimated that 

the time interval 12 to 24h UTC covers the range of flight times for the cruise segment along 

any possible lateral flight profile based on the selected grids. The isobaric level for an 
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altitude of 30,000 ft is 300.77 hPa. This isobaric level is not a GRIB file data pressure 

altitude domain limit. 

 

Based on the determinations presented in the previous paragraph, the GDPS GRIB files with 

a resolution of 0.6º x 0.6º, issued on 14 June 2016 at 12h UTC for the forecast period 12 to 

24h UTC, isobaric levels 350 and 300 hPa, were imported from the Environment Canada 

website. They contain the forecasts for air temperature and wind (WU and WV components). 

The data in the imported files were cropped to the latitude and longitude domains that 

covered the geographic area containing the grid (Table 3.3). The resulted GRIB model data 

have one isobaric level domain (NPS = 1), four time domains (NT = 4), 115 longitude domains 

(NLON = 115) and, function of the selected grid, 18 latitude domains (NLAT = 18) for grids 1 

and 2 (see Table 3.3) and 29 latitude domains (NLAT = 29) for grids 3 and 4. The structure of 

the GRIB model data is described in sub-section 3.2.1. The GRIB data model for three 

atmospheric parameters (air temperature, and wind components - NV = 3) was implemented 

in MATLAB R2018a, and its structure is described in Table 3.4. 

 

The amount of data occupied in the memory by the cropped GRIB data is 530,049 bytes for 

the grids 1 and 2, and 836,377 bytes for grids 3 and 4. 

 

Table 3.4 GRIB data structure implementation in MATLAB: structure elements and 
size for the selected geographic area 

 

GRIB data structure element Data type Number of 
elements 

Number of bytes function of the 
grid type 

Grids 1 & 2 Grids 3 & 4 
TimeDomainLimitValues uint8 NT + 1 5 5 

IsobaricLevelDomainLimitValues 

Single-precision 
(floating-point) 

NPS + 1 4 4 
LatDomainLimitValues NLAT + 1 152 240 
LonDomainLimitValues NLON + 1 928 928 

AtmosphereData 

NV * (NT + 1) *  
(NPS + 1) * 

(NLAT + 1) * 
(NLON + 1) 

528,960 835,200 
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For the proposed ADM (sub-section 3.2.3), the vector containing the time domain limit 

values is stored only once, for the entire set of WPTs. The ADM data structure, its elements 

and the memory occupied in a MATLAB 2018.a implementation are presented in Table 3.5: 

 

Table 3.5 ADM data structure elements implementation in MATLAB 
(time domain limits and waypoint data) and size 

 
ADM data structure element Data type Number of 

elements 
Number of 

bytes 
TimeDomainLimitValues uint8 NT + 1 5 

WPT_AtmosphereData Structure with double-precision 
(floating-point) elements 2 * NT 416 

 

The amount of memory occupied by the proposed model for the four grid types (grids 1 to 4 

in Table 3.3) are presented in Table 3.6. 

 

Table 3.6 Memory used by the proposed Atmosphere Data Model 
 

Grid Number of WPTs 
Total data size for grid 

(Number of WPTs * 416) 
(bytes) 

Total used memory 
(Memory for WPTs + 

memory for 
TimeDomainLimitValues) 

(bytes) 
1 2,180 906,880 906,885 
2 1,148 477,568 477,573 
3 3,056 1,271,296 1,271,301 
4 1,556 647,296 647,301 

 

As expected, for the same covered geographic area, the memory used by the proposed model 

is a function of the routing grid size and resolution. It can be noted that, for grids with low 

resolution (grids 2 and 4), the proposed model requires less memory than the memory used 

by the GRIB data model. 

 

As previously mentioned, the proposed ADM is generated based on the GRIB data model, 

offline or in the background, before its use in accelerated flight profile performance 

calculations. In order to evaluate the computational workload and the time necessary to 

generate the ADM, the ADM was generated for the four grids described in Table 3.3. Two 
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methods for generating the ADM were compared. The first method generated the ADM 

based on the proposed methodology (sub-section 3.2.3, Figure 3.8 and Figure 3.9). In the 

second method, the atmospheric parameters for the time domain were computed through 4D 

linear interpolation: the atmosphere parameters were computed for each routing grid WPT 

and time domain limit value, and then the D coefficients were computed for each time 

domain using equation (3.7). The results of the comparisons for the time necessary to create 

the ADM and the model precision are presented in Table 3.7. The time values represent the 

total time (computed using the MATLAB functions tic and toc) necessary to generate the 

ADM’s three tables: temperature and wind components (WU and WV). 

 

Table 3.7 ADM creation method performance 
 

Grid 

ADM creation 
Execution time (s) 

Execution time 
difference (s) 

Maximum coefficient value difference (absolute value) 
(4D interpolation – ADM) 

Proposed 
method 

Based on 4D 
Interpolation 

Temperature Wind North (WU) Wind East (WV) 

D0_T 
(K) 

Dm_T 
(K/h) 

D0_WU 
(kn) 

Dm_WU 
(kn/h) 

D0_WV 
(kn) 

Dm_WV 
(kn/h) 

1 1.483117 2.863120 1.380003 8.5265 
x 10-14 

2.20448 
x 10-14 

2.13162 
x 10-14 

6.43929 
x 10-15 

2.13162 
x 10-14 

6.66133 
x 10-15 

2 0.935013 1.534994 0.599980 8.5265 
x 10-14 

1.98174 
x 10-14 

2.13162 
x 10-14 

5.32907 
x 10-15 

1.42108 
x 10-14 

6.66133 
x 10-15 

3 1.877345 4.521300 2.643955 8.5265 
x 10-14 

2.20448 
x 10-14 

2.13162 
x 10-14 

6.43929 
x 10-15 

2.13162 
x 10-14 

6.66133 
x 10-15 

4 1.780533 2.506082 0.725549 8.5265 
x 10-14 

2.02893 
x 10-14 

2.13162 
x 10-14 

5.32907 
x 10-15 

1.42108 
x 10-14 

6.66133 
x 10-15 

 

It can be observed that the proposed method to create the ADM is much faster than when the 

coefficients are calculated through 4D linear interpolation from the GRIB data. The 

differences between the values of the coefficients computed using the two methods are very 

small. 

 

Next, the computational workload and the precision of atmospheric parameter calculations 

were evaluated by comparing the three atmospheric parameters (air temperature and wind 

components), and the time necessary to compute them by using ADM, with those obtained 

using the classical method (4D linear interpolation from the GRIB data). For this purpose, the 
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atmospheric parameters were computed in every node of the routing grid, for each time 

domain limit value, and for 10 equidistant intermediate time values within each time domain. 

Given the fact that a GRIB time interval span is 3 h, the resulting time step used for the 

performance assessment is 16’21.81’’ (3 h divided in 11 equal intervals). Table 3.8 presents 

the results of the comparison between the two methods (ADM versus 4D linear 

interpolation), expressed in terms of minimum and maximum parameter value differences, 

for the entire set of parameter evaluations performed in this study. Table 3.9 presents a 

comparison between the computation times evaluated using the MATLAB function 

‘‘timeit’’. 

 

Table 3.8 Comparison between the atmospheric parameters computed 
with the ADM model and 4D linear interpolation 

 

GRID 
Atmosphere parameters difference (ADM - 4D linear interpolation) 

T(K) WV (kn) WU (kn) 
Min Max Min Max Min Max 

1 -8.5265 x 10-14 8.5265 x 10-14 -2.8421x 10-14 2.1316 x 10-14 -2.1316 x 10-14 2.1316 x 10-14 
2 -8.5265 x 10-14 8.5265 x 10-14 -1.7763 x 10-14 2.1316 x 10-14 -2.1316 x 10-14 2.1316 x 10-14 
3 -8.5265 x 10-14 8.5265 x 10-14 -2.8421x 10-14 2.84217x 10-14 -2.1316 x 10-14 2.1316 x 10-14 
4 -8.5265 x 10-14 8.5265 x 10-14 -2.8421x 10-14 2.1316 x 10-14 -2.1316 x 10-14 2.1316 x 10-14 

 

Table 3.9 Comparison between the atmospheric 
parameters computation times for the ADM 

model and 4D linear interpolation 
 

GRID 
Computation time ratio (4D linear Interpolation/ADM) 

Min Mean Max Median Standard 
deviation 

1 2.664491 6.545356 2.15763e+01 5.9502 1.4318 
2 2.596380 6.650567 1.75927e+01 6.0338 1.5144 
3 1.957937 6.602139 2.706310e+01 6.0226 1.4360 
4 1.788913 6.512603 1.989292e+01 5.9374 1.4163 

 

It can be noticed that, on average, the ADM yields the atmospheric parameter values six 

times faster than a 4D linear interpolation. These results are confirmed by the histogram 

presented in Figure 3.10, which shows that for a majority of the evaluated cases the 

computations using ADM are about six times faster. The differences between the values 

calculated with the ADM and those computed through a 4D linear interpolation are very 
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small (of the order of 10-14), many orders of magnitude better than the precision of the GRIB 

forecast data issued by the environment agencies (Schwartz et al., 2000; Cole et al., 2000; 

Lee et al., 2009; Vaddi et al., 2013). The results are practically identical. 

 

 
 

Figure 3.10 The distribution of the computation time ratios 
(4D linear interpolation/ADM) for grid 3 and atmospheric data 

from 14 June 2016 issued at 12h UTC, for 12 to 24h UTC 
 

A final evaluation was conducted in order to compare the difference in computation times for 

flight profile calculations. This evaluation was performed using the grid 3 and the 

atmospheric data for 14 June 2106, for the period 12 to 24h UTC, a flight altitude of 

30,000 ft, and an initial time (the time when the aircraft is at the initial point of the cruise 

segment) of 13:30 UTC. The aircraft performance data were computed for a long-range 

transport aircraft for which the BADA 4.0 model was available at LARCASE. BADA 

provides a methodology for calculating the aero propulsive forces acting on the aircraft, the 

aircraft motion as a result of these forces (equations based on the Total Energy Model - 

TEM), and the associated fuel burn. The aircraft’s configuration parameters (e.g. zero-fuel 

weight, fuel quantity and speed) at the beginning of the evaluated flight profile were chosen 

within the range specified in the BADA model. The evaluation was performed at a constant 
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speed (MACH 0.8), and for two random flight tracks (Figure 3.11) defined by choosing 

WPTs from grid 3. 

 

 
 

Figure 3.11 The flight profiles chosen to evaluate the computation times 
for flight trajectory performance evaluation using ADM 

(grid 3, max deviation 500 nm, deviation step 10 nm, up to 2 
deviation steps at each waypoint) 

 

The two evaluated flight tracks (Figure 3.11) are defined by the set of WPTs selected from 

the ADM / routing grid. At each flight track step, the aircraft advances to a new WPT 

situated one grid step ahead along the orthodrome, and up to NSTEP grid step deviations 

([-NSTEP NSTEP]) on the direction normal to the orthodrome (according to the assumptions 

made when constructing the ADM/routing grid - please see the third paragraph, at the 

beginning of this section). 

 

Therefore, the number of WPTs that define a trajectory is equal to the number of grid WPTs 

along the orthodromic route. A flight trajectory can be thus defined by a set of WPT’s, 

ordered as function of their positions along the orthodromic route grid axis, and their grid 

position deviations relative to the orthodromic route. Table 3.10 shows the set of WPTs that 

define the test flight tracks, and their offsets relative to the orthodromic grid route. 
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Table 3.10 Test flight tracks defined as number of grid step deviations from the 
orthodromic route, at each waypoint along the track 

 
WPT 

number 
(position 
along the 

orthodromic 
route grid 

axis) 

Track 1 
WPT offset 
(relative to 

the 
orthodromic 

route grid 
axis) 

Track 2 
WPT offset 
(relative to 

the 
orthodromic 

route grid 
axis) 

WPT 
number 

(position 
along the 

orthodromic 
route grid 

axis) 

Track 1 
WPT offset 
(relative to 

the 
orthodromic 

route grid 
axis) 

Track 2 
WPT offset 
(relative to 

the 
orthodromic 

route grid 
axis) 

WPT 
number 

(position 
along the 

orthodromic 
route grid 

axis) 

Track 1 
WPT offset 
(relative to 

the 
orthodromic 

route grid 
axis) 

Track 2 
WPT offset 
(relative to 

the 
orthodromic 

route grid 
axis) 

1 0 0 20 22 -8 39 14 22 
2 2 -2 21 22 -6 40 14 20 
3 4 -4 22 20 -4 41 14 18 
4 6 -6 23 20 -2 42 14 16 
5 6 -8 24 18 0 43 12 14 
6 6 -10 25 16 2 44 10 12 
7 6 -12 26 14 4 45 10 10 
8 8 -12 27 12 6 46 8 10 
9 10 -14 28 10 8 47 6 10 
10 12 -16 29 8 8 48 4 10 
11 14 -18 30 8 10 49 4 8 
12 16 -18 31 8 12 50 4 6 
13 16 -18 32 8 14 51 2 4 
14 16 -18 33 8 16 52 2 2 
15 18 -18 34 8 18 53 2 0 
16 20 -16 35 8 20 54 2 0 
17 22 -14 36 10 22 55 2 0 
18 22 -12 37 12 24 56 0 0 
19 22 -10 38 14 24    

 

For each of the two tracks, full trajectory performance calculations were performed: 

successive calculation of the atmospheric parameters, flight time, and fuel burn for each sub-

segment of the flight profile. The flight track performance calculations were performed once 

with the atmospheric data computed using the ADM and a second time with the atmospheric 

parameters computed using the 4D linear interpolation. 

 

The atmospheric data computed by 4D interpolation of GRIB data and by the ADM model 

are identical. Therefore, for identical flight trajectories, aircraft model (performance 

characteristics), and initial aircraft weight, the results of the flight trajectory performance 

calculations (fuel burn, flight time, total cost) using the two atmospheric data models (GRIB 

and ADM) are also identical. 
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Algorithm 3.1 Pseudo code for the evaluation and comparison 
of flight trajectory performance calculation times when the 

atmospheric parameters are calculated using ADM and 
4D linear interpolation 

 
 
load ADM data 
load GRIB data 
load Grid data 
load track data 
load altitude, initial time 
load aircraft configuration  
load aircraft performance model 
 
for idx_track = 1 : 1 : 2 

for counter = 1 : 1 : 10 
position aircraft at the initial waypoint 
set aircraft initial configuration (altitude, weight, cg...) 
set initial time 
 
tic 

compute track flight profile performance using ADM 
time_ADM(counter) = toc 
 
position aircraft at the initial waypoint 
set aircraft initial configuration (altitude, weight, cg...) 
set initial time 
tic 

compute track flight profile performance using 4D linear interpolation 
time_4D(counter) = toc 

end 
end 
 

 

The flight profile computation times for the two calculations were compared in order to 

determine the possible advantages and time calculation reductions made possible by using 

the ADM. The time necessary to compute the flight track performance parameters was 

evaluated using the Matlab functions tic and toc. The code execution times evaluated with tic 

and toc vary function of the tasks scheduling executed by the operating system. Therefore, in 

order to have a good evaluation of the method’s performance, the flight performance 

calculation code was executed and timed 10 times for each track and atmospheric calculation 
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method (ADM and 4D linear interpolation). Since for each of the 10 instances of flight 

profile performance calculations using an atmospheric calculation method the code and the 

input data are the same, the code execution time should be identical. Therefore, the execution 

time differences should be attributed to the processor time allocation performed by the 

operating system. The pseudo code for the time performance evaluation test is presented in 

Algorithm 3.1. 

 

The results of the computation time evaluations are presented in Table 3.11. It was noted that 

the execution times reported by tic/toc for the first execution of the flight trajectory 

calculation using the ADM (the first call in the evaluation loop – Track 1, iteration 1, in 

Table 3.11) were very large in comparison with the other execution times and were attributed 

to the operating system/Matlab. A possible explanation could be that the time difference was 

caused by a Matlab or Windows thread launched at the beginning of the test script execution. 

Therefore, the computation time for this first flight trajectory performance calculation was 

discarded. 

 

Table 3.11 Flight trajectory performance calculation times when the atmospheric 
parameters are calculated using ADM and 4D linear interpolation 

(Grid 3, Atmospheric data for June 14, 2016, 12h to 24h UTC) 
 

  Iteration Min 1 2 3 4 5 6 7 8 9 10 

Track 
1 

ADM (s) 0.3308 0.0994 0.0999 0.1024 0.1024 0.0926 0.0910 0.0887 0.0954 0.0973 0.0887 
4D Interp (s) 0.1964 0.1289 0.1157 0.1117 0.1136 0.1139 0.1074 0.1056 0.1027 0.1195 0.1027 

Diff (s) 
(ADM – 4D) 0.1344 -0.0294 -0.0158 -0.0092 -0.0112 -0.0213 -0.0163 -0.0168 -0.0072 -0.0222 -0.0139 

ADM vs 4D 
(Diff / 4D) 

[%] 
68.4317 -22.8376 -13.6783 -8.2714 -9.8750 -18.6962 -15.2299 -15.9280 -7.0663 -18.6303 -13.5876 

Track 
2 

ADM (s) 0.1043 0.0964 0.0967 0.1006 0.0963 0.0961 0.0890 0.0839 0.0905 0.0938 0.0839 
4D Interp (s) 0.1160 0.1098 0.1164 0.1150 0.1138 0.1116 0.1018 0.1035 0.1122 0.1038 0.1018 

Diff (s) 
(ADM – 4D) -0.0117 -0.0134 -0.0197 -0.0144 -0.0174 -0.0154 -0.0128 -0.0196 -0.0217 -0.01 -0.0179 

ADM vs 4D 
(Diff / 4D) 

[%] 
-10.0973 -12.2000 -16.9694 -12.5564 -15.3623 -13.8595 -12.5880 -18.9931 -19.3532 -9.6320 -17.6415 

 

It can be noted that the computation time for the flight trajectory performance calculations 

using the GRIB data atmospheric model and 4D linear interpolation is significantly larger 

than in the case when the ADM model is used. 
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3.4 Conclusions 

This article presented a new atmospheric data model (ADM) and methodology for storing the 

atmospheric data and computing the atmosphere parameters in a set of fixed WPTs situated 

at the same constant pressure level. This model was developed based on the GDPS GRIB 

atmospheric data model published by the Meteorological Service Agencies. The ADM can be 

created off-line or in the background, and subsequently be used by the FMS or ATM 

platforms to compute the atmosphere parameters necessary for the flight trajectories 

accelerated simulation or optimizations. The proposed methods for creating, storing and use 

of the ADM are much faster than using the 4D linear interpolation methods. 

 

For the evaluated cases, the ADM creation time using 4D linear interpolations is between 1.4 

and 2.4 times slower than the proposed method. The time necessary to compute the air 

temperature and wind values using ADM is, on average, six times shorter than when they are 

computed by 4D linear interpolation, while the differences between the atmospheric 

parameter values computed with the two methods are negligible (of the order of 10-14). When 

used in flight trajectory calculation algorithms, the ADM resulted in a significant reduction 

(more than 10%) in the time necessary to perform the calculations. Since the flight trajectory 

calculation algorithms and the input data are identical, and the atmospheric parameters 

calculated by the two methods (ADM and 4D linear interpolations) are identical, the results 

of the flight trajectory performance calculations are identical. 

 

For small sets of WPTs (small size grids or lower resolution WPT grids), it was shown that 

ADM has a smaller memory footprint than the equivalent GRIB data model. Since each 

atmospheric data element is associated with a WPT, it makes it easier to store it in a structure 

associated to the WPT or identify it based on the information identifying the WPT - without 

additional overhead. The proposed atmospheric model can be extended to define the 

atmospheric data at a set of cruise altitudes. 
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Although the forecasts issued by the meteorological agencies become more precise, they are 

subject to incertitude. Therefore, the estimated atmospheric parameters do not necessarily 

reflect the actual conditions encountered by the aircraft. For critical applications, such as 

accelerated flight performance estimation for flight profiles with navigation time (RTA) 

constraints, statistical information regarding the forecast data error (published by the 

meteorological agencies, research data and/or heuristics) should be used to generate worst-

case scenarios - the most unfavorable atmospheric conditions along the flight profile - in 

order to ensure that the navigation constraints are met with the required level of confidence. 

When used in flight trajectory optimization algorithms, the atmospheric data incertitude will 

result in near-optimal flight profile solutions. 

 

Future work could investigate the possible advantages and improvements, in terms of 

computation time and flight trajectory performance parameters accuracy gains, when the 

ADM is used in conjunction with the algorithm for predicting an aircraft’s fuel burn on 

constant speed and altitude flight trajectories (Dancila et al., 2013). 

 

Other studies could: 

1. Evaluate an extension and improvement of the ADM in order to consider different 

atmosphere definition altitudes at the WPT locations; 

2. Perform a comparison of the ADM model’s precision relative to the precision 

obtained when other interpolation methods are employed, more complex and more 

computing intensive than 4D linear interpolation and the ADM, and compare with the 

precision of the atmospheric prediction data issued by the meteorological agencies; 

3. Compare the atmospheric parameters computed using 4D linear interpolation, ADM, 

and other (more complex) interpolation methods, with the real atmospheric data 

(recorded during flight). 
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Résumé 
 

Cet article présente une nouvelle méthode d’optimisation des trajectoires de vol, basée sur 

des algorithmes génétiques, où le critère d’optimisation est la minimisation des coûts totaux. 

Les trajectoires de vol évaluées dans l’optimisation sont définies en tant que plans de vol et 

elles ont deux composants : le plan de vol latéral (les points géographiques qui définissent les 

segments de la projection en plan horizontal de la trajectoire de vol), et le plan de vol vertical 

(l’ensemble des données qui décrivent le profil d’altitude et vitesse et les points 

géographiques où leurs changements sont initiées). Les composants latéraux du plan de vol 

sont construits en sélectionnant des nœuds adjacents d’une grille de routage. Les nœuds de la 

grille de routage sont générés à partir de la route orthodromique entre le point initial et le 

point final de la trajectoire de vol, ainsi que les valeurs sélectionnées pour les pas de la grille 

au long de ses axes. Deux stratégies sont investiguées par rapport au traitement des cas où un 

plan de vol est invalide (par rapport à l’enveloppe de vol de l’avion). Une première stratégie 

est d’assigner une valeur très grande (une pénalité) pour le coût total d’un tel plan de vol. La 

deuxième stratégie est de corriger le plan de vol : ajuster les paramètres de vol (altitude et/ou 

vitesse) pour le rendre dans les limites de l’enveloppe de vol. Les tests effectués ont montré 

                                                 
 
2 The paper presented in this chapter contains minor modifications relative to the version accepted for 
publication in The Aeronautical Journal, on November 15, 2020. These modifications were made at the request 
of the members of the Board of Examiners. 
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que la deuxième stratégie est plus couteuse du point de vue computationnel (le temps 

d’exécution a plus que doublé) et la qualité des résultats a diminué par rapport à la première 

stratégie. Les paramètres de performance des profils optimaux identifiés par la méthode 

proposée, dans les deux approches relatives aux plans de vol invalides, ont été comparés avec 

les paramètres de performance des plans de vol de référence qui ont été obtenus dans les 

mêmes conditions : poids initial de l’avion, points géographiques initial et final et les 

altitudes et les vitesses de l’avion dans ces points, indice de coût, et conditions 

atmosphériques. Les coordonnées géographiques et les altitudes dans les points initial et 

final, ainsi que les données pour le profil de vol de référence, ont été récupérées à partir du 

site FlightAware. Ces données correspondent aux celles d’un vol réel, effectué avec le même 

type d’avion que celui utilisé dans cette étude. Plusieurs tests ont été effectués pour six 

valeurs d’indice de coût. Étant donnée la nature aléatoire des algorithmes génétiques, leur 

convergence vers une solution optimale n’est pas garantie, ainsi la solution peut être non-

optimale ou localement optimale (optimum local). Pour une meilleure évaluation de la 

performance de la méthode proposée, 10 essais ont été effectués pour chaque valeur d’indice 

de coût. La réduction du coût total pour le plan de vol optimal obtenu avec la méthode 

proposée par rapport au plan de vol de référence a été entre 0.822% et 3.042% pour les cas 

où les plans de vol invalides ont été corrigés, et entre 1.598% et 3.97% pour les cas où une 

valeur représentant la pénalité a été assignée au coût total des plan de vol invalides. 

 

Abstract 
 

This paper presents a new flight trajectory optimization method, based on genetic algorithms, 

where the selected optimization criterion is the minimization of the total cost. The candidate 

flight trajectories evaluated in the optimization process are defined as flight plans with two 

components: a lateral flight plan (the set of geographic points that define the flight trajectory 

track segments), and a vertical flight plan (the set of data that define the altitude and speed 

profiles, as well as the points where the altitude and/or speed changes occur). The lateral 

components of the candidate flight plans are constructed by selecting a set of adjacent nodes 

from a routing grid. The routing grid nodes are generated based on the orthodromic route 
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between the flight trajectory’s initial and final points, a selected maximum lateral deviation 

from the orthodromic route, and a selected grid node step size along and across the 

orthodromic route. Two strategies are investigated for the handling of invalid flight plans 

(relative to the aircraft’s flight envelope) and to compute their flight performance parameters. 

A first strategy is to assign a large penalty total cost to the invalid flight profiles. The second 

strategy is to adjust the invalid flight plan parameters (altitude and/or speed) to the nearest 

limit of the flight envelope, with priority being given to maintaining the planned altitude. The 

tests performed in this study have shown that the second strategy is computationally 

expensive (more than double the execution time relative to the first strategy), and yields less 

optimal solutions. The performances of the optimal profiles identified by the proposed 

optimization method, using the two strategies regarding invalid flight profile performance 

evaluation, were compared with the performance data of a reference flight profile, using 

identical input data: initial aircraft weight, initial and final aircraft geographic positions, 

altitudes and speed, cost index, and atmospheric data. The initial and final aircraft geographic 

positions, and the reference flight profile data, were retrieved from the FlightAware web site. 

This data corresponds to a real flight, performed with the aircraft model used in this study. 

Tests were performed for six Cost Index values. Given the randomness of the genetic 

algorithms, the convergence to a global optimal solution is not guaranteed (the solution may 

be non-optimal or a local optima). For a better evaluation of the performance of the proposed 

method, ten test runs were performed for each Cost Index value. The total cost reduction for 

the optimal flight plans obtained using the proposed method, relative to the reference flight 

plan, were between 0.822% and 3.042% for the cases when the invalid flight profiles were 

corrected, and between 1.598% and 3.97% for the cases where the invalid profiles were 

assigned a penalty total cost. 

 

4.1 Introduction 

According to ICAO forecasts (ICAO, 2018; ICAO, n.d.a), the future annual growth of 

passenger and cargo traffic, up to 2035, is estimated to be approximately 4.3% and 3.9%, 

respectively, which will result in a doubling of the number of passengers by 2037 (IATA, 
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2018). This reality requires better flight planning, navigation and airspace management 

strategies and tools in order to facilitate the safe and efficient routing of aircraft through the 

increasingly crowded airspace. 

 

The expected air traffic increase highlights the need to identify optimal flight trajectories that 

are adapted for each origin-destination pair, aircraft model (performance) and load, 

atmospheric conditions, and navigation constrains (restricted areas, altitude and/or speed 

constraints, time constraints, etc.). Better flight planning would result not only in a better use 

of the airspace, but also in a reduction of fuel consumption, with a direct impact on the 

greenhouse gas emissions and, therefore, on the environment. Additionally, the resulted 

operational cost reductions would benefit aircraft operators, and the economy in general. 

 

An improvement of flight planning performance could be achieved by several methods, 

individually or in combination, such as: 

1. Better aircraft performance models, which would allow a better and a quicker 

estimation of an aircraft’s flight trajectory (space and time evolution) and fuel 

consumption. For example, a new fuel burn model for constant altitude and speed 

flight, proposed by Dancila et al. (2013), computes the fuel burned in a selected flight 

time, and the flight time necessary to burn a selected fuel quantity, faster and with 

greater precision than the existing methods. This model can be used, for example, to 

determine the earliest moment when a step climb is possible; 

2. Better atmospheric data forecasts, which would yield atmospheric data closer to that 

encountered by an aircraft during flight. For example, the tailored descent forecast 

wind method, proposed in Bronsvoort et al. (2011), was designed to improve the 

predictability of Continuous Descent Operations (CDO) flight trajectories computed 

by Flight Management System (FMS) platforms. This method generates tailored wind 

forecasts based on the selected landing procedure, and on high resolution regional 

forecasts; 

3. New navigation strategies, which could yield more flexibility in selecting a flight 

trajectory that is better adapted for the flight mission. By implementing the 
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Trajectory-Based Operations (TBO) paradigm (Torres & Delpome, 2012; Cate, 

2013), it would be possible for each aircraft to fly along a flight trajectory that is 

adapted to the specific flight and atmospheric conditions; and 

4. New optimization strategies, which would identify faster, and more precisely, 

globally optimal or near-optimal flight plans/trajectories. 

 

The flight trajectory optimization process can be approached from two main directions as 

function of the objective of the optimization. In a first approach, the optimizations can be 

performed at a global level (airspace), in Air Traffic Management System (ATM) platforms. 

In this case, the main focus is to increase the airspace throughput while maintaining safe 

operations: ensure the minimum space and time separation between aircraft (Rodionova, 

Sibihi, Delahaye & Mongeau, 2012; Chaimatanan, Delahaye & Mongeau, 2012), and 

eliminate or reduce the potential of flight trajectory conflicts (Matsuno & Tsuchiya, 2014). 

The optimality of a flight trajectory, at aircraft level, is not considered or is secondary to the 

main objective stated above. 

 

A second approach concerns the optimization of a flight trajectory at the aircraft level, 

according to a selected criterion (e.g. fuel burn, flight time, or operational costs 

minimization) and the imposed navigation constraints (e.g. altitude and/or speed constraints 

along the flight track, time constraints, etc.). An aircraft flight trajectory optimization can be 

conducted on-board (during the flight), in an FMS platform, or on the ground, in the flight-

planning phase (before the flight). The requirements for the on-board optimization methods 

are stricter, due to the limited computational power available, and to the standards for on-

board equipment certification (deterministic algorithms). 

 

Generally, a flight trajectory optimization problem can be defined as an optimal 

control/guidance problem, where the objective is to identify the control law that will guide 

the aircraft along the optimal flight trajectory (Soler-arnedo et al., 2010; Soler, Olivares & 

Staffetti, 2010; Jardin & Bryson, 2012; Park & Clarke, 2012; Bonami, Olivares, Soler & 
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Staffetti, 2013; Soler et al., 2015; Villaroel & Rodrigues, 2016), or as a search problem, 

where the optimal flight profile is obtained using search algorithms. 

 

In a study presented in Di Vito et al. (2009), the authors conducted a review of on-board 

flight trajectory optimization algorithms, strategies, and patents for 2D, 3D and 4D trajectory 

optimizations. The analysis focuses on identifying the features of the proposed methods, their 

strengths and weaknesses, and suggests new directions of investigation based on the analyzed 

solutions. Yu & Zhang (2015) present an extensive survey of the path planning methods, 

with an accent on flight planning for Unmanned Aerial Systems (UAS). 

 

Multidisciplinary optimization methods (Ceruti, Voloshin & Marzocca, 2014; Ceruti, Fiorini, 

Boggi & Mischi, 2018) can be applied when the trajectory optimization is part of a higher 

level (“system”) optimization, where part of the optimization process are the selection of the 

aircraft performing the mission (as a function of capacity, flight performance, and operational 

costs) and the payload (function of the volume, weight, delivery constraints, premium paid 

for delivery, delivery penalties, etc.). 

 

Zillies et al. (2014) analyze the achievable improvement in flight efficiency in European 

airspace if the flight trajectories are optimized for the actual atmospheric conditions (air 

temperature and winds). Their study considers a flight at constant altitude and speed, where 

the “candidate” routes are constructed based on the orthodromic route between the limits of 

the segment to be optimized. A route is composed by a limited number of waypoints (a 

maximum of six). A Dijkstra search algorithm is applied iteratively in order to identify the 

best node among five equally spaced nodes constructed at the halfway point between the 

current node (at the current iteration) and the destination, until the remaining segment length 

is less than 100 n.m. The authors observed that the detours resulted from following better 

wind conditions led to savings in fuel and time compared to the orthodromic routes. 

 

Ceruti & Marzocca (2017) devised a method for optimizing the flight trajectory of two 

airships, modeled by Bezier curves, using a Particle Swarm Optimization algorithm. The two 
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airships, where one airship is cruising (denoted “cruiser”) and the other is climbing from the 

ground (denoted “feeder”), must perform an in-flight docking. The optimization algorithm 

identifies the parameters of the Bezier curves and the target speed at the docking point so 

that, at the docking point, the two trajectories are tangent, the two airships have identical 

speeds, and the total energy required for the maneuver is minimal. 

 

Qu, Zhang & Zhang (2014) propose a novel two-step flight path optimization method for 

Unmanned Aerial Vehicles (UAVs) that fly in a hostile airspace. In a first step, a Dijkstra 

search algorithm identifies the shortest route through the airspace, determined by selecting 

nodes of a grid obtained by 3-D Delaunay triangulation of the airspace. In a second step, the 

shortest route identified in the first step is optimized using an artificial potential field method 

in order to take into account the weather, aircraft dynamics, and the threats. 

 

Casado, Vilaplana & Goodchild (2013) studied the influence of the uncertainty of aircraft 

performance parameter estimation for the climb, cruise and descent phases of the flight on 

the ATM system’s safety, efficiency and capacity. They used a stochastic aircraft 

performance model generated based on an aircraft performance degradation model, in 

conjunction with Monte Carlo simulations, to determine the sensitivity of the trajectory 

prediction error to the aircraft performance model uncertainty for each phase of the flight, 

and the parameters that are most influenced by these uncertainties. 

 

An aircraft behavioral model (Gillet, Nuic & Mouillet, 2010) based on analysis of historical 

flight data addresses the need to use realistic aircraft behavior in ATM flight simulations in 

order to better predict the air traffic conditions. 

 

A method to generate estimations of wind prediction uncertainties, presented by Lee et al. 

(2009), analyzed each forecast data point of a Rapid Update Cycle (RUC) forecast, and 

computed their average wind components values as well as the standard deviations 

(considered as wind uncertainty). This work analyzed the effects of wind uncertainties on 

aircraft trajectory predictions by comparing the along-track differences between a simulated 
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flight with predicted winds, and a simulated flight where the uncertainties were added to the 

forecasted winds. 

 

Dancila & Botez (2016a) addresses the problem of selecting the maximal optimal geographic 

area for flight trajectory routing, while bounding the maximum total ground distance to a 

selected value. The authors present a new method for selecting an ellipsoidal routing 

geographic area, where the ellipsoid parameters are based on the origin and destination of the 

flight and the selected maximum flight trajectory length. 

 

A method for reducing the number of flight segment performance calculations made during 

the flight trajectory optimization, proposed by Dancila & Botez (2018), constructs in 

advance, for each phase of the flight (climb, cruise, and descent) and cruise altitudes, the set 

of vertical path segments’ performance data that cover the aircraft’s flight envelope. The 

flight segment performance data are constructed based on the specific optimization problem: 

origin – destination pair, aircraft load, set of speeds, and a set of selected landing weights. 

 

Franco & Rivas (2011) analyzed the optimal control problem for a minimum cost cruise at 

constant altitude, where the initial and final speeds are imposed. The authors study the 

singular arc section of the bang-singular-bang solution and the cost variation as function of 

flight time for three wind conditions and two cost index values, as well as for flights with 

RTA constraints. For flights with RTA constraints, the optimal flight corresponds to the CI 

value for which the minimum fuel profile yields the RTA. 

 

Chamseddine, Zhang & Rabbath (2012) present a method for re-planning the flight trajectory 

for a formation of UAVs when one of the UAVs has failures. The objective is to identify the 

new flight trajectory and the control laws that take into account the limited capabilities of the 

faulty UAV (does not exceed the limitations imposed for the actuators), maintain the 

formation structure and the desired separation between vehicles, and minimizes the energy 

consumption. 
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A 3D trajectory planning method (Zhou et al., 2013) based on differential evolution uses a 

chaotic search, performed around the best solution identified for each generation, in order to 

improve the search results and to escape local optima solutions. A flight trajectory 

optimization method proposed by Patrón et al. (2015b) performs the optimization of a flight 

plan using a genetic algorithm. The lateral flight profiles are constructed by selecting nodes 

from a grid formed by five parallel tracks (the planned flight track and four parallel tracks). 

First, the vertical flight profile optimization for the climb phase is performed along the 

planned flight track by evaluating all the speed combinations considered for this phase. Next, 

for the cruise phase, five parallel tracks (two on each side of the original trajectory) are 

divided into n segments in order to form the routing grid for the cruise phase. An 

optimization using a genetic algorithm identifies the optimal cruise flight track for the 

planned vertical flight profile. An optimization of the vertical flight profile identifies the 

optimal vertical profile for the optimal flight track identified in the previous step. Finally, the 

descent phase is optimized by exhaustive evaluation of the descent speed combinations. The 

flight trajectory method proposed in Patrón & Botez (2015a) is similar to the one presented 

in Patrón et al. (2015b), with the difference that the lateral and the vertical flight profiles are 

optimized simultaneously. 

 

The optimization method proposed by Murrieta-Mendoza et al. (2017b) defines the vertical 

flight trajectory optimization as a discrete combinatory problem (discrete values for the flight 

speed and altitude), modeled as a decision tree, and uses the Beam Search Algorithm to 

identify the optimal flight profile. Their method visits the nodes of the decision tree and, in 

each visited node, uses an optimistic cost evaluation heuristic to prune the decision tree in 

order to eliminate the non-optimal branches, and to reduce the number of profile calculations. 

In Murrieta-Mendoza, Ternisien, Beuze & Botez (2018a), a search space reduction method is 

applied before using the Beam Search Algorithm, which can reduce the search space by 50% 

and thus is reducing the execution time. 

 

Murrieta-Mendoza, Botez & Bunel (2018b) present the results of a lateral and vertical flight 

trajectory optimization with RTA constraints using an Artificial Bee Optimization algorithm. 
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The lateral flight profiles generated during the optimization were constructed based on a 

dynamic routing grid. A Golden Search algorithm then optimizes the MACH speed for the 

optimal profile, identified by the bee optimization algorithm, in order to obtain a speed 

profile with values within a predetermined set. New constant speed segments are introduced 

in order to observe the RTA constraints. 

 

The 4D flight trajectory optimization method proposed by Murrieta-Mendoza, Hamy & 

Botez (2017a) models the flight trajectory as a 3D grid (lat, lon, and alt), where the aircraft 

flies at the ECON speed and, at each node, the aircraft may advance only to neighboring grid 

nodes. The Mach speed profile is then optimized along the 3D profile using an Ant Colony 

Optimization algorithm, so that the RTA constraint is observed (4D).  

 

This paper presents a flight trajectory optimization method based on Genetic Algorithms 

(GA). The proposed method is designed to determine the “best” flight trajectory for the 

selected origin – destination pair, aircraft model (performance characteristics) and load, 

atmospheric conditions, candidate flight profile characteristics, optimization criteria, and 

imposed constraints. This method is intended to be used by flight operators, in the planning 

phase (before a flight), or for flight plan update/change during a flight, on ground-based 

computers. The resulted optimal flight plans will be then uploaded to the aircraft.  

 

4.2 Methodology 

This section is structured as follows: The first sub-section (4.2.1) presents the concepts 

related to flight trajectory optimization. The next sub-sections describe the aircraft 

performance model used in this study (4.2.2), the atmospheric data model used in the flight 

trajectory performance calculations (4.2.3), and the elements of a flight trajectory (4.2.4) (i.e. 

the characteristics of the set of candidate flight trajectories evaluated in the optimization, and 

the methodology used to construct them). The following two sub-sections present the 

methodology used for computing the flight performance parameters for a flight trajectory 

through accelerated flight performance calculation (4.2.5), and the proposed optimization 
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method based on the genetic algorithm (4.2.6). Finally, the last sub-section (4.2.7) presents 

the flight data used for constructing the test cases and the reference flight plan (to evaluate 

the performance of the proposed method). 

 

4.2.1 Flight trajectory optimization 

The objective of a flight trajectory optimization process is to identify the optimal flight 

profile for a particular optimization problem defined by aircraft model (flight performance 

and envelope limitations), initial aircraft load and fuel quantity, initial and final trajectory 

points data and constraints (crossing time at the initial point, initial and final aircraft 

geographic locations, altitudes and speeds), navigation constraints, atmospheric conditions, 

and selected optimization criteria. The optimization criterion is, in general, the minimization 

of a cost function (e.g. minimization of fuel burn, total cost, flight time, etc.). However, it can 

also be a maximization of the cost function (e.g. maximum loitering time, etc.). 

 

An aircraft flight trajectory can be decomposed into two components: 

1. A lateral flight profile, represented by the projection of the flight trajectory on the 

Earth’s surface; and 

2. A vertical flight profile, defined by the evolution of the aircraft’s flight parameters 

(e.g. altitude, speed, vertical speed/rate of climb or descent/angle of climb or descent, 

acceleration/deceleration, load factor, etc.) along the lateral flight profile. 

 

In still air (no wind), International Standard Atmosphere (ISA) conditions, and in the absence 

of navigation constraints, the optimal lateral flight profile is the orthodromic route (the 

shortest route on the sphere/ellipsoid) between the initial and final point of the flight plan 

under optimization. The optimal vertical flight profile is specific for the aircraft model, 

aircraft weight, and the cost function selected as optimization criterion. When real 

atmospheric conditions are taken into account (i.e. wind and non-standard atmospheric 

temperature conditions), it may be advantageous to deviate from the orthodromic route, and 



72 

to perform altitude and speed changes in order to benefit from more advantageous wind and 

air temperature conditions. 

 

A flight trajectory optimization process is conducted by successively evaluating flight 

trajectory profiles from a set of candidate flight profiles, and, in each step, by retaining as 

solution the “best” flight profile relative to the cost function and criterion set as objective for 

the optimization. The optimization process can be conducted for only one or for both 

components of the flight profile. In the former case, one of the components of the flight plan 

(lateral or vertical) is common for all the candidate flight plans, and the other component is 

different for each candidate flight plan. In the latter case, both of the flight plan components 

can change. 

 

The methodologies used to generate the set of candidate flight plans, and select the flight 

plan to be evaluated at each step of the optimization process, are heuristic methods, selected 

as function of the specific optimization problem, selected cost function, constraints, etc.  

 

For flight plans with navigation constraints (e.g. altitude, time, etc.), the constraints take 

precedence relative to the flight profile’s optimality. If the constraints are not satisfied, the 

flight plan is considered non-valid and rejected. Similarly, a flight plan is considered non-

valid and is rejected if: 

1. The flight profile generated based on the flight plan yields aircraft flight parameters 

that are beyond the aircraft’s flight envelope boundaries; or if 

2. The flight along the resulted flight profile requires more fuel than is available. 

 

The particular optimization problem considered in this paper is specific for the cases where: 

1. The flight plans do not have navigation constraints; 

2. Both the lateral and vertical components of the flight plan can be modified during the 

optimization; and 

3. The objective is to minimize of the total cost for the flight. 
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The total cost for a flight is calculated as the sum of the fuel cost and the operational costs, 

which are proportional with the flight time, and are expressed as fuel quantity (kg of fuel). A 

detailed presentation of the total cost function, and the elements that contribute to it, can be 

found in Robertson (2007a), Robertson, Root & Adams (2007b), and DeJonge & Syblon 

(1984). 

 

The total cost is calculated using the following formula: 

 

 𝑇𝐶 = 𝑓𝑢𝑒𝑙_𝑏𝑢𝑟𝑛 + 𝐶𝐼 ×  𝑓𝑙𝑖𝑔ℎ𝑡_𝑡𝑖𝑚𝑒 ×  60 (4.1) 

 

where: 

1. TC is the total cost, expressed in terms of fuel quantity [kg of fuel]; 

2. fuel_burn is the fuel burned for the flight along the evaluated flight profile 

[kg of fuel]; 

3. flight_time is the flight time for the flight along the evaluated flight profile [h]; and 

4. CI, the Cost Index, is a constant (specific for each airline, aircraft type and route) that 

converts the flight time into operational costs expressed in terms of fuel quantity 

[kg of fuel / min]. 

 

The CI value adjusts the optimization in order to obtain a trade-off between the fuel 

consumption and the flight time; the larger the CI value the greater the weight that is 

attributed to the reduction of the flight time in the optimization process. 

 

If CI = 0, the optimization criterion becomes the fuel burn minimization. When the CI value 

reaches a maximum value (e.g. 999), specific for a platform, the optimization criterion 

becomes the flight time minimization. 

 

The flight performance and the aircraft dynamics (e.g. fuel burn, flight time, speeds, 

accelerations, traveled distances, etc.) parameters are calculated by performing an accelerated 

simulation of the flight along the evaluated flight profile. These calculations are performed 
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using an Aircraft Performance Model (APM) specific for the aircraft type, the atmospheric 

data along the flight profile (wind and air temperature), the aircraft’s configuration 

parameters (mass, engine thrust setting, landing gear, flaps and speed brake positions, etc.), 

and the flight profile’s data (speed, climb/descent angle, bank angle, load factor, etc.).  

 

The method presented in this paper does not take into account any navigation constraints 

(such as restricted areas or airways, Required Time of Arrival - RTA, etc.), and adopts the 

TBO / “free flight” paradigm; the aircraft is thus free to fly along the trajectory that is best 

suited for the origin – destination pair, atmospheric conditions, aircraft performance, and 

load. 

 

4.2.2 Aircraft Performance Model (APM) 

The APM used in this study is the Base of Aircraft Data (BADA) version 4.0 (Eurocontrol, 

n.d.), developed and maintained by Eurocontrol. The APM provides specific aircraft type 

data (i.e. mathematical models and the related coefficients for the aircraft parameters, valid 

aircraft flight configurations, flight envelope limitations, etc.), a methodology for calculating 

the aero propulsive forces acting on the aircraft, the aircraft motion as a result of these forces 

(equations based on the Total Energy Model - TEM), and the associated fuel burn. An 

overview of the BADA APM can be found in Eurocontrol (n.d.) and Nuic et al. (2010a), 

Eurocontrol (2010) (for BADA version 3.7) and Nuic (2010b) (for BADA version 3.8). 

Specific information regarding the BADA version 4.0 APM can be obtained from 

Eurocontrol (n.d.) upon request, and is subjected to a license agreement. 

 

The set of input parameters used in the calculation of the flight performance parameters, and 

in the aircraft’s evolution along the flight path, their range of valid values and units of 

measurement, are specific for the APM. As an example, the input parameters can be: 

1. Aircraft configuration parameters: aircraft mass, center of gravity position, landing 

gear position, flaps/slats position, spoilers/speed brakes position, etc.; 
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2. Engine parameters: These parameters are specific to the engine type. For a jet engine, 

they can be the Thrust Lever Angle (TLA), engine fan speeds, etc.; 

3. Atmospheric conditions: air temperature and wind; and 

4. Flight trajectory parameters: altitude, speed, acceleration/deceleration, bank angle, 

load factor, climb/descent angle, rate of climb/descent, etc. 

 

A flight trajectory is composed of a succession of elementary flight profile types (e.g. 

constant speed cruise segment, acceleration/deceleration cruise segment, constant speed 

constant TLA climb/descent, constant TLA constant rate of climb accelerated climb segment, 

etc.). Function of the type of evaluated flight profile, some of the parameters presented above 

are input parameters and others are output parameters (resulted from the flight performance 

calculations). For example, for a cruise segment at constant altitude and constant speed, a 

selected speed (an input parameter) will require a specific engine thrust setting, and thus, a 

fuel burn rate (output parameters), to maintain the selected speed and altitude. Conversely, a 

selected engine thrust setting (an input parameter) will determine the speed and fuel burn rate 

(output parameters). The flight trajectory performance calculation model, developed using 

the APM, implements a specific performance calculation function for each elementary flight 

profile type and set of output parameter(s) of interest. 

 

4.2.3 Atmospheric data 

Atmospheric conditions have an important influence on aircraft flight performance 

characteristics and dynamics. The air temperature influences the engine performance and, as 

a result, it affects the available thrust, the maximum altitude for a selected speed, the 

minimum and maximum speeds at a selected altitude, the fuel burn rate, etc. The aircraft 

speed along the flight trajectory is defined in terms of Indicated Air Speed (IAS) or MACH 

number. The aircraft’s aerodynamic characteristics are functions of the True Airspeed (TAS), 

which is the aircraft’s speed relative to the mass of air. The aircraft’s evolution along the 

flight trajectory is a function of the ground speed (GS), which is the aircraft’s speed relative 
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to the ground. The TAS value, computed as function of the active speed value and its type 

(IAS or MACH), is affected by the air temperature and static pressure values.  

 

For MACH speeds, the TAS is expressed only as function of the air temperature (Botez, 

2006): 

 

 𝑇𝐴𝑆 = 𝑀ඥ𝛾𝑅𝑇 = 𝑀ඥ𝛾𝑅𝑇଴ඨ𝑇𝑇଴ = 𝑀𝑎଴√𝜃 
(4.2) 

 

where: 

1. M is the MACH number; 

2. 𝛾 = 1.4 is the adiabatic index for air; 

3. R = 287.05 J/kg/ºK is the universal gas constant for dry air; 

4. T is the air temperature [ºK]; 

5. T0 = 288.15 ºK is the standard air temperature at Sea Level Altitude (SLA), 

considered as 0 ft, in International Standard Atmosphere (ISA) conditions; 

6. 𝑎଴ = ඥ𝛾𝑅𝑇଴ = 340.29 𝑚/𝑠 is the speed of sound at SLA in ISA conditions; 

7. 𝜃 = ்்బ is the air temperature ratio relative to the ISA SLA air temperature. 

 

For a flight in the IAS speed mode, in the subsonic regime, when the air compressibility 

effects are neglected, the relationship between the TAS and the IAS is described in Botez 

(2006): 

 

 𝑇𝐴𝑆 = 𝑎଴ඨ5𝜃 ቈ൬𝑞௖𝑝௦ + 1൰ଷ.ହ − 1቉ (4.3) 
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where qc is the dynamic pressure computed for the IAS speed at the SLA in ISA conditions: 

 

 𝑞௖ = 𝑝௦଴ ൝ቈ1 + 0.2 ൬𝐼𝐴𝑆𝑎଴ ൰ଶ቉ଷ.ହ − 1ൡ (4.4) 

 

and: 

1. a0 is the speed of sound at SLA in ISA conditions; 

2. 𝜃 is the air temperature ratio relative to the ISA SLA air temperature; 

3. 𝑝௦ is the static air pressure at the flight altitude (pressure altitude); 

4. 𝑝௦଴ = 101325 𝑃𝑎 is the static air pressure at SLA (0 ft) in ISA conditions; and 

5. IAS is the scheduled speed that is converted to TAS. 

 

An aircraft flight trajectory is composed of segments defined by a set of fixed geographic 

points (Waypoints – WPTs) selected between the departure and destination points. In still air, 

in the absence of winds, the aircraft’s heading is the segment heading at the aircraft location 

and the GS is equal to the TAS. In the presence of winds, for the aircraft’s trajectory to 

follow the segment’s track, the aircraft’s heading must change (a process called “crabbing”) 

so that the GS vector’s direction, resulted from the vectorial summation between the TAS 

and wind vectors, is oriented along the segment’s heading at that location. The GS value and 

the aircraft’s crabbing angle (𝛼஼ோ஻) relative to the segment heading are computed using the 

wind triangle algorithm (Botez, 2006). Their expressions are: 

 

 

⎩⎪⎨
⎪⎧𝐺𝑆 = ൫𝑊௏ 𝑐𝑜𝑠𝛼ௌ௘௚௠ + 𝑊௎ 𝑠𝑖𝑛𝛼ௌ௘௚௠൯ + ඨ ሺ𝑇𝐴𝑆 𝑐𝑜𝑠𝛼஼஽ሻଶ − ൫𝑊௏ 𝑠𝑖𝑛𝛼ௌ௘௚௠ −𝑊௎ 𝑐𝑜𝑠𝛼ௌ௘௚௠൯ଶ𝛼஼ோ஻ = 180𝜋 𝑎𝑟𝑐𝑠𝑖𝑛 ൬𝑊௏ 𝑠𝑖𝑛𝛼ௌ௘௚௠ −𝑊௎ 𝑐𝑜𝑠𝛼ௌ௘௚௠𝑇𝐴𝑆 ൰  (4.5) 

 

where: 

1. GS is the ground speed; 

2. 𝛼஼ோ஻ is the aircraft’s crabbing angle relative to the segment heading; 

3. TAS is the true air speed; 
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4. WV and WU are the wind speed components along the geographic North and East axes; 

5. 𝛼஼஽ is the aircraft’s climb/descent angle; and 

6. 𝛼ௌ௘௚௠ is the flight trajectory segment’s heading, relative to the geographic North, at 

the aircraft’s location. 

 

Equations (4.3), (4.4) and (4.5) show that the air temperature and the wind affect the TAS and 

the GS values. This influence, in turn, affects the flight performance (lift, drag, required 

thrust, etc.) and the flight trajectory/dynamics: the flight times along and/or the lengths 

(ground distances) of the segments composing the flight profile (climb/descent distances, 

climb/descent speeds, rate of climb/descent, etc.). For an accurate estimation of the aircraft’s 

trajectory and flight performance parameters, it is therefore necessary to perform the 

calculations using atmospheric conditions that are as close as possible to the real conditions 

encountered during flight. 

 

The atmospheric conditions (i.e. air temperature and wind) are constantly changing and, at 

each time instance, their values are different, function of the geographic location (latitude 

and longitude) and the altitude of the point where they are measured. The atmospheric data 

used in flight performance calculations are generated based on prediction data issued by 

meteorological agencies. Due to the chaotic nature of the atmosphere and to the limitations of 

the atmosphere models used in the prediction process, the atmospheric data predictions 

issued by the meteorological agencies may differ from the real atmospheric conditions 

occurring at the prediction location (latitude, longitude and altitude) and time. The 

magnitudes of the prediction errors vary as function of forecast type (global or regional) and 

resolution (forecast grid size), the time of the year, time of day (day or night), region, how far 

ahead in time is the prediction made for, etc. (Stohl, 1998; Cole et al. 2000; Schwartz et al, 

2000; Lee et al., 2009; Vaddi et al., 2013). 

 

The atmospheric data used in this study is a Global Deterministic Prediction System (GDPS) 

(Environment Canada, n.d.a) forecast issued by Environment Canada in GRIB2 

(Environment Canada, n.d.g; NOAA, n.d.a) data file format. GDPS is a global level forecast, 
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issued twice a day, at 00h and 12h Coordinated Universal Time (UTC), that provides 

atmospheric data forecasts in the nodes of a 4D grid (latitude, longitude, pressure altitude and 

time) in the following format: 

1. On a latitude-longitude map projection, available with two grid resolutions: 0.25x0.25 

(Environment Canada, n.d.b) and 0.6x0.6 (Environment Canada, n.d.c) degrees; 

2. At a fixed set of 27 isobaric levels (pressure altitudes); and 

3. The forecasts are made at 3h intervals, for 240 hours for the 0.25x0.25 grid, and 144 

hours for the 0.6x0.6 grid. 

 

Therefore, each atmospheric parameter of interest (air temperature and wind) can be 

computed as a function f(lat, lon, ps, t) of the location of the point where they are evaluated 

(latitude, longitude, and pressure altitude), and the time instance for which it is evaluated. 

 

 
 

Figure 4.1 Example of air temperature forecast data issued by 
Environment Canada on Feb. 25th, 2019 at 12 UTC for 
Feb. 25th, 2019 at 21 UTC, at 300 hPa pressure altitude 
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Graphical illustrations of a GDPS atmospheric data forecast (air temperature and winds) on a 

0.6x0.6 degrees grid, issued by Environment Canada, on February 25th, 2019, at 12:00 UTC, 

for February 25th, 2019, 03:00 UTC, at a pressure altitude of 300 hPa (30,065 ft), cropped to 

a geographic area delimited by the latitudes 10ºN and 75ºN and the longitudes 130ºW and 

30ºE, are presented in Figure 4.1 and Figure 4.2. 

 

 
 

Figure 4.2 Example of wind forecast data issued by Environment Canada 
on Feb. 25th, 2019 at 12 UTC for Feb. 25th, 2019 at 21 UTC, 

at 300 hPa pressure altitude 
 

The atmospheric parameters in a point other than a node of the forecast’s 4D grid are 

computed by interpolation. The method selected in this study for atmospheric parameter 

interpolation is the “4D linear interpolation”, predominantly used in flight trajectory 

optimization algorithms and flight trajectory performance calculations (Stohl et al. 1995; 

Stohl, 1998; Schwartz et al., 2000; Rubio & Kragelund, 2003; Zhang & McGovern, 2008; 

Wynnyk, 2012; Wickramasinghe et al., 2012; Jensen et al., 2015). More complex 

interpolation methods (such as quadratic, bicubic, spline, polynomial, etc.) are potentially 

more precise, but they are slower than the 4D linear interpolation. These interpolation 

methods have often been used in the literature (Soler-arnedo et al., 2010; Fukuda et al., 2010; 
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Soler et al., 2011; Soler et al., 2015), on ground-based platforms, in conjunction with 

regional atmospheric data forecasts and near horizon flight profile predictions such as the 

descent phase of a flight / CDO (Jin, Cao & Sun, 2013). Regional atmospheric data 

predictions, such as RDPS (Environment Canada, n.d.e) and RUC (Schwartz et al., 2000), are 

short time forecasts issued for a reduced geographic area, updated with a much higher rate, 

and are more precise. 

 

4.2.4 Flight trajectory / flight plan 

Generally, an aircraft flight trajectory can be very complex, limited only by the aircraft’s 

performance capabilities (flight envelope limitations), pilot abilities and the required 

workload (if a maneuver is performed in manual mode), or the FMS/autopilot capabilities. 

Additional constraints are imposed by navigation and safety regulations, and passenger 

comfort.  

 

In the fields of flight trajectory planning and optimization, ATM, and FMS, a flight trajectory 

is defined by a flight plan (Altus, 2009; FAA, n.d.a) that contains all the information 

regarding the intended evolution of the aircraft, in a concise and standard format. The flight 

plan contains all the information necessary to predict the precise space-time evolution of the 

aircraft. The flight trajectory description using a standard format is a result of the necessity 

to: 

1. Reduce the complexity of flight profiles; 

2. Easily construct the flight trajectory in the ATM and FMS platforms, based on the 

submitted/selected flight plan; 

3. Implement the functionalities required for the calculation of the aircraft flight 

performance parameters and the aircraft flight dynamics, along a selected trajectory, 

through accelerated simulation, in order to: 

a. Compute flight performance parameters (e.g. fuel burn, flight time, etc.); 

b. Ensure that the flight parameters (e.g. altitude, speed, etc.) remain within the 

aircraft’s flight envelope limits; 
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c. Evaluate the aircraft’s position relative to the flight plan, and follow the 

planned trajectory (FMS); 

d. Evaluate possible conflicts with other aircraft within the same airspace region 

(ATM); and 

e. Validate the flight plan relative to imposed navigation constraints, fuel 

requirements, etc. 

 

As mentioned in sub-section 4.2.1, an aircraft flight trajectory can be decomposed into two 

components: 

1. A lateral flight profile, representing the projection of the flight trajectory on the 

Earth’s surface; and 

2. A vertical flight profile, defined by the evolution of the aircraft’s flight parameters 

along the lateral flight profile. 

 

Accordingly, a flight plan has a lateral and a vertical component, corresponding to the two 

components of the flight trajectory. 

 

4.2.4.1 Lateral flight plan description and the resulting lateral flight profile 

The lateral flight plan defines the segments composing the lateral flight profile: 

1. The sequence of waypoints (WPTs) that define the lateral flight profile segments 

overflown by the aircraft (geographic locations defined by pairs of latitude and 

longitude coordinates); and 

2. The lateral flight profile segment type(s): loxodromic or orthodromic (Lenart, 2017) – 

see Figure 4.3 below. 

 

A loxodromic segment (represented by the red line in Figure 4.3) has the property that, in 

every point on the segment, the departure heading required to advance along the segment is 

constant. However, a loxodromic segment is not the shortest route between two points on a 

sphere or on an ellipsoid. 
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An orthodromic segment (represented by the yellow line in Figure 4.3) is the shortest route 

between two points on a sphere/ellipsoid (the geodesic or great circle that connects two 

geographic points). On an orthodromic route, the segment heading is not constant; it varies 

from the departure WPT (beginning of the segment) to the arrival WPT (end of the segment). 

 

Although the orthodromic route between two geographic locations is the shortest flight 

distance between two points, aircraft do not necessarily follow an accurate orthodromic route 

due to air traffic constraints, atmospheric conditions (in order to avoid strong head winds 

and/or turbulence), navigation constraints, etc. The blue line in Figure 4.3 illustrates the 

lateral flight profile of a real flight, flight SWR40 between Zurich (ZHR) and Los Angeles 

(LAX), on Feb. 25th, 2019, retrieved from the FlightAware website (FlightAware, 2019a). 

 

 
 

Figure 4.3 Illustration of orthodromic and loxodromic routes, and a recorded flight 
track (FlightAware, 2019a) between Zurich (ZHR) and Los Angeles (LAX) 

 

Two consecutive WPTs from the lateral flight plan define a flight profile segment, and, 

together with the segment type information, determine the segment’s SLA length, and the 

departure and arrival headings (the angle relative to the geographic North) in each point 

along the segment. Conversely, given the initial WPT of a segment and the segment type, the 
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departure heading from the initial WPT, and the SLA for a point of interest, it is possible to 

compute the geographic coordinates of the point of interest and the arrival heading at this 

point. 

 

For a loxodromic segment, the calculations of various parameters (SLA length, the segment 

heading, the coordinates of a point situated at a given SLA distance, etc.) are performed 

using the rhumb line equations (Carlton-Wippern, 1992) for the Earth model (spherical or 

ellipsoid). For orthodromic segments, the calculations are performed differently as they are 

function of the Earth model used: spherical trigonometry for a spherical earth model, and 

Vincenty’s formulas (Karney, 2013) for an ellipsoid Earth model.  

 

The segment’s length at the aircraft’s flight altitude is obtained by multiplying the SLA 

distance with a correction factor calculated as: 

 

 𝑐௙_ௗ௜௦௧ = 𝑅௘௔௥௧௛ + ℎ௚௘௢௠ × 𝐹𝑇_𝑇𝑂_𝑁𝑀𝑅௘௔௥௧௛  
(4.6) 

 

where: 

1. cf_dist is the segment length correction factor with altitude; 

2. Rearth = 3,440.1 [n.m.] is the Earth radius; 

3. hgeom is the aircraft geometric altitude relative to the sea level, in ft; and 

4. FT_TO_NM = 16.457884 x 10-5 is the ft to n.m. conversion factor. 

 

As an example, for a geometric altitude of 36,000 ft, cf_dist = 1.0017222. 

 

4.2.4.2 Vertical flight plan description and the resulting vertical flight profile 

A vertical flight plan defines, in a succinct form, the aircraft’s altitude - speed evolution 

along the lateral flight profile, and specifies the locations (WPTs) along the lateral flight plan 

segments where the planned vertical flight profile parameter changes occur (e.g. altitudes and 
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speeds), as well as the new values for the parameters that change. In this paper, it is assumed 

that the vertical flight plan defines the locations along the lateral flight plan where the 

changes are initiated (e.g. at the beginning of an acceleration/deceleration to a new speed, at 

the beginning of a climb/descent to a new flight altitude, etc.). A vertical flight plan (profile) 

can be decomposed into seven main phases: take-off, initial climb, climb, cruise, descent, 

approach, and landing. Each flight phase can include one segment or a succession of vertical 

flight plan segments. 

 

The vertical flight profile, generated by the vertical flight plan, is obtained following the 

accelerated flight performance calculations (see sub-section 4.2.5). Each flight plan segment 

is decomposed in a succession of “standard” type segments, segments in which the control 

parameters and the mathematical models describing the aircraft’s evolution (the dynamic and 

the status parameters) do not change (e.g. a constant altitude constant speed segment, a 

constant altitude acceleration segment, a climb segment at constant speed and constant climb 

angle, a climb segment at constant speed and rate of climb, etc.). 

 

The set of parameters that define a vertical flight plan segment are specific for the flight 

segment type. The values of a vertical flight plan segment parameter can be specified: 

1. Explicitly, provided as input; 

2. Implicitly, when the parameter value: 

a. Is “inherited”: does not change relative to the value it had at the end of the 

previous vertical flight plan segment; or 

b. It results from the flight performance parameter calculation (e.g. the 

geographic location where a constant altitude acceleration/deceleration 

segment ends, the geographic location where a climb segment ends, the 

altitude and geographic location where an accelerated climb segment ends, 

etc.). 

 

The climb and descent sections are flown at “scheduled speed”, defined as an [IAS, MACH] 

speed pair. The speed mode switch (between IAS and MACH) takes place at the crossover 
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altitude, defined as the altitude where the TAS computed from the IAS, described by Eq. 

(4.3), is equal to the TAS computed from the MACH speed, given by Eq. (4.2). The IAS 

speed is in effect below the crossover altitude, and the MACH speed is above the crossover 

altitude. The reason for the speed mode change at the crossover altitude is that a climb at 

constant IAS speed beyond the crossover altitude would result in a MACH speed beyond the 

maximum MACH operating speed limit (MMO); similarly, a descent at constant MACH 

below the crossover altitude would result in an IAS speed beyond the maximum operating 

speed limit (VMO). An example of a climb speed profile is presented in Figure 4.4, where 

the flight plan starts when the aircraft is at an altitude of 10,000 ft and a speed of 250 kn IAS, 

and defines a climb segment at [300 kn IAS, 0.80 MACH] to the cruise altitude (33,000 ft). 

Following the accelerated flight performance calculations, the resulting flight profile is 

composed of three segments: 

1. An acceleration in climb, from 250 kn to the scheduled speed climb IAS (300 kn), 

which starts at 10,000 ft, and ends at an altitude that is a function of the aircraft 

performance parameters, such as weight, etc.; 

2. Climb at constant IAS (300 kn) to the crossover altitude (30,594 ft); and 

3. Climb at constant scheduled speed MACH (0.8) to the cruise altitude (33,000 ft). 

 

It should be noted that the positions along the lateral flight plan segments (lateral flight 

profile) where the accelerated climb segment and the constant speed climb segments end are 

determined during the accelerated flight performance calculations. These positions are not 

only dependent of the flight plan speeds but also dependent of the aircraft flight performance 

characteristics, weight, and atmospheric conditions. 

 

The structure of a descent altitude - speed profile is similar to that of a climb altitude - speed 

profile, except that the evolution along the profile is reversed. 

 

The cruise phase is composed by a succession of constant altitude and climb (step climb) 

segments flown at MACH speed (constant speed, acceleration or deceleration segments). 

Generally, descent segments (step descents) are not employed, as the aircraft performance is 
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better at higher altitudes, and repeated sequences of step climbs and step descents result in an 

increased number of pressure change cycles on the airframe, and increase the maintenance 

costs.  

 

 
 

Figure 4.4 Example of altitude - speed profile for the climb phase of a flight 
 

Figure 4.5 shows an example of an altitude profile for the climb, cruise, and descent phases 

of a real flight (flight Swiss SWR40, from Zurich to Los Angeles, flown on Feb. 25th, 2019), 

as retrieved from FlightAware (FlightAware, 2019a). The altitude profile data presented in 

Figure 4.5 have been selected to show the trajectory for altitudes above 10,000 ft. 

 

The transition between the climb and the cruise sections of the flight trajectory occurs at the 

Top of Climb (TOC), the point where the aircraft reaches the cruise altitude. The transition 

between the cruise and the descent sections of the flight trajectory occurs at a point denoted 

as the Top of Descent (TOD), where the aircraft initiates the descent. Another important 

point along the vertical flight profile is the End of Cruise (EOC), situated in the cruise 

section of the vertical flight profile, at a preset sea level distance from the final point of the 

descent. The EOC is the point along the flight trajectory beyond which the accelerated flight 
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performance calculation function performs the calculations in “Descent” mode, which is a 

methodology specific for the descent phase of the flight. A more detailed presentation 

regarding the TOC, EOC and TOD positions along the lateral flight profile is provided in the 

next sub-section (4.2.5). Figure 4.6 illustrates the TOC, EOC, and EOD positions along the 

altitude flight profile. 

 

 
 

Figure 4.5 Example of altitude profile Flight SWR40, Zurich to Los Angeles, on 
Feb. 25th, 2019 Data for altitudes above 10,000 ft, as retrieved from FlightAware 

(FlightAware, 2019a) 
 

 
 

Figure 4.6 Illustration of the TOC, EOC and TOD positions 
along the altitude flight profile 
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4.2.5 Accelerated flight performance calculation 

The aircraft model developed based on the APM provides a set of functions that compute the 

flight performance parameters and the aircraft dynamics for each “standard” flight profile 

segment type that can be used to construct a flight trajectory, as well as to evaluate the flight 

parameters relative to the aircraft’s flight envelope. 

 

The evolution of the aircraft along the selected flight trajectory, the flight performance and 

the aircraft status parameters are computed iteratively, segment by segment, starting from the 

initial point, by accelerated simulation: 

1. The flight trajectory is constructed as a succession of “standard” segments; 

2. Each segment of the flight trajectory is decomposed in sub-segments (integration 

steps); 

3. The parameter along which a segment is decomposed into sub-segments (time, 

distance, altitude) depends upon the segment’s type; 

4. The integration step size (sub-segment decomposition step size) is chosen as a result 

of a tradeoff between the estimated result precision and computation time. Larger step 

sizes would result in a smaller number of sub-segments and, therefore in faster 

calculation. However, this would reduce the accuracy of the results; 

5. For each sub-segment, the specific parameters are calculated in a point on the sub-

segment (situated along the decomposing/integration parameter dimension) using the 

appropriate evaluation function, aircraft configuration, atmospheric conditions, etc.; 

6. The performance parameters for the sub-segment are obtained by integration: the 

parameters returned by the function are multiplied by a factor computed based on the 

integration step size; and 

7. The aircraft’s state and configuration parameters, and its position along the lateral 

flight profile are updated. The new values become the input data for the trajectory 

performance calculation on the next sub-segment. 
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At each step, the aircraft performance parameters, its state, position and dynamics are 

validated relative to the flight envelope limitations (such as altitude and speed), fuel quantity 

on board, flight trajectory and navigation constraints, etc. 

 

The methodology used for constructing the flight trajectory profile and computing the 

performance parameters is presented in Schreur (1995). The flight trajectory construction and 

the flight performance parameter calculation start from the initial point of the flight plan 

(initial geographic location and altitude), with the initial aircraft status parameter values (zero 

fuel weight, fuel quantity, center of gravity position, speed, climb angle, bank angle, etc.), 

and the time instance when the aircraft crosses the initial point of the flight plan. The climb 

phase is computed first, followed by the cruise phase. The TOC location, the point where the 

aircraft reaches the cruise altitude, is determined by the climb profile calculation module. 

The cruise phase calculations stop at a preset sea level distance from the final point of the 

flight plan (EOC), heuristically selected so that it is further away from the destination than 

the beginning of the descent flight profile (TOD). The aircraft weight and crossing time at the 

final point of the flight profile (flight plan) are then estimated using a heuristic, and the 

estimated values are used to construct the descent flight profile. The descent flight profile is 

constructed in reverse order (backwards integration), from the final point of the descent flight 

plan to the TOD, at the cruise altitude and speed. At this stage, the geographic location of the 

TOD and the aircraft crossing time at the TOD are known. Finally, the performance 

parameters are computed for last segment of the cruise flight profile, delimited by the EOC 

and the TOD. The validation of the estimated aircraft weight and crossing time at the end of 

the flight profile is performed by comparing their values obtained at the TOD: the values 

obtained from the descent profile calculations with the values obtained from the cruise 

profile calculations. If the aircraft weight and/or the crossing time difference are larger than 

selected threshold values, considered acceptable, then the estimated values at the end of the 

descent are corrected (based on the difference obtained for the parameter value) and the 

process is started again: a new decent profile computation, EOC to TOD profile calculation 

and comparison between the obtained values. The process stops when both the time 
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difference and the aircraft weight difference are smaller than the selected threshold values. 

Figure 4.7 shows a flowchart of the accelerated flight profile calculation process. 

 

 
 

Figure 4.7 Accelerated flight profile calculation process flowchart 
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Navigation constraints (such as altitude, speed, RTA, etc.), assigned at different points along 

the flight path, are validated by comparison with their corresponding values resulting from 

the flight performance calculations. 

 

4.2.6 Optimization method 

The optimization method presented in this paper is intended for flight trajectory (sub-

section 4.2.4) optimization, where both the lateral and vertical flight profiles modifications 

are considered. For a specific optimization problem, defined by: 

1. Aircraft model (flight performance data), load (weight), and on-board fuel quantity; 

2. Geographic locations of the initial and final points of the flight trajectory; 

3. Aircraft flight altitude and speed at the beginning and at the end of the flight profile 

under optimization; 

4. Navigation policies such as: climb at Maximum Climb (MCMB) TLA, IDLE descent, 

climb/descent mode (e.g. vertical speed, climb/descent angle, rate of climb/descent), 

etc.; 

5. Selected values for the range of cruise altitudes, and the maximum deviation from the 

orthodromic route between the beginning and the end of the flight trajectory under 

optimization; and 

6. Optimization criterion: minimization of fuel burn, flight time, or total cost. 

the algorithm implementing the proposed optimization method identifies the “optimal” flight 

plan: the combination of lateral (sub-section 4.2.4.1) and vertical (sub-section 4.2.4.2) flight 

plans that minimizes the selected cost function. 

 

The optimization problem presented in this paper considers a discrete / combinatorial 

optimization with a very large number of candidate solutions, determined by the 

characteristics of the family of candidate flight plan solutions (sub-section 4.2.6.1 and sub 

section 4.2.6.2). Some of the parameters that are used in the calculations (e.g. the 

atmospheric conditions, aircraft performance model) are defined by piecewise functions. The 

evolution of the aircraft is described by piecewise functions due to the decomposition in sub-
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segments on which the mathematical model that describes the evolution of the aircraft and 

flight parameters do not change (please see sub-section 4.2.5 which describes the 

methodology used to compute the flight performance for a flight plan). Moreover, the total 

cost is expressed by a complex and non-linear function due to the relationship between the 

parameters that determine the total cost (fuel burn, flight time) and the input parameters: 

aircraft weight, flight plan parameters (altitude and speed flight profile), and atmospheric 

conditions. The total cost of a flight segment depends not only on its selected parameters but 

also on previous flight profile segments parameters. The aircraft weight, altitude, and 

crossing time at the beginning of a segment result from the fuel burn and flight time on 

previous segments (therefore, their flight profile characteristics). This fact affects the 

aircraft’s performance characteristics and the atmospheric conditions encountered on the 

segment, which affect the fuel burn and the flight time and, therefore, the segment’s total 

cost. This optimization problem might have multiple local minima and many (“near”) 

optimal solutions. For these reasons, the optimization method described in this paper is based 

on genetic algorithms. 

 

Due to the randomness characteristic for genetic algorithms, the optimality of the solution is 

not guaranteed; it is expected that the solution is a “near-optimal” flight plan. Multiple runs 

of the optimization algorithm, for an identical optimization problem, yield different 

“optimal” solutions.  

 

The proposed optimization method starts by defining the families (“templates”) of lateral and 

vertical flight plans from which the candidate flight plans (the combination of lateral and 

vertical flight plans) can be selected and evaluated in the optimization process. Then, a 

genetic algorithm iteratively selects random new candidate flight plans, from the candidate 

set or by applying genetic operators (“crossover” and “mutation”) on pairs of selected 

candidates, and computes the flight performance parameters (through accelerated 

simulation), and the cost. The genetic operators are applied in such a way that the flight plans 

resulted after applying the genetic operators are themselves members of the candidates’ set. 
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The first sub-section presents the methodology used for constructing the set of candidate 

lateral flight plans, and the configuration parameters that determine their characteristics. The 

next sub-section describes the methodology employed for constructing the family of vertical 

flight plans, and the configuration parameters that determine their characteristics. The last 

sub-section presents the implementation of the genetic algorithm used in the optimization. 

 

4.2.6.1 Lateral flight profile routing grid and candidate lateral flight plan 
construction 

This sub-section presents the methodology used for constructing the set of lateral flight plans 

that can be selected as components of the flight plans evaluated in the optimization. The 

definition of the set of lateral flight plans starts with the assumption that the lateral flight plan 

is composed by a succession of segments, where each segment is delimited by two 

geographic locations (WPTs), and is one of the two possible types: orthodromic or 

loxodromic. Another assumption made in this study is that the WPTs delimiting the lateral 

flight plan segments and, therefore, the aircraft’s lateral flight trajectory, are restricted to a 

selected geographic area. It is also assumed that the set of WPTs that delimit the segments of 

a lateral flight plan are selected from a “grid” (routing grid), in which each segment is 

delimited by two adjacent WPTs from the grid.  

 

The set of lateral flight plans is, therefore, defined by: 

1. The geographic area within which the flight plan WPTs can be selected; 

2. The methodology used to construct the routing grid, which defines the set of WPTs 

that delimit the flight plan segments; 

3. The type of the segments (orthodromic or loxodromic) composing a lateral flight 

plan; and 

4. The methodology used for selecting, from the routing grid, the set of WPTs that 

define the succession of segments of a lateral flight profile. 
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In this study, the lateral flight profile is composed of orthodromic segments. Each segment is 

characterized by: 

1. An SLA length; 

2. The headings required to advance along the segment: in the initial WPT of the 

segment (departure heading) and in points along the segment; and 

3. The heading when arriving at the final WPT of the segment. 

 

The segment’s length, the departure and arrival headings, and the segment headings in a 

point along the segment are computed using the Vincenty’s formulae (Karney, 2103), and the 

WGS84 ellipsoid Earth model (Janssen, 2009). 

 

In this study, the routing grid, and thus, the geographic area to which the set of flight plans 

are restricted, is defined based on the orthodromic route (ORT) between the initial and the 

final WPTs of the trajectory under optimization. The routing grid is constructed as an 

“orthogonal” grid. First, a number of equidistant WPTs are generated along the ORT. Then, 

from each such WPT along the ORT, an orthodrome perpendicular to the ORT is 

constructed, and new routing grid WPTs are generated along this orthodrome. The new 

WPTs are equidistant, placed symmetrically, on both sides of the ORT, up to a maximum 

deviation relative to the ORT. An illustration of the routing grid construction is presented in 

Figure 4.8. 

 

The first step in constructing the routing grid is to select the configuration parameters for the 

grid: 

1. The maximum distance between the WPTs generated along the ORT; 

2. The maximum deviation from the ORT; and 

3. The distance between WPTs on the normal to the ORT. 

 

It is assumed that the aircraft always moves to a new WPT situated at a (routing grid) step 

along the ORT track, and at a maximum number of grid steps across. The lengths of the 

segments along and across the orthodromic track, and the number of waypoint steps “across” 
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the ORT are chosen so that each segment, constructed as presented above, by waypoints 

selected from the grid, represents an integration step (has a maximum length that is below the 

maximum length of a computation step) for the flight performance estimation function. 

 

 
 

Figure 4.8 Example of routing grid construction 
 

These parameters can also be used to refine the optimization process, as smaller distances 

produce a finer grid, which can yield profiles “better” adapted for the atmospheric 

conditions, but would result in a large increase in the number of “candidate” profiles to 

explore. 

 

Given that at each step the aircraft moves to a new WPT situated at one grid step along the 

ORT and at a selected maximum number of steps across the ORT, the routing grid starts at 

the initial WPT, with no WPTs across the ORT. Then, at each step along the ORT, the 

number of WPTs across the ORT increases by the selected maximum number of lateral steps. 

The maximum number of steps across the ORT results from the selected maximum lateral 

deviation from the ORT and the lateral deviation step size. Similarly, at the other end, the 
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number of WPTs across the ORT decreases, at each step along the ORT, by the maximum 

number of lateral deviations steps, until it reaches the final point of the grid (the final WPT of 

the flight) with no WPTs across the ORT. Figure 4.9 presents an illustration of a routing grid. 

 

 
 

Figure 4.9 Example of a routing grid 
 

The lateral flight plans, generated as candidates in the optimization, are random routes that 

traverse the routing grid, where the succession of WPTs must follow the rules set above. One 

method for generating the lateral flight plan is to select the set of WPTs successively, one 

step along the orthodromic route at a time (each new WPT is situated one step further along 

the orthodromic route). The domain of valid steps along the normal to the orthodromic route 

(the range of lateral steps that would end in a grid WPT) is determined, at each step, and the 

new WPT deviation is selected randomly, from the set of valid deviations. Tests showed that 

such a method yields zigzagged lateral flight plans (e.g. the red flight track in Figure 4.10), 

which result in flight trajectories that are not in accordance with normal 

operations/navigation. 

 

This paper proposes a method to generate candidate lateral flight plans that observe standard 

flight operations by generating longer segments (longer steps along the orthodromic route), 

on which the lateral step value is maintained. For each new segment, the range of valid 

lateral step values (which can yield a grid WPT for at least one step along the orthodromic 
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route) is determined. The segment lateral step value is selected randomly from the range of 

valid values. The maximum number of valid steps along the orthodromic grid route is then 

calculated for the selected lateral step value: the maximum number of steps needed to reach 

the limit of the routing grid. The segment’s length (the number of steps along the grid’s 

orthodromic route) is selected randomly, within the set of valid values. Finally, the set of grid 

WPTs corresponding to the new segment, generated by advancing one orthodromic step at a 

time, and the selected lateral step size for the selected number of orthodromic steps are added 

to the generated lateral flight plan. 

 

 
 

Figure 4.10 Example of random lateral flight plan generation using the 
“point by point” and “segment by segment” methods 

 

4.2.6.2 Vertical flight plan candidates construction 

A vertical flight plan has three main sections, corresponding to the three main phases of a 

flight: climb, cruise, and descent. Each phase of the vertical flight plan is composed of a 

succession of flight plan segments, for which the number of segments, the order in which 

they appear, and their type, are a function of the desired/selected aircraft evolution.  
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The set of vertical flight plan segment types considered in this paper, and their specific 

parameters, are: 

1. Climb at constant speed schedule ([IAS, MACH]): initial altitude, final altitude, speed 

schedule, climb angle (as resulted from the equilibrium of forces and moments), and 

engine thrust set to Maximum Climb (MCMB). The initial point of the flight plan 

segment is the initial point of the flight trajectory; 

2. Descent at constant speed schedule ([IAS, MACH]): initial altitude, final altitude, 

speed schedule, descent angle (as resulted from the equilibrium of forces and 

moments), and engine thrust set to IDLE. The final point of the flight plan segment is 

the final point of the flight trajectory; and 

3. Cruise at constant speed: altitude, speed, initial position along the lateral flight plan, 

and the final position along the lateral flight plan or sea level segment length. 

 

The flight profile corresponding to a selected flight plan will contain additional flight 

segments, which implement the transition phases between the flight segments defined in the 

flight plan: 

1. Acceleration in climb/deceleration in descent phases: speed type, initial speed, final 

speed, initial altitude (initial altitude for climb/final altitude for descent), constant rate 

of climb/descent, and engine thrust setting (MCMB for climb and IDLE for descent); 

2. Acceleration/deceleration in cruise phase: altitude, initial speed, final speed, 

acceleration/deceleration as resulted from the difference between thrust and drag, 

where the engine thrust is set to Maximum Cruise (MCRZ) thrust for acceleration and 

to IDLE for deceleration; and 

3. Climb in cruise at constant speed: initial altitude, speed, final altitude, constant climb 

angle (as resulted from the equilibrium of forces and moments), and engine thrust set 

to MCMB. 

 

The initial and final altitudes and speeds, at the beginning and at the end of the flight profile, 

are those defined by the optimization problem. The altitudes explored for the cruise phase are 

values multiple of 1,000 ft, selected between a minimum altitude (an input parameter for the 



100 

optimization problem), and the maximum operational altitude for the aircraft model. 

Similarly, the maximum IAS speed, and the maximum MACH speeds are VMO – 10 and 

MMO – 0.01, respectively. The minimum MACH speed value for the range of explored 

MACH speeds (for the climb, cruise, and descent) is an input parameter for the specific 

optimization problem. 

 

The aircraft weight at locations along the flight trajectory (as well as other parameters that 

have an influence on the flight envelope limitations) can only be determined during the 

accelerated flight trajectory performance evaluation. Therefore, a valid flight plan segment 

parameters domain, from which valid segments can be selected, can only be determined 

during the accelerated flight trajectory performance evaluation. As a result, a valid flight plan 

can only be guaranteed if the parameters for each segment are selected based on the data 

obtained following a flight profile performance calculation from the initial point of the 

trajectory to the point where the segment parameters are generated.  

 

For the optimization method presented in this paper, based on genetic algorithms, even if a 

flight plan is invalid due to one or more invalid flight plan segments, it can still contribute 

“genetic material” to the optimization process as a result of crossover and mutation genetic 

operations. In the optimization process, the lateral and the vertical flight plans are generated 

randomly. The vertical flight plans are generated based on minimum and maximum values 

for the altitude and speed parameters, provided as inputs. 

 

The cruise altitude for the section immediately following the climb phase, is selected 

randomly from a range of valid initial altitudes, determined as follows: 

1. The weight of the aircraft at the end of the climb flight profile (at the TOC), for each 

of the evaluated initial cruise altitudes, is estimated using a heuristic, based on the 

initial aircraft weight; 

2. Then, for each evaluated initial cruise altitude and the corresponding aircraft weight 

for that altitude, the minimum and maximum valid cruise speeds (FAA, 2018) are 

determined using the aircraft performance model; and 
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3. The set of valid initial cruise altitudes comprises the initial cruise altitudes for which 

there are valid cruise MACH speeds (altitude – speed pairs that are within the 

aircraft’s flight envelope given the aircraft’s weight). 

 

The vertical flight plan is constructed successively, starting with the climb section. First, the 

initial cruise altitude is randomly selected from the set of valid initial cruise altitudes. Next, 

the climb speed schedule values are selected at random, between initial speed and 

VMO – 10, for the IAS, and within the range of valid MACH speeds determined for the 

initial cruise altitude. These criteria ensure that the initial cruise segment is valid. Given that 

the position of the TOC along the lateral flight profile is a function of the selected climb 

profile, and in order to simplify the crossover and mutation operations, the climb section of 

the vertical flight plan is considered to end at a preset sea level distance from the initial WPT 

of the flight trajectory. Therefore, the climb flight plan ends with a cruise segment at constant 

altitude and speed. 

 

The cruise section of the vertical flight plan is defined by a succession of constant altitude 

and speed segments. In this study, the set of cruise vertical flight plan segments were 

constructed so that they have an identical number of lateral flight plan segments (routing grid 

segments). The initial and final positions along the lateral flight plan are fixed, in order to 

simplify the crossover and mutation operations. The initial point for the first segment of the 

cruise vertical flight plan section, along the lateral flight plan, is the same as the final point 

for the last climb vertical flight plan section. The final point for the last segment of the cruise 

vertical flight plan section is situated at or before the EOC, i.e. the point selected as the limit 

between the cruise and the descent phases of the flight (see sub-sections 4.2.4.2 and 4.2.5). 

 

The structure of the descent section of the vertical flight plan is similar to that of the climb 

phase, the difference being the order/succession of the vertical flight plan segments. The 

descent vertical flight plan section starts with the final descent segment (a descent at a 

constant [IAS, MACH] speed schedule from the cruise altitude), followed by constant speed 

and altitude cruise segment(s). 
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The flight profile for the selected flight plan (lateral and vertical flight plan components), 

atmospheric conditions, and aircraft configuration is obtained following the accelerated flight 

performance calculations. Figure 4.4 shows an example of a climb altitude – speed flight 

profile, while Figure 4.5 and Figure 4.6 show examples of an altitude profile, and the 

positions of the TOC, EOC and TOD, respectively. 

 

4.2.6.3 Genetic algorithm 

Genetic algorithms (Schmitt, 2001) are population based metaheuristic algorithms, inspired 

from the evolution theory presented by Darwin, which can be used for solving complex 

search problems for which the solution space is too large for an exhaustive exploration, in a 

timely manner, and/or are complex and nonlinear for other search techniques. In a genetic 

algorithm, the population, composed of a set of individuals (candidate solutions), evolves for 

a selected maximum number of generations or until a selected termination criterion is 

satisfied (the global optimum or an acceptable solution is found). Each generation has the 

same number of individuals, and all the individuals that are generated and evaluated in a 

genetic algorithm conform to a genetic structure template (“genotype”): they all have the 

same number of chromosomes, and each chromosome, situated at a given position in the 

genetic structure, has the same meaning (represents the same characteristic / parameter for 

the problem under optimization). For the initial population, the individuals are generated 

randomly or according to selected “values” that are deemed to conduct to optimal solutions. 

At each generation step, the fitness of each of the members of the population is evaluated. 

Then, the next generation (population) is selected/created through one or a combination of 

the following genetic operations: 

1. “Elitism”, where the best individuals are copied to the next generation; and 

2. “Crossover” and “mutation” based on individual(s) selected from the current 

population. 
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In order to increase the population diversity, a number of individuals of a new generation 

may be generated randomly.  

 

The individual selection for crossover and/or mutation operations can be made randomly or 

as a function of their fitness relative to the set of individuals in the current population. Some 

of the possible fitness-based selection methods are: 

1. “Tournament”, where two individuals from the population are chosen at random, their 

fitness values are compared, and the best individual is retained; 

2. “Roulette wheel” (proportional) selection, in which the selection is performed by 

generating a random number between 0 and 1, and by retrieving the individual that 

falls within the corresponding area of the roulette disk; and 

3. “Stochastic acceptance” (Lipowski & Lipowska, 2012). 

 

The crossover operation consists of exchanging “genetic” data (“chromosomes”) between 

two individuals (“parents”) selected from the candidate solution population. First, the 

position along the genome where the crossover will be performed is randomly selected. The 

new individual (“child”), member of the new generation population, is then constructed by 

concatenating the initial chromosome sequence (up to the crossover position) from one 

parent and the final sequence from the other parent.  

 

A mutation changes the value of one chromosome, selected at random, to a new value among 

the range of values for the selected chromosome. This genetic operation can be applied 

independently, to a randomly selected individual from a population, or additionally to a 

crossover, to increase the diversity of the individuals from the new generation. 

 

4.2.6.3.1 Candidate flight plan selection for mutation and crossover operations 

The flight plan(s), on which the crossover or mutation operations are performed, are retrieved 

using the “roulette wheel” selection. The roulette wheel is created based on the list of total 

cost values for the population. For each element of the roulette wheel list (normalized values 
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with a total sum equal to one), the corresponding roulette wheel value is calculated as the 

quotient between: 

1. The cost values for the population element; and 

2. The sum for the entire population. 

 

A random number between zero and one is used as a “pointer” to the list member (the 

population member) that will be selected for the genetic operation. 

 

4.2.6.3.2 Lateral flight plan crossover and mutation 

As presented in sub-section 4.2.6.1, the lateral flight plan is defined by a succession of 

segments delimited by the WPTs of the routing grid. For each lateral flight plan segment, the 

final WPT is situated one step further along the grid’s orthodromic route direction, and up to 

a maximum number of steps across the orthodromic route, relative to the initial point. 

Therefore, in order to obtain a lateral flight plan that maintains this characteristic, the 

crossover between two lateral flight plans (as well as a mutation of a flight plan) can be only 

performed in the points of the lateral flight plan segment that are routing grid nodes. The 

flight plan WPT where the crossover or mutation is performed is identified by its grid 

position along the orthodromic route direction (NM). Firstly, the crossover or mutation WPT 

is selected randomly, from the WPTs that define the flight plan, except for the initial and 

final WPTs (which would not yield any profile changes). Each lateral flight plan Pi can thus 

be divided into two sections: from the initial point to the crossover location (Pi1), and from 

the crossover location to the end of the lateral flight plan (Pi2). 

 

The child lateral flight plan (CLFPL), resulted from the crossover operation of two parent 

lateral flight plans (P1 and P2), will have its initial section (up to the crossover position) 

identical to that of the first parent (P11). The final section (from the crossover position to the 

end) will be constructed based on the locations of the flight plan WPT offsets on the routing 

grid at the crossover position NM, and on the structure of the final section from the other 

parent lateral flight plan (P22).  
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The two parent lateral flight profiles can have different grid offsets at the points following 

the crossover position, relative to the orthodromic grid route, where the difference can be 

higher than the maximum step across the orthodromic grid route direction. Therefore, the 

final section of a child flight plan cannot be obtained by simply copying the final section 

from the other parent (P22 from P2). A transition section, that starts at the crossover position, 

the final WPT of the initial section (P11), and “intercepts” the new section (P22) at a further 

WPT, has to be constructed along the orthodromic route direction, one step at a time. At each 

step Sj along the orthodromic grid route direction, the offset of the next lateral flight plan 

WPT, situated at step Sj+1, is selected based on: 

1. The offset (along the direction normal to the orthodromic grid route) at the current 

location (Sj); and 

2. The offset of the target flight plan section (P22) WPT situated at step Sj+1. 

 

This selection ensures the fastest convergence to the target flight plan section after the 

crossover (P22). An example of child lateral flight plan resulted after a crossover between two 

parent flight plans is presented in Figure 4.11. 

 

 
 

Figure 4.11 Example of lateral flight plan crossover 
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A lateral flight plan mutation consists in modifying the offset (relative to the routing grid’s 

orthodromic route) of a lateral flight plan segment limit WPT (other than the first or the last 

WPT of the flight plan), randomly selected. The offset change is selected at random from a 

range of offsets that can be reached from the preceding WPT, with a step size within the 

imposed maximum range (sub-section 4.2.6.1). For the lateral flight plan section following 

the mutation location, the WPT’s offsets are shifted with a value equal to the difference 

between the mutated and initial offset at the mutation position, and bounded to the routing 

grid. An example of lateral flight plan mutation is presented in Figure 4.12. 

 

 
 

Figure 4.12 Example of lateral flight plan mutation 
 

4.2.6.3.3 Vertical flight plan crossover and mutation 

The vertical flight plan crossover operation is performed only on the cruise section of the 

flight plan, in the locations where the step altitude and speed changes are allowed (see sub-

section 4.2.6.2), so that the resulting child vertical profiles conform to the vertical flight plan 

template selected for the family of candidate flight plans. Similarly to the flight plan 

crossover operation, the vertical flight plan operation starts by selecting, at random, the 

location where the crossover is performed. Next, the child vertical flight plans are 



107 

constructed by copying the initial section from one parent and the final section from the other 

parent (Figure 4.13). 

 

 
 

Figure 4.13 Example of altitude vertical flight plan crossover, 
where no altitude correction is necessary 

 

Given that step descents are not allowed, the segment altitudes for the final sections of the 

child flight plans are adjusted, if needed, to values equal to or higher than the altitudes at the 

final point of the initial section (crossover position), as shown in Figure 4.14. 

 

 
 

Figure 4.14 Example of altitude vertical flight plan crossover, where an altitude 
correction is necessary in order to avoid a step descent 
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For the mutation operation, firstly the section where the mutation is performed (climb, cruise 

or descent) is selected at random, and then the parameter to be changed: 

1. The IAS, the MACH, or the target climb altitude (the initial cruise altitude) for the 

climb phase; 

2. The cruise segment and the altitude or speed for the selected segment – for the cruise 

phase; or 

3. The IAS or the MACH for the descent phase. 

 

As mentioned for the crossover operation, if the mutation performs an altitude change for a 

cruise segment, the new selected altitude must be equal to or higher than the altitude on the 

previous cruise segment, or than the initial cruise altitude (if the selected segment is the first 

cruise segment). 

 

4.2.7 Reference flight profile data (FlightAware) 

For each specific flight planning/optimization problem, the lateral and vertical flight plans 

are built based on the actual data for the flight: initial and final geographic locations for the 

flight trajectory limits (departure and destination airports or flight trajectory section limits), 

navigation constraints, aircraft data (performance data, weight, fuel load) and atmospheric 

conditions.  

 

In this paper, the set of candidate lateral and vertical flight plans, and the reference flight plan 

used for evaluating the performance of the optimization method, were constructed based on 

the flight track data of a real flight retrieved from the FlightAware (www.flightaware.com) 

website. This was done in order to generate a realistic optimization problem, and compare the 

optimal profile performance, identified by the proposed method, with the performance of a 

flight plan as close as possible to an “as flown” flight profile. 

 

FlightAware is a company that retrieves real time aircraft flight data from various sources 

(ACARS, transponders, ADS-B, radar, etc.) and provides a platform to access this 
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information, at different levels of detail, function of the subscription type. Information about 

the area covered by the real time data providers, the types of data, and the specific regions 

covered for each of the specific data type, can be found in FlightAware (n.d.a). For aircraft 

without ADS-B transmitters, the position of the aircraft is determined, under certain 

circumstances, by multilateration based on transponder data reception (FlightAware, n.d.b). 

For areas not covered by the data feeders the real time aircraft positions are estimated based 

on the flight plans submitted to the FAA.  

 

The flight track data used in this study were retrieved from FlightAware using Guest account 

privileges. The available flight track information is therefore a list of aircraft data points 

describing: 

1. The flown flight track: 

a. A set of geographic location overflown by the aircraft; 

b. Aircraft flight parameters in the set of overflown geographic locations: 

i. The date and time of crossing; 

ii. Aircraft altitude; 

iii. Aircraft heading; 

iv. Ground speed; and 

v. Rate of climb/descent. 

2. The submitted lateral flight plan data (flight route plan) is a list that enumerates: 

a. The name of the navigation point that defines a limit of a flight segment; 

b. The geographic location of the navigation point; 

c. The aircraft departure heading from that location (on the new segment); 

d. The distance to the next navigation point (the segment length); 

e. The distance remaining to the destination; and 

f. The distance flown from the initial point. 

 

The flight track data retrieved from FlightAware via a Guest account has important 

limitations that make it impossible to perform an accelerated simulation along the flight 

trajectory and compute the performance parameters for the flight (such as fuel burn). The 
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flight track data lacks essential information, such as: aircraft configuration (weight and fuel 

load), atmospheric conditions encountered by the aircraft, unknown moments and locations 

where the flight profile changes are initiated or end (the data points can be considered 

“random” data points), etc.  

 

An analysis of the flight track data showed that, for the flight track domains located in 

geographic areas not covered by the FlightAware data sources, the track data provides 

estimations of the geographic locations, crossing times and aircraft heading. However, the 

altitude, ground speed and rate of climb are set to zero.  

 

It was observed that, occasionally, for data points along the flight track, the sequence of 

crossing times and/or geographic locations are not in the natural order for flight track data 

(probably due to particular cases of position estimation using multilocation): 

1. A crossing time that is earlier that the crossing time at the previous location; and 

2. A sequence of flight track geographic locations that generates a succession of lateral 

flight track segments with excessive heading changes, which are not consistent with a 

normal flight for passenger aircraft. 

 

Given the facts presented above, the raw flight track data cannot be used as a reference flight 

profile. The reference flight profile must be created based on the filtered (corrected) flight 

track data, according to case-specific assumptions and criteria. 

 

4.3 Results 

This section presents the results obtained using an implementation of the proposed method in 

Matlab R2018a, on a PC based platform with a 2.3GHz AMD Phenom 9600B processor, 

4GB of RAM, and Windows 7 Enterprise operating system. The aircraft flight performance 

parameters used in the calculations were computed using an in-house toolbox, developed in 

Matlab, that uses the BADA 4.0 APM published by Eurocontrol. The evaluation of the 

proposed method was conducted using a Boeing 777-300ER aircraft performance model, for 
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which the BADA APM was available at LARCASE. The results presented in this paper were 

obtained for an initial aircraft mass (at the beginning of the flight trajectory under 

optimization) corresponding to a payload equal to 50% of the maximum payload, and a fuel 

quantity equal to 80% of the maximum fuel load for the aircraft model. 

 

The optimization scenario evaluated in this paper was the optimization of the flight trajectory 

(identification of the optimal flight plan) for a long flight. The optimized flight trajectory 

extends from a point in the climb phase, when the aircraft is at an altitude of 10,000 ft and a 

speed of 250 kn IAS (per FAA regulation 14 CFR Part 91.117 (FAA, n.d.b) the maximum 

speed at altitudes below 10,000 ft MSL), to a point in descent where the aircraft reaches an 

altitude of 10,000 ft at a speed of 250 kn IAS. The objective of the optimization was to 

identify the flight plan (the lateral and vertical components) that corresponds to a flight 

trajectory (flight track and altitude/speed profile) that minimizes the total cost for the flight. 

The total cost for the flight along the optimal flight plan, determined using the optimization 

method proposed in the paper, was compared with the total cost of a reference flight plan, 

where: 

1. The candidate flight plans, evaluated in the optimization, and the reference flight 

plan: 

a. Started at identical locations (geographic locations and altitudes), speeds, and 

time; and 

b. Ended at identical locations (geographic locations and altitudes) and speeds. 

2. The flight performance calculations were performed under identical conditions by: 

using the same aircraft model, initial aircraft configuration (fuel quantity and load), 

and climb/cruise/descent policies and strategies, etc. 

 

Ideally, the reference flight plan should be a known global optimal flight plan (for the initial 

– final point combination, aircraft model and configuration, etc.), resulting from an 

exhaustive search of the ensemble of candidate flight plans. This option is prohibitive due to 

the large number of candidate flight plans and the amount of time required to evaluate them. 

Another option would have been to use an “as flown” flight plan: a flight plan corresponding 
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to a real flight, recorded by the crew or flight operator, where all the relevant information 

(aircraft load and fuel, speed and altitude profiles, etc.) are known. This option was not 

available to the authors.  

 

The set of candidate flight plans evaluated in the optimization, and the reference flight plan 

used to evaluate the performance of the optimization method, were constructed based on the 

recorded flight track data of a real flight, retrieved from FlightAware. Specifically, the 

selected flight was Swiss 40 (SWR40), from Zurich (ZHR) to Los Angeles (LAX), flown on 

Feb 25th, 2019 (Figure 4.15 and Figure 4.16). This flight was selected based on aircraft type 

(matches the available APM aircraft model), and flight trajectory length (a very long flight). 

 

 
 

Figure 4.15 Recorded flight track for flight SWR40 (ZHR to LAX), 
on Feb. 25th, 2019 (FlightAware, 2019a) 

 

For three sections of the SWR40 reference track data (Figure 4.17), the FlightAware flight 

profile data contain only the estimated geographic locations and crossing times (possibly 

because the aircraft was beyond the range of the FlightAware ADS-B receivers); the ground 

speed, aircraft altitude and heading are set to 0. An analysis of the estimated aircraft track 

data showed that: 

1. For two sections, the maximum distance between an estimated location and the 

orthodromic route constructed between the two valid ADS-B data encompassing that 
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section, are 5.57 and 4.04 n.m., respectively. For the third section, the maximum 

distance is 26.9 n.m.; and 

2. The aircraft’s altitudes at the valid data WPTs locations that delimit each of the three 

segments are identical, and equal to 32,000 ft. Since step descents in cruise are 

generally avoided during normal operations, it can be assumed that the three sections 

are constant altitude cruise segments, at 32,000 ft. 

 

 
 

Figure 4.16 Recorded altitude and ground speed profiles for flight 
SWR40 (ZHR to LAX), on Feb. 25th, 2019 (FlightAware, 2019a) 

 

 
 

Figure 4.17 Illustration of the selected SWR40 flight profile section 
and the three domains containing estimated data 

 



114 

The SWR40 “recorded” flight data has been processed in order to identify and eliminate 

spurious flight track data (see sub-section 4.2.7). Only two track data WPTs were eliminated, 

WPTs 479 and 487, as they generated a succession of lateral flight track segments with 

excessive heading changes, which are not consistent with normal cruise flights. The reference 

flight track data for this study, denoted herein as “SWR40 reference track data”, was selected 

as the section of the processed SRW40 FlightAware track data between: 

1. The track data WPT where the aircraft was in climb, at the highest altitude lower than 

or equal to 10,000 ft; and 

2. The track data WPT where the aircraft was in descent, at the highest altitude lower 

than or equal to 10,000 ft. 

 

The initial and final points of the SWR40 reference track data represent the initial and final 

WPTs of the flight trajectory under optimization. The aircraft altitudes in the initial and final 

WPTs of the SWR40 reference track data, as resulted following the selection process, have 

been modified, from 9,970 ft and 9,951 ft, respectively, to 10,000 ft in order to match the 

evaluated optimization scenario. 

 

The flight performance calculations for the flight along a flight plan require 

information/predictions regarding the atmospheric conditions encountered by the aircraft 

during flight. The atmospheric data used in this study (air temperature and wind speeds along 

the geographic North and East axes) are GDPS forecasts issued by Environment Canada, on 

a longitude-latitude grid with a 0.6º x 0.6º resolution (see sub-section 4.2.3).  

 

Before downloading the forecast data, the prediction date, time interval, geographic area, and 

altitude domain for the atmospheric data of interest had to be determined. As the date and 

time values corresponding to the downloaded SWR40 reference track data (FlightAware 

data) were referenced to the Eastern Standard Time (EST), and the atmospheric forecast data 

issued by Environment Canada was referenced to the Universal Coordinate Time (UTC), the 

SWR40 reference track time data were converted to UTC. The domain of interest for the 

downloaded GRIB forecast data was then determined as follows: 
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1. The “geographic area of interest” (the latitude – longitude domain) was selected as 

the smallest GRIB atmospheric forecast data grid domain that contains the routing 

grid WPTs from which the set of candidate lateral flight plans are generated (see sub-

section 4.2.4.1); 

2. The “altitude domain of interest” was taken to be the smallest GRIB forecast grid 

altitude domain that includes the altitude range between 10,000 ft and the maximum 

cruise altitude for the aircraft model; and 

3. The GRIB time domain was taken as the “forecast grid time domain”, which includes: 

a. The aircraft crossing time at the initial WPT of the routing grid, as retrieved 

from the SWR40 reference track data; and 

b. The aircraft crossing time at the final WPT of the SWR40 reference track 

data, plus a “buffer interval” taken so that it covers the entire domain of flight 

times that can be obtained for the candidate flight plans. In this study, the time 

buffer interval has been chosen heuristically as six hours (approximately half 

the total flight time computed based on the FlightAware data). 

 

The selected GRIB forecast data also covers the geographic domain/altitude domain/time 

domain necessary to conduct the flight performance calculations for the reference profiles, as 

they are within the respective domains of the optimization candidate profiles. 

 

The lateral flight plan routing grid (Figure 4.18) between the initial and final WPTs, used in 

the flight plan optimization method, has been constructed using the methodology described 

in the sub-section 4.2.6.1. The characteristics of the routing grid considered in this study are: 

1. The orthodromic route between the initial and final WPTs of the flight trajectory is 

decomposed in a set of equal length sub-segments. The number of sub-segments is 

calculated as the rounded value of the quotient of the orthodromic route’s sea level 

length by the maximum acceptable orthodromic route sub-segment sea level length 

(integration step length). In this study, this maximal length was selected to be 

50 n.m.; 

2. The maximum deviation from the orthodromic route was selected as 500 n.m.; 
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3. The size of the lateral step for the WPTs situated on the orthodrome normal to the 

orthodromic route was selected as 10 n.m.; and 

4. At each flight trajectory step, the aircraft can advance to a WPT situated one step 

along the orthodromic route and a maximum of two steps (up or down) relative to the 

orthodromic route (see sub-section 4.2.6.1). 

 

 
 

Figure 4.18 The routing grid used in the optimization of the Feb 25th, 2019 
flight SWR40, from ZHR to LAX 

 

The generated routing grid has 104 nodes (WPTs) along the orthodromic route axis, and up 

to 101 nodes along the axis normal to the orthodromic route. As a result, each candidate 

lateral flight plan is defined by a set of NORT = 104 adjacent WPTs selected from the routing 

grid; each WPT is a step further along the orthodromic route and up to two steps offset along 

the axis normal to the orthodromic route.  

 

In order to speed up the accelerated flight performance calculations, and thus, the 

optimization process, the sea level segment lengths and departure/arrival headings for all 

possible routing grid segments were computed once, in advance, and stored in a data 

structure associated with the routing grid. For each node (WPT) of the routing grid, the data 

structure stores the sea level segment lengths and departure headings to all possible/valid 

advancing step WPTs. The time savings obtained from not having to compute the segment 

parameters come at the expense of an increased memory footprint. Similarly, the atmospheric 
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conditions in each of the routing grid WPTs were precompiled for the set of altitudes and 

time domains of interest, and stored in the corresponding routing grid WPT’s data structure. 

 

In this paper, the optimization method was applied for the case where the flight profile under 

optimization: 

1. Starts in climb, at an altitude of 10,000 ft Above Sea Level (ASL) and an aircraft 

speed of 250 kn IAS; 

2. Ends in descent, at 10,000 ft ASL and 250 kn IAS; 

3. The climb and descent are performed at [IAS MACH] scheduled speeds, and the 

cruise at MACH speeds; 

4. Climbs are performed at MCMB thrust setting; 

5. Accelerations in cruise are performed at MCRZ thrust setting; 

6. Descents, and decelerations in cruise, are performed at IDLE thrust setting; 

7. The lateral and vertical flight plans conform to the templates presented in sub-

sections 4.2.6.1 and 4.2.6.2; 

8. In cruise, the aircraft can only perform step climbs (no step descents); 

9. The ceiling cruise altitude (Young, 2018) for a selected cruise speed is considered as 

the maximum altitude, in multiples of 1,000 ft, at which the aircraft is still capable of 

performing a 300 fpm climb with the TLA set to MCRZ and at a load factor equal to 

1.2; and 

10. For a given cruise altitude, the range of cruise speeds is limited to the valid flight 

envelope speeds larger than the minimum drag speed (for speed stability (FAA, 

2018)) at which the aircraft is still capable of performing a 300 fpm climb with the 

TLA set to MCRZ and at a load factor equal to 1.2. 

 

The lateral flight plans generated randomly, as presented in sub-section 4.2.6.1, and those 

resulted from genetic operations most likely miss a set of lateral flight plans that might prove 

important relative to optimal flight profile exploration: the orthodromic route (the shortest 

route), and routes parallel to the orthodrome, at preset offset values on both sides of the 
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orthodromic route. Therefore, in the first generation, the lateral flight plans are generated as 

follows: 

1. The orthodromic route; 

2. Two lateral flight plans along the maximum deviation grid points (maximum offsets 

on each side of the orthodrome); 

3. Twenty-six lateral flight plans parallel to the orthodrome, with offsets of a multiple of 

three steps relative to the orthodrome (on both sides of the orthodromic route); and 

4. One random lateral flight plan. 

 

The set of candidate vertical flight plans were constructed based on the following 

assumptions: 

1. The evaluated cruise altitudes are multiples of 1,000 ft, between 28,000 ft and the 

maximum cruise altitude for the aircraft model; 

2. The range of evaluated IAS speeds was taken to be between 250 kn and 

VMO – 10 kn, with a step of 1 kn; 

3. The range of evaluated MACH speeds was taken to be between 0.6 and MMO – 0.01, 

with a step of 0.001; 

4. The set of valid initial cruise altitudes, and the valid speed domain at each initial 

altitude (within the flight envelope limits), were determined based on the aircraft’s 

weight at 28,000 ft, after a climb at 250 kn IAS constant speed from the altitude of 

10,000 ft; 

5. The climb MACH speed was selected from the valid initial speed domain, based on 

the selected initial cruise altitude; 

6. The aircraft maintains the initial cruise altitude and speed until at least the 8th WPT of 

the lateral flight plan (approximately 400 n.m. from the initial point). The first WPT 

where step climbs and speed changes can occur is the 8th WPT of the lateral flight 

plan; 

7. The aircraft enters DESCENT mode at the 96th WPT of the lateral flight plan 

(approximately 400 n.m. before reaching the final WPT). No step climb or cruise 

speed changes can occur beyond this WPT; 
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8. The cruise step climbs and speed changes can occur only at predetermined locations 

along the lateral flight plan: WPTs delimiting sections composed by five lateral 

profile segments (approximately 250 n.m.), starting at the 8th WPT (i.e. WPT8, 

WPT13, WPT18, WPT23, etc.). These are the locations where the step climb or speed 

changes can be initiated; 

9. When both a step climb and a speed change occur at the same WPT, the aircraft first 

performs an acceleration/deceleration, at the initial altitude, and then the step 

climb; and 

10. The genetic crossover operations can only occur in cruise, at the altitude and speed 

step WPTs; 

 

A candidate flight plan can determine an invalid flight profile, where: 

1. The flight can require more fuel than is available on board. This can occur for flight 

plans that generate: 

a. Very long flight tracks; 

b. Long flight times (low speeds); and 

c. High fuel burn rates (high speeds); or where 

2. The altitude – speed flight profile is outside the aircraft’s flight envelope for the 

aircraft weight at that point of the flight trajectory. 

 

The approach used in the accelerated flight plan performance evaluation regarding invalid 

flight plans influences the evolution of the genetic algorithm optimization. For the case 

where the flight plan was invalid due to fuel constraints (requires more fuel than available) a 

very large penalty was assigned as the total cost (a fuel burn equal to twice the initial fuel 

quantity on board, and a 48-hours flight time). This cost is higher than any total cost that can 

be obtained for a valid flight plan.  

 

For the case in which the flight plan was invalid due to flight envelope limitations, two 

approaches were studied. In the first approach, denoted as the Corrected Flight Plan (CFP), 

the flight plans resulted following the accelerated flight performance estimations were 
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always valid. During the accelerated flight performance calculations, any invalid altitude – 

speed profiles were corrected (set to the closest flight envelope domain limit combination). 

The priority was given to the selected altitude: if a valid speed existed for the selected 

altitude, then the flight plan speed was set to the valid speed value closest to the selected 

flight plan speed. Otherwise, the flight plan altitude was set to the highest valid altitude for 

the aircraft weight, and the speed was set to the valid value closest to the selected flight plan 

speed. 

 

In the second approach, denoted as the Non Corrected Flight Plan (NCFP), the flight plan 

was not corrected, and a very large penalty total cost was assigned to it. Thus, although the 

flight plan had one or more invalid flight plan segments, it had a chance to be selected as a 

parent for crossover and/or mutation operations, and to propagate its “genetic information” to 

the next generation. The advantage of the former approach is that it better explores the flight 

envelope’s limit region, and the new population is generated based on valid flight plans. The 

disadvantage is the reduction in population diversity (the invalid flight profiles are excluded 

from the candidate set and cannot contribute with genetic material – combinations of flight 

profile configurations).  

 

The population size for the genetic optimization algorithm was selected to be 30 individuals 

(candidate flight plans), representing a trade-off between the computation time per 

population iteration and the diversity/exploration of the candidate set. The genetic algorithm 

was run for 500 population generations. Each new generation was constructed by copying the 

best two individuals (flight plans) from the previous generation, adding sixteen individuals 

generated by crossover (each parent selected by roulette wheel selection), generating six 

parents by the mutation of randomly selected parents, and adding six new random flight 

plans (to further add diversity). 

 

The optimization was performed for six CI values: 0 (fuel burn minimization), 10, 30, 50, 

100, and 999 (flight time minimization). Given the fact that the genetic algorithm 

optimization does not guarantee an optimum (as the results of the optimization are a function 
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of the randomly generated (initial) population/flight plan candidates, of random genetic 

operations such as crossover and mutation, and of the number of genetic algorithm 

iterations), the genetic algorithm optimization was performed 10 times for each CI value. 

This set of optimizations should give some information regarding the dispersion of the 

optimization algorithm’s results. 

 

The optimal profile total cost, obtained for the set of CI values, and test runs are presented in 

Table 4.1, for the case where the invalid vertical flight plans are corrected (CFPs) relative to 

the aircraft’s flight envelope, and in Table 4.2, for the case when they are not corrected 

(NCFPs).  

 

In these tables: 

 

 ∆𝑇𝐶஼ூ,௜ = 𝑇𝐶஼ூ,௜ − min௜ ሺ𝑇𝐶஼ூሻ (4.7) 

 

and 

 

 ∆𝑇𝐶௣೔ห஼ூ = 100 ×  𝑇𝐶஼ூ,௜ − min௜ ሺ𝑇𝐶஼ூሻmin௜ ሺ𝑇𝐶஼ூሻ   (4.8) 

 

represent the absolute value and percentage (relative error) differences between the total cost 

obtained for a CI value optimization test run and the best total cost obtained for the set of 

optimization tests for the CI value. The elements marked with bold font in Table 4.1 and in 

Table 4.2 represent the minimum total cost (best flight profile optimization) results for the CI 

value and invalid flight plan correction strategy. 

 

It can be observed that, for the optimization test runs conducted in this study, the maximum 

TC variation was smaller than 1%: 0.686% for CFPs (Table 4.1, test run 6 at CI = 0) and 

0.634% for NCFPs (Table 4.2, test run 2 at CI = 0). 
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Table 4.1 Optimization results with Corrected Flight Plans (CFPs) 
 

CI Parameter  
Type 

Optimization test run 
1 2 3 4 5 6 7 8 9 10 

0 
TC [kg] 97,284.56 97,255.46 97,375.39 96,794.84 97,098.34 97,459.08 97,324.32 96,889.61 97,284.17 97,416.36 
∆TC [kg] 489.72 460.61 580.55 0 303.5 664.24 529.48 94.77 489.33 621.51 
∆TCp [%] 0.506 0.476 0.6 0 0.314 0.686 0.547 0.098 0.506 0.642 

10 
TC [kg] 103,932.06 104,235.63 104,326.76 104,445.75 103,790.23 104,159.03 103,965.91 104,138.53 104,319.06 104,060.24 
∆TC [kg] 141.82 445.4 536.53 655.51 0 368.8 175.67 348.29 528.82 270 
∆TCp [%] 0.137 0.429 0.517 0.632 0 0.355 0.169 0.336 0.51 0.26 

30 
TC [kg] 117,501.44 117,588.86 117,584.14 117,228.6 117,473.59 117,579.13 117,441.14 117,462.96 117,499.28 117,693.34 
∆TC [kg] 272.83 360.25 355.54 0 244.99 350.53 212.53 234.36 270.67 464.74 
∆TCp [%] 0.233 0.307 0.303 0 0.209 0.299 0.181 0.2 0.231 0.396 

50 
TC [kg] 131,261.96 131,098.73 130,942.43 131,054.45 131,053.38 131,346.16 130,909.73 131,447.88 131,118.3 130,877.31 
∆TC [kg] 384.66 221.42 65.12 177.14 176.07 468.85 32.43 570.57 240.99 0 
∆TCp [%] 0.294 0.169 0.05 0.135 0.135 0.358 0.025 0.436 0.184 0 

100
TC [kg] 164,411.34 164,748.05 164,245.42 164,651.46 164,669.79 164,258.06 164,486.55 163,942.14 164,181.92 164,657.16 
∆TC [kg] 469.2 805.91 303.28 709.32 727.65 315.92 544.41 0 239.78 715.02 
∆TCp [%] 0.286 0.492 0.185 0.433 0.444 0.193 0.332 0 0.146 0.436 

999
TC [kg] 742,411.11 742,762.18 744,984.08 747,027.97 745,462.78 743,679.02 744,526.92 744,791.69 743,401.48 743,525.06 
∆TC [kg] 0 351.06 2,572.97 4,616.85 3,051.66 1,267.9 2,115.8 2,380.58 990.36 1,113.94 
∆TCp [%] 0 0.047 0.347 0.622 0.411 0.171 0.285 0.321 0.133 0.15 

 

Table 4.2 Optimization results with Non-Corrected Flight Plans (NCFPs) 
 

CI Parameter 
Type 

Optimization test run 
1 2 3 4 5 6 7 8 9 10 

0 
TC [kg] 97,167.92 97,539.09 97,211.42 97,099.68 97,268.38 97,364.14 97,182.57 97,236.88 96,924.26 96,937.47 
∆TC [kg] 243.66 614.83 287.16 175.41 344.12 439.88 258.31 312.62 0 13.21 
∆TCp [%] 0.251 0.634 0.296 0.181 0.355 0.454 0.267 0.323 0 0.014 

10 
TC [kg] 104,050.29 104,055.24 104,036.46 103,664.28 104,018.96 104,021.28 104,073.65 103,860.84 103,900.16 104,133.61 
∆TC [kg] 386.01 390.96 372.17 0 354.67 357 409.37 196.56 235.88 469.33 
∆TCp [%] 0.372 0.377 0.359 0 0.342 0.344 0.395 0.19 0.228 0.453 

30 
TC [kg] 117,256.72 117,431.76 117,198.77 117,306 117,138.52 116,904.46 117,491.92 117,465.64 117,503.34 117,453.59 
∆TC [kg] 352.26 527.3 294.31 401.55 234.07 0 587.46 561.18 598.88 549.14 
∆TCp [%] 0.301 0.451 0.252 0.344 0.2 0 0.503 0.48 0.512 0.47 

50 
TC [kg] 131,142.84 130,748.98 130,518.34 131,031.24 130,891.63 130,923.48 130,794.07 131,097.4 130,928.26 130,929.18 
∆TC [kg] 624.5 230.64 0 512.9 373.29 405.14 275.73 579.06 409.91 410.84 
∆TCp [%] 0.479 0.177 0 0.393 0.286 0.31 0.211 0.444 0.314 0.315 

100 
TC [kg] 164,372.44 164,318.54 164,311.78 163,445.1 164,438.76 164,426.9 164,127.93 164,139.71 164,435.83 163,887.5 
∆TC [kg] 927.34 873.43 866.67 0 993.65 981.8 682.82 694.6 990.72 442.39 
∆TCp [%] 0.567 0.534 0.53 0 0.608 0.601 0.418 0.425 0.606 0.271 

999 
TC [kg] 742,299.57 742,234.21 741,906.71 740,670.7 740,129.31 741,468.03 740,791.68 740,609.28 740,443.96 740,350.8 
∆TC [kg] 2,170.25 2,104.89 1,777.39 541.39 0 1,338.72 662.36 479.97 314.64 221.49 
∆TCp [%] 0.293 0.284 0.24 0.073 0 0.181 0.09 0.065 0.043 0.03 

 

A comparison between the best and worst optimization results for the two approaches 

(corrected vertical flight plans versus not corrected) presented in Table 4.3, obtained based 

on the data from Table 4.1 and Table 4.2, shows that the results obtained for NCFPs are 

better than those for CFPs (except for CI = 0). When the best optimization results (CFPs vs. 

NCFPs) are compared (TCMin), the maximum TC difference is 0.308% (obtained for CI = 

999). For the worst-case optimization results (TCMax), the maximum difference is 0.673%. 



123 

Table 4.3 Comparison between the minimum and maximum optimized 
TC for the cases where the vertical flight plan is corrected vs. not corrected 

 

CI 

TCMin TCMax 
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0 96,794.84 96,924.26 -129.42 -0.134 97,459.08 97,539.09 -80.01 -0.082 
10 103,790.23 103,664.28 125.95 0.121 104,445.75 104,133.61 312.14 0.3 
30 117,228.6 116,904.46 324.14 0.277 117,693.34 117,503.34 190 0.162 
50 130,877.31 130,518.34 358.97 0.275 131,447.88 131,142.84 305.04 0.233 
100 163,942.14 163,445.1 497.04 0.304 164,748.05 164,438.76 309.29 0.188 
999 742,411.11 740,129.31 2,281.8 0.308 747,027.97 742,299.57 4,728.4 0.637 

 

The execution times for the optimization method and the two approaches relative to the 

invalid flight plans are presented in Table 4.4. It can be noted that the execution time for the 

case where the invalid flight plans are corrected (CFP) is more than twice longer than for the 

case where they are not corrected (NCFP). This is due to the fact that, when CFP is 

employed, for each segment, before computing the flight performance for a sub-segment, the 

altitude-speed combination is validated relative to the flight envelope. If the altitude – speed 

combination is not valid, the appropriate valid combination must be determined. In both 

cases, the long execution time can be attributed, in part, to the long flight, the complexity and 

implementation of the accelerated segment performance calculations, by using an aero-

propulsive aircraft performance model, and the large number of sub-segments (integration 

steps) determined by the lateral flight plan (routing grid) and the vertical flight plan. 

 

The flight plan used as the reference for comparing the performance of the proposed 

optimization method was generated based on the SWR40 reference track data. The 

limitations of the FlightAware flight track data are presented in sub-section 4.2.7 (i.e. 

unknown aircraft configuration, unknown atmospheric conditions encountered by the 

aircraft, unknown precise times and locations where the flight profile changes occur, etc.). 

An optimal flight plan (lateral path and altitude-speed flight profile) is specific for an 
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aircraft’s configuration and atmospheric conditions. Therefore, a realistic reference flight 

plan cannot be constructed by retrieving data from the recorded data. 

 

Table 4.4 Optimization execution times 
 

 CI 
Execution time (h) 

Optimization test run Min Max Avg. Standard 
deviation 1 2 3 4 5 6 7 8 9 10 

CF
P 

0 3.15 3.20 3.13 3.08 3.16 3.10 3.05 3.07 3.13 3.13 3.05 3.20 3.12 0.045 
10 3.10 3.12 3.13 3.04 3.12 3.07 3.10 3.10 3.10 3.14 3.04 3.14 3.10 0.028 
30 3.15 3.14 3.08 2.98 3.13 3.11 3.10 3.09 3.15 3.11 2.98 3.15 3.11 0.049 
50 3.15 3.15 3.12 3.06 3.15 3.10 3.11 3.10 3.10 3.13 3.06 3.15 3.12 0.030 

100 3.12 3.16 3.14 3.03 3.15 3.07 3.07 3.10 3.08 3.09 3.03 3.16 3.10 0.043 
999 3.19 3.10 3.19 3.05 3.20 3.10 3.12 3.08 3.15 3.15 3.05 3.20 3.13 0.052 

N
CF

P 

0 1.49 1.19 1.31 1.24 1.14 1.22 1.45 1.27 1.43 1.44 1.14 1.49 1.32 0.125 
10 1.27 1.22 1.31 1.31 1.45 1.41 1.36 1.31 1.39 1.48 1.22 1.48 1.35 0.083 
30 1.29 1.50 1.27 1.23 1.40 1.26 1.31 1.37 1.49 1.47 1.23 1.50 1.36 0.100 
50 1.24 1.33 1.43 1.28 1.34 1.67 1.28 1.30 1.57 1.41 1.24 1.67 1.39 0.138 

100 1.19 1.38 1.33 1.17 1.09 1.40 1.19 1.28 1.36 1.36 1.09 1.40 1.28 0.107 
999 1.27 1.25 1.41 1.22 1.23 1.33 1.28 1.28 1.50 1.17 1.17 1.50 1.29 0.097 

 

The reference lateral flight plan was constructed by retaining, from the SWR40 reference 

track data, a subset of WPTs that best approximate the lateral flight trajectory using the 

minimum number of orthodromic segments. The selection of the WPTs that define the 

reference lateral flight plan starts with the initial WPT of the SWR40 reference track. At each 

step, a new WPT is selected such that it results in the longest orthodromic segment for which 

the distance from the orthodromic segment to each of the SWR40 reference track data WPTs, 

situated in-between the two selected WPTs that delimit the orthodromic segment, is smaller 

than 5 n.m. Two more WPTs, denoted as WPTV1 and WPTV2, were added at locations 

where the vertical flight profile changes occur: 

1. The location of the End of Climb phase/beginning of the Cruise phase, selected at 

300 n.m. from the initial WPT; and 

2. The location of the End of Cruise phase/beginning of the Descent phase, selected at 

300 n.m. before the final WPT. 

 

If such a location was already among those selected as a lateral flight plan WPT, then there is 

no need to add it to the reference flight plan.  
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Figure 4.19 The significant WPTs of the reference lateral flight plan 

 
 

Figure 4.20 Altitude profile for the reference profile 
 

The lateral component of the reference flight trajectory and the selected significant WPTs, 

corresponding to the reference flight plan, resulted by following the process described above, 

are presented in Figure 4.19. During the accelerated flight simulation each segment was 

decomposed into sub-segments (integration steps) with a maximum sea-level length of 50 

n.m., on which the same laws of variation describe the aircraft performance parameters and 

evolution. These WPTs are not represented in Figure 4.19 because they are specific for the 
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selected flight plan parameters, and they are determined during the accelerated flight 

performance calculations. 

 

The altitude component of the reference vertical flight plan, the initial, final and cruise flight 

altitudes, as well as the points where the cruise altitude changes occur along the flight track, 

were all obtained from the SWR40 reference track data (Figure 4.20). 

 

Given the limitations of the FlightAware flight track data, and in order to obtain a good 

reference profile, the speed component of the reference flight plan was obtained following an 

optimization for the aircraft weight (the same value as used in the proposed method 

evaluation), atmospheric conditions, reference lateral flight plan and altitude flight plan. The 

structure of the candidate reference plan speed profile is constructed as follows: 

1. A climb and descent at [IAS, MACH] speed schedule pairs; and 

2. It was assumed that the constant altitude cruise sections are flown at constant speed. 

Thus, the cruise section contains four constant speed cruise segments, corresponding 

to the four constant altitude cruise segments. 

 

The structure of the speed profile is consistent with the employed aircraft climb/descent 

speed profiles, and the current navigation paradigm (long cruise segments at constant speed) 

on busy airways, such as oceanic routes and congested airspace. 

 

The speed optimization was performed using a genetic algorithm, similar to the one used in 

the proposed method (in this case only the speed changes were considered). The speed 

optimization was performed five times for each CI value. The population size for the genetic 

algorithm was selected to be 30 and the number of generations was set at 300. As in the case 

of the proposed optimization method, when a profile speed candidate was invalid, the 

reference speed flight plan optimization was conducted using two approaches: Corrected 

Speed Flight Plan (CFP) and Non-Corrected Speed Flight Plan (NCFP). 
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Table 4.5 Reference profile optimization results 
 

 CI Parameter Type Reference flight plan optimization run TCRSmin 
[kg] 

TCRSmax  
[kg] 1 2 3 4 5 

CF
P 

0 

TCRS [kg] 98,364.37 98,369.11 98,361.17 98,353.25 98,372.26 98,353.25 98,372.26 
∆TCRS [kg] (TCRS-TCRSmin) 11.12 15.86 7.92 0 19.015 0 19.015 

∆TCRSp [%] (100 ∗ ∆𝑇𝐶𝑅𝑆𝑇𝐶𝑅𝑆𝑚𝑖𝑛) 0.0113 0.0161 0.0081 0 0.0193 0 0.0193 

10 
TCRS [kg] 105,311.0 105,320.56 105,330.45 105,322.44 105,313.86 105,311.09 105,330.45 

∆TCRS [kg] (TCRS-TCRSmin) 0 9.46 19.35 11.34 2.77 0 19.35 
∆TCRSp [%] (100 ∗ ∆𝑇𝐶𝑅𝑆𝑇𝐶𝑅𝑆𝑚𝑖𝑛) 0 0.009 0.0184 0.0108 0.0026 0 0.0184 

30 
TCRS [kg] 119,192.5637 119,123.9429 119,227.1199 119,207.9352 119,185.7595 119,123.9429 119,227.11 

∆TCRS [kg] (TCRS-TCRSmin) 68.6208 0 103.177 83.9923 61.8165 0 103.17 
∆TCRSp [%] (100 ∗ ∆𝑇𝐶𝑅𝑆𝑇𝐶𝑅𝑆𝑚𝑖𝑛) 0.0576 0 0.0866 0.0705 0.0519 0 0.0866 

50 
TCRS [kg] 132,980.1012 133,060.4954 132,896.1737 132,921.6528 132,981.7899 132,896.1737 133,060.49 

∆TCRS [kg] (TCRS-TCRSmin) 83.9275 164.3216 0 25.4791 85.6162 0 164.32 
∆TCRSp [%] (100 ∗ ∆𝑇𝐶𝑅𝑆𝑇𝐶𝑅𝑆𝑚𝑖𝑛) 0.0632 0.1236 0 0.0192 0.0644 0 0.1236 

100 
TCRS [kg] 167,298.4173 167,238.4737 167,349.724 167,301.4764 167,345.7783 167,238.4737 167,349.72 

∆TCRS [kg] (TCRS-TCRSmin) 59.9436 0 111.2503 63.0027 107.3046 0 111.25 
∆TCRSp [%] (100 ∗ ∆𝑇𝐶𝑅𝑆𝑇𝐶𝑅𝑆𝑚𝑖𝑛) 0.0358 0 0.0665 0.0377 0.0642 0 0.0665 

999 
TCRS [kg] 765,706.5453 768,088.8428 767,239.7605 766,411.3878 766,658.9698 765,706.5453 768,088.84 

∆TCRS [kg] (TCRS-TCRSmin) 0 2,382.2975 1,533.2152 704.8425 952.4245 0 2,382.29 
∆TCRSp [%] (100 ∗ ∆𝑇𝐶𝑅𝑆𝑇𝐶𝑅𝑆𝑚𝑖𝑛) 0 0.3111 0.2002 0.0921 0.1244 0 0.3111 

N
CF

P 

0 
TCRS [kg] 99,653.146 99,123.4788 99,420.2238 99,154.2192 100,492.4391 99,123.4788 100,492.43 

∆TCRS [kg] (TCRS-TCRSmin) 529.6673 0 296.745 30.7404 1,368.9604 0 1,368.96 
∆TCRSp [%] (100 ∗ ∆𝑇𝐶𝑅𝑆𝑇𝐶𝑅𝑆𝑚𝑖𝑛) 0.5344 0 0.2994 0.031 1.3811 0 1.3811 

10 

TCRS [kg] 106,292.7885 106,042.2328 106,052.2285 105,936.0668 106,943.0873 105,936.06 106,943.08 
∆TCRS [kg] (TCRS-TCRSmin) 356.7217 106.166 116.1617 0 1,007.0205 0 1,007.0205 

∆TCRSp [%] (100 ∗ ∆𝑇𝐶𝑅𝑆𝑇𝐶𝑅𝑆𝑚𝑖𝑛) 0.3367 0.1002 0.1097 0 0.9506 0 0.9506 

30 

TCRS [kg] 119,803.3294 119,753.1844 119,792.4048 120,329.545 119,698.7655 119,698.76 120,329.54 
∆TCRS [kg] (TCRS-TCRSmin) 104.5639 54.4189 93.6394 630.7795 0 0 630.77 

∆TCRSp [%] (100 ∗ ∆𝑇𝐶𝑅𝑆𝑇𝐶𝑅𝑆𝑚𝑖𝑛) 0.0874 0.0455 0.0782 0.527 0 0 0.527 

50 
TCRS [kg] 133,569.0875 133,982.639 133,451.4108 133,578.9475 133,900.8273 133,451.41 133,982.63 

∆TCRS [kg] (TCRS-TCRSmin) 117.6766 531.2281 0 127.5367 449.4165 0 531.22 
∆TCRSp [%] (100 ∗ ∆𝑇𝐶𝑅𝑆𝑇𝐶𝑅𝑆𝑚𝑖𝑛) 0.0882 0.3981 0 0.0956 0.3368 0 0.3981 

100 
TCRS [kg] 167,922.7594 167,984.945 167,975.5775 168,099.6192 167,832.6943 167,832.69 168,099.61 

∆TCRS [kg] (TCRS-TCRSmin) 90.0651 152.2508 142.8833 266.925 0 0 266.925 
∆TCRSp [%] (100 ∗ ∆𝑇𝐶𝑅𝑆𝑇𝐶𝑅𝑆𝑚𝑖𝑛) 0.0537 0.0907 0.0851 0.159 0 0 0.159 

999 

TCRS [kg] 774,492.9721 772,589.8084 771,007.7656 770,817.4302 770,727.5163 770,727.51 774,492.97 
∆TCRS [kg] (TCRS-TCRSmin) 3,765.4558 1,862.2922 280.2493 89.9139 0 0 3,765.45 
∆TCRSp [%] (100 ∗ ∆𝑇𝐶𝑅𝑆𝑇𝐶𝑅𝑆𝑚𝑖𝑛) 0.4886 0.2416 0.0364 0.0117 0 0 0.4886 

 

Table 4.5 presents the results obtained for the reference flight plan speed optimization for 

each of the five CI test runs. The flight plan that yielded the best total cost among the five 

test runs (marked by the column TCRSmin) was retained as the speed component of the 

reference vertical flight plan. 
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A comparison between the best/worst flight plan optimization results obtained using the 

proposed method, and the best reference flight plans is shown in Table 4.6. The TCRSmin in 

Table 4.6 represents the best total cost (best flight optimization results) obtained for the 

reference flight profile, cost index and invalid flight profile correction strategy. The other 

two columns (“Best case optimization results” and “Worst case optimization results”) 

represent the best and worst optimizations results obtained using the proposed methodology 

(minimum and maximum total costs) and the comparison with the best reference profile 

performance. 

 

Table 4.6 Flight plan optimization results: comparison between 
the best and worst optimization results versus the best 

reference flight plan 
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CF
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0 98,353.25 96,794.84 -1,558.41 -1.585 97,459.08 -894.17 -0.909 
10 105,311.09 103,790.23 -1,520.86 -1.444 104,445.75 -865.34 -0.822 
30 119,123.94 117,228.6 -1,895.34 -1.591 117,693.34 -1,430.6 -1.201 
50 132896.17 130,877.31 -2,018.86 -1.519 131,447.88 -1,448.29 -1.09 
100 167238.47 163,942.14 -3,296.33 -1.971 164,748.05 -2,490.42 -1.489 
999 765706.55 742,411.11 -23,295.44 -3.042 747,027.97 -18,678.58 -2.439 

N
CF

P 

0 99,123.48 96,924.26 -2,199.22 -2.219 97,539.09 -1,584.39 -1.598 
10 105,936.07 103,664.28 -2,271.79 -2.144 104,133.61 -1,802.46 -1.701 
30 119,698.77 116,904.46 -2,794.31 -2.334 117,503.34 -2,195.43 -1.834 
50 133,451.41 130,518.34 -2,933.07 -2.198 131,142.84 -2,308.57 -1.73 
100 167,832.69 163,445.1 -4,387.59 -2.614 164,438.76 -3,393.93 -2.022 
999 770,727.52 740,129.31 -30,598.21 -3.97 742,299.57 -28,427.95 -3.688 

 

It can be observed that, for the case where the invalid flight plans are corrected (CFP), the 

best optimization results (optimal flight plan obtained using the proposed method vs. the 

reference flight plan) gave a reduction of the total cost of between 1.585% and 3.042%. In 

the worst case, the reduction was found to be between 0.909% and 2.439%.  

 

When the invalid flight plans were not corrected (NCFP), the results were found to be better: 

in the best case the total cost reduction was between 2.144% and 3.97%, and the in worst 

case the total cost reduction was between 1.598% and 3.688%. 
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For the evaluated test cases, the best results (in terms of both optimization performance and 

execution time) were obtained when the invalid candidate flight plans were not corrected 

relative to the aircraft’s flight envelope limitations (NCFP). 

 

4.4 Conclusions 

This paper presents a new optimization method for flight trajectory optimization, in which 

the candidate flight trajectories, and thus the optimal flight trajectory, are defined as flight 

plans decomposed into two elements: a lateral flight plan and a vertical flight plan. The 

proposed method uses a genetic algorithm to search for the “optimum” flight plan among the 

set of candidate flight plans that minimizes the total cost for the flight. The accelerated flight 

performance calculations, which construct the flight trajectory resulted from executing a 

candidate flight plan, and compute the flight performance parameters, were conducted using 

an in-house aircraft performance model that uses the BADA 4.0 APM. The test scenario 

employed for the evaluation of the proposed method was constructed based on the recorded 

flight trajectory of a real flight, retrieved from FlightAware, performed with the same aircraft 

model as the one used in the calculations. 

  

As expected for optimizations performed using genetic algorithms, for an identical 

optimization problem (identical input data), the optimal solution varied from test run to test 

run. However, for the tests performed in this study, for each of the evaluated test scenarios 

the difference between the optimum flight plan total costs obtained for the ten runs was less 

than 1%. It can be observed that, the case where the candidate flight plans are “corrected” 

(CFP) produces the worst results, both in terms of total cost and total execution time, relative 

to the case where the invalid flight plan is assigned a large penalty total cost (NCFP). The 

authors believe that, for the cases where the candidate flight plans are “corrected”, even 

though in each new generation all the child flight plans are valid relative to the aircraft’s 

flight envelope, there is a loss of optimality because of the fact that, overall, the populations 

are “less diverse”. The increase in execution time is due to the fact that for each invalid 

altitude/speed flight plan segment additional (complex) computations are required to identify 
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the appropriate flight envelope limit combination. For the NCFP approach and the set of CI 

values considered as test cases, the total cost reduction for the optimal flight plan relative to 

the best obtained reference flight plan was found to be between 2.144% and 3.97%, and the 

worst case gave cost reductions between 1.598% and 3.688%. The authors therefore estimate 

that the longer execution time renders the method more appropriate for flight planning rather 

that real time/online optimization. The longer execution time is due to the large number of 

flight plans evaluated during the optimization, the very long flight (5,130.3 n.m sea level 

distance along the orthodromic route), with its large number of integration steps/flight 

performance calculation steps, and partially due to the flight performance calculations using 

a dynamic atmosphere model and the aero propulsive/Total Energy Model aircraft 

performance model. 

 

For any optimal flight plan (local or global), there is a correlation between the lateral and 

vertical flight plans. Changing/imposing one component of a flight plan could result in a 

different optimal solution, with a different total cost, and different configuration for the other 

components of the flight plan.  

 

Future work could investigate the performance of a more computationally expensive 

optimization approach, where at each step of the genetic algorithm: 

1. The new population is generated using the genetic operations applied on the lateral 

flight plan (the vertical flight plan is retained from a parent); and then, 

2. For each member of the new population a new search (e.g. branch and bound, 

annealing, etc.) identifies the optimal vertical flight plan. 

 

Another direction of investigation could evaluate the execution time performance of the 

proposed method when the accelerated flight performance calculations are performed using a 

simplified aircraft performance model, based on interpolation tables, mainly used in FMS 

platforms. 
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Résumé 
 

Cet article propose une nouvelle méthode pour l’optimisation des trajectoires de vol, dérivée 

de la méthode Non-dominated Sorting Genetic Algorithm II utilisée dans les optimisations 

multi-objectives. La nouvelle méthode trouve, en parallèle, un ensemble des plans de vol 

optimaux pour un segment de trajectoire de vol. Chacune des solutions est la solution 

optimale (consommation minimale) pour une des contraintes d’heure d’arrivée requise de 

l’ensemble des contraintes de temps imposées pour le point final de la trajectoire de vol. 

L’ensemble de contraintes de temps sont choisis en tant que leurs limites sont contiguës, 

c.a.d. elles couvrent entièrement un domaine de temps sélectionné. La méthode 

d’optimisation proposée peut être appliquée dans de futures paradigmes opérationnelles, 

comme Trajectory Based Operations/free flight, où les avions ne doivent pas suivre des 

routes prédéterminées. La méthode proposée est destinée à aider les décisionnaires, dans la 

phase de planification du vol quand il existe une contrainte de temps ou un temps de passage 

préféré pour le point final de la trajectoire de vol à optimiser. Les décideurs peuvent choisir, 

parmi l’ensemble des profils de vol optimaux, celui qui remplit mieux leur critères 

(consommation minimale ou temps de passage). Si le plan de vol est rejeté par le système de 

gestion du trafic aérien, ils peuvent choisir le suivant meilleur plan de vol parmi l’ensemble 

des solutions (plans de vol), sans être obliges d’effectuer une autre optimisation. Cette 

méthode peut être appliquée quand l’optimisation est réalisée sur la composante latérale ou la 

composante verticale du plan de vol, ou sur les deux composantes. Sept versions de cette 
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méthode ont été évaluées, et 10 essais ont été effectués pour chaque version. Pour cinq de ces 

versions, les pires résultats ont mené à une consommation de combustible inférieure à 90 kg 

(0.14 %) au-dessus des optimums «globaux». La version de méthode la moins performante a 

produit une consommation de combustible avec 321 kg (0.56 %) au-dessus des optimums 

«globaux». 

 

Abstract 
 

This study investigates a new aircraft flight trajectory optimization method, derived from the 

Non-dominated Sorting Genetic Algorithm II method used for multi-objective optimizations. 

The new method determines, in parallel, a set of optimal flight plan solutions for a flight. 

Each solution is optimal (requires minimum fuel) for a Required Time of Arrival constraint 

from a set of candidate time constrains selected for the final waypoint of the flight section 

under optimization. The set of candidate time constraints are chosen so that their bounds are 

contiguous (they completely cover a selected time domain). The proposed flight trajectory 

optimization method may be applied in future operational paradigms, such as Trajectory 

Based Operations / free flight, where aircraft do not need to follow predetermined routes. The 

intended application of the proposed method is to support Decision Makers in the planning 

phase when there is a time constraint or a preferred crossing time at the final point of the 

flight section under optimization. The Decision Makers can select, from the set of optimal 

flight plans, the one that best fits their criteria (minimum fuel burn or observes a selected 

time constraint). If the Air Traffic Management rejects the flight plan, then they can choose 

the next best solution from the set without having to perform another optimization. The 

method applies for optimizations performed on lateral and/or vertical flight plan components. 

Seven proposed method variants were evaluated, and 10 test runs were performed for each 

variant. For five variants, the worst results yielded a fuel burn less than 90 kg (0.14%) over 

the “global” optimum. The worst variant yielded a maximum of 321 kg (0.56%) over the 

“global” optimum. 
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5.1 Introduction 

This paper presents a new optimization method designed to support Decision Makers in the 

planning phase of flights with a Required Time of Arrival (RTA) constraint at the final 

waypoint (WPTfinal). The proposed flight trajectory optimization method may be applied in 

future operational paradigms, such as Trajectory Based Operations / free flight, where 

aircraft do not need to follow predetermined routes. 

 

Aircraft flight trajectories are the result of two levels of planning, optimization and 

validation: local (aircraft), and global (airspace). At the aircraft level, the flight trajectory 

planning, optimization, and validation are performed by aircraft operators / the Flight 

Management System (FMS) / an aircrew (Ng, Sridhar & Grabbe, 2012; Ballin, Williams, 

Allen & Palmer, 2008; Patrick & Sheridan, 1998), based on specific flight data (aircraft 

performance data and limitations, load, departure/destination pair, atmospheric conditions, 

navigation constraints, etc.). The result is a flight profile that minimizes a preselected cost 

function (fuel burn, total costs, flight time, etc.), and satisfies all constraints and regulations 

(FAA, n.d.d). At the global level, the Air Traffic Management System (ATM) (Fanti, 

Pedroncelli, Stecco & Ukovich, 2012; Ballin, Wing, Hughes & Conway, 1999; Rodionova et 

al., 2012; Torres & Delpome, 2012; Cate, 2013) performs the optimization and validation. 

The objective is to ensure safe operations for all aircraft in that airspace (aircraft separation, 

compliance with navigation rules, regulations and policies, etc.) and to maximize the airspace 

throughput. The optimal flight trajectory selected by the flight operator is defined as a Flight 

Plan (FPL) (FAA, n.d.a; Altus, 2009). A FPL is a standard, structured format, flight 

trajectory description, and is submitted to ATM for validation and approval. If the FPL is 

rejected, the flight planning sequence is repeated. In the future, upon the implementation of 

time-based metering operation in the US airspace (Underwood et al., 2020), at certain points 

in the airspace (geographic locations and altitudes) where the traffic demand is high, a time 

constraint (RTA constraint), negotiated between the flight planner and the ATM, will be 

assigned to each aircraft, which will have to cross the location within its assigned time 

window. 
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An aircraft can fly at any altitude – speed combination within its flight envelope. Although 

this is the case, the FPL segments have discrete speed and altitude values. The discrete speed 

values (multiples of 1 knot (kn) for Calibrated Air Speed (CAS), and 0.001 for MACH) are a 

result of the limitations regarding their selectable values in the FMS and the Flight Control 

Unit (FCU). Cruise altitudes are multiples of 1,000 feet (ft), as imposed by navigation 

regulations.  

 

Some examples of flight trajectory optimization problems treated in the literature as a flight-

planning problem are: Di Vito et al. (2009), Chaimatanan et al. (2012), Qu et al. (2014), 

Wickramasinghe et al. (2012), Rodionova et al. (2014), Chamseddine et al. (2012), Woods et 

al. (2013), Woods, Vivona, Wing & Burke (2016). The Aircraft’s Performance Model 

(APM), the Atmospheric Data Model (ADM), the specific optimization problem (initial 

aircraft position and speed, weight, fuel quantity, etc.) and the method/approach, etc., 

influence the results of the optimization: the flight trajectories/flight plans identified as 

solutions and their qualities. 

 

The type of APM used in flight performance calculations differs as a function of the context 

and platform on which they are conducted. In ATM platforms, the flight performance 

calculations are performed on ground-based computers, using an aero-propulsive aircraft 

model (BADA: Nuic et al., 2010a; Eurocontrol, n.d.; Nuic, 2010b; Eurocontrol, 2010) that is 

more complex and more accurate than other models. In current FMS platforms, on-board 

systems with a limited computational power, the flight performance calculations are 

performed using an APM based on interpolation tables (Performance Database – PDB) 

(Murrieta-Mendoza & Botez, 2015a; Sibin et al., 2010), less accurate and less complex. 

Ramasamy et al. (2014) and Ramasamy, Sabatini, Gardi & Liu (2013) presented concepts for 

a New Generation Flight Management System (NG-FMS) architecture and flight trajectory 

optimization algorithms. The APM can be provided either by the aircraft manufacturer, or 

could be generated/estimated based on flight test data. Ghazi presented a method to generate 

an APM (Ghazi & Botez, 2015b), and an engine model (Ghazi et al., 2015a), based on test 

flight data. Murietta-Mendoza et al. (2015b) devised a method for generating a cruise phase 
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PDB from flight test data generated with a level D flight simulator. Ghazi, Botez & Tudor 

(2015c) presented a method to generate a climb phase PDB from an aero-propulsive aircraft 

model created from flight test data obtained using a level D flight simulator for Cessna 

Citation X. Dancila et al. (2013) developed a new method that estimates, faster and more 

precisely, the fuel burn for a cruise segment at constant altitude and the time required to burn 

a specified quantity of fuel. 

 

The atmospheric data (air temperature and wind predictions) are issued by national 

meteorological service agencies in a gridded format (GRIB2) (NOAA, n.d.a; Environment 

Canada, n.d.g), and in various forecast models. Atmospheric data are defined in the nodes of 

a 4D grid (latitude, longitude, pressure altitude, and time). The differences between the 

forecast models refer to the area covered by the forecast (global (Environment Canada, n.d.a; 

Buehner et al., 2015) or regional (Environment Canada, n.d.e; Caron et al., 2015)), the grid 

resolution, map projection type (latitude-longitude or polar-stereographic), forecast timespan, 

and update interval. Various studies evaluated the forecast data accuracy relative to the real 

atmospheric conditions encountered by aircraft (Cole et al., 2000; Wynnyk, 2012; Bronsvoort 

et al., 2011), and interpolation methods (Stohl et al., 1995; Stohl, 1998). The atmospheric 

conditions (wind and air temperature) along the flight trajectory have an important effect on 

the aircraft’s flight performance (flight envelope limitations, fuel burn rate, etc.) and its 

global performance (fuel burn and flight time). Therefore, the atmospheric data used in 

calculations should be as close as possible to the real atmospheric conditions encountered by 

the aircraft. A review of the available atmospheric data, their sources, and their integration in 

a prototype route optimization tool developed by NASA, called the Traffic Aware Planner 

(TAP) application, is presented in Lewis, Burke, Underwood & Wing (2019). 

 

Similarly with the APM, ADMs vary as a function of the optimization context/platform, 

timespan, and area delimiting the flight trajectory. In FMS platforms, given their limited 

computational power and memory, the atmospheric data are considered stationary, defined in 

a selected set of points along the flight trajectory, at a limited set of altitudes (Bronsvoort et 

al., 2011). The atmospheric conditions in a point of interest, other than where the data was 
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defined, are computed by multi-linear interpolations (Stell, 2010a; Stell, 2010b; De Smedt & 

Berz, 2007). In online ATM platforms, the atmospheric data are computed from forecast data 

(Wynnyk, 2012; Wickramasinghe et al., 2012) by linear interpolations, as a tradeoff between 

precision and computation time. Dancila & Botez (2020a) (the investigation presented in 

Chapter 3) developed a new ADM that defines the time-varying atmospheric data in the 

nodes of a routing grid (RGRID). The model computes the atmospheric parameter values in a 

grid node on average six times faster and with the same accuracy as when calculated by 4D 

interpolations from GRIB2 data. 

 

In flight performance prediction and fight planning/optimization applications, an aircraft 

flight trajectory is determined by performing an accelerated simulation of the FPL. The 

methodology for performing the accelerated simulation and the performance data calculation 

is described in Schreur (1995) and Karr, Vivona, Woods & Wing (2017). The optimal 

solution to a flight planning/trajectory optimization problem is the result of a search. The 

search identifies, as a function of the optimization objective, the lateral flight trajectory 

(Lateral Flight Plan – LFPL), the vertical flight trajectory (Vertical Flight Plan – VFPL – the 

speed and altitude profile), or both, that minimize a selected cost function and satisfy the 

imposed constraints. The search is performed within a candidate solution set, selected as a 

function of the optimization scenario. Dancila & Botez (2014) proposed a method to 

construct a family of vertical flight profiles, that cover the aircraft’s flight envelope, 

appropriate for use in FMS flight trajectory computation and optimization. Geometrical 

approaches to vertical flight trajectory optimization are presented in Dancila, Beulze & Botez 

(2016b) and Dancila, Beulze & Botez (2019). Yu & Zhang (2015) presented a survey on 

Unmanned Aerial Systems (UAS) flight planning approaches. Ceruti & Mazorca (2017) 

modeled the docking maneuver of an airship by Bezier curves and proposed an optimization 

method using Particle Swarm Optimization (PSO) to determine the optimal Bezier curve 

parameters that minimize the energy necessary for the maneuver. For constrained 

optimization problems, some constraints apply to the candidate profile set (e.g. altitudes, 

speeds, WPTs, etc.), and others refer to solution attributes (e.g. time constraint(s), etc.). 

Liden (1992) showed that when a flight trajectory is defined by an LFPL and a VFPL that 
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contains a set of segments flown at a set of constant speeds and altitudes, the flight time as a 

function of speed might contain discontinuities (there are no FPL segment speed and altitude 

combinations that yield a flight time within a time domain). 

 

Hagelauer & Mora-Camino (1998) proposed a Dynamic Programming (DP) optimization 

method for 4D trajectories with multiple RTA constraints along the route, defined as a 

control problem, where the search space was reduced using a heuristic. Other authors used an 

approach based on evolutionary algorithms for solving the optimization problem of a flight 

trajectory with an RTA constraint. Murrieta Mendoza, Bunel & Botez (2016) used an 

Artificial Bee Colony optimization algorithm to determine the optimum vertical flight profile 

for a cruise segment with RTA constraint. The vertical flight profile was then processed to 

obtain a vertical flight profile with a minimum number of speed changes. Gardi et al. (2016) 

presented a review of the multi-objective 4D flight trajectory optimization methods, in which 

the cost functions incorporate operational costs, as well as other cost elements such as noise, 

polluting emissions, contrails, airspace congestion, etc. Flight guidance and control concepts 

(Ballin et al., 2008; Diaz-Mercado, Lee, Egerstedt & Young, 2013) were developed to 

generate optimal 4D trajectories with a set of RTA constraints assigned at WPTs along the 

flight trajectory. 

 

Ceruti et al.(2014) presented a multidisciplinary optimization approach that uses heuristic 

optimization strategies, appropriate for the case where the optimization involves multiple 

independent parameters. Another multidisciplinary optimization method presented by Ceruti 

et al. (2018) assigns the fitness value for a candidate solution based on two extreme solutions 

(an ideal best and an ideal worst solutions) determined for each iteration of the algorithm. 

Multi-Objective Optimization (MOO) algorithms are extensively used to solve problems 

where the solution must satisfy multiple competing and contradictory objectives. Marler & 

Arora (2004) conducted a survey of the MOO methods used in engineering. Miettinen (2001) 

presented the concepts related to MOO and described a series of approaches and methods to 

conduct the optimization. Fonseca & Fleming (1993) presented an analysis of MOO methods 

based on genetic algorithms. Murata and Ishibuchi presented examples of MOO methods 
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based on genetic algorithms: an outline for conducting MOO using genetic algorithms 

(MOGA – (Murata & Ishibuchi, 1995)), and local search methods (Ishibuchi & Murata, 

1996; Ishibuchi & Murata, 1998). Fonseca and Fleming proposed a MOO method for 

optimization problems with multiple constraints, based on evolutionary algorithms (Fonseca 

& Fleming, 1998a; Fonseca & Fleming, 1998b). Deb et al. (2002) presented an elitist MOO 

algorithm based on genetic algorithms and non-dominated population sorting (NSGA-II). 

Jensen (2003) proposed a new non-dominated sorting method that reduces the number of 

comparisons between the population members, thus reduces the computation time. 

 

5.2 Problem statement 

The optimization problem considered in this paper is defined as follows:  

1. Given an: 

a. Aircraft model that performs the flight (aircraft flight envelope, APM); 

b. Initial conditions: aircraft location WPTinit (latitude, longitude, altitude) and 

time, weight, quantity of fuel on-board, and speed; 

c. The final location WPTfinal (latitude, longitude, and altitude) to be reached by 

the aircraft, and the speed at the final location; 

d. The selected range of flight altitudes and speeds, and the geographic area 

through which the aircraft trajectory can be routed; 

e. The atmospheric conditions for the geographic area, range of altitudes and 

times that cover all the candidate flight trajectories; and 

f. A set of N adjacent RTA constraints, defined by a set RTAn of constraint 

values bounded by ∆RTA, which cover a selected time domain, imposed at 

WPTfinal. 

2. Identify the set of FPLs (each FPL corresponds to a particular RTA constraint [RTAn - 

∆RTA / 2, RTAn + ∆RTA / 2]), where each FPL requires the minimum fuel burn 

relative ro FPLs that yield a flight time within the particular RTA constraint bounds. 

It is assumed that the FPLs have the standard format presented in sub-section 5.3.1. 
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5.3 Methodology 

A flight trajectory optimization for a flight section with an imposed/chosen RTA constraint 

could pose two problems: the optimized FPL may be rejected by the ATM, or there may be 

another RTA constraint value acceptable for the DM and ATM for which the optimal FPL 

yields a better fuel burn/performance. 

 

To the best of the authors’ knowledge, the method proposed in this paper has not been 

considered before. The proposed optimization method, based on an Evolutionary Algorithm, 

derived from the Non-dominated Sorted Genetic Algorithm II (NSGA-II) (Deb et al., 2002), 

solves these problems by conducting, in parallel, a search for optimal FPLs for a set of 

adjacent RTA constraint values that cover a flight time domain of interest. The optimization 

is conducted in the objective space (fuel burn – flight time). Following the optimization, a 

DM is presented with a set of optimal FPL solutions, one for each RTA constraint. The FPL 

that best suits the optimization criteria (minimum fuel burn, flight time, or a tradeoff between 

the two) can be selected and filed for approval by the ATM. If rejected, the next-best FPL 

could be selected from the solution set. 

 

This section is structured as follows: The first sub-section (5.3.1) presents concepts regarding 

flight trajectories and flight plans. The next sub-section (5.3.2) presents the APM used in this 

study, followed by the ADM, in sub-section 5.3.3. Sub-section 5.3.4 describes the 

methodology used for computing the flight trajectory and the flight performance (flight time 

and fuel burn) for a candidate flight plan. Finally, sub-section 5.3.5 presents the proposed 

methodology. 

 

5.3.1 Flight trajectory/flight plan 

An FPL (FAA, n.d.a; Altus, 2009) is a description of an aircraft’s flight trajectory (the space-

time evolution), in a standard and compact format. It contains all the information necessary 

for: 
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1. The onboard automation (FMS) to perform predictive calculations and flight 

performance parameter validations (flight envelope limitations, available fuel, 

navigation constraints, etc.), and to execute the flight along the flight 

trajectory; and 

2. The ATM to validate the flight trajectory relative to conflicts with other aircraft 

trajectories along the route, restricted airspace incursions, adverse/dangerous 

atmospheric conditions (icing, severe turbulence, convective activity, etc.), navigation 

constraints, regulations, regulations, etc. 

 

An FPL has two components: a lateral flight plan (LFPL) that defines the lateral flight 

trajectory component (the flight trajectory’s projection on the earth’s surface), and a vertical 

flight plan (VFPL), which defines the altitude – speed profile along the LFPL. 

 

5.3.1.1 Lateral flight plan 

An LFPL describes the lateral flight trajectory component as a succession of WPTs 

(geographic locations) that define flight trajectory segments. A LFPL segment type (Lenart, 

2017) can be either loxodromic (the aircraft maintains a constant heading along the segment) 

or orthodromic (the shortest distance between the two WPTs and the heading changes along 

the segment). The lateral segment parameters’ calculations (Sea Level Length - SLL, 

departure and arrival headings, the aircraft’s heading in a point along the segment, etc.) are 

performed differently, as a function of the segment’s type and the Earth model employed 

(spherical or WGS84 ellipsoid (Janssen, 2009)). The loxodromic segment parameters are 

computed using the rhumb line equations (Carlton-Wippern, 1992). The orthodromic 

segment parameters are computed using spherical trigonometry for orthodromic segments on 

a spherical Earth, and Vincenty’s formulas (Karney, 2013) for orthodromic segments on an 

ellipsoidal Earth. 

 

The set of LFPL candidates evaluated in the optimization are constructed by selecting, 

successively, from an RGRID, the WPTs that delimit each FPL segment. First, the RGRID is 
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constructed similarly to the method presented in Dancila & Botez (2020a) (the investigation 

presented in Chapter 3) and in a flight trajectory optimization study conducted by the authors 

(Dancila & Botez (2020b) – Chapter 4). An Orthodromic Route (ORT) is constructed 

between WPTinit and WPTfinal and then divided into the minimum number of equal segments 

with an SLL smaller than or equal to a selected value (step size). In each ORT segment limit 

WPT a new orthodrome is constructed, perpendicular to the ORT (P-ORT), and new WPTs 

are created at locations that generate segments with a selected SLL, up to a selected 

maximum deviation from the ORT. The RGRID is constructed step by step, starting from 

WPTinit. Relative to its location, the aircraft can advance to a new RGRID WPT situated one 

step ahead along the ORT, and a maximum number of steps (NW) along the P-ORT, on either 

side. Therefore, the RGRID starts with a single WPT (WPTinit) and increases, at each step 

along the ORT, with 2 ×  𝑁ௐ (NW on each side of the ORT), until it reaches the maximum 

deviation (number of transversal WPTs). At the other end, starting at a certain position along 

the ORT, the number of WPTs across the ORT starts to decrease by 2 ×  𝑁ௐ WPTs, until it 

reaches the final WPT (WPTfinal), where there is a single WPT. The candidate LFPL 

construction is performed step by step, starting from WPTinit. For each LFPL segment, the 

RGRID WPTs that define the segment are selected by choosing the lateral deviation step and 

the number of WPTs on the segment (steps along the ORT). An illustration of an RGRID and 

a LFPL are presented in Figure 5.1. 

 

To accelerate the flight performance evaluations, the SLL and the departure headings are 

computed ahead of time for each possible segment starting at a RGRID node (a maximum of 2 ×  𝑁ௐ + 1, which is the maximum number of lateral deviation choices), and stored in a 

RGRID node data structure. During the flight performance calculations the segment SLL and 

the departure heading are readily available. The distance flown by the aircraft along an LFPL 

segment is calculated by multiplying the segment’s SLL with a correction factor, computed 

based on the Earth’s radius and the aircraft’s altitude. 
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Figure 5.1 Example of a Routing Grid and a Lateral Flight Plan component 
constructed based on the Routing Grid 

 

5.3.1.2 Vertical flight plan 

The VFPL describes, in a concise, standardized form, the aircraft’s altitude and speed 

evolution along the LFPL. A VFPL can be decomposed in seven sections (flight phases): 

takeoff, initial climb, climb, cruise, descent, approach, and landing. Each VFPL section is 

composed by a set of segments, defined by a set of specific parameters for each segment type 

(e.g. the segment type, altitude, speed, position along the LFPL, etc.). Not every vertical 

flight trajectory segment is explicitly defined in the VFPL. There are vertical flight trajectory 

segments (e.g. constant altitude acceleration/deceleration, climb in cruise, etc.) that are 

transition segments between segments defined in the VFPL, and they are generated during 

the FPL accelerated flight performance calculations. In this paper, it was assumed that the 

WPT that demarcates two VFPL segments defines the geographic location (WPT) where the 

altitude/speed change is initiated (starts), and not the geographic location where the aircraft 

reaches the new speed and/or altitude.  

 

Some VFPL segment parameters are implicit, “inherited” from the previous segment (e.g. 

constant speed climb segment start altitude), or defined by the FPL (e.g. geographic 

location/WPT where a constant altitude and speed cruise segment ends). Other parameters 
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are dependent on the specific context (aircraft performance, weight, atmospheric conditions, 

etc.) and can be only determined during the accelerated flight performance calculations (e.g. 

the distance necessary/geographic location where the aircraft reaches the cruise altitude).  

 

In this study, a VFPL is considered to have three phases/sections (climb, cruise, and descent) 

and the structure described below, similar to that used by the authors in a previous flight 

trajectory optimization study (Dancila & Botez, 2020b – the study presented in Chapter 4.), 

and can contain some or all of the listed elements. The number of sections, segments, the 

segment types and the order in which they appear, are specific for the FPL. It is assumed 

that: 

1. The climb is flown at [CASCLIMB, MACHCLIMB] from the initial aircraft position 

WPTinit, at altINIT (initial aircraft altitude) to the Top of Climb (the point where the 

aircraft reaches the initial cruise altitude altCRZ_INIT), executed at Maximum Climb 

(MCMB) Thrust Lever Angle (TLA). The transition between CAS and MACH occurs 

at the crossover altitude; 

2. The cruise phase is composed of a succession of constant speed cruise segments: 

a. A constant altitude (altCRZ_INIT) and speed (MACHCRZ_INIT) cruise segment 

from TOC to a selected location along the lateral flight trajectory (LFPL 

segment); 

b. A set of constant altitude and speed cruise segments ([altCRZi, MACHCRZi]) 

where each segment can have a different cruise altitude and/or speed value 

and are delimited by selected LFPL WPTs. The set’s last segment ends at the 

End of Cruise (EOC – a point in cruise beyond which the aircraft is 

considered in descent mode, therefore no more step climbs are executed). The 

EOC location is selected so that the Top of Descent (TOD), the point where 

the aircraft starts the descent, is located after the EOC; and 

c. A final constant altitude (altCRZ_FINAL – same as the altitude of the previous 

segment ending in EOC) and speed (MACHCRZ_FINAL) segment, from the EOC 

to the TOD. 
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3. The aircraft does not perform descents in cruise, the altitude for a cruise VFPL 

segment is always equal to or higher than that of a previous segment; 

4. The descent is flown at constant scheduled speed ([MACHDESCENT, CASDESCENT]), 

starting from TOD, from the final cruise altitude (altCRZ_FINAL) to the final descent 

altitude (altFINAL) at WPTfinal, and executed at idle (IDLE) TLA. The transition from 

MACH to CAS speed occurs at the crossover altitude; and 

5. The speeds (CAS and MACH) and altitudes have discrete values, multiples of 1 kn 

for CAS, 0.001 for MACH, and 1,000 ft for altitude. 

 

The TOC and TOD locations along the LFPL are specific for the FPL data (LFPL and 

VFPL), aircraft performance and weight, atmospheric conditions, etc. 

 

5.3.2 The aircraft performance model 

The accelerated flight performance calculations were performed using a toolbox, developed 

in-house, and based on the Base of Aircraft Data (BADA) (Nuic et al., 2010a; Eurocontrol, 

n.d.; Nuic, 2010b; Eurocontrol, 2010) version 4.0 APM developed by Eurocontrol. The 

BADA APM provides aircraft specific parameters and data models (flight envelope 

limitations, aerodynamic and engine performance, valid aircraft configurations, etc.), and the 

methodology to compute the flight performance parameters of interest and the aircraft 

dynamics using equations based on the Total Energy Model (TEM). Specific information 

regarding BADA 4.0 can be obtained from Eurocontrol (n.d.) and is subject to a license 

agreement. 

 

The flight performance calculation toolbox contains a set of functions specific for each type 

of vertical flight trajectory segment generated for a flight along a profile defined by an FPL. 
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5.3.3 Atmospheric data model 

The Atmospheric Data Model (ADM) used in this study was that presented in Dancila & 

Botez (2020a) (the investigation presented in Chapter 3). The model defines the atmospheric 

data, as a function of time, in RGRID nodes (see sub-section 5.3.1) and at a set of selected 

altitudes. The geographic area covered by the RGRID, the range of altitudes selected for the 

vertical flight profile, and the time domain estimated to cover the possible flight times 

between the initial and final WPTs determine the atmospheric data prediction files to be 

retrieved from the meteorological service agency. This ADM has the advantage that, in a 

large majority of the cases, the atmospheric parameters used in the flight segment 

performance calculations only require 1D linear interpolations to compute their values in an 

RGRID node, at the altitude and time instance of interest. The ADM was shown (Dancila & 

Botez, 2020a - presented in Chapter 3) to be on average six times faster, and as accurate as 

when computed by linear interpolations from the GDPS GRIB2 data. Atmospheric data at 

points other than the RGRID nodes, a reduced number of instances during the flight 

performance calculations (e.g. at the final points of climb/descent and 

acceleration/deceleration segments), can be computed through linear interpolation based on 

the atmospheric data in the grid nodes. Depending on the specific case, a smaller number of 

interpolations may be required than when the GRIB2 data is used. 

 

5.3.4 Accelerated flight simulation and flight performance parameters calculations 

The accelerated flight simulation performs a step-by-step simulation of the aircraft’s 

evolution along the flight trajectory determined by the selected FPL. The specific 

methodology employed for performing the accelerated flight simulation, used for flight 

trajectory prediction and optimization, is described in Schreur (1995) and illustrated in 

Figure 5.2. 
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Figure 5.2 Accelerated flight simulation and 
flight performance parameters calculations 

 

The simulation is performed phase by phase, starting from the initial aircraft position 

(geographic location, altitude, and time), attitude (banking angle, climb/descent angle, etc.), 

speed, and aircraft configuration (weight, fuel quantity, etc.). For each flight phase, the 
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accelerated simulation successively estimates the aircraft’s evolution along each VFPL 

section and LFPL segment. Each VFPL segment is decomposed into a set of sub-segments, 

chosen so that the mathematical model that describes the aircraft and the performance 

parameters’ evolution does not change, and is then divided into smaller sub-segments 

(integration steps). The parameter along which the decomposition is made (altitude, distance, 

time) is a function of the segment’s type. The integration step size is chosen as a tradeoff 

between computation time and precision. Small integration steps increase the results’ 

accuracy, but the computation time may become prohibitive. 

 

For each sub-segment, the flight performance parameters are computed by multiplying the 

parameter values computed in a point on the sub-segment with the integration step size. The 

computed data are then used to determine the aircraft’s weight, position along the LFPL, 

altitude, speed, etc., at the segment’s end. These data are the initial conditions for the next 

sub-segment’s accelerated simulation. During the accelerated flight simulation, new flight 

trajectory segments are created that do not have their correspondent in the VFPL segments. 

They are transitions between VFPL segments, such as acceleration/deceleration segments 

between two consecutive constant speed segments or climb/descent segments between two 

constant altitude cruise segments. 

 

The simulation starts by performing the climb phase accelerated simulation, from WPTinit to 

the TOC, followed by the cruise phase simulation, from the TOC to the EOC. Next, the 

descent phase accelerated simulation is conducted backwards (backward integration), from 

WPTfinal to the TOD. The aircraft weight and crossing time at WPTfinal are estimated 

heuristically, based on the aircraft’s weight and crossing time at the EOC. After the descent 

phase simulation, the estimated aircraft position, weight, and crossing time at the TOD are 

known. Finally, the cruise segment between EOC and TOC is simulated, and the aircraft 

weight and crossing time at the TOD are known, based on the forward simulation from the 

initial waypoint. The heuristic estimation of the aircraft weight and crossing time at WPTfinal 

is validated by comparing the differences between the aircraft weight and crossing time at the 

TOD, computed forward, from the cruise phase, and those computed backwards, from the 
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descent phase. If the difference(s) is (are) larger than selected threshold(s), they are applied 

as corrections to the estimated values at WPTfinal. The simulation from the EOC to WPTfinal 

and the validation are repeated until the simulation converges (the differences are smaller 

than the thresholds) or the number of iterations surpasses a selected maximum value 

(simulation error). 

 

During the simulation, for each sub-segment, the flight parameters are validated relative to 

the flight envelope limitations and fuel requirements (if the flight requires more fuel than 

available). An accelerated flight simulation module option allows, if desired, the correction 

of FPL segments that would result in flight parameters outside the aircraft’s flight envelope 

(invalid altitude – speed profiles). The corrected FPL (with valid altitude – speed profiles) is 

returned by the accelerated flight simulation function for future use in the optimization. 

 

5.3.5 The proposed optimization method 

The proposed optimization method uses a new evolutionary search method, derived from the 

NSGA-II. The first sub-section (5.3.5.1) presents the general considerations and observations 

regarding the optimization problem. Sub-section 5.3.5.2 presents the characteristics of the 

candidate FPLs solutions selected and evaluated during the optimization. Next, sub-section 

5.3.5.3 presents the genetic operations applied to candidate FPLs (crossover and mutation) 

and, finally, sub-section 5.3.5.4 details the proposed method. 

 

5.3.5.1 General considerations 

For a selected FPL, a change in total flight time can be obtained by changing one or more 

FPL parameters, for one or multiple segments. Given that the candidate FPL parameters 

(speeds, altitudes, WPT locations) have discrete values, the set of obtainable flight times are 

also discrete values. The complex and nonlinear relationship between (lateral and vertical) 

FPL parameters, atmospheric conditions and the flight parameters of interest (total flight time 

and total fuel burn), as well as the atmospheric conditions which vary as a function of the 
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selected altitude, route, and the time when the aircraft crosses each trajectory point, makes it 

possible that for each RTA value the optimal solution is located in a different search space 

region. 

 

The proposed method is based on the following observations: 

1. The fuel burn variation versus flight time cannot be estimated a priori. Depending on 

the specific optimization problem, the fuel burn variation in general, and specifically 

for the optimal (minimum fuel) solution set, could increase or decrease with the flight 

time, or it may not have a monotonous variation; 

2. The optimization problem can be seen as a constrained MOO with a two-dimensional 

objective space (fuel burn versus flight time); however, this is not a classical MOO 

problem since the set of optimal FPL solutions might not form a Pareto front (see the 

first observation). The solutions sought here do not constitute a tradeoff between fuel 

burn and flight time, but they are the FPLs that yield the minimum fuel burn for the 

set of RTA constraints; 

3. Techniques and elements from the MOO methods can be adopted for solving the 

optimization problem: population-based search methods (evolutionary algorithms), 

tentative solution set, ranking and fitness assignment for the evaluated solutions at a 

search iteration, searches performed in the objective space, etc.; and 

4. The differences relative to classic MOO methods would have to address the 

population elements’ ranking and their fitness value assignment, which guides the 

selection of population elements for the genetic operations and, therefore, the search. 

 

5.3.5.2 The set of candidate flight plans 

The RGRID and the set of candidate FPLs (composed of LFPLs and VFPLs) conform to the 

models presented in sub-section 5.3.1. Ideally, the range of altitudes and speeds from which 

the altitude/speed pairs that define the VFPL segments are chosen to cover the entire flight 

envelope, without extending beyond it. FPLs that have segment parameters outside the 

aircraft’s flight envelope or require more fuel than available reduce the search efficiency, as 
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they spend computational resources without adding information that could guide the search. 

Given the complexity/impossibility to determine a priori, at waypoints along the flight 

trajectory, the parameters (aircraft’s weight, atmospheric conditions, etc.) that determine the 

aircraft’s flight envelope limitations, and to ensure that the entire flight envelope is covered, 

the range of speeds and altitudes for the VFPL segments were chosen as follows: 

1. CAS for climb (descent): CASINIT (CASFINAL) to VMO – 10 kn; 

2. Climb (decent) MACH: MACH equivalent for CASINIT at altINIT (CASFINAL at altFINAL) 

to MMO – 0.01; 

3. Cruise altitudes are multiples of 1,000 ft, between a selected minimum cruise altitude 

and the service ceiling for the aircraft model; and 

4. Cruise speeds are multiples of 0.001 MACH, between a minimum selected value and 

MMO – 0.01. 

 

At the beginning of the flight, when the aircraft is heavier, the range of valid cruise altitude 

and speed combinations are smaller than for the other flight segments. Therefore, the set of 

altCRZ_INIT and MACHCRZ_INIT combinations are determined heuristically, as the valid 

combinations of altitudes multiples of 1,000 ft and speeds multiples of 0.001 MACH for an 

aircraft weight resulted after a climb at 250 kn, from altINIT to the minimum initial cruise 

altitude. 

 

5.3.5.3 Flight plan genetic operations 

Due to their different structures, the LFPL and the VFPL genetic operations are different. 

The first sub-section presents the genetic operation applied to LFPLs, and the second sub-

section presents the genetic operations applied to VFPLs. 

 

5.3.5.3.1 Lateral flight plan genetic operations 

The LFPL genetic operations are applied in an LFPL WPT selected at random, between the 

second and the last but one WPT. Performing a crossover at the first or last WPT would not 
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yield new FPLs, and mutations cannot be performed at these locations. If, at the location 

where the crossover must be performed, the difference between the lateral deviations for the 

two LFPL WPTs is larger than the maximum lateral deviation step, the crossover cannot be 

obtained just by swapping the final LFPL sections. A transition section is constructed, so that 

at each step along the ORT the lateral deviation relative to the previous WPT is less than or 

equal to the maximum lateral deviation step size. An LFPL mutation changes the lateral 

deviation for the WPT situated at the selected location, relative to the previous WPT, to a 

new value within the range of possible relative lateral deviations. For the following WPTs, 

the deviation relative to their preceding WPT is maintained, and limited to the routing grid. 

 

5.3.5.3.2 Vertical flight plan genetic operations 

The crossover between two VFPLs is applied in the cruise section, at points that delimit 

cruise segments, between the WPT at the end of the initial cruise segment and the EOC. The 

crossover can be performed on the speed component, the altitude component, or on both. The 

VFPL speed component crossover is obtained by swapping the final sections of the VFPL 

speed component (between the crossover position and the end of the VFPL). A VFPL speed 

component mutation can be performed on any segment by changing the selected segment’s 

speed with a value within the range allowed for the segment (see sub-section 5.3.5.2). If at 

the point where the VFPL altitude component crossover is performed the altitudes are 

identical, the crossover swaps the final sections (from the crossover position to the end of the 

VFPL) between the two VFPLs. If the altitudes are different, given that the descent in cruise 

is not accepted, for the VFPL with the higher altitude at the crossover position the swap is 

performed at a further location, where the altitude on the other parent profile is equal or 

higher (if it exists). For the FPL with a lower altitude, the swap is performed at the crossover 

location. The mutation is obtained by modifying the cruise altitude of a randomly selected 

cruise segment. The new altitude is selected from the range of altitudes considered for that 

segment. The altitudes for the cruise segments that follow are modified, if necessary, to be 

equal to or higher than the selected new altitude (no descent in cruise). 
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5.3.5.4 Search method description 

The proposed method uses an Evolutionary Algorithm, based on genetic algorithms, derived 

from the NSGA-II algorithm (Deb et al., 2002). The differences between the proposed 

method and the NSGA-II method presented in (Deb et al., 2002) consist in the methods used 

for non-dominance/ranking determination, the fitness assignment for crossover element 

selection, the tentative solution set construction and update, and its propagation to the 

extended population. In the proposed method the tentative set size is equal to the number of 

RTA constraints, and is initially empty. Each tentative solution set member is associated with 

an RTA constraint. In each iteration, a population member that yields a flight time within an 

RTA constraint bounds will replace the tentative solution element for that RTA if the fuel 

burn is lower, and will not affect the other tentative solution set members. A high-level block 

diagram representation of the proposed search methods is presented in Figure 5.3. The 

detailed description is presented in the text that follows. 

 

 
 

Figure 5.3 Proposed search method block diagram 
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An initial population (P0), with N elements, is randomly created according to the RGRID, 

LFPL and VFPL templates, and the parameter value ranges for each FPL component. The 

initial population FPLs are evaluated, and the fuel burn and flight times are calculated. 

During the accelerated flight simulation of the first population, the FPLs that are invalid 

relative to the aircraft’s flight envelope are corrected and updated in the population, so that 

the search starts with the largest number of valid candidate solutions and therefore, better 

information to guide the search. For invalid FPLs (caused in the first population by FPLs that 

require more fuel than available and, for the next populations also due to aircraft envelope 

limits violation), the fuel burn and flight time are assigned penalty values, larger than for any 

valid FPL. The range of flight times between the initial and final points that cover the entire 

set of possible flight times along the set of candidate FPLs are estimated heuristically. In the 

next step the population elements are evaluated relative to the RTA values and fuel burn, and 

assigned ranking and fitness. Similar to the method proposed by Jensen (2003), the 

population elements ranking is performed by first sorting the population based on the two 

cost function components (first by flight time, and then by fuel burn), and then assigning 

them to optimal fronts (sets of population elements with the same ranking/level of 

optimality). The elements of the ordered list that have a flight time within the RTA constraint 

bounds of an RTA value are successively retrieved, ordered as a function of fuel burn, and 

then ranked. The element with the lowest fuel burn is assigned rank 1 (assigned to front 1), 

the next is assigned rank 2 (assigned to front 2), and so on. The best element for the RTA 

constraint value (the element having rank 1) is copied to the tentative solution (TS) set. The 

uniform distribution of the solutions along the optimal front results from the rank assigning 

method. The non-valid population elements (those that have a flight time outside the RTA 

constraint set bounds or are invalid) are assigned the lowest rank (highest rank value), and 

form the last/least optimal front. 

 

An example of fronts (solutions with the same “level of optimality”) for an FPL population is 

presented in Figure 5.4 (the last front, corresponding to non-valid flight plans, are not 

represented). It can be noted that, for the case represented in Figure 5.4, the tentative optimal 

solutions are present for every RTA constraint. However, the number of non-optimal 
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solutions and their quality (fuel burn value relative to the optimal solution for the RTA 

constraint) differs for each RTA. In general, the presence in a population of an optimal 

solution for an RTA constraint, its performance relative to the global optimum, and the 

number of non-optimal solutions, is a function of the evolution of the search process. 

 

 
 

Figure 5.4 Example of solution fronts for a population (the image 
does not show the last front: the non-valid FPLs) 

 

Figure 5.5 presents a detailed view of the three adjacent RTA constraints represented in 

Figure 5.4 and delimited by the time interval (24073 24133] seconds. It can be noted that 

some solutions from adjacent fronts could be very close - e.g. the tentative optimal solution 

(front 1) and the next, near best, solution (front 2) for the RTA constraint bounded by the 

time domain (24113 24133] seconds. The choice to assign different sizes for the dots that 

represent solutions from different fronts was determined by the fact that in such cases dots of 

identical size would overlap rendering some solutions not visible. 
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Figure 5.5 Example of valid solutions in a population: 
detail view for the RTA constraints from Figure 3 
delimited by the interval (24073 24133] seconds 

 

In the next step, an extended population (P_extended) is created by copying the current 

population’s N elements, adding N elements generated by N/2 crossover operations, followed 

by a mutation with probability p = 0.1 – in a similar manner to the NSGA-II method. The 

difference is that, in the proposed method, the Mi non-empty tentative solution set members 

are mutated and added to the extended population (a local search).  

 

The selection of population elements for crossover is performed at random. Four different 

elements are selected and compared two by two. If the two elements have different ranks, 

then the element with the lowest rank (highest fitness) is selected as a “parent”. If the 

elements have the same rank and are valid flight plans, then the element with the smallest 

number of elements within the RTA constraint bounds is selected. If they both have an 

identical number of elements within the RTA bounds, the FPL with the lowest fuel burn is 

selected. If the fuel burn is also identical, the FPL with a flight time closer to the RTA 

constraint is selected. If the FPLs also have the same flight time difference relative to their 
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respective RTA constraints, the parent is randomly selected among the two. If the two 

elements have the same rank and are non-valid, the parent is selected based on the Euclidian 

distance, in the normalized objective space, between the element’s projection on the 

normalized objective space, and a reference point with coordinates corresponding to the 

minimum fuel burn obtained for the population and the central RTA constraint (RTA0). The 

element with the smallest distance to the reference point is selected as a parent. If both 

elements have the same distance, then the element with the lowest fuel burn is selected. If the 

fuel burn is also identical, the parent is selected at random between the two elements. An 

illustration of the fitness values for non-valid FPLs, expressed as the Euclidian distance to a 

reference point in the normalized objective space, is presented in Figure 5.6. Here also the 

number of invalid flight plans and their fitness are a function of the evolution of the search 

process. In the example presented in Figure 5.6 the best fit invalid flight plan (the dark brown 

dot) is located near the minimum RTA constraint set bound and has a low (normalized) fuel 

burn. The least fit flight plan is the dark blue dot, located in the upper right corner of Figure 

5.6, which has the largest fuel burn and flight time, and is the farthest from the reference 

point. The children elements, the new extended population members, are generated by 

crossover between the two winning parents, where the crossover is performed on the lateral 

or vertical FPL component, selected at random. 

 

The subsequent step is similar to that of the NSGA-II method. The new elements in the 

extended population are evaluated, the extended population is ranked and assigned to optimal 

fronts. If the extended population contains mi elements that are new solutions (for RTA 

constraints with empty Tentative Solutions element) or better solutions (lower fuel burn than 

the Tentative Solutions element), then mi solutions update the Tentative Solutions set. The 

new population (P1), for the next iteration, is composed of the best N elements from the 

extended population – as in the NSGA-II method. The copied elements are retrieved, 

successively, from the optimal fronts associated with the “extended population”, starting with 

the optimal front elements (rank 1), and continuing with the elements from the subsequent, 

less optimal fronts (higher ranks), until N elements are retrieved. If the remaining number of 

elements to be retrieved, NR, is less than the number of elements in the current front, then the 
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first NR elements are copied from the front. The steps listed above are repeated until the 

selected number of iterations is reached. The tentative solution set at the end of the 

optimization is the set of optimal solutions. Given the randomness associated with genetic 

algorithms and the flight trajectory optimization problem characteristics, the solution set 

could contain solutions for all RTA constraints, for some, or for none, and the solutions may 

be optimal, near optimal or not optimal.  

 

 
 

Figure 5.6 Example of fitness for the non-valid flight plans of a population, calculated 
based on the Euclidian distance, in the normalized objective space, between the 

flight plan’s projection and the reference point 
 

The impacts of different possible changes in the proposed method are evaluated using seven 

method variants. The first variant is the one described above. The other six variants differ as 

follows: 

1. Non-valid FPLs’ fitness assigned based on the absolute time difference to the central 

RTA constraint (RTA0) – not the Euclidian distance to the reference point; 

2. The extended population does not include mutated tentative solution set versions 

(local search); 
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3. Non-valid FPLs’ fitness assigned based on the absolute time difference to the central 

RTA value (RTA0), and the extended population does not include mutated tentative 

solution set versions (local search); 

4. The extended population is created by crossover applied on both LFPL and VFPL; 

5. The initial population FPLs are not corrected relative to the aircraft flight 

envelope; and 

6. Different number of iterations used in the optimization. 

 

5.4 Results 

This section presents the results of tests performed to evaluate the performance of the 

proposed flight plan optimization method. First, sub-section (5.4.1) presents the test 

environment used in the evaluation. Then, sub-section 5.4.2 describes the test scenario used 

to perform the evaluation. Sub-sections 5.4.3 and 5.4.4 present the research questions 

investigated in this study and the test cases devised for this purpose. Finally, sub-section 

5.4.5 presents and discusses the results. 

 

5.4.1 Simulation environment 

The proposed method was evaluated on a PC-based platform with a 2.8GHz AMD Phenom II 

X4 B93 processor, 8GB of RAM, and Windows 10 Enterprise, using code developed in 

Matlab (R2108a). The flight performance parameters for candidate FPLs were calculated 

using a module developed in-house, in Matlab, based on the Boeing 777-300ER BADA 4.0 

Aircraft Performance Model (APM) published by Eurocontrol.  

 

5.4.2 Test scenario 

The test scenario was the optimization of a flight section that starts in climb, at 10,000 ft and 

250 kn CAS, and ends in descent, at 10,000 ft and 250 kn CAS. The aircraft was considered 

to be in normal operation (no malfunctions) and in clean configuration (retracted landing 



159 

gear, flaps and spoilers). The aircraft weight and fuel at the initial point were taken to be 0.5 

and 0.7, respectively, of their maximum allowed values for the aircraft model. For a 

“realistic” evaluation (attainable constraint times for the selected flight section, atmospheric 

conditions, and aircraft model), the initial and final FPL points and their crossing times were 

recovered from a real flight track data, retrieved from the FlightAware website 

(www.flightaware.com). The selected flight was American Airlines AAL107 (FlightAware, 

2109b), between London Heathrow (LHR) and New York JFK (JFK), flown on February 25, 

2019, chosen at random from the flights performed that day with the same aircraft model as 

the APM available to the authors.  

 

Currently the North Atlantic traffic observes specific navigation policies, and the aircraft 

follow predetermined tracks: the North Atlantic Organized Track System (NAT_OAS). This 

study / proposed method assumes possible future navigation paradigms, such as TBO or free 

flight, where the aircraft can fly along the flight plan/trajectory that is best suited for the 

mission (aircraft type, load, atmospheric conditions, and departure-destination pair). 

 

The reference points and the crossing times were selected as the track data points, in climb 

and descent, where the aircraft was closest to the altitude of 10,000 ft: 

1. Initial point (WPTinit): Lat. 51.5144 N, Lon. 1.0188 W, Time 12:27:50 EDT; and 

2. Final point (WPTfinal): Lat. 40.3386 N, Lon. 73.8018 W, Time 19:07:28 EDT. 

 

The set of N adjacent RTA constraints were calculated based on the aircraft’s crossing time 

at WPTfinal, considered as the primary RTA constraint (RTA0), defined by RTA values within 

a range of RTA0 ± 5 min (𝑅𝑇𝐴 = 𝑅𝑇𝐴଴ + 𝑘 × ∆𝑅𝑇𝐴, with 𝑘 ∈ ℤ,−15 ≤ 𝑘 ≤ 15), and 

window width ∆RTA = 20s. This produced 31 RTA constraints, and therefore, the 

optimization was expected to produce 31 optimal FPLs, one for each RTA value. The RTA 

constraint bounds were selected as follows: 
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⎩⎪⎨
⎪⎧൤𝑅𝑇𝐴଴ + ൬𝑘 − 12൰ × ∆𝑅𝑇𝐴 , 𝑅𝑇𝐴଴ + ൬𝑘 + 12൰ × ∆𝑅𝑇𝐴൰ 𝑘 < 0൤𝑅𝑇𝐴଴ − 12 × ∆𝑅𝑇𝐴 , 𝑅𝑇𝐴଴ + 12 × ∆𝑅𝑇𝐴൨ 𝑘 = 0൬𝑅𝑇𝐴଴ + ൬𝑘 − 12൰ × ∆𝑅𝑇𝐴 , 𝑅𝑇𝐴଴ + ൬𝑘 + 12൰ × ∆𝑅𝑇𝐴൨ 𝑘 > 0 (5.1) 

 

The set of RTA values at WPTfinal were transformed into total flight time constraints, 

calculated as a difference, in seconds, between the RTA at WPTfinal and the aircraft crossing 

time at WPTinit: 

 

 𝑓𝑡ோ்஺೙ = ൫𝑅𝑇𝐴௡ − 𝑡ௐ௉்೔೙೔೟൯ × 3600 (5.2) 

 

where: 

1. 𝑓𝑡ோ்஺೙ is the total flight time constraint for the nth RTA (RTAn); and 

2. 𝑡ௐ௉்೔೙೔೟ is the aircraft crossing time at WPTinit. 

 

The value obtained for 𝑓𝑡ோ்஺బ was: 

 

 𝑓𝑡ோ்஺బ = 𝑅𝑇𝐴଴ − 𝑡ௐ௉்೔೙೔೟ = 𝑡ௐ௉்೑೔೙ೌ೗ − 𝑡ௐ௉்೔೙೔೟= 19ℎ07𝑚𝑖𝑛28𝑠 − 12ℎ27𝑚𝑖𝑛50𝑠= 6ℎ39𝑚𝑖𝑛38𝑠= 24023𝑠  (5.3) 

 

The set of flight time constraints were obtained by replacing RTA0 with 𝑓𝑡ோ்஺బ in Eq. (5.1) 

 

The selected RGRID parameters were: a maximum ORT sub-segment SLL of 50 n.m., a 

maximum lateral deviation of 500 n.m. from the ORT, a lateral deviation step of 10 n.m., and 

a maximum of two lateral deviation steps can be performed at one time. The resulted RGRID 

(Figure 5.7) has the ORT divided into 60 equal sub-segments with an SLL of 49.71 n.m., and 

a maximum of 50 deviations (WPTs) on each side of the orthodrome. 
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Figure 5.7 The routing grid for the set of lateral flight plans evaluated 
for the flight AAL107 (FlightAware, 2019b) optimization 

 

The parameters selected for the candidate VFPLs were: 

1. Climbs at constant [CAS, MACH] and MCMB TLA: [250 to VMO – 10] kn CAS, 

and [0.452 (250 kn CAS at 10,000 ft) to MMO – 0.01] MACH; 

2. Descents at constant [CAS, MACH] and IDLE TLA. Speed ranges as for climb; 

3. Climb in cruise performed at constant MACH, MCMB TLA, and 500 fpm climb rate; 

4. Accelerations in cruise performed at MCRZ TLA and decelerations at IDLE TLA; 

5. The sets of valid initial cruise altitude and valid cruise speeds are determined 

heuristically (see sub-section 5.3.5.2); 

6. A constant altitude (initial cruise altitude) and MACH speed (initial cruise MACH 

speed) from the TOC to the 8th LFPL WPT (approx. 400 n.m. from WPTinit); 

7. EOC is placed at the 53rd LFPL WPT (approx. 400 n.m. before WPTfinal); 

8. From the 8th LFPL WPT to the EOC, the cruise section defines constant altitude and 

speed segments with a length of approximately 250 n.m. (five LFPL segments). The 

cruise altitude and/or speed changes can occur at the LFPL WPTs [8 13 18 23 28 33 

38 43 48]; and 
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9. The cruise phase altitude and speed values and the MACH speed for the final cruise 

segment (from WPT 53 to TOD) are selected at random: altitudes between 28,000 ft 

and 43,000 ft, and speeds between 0.68 and 0.9 MACH. 

 

Next, the ADM was constructed based on the RGRID, the range of VFPL altitudes, and the 

time domain that covered all flights along the candidate FPLs. The maximum flight time for 

a flight between WPTinit and WPTfinal was assumed to be 10h 00’ 34” (1.5 × 𝑓𝑡ோ்஺బ). 

Therefore, the time domain of interest for the atmospheric data is: 

 

 𝑓𝑡ௗ௢௠௔௜௡ = ൣ𝑡ௐ௉்೔೙೔೟ , 𝑡ௐ௉்೔೙೔೟ + 1.5 × 𝑓𝑡ோ்஺బ൧= ሾ12: 27: 50, 22: 28: 24ሿ 𝐸𝐷𝑇  (5.4) 

 

The population size for the algorithm implementing the proposed method was selected to be 

62, twice the number of searched FPL solutions. Given the proposed method’s stochastic 

nature, 10 test runs were conducted for each optimization method variant. 

 

5.4.3 Research questions 

The research questions evaluated in this study are: 

1. Does the optimization method identify solutions for all RTA constraints? 

2. How fast (in what generation) does the first tentative solution for an RTA value 

appear? 

3. What is the fuel burn difference between a “random” FPL that satisfies the RTA 

constraint (the first identified tentative solution) and the final solution? 

4. How many iterations are necessary until a tentative solution reaches a fuel burn that 

is 1%, 0.1%, 100 kg, and 50 kg over the final solution, or the final solution? 

5. How different are the solutions identified in the 10 test runs of a test case? 

6. Does adding mutated tentative solutions to the extended population (local search) 

improve the results? 
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7. Does an FPL correction relative to the flight envelope, in the initial population, 

improve the results? 

8. How does the method’s performance change if the extended population is generated 

by crossover solely on the LFPL or VFPL (chosen at random), or on both? 

9. What is the effect of assigning the fitness value for non-valid FPLs as a function of: 

Euclidian distance to a reference point versus the absolute time difference relative to 

the primary flight time constraint 𝑓𝑡ோ்஺బ? 

10. Does an increase of the number of iterations (generations) improve the results? 

11. What are the differences between an optimization performed for 300 generations 

versus one performed for 1,000 generations? 

 

5.4.4 Test cases 

A test case configuration synopsis of the optimization method variants is presented in 

Table 5.1. 

 

Table 5.1 Test case configurations synopsis 
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For an invalid FPL, the flight time and fuel burn were assigned penalty values: 3 × 𝑓𝑡ோ்஺బ 

for the flight time, and 1.5 times the initial fuel quantity for fuel burn (see Figure 5.8 below). 

 

In the first population, where all the FPLs are generated at random, one, multiple, or all FPLs 

may be non-valid. Since all invalid FPLs have the same values for fuel burn and flight time, 

this could affect the algorithm’s ability to properly guide the search. For test cases 1-5 and 7, 

the invalid FPLs in the initial population were corrected (see sub-section 5.3.4). For test case 

6 the invalid FPLs in the initial population were not corrected, in order to evaluate their 

influence on results. 

 

5.4.5 Results and discussions 

The number of invalid profiles in the initial generation when the FPLs were corrected (test 

cases 1 – 5 and 7) was between 0 and 3 (4.84 %). For the test case 6, the number of invalid 

FPLs was between 19 and 24 (30.65% to 38.71%). However, over the entire set of 70 test 

runs, the first population (G0) contained tentative solutions for a minimum of two and a 

maximum of 20 RTA values (mean 11.27, median 12, and a standard deviation 3.937). 

Moreover, for all test cases, test runs, and RTA values, the first tentative solution appeared 

after a maximum of eight generations (see Table 5.2). Therefore, in all test cases, by the 8th 

generation a complete tentative solution set was found and, as a result, the final solution 

contained optimal FPLs for all RTAs. Table 5.2 presents the statistical data for the first RTA 

value tentative solution occurrence. 

 

The results show that the invalid FPLs generated in the first population do not have a large 

impact on the ability to obtain, within the first few iterations, tentative FPL solutions for all 

the RTA values.  

 

An illustration of the FPLs generated in the first population for test case 1 - test run 1, 

represented in the objective space (fuel burn versus flight time) is presented in Figure 5.8. 

Among the 62 randomly generated initial FPLs, 16 were valid (the blue dots in Figure 5.8), 
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and 46 were non-valid (the red dots in Figure 5.8). Among the 46 non-valid FPLs, one 

required more fuel than available (the red dot in the upper right corner of Figure 5.8). A more 

detailed illustration, for FPLs with parameters within the aircraft’s flight envelope, is 

presented in Figure 5.9. 

 

 
 

Figure 5.8 Initial population (G0) represented in the objective 
space (fuel burn – flight time) for Test case 1, test run 1 

 

Table 5.2 Flight plan solution occurrence for an RTA constraint value 
 

Test case 

Number of RTA 
constraint values 

for which no 
solution was found 

Number of generations until first tentative optimal flight plan 
for an RTA constraint value was found 

Min Max Mean Median Standard deviation 

1 

0 0 

6 1.032258 

1 

1.122984 
2 5 0.9903226 1.116181 
3 7 1.254839 1.373428 
4 7 1.387097 1.422824 
5 5 1.074194 1.063203 
6 8 2.335484 2 1.456055 
7 5 0.9032258 1 1.009817 

 

Figure 5.10 presents an example of global optimization evolution obtained for test case 1 - 

test run1. The initial population (G0) yielded only 11 tentative solutions, with a fuel burn 

difference relative to the final solutions (optimal solutions for the same RTA values at G300) 
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between 10,192.47 kg (17.961%), for RTA 𝑓𝑡ோ்஺బ − 15 × ∆𝑅𝑇𝐴, and 887.45 kg (1.559%), 

for RTA 𝑓𝑡ோ்஺బ − 2 × ∆𝑅𝑇𝐴. At the 50th generation (G50), the differences were found to be 

between 262.56 kg (0.462%), for RTA 𝑓𝑡ோ்஺బ − 13 × ∆𝑅𝑇𝐴, and 167.84 kg (0.295%), for 

RTA 𝑓𝑡ோ்஺బ − 5 × ∆𝑅𝑇𝐴. 

 

 
 

Figure 5.9 Initial population (G0) flight plans represented in the objective 
space, (flight parameters within the aircraft’s flight envelope) for 

test case 1, test run 1 
 

 
 

Figure 5.10 Example of global tentative solution set 
evolution for Test case 1, test run 1 
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Table 5.3 Synopsis for the optimization results obtained using the proposed method 
 

Test 
case  

A B C 

Fuel burn reduction for a test run 
and RTA value  

(final solution vs. initial 
solution) 

Optimal solution fuel burn 
variation for an RTA value 

over the 10 test runs 

Fuel burn difference: 
final solution for a test run and RTA 
value vs. a “global” min. fuel burn 

solution for the RTA value (over the 
entire set of tests) 

kg % kg % kg % 

1 

Min 518.11 0.91 0.00 0.00 0.00 0.00 
Max 12,343.47 21.70 65.79 0.12 69.95 0.12 
Mean 3,597.01 6.32 18.80 0.03 22.34 0.04 
Median 3,072.48 5.40 15.19 0.03 19.16 0.03 
Standard deviation 1,989.75 3.49 16.75 0.03 16.75 0.03 

2 

Min 589.95 1.04 0.00 0.00 1.50 0.00 
Max 13,584.85 23.83 95.23 0.17 105.46 0.19 
Mean 3,596.52 6.31 24.54 0.04 35.07 0.06 
Median 3,233.15 5.68 19.42 0.03 31.82 0.06 
Standard deviation 2,021.86 3.55 21.67 0.04 21.80 0.04 

3 

Min 537.94 0.95 0.00 0.00 20.19 0.04 
Max 12,909.97 22.64 185.38 0.33 321.81 0.56 
Mean 3,945.01 6.92 61.08 0.11 110.79 0.19 
Median 3,770.00 6.60 47.64 0.08 105.50 0.19 
Standard deviation 1,950.29 3.42 48.62 0.09 61.07 0.11 

4 

Min 628.53 1.11 0.00 0.00 3.77 0.01 
Max 14,218.05 24.91 264.33 0.46 290.68 0.51 
Mean 3,702.58 6.49 60.80 0.11 90.55 0.16 
Median 3,270.22 5.74 39.83 0.07 66.75 0.12 
Standard deviation 1,927.02 3.38 61.48 0.11 65.56 0.11 

5 

Min 646.20 1.13 0.00 0.00 0.00 0.00 
Max 13,699.90 24.10 77.47 0.14 82.12 0.14 
Mean 3,480.00 6.11 29.25 0.05 35.10 0.06 
Median 3,158.54 5.54 29.09 0.05 35.30 0.06 
Standard deviation 1,792.86 3.15 17.68 0.03 17.63 0.03 

6 

Min 407.12 0.72 0.00 0.00 0.00 0.00 
Max 14,104.33 24.83 88.31 0.16 89.83 0.16 
Mean 3,386.59 5.95 24.19 0.04 29.11 0.05 
Median 2,869.56 5.03 12.80 0.02 17.04 0.03 
Standard deviation 2,174.58 3.82 24.80 0.04 24.79 0.04 

7 

Min 631.49 1.11 0.00 0.00 0.00 0.00 
Max 12,455.23 21.87 62.12 0.11 62.54 0.11 
Mean 3,438.50 6.04 21.63 0.04 22.05 0.04 
Median 2,911.92 5.12 15.32 0.03 15.66 0.03 
Standard deviation 1,990.90 3.49 18.73 0.03 18.70 0.03 

 

The results presented in Table 5.3, column A, show a synopsis of the fuel burn reduction 

between the initial, random, tentative solutions, and the optimal FPLs at the end of the 

optimization. The seven method variants (test cases) yielded similar results. These results are 

influenced by how far the random initial population (G0) candidate FPLs are from the 

optimal solutions. Column B of Table 5.3 shows how close (in terms of fuel burn) are the 

optimal solutions found for 10 runs of an identical test case and RTA value. The worst results 

(the maximum difference between test run results, and the maximum variance) were obtained 

for the test cases 3 and 4, where no local search was performed. The best results were 
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obtained for the optimization method variants 1 and 7, where the initial population’s invalid 

FPLs were corrected, a local search was performed, and the fitness for the non-valid FPLs 

were computed using the Euclidian distance to the reference point. Among the two (test cases 

1 and 7), the best results were obtained for test case 7, when the optimization was performed 

for 1,000 iterations. Column C of Table 5.3 shows the results of a comparison between the 

optimal FPL fuel burn for an RTA value and a test run, with the “global optimum” for the 

RTA value (the best fuel burn for the RTA value obtained from the 70 test runs – the 10 test 

runs for each of the seven test cases). Once again, the best results were obtained for the test 

cases 7 and 1, with maximum fuel burn differences relative to the “global optimum” of 62.54 

kg (0.11%) and 69.95 kg (0.12%), respectively. The worst results were obtained for test cases 

3 and 4, with maximum fuel burn differences of 321.81 kg (0.56%) and 290.68 kg (0.51%), 

respectively. It can be concluded that the local search significantly improves the optimization 

results. The improvement is obtained at the expense of computation time; the extended 

population increases by up to 31 elements, and therefore, a higher number of flight 

performance calculations must be conducted. 

 

Comparing the results obtained for test cases 1 and 3, where the only difference between the 

two test cases is the fitness assignment method for the non-valid FPLs, it can be seen that test 

case 1 yields better results. The maximum fuel burn difference relative to the global optimum 

for an RTA constraint for test case 3 is larger with 35.51 kg (0.07%) than that obtained for 

test case 1. It can be concluded that the non-valid FPL fitness calculation based on the time 

difference to a reference point, although easier to implement and less computationally 

expensive, degrades the optimization results. A comparison between the results obtained for 

test cases 1 and 5 shows that the results obtained for test case 1 (crossover is performed on 

only one component of the FPL) are better both in terms of maximum difference between the 

results for 10 identical test runs, and the maximum fuel burn difference relative to the “global 

optimum”. A comparison of the results obtained for test case 6 and test case 1 shows that 

correcting the invalid initial candidate FPLs, generated randomly for population G0, 

improves the optimization results. 

 



169 

An illustration of a tentative solution evolution for an RTA value (test case 1, test run 1, 𝑓𝑡ோ்஺బ − 13 × ∆𝑅𝑇𝐴) is presented in Figure 5.11:  

1. The first tentative FPL solution appeared in the second generation (G2);  

2. A fuel burn value equal to 1% higher than the final solution (G300) was achieved at 

G10; 

3. Less than 0.1% over the fuel burn for G300 was reached at G145; 

4. Less than 100 kg over fuel burn at G300 was reached at G119; 

5. Less than 50 kg over fuel burn at G300 was reached at G145; and  

6. The final solution was reached at G161.  

 

The final solution uses 1,435.40 kg (2.466%) less fuel than the initial tentative FPL solution.  

 

 
 

Figure 5.11 Example of tentative FPL solution evolution for test case 1, test run1, 
and RTA constraint value 𝑓𝑡ோ்஺బ − 13 × ∆𝑅𝑇𝐴 

 

Table 5.4 presents the number of iterations until the tentative FPL solutions reached a 

selected threshold relative to the final solution fuel burn. For each test case, the analysis is 
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performed over the 10 test runs and for the entire set of RTA values. In this case too, the 

optimization method versions 3 and 4 (test cases 3 and 4) yield the worst results among test 

cases 1 to 6, in which the optimization was performed for 300 generations.  

 

Table 5.4 Number of algorithm iterations until the tentative solution reaches a 
fuel burn (FB) below a threshold value relative to the final solution (FBfinal) 

 

Test case  

The test run generation where the first occurrence of a tentative solution: 
for the RTA value, over the final, optimal solution fuel burn value: 

FB ≤ 1.1 FBfinal 
FB ≤ 1.01 

FBfinal 
FB ≤ FBfinal + 

100 kg 
FB ≤ FBfinal + 

50 kg FB = FBfinal 

1 

Min 0 18 16 18 58 
Max 58 219 206 219 300 
Mean 17.73 94.17 66.17 99.51 246.16 
Median 16 83 55 85.50 260 
Standard deviation 7.86 49.29 35.71 50.84 48.98 

2 

Min 2 23 20 26 76 
Max 41 290 155 290 300 
Mean 15.72 84.59 62.00 91.41 237.37 
Median 14 70 55 77 251 
Standard deviation 7.60 46.00 30.59 50.02 50.60 

3 

Min 0 63 49 77 104 
Max 97 295 276 295 300 
Mean 27.17 151.11 119.08 157.14 255.29 
Median 19 150 114.50 155 278 
Standard deviation 21.82 50.53 44.44 50.38 49.18 

4 

Min 5 40 33 41 104 
Max 80 299 299 299 300 
Mean 25.79 143.29 121.20 149.63 256.56 
Median 22 123.50 99.50 131.50 268 
Standard deviation 14.79 63.90 59.83 64.31 38.63 

5 

Min 4 22 14 23 61 
Max 53 239 145 239 300 
Mean 14.76 73.98 53.71 78.40 230.64 
Median 12 72 47.50 74 236.50 
Standard deviation 8.77 36.19 25.90 37.76 50.05 

6 

Min 3 20 9 20 72 
Max 46 247 137 247 300 
Mean 20.75 94.66 72.80 98.55 233.45 
Median 20 89 68.50 92 245.50 
Standard deviation 8.40 35.54 28.29 37.56 52.28 

7 

Min 2 35 22 35 116 
Max 36 260 207 269 1000 
Mean 15.80 91.57 63.44 99.09 660.91 
Median 15 88 59 95.50 708.50 
Standard deviation 5.79 41.43 27.93 44.14 242.57 
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The results suggest that the case 7 yields the worst results (converges after a large number of 

iterations). However, the optimization was performed for 1,000 iterations (3.3 times more 

than for test cases 1 to 6) and, therefore, new tentative solutions appear late in the 

optimization, beyond the 300th iteration. A comparison of the results in column C, between 

test cases 1 and 7, reveals that the maximum fuel burn reduction relative to the general 

optimum (7.41 kg, or 0.01%) may not justify the additional 700 iterations. The results 

obtained for test cases 1, 2, 5, and 6 are close, and suggest that test case 1 converges faster to 

the selected threshold fuel burn values (except for 100 kg over the final solution fuel burn, 

where it performed the worst). 

 

Table 5.5 shows the fuel burn reduction, relative to the “global” optimum, at different points 

(iterations) during the optimization. Test cases 1 and 7 have identical optimization method 

configurations, except for the number of iterations. For an FPL solution at the 300th iteration 

the maximum fuel burn differences relative to the “global” optimum for an RTA value are 

different (a difference of 12.28 kg or 0.02%), due to the optimization method’s stochastic 

nature (due to the randomness characteristic for the evolutionary algorithms).  

 

Together, the results for test cases 1 and 7, at the 300th iteration, are equivalent to running 

test case 1 for 20 times. As such, relative to the “global” optimal solutions, variant 1 of the 

optimization method found solutions that had a higher fuel burn: between 0 kg and 82.23 kg 

(0.14%), with a mean of 27 kg (0.04 %), a median of 23.58 kg (0.04%) and a standard 

deviation of 19.37 kg (0.03%). These results confirm that test case 1 still produced the best 

results, however, they are just marginally better relative to results obtained for test cases 5 

and 6. 

 

The execution times for the tests performed in this paper are presented in Table 5.6. These 

are total execution times, from the start of the optimization (initializations), and include: 

loading the aircraft performance model and the reference track data, processing the reference 

track data, routing grid construction, loading the atmospheric data, and storing the large 

amounts of data needed to analyze the evolution and the performance of each test run. 
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Table 5.5 Synopsis of the fuel burn improvement for the tentative flight plan solution 
for the set of RTA constraints, relative to the “global” optimal solutions, 

at a set of points (iterations / generations) during the optimization 
 

Test 
case 

Generation G50 G100 G150 G200 G250 G300 G500 G1000 
Fuel burn over the 
“global” optimum kg % kg % kg % kg % kg % kg % kg % kg % 

1 

Min 7.30 0.01 4.99 0.01 3.39 0.01 0.00 0.00 0.00 0.00 0.00 0.00     
Max 688.18 1.21 257.58 0.45 239.12 0.42 140.55 0.25 110.71 0.19 69.95 0.12     
Mean 164.08 0.29 75.29 0.13 49.81 0.09 34.88 0.06 26.30 0.05 22.34 0.04     
Median 147.11 0.26 59.47 0.10 35.72 0.06 25.79 0.05 21.64 0.04 19.16 0.03     
Standard deviation 112.30 0.20 57.06 0.10 43.06 0.08 29.75 0.05 19.34 0.03 16.75 0.03     

2 

Min 16.61 0.03 8.22 0.01 7.51 0.01 3.75 0.01 1.50 0.00 1.50 0.00     
Max 569.99 1.00 284.95 0.50 186.13 0.33 165.21 0.29 155.85 0.27 105.46 0.19     
Mean 178.35 0.31 81.27 0.14 55.99 0.10 45.21 0.08 40.49 0.07 35.07 0.06     
Median 140.79 0.25 64.19 0.11 43.11 0.08 37.46 0.07 33.65 0.06 31.82 0.06     
Standard deviation 118.98 0.21 58.51 0.10 38.82 0.07 33.44 0.06 30.20 0.05 21.80 0.04     

3 

Min 158.87 0.28 70.28 0.12 23.51 0.04 20.19 0.04 20.19 0.04 20.19 0.04     
Max 1683.88 2.95 819.21 1.43 489.72 0.86 367.16 0.64 354.81 0.62 321.81 0.56     
Mean 472.24 0.83 267.17 0.47 179.63 0.32 138.33 0.24 124.32 0.22 110.79 0.19     
Median 373.00 0.66 220.71 0.39 158.93 0.28 131.55 0.23 123.80 0.22 105.50 0.19     
Standard deviation 307.06 0.54 155.14 0.27 88.68 0.16 73.32 0.13 67.00 0.12 61.07 0.11     

4 

Min 62.52 0.11 30.62 0.05 23.97 0.04 20.01 0.04 20.01 0.04 3.77 0.01     
Max 924.57 1.62 707.42 1.24 707.42 1.24 492.70 0.86 370.53 0.65 290.68 0.51     
Mean 386.56 0.68 227.90 0.40 171.42 0.30 133.10 0.23 104.08 0.18 90.55 0.16     
Median 351.02 0.62 189.46 0.33 141.87 0.25 114.15 0.20 82.99 0.15 66.75 0.12     
Standard deviation 202.73 0.36 151.15 0.26 126.78 0.22 85.61 0.15 71.16 0.12 65.56 0.11     

5 

Min 52.33 0.09 6.68 0.01 5.17 0.01 2.60 0.00 0.00 0.00 0.00 0.00     
Max 715.41 1.25 192.51 0.34 129.69 0.23 121.90 0.21 96.32 0.17 82.12 0.14     
Mean 158.95 0.28 67.54 0.12 49.73 0.09 44.08 0.08 38.18 0.07 35.10 0.06     
Median 121.80 0.21 63.38 0.11 50.26 0.09 44.80 0.08 37.11 0.07 35.30 0.06     
Standard deviation 111.26 0.20 34.31 0.06 23.13 0.04 22.08 0.04 19.27 0.03 17.63 0.03     

6 

Min 28.89 0.05 5.73 0.01 1.52 0.00 1.52 0.00 0.00 0.00 0.00 0.00     
Max 587.78 1.03 222.09 0.39 113.42 0.20 113.42 0.20 94.70 0.17 89.83 0.16     
Mean 219.11 0.38 84.76 0.15 46.27 0.08 35.52 0.06 31.32 0.06 29.11 0.05     
Median 212.74 0.37 77.62 0.14 44.41 0.08 26.11 0.05 18.53 0.03 17.04 0.03     
Standard deviation 109.85 0.19 49.79 0.09 27.93 0.05 25.43 0.04 24.94 0.04 24.79 0.04     

7 

Min 41.77 0.07 4.82 0.01 1.41 0.00 1.21 0.00 1.21 0.00 0.63 0.00 0.00 0.00 0.00 0.00 
Max 443.57 0.78 204.28 0.36 163.04 0.29 140.41 0.25 92.64 0.16 82.23 0.14 78.18 0.14 62.54 0.11 
Mean 153.44 0.27 69.82 0.12 49.18 0.09 40.46 0.07 33.95 0.06 31.75 0.06 26.04 0.05 22.05 0.04 
Median 149.51 0.26 61.72 0.11 45.55 0.08 40.16 0.07 34.42 0.06 32.92 0.06 19.29 0.03 15.66 0.03 
Standard deviation 72.56 0.13 38.44 0.07 25.86 0.05 24.87 0.04 21.07 0.04 20.67 0.04 20.98 0.04 18.70 0.03 

 

The execution times are affected by the fact that the code was written in Matlab (interpreted 

code) in a Windows environment (the processor time for a task is allocated by the operating 

system according to its own priorities), with large data structures stored in the memory. 

 

Table 5.6 Execution times obtained for the 7 variants (test cases) of the proposed 
optimization method 

 
Execution time Test case 

1 2 3 4 5 6 7 
Min (s) 4,992.59 5,041.32 3,420.88 3,449.43 4,976.35 4,785.86 16,117.74 
Max (s) 5,133.54 5,172.87 3,557.71 3,604.48 5,069.75 4,873.95 16,430.31 
Mean (s) 5,047.47 5,096.34 3,490.67 3,525.96 5,034.87 4,812.08 16,303.89 
Median (s) 5,038.60 5,095.38 3,478.28 3,537.66 5,042.21 4,799.44 16,324.68 
Standard deviation (s) 48.78 38.64 45.64 66.53 30.42 31.36 100.70 
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A comparison of the execution times between test cases 1 and 3, and 2 and 4, shows that the 

local search performed during the optimization increased the execution time by 

approximately 1,568.39 to 1,591.89 seconds (an increase of close to 30%), which was 

expected. As more tentative FPL solutions for the RTA constraint set are identified, mutated, 

and added to the extended population set, more FPL performance calculations must be 

performed (93 FPL evaluations in every iteration, in comparison with 62 FPL evaluations if 

the local search is not performed). The local search produced a maximum reduction in fuel 

consumption of between 250 kg (test case 1 versus test case 3) and 185 kg (test case 2 versus 

test case 4) – see Table 5.3 column C. The effect of generating the extended population FPLs 

through crossover on both lateral and vertical flight plans (test case 5) was an increase in 

execution time by a maximum of 36 seconds, and did not yield better results. This result 

could be due to the specifics of the FPL components’ crossover, and to the fact that 

performing a crossover on both the LFPL and VFPL components produces child FPLs that 

are too different than the parents, and thus results in a loss of good genetic information. The 

invalid FPL parameters’ correction (test cases 1 versus 6) resulted in a maximum increase in 

execution time of 260 seconds and reduced the maximum fuel burn difference with respect to 

the reference profile by 20 kg. Finally, increasing the number of optimization iterations 

beyond 300 (test case 7 versus test case 1) did not produce significantly better solutions; 

however, for the 1,000 iterations performed for test case 7, the execution time increase was 

approximately 11,300 seconds, or 220% more than for test case 1. 

 

5.5 Conclusion 

This paper presents a new optimization method that addresses a flight planning problem 

where the flight planner/decision maker has a preferred time domain for an aircraft crossing 

time at a WPT or they must include an RTA constraint. The proposed method was able to 

quickly identify, within the first eight iterations, tentative solutions for the entire set of 31 

selected RTA values. These initial tentative solutions are not optimal; they are random FPLs 

that satisfy the optimization objective’s time constraint (not the minimum fuel requirement). 

Seventy test runs were conducted for the same optimization problem (10 runs for each 
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optimization method variant). The best solutions (FPLs that yield the minimum fuel burn) for 

each of the 31 RTA values were considered the “global” optimums and were used as 

references, to evaluate the performance of the proposed method and its variants (i.e. the 

influence of various techniques applied during the optimization, such as adding a local 

search). 

 

The tests showed that, relative to the initial, random, tentative FPL solutions, the 

optimization method can yield a fuel burn reduction of up to 14,000 kg, depending on how 

far from the optimum profile the initial FPL is. Although a local search performed in each 

iteration increases the execution time by 30%, it also increases the solution’s quality, both in 

terms of reduction of the maximum fuel burn variation between FPL solutions for two runs 

of the optimization, and in a reduction of the maximum fuel burn difference relative to the 

“global” optimum, from 321 kg to 69 kg (a better convergence to a “global” optimum). 

Performing a correction of the invalid FPLs in the initial population improves the solution 

quality, with a relative minimal increase in execution time (200 seconds). 

 

The proposed optimization method successfully identified optimal FPL solutions for the 

entire set of RTA constraint values and had a good convergence: solutions of 0 to 82 kg 

(0.14%) fuel burn over the “global” optimum. Given the long execution time, and the 

solution randomness (in the parameter space), the optimization method is found to be 

appropriate for the flight-planning phase, as it can provide the decision maker with a set of 

optimal FPLs from which to choose, according to specific criteria. If the ATM rejects the 

selected FPL, the decision maker can select the next-best FPL/RTA value, without having to 

perform a new optimization. 

 

Future work could investigate an optimization method that can determine the set of optimal 

FPLs for a set of RTA constraints that are not clustered (non-contiguous RTA constraint 

bounds). Another direction of research would be to investigate if other methods, derived 

from other MOO techniques, can be successfully applied for the optimization of flight 

trajectories with RTA constraints. A third direction of investigation would be to apply the 
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proposed optimization approach for flight trajectories with multiple RTA constraints, at 

points along the flight trajectory, where each time constraint would add another dimension to 

the objective space. A fourth study could investigate the implementation of avoidance area 

by assigning time (and possible altitude) dependent crossing restrictions for the nodes of the 

routing grid. 

 





 

CHAPTER 6 
 
 

DISCUSSION OF THE RESULTS 
 

The research presented in this thesis relates to the field of flight trajectory optimization and 

investigates a new method to model and compute the atmospheric data in points (locations) 

along the flight trajectory, for a constant altitude section of the cruise phase, and two new 

flight trajectory optimization methods. 

 

The first investigation, presented in Chapter 3, analyzed a new atmospheric data model to be 

used in flight trajectory optimization calculations for constant altitude cruise segments. This 

new model defines the atmospheric parameters variation as a function of time, at a selected 

altitude, in the nodes of a routing grid constructed based on the orthodromic route between 

the geographical points that define the segment under optimization. The parameters defining 

the routing grid are: along and across the orthodromic route step size at sea level (SLL), the 

maximum number of steps across the orthodromic route that can be taken by the aircraft at a 

step along the orthodromic route, and the maximum deviation from the orthodromic route. 

These parameters were selected so that the maximum distance of a cruise flight sub-segment 

(integration step), between adjacent grid nodes, would be less or equal to the maximum 

integration step used in the flight trajectory performance calculations, and the grid covers the 

geographic area intended for aircraft routing. 

 

The first hypothesis was that the proposed method would yield an atmospheric parameter 

value (air temperature or wind) in a grid definition point (geographical location), at the 

selected cruise altitude, for a selected time instance, with the same precision and faster than 

when computed using a 4D interpolation from the forecast data (GRIB data) provided by the 

meteorological agencies. The second hypothesis was that, given that the cruise phase is the 

longest phase of the flight, and that the flight performance calculations for the constant 

altitude and constant speed segments are performed by integration over the segment distance, 

the proposed model would conduct to important reductions of the flight trajectory simulation 

/ flight performance parameters computation time. 



178 

First, the geographic locations of the initial and final points for the cruise phase of a real 

flight (the initial and final points of the routing grid) were taken from the FlightAware 

website (flight TSC601 of 14 June 2016, between Nantes and Montréal). Then, four grids 

were constructed based on two maximum deviations from the orthodromic route (250 n.m. 

and 500 n.m.), two lateral deviation settings (maximum one step of 20 n.m. and maximum 

two steps of 10 n.m.), a maximum segment SLL along the orthodromic route of 50 n.m, and a 

cruise altitude of 30,000 ft. These grids were used for evaluating the proposed model’s 

performance: the time necessary to generate the atmospheric data, the memory requirements 

for different grid sizes (number of nodes), the time necessary to compute the atmospheric 

parameters in a grid node at a selected time instance, and the time necessary to perform a 

flight trajectory simulation / flight performance calculations. Finally, the Global 

Deterministic Prediction System (GDPS) atmospheric forecast data for the period that 

covered the time domain of interest, for which the Atmospheric Data Model (ADM) would 

be created (14 June, 2016, between 12:00 and 24:00 UTC), and the pressure altitudes that 

encompass the cruse altitude of 30,000 ft (i.e. 350 hPa and 300 hPa) were downloaded from 

the Environment Canada website. The data corresponding to a geographic area that covers 

the four grids was selected and subsequently used for the evaluation. 

 

The results showed that the time necessary to generate the ADM using the proposed method 

is significantly reduced (relative to 4D interpolations using the GRIB data): between 28.95% 

and 58.47%. For the cases where a low grid resolution was used (e.g. one step of 20 n.m. 

lateral deviation) the memory requirement was less than that for the GRIB data covering the 

same geographic area, altitude, and time interval of interest. Tests performed in each node of 

the routing grid for time instances covering the entire timespan for which the model was 

created, showed that the atmospheric parameters computed based on the ADM were obtained 

on average six time faster than when they were computed using the GRIB data. The 

atmospheric data values were identical; the differences between their values were of the 

order of 10-14. These results validated the first hypothesis, that the ADM computes the 

atmospheric parameters faster and with the same precision as a 4D interpolation from GRIB 

data. 
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Another set of tests evaluated the ADM’s performance in the context of flight trajectory 

simulation / flight performance parameters calculations. Flight trajectory simulations were 

performed for two trajectories constructed based on a grid having a maximum deviation of 

500 n.m. from the orthodrome and a maximum of two lateral steps of 10 n.m. The results 

showed a computation time reduction higher than 10%. Since the atmospheric parameters 

computed based on the ADM were “identical” with those created using the GRIB data, the 

results of the flight trajectory simulation using the ADM were “identical” with those 

computed using the GRIB data. Therefore, the second hypothesis was validated. 

 

The second research, presented in Chapter 4, proposed a new flight trajectory optimization 

method based on genetic algorithms, where the candidate flight trajectories were defined as 

“flight plans”, with their lateral components defined by selecting WPTs from an orthogonal 

routing grid (similar to that used in the first research) and the vertical components have a 

structure conforming to a proposed template. For each node of the grid, the segment SLL and 

heading for each possible segment starting in that node are calculated and stored for use in 

the flight trajectory accelerated simulation / flight performance calculations. The objective of 

the optimization is the minimization of the total cost for the flight. In this research it was 

assumed that: 

1. The lateral flight plan component is constructed by selecting grid nodes that are one 

step further along the orthodromic route direction, and up to a selected maximum 

number of routing grid steps across the orthodromic route direction (grid axis); 

2. The vertical component of the flight plan: 

a. The climb and descent sections are performed at constant [CAS, MACH] 

speeds; 

b. The cruise section is composed of constant altitude and speed sub-segments, 

according to a proposed template; 

c. The climb and descent sections do not contain constant altitude segments; 

d. In the cruise phase, only step climbs are allowed (the cruise altitude of a 

cruise segment is always equal or higher than the altitude of the preceding 

cruise segment. 
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The proposed crossover and mutation methodologies for the lateral and vertical components 

of the flight plan ensure that the “child” flight plans, resulted from the crossover between two 

candidate flight plans or their mutation, are themselves members of the set of candidate flight 

plans (they conform with the templates selected for the flight plan components). 

 

The candidate flight plans evaluated during the optimization, generated randomly or resulted 

from a genetic operation, could be invalid: they could generate aircraft flight parameters 

(altitude – speed combinations) outside the aircraft’s flight envelope or they could require 

more fuel than available onboard. Two strategies were evaluated regarding the invalid flight 

plans with parameters outside the flight envelope limits. The first strategy consisted in 

assigning them penalty fuel burn and flight time values (estimated heuristically to be larger 

than for any possible valid flight plan). This is equivalent to assigning the lowest fitness 

value and, therefore, they could contribute with genetic material to the next generation, 

however, the probability is very low. The second strategy was that, during the accelerated 

simulation of the flight along the evaluated flight plan, if the altitude - speed parameters of a 

segment were invalid relative to the aircraft’s flight envelope then the segment’s speed – 

altitude settings were corrected to values within the aircraft’s envelope limits (with 

preference for the pre-planned altitude). For invalid flight plans due to fuel burn larger than 

the available fuel, penalty values were assigned as fuel burn and flight time (identical with 

the values assigned for the case when the flight plans resulted in flight parameters outside the 

aircraft’s flight envelope). 

 

The routing grid used for the construction of the flight plan components and the atmospheric 

data model used in the performance calculations, as well as the flight profiles used as 

reference, were generated based on the flight track data corresponding to a real flight (Swiss 

Air flight SWR40 of 25 February, 2019) segment retrieved from FlightAware. The reference 

profiles were obtained by a speed optimization along the lateral and altitude profiles 

constructed based on the SWR40 track data. Each reference profile was obtained for identical 

conditions (e.g. initial aircraft weight, crossing time at the initial point, and CI value). 
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Ten test runs were performed for each of the six CI values used in the method’s performance 

evaluation. Five reference profile optimization test runs were performed for each CI value. 

The best reference profiles obtained for each CI value were used as reference for the 

optimization method and CI value tests. 

 

The first hypothesis was that the flight plan solutions yielded by the proposed optimization 

method would be better (would have a smaller total cost) than the reference profile. The 

results have shown that for both method variants (corrected and non-corrected flight plans) 

and for all CI values this is true. The second hypothesis was that correcting the invalid flight 

plans relative to aircraft’s flight envelope would yield better results than if they were not 

corrected, and would increase the computation time. This hypothesis was partially disproved. 

Except the case when CI = 0 (fuel burn minimization), the flight plan corrections increased 

the total cost. A comparison between the execution times for CFP and NCFP variants of the 

optimization method have shown that the flight plan corrections more than double the 

optimization’s execution time. The loss of performance when the flight plan corrections were 

performed during the optimization might be due to the loss of population diversity. The 

invalid profiles might contain characteristics (chromosomes) that might be useful in future 

generations of the population. Even for the case where CI = 0, when the CFP variant yielded 

better results, it might be possible that the same optimal results, or even better, could be 

obtained with a smaller execution time increase by increasing the number of optimization 

iterations (generations). 

 

The third research investigated a new optimization method, derived from the NSGA-II 

algorithm, which identifies, in “parallel”, optimal flight plans for a set of contiguous RTA 

constraints at the end of the segment under optimization. The routing grid, candidate flight 

plans, and atmospheric data were constructed similarly with the method presented in the 

previous research investigations, based on the initial and final points (geographical locations, 

altitudes, and crossing times) of the segment under optimization, retrieved from a real flight 

track data. The central RTA constraint value (RTA0) was considered to correspond to the 

aircraft crossing time at the selected final point, as retrieved from the flight track data. Seven 
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variants of the proposed optimization method were evaluated. Given the stochastic nature of 

the optimization method, 10 test runs were conducted for each variant of the method in order 

to better characterize the performances of the optimization method and its variants. The set of 

contiguous RTA constraints were taken as the 31 contiguous time windows with a width of 

20 s, with their central values spanning the interval RTA0 ± 5 min. For each of the 31 RTA 

constraint values the optimum flight plan (the minimum fuel burn) over the 70 test runs (10 

test runs for each method variant) were considered the “global” optimum and used as 

reference to determine the performance of the method and its variants. 

 

The first hypothesis stated that the method is capable to identify solutions for the entire set of 

RTA constraints. The tests showed that all the method variants identified tentative solutions 

for all the RTA constraint domains within the first eight iterations. Therefore, this hypothesis 

was validated. The second hypothesis stated that by performing invalid flight plan 

corrections for the first generation population more tentative solutions would be identified in 

the first iterations of the optimization. The tests confirmed this hypothesis, however, the 

difference in number of tentative flight plan solutions identified within the first iterations was 

small: for the case when the initial population invalid flight plans were corrected, the 

tentative solutions for all RTA constraints were identified in maximum seven iterations, 

whereas if the invalid flight plans were not corrected, the tentative solutions were identified 

in maximum eight iterations. 

 

The flight plan solutions improved when a local search was performed in every iteration of 

the optimization, which confirms the third hypothesis 

 

For the considered test scenario, the best results were obtained for the case when: the invalid 

first generation flight plans were corrected, a local search is performed in each generation, 

the crossover is performed only on one of the flight plan components, and the flight plan 

fitness for non-valid flight plans (flight time does not satisfy any RTA constraint) is assigned 

based on the Euclidian distance to a reference point. For five optimization method variants, 
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for each RTA value the solution converged to fuel burn value within 90 kg of the “global” 

optimum for that particular RTA value.  

 

The tests also showed that, performing the optimization beyond a certain number of iterations 

does not improve significantly the solution. The solutions obtained after 1000 iterations 

resulted in an improvement of the fuel burn by 20 kg. However, the computation time 

increased by 220%. 

 

The advantage of the proposed method is that provides a set of optimal flight plans for a 

range of RTA values of interest for the flight planner, that can be used in the negotiation with 

the ATM system, without having to perform new optimizations. 

 

 





 

CONCLUSION AND RECOMMENDATIONS 

 

This thesis proposed three new methods related to flight trajectory optimization, viewed as a 

flight-planning problem. The first proposed method generated an atmospheric data model 

that provided the values of atmospheric parameters as a function of time, in a set of 

geographic locations, at a selected altitude. The second proposed method was an optimization 

method based on genetic algorithms, were the lateral and vertical components of the 

candidate flight plans conform to proposed models (templates). The methodologies to 

perform the crossover and mutation operations were adapted to the lateral and vertical flight 

plan structures. The third proposed method was a new optimization method that identified, in 

parallel, the optimal flight plans for a set of contiguous RTA constraints. 

 

The originality of the work presented in this thesis consists in: 

1. The study presented in Chapter 3 proposed a new method and data model to define 

atmospheric parameters (air temperature and wind) in a selected location (fixed 

latitude, longitude, and altitude) as a function of time. This study also proposed a new 

method to construct a routing grid, appropriate for use in flight trajectory 

optimization algorithms. Each node of the routing grid holds the precomputed 

atmospheric data for that geographic location and for a selected set of altitudes, and 

the flight segment information (sea level segment length and segment heading) for all 

“allowed” flight segments starting in that node; 

2. The study presented in Chapter 4 proposed a new flight trajectory optimization 

method using a genetic algorithm, in which the lateral and vertical components of the 

candidate flight plans were constructed based on the routing grid proposed in Chapter 

3. New methodologies were proposed for the construction of the candidate flight plan 

components and for performing the crossover and mutation operations; 

3. The study presented in Chapter 5 proposed a new flight trajectory optimization 

method capable of identifying, in parallel, the optimal flight plans for flight segment 

with a set of contiguous RTA constraints at the final point. The new optimization 

method was derived from the NSGA-II multi-objective optimization method, and 
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adapted for the specific characteristics of the flight trajectory optimization problem. 

The construction of the routing grid and of the candidate flight plans, as well as the 

crossover and mutation operations, were similar with those presented in Chapter 4. 

 

The advantage of the ADM proposed in the first research is that, for a cruise section flown at 

constant altitude, it provides the atmospheric parameter values as a function of time 

(compared with stationary data currently used on FMS platforms) much faster and with the 

same precision as when computed from GRIB data. When the ADM defines the atmospheric 

data in points along a selected lateral flight plan, and for lower resolution routing grids, the 

memory required to store the atmospheric data is smaller than when using GRIB data. In 

flight trajectory optimization algorithms, where a large number of candidate flight plans are 

evaluated iteratively, and a large number of atmospheric parameter calculations are 

performed for each candidate flight plan evaluation, the faster atmospheric parameter 

calculations using the ADM can significantly reduce the computation time.  

 

The disadvantage of the ADM model is that, when extended for a set of N altitudes, the 

required memory increases by a factor of N. 

 

The optimization method based on genetic algorithms, proposed in CHAPTER 4, was able to 

converge to solutions that are better than those for the reference flight plan, when the 

optimization was conducted only for the speed profile (imposed lateral flight plan component 

and altitude profile). For 10 identical test runs the maximum total cost variation obtained for 

the solutions was 0.686% for the CFP, and 0.634% for the NCFP. Except for the case where 

CI = 0, the NCFP method variant yielded better results, probably due to the loss in 

population diversity when the flight plan corrections (CFP) were performed.  

 

The disadvantages of the optimization method proposed in CHAPTER 4 are: 

1. For successive optimization runs, under identical initial conditions and optimization 

problem, the optimal flight plan solutions are different – typical for optimizations 

based on genetic algorithms; 
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2. Long execution times, due to the large number of candidate flight plans evaluated 

during the optimization. For the tests performed with the CFP method variant, the 

execution time more than doubled relative to the tests with the NCFP variant; 

3. Not appropriate for on-board (FMS), or online optimization. 

 

The optimization method proposed in CHAPTER 5, derived from the NSGA-II multi-

objective optimization, was able to identify optimal solutions for all the RTA constraints in 

the target RTA constraints set. For five of the proposed method variants, the optimal 

solutions were found to be within 82 kg of fuel (0.14%) over the “global” optimum solution 

(the best solution over the entire set of tests for the RTA constraint value). The local search, 

performed in each iteration, reduced the maximum fuel burn difference relative to the global 

optimum from 321 kg to 69 kg, with an execution time increase of approximately 30%. For 

the test performed in this study, an increase of the number of optimization algorithm 

iterations, from 300 to 500, yielded a maximum fuel burn reduction of 9 kg, and from 300 to 

1000 iteration a reduction of 20 kg and a 220% increase in execution time. The disadvantages 

of the proposed optimization method are the long execution time and the fact that the 

solutions are different for each run of the same optimization problem. 

 

Based on the research and the results presented in this thesis, the following recommendations 

are made for future research: 

1. Perform a comparison of the ADM model’s precision relative to the atmospheric 

parameters obtained using other data models and interpolation methods, more 

complex and more computing intensive. Compare the differences between the 

atmospheric parameters generated using the ADM and those generated using other 

data models/interpolation methods with the precision of the atmospheric prediction 

data issued by the meteorological agencies; 

2. Compare the atmospheric parameters computed using 4D linear interpolation, ADM, 

and other (more complex) interpolation methods with the real atmospheric data 

(recorded during flight); 

3. Relative to the optimization method proposed in CHAPTER 4: 
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a. Investigation of a more computationally expensive optimization approach, 

where in each step of the genetic algorithm: 

i. The new population will be generated using the genetic operations 

applied on the lateral flight plan (the vertical flight plan would be 

retained from a parent); and then, 

ii. For each member of the new population, a new search (e.g. branch and 

bound, annealing, etc.) identifies the optimal vertical flight plan. 

b. Investigate the execution time improvements when the accelerated flight 

performance calculations are performed using a simplified aircraft 

performance model, based on interpolation tables, mainly used in FMS 

platforms. 

4. Relative to the optimization method proposed in CHAPTER 5: 

a. Investigation of an optimization method that can determine the set of optimal 

flight plans for a set of RTA constraints that are not clustered (non adjacent 

RTA constraints); 

b. Investigate if the proposed optimization approach can be successfully 

extended for flight trajectories with multiple RTA constraints, at various 

points along the flight trajectory, where each time constraint would add 

another dimension in the objective space. 
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