

Hard Optimization of Structural Design Subjected to
Buckling Using the Evolutionary Computation Approach

by

Ali Elmbrok Salem AHMID

MANUSCRIPT-BASED THESIS PRESENTED TO ÉCOLE DE
TECHNOLOGIE SUPÉRIEURE IN PARTIAL FULFILLMENT FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY
Ph.D.

MONTREAL, FEBRURAY 10, 2021

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

© Copyright 2020 reserved by Ali Elmbrok Salem AHMID

© Copyright reserved

It is forbidden to reproduce, save or share the content of this document either in whole or in parts. The reader

who wishes to print or save this document on any media must first get the permission of the author.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mr. Van Ngan Lê , Thesis Supervisor
Department of Mechanical Engineering at École de technologie supérieure

Mr. Thien-My Dao, Thesis Co-supervisor
Department of Mechanical Engineering at École de technologie supérieure

Mr. Tony Wong, President of the Board of Examiners
Department of Systems Engineeringat École de technologie supérieure

Mr. Henri Champliaud, Member of the jury
 Department of Mechanical Engineering at École de technologie supérieure

Mr. Nabil Nahas, External Evaluator
Industrial, Engineering and Management, University of Moncton

THIS THESIS WAS PRENSENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND PUBLIC

FEBRURAY 5, 2021

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

ACKNOWLEDGMENT

I would like to express my feelings and gratitude to my great supervisors Prof.Van Ngan Le

and Prof. Thien-my Dao for their support and guidance and thank them for offering me the

opportunity to work under their supervision. I truly appreciate the time they gave whenever I

needed their assistance. Being your student has been the most remarkable experience that I

obtained in my academic life.

I am truly grateful to Advanced Center of Technology (ACT-Tripoli) and Libyan government

for giving me the opportunity to study abroad. I thank my colleagues at ACT Alla Alzoubi,

Hatem Gnaba and all my supporters. I am indeed thankful to Dr. Ahmed Arkoub, for his

unceasing and significant help from the very beginning of my study here in Canada.

I would also like to thank my colleagues in mechanical engineering department at Ecole

Technologies Superrior for their kind friendship and continues support especially Thi Hong

Dang Nguyen and Azedden Abdo.

Additionally, a special thanks go to my examiner committee: our guest examiner Prof. Nabil

Nahas, Prof. Henri Champliaud, and the president Prof. Tony Wong. Thanks for giving me the

honor by being my Ph.D. committee, and for your valuable time and efforts.

Lastly, I would like to thank my mom, brothers and sisters for their emotional care and

unconditioned support even though what they are going through there. Furthermore, I desire

to thank my wife for her continuous support and encouragement over the years that we spent

here. Your kindness, patient and quietness during hard times we went through together is

priceless support that I will appreciate for the rest of my life. Also, my beloved ones Abdo,

Ayeob, and Soheb; and my sweethearts Fatma and Safia; I could never express how grateful I

am for the sacrifices you made during this long journey which have allowed me being fully

concentrated on my work. Believe me I love you all more than meta-heuristics!

Optimisation dure de la conception structurelle soumise au flambage à l'aide de
l'approche de calcul évolutif

Ali Elmbrok Salem AHMID

RÉSUMÉ

Les techniques d’optimisation ont pour objectif de réduire la quantité des matériaux utilisés
lors des opérations de conception structurelles sans pour autant altérer les exigences imposées
par les processus de fabrication, menant ainsi à une réduction de coûts. En plus du coût réduit
ainsi que l’impact positif de durabilité résultant de l’optimisation de conception structurelle
(Structural Design Optimization, SDO), elle sert aussi d’outil prometteur pour les ingénieurs à
développer des conceptions innovantes dans diverses applications structurelles réelles.

Les études antérieures dans le domaine SDO ont été d’un apport considérable dans
l’approfondissement de nos connaissances dans ce champ d’intérêt spécifique. Cependant,
cette thématique de recherche fait encore l’objet de débats dans ces différents aspects, non
seulement sur la façon de réaliser les caractéristiques physiques requises d’une structure, mais
aussi, et surtout, sur la possibilité d’atteindre un tel objectif efficacement, et avec un temps de
calcul le moins couteux possible. De ce point de vue, certains axes de recherche,
potentiellement prometteurs, qui ont été repris de la littérature, ainsi que de nouvelles
contributions, ont été traités dans le cadre de la présente thèse.

La revue de littérature portant sur l’optimisation des problèmes de conception structurelle
révéle que les algorithmes d’optimisation globale ou ce qui est communément appelé Méta-
heuristiques (MHs) sont considérés comme étant les meilleures techniques disponibles en
mesure de résoudre de tels problèmes complexes d’optimisation. Toutefois, le principal défi
de l’ingénieur est de trouver l’algorithme MH qui répond au mieux au problème de conception
structurelle qu’il doit solutionner. Malheureusement, les travaux rapportés dans la littérature
révèlent le manque d’un modèle d’évaluation systématique qui pourrait aider les ingénieurs à
surmonter cette insuffisance. Les mesures les plus communément utilisées actuellement pour
la performance des MHs sont les opérateurs statistiques des solutions obtenues tels que : min,
max, moyenne et écart-type. Cependant, de tels opérateurs ne sont pas assez suffisant pour
refléter la performance actuelle des algorithmes MH lorsque ces mesures sont utilisées
séparément. Ainsi, un critère d’évaluation adéquat a été développé dans le cadre de ce travail
afin d’inclure plus de paramètres efficaces comme la fiabilité pratique, le prix (le coût de
calcul), le prix normalisé, le taux de performance, la qualité de la solution et l’analyse Fitness-
landscape. De plus, deux différents taux de convergence ont été imposés pour examiner les
algorithmes MH pour les taux lent et rapide, ainsi que la reproductibilité des résultats
d’expériences numériques considérés lors de procédure d’évaluation des MHs. Récemment, le
critère proposé a été utilisé afin de comparer cinq différentes variantes d’optimisation par
colonies de fourmis (Ant Colony , ACO). Les démarches proposées ont montré une évaluation
comparative efficiente de la performance de l’optimisation par colonies de fourmis.
Plusieurs études ont été menées afin d’améliorer la performance de recherche des techniques
MHs, et les résultats ont été prometteurs dans cette direction. Malheureusement, la littérature

VIII

portant sur l’optimisation de conception structurelle a montré une tendance forte à développer
de nouveaux “metaphor” MHs au lieu de procéder à une amélioration de la performance des
algorithmes MHs déjà existants, et qui ont une remarquable réputation dans la résolution des
problèmes d’optimisation Non-Polynôme (𝒩𝒫) qui sont connus par leur complexité.
Cependant, la présente thèse examine d’éventuelles améliorations des caractéristiques de
recherche des deux approches MHs sélectionnés moyennant une intégration d’une recherche
locale de mouvements à la structure principale de l’algorithme MH afin d’améliorer l’effort
d’intensification. Le premier algorithme MH sélectionné est Cuckoo Search (CS), qui est
fortement utilisé pour résoudre une variété de problèmes d’optimisation tels que la
minimisation pondérée des structures en treillis, Travelling Salesman Problem (TSP),…etc.
L’algorithme de recherche Cuckoo (CS) est conçu pour résoudre des problèmes d'optimisation
continue sans contrainte comme la plupart des techniques Méta-Heuristiques. Par conséquent,
le CS original a été adapté et modifié, dans le cadre de cette thèse, pour résoudre des problèmes
discrets d'optimisation de conception structurelles, et il est nommé Algorithme de recherche
Cuckoo CS adapté (Adapted CS Algorithm, ADCSA). L’effort d’intensification de
l’algorithme CS adapté est amélioré à travers quatre différentes recherches locales de
mouvements de permutation, d’échange, bit flip et insertion. L’algorithme CS adapté a été
appliqué pour résoudre deux problèmes d’optimisation structurelles différents, et les résultats
obtenus ont montré que cet algorithme présente de remarquables performances pour
l’optimisation de ce type de problèmes. L’autre algorithme MH qui a l’objet d’une
amélioration est la variante d’optimisation par colonies de fourmis du cadre Hyper Cube
(Hyper Cube Framework, HCFACO), qui a été sélectionnée en se basant sur les résultats de
l’étude comparative de cinq différentes variantes mentionnées précédemment. L’augmentation
de l’effort d’intensification du ‘HCFACO’ a été réalisée en intégrant deux recherches locales
de mouvement d’insertion et de bit flip. La performance de la version améliorée du ‘HCFACO’
appelée ‘EHCFACO’ a été examinée moyennant la résolution de problèmes de référence
d’optimisation de conception structurelle, et les résultats ont montré une performance
significative de ce dernier comparativement à la version originale du ‘HCFACO’, ainsi qu’aux
cinq autres variantes de l’optimisation par colonies de fourmis.

Concernant les différents cadres d’optimisation de conception structurelle, la revue de
littérature a révélé que les deux approches déterministe et probabiliste sont communément
utilisées. Néanmoins, le manque d’études portant sur les incertitudes de conception en utilisant
l’anti-optimisation est compréhensible en raison du cout élevé associé à l’analyse de la fonction
objective. Cette approche se distingue par deux niveaux, un niveau haut consacré à la phase
d’optimisation, et un niveau bas qui a pour objectif l’anti-optimisation de la solution optimale
obtenue. Durant ces processus d’optimisation et d’anti-optimisation, un nombre important
d’appels de la fonction objective est effectué, ce qui peut présenter un défi majeur pour les
problèmes d’optimisation structurelles présentant des fonctions objectives couteuses en termes
d’effort de calcul. Cependant, un cadre d’incertitude à cout réel a été développé dans la
présente étude. Le cout exorbitant associé à l’évaluation de la fonction objective a été
contourné en remplaçant la fonction boite-noir (logiciel d’analyse par éléments finis) par un
réseau de neurones artificiel (ANN). La procédure proposée a été appliquée pour optimiser un
nouveau cas d’étude d’une plaque composite laminé perforée soumise à des incertitudes sur
les conditions de charge et la localisation du centre de découpe. Les résultats obtenus ont

IX

montré que l’utilisation de la technique des réseaux de neurones artificiels présente une
solution fiable à cout réel pour les problèmes d’optimisation de conception structurelle ayant
des fonctions objectives avec un cout de calcul considérable.

En plus des axes de recherche spécifiques mentionnés ci-dessus, d’autres pistes sont apparues
durant le déroulement des travaux de cette thèse, tels que l’effet de sélection de la population
initiale, la représentation de la solution et la génération adaptative d’une nouvelle solution sur
la performance des algorithmes Méta- Heuristiques (MHs). Deux nouveaux exemples
d’optimisation de conception structurelle ont aussi été développés pour le cas d’une grue avec
une poutre en forme en I et une plaque composite laminée perforée. En général, cette thèse a
permis d’améliorer notre compréhension de la façon d’aborder la complexité des problèmes
d’optimisation de conception structurelle.

Mots clefs: Méta-Heuristiques, 𝒩𝒫-problèmes d’optimisation complexes, optimisation de
conception structurelle, facteur de charge critique de flambement, grue, plate composite
laminée, Hyper-Cube Amélioré, algorithme de recherche adaptative discret Cuckoo,
incertitude, Réseaux de Neurones Artificiels.

Hard Optimization of Structural Design Subjected to Buckling Using the Evolutionary
Computation Approach

Ali Elmbrok Salem AHMID

ABSTRACT

The optimization techniques aim to reduce the used material in the structure design without
violating the imposed design and manufacturing constraints; thus, the materials cost is
decreased, and less material is consumed. In addition to the low-cost and positive sustainability
impact of Structural Design Optimization (SDO), it promotes the engineers to develop
innovative designs for several real-life structural applications.

The previous studies in the domain of SDO gainfully contributed in the way that expanded our
knowledge in this specific field. However, this research theme still watches debates on various
issues, not only how we could achieve the desired physical features of a structure, but also how
we could make this is happening efficiently at a lowest possible computational cost. With this
regard, a couple of potential research opportunities have been extracted from the literature, and
in-context novel contributions were presented in the current thesis.

The literature of structural design optimization problems reveals that global optimization
algorithms or Meta-heuristics (MHs) are the best available techniques that could be used to
solve such hard optimization problems. Though, the main challenge confronted the engineer is
which available MH fits much better to the structure design problem of his attention.
Unfortunately, the literature of SDO experiences a lack of systematic assessment pattern that
could help the engineers to overcome this issue. Currently, the commonly used measures of
MHs performance by MHs developers are the statistical operators such as min, max, mean and
standard deviation of the obtained solutions. However, such measures are not enough to reflect
the actual MH performance when these measures are used alone. So, a comprehensive
assessment criterion has been developed here to include more efficient measures like the
practical reliability, price (computational cost), normalized price, performance rate, solution
quality and Fitness-landscape analysis. Additionally, two different convergence rates were
imposed to examine the MHs at slow and fast rates. As well as the reproducibility of the
numerical experiments results considered within the procedure of MHs assessment. Lastly, the
proposed criterion has been employed to compare five different Ant Colony Optimization
(ACO) variants. The proposed measures demonstrated a comprehensive assessment of the
compared ACOs performance.

Several studies were conducted to improve the MHs searching performance, and the results
were promising in this direction. Unfortunately, the literature of SDO demonstrated an extreme
tendency to develop new “metaphor” MHs instead of improving the performance of well-
established MHs that have a remarkable history of solving Non-Polynomial (𝒩𝒫) -hard
optimization problems. However, this thesis examines the possible improvements of two

XII

selected MHs searching features via integrating local search movements to MH's main
structure to improve the intensification effort. The first selected MH is Cuckoo Search (CS)
algorithm, which is intensively used to solve a variety of optimization problems such as weight
minimization of the truss structure, Travelling Salesman Problem (TSP),…etc. CS is designed
to solve unconstrained continuous optimization problems as most of MHs. Consequently, the
original CS has been adapted and modified here to solve discrete SDO problems, and it is
named Adapted CS Algorithm (ADCSA). The intensification effort of ADCSA improved
through four different local search movements of permutation, swap, bit flip and insertion.
ADCSA has been applied to solve two different SDO problems, and the obtained results of
both case studies reveal that the proposed ADCSA has a considerable performance in solving
SDO problems. The other improved MH was the ACO variant of the Hyper Cube Framework
(HCFACO), which was selected based on the results of the comparison study of five different
ACO variants that previously mentioned. The enhancement of the HCFACO intensification
effort was carried out by integrating two local search movements of insertion and bit flip. The
performance of improved version HCFACO, Enhanced HCFACO (EHCFACO), has been
examined through solving a well-known SDO benchmarking problem. EHCFACO exhibited
a significant performance compared to the original HCFACO and the other five ACO variants.

Regarding the structural design optimization frameworks, the literature review has shown that
both deterministic and probabilistic SDO approaches are mostly used. Nevertheless, the
scarcity of studies of uncertainty design using anti-optimization is understandable because of
the associated expensive design analysis cost of the objective function. This approach has two
levels, the top level devoted to the optimization phase, while the bottom level works to anti-
optimize the obtained optimal solution. During this process of optimization and anti-
optimization, a large number of objective function calls is taking place, and for those SDO
problems with expensive functions, this approach becomes unfeasible. However, a cost-
effective uncertainty framework has been developed in the current study. The accompanied
expensive cost of the objective function evaluation has been tackled by replacing the black-
box function (FEA software) by an Artificial Neural Network (ANN). The proposed procedure
was applied to optimize a novel case study of a perforated composite laminated plate subjected
to the uncertainty of loading conditions and the location of the cut-out center. The attained
results reveal that using ANN techniques offers a cost-effective solution for SDO problems
with expensive objective functions.

In addition to those specific research opportunities mentioned above, some others appeared
during the research process, such as the effect of selection of the initial population, solution
representation and adaptive generation of a new solution on the performance of MHs.
Moreover, two novel SDO examples have been developed for customized I-beam overhead
gantry crane and perforated composite laminated plate. In general, this thesis has gone some
way towards enhancing our understanding of how to tackle the complexity of SDO problems.

Keywords: Meta-Heuristics, 𝒩𝒫-hard optimization problems, structural design optimization,
critical buckling load factor, crane, composite laminate plate, Enhanced Hyper Cube ACO,
Adapted Discrete Cuckoo Search Algorithm, uncertainty framework, anti-optimization,
Artificial Neural Network.

TABLE OF CONTENTS

Page

INTRODUCTION ...1

CHAPTER 1 LITERATURE REVIEW ON STRUCTURAL DESIGN
OPTIMIZATION ...7

1.1 Structural Design Benchmarking Problems ...8
1.1.1 Truss Design Optimization Problems ... 9
1.1.2 I-Beam Design Optimization Problem .. 17
1.1.3 Composite Laminated Plate Design Optimization Problem 19

1.2 Analytical Versus Finite Element Structural Design Optimization23
1.2.1 Buckling Analysis using FEM .. 24
1.2.2 Safety Factor of Buckling ... 27

1.3 Meta-Heuristics for SDO ...30
1.3.1 Genetic Algorithm (GA) ... 31
1.3.2 Ant Colony Optimization (ACO) .. 32
1.3.3 Cuckoo Search Algorithm (CS) .. 33
1.3.4 Metaphor Based MHs ... 34

1.4 Structural Design Frameworks ..36
1.5 Research Gaps ..37

CHAPTER 2 METHODOLOGY FRAMEWORK ...41
2.1 The Proposed Research Methodology Framework ..41
2.2 Novel SDO Benchmark Problem ...43

2.2.1 Purpose and Context ... 43
2.3 SDO Problem Modelling and Optimization ..43
2.4 MHs as SDO Problem Optimizer ..45

2.4.1 An Improved CS MH for SDO Problems ... 45
2.4.1.1 Purpose and Context .. 45
2.4.1.2 SDO Problem Modelling and Optimization 46

2.4.2 A comprehensive MHs assessment criterion .. 47
2.4.2.1 Purpose and Context .. 47
2.4.2.2 SDO Problem Modelling and Optimization 48

2.5 Robust Design Framework of SDO Problems ...49
2.5.1 Purpose and Context ... 49
2.5.2 SDO Problem Modelling and Optimization ... 49

CHAPTER 3 AN OPTIMIZATION PROCEDURE FOR OVERHEAD GANTRY
CRANE EXPOSED TO BUCKLING AND YIELD CRITERIA51

3.1 Abstract ..51
3.2 Introduction ..52
3.3 Design Optimization Procedure ...54
3.4 Problem Description ..55

XV

3.4.1 Objective Function .. 57
3.4.2 Constraints .. 57
3.4.3 Objective Function Transformation .. 58

3.5 Numerical Examples ..59
3.6 Finite Element Model ..60
3.7 Numerical Results ..61
3.8 Conclusion ...65

CHAPTER 4 AN ADAPTIVE DISCRETE CUCKOO SEARCH ALGORITHM TO
SOLVE STRUCTURAL OPTIMIZATION PROBLEMS67

4.1 Abstract ..67
4.2 Introduction ..68
4.3 Cuckoo Search Via Lévy Flights (CS)...70
4.4 Adaptive Discrete Cuckoo Search Algorithm (ADCSA) ..72

4.4.1 Initial Population ... 73
4.4.2 Discrete Lѐvy Flights Representation ... 74
4.4.3 Neighbourhood Search .. 77
4.4.4 Convergence Criteria .. 79

4.5 Numerical Experiments ...79
4.5.1 Validation Numerical Experiment .. 79

4.5.1.1 Experiment Setting... 81
4.5.1.2 ADCSA Performance Assessment Criteria 82

4.5.2 Customized I-Beam Gantry Crane Problem ... 82
4.6 Results and Discussions ...84

4.6.1 Validation of Experiment Results ... 84
4.6.2 Customized I-beam Gantry crane Results ... 88

4.7 Conclusion ...93

CHAPTER 5 ENHANCED HYPER CUBE FRAMEWORK ACO FOR
STRUCTURAL COMBINATORIAL OPTIMIZATION PROBLEMS ...95

5.1 Abstract ..95
5.2 Introduction ..96
5.3 Ant Colony Optimization Algorithms (ACOs) ..98

5.3.1 Elitist Ant Colony (EACO) ... 100
5.3.2 The Rank-Based Ant Colony Optimization (RBACO) 101
5.3.3 Max-Min Ant Colony (MMACO) .. 101
5.3.4 Best-Worst Ant Colony (BWACO) .. 102
5.3.5 Hyper Cube Framework ACO (HCFACO) .. 103

5.4 Enhanced Hyper Cube ACO Algorithms ...103
5.5 Performance Evaluation ...105

5.5.1 Computational Effort .. 106
5.5.2 Solution Quality .. 106
5.5.3 Fitness Landscape Analysis .. 107

5.6 Numerical Experiments ...107
5.6.1 ACO Parameters Setting ... 110

XVI

5.6.2 Termination Criteria.. 111
5.7 Results ..111

5.7.1 Hyper Cube Framework ACO Algorithms Results Analysis 111
5.7.2 Other ACO Algorithms Results Analysis ... 113

5.8 Conclusion ...121

CHAPTER 6 OPTIMIZATION OF PERFORATED COMPOSITE LAMINATED
PLATE SUBJECTED TO UNCERTAIN GEOMETRICAL AND
LOADING CONDITIONS ..123

6.1 Abstract ..123
6.2 Introduction ..124
6.3 Perforated Composite Laminated Plate Optimization Problem Formulation127

6.3.1 Anti-Optimization Problem Formulation .. 128
6.3.2 Optimization Problem Formulation .. 130

6.4 The Proposed Uncertainty Optimization Framework ..133
6.4.1 Black-Box Function .. 134
6.4.2 Python Interface (PyI) ... 135
6.4.3 Artificial Neural Network (ANN) ... 135
6.4.4 Anti-optimization Procedure ... 139

6.5 Numerical Experiment ...142
6.5.1 Finite Element Modelling ... 142
6.5.2 Preliminary Investigation .. 144
6.5.3 ANN Settings .. 148

6.6 Results ..148
6.7 Conclusion ...158

CONCLUSION ..161

APPENDIX I COMPARISON STUDY OF DISCRETE OPTIMIZATION PROBLEM
USING META-HEURISTIC APPROACHES: A CASE STUDY171

APPENDIX II PERMUTUATION GENTIC ALGORITHM FOR OPTIMIZATION OF
COMPOSITE LAMINATED PLATE SUBJECTED TO BUCKLING
LOADING ...197

APPENDIX III MATLAB CODES FOR ANT COLONY OPTIMIZATION
ALGORITHMS ...201

APPENDIX IV MATLAB FILES OF CRITICAL BUCKLING LOAD FACTOR, INPUT
DATA AND OUTPUT PLOTTING FOR COMPOSITE LAMINATED
PLATE CASE STUDY ..245

APPENDIX V CODES OF ANSYS WORKBENCH AND MATLAB INTERFACING
USING PYTHON ..251

LIST OF BIBLIOGRAPHICAL REFERENCES ..257

LIST OF TABLES

Page

Table1.1 Comparison of different published results of 25-bar space truss, weight
minimization ...14

Table 1.2 Truss structure optimization problems summary ...15

Table 1.3 Comparison of different published results of I-beam optimization problem18

Table 1.4 Different loading conditions of the composite optimization problem23

Table 1.5 Summary of selected metaphor MHs in SDO ..35

Table 3.1 Crane Specifications according to CMAA 74-2010 ...59

Table 3.2 Genetic Algorithm Parameters ...59

Table 3.3 Lower bound and upper bound of design variables in mm61

Table 3.4 Optimal Design variables and constraint parameters for 8 m cranes62

Table 3.5 Optimal Design variables and constraint parameters for 12 m cranes62

Table 3.6 Optimal Design variables and constraint parameters for 20 m cranes63

Table 4.1 Comparison of different performance measures for ADCSA and other meta-
heuristics ...85

Table 4.2 Different optimal solution configuration of customized I-beam gantry crane ...89

Table 5.1 Graphite-epoxy lamina’s properties ...110

Table 5.2 Graphite-epoxy lamina’s geometrical and loading data110

Table 5.3 The performance measures of Hyper Cube Framework ACO algorithms112

Table 5.4 The optimal stacking sequence for 64 ply laminates subjected to biaxial loading
without contiguity constraint (𝑁𝑦 = 𝑁𝑥 = 1 𝑎𝑛𝑑 𝑎𝑏 = 2)113

LIST OF FIGURES

Page

Figure 1.1 (a) Classical structural design approach, (b) Structural Design Optimization
(SDO) ...7

Figure 1.2 SDO literature review indicators ...8

Figure 1.3 Twenty-five bar spatial truss ..13

Figure 1.4 Results comparison of average weight and number of Function evaluations
for the 25-bar truss ...14

Figure 1.5 I-Beam design problem ..18

Figure 1.6 Simply supported plate subjected to biaxial loading20

Figure 1.7 Customized beam structure of welded plates ...28

Figure 1.8 Critical stress based on Jonhson's correction. ..29

Figure 1.9 Non-convex function example ...30

Figure 1.10 Chronologically ordered plot for the number of developed Meta-Heuristics 35

Figure 2.1 Methodological Framework layout ..42

Figure 3.1 Proposed design optimization procedure ...55

Figure 3.2 Hybrid Genetic Algorithm ...56

Figure 3.3 The crane beam dimensions and loading conditions56

Figure 3.4 Three-dimensional images of the crane ...60

Figure 3.5 Finite Element Model of the crane ...61

Figure 3.6 Optimum configuration of an I-section ..64

Figure 3.7 Location of maximum Von-Mises stress ...65

Figure 4.1 Sigmoid transformation function ...76

Figure 4.2 Simply supported plate subjected to biaxial loading (A. Ahmid et al., 2019)
 ……………………………………………………………………………... 80

XXI

Figure 4.3 The specifications of PC-machine used in the current comparison study81

Figure 4.4 The crane beam dimensions and loading conditions,………………………83

Figure 4.5 Standard deviation plot for different initialization methods85

Figure 4.6 Standard deviation plot for 𝜆𝑐𝑟 of different discrete CS algorithms86

Figure 4.7 The number of experiments vs. critical buckling load for ADCSA, RDCS,
ADCS ...86

Figure 4.8 ADCSA meta-heuristic Convergence in the first successful run87

Figure 4.9 Distance to global optimal for ADCSA meta-heuristic first successful run ..87

Figure 4.10 The tension stresses vs. live loads for different types of I-beam crane89

Figure 4.11 The fatigue stresses vs. live loads for different types of I-beam crane90

Figure 4.12 The critical buckling load factor vs. live loads for different types of I-beam
crane ...90

Figure 4.13 The web slenderness vs. live loads for different types of I-beam crane91

Figure 4.14 The flange ratio vs. live loads for different types of I-beam crane91

Figure 4.15 The deflection vs. live loads for different types of I-beam crane92

Figure 4.16 The crane weight vs. live loads for different types of I-beam crane92

Figure 4.17 The three different types of I-beam crane for the case of 8 m x10 ton93

Figure 5.1 Cooperative search of ants by pheromone trails ..98

Figure 5.2 Simply supported plate subjected to biaxial loading109

Figure 5.3 Solution convergence of ACO-MMACO and their Hyper Cube Framework
variants ...115

Figure 5.4 Solution convergence of EACO, RBACO and BWACO116

Figure 5.5 Critical buckling load factor vs. number of experiments117

Figure 5.6 Reliability of EACO, RBACO, BWACO and EHCFACO algorithms118

Figure 5.7 Normalized price of EACO, RBACO, BWACO and EHCFACO algorithms
solutions ...118

XXII

Figure 5.8 Correlation coefficient of EACO, RBACO, BWACO and EHCFACO
algorithms ..119

Figure 5.9 Performance rate of EACO, RBACO, BWACO and EHCFACO algorithms
 ……………………………………………………………………………. 119

Figure 5.10 Solution quality of EACO, RBACO, BWACO and EHCFACO algorithms
 ……………………………………………………………………………. 120

Figure 5.11 Elapsed time of EACO, RBACO, BWACO and EHCFACO algorithms to
find the optimal solution ..120

Figure 5.12 Fitness VS. Distance to global optimal solution of ACO Algorithms121

Figure 6.1 Loading and boundary conditions of the simply supported perforated
laminated plate. ..129

Figure 6.2 Different uncertainty loading domains. ...129

Figure 6.3 Solution representation of symmetrical and balanced laminate.131

Figure 6.4 Proposed robust optimization procedure. ..133

Figure 6.5 Ansys Composite Pre-post (ACP) model analysis flowchart134

Figure 6.6 Typical structure of an artificial neuron. ..136

Figure 6.7 Structure of the feedforward neural network. ..137

Figure 6.8 ANN building flowchart. ...138

Figure 6.9 Main dimensions and loading conditions of 24 ply perforated Graphite-
Epoxy laminate. ...142

Figure 6.10 The mesh size convergency. ..143

Figure 6.11 Selected cut-out centers and diameter aspect ratio.144

Figure 6.12 Critical buckling load factor vs. Diameter ratio for [±45°]6𝑠 laminate under
different loading conditions ...145

Figure 6.13 Critical bucking load factor vs. Diameter ratio for [0°2 90°2]3𝑠146

Figure 6.14 Critical bucking load factor vs. Diameter ratio for [±45° 0°290°2]2𝑠147

Figure 6.15 Data set regression and Mean Square Error (MSE) results using forwardfeed
ANN ...150

XXIII

Figure 6.16 Comparison of ANN and Black-box function (ANSYS) results for the
validation sample ...151

Figure 6.17 The anti-optimization procedure iteration vs. critical buckling load factor .152

Figure 6.18 The SSD arrangements of the main optimal solutions.................................153

Figure 6.19 Main optimal SSD percentage breakdown. ...154

Figure 6.20 Cut-out center points of SSD2 ...154

Figure 6.21 The anti-optimization procedure iteration vs. critical buckling load factor for
SSD2 ..155

Figure 6.22 Cut-out center points of SSD3 ...155

Figure 6.23 The anti-optimization procedure iteration vs. critical buckling load factor for
SSD3 ..156

Figure 6.24 Cut-out center points of SSD5 ...156

Figure 6.25 The anti-optimization procedure iteration vs. critical buckling load factor for
SSD5 ..157

LIST OF ALGORITHMS
Page

Algorithm 4.1 Cuckoo Search Algorithm (CS) ...71

Algorithm 4.2 Adapted Discrete Cuckoo Search Algorithm (ADCSA)73

Algorithm 5.1 Ant Colony Optimization procedure ..99

Algorithm 5.2 Enhanced HCFACO procedure ..105

Algorithm 6.1 Adapted Discrete Cuckoo Search Algorithm (ADCSA)140

Algorithm 6.2 Simulated Annealing Algorithm procedure ...141

LIST OF ABREVIATIONS

ACO Ant Colony Optimization

ADCSA Adaptive Discrete Cuckoo Search Algorithm

AI Artificial intelligence

ANN Artificial Neural Network

BWACO Best-Worst ACO

CC Continues optimized Custom crane

CMAA Crane Manufacturers Association of America

CO Constraints

CS Cuckoo Search

DC Discrete optimized Custom crane

DF Design Framework

DOE Design Of Experiments

DUD Discrete Uniform Distribution

EACO Elites Ant Colony Optimization

EHCFACO Enhanced Hyper Cube Framework ACO

EOT Electrical Overhead Travelling

ES Equivalent Standard I-beam

FEA/FEM Finite Element Analysis/Model

FDC Fitness-Distance Correlation

GA Genetic Algorithm

GUI Graphical User Interface

XXVII

HCFACO Hyper Cube Framework ACO
MH Meta-Heuristic

ML Machine Learning

MMACO Max-Min-ACO

OB Objective

OM Optimization Method

PSO Particle Swarm Optimization

PyI Python Interface

RBACO Rank Based Ant Colony Optimization

RG Research Gab

RO Research Objective

SA Simulated Annealing

SDA Structural Design Analysis

SDO Structural Design Optimization

SSD Stack Sequence Design

TSP Travelling Salesman Problem

INTRODUCTION

Nowadays, structural design optimization (SDO) topic continues to attract the attention of

research community and the industry due to the obtained benefits in terms of cost-effective

structures. The large-scale structures such as airplanes, space shuttles, ships, bridges, …etc.,

are consuming a significant portion of the global natural resources, and structural design

optimization could help in this by decreasing the required consumed materials. Besides of this

positive sustainability impact, structural design optimization could save the structurer cost by

reducing the designing cost via parametrizing the iterative structure design calculations.

Furthermore, structural design optimization derived innovative designs for several structural

applications in real-life.

The strategies of the structural design optimization are varying based on the design objective,

for example, it could be size optimization, where dimensions of the structure are the design

variables that needed to be optimized against certain design constraints. Also, the objective

could be topology optimization, where the shape and material distribution need to be

optimized. Other factor is the design and manufacturing constraints which have a great

influence on the nature of the optimization type of the designated structure problem. For

instance, when the design variables of a specific structure belong to a continuous design

domain (continuous optimization) it results an easy implementation and better performance

solutions. In contrast, when the design variables are belonging to a discrete design domain of

individual values (discrete optimization) the complexity of the optimization problem will grow

exponentially as much as the number of design variables is increased. Consequently, the

computational time to find the optimal solution is growing exponentially until it becomes Non-

Polynomial (NP) time, and this turns the structure optimization problem into an NP-hard

problem according to the theory of complexity (Marco Dorigo & Stützle, 2019). This class of

the optimization problems is common in structural design practice; for example, optimization

of composite laminated plate where the fiber orientation is limited to discrete available angles (0°, ±45°, 90°). Also, the number of plies is representing the number of design variables to be

2

optimized, and when the number of plies increases the computational problem complexity will

increase too.

From the optimization methodology prospective, the classical (mostly gradient) methods are

favourable because of their implementation simplicity and good solution quality they offer at

a low computational cost. Unfortunately, these techniques performed poorly in solving NP-

hard optimization problems where they tend to be stuck in local optimum rather than not

finding any optimum. The significant performance of Meta-Heuristics (MHs) compared to

gradient optimization algorithms addressed many times in literature due to their efficiency and

stability (Ghiasi, Fayazbakhsh, Pasini, & Lessard, 2010). However, MHs are an ongoing

optimization research domain to solve medium as well as large-scale problems that appear in

different disciplines (Almufti, 2019). Even though MHs, in general, could solve the discrete

optimization problems efficiently, we still need to determine which MH well-matched to solve

a specific structural design optimization problem according to the No Free Lunch theorem

(NFL) by Wolpert and Macready (1997).

Motivation

The literature of structural design optimization is full of valuable contributions that advanced

our knowledge in this specific area. However, this subject of research still watches debates on

various issues, not only how we could achieve the desired physical features of a structure, but

also how we could make this is happening efficiently at a lowest possible computational cost.

With this regard, a couple of potential research opportunities that we extracted from the

literature are briefly introduced here:

- The literature of structural optimization experiences a scarcity of systematic assessment

paradigm that could support the designer to decide what MHs fit better to the structure

design problem of his attention. Therefore, the selection of an efficient optimization

algorithm needs to develop substantial compromise criteria to determine which MH

algorithm offers a cost-effective solution for a designated optimization problem, and it

deserves to be selected.

3

- The literature of NP-hard optimization problems reveals that global optimization

algorithms or MHs are the best available techniques that could be used to solve such

hard optimization problems. Several studies conducted to improve the MHs' searching

performance, and the results were promising in this direction. So, improving the well-

known MHs searching capabilities is another opportunity of contribution.

- The widely used option for structure analysis is deploying a multi-purpose commercial

FE software such as ANSYS, NASTRAN, and ABAQUS, and this option gives the

designers more flexibility to enlarge the complexity of the design of their structures as

they need. Unfortunately, when the design problem involves more complexity, the

evaluation of the structure analysis will become more expensive too. Therefore,

examining other possible alternatives, such as using a surrogate model or Artificial

Neural Networks, deserve attention.

- Some commercial FEA software has built-in optimization tools, e.g. Multi-Objective

Genetic Algorithm (MOGA) in ANSYS WB. But when it used to solve real-life

optimization problems, it becomes useless in terms of solution cost and quality; as we

mentioned previously that no one optimization algorithm could solve all optimization

problems. Developing an in-house optimization package that fits the design problem

needs is a favourable choice. Though, this option involves technical challenges of how

to integrate it into the commercial FEA software with no more extra cost. Hence,

developing a sort of an open-source interface between the commercial FEA software

and in-house optimization package (e.g. MH has written in a Matlab program)

representing a practical opportunity.

- Lastly, it has been observed from the literature review of structural design optimization

that the uncertainty design optimization procedures were infrequently used, although

they produce robust optimal designs. Consequently, scheming an uncertainty

4

optimization framework that could handle expensive structural optimization problems

(e.g. thin perforated plate) is another vital opportunity.

Problem Statement

The discrete nature of a structural design optimization problem makes the objective function

a multimodal (non-convex) function. As a consequence, the design space will have more than

one optimal solution, and this turns the structure design into an NP-hard design optimization

problem. The complexity of the problem is continuing to grow when the designated problem

has a larger number of design variables that need to be optimized. Furthermore, for those

structures without an analytical solution of the design analysis, using the approximated

solutions such as a multi-purpose commercial Finite Elements Analysis (FEA) software could

result in an expensive objective function evaluation.

However, this thesis considered two different structures as case studies, thin composite

laminated plate and a customized I-beam crane to answer the following research questions:

- Which optimization technique is suited best to solve a specific structural design

optimization problem?

- Does the candidate optimization technique performance could be improved in the way

that makes the obtained optimal solution, by the improved version, is much cheaper

with the same quality (or better) of the original one?

- How could we reduce the computational cost of the optimization procedure if the

obtained objective function of a particular loading analysis is computationally

expensive?

- How could we develop a robust optimization framework that able to handle a structural

optimization problem which has an expensive objective function, and subjected to

uncertainty influences of loading conditions?

5

Thesis Objectives

Realizing the prominence of developing efficient designs of engineering structures drove this

thesis to attempt bridging the research gaps that addressed in the literature review chapter.

Consequently, a list of specific objectives has been established to answer the research questions

previously mentioned.

- Extending our knowledge about MHs as optimization techniques for structural design

through developing an intensive literature review and determining the possible research

gaps or opportunities and propose new solutions to potential existing problems.

- Build and examine a comprehensive comparison criterion based on practical measures

to help the designer selecting the right MH that most fit his design problem of interest.

- Investigate possible improvements that possibly improve the candidate MH exploration

and exploitation features in the desire to find a new cost-effective solution for a

structural design that defeats the solution obtained by the original MH.

- Investigate the using of possible techniques that deal with the expensive computational

cost of the design analysis for some structures.

- Finally, developing a robust optimization procedure for an engineering structure that

considers the uncertainty of loading conditions. Explicitly, this procedure should be

formed in a manner that makes it capable of handling expensive objective functions.

Thesis outline

The thesis is a manuscript-based dissertation written based on four individual articles;

however, they are all tied together to answer the research questions. Also, the thesis structure

consists of a literature review, thesis framework, conclusion, and appendixes for additional

journal paper and supplementary data.

6

Chapter 1 is devoted to present a synopsis of intensive previous work review in fields of

structural optimization, Meta-Heuristics (MH), and recent trends in solving structural

optimization problems. Moreover, a discussion of potential research gaps that orient the thesis

direction is also presented.

Chapter 2 introduces the research methodology proposed to attain the predefined objectives of

the thesis. Then it explains the main components of the developed approach, which

corresponds to the individual purposes of the thesis.

Chapter 3 is a journal paper titled "An Optimization Procedure for Overhead Gantry Crane

Exposed to Buckling and Yield Criteria," published in the IRA-International Journal of

Technology & Engineering (IRAJTE) (2017).

Chapter 4 is a journal paper, titled "An adaptive Discrete Cuckoo Search Algorithm to Solve

Structural Engineering Problems," published in the Journal of Multidisciplinary Engineering

Science and Technology (JMEST) (2020).

Chapter 5 is a journal paper, entitled "Enhanced Hyper-Cube Framework ACO for structural

combinatorial optimization problems. “ submitted to Elsevier Computer and Structures (2020).

Chapter 6 is a journal paper titled " Optimization of Perforated Composite Laminated Plate

Subjected to Uncertain Geometrical and Loading Conditions " submitted to Elsevier

Composite Structures journal (2020).

The conclusion is the last section; it dedicated to introducing the summary of the work

achievements and highlight the obtained main contributions of this thesis. Moreover, some

alternatives for future work are mentioned. Finally, different publications produced during the

current research time were listed at the end of the section for the interested reader.

CHAPTER 1

LITERATURE REVIEW ON STRUCTURAL DESIGN OPTIMIZATION

Structural Design Optimization (SDO) is a recursive process that aims to determine the best

possible design (solution) among several feasible designs. The SDO differs from the classical

design approach in the formulation of the design problem, where SDO forms the design

problem as an optimization problem that has objectives and design constraints. The classical

design approach depends on a conceptual design developed based on data collection of the

design problem (see Figure 1.1). Furthermore, SDO examines the feasible design violation of

specific design constraints, whereas the classical design approach inspects the design

satisfaction of the performance criteria. The design updating is another difference between

both approaches, in classical design occurs based on the designer experience and heuristics

information while SDO updates the design based on optimization concept,(Singh, 2017).

(a) (b)

Figure 1.1 (a) Classical structural design approach, (b) Structural Design Optimization
(SDO) Taken from Singh (2017)

8

The literature of the SDO is rich of benchmarking problems; for example, Cohn and Dinovitzer

(1994) accounted about 500 published benchmarking SDO examples regarding the structure

type and optimization method. More recently, Clune (2013) reported that 55% of

benchmarking examples of SDO considered in the literature were truss and frames structures.

Still, there is a growing trend to optimize other structures such as beams, plates, columns and

composites. However, the current chapter is devoted to reviewing the recent trends in SDO

benchmarking problems, optimization methods and structural design frameworks.

Accordingly, the most relevant studies published in the last decades have been discussed here

and summarized based on the literature indicators illustrated in Figure 1.2.

Figure 1.2 SDO literature review indicators

1.1 Structural Design Benchmarking Problems

SDO started the early 1900s years when Michell, in 1904, presented a formal structural

optimization procedure through his well-known benchmark problem of weight minimization

of the truss structure. However, SDO research watched an increased interest since the 1960s,

9

and by the mid-1990s were around 2500 published articles and more than 150 books in the

SDO domain, and since then, an increasing volume of published studies has been noticed,

(Clune, 2013). The main purpose of SDO benchmarking problems is verifying the performance

of new or modified optimization methods. The majority of SDO problems have a multimodal

design space as a result of design variables number and complexity of some nonlinear

constraints such as maximum stresses, deflection and other design configuration.

Consequently, using traditional optimization techniques, e.g. steepest descent algorithm, are

not efficient in solving such problems, and only Meta-Heuristics (MHs) could find the global

optimal solution for such design optimization problems (Gandomi, Yang, & Alavi, 2013).

The isotropic materials structures such as steel truss, frames, beams, …etc., have been

intensively studied for more than a century. Also, anisotropic materials structures such as

composite laminated plates grabbed the attention on account of their significant characteristics.

A subset of the benchmarking structure problems for both materials types is considered here

to be reviewed, including a space truss structures, I-beam, and composite plate. These

benchmarks are discussed in the following sections to explain the SDO problem formulation

and some obtained results in the literature.

1.1.1 Truss Design Optimization Problems

Usually, truss structures optimized for minimum weight by reducing the elements' cross-

section area. These benchmarking problems used intensively to evaluate the performance of

optimization techniques. The truss structure always optimized with different design constraints

such as stress, deflection and buckling constraints (Gandomi & Yang, 2011). They are known

for their complexity due to the high number of design variables, and some of them have no

global optimal solution yet (Clune, 2013). Thus, many studies have been conducted to solve

these problems using new or modified MHs. Several types of truss structures were employed

in the literature; for instance, Sadollah, Eskandar, Bahreininejad, and Kim (2015) examined

the performance of three different MHs, Mine Blast Algorithm (MBA), Water Cycle

Algorithm (WCA) and Improved MBA (IMBA). The proposed MHs applied to four different

structures of 52,72, 200 and 582-bar space trusses, which yield a range of design variables

10

from 12 to 96 that need to be optimized for a discrete design domain. Ho-Huu, Nguyen-Thoi,

Vo-Duy, and Nguyen-Trang (2016) proposed a modified Differential Evolution MH called

(aeDE) that uses an adaptive technique that balances the exploration and exploitation features

of the original DE; also, it uses the elitist strategy to select the best individual for the next

generation. Then, aeDE applied for six different discrete truss examples and the rounding to

the nearest value used to solve the discrete design domain problem. Mirjalili and Lewis (2016)

examined the new MH of Whale Optimization Algorithm (WOA) using six different structural

benchmarks of spring, welded beam, pressure vessel and three truss structures of 15, 25 and

52 bar truss. Other MH called Fireworks Algorithm (FWA) was introduced by Gholizadeh

and Milany (2018) to solve discrete structural design optimization problems. Four different

benchmarks of truss and frame structures were optimized using FWA and the results compared

to other results in the literature.

However, the truss structures continue to challenge the MH developers as a consequence of

their objective function complexity and a large number of design variables. Hence, the

optimization problem of truss structures could be generally formulated as follow:

a.) Objective Function

 𝑤(𝐴) = ෍𝜌௜𝐴௜𝐿௜௡
௜ୀଵ (1.1)

where 𝑤(𝐴) is the structure weight; 𝑛 is the number of structure members; 𝜌௜ is the density

of the structure member; 𝐴௜ is the member cross-section area and 𝐿௜ is the structure member

length.

b.) Constraints

The truss elements are subjected to compression or tension loading conditions that generate

the equivalent stresses. The elements' strength of tension and compression should remain under

the allowable stress values. Accordingly, the stress constraints could be written as follow: 𝜎௧೔ ≤ 𝜎௧ೌ೗೗ೢೌ್೗೐ , 𝑖 = 1,2, … ,𝑛௧ 𝜎௖೔ ≥ 𝜎௖ೌ೗೗ೢೌ್೗೐ , 𝑖 = 1,2, … ,𝑛௖

11

where 𝑛௖,𝑛௧ denote the number of truss elements subjected to compression and tension

loading, respectively. Each node in the truss structure (element jointing point) is exposed to

local displacement known as node deflection, and the optimal solution should not violate the

maximum value of the node deflection, 𝛿௝,௠௔௫, and the deflection constraint can be expressed

as follow: 𝛿௝ ≤ 𝛿௝,௠௔௫ , 𝑗 = 1,2, … . ,𝑛௡௢ௗ௘௦
The excessive compression can buckle the truss element and lead to a buckling failure mode

where the maximum applied stresses at the failure point are higher than the bearing capacity

of the element. To avoid such failure mode, the SDO procedure should determine the buckling

element stress, 𝜎௕ೖ, to be less than permitted buckling stress and this yields:

𝜎௕ೖ ≤ 𝜎௕ , 𝑘 = 1,2, … . .𝑛௖

Besides, the cross-sectional area 𝐴 of the member should be selected from a specific range,

and this range could be continuous (upper and lower values) or discrete from specific

individual values. So, 𝐴௜ ∈ [𝐴௠௜௡,𝐴௠௔௫]
or 𝐴௜ ∈ [𝐴ଵ,𝐴ଶ, … … . . ,𝐴௞], for discrete SDO.

This optimization formulation assumed that the material is homogenous isotropic material of

all structure elements, and thus the mechanical properties of the elements such as density, 𝜌,

and young's module, 𝐸, are constant all over the optimization procedure.

c.) Objective Function Transformation

The optimization techniques designed to solve unconstrained continuous optimization

problems. The real-life optimization problems, including SDO, have their constraints that need

to be unviolated, and for this, different methods of handling the constraints were proposed. The

commonly used approach in SDO is the penalty functions approach, and it has different

formulation forms, here the exterior point penalty function is used to explain how the objective

12

function transformed to include the design constraints, (Saka, Hasançebi, & Geem, 2016). The

general form of the transformed objective function using an exterior point penalty function is:

 𝐹൫𝑋, 𝑟௛ , 𝑟௚൯ = 𝑓(𝑋) + 𝑟௛ ቎෍ℎ௞(𝑋)ଶ ௜
௞ୀଵ ቏ + 𝑟௚ ቎෍(𝑚𝑎𝑥൛0,𝑔௝(𝑋)ൟ)ଶ ௠

௝ୀଵ ቏ (1.2)

where 𝑋 is the vector representing the design variables, ℎ௞ is the 𝑘௧௛ equality constraint if any, 𝑔௝ is the 𝑗௧௛ inequality constraint, 𝑟௛ and 𝑟௚ are two additional variables called penalty

multipliers.

Eventually, to review and compare the results of SDO truss benchmark problem solved by

different MHs, an example of 25-bar space truss has been selected from the literature and its

different obtained results were listed in Table1.1 and also plotted in Figure 1.4.

Example: 25-bar space truss

This benchmark problem is commonly considered in the literature, and it has two variants, a

continuous and discrete design domain (Mirjalili & Lewis, 2016).

Figure 1.3 shows a 25-bar space truss with four fixed nodes (foundations) and the truss

members are classified to eight design groups, 𝐷௚, based on their cross-sectional areas as

follow:𝐷௚భ = ሼ𝐴ଵሽ; 𝐷௚మ = ሼAଶ, Aଷ, Aସ, Aହ ሽ; 𝐷௚య = ሼA଺, A଻, A଼, Aଽሽ; 𝐷௚ర = ሼA ଵ଴, Aଵଵ ሽ; 𝐷௚ఱ = ሼAଵଶ, Aଵଷሽ ;𝐷௚ల = ሼAଵସ, Aଵହ, Aଵ଺, Aଵ଻ ሽ;𝐷௚ళ = ሼAଵ଼, Aଵଽ, Aଶ଴,𝐴ଶଵ ሽ;𝐷௚ఴ =ሼAଶଶ, Aଶଷ, Aଶସ, Aଶହ ሽ. Accordingly, the problem has eight design variables that need to be

determined to find the minimum truss weight. The truss material density, 𝜌, is 0.1 (𝑙𝑏 𝑖𝑛ଷ⁄)

and elasticity's module modulus 𝐸 = 10,000 (𝑘𝑠𝑖) while the member cross-sectional

area𝐴௜ ∈ [0.1: 0.1: 3.4] (𝑖𝑛ଶ). The maximum node displacement 𝛿௠௔௫ = 2 (𝑖𝑛) and the

maximum allowable compression stresses for each truss member group, 𝐷௚೔ , is:

𝜎஼௢௠௣ೌ = ሼ35.092, 11.59, 17.305, 35.092, 35.092,6.759,6.959,11.082ሽ (𝑘𝑠𝑖)

13

and the allowable member tension stress is 𝜎்௘௡ೌ = 40 (𝑘𝑠𝑖). The problem solved using

different optimization methods by several authors such as Degertekin (2012), Degertekin and

Hayalioglu (2013), Talatahari, Kheirollahi, Farahmandpour, and Gandomi (2013), A Kaveh,

Bakhshpoori, and Afshari (2014), A Kaveh and Bakhshpoori (2016), Krempser, Bernardino,

Barbosa, and Lemonge (2017), de Castro Lemonge, Duarte, and da Fonseca (2019) and

summary of their results are listed in Table1.1. The result of reviewed studies of 25-bar truss

for average weight, the standard deviation of the solution and number of function evaluations

are plotted in Figure 1.4 . Lastly, a summary of different truss structures optimization solutions

is listed in Table 1.2

Figure 1.3 Twenty-five bar spatial truss

Taken from Seripk (2020, p.7)

14

 Figure 1.4 Results comparison of average weight and number of Function
evaluations for the 25-bar truss

1 SAHS : Self-Adaptive Harmony Search Algorithm
2 TLBO : Teaching-Learning-Based Optimization
3 MSPSO : Multi-Stage Particle Swarm Optimization
4 HPSSO : Hybrid Particle Swarm and Swallow Swarm Optimization
5 WEO : Water Evaporation Optimization

Table1.1 Comparison of different published results of 25-bar space truss,
weight minimization

Author/s MH
Optimal
weight

(lb)

No. of
function

evaluation
Average Worst SD

Terminati
on

criterion
Degertekin

(2012) SAHS1 545.12 9488 545.38 546.60 0.91 max
number of
iterations

of
exp=20

Degertekin
&

Hayalioglu
(2013)

TLBO2 545.09 15,318 545.38 545.41 0.42

Talatahari et
al.

(2013)
MSPSO3 545.16 12500 546.03 548.78 0.8

Max
number of
iteration

Kaveh et al.
(2014) HPSSO4 545.164 13,326 545.556 546.990 0.432 NA

Kaveh and
Bakhshpoori

 (2016)
WEO5 545.166 19,750 545.226 545.592 0.083

Max
number of
iteration

Lemonge et
al. (2019) ABC 545.2421

88
52200 545.416 545.477 0.062 NA /# of

exp=25

0

12500

25000

37500

50000

62500

544,2
544,4
544,6
544,8

545
545,2
545,4
545,6
545,8

SAHS TLBO MSPSO HPSSO WEO ABC

N
um

be
r o

f F
un

ct
io

n

Ev
al

ua
tio

ns
 (F

E)

W
ei

gt
h,

 (l
b)

Average weight
Function Evaluations

15

Table 1.2 Truss structure optimization problems summary

SDO Problem Modelling Domain MH Comments
10,25,37,52
and 72-bar
space truss by
Kaveh &
Zolghadr
(2010)

OB6: Weight
minimization.
CO7: Multi
frequency
constraints.

Continues CSS
ECSS8

ECSS produced
better results

304- and 132-
members
frame
structures by
Hasançebi et
al. (2010)

OB: Weight
minimization.
CO: stress
constraints.

Discrete Improved
SA

welded beam
and pressure
vessel by
Kaveh &
Talatahri
(2010)

OB: cost
minimization.
CO: stress
constraints.

Continues CSS Performed better
compared to
previous MHs
results e.g. GA and
SA

10,18,25,72
and 200-bar
space structure
by Sonmez
(2011)

OB: weight
minimization.
CO: stress
constraints

Continues ABC-AP Used adaptive
penalty function

10,25, 72 and
200-bar space
truss by
Degertekin
(2012)

OB: Weight
minimization.
CO: stress
constraints.

Continues EHS9
SAHS10

EHS has improved
local search feature
SAHS used new
probabilistic method
to determine the new
feasible solution.

10,25, 72 and
200-bar space
truss by
Degertekin &
Hayalioglu
(2013)

OB: Weight
minimization.
CO: stress
constraints.

Continues TLBO It needs higher
number of objective
function evaluations.

6 OB : Optimization oBjective
7 CO : COnstarints
8 ECSS : Enhanced Charged System Search
9 EHS : Effective Harmony Search
10 SAHS : Self Adaptive Harmony Search

16

Table 1.2 Continued

SDO Problem Modelling Domain MH Comments
25,22,72 and 120-
bar space truss by
Talatahari et al.
(2013)

OB: Weight
minimization.
CO: stress
constraints.

Continues MSPSO MSPSO performed
better than standard
PSO

25,22,72,120 and
200-bar space truss
by Kaveh &
Bakhshpoori
(2014)

OB: Weight
minimization.
CO: stress
constraints.

Continues HPSSO HPSSO exhibited
better performance
compared to PSO

10,22,25,72,120
and 200-bar by
Kaveh &
Bakhshpoori
(2016)

OB: Weight
minimization.
CO: stress
constraints.

Continues WEO WEO has expensive
solution

10,25,52,72,160
and 200-bar space
truss
de Castro Lemonge
et al. (2019)

OB: Weight
minimization.
CO: stress
constraints.

Discrete
&
Continues

ABC-APF Handled the discrete
domain using
penalty function

25,72,200 and 582-
bar space truss by
Mortazavi, Toğan,
and Moloodpoor
(2019),

OB: Weight
minimization.
CO: stress
constraints.

Continues ISA11 Using FEM to
determine the truss
weight.

25 and 72-bar
space truss by
Yuan, Lv et al.
(2020)

OB: Weight
minimization.
CO: stress
constraints.

Discrete CFSSDA12 Handling the
problem discreteness
is not clear

25,72 and 200-bar
space truss by
Jahangiri,
Hadianfard et al.
(2020)

OB: Weight
minimization.
CO: stress
constraints.

Discrete IAS13 Using rounding to
nearest discrete
value

11 ISA : Interactive search Algorithm
12 CFSSDA : Coulomb Force Search Strategy Dragonfly Algorithm
13 IAS : Interactive Autodidactic School

1.1.2 I-Beam Design Optimization Problem

I-beam profile sections are popular in the structural design applications for trusses, frames,

cranes or even more sophisticated applications such as front car axles (Yuan, Lv, Wang, &

Song, 2020). The original I-beam benchmark SDO problem developed by Gold and

Krishnamurty (1997) and an updated version was introduced by Gandomi et al. (2013), which

becomes more used in recent years (see Figure 1.5). The objective of this problem is

minimizing the vertical deflection of the beam subjected to axial loading and cross-sectional

constraints. Yadav and Arora (2019) applied a new MH known as Artificial Electric Field

Algorithm (AEFA) for the I-beam benchmark, and it compared the results reported by Pan (Ye

& Pan, 2017), and (Wang, 2003). The proposed AEFA exhibits a better solution with a fast

convergence rate.

The problem formulation of the updated version of I-beam benchmark proposed by Gandomi

et al. (2013) is shown here:

a.) Objective Function

 𝑚𝑖𝑛. 𝑓(𝑥) = 𝑃𝐿ଷ48𝐸𝐼 (1.3)

The beam length 𝐿 = 5.2 𝑚, and elasticity module 𝐸 = 523,104 ௞ே௖௠మ; this yields that objective

function of maximum deflection could be formed as:

 𝑓൫𝑏,ℎ, 𝑡௪, 𝑡௙൯ = 5000𝑡௪(ℎ − 2𝑡௙)ଷ12 + 𝑏𝑡௙ଷ6 + 2𝑏𝑡௙ ൬ℎ − 𝑡௙2 ൰ଶ
(1.4)

b.) Constraints

18

The beam is subjected to area constraint 𝐴 ൫𝑏,ℎ, 𝑡௪, 𝑡௙൯ and to allowable bending stress

constraint 𝜎௔ = 56𝐾𝑁 𝑐𝑚ଶ⁄ , thus:

 𝐴 ൫𝑏,ℎ, 𝑡௪, 𝑡௙൯ ≤ 300 𝑐𝑚ଶ 𝜎௕ ≤ 𝜎௔

The I-beam cross-sectional dimensions are limited to upper and lower values as follow:

 ℎ ∈ [10,80]𝑐𝑚 𝑏 ∈ [10,50]𝑐𝑚 𝑡௪ ∈ [0.9,5]𝑐𝑚 𝑡௙ ∈ [0.9,5]𝑐𝑚

The objective function transformation of this problem not mentioned, but the exterior penalty

function in Eq.(1.1) is working too.

Table 1.3 Comparison of different published results of I-beam optimization problem

Author/s MH 𝒃 (𝒄𝒎)
𝒉 (𝒄𝒎)

𝒕𝒘 (𝒄𝒎)
𝒕𝒇 (𝒄𝒎)

𝜹𝒎𝒂𝒙 (𝒄𝒎)

Wang (2003)
GWO
ARSM
IARSM

80
80

79.99

50
37.05
48.42

0.9
1.71
0.9

2.32
2.31
2.4

0.0131
0.0157
0.0131

Gandomi et al. (2013) CS 80 50 0.9 2.32 0.0131
Ye & Pan (2017) EMGO-FCR 80 50 0.9 2.32 0.0131
Anita et al. (2020) AEFA-C 79.97 50 0.9 2.32 0.0131

Figure 1.5 I-Beam design problem
Taken form Gandomi & Yang (2013, p.22)

19

1.1.3 Composite Laminated Plate Design Optimization Problem

The composite materials (anisotropic) continue to attract attention due to their shared property

of high specific strength (or strength/weight ratio), thermal stability, corrosion resistance, and

their high impact strength. Composites combined two or more materials that have different

properties to form a new material with new outperforming properties compared to those of

each material alone. These properties can be tailored for specific product requirements,

whether it is for extreme temperatures (hot or cold), stiffens, corrosion, fatigue, or other

working conditions. Thus, many industrial disciplines, such as aerospace, automotive, marine,

construction, and others, demonstrated a great interest in deploying the composite materials in

their products. For instance, in the aerospace industry, the aluminum alloys were the

dominating material choice for structures of airplanes for decades because of their lightweight,

mechanical properties and low cost of production compared to other metal alternatives. But

this dominance did not last long when composite materials became a favoured material choice

for structural airplane design (Kaw, 2006). However, the design of the composite structure

involves a significant complexity because of the diversity of available matrix-fibre materials,

manufacturing constraints or imperfections, ply thickness, the number of plies, plies

contiguity, and variation of possible stacking sequence configurations. Besides, other design

variables such as structure surface topology, edge boundary conditions, and loading type have

a considerable impact on the composites design. The demand for a low-cost product with high

performance while respecting predefined design criteria (e.g. strength, strain limits, critical

buckling load, and materials) is common practice in the structural design.

A review study conducted by Nikbakt, Kamarian, and Shakeri (2018), which covered the

published composite optimization articles since 2000, concluded that the maximization

buckling load, fundamental frequency and weight minimization are the most addressed

objective functions. The reviewed papers classified based on their objective function and

simple counting of published papers number for each classification revealed that weight and

buckling optimization studies occupied nearly 50%. In comparison, the fundamental frequency

has 19.5% of the total number of 347 reviewed papers. The observed interest of optimizing for

buckling and weight objectives could be interpreted by the demand on a lighter structure that

20

could bear high buckling load in seek of structure stability, e.g. marine and aerospace

structures. In the aerospace industry, thin composite plates are desirable for their lightweight

and tailored strength capacity under different applied loads. The failure due to excessive

compression loading is a common design mode in awareness of aero-structure designers, and

as a result of this, maximizing the critical buckling load of thin plates becomes a vital objective

of the design process (de Faria, 2002; Wu, 2020). To date, various studies have been intended

to maximize the critical buckling load for different design variables; however, the fiber

orientation of the layer is mostly considered a design variable (R. Le Riche & Haftka, 1993;

Nikbakt et al., 2018).

Figure 1.6 Simply supported plate subjected to biaxial loading

Taken from Le Riche and Haftak (1993, p.951)

Usually, the fiber orientation of the ply is limited to a set of available fiber angles, which turns

the optimization problem design space into a discrete one; and when the number of layers

increases, the number of design variables is increasing too. Consequently, the computational

time to find the optimal solution is exponentially growing, until it becomes Non-Polynomial

time, and this turns the optimization of the composite laminated plate to an NP-hard

optimization problem according to the theory of complexity (Marco Dorigo & Stützle, 2019).

21

However, the formulation of a composite laminated plate optimization problem, Figure 1.6,

for maximum buckling load could be explained as follow:

a.) Objective Function

 max(𝜆௖௥(𝑝, 𝑞)) (1.5)

where 𝜆௖௕ is the critical buckling load factor that buckles a simply supported plate subjected

to in-plane loads of 𝜆𝑁௑ and 𝜆𝑁௬ into 𝑝 and 𝑞 half-waves in 𝑥,𝑦 directions. Buckling load

factor, 𝜆௕, could be defined according to Classical Laminated Plate Theory (CLPT) as follow:

 𝜆௕(p, q) = 𝜋ଶ ൤𝐷ଵଵ൫𝑝 𝑎ൗ ൯ସ + 2(𝐷ଵଶ + 2𝐷଺଺)൫𝑝 𝑎ൗ ൯ଶ + 𝐷ଶଶቀ𝑞 𝑏ൗ ቁସ൨൫𝑝 𝑎ൗ ൯ଶ𝑁௫ + ቀ𝑞 𝑏ൗ ቁଶ𝑁௬ (1.6)

The smallest value of 𝜆௕(𝑝, 𝑞) is considered the critical buckling load factor. The critical values

of 𝑝 and 𝑞 are linked to different factors such as laminate material, a number of plies, loading

conditions, and the plate aspect ratio. In uniaxial loading of a simply supported plate, the

critical buckling load occurs when 𝑝 = 1 whereas in biaxial critical buckling loads, it needs to

be determined as the minimum value of 𝜆௖௕(𝑝, 𝑞) (Reddy, 2004).

b.) Constraints

The design optimization scheme of the composite plates should respect certain limitations of

manufacturing and specific design considerations. In literature, some rules have been proposed

to improve the effectiveness of a laminate design for different applications (Peeters & Abdalla,

2017; Rama Mohan Rao, 2009; Zein, Madhavan, Dumas, Ravier, & Yague, 2016)

The design and manufacturing rules could be concise as follow:

- Manufacturing limitations: the thickness of the plies and fiber orientations are

limited to the available manufactured values, which are usually integer, for ply

22

thickness or certain angles such as ±45°, 0°, and 90°and ply orientations.

Additionally, the symmetrical laminate makes the manufacturing process more

straightforward.

- Strength and stiffness considerations: the symmetry of laminate is necessary to

prevent extension-bending coupling ൫𝐵(௜,௝) = 0൯. Furthermore, the balanced

laminate (which has pairs of plies with the same thickness and different signs of

same orientation angle 𝜃) condition is needed to avoid shear-extension coupling (𝐴ଵ଺ = 𝐴ଶ଺ = 0). All the plies with ±𝜃 will be grouped to minimize the effect of

bending and twisting coupling. Moreover, the congestion of the same orientation

plies should be limited to 4 plies for each group to develop a homogeneous laminate

and reduce inter-laminate stresses and matrix crack failure.

c.) Objective Function Transformation

Generally, the constraints in stacking sequence optimization with constant laminate thickness 𝑡 could be integrated easily by considering half of the laminate in optimization for symmetry

constraint and group each to plies with the same orientation angle to make balanced laminate.

In contrast, the contiguity constraint could be handled by imposing a penalty factor, 𝑝, on the

value of the objective function violated solutions. Thus, the transformed objective function of

this design problem could be written as follow:

 𝜆ை௣௧ = (1 − 𝑝) ∗ max 𝜆௖௕(𝑝, 𝑞) (1.7)

Lastly, this formulation of the composite SDO problem could be applied for other structures

that have a sort of analytical solution; for instance, the same composite laminated plate with

different edges conditions (Reddy, 2004). For more complicated structures such as perforated

composite plate, finite elements methods could be used to determine 𝜆௖௕ , then evaluate the

transformed objective function 𝜆ை௣௧ (D. Kumar & Singh, 2012).

23

Example: Composite laminated plate subjected to bi-directional buckling load

The widespread benchmarking problem used in the literature of stacking sequence

optimization is accredited to R. Le Riche and Haftka (1993), and it is widely used by several

authors (Deveci, Aydin, & Seçil Artem, 2016; Erdal & Sonmez, 2005; A. Rama Mohan Rao

& Shyju, 2008). The original problem describes a simply supported plate subjected to in-plane

biaxial loading, as shown in Figure 1.6.

This SDO benchmark examined for different number of plies and loads (see Table 1.4), and

the material is graphite-epoxy and the thickness of each ply, 𝑡௣ = .127𝑚𝑚, while the elasticity

modulus is 𝐸ଵ = 127.59 GPa , 𝐸ଶ = 13.03 GPa, 𝐺ଵଶ = 6.41𝐺𝑃𝑎 and 𝜐ଵଶ = 0.3.

Table 1.4 Different loading conditions of the composite optimization problem

Case
Plies number ൫𝒏𝒑൯ Width (𝒂) (𝒎𝒎)

Height (𝒃) (𝒎𝒎)
𝑵𝒙 (𝑵 𝒎𝒎⁄)

𝑵𝒚 (𝑵 𝒎𝒎⁄)
1 48 508 127 175 22
2 48 508 127 175 44
3 48 508 127 175 88
4 64 508 254 175 175

1.2 Analytical Versus Finite Element Structural Design Optimization

Some SDO problems have an analytical solution as those we explained in previous sections,

for example, the analytical solution of buckling analysis of a thin rectangular plate with

different boundary conditions is available for unpunched composite plates (Reddy, 2004).

These analytical solutions widely used to demonstrate the various purposes of composites

plates SDO, such as showing the performance of MHs, examining the effect of changing

materials properties, or used to investigate the impact of hybrid laminate on the buckling load

capacity (Awad, 2012; de Almeida, 2016). In a more recent study, A Kaveh, Dadras, and Malek

(2019), used the analytical solution to conduct uncertainty optimization of a composite

24

laminated plate subjected to uncertain buckling loads. These solutions are easy to be

implemented as an objective function in any optimization procedure, but they are limited for

simple cases usually (Abolghasemi, Eipakchi, & Shariati, 2019). The solution of buckling

analysis for perforated composite laminated plates is far more complicated than that.

Accordingly, many studies considered the optimization problem of perforated composite plate

used FEM analysis solution to determine the objective function (D. Kumar & Singh, 2012).

The multi-purpose FE software, such as Ansys Workbench or Abaqus, has been intensively

employed in the literature. Lakshmi Narayana, Rao, and Kumar (2013) used ANSYS to

investigate the effects of cut-out shape on the buckling behaviour of a quasi-isotropic laminated

plate. In other individual paper, Narayana Narayana, Rao, and Kumar (2014) extended the

previous study to consider the effects of the cut-out size and orientation using ANSYS

software. In a study that set out to determine the possible influences of stacking sequence

design of hybrid composite plate on the buckling capacity, Dhuban, Karuppanan, Mengal, and

Patil (2017) found that generated results by using nonlinear FE analysis of ANSYS have a

good agreement with those experimentally obtained. Nevertheless, the availability of the

simple solution will reduce the time needed to evaluate the objective function while using the

approximated solutions, such as FEM, which could be a very time-consuming process in

complex cases (Abolghasemi et al., 2019).

However, the current thesis focuses on solving optimization problems of design structures

exposed to buckling criterion. There is no doubt that real-life SDO applications involve

different degrees of buckling analysis complexity that intend to use different FEM solutions.

The next section will present a concise summary of related FEM concepts and recent trends in

determining the critical buckling load factor.

1.2.1 Buckling Analysis using FEM

The main objective of FEM buckling analysis is determining the critical buckling load of the

structure. Accordingly, the commercial FEM software, such as ANSYS, offers the users two

25

approaches of buckling analysis; the first is linear buckling analysis (also known as eigenvalue

buckling analysis). The second is the nonlinear buckling analysis.

The linear buckling approach uses linear relationships between the stresses and the 2nd order

stiffnesses to establish the Eigen value-and- vector equations and solve them for determining

the Eigen value which stands for the buckling load factor. On the other hand, nonlinear

buckling analysis (also known as post-buckling analysis) uses nonlinear static analysis that

considers large deformation to predict the buckling load. Unlike the eigenvalue buckling

analysis, the obtained buckling load is given in the applied load value that suddenly produces

a large deformation. No doubt that nonlinear buckling analysis gives more accurate results than

eigenvalue buckling analysis, but it is computationally expensive (Ansys, 2015). The

eigenvalue analysis yields overestimated buckling strength solutions, but it is still widely used

in designing real-life structures due to its simplicity and low computational cost (Lê &

Champliaud, 2014).

Nevertheless, the predicted values of buckling strength using eigenvalue analysis need to be

corrected to include nonlinear behavior of materials, geometric imperfection, and load

perturbations to ensure a safe structure design. Before going further, an overview of different

ANSYS eigenvalue buckling analysis steps is presented in the following subsections.

a.) Linear Static Analysis

After creating the FE model, the linear static analysis is devoted to calculate the stresses in the

structure in three following stages :

The first stage is to calculate the 1st order stiffness matrices, [𝐾ଵ ௘] and the load vectors of body

and surface forces, ሼ𝐹௕ ௘ + 𝐹௦ ௘ሽ for all elements which are related together by the equilibrium

equation (1.8) for each element.

 [𝐾ଵ ௘]ሼ𝐷௘ሽ? = ሼ𝐹௕ ௘ + 𝐹௦ ௘ሽ + ሼ𝐹௜௡௧ ௘ሽ? (1.8)

26

Where the subscripts 𝑒, 𝑏, and 𝑠 indicate element, body, and surface, respectively, the elements

degree of freedom ሼ𝐷௘ሽ and internal force ሼ𝐹௜௡௧ ௘ሽ are unknown at this stage, the question mark

"?" has been added for both terms here.

The individual element stiffness matrices and load vectors are assembled into the total

equilibrium equation that yields the following form:

where the subscript 𝑡 stands for total and the applied forces 𝐹௔௣௣௟௜௘ௗ and reactions 𝐹௥௘௔௖௧௜௢௡

represent the external forces.

The next stage is to specify the boundary conditions which consist of all restrained degrees of

freedom and all applied forces so that (1.9) can be solved for the remaining parameters

(𝐷௨௡௞௡௢௪௡ and 𝐹௥௘௔௖௧௜௢௡).

The final stage of linear static analysis calculate stresses ሼ𝜎ሽ using the suitable constitutive

formulas such as the displacement-strain transformation matrix [𝐵] and stress-strain material

matrix [𝐶], see Eq. (1.10).

b.) Eigen Buckling Analysis

The stresses given by linear static analysis are used to calculate the 2nd order stiffness matrices [𝐾ଶ ௘] which are function of membrane stress ሼ𝜎௠ሽ and structure geometry. The total matrix

equation which considers the 2nd order stiffness is:

 [𝐾ଵ ௧] ൤ሼ𝐷௨௡௞௡௢௪௡ሽ?ሼ𝐷௥௘௦௧௥௔௜௡௘ௗሽ൨ = ሼ𝐹௕ ௧ + 𝐹௦ ௧ሽ + ቈ ൛𝐹௔௣௣௟௜௘ௗൟሼ𝐹௥௘௔௖௧௜௢௡ሽ?቉ (1.9)

 ሼ𝜎ሽ = [𝐶][𝐵]ሼ𝐷௘ሽ (1.10)

27

where 𝑓 is load multiplication factor.

The buckling occurs when the applied load lead to an indefinitely increase in the displacement

without increasing the load, which means that ሼΔ𝐷ሽ ≠ 0 while ሼΔ𝐹ሽ = 0. Thus, the

incremental form of Eq.(1.11) at buckling load level gives the following eigenvalue and

eigenvector equations:

Since ∆𝐷 is not equal to zero when the buckling occurs, the determinant of the stiffness matrix

must be zero :

Solving Eq. (1.13) gives eigenvalues which stand for the buckling load factors 𝑓, and by

substituting the obtained values of 𝑓 in Eq.(1.12) we could find the buckling modes. The

minimum positive value of 𝑓 is named elastic buckling load factor 𝑓ா (Lê & Champliaud,

2014).

1.2.2 Safety Factor of Buckling

Many real-life structures are exposed to failure due to different buckling criteria. For instance,

the customized beam structures built by welding plates are subjected to local and lateral

buckling. The multiplication elastic buckling load factor 𝑓ா that obtained using eigenvalue

buckling analysis could be considered as a safety factor against the buckling as long as the

membrane compression stresses at critical buckling zones remain less than the yield buckling

stress of the structure material. Unfortunately, this is not always the case where the structure

 [𝐾ଵ ௧ − 𝑓 ∗ 𝐾ଶ ௧]ሼ𝐷ሽ = ሼ𝐹௔ ௧ + 𝐹௘௫௧ሽ (1.11)

 [𝐾ଵ ௧ − 𝑓 ∗ 𝐾ଶ ௧]ሼ∆𝐷ሽ = ሼ𝑧𝑒𝑟𝑜𝑠ሽ (1.12)

 |𝐾ଵ ௧ − 𝑓 ∗ 𝐾ଶ ௧| = 0 (1.13)

28

may expose to a combination of compression and bending stresses that could exceed the yield

stress and steer the structure to fail.

The eigenvalue buckling analysis quickly turns out the results, which keeps it a preferred

choice by structure designers. To overcome the overestimating of 𝑓ா values, Lê and

Champliaud (2014) proposed a correction procedure, and they examined it for the case of

welded plates I-beam crane, see Figure 1.7. The procedure steps could be summarized as

follow:

Figure 1.7 Customized beam structure of welded plates

Taken from (Lê & Champliaud, 2014)

Step1: determine the minimum buckling load factor 𝑓ா using FEM linear buckling analysis,

as explained in section 1.2.1.

Step 2: detect the width of the first buckling mode zone, 𝑏.

Step 3: find the value of equivalent linear membrane stress 𝜎௠௘௤௩௅ of the buckled width from

the results of FEM static analysis.

Step 4: compute the elastic critical buckling stress 𝑆௖௥ா using the following formula:

 𝑆௖௥ா = 𝑓ா ∗ 𝜎௠௘௤௩௅ (1.14)

29

Step 5: check the obtained buckling stress value, by Eq. (1.14), against the yield buckling stress

of the structure.

When 𝑆௖௥ா ൐ 0.5 𝑆௬ the 𝑆௖௥ should be corrected using the reduction formula shown in

Eq.(1.15). This formula was developed based on the original Johnson's parabola expression for

short columns, see Figure 1.8.

Figure 1.8 Critical stress based on Jonhson's correction.
Taken from (Lê & Champliaud, 2014).

Step 6: determine the factor of safety against buckling load 𝑓௦௔௙௘௧௬ using the following

formula:

 𝑆௖௥ = ቐ𝑆௖௥ா 𝑖𝑓 𝑆௖௥ா ≤ 0.5 𝑆௬𝑆௬ ൬1 − 0.25 𝑆௬𝑆௖௥ா൰ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (1.15)

 𝑓௦௔௙௘௧௬ = 𝑆௖௥𝜎௠௘௤௩௅ (1.16)

30

1.3 Meta-Heuristics for SDO

From the optimization methodology perspective, the classical (mostly gradient) methods are

favourable because of their simplicity in the implementation and good solution quality at a low

computational cost they deliver. Unfortunately, these techniques performed poorly in solving

non-convex objective functions where they tend to be stuck in local optimum or even not

finding any optimum. These drawbacks of gradient-based methods refer to the assumption of

continuity of the problem design variables. In addition, classical techniques need gradient

computation of the objective function and constraints, which not possible for most cases of

SDO problems where the constraints or objective functions are non-convex functions, see

Figure 1.9. Therefore, the majority of recent SDO studies carried out using MH techniques.

MH is a stochastic iterative process that follows a particular approach to find feasible solutions

in the design space of the problem. MH techniques do not require a gradient computation to

find the optimal solution, and for this, they are efficient in solving the combinatorial

optimization problems, and this includes SDO problems.

Many new MHs were developed specially to handle SDO problems such as steel structures or

frames in an attempt to present a cost-effective optimal solution (Saka et al., 2016). Ghiasi et

Figure 1.9 Non-convex function example

31

al. (2010) reviewed different techniques used in recent decades to optimize composite

laminated designs, and he concluded that MHs are superior to gradient-based methods.

Furthermore, Nikbakt et al. (2018) reported the outperformance of MHs compared to gradient

optimization algorithms due to their efficiency and stability. Also, trajectory based MHs

demonstrated a substantial local search capacity on its track to find the optimal solution. In

contrast, population based MHs exhibited a significant ability to explore the design space. Even

though MHs, in general, could solve the discrete optimization problems efficiently, we still

need to determine which algorithm outperforms the others for a specific problem according to

the No Free Lunch theorem (NFL) by Wolpert and Macready (1997). In this manner, Mark W.

Bloomfield, J. Enrique Herencia, and Paul M. Weaver (2010) conducted a comparison study

of three MHs of GA, ACO, and Particle Swarm Optimization (PSO) to determine the optimal

stacking sequence composite laminate. Based on the results of this comparison study, ACO

found to outperform GA and PSO algorithms in the field of stacking sequence design. This

remarkable performance of ACO in solving such NP-hard combinatorial optimization is

expected where it designed to solve discrete optimization problems (Marco Dorigo & Stützle,

2019). Here three selected MHs to be reviewed in the following sections for their originality

and long history of successful applications. In addition, a brief description of state-of the art

MHs, known as metaphor-MHs, is introduced too.

1.3.1 Genetic Algorithm (GA)

Holland suggested the original genetic algorithm in the 1960s, which was later detailed in its

generally known form by Goldberg and Holland (1988). It is based on Darwin's theory of

natural evolution, and it is implemented using elements of the natural genetics of reproduction,

crossover, and mutation. Since then, GA frequently used to tackle a small and large scale SDO

problems. The discrete nature of real-life SDO problems challenged the GA that initially

developed to solve continuous optimization problems. Thereby, several researchers proposed

different approaches; Cheng (2010) proposed a real/integer coded GA to solve large real-life

SDO problem of an arch bridge. The optimized bridge design became lighter by 45.5%

compared to the weight obtained by the traditional design method. Akshay Kumar and

Rangavittal (2019) used GA to minimize the weight of the 25-bar space truss, and they used

32

integer solution representation. Their study results exhibited the efficiency of using integer

coding with GA to solve SDO problems. More recently, Xingyu, Jiayi, and Hai (2020) used an

improved version of GA to solve different DSO benchmarks, and their results lead to finding

a cheaper optimal solution.

Moreover, GA shows its worthiness over classical optimization methods in solving composite

SDO problems (Nikbakt et al., 2018). The significant adaptation of GA to optimize composite

laminate design is credited to R. Le Riche and Haftka (1993), as he proposed a modified GA

that replaces binary coding of solution strings by integer coding. This formulation turned the

binary GA algorithm into Permutation Genetic Algorithm (PGA). The results show a 2%

reduction in the solution cost compared to binary GA (R. Le Riche & Haftka, 1993). The gene-

rank GA introduced by B. Liu, Haftka, Akgün, and Todoroki (2000) is a permutation GA with

a gene-rank crossover operator. He compared his proposed GA with standard GA and older

permutation GAs, and the gene-rank GA demonstrated better computational performance.

Furthermore, Ehsani and Rezaeepazhand (2016) used binary GA to determine the optimal

stacking sequence of grid laminate by considering the different boundary conditions of the

laminate edges. Moreover, GA algorithms are known for their expensive solution due to the

slow convergence to the optimal solution. To overcome such drawbacks, Vosoughi, Darabi,

and Forkhorji (2017) made hybrid GA with PSO algorithms as an operator to increase the

convergence rate of standard GA. However, binary GA is still used as a stacking sequence

design optimizer. It offers a costly solution, while PGA demonstrates excellent performance

for cheaper solutions.

1.3.2 Ant Colony Optimization (ACO)

M. Dorigo (1991) developed the Ant Colony Optimization system that is inspired by the natural

phenomena of the food searching strategy of the ant colony. He proposed a mathematical

model that simulates this strategy of the cooperative attitude of an actual ant colony to find the

optimal solution. He implemented his model to solve well-known optimization problems, such

as the travel salesman problem (TSP). The main advantage of ACO is that it designed to solve

33

discrete (combinatorial) optimization problems, basically for TSP, which is common in

practice. Thus, ACO has been extended in different engineering areas to solve problems such

as the discrete SDO of composite laminated structures (SDO). Aymerich and Serra (2008)

investigated the computational efficiency of ACO as an optimizer that maximizes the buckling

load of a simply supported plate exposed to uniaxial loading. He compared the solution quality

and robustness of ACO with GA and TS algorithms for the same reference case study, and the

results show that the ACO algorithm has better performance. Furthermore, Rubem Matimoto

Koide, França, and Luersen (2013) used the ACOA combined with finite element analysis to

maximize the buckling load factor. They compared the obtained results of their proposed

optimization solution with those previously obtained for GA by R. Le Riche and Haftka (1993).

The procedure starts with random initial laminate stacking being selected from the feasible

solution set (available fiber orientations). This step is followed by an evaluation of the

objective function, which will be stored in the ant routing table and used to generate a new

feasible stacking sequence. Finally, the global pheromone table is updated where only the ants

with the best solution deposited more pheromone trail on their path to the solution. This

procedure continues until the termination criterion is satisfied.

1.3.3 Cuckoo Search Algorithm (CS)

Cuckoo Search (CS) algorithm is population-based meta-heuristic inspired by the aggressive

reproduction strategy of some cuckoo bird species enhanced by Lѐvy flights. It presented by

X.-S. Yang and Deb (2009) to solve a variety of continuous multimodal optimization problems.

Since then, it attracted attention due to the simplicity of implementation and the fast

convergency rate and accuracy of the delivered solutions. Also, CS has a view number of

parameters (almost one) to be tuned, compared to other meta-heuristics such as Genetic

Algorithm (GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO).... etc.

The size of CS applications is fascinatingly growing, where it could be observed through the

number of solved optimization problems using CS in the last decade (Shehab, 2020; X.-S.

Yang, 2014). Shehab (2020) tracked the progress of published papers that uses CS in the

literature. Based on different publishers' metrics, for the CS published articles between 2009

and 2016, he summarized that there are three classes of research interest. The dominant class

34

went to the application, and it represented 67% of publications, whereas CS hybridization and

CS modifications had respectively 15% and 18% of the research interest. The applications of

CS involve several main optimization problems such as Travelling Salesman Problem (TSP)

(Jati & Manurung, 2012; Ouaarab, Ahiod, & Yang, 2014; X.-S. Yang & Deb, 2013; Zhou,

Ouyang, & Xie, 2014), and binary optimization problems, for instance, Knapsack optimization

problem (Gherboudj, Layeb, & Chikhi, 2012; Layeb, 2011; Xin, Zhang, & Chen, 2019),

Computer vision and image detection (Agrawal, Panda, Bhuyan, & Panigrahi, 2013; Loubna,

Mohamed, Abdelaziz, & Fatimaezzahra, 2017), Energy sector (de Moura Meneses, da Silva,

Nast, Araujo, & Schirru, 2020; Piechocki, Ambroziak, Palkowski, & Redlarski, 2014), supply

chain (Q. Li, Liu, & Yang, 2020; Z. Li, Dey, Ashour, & Tang, 2018) and SDO problems

(Gandomi et al., 2013; A Kaveh & Bakhshpoori, 2013).

1.3.4 Metaphor Based MHs

The recent two decades have witnessed a massive number of new MHs (see Figure 1.10) that

proposed to solve different scale SDO problems. Most of these MHs were mimic a natural or

physical phenome, for instance, the water evaporation process. There was some debate about

whether the metaphors are novel MHs or just a clone of others. Dennis (2010) argued that the

Harmony Search (HS) metaphor is nothing more than a special case of evolution strategies,

and it has no transparent mathematical background.

Sörensen (2015) also criticizes the metaphor-based MH research, and he said there are enough

"novel" MHs and developing new ones may lead the research area of MHs away from the

scientific intent. In contrast, the metaphor-based MHs developers are saying that new metaphor

MHs demonstrated remarkable performance in solving hard SDO problems, and they

implemented on a different basis of older MHs (Saka et al., 2016).

35

Figure 1.10 Chronologically ordered plot for the number of developed Meta-Heuristics

Table 1.5 Summary of selected metaphor MHs in SDO

MH name Concept Applications Comments

Charged System Search
(CSS) by Kaveh &
Zolghadr (2010)

Electrostatics and
Newtonian
mechanics laws

- Truss weight
minimization

It appears in 12
published paper
for SDO between
2010 to 2020 14

Artifcial Bee Colony
with Adaptive Penalty
function (ABC-AP) by
Snomez (2011)

Based on intelligent
behaviour of
honeybee swarm

- Truss weight
minimization.

- Composite
structures.

It appears in 400
(ABC) related
paper for SDO
between 2010 to
2020

Teaching-Learning-
Based
Optimization (TLBO)
by Degertekin &
Hayalioglu (2013)

Based on learning
process

- Frame and truss
structures.

- pin jointed
structures.

- Composite
laminated plate.

It appears in 57
published paper
for SDO between
2010 to 2020

Water Evaporation
Optimization algorithm
(WEO) by Kaveh &
Bakhshpoori (2016)

Based on
evaporation of water
molecules on solid
surface

- Truss structures
It appears in 6
published paper
for SDO between
2010 to 2020

14 The number of published papers determined based on Google Scholar search for related article.

0

30

60

90

120

1960 1970 1980 1990 2000 2010 2020

N
um

be
r o

f M
et

a-
hu

er
sti

cs

Year

36

In the current study results of some of these metaphors MHs, in solving SDO problems, were

shown in Table1.1, and depicted in Figure 1.4. It can be noticed from the figure that some

recently MHs developed to solve the same SDO problems. But they delivered a more

computationally expensive solution with no significant improvement in the optimal truss

weight rather than make it worst, e.g. ABC MH. The description and applications of selected

metaphor MHs in SDO, from 2010 up to date, is briefly summarized in the Table 1.5.

1.4 Structural Design Frameworks

The common shared attribute between the previously stated SDO studies is using a

deterministic design approach, where the applied load is remaining fixed during the

optimization process. Thus, the attained optimal designs are not guaranteed to endure any

loading fluctuations, or in other words, the current design will no longer be an optimal solution

when the applied load is changed (de Faria, 2002). The deterministic design uses the factors of

safety to deal with uncertainty influences (e.g. buckling loads). Still, it can result in an

inefficient design that fails to spot one or more failure modes when different failure modes are

optimized against the design limits (Clune, 2013). The first alternative to deterministic design

optimization is the probabilistic design optimization approach. Unfortunately, probabilistic

design optimization is very sensitive to the accuracy and amount of statistics design data. For

instance, the scarcity or inaccurate data leads to misfit the probabilistic distribution of different

design variables within the uncertainty domains (Lombardi & Haftka, 1998; Qiu & Wang,

2010).

The robust design optimization became the preferred approach by engineers, where it

eliminates the uncertainties influences via considering bounded uncertainty domains of the

design variables (Isaac Elishakoff & Ohsaki, 2010; A Kaveh et al., 2019). The Anti-

optimization method is the common form of robust design optimization used for different SDO

problems, also known as a two-level optimization, and it introduced originally by I Elishakoff,

Haftka, and Fang (1994). The anti-optimization levels create a nested optimization/anti-

optimization loop where the top level is devoted to determining the optimal solution of a given

37

design, while the bottom level is anti-optimize the uncertainty to find the worst scenario case

(A Kaveh et al., 2019; Lombardi & Haftka, 1998). I Elishakoff et al. (1994) introduced the

anti-optimization approach to include the uncertainty influences in structures design. The

proposed approach was formulated to optimize ten-bar structure weight subjected to the

uncertainty of loading, stress and displacements. The uncertainty of loading variations was

limited to a multi-dimensional box uncertainty domain. Based on their work findings, the

authors pointed out that anti-optimization approach overcomes the numerical complexity that

accompanied the probabilistic optimization. Venter and Haftka (1996) introduced a two

species Genetic Algorithm to reduce the computational effort of GA as an optimizer of two-

level problems. They demonstrated the effectiveness of the improved algorithm by solving the

anti-optimization problem of a composite laminate plate subjected to in-plane bi-directional

compression loading in addition to the uncertain out-of-plane uniform load. The proposed

algorithm exhibited a significant saving in computational effort. Adali, Lene, Duvaut, and

Chiaruttini (2003) studied the maximization of the critical buckling load of a composite

laminated plate subjected to uncertain loading conditions and lamina material type. Both

deterministic and robust optimization approaches were examined. The authors concluded that

deterministic critical buckling load factor values were less than these obtained by robust

optimization approach as a result of different stacking sequence design obtained by both

approaches. Jiang, Han, and Liu (2008) developed a method that uses the interval analysis with

a hybrid numerical method to compute the transient response bounds of composite laminated

plate undergo to load and material properties uncertainties. The influence of different design

variables uncertainty was investigated. The transient response bounds acquired by using first-

order Taylor expansion together with interval extension. The results imply that the proposed

method was confined to a small level of uncertainty applications. On the other side, the method

could be extended to solve hybrid composite laminated structures.

1.5 Research Gaps

Even though a considerable amount of literature has been published on the SDO topic, more

than 5000 articles by 2013 Clune (2013), the SDO still restricted to limited structures and, to

38

some extent, impractical. Moreover, the developed SDO solutions are mostly focusing on new

optimization tools rather than the practical difficulties of SDO problems. In this scene, a couple

of potential research gaps that we extracted from the literature are explained here:

- SDO problem statements, in general, do not reflect the practical difficulties of
SDO problems. The statement of SDO benchmarking problems introduced in the

literature does not reflect the real-life complexity of SDO problems. Over decades of

using truss and frames structures as benchmarking problems to examine the MHs, they

mostly assume that the problem has a continuous design domain while the real-life

applications face a discrete one, (Saka et al., 2016). In discrete SDO problems, the

design variables' values should be selected from a design vector with individual values.

Thus, the Design Space Size (DSS) is growing exponentially and when the number of

design variables increases, DSS is increasing too until it becomes hard to be solved

within polynomial computational time or NP-hard problem. The majority of MHs

developed to solve unconstrained continuous optimization problems. When they used

to solve discrete optimization problems, the developers were usually going to use the

rounding to the nearest discrete value, which has its drawbacks on the solution cost, as

we will demonstrate in this thesis. In this thesis, we introduce two different SDO

problems that have applicability in real-life, and we used them to demonstrate various

aspects of optimization barriers such as solution representation in discrete design

domains and uncertainty influences.

- Performance assessment of MHs for SDO problems is full of ambiguity. The

literature of SDO experiences a scarcity of systematic assessment paradigm that could

support the designer to decide what MHs fit better to the SDO problem of his attention.

A significant number of published studies did not mention why they used this specific

MH algorithm in their optimization procedures. In the SDO domain, the developers of

MHs solutions used statistical measures such as mean, best(max), worst(min) and

standard deviation (SD) to demonstrate the performance of their proposed MHs as a

solver of truss or frame structures (see Figure 1.4). The question is why the developers

of MHs for SDO do not use the other performance measures that successfully used to

39

assess MHs performance in other optimization disciplines, e.g. those used in operations

research? Also, it was noticed that in the literature of MHs comparison, there is no

common basis in terms of convergence rate or even the maximum number of iterations.

Another critical point is the lack of reproducibility of the experimental results of MHs

introduced to solve SDO problems. This thesis attempts to develop a sort of

comprehensive assessment criteria of MHs performance in solving SDO problems and

makes MHs comparison more fairly.

- The benefits of improving the existing efficient MHs to solve SDO problems does
not addressed fairly. Several studies conducted to improve the MHs searching

performance and the results were promising in this direction. Unfortunately, the

literature of SDO demonstrated an extreme tendency to develop new metaphor MHs

instead of improving the performance of well-established MHs that have a remarkable

history of solving NP-hard optimization problems. However, this thesis examines the

possible improvements of selected MHs searching features via integrating local search

movements to MH's main structure to improve the intensification effort. Moreover, the

initial population generation effect on the MH performance has been investigated too.

- Underestimate the structural analysis difficulties during developing optimization
solutions. The associated high cost of the structural analysis of complex structures

addressed in the literature, especially for anisotropic materials. The widely used option

is deploying a multi-purpose commercial FE software such as ANSYS, NASTRAN,

and ABAQUS. Unfortunately, when the design problem involves more complexity, the

evaluation of the design analysis by using this commercial software will become more

expensive too. The current thesis uses the cutting-edge methods of complex function

modelling to predict the evaluation of expensive SDO objective functions. Further, a

kind of an open-source interface between the commercial FEA software of ANSYS

WB and in-house optimization package (e.g. MH has written in Matlab program) is

introduced to make the using of the improved MHs more practical.

40

- Bias to deterministic or probabilistic design approaches over the uncertainty one.
The literature revealed that both deterministic and probabilistic SDO approaches are

mostly used in structural design. Nevertheless, the scarcity of studies of uncertainty

design, using anti-optimization, is understandable because of the associated expensive

design analysis cost of the objective function (G. A. da Silva, Cardoso, & Beck, 2020;

Gurav & Goosen, 2005). Consequently, this thesis intends to develop a scheme of an

uncertainty optimization framework that could handle expensive SDO problems (e.g.

thin perforated plate

CHAPTER 2

METHODOLOGY FRAMEWORK

2.1 The Proposed Research Methodology Framework

There are five specified Research Objectives (RO), mentioned in the introduction section, need

to be attained to develop this thesis. The five objectives determined based on the literature

review and the observed Research Gaps (RG) in the SDO domain, as explained in the previous

chapter. Figure 2.1 outlines the research methodology framework that followed here to bridge

the RGs and achieve the thesis ROs. The first RO fulfilled by conducting a comprehensive

literature review of solving SDO problems using MHs for the last three decades. Thus, the RGs

were determined, and the research problem has been formulated. Then after, the RG1 has been

bridged through introducing a novel SDO benchmark problem of customized I-beam profile

overhead gantry crane. Besides, a well-known variant of GA MH has been applied to solve

this novel SDO benchmark. This work followed by solving the same problem using a new

discrete variant of CS optimization called Adaptive Discrete CS (ADCS). This time the design

domain of the problem turned to be discrete to make it a more real-world SDO case study and

to meet RO3. Next, developing a comprehensive MHs assessment criterion, which represents

RO2, has been introduced and applied to five variants of ACO MH. Accordingly, an HCFACO

MH has been selected to examine the possible improvement of its local search capabilities to

reach the thesis RO3. Finally, another novel SDO benchmark of a perforated composite

laminated plate subjected to uncertainty conditions has been introduced to fulfill RO4 and

RO5.

For all SDO problems mentioned above, there were different Structural Design Analysis

(SDA) solutions developed to evaluate their objective functions as a part of the SDO problem

formulation. The type of SDA solution depends on the problem complexity; thus, it could be

an analytical solution, FEA or ANN model.

42

Figure 2.1 Methodological Framework layout

43

2.2 Novel SDO Benchmark Problem

2.2.1 Purpose and Context

Purpose: Introduce a novel SDO benchmark problem for a real-life isotropic material structure

and to apply an MH optimizer to solve this new SDO problem.

Context: The benchmark problems in the SDO domain are generally pure theoretical

problems that have no practical application in real life, and they are usually used to evaluate

the performance of new MHs. On the other hand, there are some SDO problems for real

applications, but they are specific or very complicated to be reused. Here, we proposed a

practical case study of customized I-beam profile overhead gantry crane. The previously

published articles in crane optimization dealt with the optimization of cranes have standard I-

beam profiles, which limits the design to specific profiles configurations. In the customized I-

beam profile crane, the designer has a broader range of profile configurations where the crane

formed by welding three different plates that have the same span length with different widths

and thicknesses. The I-beam profile crane has many applications in building and auto

maintenance workshops.

2.3 SDO Problem Modelling and Optimization

a.) Assumptions

The crane built up using a full penetration welding to form an I-beam profile crane using three

plates. The material of the plates is 350W structural steel, and it has homogeneous mechanical

properties.

b.) Objective Function

44

Where the span length is fixed with a constant cross-section area of the crane beam, the weight

is just proportional to the cross-section area so that the objective function is defined by the

cross-section area, as follow:

 𝑓 = 𝑏ଵ. 𝑡ଵ + 𝑏ଶ. 𝑡ଶ + ℎ. 𝑡ଷ

where the parameters b1, t1 …etc. are the width and thicknesses of the bottom, top and web

flanges.

c.) Constraints

The essential criteria of the Crane Manufacturers Association of America specification, known

as CMAA74-2010, are considered and summarized as follow:

• Tension stress Constraints (due to gravity and live load).

• Lateral Buckling Constraint.

• Local Buckling Constraints.

• Deflection Constraint.

• Fatigue Constraint (due to repeated load fluctuation only).

d.) Input

The crane service class is heavy, and it has three different rated capacities with three different

span lengths. The weight of the trolley and other equipment are given too; also, the crane

designed to meet the requirements of cycles class N2 for fatigue loading.

e.) Output

The optimal I-beam profile crane configurations for nine different cases have been found using

hybrid GA MH. The new configurations have the same characteristics of thick and narrow

45

bottom flange, thin and wider upper flange, and the web is very thin and significantly very

wide. The design constraints have been respected in all obtained optimal configurations, but

some constraints were critical for certain cases.

2.4 MHs as SDO Problem Optimizer

2.4.1 An Improved CS MH for SDO Problems

2.4.1.1 Purpose and Context

Purpose: Present an improved discrete variant of CS MH to solve the discrete version of the

novel SDO benchmark problem. Furthermore, examining the effect of the initial population on

the performance of CS MH when it used to solve the SDO problem.

Context: CS is a relatively new developed MH designed to solve unconstrained continuous

optimization problems. One of the main features of CS is it has only one parameter to tune

known as discovery rate. CS used to solve different NP-hard optimization problems such as

TSP, knapsack and SDO problems too. However, several discrete variants were introduced to

solve a specific discrete optimization problem, such as Binary CS, to solve the knapsack

problem or CS to solve the TSP optimization problem. Other CS variants were more general,

such as discrete CS that using rounding of generated solutions into the nearest discrete value

in the design domain. This variant of CS used to solve some SDO benchmark problems, and it

is implemented here to compare it to the new variant proposed here. In this thesis, a new

variant of discrete CS has been proposed and examined as a new MH optimizer of SDO

problems. ADCSA is a novel variant of discrete CS that uses rank/value concept to generate

step/jumps with integer values to obey Lѐvy flights random walk. Furthermore, ADCSA has

been used to solve a discrete version of the “ customized I-beam profile overhead gantry crane”

SDO problem.

46

2.4.1.2 SDO Problem Modelling and Optimization

a.) Assumptions

Two SDO problems examined here have homogenous material properties. For the composite

laminated plate SDO problem, we assumed that the laminate is symmetrical and balanced with

simply supported edges. In the second SDO problem, we assumed that all six design variables

have the same length of design domain vector, so it will be easy to permute different ranks of

each design variable with the ranks of the other.

b.) Objective Function

The objective of the composite laminated plate subjected to buckling loads is maximining the

critical buckling load. The objective function formulation and modelling are mentioned in

section1.1.3 in the previous chapter; for the discrete crane SDO problem, the objective function

still as described in section 2.3(b).

c.) Constraints

The validation SDO problem of the composite laminated plate has specific fiber orientations

to select from, and it assumed to be balanced, which means that we need to consider the two

plies with the same orientation as one plies group. Also, the symmetry constraint needs to be

enforced by split the laminate into two similar parts. For the crane SDO problem, the same

constraints listed in section 2.3 (c) still considered here.

d.) Input

The loading conditions and geometrical information of the validation SDO problem are given.

For the discrete version of the crane SDO problem, all the input described in section 2.3 (d)

has been used here too.

47

e.) Output

The optimal stacking sequence design of the composite laminated that maximize the critical

buckling load factor has been obtained. Furthermore, the optimal cross-section dimensions of

customized I-beam crane have been determined.

f.) Model Validation

The obtained results of the maximum critical buckling load factor of the composite laminated

plate, that examined here, shown typical agreement with those published in the literature.

2.4.2 A comprehensive MHs assessment criterion

2.4.2.1 Purpose and Context

Purpose: Implement a comprehensive assessment criterion of MHs performance in solving

SDO problems. Furthermore, select the best MH of the compared ACO MHs to examine a

further improvement of the local search effort.

Context: The literature review addressed the lack of fair performance assessment measures.

The previous comparison studies were interesting, and they still have some drawbacks, such

as the diversity of convergence criteria for the compared algorithms or the comparison

limitation to one category of meta-heuristics. Moreover, the common performance measures

used in the previous studies are statistical measures, such as average, min/max or standard

deviation of the objective function. In this thesis, we proposed a conceptual assessment

criterion that could be applied to assess the performance of MHs, which may be used to

optimize SDO problems. To demonstrate the efficiency of the MHs proposed assessment

criterion, an unprecedented comparison of five different ACO variants was carried out. The

comparison study revealed that the HCFACO variant demonstrated a promising performance

compared to the other ACO family members in the filed of maximizing the critical buckling

load of the composite plate. This remarkable performance motivated us to investigate the

possible options of improving the local search capabilities of the HCFACO MH.

48

2.4.2.2 SDO Problem Modelling and Optimization

a.) Assumptions

The assumptions considered here are the same ones mentioned in the previous section for the

validation SDO benchmark problem of the composite laminated plate. Furthermore, each ACO

variant examined here should be run ten times for ten different seeds numbers.

b.) Objective Function

The modelling of the validation SDO problem remains the same as described in section 1.1.3

in the previous chapter.

c.) Constraints

The design and manufacturing constraints of the SDO benchmark problem enforced in the

same manner, followed in section 2.4.1.2 (c).

d.) Input

The buckling load and the geometrical information of the composite laminated plate were

given. Ten fixed seed numbers that selected randomly were provided to ensure the reproducing

of the obtained results of the assessment criterion.

e.) Output

A comprehensive comparison results of five different ACO MHs have been obtained. The

proposed assessment criterion exhibited a distinguished performance in measuring each ACO

MHs performance. This work reveals that HCFACO outperforms other ACO family members,

and with further improvement, it became a promising MH to solve SDO problems.

49

2.5 Robust Design Framework of SDO Problems

2.5.1 Purpose and Context

Purpose: Introduce a robust design optimization procedure that could consider the influences

of different uncertainty conditions.

Context: The commonly used structural design approach is deterministic design. This

approach used successfully for several decades due to its simplicity. The main drawback of the

deterministic approach is the excessive consumption of the available resources, e.g. used

material, to ensure the safety of the designed structure. Thus, the probabilistic structural design

approach appeared as another alternative to the deterministic approach. It proved a significant

performance in solving different SDO problems where the probabilistic information of the

design variables is available and accurate. The availability and accuracy of the probabilistic

data are the main barriers that face this approach. The last alternative in this, it is the robust

design optimization procedure where the structure is designed to consider a bounded or

predefined loading or design uncertainties. The challenging issue of this approach is the

accompanying cost of the structural analysis of the designated SDO problem. Consequently,

this thesis intends to develop a scheming of an uncertainty optimization framework that could

handle expensive SDO problems (e.g. thin perforated plate).

2.5.2 SDO Problem Modelling and Optimization

a.) Assumptions

The selected SDO problem of the perforated composite laminated plate is exposed to uncertain

bounded buckling loading conditions and uncertain position of the circular cut out. The

available fiber orientations are limited to standard fiber angles of 0°, ±45° and 90°.

b.) Objective Function

50

The objective function is the critical buckling load factor determined by an ANN model built

based on the composite plate analysis results obtained by using Ansys workbench FEA

software.

c.) Constraints

The examined SDO problem of the perforated composite laminated plate has to be

symmetrical, balanced and simply supported with a certain number of plies.

d.) Input

The bounded buckling loads interval is given, and the range of the circular cut out is specified

too. Furthermore, the materials properties and plate dimensions are defined.

e.) Output

A new SDO benchmark problem has been introduced, and its robust stacking sequence design

for the given uncertainties conditions has been determined using two different MHs that

developed in this thesis.

CHAPTER 3

AN OPTIMIZATION PROCEDURE FOR OVERHEAD GANTRY CRANE
EXPOSED TO BUCKLING AND YIELD CRITERIA

A.Ahmid a ,V. N. Lê b and T. M. Dao c

a,b,c Department of Mechanical Engineering, École de Technologie Supérieure,
1100 Notre-Dame West, Montreal, Quebec, Canada H3C 1K3

Paper published in International Journal of Technology & Engineering, August 2017

3.1 Abstract

The current study presents a general optimization procedure that could be used in designing of

various structural applications. To validate the performance of the proposed procedure, a real-

life application of a custom welded I-Beam gantry crane is selected. The crane is composed of

three rectangular plates with the same length and different thicknesses and widths welded

together by full penetration welds over the span length to form an I-Beam profile. The

thicknesses and widths of plates are to be optimized to have the minimum cross section area

while respecting yield, buckling, deflection and fatigue criteria. A mathematical procedure

based on Timoshenko beam theory and Crane Manufacturers Association of America (CMAA)

in combination with the Genetic Algorithm (GA) is presented, and a Mathcad code is

implemented to find the optimal I-Beam cross section dimensions. Nine examples are

introduced for 8, 12 and 20 m crane span subjected to 10, 20 and 40-ton capacities. It is noticed

that the optimized I-section configurations always show narrow and thick lower flange, wider

and thinner upper flange and tall and very thin web. The upper flange local buckling and the

lateral buckling limits are achieved for all nine cases, 75% of cases for the web buckling limit,

about 33% of cases for the fatigue and yield limits whereas the maximum deflection constraint

is never critical. The obtained results were verified using ANSYS Workbench software with a

52

3D Solid Finite Element model and shown good agreement, which confirms that the proposed

procedure is efficient.

Keywords: optimization; I-beam; yield; buckling; design criteria; finite element.

3.2 Introduction

The gantry cranes are frequently used for different industrial applications. According to

CMAA (2010), the cranes in real life engineering are classified into five main classes based on

their service capacity: standby, light, moderate, heavy and severe service cranes. The overhead

gantry crane type is widely used to serve small or medium duty jobs, like a repair shop,

buildings service or in a machine shop. The lightweight crane with high capacity design depicts

an essential requirement of the industry. To reach such requirement, a customized I-beam crane

is a motivating optimization research. Even though standard I-Beam profiles are available, they

are just limited to some standard dimensions, which are usually far from the optimum design.

The crane weight, concerning initial standard profiles design, could be reduced up to 10%

using an optimized beam (P. Liu, Xing, Liu, & Zheng, 2014).

Several researches have been conducted on optimization of customized and standard crane

beams with different profiles. Gąska, Haniszewski, and Margielewicz (2017), developed a

numerical model of flange local stresses under the wheels acting points to determine the final

dimension of the I-beam girder. The numerical example of 12.5-ton capacity and 25m span

with three different wheel thickness demonstrated. The mathematical and FE analysis results

compared to show an acceptable error range of 6 to 15 %.Also, they mentioned that the lower

flange deflection has a great influence on the final girder dimensions.

Other researchers have worked on optimization of the box profile girders (Ashutosh Kumar &

Arakerimath, 2016; Qu, Xu, Fan, & Bi, 2015; Zuberi, Kai, & Zhengxing, 2008); they had, in

general, the similar procedure of optimization but they used different optimization tools. Their

53

objective was investigating the same concept of weight-strength ratio using theoretical

optimization routines backed up by Finite Element (FE) simulation.

Qu et al. (2015) proposed a modified Ant Colony Optimization (ACO) algorithm with new

local search technique using mutation and applied it to solve nonlinear optimization problems

having discrete variables. The developed algorithm of Ant Colony Algorithm with Mutation-

based (ACAM) used to determine optimal crane design variables and found to be faster by

about 20% compared to the genetic algorithm (GA) and by 11% compared to particle swarm

algorithm (PSO). Furthermore, it always gives a globally optimized solution, while the original

ACO algorithm may stick at some local solution and fail to go further.

Zuberi et al. (2008), examined the effect of rolling load on welded box cross section-crane

girder regarding buckling and compression stresses in the flange. The volume of the girder

considered as an objective function subjected to the stress and deflection criteria constraints.

The built-in MS-Excel nonlinear optimization solver, called Generalized Reduced Gradient

(GRG), employed to give preliminary optimized design variables. The obtained values are then

used as initial inputs to ANSYS code that can handle more accurate stress and deflection

calculations for verification purpose and do further optimization if needed.

Kumar et al. (2016) conducted research that aims to optimize the weight of Electrical Overhead

Travelling (EOT) Crane Bridge girder by adding sufficient stiffeners along the girder plate

instead of increasing plate thickness. He used mathematical modeling and Finite Element

Analysis to investigate the effect of adding stiffeners and then verify the optimal design

experimentally. His work concluded that the plate stability could be increased four times using

stiffeners without the need to increase the plate thickness.

Liu et al. (2014), carried out a parametric FE study of a doubly trolley box-girder using APDL

tool in conjunction with a Matlab code that handles the crane parameters. A three-dimensional

girder model subjected to various loading conditions established to predict the limit of load-

bearing capacity. Two different optimization algorithms, Arc Length Algorithm (ALA) and

54

Nonlinear Stabilization Algorithm (NLA), used in sequence to overcome the optimization

failures. The obtained results of their work shown a significant weight reduction of the girder

by 16% compared to the original design.

Few publications about the customized I-beam crane girder subjected to yield and buckling

criteria are reported. Therefore, the current paper extends the similar techniques mentioned

above to optimize custom I-Beam crane designs. Three rectangular plates having the same

length (L) and different thicknesses and widths welded by continues full penetration welds to

form a custom I-Beam crane design, see Figure 3.3. The live load and the beam span are

imposed while each plate thickness and width are considered as design variables that need to

be determined to have the minimum weight that respecting the yield, buckling, deflection and

fatigue criteria. However, the mathematical calculations based on Cranes Manufacturer

Association of America (CMAA) design procedure and the Hybrid Genetic algorithm (GA)

are used to find the optimal dimensions of the cross section that satisfy the design constraints.

A Mathcad platform is written to handle these calculations. Also, a 3D-solid FE model created;

stress analyzed and optimized using ANSYS Workbench software.

3.3 Design Optimization Procedure

Highly sophisticated optimization techniques are needed to achieve an optimal crane design

that considers yield, buckling, deflection and fatigue criteria. Such techniques must deal with

iterative schemes that require a programming language or a mathematical application such as

Mathcad. The general trends of solving such problems in the recent years were emphasizing

on carrying out a mathematical solution, an FE solution or a math-FE combined solution. The

combined solution conducted in two different ways (Zuberi et al., 2008); the first way is

carrying out both types of analysis techniques with the same initial values and takes the most

optimal results between them. The second one uses the output results of the mathematical

solution as input values of an FE solution. The present study follows the second method. The

flowchart in Figure 3.1 illustrates the proposed procedure. It starts with problem formulation,

i.e., defines design variables, objective function, etc. Follows that entering the data of crane,

55

which are in our case the span length, the rated load, and the material; then performing the

optimization Hybrid Genetic Algorithm (GA) code, the details of which are shown in Figure

3.2, to give the so called Math-Optimal design variables. The Math-optimal design variables

are input as initial variables to the FE Optimization phase using ANSYS Workbench 15

software in which the Response Surface Optimization method is used (Ansys, 2015; Lee,

2014).

Figure 3.1 Proposed design optimization procedure

3.4 Problem Description

The welded I-Beam crane and the loading conditions are shown in Figure 3.3. The beam

formed by three plates joined by continuous welds over the beam length. They have the same

length but different thicknesses and widths; the dimensions and loading conditions defined as

follow: bଵ : lower flange width, tଵ : lower flange thickness, bଶ : upper flange width, tଶ : upper flange thickness, h : web height, tଷ : web thickness, L : beam span, Wଵ: crane weight, Wଶ : live load (Lifting load),
x : distance of live load from the left end

Model Formulation
- Define the Design Variables (DV’s).
- Set the Objective Function.
- Define the Constraints.
- Create the Transformed Objective Function.

Hybrid Genetic Algorithm (GA)

Math-Optimal Design Variables

Mathematical Optimization

Final Optimal Design Variables

FEM Model
- Initial Model Geometry.
- Static Analysis Using Ansys
Workbench.

Response Surface Optimization
- Design of Experiment DOE.
- Surface of Response.
- Optimization.

FEM Optimization Phase
(Using Ansys Workbench)

Input Data of the crane

56

Figure 3.3 The crane beam dimensions and loading conditions

Figure 3.2 Hybrid Genetic Algorithm
Taken from W. Y. Yang et al. (2005)

Yes

No

Initialize the Population

Evaluation

Are the function values
for all the Chromosomes

are almost equal?
Termination

Reproduction

Crossover

Mutation

57

3.4.1 Objective Function

Where the span length is fixed with a constant cross section area of the crane beam, the weight

is just proportional to the cross-section area so that the objective function is defined by the

cross-section area, as follows :

 𝑓 = 𝑏ଵ. 𝑡ଵ + 𝑏ଶ. 𝑡ଶ + ℎ. 𝑡ଷ (3.1)

where the parameters 𝑏ଵ, 𝑡ଵ …etc. are shown in Figure 3.3

3.4.2 Constraints

The most important criteria of the Crane Manufacturers Association of America specification,

known as CMAA74-2010, are considered and summarized as follows :

• Tension stress Constraints (due to gravity and live load) :

 σୡ୭୫ୠౣ౗౮ − σ୘ୟ୪୪୭୵ୣୢ ≤ 0 (3.2)

• Lateral Buckling Constraint:

 1.9 − f୆୳ୡ୩୪୧୬୥ ≤ 0 (3.3)

• Local Buckling Constraints:

 h tଷ⁄ − 260 ≤ 0 (3.4)
 bଶ 2tଶ⁄ − 260 ඥσ୷⁄ ≤ 0 (3.5)

• Deflection Constraint :

 δ୴ − L 600⁄ ≤ 0 (3.6)

• Fatigue Constraint (due to repeated load fluctuation ΔW2 only) :

 (Δσ)ୡ୭୫ୠ-ౣ౗౮ − Δσୟ୪୪୭୵ୣୢ ≤ 0 (3.7)

58

where 𝜎௖௢௠௕ = ඥ𝜎௫ଶ + 𝜎௬ଶ − 𝜎௫𝜎௫ + 3𝜏௫௬ଶ is the Von-Mises equivalent stress;

𝜎்௔௟௟௢௪௘ௗ = Allowable tension stress, according to CMAA 74; 𝛿௩ = Maximum vertical deflection 𝛥𝜎 = stands for stress range

 𝜎௒ = Yield strength

 𝑓஻௨௖௞௟௜௡௚ = Buckling load factor, which means a factor to be multiplied to all applied loads

to produce linear buckling of the structure. This factor is given initially by the linear buckling

theory, e.g., Timoshenko formulas or by an FE model. It is valid only if the linear buckling

stress, which is 𝜎஼௥଴ = 𝑓஻௨௖௞௟௜௡௚. ห𝜎௨௣௣௘௥ ௙௟௔௡௚௘ห, is less than 1 2ൗ .𝜎௒; otherwise, it must be

modified to take into account the plastic deformation during buckling. The corrected critical

stress calculated using Johnson’s empirical formula, 𝜎௖௥ = 𝜎௒. ቂ1 − ఙೊఙ೎ೝబቃ, (Popov, 1976), and

the corrected buckling load factor is given by ఙ೎ೝหఙೠ೛೛೐ೝ೑೗ೌ೙೒೐ห.

3.4.3 Objective Function Transformation

The exterior point penalty function is used to transform the constrained optimization problem

into an unconstrained problem. The general form of the transformed objective function is:

 𝐹൫𝑋, 𝑟௛, 𝑟௚൯ = 𝑓(𝑋) + 𝑟௛ൣ∑ ℎ௞௜௞ୀଵ (𝑋)ଶ൧ + 𝑟௚ൣ∑ (𝑚𝑎𝑥൛0,𝑔௝(𝑋)ൟ)ଶ௠௝ୀଵ ൧ (3.8)

where 𝑋 is the vector representing the design variables, ℎ௞ is the kth equality constraint if any, 𝑔௝ is the 𝑗௧௛ inequality constraint, 𝑟௛ and 𝑟௚ are two additional variables called penalty

multipliers (Ragsdell & Phillips, 1976).

59

3.5 Numerical Examples

Nine cases defined by three span lengths (8, 12 and 20 m) and three rated loads (10, 20 and 40

tons) are selected as numerical examples. The crane specifications are listed in Table 3.1. The

material used for the crane is 350W structure steel with yielding strength 𝑆௬ = 350 𝑀𝑃𝑎,

density 𝜌 = 7850 ௞௚௠య, Young’s modulus 𝐸 = 200 𝐺𝑃𝑎, shear modulus 𝐺 = 77 𝐺𝑃𝑎 and

Poisson’s ratio ν = 0.3.

The mathematical optimization procedure, described in section 3.3, programmed using

Mathcad Code (PTC, 2011). Table 3.2 summarizes the values of GA parameters.

Table 3.1 Crane Specifications according to CMAA 74-2010

Variable Value/Units
Rated Capacity:
Service Class D:

Load Class L3:
Cycles Class N2:

Span:
Trolley Weight:

Other equipment
Load:

Bridge Wheel per rail:

10, 20 or 40 tons
Heavy Service
Normal load = 2/3 of
rated load
Up to 500000 cycles
8, 12 or 20 m
1 tons
1 tons
One on each side

Table 3.2 Genetic Algorithm Parameters

Parameter Used value

Number of Variables:
Population size:

Probability of crossover:
Probability of mutation:

Mutation Parameter:
Maximum generation number:

NV = 6
NP = 120
PC = 0.85
PM = 0.05
BM = 5
GMAX = 300

60

3.6 Finite Element Model

The Figure 3.4 shows a 3D drawing of an I-Beam crane, the Figure 3.5(a) shows the overall

view of a 3D-solid FE model of the crane created in ANSYS Workbench © 15, and the Figure

3.5 (b) shows a local zoom around the contact region between the lower flange and the wheels.

The lower edges at ends are vertically supported, and the loads to be considered are composed

of the distributed gravity load W1 (weight of the beam), and the concentrated load W2 applied

on the wheels, W2 being the combination of the lifted load, the weights of trolley and hoist.

All loads are adjusted by factors according to CMAA 74 Specifications. The rated load plus

gravity are applied when considering the yield and buckling constraints, inequalities Eq. (3.2)

to Eq. (3.5), while the normal load fluctuation, which is just 2/3 of rated load without gravity,

is applied when considering the deflection and fatigue constraints, Eq. (3.6) and Eq. (3.7). For

the FE model, the Surface Response Optimization method (Ansys, 2015; Lee, 2014), already

integrated into ANSYS Workbench, is used. This model contains about 28300 nodes.

Figure 3.4 Three-dimensional images of the crane

I-Beam

Trolle

Hoist
Trolle

Hoist

61

3.7 Numerical Results

For reducing calculation time, it needs to input the reasonable lower and upper bound values

of each design variable. The bounds used in all 9 cases are shown in Table 3.3.

Table 3.3 Lower bound and upper bound of design variables in mm

Variables t1 b1 t2 b2 t3 h

Lower bound 2 150 2 150 3 250

Upper bound 100 600 100 600 100 1675

(a)

(b)

Figure 3.5 Finite Element Model of the crane

62

The optimized design variables for nine cases are presented in the Table 3.4, Table 3.5 and

Table 3.6. The results listed in Table 3.4 are for short span cranes with three different rated

loads, the Table 3.5 shows the results for intermediate span cranes, and the Table 3.6 for long

span cranes results.

Table 3.4 Optimal Design variables and constraint parameters for 8 m cranes

L = 8 m 10 tons 20 tons 40 tons Bounds MATH FEM 𝑡ଵ (𝑚𝑚) 27.82 27.98 37.88 52.62 [2, 100] 𝑏ଵ (𝑚𝑚) 150.01 150.0 150.16 150.04 [150, 600] 𝑡ଶ (𝑚𝑚) 6.99 7.43 8.38 9.08 [2, 100] 𝑏ଶ (𝑚𝑚) 194.20 186.1 220.18 252.14 [150, 600] 𝑡ଷ (𝑚𝑚) 3.00 3.00 3.19 4.38 [3, 100] ℎ (𝑚𝑚) 608.64 650.88 826.46 1137.03 [250, 1675] 𝐴𝑟𝑒𝑎 (𝑚ଶ) 0.00736 0.00753 0.0102 0.0152 𝜎𝑐𝑜𝑚୫ୟ୶(ெ௉௔) 221.9 201.9 224.9 225 ≤ 225 𝑀𝑃𝑎 𝑓஻௨௖௞௟௜௡௚ 1.9 1.96 1.9 1.91 ≥ 1.9 ℎ 𝑡ଷ⁄ 202.876 216.96 259.37 259.88 ≤ 260 𝑏ଶ 2𝑡ଶ⁄ 13.895 12.524 13.14 13.887 ≤ 13.898 𝛿௩ (𝑚) 0.0074 0.0063 0.0057 0.0043 ≤ 0.013 𝑚 (𝛥𝜎)௖௢௠_௠௔௫ (𝑀𝑃𝑎) 166 160.1 165.9 165.2 ≤ 166 𝑀𝑃𝑎

Table 3.5 Optimal Design variables and constraint parameters for 12 m cranes

L =12 m 10 tons 20 tons 40 tons Bounds 𝑡ଵ (𝑚𝑚) 27.88 53.52 54.61 [2, 100] 𝑏1 (𝑚𝑚) 179.54 150.01 206.13 [150, 600] 𝑡ଶ (𝑚𝑚) 10.34 12.04 13.41 [2, 100] 𝑏ଶ (𝑚𝑚) 287.15 334.55 372.14 [150, 600] 𝑡ଷ (𝑚𝑚) 3.02 3.12 4.21 [3, 100] ℎ (𝑚𝑚) 785.98 811.78 1094.81 [250, 1675] 𝐴𝑟𝑒𝑎 (𝑚ଶ) 0.0104 0.0146 0.0209 𝜎௖௢௠_௠௔௫ (𝑀𝑃𝑎) 203.9 188.9 225 ≤ 225 𝑀𝑃𝑎 𝑓஻௨௖௞௟௜௡௚ 1.9 1.9 1.9 ≥ 1.9 ℎ 𝑡ଷ⁄ 259.93 259.98 259.98 ≤ 260 𝑏ଶ 2𝑡ଶ⁄ 13.884 13.896 13.877 ≤ 13.898 𝛿௩ (𝑚) 0.0095 0.012 0.0097 ≤ 0.013 𝑚 (𝛥𝜎)௖௢௠_௠௔௫ (𝑀𝑃𝑎) 163 121.3 164.1 ≤ 166 𝑀𝑃𝑎

63

Table 3.6 Optimal Design variables and constraint parameters for 20 m cranes

L = 20 m 10 tons 20 tons 40 tons Bounds 𝑡ଵ (𝑚𝑚) 30.14 92.15 54.41 [2, 100] 𝑏ଵ (𝑚𝑚) 275.88 150.29 347.13 [150, 600] 𝑡ଶ (𝑚𝑚) 15.06 14.98 18.1 [2, 100] 𝑏ଶ (𝑚𝑚) 418.41 416.3 501.7 [150, 600] 𝑡ଷ (𝑚𝑚) 3.29 3.36 4.72 [3, 100] ℎ (𝑚𝑚) 821.75 872.94 1226.51 [250, 1675] 𝐴𝑟𝑒𝑎 (𝑚ଶ) 0.0173 .0230 0.034 𝜎௖௢௠_௠௔௫ (𝑀𝑃𝑎) 202.5 199.5 218.2 ≤ 225 MPa 𝑓஻௨௖௞௟௜௡௚ 1.9 1.9 1.9 ≥ 1.9 ℎ 𝑡ଷ⁄ 249.96 259.47 259.95 ≤ 260 𝑏ଶ 2𝑡ଶ⁄ 13.89 13.891 13.896 ≤ 13.898 𝛿௩ (𝑚) 0.025 0.032 0.023 ≤ 0.033 m (𝛥𝜎)௖௢௠_௠௔௫ (𝑀𝑃𝑎) 157.7 94.61 166 ≤ 166 MPa

It is noticed that the lateral buckling and the upper flange local buckling limits are reached for

nine over 9 cases, the web buckling limit for 6/9 cases, the yield and fatigue limits for 3/9 cases

and the deflection constraint is never critical. In addition, the optimized I-section

configurations always show narrow and thick lower flange, wider and thinner upper flange and

tall and very thin web. The Figure 3.6 approximately illustrates the optimum I-Beam cross

sectional configuration for a 20 m crane subjected to 20 tons lifted load.

The comparison between the custom I-beam configuration as shown in Figure 3.6, which has 𝐴 = 0.023 𝑚ଶ, and a doubly symmetrical I-beam (𝑡ଵ = 𝑡ଶ = 39.53 𝑚𝑚, 𝑏ଵ = 𝑏ଶ =307 𝑚𝑚, 𝑡ଷ = 3.85 𝑚𝑚, ℎ = 996 𝑚𝑚 and 𝐴 = 0.028 𝑚ଶ) shows that the customized

I-beam could save almost 18% of the weight. The design parameters given by the Math

optimization are then inputted to an FE procedure using ANSYS Workbench 15 with a 3D

nonlinear solid model due to the contact between the wheels and the lower flange. The Surface

Response Optimization method in ANSYS Workbench used with considering the same

constraints, except the linear buckling constraint, because linear buckling does not work with

nonlinear contact models.

64

Figure 3.6 Optimum configuration of an I-section

However, the buckling constraint (𝑓஻௨௖௞௟௜௡௚ ≥ 1.9) replaced by an approximate constraint on

the slenderness ratio against lateral buckling to give a comparable buckling load factor. This

slenderness ratio is given by 𝜆 = ௅௥೎೤ where 𝑟௖௬ is the lateral radius of gyration of the effective

compression area which is empirically the ଶଷ outermost of the compression side of the cross

section (see Figure 3.6). FE stress calculation with nonlinear contact and optimization

procedure is very time consuming; so only one case selected to show FE results, which is the

8 m and 10-ton case. The slenderness ratio constraint for this case is 𝜆 ≤ 190.

416.3x15.0 mm

150.3x92.2 mm

3.36x872.9 mm

2c/3 effective compression

c

G

Neutral axis

65

Figure 3.7 Location of maximum Von-Mises stress

The new optimized design parameters given by FE procedure are shown in the FEM column

of Table 3.4; they are slightly different but quite close to the Math results. The Figure 3.7

reveals that the maximum Von-Mises stress is in the lower flange right under the wheels.

3.8 Conclusion

A Hybrid Genetic Optimization Algorithm (GA) and a Mathematical optimization procedure

are programmed in Mathcad and successfully applied to custom welded I-Beam cranes with

different spans and rated loads subjected to yield, buckling, deflection and fatigue criteria. It

is found that the constraints of general lateral buckling and local buckling of the upper flange

are always reached for all cases. The web local buckling constraint is critical for about 66% of

cases, the yield and fatigue constraints found critical for 33% of cases and the deflection

constraint is not a problem at all. The optimized custom I-section has a configuration of narrow

and thick lower flange, thinner and wider upper flange and the web is tall and very thin, which

could save about 18% of weight compared to commercial standard I-Beam. FEM optimization

66

using Surface Response method gives comparable results and confirms that the proposed

procedure is efficient.

For future works, the FE optimization taking into account nonlinear buckling due to contact or

plasticity constitutes a significant challenge. Furthermore, the optimization procedure with

multi objective functions such as weight and cost will also be an interesting future work.

CHAPTER 4

 AN ADAPTIVE DISCRETE CUCKOO SEARCH ALGORITHM TO SOLVE
STRUCTURAL OPTIMIZATION PROBLEMS

A.Ahmid a , T. M. Dao b and V. N. Lê c

a,b,c Department of Mechanical Engineering, École de Technologie Supérieure,
1100 Notre-Dame West, Montreal, Quebec, Canada H3C 1K3

Paper published in Journal of Multidisciplinary Engineering Science and Technology,
June 2020

4.1 Abstract

The Cuckoo Search optimization algorithm (CS) continues to grab the attention of the scientific

community due to its simplicity and robustness. CS applied successfully to solve a wide range

of hard optimization problems, and it exhibited outstanding performance. The current study

presents an Adapted variant of Discrete CS Algorithm (ADCSA) that uses the rank-value

approach to turn real values of random Lѐvy walks (steps/jumps) into the equivalent discrete

values. Besides, the proposed ADCSA intensification effort was enhanced by adding four

different local search movements of permutation, swap, insertion and bit flip. The solution

accuracy of ADCSA was validated across a benchmarking case study of a composite laminated

plate. Moreover, a further structural optimization problem of customized I-beam gantry crane

was solved using ADCSA. Eventually, the results of both case studies reveal that the proposed

ADCSA has a considerable performance in solving discrete structural optimization problems.

Keywords: Cuckoo Search; Discrete optimization; Composite laminate; Gantry crane; critical

buckling load.

68

4.2 Introduction

Cuckoo Search (CS) algorithm is population-based meta-heuristic inspired by the aggressive

reproduction strategy of some cuckoo bird species enhanced by Lѐvy flights. It presented by

X.-S. Yang and Deb (2009) to solve a variety of continuous multimodal optimization problems.

Since then, it attracted the attention due to the simplicity of implementation and the fast

convergency rate and accuracy of the delivered solutions. Also, CS has a view number of

parameters (almost one) to be tuned, compared to other meta-heuristics such as Genetic

Algorithm (GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO).... etc.

The size of CS applications is fascinatingly growing, where it could be observed through the

number of solved optimization problems using CS in the last decade (X.-S. Yang, 2014),.

Shehab et al. (2017) tracked the progress of published papers that uses CS in the literature.

Based on different publisher's metrices, for the CS published articles between 2009 and 2016,

he summarized that there are three classes of research interest. The dominant class went to the

application, and it represented 67% of publications, whereas CS hybridization and CS

modifications had respectively 15 % and 18% of the research interest. The applications of CS

involve several main optimization problems such as Travelling Salesman Problem (TSP) (Jati

& Manurung, 2012; Ouaarab et al., 2014; X.-S. Yang & Deb, 2013; Zhou et al., 2014), and

binary optimization problems, for instance, Knapsack optimization problem (Gherboudj et al.,

2012; Layeb, 2011; Xin et al., 2019), Computer vision and image detection (Agrawal et al.,

2013; Loubna et al., 2017), Energy sector (de Moura Meneses et al., 2020; Piechocki et al.,

2014), supply chain (Q. Li et al., 2020; Z. Li et al., 2018) and structure optimization problem

(Gandomi et al., 2013; A Kaveh & Bakhshpoori, 2013). However, the size of CS applications

is likely to escalate in the prospective researches where the fast-growing research areas of

Artificial intelligence (AI) and data mining are seeking more robust optimization algorithms

to build faster response models (Cobos et al., 2014).

Some proposed CS modifications were presented to improve the basic CS through imposing

some enhancements of step size, such as using generative scaling factor instead of using

constant value (Loubna et al., 2017). Other proposed modifications, in the literature, were

69

mainly focused on adjusting CS to solve discrete optimization problems where the design space

is limited to certain values or options (Shehab, 2020; Xin et al., 2019). Some discrete CS

variants were explicitly developed to solve particular problems, X.-S. Yang and Deb (2013)

used CS to solve TSP or Xin et al. (2019) who developed a discrete binary CS to address

allocation of cognitive radio network spectrum optimization problem. The further general

approach of handling discreetness constraint was worked out through rounding the generated

continuous values, by Lѐvy flights, into the nearest integer, and it seems to be work for specific

structural optimization problems (A Kaveh & Bakhshpoori, 2013). Loubna et al. (2017)

proposed a fascinating approach where he used a rank-value approach to handle a sizeable

discrete domain of image detection problem, and the results were impressive, and it deserves

attention. Even though these modifications went so far to benefit from CS special features, but

it still hard to say that there is one common variant of CS that could solve different discrete

nature problems.

The current work presents an Adapted version of Discrete Cuckoo Search Algorithm (ADCSA)

that uses a modified rank-value approach to interpret Lѐvy flights random steps into equivalent

discrete steps. In addition, the intensification capability of ADCSA is enhanced through

introducing four different local search movements of permutation, swap, insertion and bit flip.

The performance of ADCSA was firstly investigated through a well-known benchmark

problem of a composite laminated plate. The obtained results of ADCSA were compared

across the previously published results for other meta-heuristics. Moreover, ADCSA results

also compared with other two different discrete CS variants, which implemented based on the

rounding and original rank-value approaches (A Kaveh & Bakhshpoori, 2013; Loubna et al.,

2017). The performance of the proposed ADCSA was remarkably superior to other

metaheuristics, and the obtained results demonstrated promising performance of ADCSA in

solving discrete structural optimization problems.

Consequently, ADCSA applied to solve the problem of optimization of customized I-beam

gantry crane, which started to grab more attention in recent years (Ali Ahmid, Le, & Dao,

2017; Pavlovic , Savkovic, Zdravkovic, Bulatovic, & Markovic, 2018). The different

70

dimensions of the I- beam section need to be taken from a discrete range of steel plates, whereas

the span length is fixed. The objective of the optimization is minimizing the cross-section area

to reduce the crane weight where it is subjected to different strength constraints. The benefits

of using customized I-beam cranes, rather than using standard I and H beams, were explained

too.

Finally, the rest of this paper is arranged to explain the original CS in the second section,

whereas the proposed ADCSA conceptual implementation is presented in the third section.

The fourth section devoted to the validation case study while the customized crane case study

demonstrated in the fifth section, and the summary of the current work outcomes and findings,

with possible prospective research studies, were stated in the conclusion section.

4.3 Cuckoo Search Via Lévy Flights (CS)

The original Cuckoo Search is a population-based metaheuristic inspired by the reproduction

strategy of Cuckoo Search bird. The bird starts searching for the surrounding to find a host nest

of other birds. In each candidate nest, Cuckoo bird lay just one egg, and it flies to find another

one to lay the next egg. This strategy has precisely coincided with the wisdom says, “Don’t

put all eggs in one basket”, which in this occasion, means that the chance of Cuckoo eggs to

survive is becoming better. The host bird could discover some of the eggs, and they may

discard or abounded (X.-S. Yang, 2014). X.-S. Yang and Deb (2009) introduced the CS

algorithm to simulate this natural phenomenon where the total number of candidate nests

represents the population size (𝑛), and each nest is a possible solution (𝑆௜). A fraction (𝑃𝑎) of

the whole population with worse fitness is going to be discarded, and this mimic the discovery

of the eggs by the hosting birds. Next, new randomly generated solutions are going to substitute

the discarded solutions. The top-ranked nests will remain within the next generations. The CS

searching of the design space goes via a random walk that taken out from Lѐvy probability

distribution. The original CS pseudo-code is listed in Algorithm 4.1.

71

Lѐvy flight is the strengthening component of CS where it offers the random walk, though

steps/jumps length is selected from Lѐvy probability distribution. The jumps (long steps) in

the design space are possible because of the heavily tailed nature of Lѐvy probability

distribution (X.-S. Yang, 2014).

Algorithm 4.1 Cuckoo Search Algorithm (CS)
 𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏:

Initial and evaluate a random population of 𝑛 host nests (𝑥𝑖, 𝑓𝑖). 𝑾𝒉𝒊𝒍𝒆 (𝒄𝒐𝒏𝒗𝒆𝒓𝒈𝒆𝒏𝒄𝒆 𝒏𝒐𝒕 𝒎𝒆𝒕)𝑫𝒐:
- Generate a new Cuckoo (population) randomly by Lѐvy flights (Eq.(4.1)).
- Evaluate the new Cuckoo fitness (𝑓௜).
- Choose a nest among 𝑛 (𝑠𝑎𝑦, 𝑗) randomly.

 𝐼𝑓 𝑓𝑖 > 𝑓𝑗
- Replace the j with the new solution.

 𝑒𝑛𝑑
- Rank the solutions and find the current best.
- Discard Pa fraction of worst solutions.
- Substitute the discarded solutions by new ones generated by Lѐvy flights. 𝑬𝒏𝒅

In general, the random walk depends on the previous location, 𝑥௜௧ , and the length of the

step/jump, which is the second term of Eq. (4.1).

where 𝛼 is the step size scale factor and 𝛼 > 0. For most optimization problems, the unity step

scale factor could work well (X.-S. Yang & Deb, 2009). The term 𝐿𝑒̀𝑣𝑦(𝜆) represents Lѐvy

probability distribution, 𝜆 is Lѐvy exponent, and 𝑠 is the step size.

The random direction of the step/jump and step size that follows Lѐvy probability are two

essential elements to generate random numbers via Lѐvy flights. The direction of the step could

be randomly drawn from the normal distribution, 𝑁(𝜇,𝜎ଶ), whereas the step length needs to

 𝑥௜௧ାଵ = 𝑥௜௧ + 𝛼⨂𝐿ѐ𝑣𝑦(𝜆, 𝑠) (4.1)

 𝐿ѐ𝑣𝑦(𝜆, 𝑠𝑡𝑒𝑝)~ 𝑢 = 𝑡ିఒ, (1 < 𝜆 ≤ 3) (4.2)

72

be determined through the Magenta algorithm. According, the step size (s) can be determined

through the following formula:

where

 𝑢, 𝑣 are Gaussian normal distributions. The definition of 𝑢 means that the random samples are

drawn from a normal distribution that has 0 mean and variance of 𝜎ଶ . The variance value

could be obtained from:

where Γ(n) is nothing more than factorial of 𝑛 or 𝑛!

4.4 Adaptive Discrete Cuckoo Search Algorithm (ADCSA)

CS Originally presented as population-based metaheuristic to solve unconstrained continuous

optimization problems (X.-S. Yang & Deb, 2009). However, several discrete variants were

introduced to solve a particular discrete optimization problem (Ouaarab et al., 2014). Others

were more general, such as using rounding of the Lѐvy flight step into the nearest integer (A

Kaveh & Bakhshpoori, 2013). Loubna et al. (2017) presented a universal approach that could

generate steps with integer values to obey Lѐvy flights random walk. A similar approach has

used here, and it is explained in subsection 4.4.2.

The proposed ADCSA bears three main modifications to the original CS. First is using Latin

Hypercube (LHC) sampling method to generate the initial population; the second is presenting

discrete Lѐvy flights representation and finally improve the neighbourhood search of the best

 𝑠 = ௨|௩|భ ഊൗ (4.3)

 𝑢 ~ 𝑁(0,𝜎ଶ), 𝑣 ~ 𝑁(0,1) (4.4)

 𝜎ଶ = ቂ ୻(ଵାఒ)ఒ୻((ଵାఒ) ଶ⁄) . ୱ୧୬(గఒ ଶ⁄)ଶ(ഊషభ) మ⁄ ቃଵ ఒ⁄
 (4.5)

73

solution through four different permutation movements. The proposed ADCSA pseudo-code

is listed in Algorithm 4.2.

4.4.1 Initial Population

Q. Li et al. (2020) investigated the impact of initialization methods on the meta-heuristics

searching performance. They examined eight different ways of random initialization sampling

for five meta-heuristics. Their work results revealed that CS is sensitive to the initialization

method, where it performed differently in 73.68 % of the tested functions based on the used

method of initialization. Moreover, they suggested that the hybridization of different sampling

methods could boost the algorithm performance of searching the design space. However, in

the current study, three different sampling methods, Discrete Uniform Distribution (DUD),

Latin Hypercube (LHC) and hybrid DUD-LHC, were examined. The numerical experiment

results exhibited a slight improvement in the overall performance of ADCSA when LHC was

used compared to the other two methods; see Figure 4.5.

Algorithm 4.2 Adapted Discrete Cuckoo Search Algorithm (ADCSA)
 𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏:
- Initial and evaluate a random population of 𝑛 host nests (𝑥𝑖, 𝑓𝑖) using Latin

Hypercube (LHC) random generator. 𝑾𝒉𝒊𝒍𝒆 (𝒄𝒐𝒏𝒗𝒆𝒓𝒈𝒆𝒏𝒄𝒆 𝒏𝒐𝒕 𝒎𝒆𝒕)𝑫𝒐:
Generate a new Cuckoo (population) randomly by Lѐvy flights (Eq.8).

Evaluate the new Cuckoo fitness (𝑓௜).
Choose a nest among 𝑛 (𝑠𝑎𝑦, 𝑗) randomly.
 𝑰𝒇 𝒇𝒊 > 𝒇𝒋

- Replace the j with the new solution. 𝒆𝒏𝒅
Rank the solutions and find the current best.
Discard Pa fraction of worst solutions.
Substitute the discarded solutions by new ones generated by Lѐvy flights.
 𝑰𝒇 (𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑟𝑢𝑛𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑒𝑥𝑐𝑒𝑒𝑑𝑒𝑑)
Do permutation, swap, insertion and bit flip for the current best solution.
 𝑒𝑛𝑑
Update the best solution. 𝑬𝒏𝒅

74

4.4.2 Discrete Lѐvy Flights Representation

The proposed approach by Loubna et al. (2017) defines the design space domain by rank and

value. The “rank” refers to the location of the variable within the design domain vector, 𝐷,

while “value” represents the corresponding assigned variable value/option, 𝑑௜. So, the new

Cuckoo,𝑥(௜ାଵ) is generated based on the current solution element rank, integer number, and an

integer step size that obeys Lѐvy flights, see Eq.(4.1). Next, the new cuckoo with rank form is

transformed into the equivalent values form. Therefore, 𝑋௜௧ = [𝑥ଵ, 𝑥ଶ, … . 𝑥௡] represents the

design variables vector, and 𝑁 is the problem size. Whereas, 𝐷 = [𝑑ଵ 𝑑ଶ … .𝑑ெ] indicates the

discrete domain of the optimization problem. So,

 𝑅𝑎𝑛𝑘 (𝐷) = ሼ1,2, … . ,𝑀ሽ, 𝑉𝑎𝑙𝑢𝑒൫𝑅𝑎𝑛𝑘(𝐷)൯ = ሼ 𝑑ଵ,𝑑ଶ, … ,𝑑ெሽ

An improved version of the value-rank approach was implemented here. The improvements

went to the update strategy of the size scale factor α, and to the step size determination. Selectin

the step size factor α could influence the performance of the algorithm significantly, and it

linked to the problem nature (X.-S. Yang & Deb, 2009). Using a constant value for 𝛼, e.g. 0.01

or 1, might work, but it doesn’t consider any problem characteristics such as the solution

fitness/quality. So, the proposed scale factor here is examining the quality of the fitness of the

individual solution, 𝑓௜, to the fitness of the best solution, 𝑓௕௘௦௧ .

Consequently, the new solution, 𝑥௜ାଵ, will be updated according to:

Now, the updated step size, second term in Eq.(4.7), produces real values, while the current

solution 𝑥௜ has an integer representation (rank) of discrete values and thus the new solution,

 𝛼 = ௙೔௙್೐ೞ೟ (4.6)

 𝑥௜ାଵ = 𝑥௜ + ௙೔௙್೐ೞ೟ . 𝑠𝑡𝑒𝑝⨂(𝑥௕௘௦௧ − 𝑥௜) (4.7)

75

𝑥௜ାଵ is going to have real values which we couldn’t use it directly as ranking values. Therefore,

a transformation function was used to turn the real values of the step size into their equivalent

integer values. The sigmoid function, Eq.(4.8), is widely used in solving classification

problems by machine learning (ML) algorithms (Shalev-Shwartz & Ben-David, 2014); also, it

used in the binary variant of CS to solve the knapsack problem, (Ouaarab et al., 2014).

Sigmoid function, Figure 4.1, gives a selection probability between 0 and 1 for any input

values, which is the step size in our case.

The next step is dividing the interval [0,1] to the desired number of classes (ranks), 𝐶, and this

gives each class (rank) a range of selection, △ 𝑐.

 𝐶 = |𝐷| ⟹ 𝐶 = 𝑀

Then, the obtained selection probability,𝑝௜, is compared across all ranges to determine the

class to which this 𝑝௜ belongs.

 ∆𝑐 = 1𝑀 (𝑘 − 1).∆𝑐 ≤ 𝑐௜ < 𝑘.∆𝑐 , (𝑖, 𝑘 = 1:𝑀)

 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑧) = ଵଵା௘ష೥ (4.8)

 𝑝௜(𝛼. 𝑠.∆𝑥𝑥௕௦௘௧) = ଵଵା௘షഀ.ೞ.∆ೣೣ್ೞ೐೟ (4.9)

∆𝑐
𝑐ଵ 𝑐ଶ 𝑐ଷ 𝑐ସ 𝑐ெ 0 1

76

Despite the successful transformation of the original step size into its equivalent integer size,

the new solution 𝑥௜ାଵ might exceed the domain bounds when Eq. (4.8) applied. However, we

experience a similar situation every day when we use the clock arithmetic to keep the time;

e.g. the clock now is (8:00 am), and we want to know where will the hour hand be in 5

hours? (8 𝑎𝑚+ 5 ≡ 13) Obviously, it exceeds the clock bounds, which is 12, but intuitively

we say it is 1:00 pm. The mathematical interpretation of this, that the remainder of dividing 13

by 12, is one, and this is the typical definition of modulo function that we are going to use to

reflect a meaningful value for out-off bounds ranks. Therefore,

where 𝑠 represents the integer value of the Lѐvy flights steps/jumps, and 1 is the minimum

rank value if 𝑚𝑜𝑑൫(𝑥௜ + 𝑠), |𝐷|൯ = 0. Eventually, the ranked new solution, 𝑟𝑎𝑛𝑘(𝑥௜ାଵ),

reversed to its assigned rank values or 𝑣𝑎𝑙𝑢𝑒൫𝑟𝑎𝑛𝑘(𝑥௜ାଵ)൯ form that we could use to

determine the objective optimization function directly.

Figure 4.1 Sigmoid transformation function

 𝑟𝑎𝑛𝑘(𝑥௜ାଵ) = 𝑚𝑜𝑑൫(𝑥௜ + 𝑠), |𝐷|൯ + 1 (4.10)

77

4.4.3 Neighbourhood Search

X.-S. Yang (2013) expect that CS intensification could be improved by using local search Lѐvy

flights or hybridization CS with other local optimization algorithms (e.g. Tabu Search). The

primary purpose of enhancing the intensification feature of any meta-heuristic is to ensure that

the obtained solution is not a local optimum, and there was no possible global optimal solution

left behind the current best solution. However, the proposed ADCSA turns the optimization

problem into a pure permutation problem, as a result of using the rank-value approach. The

ranked solution has an integer representation that we could permute to produce a new ranked

solution. Based on this, four different permutation operators employed in ADCSA to improve

the search of the current best solution neighborhood.

a.) Random permutation

Random permutation operator is selecting randomly two elements of the solution vector and

reverses the order of the other elements in between. Let’s that we have a six dimensions

solution vector as follow: 𝑥 = [1 2 3 4 5 6]
So, a possible permutation is:

Before permutation: 𝑥 = [1 𝟐 3 4 𝟓 6]
After permutation: 𝑥 = [1 𝟓 4 3 𝟐 6]

b.) Swap (mutation)

Swap operator also knows as mutation, selects randomly two elements and switch over their

positions in the solution vector.

Before swap: 𝑥 = [1 2 𝟑 4 5 𝟔]

78

 After swap: 𝑥 = [1 2 𝟔 4 5 𝟑]
c.) Insertion

The insertion operator is randomly selecting an element of the solution vector and insert it

randomly between the other two elements.

Before insertion: 𝑥 = [1 2 3 4 𝟓 6]
After insertion: 𝑥 = [1 𝟓 2 3 4 6]

d.) Bit flip

Bit flip operator selects a random element (bit) of the solution vector and changes its rank order

randomly.

Before bit flip: 𝑥 = [1 2 3 4 5 6]
After a bit flip: 𝑥 = [1 2 𝟐 4 5 6]

Random permutation and swap operators were used in solving a well-known benchmark

problem of structural engineering of composite laminated design optimization by Genetic

Algorithm (GA), (R. Le Riche & Haftka, 1993). Whereas, insertion and bit flip operators were

used efficiently, as a part of an improved Tabu search algorithm in searching of the

neighbourhood of large design space optimization problems (He, de Weerdt, & Yorke-Smith,

79

2019). Lastly, these operators were integrated into ADCSA structure in the way that they will

not be activated until a certain number of successful runs is reached.

4.4.4 Convergence Criteria

ADCSA designed to stop after a certain number of successful runs without any solution

improvement is reached. Otherwise, it continues searching for the optimal solution until the

predefined maximum number of iterations is exceeded.

4.5 Numerical Experiments

In order to examine the performance of the proposed ADCSA in solving discrete structural

optimization problems, two different case studies were selected from the literature. The first

case study is a benchmark problem used here as a numerical experiment to validate the solution

accuracy of ADCSA and to compare its performance with other meta-heuristics in the

literature. Thus, a benchmark problem of a composite laminated plate subjected to bi-

directional compression loading was used in this experiment (R. Le Riche & Haftka, 1993).

To ensure the robustness of ADCSA, another discrete structure case study of customized I-

beam gantry crane subjected to yield criteria (Ali Ahmid et al., 2017).

4.5.1 Validation Numerical Experiment

The benchmark optimization problem of a composite laminated plate subjected to compression

loading is extensively used in the literature to investigate the performance of a new or modified

meta-heuristics (Aymerich & Serra, 2008; Rubem Matimoto Koide et al., 2013). In a more

recent study, the same benchmark problem used to compare the performance of five different

meta-heuristics (A; Ahmid, Thien-My, & Van Ngan, 2019). The original optimization problem

introduced by (R. Le Riche & Haftka, 1993) for a laminated rectangular plate simply

supported. The in-plane compression loading conditions were applied in the direction of both

axes 𝑥,𝑦, see Figure 1.1 The optimization objective is maximizing the critical buckling loading

80

capacity of the plate subjected to design and manufacturing constraints. Moreover, the number

of plies, 𝑁௣, and thickness of each ply, 𝑡௣, are imposed while the fiber orientation of each plies

group, 𝜃௣, needs to be chosen from a discrete domain of available orientations, 𝐷 = [0°; ±45°; 90°].

Figure 4.2 Simply supported plate subjected to biaxial loading (A;
Ahmid et al., 2019)

The design variable vector, 𝑋, is formed by the number of plies groups that meet the symmetry

and balanced constraints. The symmetrical laminate means that both sides about the mid-plane

have the same number of the plies and this reduces the number of plies, to be optimized, into

the half of the total number of plies, Np=2 .Balanced laminate is symmetrical one where each

group of two plies, with same fiber orientation, on one side has a similar group on the other

side, and this downsize the number of the optimized plies to another half. Thus, the final

number of design variables (optimized plies) will be equal to 𝑁௣ = 4 .The formula of buckling

load factor 𝜆௕ , which developed according to Classical Lamination Theory (CLT), has been

used implicitly to determine the objective function of critical buckling load, 𝜆௖௕ , (R. Le Riche

& Haftka, 1993), Therefore,

81

where 𝐷௜௝ is the bending stiffness, 𝑁௫ ,𝑁௬ are in-plane compression loads in 𝑥, 𝑦. The variables 𝑝 , 𝑞 denote the buckling modes in both 𝑥,𝑦 directions. The critical buckling load factor 𝜆௖௕,

is defined as the minimum obtained value of 𝜆௕(p, q), (S. S. Rao, 2009).

The orthotropic material properties, dimensions, and loading conditions of the composite

laminated plate used in this experiment are listed in Table 4.1 and Table 4.2.

4.5.1.1 Experiment Setting

The proposed ADCSA code written in Matlab 2019b programming language. In addition, the

other two discrete variants of presented by A Kaveh and Bakhshpoori (2013) and Loubna et

al. (2017) were implemented and programmed using Matlab 2019b. All implemented variants

tested on the same PC-machine with the listed specifications in Figure 4.3. The experiment

initialized with the same number of nests, 𝑛ே௘௦௧ = 100, and same discovery rate, 𝑃௔ = 0.25.

For each variant, the experiment has been repeated 200 times to overcome the stochastic

behaviour of meta-heuristics as recommended in the original reference, (R. Le Riche & Haftka,

1993).

===
User: Ali Ahmid …………………………………………………………………..15-Feb-2020 00:24:25
===

Machine Information:
CPU Processor: Intel(R) Core (TM) i7-4790 CPU @ 3.60GHz
CPU clock speed: 3601 MHz
CPU Cache size (L2): 1024 KB
Number of physical CPU cores: 4
Installed physical memory (RAM): 16 GB
operating System Type: Windows
Operating System Version: Microsoft Windows 7 Enterprise

===

Figure 4.3 The specifications of PC-machine used in the current comparison study

 𝜆௕(p, q) = 𝜋ଶ ቂ஽భభ൫௣ ௔ൗ ൯రାଶ(஽భమାଶ஽లల)൫௣ ௔ൗ ൯మା஽మమ൫௤ ௕ൗ ൯రቃ൫௣ ௔ൗ ൯మேೣା൫௤ ௕ൗ ൯మே೤ (4.11)

82

Furthermore, an assessment of three different random initialization methods of Discrete

Uniform Distribution (DUD), Latin hypercube (LHC) and hybrid DUD-LHC were conducted.

The results demonstrated slightly better performance of ADCSA when LHC used to generate

the initial population, see Figure 4.5. Thus, it used to generate the initial population of ADCSA

in the executed validation experiments.

4.5.1.2 ADCSA Performance Assessment Criteria

In the literature, there were different measures used to assess meta-heuristics performance.

Elapsed time is not only the measure used to evaluate the computational solution cost where

the success rate (or reliability) and the average number of runs required to find the optimal

solution (price) were commonly used too. Furthermore, normalizing the solution price, price/

reliability, could reveal valuable information about the solution cost (A; Ahmid et al., 2019;

R. Le Riche & Haftka, 1993). Lastly, where such an optimization problem has multi-optimal

solutions, the term of practical optima is used. It is devoted to considering the near-optimal

solutions of 0.1% error to the best-known optimal solution (Aymerich & Serra, 2008).

4.5.2 Customized I-Beam Gantry Crane Problem

The customized I-beam gantry crane design is another structural design problem that started to

attract the attention, (Ali Ahmid et al., 2017; Alhorani, 2020; Pavlovic et al., 2018). The

original problem statement says that for a welded I-beam profile, gantry crane built by welding

three different steel plates that have the same length, but they were diverse in their thickness

and width. The live loading condition was applied to the crane, see Figure 4.4.The

nomenclature of different crane dimensions and loads are given as: bଵ, tଵ and bଶ tଶ are lower

and upper flanges widths and thicknesses respectively, while h, tଷ are the width and thickness

and width of the web. Wଵrepresents the crane weight and Wଶ is the live load. Lastly, 𝐿 is the

crane span, and 𝑥 is the distance of Wଶ measured from the crane left end. The optimization

objective is reducing the crane weight by minimizing the crane cross-section area, which is

defined by:

83

Figure 4.4 The crane beam dimensions and loading conditions, (Ali Ahmid et al., 2017)

The crane design is subjected to bending and buckling criteria, which result in a set of design

constraints. Hence,

These constraints were imposed by using the exterior penalty function that transforms the

objective function, 𝐴௖௦, into:

where 𝑋 = [𝑏ଵ 𝑡ଵ 𝑏ଶ 𝑡ଶ ℎ 𝑡ଷ] and 𝑟௚ is penalty multiplier for inequality constraints 𝑔௜.

 𝐴௖௦ = 𝑏ଵ. 𝑡ଵ + 𝑏ଶ. 𝑡ଶ + ℎ. 𝑡ଷ (4.12)

 gଵ = σୡ୭୫ୠౣ౗౮ − σ୘ୟ୪୪୭୵ୣୢ ≤ 0 (4.13)
 gଶ = 1.9 − f୆୳ୡ୩୪୧୬୥ ≤ 0 (4.14)
 gଷ = h tଷ⁄ − 260 ≤ 0 (4.15)
 gସ = bଶ 2tଶ⁄ − 260 ඥσ୷⁄ ≤ 0 (4.16)
 gହ = δ୴ − L 600⁄ ≤ 0 (4.17)
 g଺ = (Δσ)ୡ୭୫ୠ-ౣ౗౮ − Δσୟ୪୪୭୵ୣୢ ≤ 0 (4.18)

 𝐹൫𝑋, 𝑟௚൯ = 𝐴௖௦(𝑋) + 𝑟௚ൣ∑ (𝑚𝑎𝑥൛0,𝑔௝(𝑋)ൟ)ଶ௠௝ୀଵ ൧ (4.19)

84

Eventually, the material used for the crane is 350W structure steel with yielding strength 𝑆௬=350 MPa, density ρ=7850 ௞௚௠య, Young’s modulus E=200 GPa, shear modulus G=77 GPa

and Poisson’s ratio ν=0.3. The dimensions intervals and loads of the crane optimized here are:

 𝑏ଵ𝜖 [150: 10: 490] , (mm) 𝑡ଵ 𝜖 [6: 2: 74] , (mm) 𝑏ଶ 𝜖 [150: 10: 490] , (mm) 𝑡ଶ 𝜖 [6: 2: 74] , (mm) ℎ 𝜖 [600: 20: 1280] , (mm) 𝑡ଷ 𝜖 [2: 36] , (mm)
 𝐿 = 8 , (m) 𝑊ଶ = 10,20,40 , (ton)

4.6 Results and Discussions

The obtained results of the validation experiment and the case study of customized I-beam

gantry crane are illustrated and discussed in the following subsections.

4.6.1 Validation of Experiment Results

The results of the three initialization methods, they mentioned in section 4.4.1, were

statistically compared and depicted in standard division graph in Figure 4.5. Moreover, the two

variants of discrete CS by A Kaveh and Bakhshpoori (2013) and Loubna et al. (2017) where

implemented, as described, and they were given two abbreviations, RDCS and ADCS,

respectively. Consequently, they were applied for the same experiment with the same number

of experiments. The number of 30 runs without improving was used as convergency criteria to

break the variant searching loop. The proposed ADCSA was also examined with the same

experiment setting, and the obtained results of all discrete CS were illustrated in Figure 4.5 to

Figure 4.8. Finally, the summary of the comparison of different published results and the

proposed algorithms were listed in Table 4.1.

85

Table 4.1 Comparison of different performance measures for ADCSA and other meta-
heuristics

Meta-heuristic Price Reliability, % Normalized
Price

Elapsed Time,
sec

ADCSA 41 98% 42 6
ADCS (Lubona 2017) 71 56.5% 126 18
RDCS (Kaveh 2013) 243 93.5% 259 118
GA (LeRiche 1993) 371 98.9% 375 NA
GA (Ahmid 2019) 252 88% 286 16
ACO (Ahmid 2019) 88 76.5% 115 4

The results reveal that the proposed ADCSA outperforms the other presented DCS algorithms

and other meta-heuristics in literature as solving algorithm for the composite laminated plate.

ADCSA exhibited a fast convergence rate where it needs around 12 iterations to find the

optimal solution. Moreover, ADCSA delivers an accurate solution with So, the accuracy of the

proposed ADCSA is examined, and it has shown significant performance in solving the NP-

optimization problem of structural engineering by 98% reliability (successful rate) at 41

iterations solution cost.

Figure 4.5 Standard deviation plot for different initialization methods

3970

3971

3972

3973

3974

DUD LHC Hyper DU-LHC

Cr
iti

ca
l B

uc
kl

in
g

Lo
ad

Fa

ct
or

, λ
cr

86

Figure 4.6 Standard deviation plot for 𝜆௖௥ of different discrete CS algorithms

(a) ADCS

(b) RDCS

(c) ADCSA

Figure 4.7 The number of experiments vs. critical buckling load for ADCSA,

RDCS, ADCS

3965

3968

3971

3974

ADCSA RDCS ADCS

Cr
iti

ca
l B

uc
kl

in
g

Lo
ad

 F
ac

to
r,

λc
r

3966

3969

3972

3975

0 20 40 60 80 100 120 140 160 180 200

λ c
r

Experiement Number

3955
3960
3965
3970
3975

0 20 40 60 80 100 120 140 160 180 200

λ c
r

Experiement Number

3955
3960
3965
3970
3975

0 20 40 60 80 100 120 140 160 180 200

λc
r

Experiement Number

87

Figure 4.8 ADCSA meta-heuristic Convergence in the first successful run

Figure 4.9 Distance to global optimal for ADCSA meta-heuristic first successful run

3910

3920

3930

3940

3950

3960

3970

3980

0 5 10 15 20 25 30 35 40

Cr
iti

ca
l B

uc
kl

in
g

Lo
ad

 F
ac

to
r,
λc

r

Number of Generation, ige

3900

3920

3940

3960

3980

0 1 2 3Cr
iti

ca
l B

uc
kl

in
g

Lo
ad

 F
ac

to
r,
λc

r

Distance to Global Optimal Solution,xopt

88

The next section is devoted to demonstrating the results of applying ADCSA to other structural

engineering optimization problems.

4.6.2 Customized I-beam Gantry crane Results

The obtained results of discrete crane design optimization using ADCSA were compared to

previously published one of the continuous optimization approaches. Furthermore, both results

compared to an equivalent standard I-beam profile for the same optimization strength

constraints (CISA). The comparison study produced nine different examples of 8 m crane,

where the three different types of crane beams were subjected to three live loads of 10,20 and

40 tons.

The results of this comparison listed in Figure 4.10 to Figure 4.17 and the abbreviations CC,

DC and ES are mentioning the three different types of I-beams crane: Continues optimized

Custom (CC), Discrete optimized Custom (DC) and Equivalent Standard I-beam (ES)

respectively. The results obtained here reveal that the crane cross-section profile of the discrete

optimization approach followed the same configurations pattern achieved using a continues

optimization approach, see Table 4.2. It always shows narrow and thick lower flange, wider

and thinner upper flange and tall and very thin web, see Figure 4.17. Furthermore, both

approaches of optimal custom crane did not violate any imposed constraints for the three live

loads. At the same time, the equivalent standard I-beam failed to remain within the strength

limits of tension, and fatigue stresses constraints for the 40-ton case, see Figure 4.10 and Figure

4.11. The lateral buckling of 10-ton live load almost reached the limit for the three I-beam

types, see Figure 4.12. The local buckling of the top flange became critical for CC I-beam,

while it was never critical for DC or ES I-beam types. On the other hand, the web slenderness

was not critical for any CC I-beam loading cases while it reaches the limits in the first loading

case (10-ton) for the other two types, see Figure 4.13. Finally, the results reveal that the discrete

optimization approach could reduce the weight from 61 - 69 % of the equivalent standard I-

beam crane structure.

89

Table 4.2 Different optimal solution configuration of customized I-beam gantry crane

Design Approach t1
(𝑚𝑚)

b1
(𝑚𝑚)

t2
(𝑚𝑚)

b2
(𝑚𝑚)

t3
(𝑚𝑚)

h
(𝑚𝑚)

Area
(𝑚ଶ)

CC
10 tons 27.82 150.01 6.99 194.2 3 608.64 .00736
20 tons 37.88 150.16 8.38 220.18 3.19 826.46 .0102
40 tons 52.62 150.04 9.08 252.14 4.38 1137.03 .0152

ES
10 tons 56.9 270.3 56.9 270.3 31.5 826.46 .0513
20 tons 54.1 305.2 54.1 305.2 30 796.8 .0572
40 tons 40 550 40 550 16 1120 .0621

DC
10 tons 54 150 34 170 3 620 .01574
20 tons 46 170 10 200 14 760 .0177
40 tons 46 190 16 290 10 1080 0.02418

Figure 4.10 The tension stresses vs. live loads for different types of I-beam crane

0,E+00

1,E+08

2,E+08

3,E+08

4,E+08

0 10 20 30 40 50

Te
ns

io
n

str
es

s ,
 P

a

Live load,ton

CC
DC
ES
Sy

σa=0.75 x Sy

90

Figure 4.11 The fatigue stresses vs. live loads for different types of I-beam crane

Figure 4.12 The critical buckling load factor vs. live loads for different types of I-

beam crane

0,E+00

5,E+07

1,E+08

2,E+08

2,E+08

3,E+08

0 10 20 30 40 50

Fa
tig

ue
 st

re
ss

 ,
Pa

Live load, ton

CC
DC
ES
Sy

σaf=166MPa

1

5

9

13

0 10 20 30 40 50

C
rit

ic
al

 b
uc

kl
in

g
lo

ad
 fa

ct
or

, λ
cr

Live load (ton)

CC
DC
ES
cr

λcr=1.9

91

Figure 4.13 The web slenderness vs. live loads for different types of I-beam crane

Figure 4.14 The flange ratio vs. live loads for different types of I-beam crane

15

55

95

135

175

215

255

295

0 10 20 30 40 50

W
eb

 s
le

nd
er

ne
ss

, h
/t 3

Live load (ton)

CC
DC
ES
cr

h/t3=260

1

4

7

10

13

0 10 20 30 40 50

Fl
an

ge
 ra

tio
, b

2/2
t 2

Live load (ton)

CC
DC
ES
cr

b2/2t2=260/√Sy

92

Figure 4.15 The deflection vs. live loads for different types of I-beam crane

Figure 4.16 The crane weight vs. live loads for different types of I-beam crane

0

0,0025

0,005

0,0075

0,01

0,0125

0,015

0 10 20 30 40 50

D
ef

le
ct

io
n,

 δ

Live load

CC
DC
ES

δcr=L/600

0

1000

2000

3000

4000

10 ton 20 ton 40 ton

Cr
an

e
w

ei
gt

h,
 K

g

CC DC ES

93

Figure 4.17 The three different types of I-beam crane for the case of 8 m x10 ton

4.7 Conclusion

A new variant of the Adapted Discrete Cuckoo Search Algorithm (ADCSA) presented and

examined for two different case studies of maximizing the critical buckling load of composite

laminated plate and a customized I-beam gantry crane design optimization. The validation

results demonstrated a high accuracy of the ADCSA solution at a reasonable cost. Furthermore,

the initialization methods experiment conducted here illustrated a slight effect of the initial

population generation on the performance ADCSA. The use of the LHC sampling approach

improved the reliability slightly compared to ADCSA initialized using DUD or Hybrid DUD-

LHC. The results obtained for the customized I-beam gantry crane shown that the crane cross-

section profile of the discrete optimization approach followed the same configurations pattern

obtained using a continues optimization approach. It always shows narrow and thick lower

94

flange, wider and thinner upper flange and tall and very thin web. Additionally, the saving in

the cross-section area is noticeable compared to the equivalent standard I-beams. Eventually,

the proposed ADCSA has been applied for two different structural optimization problems so

far and examining it for other engineering problems could be prospective work. Furthermore,

investigating the different initialization methods on the proposed algorithm to find better

performance deserves a try.

CHAPTER 5

ENHANCED HYPER CUBE FRAMEWORK ACO FOR STRUCTURAL
COMBINATORIAL OPTIMIZATION PROBLEMS

A.Ahmid a , T. M. Dao b and V. N. Lê c

a,b,c Department of Mechanical Engineering, École de Technologie Supérieure,
1100 Notre-Dame West, Montreal, Quebec, Canada H3C 1K3

Paper submitted to Elsevier Computers & Structures journal, December 2020

5.1 Abstract

Many structural combinatorial optimization problems are hard to solve within the polynomial

computational time or NP-hard problems. Therefore, developing new optimization techniques

or improving existing ones still grab attention. This paper presents an improved variant of the

Ant Colony Optimization meta-heuristic called Enhanced Hyper Cube Framework ACO

(EHCFACO). This variant has an enhanced exploitation feature that works through two added

local search movements of insertion and bit flip. In order to examine the performance of the

improved meta-heuristic, a well-known structural optimization problem of laminate Stacking

Sequence Design (SSD) for maximizing critical buckling load has been used. Furthermore,

five different ACO variants were concisely presented and implemented to solve the same

optimization problem. The performance assessment results reveal that EHCFACO outperforms

the other ACO variants and produces a cost-effective solution with considerable quality.

Keywords: Combinatorial optimization; Ant Colony Optimization (ACO); Buckling load

factor; Composite laminate.

96

5.2 Introduction

Combinatorial optimization is devoted to the mathematical process of searching for optimal

solution (maxima or minima) of an objective function with a discrete domain of decision

variables. The possible number of solutions for a combinatorial optimization problem is equal

to [𝐷]௡, where 𝐷 is the discrete design domain vector and 𝑛 represents the number of design

variables (R. Le Riche & Haftka, 1993). Therefore, the optimization problem becomes more

computationally difficult to be solved when the number of design variables increases.

Accordingly, many combinatorial optimization problems are hard to solve within deterministic

polynomial time (or NP-hard). A Travelling Salesman (or TSP) is a typical example of this

type of optimization problem where the number of cities to be visited is given and the shortest

path is needed to be determined (França, Sosa, & Pureza, 1999). As the number of cities

increases, the number of possible solutions increases too and this leads to the computational

complexity of the problem, where it is not possible to enumerate all these solution possibilities

with the limited computation resources, such as memory size or processor speed. Hence, to

solve such problems, many optimization techniques have been developed.

The Ant Colony Optimization (ACO) algorithm demonstrated a significant performance

improvement in solving NP-hard combinatorial optimization problems. The Traveling

Salesman Problem (TSP) is a good example of such problems and it is solved using an early

version of ACO (M Dorigo, 1991). The improvements in subsequent ACO algorithms focused

on enhancing the algorithm variants to yield better searching and computational performance.

As a result of the improved algorithm performance, many new applications of ACO appeared,

such as the probabilistic TSP using estimation based ACO in Weiler, Biesinger, Hu, and Raidl

(2015) work. Gambardella and Dorigo (2000) used a hybrid ACO with a novel local search

tool to solve the Sequential Ordering Problem (SOP). Zheng, Zecchin, Newman, Maier, and

Dandy (2017) introduced a novel approach of ACO to optimize a water distribution system

design. Furthermore, the optimization of the space truss design, using improved ACO, is

demonstrated by A Kaveh and Talatahari (2010).

97

In the field of Stacking Sequence Design (SSD) of composite laminate, ACO has been used to

determine the optimal stacking sequence design for maximizing the critical buckling load

factor or natural frequency (Rubem Matimoto Koide & Luersen, 2013). Aymerich and Serra

(2008) examined the ACO performance in solving stacking sequence design problem and he

compared a modified standard ACO performance with Genetic Algorithm (GA) and Tabu

Search (TS).He found that ACO performed much better than GA and TS in terms of solution

cost and quality. Rama Mohan Rao (2009) presented a hybrid ACO-TS algorithm to optimize

the stacking sequence of a composite laminate subjected to bidirectional compression loading.

He concluded that ACO is an effective optimization technique if combined with an appropriate

local searching tool. Mark W. Bloomfield et al. (2010) conducted a comparison study of three

meta-heuristics of GA, ACO, and Particle Swarm Optimization (PSO) to determine the optimal

stacking sequence composite laminate. Based on the results of this comparison study, ACO

found to outperform GA and PSO algorithms in the field of stacking sequence design (SSD).

This remarkable performance of ACO in solving such NP-hard combinatorial optimization is

expected where it designed to solve discrete optimization problems (França et al., 1999).

An investigation of five different ACO variants in the field of composite laminate stacking

sequence design has been carried out in the current study. Besides, a new optimization

approach has been proposed to solve this problem. The new approach uses an improved version

of a well-known ACO algorithm variant called Hyper Cube Framework ACO (HCFACO). A

popular NP-hard combinatorial optimization problem of composite laminate stacking sequence

has been considered to demonstrate the new algorithm performance (R. Le Riche & Haftka,

1993). Furthermore, a performance assessment criterion has been developed using different

measures, such as performance rate, reliability, normalized price, and Fitness–Distance

correlation. The proposed EHCFACO algorithm performance has been compared with other

ACO algorithm variants.

The rest of this paper is structured as follows: firstly, it presents a review of standard ACO

followed by a brief description of other considered ACO variants; secondly, the new

optimization approach is explained in detail; then, the performance assessment criterion is

98

introduced, followed by the numerical experiments section; next, the results of the performance

survey are discussed; finally, the paper concludes with a summary of the study’s research

contributions, limitations, and prospective directions for future research.

5.3 Ant Colony Optimization Algorithms (ACOs)

M Dorigo (1991) developed the basic Ant Colony Optimization (ACO) algorithm, or Ant

System (AS), which is a metaheuristic approach inspired by the collaborative work of ants in

finding the source of food. The ants cooperate to find the best possible path from their colony

to the food source. During their searching tour the ants communicate by depositing a certain

amount of a substance, called the pheromone, on their way to the food site. The following

group of ants tends to follow the paths with higher pheromone concentration. Over time, the

less selected paths gradually lose their information due to the pheromone evaporation process.

Figure 5.1 Cooperative search of ants by pheromone trails

The virtual ants travelling and selecting paths can be interpreted as a probabilistic selection of

certain nodes, which they are part of the solution, in the path based on the pheromone value.

The ACO general procedure is illustrated in Algorithm 5.1.

99

Algorithm 5.1 Ant Colony Optimization procedure

Initialization
While (termination criteria not satisfied) Do
 Construct Solutions Table by Ants
 Local Search (optional)
 Global Pheromones Updating
End ACO algorithm

To understand the mathematical interpretation of ACO, there is a need to go through each step

of the ACO procedure shown in Algorithm 5.1. ACO starts with initial values of the pheromone

trail 𝜏଴ , set to a small value for all ant trails as this gives all nodes 𝑗 of the design variable 𝑖,
an equal probability of selection. Next, each ant starts to construct its own solution by applying

the rule of selection, which has the following general form:

 𝑝௜௝(௞) represents the probability of selecting the path 𝑖 𝑗 for the 𝑘௧௛ ant, 𝜏௜௝ is the updated

pheromone trail, 𝜂௜௝ denotes the value of heuristic information for each feasible solution 𝑠, 𝑁௜(௞) indicates the neighbourhood nodes of the 𝑘௧௛ ant, when it located at node 𝑖 and 𝛼,𝛽 are

the amplification parameters for pheromone trials and the influence of heuristic information

on the algorithm behaviour respectively (M. Dorigo, Birattari, & Stutzle, 2006). At the end of

each tour all the pheromone trails are updated through two steps of pheromone evaporation

and depositing, according to the following formula:

where 𝜌 is the evaporation rate, 𝜌 ∈ (0,1] , and 𝛥𝜏௜௝௞(௧) is the amount of deposited pheromone

by ant 𝑘(𝑡) that could be determined as :

 𝑝௜௝(௞) = ఛ೔ೕ ഀ .ఎ೔ೕഁ∑ ఛ೔ೕ ഀ .ఎ೔ೕഁೕചಿ೔ೖ , ∀ 𝑗 ∈ 𝑁௜௞ (5.1)

 𝜏௜௝௞(௧ାଵ) = (1 − 𝜌). 𝜏௜௝௞(௧) + ෍𝛥𝜏௜௝௞(௧)௡
௞ୀଵ (5.2)

100

where 𝑄 is a constant and 𝐿௞(௧) represents the distance travelled by ant 𝑘(𝑡). Eq.(5.3) is the

basic form of the pheromone trail updating which used to solve TSP optimization problem and

it could be implemented in more general form:

where 𝑓௪௢௥௦௧ , 𝑓௕௘௦௧ are the worst and the best values of the objective function 𝑓 obtained by 𝑁 ants in tour 𝑡 and 𝑥 is the global pheromone scaling factor (S. S. Rao, 2009). Eventually, the

ACO loop continues until one of the termination conditions is met.

In SDD optimization problem, the thickness of each ply (equivalent to the distance between

the cites in TSP) is assumed to be constant, so the heuristic information value, 𝜂௜௝, will be

constant all over the ant tours t which simplifies the probability of selection, in Eq. (5.1), into:

Local search

The procedure of the ACO algorithm includes the option of improving the intensification

feature of the ACO algorithm by adding some local search algorithms or movements that could

improve the search of the solution neighbourhood (França et al., 1999) .

5.3.1 Elitist Ant Colony (EACO)

Gambardella and Dorigo (2000) introduced an improved version of the ACO algorithm that

uses the elitism strategy. The idea behind this strategy is a reinforcement of the best solution

 𝛥𝜏௜௝௞(௧) = 𝑄 𝐿௞(௧)൘ (5.3)

 𝛥𝜏௜௝௞(௧) = ቐ𝜉. 𝑓௪௢௥௦௧𝑓௕௘௦௧ , 𝑖𝑓 𝑖, 𝑗 ∈ 𝑔𝑙𝑜𝑏𝑎𝑙 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (5.4)

 𝑝௜௝(௞) = ఛ೔ೕ ഀ∑ ఛ೔ೕ ഀೕചಿ೔ೖ , ∀ 𝑗 ∈ 𝑁௜௞ (5.5)

101

path found once the algorithm is initialized. The rule of pheromone updating for EACO is

written as follows:

where

The reinforcement of selection probability of the best path (𝑡௕௘௦௧) occurs by adding the value

of 𝑒.𝛥𝜏௜௝௞(௧್೐ೞ೟) where e is the weighting parameter and it represents the number of elitist ants

(Rama Mohan Rao, 2009).

5.3.2 The Rank-Based Ant Colony Optimization (RBACO)

Bullnheimer, Hartl, and Strauss (1997) proposed a new extension of the ACO that enhances

the performance of the original EACO by ranking the ants based on their path length. The

deposited value of pheromone decreases according to its rank index, 𝜇. Moreover, only the

best ants, 𝜎, will be updated which prevents the over concentration of pheromones on local

optima paths chosen by other ants . Hence, the pheromone updating rule of RBACO is:

5.3.3 Max-Min Ant Colony (MMACO)

Previous ACO algorithms used the strategy of reinforcing only the best-found paths. This

strategy could cause the excessive increase of pheromone values on optimal local paths causing

all other ants to follow this path. To overcome this drawback, Stützle and Hoos (2000)

 𝜏௜௝௞(௧ାଵ) = (1 − 𝜌). 𝜏௜௝௞(௧) + ෍𝛥𝜏௜௝௞(௧) + 𝑒.𝛥𝜏௜௝௞(௧್೐ೞ೟)௡
௞ୀଵ (5.6)

 𝛥𝜏௜௝௞(௧್೐ೞ೟) = ௙್೐ೞ೟∑ ௙೔೙ೖసభ (5.7)

 𝜏௜௝௞(௧ାଵ) = 𝜌. 𝜏௜௝௞(௧) + ෍𝛥𝜏௜௝ఓ + 𝜎.𝛥𝜏௜௝௞(௧್೐ೞ೟)ఙିଵ
ఓୀଵ (5.8)

102

proposed a modified version of ACO that limits the pheromone values to a specific interval, [𝜏௠௜௡; 𝜏௠௔௫]. In addition, the initialization of pheromone value is set to the upper limit of the

pheromone interval, with a small evaporation rate to increase the algorithm search

diversification. The pheromone rule is:

and 𝜏௜௝௞(௧) ∈ [𝜏௠௜௡; 𝜏௠௔௫]

where [𝜏௠௜௡; 𝜏௠௔௫] values are determined by the following formulas:

𝜏௠௔௫ = 1(1 − 𝜌) .𝑓௪௢௥௦௧𝑓௕௘௦௧

𝜏௠௜௡ = 𝜏௠௔௫. (1 − ඥ𝑃௪௢௥௦௧೙)ቀ𝑛2 − 1ቁ . ඥ𝑃௪௢௥௦௧೙

where 𝑝௕௘௦௧ denotes the probability of the best solution, it has a value greater than 0, while 𝑛

represents the number of ants.

5.3.4 Best-Worst Ant Colony (BWACO)

Zhang, Wang, Zhang, and Chen (2011) presented BWACO as an extension of MMACO, where

the algorithm exploitation capability benefits from both, best and worst solutions. During the

search tour, the pheromone trail update uses the positive return of the best solution and the

negative one generated by the worst solution. The pheromone updating rule can be written as:

where, 𝜆 is a coefficient that has value within [0,1] interval and it could be noticed that

BWACO became MMACO if 𝜆 = 0.

 𝜏௜௝௞(௧ାଵ) = 𝜌. 𝜏௜௝௞(௧) + 𝛥𝜏௜௝௞(௧್೐ೞ೟) (5.9)

 𝜏௜௝௞(௧ାଵ) = ቂ𝜌. 𝜏௜௝௞(௧) + 𝛥𝜏௜௝௞(௧್೐ೞ೟)ቃఛ೘೔೙
ఛ೘ೌೣ − 𝜆.𝛥𝜏௜௝௞(௧್೐ೞ೟) (5.10)

103

5.3.5 Hyper Cube Framework ACO (HCFACO)

The different algorithms of ACO build a limited hyperspace of the pheromone values. The

Hyper Cube Framework of ACO algorithms, proposed by Blum in 2001, generates a binary

convex hull hyperspace from pheromone values for the feasible solutions. In other words, the

values of the pheromone vector, 𝜏 = [𝜏ଵ,𝜏ଶ, 𝜏ଷ, … . , 𝜏௡], are limited to the interval [0,1], and

this is carried out by changing the pheromone update rule. The following formula expresses

the rule of pheromone updating in HCFACO:

where:

𝛥𝜏௜௝௞(௧್೐ೞ೟) = ௙್೐ೞ೟∑ ௙೔೙ೖసభ , and 𝑛 is the number of ants follow the same best path.

HCFACO algorithms overcome the undesirable problem of different behaviour of standard

ACO algorithms when the same objective function is scaled, which affects the algorithm

robustness. Also, it reduces the search effort and improves the algorithm search diversification

(França et al., 1999) . Lastly, it is worthwhile to mention that the HCF update rule is not limited

to standard ACO algorithm (or Ant System AS) as it can also be used with MMACO, where

the maximum and minimum limits of MMACO pheromone trail are set to be 0 and 1

respectively (Blum & Dorigo, 2004).

5.4 Enhanced Hyper Cube ACO Algorithms

Dorigo experimentally observed that using local search techniques can improve the overall

performance of the ACO (M Dorigo, 1997; França et al., 1999). Local search can be carried

out by hybridizing the ACO with local search algorithms such as Tabu search or using

permutation operators to explore the solution neighbourhood (Aymerich & Serra, 2008;

 𝜏௜௝௞(௧ାଵ) = (1 − 𝜌). 𝜏௜௝௞(௧) + 𝜌.෍𝛥𝜏௜௝௞(௧)௡
௞ୀଵ (5.11)

104

Katagiri, Hayashida, Nishizaki, & Guo, 2012). The commonly used operators in SSD

optimization problem are two-points permutation and swap. Two-points permutation means

selecting two bits in the solution string and reversing the order of the bits in between (R. Le

Riche & Haftka, 1993). The swap operator is used to switch the position of two randomly

selected bits of the solution string (Jing, Fan, & Sun, 2015).

The HCFACO algorithms presented here adopted two other permutation operators to perform

the algorithm enhancement. The first operator is called a single point mutation, which is used

successfully with Permutation Genetic Algorithm (R. Le Riche & Haftka, 1993). The second

operator is inspired by using one of the Tabu Search movements named the insertion (França

et al., 1999). The proposed Enhanced HCFACO procedure for standard ACO (Ant System AS)

and max-min ACO is listed in Algorithm 5.2. The Enhanced HCFACO Algorithms starts by

defining the standard ACO parameters such as the maximum number of iterations (𝐼𝑡𝑒𝑟௠௔௫),

number of ants (𝑛஺௡௧௦) , number of design variables (𝑁௏), the initial pheromone trail (t0) and

evaporation rate (𝑟). In addition, the solution convergence rate counter is imposed [𝐼𝑐𝑜𝑛𝑣௠௔௫]
and its value determine whether the convergence rate is slow or fast. When the ACO loop

starts, all solution edges have the same deposited pheromone trail 𝜏଴ , which gives all nodes

the same probability of selection to be a part of the feasible solution. The artificial ants, 𝑘 =1:𝑛஺௡௧௦ , start building the solution table, 𝑆௜(𝑛஺௡௧௦,𝑁௏), by randomly choosing a node di on

their way to build the solution vector 𝑆௜(𝑘,𝑁). Next, the evaluation of the solutions table is

carried out by calling the objective function, and the obtained values are stored in 𝑓(𝑖𝑔𝑒, 𝑆௜(1:𝑛஺௡௧௦,𝑁௏)) matrix. The best solution of the stacking sequence design has the

maximum value of the objective function listed in 𝑓(𝑖𝑔𝑒, 𝑆௜) matrix of the current iteration.

The best solution of each iteration 𝑖𝑔𝑒 is stored in the best solution matrix 𝑆∗(𝑖𝑔𝑒). Thereafter,

the global pheromone trail update is performed as described in the Hyper Cube Framework of

ACO in Eq.(5.11).

The local search actions are enforced as soon as the best solution of the current tour is

determined. Following this, a comparison of the generated solutions with the best solution

obtained so far is made. The best solution matrix is then updated if any improvement is

105

detected. Finally, the HCFACO loop continues until the termination criteria are met. The

global optimal solution is determined as the best solution matrix member with the maximum

value of the objective function.

Algorithm 5.2 Enhanced HCFACO procedure

Initialization
- ACO parameters:[𝑛஺௡௧௦, 𝐼𝑡𝑒𝑟௠௔௫,𝑁௏ ,𝛼,𝜌, 𝜏଴]
- Convergence rate counter: [𝐼𝑐𝑜𝑛𝑣௠௔௫]
- initialize ACO loop counter: [𝑖𝑔𝑒 = 0]

While (termination criteria not satisfied) Do 𝑖𝑔𝑒 = 𝑖𝑔𝑒 + 1
- Solution table construction: 𝑃௜ = 𝜏ఈ 𝑆𝑖(𝑛஺௡௧௦,𝑁௏) = 𝑅𝑜𝑢𝑙𝑒𝑡𝑡𝑒𝑊ℎ𝑒𝑒𝑙𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑃௜∑𝑃௜)

- Solution evaluation: 𝑓 (𝑖𝑔𝑒, 𝑆𝑖(1 ∶ 𝑛஺௡௧௦,𝑁௏)) 𝑆∗(𝑖𝑔𝑒) = 𝑚𝑎𝑥(𝑆௜(𝑖𝑔𝑒)) 𝑖𝑓 𝑆∗(𝑖𝑔𝑒) < 𝑚𝑎𝑥(𝑆∗(1 ∶ 𝑖𝑔𝑒 − 1)) 𝑆∗(𝑖𝑔𝑒) = 𝑚𝑎𝑥(𝑆∗(1 ∶ 𝑖𝑔𝑒 − 1))
 end
- Apply Local Search:

• Single point mutation.
• Insertion. 𝑖𝑓 𝑆௅ௌ∗ (𝑖𝑔𝑒) > 𝑆∗(𝑖𝑔𝑒) 𝑆∗(𝑖𝑔𝑒) = 𝑆௅ௌ∗ (𝑖𝑔𝑒)

 𝑒𝑛𝑑
Global pheromone trail updating: Eq. (5.11)
End (While)
Optimal solution 𝑆௢௣௧ = 𝑚𝑎𝑥(𝑆∗(1 ∶ 𝑖𝑔𝑒))
End Enhanced HCFACO algorithm

5.5 Performance Evaluation

The time required by an algorithm to find the global optima is widely used to evaluate its

performance (Talbi, 2009). However, a single performance measure cannot reflect the

effectiveness of the algorithm in exploring the design space or determining solution quality. In

106

the current study, three different groups of performance measures have been applied to ensure

a fair evaluation of the proposed algorithm.

5.5.1 Computational Effort

In addition to the elapsed time, literature has shown that other measures can be used to measure

computational effort. The first is the Price 𝑃𝑆, which is defined as the number of objective

function evaluations within a search run and reflects the computational cost of the search

process. The second measure is Practical Reliability (𝑃𝑅) and, it is defined as the percentage

of runs that achieve Practical Optima (𝑃𝑂), at a specific run. Practical optima is defined as the

solution with 0.1% error in the best possible solution (R. Le Riche & Haftka, 1993). The last

is the normalized price 𝑛𝑃𝑆 ,which is defined as the ratio of price and practical reliability

(Kogiso, Watson, Gürdal, & Haftka, 1994; R. Le Riche & Haftka, 1993; Malan & Engelbrecht,

2014). Finally, the Performance Rate measure 𝑃௥௔௧௘, is also considered to link the computation

effort with the number of function evaluations (Talbi, 2009).

5.5.2 Solution Quality

The solution quality of an algorithm can be measured by determining the absolute error

between the current solution and the best-known global solution (Kogiso et al., 1994; R. Le

Riche & Haftka, 1993; Malan & Engelbrecht, 2014).

 𝑃௥௔௧௘ = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑟𝑢𝑛𝑠൭ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑠൱ . ൬𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓 𝑟𝑢𝑛𝑠 ൰
(5.12)

 𝑄 = ቤ𝑆∗ − 𝑆௢௣௧𝑆௢௣௧ ቤ . 100 (5.13)

107

5.5.3 Fitness Landscape Analysis

The design space of a combinatorial optimization problem can significantly affect the search

performance of an algorithm. The notion of Fitness-Landscape appeared in literature as an

answer to the question of ”what the design space looks like?”. The Fitness-Landscape is

defined by the feasible solutions set, the objective function (fitness) and the structure of the

solution neighbourhood. To find the connection between the Fitness Landscape and the

problem hardness, T. Jones and Forrest (1995) introduced a Fitness Landscape - Distance

Correlation (FDC) to determine the hardness of optimization problems to be solved using

Genetic Algorithm (GA). The distance mentioned here is defined as the number of movements

that should be imposed on a Solution 𝑆௜ to eliminate dissimilarity with the optimal solution 𝑆௢௣௧ . The proposed correlation by Jones is computed using the correlation factor, 𝑟 :

where 𝐶𝐹𝐷 indicates the 𝐶𝑜𝑣(𝐹,𝐷) and 𝜎ி ,𝜎஽ are the standard deviation of 𝐹 and 𝐷

respectively. The values of the correlation coefficient r are limited to interval [−1,1] where

negative values are desirable for maximization and indicate better searching performance.

Finally, using the scattering of fitness versus the distance to the global optima can reveal

valuable information about 𝐹𝐷𝐶 of the optimization problem solved by an algorithm (Malan

& Engelbrecht, 2014; Stützle & Hoos, 2000).

5.6 Numerical Experiments

To demonstrate the performance of the new approach we selected a well-know NP-hard

combinatorial optimization problem in filed of composite laminated structures. The

optimization objective is maximizing the critical buckling load of composite laminated plate

exposed to bidirectional compression loading. The decision variables are the fiber orientation

of each composite layer (lamina) which form the optimal stacking sequence of the laminate (a

group of layers). To employ ACO as an optimization algorithm for SSD optimization problem,

 𝑟(𝐹,𝐷) = 𝐶𝐹𝐷𝜎ி .𝜎஽ (5.14)

108

there is a need to understand specific problem characteristics such as solution representation,

constraints, and objective function formulation. In meta-heuristic algorithms, the solution

(stacking sequence) takes the form of a bit string that consists of a combination of plies with

the available angle fiber orientations (e.g. 0°, ±45° and 90°).The different solutions have

integer coding with 1,2 and 3 numbers, which represent the three possible fiber orientations,

respectively. For instance, the laminate with [2132231]௦ stacking sequence describes the

laminate of [±45, 0ଶ, 90ଶ, 45, ±45, 90ଶ, 0ଶ]𝑠 fiber orientations.

The simplicity of using an integer representation along with significant performance gains,

made it the most widely used method in meta-heuristic optimization algorithms for composite

laminated design. The buckling load factor lb for simply supported rectangular laminated plate

subjected to bi-axial loading is determined as follows:

where 𝐷௜௝ denotes the bending stiffness, 𝑁௫ is the axial loading in x-direction, 𝑁௬ is the axial

loading in y-direction, 𝑝 and 𝑞 are the number of half waves in 𝑥, 𝑦 directions. The critical

buckling load factor 𝜆௖௕ is defined as the minimum obtained value of 𝜆௕ (𝑝, 𝑞). The critical

values of 𝑝 and 𝑞 are linked to different factors such as laminate material, a number of plies,

loading conditions and the plate aspect ratio. In uniaxial loading and simply supported plate,

the critical buckling load is happening when 𝑝 = 1 whereas in biaxial the critical buckling

loads it needs to be determined as the minimum value of 𝜆௕(𝑝, 𝑞) (R. Le Riche & Haftka, 1993;

Rama Mohan Rao, 2009). Finally, the constraints in stacking sequence optimization with

constant laminate thickness t could be imposed as follow:

- Symmetry constraint is enforced by optimizing half of the laminate.

- Balancing constraint is enforced by selecting 𝜃ଶ for the standard fiber orientation set

of 0 , ±45 ;and 90.

 𝜆௕(p, q) = 𝜋ଶ ൤𝐷ଵଵ൫𝑝 𝑎ൗ ൯ସ + 2(𝐷ଵଶ + 2𝐷଺଺)൫𝑝 𝑎ൗ ൯ଶ + 𝐷ଶଶቀ𝑞 𝑏ൗ ቁସ൨൫𝑝 𝑎ൗ ൯ଶ𝑁௫ + ቀ𝑞 𝑏ൗ ቁଶ𝑁௬ (5.15)

109

- Only 𝑁/4 ply orientations are needed to describe laminate as a result of balancing

constraints. Contiguity constraint is handled by using the penalty parameter (𝛽).

- And the critical buckling load factor objective function 𝑓௢௕௝ could be formulated as:

To compare the performance of the proposed algorithm alongside the other ACO algorithms;

we implemented all the algorithms presented here using MATLAB R2019b software. The

benchmarking problem from the literature of stacking sequence design optimization is

accredited to Le Riche and has been used by previous studies (Jing et al., 2015; R. Le Riche &

Haftka, 1993). The original problem describes a simply supported plate subjected to an in-

plane biaxial loading as shown in Figure 5.2.

Figure 5.2 Simply supported plate subjected to biaxial loading

 𝑓௢௕௝ = (1 − 𝛽). max (𝜆௖௕(𝑝, 𝑞)) (5.16)

110

The thickness of each ply 𝑡௜ is assumed constant, and the ply orientations are limited to 0 , ±45

and 90 sets of angles. The number of plies 𝑁௅ is constant. The required properties, dimensions,

and loading conditions are listed in Table 5.1 and Table 5.2. The objective function is set to

maximize the critical buckling load. The constraints are integrated into the solution (e.g.,

balanced laminate, symmetrical, etc.). The implemented ACO algorithms were executed on

the same computer for the same number of experiments; 𝑁௘௫௣ = 200. This number is used to

overcome the stochastic behaviour of meta-heuristic algorithms (R. Le Riche & Haftka, 1993).

Furthermore, this number of experiments is conducted over ten different random generating

seeds of 301, 2,50,75, 111, 200,167, 225 ,11 𝑎𝑛𝑑 25. Then the average of the performance

measures values was used in the comparison of different ACO algorithms.

Table 5.1 Graphite-epoxy lamina’s properties
 𝐸ଵ(𝐺𝑃𝑎) 𝐸ଶ(𝐺𝑃𝑎) 𝐺ଵଶ(𝐺𝑃𝑎) 𝑣ଵଶ 127.59 13.03 6.41 0.3

Table 5.2 Graphite-epoxy lamina’s geometrical and loading data

 𝑁௅ 𝑡(𝑚𝑚) 𝑎(𝑚𝑚) 𝑏(𝑚𝑚) 𝑁௫(𝑁/𝑚) 𝑁௫ 𝑁௬⁄ 64 0.127 508 254 175 1

Lastly, all ACO algorithms were examined at two different levels of convergence rate, slow

and fast. The slow rate enforces the algorithm searching loop to stop after 56 iteration without

improvement, while the fast rate needs just 10 iterations to be terminated (R. Le Riche &

Haftka, 1993).

5.6.1 ACO Parameters Setting

To ensure a fair assessment of the ACO algorithms performance, the following standard ACO

parameters were assumed for all implemented algorithms:

111

number of Ants 𝑛஺௡௧௦ = 25, the maximum number of iterations 𝐼𝑡𝑒𝑟௠௔௫ = 1000, evaporation

rate 𝑟 = 0.1, the parameter of the pheromone trail relative importance 𝛼 = 1 , initial one trail 𝜏଴ = 0.004 (except for MMACO and BWACO algorithms were 𝜏଴ = 1). Best solution

probability 𝑃௕௘௦௧ = 0.05 for MMACO and BWACO Algorithms and lastly the coefficient of

worst solution pheromone trail 𝜆 = 0.6 for BWACO algorithm only.

5.6.2 Termination Criteria

All algorithms will stop as soon as one of the following conditions are satisfied:

- If there is no improvement in the solution after 10 (fast rate) or 56 (slow rate) iterations.

- If the number of iterations exceeds 150 and the best solution is equal to the worst

solution (means all artificial ants following the same path).

- If a maximum number of iterations have been generated.

5.7 Results

The case study described in the previous section has been optimized using nine different

algorithms: standard ACOA, EACO, RBACO, MMACO, BWACO, HCF/EHCF for both

ACO and MMACO algorithms. Analysis of the algorithm’s performance will be divided into

two parts. First, the performance of ACO algorithms with Hyper Cube Framework will be

assessed. The second part is dedicated to the comparison of EHCFACO algorithm with the rest

of ACO algorithms.

5.7.1 Hyper Cube Framework ACO Algorithms Results Analysis

Referring to section 5.3.5, the Hyper Cube Framework (HCF) can be applied for both versions

of the standard ACOA and MMACO. Hence, this part of the analysis is devoted to determining

which version of both ACO algorithms, with HCF and EHCF, could exhibit better

performance? The performance measures for the original ACOA,MMACO, HCFACO,

112

HCFMMACO, EHCFACO, and EHCFMMACO are listed in Table 5.3. The performance

values listed in Table 5.3 reveal that applying HCF to the ACOA has positively affected the

overall performance of ACO. The average practical reliability increased by 22 − 56% and the

normalized price declined from 51.17 to 36.91 for fast convergence rate and from 181.12 to 94.24 for slow one. The performance rate doubled at slow rate while remain the same for the

fast. The FDC correlation coefficient 𝑟 decreased slightly for both levels of convergence.

Table 5.3 The performance measures of Hyper Cube Framework ACO algorithms

Performance
measure

Convergence
rate

A
C

O
A

H
C

FA
C

O

EH
C

FA
C

O

M
M

A
C

O

H
C

FM
M

A
C

O

EH
C

FM
M

A
C

O

Elapsed time, 𝑡௦, min

Slow

Fast

0.87

3

.01

4.15

2.16

6.86

1.12

4.62

0.96

6.68

1.34

4.39

Reliability
 %

Slow

Fast

35.71

36.45

77.1

93.15

89.6

98.95

16

87.7

13.17

91.05

54.36

98.25

Normalized
price, 𝑛𝑃௦ Slow

Fast

51.17

181.12

36.91

94.24

28.92

81.49

152.23

118.53

169.26

117.3

52.2

98.25

Performance
rate, 𝑃௥௔௧௘

Slow

Fast

0.0196

0.0056

0.0272

0.0106

0.0347

0.0123

0.0068

0.0088

0.0063

0.0090

0.0206

0.0106

Quality
 %

Slow

Fast

99.69

99.69

99.93

99.97

99.96

99.98

98.28

99.96

98.57

98.57

99.81

99.98

Fitness-Distance
Correlation, 𝑟

Slow

Fast

-0.80

-0.84

-0.67

-0.71

-0.79

-0.73

-1

-0.82

-1

-0.77

-0.82

-0.75

Further improvement of HCFACO performance is acquired when the proposed local search

movements are imposed. The average practical reliability became more than twice of the

standard ACO and the normalized price decreases more to hold at 28.92 instead of 51.17 and 81.49 instead of 181.2 for both convergence rates. The performance rate is slightly increased

and the FDC correlation coefficient r is partially improved. On the contrary, HCFMMACO

performed poorly compared to the original MMACO. However, the performance of MMACO

113

has improved when the Enhanced HCF is applied, but the computational effort became more

costly. Based on these results, we conclude that EHCFACO delivers an inexpensive solution

with significant performance. Eventually, the solution convergence of the algorithms

mentioned above has been plotted Figure 5.3, for the same selected experiment (seeds=75).

5.7.2 Other ACO Algorithms Results Analysis

All ACO algorithms have been successfully found the best-known value of the maximum

critical buckling load factor, 𝜆௖௕. A different samples of optimal SSD obtained by different

ACO algorithms were listed in Table 5.4. The solution convergence of EACO,RBACO and

BWACO for a selected experiment (seeds=75) has been graphically illustrated in Figure 5.4.

Table 5.4 The optimal stacking sequence for 64 ply laminates subjected to biaxial loading
without contiguity constraint (𝑁௬ = 𝑁௫ = 1 𝑎𝑛𝑑 𝑎 𝑏⁄ = 2)

Algorithm Optimal stacking sequence design Critical buckling
load factor, 𝝀𝒄𝒃

EACO [2333332333323333]𝑠 [±45°/90°ଵ଴ /±45°/90°଼/ ±45°/90°଼]௦
3973.01

RBACO [2333323333333332]௦ [±45°/90°଼/±45°/90°ଵ଼/45°] ௦
BWCACO [3333232323222222]௦ [90°଼/ ±45°/90°/±45°/90°/±45°/90°±45ଶ]ௌ

EHCFACO [3333322322232222]௦ [90°ଵ଴/±45°ଶ/90°/±45°ଷ/90°/±45°଼]ௌ

It is observed from Table 5.4 that the optimal stacking sequence design followed the same

pattern of switching between two groups of 90ଶ and ±45 fiber orientations which confirm the

results of previous studies(Jing et al., 2015; R. Le Riche & Haftka, 1993). On the other hand,

the solution convergence plot in Figure 5.4 illustrate that both RBACO and BWACO

algorithms develop gradual search trends on their way to the optima whereas EACO and

114

EHCFACO algorithms smoothly converge to the global optima. Further, the numerical

experiments confirm the fluctuation of ACO algorithms in finding the global optimal solution

due to their stochastic nature, as illustrated in Figure 5.5.

According to the introduced performance assessment criteria in section 5.5, the average values

of different performance measures of reliability, performance rate, solution quality, normalized

price, and searching effort coefficient are determined for EACO, RBACO, BWACO at fast

and slow convergence rates. These results, alongside with EHCFACO results, are plotted in

Figure 5.6 to Figure 5.12 to provide a sensible comparison of the performance evaluation of

the proposed algorithm with other ACO algorithms. The average practical reliability of the

algorithms is introduced in Figure 5.6. Both EACO and RBACO algorithms show low practical

reliability values, with 10% and 8% respectively, while BWACO presented better value at the

slow rate of convergence but it poorly performed at the fast rate. The EHCFACO algorithm

exhibited a significant reliability values of 89.6-98.95%. Furthermore, it demonstrated the

highest performance rate measure (0.012-0.035), see Figure 5.9. The solution quality results

of the algorithms are summarized and depicted in Figure 5.10 which reveals that all ACO

algorithms produce an excellent solution quality for this particular case study.

In terms of solution cost, the normalized price results plotted on the scatter chart that illustrated

in Figure 5.7. As mentioned before, the normalized price measure reflects the balance between

the solution cost and the reliability. So, it is quite clear that EHCFACO outperformed other

ACO algorithms. BWACO comes second at slow convergence rate, whereas RBACO and

EACO deliver a costly solution.

115

(a) ACOA

(d) MMACO

(b) HCFACO

(e) HCFMMACO

(c) EHCFACO

(f) EHCFMMACO

Figure 5.3 Solution convergence of ACO-MMACO and their Hyper Cube Framework

variants

3400

3600

3800

4000

1 11 21 31 41 51 61

λ c
b

Number of iterations

3400

3600

3800

4000

1 11 21 31 41 51 61 71 81 91

λ c
b

Number of iterations

3400

3600

3800

4000

1 11 21 31 41 51 61 71 81

λ c
b

Number of iterations

3400

3600

3800

4000

1 11 21 31 41 51 61 71 81 91

λ c
b

Number of iterations

3250

3500

3750

4000

1 11 21 31 41 51 61

λ c
b

Number of iterations

3700

3800

3900

4000

1 11 21 31 41 51 61 71 81

λ c
b

Number of iterations

116

(a) EACO

(b) RBACO

(c) BWACO

Figure 5.4 Solution convergence of EACO, RBACO and BWACO

3200

3400

3600

3800

4000

1 11 21 31 41 51 61

Cr
iti

ca
l B

uc
kl

in
g

lo
ad

 fa
ct

or
,

λ c
b

Number of iterations

3500

3600

3700

3800

3900

4000

1 11 21 31 41 51 61

Cr
iti

ca
l B

uc
kl

in
g

lo
ad

 fa
ct

or
,

λ c
b

Number of iterations

3500

3600

3700

3800

3900

4000

1 11 21 31 41 51 61 71 81 91

Cr
iti

ca
l B

uc
kl

in
g

lo
ad

 fa
ct

or
,

λ c
b

Number of iterations

117

(a) EACO

(b) RBACO

(c) BWACO

(d) EHCFACO

Figure 5.5 Critical buckling load factor vs. number of experiments

3700
3750
3800
3850
3900
3950
4000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Cr
iti

ca
l b

uc
kl

in
g

lo
ad

fa

ct
or

,λ
cr

Number of experiements

3600

3700

3800

3900

4000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Cr
iti

ca
l b

uc
kl

in
g

lo
ad

fa

ct
or

,λ
cr

Number of experiements

3600

3700

3800

3900

4000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Cr
iti

ca
l b

uc
kl

in
g

lo
ad

fa

ct
or

,λ
cr

Number of experiements

3967

3969

3971

3973

3975

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Cr
iti

ca
l b

uc
kl

in
g

lo
ad

fa

ct
or

,λ
cr

Number of experiements

118

Figure 5.6 Reliability of EACO, RBACO, BWACO and EHCFACO algorithms

Figure 5.7 Normalized price of EACO, RBACO, BWACO and EHCFACO algorithms
solutions

0

20

40

60

80

100

EACO RBACO BWACO EHCFACO

R
el

ia
bi

lit
y,

%

Fast convergence
Slow convergence

0

100

200

300

400

500

600

700

800

900

EACO RBACO BWACO EHCFACO

N
or

m
al

iz
ed

 p
ri

ce

Fast convergence
Slow convergence

119

Figure 5.8 Correlation coefficient of EACO, RBACO, BWACO and
EHCFACO algorithms

Figure 5.9 Performance rate of EACO, RBACO, BWACO and EHCFACO

algorithms

-1,00

-0,80

-0,60

-0,40

-0,20

0,00
EACO RBACO BWACO EHCFACO

C
or

re
la

tio
n

co
ef

fic
ie

nt

Fast convergence
Slow convergence

0,0000

0,0100

0,0200

0,0300

0,0400

EACO RBACO BWACO EHCFACO

Pe
rfo

rm
an

ce
 ra

te

Fast convergence

Slow convergence

120

Figure 5.10 Solution quality of EACO, RBACO, BWACO and

EHCFACO algorithms

Figure 5.11 Elapsed time of EACO, RBACO, BWACO and EHCFACO

algorithms to find the optimal solution

90

92

94

96

98

100

EACO RBACO BWACO EHCFACO

Q
ua

lit
y,

%

Fast convergence

Slow convergence

0

2

4

6

8

EACO RBACO BWACO EHCFACO

Ti
m

e,
se

c

Fast convergence

Slow convergence

121

5.8 Conclusion

Since many of the structural optimization problems are hard to solve within the polynomial

computational time (NP), this study introduces a new optimization approach to solve the

structural combinatorial optimization problems. The new approach uses an enhanced version

of Hyper Cube Framework ACO (EHCFACO) that integrates two movements of insertion and

(a) EACO

(b) RBACO

(c) BWACO

(d) EHCFACO

Figure 5.12 Fitness VS. Distance to global optimal solution of ACO Algorithms

3400

3600

3800

4000

1 3 5 7

Cr
iti

ca
l B

uc
kl

in
g

lo
ad

 fa
ct

or
, λ

cb

Distance to global optimal solution

3400

3600

3800

4000

1 3 5 7

Cr
iti

ca
l B

uc
kl

in
g

lo
ad

 fa
ct

or
, λ

cb

Distance to global optimal solution

3400

3600

3800

4000

1 3 5 7 9 11 13

Cr
iti

ca
l B

uc
kl

in
g

lo
ad

 fa
ct

or
, λ

cb

Distance to global optimal solution

3400

3600

3800

4000

1 3 5 7 9

Cr
iti

ca
l B

uc
kl

in
g

lo
ad

 fa
ct

or
, λ

cb

Distance to global optimal solution

122

bit flip to improve the local search feature of the original algorithm. A well-known benchmark

case study of a composite laminated plate subjected to bi-directional buck ling loads has been

selected to investigate the performance of the proposed algorithm. Furthermore, five different

ACO variants were concisely presented and implemented to solve the same case study. General

performance assessment measures, such as reliability, normalized price, . . . etc., have been

determined for all presented ACO algorithms. It is observed that applying Hyper Cube

Framework (HCF) to standard ACO has a significant influence on the overall performance of

ACO. Furthermore, imposing local search movements, as an enhancement of exploitation

effort, helped HCFACO to deliver a cost-effective solution. These improvements in ACO

performance are in line with suggestions made by previous studies that rewarding HCF and

local search movements the dominant factor in improving standard ACO algorithm

performance (M. Dorigo et al., 2006; Marco Dorigo & Stützle, 2019). In general, the proposed

EHCFACO outperforms the other ACO variants, where it offers a cost-effective solution.

CHAPTER 6

OPTIMIZATION OF PERFORATED COMPOSITE LAMINATED PLATE
SUBJECTED TO UNCERTAIN GEOMETRICAL AND LOADING CONDITIONS

A.Ahmid a , T. M. Dao b and V. N. Lê c

a,b,c Department of Mechanical Engineering, École de Technologie Supérieure,
1100 Notre-Dame West, Montreal, Quebec, Canada H3C 1K3

Paper submitted to Elsevier Composite Structures, December 2020

6.1 Abstract

Nowadays, the real-life engineering applications are exposed to uncertainty influences of

loading conditions or manufacturing errors. The traditional deterministic design optimization

approaches are becoming more limited to offering cost-effective designs in similar

circumstances. On the other hand, applying probabilistic design optimization techniques

solved many deterministic approaches disadvantages. Unfortunately, the availability and

accuracy of the probabilistic information of different design variables greatly affect the final

design quality. The third option is the robust design (or uncertainty design) optimization, which

demonstrated a significant performance in solving different practical engineering designs. One

of the efficient methods of robust design optimization is the anti-optimization approach. The

optimization process is carried out at two levels of optimization and anti-optimization to find

robust optimal design configuration. However, in a lack of analytical solutions available for

the objective function of a given design, the anti-optimization technique becomes a

computationally expensive and less attractive option for the designer.

In the current study, a robust design optimization framework has been proposed to solve a

novel optimization problem of a perforated composite laminated plate subjected to the

124

uncertainty of buckling loading and location of the cut-out center point. A cutting-edge

technique of Artificial Neural Network (ANN) is used here to develop a precise prediction of

the objective function values which eliminate the negative impact of accompanied expensive

function evaluation when the anti-optimization procedure is used. The obtained results

revealed interesting findings and proved the worthiness of using the proposed framework to

optimize such designs.

Keywords: Robust design, optimization, perforated composite laminated plate, buckling,

Meta-heuristics, Cuckoo Search.

6.2 Introduction

The design of composite laminated structures is influenced by different uncertainties in loading

conditions, geometric imperfections, material characteristics and any other designing or

manufacturing parameters. The efficient design approach needs to consider the existence of

such uncertainties to prohibit the different failure modes that may occur simultaneously, such

as in the design of structures subjected to buckling loads (Lombardi & Haftka, 1998). Most of

the prior researches have applied one or more of three different design optimization approaches

of deterministic, probabilistic and robust design optimization. The deterministic design uses

the factors of safety to deal with uncertainty influences. Still, it can result in an inefficient

design that fails to spot one or more failure modes. Also, it becomes, even more worse when

different failure modes are optimized against the design limits (Beck & Gomes, 2012).

The probabilistic approach has shown better results compared to the deterministic approach.

Unfortunately, probabilistic design optimization is very sensitive to the accuracy and amount

of statistics design data. The scarcity or inaccurate data leads to misfit the probabilistic

distribution of uncertainty domains of the design variables (Lombardi & Haftka, 1998; Qiu &

Wang, 2010). The robust design optimization became the preferred approach by engineers,

where it eliminates the uncertainties influences via considering bounded uncertainty domains

of the design variables (Isaac Elishakoff & Ohsaki, 2010; A Kaveh et al., 2019).

125

The anti-optimization approach is the common form of robust design optimization for structure

applications, also known as a two-level optimization, and it was introduced originally by I

Elishakoff et al. (1994). The anti-optimization levels create a nested optimization/anti-

optimization loop where the top level is devoted to determining the optimal solution of a given

design. In contrast, the bottom level is anti-optimize the obtained optimal solution to find the

worst scenario case. The proposed approach was formulated to optimize ten-bar structure

weight subjected to the uncertainty of loading, stress and displacements. The uncertainty of

loading variations was limited to a multi-dimensional box uncertainty domain. Based on their

work findings, the authors pointed out that the anti-optimization approach overcomes the

numerical complexity that accompanied the probabilistic optimization.

Venter and Haftka (1996) introduced a two species Genetic Algorithm to reduce the

computational effort of GA as an optimizer of two-level problems. They demonstrated the

effectiveness of the improved algorithm by solving the anti-optimization problem of a

composite laminate plate subjected to in-plane bi-directional compression loading in addition

to the uncertain out-of-plane uniform load. The proposed algorithm exhibited a significant

saving in computational effort. Adali et al. (2003) studied the maximization of the critical

buckling load of a composite laminated plate subjected to uncertain loading conditions and

lamina material type. Both deterministic and robust optimization approaches were examined.

The authors concluded that deterministic critical buckling load factor values were less than

these obtained by the robust optimization approach as a result of different stacking sequence

design obtained by both approaches.

Liao and Chiou (2006) proposed a new method to minimize composite laminated structures

weight subjected to sensitivity, stress concertation, thermal buckling load and uncertainty

constraints. The proposed method considered uncertainties of design and non-design variables

(e.g. ply orientation and material properties) to formulate a robust design problem. A Finite

Elements Model (FEM) was used to determine the objective function at the optimization level.

Simultaneously, an analytical solution of a simply supported composite laminated plate was

used at the anti-optimize level. The proposed method showed a significant influence of the

126

material properties' uncertainty on the optimal weight of the laminated plate. Following this

evidence, the authors recommended using a big safety factor when the composite laminate

structure was designed based on a deterministic approach. Han, Jiang, Gong, and Huang (2008)

developed a method that uses the interval analysis with a hybrid numerical method to compute

the transient response bounds of composite laminated plates to load and material properties

uncertainties. The influence of different design variables uncertainty was investigated. The

transient response bounds acquired by using first-order Taylor expansion together with interval

extension. The results imply that the proposed method was confined to a small level of

uncertainty applications. On the other side, the method could be extended to solve hybrid

composite laminated structures. Qiu and Wang (2010) studied the solution of the anti-

optimization problem that integrated a deterministic optimization technique with an interval

analysis method to remedy the uncertainty influences of design variables. The interval set is

generated based on the uncertain design variables. The results approved the superiority of

robust design optimization compared to deterministic and probabilistic optimization.

Kalantari, Dong, and Davies (2017) conducted a robust multi-objective optimization study of

a hybrid composite laminate. The minimization of the laminate weight and cost were the

optimization objectives which confined to design variable and manufacturing uncertainty

constraints. A modified GA algorithm was utilized to carry out an anti-optimization procedure.

Their study found that the composite laminate weight and cost were increased when the

uncertainty influences included. A Kaveh et al. (2019) suggested a robust optimization

procedure that considers uncertain bi-directional buckling loading of a hybrid composite

laminate plate. Two meta-heuristics of the GA and Quantum-inspired Evolutionary Algorithm

(QEA) were integrated to handle the anti-optimization procedure. Two domains of uncertainty

were examined for buckling loading for different aspect ratios. The obtained results were

compared to those reported by Adali et al. (2003), and they demonstrated a good agreement.

Despite this considerable body of literature on the anti-optimization approach as a robust

design technique for composite structures, such as beams or solid plates, far too little attention

has been paid to the robust optimization of the perforated composite laminated plate. This

127

could be explained by the computational cost associated with the objective function evaluation

of such structures, where the analytical solution is not available. Furthermore, using GA as an

optimizer of the anti-optimization problem dominates the previous studies reviewed here, even

though GA is known as an expensive optimization algorithm.

However, the central thesis of the current study is finding how the anti-optimization approach

could be applied to solve optimization problems that have an expensive objective function at

a reasonable computational cost. Accordingly, a novel robust optimization framework has been

introduced. To demonstrate the effectiveness of the proposed framework, a case study of a

perforated composite laminated plate subjected to the uncertainty of buckling loading and

location of the cut-out center point has been examined. The plate edges were simply supported,

and the objective of the optimization is finding the optimal Stacking Sequence Design (SSD)

that maximize the critical buckling load factor. An Artificial Neural Network (ANN) technique

was used to eliminate the expensive cost that accompanied the buckling analysis of the

perforated laminated plate. The ANN is trained based on data samples generated by the Latin

Hypercube (LHC) plan. The design responses to these inputs were determined by the

commercial FEA software of ANSYS workbench. Then, the trained ANN used to replace the

expensive objective function in the anti-optimization procedure.

Eventually, it could be said that the proposed framework offered a cost-effective solution for

the examined NP-hard optimization problem of the perforated laminated plate.

6.3 Problem Formulation

The design optimization of the perforated composite laminated plate for maximum critical

buckling load has been studied using deterministic approaches. Hu and Lin (1995) conducted

a deterministic optimization study of a rectangular plate with a circular cut-out located at the

plate center. The optimization objective was maximizing the critical buckling load factor of

the symmetrically laminated plate. In contrast, plate thickness, aspect ratio, fiber orientation

and end conditions were the design variables of the optimization problem. One of their

128

interesting concluded findings is the buckling loading capacity of the perforated laminated

plate could be surpassing the similar solid plate, without cut-out, by tailoring the fiber

orientation and cut-out diameter. Other deterministic studies carried out by D. Kumar and

Singh (2012) investigated different design variables' effects on stability and failure strength of

composite laminate subjected to unidirectional compression and in-plane shear loading

conditions. Different cut-out shapes have been examined for a set of three fiber orientation of [±45°]௦, [0°ଶ 90°ଶ]௦ and [0°ଶ ± 45° 90°ଶ]௦ configurations. They observed that a

perforated laminated plate with a circular cut-out shape exhibits better strength utilization than

a laminated plate with other shapes.

A similar case study will be discussed in the next sections, see Figure 6.1; but this time, it is

optimized against the uncertainty of loads, diameter ratio and location of cut-out center points.

6.3.1 Anti-Optimization Problem Formulation

As mentioned in the introduction, the anti-optimization procedure consists two levels of

optimization, at the top of the loop, and anti- optimization at bottom level of the loop. The

objective of the optimization level is maximizing the critical buckling load, 𝜆௖௥, while the

purpose of anti-optimization level is finding the worst-case scenario due uncertainty. Figure

6.1 illustrates a perforated composite laminated plate exposed to in-plane buckling loading

conditions where 𝑁௫ and 𝑁௬ are uncertain loads belongs to uncertainty domain 𝑈𝑝 which is

confined by:

 𝑝 represents the uncertainty domain exponent that gives the domain shapes of triangular,

circular and rectangular for 𝑝 = 1,2,∞ respectively, see Figure 6.2. The values of 𝑁௫, 𝑁௬ 𝜖 𝑈௣

need to be determined by an anti-optimization procedure such that critical buckling load

factor, 𝜆௖௥, of the perforated laminated plate is minimized for all possible design variables

configuration.

 𝑈௣ = ൛൫𝑁௫,𝑁௬൯| 𝑁௫ ≥ 0,𝑁௬ ≥ 0,𝑁௫௣ + 𝑁௬௣ = 1ൟ (6.1)

129

Figure 6.1 Loading and boundary conditions of the simply supported perforated laminated

plate.

(a)

(b)

(c)

Figure 6.2 Different uncertainty loading domains.

The set of design variables consists of the fiber orientation angle 𝜃௜, circular cut-out diameter

(or diameter ratio) 𝑑 𝑏⁄ and the cut-out center positions 𝑃௜. The other laminated plate design

variables are imposed, such as width 𝑎, height 𝑏 and ply thickness 𝑡௣. Thereby, the critical

buckling load factor could be written as:

 𝜆௖௥(𝑚,𝑛) = min 𝜆(𝜃௜ ,𝑑 𝑏⁄ , 𝑐௜ ,𝑁,𝑚,𝑛)
(6.2)

𝑝 = 1 0 𝑁௫

𝑁௬
1

1
𝑝 = 2 0 𝑁௫

𝑁௬
1

1 0 𝑁௫

𝑁௬ 1

1

𝑝 = ∞

130

Where 𝑚,𝑛 are buckling modes in 𝑥 and 𝑦 directions. The anti-optimization problem could be

formulated to find uncertainty values of 𝑁 = ൫𝑁௫ ,𝑁௬൯ 𝜖 𝑈௣ as follow:

The Eq. (6.3) results in the worst-case scenario, which needs to be optimized to find the optimal

design variables values that yield the maximum critical buckling load factor.

6.3.2 Optimization Problem Formulation

The current study focuses on optimizing the SSD that maximizes the buckling load of the

perforated laminated plate subjected to uncertainty loading and dimensions conditions.

a.) Optimal solution representation

The manufactured laminate layers have limited sets of fiber orientations such as 0°, ±45°, and 90°. Consequently, the design domain turns into a discrete one, and the

optimization problem becomes NP-hard combinatorial problem. This type of optimization

problem is known for its complexity and thus, selecting the suitable optimization method plays

a major part in finding an inexpensive optimal solution with good accuracy. The Meta-

Heuristics (MH) exhibited a significant performance in solving different SSD optimization

problems of composite laminated structures. To some extent, the MH solutions for SSD

optimization problems take the form of a bit string that consists of a combination of plies with

the available orientations set. The simplicity of using an integer representation and its

significant performance makes it the most widely used method in MHs for SSD optimization

of composite laminated structures (R Le Riche & Haftka, 1995).

 𝜆௖௥(𝜃௜ ,𝑑 𝑏⁄ , 𝑐௜ ,𝑁∗,𝑚,𝑛) = 𝑚𝑖𝑛𝑁𝜖𝑈௣ 𝜆(𝑃௜ ,𝑑 𝑏⁄ ,𝜃௜ ,𝑁,𝑚,𝑛) (6.3)

131

Figure 6.3 shows the interpretation of integer representation of laminate with [3 3 3 2 1 1]௦
stacking sequence where numbers 1,2 and 3 representing 0°, ±45°, and 90° fiber orientations,

respectively.

Figure 6.3 Solution representation of symmetrical and balanced laminate.

b.) The objective function

The objective function of maximizing critical buckling load factor for a laminate subjected to

uncertainty conditions of buckling loading and location of cut-out center could be written as

follow:

where 𝜆௖௕ is the critical buckling load factor that buckles a simply supported plate subjected

to in-plane loads of 𝜆𝑁௫ and 𝜆𝑁௬ into 𝑚 and 𝑛 half-waves in 𝑥,𝑦 directions. The smallest

value of 𝜆 (𝑃௜ ,𝑑 𝑏⁄ ,𝜃௜ ,𝑁,𝒎,𝒏) is considered the critical buckling load factor. The critical

values of 𝑚 and 𝑛 are linked to different factors such as laminate material, a number of plies,

0

1

2

3

4

5

6

7

0 1 2 3 4

La
ye

r n
um

be
r

Fiber orientation

 𝑓௢௕௝ = max ሼmin[𝜆(𝑃௜ ,𝑑 𝑏⁄ ,𝜃௜ ,𝑁,𝑚,𝑛)]ሽ (6.4)

0ଶ° ±45ଶ° 90ଶ°

132

loading conditions, and the plate aspect ratio. In uniaxial loading of a simply supported plate,

the critical buckling load occurs when 𝑚 = 1 whereas in biaxial critical buckling loads, it

needs to be determined as the minimum value of 𝜆 (𝑃௜ ,𝑑 𝑏⁄ ,𝜃௜ ,𝑁,𝒎,𝒏), (Söyleyici, 2011).

c.) The constraints

The design of the composite should respect certain limitations of manufacturing and certain

design considerations. In the literature, some rules have been proposed to improve the

effectiveness of a laminate design for different applications (Javidrad, Nazari, & Javidrad,

2017; Kim, Kim, & Han, 2005). Manufacturing limitations could be the thickness of ply or

fiber orientations that are limited to available manufacturing values. For example, the available

fiber orientations are usually limited to values of ±45°, 0°, and 90° angles, whereas the ply

thicknesses are limited to specific step values. Additionally, symmetrical and balanced

laminate makes the manufacturing process simpler. Another notable design constraint is the

congestion of the same orientation plies, which cause the undesirable effect of laminate crack

propagation.

Generally, these constraints of SSD optimization problem, with constant laminate thickness,

could be handled as follows:

- The symmetry constraint is enforced by optimizing half of the laminate.

- Balancing constraint is enforced by selecting 𝜃ଶ for the standard fiber orientation

set of 0°, ± 45°, and 90°.

- Only 𝑁/4 ply orientations are needed to describe laminate because of balancing

constraints.

- The contiguity constraint is handled using the penalty parameter (𝜌), (R. Le Riche

& Haftka, 1993).

The final objective function form, that includes the contiguity penalty parameter (𝜌), could be

written as:

 𝑓௢௕௝ = (1 − 𝜌).𝑚𝑎𝑥 ሼ𝑚𝑖𝑛[𝜆௕(𝑃௜,𝑑 𝑏⁄ ,𝜃௜ ,𝑁,𝑚,𝑛)]ሽ (6.5)

133

6.4 The Proposed Uncertainty Optimization Framework

Figure 6.4 illustrates the proposed procedure to solve the uncertainty optimization problem of

the perforated composite laminated plate. The procedure starts with the initialization step

where the laminate information is given (e.g. material properties, geometry dimensions, ...etc.).

The procedure starts with the pre-investigation of a certain set of design variables to determine

the initial worst-scenario case. Then the obtained geometrical settings are transferred to the

ANN block to generate inputs data sample that will be used to train the ANN. The generated

ANN prediction function is used as the objective function of the optimization/anti-optimization

of the perforated composite laminated plate. The loop of optimal/anti-optimal solutions will

continue until the termination criteria are met.

Figure 6.4 Proposed robust optimization procedure.

Python
Interface

(PyI)
Black -box function

(ANSYS)

Initialization

Pre-investigation

ANN

Anti-optimization

Procedure Optimization
(ADCSA)

Anti-Optimization
(SA)

Convergence?
yes

Optimal robust

no

134

6.4.1 Black-Box Function

The black-box function term is used to describe the expensive objective functions that consume

long computational time. Mostly, these functions values determined using black-box software

(e.g. Ansys WB) or even the observations of experimental work.

Ansys Workbench is a well-known product design software, and it covers different types of

engineering design problems. One of the recent ANSYS Workbench features is Ansys

composite PrePost (ACP), which deals with designing those products built-up using layered

composites. ACP gives the designer the ability to define the complex parameters of the

composite structure interactively such as the layers number, fiber orientations, ply thickness

and materials of each layer group.

Figure 6.5 Ansys Composite Pre-post (ACP) model analysis flowchart

Taken from (Ahmid2019)

Ansys Workbench

(ACP)

Material assignment

Fabric definition
(Ply data, ply thickness, and

draping coefficients, drop-off and
cut-off materials)

Stackups / Sub-laminates

Rosettes

Edge Sets

Element Sets

Modelling Group/Ply
(Assign material “ply or stack up,

laminate” to oriented element
sets)

Extrude Solid Models

Geometry
(By Ansys Modeller or

CAD Software)
Mesh

Static Structural Analysis

Buckling Analysis

Results
(Determining CBLF)

135

The definition of the laminated geometry is the basic step of the product design, and this

geometry is used next to create the model mesh and to define the boundary conditions as well

as the loading, see Figure 6.5. ACP has two processing modes, pre, and post, where all

composite geometry definitions and meshing model could be created in the pre-processing

mode, whereas the post-processing is evaluating the design analysis results. In the current

study, Pre-post is used alone where there is no need to do a post-processing step, and the critical

buckling load is determined through the buckling analysis.

6.4.2 Python Interface (PyI)

ANSYS Workbench affords the capability of recording all Graphical User Interface (GUI)

actions. This feature is called journaling, and it creates a scripting file written in Python

programming language. Running the journal file from the ANSYS Workbench menu or the

command prompt will repeat all actions of the model creation. The user can modify and reuse

this file in the way that he needs, (Ansys, 2015). This feature of journal scripting is employed

here to create a set of 𝑥,𝑦 data set, where 𝑥 represents the random inputs of the design vector

generated using the LHC sample plan while 𝑦 are their equivalent responses determined by

ANSYS Workbench. The developed Python file is used to transfer the determined critical

buckling load factor (or 𝑦) back into the Matlab code to fill the 𝑥, 𝑦 data matrix that is used to

train the ANN.

6.4.3 Artificial Neural Network (ANN)

ANN is a deep learning algorithm that simulates the neuron structure in the human brain, and

it is originally presented by Hinton (1986). Even though the concept of deep learning and ANN

presented a few decades ago, but it did not find the appropriate attention until recently. The

main barriers confronted deep learning was the availability of data and the computational

power which are needed to build and train the learning model. These barriers are demolished

over time, and deep learning algorithms gain momentum due to the abundance of the data and

computational power.

136

The neuron is the main block of an ANN algorithm, which creates a linear combination

activated by a nonlinear function, see Figure 6.6. The neuron works as a node where input

signals are loaded, and certain computations proceeded. The input signals, 𝑥௜, received from

raw data or from another neuron in the prior layer. The weight (wi) and bias (b) are the design

parameters of the ANN, where weights are applied to the input signals followed by summation

and then adding the bias.

Figure 6.6 Typical structure of an artificial neuron.

Eventually, the obtained linear combinations are activated using a nonlinear function such as

a sigmoid function to determine the output value (𝑦௜). The deep learning model of an ANN is

formed by connecting a specific number of these neurons to respect the net scheme. In the

current study, the feedforward neural network scheme is used through the fitnet function in the

Matlab program. This kind has three main types of layers; the first layer called the input layer,

which contains the input data set, the second is the hidden layers that have a number of

connected neurons, and the last one is the output layer that predicts the desired output, see

Figure 6.7.

Based on the given data set, the net starts to find the connection between the input and output

data that form a nonlinear relation. It occurs through a process called learning of the network,

and it is carried out by using different training algorithms. Once the net learned how to find

the output value of each input, it could be used to predict the output value of any other inputs.

137

Figure 6.7 Structure of the feedforward neural network.

Figure 6.8 shows the different steps of building ANN used here, and each step is briefly

explained in the following subsections.

a.) Data Sampling

The first step in developing a neural network model is collecting the data set of the designated

problem. The data set consists of inputs, which need to be randomly generated, and outputs

that need to be determined by the black-box function. Thus, generating the random sample of

the inputs has great impacts on the quality of the data set created. There are a variety of

sampling methods that could be used; here, a Latin Hypercube (LHC) design plan has been

employed. LHC is a statistical scheme to generate a random sample of variables values that

fulfill a certain criterion. LHC divides the range of each variable into a number of equal

intervals. To respect LHC requirements, the number of interval needs to be the same for all

y2

y1

ym

1

2

m

1

2

3

4

n

5

x1

x3

x2

1

2

3

n

1

2

3

4

n Output layer
Input layer

Hidden layer

Hidden layer

Hidden layer

138

variables. LHC takes random samples one at a time, knowing which samples have been taken

so far. Thereby, LHC ensures sampling each variable range fairly with the least possible

number of samples (Iman, Helton, & Campbell, 1981).

Figure 6.8 ANN building flowchart.

However, to apply the LHC plan for the current design problem, there is a need to understand

that the input vector,𝑋, have a mixed type of design variables of real and integer numbers. The

design vector consists of the center of the cut-out 𝑃௜, the diameter ratio 𝑑/𝑏 , stacking sequence

configuration (or SSD) 𝜃௜, and loading conditions 𝑁௜.

 𝜃௜ is a vector of integers between 1 and 3; they represent the available fiber orientations, and

its length depends on the number of the laminate plies. As soon as the input samples were

created, they sent to the black-box function program, ANSYS, to find the corresponding output

values described in section 6.4.2.

 𝑋 = ൣ𝑃௜(𝑥௜ ,𝑦௜) 𝑑௜ 𝑏 ⁄ 𝜃௜ 𝑁௜(𝑁௫௜ ,𝑁௬௜) ൧ (6.6)

Artificial Neural Network
(ANN)

Data Sampling (LHC)

Train the data (X,Y)

Test the data (X,Y)

Generate PredictANN(X)
Function

139

b.) ANN Training and Testing

When the data set becomes available, it will be split into two groups of training data and testing

data. The training data dedicated to training the ANN to learn the relationship between the

input and output values; thus, it could predict the output of any other input values. The learning

process is carried out using different algorithms that consist of a certain set of blocks designed

to adjust the neuron’s weights and bias. The training data usually hold about 60-90% of the

whole data set while the remaining data used to test the solution generalization of the network

(I. N. Da Silva, Spatti, Flauzino, Liboni, & dos Reis Alves, 2017). In the current study, 85

percent of the data set used to train the network while 15 percent used for the network solution

testing. The training algorithm used here is called Bayesian Regularization backpropagation,

which is known for its well-generalized networks.

6.4.4 Anti-optimization Procedure

As mentioned in the introduction, the anti-optimization procedure has two levels of

optimization and anti-optimization, which work to find the robust optimal SDD that considers

the uncertainty influences of buckling loading and location of the cut-out center. Two different

MHs were selected to conduct this process, and they were introduced concisely in the following

sections.

a.) Adapted Discrete Cuckoo Search Algorithm (ADCSA)

The original Cuckoo Search algorithm (CS) is designed to solve unconstrained continuous

optimization problems (X.-S. Yang & Deb, 2009). CS demonstrated a significant performance

in solving several NP-hard optimization problems such as TSP, scheduling and truss weight

optimization problems. Since CS presented in 2009 by Yang, various improvements and

modifications were presented. Some of the developed CS variances tried to deal with the

discreteness nature of real-life applications. Unfortunately, most of those discrete CS variants

were designed to solve an appointed optimization problem. For instance, the Binary CS (BCS)

140

is anticipated by Gherboudj et al. (2012) to solve the knapsack problem. However, other

variants were introduced as more general-purpose variants such as Discrete CS (DCS) by A

Kaveh and Bakhshpoori (2013), which uses the approach of rounding to the nearest discrete

value for the newly generated solutions. More recently, Loubna et al. (2017) suggested another

discrete CS variant based on a rank-value approach where the new solutions determined based

on the integer-order (rank) of each possible discrete value in the design domain. This variant

applied to the discrete problem of image recognition, and the obtained results reveal the

efficiency of the rank-value approach.

Algorithm 6.1 Adapted Discrete Cuckoo Search Algorithm (ADCSA)
Taken from (A. Ahmid, Thien-My, & Le, 2020) 𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏:

- Initial and evaluate a random population of 𝑛 host nests (𝑥𝑖, 𝑓𝑖) using Latin
HyperCube (LHC) random generator. 𝑾𝒉𝒊𝒍𝒆 (convergence not met) 𝐷𝑜:

- Generate a new Cuckoo (population) randomly by Lévy flights.
- Evaluate the new Cuckoo fitness (𝑓௜).
- Choose a nest among 𝑛 (𝑠𝑎𝑦, 𝑗) randomly.

 𝐼𝑓 𝑓𝑖 > 𝑓𝑗
- Replace the j with the new solution.

 𝑒𝑛𝑑
- Rank the solutions and find the current best.
- Discard Pa fraction of worst solutions.
- Substitute the discarded solutions by new ones generated by Lévy flights.

 𝐼𝑓 (maximum successful runs number exceeded)
- 𝐷𝑜 permutation, swap, insertion and bit flip for the current best solution.

 𝑒𝑛𝑑
- Update the best solution. 𝑬𝒏𝒅

Here, a most up-to-date variant of CS called Adaptive Discrete CS Algorithm (ADCSA), by

(A. Ahmid et al., 2020), was used to carry out the optimization level of the anti-optimization

procedure. ADCSA bears three main modifications to the original CS. First, it is using Latin

Hypercube (LHC) sampling method to generate the initial population; the second is presenting

discrete Levy flight representation and finally improve the neighbourhood search of the best

141

solution through four different permutation movements. The proposed ADCSA pseudo-code

is listed in Algorithm 6.1.

b.) Simulated Annealing (SA)

SA is a trajectory-based MH that mathematically analogy the thermal annealing process of

metals. The concept of SA introduced by Metropolis in the early 1950s’ and since then, it has

examined to solve a wide range of optimization problems (Kirkpatrick, Gelatt, & Vecchi,

1983). SA proved a significant performance in solving numerous optimization problems, and

here is used to perform the anti-optimization level job of finding the worst-case scenario. The

typical structure of the SA optimization algorithm is shown in Algorithm 6.2.

Algorithm 6.2 Simulated Annealing Algorithm procedure
 Taken from (A; Ahmid et al., 2019)

Initialization:

- Initialize SA parameters (𝑇, 𝑐,𝑛)
- Generate an initial random solution.
- Evaluate the initial solution.

While (termination criteria not satisfied) Do
- Generate a new solution from the current solution vicinity.
- Calculate the current solution of energy.
- Calculate the new solution energy.
- Compare both solutions energy.
- Update the current solution with the biggest.
- If the number of iterations > 𝑛
- Reduce the temperature, 𝑇, by reduction factor 𝑐.

End SA algorithm for combinatorial optimization problems

a.) Convergence criterion

The anti-optimization block continues to find the optimal and anti-optimal solutions until the

difference between both solutions,∆𝑓, remains constant for a certain number of iterations or

the maximum number of anti-optimization iterations is reached.

142

6.5 Numerical Experiment

The optimization framework developed here was examined for a case study of perforated

composite laminated subjected to biaxial buckling loading, see Figure 6.9. The laminate has

an aspect ratio 𝑎 𝑏⁄ = 1: 2, where 𝑎 = 558 𝑚𝑚 and 𝑏 = 279 𝑚𝑚; the number of plies 𝑁௣ =24, ply thickness 𝑡௣ = 0.1163 𝑚𝑚, the edge distance 𝑒 = 3.ℎ௣ and the diameter of the cut-

out 𝑑 = 0.2,0.3, . . . ,0.8. 𝑏 (𝑚𝑚). The edges are simply supported, and the biaxial loading 𝑁൫𝑁௫ ,𝑁௬൯ ∈ [0,1](𝑁/𝑚). The laminate material is Epoxy-Graphite, 𝐸ଵଵ = 132.58 𝐺𝑃𝑎, 𝐸ଵଶ = 10.8𝐺𝑃𝑎, 𝐺ଵଶ = 5.7𝐺𝑃𝑎, 𝜈ଵଶ = 0.24 and 𝜈ଶଷ = 0.49.

Figure 6.9 Main dimensions and loading conditions of 24 ply perforated Graphite-
Epoxy laminate.

The different framework blocks were programmed using Matlab R2019b program, while

ANSYS Workbench 2020R2 was used to determine the Black-box function values. The

numerical experiment started by creating an FEA model using ANSYS, then a mesh

convergence check is conducted. This step is followed by pre-investigation for specific loading

conditions with a set of different cut-out diameters and locations to identify the spot of the

possible critical cut-out configuration, which will be used later as the initial worst case. Finally,

 ∆𝑓 = 𝑓௢௣௧ − 𝑓௔௡௧௜ (6.7)

143

based on previous step outcomes, the ANN is created, and the anti-optimization procedure is

activated to determine the optimal robust SSD.

6.5.1 Finite Element Modelling

The laminate buckling analysis goes through three steps; it starts by generating the laminate

model geometry and defining the material properties in ANSYS ACP. Next, the static

structural analysis takes place and finally carrying out the eigenvalue buckling analysis. The

geometry of the laminate FE model was created, and the material properties were defined

according to the given laminate information. Creating the model in ACP starts with sketching

the principle geometry of the laminated plate, which is a simple 2D rectangular, and then a

surface body is created using this sketch. Then, it is followed by creating the surface body that

is needed to implement the meshing model. The SELL181 element type was used, and the

number of elements initialized by just 90 elements and gradually increased up to 384 elements

where a satisfied convergency rate was met, see Figure 6.10.

Figure 6.10 The mesh size convergency.

144

6.5.2 Preliminary Investigation

Three different laminates with SSD of angle ply, cross-ply and quasi-isotropic were examined

to develop a draft idea about where is the initial worst-case scenario could occur. Nine different

cut-out centers were selected while the cut-out diameter varies from 0.2𝑏 to 0.80𝑏 with an

increment of 0.1𝑏, see Figure 6.11. Each laminate configuration is subjected to three different

loading conditions. First is maximum unidirectional loading in 𝑥-direction; second is

unidirectional loading in 𝑦-direction and, finally, bidirectional loading.

(a)

(b)

Figure 6.11 Selected cut-out centers and diameter aspect ratio.

These figures are quite revealing in several ways. First, the different examined stacking

configurations followed almost the same pattern for the three loading conditions; for instance,

in the unidirectional loading case, in the x-direction, the high 𝑑 𝑏⁄ gives bigger values of 𝜆௖௥

and this pattern is the same for all designated stacking configurations. The second interesting

observation was that the most minimum 𝜆௖௥ found for the case of unidirectional loading in y-

direction rather than to be in case of bidirectional loading.

Overall, these results indicated that the worst-case scenario occurred at 𝑃ଶ for 𝑑 𝑏⁄ = 0.8,

consequently, the ANN will be developed to this specific configuration, and the obtained

prediction function will be used next as the objective function in the anti-optimization

procedure.

145

Figure 6.12 Critical buckling load factor vs. Diameter ratio for [±45°]଺௦

laminate under different loading conditions

P1 P2 P3
P4 P5 P6
P7 P8 P9

0,2

0,4

0,6

0,8

0,1 0,3 0,5 0,7 0,9
λ c

r

d/b

0,2

0,4

0,6

0,1 0,3 0,5 0,7 0,9

λ c
r

d/b

0,20

0,23

0,25

0,28

0,30

0,1 0,3 0,5 0,7 0,9

λ c
r

d/b

146

Figure 6.13 Critical bucking load factor vs. Diameter ratio for [0°ଶ 90°ଶ]ଷ௦

laminate under different loading conditions

P1 P2 P3
P4 P5 P6
P7 P8 P9

0,2

0,4

0,6

0,8

1,0

0,1 0,3 0,5 0,7 0,9

λ c
r

d/b

0,1

0,2

0,3

0,1 0,3 0,5 0,7 0,9

λ c
r

d/b

0,15

0,20

0,25

0,1 0,3 0,5 0,7 0,9

λ c
r

d/b

147

Figure 6.14 Critical bucking load factor vs. Diameter ratio for [±45° 0°ଶ90°ଶ]ଶ௦

laminate under different loading conditions.

P1 P2 P3
P4 P5 P6
P7 P8 P9

0,2

0,4

0,6

0,8

0,1 0,3 0,5 0,7 0,9
λ c

r

d/b

0,1

0,2

0,3

0,4

0,1 0,3 0,5 0,7 0,9

λ c
r

d/b

0,18

0,22

0,26

0,30

0,1 0,3 0,5 0,7 0,9

λ c
r

d/b

148

6.5.3 ANN Settings

As stated in section 6.4.3 (a), the design vector has mixed types of numbers that need to be

fairly handled to obeys the LHC plan criteria. Thus, all design vector variables are sampled

simultaneously using the lhsdesign function in Matlab. Then, the sampling values of the fiber

orientations (SSD) vector are interpreted to their equivalent integer values using the

classification concept that is widely used in Machine Learning (ML) (Montáns, Chinesta,

Gómez-Bombarelli, & Kutz, 2019). The sample size used here is 1000 observations. The

equivalent responses,𝑌, of the generated sample determined according to the described

procedure in section 6.4.3.

Regarding the ANN structure, the preliminary trials imply that ANN with three hidden layers

and ten neurons each will perform perfectly for this specific problem. The performance goal

of the ANN is set to 1e-06 and epochs to 3000. The developed prediction function is then

verified using a new set of design vectors, see Figure 6.16.

Eventually, the anti-optimization loop is activated, and the tour to find the robust optimal SSD

continues until 50 consecutive equal differences, ∆𝑓, of optimal and anti-optimal solutions are

obtained or maximum number of iterations, 𝐼௠௔௫ = 1000 is reached.

6.6 Results

The trained ANN performance and their Mean Square Error (MSE) are plotted in Figure 6.15

(a) and (b). The validation of the ANN conducted using a new sample of design vectors which

already evaluated using ANSYS software. The ANN prediction function and ANSYS results

were compared and plotted in Figure 6.15. The comparison reveals a reasonable agreement

between both results were the average error determined was around ±4%.

The anti-optimization procedure started with an evaluation of the solution at the initial worst

scenario (𝑃ଶ in the preliminary investigation) and trying to find the new optimal solution using

149

ADCSA and store it into the optimal solution matrix. The optimization level is searching the

design space to find the optimal SSD that maximize the critical buckling load factor,𝜆௖௥, for

cut-out center and loading conditions of 𝑃ଶ. Then, the anti-optimization level starts a new

search to determine the new location of the cut-out and new loading conditions that will

minimize 𝜆௖௥ obtained by optimal SSD. This loop continues until the mentioned convergency

criteria are met. In the current experiment, the maximum number of iterations is exceeded, and

the gained results of the anti-optimization procedure were plotted into Figure 6.17.

The experiment results show that the optimal SSD has 17 stacking sequence configurations,

see Figure 6-18. Also, it could be noticed that the 90ଶ° fiber orientation is dominating all

optimal SSD found here. This tendency to include more stacking sequence with fiber

orientation 90ଶ° can be explained because of the existence of high loading in the y-direction.

Moreover, the SSD 2 in Figure 6.18 repeatedly appeared during the anti-optimization

procedure, see Figure 6.19

In addition to SSD 2, two other optimal solutions occupied 16% and 17% of the appearance

during the anti-optimization loop, see Figure 6.19. Consequently, those three appointed SSD

solutions were investigated more by plotting their cut-out center points and plotting their anti-

optimization procedure results, see Figure 6.20 to Figure 6.25.Those figures have shown that

most critical locations of the cut-out were near to preliminary investigation worst-case 𝑃2.

Furthermore, the critical loading conditions occurred when the loading conditions in the y-

direction are high, which is in line with preliminary investigation results.

150

(a)

(b)

Figure 6.15 Data set regression and Mean Square Error (MSE) results using forwardfeed

ANN

151

Figure 6.16 Comparison of ANN and Black-box function (ANSYS) results for the
validation sample

2,5E+04

5,0E+04

7,5E+04

1,0E+05

1,3E+05

1,5E+05

0 100 200 300 400 500 600 700 800 900

C
ri

tic
al

 B
uc

kl
in

g
Lo

ad
 F

ac
to

r,
 λ

cr

Validation samples

2,0E+04

4,0E+04

6,0E+04

8,0E+04

1,0E+05

1,2E+05

1,4E+05

400 420 440 460 480 500

C
ri

tic
al

 B
uc

kl
in

g
Lo

ad
 F

ac
to

r,
 λ

cr

Validation samples

152

Figure 6.17 The anti-optimization procedure iteration vs. critical buckling load factor

2,E+04

4,E+04

6,E+04

8,E+04

1,E+05

1,E+05

0 100 200 300 400 500 600 700 800 900 1000

Cr
iti

ca
l B

uc
kl

in
g

Lo
ad

 F
ac

to
r,
λ c

r

Iteration

2,E+04

4,E+04

6,E+04

8,E+04

1,E+05

1,E+05

500 510 520 530 540 550 560 570 580 590 600

Cr
iti

ca
l B

uc
kl

in
g

Lo
ad

 F
ac

to
r,
λ c

r

Iteration
Optimal solution Anti-optimal solution

153

Figure 6.18 The SSD arrangements of the main optimal solutions.

2 4 5

6 8 9 10

11 12 13 14 15

16 17

7

1 3

154

Figure 6.19 Main optimal SSD percentage breakdown.

Figure 6.20 Cut-out center points of SSD2

2
49%

3
16%

4
7%

5
17%

6
others
< 1%

8
1%

9
1%

10
1%

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

0

50

100

150

200

250

0 100 200 300 400 500

C
y

Cx

155

Figure 6.21 The anti-optimization procedure iteration vs. critical buckling load factor
for SSD2

Figure 6.22 Cut-out center points of SSD3

2,E+04

4,E+04

6,E+04

8,E+04

0 100 200 300 400

Cr
iti

ca
l B

uc
kl

in
g

Lo
ad

 F
ac

to
r,
λ c

r

Solution number of SSD arrangement 2

0

50

100

150

200

250

0 100 200 300 400 500

Cy

Cx

156

Figure 6.23 The anti-optimization procedure iteration vs. critical buckling load

factor for SSD3

Figure 6.24 Cut-out center points of SSD5

5,0E+04

6,5E+04

8,0E+04

9,5E+04

1,1E+05

0 40 80 120 160

Cr
iti

ca
l B

uc
kl

in
g

Lo
ad

 F
ac

to
r,
λ c

r

Solution number of SSD arrangement 3

0

50

100

150

200

250

0 100 200 300 400 500

Cy

Cx

157

Figure 6.25 The anti-optimization procedure iteration vs. critical buckling load

factor for SSD5

The anti-optimization results of SDD2 exhibited a stable minimum value of 𝜆௖௥, around 67000

on average, while the minimum values of the anti-optimization level appeared to have

extremely fluctuated. Furthermore, the gap between the minimum optimization and maximum

anti-optimization is smaller compared to SSD3 and SSD5.

However, the difference between the optimization and anti-optimization objective functions

never been constant for the current case study of perforated composite laminate; thus, the

optimal solution considered for the solution with simultaneously minimum of optimal and anti-

optimal objective function values. Accordingly, the SSD3 is the robust optimal solution for

uncertain loading within an interval of 0 to 1 (N/m) for any center point of the cut-out around

P2 and a diameter ratio of 0.8. Eventually, the appointed optimal SSD is implicitly able to

receive nominal critical buckling loads varied from 20 to 67 KN/m.

2,5E+04

4,5E+04

6,5E+04

8,5E+04

1,1E+05

1,3E+05

0 20 40 60 80 100 120 140 160

158

6.7 Conclusion

The current study introduced a cost-effective, robust optimization framework to optimize the

SSD that maximize the critical buckling load factor of a perforated composite laminated plate

subjected to uncertainty influences of buckling loading and cut-out center point location. The

framework adopted the anti-optimization approach to consider uncertainty influences. The

main idea behind the anti-optimization is searching the design space of the problem to find the

worst-case scenario (anti-optimization) for the current optimal SSD. Then it is followed by

new searching for another optimal SSD (optimization). This process is iterative, and it needs a

large number of objective function evaluations. Thus, it becomes a very expensive choice

compared to deterministic or probabilistic design frameworks. However, the emerging

utilization of the ANN technique in solving different engineering problems can give the anti-

optimization approach a significant push that makes it a feasible alternative as a cost-effective

design framework. Here, the ANN technique is used to develop an accurate prediction of

critical buckling load factor values of a perforated composite laminate plate subjected to

uncertainty conditions. The ANN trained based on a set of input data, 𝑥, sample generated by

Latin Hypercube plan and their design responses, 𝑦, were determined by commercial FEA

software of ANSYS workbench. The validation results demonstrated a significant agreement

between the ANN predictions and Black-box function (ANSYS) results.

Though the proposed framework is created through two steps, first, a preliminary investigation

has been done to determine the diameter and location of the cut-out that minimizes the critical

buckling load factor under certain loading conditions. The purpose of this step is to find the

initial worst-case to start the anti-optimization procedure. The Adapted Discrete Cuckoo

Search Algorithm (ADCSA) is used to optimize the SSD of the perforated composite laminated

plate for maximum critical buckling load factor while a Simulated Annealing algorithm is used

to anti-optimize the obtained optimal SSD.

The results of the numerical experiments revealed that there are 17 SSD options appeared

during the anti-optimization tour of 1000 iteration. Moreover, the 90ଶ° fiber orientation has

159

been found to be the major orientation selected for all optimal SSD solutions. Also, it noticed

that most anti-optimal solutions occurred with bidirectional loading conditions when the 𝑁𝑦

loading is high (or even the maximum load) while a smaller load is applied in the x-direction.

Lastly, the selected optimal SSD is implicitly able to receive nominal critical buckling loads

varied from 20 to 67 KN/m for the considered uncertainty conditions.

CONCLUSION

The thesis’s preceding chapters, having demonstrated the importance of the optimization

technique selection based on a comprehensive performance assessment criterion and how this

could affect the structural design optimization process in terms of solution quality and cost.

Furthermore, the thesis raises the gap between the practical design problems and those

academically presented.

The literature review’s chapter shows the mass development of new MHs to solve different

benchmarking SDO problems. Even though the importance of using fair assessment criterion

to evaluate the MHs performance, regrettably, it has received a little attention, reflecting a

wider failure of implementing MHs to solve practical design problems. However, this research

opportunity and others presented in the literature review chapter, motivated the current thesis

to determine answers for the following research questions:

- How does the performance of different MHs could be fairly assessed to determine the

suitable MH that solves a real-life SDO problem efficiently?

- Does the designated MH qualify for further performance improvement such that it

becomes more competitive in terms of solution quality and computational cost?

- How does a robust optimization framework could be developed so that it can handle a

structural optimization problem associated with an expensive objective function, and

concurrently it considers the influences of different design uncertainties?

After that, CHAPTER 2 introduces the methodology framework pursued here to develop the

required knowledge to answer the research questions. The different components of the

framework are explained in more detail; therefore, the methodology of achieving the

predefined objectives is clarified. Eventually, the summary of the research achievements and

novelty are presented in the last section.

162

A real-life application of customized I-beam overhead gantry crane is introduced in Chapter 3

as a novel SDO problem. The crane is composed of three rectangular plates, with the same

length and different thicknesses and widths, welded together by full penetration welds over the

span length to form an I-Beam profile. The thicknesses and widths of plates must be optimized

to have the minimum cross-section area while respecting yield, buckling, deflection and fatigue

criteria. A mathematical procedure based on the Timoshenko beam theory and Crane

Manufacturers Association of America (CMAA) combined with the Genetic Algorithm (GA)

is presented, and a Mathcad code is implemented to find the optimal I-Beam cross-section

dimensions.

In response to the first two research questions, a comprehensive assessment criterion has been

initialized in CHAPTER 4 and then extended in CHAPTER 5. The basic version of the

assessment criterion has been used to measure the performance of a novel variant of Cuckoo

Search (CS) MH in CHAPTER 4. The proposed variant, called the Adaptive Discrete CS

Algorithm (ADCSA), uses the rank-value approach to turn real values of random Lѐvy walks

(steps/jumps) into their equivalent discrete values. Moreover, the ADCSA intensification effort

was enhanced by adding four different local search movements of permutation, swap, insertion

and bit flip. The performance of the final version of ADCSA validated across a well-known

benchmark problem of the composite laminated plate. Then, ADCSA employed to optimize a

discrete version of the customized I-beam crane introduced in CHAPTER 3.

The MHs performance assessment criterion has been developed in CHAPTER 5, where it

extended to include more efficient measures such as the practical reliability, price

(computational cost), normalized price, performance rate, solution quality and Fitness-

landscape analysis. Additionally, two different convergence rates were imposed on examining

the MHs at slow and fast rates. As well as the reproducibility of the numerical experiments

results considered within the procedure of MHs assessment. Thereafter, the proposed criterion

has been employed to compare five different variants of Ant Colony Optimization (ACO). The

proposed measures demonstrated a comprehensive assessment of the compared ACOs

performance. The initial results of the comparison study reveal that the Hyper-Cube

163

Framework (HCF) ACO variant outperforms the others. Consequently, an investigation of

further improvement led to introduce an enhanced version of HCFACO (or EHCFACO). The

new variant has advanced intensification features that use insertion and bit-flip movements to

enhance the local search effort. Eventually, the EHCFACO variant was compared with other

ACO variants, and it exhibited a significant performance.

In answering the last research question, a robust design optimization framework was

introduced in CHAPTER 6. The framework adopted the anti-optimization approach to consider

uncertainty influences. The main idea behind the anti-optimization is searching the design

space of the problem to find the worst-case scenario (anti-optimization) for the current optimal

solution. Then it followed by new searching for another optimal solution (optimization). This

process is iterative that needs a large number of objective function evaluations, which make it

a very expensive choice compared to deterministic or probabilistic design frameworks. Thus,

the cutting-edge Deep Learning algorithm of Artificial Neural Network (ANN) has been

adopted in this chapter to predict the design response of a perforated composite laminated plate

subjected to buckling loading. The ANN trained based on a set of input data, 𝑥, sample

generated by Latin Hypercube plan and their design responses, 𝑦, were determined by

commercial FEA software of ANSYS workbench. The validation results demonstrated a

significant agreement between the ANN predictions and Black-box function (ANSYS) results.

However, the proposed framework is created through two steps. First, a preliminary

investigation that has been done to determine the diameter and location of the cut-out that

minimizes the critical buckling load factor under certain loading conditions. The purpose of

this step is to find the initial worst-case to start the anti-optimization procedure. The ADCSA

MH, which developed in CHAPTER 4, is used to optimize the SSD of the perforated composite

laminated plate for the maximum critical buckling load factor. In contrast, a Simulated

Annealing (SA) algorithm is used to anti-optimize the obtained optimal SSD.

The rest of the conclusion section is devoted to presenting the thesis findings and list the main

contributions. It then continues to address the thesis’s overall implications and limitations. A

possible perspective research opportunity has been outlined at the end of the section.

164

Findings

The optimal solution of customized I-beam crane presented in CHAPTER 3 reveals interesting

observations. The optimized custom I-section has a configuration of narrow and thick lower

flange, thinner and wider upper flange, and the web is tall and very thin, which could save

about 18% of weight compared to commercial standard I-Beam. Furthermore, it is found that

the constraints of general lateral buckling and local buckling of the upper flange are always

reached for all examined cases. The web local buckling constraint is critical for about 66% of

cases; the yield and fatigue constraints found critical for 33% of cases, and the deflection

constraint is not a problem at all. Another impressive observation was that the discrete version

of the crane, presented in CHAPTER 4, followed the same pattern of the cross-section

configuration of the original crane design problem. Moreover, the equivalent standard I-beam

that examined across the design criteria demonstrated a poor strength response and even

violated one or more constraints on several occasions.

Using the elapsed time as a performance measure of MH does not reflect the actual

computation cost required by MH to find the optimal solution. Based on findings of the

proposed assessment scheme presented in CHAPTER 5, it noticed that MHs with high-

reliability solutions need more time to find the global optima but need relatively a small

number of computation iterations. This observation led to another important remark, the MHs

that shown good performance are hardly exploring the design space where their Fitness-

Distance Correlation, 𝑟, figures become lower than the other MHs. However, the difference

in 𝑟 values is noticed, but it does not negatively impact the overall performance of the

designated MHs, except increasing the computational time. Furthermore, it is observed that

applying the HyperCube Framework (HCF) to standard ACO has a significant influence on

the overall performance of ACO. Also, imposing local search movements, as an enhancement

of exploitation effort, helped HCFACO to deliver a cost-effective solution. These

improvements in ACO performance are in line with suggestions made by previous studies that

rewarding HCF and local search movements the dominant factor in improving standard ACO

algorithm performance.

165

CHAPTER 4 presented a novel discrete variant of ADCSA that integrated a rank/value to turn

the continuous domain of the design problem into a discrete domain. One of the significant

relevant findings to extract from this chapter is that using rounding to the nearest discrete value

has a negative impact on the computational cost of the optimal solution. The optimal solution

using the rounding approach has cost more than twice of the rank/value-based optimal solution.

Furthermore, the initialization methods experiment conducted in CHAPTER 4 illustrated a

slight effect of the initial population generation on the performance of ADCSA. The LHC

sampling approach improved the reliability slightly compared to ADCSA that initialized using

DUD or Hybrid DUD-LHC.

A robust optimization framework has introduced in CHAPTER 6. One of the most obvious

findings to emerge from this part is that employing the ANN algorithm has tremendously

reduced the associated cost of the objective function evaluation. Furthermore, the enumeration

of the possible SSD configurations that can be obtained for the designated laminate produced

729 configurations. Despite this number of available configurations, the robust optimal

solution is limited to just 17 SSD configurations. Moreover, the 90ଶ° fiber orientation has been

found to be the major orientation selected for all optimal SSD solutions. Also, it noticed that

most anti-optimal solutions occurred with bidirectional loading conditions when the 𝑁𝑦

loading is high (or even the maximum load) while a smaller load is applied in the x-direction.

Limitations

A number of important limitations need to be considered. The current study has examined the

buckling loading conditions only and this could be referred to the inclination of the current

thesis to raise awareness of the consequence of underestimating the critical buckling loading.

Not surprisingly that minimizing the weight is common practice in the SDO domain. Thus, the

buckling failure mode should get enough attention from the designer where the lighter

structures are more exposed to failure due to buckling than other loading conditions.

The critical design analysis represents an important interest in the current work. Accordingly,

using simply supported edges conditions for plates examined on different occasions in this

166

thesis could be explained in this direction. Based on classical plate theory, the lowest values

of critical buckling load factor are going to cases with simply supported edge conditions; thus,

the attained optimal design still valid for other edge boundary conditions. However, it is not

necessary, in real-life applications, to optimize against such excessive edge conditions.

Even though the MHs literature is full of studies that approve the noticeable impact of

parameters tuning on the MHs performance, they considered constant here for all examined

ones. This perceived ignorance of such an aspect refers to the associated computation cost of

this repetitive investigation, and such an exhaustive practice would diminish the scope of the

thesis significantly.

Future Work

It is recommended that further research be undertaken in the following areas:

- The proposed ADCSA and EHCFACO have been applied to view different SDO

problems so far and examining them for other structural optimization problems could

be prospective work. Furthermore, investigating the different initialization methods on

the proposed algorithm to find better performance deserves a try.

- Another possible area of future research would be to investigate the performance of the

proposed approach of a robust design optimization framework to handle multi-

objective SDO problems.

- Further research is needed to examine more closely the performance of the new

proposed metaphor-based MHs. The MHs performance assessment criterion which

developed here be used for such task.

- A future investigating study of the performance of the developed MHs, ADCSA and

EHCFACO, for SDO problems that consider the thermal buckling loading would be

very interesting.

167

Summary of Achievements and Novelty

The current study made novel contributions to the research domain of SDO that we could

summarize in the following points:

- The work in CHAPTER 3 presented a new optimization approach that could be used

to solve different SDO problems. The basic purpose of the developed approach was

promoting of the built-in optimization tools in ANSYS Workbench software. However,

the approach has been improved through the thesis sections and it became a cornerstone

of more sophisticated SDO framework that presented in the CHAPTER 6.

- Develop a new discrete variant of CS MH that uses an adaptive technique to adjust

step/jumps of Lévy flights, which used to create the new solutions in CS optimization.

Furthermore, four different local search movements were integrated into the proposed

ADCS MH, see CHAPTER 4.

- Present an Enhanced HCF-ACO (EHCFACO) variant as a novel optimizer for SDO

problems. The standard HCF-ACO variant never examined before as a solver of any

SDO problems, up to the best of our knowledge, even though it used successfully to

solve other NP-hard combinatorial optimization problems, see CHAPTER 5.

- Establish a comprehensive performance assessment criterion for MHs used to solve

SDO problems. The new criterion introduced new performance measures such as

Fitness-Distance correlation factor, performance rate and solution quality.

Additionally, the MHs performance was examined at different levels of convergence

rate (slow, fast). Theses measures used together with traditional performance measures

of computational price, computational time and successful rate (reliability) for the first

time to evaluate the MHs performance as SDO problems optimizer. Lastly, the

comparison criterion examines all numerical experiments for 200 times each and for

ten different seed numbers. The number of experiments devoted to overcoming the

168

stochastic behaviour of MHs while using different seeds number aims to make the

assessment results able to be reproduced, see CHAPTER 5.

- Propose a new robust design optimization framework to solve NP-hard SDO problems

using the anti-optimization approach. The proposed framework uses ANN models to

predict the value of the expensive objective functions of the SDO problem, see

CHAPTER 6.

- Lastly, introduce two novel SDO problems of customized I-beam profile overhead

gantry crane and a perforated composite laminated plate. Both new SDO problems

developed based on two different materials. The new SDO problem presented in two

individual published journal papers, see CHAPTER 3 and CHAPTER 4.

Moreover, some other sub contributions have been introduced in the current work, such as

examining the impact of random numbers generator of the initial solution on the final solution

obtained by MH. All the Matlab routines of different MHs implemented here are available in

the appendices, and soon they will be uploaded online as open-source repositories for

interested researchers.

Published work

Eventually, the thesis has led to five journal publications, three of them are published while

two are submitted. Additionally, four conference papers (and extended abstracts) have worked

out, and the details of all publications are listed here below.

Journals

- Ahmid, A., Le, V., Dao, T. (2017). An Optimization Procedure for Overhead Gantry

Crane Exposed to Buckling and Yield Criteria. IRA International Journal of

Technology & Engineering (ISSN2455-4480),8(2),28-38. DOI :http:// dx.doi.org

/10.21013/jte.v8.n2.p3

169

- Ahmid, A., Dao, T. M., & Van Ngan, LÊ. (2019). Comparison Study of Discrete

Optimization Problem Using Meta-Heuristic Approaches: A Case Study. International

Journal of Industrial Engineering, 1(2), 97-109.

- Ahmid, A., Dao, T. and Le, V., (2020). An Adaptive Discrete Cuckoo Search

Algorithm to Solve Structural Optimization Problems. Journal of Multidisciplinary

Engineering Science and Technology (JMEST), 7(6).

- Ahmid, A., Le, V., and Dao, T. (2020). Enhanced HyperCube Framework ACO For

Structural Combinatorial Optimization Problems (submitted to Elsevier Composite

Structures journal).

- Ahmid, A., Le, V., Dao, T., Optimization of Perforated Composite Laminated Plate

Subjected to Uncertain Geometrical and Loading Conditions (submitted to Computers

& Structures journal).

Conferences

- Ahmid A., Le V., & Dao, T. (2017). Optimization procedure for an I-beam crane

subjected to yield and buckling criteria. In 2017 World congress on advances in

structural engineering and mechanics (ASEM17) (pp. 1–12). Ilsan, Seoul, Korea:

ASEM.

- Ali Ahmid, T.M.Dao and V.N.Le (2019). Optimization of the Mechanical Structures

Design Problem by Meta-Heuristics Approach: A Case Study. Industry, Engineering

and Management Systems Conference (IEMS). California, US (extended abstract).

170

- Ahmid A., Le V., & Dao, T. (2019). Composite Plate Design Optimization Using

Enhanced Hyper-Cube Ant Colony Optimization Algorithm. In NAFEMS World

Congress (NWC). Quebec, Canada.

- Ali Ahmid, T.M.Dao and V.N.Le (2021). Enhanced Hyper Cube Framework ACO For

Structural Combinatorial Optimization Problems. Proceedings of the International

Conference on Industrial Engineering and Operations Management. Singapore, March

9-11, 2021 (extended abstract).

APPENDIX I

 COMPARISON STUDY OF DISCRETE OPTIMIZATION PROBLEM USING
META-HEURISTIC APPROACHES: A CASE STUDY

A.Ahmid a , T. M. Dao b and V. N. Lê c

a,b,c Department of Mechanical Engineering, École de Technologie Supérieure,
1100 Notre-Dame West, Montreal, Quebec, Canada H3C 1K3

APPENDIX IPaper published in International Journal of Industrial Engineering and

Operations Management (IJIEOM), Volume. 1, No. 2, pp. 97-109, December 2019

Abstract

This paper presents the performance comparison of five meta-heuristic algorithms to solve a

discrete optimization problem. The comparison is undertaken for a case of simply supported

plate subjected to biaxial loading conditions. Furthermore, the optimization objective is to

determine the optimal stacking sequence design of a laminate that maximizes the critical

buckling load factor (𝜆௖௕). The chosen meta-heuristics have been implemented using

MATLAB with the same convergence criteria and the same maximum number of iterations to

ensure a fair comparison. The implemented assessment criterion has performance measures of

average CPU time, solution price, reliability, and normalized price. The results have

demonstrated the outperformance of the Ant Colony Optimization Algorithm (ACOA) over

other algorithms, which confirms the findings of previous studies. Moreover, the Tabu search

algorithm (TS) and the Discrete Particle Swarm Optimization algorithm (DPSO) performed

poorly due to their limited exploration capability. Additionally, the Genetic Algorithm (GA)

and the Simulated Annealing algorithm (SA) exhibited a high level of reliability but showed

an expensive solution cost. This study presents an adequate comparison approach of meta-

heuristics, where it extends the comparison scope to cover the performance analysis of meta-

172

heuristics more than that previously done in the domain of stacking sequence design

optimization.

Keywords: optimization, meta-heuristic, composite laminated plate, buckling load factor.

Introduction

The high competition in production design puts pressure on the designers to introduce a good

quality and low-cost product that comply with the engineering standards. With limited resource

context, the designer needs to benefit from all available resources and optimization techniques

can solve such an issue. In early time, the gradient optimization techniques were commonly

used in different engineering design applications due to their fast and accurate solutions. But

with growing complexity and variety of applications, they became costly or incapable to find

the Optima. On the other hand, metaheuristics exhibited a significant performance in solving

optimization problems where the gradient methods failed to do so. The optimization of

composite laminated structure design is an excellent example of such type of optimization

problems (Ali Kaveh, 2017).

Composite laminated structures are usually formed by laying several thin layers (plies) on top

of each other and binding them with a matrix material. The combination of layers and matrix

is called a laminate, which consists of microscale-oriented fibers that emerge in the matrix

material. The matrix material distributes and transforms the load over the fibers. Additionally,

the tensile strength of the fibers is high in their orientated direction, whereas the matrix material

has a high compression strength in any direction but has low tensile strength. The designer

should select the right combination of both materials to achieve the optimal design. Several

design variables should be appropriately determined such as a number of layers, the thickness

of each layer, ply orientation angle, and stacking sequence that ensures the highest possible

performance of the structure subjected to specific loading conditions (R. M. Jones, 2014;

Vasiliev, 2017).

173

Buckling failure mode occurs suddenly when the composite laminated structure is exposed to

compressive loading that exceeds a particular critical value. This failure mode is dangerous,

especially for applications such as airplanes and ships, where human lives become threatened.

The designer of composite laminated structures then must try to increase the capacity of the

structure to bear the buckling load through optimizing the structure parameters. When the

thickness of the structure is constant, the stacking sequence of the laminate turns into the

significant design variable that can maximize the critical buckling loading of the structure

(Nikbakt et al., 2018).

The optimization of the laminated composite structures is subjected to the design and

manufacturing constraints such as a limited number of fiber orientations. The optimization of

the laminate then becomes a hard combinatorial optimization problem (Peeters & Abdalla,

2017; A. R. M. Rao, 2009; Zein et al., 2016). Ghiasi et al. (2010) reviewed different techniques

used in the recent decades to optimize composite laminated designs and concluded that meta-

heuristics are superior to gradient-based methods. Furthermore, (Nikbakt et al., 2018) reported

the outperformance of meta-heuristics alongside gradient optimization algorithms due to their

efficiency and stability. However, meta-heuristic algorithms are an ongoing optimization

research domain to solve medium as well as large-scale problems that appear in different

disciplines. Furthermore, trajectory-based meta-heuristics demonstrated a substantial local

search capacity on its track to find the optimal solution, whereas population-based meta-

heuristics exhibited a significant ability to explore the design space. Even though meta-

heuristics, in general, could solve the discrete optimization problems efficiently, we still need

to determine which algorithm outperforms the others for a specific problem according to the

No Free Lunch theorem (NFL) by Wolpert and Macready (1997).

The literature is full of comparison studies of meta-heuristics that have been used to solve

various engineering problems, e.g., TSP and scheduling, but little were devoted to the stacking

sequence design problem. Furthermore, the previously published papers in the field were

limited to two comparison approaches. First, the comparison of a newly developed algorithm

(or enhanced version of a well-known algorithm) to previously published results of another

174

meta-heuristic (Aymerich & Serra, 2008; Jing et al., 2015). Second, the selection of more than

two algorithms and carrying out the performance comparison based on the author

implementation of the meta-heuristics (M. W. Bloomfield, J. E. Herencia, & P. M. Weaver,

2010). Both approaches brought valuable information that increased the knowledge about

meta-heuristics performance as an optimizer of stacking sequence design. Although these

comparison approaches are interesting, they still have some drawbacks such as the diversity of

convergence criteria for the compared algorithms as in the first approach or the comparison

limitation to one category of meta-heuristics as in the second approach.

To avoid this shortcoming, five different meta-heuristics were selected in this study to

represent both population-based and trajectory-based meta-heuristics. The chosen algorithms

frequently appeared in the literature of stacking sequence design optimization (Nikbakt et al.,

2018). The five meta-heuristic algorithms have been implemented using MATLAB with the

same convergence criteria and the same maximum number of runs to ensure a fair comparison.

An assessment criterion has been performed by considering different performance measures

such as average CPU time, reliability, and normalized price. Additionally, a well-known

benchmarking problem was selected as a case study to carry out the comparison(A. Kaveh,

Dadras, & Malek, 2017; R. Le Riche & Haftka, 1993). Eventually, the overall objective of this

work is to develop an improved knowledge of optimization techniques and the selection of the

most efficient algorithm that solves the stacking sequence design optimization problem.

Meta-heuristic Algorithms

Meta-heuristics are known as stochastic approaches that are frequently used in solving

complex optimization problems. There are many classifications of meta-heuristics, and we

have adopted the one illustrated in Figure-A I - 1, which classifies meta-heuristics into two

categories population-based and trajectory-based. Moreover, five different algorithms were

selected to represent both categories of meta-heuristics. Genetic algorithm (GA), Ant Colony

Optimization (ACO), and Particle Swarms Optimization (PSO) are population-based meta-

heuristics, whereas Simulated Annealing (SA) and Tabu Search (TS) are trajectory-based

175

meta-heuristics. This section provides a short review of each meta-heuristic and the

implementation structure of the algorithms used in this study.

Figure-A I - 1 Metaheuristics classification

Genetic Algorithm (GA)

Holland suggested the original genetic algorithm in the 1960s, which was later detailed in its

generally known form by Goldberg (1988). It is based on Darwin’s theory of natural evolution,

and it is implemented using elements of the natural genetics of reproduction, crossover, and

mutation. GA shows its worthiness over classical optimization methods in solving composite

laminated design optimization problems (Nikbakt et al., 2018). The significant adaptation of

GA to optimize composite laminate design is credited to Le Riche (1993), as he proposed a

modified GA that replaces binary coding of solution strings by integer coding. This

formulation turned the binary GA algorithm into Permutation Genetic Algorithm (PGA). The

results show a 2% reduction in the solution cost compared to binary GA(R. Le Riche & Haftka,

1993). The gene-rank GA introduced by B. Liu et al. (2000) is a permutation GA with gene-

rank crossover operator. He compared his proposed GA with standard GA and older

permutation GAs, and the gene-rank GA demonstrated better computational performance.

Furthermore, Ehsani et al. (2016) used binary GA to determine the optimal stacking sequence

of grid laminate by considering the different boundary conditions of the laminate edges.

Moreover, GA algorithms are known for their expensive solution due to the slow convergence

to the optimal solution. To overcome such drawback, Vosoughi et al. (2017) made hybrid GA

with PSO algorithms as an operator to increase the convergence rate of standard GA. However,

Trajectory-based

(e.g. SA, TS)

Population-based

(e.g. GA, ACO, PSO)

Meta-heuristics

176

binary GA is still used as stacking sequence design optimizer. It offers a costly solution, while

PGA demonstrates good performance for cheaper solutions.

In this study, the PGA structure was selected, as described by Le Riche (1993), to implement

a GA program in MATLAB. Algorithm-A I - 1 illustrates the steps of PGA meta-heuristic.

The algorithm is initialized by generating a random initial solution, and then it evaluates the

fitness of the chromosomes (solutions). Based on their fitness value, the chromosomes are

sorted from the maximum to the minimum, and the best-ranked individuals are selected for the

reproduction process. To proceed with the reproduction, a pair of best individuals are randomly

selected to be parents, and the crossover operator is applied to generate the children (new

solution). Mutation and permutation operators are then applied to improve the new population

exploration. This loop continues until the termination criteria is satisfied.

Algorithm-A I - 1 Permutation Genetic Algorithm procedure

Initialization:

- Generate initial random population.
- Evaluate the population chromosomes fitness.

While (termination criteria not satisfied) Do
- Select best-ranked individuals to reproduction.
- Randomly select a pair of individuals to be parents
- Apply crossover
- Apply mutation to children
- Apply permutation to children
- Evaluate chromosomes fitness.

End PGA algorithm for discrete optimization problems

In the original PGA, which was proposed by Le Riche (1993), the different solutions have

integer representation using 1, 2, and 3 numbers; where 1,2 and 3 represent 0°, ±45°, and90°
fiber orientations, respectively. The laminate with [±45°, 0°ଶ, 90°ଶ, ±45°, ±45°, 90°ଶ, 0°ଶ]s

stacking sequence have been represented by [2 1 3 2 2 3 1] s. The different PGA operators of

crossover, mutation, and permutation have been illustrated as follows:

177

Crossover: Parent #1: 3 2 1 2 3 2 2 1

Parent #2: 2 2 1 3 2 1 3 2

Child #1: 3 2 1 3 2 1 2 1

Child #2: 2 2 1 2 3 2 3 2

Mutation: Before: 3 2 1 2 3 2 2 1

 After: 3 2 1 2 3 3 2 1

Permutation: Before:

1 2 3 4 5 6 7 8

2 2 1 3 2 1 3 2

 After:
1 2 6 5 4 3 7 8

2 2 1 2 3 1 3 2

Ant Colony Optimization Algorithm (ACOA)

Dorigo (1991) developed the Ant Colony Optimization system that is inspired by the natural

phenomena of the food searching strategy of the ant colony. He proposed a mathematical

model that simulates this strategy of the cooperative attitude of an actual ant colony to find the

optimal solution. He implemented his model to solve well-known optimization problems such

as the travel salesman problem (TSP). The proposed model consists of four major steps. First,

a suitable number of ants is assumed. Second, the probability of path selection is determined.

Third, random numbers from 0 to 1 for each ant are generated. This step is repeated for all

design variables, and it is followed by objective function evaluation and assessment. Fourth,

the model checks the convergence process. ACO has been extended in different engineering

areas to solve problems such as discrete structural design or composite laminated structures.

Aymerich (2008) investigated the computational efficiency of ACO as an optimizer that

maximizes the buckling load of a simply supported plate exposed to uniaxial loading. He

compared the solution quality and robustness of ACO with GA and TS algorithms for the same

reference case study, and the results show that the ACO algorithm has better performance.

Furthermore, Koide et al. (2013) used the ACOA combined with finite element analysis to

maximize the buckling load factor. They compared the obtained results of their proposed

optimization solution with those previously obtained for GA by Le Riche (1993).

178

The structure of the proposed ACOA by Aymerich (2008) was mainly considered in the this

study, and Algorithm-A I - 2 summarizes the steps of the implemented ACO. The procedure

starts with random initial laminate stacking being selected from the feasible solution set

(possible fiber orientations). This step is followed by an evaluation of the objective function

which will be stored in the ant routing table and used to generate a new feasible stacking

sequence. Then, the local search movements of permutation and swap are applied to all

generated solutions by ants in order to find better solutions. The local movement of

permutation of ACO has the same effect of the permutation operator of PGA whereas the swap

(also called two points mutation) movement occurs by randomly selecting and switching

positions of two bits of the solution string. Finally, the global pheromone table is updated,

according to Eq.(A I- 1), where only the ants with the best solution deposited more pheromone

trail on their path to the solution. This procedure continues until the termination criterion is

satisfied.

The pheromone is updated according to the following rule:

where:

Algorithm-A I - 2 Ant Colony Optimization Algorithm procedure

Initialization

- Initialize the ACO parameters
While (termination criteria not satisfied) Do

- Construct Initial Solutions Table by Ants
- Evaluation
- Local Search:
 Permutation
 Swap

- New Solutions evaluation
- Apply Pheromones Updating Rule

End ACO algorithm for combinatorial optimization problems

 𝜏௜௝௞(௧) = (1 − 𝜌). 𝜏௜௝௞(௧ିଵ) + ∑ 𝛥𝜏௜௝௞(௧ିଵ)௡௞ (A I- 1)

179

 𝜌 denotes the evaporation rate, 𝑡 is the current iteration number, 𝑚 is the number of the optimal

solution ants, and 𝑓௞ is the fitness value of each ant.

Discrete Particle Swarm Optimization (DPSO)

Kennedy (1995) developed particle swarm optimization (PSO), and it is classified as a

population-based metaheuristic. PSO is used to solve non-linear optimization problems with

continues domain. PSO mimics the social behavior of a flock of birds, where each bird (called

particle) moves with the flock according to two vectors of position and velocity. Each particle

updates its position and velocity based on simple vector addition and subtraction until the

optimal solution is found. Furthermore, PSO has various forms since it was invented, and the

most popular one is known as G-best PSO. Additionally, PSO is known for its significant

ability to explore a solution space with a fast convergence rate (Parsopoulos & Vrahatis, 2002).

Different variants of PSO were developed to solve optimization problems of various

engineering applications. Multiple versions of Discrete PSO (DPSO) were designed to solve

combinatorial optimization problems such as stacking sequence optimization (Zadeh, Fakoor,

& Mohagheghi, 2018). Chang et al. (2010) proposed a new variant of DPSO called Permutation

Discrete Particle Swarm (PDPSO). He used PDPSO to determine the optimum stacking

sequence of a laminate subjected to the buckling load criteria.

 𝛥𝜏௜௝௞(௧ିଵ) = ෍ 𝑓௞∑ 𝑓௞௠௞ୀଵ
௠
௞ୀଵ (A I- 2)

Algorithm-A I - 3 DPSO Algorithm procedure

Initialization:

- Generate initial random swarm.
- Evaluate the initial swarm speed and position.

While (termination criteria not satisfied) Do
- Update swam speed and position
- Evaluate the new swarm fitness

End DPSO algorithm for combinatorial optimization problems

180

DPSO algorithm, as described by Zadeh (2018), has been adopted in this comparison study.

Algorithm-A I - 3 illustrates the different steps of implemented DPSO. It is initialized by

selecting random swarm of particles and a set of possible solutions, and then this swarm fitness

is evaluated. The best global position is devoted to the particle with maximum fitness in the

initial swarm. The local particle speed and position update according to Eq.(A I- 3) and (A I-

4) to generate a new swarm. The evaluation of the new swarm is then carried out, and the

global best position is updated if the fitness of best local position of the new swarm is higher

than the fitness of the stored best global position. This loop continues until the termination

criterion is satisfied.

The particle speed and positions are updated according to the following equations:

where 𝑋௞ାଵ௜ and 𝑉௞ାଵ௜ represent the updated position and speed respectively.

Simulated Annealing (SA)

In 1953, Metropolis presented the concept of the simulated annealing algorithm. It is based on

the mathematical analogy of the thermal annealing process of critically heated metals. When

the heated metal reaches the melting temperature, the molten molecules move randomly

concerning each other. Continued reduction of the temperature limits the movement of these

molecules and therefore, leads them to be highly ordered until the crystal state is reached,

which represents the lowest internal strain energy. The cooling rate has a direct impact on

achieving the crystal state; the faster rate will not provide the molecules enough time to form

a crystal, and they will attain a polycrystalline state instead, which has higher strain energy.

Therefore, the crystallization of molten metals needs a controlled rate of cooling to obtain the

lowest strain energy state, and this process is called annealing (Kirkpatrick et al., 1983).

 𝑋௞ାଵ௜ = 𝑋௞௜ + 𝑉௞ାଵ௜ (A I- 3)

 𝑉௞ାଵ௜ = 𝑤𝑉௞௜ + 𝑐ଵ𝑟ଵ൫𝑃௕௘௦௧௜ − 𝑋௞௜ ൯ + 𝑐ଶ𝑟ଶ൫𝐺௕௘௦௧௚ − 𝑋௞௜ ൯ (A I- 4)

181

Since its introduction, SA has been used to solve several engineering optimization problems,

including stacking sequence design. Lombardi et al. (1992) used SA to optimize the composite

laminate buckling load for a plate subjected to biaxial loading under strain limits with iso-

oriented and contiguous plies. They considered the range within 0.1% of the best solution as a

near or optimal solution in the design space. Erdal et al. (2005) presented an improved version

of SA called Direct Simulated Annealing (DSA) to maximize the buckling load factor of the

biaxially loaded laminate. DSA was developed by Ali et al. (2002) to handle continuous

variable design problems based on memorizing the previous solutions and using a group of

points instead of one point in its search for the optimal solution. Erdal (2005) adapted the DSA

algorithm to optimize composite laminate design, which is a discrete optimization problem,

and he investigated the performance of the algorithm by increasing the difficulty of the

problem and increasing the design space size. He demonstrated that DSA performed well even

with larger design space, and it overcame the cons of the original SA that was used by

Lombardi(1992). Javidrad et al. (2017) proposed a modified SA algorithm that uses the

parallelization concept, where the search is performed parallel to the multiple initial points,

and the best-found solution is selected as the optimal solution. The convergence speed, for

large design spaces, was a result of SA modification.

The structure of the standard SA algorithm was used to implement the algorithm in this

comparison study, and the main steps of the implemented SA are listed in Algorithm-A I - 4.

SA starts by generating an initial random solution and then computing the objective function

value. The initial solution is considered as a current solution, and a new solution is randomly

generated about it. The energy of the new solution is determined, which is also known as

accepting probability, as shown in Eq.(A I- 5). If the new solution energy is greater than the

current solution energy, then the new solution becomes the current solution; otherwise, another

new solution is generated. The temperature 𝑇 is reduced if the SA loop iterations exceeds the

certain number of iterations 𝑛. These actions are repeated until the termination criteria is

satisfied (S. S. Rao, 2009) .

182

Algorithm-A I - 4 Simulated Annealing Algorithm procedure

Initialization:

- Initialize SA parameters (𝑇, 𝑐,𝑛)
- Generate initial random solution.
- Evaluate the initial solution.

While (termination criteria not satisfied) Do
- Generate a new solution from the current solution vicinity.
- Calculate the current solution energy.
- Calculate the new solution energy.
- Compare both solutions energy
- Update the current solution with the biggest.
- If the number of iterations > 𝑛
- Reduce the temperature by reduction factor 𝑐.

End SA algorithm for combinatorial optimization problems

The solution energy level is determining according to Boltzmann distribution probability as

follow:

where

 ∆𝑓 = 𝑓௡௘௪ − 𝑓௖௨௥௥௘௡௧
 𝐾 is Boltzmann’s constant and 𝑇 is the initial temperature.

Tabu Search (TS)

Tabu Search (TS) is a local searching algorithm that explores the neighborhood of local optima.

This algorithm uses a memory strategy to prevent recycling of old solutions. The original TS

was presented by Glover (1991), and since then, it has improved and become widely used in

solving combinatorial optimization problems such as TSP. Kaw et al. (2003) employed TS to

optimize the stacking sequence of a rectangular laminate subjected to buckling loads. Three

different loading cases have been investigated and compared to the previous results obtained

using GA. The results illustrate a significant reduction in the solution cost by 25% and 55%

for the first and second case, respectively, whereas a slight decrease of 1% was obtained in the

 𝑃(𝑋) = 𝑒ି∆௙ ௞்⁄ (A I- 5)

183

third case. Kaw et al. (2003) concluded that TS is a competent optimization tool for stacking

sequence problems, but it needs a favorable initial solution.

Additionally, Rao (2007) used TS to enhance the local searching capability of the SA algorithm

to optimize the stacking sequence and the new algorithm called TSA, which demonstrated

superior performance to GA. Algorithm-A I - 5 explains the structure of the TS algorithm used

in the current comparison work. TS algorithm is initialized by generating a random initial

solution and then evaluating it. The neighborhood search of the initial solution is carried out

by applying three different movements of permutation, swap, and insertion.

The first two movements are similar to what have described in GA and ACO, where the

insertion movement is imposed by selecting a random bit in the solution string and inserting it

between two adjacent random bits. Next, the newly generated solutions are evaluated, and then

the maximum fitness value updates the optimal solution. Then, the Tabu list is updated to

prevent the next neighborhood search from returning to the previously selected solution. These

steps of the algorithm continue until the termination criterion is satisfied.

Algorithm-A I - 5 Tabu Search Algorithm procedure

Initialization:

- Generate initial random solution.
- Evaluate the initial solution.

While (termination criteria not satisfied) Do
- Search the neighborhood:

• Permutation
• Swap
• Insertion

- Evaluate the new solutions
- Update the Tabu list.

End TS algorithm for combinatorial optimization problems

184

Optimization Case Study

The general trend in composite optimization problems is usually aiming to achieve the design

optimality by considering one of the following aspects: weight minimization, strain energy

minimization, or critical buckling load maximization, which intends to improve the structural

strength and reduce the design cost (Nikbakt et al., 2018). Composite laminated design

variables have a significant impact on the type of optimization problem. For instance, if the

optimization problem considers a number of plies as a design variable to be determined, and

the other design variables are imposed, the problem is classified as a discrete optimization

problem. For such type of optimization problem, the solution could be carried out using some

simple methods such as enumeration or branch and bound algorithms (Gürdal, Haftka, &

Hajela, 1999). However, the formulation of the problem needs to consider multiple aspects

such as optimization level, single or multi-objective, and constraint handling method.

Additionally, the following sections illustrate the general elements of the formulation of the

stacking sequence optimization to maximize the buckling load problem.

 Optimization Problem Statement

This assessment study focuses on the optimization of the stacking sequences that maximize

the buckling load (strength) of the laminate as a case study. The objective function of

maximizing the buckling load factor for laminate subjected to buckling load conditions could

be written as follows:

where 𝜆௖௕ is the critical buckling load factor that buckles a simply supported plate subjected

to in-plane loads of 𝜆𝑁௑ and 𝜆𝑁௬ into p and q half waves in x and, y directions. 𝜆௖௕ could be

defined, with respect to flexural stiffness, as:

 𝑚𝑎𝑥𝜆௖௕(𝑝, 𝑞) (A I- 6)

185

The smallest value of 𝜆௕(𝑝, 𝑞) is considered as the critical buckling load factor. The critical

values of 𝑝 and 𝑞 are linked to different factors such as laminate material, number of plies,

loading conditions, and the plate aspect ratio. In uniaxial loading of a simply supported plate,

the critical buckling load occurs when 𝑝 = 1 whereas in biaxial critical buckling loads, it needs

to be determined as the minimum value of 𝜆௖௕ (𝑝, 𝑞) (Söyleyici, 2011).

Solution Representation and Design Space

The most commonly used fiber orientations are 0°, ±45°, and 90°. In meta-heuristic

algorithms, the solution (stacking sequence) takes the form of a bit string that consists of a

combination of plies with these angles. The different solutions are integrally coded with 1, 2,

and 3 numbers, which respectively represent the three possible fiber orientations. For instance,

the laminate with [2 1 3 2 2 3 1]s stacking sequence describes the laminate of

[±45°, 0°ଶ, 90°ଶ, ±45°, ±45°, 90°ଶ, 0°ଶ]s fiber orientations. The simplicity of using an integer

representation and the significant performance, makes it the most widely used method in meta-

heuristic optimization algorithms for composite laminated design (R Le Riche & Haftka,

1995). The following formula could determine the Design Space Size (DSS) for a laminate

represented by 𝑁 plies:

where K is devoted to the number of ply orientation angles (e.g., K=3 for 0°ଶ, ±45°, 90°ଶ).

Composite Laminate Design Constraints

The design of the composite should respect certain limitations of manufacturing and specific

design considerations. In literature, some rules have been proposed to improve the

 𝜆௕(p, q) = 𝜋ଶ ൤𝐷ଵଵ൫𝑝 𝑎ൗ ൯ସ + 2(𝐷ଵଶ + 2𝐷଺଺)൫𝑝 𝑎ൗ ൯ଶ + 𝐷ଶଶቀ𝑞 𝑏ൗ ቁସ൨൫𝑝 𝑎ൗ ൯ଶ𝑁௫ + ቀ𝑞 𝑏ൗ ቁଶ𝑁௬ (A I- 7)

 𝐷𝑆𝑆 = 𝐾ே (A I- 8)

186

effectiveness of a laminate design for different applications, (Peeters & Abdalla, 2017; A. R.

M. Rao, 2009; Zein et al., 2016). The most used rules are classified and listed below:

- Manufacturing limitations: the thickness of the plies and fiber orientations are

limited to the available manufactured values, which are usually integer, for ply

thickness or certain angles such as ±45°, 0°, and 90° and for ply orientations.

Additionally, the symmetrical laminate makes the manufacturing process more

straightforward.

- Strength and stiffness considerations: the symmetry of laminate is necessary to

prevent extension-bending coupling (𝑖. 𝑒. ,𝐵௜,௝ = 0). Furthermore, the balanced

laminate (which has pairs of plies with the same thickness and different signs of

same orientation angle 𝜃) condition is needed to avoid shear-extension coupling (𝑖. 𝑒. , 𝐴ଵ଺ = 𝐴ଶ଺ = 0). All the plies with ±𝜃 will be grouped to minimize the effect

of bending and twisting coupling. Moreover, the congestion of the same orientation

plies should be limited to 4 plies for each group to develop a homogeneous laminate

and reduce inter-laminate stresses and matrix crack failure. Furthermore, the

stiffness degradation can be reduced by devoting 10% of the total number of plies

for each orientation angle of 0°, ±45°, and 90°.

Generally, the constraints in stacking sequence optimization with constant laminate thickness 𝑡 could be treated as:

- Symmetry constraint is enforced by optimizing half of the laminate.

- Balancing constraint is enforced by selecting 𝜃ଶ for the standard fiber orientation

set of 0°, ± 45°, and 90°.

- Only 𝑁/4 ply orientations are needed to describe laminate because of balancing

constraints.

- Contiguity constraint is handled by using the penalty parameter (𝜌).

187

Objective Function Transformation

The handling of the constraints is the most critical aspect of the optimization problem

formulation. The methods used with the algorithms reviewed here fall under one of the

following categories:

- Feasibility-based rule.

- Discrete penalty functions.

- Hybrid approach.

A feasibility-based rule lets the algorithms generate the feasible candidate solutions only and

then find the optimum one from them. Furthermore, the penalty functions are widely used in

handling the constraints due to their simplicity with consistent results. Hybridization of both

the previous methods could lead to an improvement in the performance of the algorithm to find

the global optima (R. Le Riche & Haftka, 1993). More details about the constraints handling

topic could be found in (Barroso, Parente, & de Melo, 2017; Jiao, Luo, Shang, & Liu, 2014).

Comparison and Assessment Criteria

In addition to the elapsed time (average CPU time), literature has shown that other measures

can be used to measure the computational effort of an algorithm. The first measure is price (𝑃ௌ), which is defined as the number of objective function evaluations within a search run, and

it reflects the computational cost of the search process. The second measure is practical

reliability (𝑃𝑅) , and it is defined as the percentage of runs that achieve Practical Optima (𝑃𝑂)

at a specific run. The last measure is the normalized price (𝑛𝑃ௌ) which is defined as the ratio

of price and practical reliability. Practical optima 𝑃𝑂 is defined as the solution within 0.1%

error value of the best possible solution (Kogiso et al., 1994; R. Le Riche & Haftka, 1993;

Malan & Engelbrecht, 2014).

 𝜆 = (1 − 𝜌). max𝜆௖௕(𝑝, 𝑞) (A I- 9)

188

Benchmarking Numerical Example

MATLAB programs were written for each algorithm reviewed here, which are described in

pseudo codes as illustrated in Algorithm-A I - 1 to Algorithm-A I - 5. The literature has shown

persistent development of new composite optimization solutions. To verify these new

solutions, there is a crucial demand to select the well-known benchmarking problems. The

widespread benchmarking problem used in the literature of stacking sequence optimization is

accredited to Le Riche (1993), and it is indeed widely used in the reviewed studies of the

current work. The original problem describes a simply supported plate subjected to an in-plane

biaxial loading, as shown in.Figure-A I - 2.

 The thickness of each ply 𝑡 is assumed constant, and the plies’ orientations are limited to 0°, ±45°, and 90° sets of angles. The number of plies 𝑁 is constant. The required properties,

dimensions, and loading conditions are listed in Table-A I - 1 and Table-A I - 2. Furthermore,

Figure-A I - 2 Simply supported plate subjected to biaxial loading.

189

the objective function is maximizing the critical buckling load. The constraints are integrated

to the solution (e.g., balanced laminate, symmetrical, etc.).

Table-A I - 1 Graphite-Epoxy lamina’s properties
(R. M. Koide, de Franca, & Luersen, 2013)

Elastic Properties Strength Properties

E1
(GPa)

E2
(GPa)

G12
(GPa)

ν12 XT
(MPa)

YT
(MPa)

XC
(MPa)

YC
(MPa)

S12
(MPa)

127.59 13.03 6.41 0.3 1500 40 1500 246 68

Table-A I - 2 Dimensions and loading conditions of composite laminated plate
(R. M. Koide et al., 2013)

Dimensions Loading

Plies
NL

Thickness
t (mm)

Length
a(mm)

Width
b (mm)

Nx
(N/m) Nx/Ny

64 0.127 508 25.4 175 1

The five implemented algorithms were tested on the same machine, as shown in Figure-A I -

3, for the same number of experiments; 𝑁𝑒𝑥𝑝 = 200. This number was used in the original

reference case by Le Riche (1993); he used it to tune the PGA parameters and at the same time

to determine the performance of his proposed PGA.

==
 User: Ali Ahmid 15-May-2019 00:24:25
==
 Machine Information:
 CPU Processor: Intel(R) Core (TM) i7-4790 CPU @ 3.60GHz
 CPU clock speed: 3601 MHz
 CPU Cache size (L2): 1024 KB
 Number of physical CPU cores: 4
 Installed physical memory (RAM): 16 GB
 Operating System Type: Windows
 Operating System Version: Microsoft Windows 7 Enterprise
==

Figure-A I - 3 The specifications of PC-machine used in the current comparison study.

190

An initial random solution was initialized for PGA, SA, and DPSO while TS started with the

best solution of 10 random solutions. ACOA began with the initial pheromone of value . 004.

The number of practical optima was determined by considering the near-optimal solutions. In

this research, the range of the practical optimal solutions was set to just 0.1% of the global

optima.

Results and Discussion

The obtained results for the biaxially loaded laminate are listed in Table-A I - 3. Additionally,

the maximum critical buckling load 𝜆௖௕ values were plotted versus their experiment number,

as illustrated in Figure-A I - 4. Additionally, the convergence of each algorithm has been

graphically illustrated in Figure-A I - 5. According to the introduced comparison and

assessment criteria in section 4, different comparison measures of average CPU time, average

price, reliability and normalized price were determined and have been illustrated in Figure-A

I - 6 to Figure-A I - 8.

The first four algorithms reached the same global optimal solution, whereas the Tabu Search

algorithm missed it slightly, as presented in Table-A I - 3. The optimal stacking sequence

followed the same pattern of switching between two groups of 90ଶ and ±45 fiber orientations,

which confirms the results of Erdal (2005), Aymerich (2008), and a more recent study by

Kaveh (2017); however, 0ଶ angle orientations did not exist in the global optimal solution. In

Figure-A I - 5, the convergency of trajectory-based meta-heuristics form a series of steps line

graph on its way to the optimal solution zone in the design space. On the other hand, the

population-based meta-heuristics form a progressive curve graph to converge to the optimal

solution. The numerical experiments confirm the random performance fluctuation of the meta-

heuristic algorithms due to their stochasticity, as illustrated in Figure-A I - 4.

In terms of computational effort, SA consumed the less CPU time, with just 2.75 sec to

complete one run of the algorithm in average, and ACO became the second with 4 sec, while

DPSO needed around 32 sec, as shown in Figure-A I - 6. The reliability values are shown in

Figure-A I - 7(b) that demonstrates the outperformance of PGA and SA over ACOA, DPSO,

191

and TS. However, in terms of the solution cost, ACOA ranks above all others, as it only costs

87.73 runs on average to reach the global optima with 76.5% reliability. Even though PGA and

SA exhibit high reliability, they produced expensive solutions compared to ACOA, as shown

in Figure-A I - 8.

Table-A I - 3 The optimal stacking sequence for 64 ply laminates subjected to biaxial
loading without contiguity constraint (𝑁𝑦/𝑁𝑥 = 1 and 𝑎/𝑏 = 2).

However, the current work is devoted to providing a general overview of the performance of

meta-heuristic algorithms. The critical strength factor that has been considered here is the

buckling load factor only. Adding the strain failure factor to the optimization criteria could

affect the final optimal stacking sequence design. Furthermore, the size of the design space is

another factor that could have a significant impact as well (Todoroki & Haftka, 1998).

Algorithm Optimal Stacking Sequence Critical Buckling Load
Factor

PGA [902 902 902 902 902 ±452 ±452 902 ±452
±452 ±452 902 ±452 ±452 ±452 ±452] 3973.01

ACOA [902 902 902 902 ±452 902 ±452 902 ±452
902 ±452 ±452 ±452 ±452 ±452 ±452] 3973.01

SA [902 902 902 902 902 ±452 902 ±452 ±452
±452 ±452 ±452 ±452 ±452 902 ±452] 3973.01

DPSO [902 902 ±452 ±452 902 902 902 902
902 902 902 902 ±452 902 902 902] 3973.01

TS [902 902 902 902 902 ±452 ±452 ±452 902
±452 902 ±452 ±452 902 ±452 ±452] 3972.50

192

(a) PGA

(b) ACOA

(c) DPSO

(d) SA

(e) TS

Figure-A I - 4 : Maximum critical buckling load factor vs. experiment number
for the five MHs

3200

3400

3600

3800

4000

0 20 40 60 80 100 120 140 160 180 200

λ c
b

Experiment Number

3100
3250
3400
3550
3700
3850
4000

0 20 40 60 80 100 120 140 160 180 200

λ c
b

Experiment Number

3550

3700

3850

4000

0 20 40 60 80 100 120 140 160 180 200

λ c
b

Experiment Number

3550

3700

3850

4000

0 20 40 60 80 100 120 140 160 180 200

λ c
b

Experiment Number

3100
3250
3400
3550
3700
3850
4000

0 20 40 60 80 100 120 140 160 180 200

λ c
b

Number of Iterations

193

Figure-A I - 5 Meta-heuristics Convergence for Maximizing Critical Buckling Load
Factor.

Figure-A I - 6 Average elapsed CPU time for the implemented meta-heuristic
Algorithms

3000

3200

3400

3600

3800

4000

0 20 40 60 80 100 120 140 160 180 200

C
ri

tic
al

 B
uc

kl
in

g
Lo

ad
 F

ac
to

r ,
λ c

b

Number of Iterations

TS
ACO
SA
DPSO
GA

0

5

10

15

20

25

30

35

PGA ACOA DPSO SA TS

A
ve

ra
ge

 E
la

ps
ed

 C
PU

 ti
m

e
(s

ec
)

194

a.) Average Price

b.) Reliability

 Figure-A I - 7 Average price and reliability for implemented meta-heuristic

Algorithms

Figure-A I - 8 Normalized price comparison for Meta-heuristic

Conclusion

A comparison of meta-heuristic optimization techniques has been conducted in this article, and

the basic knowledge of stacking sequence optimization fundamentals has been introduced.

0

50

100

150

200

250

300

PGA ACOA DPSO SA TS

A
ve

ra
ge

 P
ric

e

0%

20%

40%

60%

80%

100%

PGA ACOA DPSO SA TS
Re

lia
bi

lit
y

0

100

200

300

400

500

600

PGA ACOA DPSO SA TS

N
or

m
al

iz
ed

 P
ric

e

195

Five different well-known optimization algorithms have been implemented and examined.

This research tried to bridge the gap of previous investigations such as comparing the

performance of algorithms from the same category of meta-heuristics. In addition, it applied

the same convergence criteria of the investigated meta-heuristics to ensure a fair performance

assessment. It may be useful to note that the different meta-heuristics parameters that have

been used here were taken from previous studies, and any parameters refinement is out of the

current study scope.

The reliability analysis results reveal that GA and SA offer a more reliable solution than

ACOA. In terms of solution cost, ACOA ranks above all others, as it only costs 87.73 runs on

average to reach the global optima with 76.5% reliability, whereas DPSO, the nearest other

meta-heuristic, costs 120 runs on average with 70.15 % reliability. Based on the current case

study results, we can conclude that ACOA is a promising algorithm, and this agrees with

previous studies of Bloomfield (2010) and Aymerich (2008). The significant performance of

ACOA is expected, where it is basically designed to solve discrete optimization problems (M.

W. Bloomfield et al., 2010).

ACOA could be improved by integrating other local search movements rather than only relying

on permutation and swap movements (Marco Dorigo & Stützle, 2019). GA has low local

search performance, which could be improved by combining it with other efficient local search

algorithms such as PSO (M. W. Bloomfield et al., 2010). Eventually, further investigations are

needed to verify this significant performance of ACOA, such as extend the comparison to

include bigger design space or more design constraints with respect to stacking sequence

design.

APPENDIX II

 PERMUTUATION GENTIC ALGORITHM FOR OPTIMIZATION OF
COMPOSITE LAMINATED PLATE SUBJECTED TO BUCKLING LOADING

PermutationGA.m

function
[xopt,fopt,ige]=PermutationGA(objfunc,nvar,xd,ii,nPop,Ps,Pc,Pm,Imax)
%%% Permutation GA to maximize or minimze f(x)..the permutation
%%% probability is 100%
% [xopt,fopt]= PermutationGA(objfunc,nvar,xd,sPop,Ps,Pc,Pm,Imax)
% xopt = Optimal Solution
% fopt = Optimal solution
% f = Objective Function
% nVar = no. of design variables
% xd = Discrete design variables values vector
% nPop = Size of the population
% Ps = Probability of selection
% Pc = Probability of Crossover
% Pm = Probability of mutation
% Imax = max number of generations
%%%---
%
 if nargin < 9, Imax=1000;end % Number of generations
 if nargin < 8, Pm=.08 ;end % Mutation probability
 if nargin < 7, Pc=1.0 ;end % Crossover probability
 if nargin < 6, Ps=0.5 ;end % Selection fraction
 if nargin < 5, nPop=8 ;end % Population size

%---
% 1. Initialization
%---
%
ige=0;
for n=1:nPop,x(n,:)= randi([1 length(xd)],1,nvar); end % generate random
population
for n=1:nPop,funcx(n,:)=feval(objfunc,x(n,:)); end % evaluate all
 % population members.
%---
% 2. Selection
%---
%
[funcx,ind]=sort(funcx,'descend'); % max fitness is first.
 x=x(ind,:); % sorting population from..
 % ..lowest to largest.
maxfx(1)=max(funcx); % maximum population
fitness.
meanfx(1)=mean(funcx); % mean population fitness.

198

keep=floor(Ps*nPop); % no. of survivors.

nM=ceil(Pc*(nPop-keep))/2; % no. of mating parents.
odds=1;
for i=2:keep,odds=[odds i*ones(1,i)];end
nodds=length(odds);
pik1=ceil(nodds*rand(1,nM)); % parent#1
pik2=ceil(nodds*rand(1,nM)); % parent#2
ma=odds(pik1);% index of mother
pa=odds(pik2);% index of father
% -----------------
% fid_ali=fopen('PGA_data(ii).txt','w');
% ----------------
% fid_ali = fopen(sprintf('PGA_Conv\PGAConv%i.txt',ii),'w'); % where j
is your loop variable
% fid_ali = fopen(strcat(['PGA_Conv\PGAConv',num2str(ii),'.txt']),'wt');
while ige<Imax
ige=ige+1;
%---
% 3. Crossover
%---
%
 for i=1:nM
 pa1=x(ma(i),:);
 pa2=x(pa(i),:);
 indx=2*(i-1)+1; % skipping index
 chroms2=[pa1;pa2];
 x(keep+indx:keep+indx+1,:)=crossover(chroms2,nvar);
 end
%---
% 4. Mutation
%---
%
numt=ceil(Pm*nPop);
 for j=1:numt
 xn=randi([1 nPop]);
 x(xn,:)=mutuation(x(j,:),nvar);
 end
%---
% 5. Permutation
%---
%
for np=1:nPop
 x(np,:)=permutuation(x(np,:),nvar);
end

for nk=1:nPop,funcx(nk,:)=feval(objfunc,x(nk,:)); end
[funcx,ind]=sort(funcx,'descend');
x=x(ind,:);
% disp(' ind x funcx')
% disp('---------------------------------------')
% disp([ind x funcx])
maxfx(ige)=max(funcx);
minfx(ige)=min(funcx);
meanfx(ige)=mean(funcx);

199

fbest=maxfx(ige);
if maxfx(ige)-minfx(ige)<eps,break;end
end
% -----------Declare the optimum solution of Xopt & fopt-----------------%
[fopt,ixb]=sort(fbest,'descend');
 xopt=x(ixb,:);
%---
% Displays the output
%---
%
day=clock;
disp(datestr(datenum(day(1),day(2),day(3),day(4),day(5),day(6)),0))
disp(['Optimized Function is ' 'CBLF'])
format short g
disp(['Popsize = ' num2str(nPop) ' mutrate = '...
num2str(Pm) ' Number of variables = ' num2str(nvar)])
disp([' Best cost(fopt)= ' num2str(fopt)])
disp([' Best solution (xopt):'])
disp([' ' num2str(xopt)])

 crossover.m

function chroms2=crossover(chroms2,nvar)
 rp1=randi([1 nvar]); % 1st random point
 rp2=randi([1 nvar]); % 2nd random point
 cr1=min(rp1,rp2); % 1st crossover point
 cr2=max(rp1,rp2); % 2nd crossover point
 tmp=chroms2(1,cr1:cr2); % switcher
 chroms2(1,cr1:cr2)=chroms2(2,cr1:cr2);
 chroms2(2,cr1:cr2)=tmp;

mutation.m

function chrom1= mutation(chrom1,nvar)
 mp1=randi([1 nvar]);
 mp2=randi([1 nvar]);
 tmp=chrom1(mp1);
 chrom1(mp1)=chrom1(mp2);
 chrom1(mp2)=tmp;

permutation.m

function pchrom1=permutation(pchrom1,nvar)
rp1=randi([1 nvar]);
rp2=randi([1 nvar]);

200

prp1=min(rp1,rp2);
prp2=max(rp1:rp2);
pchrom1(prp1:prp2)=pchrom1(flip(prp1:prp2));

APPENDIX III

MATLAB CODES FOR ANT COLONY OPTIMIZATION ALGORITHMS

Ant Colony Optimization Matlab Folder Structure

MainACO.m

%===
%
% File: MainACO.m
% Author: Ali Ahmid
% Version: V2.0 March 2020
% ?: This is the main ACO Algorithms file where the user can enter
% his model information and select the different ACO algorithms

202

%===
%
%% Adding working directories
addpath(genpath('00_Index'))
addpath(genpath('01_ACOAlgorithm'))
addpath(genpath('02_EACOAlgorithm'))
addpath(genpath('03_RBACOAlgorithm'))
addpath(genpath('04_MMACOAlgorithm'))
addpath(genpath('05_HCFACOAlgorithm'))
addpath(genpath('06_BWACOAlgorithm'))
addpath(genpath('07_EHCFACOAlgorithm'))
addpath(genpath('08_HCFMMACOAlgorithm'))
addpath(genpath('09_EHCFMMACOAlgorithm'))
%% Resetting the working space and declare Global variables
clear,clc
clear global
global Data ii MachineInformation iseed is maxIconv mk
%% Check operating system and CPU specification
MachineInformation=cpuinfo;
%% Intializiation of Data file
Data=LaminateData;
%% Selecting the Options file
% Options=Data.ACOptions;
Options =Data.MMACOptions;
% Options =Data.BWACOptions;
%% Converegence rate
ConvRate= struct('fast',10,'slow',56);
maxIconv=[ConvRate.fast,ConvRate.slow];
for mk=1:length(maxIconv)
%% The Expierments Execution
iseed=[301 2 50 75 111 200 167 225 11 25];
for is=1:length(iseed)
 rng(iseed(is));
Iexp=200;
% Select the ACO Variant
 for ii=1:Iexp,Solution(ii) = MMACO(Options);end
 %% Experiments Statistics
 ExperiementSolution.fopt = [Solution.fopt];
 ExperiementSolution.xopt = [Solution.xopt];
 ExperiementSolution.Maxfopt = max(ExperiementSolution.fopt);
 ExperiementSolution.Minfopt = min(ExperiementSolution.fopt);
 ExperiementSolution.Meanfopt = mean(ExperiementSolution.fopt);
 ExperiementSolution.Medianfopt = median(ExperiementSolution.fopt);
 ExperiementSolution.Stdfopt = std(ExperiementSolution.fopt);
 ExperiementSolution.AvgPrice = mean([Solution.ige]);
 ExperiementSolution.Relaibility = sum(ExperiementSolution.fopt>=
3973.01/1.001)/Iexp*100;
 ExperiementSolution.NormPrice =
ExperiementSolution.AvgPrice/(ExperiementSolution.Relaibility(1)/100);
 ExperiementSolution.Quality = (1-(3973.01-
ExperiementSolution.fopt)/3973.01)*100;%(1-
ExperiementSolution.Stdfopt/ExperiementSolution.Meanfopt)*(ExperiementSolu
tion.Meanfopt/ExperiementSolution.Maxfopt)*100;
 ExperiementSolution.AvgQuality = sum(ExperiementSolution.Quality
)/Iexp;

203

 ExperiementSolution.Robustness = ExperiementSolution.Meanfopt/
ExperiementSolution.Stdfopt;
 ExperiementSolution.PerRate = sum(ExperiementSolution.fopt>=
ExperiementSolution.Maxfopt/1.001)/(ExperiementSolution.AvgPrice*Iexp);
 ExperiementSolution.AvgFDC = sum([Solution.cFD])/Iexp;
 ExperiementSolution.AvgR = sum([Solution.r])/Iexp;
 ExperiementSolution.ElapsedTime = sum([Solution.ElapsedTime])/Iexp;
 ExperiementSolution.maxTau = [Solution.maxTauExp];
 ExperiementSolution.minTau = [Solution.minTauExp];
 close Figure 1
%% Saving results into ExperimentResultsXXXACO.txt
if mk==1
%
fid=fopen(sprintf('00_Index/01_ExperimentResults_ACOA/01_ExpRslt_fast_conv
ergence/01_ExperimentResultsACOA%i.txt',is),'w');
%
fid=fopen(sprintf('00_Index/02_ExperimentResults_EACO/01_ExpRslt_fast_conv
ergence/02_ExperimentResultsEACO%i.txt',is),'w');
%
fid=fopen(sprintf('00_Index/03_ExperimentResults_RBACO/01_ExpRslt_fast_con
vergence/03_ExperimentResultsRBACO%i.txt',is),'w');

fid=fopen(sprintf('00_Index/04_ExperimentResults_MMACO/01_ExpRslt_fast_con
vergence/04_ExperimentResultsMMACO%i.txt',is),'w');
%
fid=fopen(sprintf('00_Index/05_ExperimentResults_HCFACO/01_ExpRslt_fast_co
nvergence/05_ExperimentResultsHCFACO%i.txt',is),'w');
%
fid=fopen(sprintf('00_Index/06_ExperimentResults_BWACO/01_ExpRslt_Fast_con
vergence/02_ExperimentResultsBWACO%i.txt',is),'w');
%
fid=fopen(sprintf('00_Index/07_ExperimentResults_EHCFACO/01_ExpRslt_fast_c
onvergence/07_ExperimentResultsEHCFACO%i.txt',is),'w');
%
fid=fopen(sprintf('00_Index/08_ExperimentResults_HCFMMACO/01_ExpRslt_fast_
convergence/08_ExperimentResultsHCFMMACO%i.txt',is),'w');
%
fid=fopen(sprintf('00_Index/09_ExperimentResults_EHCFMMACO/01_ExpRslt_fast
_convergence/09_ExperimentResultsEHCFMMACO%i.txt',is),'w');
else
%
fid=fopen(sprintf('00_Index/01_ExperimentResults_ACOA/02_ExpRslt_slow_conv
ergence/01_ExperimentResultsACOA%i.txt',is),'w');
%
fid=fopen(sprintf('00_Index/02_ExperimentResults_EACO/02_ExpRslt_slow_conv
ergence/02_ExperimentResultsEACO%i.txt',is),'w');
%
fid=fopen(sprintf('00_Index/03_ExperimentResults_RBACO/02_ExpRslt_slow_con
vergence/03_ExperimentResultsRBACO%i.txt',is),'w');

fid=fopen(sprintf('00_Index/04_ExperimentResults_MMACO/02_ExpRslt_slow_con
vergence/04_ExperimentResultsMMACO%i.txt',is),'w');
%
fid=fopen(sprintf('00_Index/05_ExperimentResults_HCFACO/02_ExpRslt_slow_co
nvergence/05_ExperimentResultsHCFACO%i.txt',is),'w');

204

%
fid=fopen(sprintf('00_Index/06_ExperimentResults_BWACO/02_ExpRslt_slow_con
vergence/06_ExperimentResultsBWACO%i.txt',is),'w');
%
fid=fopen(sprintf('00_Index/07_ExperimentResults_EHCFACO/02_ExpRslt_slow_c
onvergence/07_ExperimentResultsEHCFACO%i.txt',is),'w');
%
fid=fopen(sprintf('00_Index/08_ExperimentResults_HCFMMACO/02_ExpRslt_slow_
convergence/08_ExperimentResultsHCFMMACO%i.txt',is),'w');
%
fid=fopen(sprintf('00_Index/09_ExperimentResults_EHCFMMACO/02_ExpRslt_slow
_convergence/09_ExperimentResultsEHCFMMACO%i.txt',is),'w');
end

fprintf(fid,'%s\r\n','==
=====================');
 fprintf(fid,'%s
%s\n','User:_________',num2str(datestr(clock)));

fprintf(fid,'%s\r\n','==
=====================');
 fprintf(fid,'%s\r\n','Machine Information: ');
 fprintf(fid,'%s\n',' ');
 fprintf(fid,'%s\r\n',[' CPU Processor:'
num2str(MachineInformation.Name)]);
 fprintf(fid,'%s\r\n',[' CPU clock speed:'
MachineInformation.Clock]);
 fprintf(fid,'%s\r\n',[' CPU Cache size (L2):'
MachineInformation.Cache]);
 fprintf(fid,'%s\r\n',['Number of physical CPU cores:'
num2str(MachineInformation.NumProcessors)]);
 fprintf(fid,'%s\r\n',[' Operating System Type:'
MachineInformation.OSType]);
 fprintf(fid,'%s\r\n',[' Operating System Version:'
MachineInformation.OSVersion]);

fprintf(fid,'%s\r\n','==
=====================');

% fprintf(fid,' %s\n','ACO Varient: ACO');
% fprintf(fid,' %s\n','ACO Varient: EACO');
% fprintf(fid,' %s\n','ACO Varient: RBACO');
 fprintf(fid,' %s\n','ACO Varient: MMACO');
% fprintf(fid,' %s\n','ACO Varient: HCFACO');
% fprintf(fid,' %s\n','ACO Varient: BWACO');
% fprintf(fid,' %s\n','ACO Varient: EHCFACO');
% fprintf(fid,' %s\n','ACO Varient:
HCFMMACO');
% fprintf(fid,' %s\n','ACO Varient:
EHCFMMACO');

 fprintf(fid,'%s\r\n', [' Global Optimal Solution = '
num2str(ExperiementSolution.Maxfopt)]);

205

 fprintf(fid,'%s\r\n', [' Minimum Optimal Solution = '
num2str(ExperiementSolution.Minfopt)]);
 fprintf(fid,'%s\r\n', [' Mean of Optimal Solution = '
num2str(ExperiementSolution.Meanfopt)]);
 fprintf(fid,'%s\r\n', [' Median of Optimal Solution = '
num2str(ExperiementSolution.Meanfopt)]);
 fprintf(fid,'%s\r\n', ['Solution Standrad Deviation = '
num2str(ExperiementSolution.Stdfopt)]);
 fprintf(fid,'%s\r\n', [' Average Price = '
num2str(ExperiementSolution.AvgPrice)]);
 fprintf(fid,'%s %s\r\n',[' Relability = '
num2str(ExperiementSolution.Relaibility)],'%');
 fprintf(fid,'%s\r\n', [' Normalized Price = '
num2str(ExperiementSolution.NormPrice)]);
 fprintf(fid,'%s %s\r\n',[' Average Solution Quality = '
num2str(ExperiementSolution.AvgQuality)],'%');
 fprintf(fid,'%s\r\n', [' Average FDC = '
num2str(ExperiementSolution.AvgFDC)]);
 fprintf(fid,'%s\r\n', [' Correlation Coefficent = '
num2str(ExperiementSolution.AvgR)]);
 fprintf(fid,'%s\r\n', [' Solution Robustness = '
num2str(ExperiementSolution.Robustness)]);
 fprintf(fid,'%s\r\n', [' Performance Rate = '
num2str(ExperiementSolution.PerRate)]);
 fprintf(fid,'%s %s\r\n',[' Average Elapsed Time = '
num2str(ExperiementSolution.ElapsedTime)],'sec');

fprintf(fid,'%s\r\n','==
=====================');
 fprintf(fid,'%s %12s %12s %12s %12s\r\n','Expeirment
#','Foptimal','SolQuality','MaxExpTau ','MinExpTau');
 fprintf(fid,'%s %12s %12s%12s
%12s\r\n','============','========','==========','=========','=========');
 fprintf(fid,' %-8.0f %-8.3f %-8.2f %-8.5f %-
8.5f\r\n',[(1:Iexp);ExperiementSolution.fopt;ExperiementSolution.Quality;E
xperiementSolution.maxTau;ExperiementSolution.minTau]);

fprintf(fid,'%s\r\n','==
=====================');
fclose(fid);

rng('default')
end
end

 ACOA.m

function Solution=ACOA(Options)
global Data ii iseed is maxIconv mk
tic
%% Ant Colony Optimization Algorithm (ACO) to maximize f(x)
% Solution = ACO(Options)
% Solution.xopt = Optimal Solution
% Solution.fopt = Optimal solution

206

% Data.f = Objective Function
% Data.nVar = no. of design variables
% Data.xd = Discrete design variables values vector e.g[0 45 90]
% Data.nAnt = no. of Ants
% Options.Tau0 = Initial phormone
% Options.zeta = Global updating scale factor
% Options.rho = Evaporation Rate
% Options.Imax = Max no. of iterations
%%%---
%
%% Check ACO Options
if ~isempty(Options) && ~isa(Options,'struct')
 error('Options must be a valid structure.');
elseif isempty(Options)

DefaultOpt=struct('nAnt',25,'Imax',1000,'rho',0.07,'Tau0',0.004,'zeta',.03
);
 Options = DefaultOpt;
end
%% Assiging ACO Parameters value
 Imax= Options.Imax;
 rho= Options.rho;
 zeta= Options.zeta;
 Tau0=Options.Tau0;
 nAnts=Options.nAnt;
 %% % Intialization
nNodes=length(Data.xd);
Tau=Tau0*ones(Data.nVar,nNodes);
Solution.fx=[];
Solution.x=[];
ige=0;
%% Check the convergence rate ConvRate
 if mk == 1
 mxIconv=maxIconv(1);
 %% Create ACOutput.txt File
 if is < length(iseed)
 fid_ali1 = fopen(sprintf(
'01_ACOAlgorithm/01_fast_convergence/0%i_Seeds(%i)/ACOAutput%i.txt',is,ise
ed(is),ii),'w');
 else
 fid_ali1 = fopen(sprintf(
'01_ACOAlgorithm/01_fast_convergence/%i_Seeds(%i)/ACOAutput%i.txt',is,isee
d(is),ii),'w');
 end
 elseif mk==2
 mxIconv=maxIconv(2);
 if is < length(iseed)
 fid_ali1 = fopen(sprintf(
'01_ACOAlgorithm/02_slow_convergence/0%i_Seeds(%i)/ACOAutput%i.txt',is,ise
ed(is),ii),'w');
 else
 fid_ali1 = fopen(sprintf(
'01_ACOAlgorithm/02_slow_convergence/%i_Seeds(%i)/ACOAutput%i.txt',is,isee
d(is),ii),'w');
 end

207

 end
%%

fprintf(fid_ali1,'%s\r\n','===
=================================');
 fprintf(fid_ali1,'%s
%s\n','User:_________',num2str(datestr(clock)));

fprintf(fid_ali1,'%s\r\n','===
=================================');
 fprintf(fid_ali1,' %s\n','ACO Varient: ACOA');
 fprintf(fid_ali1,'%s\n',[' Expeirement no.(Iexp) = ',
num2str(ii)]);
 fprintf(fid_ali1,'%s\n',[' Seeds = ',
num2str(iseed(is))]);
 %% Main ACOA Loop
 while ige<Imax
 ige=ige+1;
for k=1:nAnts
% Construct Solution
 for j=1:Data.nVar
 P=Tau(j,:);
 P=P/sum(P);
 Solution.x(k,j)=RouletteWheelSelection(P);
 end
 Solution.fx(k)=feval(Data.f,Solution.x(k,:));
end
%% % Tour Statistics
 [Solution.fx,ind] = sort(Solution.fx,'descend');
 Solution.x(:,:) = Solution.x(ind,:);
 Solution.fbest(ige) = Solution.fx(1);
 Solution.xbest(1,:,ige) = Solution.x(1,:);
 % Check for current fbest
 [fbestCheck,kk] = max(Solution.fbest(1:ige));
 xbestcheck = Solution.xbest(1,:,kk);
 if Solution.fbest(ige) <= fbestCheck
 Solution.fbest(ige) = fbestCheck;
 Solution.xbest(1,:,ige) = xbestcheck;
 end
 Solution.fworst(ige) = Solution.fx(end);
 Solution.xworst(1,:,ige) = Solution.x(end,:);
 Solution.fmean(1,:,ige) = mean(Solution.fx);
 Solution.Segma(ige) = sum(Solution.fx==Solution.fx(1));
Solution.BxWxLocalDis(1,:,ige) = Data.nVar-sum(Solution.xbest(1,:,ige)...
 == Solution.xworst(1,:,ige));
 %% Plotting results
 x = Solution.xbest(1,:,ige);
 y = Data.nVar;
 PlotSolution(x,y)
%% Daimon actions
% NA
%% Pheromone Updating
 % Phormen Evaporation (for all paths)
 Tau=(1-rho)*Tau;
 % Pheromone Depositing (for the best path)

208

 for i=1:Data.nVar
 Tau(i,Solution.xbest(1,i,ige))=
Tau(i,Solution.xbest(1,i,ige))+zeta*Solution.Segma(ige)*Solution.fworst(ig
e)/Solution.fbest(ige);
 end
 tempMaxTau(ige,:) = max(Tau);
 tempMinTau(ige,:) = min(Tau);
 Solution.maxTau(ige) = max(tempMaxTau(ige,:));
 Solution.minTau(ige) = min(tempMaxTau(ige,:));
 %% Convergence check
 Iconv = sum(Solution.fbest(1:ige)==max(Solution.fbest(1:ige)));
Iwconv = sum(Solution.fbest(1:ige)==Solution.fworst(1:ige)); % Counter of
fbest=fworst
 if Iwconv >100 | Iconv>mxIconv , break;end
 end
 % ACOA Solution results
 [Solution.fopt, jj] = max(Solution.fbest(1:ige));
 Solution.xopt = Solution.xbest(1,:,jj);
 Solution.noGoptima = sum(unique(
Solution.fbest(1:ige)>=Solution.fopt/1.001));
 Solution.ige = ige;
 [~,mm] = find(Solution.fbest(1:ige) ==
Solution.fopt);
 Solution.FrstGopt = mm(1);
 Solution.Minfbest = min(Solution.fbest(:));
 Solution.Meanfbest = mean(Solution.fbest(:));
 Solution.Stdfbest = std(Solution.fbest(:));
 for i=1:ige
 Solution.GlobalDis(i) = Data.nVar-sum(Solution.xopt ==
Solution.xbest(1,:,i));
 end
 Solution.cFD = sum((Solution.fbest-Solution.Meanfbest).*(
Solution.GlobalDis-mean(Solution.GlobalDis)))/ige;
 Solution.r = Solution.cFD/(Solution.Stdfbest*std(
Solution.GlobalDis));
 Solution.PerRate = sum(Solution.fbest(:)>=
Solution.fopt/1.001)/(Solution.ige*Imax);
 Solution.ElapsedTime = toc;
 Solution.LinConvRate = zeros(1,ige);
 for i=1:ige
 if Solution.GlobalDis(i)~= 0
 Solution.LinConvRate(i) = (Solution.fopt-
Solution.fbest(i))/Solution.GlobalDis(i);
 else
 Solution.LinConvRate(i) = 0;
 break;
 end
 end
 Solution.maxTauExp=max(Solution.maxTau(1:ige));
 Solution.minTauExp=min(Solution.minTau(1:ige));
%% Write ACOA results Output File
fprintf(fid_ali1,'%s\r\n',[' Number of variables = '
num2str(Data.nVar)]);
fprintf(fid_ali1,'%s\r\n',[' no. of Ants = '
num2str(nAnts)]);

209

fprintf(fid_ali1,'%s\r\n',[' Maximum CBLF(fopt) = '
num2str(Solution.fopt)]);
fprintf(fid_ali1,'%s\r\n',[' Optimal Solution(xopt) = '
'[',num2str(Solution.xopt),']']);
fprintf(fid_ali1,'%s\r\n',[' Number of Practical Optima = '
'[',num2str(Solution.noGoptima),']']);
fprintf(fid_ali1,'%s\r\n',[' no. of Iterations(ige) = '
num2str(ige)]);
fprintf(fid_ali1,'%s\r\n',[' 1st Global optima Found @ ige = '
num2str(Solution.FrstGopt)]);
fprintf(fid_ali1,'%s\r\n',[' Minimum Best Solution = '
num2str(Solution.Minfbest)]);
fprintf(fid_ali1,'%s\r\n',[' Mean of Best Solution = '
num2str(Solution.Meanfbest)]);
fprintf(fid_ali1,'%s\r\n',[' SD of Best Solution = '
num2str(Solution.Stdfbest)]);
fprintf(fid_ali1,'%s\r\n',[' Fitness Distance Correlation = '
num2str(Solution.cFD)]);
fprintf(fid_ali1,'%s\r\n',[' Correlation Coefficent = '
num2str(Solution.r)]);
fprintf(fid_ali1,'%s\r\n',[' Elapsed Time = '
num2str(Solution.ElapsedTime)]);
fprintf(fid_ali1,'%s\r\n','===
=================================');
fprintf(fid_ali1,'%3s %10s %11s %10s %10s %9s %5s %6s
%6s\r\n','ige','Fbest(ige)','Fworst(ige)','Fmean(ige)','BWLocalDis','Globa
lDis','Segma','MaxTau','MinTau');
fprintf(fid_ali1,'%s\r\n','===
=================================');
fprintf(fid_ali1,'%-3.0f %-10.3f %-11.3f %-10.3f %-9.1f %-5.1f %-
6.1f%-6.4f %-
6.4f\r\n',[(1:ige);Solution.fbest(:)';Solution.fworst(:)';Solution.fmean(:
)';Solution.BxWxLocalDis(:)';Solution.GlobalDis(:)';Solution.Segma(:)';Sol
ution.maxTau(:)';Solution.minTau(:)']);
fprintf(fid_ali1,'%s\r\n','===
=================================');
fclose(fid_ali1);
% end

EACO.m

function Solution=EACO(Options)
global Data ii iseed is maxIconv mk
tic
%% Elitisem Ant Colony Optimization Algorithm (EACO) to maximize f(x)
% Solution = EACO(Options)
% Solution.xopt = Optimal Solution
% Solution.fopt = Optimal solution
% Data.f = Objective Function
% Data.nVar = no. of design variables
% Data.xd = Discrete design variables values vector e.g[0 45 90]
% Data.nAnt = no. of Ants

210

% Options.Tau0 = Initial phormone
% Options.zeta = Global updating scale factor
% Options.rho = Evaporation Rate
% Options.Imax = Max no. of iterations
%%%---
%
% Check ACO Options
if ~isempty(Options) && ~isa(Options,'struct')
 error('Options must be a valid structure.');
elseif isempty(Options)

DefaultOpt=struct('nAnt',25,'Imax',1000,'rho',0.07,'Tau0',0.004,'zeta',.03
);
 Options = DefaultOpt;
end
%% Assiging ACO Parameters value
 Imax= Options.Imax;
 rho= Options.rho;
 zeta= Options.zeta;
 Tau0=Options.Tau0;
 nAnts=Options.nAnt;
 %% % Intialization
nNodes=length(Data.xd);
Tau=Tau0*ones(Data.nVar,nNodes);
Solution.fx=[];
Solution.x=[];
ige=0;
%% Check the convergence rate ConvRate
 if mk == 1
 mxIconv=maxIconv(1);
 %% Create ACOutput.txt File
 if is < length(iseed)
 fid_ali1 = fopen(sprintf(
'02_EACOAlgorithm/01_fast_convergence/0%i_Seeds(%i)/EACOutput%i.txt',is,is
eed(is),ii),'w');
 else
 fid_ali1 = fopen(sprintf(
'02_EACOAlgorithm/01_fast_convergence/%i_Seeds(%i)/EACOutput%i.txt',is,ise
ed(is),ii),'w');
 end
 elseif mk==2
 mxIconv=maxIconv(2);
 if is < length(iseed)
 fid_ali1 = fopen(sprintf(
'02_EACOAlgorithm/02_slow_convergence/0%i_Seeds(%i)/EACOutput%i.txt',is,is
eed(is),ii),'w');
 else
 fid_ali1 = fopen(sprintf(
'02_EACOAlgorithm/02_slow_convergence/%i_Seeds(%i)/EACOutput%i.txt',is,ise
ed(is),ii),'w');
 end
 end
%%

211

fprintf(fid_ali1,'%s\r\n','===
=================================');
 fprintf(fid_ali1,'%s
%s\n','User:_________',num2str(datestr(clock)));

fprintf(fid_ali1,'%s\r\n','===
=================================');
 fprintf(fid_ali1,' %s\n','ACO Varient: EACO');
 fprintf(fid_ali1,'%s\n',[' Expeirement no.(Iexp) = ',
num2str(ii)]);
 fprintf(fid_ali1,'%s\n',[' Seeds = ',
num2str(iseed(is))]);
 %% Main EACO Loop
 while ige<Imax
 ige=ige+1;
for k=1:nAnts
% Construct Solution
 for j=1:Data.nVar
 P=Tau(j,:);
 P=P/sum(P);
 Solution.x(k,j)=RouletteWheelSelection(P);
 end
 Solution.fx(k)=feval(Data.f,Solution.x(k,:));
end
%% % Tour Statistics
 [Solution.fx,ind] = sort(Solution.fx,'descend');
 Solution.x(:,:) = Solution.x(ind,:);
 Solution.fbest(ige) = Solution.fx(1);
 Solution.xbest(1,:,ige) = Solution.x(1,:);
 % Check for current fbest
 [fbestCheck,kk] = max(Solution.fbest(1:ige));
 xbestcheck = Solution.xbest(1,:,kk);
 if Solution.fbest(ige) <= fbestCheck
 Solution.fbest(ige) = fbestCheck;
 Solution.xbest(1,:,ige) = xbestcheck;
 end
 Solution.fworst(ige) = Solution.fx(end);
 Solution.xworst(1,:,ige) = Solution.x(end,:);
 Solution.fmean(1,:,ige) = mean(Solution.fx);
 Solution.Segma(ige) = sum(Solution.fx==Solution.fx(1));
Solution.BxWxLocalDis(1,:,ige) = Data.nVar-sum(Solution.xbest(1,:,ige)...
 == Solution.xworst(1,:,ige));
 %% Plotting results
 x = Solution.xbest(1,:,ige);
 y = Data.nVar;
 PlotSolution(x,y)
%% Daimon actions
% NA
%% Pheromone Updating
 % Phormen Evaporation (for all paths)
 Tau=(1-rho)*Tau;
 % Pheromone Depositing (for the best path)
 for i=1:Data.nVar

212

 Tau(i,Solution.xbest(1,i,ige))=
Tau(i,Solution.xbest(1,i,ige))+zeta*Solution.Segma(ige)*Solution.fworst(ig
e)/Solution.fbest(ige)+Solution.Segma(ige)*Solution.fbest(ige)/sum(Solutio
n.fx);
 end
 tempMaxTau(ige,:) = max(Tau);
 tempMinTau(ige,:) = min(Tau);
 Solution.maxTau(ige) = max(tempMaxTau(ige,:));
 Solution.minTau(ige) = min(tempMaxTau(ige,:));

%% Convergence check
 Iconv = sum(Solution.fbest(1:ige)==max(Solution.fbest(1:ige)));
Iwconv = sum(Solution.fbest(1:ige)==Solution.fworst(1:ige)); % Counter of
fbest=fworst
 if Iwconv >100 | Iconv>mxIconv , break;end
 end
 % EACO Solution results
 [Solution.fopt, jj] = max(Solution.fbest(1:ige));
 Solution.xopt = Solution.xbest(1,:,jj);
 Solution.noGoptima = sum(unique(
Solution.fbest(1:ige)>=Solution.fopt/1.001));
 Solution.ige = ige;
 [~,mm] = find(Solution.fbest(1:ige) ==
Solution.fopt);
 Solution.FrstGopt = mm(1);
 Solution.Minfbest = min(Solution.fbest(:));
 Solution.Meanfbest = mean(Solution.fbest(:));
 Solution.Stdfbest = std(Solution.fbest(:));
 for i=1:ige
 Solution.GlobalDis(i) = Data.nVar-sum(Solution.xopt ==
Solution.xbest(1,:,i));
 end
 Solution.cFD = sum((Solution.fbest-Solution.Meanfbest).*(
Solution.GlobalDis-mean(Solution.GlobalDis)))/ige;
 Solution.r = Solution.cFD/(Solution.Stdfbest*std(
Solution.GlobalDis));
 Solution.PerRate = sum(Solution.fbest(:)>=
Solution.fopt/1.001)/(Solution.ige*Imax);
 Solution.ElapsedTime = toc;
 Solution.LinConvRate = zeros(1,ige);
 for i=1:ige
 if Solution.GlobalDis(i)~= 0
 Solution.LinConvRate(i) = (Solution.fopt-
Solution.fbest(i))/Solution.GlobalDis(i);
 else
 Solution.LinConvRate(i) = 0;
 break;
 end
 end
 Solution.maxTauExp=max(Solution.maxTau(1:ige));
 Solution.minTauExp=min(Solution.minTau(1:ige));
%% Write EACO results Output File
fprintf(fid_ali1,'%s\r\n',[' Number of variables = '
num2str(Data.nVar)]);

213

fprintf(fid_ali1,'%s\r\n',[' no. of Ants = '
num2str(nAnts)]);
fprintf(fid_ali1,'%s\r\n',[' Maximum CBLF(fopt) = '
num2str(Solution.fopt)]);
fprintf(fid_ali1,'%s\r\n',[' Optimal Solution(xopt) = '
'[',num2str(Solution.xopt),']']);
fprintf(fid_ali1,'%s\r\n',[' Number of Practical Optima = '
'[',num2str(Solution.noGoptima),']']);
fprintf(fid_ali1,'%s\r\n',[' no. of Iterations(ige) = '
num2str(ige)]);
fprintf(fid_ali1,'%s\r\n',[' 1st Global optima Found @ ige = '
num2str(Solution.FrstGopt)]);
fprintf(fid_ali1,'%s\r\n',[' Minimum Best Solution = '
num2str(Solution.Minfbest)]);
fprintf(fid_ali1,'%s\r\n',[' Mean of Best Solution = '
num2str(Solution.Meanfbest)]);
fprintf(fid_ali1,'%s\r\n',[' SD of Best Solution = '
num2str(Solution.Stdfbest)]);
fprintf(fid_ali1,'%s\r\n',[' Fitness Distance Correlation = '
num2str(Solution.cFD)]);
fprintf(fid_ali1,'%s\r\n',[' Correlation Coefficent = '
num2str(Solution.r)]);
fprintf(fid_ali1,'%s\r\n',[' Elapsed Time = '
num2str(Solution.ElapsedTime)]);
fprintf(fid_ali1,'%s\r\n','===
=================================');
fprintf(fid_ali1,'%3s %10s %11s %10s %10s %9s %5s %6s
%6s\r\n','ige','Fbest(ige)','Fworst(ige)','Fmean(ige)','BWLocalDis','Globa
lDis','Segma','MaxTau','MinTau');
fprintf(fid_ali1,'%s\r\n','===
=================================');
fprintf(fid_ali1,'%-3.0f %-10.3f %-11.3f %-10.3f %-9.1f %-5.1f %-
6.1f%-6.4f %-
6.4f\r\n',[(1:ige);Solution.fbest(:)';Solution.fworst(:)';Solution.fmean(:
)';Solution.BxWxLocalDis(:)';Solution.GlobalDis(:)';Solution.Segma(:)';Sol
ution.maxTau(:)';Solution.minTau(:)']);
fprintf(fid_ali1,'%s\r\n','===
=================================');
fclose(fid_ali1);

RBACO.m

function Solution=RBACO(Options)
global Data ii iseed is maxIconv mk
tic

%% Rank Based Ant Colony Optimization Algorithm (RBACO) to maximize f(x)
% Solution = RBACO(Options)

214

% Solution.xopt = Optimal Solution
% Solution.fopt = Optimal solution
% Data.f = Objective Function
% Data.nVar = no. of design variables
% Data.xd = Discrete design variables values vector e.g[0 45 90]
% Data.nAnt = no. of Ants
% Options.Tau0 = Initial phormone
% Options.rho = Evaporation Rate
% Options.Imax = Max no. of iterations
%%%---
%
%% Check ACO Options
if ~isempty(Options) && ~isa(Options,'struct')
 error('Options must be a valid structure.');
elseif isempty(Options)

DefaultOpt=struct('nAnt',25,'Imax',1000,'rho',0.07,'Tau0',0.004,'zeta',.03
);
 Options = DefaultOpt;
end
%% Assiging ACO Parameters value
 Imax= Options.Imax;
 rho= Options.rho;
 zeta= Options.zeta;
 Tau0=Options.Tau0;
 nAnts=Options.nAnt;
 %% % Intialization
nNodes=length(Data.xd);
Tau=Tau0*ones(Data.nVar,nNodes);
Solution.fx=[];
Solution.x=[];
ige=0;
%% Check the convergence rate ConvRate
 if mk == 1
 mxIconv=maxIconv(1);
 %% Create ACOutput.txt File
 if is < length(iseed)
 fid_ali1 = fopen(sprintf(
'03_RBACOAlgorithm/01_fast_convergence/0%i_Seeds(%i)/RBACOutput%i.txt',is,
iseed(is),ii),'w');
 else
 fid_ali1 = fopen(sprintf(
'03_RBACOAlgorithm/01_fast_convergence/%i_Seeds(%i)/RBACOutput%i.txt',is,i
seed(is),ii),'w');
 end
 elseif mk==2
 mxIconv=maxIconv(2);
 if is < length(iseed)
 fid_ali1 = fopen(sprintf(
'03_RBACOAlgorithm/02_slow_convergence/0%i_Seeds(%i)/RBACOutput%i.txt',is,
iseed(is),ii),'w');
 else
 fid_ali1 = fopen(sprintf(
'03_RBACOAlgorithm/02_slow_convergence/%i_Seeds(%i)/RBACOutput%i.txt',is,i
seed(is),ii),'w');

215

 end
 end
%%

fprintf(fid_ali1,'%s\r\n','===
=================================');
 fprintf(fid_ali1,'%s
%s\n','User:_________',num2str(datestr(clock)));

fprintf(fid_ali1,'%s\r\n','===
=================================');
 fprintf(fid_ali1,' %s\n','ACO Varient: RBACO');
 fprintf(fid_ali1,'%s\n',[' Expeirement no.(Iexp) = ',
num2str(ii)]);
 fprintf(fid_ali1,'%s\n',[' Seeds = ',
num2str(iseed(is))]);
 %% Main ACOA Loop
 while ige<Imax
 ige=ige+1;
for k=1:nAnts
% Construct Solution
 for j=1:Data.nVar
 P=Tau(j,:);
 P=P/sum(P);
 Solution.x(k,j)=RouletteWheelSelection(P);
 end
 Solution.fx(k)=feval(Data.f,Solution.x(k,:));
end
%% % Tour Statistics
 [Solution.fx,ind] = sort(Solution.fx,'descend');
 Solution.x(:,:) = Solution.x(ind,:);
 Solution.fbest(ige) = Solution.fx(1);
 Solution.xbest(1,:,ige) = Solution.x(1,:);
 % Check for current fbest
 [fbestCheck,kk] = max(Solution.fbest(1:ige));
 xbestcheck = Solution.xbest(1,:,kk);
 if Solution.fbest(ige) <= fbestCheck
 Solution.fbest(ige) = fbestCheck;
 Solution.xbest(1,:,ige) = xbestcheck;
 end
 Solution.fworst(ige) = Solution.fx(end);
 Solution.xworst(1,:,ige) = Solution.x(end,:);
 Solution.fmean(1,:,ige) = mean(Solution.fx);
 Solution.Segma(ige) = sum(Solution.fx==Solution.fx(1));
Solution.BxWxLocalDis(1,:,ige) = Data.nVar-sum(Solution.xbest(1,:,ige)...
 == Solution.xworst(1,:,ige));
 wRank = Solution.Segma(ige)-1;
 %% Plotting results
 x = Solution.xbest(1,:,ige);
 y = Data.nVar;
 PlotSolution(x,y)
%% Daimon actions
% NA
%% Pheromone Updating
 % Pheromone Evaporation (for all paths)

216

 Tau=(1-rho)*Tau;
 if wRank==0
 Solution.rank=Solution.fbest(ige)/sum(Solution.fx);
 else
 % Pheromone Depositing (for the best path)
 for mu=1:wRank
 Solution.rank(mu)=(Solution.Segma(ige)-
mu)*Solution.fx(mu)/sum(Solution.fx);
 end
 end
 d=sum(Solution.rank)
 for i=1:Data.nVar
 Tau(i,Solution.xbest(1,i,ige))= Tau(i,Solution.xbest(1,i,ige))+
sum(Solution.rank)+zeta*Solution.Segma(ige)*Solution.fworst(ige)/Solution.
fbest(ige);
 end

 tempMaxTau(ige,:) = max(Tau);
 tempMinTau(ige,:) = min(Tau);
 Solution.maxTau(ige) = max(tempMaxTau(ige,:));
 Solution.minTau(ige) = min(tempMaxTau(ige,:));
 %% Convergence check
 Iconv = sum(Solution.fbest(1:ige)==max(Solution.fbest(1:ige)));
Iwconv = sum(Solution.fbest(1:ige)==Solution.fworst(1:ige)); % Counter of
fbest=fworst
 if Iwconv >100 | Iconv>mxIconv , break;end
 end
 % RBACO Solution results
 [Solution.fopt, jj] = max(Solution.fbest(1:ige));
 Solution.xopt = Solution.xbest(1,:,jj);
 Solution.noGoptima = sum(unique(
Solution.fbest(1:ige)>=Solution.fopt/1.001));
 Solution.ige = ige;
 [~,mm] = find(Solution.fbest(1:ige) ==
Solution.fopt);
 Solution.FrstGopt = mm(1);
 Solution.Minfbest = min(Solution.fbest(:));
 Solution.Meanfbest = mean(Solution.fbest(:));
 Solution.Stdfbest = std(Solution.fbest(:));
 for i=1:ige
 Solution.GlobalDis(i) = Data.nVar-sum(Solution.xopt ==
Solution.xbest(1,:,i));
 end
 Solution.cFD = sum((Solution.fbest-Solution.Meanfbest).*(
Solution.GlobalDis-mean(Solution.GlobalDis)))/ige;
 Solution.r = Solution.cFD/(Solution.Stdfbest*std(
Solution.GlobalDis));
 Solution.PerRate = sum(Solution.fbest(:)>=
Solution.fopt/1.001)/(Solution.ige*Imax);
 Solution.ElapsedTime = toc;
 Solution.LinConvRate = zeros(1,ige);
 for i=1:ige
 if Solution.GlobalDis(i)~= 0
 Solution.LinConvRate(i) = (Solution.fopt-
Solution.fbest(i))/Solution.GlobalDis(i);

217

 else
 Solution.LinConvRate(i) = 0;
 break;
 end
 end
 Solution.maxTauExp=max(Solution.maxTau(1:ige));
 Solution.minTauExp=min(Solution.minTau(1:ige));
%% Write RBACO results Output File
fprintf(fid_ali1,'%s\r\n',[' Number of variables = '
num2str(Data.nVar)]);
fprintf(fid_ali1,'%s\r\n',[' no. of Ants = '
num2str(nAnts)]);
fprintf(fid_ali1,'%s\r\n',[' Maximum CBLF(fopt) = '
num2str(Solution.fopt)]);
fprintf(fid_ali1,'%s\r\n',[' Optimal Solution(xopt) = '
'[',num2str(Solution.xopt),']']);
fprintf(fid_ali1,'%s\r\n',[' Number of Practical Optima = '
'[',num2str(Solution.noGoptima),']']);
fprintf(fid_ali1,'%s\r\n',[' no. of Iterations(ige) = '
num2str(ige)]);
fprintf(fid_ali1,'%s\r\n',[' 1st Global optima Found @ ige = '
num2str(Solution.FrstGopt)]);
fprintf(fid_ali1,'%s\r\n',[' Minimum Best Solution = '
num2str(Solution.Minfbest)]);
fprintf(fid_ali1,'%s\r\n',[' Mean of Best Solution = '
num2str(Solution.Meanfbest)]);
fprintf(fid_ali1,'%s\r\n',[' SD of Best Solution = '
num2str(Solution.Stdfbest)]);
fprintf(fid_ali1,'%s\r\n',[' Fitness Distance Correlation = '
num2str(Solution.cFD)]);
fprintf(fid_ali1,'%s\r\n',[' Correlation Coefficent = '
num2str(Solution.r)]);
fprintf(fid_ali1,'%s\r\n',[' Elapsed Time = '
num2str(Solution.ElapsedTime)]);
fprintf(fid_ali1,'%s\r\n','===
=================================');
fprintf(fid_ali1,'%3s %10s %11s %10s %10s %9s %5s %6s
%6s\r\n','ige','Fbest(ige)','Fworst(ige)','Fmean(ige)','BWLocalDis','Globa
lDis','Segma','MaxTau','MinTau');
fprintf(fid_ali1,'%s\r\n','===
=================================');
fprintf(fid_ali1,'%-3.0f %-10.3f %-11.3f %-10.3f %-9.1f %-5.1f %-
6.1f%-6.4f %-
6.4f\r\n',[(1:ige);Solution.fbest(:)';Solution.fworst(:)';Solution.fmean(:
)';Solution.BxWxLocalDis(:)';Solution.GlobalDis(:)';Solution.Segma(:)';Sol
ution.maxTau(:)';Solution.minTau(:)']);
fprintf(fid_ali1,'%s\r\n','===
=================================');
fclose(fid_ali1);

MMACO.m

function Solution=MMACO(Options)

218

global Data ii iseed is maxIconv mk
tic
%% Max-Min Ant Colony Optimization Algorithm (MMACO) to maximize f(x)
% Solution = MMACO(Options)
% Solution.xopt = Optimal Solution
% Solution.fopt = Optimal solution
% Data.f = Objective Function
% Data.nVar = no. of design variables
% Data.xd = Discrete design variables values vector e.g[0 45 90]
% Data.nAnt = no. of Ants
% Options.Tau0 = Initial phormone
% Options.pbest = probabilitiy of the best solution
% Options.rho = Evaporation Rate
% Options.Imax = Max no. of iterations
%%%---
%
%% Check MMACO Options
if ~isempty(Options) && ~isa(Options,'struct')
 error('Options must be a valid structure.');
elseif isempty(Options)
 DefaultOpt
=struct('nAnt',25,'Imax',1000,'rho',.98,'Tau0',1,'pbest',.05,'zeta',0.03);
 Options = DefaultOpt;
end
%% Assiging MMACO Parameters value
 Imax=Options.Imax;
 rho=Options.rho;
 Tau0=Options.Tau0;
 nAnts=Options.nAnt;
 pbest=Options.pbest;
 zeta=Options.zeta;
 %% % Intialization
nNodes=length(Data.xd);
Tau=Tau0*ones(Data.nVar,nNodes);
Solution.fx=[];
Solution.x=[];
ige=0;
%% Check the convergence rate ConvRate
 if mk == 1
 mxIconv=maxIconv(1);
 %% Create MMACOutput.txt File
 if is < length(iseed)
 fid_ali1 = fopen(sprintf(
'04_MMACOAlgorithm/01_fast_convergence/0%i_Seeds(%i)/MMACOutput%i.txt',is,
iseed(is),ii),'w');
 else
 fid_ali1 = fopen(sprintf(
'04_MMACOAlgorithm/01_fast_convergence/%i_Seeds(%i)/MMACOutput%i.txt',is,i
seed(is),ii),'w');
 end
 elseif mk==2
 mxIconv=maxIconv(2);
 if is < length(iseed)

219

 fid_ali1 = fopen(sprintf(
'04_MMACOAlgorithm/02_slow_convergence/0%i_Seeds(%i)/MMACOutput%i.txt',is,
iseed(is),ii),'w');
 else
 fid_ali1 = fopen(sprintf(
'04_MMACOAlgorithm/02_slow_convergence/%i_Seeds(%i)/MMACOutput%i.txt',is,i
seed(is),ii),'w');
 end
 end
 %% Create MMACOutput.txt File

fprintf(fid_ali1,'%s\r\n','===
==========================');
 fprintf(fid_ali1,'%s
%s\n','User:Ali Ahmid',num2str(datestr(clock)));

fprintf(fid_ali1,'%s\r\n','===
==========================');
 fprintf(fid_ali1,' %s\n','ACO Varient: MMACO');
 fprintf(fid_ali1,'%s\n',[' Expeirement no.(Iexp)= ', num2str(ii)]);

%% % Main ACOA Loop
while ige<Imax
ige=ige+1;
for k=1:nAnts
% Construct Solution
 for j=1:Data.nVar
 P=Tau(j,:);
 P=P/sum(P);
 Solution.x(k,j)=RouletteWheelSelection(P);
 end
% Solution Evaluation
Solution.fx(k)=feval(Data.f,Solution.x(k,:));
end
%% % Tour Statistics
 [Solution.fx,ind] = sort(Solution.fx,'descend');
 Solution.x(:,:) = Solution.x(ind,:);
 Solution.fbest(ige) = Solution.fx(1);
 Solution.xbest(1,:,ige) = Solution.x(1,:);
 % Check for current fbest
 [fbestCheck,kk] = max(Solution.fbest(1:ige));
 xbestcheck = Solution.xbest(1,:,kk);
 if Solution.fbest(ige) <= fbestCheck
 Solution.fbest(ige) = fbestCheck;
 Solution.xbest(1,:,ige) = xbestcheck;
 end
 Solution.fworst(ige) = Solution.fx(end);
 Solution.xworst(1,:,ige) = Solution.x(end,:);
 Solution.fmean(1,:,ige) = mean(Solution.fx);
 Solution.Segma(ige) = sum(Solution.fx==Solution.fx(1));
Solution.BxWxLocalDis(1,:,ige) = Data.nVar-sum(Solution.xbest(1,:,ige)...
 == Solution.xworst(1,:,ige));
 %% Plotting results
 x = Solution.xbest(1,:,ige);
 y = Data.nVar;

220

 PlotSolution(x,y)
%% Daemon Actions
 %NA
%% Pheromone Updating

% Pheromone Evaporation (for all paths)
 Tau=(1-rho)*Tau;
 % Determine Tmax and Tmin
 Solution.TauMax(ige)=(1-rho)^-
1*Solution.fworst(ige)/Solution.fbest(ige);
 Solution.TauMin(ige)=Solution.TauMax(ige)*(1-
nthroot(pbest,nAnts))/((nAnts/2-1)*nthroot(pbest,nAnts));
 % Pheromone Depositing (for the best path)
 for i=1:Data.nVar

Tau(i,Solution.xbest(:,i,ige))=Tau(i,Solution.xbest(1,i,ige))+zeta*Solutio
n.Segma(ige)*Solution.fworst(ige)/Solution.fbest(ige);
 if Tau(i,Solution.xbest(1,i,ige))> Solution.TauMax(ige)
 Tau(i,Solution.xbest(1,i,ige))=Solution.TauMax(ige);
 elseif Tau(i,Solution.xbest(1,i,ige))< Solution.TauMin(ige)
 Tau(i,Solution.xbest(1,i,ige))=Solution.TauMin(ige);
 else
 end
 end
 %% Convergence check
 Iconv = sum(Solution.fbest(1:ige)==max(Solution.fbest(1:ige)));
Iwconv = sum(Solution.fbest(1:ige)==Solution.fworst(1:ige)); % Counter of
fbest=fworst
 if Iwconv >100 | Iconv>mxIconv , break;end
 end
 % ACOA Solution results
 [Solution.fopt, jj] = max(Solution.fbest(1:ige));
 Solution.xopt = Solution.xbest(1,:,jj);
 Solution.noGoptima = sum(unique(
Solution.fbest(1:ige)>=Solution.fopt/1.001));
 Solution.ige = ige;
 [~,mm] = find(Solution.fbest(1:ige) ==
Solution.fopt);
 Solution.FrstGopt = mm(1);
 Solution.Minfbest = min(Solution.fbest(:));
 Solution.Meanfbest = mean(Solution.fbest(:));
 Solution.Stdfbest = std(Solution.fbest(:));
 for i=1:ige
 Solution.GlobalDis(i) = Data.nVar-sum(Solution.xopt ==
Solution.xbest(1,:,i));
 end
 Solution.cFD = sum((Solution.fbest-Solution.Meanfbest).*(
Solution.GlobalDis-mean(Solution.GlobalDis)))/ige;
 Solution.r = Solution.cFD/(Solution.Stdfbest*std(
Solution.GlobalDis));
 Solution.PerRate = sum(Solution.fbest(:)>=
Solution.fopt/1.001)/(Solution.ige*Imax);
 Solution.ElapsedTime = toc;
 Solution.LinConvRate = zeros(1,ige);
 for i=1:ige

221

 if Solution.GlobalDis(i)~= 0
 Solution.LinConvRate(i) = (Solution.fopt-
Solution.fbest(i))/Solution.GlobalDis(i);
 else
 Solution.LinConvRate(i) = 0;
 break;
 end
 end
 Solution.maxTauExp=max(Solution.TauMax(1:ige));
 Solution.minTauExp=min(Solution.TauMin(1:ige));

%% Write MMACO results Output File
fprintf(fid_ali1,'%s\r\n',[' Number of variables = '
num2str(Data.nVar)]);
fprintf(fid_ali1,'%s\r\n',[' no. of Ants = '
num2str(nAnts)]);
fprintf(fid_ali1,'%s\r\n',[' Maximum CBLF(fopt) = '
num2str(Solution.fopt)]);
fprintf(fid_ali1,'%s\r\n',[' Optimal Solution(xopt) = '
'[',num2str(Solution.xopt),']']);
fprintf(fid_ali1,'%s\r\n',[' Number of Practical Optima = '
'[',num2str(Solution.noGoptima),']']);
fprintf(fid_ali1,'%s\r\n',[' no. of Iterations(ige) = '
num2str(ige)]);
fprintf(fid_ali1,'%s\r\n',[' 1st Global optima Found @ ige = '
num2str(Solution.FrstGopt)]);
fprintf(fid_ali1,'%s\r\n',[' Minimum Best Solution = '
num2str(Solution.Minfbest)]);
fprintf(fid_ali1,'%s\r\n',[' Mean of Best Solution = '
num2str(Solution.Meanfbest)]);
fprintf(fid_ali1,'%s\r\n',[' SD of Best Solution = '
num2str(Solution.Stdfbest)]);
fprintf(fid_ali1,'%s\r\n',[' Fitness Distance Correlation = '
num2str(Solution.cFD)]);
fprintf(fid_ali1,'%s\r\n',[' Correlation Coefficent = '
num2str(Solution.r)]);
fprintf(fid_ali1,'%s\r\n',[' Elapsed Time = '
num2str(Solution.ElapsedTime)]);
fprintf(fid_ali1,'%s\r\n','===
=================================');
fprintf(fid_ali1,'%3s %10s %11s %10s %10s %9s %5s %6s
%6s\r\n','ige','Fbest(ige)','Fworst(ige)','Fmean(ige)','BWLocalDis','Globa
lDis','Segma','MaxTau','MinTau');
fprintf(fid_ali1,'%s\r\n','===
=================================');
fprintf(fid_ali1,'%-3.0f %-10.3f %-11.3f %-10.3f %-9.1f %-5.1f %-
6.1f%-6.4f %-
6.4f\r\n',[(1:ige);Solution.fbest(:)';Solution.fworst(:)';Solution.fmean(:
)';Solution.BxWxLocalDis(:)';Solution.GlobalDis(:)';Solution.Segma(:)';Sol
ution.TauMax(:)';Solution.TauMin(:)']);
fprintf(fid_ali1,'%s\r\n','===
=================================');
fclose(fid_ali1);

222

HCFACO.m

function Solution=HCFACO(Options)
global Data ii iseed is maxIconv mk
tic
%% Hyper-Cube Ant Colony Optimization (EHCFACO) to maximize f(x)
% Solution = HCFACO(Options)
% Solution.xopt = Optimal Solution
% Solution.fopt = Optimal solution
% Data.f = Objective Function
% Data.nVar = no. of design variables
% Data.xd = Discrete design variables values vector e.g[0 45 90]
% Data.nAnt = no. of Ants
% Options.Tau0 = Initial phormone
% Options.rho = Evaporation Rate
% Options.Imax = Max no. of iterations
%%%---
%
%% Check HCFACO Options
if ~isempty(Options) && ~isa(Options,'struct')
 error('Options must be a valid structure.');
elseif isempty(Options)

DefaultOpt=struct('nAnt',25,'Imax',1000,'rho',0.07,'Tau0',0.004,'zeta',.03
);
 Options = DefaultOpt;
end
%% Assiging HCFACO Parameters value
 Imax= Options.Imax;
 rho= Options.rho;
 Tau0=Options.Tau0;
 nAnts=Options.nAnt;
 %% % Intialization
nNodes=length(Data.xd);
Tau=Tau0*ones(Data.nVar,nNodes);
Solution.fx=[];
Solution.x=[];
ige=0;
%% Check the convergence rate ConvRate
 if mk == 1
 mxIconv=maxIconv(1);
 %% Create HCFACOutput.txt File
 if is < length(iseed)
 fid_ali1 = fopen(sprintf(
'05_HCFACOAlgorithm/01_fast_convergence/0%i_Seeds(%i)/HCFACOutput%i.txt',i
s,iseed(is),ii),'w');
 else
 fid_ali1 = fopen(sprintf(
'05_HCFACOAlgorithm/01_fast_convergence/%i_Seeds(%i)/HCFACOutput%i.txt',is
,iseed(is),ii),'w');
 end
 elseif mk==2
 mxIconv=maxIconv(2);

223

 if is < length(iseed)
 fid_ali1 = fopen(sprintf(
'05_HCFACOAlgorithm/02_slow_convergence/0%i_Seeds(%i)/HCFACOutput%i.txt',i
s,iseed(is),ii),'w');
 else
 fid_ali1 = fopen(sprintf(
'05_HCFACOAlgorithm/02_slow_convergence/%i_Seeds(%i)/HCFACOutput%i.txt',is
,iseed(is),ii),'w');
 end
 end
%%

fprintf(fid_ali1,'%s\r\n','===
=================================');
 fprintf(fid_ali1,'%s
%s\n','User:_________',num2str(datestr(clock)));

fprintf(fid_ali1,'%s\r\n','===
=================================');
 fprintf(fid_ali1,' %s\n','ACO Varient: HCFACO');
 fprintf(fid_ali1,'%s\n',[' Expeirement no.(Iexp) = ',
num2str(ii)]);
 fprintf(fid_ali1,'%s\n',[' Seeds = ',
num2str(iseed(is))]);
 %% Main HCFACO Loop
 while ige<Imax
 ige=ige+1;
for k=1:nAnts
% Construct Solution
 for j=1:Data.nVar
 P=Tau(j,:);
 P=P/sum(P);
 Solution.x(k,j)=RouletteWheelSelection(P);
 end
 Solution.fx(k)=feval(Data.f,Solution.x(k,:));
end
%% % Tour Statistics
 [Solution.fx,ind] = sort(Solution.fx,'descend');
 Solution.x(:,:) = Solution.x(ind,:);
 Solution.fbest(ige) = Solution.fx(1);
 Solution.xbest(1,:,ige) = Solution.x(1,:);
 % Check for current fbest
 [fbestCheck,kk] = max(Solution.fbest(1:ige));
 xbestcheck = Solution.xbest(1,:,kk);
 if Solution.fbest(ige) <= fbestCheck
 Solution.fbest(ige) = fbestCheck;
 Solution.xbest(1,:,ige) = xbestcheck;
 end
 Solution.fworst(ige) = Solution.fx(end);
 Solution.xworst(1,:,ige) = Solution.x(end,:);
 Solution.fmean(1,:,ige) = mean(Solution.fx);
 Solution.Segma(ige) = sum(Solution.fx==Solution.fx(1));
Solution.BxWxLocalDis(1,:,ige) = Data.nVar-sum(Solution.xbest(1,:,ige)...
 == Solution.xworst(1,:,ige));
 %% Plotting results

224

 x = Solution.xbest(1,:,ige);
 y = Data.nVar;
 PlotSolution(x,y)
 %% Daimon actions
% NA
%% Pheromone Updating
% gama_s=Solution.fbest(ige)/sum(Solution.fx);
% S(1,:,ige)=ones(1,Data.nVar);
 % Pheromone Depositing (for the best path)
 for i=1:Data.nVar

Tau(i,Solution.xbest(1,i,ige))=Tau(i,Solution.xbest(1,i,ige))+rho*Solution
.Segma(ige)*Solution.fbest(ige)/sum(Solution.fx);
%rho*Solution.Segma(ige)*(gama_s*S(1,i,ige)-
Tau(i,Solution.xbest(1,i,ige)));%rho*zeta*Solution.Segma(ige)*Solution.fbe
st(ige)/sum(Solution.fx);%
 end
 tempMaxTau(ige,:) = max(Tau);
 tempMinTau(ige,:) = min(Tau);
 Solution.maxTau(ige) = max(tempMaxTau(ige,:));
 Solution.minTau(ige) = min(tempMaxTau(ige,:));
 %% Convergence check
 Iconv = sum(Solution.fbest(1:ige)==max(Solution.fbest(1:ige)));
Iwconv = sum(Solution.fbest(1:ige)==Solution.fworst(1:ige)); % Counter of
fbest=fworst
 if Iwconv >100 | Iconv>mxIconv , break;end
 end
 % HCFACO Solution results
 [Solution.fopt, jj] = max(Solution.fbest(1:ige));
 Solution.xopt = Solution.xbest(1,:,jj);
 Solution.noGoptima = sum(unique(
Solution.fbest(1:ige)>=Solution.fopt/1.001));
 Solution.ige = ige;
 [~,mm] = find(Solution.fbest(1:ige) ==
Solution.fopt);
 Solution.FrstGopt = mm(1);
 Solution.Minfbest = min(Solution.fbest(:));
 Solution.Meanfbest = mean(Solution.fbest(:));
 Solution.Stdfbest = std(Solution.fbest(:));
 for i=1:ige
 Solution.GlobalDis(i) = Data.nVar-sum(Solution.xopt ==
Solution.xbest(1,:,i));
 end
 Solution.cFD = sum((Solution.fbest-Solution.Meanfbest).*(
Solution.GlobalDis-mean(Solution.GlobalDis)))/ige;
 Solution.r = Solution.cFD/(Solution.Stdfbest*std(
Solution.GlobalDis));
 Solution.PerRate = sum(Solution.fbest(:)>=
Solution.fopt/1.001)/(Solution.ige*Imax);
 Solution.ElapsedTime = toc;
 Solution.LinConvRate = zeros(1,ige);
 for i=1:ige
 if Solution.GlobalDis(i)~= 0
 Solution.LinConvRate(i) = (Solution.fopt-
Solution.fbest(i))/Solution.GlobalDis(i);

225

 else
 Solution.LinConvRate(i) = 0;
 break;
 end
 end
 Solution.maxTauExp=max(Solution.maxTau(1:ige));
 Solution.minTauExp=min(Solution.minTau(1:ige));
%% Write HCFACO results Output File
fprintf(fid_ali1,'%s\r\n',[' Number of variables = '
num2str(Data.nVar)]);
fprintf(fid_ali1,'%s\r\n',[' no. of Ants = '
num2str(nAnts)]);
fprintf(fid_ali1,'%s\r\n',[' Maximum CBLF(fopt) = '
num2str(Solution.fopt)]);
fprintf(fid_ali1,'%s\r\n',[' Optimal Solution(xopt) = '
'[',num2str(Solution.xopt),']']);
fprintf(fid_ali1,'%s\r\n',[' Number of Practical Optima = '
'[',num2str(Solution.noGoptima),']']);
fprintf(fid_ali1,'%s\r\n',[' no. of Iterations(ige) = '
num2str(ige)]);
fprintf(fid_ali1,'%s\r\n',[' 1st Global optima Found @ ige = '
num2str(Solution.FrstGopt)]);
fprintf(fid_ali1,'%s\r\n',[' Minimum Best Solution = '
num2str(Solution.Minfbest)]);
fprintf(fid_ali1,'%s\r\n',[' Mean of Best Solution = '
num2str(Solution.Meanfbest)]);
fprintf(fid_ali1,'%s\r\n',[' SD of Best Solution = '
num2str(Solution.Stdfbest)]);
fprintf(fid_ali1,'%s\r\n',[' Fitness Distance Correlation = '
num2str(Solution.cFD)]);
fprintf(fid_ali1,'%s\r\n',[' Correlation Coefficent = '
num2str(Solution.r)]);
fprintf(fid_ali1,'%s\r\n',[' Elapsed Time = '
num2str(Solution.ElapsedTime)]);
fprintf(fid_ali1,'%s\r\n','===
=================================');
fprintf(fid_ali1,'%3s %10s %11s %10s %10s %9s %5s %6s
%6s\r\n','ige','Fbest(ige)','Fworst(ige)','Fmean(ige)','BWLocalDis','Globa
lDis','Segma','MaxTau','MinTau');
fprintf(fid_ali1,'%s\r\n','===
=================================');
fprintf(fid_ali1,'%-3.0f %-10.3f %-11.3f %-10.3f %-9.1f %-5.1f %-
6.1f%-6.4f %-
6.4f\r\n',[(1:ige);Solution.fbest(:)';Solution.fworst(:)';Solution.fmean(:
)';Solution.BxWxLocalDis(:)';Solution.GlobalDis(:)';Solution.Segma(:)';Sol
ution.maxTau(:)';Solution.minTau(:)']);
fprintf(fid_ali1,'%s\r\n','===
=================================');
fclose(fid_ali1);

BWACO.m

226

function Solution=BWACO(Options)
global Data ii iseed is maxIconv mk
tic
%% Best-Worst Ant Colony Optimization Algorithm (MMACO) to maximize f(x)
% Solution = BWACO(Options)
% Solution.xopt = Optimal Solution
% Solution.fopt = Optimal solution
% Data.f = Objective Function
% Data.nVar = no. of design variables
% Data.xd = Discrete design variables values vector e.g[0 45 90]
% Data.nAnt = no. of Ants
% Options.Tau0 = Initial phormone
% Options.pbest = probabilitiy of the best solution
% Options.rho = Evaporation Rate
% Options.Imax = Max no. of iterations
%%%---
%
%% Check ACO Options
if ~isempty(Options) && ~isa(Options,'struct')
 error('Options must be a valid structure.');
elseif isempty(Options)
 DefaultOpt
=struct('nAnt',25,'Imax',1000,'rho',0.1,'Tau0',1,'pbest',.05,'lamda',0.6,'
zeta',.03);
 Options = DefaultOpt;
end
%% Assiging ACO Parameters value
 Imax=Options.Imax;
 rho=Options.rho;
 Tau0=Options.Tau0;
 nAnts=Options.nAnt;
 zeta=Options.zeta;
 pbest=Options.pbest;
 %% % Intialization
nNodes=length(Data.xd);
Tau=Tau0*ones(Data.nVar,nNodes);
Solution.fx=[];
Solution.x=[];
ige=0;
%% Check the convergence rate ConvRate
 if mk == 1
 mxIconv=maxIconv(1);
 %% Create BWACOutput.txt File
 if is < length(iseed)
 fid_ali1 = fopen(sprintf(
'06_BWACOAlgorithm/01_fast_convergence/0%i_Seeds(%i)/BWACOutput%i.txt',is,
iseed(is),ii),'w');
 else
 fid_ali1 = fopen(sprintf(
'06_BWACOAlgorithm/01_fast_convergence/%i_Seeds(%i)/BWACOutput%i.txt',is,i
seed(is),ii),'w');
 end
 elseif mk==2
 mxIconv=maxIconv(2);
 if is < length(iseed)

227

 fid_ali1 = fopen(sprintf(
'06_BWACOAlgorithm/02_slow_convergence/0%i_Seeds(%i)/BWACOutput%i.txt',is,
iseed(is),ii),'w');
 else
 fid_ali1 = fopen(sprintf(
'06_BWACOAlgorithm/02_slow_convergence/%i_Seeds(%i)/BWACOutput%i.txt',is,i
seed(is),ii),'w');
 end
 end
 %% Create BWACOutput.txt File

fprintf(fid_ali1,'%s\r\n','===
==========================');
 fprintf(fid_ali1,'%s
%s\n','User:_________',num2str(datestr(clock)));

fprintf(fid_ali1,'%s\r\n','===
==========================');
 fprintf(fid_ali1,' %s\n','ACO Varient: BWACO');
 fprintf(fid_ali1,'%s\n',[' Expeirement no.(Iexp)= ', num2str(ii)]);

%% % Main BWACO Loop
while ige<Imax
ige=ige+1;
for k=1:nAnts
% Construct Solution
 for j=1:Data.nVar
 P=Tau(j,:);
 P=P/sum(P);
 Solution.x(k,j)=RouletteWheelSelection(P);
 end
% Solution Evaluation
Solution.fx(k)=feval(Data.f,Solution.x(k,:));
end
%% % Tour Statistics
 [Solution.fx,ind] = sort(Solution.fx,'descend');
 Solution.x(:,:) = Solution.x(ind,:);
 Solution.fbest(ige) = Solution.fx(1);
 Solution.xbest(1,:,ige) = Solution.x(1,:);
 % Check for current fbest
 [fbestCheck,kk] = max(Solution.fbest(1:ige));
 xbestcheck = Solution.xbest(1,:,kk);
 if Solution.fbest(ige) <= fbestCheck
 Solution.fbest(ige) = fbestCheck;
 Solution.xbest(1,:,ige) = xbestcheck;
 end
 Solution.fworst(ige) = Solution.fx(end);
 Solution.xworst(1,:,ige) = Solution.x(end,:);
 Solution.fmean(1,:,ige) = mean(Solution.fx);
 Solution.Segma(ige) = sum(Solution.fx==Solution.fx(1));
Solution.BxWxLocalDis(1,:,ige) = Data.nVar-sum(Solution.xbest(1,:,ige)...
 == Solution.xworst(1,:,ige));
 %% Plotting results
 x = Solution.xbest(1,:,ige);
 y = Data.nVar;

228

 PlotSolution(x,y)
%% Daemon Actions
 %NA
%% Pheromone Updating
 % Phormen Evaporation (for all paths)
 llamda=.6;
 % Pheromone Evaporation (for all paths)
 Tau=(1-rho)*Tau;
 % Determine Tmax and Tmin
 Solution.TauMax(ige)=(1-rho)^-
1*zeta*Solution.Segma(ige)*Solution.fworst(ige)/Solution.fbest(ige);
 Solution.TauMin(ige)=Solution.TauMax(ige)*(1-
nthroot(pbest,nAnts))/((nAnts/2-1)*nthroot(pbest,nAnts));
 % Pheromone Depositing (for the best path)
 for i=1:Data.nVar

Tau(i,Solution.xbest(:,i,ige))=Tau(i,Solution.xbest(1,i,ige))+zeta*Solutio
n.Segma(ige)*Solution.fworst(ige)/Solution.fbest(ige);
 if Tau(i,Solution.xbest(1,i,ige))> Solution.TauMax(ige)
 Tau(i,Solution.xbest(1,i,ige))=Solution.TauMax(ige);
 elseif Tau(i,Solution.xbest(1,i,ige))< Solution.TauMin(ige)
 Tau(i,Solution.xbest(1,i,ige))=Solution.TauMin(ige);
 else
 end
 end

 for i=1:Data.nVar
 Tau(i,Solution.xbest(:,i,ige))=Tau(i,Solution.xbest(1,i,ige))-
llamda*Solution.fworst(ige)/sum(Solution.fx);
 end
 tempMaxTau(ige,:) = max(Tau);
 tempMinTau(ige,:) = min(Tau);
 Solution.maxTau(ige) = max(tempMaxTau(ige,:));
 Solution.minTau(ige) = min(tempMaxTau(ige,:));
%% Convergence check
 Iconv = sum(Solution.fbest(1:ige)==max(Solution.fbest(1:ige)));
Iwconv = sum(Solution.fbest(1:ige)==Solution.fworst(1:ige)); % Counter of
fbest=fworst
 if Iwconv >100 | Iconv>mxIconv , break;end
 end
 % BWACO Solution results
 [Solution.fopt, jj] = max(Solution.fbest(1:ige));
 Solution.xopt = Solution.xbest(1,:,jj);
 Solution.noGoptima = sum(unique(
Solution.fbest(1:ige)>=Solution.fopt/1.001));
 Solution.ige = ige;
 [~,mm] = find(Solution.fbest(1:ige) ==
Solution.fopt);
 Solution.FrstGopt = mm(1);
 Solution.Minfbest = min(Solution.fbest(:));
 Solution.Meanfbest = mean(Solution.fbest(:));
 Solution.Stdfbest = std(Solution.fbest(:));
 for i=1:ige
 Solution.GlobalDis(i) = Data.nVar-sum(Solution.xopt ==
Solution.xbest(1,:,i));

229

 end
 Solution.cFD = sum((Solution.fbest-Solution.Meanfbest).*(
Solution.GlobalDis-mean(Solution.GlobalDis)))/ige;
 Solution.r = Solution.cFD/(Solution.Stdfbest*std(
Solution.GlobalDis));
 Solution.PerRate = sum(Solution.fbest(:)>=
Solution.fopt/1.001)/(Solution.ige*Imax);
 Solution.ElapsedTime = toc;
 Solution.LinConvRate = zeros(1,ige);
 for i=1:ige
 if Solution.GlobalDis(i)~= 0
 Solution.LinConvRate(i) = (Solution.fopt-
Solution.fbest(i))/Solution.GlobalDis(i);
 else
 Solution.LinConvRate(i) = 0;
 break;
 end
 end
 Solution.maxTauExp=max(Solution.TauMax(1:ige));
 Solution.minTauExp=min(Solution.TauMin(1:ige));

%% Write EHCFMMACO results Output File
fprintf(fid_ali1,'%s\r\n',[' Number of variables = '
num2str(Data.nVar)]);
fprintf(fid_ali1,'%s\r\n',[' no. of Ants = '
num2str(nAnts)]);
fprintf(fid_ali1,'%s\r\n',[' Maximum CBLF(fopt) = '
num2str(Solution.fopt)]);
fprintf(fid_ali1,'%s\r\n',[' Optimal Solution(xopt) = '
'[',num2str(Solution.xopt),']']);
fprintf(fid_ali1,'%s\r\n',[' Number of Practical Optima = '
'[',num2str(Solution.noGoptima),']']);
fprintf(fid_ali1,'%s\r\n',[' no. of Iterations(ige) = '
num2str(ige)]);
fprintf(fid_ali1,'%s\r\n',[' 1st Global optima Found @ ige = '
num2str(Solution.FrstGopt)]);
fprintf(fid_ali1,'%s\r\n',[' Minimum Best Solution = '
num2str(Solution.Minfbest)]);
fprintf(fid_ali1,'%s\r\n',[' Mean of Best Solution = '
num2str(Solution.Meanfbest)]);
fprintf(fid_ali1,'%s\r\n',[' SD of Best Solution = '
num2str(Solution.Stdfbest)]);
fprintf(fid_ali1,'%s\r\n',[' Fitness Distance Correlation = '
num2str(Solution.cFD)]);
fprintf(fid_ali1,'%s\r\n',[' Correlation Coefficent = '
num2str(Solution.r)]);
fprintf(fid_ali1,'%s\r\n',[' Elapsed Time = '
num2str(Solution.ElapsedTime)]);
fprintf(fid_ali1,'%s\r\n','===
=================================');
fprintf(fid_ali1,'%3s %10s %11s %10s %10s %9s %5s %6s
%6s\r\n','ige','Fbest(ige)','Fworst(ige)','Fmean(ige)','BWLocalDis','Globa
lDis','Segma','MaxTau','MinTau');
fprintf(fid_ali1,'%s\r\n','===
=================================');

230

fprintf(fid_ali1,'%-3.0f %-10.3f %-11.3f %-10.3f %-9.1f %-5.1f %-
6.1f%-6.4f %-
6.4f\r\n',[(1:ige);Solution.fbest(:)';Solution.fworst(:)';Solution.fmean(:
)';Solution.BxWxLocalDis(:)';Solution.GlobalDis(:)';Solution.Segma(:)';Sol
ution.maxTau(:)';Solution.minTau(:)']);
fprintf(fid_ali1,'%s\r\n','===
=================================');
fclose(fid_ali1);

EHCFACO.m

function Solution=EHCFACO(Options)
global Data ii iseed is maxIconv mk
tic
%% Enhanced Hyper-Cube Ant Colony Optimization (EHCFACO) to maximize f(x)
% Solution = EHCFACO(Options)
% Solution.xopt = Optimal Solution
% Solution.fopt = Optimal solution
% Data.f = Objective Function
% Data.nVar = no. of design variables
% Data.xd = Discrete design variables values vector e.g[0 45 90]
% Data.nAnt = no. of Ants
% Options.Tau0 = Initial phormone
% Options.rho = Evaporation Rate
% Options.Imax = Max no. of iterations
%%%---
%
%% Check EHCFACO Options
if ~isempty(Options) && ~isa(Options,'struct')
 error('Options must be a valid structure.');
elseif isempty(Options)
 DefaultOpt=struct('nAnt',25,'Imax',1000,'rho',0.1,'Tau0',0.004);
 Options = DefaultOpt;
end
%% Assiging ACO Parameters value
 Imax = Options.Imax;
 rho = Options.rho;
 Tau0 = Options.Tau0;
 nAnts = Options.nAnt;
%% % Intialization
nNodes = length(Data.xd);
 Tau = Tau0*ones(Data.nVar,nNodes);
 ige = 0;
 %% Check the convergence rate ConvRate
 if mk == 1
 mxIconv=maxIconv(1);
 %% Create EHCFACOutput.txt File
 if is < length(iseed)
 fid_ali1 = fopen(sprintf(
'07_EHCFACOAlgorithm/01_fast_convergence/0%i_Seeds(%i)/EHCFACOutput%i.txt'
,is,iseed(is),ii),'w');
 else

231

 fid_ali1 = fopen(sprintf(
'07_EHCFACOAlgorithm/01_fast_convergence/%i_Seeds(%i)/EHCFACOutput%i.txt',
is,iseed(is),ii),'w');
 end
 elseif mk==2
 mxIconv=maxIconv(2);
 if is < length(iseed)
 fid_ali1 = fopen(sprintf(
'07_EHCFACOAlgorithm/02_slow_convergence/0%i_Seeds(%i)/EHCFACOutput%i.txt'
,is,iseed(is),ii),'w');
 else
 fid_ali1 = fopen(sprintf(
'07_EHCFACOAlgorithm/02_slow_convergence/%i_Seeds(%i)/EHCFACOutput%i.txt',
is,iseed(is),ii),'w');
 end
 end

fprintf(fid_ali1,'%s\r\n','===
==========================');
 fprintf(fid_ali1,'%s
%s\n','User:_________',num2str(datestr(clock)));

fprintf(fid_ali1,'%s\r\n','===
==========================');
 fprintf(fid_ali1,' %s\n','ACO Varient: EHCFACO');
 fprintf(fid_ali1,'%s\n',[' Expeirement no.(Iexp) = ',
num2str(ii)]);
 fprintf(fid_ali1,'%s\n',[' Seeds = ',
num2str(iseed(is))]);
 %% Main EHCFACO Loop
 while ige<Imax
 ige=ige+1;
for k=1:nAnts
% Construct Solution
 for j=1:Data.nVar
 P=Tau(j,:);
 P=P/sum(P);
 Solution.x(k,j)=RouletteWheelSelection(P);
 end
 Solution.fx(k)=feval(Data.f,Solution.x(k,:));
end
%% % Tour Statistics
 [Solution.fx,ind] = sort(Solution.fx,'descend');
 Solution.x(:,:) = Solution.x(ind,:);
 Solution.fbest(ige) = Solution.fx(1);
 Solution.xbest(1,:,ige) = Solution.x(1,:);
 % Check for current fbest
 [fbestCheck,kk] = max(Solution.fbest(1:ige));
 xbestcheck = Solution.xbest(1,:,kk);
 if Solution.fbest(ige) <= fbestCheck
 Solution.fbest(ige) = fbestCheck;
 Solution.xbest(1,:,ige) = xbestcheck;
 end
 Solution.fworst(ige) = Solution.fx(end);
 Solution.xworst(1,:,ige) = Solution.x(end,:);

232

 Solution.fmean(1,:,ige) = mean(Solution.fx);
 Solution.Segma(ige) = sum(Solution.fx==Solution.fx(1));
Solution.BxWxLocalDis(1,:,ige) = Data.nVar-sum(Solution.xbest(1,:,ige)...
 == Solution.xworst(1,:,ige));
 %% Plotting results
 x = Solution.xbest(1,:,ige);
 y = Data.nVar;
 PlotSolution(x,y)
%% Daimon actions
% Insertion

xtemp=Insertion(Solution.xbest(1,:,ige),randi(Data.nVar),randi(Data.nVar))
;
 ftemp=feval(Data.f,xtemp);
 if
ftemp>Solution.fbest(ige),Solution.fbest(ige)=ftemp;Solution.xbest(1,:,ige
)=xtemp;end

% Node flip (equavelent to mutuation)
 xtemp=xflip(Solution.xbest(1,:,ige),randi(Data.nVar));
 ftemp=feval(Data.f,xtemp);
 if
ftemp>Solution.fbest(ige),Solution.fbest(ige)=ftemp;Solution.xbest(1,:,ige
)=xtemp;end
 %% Plotting results
 x = Solution.xbest(1,:,ige);
 y = Data.nVar;
 PlotSolution(x,y)
%% Pheromone Updating
 % Pheromone Depositing (for the best path)
 for i=1:Data.nVar

Tau(i,Solution.xbest(1,i,ige))=Tau(i,Solution.xbest(1,i,ige))+rho*Solution
.Segma(ige)*Solution.fbest(ige)/sum(Solution.fx);%(gama_s*S(1,i,ige)-
 end
 tempMaxTau(ige,:) = max(Tau);
 tempMinTau(ige,:) = min(Tau);
 Solution.maxTau(ige) = max(tempMaxTau(ige,:));
 Solution.minTau(ige) = min(tempMaxTau(ige,:));
 %% Convergence check
 Iconv = sum(Solution.fbest(1:ige)==max(Solution.fbest(1:ige)));
Iwconv = sum(Solution.fbest(1:ige)==Solution.fworst(1:ige)); % Counter of
fbest=fworst
 if Iwconv >100 | Iconv>mxIconv , break;end
 end
 % HCFACO Solution results
 [Solution.fopt, jj] = max(Solution.fbest(1:ige));
 Solution.xopt = Solution.xbest(1,:,jj);
 Solution.noGoptima = sum(unique(
Solution.fbest(1:ige)>=Solution.fopt/1.001));
 Solution.ige = ige;
 [~,mm] = find(Solution.fbest(1:ige) ==
Solution.fopt);
 Solution.FrstGopt = mm(1);
 Solution.Minfbest = min(Solution.fbest(:));

233

 Solution.Meanfbest = mean(Solution.fbest(:));
 Solution.Stdfbest = std(Solution.fbest(:));
 for i=1:ige
 Solution.GlobalDis(i) = Data.nVar-sum(Solution.xopt ==
Solution.xbest(1,:,i));
 end
 Solution.cFD = sum((Solution.fbest-Solution.Meanfbest).*(
Solution.GlobalDis-mean(Solution.GlobalDis)))/ige;
 Solution.r = Solution.cFD/(Solution.Stdfbest*std(
Solution.GlobalDis));
 Solution.PerRate = sum(Solution.fbest(:)>=
Solution.fopt/1.001)/(Solution.ige*Imax);
 Solution.ElapsedTime = toc;
 Solution.LinConvRate = zeros(1,ige);
 for i=1:ige
 if Solution.GlobalDis(i)~= 0
 Solution.LinConvRate(i) = (Solution.fopt-
Solution.fbest(i))/Solution.GlobalDis(i);
 else
 Solution.LinConvRate(i) = 0;
 break;
 end
 end
 Solution.maxTauExp=max(Solution.maxTau(1:ige));
 Solution.minTauExp=min(Solution.minTau(1:ige));
%% Write EHCFACO results Output File
fprintf(fid_ali1,'%s\r\n',[' Number of variables = '
num2str(Data.nVar)]);
fprintf(fid_ali1,'%s\r\n',[' no. of Ants = '
num2str(nAnts)]);
fprintf(fid_ali1,'%s\r\n',[' Maximum CBLF(fopt) = '
num2str(Solution.fopt)]);
fprintf(fid_ali1,'%s\r\n',[' Optimal Solution(xopt) = '
'[',num2str(Solution.xopt),']']);
fprintf(fid_ali1,'%s\r\n',[' Number of Practical Optima = '
'[',num2str(Solution.noGoptima),']']);
fprintf(fid_ali1,'%s\r\n',[' no. of Iterations(ige) = '
num2str(ige)]);
fprintf(fid_ali1,'%s\r\n',[' 1st Global optima Found @ ige = '
num2str(Solution.FrstGopt)]);
fprintf(fid_ali1,'%s\r\n',[' Minimum Best Solution = '
num2str(Solution.Minfbest)]);
fprintf(fid_ali1,'%s\r\n',[' Mean of Best Solution = '
num2str(Solution.Meanfbest)]);
fprintf(fid_ali1,'%s\r\n',[' SD of Best Solution = '
num2str(Solution.Stdfbest)]);
fprintf(fid_ali1,'%s\r\n',[' Fitness Distance Correlation = '
num2str(Solution.cFD)]);
fprintf(fid_ali1,'%s\r\n',[' Correlation Coefficent = '
num2str(Solution.r)]);
fprintf(fid_ali1,'%s\r\n',[' Elapsed Time = '
num2str(Solution.ElapsedTime)]);
fprintf(fid_ali1,'%s\r\n','===
=================================');

234

fprintf(fid_ali1,'%3s %10s %11s %10s %10s %9s %5s %6s
%6s\r\n','ige','Fbest(ige)','Fworst(ige)','Fmean(ige)','BWLocalDis','Globa
lDis','Segma','MaxTau','MinTau');
fprintf(fid_ali1,'%s\r\n','===
=================================');
fprintf(fid_ali1,'%-3.0f %-10.3f %-11.3f %-10.3f %-9.1f %-5.1f %-
6.1f%-6.4f %-
6.4f\r\n',[(1:ige);Solution.fbest(:)';Solution.fworst(:)';Solution.fmean(:
)';Solution.BxWxLocalDis(:)';Solution.GlobalDis(:)';Solution.Segma(:)';Sol
ution.maxTau(:)';Solution.minTau(:)']);
fprintf(fid_ali1,'%s\r\n','===
=================================');
fclose(fid_ali1);

HCFMMACO.m

function Solution=HCFMMACO(Options)
global Data ii iseed is maxIconv mk
tic
%% Hyper-Cube Framework Max-Min Ant Colony Optimization Algorithm
(HCFMMACO)
% to maximize f(x)
%---
%
% Solution = HCFMMACO(Options)
% Solution.xopt = Optimal Solution
% Solution.fopt = Optimal solution
% Data.f = Objective Function
% Data.nVar = no. of design variables
% Data.xd = Discrete design variables values vector e.g[0 45 90]
% Data.nAnt = no. of Ants
% Options.Tau0 = Initial phormone
% Options.pbest = probabilitiy of the best solution
% Options.rho = Evaporation Rate
% Options.Imax = Max no. of iterations
%%%---
%
%% Check HCFMMACO Options
if ~isempty(Options) && ~isa(Options,'struct')
 error('Options must be a valid structure.');
elseif isempty(Options)
 DefaultOpt
=struct('nAnt',25,'Imax',1000,'rho',.98,'Tau0',1,'pbest',.05,'zeta',0.03);
 Options = DefaultOpt;
end
%% Assiging HVFMMACO Parameters value
 Imax=Options.Imax;
 rho=Options.rho;
 Tau0=Options.Tau0;
 nAnts=Options.nAnt;
% pbest=Options.pbest;
 zeta=Options.zeta;
 %% % Intialization

235

nNodes=length(Data.xd);
Tau=Tau0*ones(Data.nVar,nNodes);
Solution.fx=[];
Solution.x=[];
ige=0;
%% Check the convergence rate ConvRate
 if mk == 1
 mxIconv=maxIconv(1);
 %% Create ACOutput.txt File
 if is < length(iseed)
 fid_ali1 = fopen(sprintf(
'08_HCFMMACOAlgorithm/01_fast_convergence/0%i_Seeds(%i)/HCFMMACOutput%i.tx
t',is,iseed(is),ii),'w');
 else
 fid_ali1 = fopen(sprintf(
'08_HCFMMACOAlgorithm/01_fast_convergence/%i_Seeds(%i)/HCFMMACOutput%i.txt
',is,iseed(is),ii),'w');
 end
 elseif mk==2
 mxIconv=maxIconv(2);
 if is < length(iseed)
 fid_ali1 = fopen(sprintf(
'08_HCFMMACOAlgorithm/02_slow_convergence/0%i_Seeds(%i)/HCFMMACOutput%i.tx
t',is,iseed(is),ii),'w');
 else
 fid_ali1 = fopen(sprintf(
'08_HCFMMACOAlgorithm/02_slow_convergence/%i_Seeds(%i)/HCFMMACOutput%i.txt
',is,iseed(is),ii),'w');
 end
 end
 %% Create HCFMMACOutput.txt File

fprintf(fid_ali1,'%s\r\n','===
==========================');
 fprintf(fid_ali1,'%s
%s\n','User:_________',num2str(datestr(clock)));

fprintf(fid_ali1,'%s\r\n','===
==========================');
 fprintf(fid_ali1,' %s\n','ACO Varient:
HCFMMACO');
 fprintf(fid_ali1,'%s\n',[' Expeirement no.(Iexp)= ', num2str(ii)]);

%% % Main HCFMMACOA Loop
while ige<Imax
ige=ige+1;
for k=1:nAnts
% Construct Solution
 for j=1:Data.nVar
 P=Tau(j,:);
 P=P/sum(P);
 Solution.x(k,j)=RouletteWheelSelection(P);
 end
% Solution Evaluation
Solution.fx(k)=feval(Data.f,Solution.x(k,:));

236

end
%% % Tour Statistics
 [Solution.fx,ind] = sort(Solution.fx,'descend');
 Solution.x(:,:) = Solution.x(ind,:);
 Solution.fbest(ige) = Solution.fx(1);
 Solution.xbest(1,:,ige) = Solution.x(1,:);
 % Check for current fbest
 [fbestCheck,kk] = max(Solution.fbest(1:ige));
 xbestcheck = Solution.xbest(1,:,kk);
 if Solution.fbest(ige) <= fbestCheck
 Solution.fbest(ige) = fbestCheck;
 Solution.xbest(1,:,ige) = xbestcheck;
 end
 Solution.fworst(ige) = Solution.fx(end);
 Solution.xworst(1,:,ige) = Solution.x(end,:);
 Solution.fmean(1,:,ige) = mean(Solution.fx);
 Solution.Segma(ige) = sum(Solution.fx==Solution.fx(1));
Solution.BxWxLocalDis(1,:,ige) = Data.nVar-sum(Solution.xbest(1,:,ige)...
 == Solution.xworst(1,:,ige));
 %% Plotting results
 x = Solution.xbest(1,:,ige);
 y = Data.nVar;
 PlotSolution(x,y)
%% Daemon Actions
 %NA
%% Pheromone Updating

% Pheromone Evaporation (for all paths)
 Tau=(1-rho)*Tau;
 % Determine Tmax and Tmin
 Solution.TauMax(ige)=1;
 Solution.TauMin(ige)=0;
 % Pheromone Depositing (for the best path)
 for i=1:Data.nVar

Tau(i,Solution.xbest(:,i,ige))=Tau(i,Solution.xbest(1,i,ige))+zeta*Solutio
n.Segma(ige)*Solution.fworst(ige)/Solution.fbest(ige);
 if Tau(i,Solution.xbest(1,i,ige))> Solution.TauMax(ige)
 Tau(i,Solution.xbest(1,i,ige))=Solution.TauMax(ige);
 elseif Tau(i,Solution.xbest(1,i,ige))< Solution.TauMin(ige)
 Tau(i,Solution.xbest(1,i,ige))=Solution.TauMin(ige);
 else
 end
 end
 %% Convergence check
 Iconv = sum(Solution.fbest(1:ige)==max(Solution.fbest(1:ige)));
Iwconv = sum(Solution.fbest(1:ige)==Solution.fworst(1:ige)); % Counter of
fbest=fworst
 if Iwconv >100 | Iconv>mxIconv , break;end
 end
 % HCFMMACO Solution results
 [Solution.fopt, jj] = max(Solution.fbest(1:ige));
 Solution.xopt = Solution.xbest(1,:,jj);
 Solution.noGoptima = sum(unique(
Solution.fbest(1:ige)>=Solution.fopt/1.001));

237

 Solution.ige = ige;
 [~,mm] = find(Solution.fbest(1:ige) ==
Solution.fopt);
 Solution.FrstGopt = mm(1);
 Solution.Minfbest = min(Solution.fbest(:));
 Solution.Meanfbest = mean(Solution.fbest(:));
 Solution.Stdfbest = std(Solution.fbest(:));
 for i=1:ige
 Solution.GlobalDis(i) = Data.nVar-sum(Solution.xopt ==
Solution.xbest(1,:,i));
 end
 Solution.cFD = sum((Solution.fbest-Solution.Meanfbest).*(
Solution.GlobalDis-mean(Solution.GlobalDis)))/ige;
 Solution.r = Solution.cFD/(Solution.Stdfbest*std(
Solution.GlobalDis));
 Solution.PerRate = sum(Solution.fbest(:)>=
Solution.fopt/1.001)/(Solution.ige*Imax);
 Solution.ElapsedTime = toc;
 Solution.LinConvRate = zeros(1,ige);
 for i=1:ige
 if Solution.GlobalDis(i)~= 0
 Solution.LinConvRate(i) = (Solution.fopt-
Solution.fbest(i))/Solution.GlobalDis(i);
 else
 Solution.LinConvRate(i) = 0;
 break;
 end
 end
 Solution.maxTauExp=max(Solution.TauMax(1:ige));
 Solution.minTauExp=min(Solution.TauMin(1:ige));

%% Write HCFMMACO results Output File
fprintf(fid_ali1,'%s\r\n',[' Number of variables = '
num2str(Data.nVar)]);
fprintf(fid_ali1,'%s\r\n',[' no. of Ants = '
num2str(nAnts)]);
fprintf(fid_ali1,'%s\r\n',[' Maximum CBLF(fopt) = '
num2str(Solution.fopt)]);
fprintf(fid_ali1,'%s\r\n',[' Optimal Solution(xopt) = '
'[',num2str(Solution.xopt),']']);
fprintf(fid_ali1,'%s\r\n',[' Number of Practical Optima = '
'[',num2str(Solution.noGoptima),']']);
fprintf(fid_ali1,'%s\r\n',[' no. of Iterations(ige) = '
num2str(ige)]);
fprintf(fid_ali1,'%s\r\n',[' 1st Global optima Found @ ige = '
num2str(Solution.FrstGopt)]);
fprintf(fid_ali1,'%s\r\n',[' Minimum Best Solution = '
num2str(Solution.Minfbest)]);
fprintf(fid_ali1,'%s\r\n',[' Mean of Best Solution = '
num2str(Solution.Meanfbest)]);
fprintf(fid_ali1,'%s\r\n',[' SD of Best Solution = '
num2str(Solution.Stdfbest)]);
fprintf(fid_ali1,'%s\r\n',[' Fitness Distance Correlation = '
num2str(Solution.cFD)]);

238

fprintf(fid_ali1,'%s\r\n',[' Correlation Coefficent = '
num2str(Solution.r)]);
fprintf(fid_ali1,'%s\r\n',[' Elapsed Time = '
num2str(Solution.ElapsedTime)]);
fprintf(fid_ali1,'%s\r\n','===
=================================');
fprintf(fid_ali1,'%3s %10s %11s %10s %10s %9s %5s %6s
%6s\r\n','ige','Fbest(ige)','Fworst(ige)','Fmean(ige)','BWLocalDis','Globa
lDis','Segma','MaxTau','MinTau');
fprintf(fid_ali1,'%s\r\n','===
=================================');
fprintf(fid_ali1,'%-3.0f %-10.3f %-11.3f %-10.3f %-9.1f %-5.1f %-
6.1f%-6.4f %-
6.4f\r\n',[(1:ige);Solution.fbest(:)';Solution.fworst(:)';Solution.fmean(:
)';Solution.BxWxLocalDis(:)';Solution.GlobalDis(:)';Solution.Segma(:)';Sol
ution.TauMax(:)';Solution.TauMin(:)']);
fprintf(fid_ali1,'%s\r\n','===
=================================');
fclose(fid_ali1);

EHCFMMACO.m

function Solution=EHCFMMACO(Options)
global Data ii iseed is maxIconv mk
tic
%% Enhanced Hyper-Cube FramwWork Max-Min Ant Colony Optimization Algorithm
% (EHCFMMACO) to maximize f(x)
%---
%
% Solution = EHCFMMACO(Options)
% Solution.xopt = Optimal Solution
% Solution.fopt = Optimal solution
% Data.f = Objective Function
% Data.nVar = no. of design variables
% Data.xd = Discrete design variables values vector e.g[0 45 90]
% Data.nAnt = no. of Ants
% Options.Tau0 = Initial phormone
% Options.pbest = probabilitiy of the best solution
% Options.rho = Evaporation Rate
% Options.Imax = Max no. of iterations
%%%---
%
%% Check ACO Options
if ~isempty(Options) && ~isa(Options,'struct')
 error('Options must be a valid structure.');
elseif isempty(Options)
 DefaultOpt
=struct('nAnt',25,'Imax',1000,'rho',.1,'Tau0',0.004,'pbest',.05);
 Options = DefaultOpt;
end
%% Assiging HVFMMACO Parameters value

239

 Imax=Options.Imax;
 rho=Options.rho;
 Tau0=Options.Tau0;
 nAnts=Options.nAnt;
% pbest=Options.pbest;
 zeta=Options.zeta;
 %% % Intialization
nNodes=length(Data.xd);
Tau=Tau0*ones(Data.nVar,nNodes);
Solution.fx=[];
Solution.x=[];
ige=0;
%% Check the convergence rate ConvRate
 if mk == 1
 mxIconv=maxIconv(1);
 %% Create EHCFMMACOutput.txt File
 if is < length(iseed)
 fid_ali1 = fopen(sprintf(
'09_EHCFMMACOAlgorithm/01_fast_convergence/0%i_Seeds(%i)/EHCFMMACOutput%i.
txt',is,iseed(is),ii),'w');
 else
 fid_ali1 = fopen(sprintf(
'09_EHCFMMACOAlgorithm/01_fast_convergence/%i_Seeds(%i)/EHCFMMACOutput%i.t
xt',is,iseed(is),ii),'w');
 end
 elseif mk==2
 mxIconv=maxIconv(2);
 if is < length(iseed)
 fid_ali1 = fopen(sprintf(
'09_EHCFMMACOAlgorithm/02_slow_convergence/0%i_Seeds(%i)/EHCFMMACOutput%i.
txt',is,iseed(is),ii),'w');
 else
 fid_ali1 = fopen(sprintf(
'09_EHCFMMACOAlgorithm/02_slow_convergence/%i_Seeds(%i)/EHCFMMACOutput%i.t
xt',is,iseed(is),ii),'w');
 end
 end
 %% Create MMACOutput.txt File

fprintf(fid_ali1,'%s\r\n','===
==========================');
 fprintf(fid_ali1,'%s
%s\n','User:_________',num2str(datestr(clock)));

fprintf(fid_ali1,'%s\r\n','===
==========================');
 fprintf(fid_ali1,' %s\n','ACO Varient:
EHCFMMACO');
 fprintf(fid_ali1,'%s\n',[' Expeirement no.(Iexp)= ', num2str(ii)]);

%% % Main EHCFMMACO Loop
while ige<Imax
ige=ige+1;
for k=1:nAnts
% Construct Solution

240

 for j=1:Data.nVar
 P=Tau(j,:);
 P=P/sum(P);
 Solution.x(k,j)=RouletteWheelSelection(P);
 end
% Solution Evaluation
Solution.fx(k)=feval(Data.f,Solution.x(k,:));
end
%% % Tour Statistics
 [Solution.fx,ind] = sort(Solution.fx,'descend');
 Solution.x(:,:) = Solution.x(ind,:);
 Solution.fbest(ige) = Solution.fx(1);
 Solution.xbest(1,:,ige) = Solution.x(1,:);
 % Check for current fbest
 [fbestCheck,kk] = max(Solution.fbest(1:ige));
 xbestcheck = Solution.xbest(1,:,kk);
 if Solution.fbest(ige) <= fbestCheck
 Solution.fbest(ige) = fbestCheck;
 Solution.xbest(1,:,ige) = xbestcheck;
 end
 Solution.fworst(ige) = Solution.fx(end);
 Solution.xworst(1,:,ige) = Solution.x(end,:);
 Solution.fmean(1,:,ige) = mean(Solution.fx);
 Solution.Segma(ige) = sum(Solution.fx==Solution.fx(1));
Solution.BxWxLocalDis(1,:,ige) = Data.nVar-sum(Solution.xbest(1,:,ige)...
 == Solution.xworst(1,:,ige));
 %% Plotting results
 x = Solution.xbest(1,:,ige);
 y = Data.nVar;
 PlotSolution(x,y)
%% Daemon Actions
% Insertion

xtemp=Insertion(Solution.xbest(1,:,ige),randi(Data.nVar),randi(Data.nVar))
;
 ftemp=feval(Data.f,xtemp);
 if
ftemp>Solution.fbest(ige),Solution.fbest(ige)=ftemp;Solution.xbest(1,:,ige
)=xtemp;end

% Node flip (equavelent to mutuation)
 xtemp=xflip(Solution.xbest(1,:,ige),randi(Data.nVar));
 ftemp=feval(Data.f,xtemp);
 if
ftemp>Solution.fbest(ige),Solution.fbest(ige)=ftemp;Solution.xbest(1,:,ige
)=xtemp;end

%% Pheromone Updating

% Pheromone Evaporation (for all paths)
 Tau=(1-rho)*Tau;
 % Determine Tmax and Tmin
 Solution.TauMax(ige)=1;
 Solution.TauMin(ige)=0;
 % Pheromone Depositing (for the best path)

241

 for i=1:Data.nVar

Tau(i,Solution.xbest(:,i,ige))=Tau(i,Solution.xbest(1,i,ige))+zeta*Solutio
n.Segma(ige)*Solution.fworst(ige)/Solution.fbest(ige);
 if Tau(i,Solution.xbest(1,i,ige))> Solution.TauMax(ige)
 Tau(i,Solution.xbest(1,i,ige))=Solution.TauMax(ige);
 elseif Tau(i,Solution.xbest(1,i,ige))< Solution.TauMin(ige)
 Tau(i,Solution.xbest(1,i,ige))=Solution.TauMin(ige);
 else
 end
 end
 %% Convergence check
 Iconv = sum(Solution.fbest(1:ige)==max(Solution.fbest(1:ige)));
Iwconv = sum(Solution.fbest(1:ige)==Solution.fworst(1:ige)); % Counter of
fbest=fworst
 if Iwconv >100 | Iconv>mxIconv , break;end
 end
 % ACOA Solution results
 [Solution.fopt, jj] = max(Solution.fbest(1:ige));
 Solution.xopt = Solution.xbest(1,:,jj);
 Solution.noGoptima = sum(unique(
Solution.fbest(1:ige)>=Solution.fopt/1.001));
 Solution.ige = ige;
 [~,mm] = find(Solution.fbest(1:ige) ==
Solution.fopt);
 Solution.FrstGopt = mm(1);
 Solution.Minfbest = min(Solution.fbest(:));
 Solution.Meanfbest = mean(Solution.fbest(:));
 Solution.Stdfbest = std(Solution.fbest(:));
 for i=1:ige
 Solution.GlobalDis(i) = Data.nVar-sum(Solution.xopt ==
Solution.xbest(1,:,i));
 end
 Solution.cFD = sum((Solution.fbest-Solution.Meanfbest).*(
Solution.GlobalDis-mean(Solution.GlobalDis)))/ige;
 Solution.r = Solution.cFD/(Solution.Stdfbest*std(
Solution.GlobalDis));
 Solution.PerRate = sum(Solution.fbest(:)>=
Solution.fopt/1.001)/(Solution.ige*Imax);
 Solution.ElapsedTime = toc;
 Solution.LinConvRate = zeros(1,ige);
 for i=1:ige
 if Solution.GlobalDis(i)~= 0
 Solution.LinConvRate(i) = (Solution.fopt-
Solution.fbest(i))/Solution.GlobalDis(i);
 else
 Solution.LinConvRate(i) = 0;
 break;
 end
 end
 Solution.maxTauExp=max(Solution.TauMax(1:ige));
 Solution.minTauExp=min(Solution.TauMin(1:ige));

%% Write EHCFMMACO results Output File

242

fprintf(fid_ali1,'%s\r\n',[' Number of variables = '
num2str(Data.nVar)]);
fprintf(fid_ali1,'%s\r\n',[' no. of Ants = '
num2str(nAnts)]);
fprintf(fid_ali1,'%s\r\n',[' Maximum CBLF(fopt) = '
num2str(Solution.fopt)]);
fprintf(fid_ali1,'%s\r\n',[' Optimal Solution(xopt) = '
'[',num2str(Solution.xopt),']']);
fprintf(fid_ali1,'%s\r\n',[' Number of Practical Optima = '
'[',num2str(Solution.noGoptima),']']);
fprintf(fid_ali1,'%s\r\n',[' no. of Iterations(ige) = '
num2str(ige)]);
fprintf(fid_ali1,'%s\r\n',[' 1st Global optima Found @ ige = '
num2str(Solution.FrstGopt)]);
fprintf(fid_ali1,'%s\r\n',[' Minimum Best Solution = '
num2str(Solution.Minfbest)]);
fprintf(fid_ali1,'%s\r\n',[' Mean of Best Solution = '
num2str(Solution.Meanfbest)]);
fprintf(fid_ali1,'%s\r\n',[' SD of Best Solution = '
num2str(Solution.Stdfbest)]);
fprintf(fid_ali1,'%s\r\n',[' Fitness Distance Correlation = '
num2str(Solution.cFD)]);
fprintf(fid_ali1,'%s\r\n',[' Correlation Coefficent = '
num2str(Solution.r)]);
fprintf(fid_ali1,'%s\r\n',[' Elapsed Time = '
num2str(Solution.ElapsedTime)]);
fprintf(fid_ali1,'%s\r\n','===
=================================');
fprintf(fid_ali1,'%3s %10s %11s %10s %10s %9s %5s %6s
%6s\r\n','ige','Fbest(ige)','Fworst(ige)','Fmean(ige)','BWLocalDis','Globa
lDis','Segma','MaxTau','MinTau');
fprintf(fid_ali1,'%s\r\n','===
=================================');
fprintf(fid_ali1,'%-3.0f %-10.3f %-11.3f %-10.3f %-9.1f %-5.1f %-
6.1f%-6.4f %-
6.4f\r\n',[(1:ige);Solution.fbest(:)';Solution.fworst(:)';Solution.fmean(:
)';Solution.BxWxLocalDis(:)';Solution.GlobalDis(:)';Solution.Segma(:)';Sol
ution.TauMax(:)';Solution.TauMin(:)']);
fprintf(fid_ali1,'%s\r\n','===
=================================');
fclose(fid_ali1);
% end
Insertion.m

function q=Insertion(p,i1,i2)
 if i1<i2
 q=p([1:i1-1 i1+1:i2 i1 i2+1:end]);
 elseif i1>i2
 q=p([1:i2 i1 i2+1:i1-1 i1+1:end]);
 else
 q=p;
 end
end

243

Xflip.m

function p=xflip(p,i)
if p(i)==3
 temp=[1 2];
 p(i)=temp(1,randi(length(temp)));
elseif p(i)==2
 temp=[1 3];
 p(i)=temp(1,randi(length(temp)));
elseif p(i)==1
 temp=[2 3];
 p(i)=temp(1,randi(length(temp)));
end

APPENDIX IV

MATLAB FILES OF CRITICAL BUCKLING LOAD FACTOR, INPUT DATA AND
OUTPUT PLOTTING FOR COMPOSITE LAMINATED PLATE CASE STUDY

CBLF.m

function [CBLF1,delta]=CBLF(x)
% This function devoted to determine the critical buckling load factor,
lamda, of composite laminate that have the information in LaminateData.m
file

global Data % Calling Laminate plate data

%% plies Contigency check
 [~,i]=find(x==1);
 [~,ii]=find(x==2);
[~,iii]=find(x==3);
delta=0;
if length(i)>2
 for nk=1:length(i)-2
 if i(nk)==i(nk+2)-2
 delta=.08;break
 end
 end
end

if length(ii)>2
 for nk=1:length(ii)-2
 if ii(nk)==ii(nk+2)-2
 delta=.08;break
 end
 end
end
if length(iii)>2
 for nk=1:length(iii)-2
 if iii(nk)==iii(nk+2)-2
 delta=.08;break
 end
 end
end
%% Plies Orientation Matrix [teta]
 nvar=length(x);
for k=1:nvar
 if x(k)==1
 haf_teta(2*k-1)=0;
 haf_teta(2*k)=0;
 end
 if x(k)==2
 haf_teta(2*k-1)=45;
 haf_teta(2*k)=-45;

246

 end
 if x(k)==3
 haf_teta(2*k-1)=90;
 haf_teta(2*k)=90;
 end
end
teta=[haf_teta flip(haf_teta)];
haf_teta;
Nplies = length(teta); % Number of plies.
%% Stiffness Matrix [Q]
Data.NU21 = (Data.NU12*Data.E2)/Data.E1;
Q11 = Data.E1/(1 - Data.NU12*Data.NU21);
Q12 =(Data.NU21*Data.E1)/(1 - Data.NU12*Data.NU21);
Q22 = Data.E2/(1 - Data.NU12*Data.NU21);
Q66 = Data.G12;
 Q = [Q11 Q12 0; Q12 Q22 0; 0 0 Q66];
%% Thickness of i-th ply Group
t = Nplies * Data.h_ply ;
for i = 1:(Nplies+1)
h(i) = -(t/2-((i-1)*(t/Nplies)));
end
%% Determining [A][B][D] Matrices
A=0;B=0;D=0;
for i=1:Nplies
c=cos((teta(1,i)*pi)/180);
s=sin((teta(1,i)*pi)/180);
T = [c^2 s^2 2*c*s; s^2 c^2 -2*c*s; -c*s c*s (c^2 - s^2)];
Qbar = inv(T) * Q * (inv(T))' ;
A = A + Qbar * (h(1,i+1) - h(1,i));
B = B + 1/2 * Qbar * (h(1,i+1)^2 - h(1,i)^2);
D = D + 1/3 * Qbar * (h(1,i+1)^3 - h(1,i)^3);
end
%% Critical Buckling Load Factor
p=Data.p;
q=Data.q;
r=Data.r;
a=Data.a;
lmda_b=ones(p,q);
for m=1:p
 for n=1:q
 lmda_b(m,n)=((pi^2)*((D(1,1)*(m^4) + 2*(D(1,2) +
2*D(3,3))*((r*m*n)^2) +...
 D(2,2)*((r*n)^4)))/(((a*m)^2)*Data.Nx + ((r*a*n)^2)*Data.Ny));
 end
end
CBLF1=(1-delta)*min(lmda_b(:));

LaminateData.m

247

function Data=LaminateData
%Input: None
%Output: Data - structure with optimization problem information
%---
%
% Laminate properties
Data.E1 = 18.5e6; %127.59; % Elastic Modulus[GPa].
Data.E2 = 1.89e6; %13.03; % Elastic Modulus[GPa].
Data.G12 = .93e6; %6.41; % Shear Modulus[GPa].
Data.NU12 = 0.3; % Poisson ratio.
Data.Xt = 2130; % Longituddinal Tensile Strength
Data.Xc = 1100; % Longituddinal compression Strength
Data.Yt = 80; % Transversal Tensile Strength
Data.Yc = 200; % Transversal compression Strength
Data.S12 = 160; % Shear Strength
% Loading conditions
Data.Lr=1; % Loading ratio
Data.Nx = 1; % Inplane Load x-direction[N/m].
Data.Ny = Data.Lr*Data.Nx; % Inplane Load y-direction[N/m].
Data.Nxy = 0; %[N/m]
% Plate dimensions
Data.h_ply= .005; %0.127; %[mm] Ply thickness
Data.a= 20; %.508; % Plate length[m].
Data.b= 10; %.254; % Plate width[m].
Data.r=Data.a/Data.b; % Aspect ratio.
Data.p= 2; % Buckling mode in x-direction.
Data.q= 2; % Buckling mode in y-direction.
% Design Variables & Available Oreintations
Data.nVar=16; % number of design variables
Data.xd=[0 45 90]; % Vector of possible fiber orientations
% Objective Function Definition
Data.f=@CBLF; % Defining the objective function
% ACO Algorithm Options
Data.ACOptions =
struct('nAnt',25,'Imax',1000,'rho',0.1,'Tau0',0.004,'zeta',.03);
Data.MMACOptions =
struct('nAnt',25,'Imax',1000,'rho',0.1,'Tau0',1,'pbest',.05,'zeta',.03);
Data.BWACOptions =
struct('nAnt',25,'Imax',1000,'rho',0.1,'Tau0',1,'pbest',.05,'lamda',0.6,'z
eta',.03);

PlotSolution.m

function PlotSolution(x,y)

248

% Determining the screen corrdinates
 set(0,'units','inches')
 %Obtains this inch information
 Inch_SS = get(0,'screensize');
 figW=3;figL=9;
tfig=figure (1);

 set(tfig,'Units','inches',...
 'Position',[Inch_SS(3)-figW-1 Inch_SS(4)-figL-1 figW figL],...
 'PaperPositionMode','auto')
 plot(x,1:y,'k-o',...
 'MarkerSize',15,...
 'MarkerFaceColor','y',...
 'LineWidth',1.5);
 axis([0 x(end) 1 y])
 set(gca,...
 'Units','normalized',...
 'YTick',1:y,...
 'XTick',1:x(end),...
 'Position',[.1 .2 .7 .7],...
 'FontUnits','points',...
 'FontWeight','normal',...
 'FontSize',12,...
 'FontName','Times')
 set(gcf, 'MenuBar', 'None')
 xlabel('Orientation angle',...
 'FontUnits','points',...
 'FontWeight','normal',...
 'FontSize',12,...
 'FontName','Times');
 ylabel('Ply number',...
 'FontUnits','points',...
 'interpreter','latex',...
 'FontSize',12,...
 'FontName','Times',...
 'Rotation',90);
 axis equal;

ax = gca;
outerpos = ax.OuterPosition;
ti = ax.TightInset;
left = outerpos(1) + ti(1);
bottom = outerpos(2) + ti(2);
ax_width = outerpos(3) - ti(1) - ti(3);
ax_height = outerpos(4) - ti(2) - ti(4);
ax.Position = [left bottom ax_width ax_height];

 grid on;
 xmin = 0;
 xmax = 4;
 xlim([xmin xmax]);
 set(gca,'XTick',xmin:1:xmax)
 set(gca,'XTickLabel',{[],1,2,3,[]});

249

 ymin = min(1:y)-1;
 ymax = max(1:y)+1;
 ylim([ymin ymax]);
 set(gca,'YTick',ymin:1: ymax)
 Ylables=1:y;
 set(gca,'YTickLabel',{[],Ylables,[]});

end

APPENDIX V

 CODES OF ANSYS WORKBENCH AND MATLAB INTERFACING USING
PYTHON

Ansys Work Bench and MATLAB interfacing flowchart

CBLF.m

function CBLF1=CBLF(x,B)
 format short
 %% plies Contigency check
 [~,i]=find(x==1);
 [~,ii]=find(x==2);
[~,iii]=find(x==3);
delta=0;
if length(i)>2
 for nk=1:length(i)-2
 if i(nk)==i(nk+2)-2
 delta=.08;break
 end
 end
end

if length(ii)>2
 for nk=1:length(ii)-2
 if ii(nk)==ii(nk+2)-2
 delta=.08;break
 end
 end
end
if length(iii)>2

Eigenvalue Buckling
Analysis

ACP Model Setting
Up

Static Structural
 Analysis

D
es

ig
n

Pa
ra

m
et

er
s

In
pu

t /
 O

ut
pu

t

Python Interfacing

Program

Optimizer

MATLAB

252

 for nk=1:length(iii)-2
 if iii(nk)==iii(nk+2)-2
 delta=.08;break
 end
 end
end

%% ---
%%
 % reading writing python filed

 fid = fopen('DV_update.wbjn', 'r');
 fic = fopen('DV_update_0.wbjn', 'w'); % intermediated file.py copy
%-------------------------------
while ~feof(fid)
 tline = fgetl(fid);
 fprintf(fic,'%s\n',tline);
 for k=1:length(B)
 str1=strcat([' Parameter=parameter',num2str(k),',']);

 if(strcmp(tline,str1))
% fprintf(fic,' Expression="%4.2f [mm]"\n',v_ali(2,1));
if (1<=k)&&(k<=3)
 fprintf(fic,' Expression="%12.4f [mm]")\n',B(1,k));
elseif (4<=k)&&(k<=27)
 fprintf(fic,' Expression="%2.0f")\n',B(1,k));
elseif k==28 && B(1,k)==0
 fprintf(fic,' Expression="%20.15f -1E-14 [N]")\n',B(1,k));
elseif k==28 && B(1,k)~=0
 fprintf(fic,' Expression="%20.15f [N]")\n',B(1,k));
elseif k==29 && B(1,k)==0
 fprintf(fic,' Expression="%20.15f -1E-14 [N]")\n',B(1,k));
elseif k==29 && B(1,k)~=0
 fprintf(fic,' Expression="%20.15f [N]")\n',B(1,k));
end
 tline = fgetl(fid);
 end
 end
 % -----------------
 end
 fclose(fic);
 fclose(fid); % Close file.py

%---
% Replacing intermediate file with original file name
%-------------------------------
 fid_v1 = fopen('DV_update_0.wbjn', 'r'); % open intermediate file.py
to copy
 fid_v0 = fopen('DV_update.wbjn', 'w'); % print into original file.py
%-------------------------------
 while ~feof(fid_v1)
 tline = fgetl(fid_v1);
 fprintf(fid_v0,'%s\n',tline);

253

 end
 fclose(fid_v0);
 fclose(fid_v1); % close file.py
% ---
%

dos('"C:\Program Files\ANSYS Inc\ANSYS
Student\v195\Framework\bin\Win64\RunWB2.exe" -B -R "DV_update.wbjn" ')

% Opening and reading the Ansys WB results file (Output.txt)
fidd=fopen('Output.txt','r');
m = 1;
tline = fgetl(fidd);
A{m} = tline;
while ischar(tline)
 m = m+1;
 tline = fgetl(fidd);
 A{m} = tline;
end
fclose(fidd);
lmda=A{30}; % reading the buckling load factor
% % (1-delta)*
CBLF1=sscanf(lmda,'P30,%12f [N]');

Python Interfacing File

encoding: utf-8
2019 R3
SetScriptVersion(Version="19.5.112")
Open(FilePath="C:/Users/aliah/OneDrive -
ETS/03_Reserach_Activities_Spring2020/03_5th_Journal_paper/07_New_ANSYS_WB
_Models/Uncertainity_24_ply_laminate_model.wbpj")
os.remove("C:/Users/aliah/OneDrive -
ETS/03_Reserach_Activities_Spring2020/03_5th_Journal_paper/07_New_ANSYS_WB
_Models/Uncertainity_24_ply_laminate_model_files/.lock")

designPoint1 = Parameters.GetDesignPoint(Name="0")
parameter1 = Parameters.GetParameter(Name="P1")
designPoint1.SetParameterExpression(
 Parameter=parameter1,
 Expression=" 139.5000 [mm]")
parameter2 = Parameters.GetParameter(Name="P2")
designPoint1.SetParameterExpression(
 Parameter=parameter2,
 Expression=" 139.5000 [mm]")
parameter3 = Parameters.GetParameter(Name="P3")
designPoint1.SetParameterExpression(
 Parameter=parameter3,
 Expression=" 111.6000 [mm]")
parameter4 = Parameters.GetParameter(Name="P4")
designPoint1.SetParameterExpression(
 Parameter=parameter4,
 Expression="45")

254

parameter5 = Parameters.GetParameter(Name="P5")
designPoint1.SetParameterExpression(
 Parameter=parameter5,
 Expression="-45")
parameter6 = Parameters.GetParameter(Name="P6")
designPoint1.SetParameterExpression(
 Parameter=parameter6,
 Expression="45")
parameter7 = Parameters.GetParameter(Name="P7")
designPoint1.SetParameterExpression(
 Parameter=parameter7,
 Expression="-45")
parameter8 = Parameters.GetParameter(Name="P8")
designPoint1.SetParameterExpression(
 Parameter=parameter8,
 Expression="45")
parameter9 = Parameters.GetParameter(Name="P9")
designPoint1.SetParameterExpression(
 Parameter=parameter9,
 Expression="-45")
parameter10 = Parameters.GetParameter(Name="P10")
designPoint1.SetParameterExpression(
 Parameter=parameter10,
 Expression="45")
parameter11 = Parameters.GetParameter(Name="P11")
designPoint1.SetParameterExpression(
 Parameter=parameter11,
 Expression="-45")
parameter12 = Parameters.GetParameter(Name="P12")
designPoint1.SetParameterExpression(
 Parameter=parameter12,
 Expression="45")
parameter13 = Parameters.GetParameter(Name="P13")
designPoint1.SetParameterExpression(
 Parameter=parameter13,
 Expression="-45")
parameter14 = Parameters.GetParameter(Name="P14")
designPoint1.SetParameterExpression(
 Parameter=parameter14,
 Expression="45")
parameter15 = Parameters.GetParameter(Name="P15")
designPoint1.SetParameterExpression(
 Parameter=parameter15,
 Expression="-45")
parameter16 = Parameters.GetParameter(Name="P16")
designPoint1.SetParameterExpression(
 Parameter=parameter16,
 Expression="-45")
parameter17 = Parameters.GetParameter(Name="P17")
designPoint1.SetParameterExpression(
 Parameter=parameter17,
 Expression="45")
parameter18 = Parameters.GetParameter(Name="P18")
designPoint1.SetParameterExpression(
 Parameter=parameter18,

255

 Expression="-45")
parameter19 = Parameters.GetParameter(Name="P19")
designPoint1.SetParameterExpression(
 Parameter=parameter19,
 Expression="45")
parameter20 = Parameters.GetParameter(Name="P20")
designPoint1.SetParameterExpression(
 Parameter=parameter20,
 Expression="-45")
parameter21 = Parameters.GetParameter(Name="P21")
designPoint1.SetParameterExpression(
 Parameter=parameter21,
 Expression="45")
parameter22 = Parameters.GetParameter(Name="P22")
designPoint1.SetParameterExpression(
 Parameter=parameter22,
 Expression="-45")
parameter23 = Parameters.GetParameter(Name="P23")
designPoint1.SetParameterExpression(
 Parameter=parameter23,
 Expression="45")
parameter24 = Parameters.GetParameter(Name="P24")
designPoint1.SetParameterExpression(
 Parameter=parameter24,
 Expression="-45")
parameter25 = Parameters.GetParameter(Name="P25")
designPoint1.SetParameterExpression(
 Parameter=parameter25,
 Expression="45")
parameter26 = Parameters.GetParameter(Name="P26")
designPoint1.SetParameterExpression(
 Parameter=parameter26,
 Expression="-45")
parameter27 = Parameters.GetParameter(Name="P27")
designPoint1.SetParameterExpression(
 Parameter=parameter27,
 Expression="45")
parameter28 = Parameters.GetParameter(Name="P28")
designPoint1.SetParameterExpression(
 Parameter=parameter28,
 Expression=" -0.279000000000000 [N]")
parameter29 = Parameters.GetParameter(Name="P29")
designPoint1.SetParameterExpression(
 Parameter=parameter29,
 Expression=" -0.000000000000010 [N]")

Update()

writing the output file of Ansys WB

logFile = open("C:/Users/aliah/OneDrive -
ETS/03_Reserach_Activities_Spring2020/03_5th_Journal_paper/07_New_ANSYS_WB
_Models/output.txt","w")

256

for Parameter in Parameters.GetAllParameters():
 value=Parameter.Value.ToString()
 logFile.write(Parameter.Name + "," + value + "\n")
 logFile.flush()
logFile.close()

Save(Overwrite=True)

LIST OF BIBLIOGRAPHICAL REFERENCES

Abolghasemi, S., Eipakchi, H., & Shariati, M. (2019). An analytical solution for buckling of
plates with circular cutout subjected to non-uniform in-plane loading. Archive of
Applied Mechanics, 89(12), 2519-2543.

Adali, S., Lene, F., Duvaut, G., & Chiaruttini, V. (2003). Optimization of laminated composites
subject to uncertain buckling loads. Composite Structures, 62(3-4), 261-269.

Agrawal, S., Panda, R., Bhuyan, S., & Panigrahi, B. K. (2013). Tsallis entropy based optimal
multilevel thresholding using cuckoo search algorithm. Swarm and Evolutionary
Computation, 11, 16-30.

Ahmid, A., Le, V. N., & Dao, T. M. (2017). An optimization procedure for overhead gantry
crane exposed to buckling and yield criteria. International Journal of Technology and
Engineering, 8(2), 11.

Ahmid, A., Thien-My, D., & Le, V. N. (2020). An Adaptive Discrete Cuckoo Search
Algorithm to Solve Structural Optimization Problems. Journal of Multidisciplinary
Engineering Science and Technology, 7(6).

Ahmid, A., Thien-My, D., & Van Ngan, L. (2019). Comparison Study of Discrete
Optimization Problem Using Meta-Heuristic Approaches: A Case Study. International
Journal of Industrial Engineering, 1(2), 97-109.

Alhorani, R. A. (2020). Mathematical models for the optimal design of I-and H-shaped crane
bridge girders. Asian Journal of Civil Engineering, 21(4), 707-722.

Ali, M. M., Törn, A., & Viitanen, S. (2002). A direct search variant of the simulated annealing
algorithm for optimization involving continuous variables. Computers & Operations
Research, 29(1), 87-102.

Almufti, S. M. (2019). Historical survey on metaheuristics algorithms. International Journal
Of Scientific World, 7(1), 1.

Ansys. (2015). Workbench user's guide In (Relase 15 ed.). Canonsburg PA,USA: Ansys
corporation

Awad, Z. K. (2012). Novel fibre composite civil engineering sandwich structures: behaviour,
analysis, and optimum design. University of Southern Queensland,

Aymerich, F., & Serra, M. (2008). Optimization of laminate stacking sequence for maximum
buckling load using the ant colony optimization (ACO) metaheuristic. Composites Part
A: Applied Science and Manufacturing, 39(2), 262-272.

258

Barroso, E. S., Parente, E., & de Melo, A. M. C. (2017). A hybrid PSO-GA algorithm for
optimization of laminated composites. Structural and Multidisciplinary Optimization,
55(6), 2111-2130. doi:10.1007/s00158-016-1631-y

Beck, A. T., & Gomes, W. J. d. S. (2012). A comparison of deterministic, reliability-based and
risk-based structural optimization under uncertainty. Probabilistic Engineering
Mechanics, 28, 18-29. doi:https://doi.org/10.1016/j.probengmech.2011.08.007

Bloomfield, M. W., Herencia, J. E., & Weaver, P. M. (2010). Analysis and benchmarking of
meta-heuristic techniques for lay-up optimization. Computers & Structures, 88(5-6),
272-282. doi:10.1016/j.compstruc.2009.10.007

Bloomfield, M. W., Herencia, J. E., & Weaver, P. M. (2010). Analysis and benchmarking of
meta-heuristic techniques for lay-up optimization. Computers & Structures, 88(5), 272-
282. doi:https://doi.org/10.1016/j.compstruc.2009.10.007

Blum, C., & Dorigo, M. (2004). The hyper-cube framework for ant colony optimization. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34(2), 1161-
1172.

Bullnheimer, B., Hartl, R. F., & Strauss, C. (1997). A new rank based version of the Ant
System. A computational study.

Cheng, J. (2010). Optimum design of steel truss arch bridges using a hybrid genetic algorithm.
Journal of Constructional Steel Research, 66(8-9), 1011-1017.

Clune, R. P. (2013). Algorithm selection in structural optimization. Massachusetts Institute of
Technology,

CMAA. (2010). Specification 74, . In Specifications for Top Running and Under Running
Single Girder Electric Overhead Traveling Cranes Utilizing Under Running Trolley
Hoist. Charlotte, NC: MHI.

Cobos, C., Muñoz-Collazos, H., Urbano-Muñoz, R., Mendoza, M., León, E., & Herrera-
Viedma, E. (2014). Clustering of web search results based on the cuckoo search
algorithm and Balanced Bayesian Information Criterion. Information Sciences, 281,
248-264.

Cohn, M., & Dinovitzer, A. (1994). Application of structural optimization. Journal of
Structural Engineering, 120(2), 617-650.

da Silva, G. A., Cardoso, E. L., & Beck, A. T. (2020). Comparison of robust, reliability-based
and non-probabilistic topology optimization under uncertain loads and stress
constraints. Probabilistic Engineering Mechanics, 59, 103039.

259

Da Silva, I. N., Spatti, D. H., Flauzino, R. A., Liboni, L. H. B., & dos Reis Alves, S. F. (2017).
Artificial neural network architectures and training processes. In Artificial neural
networks (pp. 21-28): Springer.

de Almeida, F. S. (2016). Stacking sequence optimization for maximum buckling load of
composite plates using harmony search algorithm. Composite Structures, 143, 287-
299.

de Castro Lemonge, A. C., Duarte, G. R., & da Fonseca, L. G. (2019). An algorithm inspired
by bee colonies coupled to an adaptive penalty method for truss structural optimization
problems. Journal of the Brazilian Society of Mechanical Sciences and Engineering,
41(3), 1-19.

de Faria, A. R. (2002). Buckling optimization and antioptimization of composite plates:
uncertain loading combinations. International Journal for Numerical Methods in
Engineering, 53(3), 719-732. doi:10.1002/nme.309

de Moura Meneses, A. A., da Silva, P. V., Nast, F. N., Araujo, L. M., & Schirru, R. (2020).
Application of Cuckoo Search algorithm to Loading Pattern Optimization problems.
Annals of Nuclear Energy, 139, 107214.

Degertekin, S. (2012). Improved harmony search algorithms for sizing optimization of truss
structures. Computers & Structures, 92, 229-241.

Degertekin, S., & Hayalioglu, M. (2013). Sizing truss structures using teaching-learning-based
optimization. Computers & Structures, 119, 177-188.

Dennis, W. (2010). A Rigorous Analysis of the Harmony Search Algorithm: How the Research
Community can be Misled by a “Novel” Methodology. International Journal of
Applied Metaheuristic Computing (IJAMC), 1(2), 50-60.
doi:10.4018/jamc.2010040104

Deveci, H. A., Aydin, L., & Seçil Artem, H. (2016). Buckling optimization of composite
laminates using a hybrid algorithm under Puck failure criterion constraint. Journal of
Reinforced Plastics and Composites, 35(16), 1233-1247.
doi:10.1177/0731684416646860

Dhuban, S., Karuppanan, S., Mengal, A., & Patil, S. (2017). Effect of fiber orientation and ply
stacking sequence on buckling behaviour of basalt-carbon hybrid composite laminates.

Dorigo, M. (1991). Ant Colony Optimization—new optimization techniques in engineering.
by Onwubolu, GC, and BV Babu, Springer-Verlag Berlin Heidelberg, 101-117.

Dorigo, M. (1997). Luca Maria Gambardella: ant colony system: a cooperative learning. IEEE
Trans Evol Comput, 1, 53-66.

260

Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE computational
intelligence magazine, 1(4), 28-39.

Dorigo, M., & Stützle, T. (2019). Ant colony optimization: overview and recent advances. In
Handbook of metaheuristics (pp. 311-351): Springer.

Ehsani, A., & Rezaeepazhand, J. (2016). Stacking sequence optimization of laminated
composite grid plates for maximum buckling load using genetic algorithm.
International Journal of Mechanical Sciences, 119, 97-106.
doi:10.1016/j.ijmecsci.2016.09.028

Elishakoff, I., Haftka, R., & Fang, J. (1994). Structural design under bounded uncertainty—
optimization with anti-optimization. Computers & Structures, 53(6), 1401-1405.

Elishakoff, I., & Ohsaki, M. (2010). Optimization and anti-optimization of structures under
uncertainty: World Scientific.

Erdal, O., & Sonmez, F. O. (2005). Optimum design of composite laminates for maximum
buckling load capacity using simulated annealing. Composite Structures, 71(1), 45-52.

França, P. M., Sosa, N. M., & Pureza, V. (1999). An adaptive tabu search algorithm for the
capacitated clustering problem. International Transactions in Operational Research,
6(6), 665-678. doi:10.1111/j.1475-3995.1999.tb00180.x

Gambardella, L. M., & Dorigo, M. (2000). An ant colony system hybridized with a new local
search for the sequential ordering problem. INFORMS Journal on Computing, 12(3),
237-255.

Gandomi, A. H., & Yang, X.-S. (2011). Benchmark problems in structural optimization. In
Computational optimization, methods and algorithms (pp. 259-281): Springer.

Gandomi, A. H., Yang, X.-S., & Alavi, A. H. (2013). Cuckoo search algorithm: a metaheuristic
approach to solve structural optimization problems. Engineering with computers,
29(1), 17-35.

Gąska, D., Haniszewski, T., & Margielewicz, J. (2017). I-beam girders dimensioning with
numerical modelling of local stresses in wheel-supporting flanges. Mechanics, 23(3),
347-352.

Gherboudj, A., Layeb, A., & Chikhi, S. (2012). Solving 0-1 knapsack problems by a discrete
binary version of cuckoo search algorithm. International Journal of Bio-Inspired
Computation, 4(4), 229-236.

Ghiasi, H., Fayazbakhsh, K., Pasini, D., & Lessard, L. (2010). Optimum stacking sequence
design of composite materials Part II: Variable stiffness design. Composite Structures,
93(1), 1-13.

261

Gholizadeh, S., & Milany, A. (2018). An improved fireworks algorithm for discrete sizing
optimization of steel skeletal structures. Engineering Optimization, 50(11), 1829-1849.

Gold, S., & Krishnamurty, S. (1997). Trade-offs in robust engineering design. Paper presented
at the Proceedings of the ASME Design Engineering Technical Conferences.

Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. Machine
learning, 3(2), 95-99.

Gurav, S., & Goosen, J. (2005). Bounded-but-unknown uncertainty optimization using design
sensitivities and parallel computing: application to MEMS. Computers & Structures,
83(14), 1134-1149.

Gürdal, Z., Haftka, R. T., & Hajela, P. (1999). Design and optimization of laminated composite
materials: John Wiley & Sons.

Han, X., Jiang, C., Gong, S., & Huang, Y. (2008). Transient waves in composite‐laminated
plates with uncertain load and material property. International journal for numerical
methods in engineering, 75(3), 253-274.

He, L., de Weerdt, M., & Yorke-Smith, N. (2019). Time/sequence-dependent scheduling: the
design and evaluation of a general purpose tabu-based adaptive large neighbourhood
search algorithm. Journal of Intelligent Manufacturing, 1-28.

Hinton, G. E. (1986). Learning distributed representations of concepts. Paper presented at the
Proceedings of the eighth annual conference of the cognitive science society.

Ho-Huu, V., Nguyen-Thoi, T., Vo-Duy, T., & Nguyen-Trang, T. (2016). An adaptive elitist
differential evolution for optimization of truss structures with discrete design variables.
Computers & Structures, 165, 59-75.

Hu, H.-T., & Lin, B.-H. (1995). Buckling optimization of symmetrically laminated plates with
various geometries and end conditions. Composites Science and Technology, 55(3),
277-285.

Iman, R. L., Helton, J. C., & Campbell, J. E. (1981). An approach to sensitivity analysis of
computer models: Part I—Introduction, input variable selection and preliminary
variable assessment. Journal of quality technology, 13(3), 174-183.

Jati, G. K., & Manurung, H. M. (2012). Discrete cuckoo search for traveling salesman
problem. Paper presented at the 2012 7th International Conference on Computing and
Convergence Technology (ICCCT).

Javidrad, F., Nazari, M., & Javidrad, H. (2017). Optimum stacking sequence design of
laminates using a hybrid PSO-SA method. Composite Structures.

262

Jiang, C., Han, X., & Liu, G. (2008). Uncertain optimization of composite laminated plates
using a nonlinear interval number programming method. Computers & Structures,
86(17-18), 1696-1703.

Jiao, L., Luo, J., Shang, R., & Liu, F. (2014). A modified objective function method with
feasible-guiding strategy to solve constrained multi-objective optimization problems.
Applied Soft Computing, 14, 363-380.

Jing, Z., Fan, X., & Sun, Q. (2015). Stacking sequence optimization of composite laminates
for maximum buckling load using permutation search algorithm. Composite Structures,
121, 225-236. doi:10.1016/j.compstruct.2014.10.031

Jones, R. M. (2014). Mechanics of composite materials: CRC press.

Jones, T., & Forrest, S. (1995). Fitness Distance Correlation as a Measure of Problem
Difficulty for Genetic Algorithms. Paper presented at the ICGA.

Kalantari, M., Dong, C., & Davies, I. J. (2017). Multi-objective robust optimization of multi-
directional carbon/glass fibre-reinforced hybrid composites with manufacture related
uncertainties under flexural loading. Composite Structures, 182, 132-142.

Katagiri, H., Hayashida, T., Nishizaki, I., & Guo, Q. (2012). A hybrid algorithm based on tabu
search and ant colony optimization for k-minimum spanning tree problems. Expert
Systems with Applications, 39(5), 5681-5686.

Kaveh, A. (2017). Applications of metaheuristic optimization algorithms in civil engineering:
Springer.

Kaveh, A., & Bakhshpoori, T. (2013). Optimum design of steel frames using Cuckoo Search
algorithm with Lévy flights. The Structural Design of Tall and Special Buildings,
22(13), 1023-1036.

Kaveh, A., & Bakhshpoori, T. (2016). A new metaheuristic for continuous structural
optimization: water evaporation optimization. Structural and Multidisciplinary
Optimization, 54(1), 23-43.

Kaveh, A., Bakhshpoori, T., & Afshari, E. (2014). An efficient hybrid particle swarm and
swallow swarm optimization algorithm. Computers & Structures, 143, 40-59.

Kaveh, A., Dadras, A., & Malek, N. G. (2017). Buckling load of laminated composite plates
using three variants of the biogeography-based optimization algorithm. Acta
Mechanica, 229(4), 1551-1566. doi:10.1007/s00707-017-2068-0

Kaveh, A., Dadras, A., & Malek, N. G. (2019). Robust design optimization of laminated plates
under uncertain bounded buckling loads. Structural and Multidisciplinary
Optimization, 59(3), 877-891.

263

Kaveh, A., & Talatahari, S. (2010). An improved ant colony optimization for constrained
engineering design problems. Engineering Computations.

Kaw, A. (2006). Mechanics of composite materials.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization (PSO). Paper presented at the
Proc. IEEE International Conference on Neural Networks, Perth, Australia.

Kim, J.-S., Kim, N.-P., & Han, S.-H. (2005). Optimal stiffness design of composite laminates
for a train carbody by an expert system and enumeration method. Composite Structures,
68(2), 147-156.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing.
science, 220(4598), 671-680.

Kogiso, N., Watson, L. T., Gürdal, Z., & Haftka, R. T. (1994). Genetic algorithms with local
improvement for composite laminate design. Structural optimization, 7(4), 207-218.

Koide, R. M., de Franca, G. V., & Luersen, M. A. (2013). An ant colony algorithm applied to
lay-up optimization of laminated composite plates. Latin American Journal of Solids
and Structures, 10(3), 491-504. doi:Doi 10.1590/S1679-78252013000300003

Koide, R. M., França, G. v. Z. d., & Luersen, M. A. (2013). An ant colony algorithm applied
to lay-up optimization of laminated composite plates. Latin American Journal of Solids
and Structures, 10(3), 491-504.

Koide, R. M., & Luersen, M. A. (2013). Maximization of Fundamental Frequency of
Laminated Composite Cylindrical Shells by Ant Colony Algorithm. Journal of
Aerospace Technology and Management, 5(1). doi:10.5028/jatm.v5i1.233

Krempser, E., Bernardino, H. S., Barbosa, H. J., & Lemonge, A. C. (2017). Performance
evaluation of local surrogate models in differential evolution-based optimum design of
truss structures. Engineering Computations.

Kumar, A., & Arakerimath, R. R. (2016). Numerical and experimental buckling analysis of
crane girder. International Journal of Research in Engineering and Technology, 5(06),
192-197.

Kumar, A., & Rangavittal, H. (2019). Genetic Algorithm Parameter Effect on 3D Truss
Optimization with Discrete Variable. Advanced Journal of Graduate Research, 5(1),
61-70.

Kumar, D., & Singh, S. B. (2012). Stability and failure of composite laminates with various
shaped cutouts under combined in-plane loads. Composites Part B: Engineering, 43(2),
142-149. doi:https://doi.org/10.1016/j.compositesb.2011.09.005

264

Laguna, M., Barnes, J. W., & Glover, F. W. (1991). Tabu search methods for a single machine
scheduling problem. Journal of Intelligent Manufacturing, 2(2), 63-73.
doi:10.1007/bf01471219

Layeb, A. (2011). A novel quantum inspired cuckoo search for knapsack problems.
International Journal of Bio-Inspired Computation, 3(5), 297-305.

Le Riche, R., & Haftka, R. (1995). Improved genetic algorithm for minimum thickness
composite laminate design. Composites Engineering, 5(2), 143-161.

Le Riche, R., & Haftka, R. T. (1993). Optimization of laminate stacking sequence for buckling
load maximization by genetic algorithm. AIAA journal, 31(5), 951-956.

Lê, V., & Champliaud, H. (2014). Safety factor of welded-plate beams based on finite element
linear buckling analysis.

Lee, H. (2014). Finite Element Simulations with ANSYS Workbench 14: Theory.
Applications, Case Studies.

Li, Q., Liu, S.-Y., & Yang, X.-S. (2020). Influence of initialization on the performance of
metaheuristic optimizers. Applied Soft Computing, 106193.

Li, Z., Dey, N., Ashour, A. S., & Tang, Q. (2018). Discrete cuckoo search algorithms for two-
sided robotic assembly line balancing problem. Neural Computing and Applications,
30(9), 2685-2696.

Liao, Y.-S., & Chiou, C.-Y. (2006). Robust optimum designs of fiber-reinforced composites
using constraints with sensitivity. Journal of composite materials, 40(22), 2067-2081.

Liu, B., Haftka, R. T., Akgün, M. A., & Todoroki, A. (2000). Permutation genetic algorithm
for stacking sequence design of composite laminates. Computer methods in applied
mechanics and engineering, 186(2-4), 357-372.

Liu, P., Xing, L., Liu, Y., & Zheng, J. (2014). Strength analysis and optimal design for main
girder of double-trolley overhead traveling crane using finite element method. Journal
of Failure Analysis and Prevention, 14(1), 76-86.

Lombardi, M., HAFTKA, R., & Cinquini, C. (1992). Optimization of composite plates for
buckling by simulated annealing. Paper presented at the 33rd Structures, Structural
Dynamics and Materials Conference.

Lombardi, M., & Haftka, R. T. (1998). Anti-optimization technique for structural design under
load uncertainties. Computer methods in applied mechanics and engineering, 157(1-
2), 19-31.

Loubna, B., Mohamed, S., Abdelaziz, E., & Fatimaezzahra, M. (2017). A Novel adaptive
Discrete Cuckoo Search Algorithm for parameter optimization in computer vision.

265

Inteligencia Artificial. Revista Iberoamericana de Inteligencia Artificial, 20(60), 51-
71.

M. Dorigo, V. M. a. A. C. (1991). Positive Feedback as a Search Strategy. Dipartimento di
Elettronica, Politecnico di Milano, 91-016. Retrieved from
http://iridia.ulb.ac.be/~mdorigo/pub_x_subj.html

Malan, K. M., & Engelbrecht, A. P. (2014). Fitness landscape analysis for metaheuristic
performance prediction. In Recent advances in the theory and application of fitness
landscapes (pp. 103-132): Springer.

Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in engineering
software, 95, 51-67.

Montáns, F. J., Chinesta, F., Gómez-Bombarelli, R., & Kutz, J. N. (2019). Data-driven
modeling and learning in science and engineering. Comptes Rendus Mécanique,
347(11), 845-855.

Mortazavi, A., Toğan, V., & Moloodpoor, M. (2019). Solution of structural and mathematical
optimization problems using a new hybrid swarm intelligence optimization algorithm.
Advances in engineering software, 127, 106-123.

Narayana, A. L., Rao, K., & Kumar, R. V. (2013). FEM buckling analysis of quasi-isotropic
symmetrically laminated rectangular composite plates with a square/rectangular cutout.
Journal of Mechanical Science and Technology, 27(5), 1427-1435.

Narayana, A. L., Rao, K., & Kumar, R. V. (2014). Buckling analysis of rectangular composite
plates with rectangular cutout subjected to linearly varying in-plane loading using fem.
Sadhana, 39(3), 583-596.

Nikbakt, S., Kamarian, S., & Shakeri, M. (2018). A review on optimization of composite
structures Part I: Laminated composites. Composite Structures, 195, 158-185.
doi:10.1016/j.compstruct.2018.03.063

Ouaarab, A., Ahiod, B., & Yang, X.-S. (2014). Discrete cuckoo search algorithm for the
travelling salesman problem. Neural Computing and Applications, 24(7-8), 1659-1669.

Pai, N., Kaw, A., & Weng, M. (2003). Optimization of laminate stacking sequence for failure
load maximization using Tabu search. Composites Part B: Engineering, 34(4), 405-
413.

Parsopoulos, K. E., & Vrahatis, M. N. (2002). Recent approaches to global optimization
problems through particle swarm optimization. Natural computing, 1(2-3), 235-306.

Pavlovic , G., Savkovic, M., Zdravkovic, N., Bulatovic, R., & Markovic, G. (2018). Analysis
and Optimization Design of Welded I-girder of the Single-beam Bridge Crane.

266

Peeters, D., & Abdalla, M. (2017). Design Guidelines in Nonconventional Composite
Laminate Optimization. Journal of Aircraft, 54(4), 1454-1464. doi:10.2514/1.c034087

Piechocki, J., Ambroziak, D., Palkowski, A., & Redlarski, G. (2014). Use of Modified Cuckoo
Search algorithm in the design process of integrated power systems for modern and
energy self-sufficient farms. Applied Energy, 114, 901-908.

Popov, E. P. (1976). Mechanics of Materials: Solutions for Problems: Prentice-Hall.

PTC. (2011). PTC Mathcad 15 M010 User's Manual. In (15 ed.): PTC.

Qiu, Z., & Wang, X. (2010). Structural anti-optimization with interval design parameters.
Structural and Multidisciplinary Optimization, 41(3), 397-406.

Qu, X., Xu, G., Fan, X., & Bi, X. (2015). Intelligent optimization methods for the design of an
overhead travelling crane. Chinese Journal of Mechanical Engineering, 28(1), 187-
196.

Ragsdell, K., & Phillips, D. (1976). Optimal design of a class of welded structures using
geometric programming.

Rama Mohan Rao, A. (2009). Lay-up sequence design of laminate composite plates and a
cylindrical skirt using ant colony optimization. Proceedings of the Institution of
Mechanical Engineers, Part G: Journal of Aerospace Engineering, 223(1), 1-18.

Rao, A. R. M. (2009). Lay-up sequence design of laminate composite plates and a cylindrical
skirt using ant colony optimization. Proceedings of the Institution of Mechanical
Engineers Part G-Journal of Aerospace Engineering, 223(G1), 1-18.
doi:10.1243/09544100jaero415

Rao, A. R. M., & Arvind, N. (2007). Optimal stacking sequence design of laminate composite
structures using tabu embedded simulated annealing. Structural Engineering and
Mechanics, 25(2), 239-268.

Rao, A. R. M., & Shyju, P. P. (2008). Development of a hybrid meta-heuristic algorithm for
combinatorial optimisation and its application for optimal design of laminated
composite cylindrical skirt. Computers & Structures, 86(7), 796-815.
doi:https://doi.org/10.1016/j.compstruc.2007.05.033

Rao, S. S. (2009). Engineering optimization: theory and practice: John Wiley & Sons.

Reddy, J. N. (2004). Mechanics of laminated composite plates and shells: theory and analysis:
CRC press.

Sadollah, A., Eskandar, H., Bahreininejad, A., & Kim, J. H. (2015). Water cycle, mine blast
and improved mine blast algorithms for discrete sizing optimization of truss structures.
Computers & Structures, 149, 1-16.

267

Saka, M. P., Hasançebi, O., & Geem, Z. W. (2016). Metaheuristics in structural optimization
and discussions on harmony search algorithm. Swarm and Evolutionary Computation,
28, 88-97. doi:https://doi.org/10.1016/j.swevo.2016.01.005

Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory
to algorithms: Cambridge university press.

Shehab, M. (2020). Introduction of Diffusion MRI and Cuckoo Search Algorithm. In Artificial
Intelligence in Diffusion MRI (pp. 1-12): Springer.

Shehab, M., Khader, A. T., & Al-Betar, M. A. (2017). A survey on applications and variants
of the cuckoo search algorithm. Applied Soft Computing, 61, 1041-1059.

Singh, J. (2017). Introduction to Optimum design. In: Iowa: The university of Iowa, College
of Engineering.

Sörensen, K. (2015). Metaheuristics—the metaphor exposed. International Transactions in
Operational Research, 22(1), 3-18. doi:10.1111/itor.12001

Söyleyici, M. U. (2011). Stacking sequences optimization of the anti-buckled laminated
composites considering various failure criteria. İzmir Institute of Technology,

Stützle, T., & Hoos, H. H. (2000). MAX–MIN ant system. Future generation computer
systems, 16(8), 889-914.

Talatahari, S., Kheirollahi, M., Farahmandpour, C., & Gandomi, A. H. (2013). A multi-stage
particle swarm for optimum design of truss structures. Neural Computing and
Applications, 23(5), 1297-1309.

Talbi, E.-G. (2009). Metaheuristics: from design to implementation (Vol. 74): John Wiley &
Sons.

test 1. In.

Todoroki, A., & Haftka, R. T. (1998). Stacking sequence optimization by a genetic algorithm
with a new recessive gene like repair strategy. Composites Part B: Engineering, 29(3),
277-285.

Vasiliev, V. V. (2017). Mechanics of composite structures: CRC Press.

Venter, G., & Haftka, R. (1996). A two species genetic algorithm for designing composite
laminates subjected to uncertainty. Paper presented at the 37th Structure, Structural
Dynamics and Materials Conference.

Vosoughi, A., Darabi, A., & Forkhorji, H. D. (2017). Optimum stacking sequences of thick
laminated composite plates for maximizing buckling load using FE-GAs-PSO.
Composite Structures, 159, 361-367.

268

Wang, G. G. (2003). Adaptive Response Surface Method Using Inherited Latin Hypercube
Design Points. Journal of Mechanical Design, 125(2), 210-220.
doi:10.1115/1.1561044

Weiler, C., Biesinger, B., Hu, B., & Raidl, G. R. (2015). Heuristic Approaches for the
Probabilistic Traveling Salesman Problem. Paper presented at the International
Conference on Computer Aided Systems Theory.

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1), 67-82. doi:10.1109/4235.585893

Wu, Z. (2020). 6 - Postbuckling analysis and optimization of laminated composite plates with
applications in aerospace. In P. Irving & C. Soutis (Eds.), Polymer Composites in the
Aerospace Industry (Second Edition) (pp. 123-146): Woodhead Publishing.

Xin, Z., Zhang, D., & Chen, Z. (2019). Spectrum Allocation of Cognitive Radio Network Based
on Improved Cuckoo Search Algorithm. Paper presented at the Proceedings of the 2nd
International Conference on Computer Science and Software Engineering.

Xingyu, R., Jiayi, F., & Hai, H. (2020). Improved genetic algorithm with two-level multipoint
approximation for complex frame structural optimization. Paper presented at the
Journal of Physics: Conference Series.

Yadav, A., & Arora, M. (2019). Library Services for Divyangjan in the National Institute for
the Empowerment of Persons With Intellectual Disabilities. International Information
& Library Review, 51(1), 70-74.

Yang, W. Y., Cao, W., Kim, J., Park, K. W., Park, H.-H., Joung, J., . . . Im, T. (2005). Applied
numerical methods using MATLAB: John Wiley & Sons.

Yang, X.-S. (2013). Cuckoo search and firefly algorithm: Theory and applications (Vol. 516):
Springer.

Yang, X.-S. (2014). Nature-inspired optimization algorithms: Elsevier.

Yang, X.-S., & Deb, S. (2009). Cuckoo search via Lévy flights. Paper presented at the 2009
World congress on nature & biologically inspired computing (NaBIC).

Yang, X.-S., & Deb, S. (2013). Multiobjective cuckoo search for design optimization.
Computers & Operations Research, 40(6), 1616-1624.

Ye, P., & Pan, G. (2017). Global optimization method using ensemble of metamodels based
on fuzzy clustering for design space reduction. Engineering with computers, 33(3),
573-585. doi:10.1007/s00366-016-0490-x

269

Yuan, Y., Lv, L., Wang, X., & Song, X. (2020). Optimization of a frame structure using the
Coulomb force search strategy-based dragonfly algorithm. Engineering Optimization,
52(6), 915-931.

Zadeh, P. M., Fakoor, M., & Mohagheghi, M. (2018). Bi-level optimization of laminated
composite structures using particle swarm optimization algorithm. Journal of
Mechanical Science and Technology, 32(4), 1643-1652. Retrieved from <Go to
ISI>://WOS:000430417300018

Zein, S., Madhavan, V., Dumas, D., Ravier, L., & Yague, I. (2016). From stacking sequences
to ply layouts: An algorithm to design manufacturable composite structures. Composite
Structures, 141, 32-38. doi:10.1016/j.compstruct.2016.01.027

Zhang, Y., Wang, H., Zhang, Y., & Chen, Y. (2011). Best-worst ant system. Paper presented
at the 2011 3rd International Conference on Advanced Computer Control.

Zheng, F., Zecchin, A. C., Newman, J. P., Maier, H. R., & Dandy, G. C. (2017). An adaptive
convergence-trajectory controlled ant colony optimization algorithm with application
to water distribution system design problems. IEEE Transactions on Evolutionary
Computation, 21(5), 773-791.

Zhou, Y., Ouyang, X., & Xie, J. (2014). A discrete cuckoo search algorithm for travelling
salesman problem. International Journal of Collaborative Intelligence, 1(1), 68-84.

Zuberi, R. H., Kai, L., & Zhengxing, Z. (2008). Design optimization of EOT crane bridge. Eng
Opt, 192-201.

