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Optimisation dure de la conception structurelle soumise au flambage à l'aide de  
l'approche de calcul évolutif 

 
Ali Elmbrok Salem AHMID 

 
RÉSUMÉ 

 
Les techniques d’optimisation ont pour objectif de réduire la quantité des matériaux utilisés 
lors des opérations de conception structurelles sans pour autant altérer les exigences imposées 
par les processus de fabrication, menant ainsi à une réduction de coûts. En plus du coût réduit 
ainsi que l’impact positif de durabilité résultant de l’optimisation de conception structurelle 
(Structural Design Optimization, SDO), elle sert aussi d’outil prometteur pour les ingénieurs à 
développer des conceptions innovantes dans diverses applications structurelles réelles. 
 
Les études antérieures dans le domaine SDO ont été d’un apport considérable dans 
l’approfondissement de nos connaissances dans ce champ d’intérêt spécifique. Cependant, 
cette thématique de recherche fait encore l’objet de débats dans ces différents aspects, non 
seulement sur la façon de réaliser les caractéristiques physiques requises d’une structure, mais 
aussi, et surtout, sur la possibilité d’atteindre un tel objectif efficacement, et avec un temps de 
calcul le moins couteux possible. De ce point de vue, certains axes de recherche, 
potentiellement prometteurs, qui ont été repris de la littérature, ainsi que de nouvelles 
contributions, ont été traités dans le cadre de la présente thèse. 
 
La revue de littérature portant sur l’optimisation des problèmes de conception structurelle 
révéle que les algorithmes d’optimisation globale ou ce qui est communément appelé Méta-
heuristiques (MHs) sont considérés comme étant les meilleures techniques disponibles en 
mesure de résoudre de tels problèmes complexes d’optimisation. Toutefois, le principal défi 
de l’ingénieur est de trouver l’algorithme MH qui répond au mieux au problème de conception 
structurelle qu’il doit solutionner. Malheureusement, les travaux rapportés dans la littérature 
révèlent le manque d’un modèle d’évaluation systématique qui pourrait aider les ingénieurs à 
surmonter cette insuffisance. Les mesures les plus communément utilisées actuellement pour 
la performance des MHs sont les opérateurs statistiques des solutions obtenues tels que : min, 
max, moyenne et écart-type. Cependant, de tels opérateurs ne sont pas assez suffisant pour 
refléter la performance actuelle des algorithmes MH lorsque ces mesures sont utilisées 
séparément. Ainsi, un critère d’évaluation adéquat a été développé dans le cadre de ce travail 
afin d’inclure plus de paramètres efficaces comme la fiabilité pratique, le prix (le coût de 
calcul), le prix normalisé, le taux de performance, la qualité de la solution et l’analyse Fitness-
landscape. De plus, deux différents taux de convergence ont été imposés pour examiner les 
algorithmes MH pour les taux lent et rapide, ainsi que la reproductibilité des résultats 
d’expériences numériques considérés lors de procédure d’évaluation des MHs. Récemment, le 
critère proposé a été utilisé afin de comparer cinq différentes variantes d’optimisation par 
colonies de fourmis (Ant Colony , ACO). Les démarches proposées ont montré une évaluation 
comparative efficiente de la performance de l’optimisation par colonies de fourmis. 
Plusieurs études ont été menées afin d’améliorer la performance de recherche des techniques 
MHs, et les résultats ont été prometteurs dans cette direction. Malheureusement, la littérature 
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portant sur l’optimisation de conception structurelle a montré une tendance forte à développer 
de nouveaux “metaphor” MHs au lieu de procéder à une amélioration de la performance des 
algorithmes MHs déjà existants, et qui ont une remarquable réputation dans la résolution des 
problèmes d’optimisation  Non-Polynôme (𝒩𝒫) qui sont connus par leur complexité. 
Cependant, la présente thèse examine d’éventuelles améliorations des caractéristiques de 
recherche des deux approches MHs sélectionnés moyennant une intégration d’une recherche 
locale de mouvements à la structure principale de l’algorithme MH afin d’améliorer l’effort 
d’intensification. Le premier algorithme MH sélectionné est Cuckoo Search (CS), qui est 
fortement utilisé pour résoudre une variété de problèmes d’optimisation tels que la 
minimisation pondérée des structures en treillis, Travelling Salesman Problem (TSP),…etc. 
L’algorithme de recherche Cuckoo (CS) est conçu pour résoudre des problèmes d'optimisation 
continue sans contrainte comme la plupart des techniques Méta-Heuristiques. Par conséquent, 
le CS original a été adapté et modifié, dans le cadre de cette thèse, pour résoudre des problèmes 
discrets d'optimisation de conception structurelles, et il est nommé Algorithme de recherche 
Cuckoo CS adapté (Adapted CS Algorithm, ADCSA). L’effort d’intensification de 
l’algorithme CS adapté est amélioré à travers quatre différentes recherches locales de 
mouvements de permutation, d’échange, bit flip et insertion. L’algorithme CS adapté a été 
appliqué pour résoudre deux problèmes d’optimisation structurelles différents, et les résultats 
obtenus ont montré que cet algorithme présente de remarquables performances pour 
l’optimisation de ce type de problèmes. L’autre algorithme MH qui a l’objet d’une 
amélioration est la variante d’optimisation par colonies de fourmis du cadre Hyper Cube 
(Hyper Cube Framework, HCFACO), qui a été sélectionnée en se basant sur les résultats de 
l’étude comparative de cinq différentes variantes mentionnées précédemment. L’augmentation 
de l’effort d’intensification du ‘HCFACO’ a été réalisée en intégrant deux recherches locales 
de mouvement d’insertion et de bit flip. La performance de la version améliorée du ‘HCFACO’ 
appelée ‘EHCFACO’ a été examinée moyennant la résolution de problèmes de référence 
d’optimisation de conception structurelle, et les résultats ont montré une performance 
significative de ce dernier comparativement à la version originale du ‘HCFACO’, ainsi qu’aux 
cinq autres variantes de l’optimisation par colonies de fourmis. 
 
Concernant les différents cadres d’optimisation de conception structurelle, la revue de 
littérature a révélé que les deux approches déterministe et probabiliste sont communément 
utilisées. Néanmoins, le manque d’études portant sur les incertitudes de conception en utilisant 
l’anti-optimisation est compréhensible en raison du cout élevé associé à l’analyse de la fonction 
objective. Cette approche se distingue par deux niveaux, un niveau haut consacré à la phase 
d’optimisation, et un niveau bas qui a pour objectif l’anti-optimisation de la solution optimale 
obtenue. Durant ces processus d’optimisation et d’anti-optimisation, un nombre important 
d’appels de la fonction objective est effectué, ce qui peut présenter un défi majeur pour les 
problèmes d’optimisation structurelles présentant des fonctions objectives couteuses en termes 
d’effort de calcul. Cependant, un cadre d’incertitude à cout réel a été développé dans la 
présente étude. Le cout exorbitant associé à l’évaluation de la fonction objective a été 
contourné en remplaçant la fonction boite-noir (logiciel d’analyse par éléments finis) par un 
réseau de neurones artificiel (ANN). La procédure proposée a été appliquée pour optimiser un 
nouveau cas d’étude d’une plaque composite laminé perforée soumise à des incertitudes sur 
les conditions de charge et la localisation du centre de découpe. Les résultats obtenus ont 



IX 

montré que l’utilisation de la technique des réseaux de neurones artificiels présente une 
solution fiable à cout réel pour les problèmes d’optimisation de conception structurelle ayant 
des fonctions objectives avec un cout de calcul considérable. 
 
En plus des axes de recherche spécifiques mentionnés ci-dessus, d’autres pistes sont apparues 
durant le déroulement des travaux de cette thèse, tels que l’effet de sélection de la population 
initiale, la représentation de la solution et la génération adaptative d’une nouvelle solution sur 
la performance des algorithmes Méta- Heuristiques (MHs). Deux nouveaux exemples 
d’optimisation de conception structurelle ont aussi été développés pour le cas d’une grue avec 
une poutre en forme en I et une plaque composite laminée perforée. En général, cette thèse a 
permis d’améliorer notre compréhension de la façon d’aborder la complexité des problèmes 
d’optimisation de conception structurelle. 
 
Mots clefs: Méta-Heuristiques, 𝒩𝒫-problèmes d’optimisation complexes, optimisation de 
conception structurelle, facteur de charge critique de flambement, grue, plate composite 
laminée, Hyper-Cube Amélioré, algorithme de recherche adaptative discret Cuckoo, 
incertitude, Réseaux de Neurones Artificiels. 
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ABSTRACT 

 
The optimization techniques aim to reduce the used material in the structure design without 
violating the imposed design and manufacturing constraints; thus, the materials cost is 
decreased, and less material is consumed. In addition to the low-cost and positive sustainability 
impact of Structural Design Optimization (SDO), it promotes the engineers to develop 
innovative designs for several real-life structural applications. 
 
The previous studies in the domain of SDO gainfully contributed in the way that expanded our 
knowledge in this specific field. However, this research theme still watches debates on various 
issues, not only how we could achieve the desired physical features of a structure, but also how 
we could make this is happening efficiently at a lowest possible computational cost. With this 
regard, a couple of potential research opportunities have been extracted from the literature, and 
in-context novel contributions were presented in the current thesis.   
 
The literature of structural design optimization problems reveals that global optimization 
algorithms or Meta-heuristics (MHs) are the best available techniques that could be used to 
solve such hard optimization problems. Though, the main challenge confronted the engineer is 
which available MH fits much better to the structure design problem of his attention. 
Unfortunately, the literature of SDO experiences a lack of systematic assessment pattern that 
could help the engineers to overcome this issue. Currently, the commonly used measures of 
MHs performance by MHs developers are the statistical operators such as min, max, mean and 
standard deviation of the obtained solutions. However, such measures are not enough to reflect 
the actual MH performance when these measures are used alone. So, a comprehensive 
assessment criterion has been developed here to include more efficient measures like the 
practical reliability, price (computational cost), normalized price, performance rate, solution 
quality and Fitness-landscape analysis. Additionally, two different convergence rates were 
imposed to examine the MHs at slow and fast rates. As well as the reproducibility of the 
numerical experiments results considered within the procedure of MHs assessment. Lastly, the 
proposed criterion has been employed to compare five different Ant Colony Optimization 
(ACO) variants. The proposed measures demonstrated a comprehensive assessment of the 
compared ACOs performance.                 
 
Several studies were conducted to improve the MHs searching performance, and the results 
were promising in this direction. Unfortunately, the literature of SDO demonstrated an extreme 
tendency to develop new “metaphor” MHs instead of improving the performance of well-
established MHs that have a remarkable history of solving Non-Polynomial (𝒩𝒫) -hard 
optimization problems. However, this thesis examines the possible improvements of two 
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selected MHs searching features via integrating local search movements to MH's main 
structure to improve the intensification effort. The first selected MH is Cuckoo Search (CS) 
algorithm, which is intensively used to solve a variety of optimization problems such as weight 
minimization of the truss structure, Travelling Salesman Problem (TSP),…etc. CS is designed 
to solve unconstrained continuous optimization problems as most of MHs. Consequently, the 
original CS has been adapted and modified here to solve discrete SDO problems, and it is 
named Adapted CS Algorithm (ADCSA). The intensification effort of ADCSA improved 
through four different local search movements of permutation, swap, bit flip and insertion. 
ADCSA has been applied to solve two different SDO problems, and the obtained results of 
both case studies reveal that the proposed ADCSA has a considerable performance in solving 
SDO problems. The other improved MH was the  ACO variant of the Hyper Cube Framework 
(HCFACO), which was selected based on the results of the comparison study of five different 
ACO variants that previously mentioned. The enhancement of the HCFACO intensification 
effort was carried out by integrating two local search movements of insertion and bit flip. The 
performance of improved version HCFACO, Enhanced HCFACO (EHCFACO), has been 
examined through solving a well-known SDO benchmarking problem. EHCFACO exhibited 
a significant performance compared to the original HCFACO and the other five ACO variants.   
 
Regarding the structural design optimization frameworks, the literature review has shown that 
both deterministic and probabilistic SDO approaches are mostly used. Nevertheless, the 
scarcity of studies of uncertainty design using anti-optimization is understandable because of 
the associated expensive design analysis cost of the objective function. This approach has two 
levels, the top level devoted to the optimization phase, while the bottom level works to anti-
optimize the obtained optimal solution. During this process of optimization and anti-
optimization, a large number of objective function calls is taking place, and for those SDO 
problems with expensive functions, this approach becomes unfeasible. However, a cost-
effective uncertainty framework has been developed in the current study. The accompanied 
expensive cost of the objective function evaluation has been tackled by replacing the black-
box function (FEA software) by an Artificial Neural Network (ANN). The proposed procedure 
was applied to optimize a novel case study of a perforated composite laminated plate subjected 
to the uncertainty of loading conditions and the location of the cut-out center. The attained 
results reveal that using ANN techniques offers a cost-effective solution for SDO problems 
with expensive objective functions.   
    
In addition to those specific research opportunities mentioned above, some others appeared 
during the research process, such as the effect of selection of the initial population, solution 
representation and adaptive generation of a new solution on the performance of MHs. 
Moreover, two novel SDO examples have been developed for customized I-beam overhead 
gantry crane and perforated composite laminated plate. In general, this thesis has gone some 
way towards enhancing our understanding of how to tackle the complexity of SDO problems. 
 
Keywords: Meta-Heuristics, 𝒩𝒫-hard optimization problems, structural design optimization, 
critical buckling load factor, crane, composite laminate plate, Enhanced Hyper Cube ACO, 
Adapted Discrete Cuckoo Search Algorithm, uncertainty framework, anti-optimization, 
Artificial Neural Network. 
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INTRODUCTION 
 

Nowadays, structural design optimization (SDO) topic continues to attract the attention of  

research community and the industry due to the obtained benefits in terms of cost-effective 

structures. The large-scale structures such as airplanes, space shuttles, ships, bridges, …etc., 

are consuming a significant portion of the global natural resources, and structural design 

optimization could help in this by decreasing the required consumed materials. Besides of this 

positive sustainability impact, structural design optimization could save the structurer cost by 

reducing the designing cost via parametrizing the iterative structure design calculations. 

Furthermore, structural design optimization derived innovative designs for several structural 

applications in real-life. 

          

The strategies of the structural design optimization are varying based on the design objective, 

for example, it could be size optimization, where dimensions of the structure are the design 

variables that needed to be optimized against certain design constraints. Also, the objective 

could be topology optimization, where the shape and material distribution need to be 

optimized. Other factor is the design and manufacturing constraints which have a great 

influence on the nature of the optimization type of the designated structure problem. For 

instance, when the design variables of a specific structure belong to a continuous design 

domain (continuous optimization) it results an easy implementation and better performance 

solutions. In contrast, when the design variables are belonging to a discrete design domain of 

individual values (discrete optimization) the complexity of the optimization problem will grow 

exponentially as much as the number of design variables is increased. Consequently, the 

computational time to find the optimal solution is growing exponentially until it becomes Non-

Polynomial (NP) time, and this turns the structure optimization problem into an NP-hard 

problem according to the theory of complexity (Marco Dorigo & Stützle, 2019). This class of 

the optimization problems is common in structural design practice; for example, optimization 

of composite laminated plate where the fiber orientation is limited to discrete available angles (0°, ±45°, 90°). Also, the number of plies is representing the number of design variables to be 
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optimized, and when the number of plies increases the computational problem complexity will 

increase too. 

 

From the optimization methodology prospective, the classical (mostly gradient) methods are 

favourable because of their implementation simplicity and good solution quality they offer at 

a low computational cost. Unfortunately, these techniques performed poorly in solving NP-

hard optimization problems where they tend to be stuck in local optimum rather than not 

finding any optimum. The significant performance of Meta-Heuristics (MHs) compared to 

gradient optimization algorithms addressed many times in literature due to their efficiency and 

stability (Ghiasi, Fayazbakhsh, Pasini, & Lessard, 2010). However, MHs are an ongoing 

optimization research domain to solve medium as well as large-scale problems that appear in 

different disciplines (Almufti, 2019). Even though MHs, in general, could solve the discrete 

optimization problems efficiently, we still need to determine which MH well-matched to solve 

a specific structural design optimization problem according to the No Free Lunch theorem 

(NFL) by Wolpert and Macready (1997).       

       

Motivation 

The literature of structural design optimization is full of valuable contributions that advanced 

our knowledge in this specific area. However, this subject of research still watches debates on 

various issues, not only how we could achieve the desired physical features of a structure, but 

also how we could make this is happening efficiently at a lowest possible computational cost. 

With this regard, a couple of potential research opportunities that we extracted from the 

literature are briefly introduced here:                 

- The literature of structural optimization experiences a scarcity of systematic assessment 

paradigm that could support the designer to decide what MHs fit better to the structure 

design problem of his attention. Therefore, the selection of an efficient optimization 

algorithm needs to develop substantial compromise criteria to determine which MH 

algorithm offers a cost-effective solution for a designated optimization problem, and it 

deserves to be selected. 
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- The literature of NP-hard optimization problems reveals that global optimization 

algorithms or MHs are the best available techniques that could be used to solve such 

hard optimization problems. Several studies conducted to improve the MHs' searching 

performance, and the results were promising in this direction. So, improving the well-

known MHs searching capabilities is another opportunity of contribution.   

 

- The widely used option for structure analysis is deploying a multi-purpose commercial 

FE software such as ANSYS, NASTRAN, and ABAQUS, and this option gives the 

designers more flexibility to enlarge the complexity of the design of their structures as 

they need. Unfortunately, when the design problem involves more complexity, the 

evaluation of the structure analysis will become more expensive too. Therefore, 

examining other possible alternatives, such as using a surrogate model or Artificial 

Neural Networks, deserve attention.  

 

- Some commercial FEA software has built-in optimization tools, e.g. Multi-Objective 

Genetic Algorithm (MOGA) in ANSYS WB. But when it used to solve real-life 

optimization problems, it becomes useless in terms of solution cost and quality; as we 

mentioned previously that no one optimization algorithm could solve all optimization 

problems. Developing an in-house optimization package that fits the design problem 

needs is a favourable choice. Though, this option involves technical challenges of how 

to integrate it into the commercial FEA software with no more extra cost. Hence, 

developing a sort of an open-source interface between the commercial FEA software 

and in-house optimization package (e.g. MH has written in a Matlab program) 

representing a practical opportunity.     

 

- Lastly, it has been observed from the literature review of structural design optimization 

that the uncertainty design optimization procedures were infrequently used, although 

they produce robust optimal designs. Consequently, scheming an uncertainty 
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optimization framework that could handle expensive structural optimization problems 

(e.g. thin perforated plate) is another vital opportunity.   

 

Problem Statement 

The discrete nature of  a structural design optimization problem makes the objective function 

a multimodal (non-convex) function. As a consequence, the design space will have more than 

one optimal solution, and this turns the structure design into an NP-hard design optimization 

problem. The complexity of the problem is continuing to grow when the designated problem 

has a larger number of design variables that need to be optimized. Furthermore, for those 

structures without an analytical solution of the design analysis, using the approximated 

solutions such as a multi-purpose commercial Finite Elements Analysis (FEA) software could 

result in an expensive objective function evaluation.  

 

However, this thesis considered two different structures as case studies, thin composite 

laminated plate and a customized I-beam crane to answer the following research questions: 

  

- Which optimization technique is suited best to solve a specific structural design 

optimization problem? 

 

- Does the candidate optimization technique performance could be improved in the way 

that makes the obtained optimal solution, by the improved version, is much cheaper 

with the same quality (or better) of the original one? 

 

- How could we reduce the computational cost of the optimization procedure if the 

obtained objective function of a particular loading analysis is computationally 

expensive? 

 

- How could we develop a robust optimization framework that able to handle a structural 

optimization problem which has an expensive objective function, and subjected to 

uncertainty influences of loading conditions?     
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Thesis Objectives 

Realizing the prominence of developing efficient designs of engineering structures drove this 

thesis to attempt bridging the research gaps that addressed in the literature review chapter. 

Consequently, a list of specific objectives has been established to answer the research questions 

previously mentioned. 

 

- Extending our knowledge about MHs as optimization techniques for structural design 

through developing an intensive literature review and determining the possible research 

gaps or opportunities and propose new solutions to potential existing problems. 

 

- Build and examine a comprehensive comparison criterion based on practical measures 

to help the designer selecting the right MH that most fit his design problem of interest. 

 

- Investigate possible improvements that possibly improve the candidate MH exploration 

and exploitation features in the desire to find a new cost-effective solution for a 

structural design that defeats the solution obtained by the original MH.        

 

- Investigate the using of possible techniques that deal with the expensive computational 

cost of the design analysis for some structures. 

 

- Finally, developing a robust optimization procedure for an engineering structure that 

considers the uncertainty of loading conditions. Explicitly, this procedure should be 

formed in a manner that makes it capable of handling expensive objective functions. 

 

Thesis outline  

The thesis is a manuscript-based dissertation written based on four individual articles; 

however, they are all tied together to answer the research questions. Also, the thesis structure 

consists of a literature review, thesis framework, conclusion, and appendixes for additional 

journal paper and supplementary data. 
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Chapter 1 is devoted to present a synopsis of intensive previous work review in fields of 

structural optimization, Meta-Heuristics (MH), and recent trends in solving structural 

optimization problems. Moreover, a discussion of potential research gaps that orient the thesis 

direction is also presented.  

 

Chapter 2 introduces the research methodology proposed to attain the predefined objectives of 

the thesis. Then it explains the main components of the developed approach, which 

corresponds to the individual purposes of the thesis. 

 

Chapter 3 is a journal paper titled "An Optimization Procedure for Overhead Gantry Crane 

Exposed to Buckling and Yield Criteria," published in the IRA-International Journal of 

Technology & Engineering (IRAJTE) (2017). 

  

Chapter 4 is a journal paper, titled "An adaptive Discrete Cuckoo Search Algorithm to Solve 

Structural Engineering Problems," published in the Journal of Multidisciplinary Engineering 

Science and Technology (JMEST) (2020).  

 

Chapter 5 is a journal paper, entitled "Enhanced Hyper-Cube Framework ACO for structural 

combinatorial optimization problems. “ submitted to Elsevier Computer and Structures ( 2020). 

 

Chapter 6 is a journal paper titled " Optimization of Perforated Composite Laminated Plate 

Subjected to Uncertain Geometrical and Loading Conditions " submitted to Elsevier 

Composite Structures journal (2020).  

 

The conclusion is the last section; it dedicated to introducing the summary of the work 

achievements and highlight the obtained main contributions of this thesis. Moreover, some 

alternatives for future work are mentioned. Finally, different publications produced during the 

current research time were listed at the end of the section for the interested reader.



 

CHAPTER 1 
 
 

LITERATURE REVIEW ON STRUCTURAL DESIGN OPTIMIZATION  
 

Structural Design Optimization (SDO) is a recursive process that aims to determine the best 

possible design (solution) among several feasible designs. The SDO differs from the classical 

design approach in the formulation of the design problem, where SDO forms the design 

problem as an optimization problem that has objectives and design constraints. The classical 

design approach depends on a conceptual design developed based on data collection of the 

design problem (see Figure 1.1). Furthermore, SDO  examines the feasible design violation of 

specific design constraints, whereas the classical design approach inspects the design 

satisfaction of the performance criteria. The design updating is another difference between 

both approaches, in classical design occurs based on the designer experience and heuristics 

information while SDO updates the design based on optimization concept,(Singh, 2017). 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                              (b) 
 

Figure 1.1 (a) Classical structural design approach, (b) Structural Design Optimization 
(SDO) Taken from Singh (2017)  
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The literature of the SDO is rich of benchmarking problems; for example, Cohn and Dinovitzer 

(1994) accounted about 500 published benchmarking SDO examples regarding the structure 

type and optimization method. More recently, Clune (2013) reported that 55% of 

benchmarking examples of SDO considered in the literature were truss and frames structures. 

Still, there is a growing trend to optimize other structures such as beams, plates, columns and 

composites. However, the current chapter is devoted to reviewing the recent trends in SDO 

benchmarking problems, optimization methods and structural design frameworks. 

Accordingly, the most relevant studies published in the last decades have been discussed here 

and summarized based on the literature indicators illustrated in Figure 1.2. 

 

Figure 1.2 SDO literature review indicators 
 
1.1 Structural Design Benchmarking Problems 

SDO started the early 1900s years when Michell, in 1904, presented a formal structural 

optimization procedure through his well-known benchmark problem of weight minimization 

of the truss structure. However, SDO research watched an increased interest since the 1960s, 
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and by the mid-1990s were around 2500 published articles and more than 150 books in the 

SDO domain, and since then, an increasing volume of published studies has been noticed, 

(Clune, 2013). The main purpose of SDO benchmarking problems is verifying the performance 

of new or modified optimization methods. The majority of SDO problems have a multimodal 

design space as a result of design variables number and complexity of some nonlinear 

constraints such as maximum stresses, deflection and other design configuration. 

Consequently, using traditional optimization techniques, e.g. steepest descent algorithm, are 

not efficient in solving such problems, and only Meta-Heuristics (MHs) could find the global 

optimal solution for such design optimization problems (Gandomi, Yang, & Alavi, 2013). 

 

The isotropic materials structures such as steel truss, frames, beams, …etc., have been 

intensively studied for more than a century. Also, anisotropic materials structures such as 

composite laminated plates grabbed the attention on account of their significant characteristics. 

A subset of the benchmarking structure problems for both materials types is considered here 

to be reviewed, including a space truss structures, I-beam, and composite plate. These 

benchmarks are discussed in the following sections to explain the SDO problem formulation 

and some obtained results in the literature. 

1.1.1 Truss Design Optimization Problems 

Usually, truss structures optimized for minimum weight by reducing the elements' cross-

section area. These benchmarking problems used intensively to evaluate the performance of 

optimization techniques. The truss structure always optimized with different design constraints 

such as stress, deflection and buckling constraints (Gandomi & Yang, 2011). They are known 

for their complexity due to the high number of design variables, and some of them have no 

global optimal solution yet (Clune, 2013). Thus, many studies have been conducted to solve 

these problems using new or modified MHs. Several types of truss structures were employed 

in the literature; for instance, Sadollah, Eskandar, Bahreininejad, and Kim (2015) examined 

the performance of three different MHs, Mine Blast Algorithm (MBA), Water Cycle 

Algorithm (WCA) and Improved MBA (IMBA). The proposed MHs applied to four different 

structures of 52,72, 200 and 582-bar space trusses, which yield a range of design variables 
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from 12 to 96 that need to be optimized for a discrete design domain. Ho-Huu, Nguyen-Thoi, 

Vo-Duy, and Nguyen-Trang (2016) proposed a modified  Differential Evolution MH called 

(aeDE) that uses an adaptive technique that balances the exploration and exploitation features 

of the original DE; also, it uses the elitist strategy to select the best individual for the next 

generation. Then, aeDE applied for six different discrete truss examples and the rounding to 

the nearest value used to solve the discrete design domain problem. Mirjalili and Lewis (2016) 

examined the new MH of Whale Optimization Algorithm (WOA) using six different structural 

benchmarks of spring, welded beam, pressure vessel and three truss structures of 15, 25 and 

52 bar truss.  Other MH called Fireworks Algorithm (FWA) was introduced by Gholizadeh 

and Milany (2018) to solve discrete structural design optimization problems. Four different 

benchmarks of truss and frame structures were optimized using FWA and the results compared 

to other results in the literature.   

However, the truss structures continue to challenge the MH developers as a consequence of 

their objective function complexity and a large number of design variables. Hence, the 

optimization problem of truss structures could be generally formulated as follow: 

a.) Objective Function     

  𝑤(𝐴) = ෍𝜌௜𝐴௜𝐿௜௡
௜ୀଵ  (1.1) 

where  𝑤(𝐴) is the structure weight;  𝑛 is the number of structure members;  𝜌௜ is the density 

of the structure member; 𝐴௜ is the member cross-section area and 𝐿௜ is the structure member 

length.  

b.) Constraints    

The truss elements are subjected to compression or tension loading conditions that generate 

the equivalent stresses. The elements' strength of tension and compression should remain under 

the allowable stress values. Accordingly, the stress constraints could be written as follow: 𝜎௧೔ ≤ 𝜎௧ೌ೗೗ೢೌ್೗೐  , 𝑖 = 1,2, … ,𝑛௧ 𝜎௖೔ ≥ 𝜎௖ೌ೗೗ೢೌ್೗೐  , 𝑖 = 1,2, … ,𝑛௖ 
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where 𝑛௖,𝑛௧ denote the number of truss elements subjected to compression and tension 

loading, respectively. Each node in the truss structure (element jointing point) is exposed to 

local displacement known as node deflection, and the optimal solution should not violate the 

maximum value of the node deflection, 𝛿௝,௠௔௫, and the deflection constraint can be expressed 

as follow: 𝛿௝ ≤ 𝛿௝,௠௔௫ , 𝑗 = 1,2, … . ,𝑛௡௢ௗ௘௦ 
The excessive compression can buckle the truss element and lead to a buckling failure mode 

where the maximum applied stresses at the failure point are higher than the bearing capacity 

of the element. To avoid such failure mode, the SDO procedure should determine the buckling 

element stress, 𝜎௕ೖ, to be less than permitted buckling stress and this yields: 

𝜎௕ೖ ≤ 𝜎௕ ,   𝑘 = 1,2, … . .𝑛௖ 

Besides, the cross-sectional area 𝐴 of the member should be selected from a specific range, 

and this range could be continuous (upper and lower values) or discrete from specific 

individual values. So, 𝐴௜  ∈  [𝐴௠௜௡,𝐴௠௔௫ ] 
or 𝐴௜  ∈  [𝐴ଵ,𝐴ଶ, … … . . ,𝐴௞], for discrete SDO. 

This optimization formulation assumed that the material is homogenous isotropic material of 

all structure elements, and thus the mechanical properties of the elements such as density, 𝜌, 

and young's module, 𝐸, are constant all over the optimization procedure.   

c.) Objective Function Transformation 

The optimization techniques designed to solve unconstrained continuous optimization 

problems. The real-life optimization problems, including SDO, have their constraints that need 

to be unviolated, and for this, different methods of handling the constraints were proposed. The 

commonly used approach in SDO is the penalty functions approach, and it has different 

formulation forms, here the exterior point penalty function is used to explain how the objective 
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function transformed to include the design constraints, (Saka, Hasançebi, & Geem, 2016). The 

general form of the transformed objective function using an exterior point penalty function is:  

 𝐹൫𝑋, 𝑟௛ ,  𝑟௚൯ =  𝑓(𝑋) +  𝑟௛ ቎෍ℎ௞(𝑋)ଶ ௜
௞ୀଵ ቏   +  𝑟௚ ቎෍(𝑚𝑎𝑥൛0,𝑔௝(𝑋)ൟ)ଶ ௠

௝ୀଵ ቏   (1.2) 

where 𝑋 is the vector representing the design variables, ℎ௞ is the 𝑘௧௛ equality constraint if any, 𝑔௝ is the 𝑗௧௛ inequality constraint, 𝑟௛ and 𝑟௚ are two additional variables called penalty 

multipliers. 

Eventually, to review and compare the results of  SDO truss benchmark problem solved by 

different MHs, an example of  25-bar space truss has been selected from the literature and its 

different obtained  results were listed in Table1.1 and  also plotted in Figure 1.4.  

 

Example: 25-bar space truss 

 

This benchmark problem is commonly considered in the literature, and it has two variants, a 

continuous and discrete design domain (Mirjalili & Lewis, 2016).  

Figure 1.3 shows a 25-bar space truss with four fixed nodes (foundations) and the truss 

members are classified to eight design groups, 𝐷௚, based on their cross-sectional areas as 

follow:𝐷௚భ = ሼ𝐴ଵሽ; 𝐷௚మ = ሼAଶ, Aଷ, Aସ, Aହ ሽ; 𝐷௚య = ሼA଺, A଻, A଼, Aଽሽ; 𝐷௚ర = ሼA ଵ଴, Aଵଵ ሽ;  𝐷௚ఱ = ሼAଵଶ, Aଵଷሽ ;𝐷௚ల = ሼAଵସ, Aଵହ, Aଵ଺, Aଵ଻ ሽ;𝐷௚ళ = ሼAଵ଼, Aଵଽ, Aଶ଴,𝐴ଶଵ ሽ;𝐷௚ఴ =ሼAଶଶ, Aଶଷ, Aଶସ, Aଶହ ሽ. Accordingly, the problem has eight design variables that need to be 

determined to find the minimum truss weight. The truss material density, 𝜌, is  0.1 (𝑙𝑏 𝑖𝑛ଷ⁄ )  

and elasticity's module modulus 𝐸 =  10,000 (𝑘𝑠𝑖) while the member cross-sectional 

area𝐴௜ ∈ [0.1: 0.1: 3.4] (𝑖𝑛ଶ). The maximum node displacement  𝛿௠௔௫ = 2 (𝑖𝑛) and the 

maximum allowable compression stresses for each truss member group, 𝐷௚೔  , is: 

𝜎஼௢௠௣ೌ  =  ሼ35.092, 11.59, 17.305, 35.092, 35.092,6.759,6.959,11.082ሽ (𝑘𝑠𝑖) 
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and the allowable member tension stress is   𝜎்௘௡ೌ  = 40 (𝑘𝑠𝑖). The problem solved using 

different optimization methods by several authors such as Degertekin (2012), Degertekin and 

Hayalioglu (2013), Talatahari, Kheirollahi, Farahmandpour, and Gandomi (2013), A Kaveh, 

Bakhshpoori, and Afshari (2014), A Kaveh and Bakhshpoori (2016), Krempser, Bernardino, 

Barbosa, and Lemonge (2017), de Castro Lemonge, Duarte, and da Fonseca (2019) and 

summary of their results are listed in Table1.1. The result of reviewed studies of 25-bar truss 

for average weight, the standard deviation of the solution and number of function evaluations 

are plotted in Figure 1.4 . Lastly, a summary of different truss structures optimization solutions 

is listed in Table 1.2 

 

 
Figure 1.3 Twenty-five bar spatial truss  

Taken from  Seripk (2020, p.7) 
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                      Figure 1.4 Results comparison of average weight and number of Function 
evaluations for the 25-bar truss 

                                                 
 
1 SAHS     : Self-Adaptive Harmony Search Algorithm 
2 TLBO     : Teaching-Learning-Based Optimization 
3 MSPSO  : Multi-Stage Particle Swarm Optimization 
4 HPSSO   : Hybrid Particle Swarm and Swallow Swarm Optimization 
5 WEO      : Water Evaporation Optimization 
 
 
 

Table1.1 Comparison of different published results of  25-bar space truss,  
weight minimization 

 

Author/s MH 
Optimal  
weight 

(lb) 

No. of 
function 

evaluation 
Average Worst SD 

Terminati
on 

criterion 
Degertekin 

(2012) SAHS1 545.12 9488 545.38 546.60 0.91 max 
number of 
iterations 

# of 
exp=20 

Degertekin 
& 

Hayalioglu 
(2013) 

TLBO2 545.09 15,318 545.38 545.41 0.42 

Talatahari et 
al.  

(2013) 
MSPSO3 545.16 12500 546.03 548.78 0.8 

Max 
number of 
iteration 

Kaveh et al.  
(2014) HPSSO4 545.164 13,326 545.556 546.990 0.432 NA  

Kaveh and 
Bakhshpoori 

 (2016) 
WEO5 545.166 19,750 545.226 545.592 0.083 

Max 
number of 
iteration 

Lemonge et 
al. (2019) ABC 545.2421

88 
52200 545.416 545.477 0.062 NA /# of 

exp=25 
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Table 1.2 Truss structure optimization problems summary 

SDO Problem Modelling  Domain MH Comments 
10,25,37,52 
and 72-bar 
space truss by 
Kaveh & 
Zolghadr 
(2010) 

OB6: Weight 
minimization. 
CO7: Multi 
frequency 
constraints. 

Continues  CSS 
ECSS8 

ECSS produced 
better results  

304- and 132-
members 
frame 
structures by 
Hasançebi et 
al. (2010)    

OB: Weight 
minimization. 
CO: stress 
constraints. 

Discrete  Improved  
SA 

 

welded beam 
and pressure 
vessel by  
Kaveh & 
Talatahri 
(2010) 

OB: cost 
minimization. 
CO: stress 
constraints. 
 

Continues  CSS Performed better 
compared to 
previous MHs 
results e.g. GA and 
SA 

10,18,25,72 
and 200-bar 
space structure 
by Sonmez 
(2011) 

OB: weight 
minimization. 
CO: stress 
constraints 

Continues  ABC-AP Used adaptive 
penalty function  

10,25, 72 and 
200-bar space 
truss by 
Degertekin 
(2012) 
 

OB: Weight 
minimization. 
CO: stress 
constraints. 

Continues  EHS9 
SAHS10 

EHS has improved 
local search feature 
SAHS used new 
probabilistic method 
to determine the new 
feasible solution. 

10,25, 72 and 
200-bar space 
truss by 
Degertekin & 
Hayalioglu 
(2013) 

OB: Weight 
minimization. 
CO: stress 
constraints. 

Continues  TLBO It needs higher 
number of objective 
function evaluations. 

                                                 
 
6 OB       : Optimization oBjective 
7 CO       : COnstarints 
8 ECSS   : Enhanced Charged System Search  
9 EHS     : Effective Harmony Search 
10 SAHS : Self Adaptive Harmony Search 



16 

Table 1.2 Continued 
 

SDO Problem Modelling Domain MH Comments 
25,22,72 and 120-
bar space truss by 
Talatahari et al. 
(2013) 

OB: Weight 
minimization. 
CO: stress 
constraints. 

Continues MSPSO MSPSO performed 
better than standard 
PSO 

25,22,72,120 and 
200-bar space truss 
by Kaveh & 
Bakhshpoori  
(2014) 

OB: Weight 
minimization. 
CO: stress 
constraints. 

Continues HPSSO HPSSO exhibited 
better performance 
compared to PSO 

10,22,25,72,120 
and 200-bar by 
Kaveh & 
Bakhshpoori 
(2016) 

OB: Weight 
minimization. 
CO: stress 
constraints. 

Continues WEO WEO has expensive 
solution 

10,25,52,72,160 
and 200-bar space 
truss 
de Castro Lemonge 
et al. (2019) 

OB: Weight 
minimization. 
CO: stress 
constraints. 

Discrete 
& 
Continues 

ABC-APF Handled the discrete 
domain using 
penalty function 

25,72,200 and 582-
bar space truss by 
Mortazavi, Toğan, 
and Moloodpoor 
(2019), 

OB: Weight 
minimization. 
CO: stress 
constraints. 

Continues ISA11 Using FEM to 
determine the truss 
weight.  

25 and 72-bar 
space truss by 
Yuan, Lv et al. 
(2020) 

OB: Weight 
minimization. 
CO: stress 
constraints. 

Discrete  CFSSDA12 Handling the 
problem discreteness 
is not clear  

25,72 and 200-bar 
space truss by 
Jahangiri, 
Hadianfard et al. 
(2020) 

OB: Weight 
minimization. 
CO: stress 
constraints. 

Discrete IAS13 Using rounding to 
nearest discrete 
value 

 

                                                 
 
11 ISA          : Interactive search Algorithm 
12 CFSSDA : Coulomb Force Search Strategy Dragonfly Algorithm  
13 IAS          : Interactive Autodidactic School 



 

1.1.2 I-Beam Design Optimization Problem 

I-beam profile sections are popular in the structural design applications for trusses, frames, 

cranes or even more sophisticated applications such as front car axles (Yuan, Lv, Wang, & 

Song, 2020). The original I-beam benchmark SDO problem developed by Gold and 

Krishnamurty (1997) and an updated version was introduced by  Gandomi et al. (2013), which 

becomes more used in recent years (see Figure 1.5). The objective of this problem is 

minimizing the vertical deflection of the beam subjected to axial loading and cross-sectional 

constraints. Yadav and Arora (2019) applied a new MH known as Artificial Electric Field 

Algorithm (AEFA) for the I-beam benchmark, and it compared the results reported by Pan  (Ye 

& Pan, 2017), and (Wang, 2003). The proposed AEFA exhibits a better solution with a fast 

convergence rate. 

 

The problem formulation of the updated version of I-beam benchmark proposed by Gandomi 

et al. (2013) is shown here: 

 

a.) Objective Function 

 𝑚𝑖𝑛.  𝑓(𝑥) = 𝑃𝐿ଷ48𝐸𝐼 (1.3) 

 

The beam length 𝐿 = 5.2 𝑚, and elasticity module 𝐸 =  523,104 ௞ே௖௠మ; this yields that objective 

function of maximum deflection could be formed as:  

 

 𝑓൫𝑏,ℎ, 𝑡௪, 𝑡௙൯ = 5000𝑡௪(ℎ − 2𝑡௙)ଷ12 + 𝑏𝑡௙ଷ6 + 2𝑏𝑡௙ ൬ℎ − 𝑡௙2 ൰ଶ 
(1.4) 

b.) Constraints 
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The beam is subjected to area constraint 𝐴 ൫𝑏,ℎ, 𝑡௪, 𝑡௙൯ and to allowable bending stress 

constraint 𝜎௔ = 56𝐾𝑁 𝑐𝑚ଶ⁄ , thus: 

 𝐴 ൫𝑏,ℎ, 𝑡௪, 𝑡௙൯ ≤ 300 𝑐𝑚ଶ  𝜎௕ ≤  𝜎௔ 

The I-beam cross-sectional dimensions are limited to upper and lower values as follow: 

 ℎ ∈ [10,80]𝑐𝑚 𝑏 ∈ [10,50]𝑐𝑚 𝑡௪  ∈ [0.9,5]𝑐𝑚 𝑡௙  ∈ [0.9,5]𝑐𝑚 

The objective function transformation of this problem not mentioned, but the exterior penalty 

function in Eq.(1.1) is working too. 

Table 1.3  Comparison of different published results of  I-beam optimization problem 
 

Author/s MH 𝒃 (𝒄𝒎) 
𝒉 (𝒄𝒎) 

𝒕𝒘 (𝒄𝒎) 
𝒕𝒇 (𝒄𝒎) 

𝜹𝒎𝒂𝒙 (𝒄𝒎) 

Wang (2003) 
GWO 
ARSM 
IARSM 

80 
80 

79.99 

50 
37.05 
48.42 

0.9 
1.71 
0.9 

2.32 
2.31 
2.4 

0.0131 
0.0157 
0.0131 

Gandomi et al. (2013 ) CS 80 50 0.9 2.32 0.0131 
Ye & Pan (2017 ) EMGO-FCR 80 50 0.9 2.32 0.0131 
Anita et al. (2020) AEFA-C 79.97 50 0.9 2.32 0.0131 

 

 
 

Figure 1.5 I-Beam design problem  
Taken form Gandomi & Yang (2013, p.22) 
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1.1.3 Composite Laminated Plate Design Optimization Problem 

The composite materials (anisotropic) continue to attract attention due to their shared property 

of high specific strength (or strength/weight ratio), thermal stability, corrosion resistance, and 

their high impact strength. Composites combined two or more materials that have different 

properties to form a new material with new outperforming properties compared to those of 

each material alone. These properties can be tailored for specific product requirements, 

whether it is for extreme temperatures (hot or cold), stiffens, corrosion, fatigue, or other 

working conditions. Thus, many industrial disciplines, such as aerospace, automotive, marine, 

construction, and others, demonstrated a great interest in deploying the composite materials in 

their products. For instance, in the aerospace industry, the aluminum alloys were the 

dominating material choice for structures of airplanes for decades because of their lightweight, 

mechanical properties and low cost of production compared to other metal alternatives. But 

this dominance did not last long when composite materials became a favoured material choice 

for structural airplane design (Kaw, 2006). However, the design of the composite structure 

involves a significant complexity because of the diversity of available matrix-fibre materials, 

manufacturing constraints or imperfections, ply thickness,  the number of plies, plies 

contiguity, and variation of possible stacking sequence configurations. Besides, other design 

variables such as structure surface topology, edge boundary conditions, and loading type have 

a considerable impact on the composites design. The demand for a low-cost product with high 

performance while respecting predefined design criteria (e.g. strength, strain limits, critical 

buckling load, and materials) is common practice in the structural design. 

 

A review study conducted by Nikbakt, Kamarian, and Shakeri (2018), which covered the 

published composite optimization articles since 2000, concluded that the maximization 

buckling load, fundamental frequency and weight minimization are the most addressed 

objective functions. The reviewed papers classified based on their objective function and 

simple counting of published papers number for each classification revealed that weight and 

buckling optimization studies occupied nearly 50%. In comparison, the fundamental frequency 

has 19.5% of the total number of 347 reviewed papers. The observed interest of optimizing for 

buckling and weight objectives could be interpreted by the demand on a lighter structure that 
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could bear high buckling load in seek of structure stability, e.g. marine and aerospace 

structures. In the aerospace industry, thin composite plates are desirable for their lightweight 

and tailored strength capacity under different applied loads. The failure due to excessive 

compression loading is a common design mode in awareness of aero-structure designers, and 

as a result of this, maximizing the critical buckling load of thin plates becomes a vital objective 

of the design process (de Faria, 2002; Wu, 2020). To date, various studies have been intended 

to maximize the critical buckling load for different design variables; however, the fiber 

orientation of the layer is mostly considered a design variable (R. Le Riche & Haftka, 1993; 

Nikbakt et al., 2018).  

 

 
Figure 1.6  Simply supported plate subjected to biaxial loading  

Taken from Le Riche and Haftak (1993, p.951) 
 

Usually, the fiber orientation of the ply is limited to a set of available fiber angles, which turns 

the optimization problem design space into a discrete one; and when the number of layers 

increases, the number of design variables is increasing too. Consequently, the computational 

time to find the optimal solution is exponentially growing, until it becomes Non-Polynomial 

time, and this turns the optimization of the composite laminated plate to an NP-hard 

optimization problem according to the theory of complexity (Marco Dorigo & Stützle, 2019). 
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However, the formulation of a composite laminated plate optimization problem, Figure 1.6, 

for maximum buckling load could be explained as follow: 

 

a.) Objective Function 

 max(𝜆௖௥(𝑝, 𝑞)) (1.5) 

where 𝜆௖௕ is the critical buckling load factor that buckles a simply supported plate subjected 

to in-plane loads of 𝜆𝑁௑ and 𝜆𝑁௬ into 𝑝 and 𝑞 half-waves in 𝑥,𝑦 directions. Buckling load 

factor, 𝜆௕, could be defined according to Classical Laminated Plate Theory (CLPT) as follow: 

 𝜆௕(p, q) = 𝜋ଶ ൤𝐷ଵଵ൫𝑝 𝑎ൗ ൯ସ + 2(𝐷ଵଶ + 2𝐷଺଺)൫𝑝 𝑎ൗ ൯ଶ + 𝐷ଶଶቀ𝑞 𝑏ൗ ቁସ൨൫𝑝 𝑎ൗ ൯ଶ𝑁௫ + ቀ𝑞 𝑏ൗ ቁଶ𝑁௬  (1.6) 

 

The smallest value of 𝜆௕(𝑝, 𝑞) is considered the critical buckling load factor. The critical values 

of 𝑝 and 𝑞 are linked to different factors such as laminate material, a number of plies, loading 

conditions, and the plate aspect ratio. In uniaxial loading of a simply supported plate, the 

critical buckling load occurs when 𝑝 = 1 whereas in biaxial critical buckling loads, it needs to 

be determined as the minimum value of 𝜆௖௕(𝑝, 𝑞) (Reddy, 2004). 

 

b.) Constraints   

The design optimization scheme of the composite plates should respect certain limitations of 

manufacturing and specific design considerations. In literature, some rules have been proposed 

to improve the effectiveness of a laminate design for different applications (Peeters & Abdalla, 

2017; Rama Mohan Rao, 2009; Zein, Madhavan, Dumas, Ravier, & Yague, 2016) 

 

The design and manufacturing rules could be concise as follow: 

 

- Manufacturing limitations: the thickness of the plies and fiber orientations are 

limited to the available manufactured values, which are usually integer, for ply 
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thickness or certain angles such as ±45°, 0°, and 90°and ply orientations. 

Additionally, the symmetrical laminate makes the manufacturing process more 

straightforward. 

 

- Strength and stiffness considerations: the symmetry of laminate is necessary to 

prevent extension-bending coupling ൫𝐵(௜,௝) = 0൯. Furthermore, the balanced 

laminate (which has pairs of plies with the same thickness and different signs of 

same orientation angle 𝜃) condition is needed to avoid shear-extension coupling (𝐴ଵ଺ = 𝐴ଶ଺ = 0). All the plies with ±𝜃 will be grouped to minimize the effect of 

bending and twisting coupling. Moreover, the congestion of the same orientation 

plies should be limited to 4 plies for each group to develop a homogeneous laminate 

and reduce inter-laminate stresses and matrix crack failure.  

 

c.)  Objective Function Transformation 
 

Generally, the constraints in stacking sequence optimization with constant laminate thickness 𝑡 could be integrated easily by considering half of the laminate in optimization for symmetry 

constraint and group each to plies with the same orientation angle to make balanced laminate. 

In contrast, the contiguity constraint could be handled by imposing a penalty factor, 𝑝, on the 

value of the objective function violated solutions. Thus, the transformed objective function of 

this design problem could be written as follow: 

 

 𝜆ை௣௧ = (1 − 𝑝) ∗ max 𝜆௖௕(𝑝, 𝑞) (1.7) 

 

Lastly, this formulation of the composite SDO problem could be applied for other structures 

that have a sort of analytical solution; for instance, the same composite laminated plate with 

different edges conditions (Reddy, 2004). For more complicated structures such as perforated 

composite plate, finite elements methods could be used  to determine 𝜆௖௕ , then evaluate the 

transformed objective function 𝜆ை௣௧ (D. Kumar & Singh, 2012).  
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Example: Composite laminated plate subjected to bi-directional buckling load 

 

The widespread benchmarking problem used in the literature of stacking sequence 

optimization is accredited to R. Le Riche and Haftka (1993), and it is widely used by several 

authors (Deveci, Aydin, & Seçil Artem, 2016; Erdal & Sonmez, 2005; A. Rama Mohan Rao 

& Shyju, 2008). The original problem describes a simply supported plate subjected to in-plane 

biaxial loading, as shown in Figure 1.6. 

 

This SDO benchmark examined for different number of plies and loads (see Table 1.4), and 

the material is graphite-epoxy and the thickness of each ply, 𝑡௣ = .127𝑚𝑚, while the elasticity 

modulus is 𝐸ଵ = 127.59 GPa , 𝐸ଶ = 13.03 GPa, 𝐺ଵଶ = 6.41𝐺𝑃𝑎 and 𝜐ଵଶ = 0.3. 

 

Table 1.4 Different loading conditions of the composite  optimization problem 
 

Case 
Plies number ൫𝒏𝒑൯ Width (𝒂) (𝒎𝒎) 

Height (𝒃) (𝒎𝒎) 
𝑵𝒙 (𝑵 𝒎𝒎⁄ ) 

𝑵𝒚 (𝑵 𝒎𝒎⁄ ) 
1 48 508 127 175 22 
2 48 508 127 175 44 
3 48 508 127 175 88 
4 64 508 254 175 175 

 
 

1.2 Analytical Versus Finite Element Structural Design Optimization 

Some SDO problems have an analytical solution as those we explained in previous sections, 

for example, the analytical solution of buckling analysis of a thin rectangular plate with 

different boundary conditions is available for unpunched composite plates (Reddy, 2004). 

These analytical solutions widely used to demonstrate the various purposes of composites 

plates SDO, such as showing the performance of MHs, examining the effect of changing 

materials properties, or used to investigate the impact of hybrid laminate on the buckling load 

capacity (Awad, 2012; de Almeida, 2016). In a more recent study, A Kaveh, Dadras, and Malek 

(2019), used the analytical solution to conduct uncertainty optimization of a composite 
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laminated plate subjected to uncertain buckling loads. These solutions are easy to be 

implemented as an objective function in any optimization procedure, but they are limited for 

simple cases usually (Abolghasemi, Eipakchi, & Shariati, 2019). The solution of buckling 

analysis for perforated composite laminated plates is far more complicated than that. 

Accordingly, many studies considered the optimization problem of perforated composite plate 

used FEM analysis solution to determine the objective function (D. Kumar & Singh, 2012). 

The multi-purpose FE software, such as Ansys Workbench or Abaqus, has been intensively 

employed in the literature. Lakshmi Narayana, Rao, and Kumar (2013) used ANSYS to 

investigate the effects of cut-out shape on the buckling behaviour of a quasi-isotropic laminated 

plate. In other individual paper, Narayana Narayana, Rao, and Kumar (2014) extended the 

previous study to consider the effects of the cut-out size and orientation using ANSYS 

software. In a study that set out to determine the possible influences of stacking sequence 

design of hybrid composite plate on the buckling capacity, Dhuban, Karuppanan, Mengal, and 

Patil (2017) found that generated results by using nonlinear FE analysis of ANSYS have a 

good agreement with those experimentally obtained. Nevertheless, the availability of the 

simple solution will reduce the time needed to evaluate the objective function while using the 

approximated solutions, such as FEM, which could be a very time-consuming process in 

complex cases (Abolghasemi et al., 2019). 

 

However, the current thesis focuses on solving optimization problems of design structures 

exposed to buckling criterion. There is no doubt that real-life SDO applications involve 

different degrees of buckling analysis complexity that intend to use different FEM solutions. 

The next section will present a concise summary of related FEM concepts and recent trends in 

determining the critical buckling load factor. 

 

1.2.1 Buckling Analysis using FEM 

The main objective of FEM buckling analysis is determining the critical buckling load of the 

structure. Accordingly, the commercial FEM software, such as ANSYS, offers the users two 
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approaches of buckling analysis; the first is linear buckling analysis (also known as eigenvalue 

buckling analysis). The second is the nonlinear buckling analysis.  

 

The linear buckling approach uses linear relationships between the stresses and the 2nd order 

stiffnesses to establish the Eigen value-and- vector equations and solve them for determining 

the Eigen value which stands for the buckling load factor. On the other hand, nonlinear 

buckling analysis (also known as post-buckling analysis) uses nonlinear static analysis that 

considers large deformation to predict the buckling load. Unlike the eigenvalue buckling 

analysis, the obtained buckling load is given in the applied load value that suddenly produces 

a large deformation. No doubt that nonlinear buckling analysis gives more accurate results than 

eigenvalue buckling analysis, but it is computationally expensive (Ansys, 2015). The 

eigenvalue analysis yields overestimated buckling strength solutions, but it is still widely used 

in designing real-life structures due to its simplicity and low computational cost (Lê & 

Champliaud, 2014). 

 

Nevertheless, the predicted values of buckling strength using eigenvalue analysis need to be 

corrected to include nonlinear behavior of materials, geometric imperfection, and load 

perturbations to ensure a safe structure design. Before going further, an overview of different 

ANSYS eigenvalue buckling analysis steps is presented in the following subsections.   

 

a.) Linear Static Analysis 
 

After creating the FE model, the linear static analysis is devoted to calculate the stresses in the 

structure in three following stages : 

   

The first stage is to calculate the 1st order stiffness matrices, [𝐾ଵ ௘] and the load vectors of body 

and surface forces, ሼ𝐹௕ ௘ + 𝐹௦ ௘ሽ for all elements which are related together by the equilibrium 

equation (1.8) for each element.  

 
 [𝐾ଵ ௘]ሼ𝐷௘ሽ? = ሼ𝐹௕ ௘ + 𝐹௦ ௘ሽ + ሼ𝐹௜௡௧ ௘ሽ? (1.8) 
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Where the subscripts 𝑒, 𝑏, and 𝑠 indicate element, body, and surface, respectively, the elements 

degree of freedom ሼ𝐷௘ሽ  and internal force ሼ𝐹௜௡௧ ௘ሽ are unknown at this stage, the question mark 

"?" has been added for both terms here.  

 

The individual element stiffness matrices and load vectors are assembled into the total 

equilibrium equation that yields the following form: 

 

 

where the subscript 𝑡 stands for total and the applied forces 𝐹௔௣௣௟௜௘ௗ and reactions 𝐹௥௘௔௖௧௜௢௡ 

represent the external forces. 

 

The next stage is to specify the boundary conditions which  consist of all restrained degrees of 

freedom and all applied forces so that (1.9) can be solved for the remaining parameters 

(𝐷௨௡௞௡௢௪௡ and  𝐹௥௘௔௖௧௜௢௡). 

 

The final stage of linear static analysis calculate stresses ሼ𝜎ሽ using the suitable constitutive 

formulas such as the displacement-strain transformation matrix [𝐵] and stress-strain material 

matrix [𝐶], see Eq. (1.10). 

 

    

b.) Eigen Buckling Analysis 
 

The stresses given by linear static analysis are used to calculate the 2nd order stiffness matrices [𝐾ଶ ௘] which are  function of membrane stress ሼ𝜎௠ሽ and structure geometry. The total matrix 

equation which considers the 2nd order stiffness is: 

 

 [𝐾ଵ ௧] ൤ሼ𝐷௨௡௞௡௢௪௡ሽ?ሼ𝐷௥௘௦௧௥௔௜௡௘ௗሽ൨ = ሼ𝐹௕ ௧ + 𝐹௦ ௧ሽ + ቈ ൛𝐹௔௣௣௟௜௘ௗൟሼ𝐹௥௘௔௖௧௜௢௡ሽ?቉ (1.9) 

 ሼ𝜎ሽ =  [𝐶][𝐵]ሼ𝐷௘ሽ (1.10) 
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where 𝑓 is load multiplication factor. 

     

The buckling occurs when the applied load lead to an indefinitely increase in the displacement 

without increasing the load, which means that ሼΔ𝐷ሽ ≠ 0 while ሼΔ𝐹ሽ = 0. Thus, the 

incremental form of Eq.(1.11) at buckling load level gives the following eigenvalue and 

eigenvector equations: 

 

   

Since  ∆𝐷 is not equal to zero when the buckling occurs, the determinant of the stiffness matrix 

must be zero : 

  

 

Solving Eq. (1.13) gives eigenvalues which stand for the buckling load factors 𝑓, and by 

substituting the obtained values of 𝑓 in  Eq.(1.12) we could find the buckling modes.  The 

minimum positive value of 𝑓 is named elastic buckling load factor 𝑓ா (Lê & Champliaud, 

2014). 

 

1.2.2 Safety Factor of Buckling  

Many real-life structures are exposed to failure due to different buckling criteria. For instance, 

the customized beam structures built by welding plates are subjected to local and lateral 

buckling. The multiplication elastic buckling load factor 𝑓ா that obtained using eigenvalue 

buckling analysis could be considered as a safety factor against the buckling as long as the 

membrane compression stresses at critical buckling zones remain less than the yield buckling 

stress of the structure material. Unfortunately, this is not always the case where the structure 

 [𝐾ଵ ௧ − 𝑓 ∗ 𝐾ଶ ௧]ሼ𝐷ሽ =  ሼ𝐹௔  ௧ + 𝐹௘௫௧ሽ (1.11) 

 [𝐾ଵ ௧ − 𝑓 ∗ 𝐾ଶ ௧]ሼ∆𝐷ሽ =  ሼ𝑧𝑒𝑟𝑜𝑠ሽ (1.12) 

 |𝐾ଵ ௧ − 𝑓 ∗ 𝐾ଶ ௧| =  0 (1.13) 
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may expose to a combination of compression and bending stresses that could exceed the yield 

stress and steer the structure to fail.   

 

The eigenvalue buckling analysis quickly turns out the results, which keeps it a preferred 

choice by structure designers. To overcome the overestimating of 𝑓ா values, Lê and 

Champliaud (2014) proposed a correction procedure, and they examined it for the case of 

welded plates I-beam crane, see Figure 1.7. The procedure steps could be summarized as 

follow: 

 

 

  
Figure 1.7  Customized beam structure of welded plates 

Taken from (Lê & Champliaud, 2014) 
 

Step1: determine the minimum buckling load factor  𝑓ா using FEM linear buckling analysis, 

as explained in section 1.2.1. 

 

Step 2: detect the width of the first buckling mode zone, 𝑏.   

 

Step 3: find the value of  equivalent linear membrane stress 𝜎௠௘௤௩௅ of the buckled width from 

the results of FEM static analysis. 

 

Step 4: compute the elastic critical buckling stress  𝑆௖௥ா using the following formula: 

 
 𝑆௖௥ா = 𝑓ா ∗ 𝜎௠௘௤௩௅ (1.14) 
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Step 5: check the obtained buckling stress value, by Eq. (1.14), against the yield buckling stress 

of the structure.  

 

 

When 𝑆௖௥ா ൐ 0.5 𝑆௬ the 𝑆௖௥ should be corrected using the reduction formula shown in 

Eq.(1.15). This formula was developed based on the original Johnson's parabola expression for 

short columns, see Figure 1.8. 

 

 
 

Figure 1.8 Critical stress based on Jonhson's correction. 
Taken from (Lê & Champliaud, 2014). 

  

Step 6:  determine the factor of safety against buckling load 𝑓௦௔௙௘௧௬ using the following 

formula: 

 

 𝑆௖௥ = ቐ𝑆௖௥ா                                𝑖𝑓 𝑆௖௥ா ≤ 0.5 𝑆௬𝑆௬ ൬1 − 0.25 𝑆௬𝑆௖௥ா൰              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (1.15) 

 𝑓௦௔௙௘௧௬ = 𝑆௖௥𝜎௠௘௤௩௅ (1.16) 
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1.3 Meta-Heuristics for SDO 

From the optimization methodology perspective, the classical (mostly gradient) methods are 

favourable because of their simplicity in the implementation and good solution quality at a low 

computational cost they deliver. Unfortunately, these techniques performed poorly in solving 

non-convex objective functions where they tend to be stuck in local optimum or even not 

finding any optimum. These drawbacks of gradient-based methods refer to the assumption of 

continuity of the problem design variables. In addition, classical techniques need gradient 

computation of the objective function and constraints, which not possible for most cases of 

SDO problems where the constraints or objective functions are non-convex functions, see 

Figure 1.9. Therefore, the majority of recent SDO studies carried out using MH techniques. 

MH is a stochastic iterative process that follows a particular approach to find feasible solutions 

in the design space of the problem. MH techniques do not require a gradient computation to 

find the optimal solution, and for this, they are efficient in solving the combinatorial 

optimization problems, and this includes SDO problems.  

 

 

 

 

 

 

 

 

 

Many new MHs were developed specially to handle SDO problems such as steel structures or 

frames in an attempt to present a cost-effective optimal solution (Saka et al., 2016). Ghiasi et 

 

 
Figure 1.9  Non-convex function example 
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al. (2010) reviewed different techniques used in recent decades to optimize composite 

laminated designs, and he concluded that MHs are superior to gradient-based methods. 

Furthermore, Nikbakt et al. (2018) reported the outperformance of MHs compared to gradient 

optimization algorithms due to their efficiency and stability. Also, trajectory based MHs 

demonstrated a substantial local search capacity on its track to find the optimal solution. In 

contrast, population based MHs exhibited a significant ability to explore the design space. Even 

though MHs, in general, could solve the discrete optimization problems efficiently, we still 

need to determine which algorithm outperforms the others for a specific problem according to 

the No Free Lunch theorem (NFL) by Wolpert and Macready (1997). In this manner, Mark W. 

Bloomfield, J. Enrique Herencia, and Paul M. Weaver (2010) conducted a comparison study 

of three MHs of GA, ACO, and Particle Swarm Optimization (PSO) to determine the optimal 

stacking sequence composite laminate. Based on the results of this comparison study, ACO 

found to outperform GA and PSO algorithms in the field of stacking sequence design. This 

remarkable performance of ACO in solving such NP-hard combinatorial optimization is 

expected where it designed to solve discrete optimization problems (Marco Dorigo & Stützle, 

2019). Here three selected MHs to be reviewed in the following sections for their originality 

and long history of successful applications. In addition, a brief description of state-of the art 

MHs, known as metaphor-MHs, is introduced too. 

 

1.3.1 Genetic Algorithm (GA) 

Holland suggested the original genetic algorithm in the 1960s, which was later detailed in its 

generally known form by Goldberg and Holland (1988). It is based on Darwin's theory of 

natural evolution, and it is implemented using elements of the natural genetics of reproduction, 

crossover, and mutation. Since then, GA frequently used to tackle a small and large scale SDO 

problems. The discrete nature of real-life SDO problems challenged the GA that initially 

developed to solve continuous optimization problems. Thereby, several researchers proposed 

different approaches; Cheng (2010) proposed a real/integer coded GA to solve large real-life 

SDO problem of an arch bridge. The optimized bridge design became lighter by 45.5% 

compared to the weight obtained by the traditional design method.  Akshay Kumar and 

Rangavittal (2019) used GA to minimize the weight of the 25-bar space truss, and they used 
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integer solution representation. Their study results exhibited the efficiency of using integer 

coding with GA to solve SDO problems. More recently, Xingyu, Jiayi, and Hai (2020) used an 

improved version of GA to solve different DSO benchmarks, and their results lead to finding 

a cheaper optimal solution. 

 

Moreover, GA shows its worthiness over classical optimization methods in solving composite 

SDO problems (Nikbakt et al., 2018). The significant adaptation of GA to optimize composite 

laminate design is credited to R. Le Riche and Haftka (1993), as he proposed a modified GA 

that replaces binary coding of solution strings by integer coding. This formulation turned the 

binary GA algorithm into Permutation Genetic Algorithm (PGA). The results show a 2% 

reduction in the solution cost compared to binary GA (R. Le Riche & Haftka, 1993). The gene-

rank GA introduced by B. Liu, Haftka, Akgün, and Todoroki (2000) is a permutation GA with 

a gene-rank crossover operator. He compared his proposed GA with standard GA and older 

permutation GAs, and the gene-rank GA demonstrated better computational performance. 

 

Furthermore, Ehsani and Rezaeepazhand (2016) used binary GA to determine the optimal 

stacking sequence of grid laminate by considering the different boundary conditions of the 

laminate edges. Moreover, GA algorithms are known for their expensive solution due to the 

slow convergence to the optimal solution. To overcome such drawbacks, Vosoughi, Darabi, 

and Forkhorji (2017) made hybrid GA with PSO algorithms as an operator to increase the 

convergence rate of standard GA. However, binary GA is still used as a stacking sequence 

design optimizer. It offers a costly solution, while PGA demonstrates excellent performance 

for cheaper solutions. 

 
1.3.2 Ant Colony Optimization (ACO) 

M. Dorigo (1991) developed the Ant Colony Optimization system that is inspired by the natural 

phenomena of the food searching strategy of the ant colony. He proposed a mathematical 

model that simulates this strategy of the cooperative attitude of an actual ant colony to find the 

optimal solution. He implemented his model to solve well-known optimization problems, such 

as the travel salesman problem (TSP). The main advantage of ACO is that it designed to solve 
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discrete (combinatorial) optimization problems, basically for TSP, which is common in 

practice. Thus, ACO has been extended in different engineering areas to solve problems such 

as the discrete SDO of composite laminated structures (SDO). Aymerich and Serra (2008)  

investigated the computational efficiency of ACO as an optimizer that maximizes the buckling 

load of a simply supported plate exposed to uniaxial loading. He compared the solution quality 

and robustness of ACO with GA and TS algorithms for the same reference case study, and the 

results show that the ACO algorithm has better performance. Furthermore, Rubem Matimoto 

Koide, França, and Luersen (2013) used the ACOA combined with finite element analysis to 

maximize the buckling load factor. They compared the obtained results of their proposed 

optimization solution with those previously obtained for GA by R. Le Riche and Haftka (1993). 

The procedure starts with random initial laminate stacking being selected from the feasible 

solution set (available fiber orientations). This step is followed by an evaluation of the 

objective function, which will be stored in the ant routing table and used to generate a new 

feasible stacking sequence. Finally, the global pheromone table is updated where only the ants 

with the best solution deposited more pheromone trail on their path to the solution. This 

procedure continues until the termination criterion is satisfied. 

 

1.3.3 Cuckoo Search Algorithm (CS) 

Cuckoo Search (CS) algorithm is population-based meta-heuristic inspired by the aggressive 

reproduction strategy of some cuckoo bird species enhanced by Lѐvy flights. It presented by 

X.-S. Yang and Deb (2009) to solve a variety of continuous multimodal optimization problems. 

Since then, it attracted attention due to the simplicity of implementation and the fast 

convergency rate and accuracy of the delivered solutions. Also, CS has a view number of 

parameters (almost one) to be tuned, compared to other meta-heuristics such as Genetic 

Algorithm (GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO).... etc. 

The size of CS applications is fascinatingly growing, where it could be observed through the 

number of solved optimization problems using CS in the last decade (Shehab, 2020; X.-S. 

Yang, 2014). Shehab (2020) tracked the progress of published papers that uses CS in the 

literature. Based on different publishers' metrics, for the CS published articles between 2009 

and 2016, he summarized that there are three classes of research interest. The dominant class 
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went to the application, and it represented 67% of publications, whereas CS hybridization and 

CS modifications had respectively 15% and 18% of the research interest. The applications of 

CS involve several main optimization problems such as Travelling Salesman Problem (TSP) 

(Jati & Manurung, 2012; Ouaarab, Ahiod, & Yang, 2014; X.-S. Yang & Deb, 2013; Zhou, 

Ouyang, & Xie, 2014), and binary optimization problems, for instance, Knapsack optimization 

problem (Gherboudj, Layeb, & Chikhi, 2012; Layeb, 2011; Xin, Zhang, & Chen, 2019), 

Computer vision and image detection (Agrawal, Panda, Bhuyan, & Panigrahi, 2013; Loubna, 

Mohamed, Abdelaziz, & Fatimaezzahra, 2017), Energy sector (de Moura Meneses, da Silva, 

Nast, Araujo, & Schirru, 2020; Piechocki, Ambroziak, Palkowski, & Redlarski, 2014), supply 

chain (Q. Li, Liu, & Yang, 2020; Z. Li, Dey, Ashour, & Tang, 2018) and SDO problems 

(Gandomi et al., 2013; A Kaveh & Bakhshpoori, 2013).  

 

1.3.4 Metaphor Based MHs 

The recent two decades have witnessed a massive number of new MHs (see Figure 1.10) that 

proposed to solve different scale SDO problems. Most of these MHs were mimic a natural or 

physical phenome, for instance, the water evaporation process. There was some debate about 

whether the metaphors are novel MHs or just a clone of others. Dennis (2010) argued that the 

Harmony Search (HS) metaphor is nothing more than a special case of evolution strategies, 

and it has no transparent mathematical background.  

 

Sörensen (2015) also criticizes the metaphor-based MH research, and he said there are enough 

"novel" MHs and developing new ones may lead the research area of MHs away from the 

scientific intent. In contrast, the metaphor-based MHs developers are saying that new metaphor 

MHs demonstrated remarkable performance in solving hard SDO problems, and they 

implemented on a different basis of older MHs (Saka et al., 2016).  
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Figure 1.10 Chronologically ordered plot for the number of developed Meta-Heuristics 

 

Table 1.5  Summary of selected metaphor MHs in SDO  
 

MH name Concept Applications Comments 

Charged System Search 
(CSS) by Kaveh & 
Zolghadr (2010) 

Electrostatics and 
Newtonian 
mechanics laws 

- Truss weight 
minimization 

It appears in 12 
published paper 
for SDO between 
2010 to 2020 14 

Artifcial Bee Colony 
with Adaptive Penalty 
function (ABC-AP) by  
Snomez (2011) 

Based on intelligent 
behaviour of 
honeybee swarm 

- Truss weight 
minimization. 

- Composite 
structures. 

It appears in 400 
(ABC) related 
paper for SDO 
between 2010 to 
2020  

Teaching-Learning-
Based 
Optimization (TLBO) 
by Degertekin & 
Hayalioglu (2013) 

Based on learning 
process 

- Frame and truss 
structures. 

- pin jointed 
structures. 

- Composite 
laminated plate. 

It appears in 57 
published paper 
for SDO between 
2010 to 2020  

Water Evaporation 
Optimization algorithm 
(WEO) by Kaveh & 
Bakhshpoori (2016) 

Based on 
evaporation of water 
molecules on solid 
surface 

- Truss structures  
It appears in 6 
published paper 
for SDO between 
2010 to 2020  

                                                 
 
14 The number of published papers determined based on Google Scholar search for related article. 
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In the current study results of some of these metaphors MHs, in solving SDO problems, were 

shown in Table1.1, and depicted in Figure 1.4. It can be noticed from the figure that some 

recently MHs developed to solve the same SDO problems. But they delivered a more 

computationally expensive solution with no significant improvement in the optimal truss 

weight rather than make it worst, e.g. ABC MH. The description and applications of selected 

metaphor MHs in SDO, from 2010 up to date, is briefly summarized in the Table 1.5. 

 

1.4 Structural Design Frameworks 

The common shared attribute between the previously stated SDO studies is using a 

deterministic design approach, where the applied load is remaining fixed during the 

optimization process. Thus, the attained optimal designs are not guaranteed to endure any 

loading fluctuations, or in other words, the current design will no longer be an optimal solution 

when the applied load is changed (de Faria, 2002). The deterministic design uses the factors of 

safety to deal with uncertainty influences (e.g. buckling loads). Still, it can result in an 

inefficient design that fails to spot one or more failure modes when different failure modes are 

optimized against the design limits (Clune, 2013). The first alternative to deterministic design 

optimization is the probabilistic design optimization approach. Unfortunately, probabilistic 

design optimization is very sensitive to the accuracy and amount of statistics design data. For 

instance, the scarcity or inaccurate data leads to misfit the probabilistic distribution of different 

design variables within the uncertainty domains (Lombardi & Haftka, 1998; Qiu & Wang, 

2010). 

 

The robust design optimization became the preferred approach by engineers, where it 

eliminates the uncertainties influences via considering bounded uncertainty domains of the 

design variables (Isaac Elishakoff & Ohsaki, 2010; A Kaveh et al., 2019). The Anti-

optimization method is the common form of robust design optimization used for different SDO 

problems, also known as a two-level optimization, and it introduced originally by I Elishakoff, 

Haftka, and Fang (1994). The anti-optimization levels create a nested optimization/anti-

optimization loop where the top level is devoted to determining the optimal solution of a given 
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design, while the bottom level is anti-optimize the uncertainty to find the worst scenario case 

(A Kaveh et al., 2019; Lombardi & Haftka, 1998). I Elishakoff et al. (1994) introduced the 

anti-optimization approach to include the uncertainty influences in structures design. The 

proposed approach was formulated to optimize ten-bar structure weight subjected to the 

uncertainty of loading, stress and displacements. The uncertainty of loading variations was 

limited to a multi-dimensional box uncertainty domain. Based on their work findings, the 

authors pointed out that anti-optimization approach overcomes the numerical complexity that 

accompanied the probabilistic optimization. Venter and Haftka (1996) introduced a two 

species Genetic Algorithm to reduce the computational effort of GA as an optimizer of two-

level problems. They demonstrated the effectiveness of the improved algorithm by solving the 

anti-optimization problem of a composite laminate plate subjected to in-plane bi-directional 

compression loading in addition to the uncertain out-of-plane uniform load. The proposed 

algorithm exhibited a significant saving in computational effort. Adali, Lene, Duvaut, and 

Chiaruttini (2003) studied the maximization of the critical buckling load of a composite 

laminated plate subjected to uncertain loading conditions and lamina material type. Both 

deterministic and robust optimization approaches were examined. The authors concluded that 

deterministic critical buckling load factor values were less than these obtained by robust 

optimization approach as a result of different stacking sequence design obtained by both 

approaches. Jiang, Han, and Liu (2008) developed a method that uses the interval analysis with 

a hybrid numerical method to compute the transient response bounds of composite laminated 

plate undergo to load and material properties uncertainties. The influence of different design 

variables uncertainty was investigated. The transient response bounds acquired by using first-

order Taylor expansion together with interval extension. The results imply that the proposed 

method was confined to a small level of uncertainty applications. On the other side, the method 

could be extended to solve hybrid composite laminated structures. 

 

1.5 Research Gaps 

Even though a considerable amount of literature has been published on the SDO topic, more 

than 5000 articles by  2013  Clune (2013), the SDO still restricted to limited structures and, to 
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some extent, impractical. Moreover, the developed SDO solutions are mostly focusing on new 

optimization tools rather than the practical difficulties of SDO problems. In this scene, a couple 

of potential research gaps that we extracted from the literature are explained here:    

- SDO problem statements, in general, do not reflect the practical difficulties of 
SDO problems. The statement of SDO benchmarking problems introduced in the 

literature does not reflect the real-life complexity of SDO problems. Over decades of 

using truss and frames structures as benchmarking problems to examine the MHs, they 

mostly assume that the problem has a continuous design domain while the real-life 

applications face a discrete one, (Saka et al., 2016). In discrete SDO problems, the 

design variables' values should be selected from a design vector with individual values. 

Thus, the Design Space Size (DSS) is growing exponentially and when the number of 

design variables increases, DSS is increasing too until it becomes hard to be solved 

within polynomial computational time or NP-hard problem. The majority of MHs 

developed to solve unconstrained continuous optimization problems. When they used 

to solve discrete optimization problems, the developers were usually going to use the 

rounding to the nearest discrete value, which has its drawbacks on the solution cost, as 

we will demonstrate in this thesis. In this thesis, we introduce two different SDO 

problems that have applicability in real-life, and we used them to demonstrate various 

aspects of optimization barriers such as solution representation in discrete design 

domains and uncertainty influences. 

 

- Performance assessment of MHs for SDO problems is full of ambiguity. The 

literature of SDO experiences a scarcity of systematic assessment paradigm that could 

support the designer to decide what MHs fit better to the SDO problem of his attention. 

A significant number of published studies did not mention why they used this specific 

MH algorithm in their optimization procedures. In the SDO domain, the developers of 

MHs solutions used statistical measures such as mean, best(max), worst(min) and 

standard deviation (SD) to demonstrate the performance of their proposed MHs as a 

solver of truss or frame structures (see Figure 1.4). The question is why the developers 

of MHs for SDO do not use the other performance measures that successfully used to 
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assess MHs performance in other optimization disciplines, e.g. those used in operations 

research? Also, it was noticed that in the literature of MHs comparison, there is no 

common basis in terms of convergence rate or even the maximum number of iterations. 

Another critical point is the lack of reproducibility of the experimental results of  MHs 

introduced to solve SDO problems. This thesis attempts to develop a sort of 

comprehensive assessment criteria of MHs performance in solving SDO problems and 

makes MHs comparison more fairly. 

 

- The benefits of improving the existing efficient MHs to solve SDO problems does 
not addressed fairly. Several studies conducted to improve the MHs searching 

performance and the results were promising in this direction. Unfortunately, the 

literature of SDO demonstrated an extreme tendency to develop new metaphor MHs 

instead of improving the performance of well-established MHs that have a remarkable 

history of solving NP-hard optimization problems.  However, this thesis examines the 

possible improvements of selected MHs searching features via integrating local search 

movements to MH's main structure to improve the intensification effort. Moreover, the 

initial population generation effect on the MH performance has been investigated too. 

 

- Underestimate the structural analysis difficulties during developing optimization 
solutions. The associated high cost of the structural analysis of complex structures 

addressed in the literature, especially for anisotropic materials. The widely used option 

is deploying a multi-purpose commercial FE software such as ANSYS, NASTRAN, 

and ABAQUS. Unfortunately, when the design problem involves more complexity, the 

evaluation of the design analysis by using this commercial software will become more 

expensive too. The current thesis uses the cutting-edge methods of complex function 

modelling to predict the evaluation of expensive SDO objective functions. Further, a 

kind of an open-source interface between the commercial FEA software of ANSYS 

WB and in-house optimization package (e.g. MH has written in Matlab program) is 

introduced to make the using of the improved MHs more practical. 
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- Bias to deterministic or probabilistic design approaches over the uncertainty one. 
The literature revealed that both deterministic and probabilistic SDO approaches are 

mostly used in structural design. Nevertheless, the scarcity of studies of uncertainty 

design, using anti-optimization, is understandable because of the associated expensive 

design analysis cost of the objective function (G. A. da Silva, Cardoso, & Beck, 2020; 

Gurav & Goosen, 2005). Consequently, this thesis intends to develop a scheme of an 

uncertainty optimization framework that could handle expensive SDO problems (e.g. 

thin perforated plate 

 



 

CHAPTER 2 
 
 

METHODOLOGY FRAMEWORK  
 
2.1 The Proposed Research Methodology Framework 

There are five specified Research Objectives (RO), mentioned in the introduction section, need 

to be attained to develop this thesis. The five objectives determined based on the literature 

review and the observed Research Gaps (RG) in the SDO domain, as explained in the previous 

chapter. Figure 2.1 outlines the research methodology framework that followed here to bridge 

the RGs and achieve the thesis ROs. The first RO fulfilled by conducting a comprehensive 

literature review of solving SDO problems using MHs for the last three decades. Thus, the RGs 

were determined, and the research problem has been formulated. Then after, the RG1 has been 

bridged through introducing a novel SDO benchmark problem of customized I-beam profile 

overhead gantry crane. Besides, a well-known variant of GA MH has been applied to solve 

this novel SDO benchmark. This work followed by solving the same problem using a new 

discrete variant of  CS optimization called Adaptive Discrete CS (ADCS). This time the design 

domain of the problem turned to be discrete to make it a more real-world SDO case study and 

to meet RO3. Next, developing a comprehensive MHs assessment criterion, which represents 

RO2, has been introduced and applied to five variants of ACO MH. Accordingly, an HCFACO 

MH has been selected to examine the possible improvement of its local search capabilities to 

reach the thesis RO3. Finally, another novel SDO benchmark of a perforated composite 

laminated plate subjected to uncertainty conditions has been introduced to fulfill RO4 and 

RO5.  

 

For all SDO problems mentioned above, there were different Structural Design Analysis 

(SDA) solutions developed to evaluate their objective functions as a part of the SDO problem 

formulation. The type of SDA solution depends on the problem complexity; thus, it could be 

an analytical solution, FEA or ANN model. 
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Figure 2.1 Methodological Framework layout 
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2.2 Novel SDO Benchmark Problem 

2.2.1 Purpose and Context  

Purpose: Introduce a novel SDO benchmark problem for a real-life isotropic material structure 

and to apply an MH optimizer to solve this new SDO problem. 

 

Context:  The benchmark problems in the SDO domain are generally pure theoretical 

problems that have no practical application in real life, and they are usually used to evaluate 

the performance of new MHs. On the other hand, there are some SDO problems for real 

applications, but they are specific or very complicated to be reused. Here, we proposed a 

practical case study of customized I-beam profile overhead gantry crane. The previously 

published articles in crane optimization dealt with the optimization of cranes have standard I-

beam profiles, which limits the design to specific profiles configurations. In the customized I-

beam profile crane, the designer has a broader range of profile configurations where the crane 

formed by welding three different plates that have the same span length with different widths 

and thicknesses. The I-beam profile crane has many applications in building and auto 

maintenance workshops. 

 

2.3 SDO Problem Modelling and Optimization  

a.) Assumptions  
 

The crane built up using a full penetration welding to form an I-beam profile crane using three 

plates. The material of the plates is 350W structural steel, and it has homogeneous mechanical 

properties. 

 
b.) Objective Function 
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Where the span length is fixed with a constant cross-section area of the crane beam, the weight 

is just proportional to the cross-section area so that the objective function is defined by the 

cross-section area, as follow: 

 𝑓 = 𝑏ଵ. 𝑡ଵ + 𝑏ଶ. 𝑡ଶ + ℎ. 𝑡ଷ  
 

where the parameters b1, t1 …etc. are the width and thicknesses of the bottom, top and web 

flanges. 

 
c.) Constraints 

 
The essential criteria of the Crane Manufacturers Association of America specification, known 

as CMAA74-2010, are considered and summarized as follow: 

 

• Tension stress Constraints (due to gravity and live load). 

• Lateral Buckling Constraint. 

• Local Buckling Constraints. 

• Deflection Constraint. 

• Fatigue Constraint (due to repeated load fluctuation only). 

 

d.) Input 
 

The crane service class is heavy, and it has three different rated capacities with three different 

span lengths. The weight of the trolley and other equipment are given too; also, the crane 

designed to meet the requirements of cycles class N2 for fatigue loading.    

 
e.) Output 

 
The optimal I-beam profile crane configurations for nine different cases have been found using 

hybrid GA MH. The new configurations have the same characteristics of thick and narrow 
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bottom flange, thin and wider upper flange, and the web is very thin and significantly very 

wide. The design constraints have been respected in all obtained optimal configurations, but 

some constraints were critical for certain cases. 

 

2.4 MHs as SDO Problem Optimizer  

2.4.1 An Improved CS MH for SDO Problems  

2.4.1.1 Purpose and Context 
 

Purpose: Present an improved discrete variant of CS MH to solve the discrete version of the 

novel SDO benchmark problem. Furthermore, examining the effect of the initial population on 

the performance of CS MH when it used to solve the SDO problem. 

 

Context: CS is a relatively new developed MH designed to solve unconstrained continuous 

optimization problems. One of the main features of CS is it has only one parameter to tune 

known as discovery rate. CS used to solve different NP-hard optimization problems such as 

TSP, knapsack and SDO problems too. However, several discrete variants were introduced to 

solve a specific discrete optimization problem, such as Binary CS, to solve the knapsack 

problem or CS to solve the TSP optimization problem. Other CS variants were more general, 

such as discrete CS that using rounding of generated solutions into the nearest discrete value 

in the design domain. This variant of CS used to solve some SDO benchmark problems, and it 

is implemented here to compare it to the new variant proposed here.  In this thesis, a new 

variant of discrete CS has been proposed and examined as a new MH optimizer of SDO 

problems. ADCSA is a novel variant of discrete CS that uses rank/value concept to generate 

step/jumps with integer values to obey Lѐvy flights random walk. Furthermore, ADCSA has 

been used to solve a discrete version of the “ customized I-beam profile overhead gantry crane” 

SDO problem. 
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2.4.1.2 SDO Problem Modelling and Optimization  
 

a.) Assumptions  

Two SDO problems examined here have homogenous material properties. For the composite 

laminated plate SDO problem, we assumed that the laminate is symmetrical and balanced with 

simply supported edges. In the second SDO problem, we assumed that all six design variables 

have the same length of design domain vector, so it will be easy to permute different ranks of 

each design variable with the ranks of the other.  

 

b.) Objective Function 
 

The objective of the composite laminated plate subjected to buckling loads is maximining the 

critical buckling load. The objective function formulation and modelling are mentioned in 

section1.1.3 in the previous chapter; for the discrete crane SDO problem, the objective function 

still as described in section 2.3(b). 

 
c.) Constraints 

 
The validation SDO problem of the composite laminated plate has specific fiber orientations 

to select from, and it assumed to be balanced, which means that we need to consider the two 

plies with the same orientation as one plies group. Also, the symmetry constraint needs to be 

enforced by split the laminate into two similar parts. For the crane SDO problem, the same 

constraints listed in section 2.3 (c) still considered here.   

 
d.) Input 

 
The loading conditions and geometrical information of the validation SDO problem are given. 

For the discrete version of the crane SDO problem, all the input described in section 2.3 (d) 

has been used here too.  
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e.) Output 
 

The optimal stacking sequence design of the composite laminated that maximize the critical 

buckling load factor has been obtained. Furthermore, the optimal cross-section dimensions of 

customized I-beam crane have been determined.  

 

f.) Model Validation 

The obtained results of the maximum critical buckling load factor of the composite laminated 

plate, that examined here, shown typical agreement with those published in the literature. 

2.4.2 A comprehensive MHs assessment criterion   

2.4.2.1  Purpose and Context 

Purpose: Implement a comprehensive assessment criterion of MHs performance in solving 

SDO problems. Furthermore, select the best MH of the compared ACO MHs to examine a 

further improvement of the local search effort.   

 

Context:  The literature review addressed the lack of fair performance assessment measures. 

The previous comparison studies were interesting, and they still have some drawbacks, such 

as the diversity of convergence criteria for the compared algorithms or the comparison 

limitation to one category of meta-heuristics. Moreover, the common performance measures 

used in the previous studies are statistical measures, such as average, min/max or standard 

deviation of the objective function. In this thesis, we proposed a conceptual assessment 

criterion that could be applied to assess the performance of  MHs, which may be used to 

optimize SDO problems. To demonstrate the efficiency of the MHs proposed assessment 

criterion, an unprecedented comparison of five different ACO variants was carried out. The 

comparison study revealed that the HCFACO variant demonstrated a promising performance 

compared to the other ACO family members in the filed of maximizing the critical buckling 

load of the composite plate. This remarkable performance motivated us to investigate the 

possible options of improving the local search capabilities of the HCFACO MH.  
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2.4.2.2 SDO Problem Modelling and Optimization  

a.) Assumptions  

The assumptions considered here are the same ones mentioned in the previous section for the 

validation SDO benchmark problem of the composite laminated plate. Furthermore, each ACO 

variant examined here should be run ten times for ten different seeds numbers. 

 

b.) Objective Function 

The modelling of the validation SDO problem remains the same as described in section 1.1.3 

in the previous chapter.  

c.) Constraints 

The design and manufacturing constraints of the SDO benchmark problem enforced in the 

same manner, followed in section 2.4.1.2 (c). 

d.) Input 

The buckling load and the geometrical information of the composite laminated plate were 

given. Ten fixed seed numbers that selected randomly were provided to ensure the reproducing 

of the obtained results of the assessment criterion.  

e.) Output 

A comprehensive comparison results of five different ACO MHs have been obtained. The 

proposed assessment criterion exhibited a distinguished performance in measuring each ACO 

MHs performance. This work reveals that HCFACO outperforms other ACO family members, 

and with further improvement, it became a promising MH to solve SDO problems.   
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2.5    Robust Design Framework of SDO Problems 

2.5.1 Purpose and Context  
 

Purpose: Introduce a robust design optimization procedure that could consider the influences 

of different uncertainty conditions.  

Context:  The commonly used structural design approach is deterministic design. This 

approach used successfully for several decades due to its simplicity. The main drawback of the 

deterministic approach is the excessive consumption of the available resources, e.g. used 

material, to ensure the safety of the designed structure. Thus, the probabilistic structural design 

approach appeared as another alternative to the deterministic approach. It proved a significant 

performance in solving different SDO problems where the probabilistic information of the 

design variables is available and accurate. The availability and accuracy of the probabilistic 

data are the main barriers that face this approach. The last alternative in this, it is the robust 

design optimization procedure where the structure is designed to consider a bounded or 

predefined loading or design uncertainties. The challenging issue of this approach is the 

accompanying cost of the structural analysis of the designated SDO problem. Consequently, 

this thesis intends to develop a scheming of an uncertainty optimization framework that could 

handle expensive SDO problems (e.g. thin perforated plate).    
 
2.5.2 SDO Problem Modelling and Optimization  

a.) Assumptions  
 

The selected SDO problem of the perforated composite laminated plate is exposed to uncertain 

bounded buckling loading conditions and uncertain position of the circular cut out. The 

available fiber orientations are limited to standard fiber angles of 0°, ±45° and 90°.   

 

b.) Objective Function 
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The objective function is the critical buckling load factor determined by an ANN model built 

based on the composite plate analysis results obtained by using Ansys workbench FEA 

software.   

  
c.) Constraints 

 
The examined SDO problem of the perforated composite laminated plate has to be 

symmetrical, balanced and simply supported with a certain number of plies.  

 

d.) Input 
 

The bounded buckling loads interval is given, and the range of the circular cut out is specified 

too. Furthermore, the materials properties and plate dimensions are defined.   

 

e.) Output 
 

A new SDO benchmark problem has been introduced, and its robust stacking sequence design 

for the given uncertainties conditions has been determined using two different MHs that 

developed in this thesis. 
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3.1  Abstract  

The current study presents a general optimization procedure that could be used in designing of 

various structural applications. To validate the performance of the proposed procedure, a real- 

life application of a custom welded I-Beam gantry crane is selected. The crane is composed of 

three rectangular plates with the same length and different thicknesses and widths welded 

together by full penetration welds over the span length to form an I-Beam profile. The 

thicknesses and widths of plates are to be optimized to have the minimum cross section area 

while respecting yield, buckling, deflection and fatigue criteria. A mathematical procedure 

based on Timoshenko beam theory and Crane Manufacturers Association of America (CMAA) 

in combination with the Genetic Algorithm (GA) is presented, and a Mathcad code is 

implemented to find the optimal I-Beam cross section dimensions. Nine examples are 

introduced for 8, 12 and 20 m crane span subjected to 10, 20 and 40-ton capacities. It is noticed 

that the optimized I-section configurations always show narrow and thick lower flange, wider 

and thinner upper flange and tall and very thin web. The upper flange local buckling and the 

lateral buckling limits are achieved for all nine cases, 75% of cases for the web buckling limit, 

about 33% of cases for the fatigue and yield limits whereas the maximum deflection constraint 

is never critical. The obtained results were verified using ANSYS Workbench software with a 
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3D Solid Finite Element model and shown good agreement, which confirms that the proposed 

procedure is efficient. 

 

Keywords: optimization; I-beam; yield; buckling; design criteria; finite element. 

 

3.2 Introduction  

The gantry cranes are frequently used for different industrial applications. According to 

CMAA (2010), the cranes in real life engineering are classified into five main classes based on 

their service capacity: standby, light, moderate, heavy and severe service cranes. The overhead 

gantry crane type is widely used to serve small or medium duty jobs, like a repair shop, 

buildings service or in a machine shop. The lightweight crane with high capacity design depicts 

an essential requirement of the industry. To reach such requirement, a customized I-beam crane 

is a motivating optimization research. Even though standard I-Beam profiles are available, they 

are just limited to some standard dimensions, which are usually far from the optimum design. 

The crane weight, concerning initial standard profiles design, could be reduced up to 10% 

using an optimized beam (P. Liu, Xing, Liu, & Zheng, 2014). 

 

Several researches have been conducted on optimization of customized and standard crane 

beams with different profiles. Gąska, Haniszewski, and Margielewicz (2017), developed a 

numerical model of flange local stresses under the wheels acting points to determine the final 

dimension of the I-beam girder. The numerical example of 12.5-ton capacity and 25m span 

with three different wheel thickness demonstrated. The mathematical and FE analysis results 

compared to show an acceptable error range of 6 to 15 %.Also, they mentioned that the lower 

flange deflection has a great influence on the final girder dimensions. 

 

Other researchers have worked on optimization of the box profile girders (Ashutosh Kumar & 

Arakerimath, 2016; Qu, Xu, Fan, & Bi, 2015; Zuberi, Kai, & Zhengxing, 2008); they had, in 

general, the similar procedure of optimization but they used different optimization tools. Their 
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objective was investigating the same concept of weight-strength ratio using theoretical 

optimization routines backed up by Finite Element (FE) simulation. 

 

Qu et al. (2015) proposed a modified Ant Colony Optimization (ACO) algorithm with new 

local search technique using mutation and applied it to solve nonlinear optimization problems 

having discrete variables. The developed algorithm of Ant Colony Algorithm with Mutation-

based (ACAM) used to determine optimal crane design variables and found to be faster by 

about 20% compared to the genetic algorithm (GA) and by 11% compared to particle swarm 

algorithm (PSO). Furthermore, it always gives a globally optimized solution, while the original 

ACO algorithm may stick at some local solution and fail to go further.  

 

Zuberi et al. (2008), examined the effect of rolling load on welded box cross section-crane 

girder regarding buckling and compression stresses in the flange. The volume of the girder 

considered as an objective function subjected to the stress and deflection criteria constraints. 

The built-in MS-Excel nonlinear optimization solver, called Generalized Reduced Gradient 

(GRG), employed to give preliminary optimized design variables. The obtained values are then 

used as initial inputs to ANSYS code that can handle more accurate stress and deflection 

calculations for verification purpose and do further optimization if needed. 

 

Kumar et al. (2016) conducted research that aims to optimize the weight of Electrical Overhead 

Travelling (EOT) Crane Bridge girder by adding sufficient stiffeners along the girder plate 

instead of increasing plate thickness. He used mathematical modeling and Finite Element 

Analysis to investigate the effect of adding stiffeners and then verify the optimal design 

experimentally. His work concluded that the plate stability could be increased four times using 

stiffeners without the need to increase the plate thickness. 

 

Liu et al. (2014), carried out a parametric FE study of a doubly trolley box-girder using APDL 

tool in conjunction with a Matlab code that handles the crane parameters. A three-dimensional 

girder model subjected to various loading conditions established to predict the limit of load-

bearing capacity. Two different optimization algorithms, Arc Length Algorithm (ALA) and 
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Nonlinear Stabilization Algorithm (NLA), used in sequence to overcome the optimization 

failures. The obtained results of their work shown a significant weight reduction of the girder 

by 16% compared to the original design.  

 

Few publications about the customized I-beam crane girder subjected to yield and buckling 

criteria are reported. Therefore, the current paper extends the similar techniques mentioned 

above to optimize custom I-Beam crane designs. Three rectangular plates having the same 

length (L) and different thicknesses and widths welded by continues full penetration welds to 

form a custom I-Beam crane design, see Figure 3.3. The live load and the beam span are 

imposed while each plate thickness and width are considered as design variables that need to 

be determined to have the minimum weight that respecting the yield, buckling, deflection and 

fatigue criteria. However, the mathematical calculations based on Cranes Manufacturer 

Association of America (CMAA) design procedure and the Hybrid Genetic algorithm (GA) 

are used to find the optimal dimensions of the cross section that satisfy the design constraints. 

A Mathcad platform is written to handle these calculations. Also, a 3D-solid FE model created; 

stress analyzed and optimized using ANSYS Workbench software. 

 

3.3 Design Optimization Procedure  

Highly sophisticated optimization techniques are needed to achieve an optimal crane design 

that considers yield, buckling, deflection and fatigue criteria. Such techniques must deal with 

iterative schemes that require a programming language or a mathematical application such as 

Mathcad. The general trends of solving such problems in the recent years were emphasizing 

on carrying out a mathematical solution, an FE solution or a math-FE combined solution. The 

combined solution conducted in two different ways (Zuberi et al., 2008); the first way is 

carrying out both types of analysis techniques with the same initial values and takes the most 

optimal results between them. The second one uses the output results of the mathematical 

solution as input values of an FE solution. The present study follows the second method. The 

flowchart in Figure 3.1 illustrates the proposed procedure. It starts with problem formulation, 

i.e., defines design variables, objective function, etc. Follows that entering the data of crane, 
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which are in our case the span length, the rated load, and the material; then performing the 

optimization Hybrid Genetic Algorithm (GA) code, the details of which are shown in Figure 

3.2, to give the so called Math-Optimal design variables. The Math-optimal design variables 

are input as initial variables to the FE Optimization phase using ANSYS Workbench 15 

software in which the Response Surface Optimization method is used (Ansys, 2015; Lee, 

2014). 

 

 

 
Figure 3.1 Proposed design optimization procedure 

 

3.4 Problem Description  

The welded I-Beam crane and the loading conditions are shown in Figure 3.3. The beam 

formed by three plates joined by continuous welds over the beam length. They have the same 

length but different thicknesses and widths; the dimensions and loading conditions defined as 

follow: bଵ :  lower flange width, tଵ  : lower flange thickness, bଶ :  upper flange width, tଶ :  upper flange thickness, h   : web height, tଷ :  web thickness, L :  beam span, Wଵ: crane weight, Wଶ :  live load (Lifting load), 
x :  distance of live load from the left end   

 

Model Formulation 
- Define the Design Variables (DV’s). 
- Set the Objective Function. 
- Define the Constraints. 
- Create the Transformed Objective Function. 

Hybrid Genetic Algorithm (GA) 

Math-Optimal Design Variables 

Mathematical Optimization 

Final Optimal Design Variables 

FEM Model 
- Initial Model Geometry. 
- Static Analysis Using Ansys 
Workbench. 

Response Surface Optimization 
- Design of Experiment DOE. 
- Surface of Response. 
- Optimization. 

 

FEM Optimization Phase  
(Using Ansys Workbench) 

Input Data of the crane 
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Figure 3.3 The crane beam dimensions and loading conditions 

 
 

Figure 3.2 Hybrid Genetic Algorithm   
Taken from W. Y. Yang et al. (2005) 
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No 
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Reproduction 
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3.4.1 Objective Function  

Where the span length is fixed with a constant cross section area of the crane beam, the weight 

is just proportional to the cross-section area so that the objective function is defined by the 

cross-section area, as follows : 

 

 𝑓 = 𝑏ଵ. 𝑡ଵ + 𝑏ଶ. 𝑡ଶ + ℎ. 𝑡ଷ (3.1) 

 

where the parameters 𝑏ଵ, 𝑡ଵ …etc. are shown in Figure 3.3 

3.4.2 Constraints 

The most important criteria of the Crane Manufacturers Association of America specification, 

known as CMAA74-2010, are considered and summarized as follows : 

 

• Tension stress Constraints (due to gravity and live load) : 

 σୡ୭୫ୠౣ౗౮ − σ୘ୟ୪୪୭୵ୣୢ ≤ 0                                   (3.2) 

• Lateral Buckling Constraint: 

 1.9 − f୆୳ୡ୩୪୧୬୥ ≤ 0                                   (3.3) 

• Local Buckling Constraints: 

 h tଷ⁄ − 260 ≤ 0                                                    (3.4) 
 bଶ 2tଶ⁄ − 260 ඥσ୷⁄ ≤ 0 (3.5) 

• Deflection Constraint : 

 δ୴ − L 600⁄ ≤ 0                                   (3.6) 

• Fatigue Constraint (due to repeated load fluctuation ΔW2 only) : 

 (Δσ)ୡ୭୫ୠ-ౣ౗౮ − Δσୟ୪୪୭୵ୣୢ  ≤ 0                                   (3.7) 
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where  𝜎௖௢௠௕ = ඥ𝜎௫ଶ + 𝜎௬ଶ − 𝜎௫𝜎௫ + 3𝜏௫௬ଶ    is the Von-Mises equivalent stress; 

𝜎்௔௟௟௢௪௘ௗ = Allowable tension stress, according to CMAA 74; 𝛿௩  = Maximum vertical deflection 𝛥𝜎 = stands for stress range 

           𝜎௒ = Yield strength 

  𝑓஻௨௖௞௟௜௡௚ =      Buckling load factor, which means a factor to be multiplied to all applied loads 

to produce linear buckling of the structure. This factor is given initially by the linear buckling 

theory, e.g., Timoshenko formulas or by an FE model. It is valid only if the linear buckling 

stress, which is 𝜎஼௥଴  =  𝑓஻௨௖௞௟௜௡௚. ห𝜎௨௣௣௘௥ ௙௟௔௡௚௘ห, is less than 1 2ൗ .𝜎௒; otherwise, it must be 

modified to take into account the plastic deformation during buckling. The corrected critical 

stress calculated using Johnson’s empirical formula, 𝜎௖௥ = 𝜎௒. ቂ1 − ఙೊఙ೎ೝబቃ, (Popov, 1976), and 

the corrected buckling load factor is given by ఙ೎ೝหఙೠ೛೛೐ೝ೑೗ೌ೙೒೐ห. 
 

3.4.3 Objective Function Transformation 

The exterior point penalty function is used to transform the constrained optimization problem 

into an unconstrained problem. The general form of the transformed objective function is: 

 

 𝐹൫𝑋, 𝑟௛, 𝑟௚൯ = 𝑓(𝑋) + 𝑟௛ൣ∑ ℎ௞௜௞ୀଵ (𝑋)ଶ൧ + 𝑟௚ൣ∑ (𝑚𝑎𝑥൛0,𝑔௝(𝑋)ൟ)ଶ௠௝ୀଵ ൧     (3.8) 

where 𝑋 is the vector representing the design variables, ℎ௞ is the kth equality constraint if any, 𝑔௝ is the 𝑗௧௛ inequality constraint, 𝑟௛ and 𝑟௚ are two additional variables called penalty 

multipliers (Ragsdell & Phillips, 1976). 
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3.5 Numerical Examples 

Nine cases defined by three span lengths (8, 12 and 20 m) and three rated loads (10, 20 and 40 

tons) are selected as numerical examples. The crane specifications are listed in Table 3.1. The 

material used for the crane is 350W structure steel with yielding strength 𝑆௬ = 350 𝑀𝑃𝑎, 

density 𝜌 = 7850 ௞௚௠య, Young’s modulus 𝐸 = 200 𝐺𝑃𝑎, shear modulus 𝐺 = 77 𝐺𝑃𝑎 and 

Poisson’s ratio ν = 0.3. 

 

The mathematical optimization procedure, described in section 3.3, programmed using 

Mathcad Code (PTC, 2011). Table 3.2 summarizes the values of GA parameters. 

 

Table 3.1  Crane Specifications according to CMAA 74-2010  
 

Variable Value/Units 
Rated Capacity: 
Service Class D: 

Load Class L3: 
Cycles Class N2: 

Span: 
Trolley Weight:  

Other equipment 
Load: 

Bridge Wheel per rail: 

10, 20 or 40 tons 
Heavy Service 
Normal load = 2/3 of 
rated load 
Up to 500000 cycles 
8, 12 or 20 m 
1 tons 
1 tons 
One on each side 

 

Table 3.2  Genetic Algorithm Parameters  
 

Parameter Used value 

Number of Variables: 
Population size: 

Probability of crossover: 
Probability of mutation: 

Mutation Parameter: 
Maximum generation number: 

NV = 6 
NP = 120 
PC = 0.85 
PM = 0.05 
BM = 5 
GMAX = 300 
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3.6 Finite Element Model 

The Figure 3.4 shows a 3D drawing of an I-Beam crane, the Figure 3.5(a) shows the overall 

view of a 3D-solid FE model of the crane created in ANSYS Workbench © 15, and the Figure 

3.5 (b) shows a local zoom around the contact region between the lower flange and the wheels. 

The lower edges at ends are vertically supported, and the loads to be considered are composed 

of the distributed gravity load W1 (weight of the beam), and the concentrated load W2 applied 

on the wheels, W2 being the combination of the lifted load, the weights of trolley and hoist. 

 

All loads are adjusted by factors according to CMAA 74 Specifications. The rated load plus 

gravity are applied when considering the yield and buckling constraints, inequalities Eq. (3.2) 

to Eq. (3.5), while the normal load fluctuation, which is just 2/3 of rated load without gravity, 

is applied when considering the deflection and fatigue constraints, Eq. (3.6) and Eq. (3.7). For 

the FE model, the Surface Response Optimization method (Ansys, 2015; Lee, 2014), already 

integrated into ANSYS Workbench, is used. This model contains about 28300 nodes. 

 

 

 
Figure 3.4 Three-dimensional images of the crane 

 

I-Beam 

Trolle

Hoist 
Trolle

Hoist 
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3.7 Numerical Results 

For reducing calculation time, it needs to input the reasonable lower and upper bound values 

of each design variable. The bounds used in all 9 cases are shown in Table 3.3. 

 

Table 3.3 Lower bound and upper bound of design variables in mm 
 

Variables t1 b1 t2 b2 t3 h 

Lower bound 2 150 2 150 3 250 

Upper bound 100 600 100 600 100 1675 

 

(a) 

 
(b) 

 
Figure 3.5 Finite Element Model of the crane 
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The optimized design variables for nine cases are presented in the Table 3.4, Table 3.5 and 

Table 3.6. The results listed in Table 3.4 are for short span cranes with three different rated 

loads, the Table 3.5 shows the results for intermediate span cranes, and the Table 3.6 for long 

span cranes results. 

 

Table 3.4 Optimal Design variables and constraint parameters for 8 m cranes 
 

L = 8 m 10 tons 20 tons 40 tons Bounds MATH FEM 𝑡ଵ (𝑚𝑚) 27.82 27.98 37.88 52.62 [2, 100] 𝑏ଵ (𝑚𝑚) 150.01 150.0 150.16 150.04 [150, 600] 𝑡ଶ (𝑚𝑚) 6.99 7.43 8.38 9.08 [2, 100] 𝑏ଶ (𝑚𝑚) 194.20 186.1 220.18 252.14 [150, 600] 𝑡ଷ (𝑚𝑚) 3.00 3.00 3.19 4.38 [3, 100] ℎ (𝑚𝑚) 608.64 650.88 826.46 1137.03 [250, 1675] 𝐴𝑟𝑒𝑎 (𝑚ଶ) 0.00736 0.00753 0.0102 0.0152  𝜎𝑐𝑜𝑚୫ୟ୶(ெ௉௔) 221.9 201.9 224.9 225 ≤  225 𝑀𝑃𝑎 𝑓஻௨௖௞௟௜௡௚ 1.9 1.96 1.9 1.91 ≥  1.9 ℎ 𝑡ଷ⁄  202.876 216.96 259.37 259.88 ≤  260 𝑏ଶ 2𝑡ଶ⁄  13.895 12.524 13.14 13.887 ≤  13.898 𝛿௩ (𝑚) 0.0074 0.0063 0.0057 0.0043 ≤  0.013 𝑚 (𝛥𝜎)௖௢௠_௠௔௫ (𝑀𝑃𝑎) 166 160.1 165.9 165.2 ≤  166 𝑀𝑃𝑎 

 

Table 3.5 Optimal Design variables and constraint parameters for 12 m cranes 
 

L =12 m 10 tons 20 tons 40 tons Bounds 𝑡ଵ (𝑚𝑚) 27.88 53.52 54.61 [2, 100] 𝑏1 (𝑚𝑚) 179.54 150.01 206.13 [150, 600] 𝑡ଶ (𝑚𝑚) 10.34 12.04 13.41 [2, 100] 𝑏ଶ (𝑚𝑚) 287.15 334.55 372.14 [150, 600] 𝑡ଷ (𝑚𝑚) 3.02 3.12 4.21 [3, 100] ℎ (𝑚𝑚) 785.98 811.78 1094.81 [250, 1675] 𝐴𝑟𝑒𝑎 (𝑚ଶ) 0.0104 0.0146 0.0209  𝜎௖௢௠_௠௔௫ (𝑀𝑃𝑎) 203.9 188.9 225 ≤  225 𝑀𝑃𝑎 𝑓஻௨௖௞௟௜௡௚ 1.9 1.9 1.9 ≥  1.9 ℎ 𝑡ଷ⁄  259.93 259.98 259.98 ≤  260 𝑏ଶ 2𝑡ଶ⁄  13.884 13.896 13.877 ≤  13.898 𝛿௩ (𝑚) 0.0095 0.012 0.0097 ≤  0.013 𝑚 (𝛥𝜎)௖௢௠_௠௔௫ (𝑀𝑃𝑎) 163 121.3 164.1 ≤  166 𝑀𝑃𝑎 
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Table 3.6  Optimal Design variables and constraint parameters for 20 m cranes 
 

L = 20 m 10 tons 20 tons 40 tons Bounds 𝑡ଵ (𝑚𝑚) 30.14 92.15 54.41 [2, 100] 𝑏ଵ (𝑚𝑚) 275.88 150.29 347.13 [150, 600] 𝑡ଶ (𝑚𝑚) 15.06 14.98 18.1 [2, 100] 𝑏ଶ (𝑚𝑚) 418.41 416.3 501.7 [150, 600] 𝑡ଷ (𝑚𝑚) 3.29 3.36 4.72 [3, 100] ℎ (𝑚𝑚) 821.75 872.94 1226.51 [250, 1675] 𝐴𝑟𝑒𝑎 (𝑚ଶ) 0.0173 .0230 0.034  𝜎௖௢௠_௠௔௫ (𝑀𝑃𝑎) 202.5 199.5 218.2 ≤ 225 MPa 𝑓஻௨௖௞௟௜௡௚ 1.9 1.9 1.9 ≥ 1.9 ℎ 𝑡ଷ⁄  249.96 259.47 259.95 ≤ 260 𝑏ଶ 2𝑡ଶ⁄  13.89 13.891 13.896 ≤ 13.898 𝛿௩ (𝑚) 0.025 0.032 0.023 ≤ 0.033 m (𝛥𝜎)௖௢௠_௠௔௫ (𝑀𝑃𝑎) 157.7 94.61 166 ≤ 166 MPa 
 

It is noticed that the lateral buckling and the upper flange local buckling limits are reached for 

nine over 9 cases, the web buckling limit for 6/9 cases, the yield and fatigue limits for 3/9 cases 

and the deflection constraint is never critical. In addition, the optimized I-section 

configurations always show narrow and thick lower flange, wider and thinner upper flange and 

tall and very thin web. The Figure 3.6 approximately illustrates the optimum I-Beam cross 

sectional configuration for a 20 m crane subjected to 20 tons lifted load.  

 

The comparison between the custom I-beam configuration as shown in Figure 3.6,  which has 𝐴 =  0.023 𝑚ଶ, and a doubly symmetrical I-beam (𝑡ଵ = 𝑡ଶ = 39.53 𝑚𝑚, 𝑏ଵ = 𝑏ଶ =307 𝑚𝑚, 𝑡ଷ = 3.85 𝑚𝑚, ℎ = 996 𝑚𝑚 and  𝐴 = 0.028 𝑚ଶ) shows that the customized 

I-beam could save almost 18% of the weight. The design parameters given by the Math 

optimization are then inputted to an FE procedure using ANSYS Workbench 15 with a 3D 

nonlinear solid model due to the contact between the wheels and the lower flange. The Surface 

Response Optimization method in ANSYS Workbench used with considering the same 

constraints, except the linear buckling constraint, because linear buckling does not work with 

nonlinear contact models. 
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Figure 3.6  Optimum configuration of an I-section 

However, the buckling constraint (𝑓஻௨௖௞௟௜௡௚  ≥  1.9) replaced by an approximate constraint on 

the slenderness ratio against lateral buckling to give a comparable buckling load factor. This 

slenderness ratio is given by 𝜆 = ௅௥೎೤ where 𝑟௖௬ is the lateral radius of gyration of the effective 

compression area which is empirically the ଶଷ outermost of the compression side of the cross 

section (see Figure 3.6). FE stress calculation with nonlinear contact and optimization 

procedure is very time consuming; so only one case selected to show FE results, which is the 

8 m and 10-ton case. The slenderness ratio constraint for this case is 𝜆 ≤  190. 

416.3x15.0 mm 

150.3x92.2 mm 

3.36x872.9 mm 

2c/3 effective compression 

c 

G 

Neutral axis 
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Figure 3.7  Location of maximum Von-Mises stress 

The new optimized design parameters given by FE procedure are shown in the FEM column 

of Table 3.4; they are slightly different but quite close to the Math results. The Figure 3.7 

reveals that the maximum Von-Mises stress is in the lower flange right under the wheels. 

 

3.8 Conclusion 

A Hybrid Genetic Optimization Algorithm (GA) and a Mathematical optimization procedure 

are programmed in Mathcad and successfully applied to custom welded I-Beam cranes with 

different spans and rated loads subjected to yield, buckling, deflection and fatigue criteria. It 

is found that the constraints of general lateral buckling and local buckling of the upper flange 

are always reached for all cases. The web local buckling constraint is critical for about 66% of 

cases, the yield and fatigue constraints found critical for 33% of cases and the deflection 

constraint is not a problem at all. The optimized custom I-section has a configuration of narrow 

and thick lower flange, thinner and wider upper flange and the web is tall and very thin, which 

could save about 18% of weight compared to commercial standard I-Beam. FEM optimization 
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using Surface Response method gives comparable results and confirms that the proposed 

procedure is efficient. 

 

For future works, the FE optimization taking into account nonlinear buckling due to contact or 

plasticity constitutes a significant challenge. Furthermore, the optimization procedure with 

multi objective functions such as weight and cost will also be an interesting future work. 
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4.1 Abstract 

The Cuckoo Search optimization algorithm (CS) continues to grab the attention of the scientific 

community due to its simplicity and robustness. CS applied successfully to solve a wide range 

of hard optimization problems, and it exhibited outstanding performance. The current study 

presents an Adapted variant of Discrete CS Algorithm (ADCSA) that uses the rank-value 

approach to turn real values of random Lѐvy walks (steps/jumps) into the equivalent discrete 

values. Besides, the proposed ADCSA intensification effort was enhanced by adding four 

different local search movements of permutation, swap, insertion and bit flip. The solution 

accuracy of ADCSA was validated across a benchmarking case study of a composite laminated 

plate. Moreover, a further structural optimization problem of customized I-beam gantry crane 

was solved using ADCSA. Eventually, the results of both case studies reveal that the proposed 

ADCSA has a considerable performance in solving discrete structural optimization problems. 

 

Keywords:  Cuckoo Search; Discrete optimization; Composite laminate; Gantry crane; critical 

buckling load. 
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4.2 Introduction 

Cuckoo Search (CS) algorithm is population-based meta-heuristic inspired by the aggressive 

reproduction strategy of some cuckoo bird species enhanced by Lѐvy flights. It presented by 

X.-S. Yang and Deb (2009) to solve a variety of continuous multimodal optimization problems. 

Since then, it attracted the attention due to the simplicity of implementation and the fast 

convergency rate and accuracy of the delivered solutions. Also, CS has a view number of 

parameters (almost one) to be tuned, compared to other meta-heuristics such as Genetic 

Algorithm (GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO).... etc. 

The size of CS applications is fascinatingly growing, where it could be observed through the 

number of solved optimization problems using CS in the last decade (X.-S. Yang, 2014),. 

Shehab et al. (2017) tracked the progress of published papers that uses CS in the literature. 

Based on different publisher's metrices, for the CS published articles between 2009 and 2016, 

he summarized that there are three classes of research interest. The dominant class went to the 

application, and it represented 67% of publications, whereas CS hybridization and CS 

modifications had respectively 15 % and 18% of the research interest. The applications of CS 

involve several main optimization problems such as Travelling Salesman Problem (TSP) (Jati 

& Manurung, 2012; Ouaarab et al., 2014; X.-S. Yang & Deb, 2013; Zhou et al., 2014), and 

binary optimization problems, for instance, Knapsack optimization problem (Gherboudj et al., 

2012; Layeb, 2011; Xin et al., 2019), Computer vision and image detection (Agrawal et al., 

2013; Loubna et al., 2017), Energy sector (de Moura Meneses et al., 2020; Piechocki et al., 

2014), supply chain (Q. Li et al., 2020; Z. Li et al., 2018) and structure optimization problem 

(Gandomi et al., 2013; A Kaveh & Bakhshpoori, 2013). However, the size of CS applications 

is likely to escalate in the prospective researches where the fast-growing research areas of 

Artificial intelligence (AI) and data mining are seeking more robust optimization algorithms 

to build faster response models (Cobos et al., 2014). 

 

Some proposed CS modifications were presented to improve the basic CS through imposing 

some enhancements of step size, such as using generative scaling factor instead of using 

constant value (Loubna et al., 2017). Other proposed modifications, in the literature, were 
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mainly focused on adjusting CS to solve discrete optimization problems where the design space 

is limited to certain values or options (Shehab, 2020; Xin et al., 2019). Some discrete CS 

variants were explicitly developed to solve particular problems, X.-S. Yang and Deb (2013) 

used CS to solve TSP or Xin et al. (2019) who developed a discrete binary CS to address 

allocation of cognitive radio network spectrum optimization problem. The further general 

approach of handling discreetness constraint was worked out through rounding the generated 

continuous values, by Lѐvy flights, into the nearest integer, and it seems to be work for specific 

structural optimization problems (A Kaveh & Bakhshpoori, 2013). Loubna et al. (2017) 

proposed a fascinating approach where he used a rank-value approach to handle a sizeable 

discrete domain of image detection problem, and the results were impressive, and it deserves 

attention. Even though these modifications went so far to benefit from CS special features, but 

it still hard to say that there is one common variant of CS that could solve different discrete 

nature problems. 

 

The current work presents an Adapted version of Discrete Cuckoo Search Algorithm (ADCSA) 

that uses a modified rank-value approach to interpret Lѐvy flights random steps into equivalent 

discrete steps. In addition, the intensification capability of ADCSA is enhanced through 

introducing four different local search movements of permutation, swap, insertion and bit flip. 

The performance of ADCSA was firstly investigated through a well-known benchmark 

problem of a composite laminated plate. The obtained results of ADCSA were compared 

across the previously published results for other meta-heuristics. Moreover, ADCSA results 

also compared with other two different discrete CS variants, which implemented based on the 

rounding and original rank-value approaches (A Kaveh & Bakhshpoori, 2013; Loubna et al., 

2017). The performance of the proposed ADCSA was remarkably superior to other 

metaheuristics, and the obtained results demonstrated promising performance of ADCSA in 

solving discrete structural optimization problems. 

 

Consequently, ADCSA applied to solve the problem of optimization of customized I-beam 

gantry crane, which started to grab more attention in recent years (Ali Ahmid, Le, & Dao, 

2017; Pavlovic , Savkovic, Zdravkovic, Bulatovic, & Markovic, 2018). The different 
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dimensions of the I- beam section need to be taken from a discrete range of steel plates, whereas 

the span length is fixed. The objective of the optimization is minimizing the cross-section area 

to reduce the crane weight where it is subjected to different strength constraints.  The benefits 

of using customized I-beam cranes, rather than using standard I and H beams, were explained 

too. 

 

Finally, the rest of this paper is arranged to explain the original CS in the second section, 

whereas the proposed ADCSA conceptual implementation is presented in the third section. 

The fourth section devoted to the validation case study while the customized crane case study 

demonstrated in the fifth section, and the summary of the current work outcomes and findings, 

with possible prospective research studies, were stated in the conclusion section. 

 

4.3 Cuckoo Search Via Lévy Flights (CS) 

The original Cuckoo Search is a population-based metaheuristic inspired by the reproduction 

strategy of Cuckoo Search bird. The bird starts searching for the surrounding to find a host nest 

of other birds. In each candidate nest, Cuckoo bird lay just one egg, and it flies to find another 

one to lay the next egg. This strategy has precisely coincided with the wisdom says, “Don’t 

put all eggs in one basket”, which in this occasion, means that the chance of Cuckoo eggs to 

survive is becoming better. The host bird could discover some of the eggs, and they may 

discard or abounded (X.-S. Yang, 2014). X.-S. Yang and Deb (2009) introduced the CS 

algorithm to simulate this natural phenomenon where the total number of candidate nests 

represents the population size (𝑛), and each nest is a possible solution (𝑆௜). A fraction (𝑃𝑎) of 

the whole population with worse fitness is going to be discarded, and this mimic the discovery 

of the eggs by the hosting birds. Next, new randomly generated solutions are going to substitute 

the discarded solutions. The top-ranked nests will remain within the next generations. The CS 

searching of the design space goes via a random walk that taken out from Lѐvy probability 

distribution. The original CS pseudo-code is listed in Algorithm 4.1. 
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Lѐvy flight is the strengthening component of CS where it offers the random walk, though 

steps/jumps length is selected from Lѐvy probability distribution. The jumps (long steps) in 

the design space are possible because of the heavily tailed nature of Lѐvy probability 

distribution (X.-S. Yang, 2014). 

 

Algorithm 4.1 Cuckoo Search Algorithm (CS) 
 𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏:  

Initial and evaluate a random population of 𝑛 host nests (𝑥𝑖, 𝑓𝑖).  𝑾𝒉𝒊𝒍𝒆 (𝒄𝒐𝒏𝒗𝒆𝒓𝒈𝒆𝒏𝒄𝒆 𝒏𝒐𝒕 𝒎𝒆𝒕)𝑫𝒐: 
- Generate a new Cuckoo (population) randomly by Lѐvy flights (Eq.(4.1)). 
- Evaluate the new Cuckoo fitness (𝑓௜). 
- Choose a nest among 𝑛 (𝑠𝑎𝑦, 𝑗) randomly. 

       𝐼𝑓 𝑓𝑖 >  𝑓𝑗           
- Replace the j with the new solution. 

       𝑒𝑛𝑑          
- Rank the solutions and find the current best.  
- Discard Pa fraction of worst solutions. 
- Substitute the discarded solutions by new ones generated by Lѐvy flights. 𝑬𝒏𝒅  

 

In general, the random walk depends on the previous location, 𝑥௜௧ , and the length of the 

step/jump, which is the second term of Eq. (4.1). 

 

 

where 𝛼 is the step size scale factor and 𝛼 > 0. For most optimization problems, the unity step 

scale factor could work well (X.-S. Yang & Deb, 2009). The term 𝐿𝑒̀𝑣𝑦(𝜆) represents Lѐvy 

probability distribution, 𝜆  is Lѐvy exponent, and 𝑠 is the step size. 

 

 

The random direction of the step/jump and step size that follows Lѐvy probability are two 

essential elements to generate random numbers via Lѐvy flights. The direction of the step could 

be randomly drawn from the normal distribution, 𝑁(𝜇,𝜎ଶ), whereas the step length needs to 

 𝑥௜௧ାଵ = 𝑥௜௧ + 𝛼⨂𝐿ѐ𝑣𝑦(𝜆, 𝑠)                                   (4.1) 

 𝐿ѐ𝑣𝑦(𝜆, 𝑠𝑡𝑒𝑝)~ 𝑢 = 𝑡ିఒ, (1 < 𝜆 ≤ 3)                                  (4.2) 
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be determined through the Magenta algorithm. According, the step size (s) can be determined 

through the following formula: 

 

where 

 𝑢, 𝑣 are Gaussian normal distributions. The definition of 𝑢  means that the random samples are 

drawn from a normal distribution that has 0 mean and variance of 𝜎ଶ . The variance value 

could be obtained from: 

 

where Γ(n) is nothing more than factorial of 𝑛 or 𝑛! 
 

4.4 Adaptive Discrete Cuckoo Search Algorithm (ADCSA) 

CS Originally presented as population-based metaheuristic to solve unconstrained continuous 

optimization problems (X.-S. Yang & Deb, 2009). However, several discrete variants were 

introduced to solve a particular discrete optimization problem (Ouaarab et al., 2014). Others 

were more general, such as using rounding of the Lѐvy flight step into the nearest integer (A 

Kaveh & Bakhshpoori, 2013). Loubna et al. (2017) presented a universal approach that could 

generate steps with integer values to obey Lѐvy flights random walk. A similar approach has 

used here, and it is explained in subsection 4.4.2. 

 

The proposed ADCSA bears three main modifications to the original CS.  First is using Latin 

Hypercube (LHC) sampling method to generate the initial population; the second is presenting 

discrete Lѐvy flights representation and finally improve the neighbourhood search of the best 

 𝑠 = ௨|௩|భ ഊൗ                                      (4.3) 

 𝑢 ~ 𝑁(0,𝜎ଶ), 𝑣 ~ 𝑁(0,1)                                    (4.4) 

 𝜎ଶ = ቂ ୻(ଵାఒ)ఒ୻((ଵାఒ) ଶ⁄ ) . ୱ୧୬(గఒ ଶ⁄ )ଶ(ഊషభ) మ⁄ ቃଵ ఒ⁄
                                    (4.5) 
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solution through four different permutation movements. The proposed ADCSA pseudo-code 

is listed in Algorithm 4.2. 

 

4.4.1 Initial Population 

Q. Li et al. (2020) investigated the impact of initialization methods on the meta-heuristics 

searching performance. They examined eight different ways of random initialization sampling 

for five meta-heuristics. Their work results revealed that CS is sensitive to the initialization 

method, where it performed differently in 73.68 % of the tested functions based on the used 

method of initialization. Moreover, they suggested that the hybridization of different sampling 

methods could boost the algorithm performance of searching the design space. However, in 

the current study, three different sampling methods, Discrete Uniform Distribution (DUD), 

Latin Hypercube (LHC) and hybrid DUD-LHC, were examined. The numerical experiment 

results exhibited a slight improvement in the overall performance of ADCSA when LHC was 

used compared to the other two methods; see Figure 4.5. 

 

Algorithm 4.2 Adapted Discrete Cuckoo Search Algorithm (ADCSA) 
 𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏:  
- Initial and evaluate a random population of 𝑛 host nests (𝑥𝑖, 𝑓𝑖) using Latin 

Hypercube (LHC) random generator. 𝑾𝒉𝒊𝒍𝒆 (𝒄𝒐𝒏𝒗𝒆𝒓𝒈𝒆𝒏𝒄𝒆 𝒏𝒐𝒕 𝒎𝒆𝒕)𝑫𝒐: 
Generate a new Cuckoo (population) randomly by Lѐvy flights (Eq.8). 

Evaluate the new Cuckoo fitness (𝑓௜). 
Choose a nest among 𝑛 (𝑠𝑎𝑦, 𝑗) randomly. 
 𝑰𝒇 𝒇𝒊 >  𝒇𝒋  

- Replace the j with the new solution.  𝒆𝒏𝒅 
Rank the solutions and find the current best.  
Discard Pa fraction of worst solutions. 
Substitute the discarded solutions by new ones generated by Lѐvy flights. 
             𝑰𝒇 (𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑟𝑢𝑛𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑒𝑥𝑐𝑒𝑒𝑑𝑒𝑑) 
Do permutation, swap, insertion and bit flip for the current best solution. 
                  𝑒𝑛𝑑  
Update the best solution.   𝑬𝒏𝒅  
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4.4.2 Discrete Lѐvy Flights Representation 

The proposed approach by Loubna et al. (2017) defines the design space domain by rank and 

value. The “rank” refers to the location of the variable within the design domain vector, 𝐷, 

while “value” represents the corresponding assigned variable value/option, 𝑑௜. So, the new 

Cuckoo,𝑥(௜ାଵ) is generated based on the current solution element rank, integer number, and an 

integer step size that obeys Lѐvy flights, see Eq.(4.1). Next, the new cuckoo with rank form is 

transformed into the equivalent values form. Therefore, 𝑋௜௧ = [𝑥ଵ, 𝑥ଶ, … . 𝑥௡] represents the 

design variables vector, and 𝑁 is the problem size. Whereas, 𝐷 = [𝑑ଵ 𝑑ଶ … .𝑑ெ] indicates the 

discrete domain of the optimization problem. So, 

 𝑅𝑎𝑛𝑘 (𝐷) = ሼ1,2, … . ,𝑀ሽ, 𝑉𝑎𝑙𝑢𝑒൫𝑅𝑎𝑛𝑘(𝐷)൯ = ሼ 𝑑ଵ,𝑑ଶ, … ,𝑑ெሽ 
 

An improved version of the value-rank approach was implemented here. The improvements 

went to the update strategy of the size scale factor α, and to the step size determination. Selectin 

the step size factor α could influence the performance of the algorithm significantly, and it 

linked to the problem nature (X.-S. Yang & Deb, 2009). Using a constant value for 𝛼, e.g. 0.01 

or 1, might work, but it doesn’t consider any problem characteristics such as the solution 

fitness/quality. So, the proposed scale factor here is examining the quality of the fitness of the 

individual solution, 𝑓௜, to the fitness of the best solution, 𝑓௕௘௦௧ . 
 

 

Consequently, the new solution, 𝑥௜ାଵ, will be updated according to: 

 

Now, the updated step size, second term in Eq.(4.7), produces real values, while the current 

solution 𝑥௜ has an integer representation (rank) of discrete values and thus the new solution, 

 𝛼 = ௙೔௙್೐ೞ೟                                     (4.6) 

 𝑥௜ାଵ = 𝑥௜ + ௙೔௙್೐ೞ೟ . 𝑠𝑡𝑒𝑝⨂(𝑥௕௘௦௧ − 𝑥௜)                                   (4.7) 
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𝑥௜ାଵ is going to have real values which we couldn’t use it directly as ranking values. Therefore, 

a transformation function was used to turn the real values of the step size into their equivalent 

integer values. The sigmoid function, Eq.(4.8), is widely used in solving classification 

problems by machine learning (ML) algorithms (Shalev-Shwartz & Ben-David, 2014); also, it 

used in the binary variant of CS to solve the knapsack problem, (Ouaarab et al., 2014). 

 

Sigmoid function, Figure 4.1, gives a selection probability between 0 and 1 for any input 

values, which is the step size in our case. 

 

 

The next step is dividing the interval [0,1] to the desired number of classes (ranks), 𝐶, and this 

gives each class (rank) a range of selection, △ 𝑐. 

 𝐶 = |𝐷|  ⟹ 𝐶 = 𝑀 

 

Then, the obtained selection probability,𝑝௜, is compared across all ranges to determine the 

class to which this 𝑝௜ belongs. 

 ∆𝑐 = 1𝑀 (𝑘 − 1).∆𝑐 ≤ 𝑐௜ < 𝑘.∆𝑐 , (𝑖, 𝑘 = 1:𝑀)   

 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑧) = ଵଵା௘ష೥                                    (4.8) 

 𝑝௜(𝛼. 𝑠.∆𝑥𝑥௕௦௘௧) = ଵଵା௘షഀ.ೞ.∆ೣೣ್ೞ೐೟                                    (4.9) 

∆𝑐 
𝑐ଵ 𝑐ଶ 𝑐ଷ 𝑐ସ 𝑐ெ 0 1
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Despite the successful transformation of the original step size into its equivalent integer size, 

the new solution 𝑥௜ାଵ might exceed the domain bounds when Eq. (4.8) applied. However, we 

experience a similar situation every day when we use the clock arithmetic to keep the time; 

e.g. the clock now is (8:00 am), and we want to know where will the hour hand be in 5 

hours? (8 𝑎𝑚+  5 ≡ 13) Obviously, it exceeds the clock bounds, which is 12, but intuitively 

we say it is 1:00 pm. The mathematical interpretation of this, that the remainder of dividing 13 

by 12, is one, and this is the typical definition of modulo function that we are going to use to 

reflect a meaningful value for out-off bounds ranks. Therefore, 

 

 

where 𝑠 represents the integer value of the Lѐvy flights steps/jumps, and 1 is the minimum 

rank value if 𝑚𝑜𝑑൫(𝑥௜ + 𝑠), |𝐷|൯ = 0. Eventually, the ranked new solution, 𝑟𝑎𝑛𝑘(𝑥௜ାଵ), 

reversed to its assigned rank values or 𝑣𝑎𝑙𝑢𝑒൫𝑟𝑎𝑛𝑘(𝑥௜ାଵ)൯  form that we could use to 

determine the objective optimization function directly. 

 
 

Figure 4.1 Sigmoid transformation function 

 𝑟𝑎𝑛𝑘(𝑥௜ାଵ) = 𝑚𝑜𝑑൫(𝑥௜ + 𝑠), |𝐷|൯ + 1                                  (4.10) 
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4.4.3 Neighbourhood Search 

X.-S. Yang (2013) expect that CS intensification could be improved by using local search Lѐvy 

flights or hybridization CS with other local optimization algorithms (e.g. Tabu Search). The 

primary purpose of enhancing the intensification feature of any meta-heuristic is to ensure that 

the obtained solution is not a local optimum, and there was no possible global optimal solution 

left behind the current best solution. However, the proposed ADCSA turns the optimization 

problem into a pure permutation problem, as a result of using the rank-value approach. The 

ranked solution has an integer representation that we could permute to produce a new ranked 

solution. Based on this, four different permutation operators employed in ADCSA to improve 

the search of the current best solution neighborhood. 

 

a.) Random permutation 

Random permutation operator is selecting randomly two elements of the solution vector and 

reverses the order of the other elements in between. Let’s that we have a six dimensions 

solution vector as follow: 𝑥 = [1 2 3 4 5 6] 
So, a possible permutation is: 

Before permutation: 𝑥 = [1 𝟐 3 4 𝟓 6] 
After permutation: 𝑥 = [1 𝟓 4 3 𝟐 6] 
 

b.) Swap (mutation) 

Swap operator also knows as mutation, selects randomly two elements and switch over their 

positions in the solution vector. 

Before swap:  𝑥 = [1 2 𝟑 4 5 𝟔] 
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 After swap: 𝑥 = [1 2 𝟔 4 5 𝟑] 
c.) Insertion 

The insertion operator is randomly selecting an element of the solution vector and insert it 

randomly between the other two elements. 

 

Before insertion:  𝑥 = [1 2 3 4 𝟓 6] 
After insertion:   𝑥 = [1 𝟓 2 3 4  6] 

d.) Bit flip 

Bit flip operator selects a random element (bit) of the solution vector and changes its rank order 

randomly. 

 

Before bit flip:  𝑥 = [1 2 3 4 5 6] 
After a bit flip:  𝑥 = [1 2 𝟐 4 5 6] 
 

Random permutation and swap operators were used in solving a well-known benchmark 

problem of structural engineering of composite laminated design optimization by Genetic 

Algorithm (GA), (R. Le Riche & Haftka, 1993). Whereas, insertion and bit flip operators were 

used efficiently, as a part of an improved Tabu search algorithm in searching of the 

neighbourhood of large design space optimization problems (He, de Weerdt, & Yorke-Smith, 
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2019). Lastly, these operators were integrated into ADCSA structure in the way that they will 

not be activated until a certain number of successful runs is reached. 

 

4.4.4 Convergence Criteria 

ADCSA designed to stop after a certain number of successful runs without any solution 

improvement is reached. Otherwise, it continues searching for the optimal solution until the 

predefined maximum number of iterations is exceeded. 

 

4.5 Numerical Experiments 

In order to examine the performance of the proposed ADCSA in solving discrete structural 

optimization problems, two different case studies were selected from the literature. The first 

case study is a benchmark problem used here as a numerical experiment to validate the solution 

accuracy of ADCSA and to compare its performance with other meta-heuristics in the 

literature. Thus, a benchmark problem of a composite laminated plate subjected to bi-

directional compression loading was used in this experiment (R. Le Riche & Haftka, 1993). 

To ensure the robustness of ADCSA, another discrete structure case study of customized I-

beam gantry crane subjected to yield criteria (Ali Ahmid et al., 2017). 

 

4.5.1 Validation Numerical Experiment 

The benchmark optimization problem of a composite laminated plate subjected to compression 

loading is extensively used in the literature to investigate the performance of a new or modified 

meta-heuristics (Aymerich & Serra, 2008; Rubem Matimoto Koide et al., 2013). In a more 

recent study, the same benchmark problem used to compare the performance of five different 

meta-heuristics (A; Ahmid, Thien-My, & Van Ngan, 2019). The original optimization problem 

introduced by (R. Le Riche & Haftka, 1993) for a laminated rectangular plate simply 

supported. The in-plane compression loading conditions were applied in the direction of both 

axes 𝑥,𝑦, see Figure 1.1 The optimization objective is maximizing the critical buckling loading 
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capacity of the plate subjected to design and manufacturing constraints. Moreover, the number 

of plies, 𝑁௣, and thickness of each ply, 𝑡௣, are imposed while the fiber orientation of each plies 

group, 𝜃௣, needs to be chosen from a discrete domain of available orientations, 𝐷 = [0°; ±45°;  90°]. 
 

 
 

Figure 4.2 Simply supported plate subjected to biaxial loading (A; 
Ahmid et al., 2019) 

 

The design variable vector, 𝑋, is formed by the number of plies groups that meet the symmetry 

and balanced constraints. The symmetrical laminate means that both sides about the mid-plane 

have the same number of the plies and this reduces the number of plies, to be optimized, into 

the half of the total number of plies, Np=2 .Balanced laminate is symmetrical one where each 

group of two plies, with same fiber orientation, on one side has a similar group on the other 

side, and this downsize the number of the optimized plies to another half. Thus, the final 

number of design variables (optimized plies) will be equal to 𝑁௣ = 4 .The formula of buckling 

load factor 𝜆௕ , which developed according to Classical Lamination Theory (CLT), has been 

used implicitly to determine the objective function of critical buckling load, 𝜆௖௕ , (R. Le Riche 

& Haftka, 1993), Therefore, 
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where 𝐷௜௝ is the bending stiffness, 𝑁௫ ,𝑁௬ are in-plane compression loads in 𝑥, 𝑦. The variables   𝑝 , 𝑞  denote the buckling modes in both 𝑥,𝑦 directions. The critical buckling load factor 𝜆௖௕, 

is defined as the minimum obtained value of 𝜆௕(p, q), (S. S. Rao, 2009). 

 

The orthotropic material properties, dimensions, and loading conditions of the composite 

laminated plate used in this experiment are listed in Table 4.1 and Table 4.2. 

 

4.5.1.1 Experiment Setting 

The proposed ADCSA code written in Matlab 2019b programming language. In addition, the 

other two discrete variants of presented by A Kaveh and Bakhshpoori (2013) and Loubna et 

al. (2017) were implemented and programmed using Matlab 2019b. All implemented variants 

tested on the same PC-machine with the listed specifications in Figure 4.3. The experiment 

initialized with the same number of nests, 𝑛ே௘௦௧ = 100, and same discovery rate, 𝑃௔ = 0.25. 

For each variant, the experiment has been repeated 200 times to overcome the stochastic 

behaviour of meta-heuristics as recommended in the original reference, (R. Le Riche & Haftka, 

1993). 

 
========================================================================= 
User: Ali Ahmid …………………………………………………………………..15-Feb-2020 00:24:25 
========================================================================= 

Machine Information: 
CPU Processor: Intel(R) Core (TM) i7-4790 CPU @ 3.60GHz 
CPU clock speed: 3601 MHz 
CPU Cache size (L2): 1024 KB 
Number of physical CPU cores: 4 
Installed physical memory (RAM): 16 GB 
operating System Type: Windows 
Operating System Version: Microsoft Windows 7 Enterprise 

========================================================================= 
 

Figure 4.3 The specifications of PC-machine used in the current comparison study 

 

 𝜆௕(p, q) = 𝜋ଶ ቂ஽భభ൫௣ ௔ൗ ൯రାଶ(஽భమାଶ஽లల)൫௣ ௔ൗ ൯మା஽మమ൫௤ ௕ൗ ൯రቃ൫௣ ௔ൗ ൯మேೣା൫௤ ௕ൗ ൯మே೤                       (4.11) 
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Furthermore, an assessment of three different random initialization methods of Discrete 

Uniform Distribution (DUD), Latin hypercube (LHC) and hybrid DUD-LHC were conducted. 

The results demonstrated slightly better performance of ADCSA when LHC used to generate 

the initial population, see Figure 4.5. Thus, it used to generate the initial population of ADCSA 

in the executed validation experiments. 

 

4.5.1.2 ADCSA Performance Assessment Criteria 

In the literature, there were different measures used to assess meta-heuristics performance. 

Elapsed time is not only the measure used to evaluate the computational solution cost where 

the success rate (or reliability) and the average number of runs required to find the optimal 

solution (price) were commonly used too. Furthermore, normalizing the solution price, price/ 

reliability, could reveal valuable information about the solution cost (A; Ahmid et al., 2019; 

R. Le Riche & Haftka, 1993). Lastly, where such an optimization problem has multi-optimal 

solutions, the term of practical optima is used. It is devoted to considering the near-optimal 

solutions of 0.1% error to the best-known optimal solution (Aymerich & Serra, 2008). 

 

4.5.2 Customized I-Beam Gantry Crane Problem 

The customized I-beam gantry crane design is another structural design problem that started to 

attract the attention, (Ali Ahmid et al., 2017; Alhorani, 2020; Pavlovic  et al., 2018). The 

original problem statement says that for a welded I-beam profile, gantry crane built by welding 

three different steel plates that have the same length, but they were diverse in their thickness 

and width. The live loading condition was applied to the crane, see Figure 4.4.The 

nomenclature of different crane dimensions and loads are given as:  bଵ, tଵ  and bଶ tଶ are lower 

and upper flanges widths and thicknesses respectively, while h, tଷ are the width and thickness 

and width of the web. Wଵrepresents the crane weight and Wଶ is the live load. Lastly, 𝐿 is the 

crane span, and 𝑥 is the distance of Wଶ measured from the crane left end. The optimization 

objective is reducing the crane weight by minimizing the crane cross-section area, which is 

defined by: 
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Figure 4.4 The crane beam dimensions and loading conditions, (Ali Ahmid et al., 2017) 

 

The crane design is subjected to bending and buckling criteria, which result in a set of design 

constraints. Hence, 

 

 

These constraints were imposed by using the exterior penalty function that transforms the 

objective function, 𝐴௖௦, into: 

 

 

where 𝑋 = [𝑏ଵ 𝑡ଵ 𝑏ଶ 𝑡ଶ ℎ 𝑡ଷ] and 𝑟௚ is penalty multiplier for inequality constraints 𝑔௜.  
 

 𝐴௖௦ = 𝑏ଵ. 𝑡ଵ + 𝑏ଶ. 𝑡ଶ + ℎ. 𝑡ଷ                                    (4.12) 
   

 gଵ = σୡ୭୫ୠౣ౗౮ − σ୘ୟ୪୪୭୵ୣୢ ≤ 0                                    (4.13) 
 gଶ = 1.9 − f୆୳ୡ୩୪୧୬୥ ≤ 0 (4.14) 
 gଷ = h tଷ⁄ − 260 ≤ 0 (4.15) 
 gସ = bଶ 2tଶ⁄ − 260 ඥσ୷⁄ ≤ 0 (4.16) 
 gହ = δ୴ − L 600⁄ ≤ 0 (4.17) 
 g଺ = (Δσ)ୡ୭୫ୠ-ౣ౗౮ − Δσୟ୪୪୭୵ୣୢ  ≤ 0 (4.18) 

 𝐹൫𝑋, 𝑟௚൯ = 𝐴௖௦(𝑋) + 𝑟௚ൣ∑ (𝑚𝑎𝑥൛0,𝑔௝(𝑋)ൟ)ଶ௠௝ୀଵ ൧                         (4.19) 
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Eventually, the material used for the crane is 350W structure steel with yielding strength 𝑆௬=350 MPa, density ρ=7850 ௞௚௠య, Young’s modulus E=200 GPa, shear modulus G=77 GPa 

and Poisson’s ratio ν=0.3. The dimensions intervals and loads of the crane optimized here are:

  𝑏ଵ𝜖 [150: 10: 490]     , (mm) 𝑡ଵ 𝜖 [6: 2: 74]             , (mm) 𝑏ଶ 𝜖 [150: 10: 490]    , (mm) 𝑡ଶ  𝜖 [6: 2: 74]            , (mm) ℎ  𝜖 [600: 20: 1280]  , (mm) 𝑡ଷ  𝜖 [2: 36]                , (mm) 
 𝐿 = 8                        , (m) 𝑊ଶ = 10,20,40          , (ton) 

 

4.6 Results and Discussions 

The obtained results of the validation experiment and the case study of customized I-beam 

gantry crane are illustrated and discussed in the following subsections. 

 

4.6.1 Validation of Experiment Results 

The results of the three initialization methods, they mentioned in section 4.4.1, were 

statistically compared and depicted in standard division graph in Figure 4.5. Moreover, the two 

variants of discrete CS by A Kaveh and Bakhshpoori (2013) and Loubna et al. (2017) where 

implemented, as described, and they were given two abbreviations, RDCS and ADCS, 

respectively. Consequently, they were applied for the same experiment with the same number 

of experiments. The number of 30 runs without improving was used as convergency criteria to 

break the variant searching loop. The proposed ADCSA was also examined with the same 

experiment setting, and the obtained results of all discrete CS were illustrated in Figure 4.5 to 

Figure 4.8. Finally, the summary of the comparison of different published results and the 

proposed algorithms were listed in Table 4.1. 
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Table 4.1 Comparison of different performance measures for ADCSA and other meta-
heuristics 

 

Meta-heuristic Price Reliability, % Normalized 
Price 

Elapsed Time, 
sec 

ADCSA 41 98% 42 6 
ADCS (Lubona 2017) 71 56.5% 126 18 
RDCS (Kaveh 2013) 243 93.5% 259 118 
GA (LeRiche 1993) 371 98.9% 375 NA 
GA (Ahmid 2019) 252 88% 286 16 
ACO (Ahmid 2019) 88 76.5% 115 4 

 

The results reveal that the proposed ADCSA outperforms the other presented DCS algorithms 

and other meta-heuristics in literature as solving algorithm for the composite laminated plate. 

ADCSA exhibited a fast convergence rate where it needs around 12 iterations to find the 

optimal solution. Moreover, ADCSA delivers an accurate solution with So, the accuracy of the 

proposed ADCSA is examined, and it has shown significant performance in solving the NP-

optimization problem of structural engineering by 98% reliability (successful rate) at 41 

iterations solution cost. 

 

 

 

Figure 4.5  Standard deviation plot for different initialization methods 
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Figure 4.6   Standard deviation plot for 𝜆௖௥  of different discrete CS algorithms 

 

 
(a) ADCS 

 
(b) RDCS 

 
(c) ADCSA 

 
Figure 4.7   The number of experiments vs. critical buckling load for ADCSA, 

RDCS, ADCS 
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Figure 4.8   ADCSA meta-heuristic Convergence in the first successful run 

 

 

 

Figure 4.9   Distance to global optimal for ADCSA meta-heuristic first successful run 
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The next section is devoted to demonstrating the results of applying ADCSA to other structural 

engineering optimization problems. 

 

4.6.2 Customized I-beam Gantry crane Results 

The obtained results of discrete crane design optimization using ADCSA were compared to 

previously published one of the continuous optimization approaches. Furthermore, both results 

compared to an equivalent standard I-beam profile for the same optimization strength 

constraints (CISA). The comparison study produced nine different examples of 8 m crane, 

where the three different types of crane beams were subjected to three live loads of 10,20 and 

40 tons.  

 

The results of this comparison listed in Figure 4.10 to Figure 4.17 and the abbreviations CC, 

DC and ES are mentioning the three different types of I-beams crane: Continues optimized 

Custom (CC), Discrete optimized Custom (DC) and Equivalent Standard I-beam (ES) 

respectively. The results obtained here reveal that the crane cross-section profile of the discrete 

optimization approach followed the same configurations pattern achieved using a continues 

optimization approach, see Table 4.2. It always shows narrow and thick lower flange, wider 

and thinner upper flange and tall and very thin web, see Figure 4.17. Furthermore, both 

approaches of optimal custom crane did not violate any imposed constraints for the three live 

loads. At the same time, the equivalent standard I-beam failed to remain within the strength 

limits of tension, and fatigue stresses constraints for the 40-ton case, see Figure 4.10 and Figure 

4.11. The lateral buckling of 10-ton live load almost reached the limit for the three I-beam 

types, see Figure 4.12. The local buckling of the top flange became critical for CC I-beam, 

while it was never critical for DC or ES I-beam types. On the other hand, the web slenderness 

was not critical for any CC I-beam loading cases while it reaches the limits in the first loading 

case (10-ton) for the other two types, see Figure 4.13. Finally, the results reveal that the discrete 

optimization approach could reduce the weight from 61 - 69 % of the equivalent standard I-

beam crane structure. 
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Table 4.2 Different optimal solution configuration of customized I-beam gantry crane 
 

Design Approach t1 
(𝑚𝑚) 

b1 
(𝑚𝑚) 

t2 
(𝑚𝑚) 

b2 
(𝑚𝑚) 

t3 
(𝑚𝑚) 

h 
(𝑚𝑚) 

Area 
(𝑚ଶ) 

CC 
10 tons 27.82 150.01 6.99 194.2 3 608.64 .00736 
20 tons 37.88 150.16 8.38 220.18 3.19 826.46 .0102 
40 tons 52.62 150.04 9.08 252.14 4.38 1137.03 .0152 

ES 
10 tons 56.9 270.3 56.9 270.3 31.5 826.46 .0513 
20 tons 54.1 305.2 54.1 305.2 30 796.8 .0572 
40 tons 40 550 40 550 16 1120 .0621 

DC 
10 tons 54 150 34 170 3 620 .01574 
20 tons 46 170 10 200 14 760 .0177 
40 tons 46 190 16 290 10 1080 0.02418 

 

 
 

Figure 4.10   The tension stresses vs. live loads for different types of I-beam crane 
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Figure 4.11  The fatigue stresses vs. live loads for different types of I-beam crane 

 

 
Figure 4.12   The critical buckling load factor vs. live loads for different types of I-

beam crane 
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Figure 4.13   The web slenderness vs. live loads for different types of I-beam crane 

 

 

 

Figure 4.14  The flange ratio vs. live loads for different types of I-beam crane 
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Figure 4.15 The deflection vs. live loads for different types of I-beam crane 
 

 

Figure 4.16 The crane weight vs. live loads for different types of I-beam crane 
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Figure 4.17 The three different types of I-beam crane for the case of 8 m x10 ton 

 

4.7 Conclusion  

A new variant of the Adapted Discrete Cuckoo Search Algorithm (ADCSA) presented and 

examined for two different case studies of maximizing the critical buckling load of composite 

laminated plate and a customized I-beam gantry crane design optimization. The validation 

results demonstrated a high accuracy of the ADCSA solution at a reasonable cost. Furthermore, 

the initialization methods experiment conducted here illustrated a slight effect of the initial 

population generation on the performance ADCSA. The use of the LHC sampling approach 

improved the reliability slightly compared to ADCSA initialized using DUD or Hybrid DUD-

LHC. The results obtained for the customized I-beam gantry crane shown that the crane cross-

section profile of the discrete optimization approach followed the same configurations pattern 

obtained using a continues optimization approach. It always shows narrow and thick lower 
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flange, wider and thinner upper flange and tall and very thin web. Additionally, the saving in 

the cross-section area is noticeable compared to the equivalent standard I-beams. Eventually, 

the proposed ADCSA has been applied for two different structural optimization problems so 

far and examining it for other engineering problems could be prospective work. Furthermore, 

investigating the different initialization methods on the proposed algorithm to find better 

performance deserves a try. 
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5.1 Abstract 

Many structural combinatorial optimization problems are hard to solve within the polynomial 

computational time or NP-hard problems. Therefore, developing new optimization techniques 

or improving existing ones still grab attention. This paper presents an improved variant of the 

Ant Colony Optimization meta-heuristic called Enhanced Hyper Cube Framework ACO 

(EHCFACO). This variant has an enhanced exploitation feature that works through two added 

local search movements of insertion and bit flip. In order to examine the performance of the 

improved meta-heuristic, a well-known structural optimization problem of laminate Stacking 

Sequence Design (SSD) for maximizing critical buckling load has been used. Furthermore, 

five different ACO variants were concisely presented and implemented to solve the same 

optimization problem. The performance assessment results reveal that EHCFACO outperforms 

the other ACO variants and produces a cost-effective solution with considerable quality. 

 

Keywords:  Combinatorial optimization; Ant Colony Optimization (ACO); Buckling load 

factor; Composite laminate. 
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5.2 Introduction 

Combinatorial optimization is devoted to the mathematical process of searching for optimal 

solution (maxima or minima) of an objective function with a discrete domain of decision 

variables. The possible number of solutions for a combinatorial optimization problem is equal 

to [𝐷]௡, where 𝐷 is the discrete design domain vector and 𝑛 represents the number of design 

variables  (R. Le Riche & Haftka, 1993). Therefore, the optimization problem becomes more 

computationally difficult to be solved when the number of design variables increases. 

Accordingly, many combinatorial optimization problems are hard to solve within deterministic 

polynomial time (or NP-hard). A Travelling Salesman (or TSP) is a typical example of this 

type of optimization problem where the number of cities to be visited is given and the shortest 

path is needed to be determined (França, Sosa, & Pureza, 1999). As the number of cities 

increases, the number of possible solutions increases too and this leads to the computational 

complexity of the problem, where it is not possible to enumerate all these solution possibilities 

with the limited computation resources, such as memory size or processor speed. Hence, to 

solve such problems, many optimization techniques have been developed. 

 

The Ant Colony Optimization (ACO) algorithm demonstrated a significant performance 

improvement in solving NP-hard combinatorial optimization problems. The Traveling 

Salesman Problem (TSP) is a good example of such problems and it is solved using an early 

version of ACO (M Dorigo, 1991). The improvements in subsequent ACO algorithms focused 

on enhancing the algorithm variants to yield better searching and computational performance. 

As a result of the improved algorithm performance, many new applications of ACO appeared, 

such as the probabilistic TSP using estimation based ACO in Weiler, Biesinger, Hu, and Raidl 

(2015) work. Gambardella and Dorigo (2000) used a hybrid ACO with a novel local search 

tool to solve the Sequential Ordering Problem (SOP). Zheng, Zecchin, Newman, Maier, and 

Dandy (2017) introduced a novel approach of ACO to optimize a water distribution system 

design. Furthermore, the optimization of the space truss design, using improved ACO, is 

demonstrated by A Kaveh and Talatahari (2010). 
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In the field of Stacking Sequence Design (SSD) of composite laminate, ACO has been used to 

determine the optimal stacking sequence design for maximizing the critical buckling load 

factor or natural frequency (Rubem Matimoto Koide & Luersen, 2013). Aymerich and Serra 

(2008) examined the ACO performance in solving stacking sequence design problem and he 

compared a modified standard ACO performance with Genetic Algorithm (GA) and Tabu 

Search (TS).He found that ACO performed much better than GA and TS in terms of solution 

cost and quality. Rama Mohan Rao (2009) presented a hybrid ACO-TS algorithm to optimize 

the stacking sequence of a composite laminate subjected to bidirectional compression loading. 

He concluded that ACO is an effective optimization technique if combined with an appropriate 

local searching tool. Mark W. Bloomfield et al. (2010) conducted a comparison study of three 

meta-heuristics of GA, ACO, and Particle Swarm Optimization (PSO) to determine the optimal 

stacking sequence composite laminate. Based on the results of this comparison study, ACO 

found to outperform GA and PSO algorithms in the field of stacking sequence design (SSD). 

This remarkable performance of ACO in solving such NP-hard combinatorial optimization is 

expected where it designed to solve discrete optimization problems (França et al., 1999). 

 

An investigation of five different ACO variants in the field of composite laminate stacking 

sequence design has been carried out in the current study. Besides, a new optimization 

approach has been proposed to solve this problem. The new approach uses an improved version 

of a well-known ACO algorithm variant called Hyper Cube Framework ACO (HCFACO). A 

popular NP-hard combinatorial optimization problem of composite laminate stacking sequence 

has been considered to demonstrate the new algorithm performance (R. Le Riche & Haftka, 

1993). Furthermore, a performance assessment criterion has been developed using different 

measures, such as performance rate, reliability, normalized price, and Fitness–Distance 

correlation. The proposed EHCFACO algorithm performance has been compared with other 

ACO algorithm variants. 

 

The rest of this paper is structured as follows: firstly, it presents a review of standard ACO 

followed by a brief description of other considered ACO variants; secondly, the new 

optimization approach is explained in detail; then, the performance assessment criterion is 
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introduced, followed by the numerical experiments section; next, the results of the performance 

survey are discussed; finally, the paper concludes with a summary of the study’s research 

contributions, limitations, and prospective directions for future research. 

 

5.3 Ant Colony Optimization Algorithms (ACOs) 

M Dorigo (1991) developed the basic Ant Colony Optimization (ACO) algorithm, or Ant 

System (AS), which is a metaheuristic approach inspired by the collaborative work of ants in 

finding the source of food. The ants cooperate to find the best possible path from their colony 

to the food source. During their searching tour the ants communicate by depositing a certain 

amount of a substance, called the pheromone, on their way to the food site. The following 

group of ants tends to follow the paths with higher pheromone concentration. Over time, the 

less selected paths gradually lose their information due to the pheromone evaporation process. 

 

 
 

Figure 5.1 Cooperative search of ants by pheromone trails 
 

The virtual ants travelling and selecting paths can be interpreted as a probabilistic selection of 

certain nodes, which they are part of the solution, in the path based on the pheromone value. 

The ACO general procedure is illustrated in Algorithm 5.1. 
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Algorithm 5.1 Ant Colony Optimization procedure 
 
Initialization 
While (termination criteria not satisfied) Do 
           Construct Solutions Table by Ants 
           Local Search (optional) 
          Global Pheromones Updating 
End ACO algorithm 

 

To understand the mathematical interpretation of ACO, there is a need to go through each step 

of the ACO procedure shown in Algorithm 5.1. ACO starts with initial values of the pheromone 

trail 𝜏଴ , set to a small value for all ant trails as this gives all nodes 𝑗 of the design variable 𝑖, 
an equal probability of selection. Next, each ant starts to construct its own solution by applying 

the rule of selection, which has the following general form: 

 

 𝑝௜௝(௞) represents the probability of selecting the path 𝑖 𝑗 for the 𝑘௧௛ ant, 𝜏௜௝ is the updated 

pheromone trail, 𝜂௜௝ denotes the value of heuristic information for each feasible solution 𝑠, 𝑁௜(௞) indicates the neighbourhood nodes of the 𝑘௧௛ ant, when it located at node 𝑖 and 𝛼,𝛽 are 

the amplification parameters for pheromone trials and the influence of heuristic information 

on the algorithm behaviour respectively (M. Dorigo, Birattari, & Stutzle, 2006). At the end of 

each tour all the pheromone trails are updated through two steps of pheromone evaporation 

and depositing, according to the following formula: 

 

 

where 𝜌 is the evaporation rate, 𝜌 ∈ (0,1] , and 𝛥𝜏௜௝௞(௧) is the amount of deposited pheromone 

by ant 𝑘(𝑡) that could be determined as : 

 𝑝௜௝(௞) = ఛ೔ೕ ഀ .ఎ೔ೕഁ∑ ఛ೔ೕ ഀ .ఎ೔ೕഁೕചಿ೔ೖ  , ∀ 𝑗 ∈ 𝑁௜௞                                    (5.1) 

 𝜏௜௝௞(௧ାଵ) = (1 − 𝜌). 𝜏௜௝௞(௧) + ෍𝛥𝜏௜௝௞(௧)௡
௞ୀଵ  (5.2) 



100 

 

where 𝑄 is a constant and 𝐿௞(௧) represents the distance travelled by ant 𝑘(𝑡). Eq.(5.3) is the 

basic form of the pheromone trail updating which used to solve TSP optimization problem and 

it could be implemented in more general form: 

 

 

where 𝑓௪௢௥௦௧ , 𝑓௕௘௦௧ are the worst and the best values of the objective function 𝑓 obtained by 𝑁 ants in tour 𝑡 and 𝑥 is the global pheromone scaling factor (S. S. Rao, 2009). Eventually, the 

ACO loop continues until one of the termination conditions is met. 

 

In SDD optimization problem, the thickness of each ply (equivalent to the distance between 

the cites in TSP) is assumed to be constant, so the heuristic information value, 𝜂௜௝, will be 

constant all over the ant tours t which simplifies the probability of selection, in Eq. (5.1), into: 

 

Local search  

 
The procedure of the ACO algorithm includes the option of improving the intensification 

feature of the ACO algorithm by adding some local search algorithms or movements that could 

improve the search of the solution neighbourhood (França et al., 1999) . 

 

5.3.1 Elitist Ant Colony (EACO) 

Gambardella and Dorigo (2000) introduced an improved version of the ACO algorithm that 

uses the elitism strategy. The idea behind this strategy is a reinforcement of the best solution 

 𝛥𝜏௜௝௞(௧) = 𝑄 𝐿௞(௧)൘                                     (5.3) 

 𝛥𝜏௜௝௞(௧) = ቐ𝜉. 𝑓௪௢௥௦௧𝑓௕௘௦௧ , 𝑖𝑓 𝑖, 𝑗 ∈ 𝑔𝑙𝑜𝑏𝑎𝑙 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛0,                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (5.4) 

 𝑝௜௝(௞) = ఛ೔ೕ ഀ∑ ఛ೔ೕ ഀೕചಿ೔ೖ  , ∀ 𝑗 ∈ 𝑁௜௞                                    (5.5) 
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path found once the algorithm is initialized. The rule of pheromone updating for EACO is 

written as follows: 

 

 

where 

 

The reinforcement of selection probability of the best path (𝑡௕௘௦௧ ) occurs by adding the value 

of 𝑒.𝛥𝜏௜௝௞(௧್೐ೞ೟) where e is the weighting parameter and it represents the number of elitist ants 

(Rama Mohan Rao, 2009). 

 

5.3.2 The Rank-Based Ant Colony Optimization (RBACO) 

Bullnheimer, Hartl, and Strauss (1997) proposed a new extension of the ACO that enhances 

the performance of the original EACO by ranking the ants based on their path length. The 

deposited value of pheromone decreases according to its rank index, 𝜇. Moreover, only the 

best ants, 𝜎, will be updated which prevents the over concentration of pheromones on local 

optima paths chosen by other ants . Hence, the pheromone updating rule of RBACO is: 

 

5.3.3 Max-Min Ant Colony (MMACO) 

Previous ACO algorithms used the strategy of reinforcing only the best-found paths. This 

strategy could cause the excessive increase of pheromone values on optimal local paths causing 

all other ants to follow this path. To overcome this drawback, Stützle and Hoos (2000) 

 𝜏௜௝௞(௧ାଵ) = (1 − 𝜌). 𝜏௜௝௞(௧) + ෍𝛥𝜏௜௝௞(௧) + 𝑒.𝛥𝜏௜௝௞(௧್೐ೞ೟)௡
௞ୀଵ  (5.6) 

 𝛥𝜏௜௝௞(௧್೐ೞ೟) = ௙್೐ೞ೟∑ ௙೔೙ೖసభ                                     (5.7) 

 𝜏௜௝௞(௧ାଵ) = 𝜌. 𝜏௜௝௞(௧) + ෍𝛥𝜏௜௝ఓ + 𝜎.𝛥𝜏௜௝௞(௧್೐ೞ೟)ఙିଵ
ఓୀଵ  (5.8) 
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proposed a modified version of ACO that limits the pheromone values to a specific interval, [𝜏௠௜௡;  𝜏௠௔௫]. In addition, the initialization of pheromone value is set to the upper limit of the 

pheromone interval, with a small evaporation rate to increase the algorithm search 

diversification. The pheromone rule is: 

and   𝜏௜௝௞(௧) ∈ [𝜏௠௜௡;  𝜏௠௔௫]  
 

where [𝜏௠௜௡;  𝜏௠௔௫] values are determined by the following formulas: 

𝜏௠௔௫ = 1(1 − 𝜌) .𝑓௪௢௥௦௧𝑓௕௘௦௧  

𝜏௠௜௡ = 𝜏௠௔௫. (1 − ඥ𝑃௪௢௥௦௧೙ )ቀ𝑛2 − 1ቁ . ඥ𝑃௪௢௥௦௧೙  

 

where 𝑝௕௘௦௧ denotes the probability of the best solution, it has a value greater than 0, while 𝑛 

represents the number of ants. 

 

5.3.4 Best-Worst Ant Colony (BWACO) 

Zhang, Wang, Zhang, and Chen (2011) presented BWACO as an extension of MMACO, where 

the algorithm exploitation capability benefits from both, best and worst solutions. During the 

search tour, the pheromone trail update uses the positive return of the best solution and the 

negative one generated by the worst solution. The pheromone updating rule can be written as: 

 

 

where, 𝜆 is a coefficient that has value within [0,1] interval and it could be noticed that 

BWACO became MMACO if 𝜆 = 0. 

 𝜏௜௝௞(௧ାଵ) = 𝜌. 𝜏௜௝௞(௧) + 𝛥𝜏௜௝௞(௧್೐ೞ೟)                                     (5.9) 

 𝜏௜௝௞(௧ାଵ) = ቂ𝜌. 𝜏௜௝௞(௧) + 𝛥𝜏௜௝௞(௧್೐ೞ೟)ቃఛ೘೔೙
ఛ೘ೌೣ − 𝜆.𝛥𝜏௜௝௞(௧್೐ೞ೟) (5.10) 
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5.3.5 Hyper Cube Framework ACO (HCFACO) 

The different algorithms of ACO build a limited hyperspace of the pheromone values. The 

Hyper Cube Framework of ACO algorithms, proposed by Blum in 2001, generates a binary 

convex hull hyperspace from pheromone values for the feasible solutions. In other words, the 

values of the pheromone vector, 𝜏 =  [𝜏ଵ,𝜏ଶ, 𝜏ଷ, … . , 𝜏௡], are limited to the interval [0,1], and 

this is carried out by changing the pheromone update rule. The following formula expresses 

the rule of pheromone updating in HCFACO: 

 

 

where: 

𝛥𝜏௜௝௞(௧್೐ೞ೟) = ௙್೐ೞ೟∑ ௙೔೙ೖసభ  , and 𝑛 is the number of ants follow the same best path. 

 

HCFACO algorithms overcome the undesirable problem of different behaviour of standard 

ACO algorithms when the same objective function is scaled, which affects the algorithm 

robustness. Also, it reduces the search effort and improves the algorithm search diversification 

(França et al., 1999) . Lastly, it is worthwhile to mention that the HCF update rule is not limited 

to standard ACO algorithm (or Ant System AS) as it can also be used with MMACO, where 

the maximum and minimum limits of MMACO pheromone trail are set to be 0 and 1 

respectively (Blum & Dorigo, 2004). 

 

5.4 Enhanced Hyper Cube ACO Algorithms 

Dorigo experimentally observed that using local search techniques can improve the overall 

performance of the ACO (M Dorigo, 1997; França et al., 1999). Local search can be carried 

out by hybridizing the ACO with local search algorithms such as Tabu search or using 

permutation operators to explore the solution neighbourhood (Aymerich & Serra, 2008; 

 𝜏௜௝௞(௧ାଵ) = (1 − 𝜌). 𝜏௜௝௞(௧) + 𝜌.෍𝛥𝜏௜௝௞(௧)௡
௞ୀଵ  (5.11) 
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Katagiri, Hayashida, Nishizaki, & Guo, 2012). The commonly used operators in SSD 

optimization problem are two-points permutation and swap. Two-points permutation means 

selecting two bits in the solution string and reversing the order of the bits in between (R. Le 

Riche & Haftka, 1993). The swap operator is used to switch the position of two randomly 

selected bits of the solution string (Jing, Fan, & Sun, 2015). 

 

The HCFACO algorithms presented here adopted two other permutation operators to perform 

the algorithm enhancement. The first operator is called a single point mutation, which is used 

successfully with Permutation Genetic Algorithm (R. Le Riche & Haftka, 1993). The second 

operator is inspired by using one of the Tabu Search movements named the insertion (França 

et al., 1999). The proposed Enhanced HCFACO procedure for standard ACO (Ant System AS) 

and max-min ACO is listed in Algorithm 5.2. The Enhanced HCFACO Algorithms starts by 

defining the standard ACO parameters such as the maximum number of iterations (𝐼𝑡𝑒𝑟௠௔௫), 

number of ants (𝑛஺௡௧௦) , number of design variables (𝑁௏), the initial pheromone trail (t0) and 

evaporation rate (𝑟). In addition, the solution convergence rate counter is imposed [𝐼𝑐𝑜𝑛𝑣௠௔௫] 
and its value determine whether the convergence rate is slow or fast. When the ACO loop 

starts, all solution edges have the same deposited pheromone trail 𝜏଴ , which gives all nodes 

the same probability of selection to be a part of the feasible solution. The artificial ants, 𝑘 =1:𝑛஺௡௧௦ , start building the solution table, 𝑆௜(𝑛஺௡௧௦,𝑁௏), by randomly choosing a node di on 

their way to build the solution vector 𝑆௜(𝑘,𝑁). Next, the evaluation of the solutions table is 

carried out by calling the objective function, and the obtained values are stored in 𝑓(𝑖𝑔𝑒, 𝑆௜(1:𝑛஺௡௧௦,𝑁௏ )) matrix. The best solution of the stacking sequence design has the 

maximum value of the objective function listed in 𝑓(𝑖𝑔𝑒, 𝑆௜) matrix of the current iteration. 

The best solution of each iteration 𝑖𝑔𝑒 is stored in the best solution matrix 𝑆∗(𝑖𝑔𝑒). Thereafter, 

the global pheromone trail update is performed as described in the Hyper Cube Framework of 

ACO in Eq.(5.11). 

 

The local search actions are enforced as soon as the best solution of the current tour is 

determined. Following this, a comparison of the generated solutions with the best solution 

obtained so far is made. The best solution matrix is then updated if any improvement is 
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detected. Finally, the HCFACO loop continues until the termination criteria are met. The 

global optimal solution is determined as the best solution matrix member with the maximum 

value of the objective function. 

 

Algorithm 5.2  Enhanced HCFACO procedure 
 

Initialization 
- ACO parameters:[𝑛஺௡௧௦, 𝐼𝑡𝑒𝑟௠௔௫,𝑁௏  ,𝛼,𝜌, 𝜏଴] 
- Convergence rate counter: [𝐼𝑐𝑜𝑛𝑣௠௔௫] 
- initialize ACO loop counter: [𝑖𝑔𝑒 =  0] 

While (termination criteria not satisfied) Do 𝑖𝑔𝑒 =  𝑖𝑔𝑒 + 1 
- Solution table construction: 𝑃௜  =  𝜏ఈ 𝑆𝑖(𝑛஺௡௧௦,𝑁௏  )  =  𝑅𝑜𝑢𝑙𝑒𝑡𝑡𝑒𝑊ℎ𝑒𝑒𝑙𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛( 𝑃௜∑𝑃௜ ) 

- Solution evaluation: 𝑓 (𝑖𝑔𝑒, 𝑆𝑖(1 ∶  𝑛஺௡௧௦,𝑁௏  )) 𝑆∗(𝑖𝑔𝑒)  =  𝑚𝑎𝑥(𝑆௜(𝑖𝑔𝑒)) 𝑖𝑓 𝑆∗(𝑖𝑔𝑒)  <  𝑚𝑎𝑥(𝑆∗(1 ∶  𝑖𝑔𝑒 − 1)) 𝑆∗(𝑖𝑔𝑒)  =  𝑚𝑎𝑥(𝑆∗(1 ∶  𝑖𝑔𝑒 − 1)) 
                          end 
- Apply Local Search: 

• Single point mutation. 
• Insertion.                                 𝑖𝑓 𝑆௅ௌ∗ (𝑖𝑔𝑒)  >  𝑆∗(𝑖𝑔𝑒) 𝑆∗(𝑖𝑔𝑒)  =   𝑆௅ௌ∗ (𝑖𝑔𝑒) 

                            𝑒𝑛𝑑 
Global pheromone trail updating: Eq. (5.11) 
End (While) 
Optimal solution 𝑆௢௣௧  =  𝑚𝑎𝑥(𝑆∗(1 ∶  𝑖𝑔𝑒)) 
End Enhanced HCFACO algorithm 
 

 

5.5 Performance Evaluation 

The time required by an algorithm to find the global optima is widely used to evaluate its 

performance (Talbi, 2009). However, a single performance measure cannot reflect the 

effectiveness of the algorithm in exploring the design space or determining solution quality. In 
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the current study, three different groups of performance measures have been applied to ensure 

a fair evaluation of the proposed algorithm. 

 

5.5.1 Computational Effort  

In addition to the elapsed time, literature has shown that other measures can be used to measure 

computational effort. The first is the Price 𝑃𝑆, which is defined as the number of objective 

function evaluations within a search run and reflects the computational cost of the search 

process. The second measure is Practical Reliability (𝑃𝑅) and, it is defined as the percentage 

of runs that achieve Practical Optima (𝑃𝑂), at a specific run. Practical optima is defined as the 

solution with 0.1% error in the best possible solution (R. Le Riche & Haftka, 1993). The last 

is the normalized price 𝑛𝑃𝑆 ,which is defined as the ratio of price and practical reliability 

(Kogiso, Watson, Gürdal, & Haftka, 1994; R. Le Riche & Haftka, 1993; Malan & Engelbrecht, 

2014). Finally, the Performance Rate measure 𝑃௥௔௧௘, is also considered to link the computation 

effort with the number of function evaluations (Talbi, 2009). 

 

5.5.2 Solution Quality 

The solution quality of an algorithm can be measured by determining the absolute error 

between the current solution and the best-known global solution (Kogiso et al., 1994; R. Le 

Riche & Haftka, 1993; Malan & Engelbrecht, 2014). 

 

 𝑃௥௔௧௘ = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑟𝑢𝑛𝑠൭ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑠൱ . ൬𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓 𝑟𝑢𝑛𝑠 ൰ 
(5.12) 

 𝑄 = ቤ𝑆∗ − 𝑆௢௣௧𝑆௢௣௧ ቤ . 100 (5.13) 
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5.5.3 Fitness Landscape Analysis 

The design space of a combinatorial optimization problem can significantly affect the search 

performance of an algorithm. The notion of Fitness-Landscape appeared in literature as an 

answer to the question of ”what the design space looks like?”. The Fitness-Landscape is 

defined by the feasible  solutions set, the objective function (fitness) and the structure of the 

solution neighbourhood. To find the connection between the Fitness Landscape and the 

problem hardness, T. Jones and Forrest (1995) introduced a Fitness Landscape - Distance 

Correlation (FDC) to determine the hardness of optimization problems to be solved using 

Genetic Algorithm (GA). The distance mentioned here is defined as the number of movements 

that should be imposed on a Solution 𝑆௜ to eliminate dissimilarity with the optimal solution 𝑆௢௣௧ . The proposed correlation by Jones is computed using the correlation factor, 𝑟 : 

 

 

where 𝐶𝐹𝐷 indicates the 𝐶𝑜𝑣(𝐹,𝐷) and 𝜎ி ,𝜎஽ are the standard deviation of 𝐹 and 𝐷 

respectively. The values of the correlation coefficient r are limited to interval [−1,1] where 

negative values are desirable for maximization and indicate better searching performance. 

Finally, using the scattering of fitness versus the distance to the global optima can reveal 

valuable information about 𝐹𝐷𝐶 of the optimization problem solved by an algorithm (Malan 

& Engelbrecht, 2014; Stützle & Hoos, 2000). 

 

5.6 Numerical Experiments 

To demonstrate the performance of the new approach we selected a well-know NP-hard 

combinatorial optimization problem in filed of composite laminated structures. The 

optimization objective is maximizing the critical buckling load of composite laminated plate 

exposed to bidirectional compression loading. The decision variables are the fiber orientation 

of each composite layer (lamina) which form the optimal stacking sequence of the laminate (a 

group of layers). To employ ACO as an optimization algorithm for SSD optimization problem, 

 𝑟(𝐹,𝐷) = 𝐶𝐹𝐷𝜎ி .𝜎஽ (5.14) 
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there is a need to understand specific problem characteristics such as solution representation, 

constraints, and objective function formulation. In meta-heuristic algorithms, the solution 

(stacking sequence) takes the form of a bit string that consists of a combination of plies with 

the available angle fiber orientations (e.g. 0°, ±45° and 90°).The different solutions have 

integer coding with 1,2 and 3 numbers, which represent the three possible fiber orientations, 

respectively. For instance, the laminate with [2132231]௦ stacking sequence describes the 

laminate of [±45,  0ଶ, 90ଶ, 45, ±45, 90ଶ, 0ଶ ]𝑠 fiber orientations. 

 

The simplicity of using an integer representation along with significant performance gains, 

made it the most widely used method in meta-heuristic optimization algorithms for composite 

laminated design. The buckling load factor lb for simply supported rectangular laminated plate 

subjected to bi-axial loading is determined as follows:  

 

 

where 𝐷௜௝ denotes the bending stiffness, 𝑁௫ is the axial loading in x-direction, 𝑁௬ is the axial 

loading in y-direction, 𝑝 and 𝑞 are the number of half waves in 𝑥, 𝑦 directions. The critical 

buckling load factor 𝜆௖௕ is defined as the minimum obtained value of 𝜆௕ (𝑝, 𝑞). The critical 

values of 𝑝 and 𝑞 are linked to different factors such as laminate material, a number of plies, 

loading conditions and the plate aspect ratio. In uniaxial loading and simply supported plate, 

the critical buckling load is happening when 𝑝 = 1 whereas in biaxial the critical buckling 

loads it needs to be determined as the minimum value of 𝜆௕(𝑝, 𝑞) (R. Le Riche & Haftka, 1993; 

Rama Mohan Rao, 2009). Finally, the constraints in stacking sequence optimization with 

constant laminate thickness t could be imposed as follow: 

 

- Symmetry constraint is enforced by optimizing half of the laminate. 

- Balancing constraint is enforced by selecting 𝜃ଶ for the standard fiber orientation set 

of 0 , ±45 ;and 90. 

 𝜆௕(p, q) = 𝜋ଶ ൤𝐷ଵଵ൫𝑝 𝑎ൗ ൯ସ + 2(𝐷ଵଶ + 2𝐷଺଺)൫𝑝 𝑎ൗ ൯ଶ + 𝐷ଶଶቀ𝑞 𝑏ൗ ቁସ൨൫𝑝 𝑎ൗ ൯ଶ𝑁௫ + ቀ𝑞 𝑏ൗ ቁଶ𝑁௬  (5.15) 
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- Only 𝑁/4 ply orientations are needed to describe laminate as a result of balancing 

constraints. Contiguity constraint is handled by using the penalty parameter (𝛽). 

- And the critical buckling load factor objective function 𝑓௢௕௝ could be formulated as: 

 

To compare the performance of the proposed algorithm alongside the other ACO algorithms; 

we implemented all the algorithms presented here using MATLAB R2019b software. The 

benchmarking problem from the literature of stacking sequence design optimization is 

accredited to Le Riche and has been used by previous studies (Jing et al., 2015; R. Le Riche & 

Haftka, 1993). The original problem describes a simply supported plate subjected to an in-

plane biaxial loading as shown in Figure 5.2. 

 

 

 
Figure 5.2 Simply supported plate subjected to biaxial loading 

 

 𝑓௢௕௝ = (1 − 𝛽). max (𝜆௖௕(𝑝, 𝑞))                                     (5.16) 



110 

The thickness of each ply 𝑡௜ is assumed constant, and the ply orientations are limited to 0 , ±45  

and 90  sets of angles. The number of plies 𝑁௅ is constant. The required properties, dimensions, 

and loading conditions are listed in Table 5.1 and Table 5.2. The objective function is set to 

maximize the critical buckling load. The constraints are integrated into the solution (e.g., 

balanced laminate, symmetrical, etc.). The implemented ACO algorithms were executed on 

the same computer for the same number of experiments; 𝑁௘௫௣ = 200. This number is used to 

overcome the stochastic behaviour of meta-heuristic algorithms (R. Le Riche & Haftka, 1993). 

Furthermore, this number of experiments is conducted over ten different random generating 

seeds of 301, 2,50,75, 111, 200,167, 225 ,11 𝑎𝑛𝑑 25. Then the average of the performance 

measures values was used in the comparison of different ACO algorithms. 

 

Table 5.1 Graphite-epoxy lamina’s properties 
 𝐸ଵ(𝐺𝑃𝑎) 𝐸ଶ(𝐺𝑃𝑎) 𝐺ଵଶ(𝐺𝑃𝑎) 𝑣ଵଶ 127.59 13.03 6.41 0.3 

 
Table 5.2 Graphite-epoxy lamina’s geometrical and loading data 

 𝑁௅ 𝑡(𝑚𝑚) 𝑎(𝑚𝑚) 𝑏(𝑚𝑚) 𝑁௫(𝑁/𝑚) 𝑁௫ 𝑁௬⁄  64 0.127 508 254 175 1 

 

Lastly, all ACO algorithms were examined at two different levels of convergence rate, slow 

and fast. The slow rate enforces the algorithm searching loop to stop after 56 iteration without 

improvement, while the fast rate needs just 10 iterations to be terminated (R. Le Riche & 

Haftka, 1993). 

 

5.6.1 ACO Parameters Setting 

To ensure a fair assessment of the ACO algorithms performance, the following standard ACO 

parameters were assumed for all implemented algorithms: 
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number of Ants 𝑛஺௡௧௦  =  25, the maximum number of iterations 𝐼𝑡𝑒𝑟௠௔௫ = 1000, evaporation 

rate 𝑟 = 0.1, the parameter of the pheromone trail relative importance 𝛼 = 1 , initial one trail 𝜏଴ = 0.004 (except for MMACO and BWACO algorithms were 𝜏଴ = 1). Best solution 

probability 𝑃௕௘௦௧ = 0.05 for MMACO and BWACO Algorithms and lastly the coefficient of 

worst solution pheromone trail 𝜆 = 0.6 for BWACO algorithm only. 

 

5.6.2 Termination Criteria 

All algorithms will stop as soon as one of the following conditions are satisfied: 

- If there is no improvement in the solution after 10 (fast rate) or 56 (slow rate) iterations. 

- If the number of iterations exceeds 150 and the best solution is equal to the worst 

solution (means all artificial ants following the same path). 

- If a maximum number of iterations have been generated. 

 

5.7 Results 

The case study described in the previous section has been optimized using nine different 

algorithms: standard ACOA, EACO, RBACO, MMACO, BWACO, HCF/EHCF for both 

ACO and MMACO algorithms. Analysis of the algorithm’s performance will be divided into 

two parts. First, the performance of ACO algorithms with Hyper Cube Framework will be 

assessed. The second part is dedicated to the comparison of EHCFACO algorithm with the rest 

of ACO algorithms. 

 

5.7.1 Hyper Cube Framework ACO Algorithms Results Analysis 

Referring to section 5.3.5, the Hyper Cube Framework (HCF) can be applied for both versions 

of the standard ACOA and MMACO. Hence, this part of the analysis is devoted to determining 

which version of both ACO algorithms, with HCF and EHCF, could exhibit better 

performance? The performance measures for the original ACOA,MMACO, HCFACO, 
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HCFMMACO, EHCFACO, and EHCFMMACO are listed in Table 5.3. The performance 

values listed in Table 5.3 reveal that applying HCF to the ACOA has positively affected the 

overall performance of ACO. The average practical reliability increased by 22 − 56% and the 

normalized price declined from 51.17 to 36.91 for fast convergence rate and from 181.12 to 94.24 for slow one. The performance rate doubled at slow rate while remain the same for the 

fast. The FDC correlation coefficient 𝑟 decreased slightly for both levels of convergence. 

 

Table 5.3 The performance measures of Hyper Cube Framework ACO algorithms 
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Elapsed time, 𝑡௦, min 

Slow 
 
Fast 

0.87 
 
3 

.01 
 

4.15 

2.16 
 

6.86 

1.12 
 

4.62 

0.96 
 

6.68 

1.34 
 

4.39 

Reliability  
     % 

Slow  
 
Fast 

35.71 
 

36.45 

77.1 
 

93.15 

89.6 
 

98.95 

16 
 

87.7 

13.17 
 

91.05 

54.36 
 

98.25 

Normalized 
price, 𝑛𝑃௦ Slow 

 
Fast 

51.17 
 

181.12 

36.91 
 

94.24 

28.92 
 

81.49 

152.23 
 

118.53 

169.26 
 

117.3 

52.2 
 

98.25 

Performance 
rate, 𝑃௥௔௧௘ 

Slow 
 
Fast 

0.0196 
 

0.0056 

0.0272 
 

0.0106 

0.0347 
 

0.0123 

0.0068 
 

0.0088 

0.0063 
 

0.0090 

0.0206 
 

0.0106 

Quality 
    % 

Slow 
 
Fast 

99.69 
 

99.69 

99.93 
 

99.97 

99.96 
 

99.98 

98.28 
 

99.96 

98.57 
 

98.57 

99.81 
 

99.98 

Fitness-Distance 
Correlation, 𝑟 

Slow  
 
Fast 

-0.80 
 

-0.84 

-0.67 
 

-0.71 

-0.79 
 

-0.73 

-1 
 

-0.82 

-1 
 

-0.77 

-0.82 
 

-0.75 
 

Further improvement of HCFACO performance is acquired when the proposed local search 

movements are imposed. The average practical reliability became more than twice of the 

standard ACO and the normalized price decreases more to hold at 28.92 instead of 51.17 and 81.49 instead of 181.2 for both convergence rates. The performance rate is slightly increased 

and the FDC correlation coefficient r is partially improved. On the contrary, HCFMMACO 

performed poorly compared to the original MMACO. However, the performance of MMACO 
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has improved when the Enhanced HCF is applied, but the computational effort became more 

costly. Based on these results, we conclude that EHCFACO delivers an inexpensive solution 

with significant performance. Eventually, the solution convergence of the algorithms 

mentioned above has been plotted Figure 5.3, for the same selected experiment (seeds=75). 

 

5.7.2 Other ACO Algorithms Results Analysis 

All ACO algorithms have been successfully found the best-known value of the maximum 

critical buckling load factor, 𝜆௖௕. A different samples of optimal SSD obtained by different 

ACO algorithms were listed in Table 5.4. The solution convergence of EACO,RBACO and 

BWACO for a selected experiment (seeds=75) has been graphically illustrated in Figure 5.4. 

 

Table 5.4 The optimal stacking sequence for 64 ply laminates subjected to biaxial loading 
without contiguity constraint (𝑁௬ = 𝑁௫ = 1 𝑎𝑛𝑑 𝑎 𝑏⁄ = 2) 

 

Algorithm Optimal stacking sequence design Critical buckling 
load factor, 𝝀𝒄𝒃 

EACO [2333332333323333]𝑠 [±45°/90°ଵ଴ /±45°/90°଼/ ±45°/90°଼]௦ 
3973.01 

RBACO [2333323333333332]௦ [±45°/90°଼/±45°/90°ଵ଼/45°] ௦ 
BWCACO [3333232323222222]௦ [90°଼/ ±45°/90°/±45°/90°/±45°/90°±45ଶ]ௌ 

EHCFACO [3333322322232222]௦ [90°ଵ଴/±45°ଶ/90°/±45°ଷ/90°/±45°଼]ௌ 
 

It is observed from Table 5.4 that the optimal stacking sequence design followed the same 

pattern of switching between two groups of 90ଶ and ±45  fiber orientations which confirm the 

results of previous studies(Jing et al., 2015; R. Le Riche & Haftka, 1993). On the other hand, 

the solution convergence plot in Figure 5.4 illustrate that both RBACO and BWACO 

algorithms develop gradual search trends on their way to the optima whereas EACO and 
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EHCFACO algorithms smoothly converge to the global optima. Further, the numerical 

experiments confirm the fluctuation of ACO algorithms in finding the global optimal solution 

due to their stochastic nature, as illustrated in Figure 5.5. 

 

According to the introduced performance assessment criteria in section 5.5, the average values 

of different performance measures of reliability, performance rate, solution quality, normalized 

price, and searching effort coefficient are determined for EACO, RBACO, BWACO at fast 

and slow convergence rates. These results, alongside with EHCFACO results, are plotted in 

Figure 5.6 to Figure 5.12 to provide a sensible comparison of the performance evaluation of 

the proposed algorithm with other ACO algorithms. The average practical reliability of the 

algorithms is introduced in Figure 5.6. Both EACO and RBACO algorithms show low practical 

reliability values, with 10% and 8% respectively, while BWACO presented better value at the 

slow rate of convergence but it poorly performed at the fast rate. The EHCFACO algorithm 

exhibited a significant reliability values of 89.6-98.95%. Furthermore, it demonstrated the 

highest performance rate measure (0.012-0.035), see Figure 5.9. The solution quality results 

of the algorithms are summarized and depicted in Figure 5.10 which reveals that all ACO 

algorithms produce an excellent solution quality for this particular case study. 

 

In terms of solution cost, the normalized price results plotted on the scatter chart that illustrated 

in Figure 5.7. As mentioned before, the normalized price measure reflects the balance between 

the solution cost and the reliability. So, it is quite clear that EHCFACO outperformed other 

ACO algorithms. BWACO comes second at slow convergence rate, whereas RBACO and 

EACO deliver a costly solution. 
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(a) ACOA 

 

 
(d) MMACO 

 
(b) HCFACO 

 
(e) HCFMMACO 

 
(c) EHCFACO 

 
(f) EHCFMMACO 

 
Figure 5.3 Solution convergence of ACO-MMACO and their Hyper Cube Framework 

variants 
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(a) EACO 

 
(b) RBACO 

 
(c) BWACO 

 
Figure 5.4 Solution convergence of EACO, RBACO and BWACO 
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(a) EACO 

 
(b) RBACO 

 
(c) BWACO 

 
(d) EHCFACO 

 
Figure 5.5  Critical buckling load factor vs. number of experiments 
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Figure 5.6 Reliability of EACO, RBACO, BWACO and EHCFACO algorithms 

 

 
 

Figure 5.7 Normalized price of EACO, RBACO, BWACO and EHCFACO algorithms 
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Figure 5.8 Correlation coefficient of EACO, RBACO, BWACO and 
EHCFACO algorithms 

 

  

 
Figure 5.9 Performance rate of EACO, RBACO, BWACO and EHCFACO 

algorithms 
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Figure 5.10 Solution quality of EACO, RBACO, BWACO and 

EHCFACO algorithms 
 

 

 
Figure 5.11 Elapsed time of EACO, RBACO, BWACO and EHCFACO 

algorithms to find the optimal solution 
 

90

92

94

96

98

100

EACO RBACO BWACO EHCFACO

Q
ua

lit
y,

%

Fast convergence

Slow convergence

0

2

4

6

8

EACO RBACO BWACO EHCFACO

Ti
m

e,
se

c

Fast convergence

Slow convergence



121 

 

 

5.8 Conclusion  

Since many of the structural optimization problems are hard to solve within the polynomial 

computational time (NP), this study introduces a new optimization approach to solve the 

structural combinatorial optimization problems. The new approach uses an enhanced version 

of  Hyper Cube Framework ACO (EHCFACO) that integrates two movements of insertion and 

 
(a) EACO 

 

 
(b) RBACO 

 

 
(c) BWACO 

 

 
(d) EHCFACO 

 
Figure 5.12 Fitness VS. Distance to global optimal solution of ACO Algorithms 
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bit flip to improve the local search feature of the original algorithm. A well-known benchmark 

case study of a composite laminated plate subjected to bi-directional buck ling loads has been 

selected to investigate the performance of the proposed algorithm. Furthermore, five different 

ACO variants were concisely presented and implemented to solve the same case study. General 

performance assessment measures, such as reliability, normalized price, . . . etc., have been 

determined for all presented ACO algorithms. It is observed that applying Hyper Cube 

Framework (HCF) to standard ACO has a significant influence on the overall performance of 

ACO. Furthermore, imposing local search movements, as an enhancement of exploitation 

effort, helped HCFACO to deliver a cost-effective solution. These improvements in ACO 

performance are in line with suggestions made by previous studies that rewarding HCF and 

local search movements the dominant factor in improving standard ACO algorithm 

performance (M. Dorigo et al., 2006; Marco Dorigo & Stützle, 2019). In general, the proposed 

EHCFACO outperforms the other ACO variants, where it offers a cost-effective solution.



 

CHAPTER 6 
 
 

OPTIMIZATION OF PERFORATED COMPOSITE LAMINATED PLATE 
SUBJECTED TO UNCERTAIN GEOMETRICAL AND LOADING CONDITIONS 
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6.1 Abstract  

Nowadays, the real-life engineering applications are exposed to uncertainty influences of 

loading conditions or manufacturing errors. The traditional deterministic design optimization 

approaches are becoming more limited to offering cost-effective designs in similar 

circumstances. On the other hand, applying probabilistic design optimization techniques 

solved many deterministic approaches disadvantages. Unfortunately, the availability and 

accuracy of the probabilistic information of different design variables greatly affect the final 

design quality. The third option is the robust design (or uncertainty design) optimization, which 

demonstrated a significant performance in solving different practical engineering designs. One 

of the efficient methods of robust design optimization is the anti-optimization approach. The 

optimization process is carried out at two levels of optimization and anti-optimization to find 

robust optimal design configuration. However, in a lack of analytical solutions available for 

the objective function of a given design, the anti-optimization technique becomes a 

computationally expensive and less attractive option for the designer. 

 

In the current study, a robust design optimization framework has been proposed to solve a 

novel optimization problem of a perforated composite laminated plate subjected to the 
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uncertainty of buckling loading and location of the cut-out center point. A cutting-edge 

technique of Artificial Neural Network (ANN) is used here to develop a precise prediction of 

the objective function values which eliminate the negative impact of accompanied expensive 

function evaluation when the anti-optimization procedure is used. The obtained results 

revealed interesting findings and proved the worthiness of using the proposed framework to 

optimize such designs. 

 

Keywords: Robust design, optimization, perforated composite laminated plate, buckling, 

Meta-heuristics, Cuckoo Search. 

 

6.2 Introduction  

The design of composite laminated structures is influenced by different uncertainties in loading 

conditions, geometric imperfections, material characteristics and any other designing or 

manufacturing parameters. The efficient design approach needs to consider the existence of 

such uncertainties to prohibit the different failure modes that may occur simultaneously, such 

as in the design of structures subjected to buckling loads (Lombardi & Haftka, 1998). Most of 

the prior researches have applied one or more of three different design optimization approaches 

of deterministic, probabilistic and robust design optimization. The deterministic design uses 

the factors of safety to deal with uncertainty influences. Still, it can result in an inefficient 

design that fails to spot one or more failure modes. Also, it becomes, even more worse when 

different failure modes are optimized against the design limits (Beck & Gomes, 2012).  

 

The probabilistic approach has shown better results compared to the deterministic approach. 

Unfortunately, probabilistic design optimization is very sensitive to the accuracy and amount 

of statistics design data. The scarcity or inaccurate data leads to misfit the probabilistic 

distribution of uncertainty domains of the design variables (Lombardi & Haftka, 1998; Qiu & 

Wang, 2010). The robust design optimization became the preferred approach by engineers, 

where it eliminates the uncertainties influences via considering bounded uncertainty domains 

of the design variables (Isaac Elishakoff & Ohsaki, 2010; A Kaveh et al., 2019).  
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The anti-optimization approach is the common form of robust design optimization for structure 

applications, also known as a two-level optimization, and it was introduced originally by I 

Elishakoff et al. (1994). The anti-optimization levels create a nested optimization/anti-

optimization loop where the top level is devoted to determining the optimal solution of a given 

design. In contrast, the bottom level is anti-optimize the obtained optimal solution to find the 

worst scenario case. The proposed approach was formulated to optimize ten-bar structure 

weight subjected to the uncertainty of loading, stress and displacements. The uncertainty of 

loading variations was limited to a multi-dimensional box uncertainty domain. Based on their 

work findings, the authors pointed out that the anti-optimization approach overcomes the 

numerical complexity that accompanied the probabilistic optimization. 

 

Venter and Haftka (1996) introduced a two species Genetic Algorithm to reduce the 

computational effort of GA as an optimizer of two-level problems. They demonstrated the 

effectiveness of the improved algorithm by solving the anti-optimization problem of a 

composite laminate plate subjected to in-plane bi-directional compression loading in addition 

to the uncertain out-of-plane uniform load. The proposed algorithm exhibited a significant 

saving in computational effort. Adali et al. (2003) studied the maximization of the critical 

buckling load of a composite laminated plate subjected to uncertain loading conditions and 

lamina material type. Both deterministic and robust optimization approaches were examined. 

The authors concluded that deterministic critical buckling load factor values were less than 

these obtained by the robust optimization approach as a result of different stacking sequence 

design obtained by both approaches.  

 

Liao and Chiou (2006) proposed a new method to minimize composite laminated structures 

weight subjected to sensitivity, stress concertation, thermal buckling load and uncertainty 

constraints. The proposed method considered uncertainties of design and non-design variables 

(e.g. ply orientation and material properties) to formulate a robust design problem. A Finite 

Elements Model (FEM) was used to determine the objective function at the optimization level. 

Simultaneously, an analytical solution of a simply supported composite laminated plate was 

used at the anti-optimize level. The proposed method showed a significant influence of the 
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material properties' uncertainty on the optimal weight of the laminated plate.  Following this 

evidence, the authors recommended using a big safety factor when the composite laminate 

structure was designed based on a deterministic approach. Han, Jiang, Gong, and Huang (2008) 

developed a method that uses the interval analysis with a hybrid numerical method to compute 

the transient response bounds of composite laminated plates to load and material properties 

uncertainties. The influence of different design variables uncertainty was investigated. The 

transient response bounds acquired by using first-order Taylor expansion together with interval 

extension. The results imply that the proposed method was confined to a small level of 

uncertainty applications. On the other side, the method could be extended to solve hybrid 

composite laminated structures. Qiu and Wang (2010) studied the solution of the anti-

optimization problem that integrated a deterministic optimization technique with an interval 

analysis method to remedy the uncertainty influences of design variables. The interval set is 

generated based on the uncertain design variables. The results approved the superiority of 

robust design optimization compared to deterministic and probabilistic optimization. 

 

Kalantari, Dong, and Davies (2017) conducted a robust multi-objective optimization study of 

a hybrid composite laminate. The minimization of the laminate weight and cost were the 

optimization objectives which confined to design variable and manufacturing uncertainty 

constraints. A modified GA algorithm was utilized to carry out an anti-optimization procedure. 

Their study found that the composite laminate weight and cost were increased when the 

uncertainty influences included. A Kaveh et al. (2019) suggested a robust optimization 

procedure that considers uncertain bi-directional buckling loading of a hybrid composite 

laminate plate. Two meta-heuristics of the GA and Quantum-inspired Evolutionary Algorithm 

(QEA) were integrated to handle the anti-optimization procedure. Two domains of uncertainty 

were examined for buckling loading for different aspect ratios. The obtained results were 

compared to those reported by Adali et al. (2003), and they demonstrated a  good agreement.  

 

Despite this considerable body of literature on the anti-optimization approach as a robust 

design technique for composite structures, such as beams or solid plates, far too little attention 

has been paid to the robust optimization of the perforated composite laminated plate. This 
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could be explained by the computational cost associated with the objective function evaluation 

of such structures, where the analytical solution is not available. Furthermore, using GA as an 

optimizer of the anti-optimization problem dominates the previous studies reviewed here, even 

though GA is known as an expensive optimization algorithm.  

 

However, the central thesis of the current study is finding how the anti-optimization approach 

could be applied to solve optimization problems that have an expensive objective function at 

a reasonable computational cost. Accordingly, a novel robust optimization framework has been 

introduced. To demonstrate the effectiveness of the proposed framework, a case study of a 

perforated composite laminated plate subjected to the uncertainty of buckling loading and 

location of the cut-out center point has been examined. The plate edges were simply supported, 

and the objective of the optimization is finding the optimal Stacking Sequence Design (SSD) 

that maximize the critical buckling load factor. An Artificial Neural Network (ANN) technique 

was used to eliminate the expensive cost that accompanied the buckling analysis of the 

perforated laminated plate. The ANN is trained based on data samples generated by the Latin 

Hypercube (LHC) plan. The design responses to these inputs were determined by the 

commercial FEA software of ANSYS workbench. Then, the trained ANN used to replace the 

expensive objective function in the anti-optimization procedure.  

 

Eventually, it could be said that the proposed framework offered a cost-effective solution for 

the examined  NP-hard optimization problem of the perforated laminated plate. 

 

6.3 Problem Formulation  

The design optimization of the perforated composite laminated plate for maximum critical 

buckling load has been studied using deterministic approaches. Hu and Lin (1995) conducted 

a deterministic optimization study of a rectangular plate with a circular cut-out located at the 

plate center. The optimization objective was maximizing the critical buckling load factor of 

the symmetrically laminated plate. In contrast, plate thickness, aspect ratio, fiber orientation 

and end conditions were the design variables of the optimization problem. One of their 
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interesting concluded findings is the buckling loading capacity of the perforated laminated 

plate could be surpassing the similar solid plate, without cut-out, by tailoring the fiber 

orientation and cut-out diameter. Other deterministic studies carried out by D. Kumar and 

Singh (2012) investigated different design variables' effects on stability and failure strength of 

composite laminate subjected to unidirectional compression and in-plane shear loading 

conditions. Different cut-out shapes have been examined for a set of three fiber orientation of  [±45°]௦, [0°ଶ   90°ଶ ]௦ and [0°ଶ  ± 45°  90°ଶ]௦ configurations. They observed that a 

perforated laminated plate with a circular cut-out shape exhibits better strength utilization than 

a laminated plate with other shapes. 

 

A similar case study will be discussed in the next sections, see Figure 6.1; but this time, it is 

optimized against the uncertainty of loads, diameter ratio and location of cut-out center points. 

 

6.3.1 Anti-Optimization Problem Formulation  

As mentioned in the introduction, the anti-optimization procedure consists two levels of 

optimization, at the top of the loop, and anti- optimization at bottom level of the loop. The 

objective of the optimization level is maximizing the critical buckling load, 𝜆௖௥, while the 

purpose of anti-optimization level is finding the worst-case scenario due uncertainty. Figure 

6.1 illustrates a perforated composite laminated plate exposed to in-plane buckling loading 

conditions where 𝑁௫ and 𝑁௬ are uncertain loads belongs to uncertainty domain 𝑈𝑝 which is 

confined by: 

 

 𝑝 represents the uncertainty domain exponent that gives the domain shapes of triangular, 

circular and rectangular for 𝑝 = 1,2,∞ respectively, see Figure 6.2.  The values of 𝑁௫, 𝑁௬ 𝜖 𝑈௣ 

need to be determined by an anti-optimization procedure such that critical buckling load 

factor, 𝜆௖௥, of the perforated laminated plate is minimized for all possible design variables 

configuration.  

 𝑈௣ =  ൛൫𝑁௫,𝑁௬൯| 𝑁௫ ≥ 0,𝑁௬ ≥ 0,𝑁௫௣ + 𝑁௬௣ = 1ൟ (6.1) 
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Figure 6.1 Loading and boundary conditions of the simply supported perforated laminated 

plate. 
 

 

 

 

 

 

(a) 

 
 

 

 
 
 

(b) 

 
 

 

 
 

(c) 
 

Figure 6.2 Different uncertainty loading domains. 
 

The set of design variables consists of the fiber orientation angle 𝜃௜, circular cut-out diameter 

(or diameter ratio) 𝑑 𝑏⁄  and the cut-out center positions 𝑃௜. The other laminated plate design 

variables are imposed, such as width 𝑎, height 𝑏 and ply thickness 𝑡௣. Thereby, the critical 

buckling load factor could be written as: 

 

  𝜆௖௥(𝑚,𝑛) = min 𝜆( 𝜃௜ ,𝑑 𝑏⁄ , 𝑐௜ ,𝑁,𝑚,𝑛) 
(6.2) 

𝑝 = 1 0 𝑁௫ 
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Where 𝑚,𝑛 are buckling modes in 𝑥 and 𝑦 directions. The anti-optimization problem could be 

formulated to find uncertainty values of 𝑁 = ൫𝑁௫ ,𝑁௬൯ 𝜖 𝑈௣ as follow: 

 

 

The Eq. (6.3) results in the worst-case scenario, which needs to be optimized to find the optimal 

design variables values that yield the maximum critical buckling load factor. 

 

6.3.2 Optimization Problem Formulation 

The current study focuses on optimizing the SSD that maximizes the buckling load of the 

perforated laminated plate subjected to uncertainty loading and dimensions conditions. 

  

a.) Optimal solution representation 
 

The manufactured laminate layers have limited sets of fiber orientations such as 0°, ±45°, and 90°. Consequently, the design domain turns into a discrete one, and the 

optimization problem becomes NP-hard combinatorial problem. This type of optimization 

problem is known for its complexity and thus, selecting the suitable optimization method plays 

a major part in finding an inexpensive optimal solution with good accuracy. The Meta-

Heuristics (MH) exhibited a significant performance in solving different SSD optimization 

problems of composite laminated structures. To some extent, the MH solutions for SSD 

optimization problems take the form of a bit string that consists of a combination of plies with 

the available orientations set. The simplicity of using an integer representation and its 

significant performance makes it the most widely used method in MHs for SSD optimization 

of composite laminated structures (R Le Riche & Haftka, 1995).  

 

 𝜆௖௥(𝜃௜ ,𝑑 𝑏⁄ , 𝑐௜ ,𝑁∗,𝑚,𝑛) = 𝑚𝑖𝑛𝑁𝜖𝑈௣ 𝜆(𝑃௜ ,𝑑 𝑏⁄ ,𝜃௜ ,𝑁,𝑚,𝑛) (6.3) 
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Figure 6.3 shows the interpretation of integer representation of laminate with [3 3 3 2 1 1]௦ 
stacking sequence where numbers 1,2 and 3 representing 0°, ±45°, and 90° fiber orientations, 

respectively.    

 

 
 

 
 

Figure 6.3 Solution representation of symmetrical and balanced laminate. 

 
b.) The objective function 

 
The objective function of maximizing critical buckling load factor for a laminate subjected to 

uncertainty conditions of buckling loading and location of cut-out center could be written as 

follow: 

 

where 𝜆௖௕ is the critical buckling load factor that buckles a simply supported plate subjected 

to in-plane loads of 𝜆𝑁௫ and 𝜆𝑁௬ into 𝑚 and 𝑛 half-waves in 𝑥,𝑦 directions. The smallest 

value of 𝜆 (𝑃௜ ,𝑑 𝑏⁄ ,𝜃௜ ,𝑁,𝒎,𝒏) is considered the critical buckling load factor. The critical 

values of 𝑚 and 𝑛 are linked to different factors such as laminate material, a number of plies, 
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loading conditions, and the plate aspect ratio. In uniaxial loading of a simply supported plate, 

the critical buckling load occurs when 𝑚 = 1 whereas in biaxial critical buckling loads, it 

needs to be determined as the minimum value of  𝜆 (𝑃௜ ,𝑑 𝑏⁄ ,𝜃௜ ,𝑁,𝒎,𝒏), (Söyleyici, 2011). 

 

c.) The constraints 
 

The design of the composite should respect certain limitations of manufacturing and certain 

design considerations. In the literature, some rules have been proposed to improve the 

effectiveness of a laminate design for different applications (Javidrad, Nazari, & Javidrad, 

2017; Kim, Kim, & Han, 2005). Manufacturing limitations could be the thickness of ply or 

fiber orientations that are limited to available manufacturing values. For example, the available 

fiber orientations are usually limited to values of ±45°, 0°, and 90° angles, whereas the ply 

thicknesses are limited to specific step values. Additionally, symmetrical and balanced 

laminate makes the manufacturing process simpler. Another notable design constraint is the 

congestion of the same orientation plies, which cause the undesirable effect of laminate crack 

propagation. 

 

Generally, these constraints of SSD optimization problem, with constant laminate thickness, 

could be handled as follows: 

- The symmetry constraint is enforced by optimizing half of the laminate. 

- Balancing constraint is enforced by selecting 𝜃ଶ for the standard fiber orientation 

set of 0°, ± 45°, and 90°. 

- Only 𝑁/4 ply orientations are needed to describe laminate because of balancing 

constraints. 

- The contiguity constraint is handled using the penalty parameter (𝜌), (R. Le Riche 

& Haftka, 1993). 

The final objective function form, that includes the contiguity penalty parameter (𝜌), could be 

written as: 

 𝑓௢௕௝ = (1 − 𝜌).𝑚𝑎𝑥 ሼ𝑚𝑖𝑛[𝜆௕(𝑃௜,𝑑 𝑏⁄ ,𝜃௜ ,𝑁,𝑚,𝑛)]ሽ (6.5) 
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6.4 The Proposed Uncertainty Optimization Framework  

Figure 6.4 illustrates the proposed procedure to solve the uncertainty optimization problem of 

the perforated composite laminated plate. The procedure starts with the initialization step 

where the laminate information is given (e.g. material properties, geometry dimensions, ...etc.). 

The procedure starts with the pre-investigation of a certain set of design variables to determine 

the initial worst-scenario case. Then the obtained geometrical settings are transferred to the 

ANN block to generate inputs data sample that will be used to train the ANN. The generated 

ANN prediction function is used as the objective function of the optimization/anti-optimization 

of the perforated composite laminated plate. The loop of optimal/anti-optimal solutions will 

continue until the termination criteria are met.  

 

 
 

Figure 6.4 Proposed robust optimization procedure. 
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6.4.1 Black-Box Function 

The black-box function term is used to describe the expensive objective functions that consume 

long computational time. Mostly, these functions values determined using black-box software 

(e.g. Ansys WB) or even the observations of experimental work.  

 

Ansys Workbench is a well-known product design software, and it covers different types of 

engineering design problems. One of the recent ANSYS Workbench features is Ansys 

composite PrePost (ACP), which deals with designing those products built-up using layered 

composites. ACP gives the designer the ability to define the complex parameters of the 

composite structure interactively such as the layers number, fiber orientations, ply thickness 

and materials of each layer group. 

 

 

 
Figure 6.5  Ansys Composite Pre-post (ACP) model analysis flowchart  

Taken from (Ahmid2019) 
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The definition of the laminated geometry is the basic step of the product design, and this 

geometry is used next to create the model mesh and to define the boundary conditions as well 

as the loading, see Figure 6.5. ACP has two processing modes, pre, and post, where all 

composite geometry definitions and meshing model could be created in the pre-processing 

mode, whereas the post-processing is evaluating the design analysis results. In the current 

study, Pre-post is used alone where there is no need to do a post-processing step, and the critical 

buckling load is determined through the buckling analysis. 

 

6.4.2 Python Interface (PyI) 

ANSYS Workbench affords the capability of recording all Graphical User Interface (GUI) 

actions. This feature is called journaling, and it creates a scripting file written in Python 

programming language. Running the journal file from the ANSYS Workbench menu or the 

command prompt will repeat all actions of the model creation. The user can modify and reuse 

this file in the way that he needs, (Ansys, 2015). This feature of journal scripting is employed 

here to create a set of 𝑥,𝑦 data set, where 𝑥 represents the random inputs of the design vector 

generated using the LHC sample plan while 𝑦 are their equivalent responses determined by 

ANSYS Workbench. The developed Python file is used to transfer the determined critical 

buckling load factor (or 𝑦 ) back into the Matlab code to fill the 𝑥, 𝑦 data matrix that is used to 

train the ANN. 

 

6.4.3 Artificial Neural Network (ANN) 

ANN is a deep learning algorithm that simulates the neuron structure in the human brain, and 

it is originally presented by Hinton (1986). Even though the concept of deep learning and ANN 

presented a few decades ago, but it did not find the appropriate attention until recently. The 

main barriers confronted deep learning was the availability of data and the computational 

power which are needed to build and train the learning model. These barriers are demolished 

over time, and deep learning algorithms gain momentum due to the abundance of the data and 

computational power. 
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The neuron is the main block of an ANN algorithm, which creates a linear combination 

activated by a nonlinear function, see Figure 6.6. The neuron works as a node where input 

signals are loaded, and certain computations proceeded. The input signals, 𝑥௜, received from 

raw data or from another neuron in the prior layer. The weight (wi) and bias (b) are the design 

parameters of the ANN, where weights are applied to the input signals followed by summation 

and then adding the bias. 

  

 
 

Figure 6.6  Typical structure of an artificial neuron. 
 

Eventually, the obtained linear combinations are activated using a nonlinear function such as 

a sigmoid function to determine the output value (𝑦௜). The deep learning model of an ANN is 

formed by connecting a specific number of these neurons to respect the net scheme. In the 

current study, the feedforward neural network scheme is used through the fitnet function in the 

Matlab program. This kind has three main types of layers; the first layer called the input layer, 

which contains the input data set, the second is the hidden layers that have a number of 

connected neurons, and the last one is the output layer that predicts the desired output, see 

Figure 6.7. 

 

Based on the given data set, the net starts to find the connection between the input and output 

data that form a nonlinear relation. It occurs through a process called learning of the network, 

and it is carried out by using different training algorithms. Once the net learned how to find 

the output value of each input, it could be used to predict the output value of any other inputs.  
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Figure 6.7  Structure of the feedforward neural network. 

 

Figure 6.8 shows the different steps of building ANN used here, and each step is briefly 

explained in the following subsections. 

 

a.) Data Sampling 
 

The first step in developing a neural network model is collecting the data set of the designated 

problem. The data set consists of inputs, which need to be randomly generated, and outputs 

that need to be determined by the black-box function. Thus, generating the random sample of 

the inputs has great impacts on the quality of the data set created. There are a variety of 

sampling methods that could be used; here, a Latin Hypercube (LHC) design plan has been 

employed. LHC is a   statistical scheme to generate a random sample of variables values that 

fulfill a certain criterion. LHC divides the range of each variable into a number of equal 

intervals. To respect LHC requirements, the number of interval needs to be the same for all 
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variables. LHC takes random samples one at a time, knowing which samples have been taken 

so far. Thereby, LHC ensures sampling each variable range fairly with the least possible 

number of samples (Iman, Helton, & Campbell, 1981). 

 

 

 
Figure 6.8 ANN building flowchart. 

 

However, to apply the LHC plan for the current design problem, there is a need to understand 

that the input vector,𝑋, have a mixed type of design variables of real and integer numbers. The 

design vector consists of the center of the cut-out 𝑃௜, the diameter ratio 𝑑/𝑏 , stacking sequence 

configuration (or SSD) 𝜃௜, and loading conditions 𝑁௜.  
 

 𝜃௜ is a vector of integers between 1 and 3; they represent the available fiber orientations, and 

its length depends on the number of the laminate plies.  As soon as the input samples were 

created, they sent to the black-box function program, ANSYS, to find the corresponding output 

values described in section 6.4.2. 
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b.) ANN Training and Testing 
 

When the data set becomes available, it will be split into two groups of training data and testing 

data. The training data dedicated to training the ANN to learn the relationship between the 

input and output values; thus, it could predict the output of any other input values. The learning 

process is carried out using different algorithms that consist of a certain set of blocks designed 

to adjust the neuron’s weights and bias. The training data usually hold about 60-90% of the 

whole data set while the remaining data used to test the solution generalization of the network 

(I. N. Da Silva, Spatti, Flauzino, Liboni, & dos Reis Alves, 2017). In the current study, 85 

percent of the data set used to train the network while 15 percent used for the network solution 

testing. The training algorithm used here is called Bayesian Regularization backpropagation, 

which is known for its well-generalized networks. 

  

6.4.4 Anti-optimization Procedure  

As mentioned in the introduction, the anti-optimization procedure has two levels of 

optimization and anti-optimization, which work to find the robust optimal SDD that considers 

the uncertainty influences of buckling loading and location of the cut-out center. Two different 

MHs were selected to conduct this process, and they were introduced concisely in the following 

sections. 

 

a.) Adapted Discrete Cuckoo Search Algorithm (ADCSA) 
 
The original Cuckoo Search algorithm (CS) is designed to solve unconstrained continuous 

optimization problems (X.-S. Yang & Deb, 2009). CS demonstrated a significant performance 

in solving several NP-hard optimization problems such as TSP, scheduling and truss weight 

optimization problems. Since CS presented in 2009 by Yang, various improvements and 

modifications were presented. Some of the developed CS variances tried to deal with the 

discreteness nature of real-life applications. Unfortunately, most of those discrete CS variants 

were designed to solve an appointed optimization problem. For instance, the Binary CS (BCS) 



140 

is anticipated by Gherboudj et al. (2012) to solve the knapsack problem. However, other 

variants were introduced as more general-purpose variants such as Discrete CS (DCS) by A 

Kaveh and Bakhshpoori (2013), which uses the approach of rounding to the nearest discrete 

value for the newly generated solutions. More recently, Loubna et al. (2017) suggested another 

discrete CS variant based on a rank-value approach where the new solutions determined based 

on the integer-order (rank) of each possible discrete value in the design domain. This variant 

applied to the discrete problem of image recognition, and the obtained results reveal the 

efficiency of the rank-value approach.  

 

Algorithm 6.1  Adapted Discrete Cuckoo Search Algorithm (ADCSA) 
Taken from (A. Ahmid, Thien-My, & Le, 2020)  𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏:  

- Initial and evaluate a random population of 𝑛 host nests (𝑥𝑖, 𝑓𝑖) using Latin 
HyperCube (LHC) random generator. 𝑾𝒉𝒊𝒍𝒆 (convergence not met) 𝐷𝑜: 

- Generate a new Cuckoo (population) randomly by Lévy flights.  
- Evaluate the new Cuckoo fitness (𝑓௜). 
- Choose a nest among 𝑛 (𝑠𝑎𝑦, 𝑗) randomly. 

                 𝐼𝑓 𝑓𝑖 >  𝑓𝑗  
- Replace the j with the new solution. 

                 𝑒𝑛𝑑 
- Rank the solutions and find the current best.  
- Discard Pa fraction of worst solutions. 
- Substitute the discarded solutions by new ones generated by Lévy flights. 

                 𝐼𝑓 (maximum successful runs number exceeded) 
- 𝐷𝑜 permutation, swap, insertion and bit flip for the current best solution. 

                  𝑒𝑛𝑑  
- Update the best solution.   𝑬𝒏𝒅  

 

Here, a most up-to-date variant of CS called Adaptive Discrete CS Algorithm (ADCSA), by 

(A. Ahmid et al., 2020), was used to carry out the optimization level of the anti-optimization 

procedure. ADCSA bears three main modifications to the original CS.  First, it is using Latin 

Hypercube (LHC) sampling method to generate the initial population; the second is presenting 

discrete Levy flight representation and finally improve the neighbourhood search of the best 
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solution through four different permutation movements. The proposed ADCSA pseudo-code 

is listed in Algorithm 6.1. 

 

b.) Simulated Annealing (SA) 
 
SA is a trajectory-based MH that mathematically analogy the thermal annealing process of 

metals. The concept of SA introduced by Metropolis in the early 1950s’ and since then, it has 

examined to solve a wide range of optimization problems (Kirkpatrick, Gelatt, & Vecchi, 

1983). SA proved a significant performance in solving numerous optimization problems, and 

here is used to perform the anti-optimization level job of finding the worst-case scenario. The 

typical structure of the SA optimization algorithm is shown in Algorithm 6.2.  

 

Algorithm 6.2 Simulated Annealing Algorithm procedure 
                     Taken from (A; Ahmid et al., 2019) 

 
Initialization: 

- Initialize SA parameters (𝑇, 𝑐,𝑛) 
- Generate an initial random solution. 
- Evaluate the initial solution. 

While (termination criteria not satisfied) Do 
- Generate a new solution from the current solution vicinity. 
- Calculate the current solution of energy. 
- Calculate the new solution energy. 
- Compare both solutions energy. 
- Update the current solution with the biggest. 
- If the number of iterations > 𝑛 
- Reduce the temperature, 𝑇, by reduction factor 𝑐.  

End SA algorithm for combinatorial optimization problems 

 
a.) Convergence criterion  

 
The anti-optimization block continues to find the optimal and anti-optimal solutions until the 

difference between both solutions,∆𝑓, remains constant for a certain number of iterations or 

the maximum number of anti-optimization iterations is reached. 
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6.5 Numerical Experiment 

The optimization framework developed here was examined for a case study of perforated 

composite laminated subjected to biaxial buckling loading, see Figure 6.9. The laminate has 

an aspect ratio 𝑎 𝑏⁄  = 1: 2,  where 𝑎 = 558 𝑚𝑚 and 𝑏 = 279 𝑚𝑚; the number of plies 𝑁௣ =24, ply thickness 𝑡௣ = 0.1163 𝑚𝑚, the edge distance 𝑒 = 3.ℎ௣ and the diameter of the cut-

out 𝑑 = 0.2,0.3, . . . ,0.8. 𝑏 (𝑚𝑚). The edges are simply supported, and the biaxial loading 𝑁൫𝑁௫ ,𝑁௬൯ ∈ [0,1](𝑁/𝑚). The laminate material is Epoxy-Graphite, 𝐸ଵଵ =  132.58 𝐺𝑃𝑎, 𝐸ଵଶ = 10.8𝐺𝑃𝑎, 𝐺ଵଶ = 5.7𝐺𝑃𝑎, 𝜈ଵଶ = 0.24 and 𝜈ଶଷ = 0.49. 

 

 
 

Figure 6.9 Main dimensions and loading conditions of 24 ply perforated Graphite-
Epoxy laminate. 

 

The different framework blocks were programmed using Matlab R2019b program, while 

ANSYS Workbench 2020R2 was used to determine the Black-box function values. The 

numerical experiment started by creating an FEA model using ANSYS, then a mesh 

convergence check is conducted. This step is followed by pre-investigation for specific loading 

conditions with a set of different cut-out diameters and locations to identify the spot of the 

possible critical cut-out configuration, which will be used later as the initial worst case. Finally, 

 ∆𝑓 =  𝑓௢௣௧ − 𝑓௔௡௧௜ (6.7) 
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based on previous step outcomes, the ANN is created, and the anti-optimization procedure is 

activated to determine the optimal robust SSD. 

 

6.5.1 Finite Element Modelling     

The laminate buckling analysis goes through three steps; it starts by generating the laminate 

model geometry and defining the material properties in ANSYS ACP. Next, the static 

structural analysis takes place and finally carrying out the eigenvalue buckling analysis. The 

geometry of the laminate FE model was created, and the material properties were defined 

according to the given laminate information. Creating the model in ACP starts with sketching 

the principle geometry of the laminated plate, which is a simple 2D rectangular, and then a 

surface body is created using this sketch. Then, it is followed by creating the surface body that 

is needed to implement the meshing model. The SELL181 element type was used, and the 

number of elements initialized by just 90 elements and gradually increased up to 384 elements 

where a satisfied convergency rate was met, see Figure 6.10. 

 

 

 
Figure 6.10 The mesh size convergency. 
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6.5.2 Preliminary Investigation  

Three different laminates with SSD of angle ply, cross-ply and quasi-isotropic were examined 

to develop a draft idea about where is the initial worst-case scenario could occur. Nine different 

cut-out centers were selected while the cut-out diameter varies from 0.2𝑏 to 0.80𝑏 with an 

increment of 0.1𝑏, see Figure 6.11. Each laminate configuration is subjected to three different 

loading conditions. First is maximum unidirectional loading in 𝑥-direction; second is 

unidirectional loading in 𝑦-direction and, finally, bidirectional loading.  

 

 
(a) 

    
(b) 

 
Figure 6.11 Selected cut-out centers and diameter aspect ratio.  

 

These figures are quite revealing in several ways. First, the different examined stacking 

configurations followed almost the same pattern for the three loading conditions; for instance, 

in the unidirectional loading case, in the x-direction,  the high 𝑑 𝑏⁄  gives bigger values of 𝜆௖௥ 

and this pattern is the same for all designated stacking configurations. The second interesting 

observation was that the most minimum  𝜆௖௥ found for the case of unidirectional loading in y-

direction rather than to be in case of bidirectional loading. 

 

Overall, these results indicated that the worst-case scenario occurred at 𝑃ଶ for 𝑑 𝑏⁄ = 0.8, 

consequently, the ANN will be developed to this specific configuration, and the obtained 

prediction function will be used next as the objective function in the anti-optimization 

procedure. 
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Figure 6.12 Critical buckling load factor vs. Diameter ratio for [±45°]଺௦ 

laminate under different loading conditions 
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Figure 6.13 Critical bucking load factor vs. Diameter ratio for [0°ଶ  90°ଶ]ଷ௦  

laminate under different loading conditions 
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Figure 6.14 Critical bucking load factor vs. Diameter ratio for [±45° 0°ଶ90°ଶ]ଶ௦  

laminate under different loading conditions. 
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6.5.3 ANN Settings 

As stated in section 6.4.3 (a), the design vector has mixed types of numbers that need to be 

fairly handled to obeys the LHC plan criteria. Thus, all design vector variables are sampled 

simultaneously using the lhsdesign function in Matlab. Then, the sampling values of the fiber 

orientations (SSD) vector are interpreted to their equivalent integer values using the 

classification concept that is widely used in Machine Learning (ML) (Montáns, Chinesta, 

Gómez-Bombarelli, & Kutz, 2019). The sample size used here is 1000 observations. The 

equivalent responses,𝑌, of the generated sample determined according to the described 

procedure in section 6.4.3.  

 

Regarding the ANN structure, the preliminary trials imply that ANN with three hidden layers 

and ten neurons each will perform perfectly for this specific problem. The performance goal 

of the ANN is set to 1e-06 and epochs to 3000. The developed prediction function is then 

verified using a new set of design vectors, see Figure 6.16. 

  

Eventually, the anti-optimization loop is activated, and the tour to find the robust optimal SSD 

continues until 50 consecutive equal differences, ∆𝑓, of optimal and anti-optimal solutions are 

obtained or maximum number of iterations, 𝐼௠௔௫ = 1000 is reached. 

 

6.6 Results 

The trained ANN performance and their Mean Square Error (MSE) are plotted in Figure 6.15 

(a ) and (b). The validation of the ANN conducted using a new sample of design vectors which 

already evaluated using ANSYS software. The ANN prediction function and ANSYS results 

were compared and plotted in Figure 6.15. The comparison reveals a reasonable agreement 

between both results were the average error determined was around ±4%.          

 

The anti-optimization procedure started with an evaluation of the solution at the initial worst 

scenario (𝑃ଶ in the preliminary investigation) and trying to find the new optimal solution using 
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ADCSA and store it into the optimal solution matrix. The optimization level is searching the 

design space to find the optimal SSD that maximize the critical buckling load factor,𝜆௖௥, for 

cut-out center and loading conditions of 𝑃ଶ. Then, the anti-optimization level starts a new 

search to determine the new location of the cut-out and new loading conditions that will 

minimize 𝜆௖௥ obtained by optimal SSD. This loop continues until the mentioned convergency 

criteria are met. In the current experiment, the maximum number of iterations is exceeded, and 

the gained results of the anti-optimization procedure were plotted into Figure 6.17. 

 

The experiment results show that the optimal SSD has 17 stacking sequence configurations, 

see Figure 6-18. Also, it could be noticed that the 90ଶ°  fiber orientation is dominating all 

optimal SSD found here. This tendency to include more stacking sequence with fiber 

orientation 90ଶ°  can be explained because of the existence of high loading in the y-direction. 

Moreover, the SSD 2 in Figure 6.18 repeatedly appeared during the anti-optimization 

procedure, see Figure 6.19 

 

In addition to SSD 2, two other optimal solutions occupied 16% and 17% of the appearance 

during the anti-optimization loop, see  Figure 6.19. Consequently, those three appointed SSD 

solutions were investigated more by plotting their cut-out center points and plotting their anti-

optimization procedure results, see Figure 6.20 to Figure 6.25.Those figures have shown that 

most critical locations of the cut-out were near to preliminary investigation worst-case 𝑃2. 

Furthermore, the critical loading conditions occurred when the loading conditions in the y-

direction are high, which is in line with preliminary investigation results.  

 



150 

  
(a) 

 
(b) 

 
Figure 6.15 Data set regression and Mean Square Error (MSE) results using forwardfeed 

ANN 
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Figure 6.16 Comparison of ANN and Black-box function (ANSYS)  results for the 
validation sample 
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Figure 6.17 The anti-optimization procedure iteration vs. critical buckling load factor 
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Figure 6.18 The SSD arrangements of the main optimal solutions. 
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Figure 6.19 Main optimal SSD percentage breakdown. 

 
 

Figure 6.20 Cut-out center points of SSD2 
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Figure 6.21 The anti-optimization procedure iteration vs. critical buckling load factor 
for SSD2 

 

 

 
Figure 6.22 Cut-out center points of SSD3 
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Figure 6.23 The anti-optimization procedure iteration vs. critical buckling load 

factor for SSD3 
 

 

 
Figure 6.24 Cut-out center points of SSD5 
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Figure 6.25 The anti-optimization procedure iteration vs. critical buckling load 

factor for SSD5 
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6.7 Conclusion  

The current study introduced a cost-effective, robust optimization framework to optimize the 

SSD that maximize the critical buckling load factor of a perforated composite laminated plate 

subjected to uncertainty influences of buckling loading and cut-out center point location. The 

framework adopted the anti-optimization approach to consider uncertainty influences. The 

main idea behind the anti-optimization is searching the design space of the problem to find the 

worst-case scenario (anti-optimization) for the current optimal SSD. Then it is followed by 

new searching for another optimal SSD (optimization). This process is iterative, and it needs a 

large number of objective function evaluations. Thus, it becomes a very expensive choice 

compared to deterministic or probabilistic design frameworks. However, the emerging 

utilization of the ANN technique in solving different engineering problems can give the anti-

optimization approach a significant push that makes it a feasible alternative as a cost-effective 

design framework. Here, the ANN technique is used to develop an accurate prediction of 

critical buckling load factor values of a perforated composite laminate plate subjected to 

uncertainty conditions. The ANN trained based on a set of input data, 𝑥, sample generated by 

Latin Hypercube plan and their design responses, 𝑦, were determined by commercial FEA 

software of ANSYS workbench. The validation results demonstrated a significant agreement 

between the ANN predictions and Black-box function (ANSYS) results.    

 

Though the proposed framework is created through two steps, first, a preliminary investigation 

has been done to determine the diameter and location of the cut-out that minimizes the critical 

buckling load factor under certain loading conditions. The purpose of this step is to find the 

initial worst-case to start the anti-optimization procedure. The Adapted Discrete Cuckoo 

Search Algorithm (ADCSA) is used to optimize the SSD of the perforated composite laminated 

plate for maximum critical buckling load factor while a Simulated Annealing algorithm is used 

to anti-optimize the obtained optimal SSD.  

 

The results of the numerical experiments revealed that there are 17 SSD options appeared 

during the anti-optimization tour of 1000 iteration. Moreover, the 90ଶ°  fiber orientation has 
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been found to be the major orientation selected for all optimal SSD solutions. Also, it noticed 

that most anti-optimal solutions occurred with bidirectional loading conditions when the 𝑁𝑦 

loading is high (or even the maximum load) while a smaller load is applied in the x-direction. 

Lastly, the selected optimal SSD is implicitly able to receive nominal critical buckling loads 

varied from 20 to 67 KN/m for the considered uncertainty conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 



 

CONCLUSION 

The thesis’s preceding chapters, having demonstrated the importance of the optimization 

technique selection based on a comprehensive performance assessment criterion and how this 

could affect the structural design optimization process in terms of solution quality and cost. 

Furthermore, the thesis raises the gap between the practical design problems and those 

academically presented.  

 

The literature review’s chapter shows the mass development of new MHs to solve different 

benchmarking SDO problems. Even though the importance of using fair assessment criterion 

to evaluate the MHs performance, regrettably, it has received a little attention, reflecting a 

wider failure of implementing MHs to solve practical design problems. However, this research 

opportunity and others presented in the literature review chapter, motivated the current thesis 

to determine answers for the following research questions: 

 

- How does the performance of different MHs could be fairly assessed to determine the 

suitable MH that solves a real-life SDO problem efficiently? 

 
- Does the designated MH qualify for further performance improvement such that it 

becomes more competitive in terms of solution quality and computational cost? 

 
- How does a robust optimization framework could be developed so that it can handle a 

structural optimization problem associated with an expensive objective function, and 

concurrently it considers the influences of different design uncertainties?     

After that, CHAPTER 2 introduces the methodology framework pursued here to develop the 

required knowledge to answer the research questions. The different components of the 

framework are explained in more detail; therefore, the methodology of achieving the 

predefined objectives is clarified. Eventually, the summary of the research achievements and 

novelty are presented in the last section.  
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A real-life application of customized I-beam overhead gantry crane is introduced in Chapter 3 

as a novel SDO problem. The crane is composed of three rectangular plates, with the same 

length and different thicknesses and widths, welded together by full penetration welds over the 

span length to form an I-Beam profile. The thicknesses and widths of plates must be optimized 

to have the minimum cross-section area while respecting yield, buckling, deflection and fatigue 

criteria. A mathematical procedure based on the Timoshenko beam theory and Crane 

Manufacturers Association of America (CMAA) combined with the Genetic Algorithm (GA) 

is presented, and a Mathcad code is implemented to find the optimal I-Beam cross-section 

dimensions. 

 

In response to the first two research questions, a comprehensive assessment criterion has been 

initialized in CHAPTER 4 and then extended in CHAPTER 5. The basic version of the 

assessment criterion has been used to measure the performance of a novel variant of Cuckoo 

Search (CS) MH in CHAPTER 4. The proposed variant, called the Adaptive Discrete CS 

Algorithm (ADCSA), uses the rank-value approach to turn real values of random Lѐvy walks 

(steps/jumps) into their equivalent discrete values. Moreover, the ADCSA intensification effort 

was enhanced by adding four different local search movements of permutation, swap, insertion 

and bit flip. The performance of the final version of ADCSA validated across a well-known 

benchmark problem of the composite laminated plate. Then, ADCSA employed to optimize a 

discrete version of the customized I-beam crane introduced in CHAPTER 3. 

 

The MHs performance assessment criterion has been developed in CHAPTER 5, where it 

extended to include more efficient measures such as the practical reliability, price 

(computational cost), normalized price, performance rate, solution quality and Fitness-

landscape analysis. Additionally, two different convergence rates were imposed on examining 

the MHs at slow and fast rates. As well as the reproducibility of the numerical experiments 

results considered within the procedure of MHs assessment. Thereafter, the proposed criterion 

has been employed to compare five different variants of Ant Colony Optimization (ACO). The 

proposed measures demonstrated a comprehensive assessment of the compared ACOs 

performance. The initial results of the comparison study reveal that the Hyper-Cube 
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Framework (HCF) ACO variant outperforms the others. Consequently, an investigation of 

further improvement led to introduce an enhanced version of HCFACO (or EHCFACO). The 

new variant has advanced intensification features that use insertion and bit-flip movements to 

enhance the local search effort. Eventually, the EHCFACO variant was compared with other 

ACO variants, and it exhibited a significant performance. 

 

In answering the last research question, a robust design optimization framework was 

introduced in CHAPTER 6. The framework adopted the anti-optimization approach to consider 

uncertainty influences. The main idea behind the anti-optimization is searching the design 

space of the problem to find the worst-case scenario (anti-optimization) for the current optimal 

solution. Then it followed by new searching for another optimal solution (optimization). This 

process is iterative that needs a large number of objective function evaluations, which make it 

a very expensive choice compared to deterministic or probabilistic design frameworks. Thus, 

the cutting-edge Deep Learning algorithm of Artificial Neural Network (ANN)  has been 

adopted in this chapter to predict the design response of a perforated composite laminated plate 

subjected to buckling loading. The ANN trained based on a set of input data, 𝑥, sample 

generated by Latin Hypercube plan and their design responses, 𝑦, were determined by 

commercial FEA software of ANSYS workbench. The validation results demonstrated a 

significant agreement between the ANN predictions and Black-box function (ANSYS) results. 

However, the proposed framework is created through two steps. First, a preliminary 

investigation that has been done to determine the diameter and location of the cut-out that 

minimizes the critical buckling load factor under certain loading conditions. The purpose of 

this step is to find the initial worst-case to start the anti-optimization procedure. The ADCSA 

MH, which developed in CHAPTER 4, is used to optimize the SSD of the perforated composite 

laminated plate for the maximum critical buckling load factor. In contrast, a Simulated 

Annealing (SA) algorithm is used to anti-optimize the obtained optimal SSD.  

 

The rest of the conclusion section is devoted to presenting the thesis findings and list the main 

contributions. It then continues to address the thesis’s overall implications and limitations. A 

possible perspective research opportunity has been outlined at the end of the section.         
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Findings  

The optimal solution of customized I-beam crane presented in CHAPTER 3 reveals interesting 

observations. The optimized custom I-section has a configuration of narrow and thick lower 

flange, thinner and wider upper flange, and the web is tall and very thin, which could save 

about 18% of weight compared to commercial standard I-Beam. Furthermore, it is found that 

the constraints of general lateral buckling and local buckling of the upper flange are always 

reached for all examined cases. The web local buckling constraint is critical for about 66% of 

cases; the yield and fatigue constraints found critical for 33% of cases, and the deflection 

constraint is not a problem at all. Another impressive observation was that the discrete version 

of the crane, presented in CHAPTER 4, followed the same pattern of the cross-section 

configuration of the original crane design problem. Moreover, the equivalent standard I-beam 

that examined across the design criteria demonstrated a poor strength response and even 

violated one or more constraints on several occasions.  

 

Using the elapsed time as a performance measure of MH does not reflect the actual 

computation cost required by MH to find the optimal solution. Based on findings of the 

proposed assessment scheme presented in CHAPTER 5, it noticed that MHs with high-

reliability solutions need more time to find the global optima but need relatively a small 

number of computation iterations. This observation led to another important remark, the MHs 

that shown good performance are hardly exploring the design space where their Fitness-

Distance Correlation, 𝑟,  figures become lower than the other MHs. However, the difference 

in 𝑟 values is noticed, but it does not negatively impact the overall performance of the 

designated MHs, except increasing the computational time. Furthermore, it is observed that 

applying the HyperCube Framework (HCF) to standard ACO has a significant influence on 

the overall performance of ACO. Also, imposing local search movements, as an enhancement 

of exploitation effort, helped HCFACO to deliver a cost-effective solution. These 

improvements in ACO performance are in line with suggestions made by previous studies that 

rewarding HCF and local search movements the dominant factor in improving standard ACO 

algorithm performance.  
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CHAPTER 4 presented a novel discrete variant of ADCSA that integrated a rank/value to turn 

the continuous domain of the design problem into a discrete domain. One of the significant 

relevant findings to extract from this chapter is that using rounding to the nearest discrete value 

has a negative impact on the computational cost of the optimal solution. The optimal solution 

using the rounding approach has cost more than twice of the rank/value-based optimal solution. 

Furthermore, the initialization methods experiment conducted in CHAPTER 4 illustrated a 

slight effect of the initial population generation on the performance of ADCSA. The LHC 

sampling approach improved the reliability slightly compared to ADCSA that initialized using 

DUD or Hybrid DUD-LHC.  

 

A robust optimization framework has introduced in CHAPTER 6. One of the most obvious 

findings to emerge from this part is that employing the ANN algorithm has tremendously 

reduced the associated cost of the objective function evaluation.  Furthermore, the enumeration 

of the possible SSD configurations that can be obtained for the designated laminate produced 

729 configurations. Despite this number of available configurations, the robust optimal 

solution is limited to just 17 SSD configurations. Moreover, the 90ଶ°  fiber orientation has been 

found to be the major orientation selected for all optimal SSD solutions. Also, it noticed that 

most anti-optimal solutions occurred with bidirectional loading conditions when the 𝑁𝑦 

loading is high (or even the maximum load) while a smaller load is applied in the x-direction. 

 

Limitations 

A number of important limitations need to be considered. The current study has examined the 

buckling loading conditions only and this could be referred to the inclination of the current 

thesis to raise awareness of the consequence of underestimating the critical buckling loading. 

Not surprisingly that minimizing the weight is common practice in the SDO domain. Thus, the 

buckling failure mode should get enough attention from the designer where the lighter 

structures are more exposed to failure due to buckling than other loading conditions. 

 

The critical design analysis represents an important interest in the current work. Accordingly, 

using simply supported edges conditions for plates examined on different occasions in this 
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thesis could be explained in this direction. Based on classical plate theory, the lowest values 

of critical buckling load factor are going to cases with simply supported edge conditions; thus, 

the attained optimal design still valid for other edge boundary conditions. However, it is not 

necessary, in real-life applications, to optimize against such excessive edge conditions.  

 

Even though the MHs literature is full of studies that approve the noticeable impact of 

parameters tuning on the MHs performance, they considered constant here for all examined 

ones. This perceived ignorance of such an aspect refers to the associated computation cost of 

this repetitive investigation, and such an exhaustive practice would diminish the scope of the 

thesis significantly. 

  

Future Work   

It is recommended that further research be undertaken in the following areas: 

 

- The proposed ADCSA and EHCFACO have been applied to view different SDO 

problems so far and examining them for other structural optimization problems could 

be prospective work. Furthermore, investigating the different initialization methods on 

the proposed algorithm to find better performance deserves a try. 

 

- Another possible area of future research would be to investigate the performance of the 

proposed approach of a robust design optimization framework to handle multi-

objective SDO problems. 

 

- Further research is needed to examine more closely the performance of the new 

proposed metaphor-based MHs. The MHs performance assessment criterion which 

developed here be used for such task.      

 

- A future investigating study of  the performance of the developed MHs, ADCSA and 

EHCFACO, for SDO problems that consider the thermal buckling loading would be 

very interesting.  
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Summary of Achievements and Novelty 

The current study made novel contributions to the research domain of SDO that we could 

summarize in the following points: 

- The work in CHAPTER 3 presented a new optimization approach that could be used 

to solve different SDO problems. The basic purpose of the developed approach was 

promoting of the built-in optimization tools in ANSYS Workbench software. However, 

the approach has been improved through the thesis sections and it became a cornerstone 

of more sophisticated SDO framework that presented in the CHAPTER 6.  

 

- Develop a new discrete variant of CS MH that uses an adaptive technique to adjust 

step/jumps of Lévy flights, which used to create the new solutions in CS optimization. 

Furthermore, four different local search movements were integrated into the proposed 

ADCS MH, see CHAPTER 4. 

 

- Present an Enhanced HCF-ACO (EHCFACO) variant as a novel optimizer for SDO 

problems. The standard HCF-ACO variant never examined before as a solver of any 

SDO problems, up to the best of our knowledge, even though it used successfully to 

solve other NP-hard combinatorial optimization problems, see CHAPTER 5. 

 

- Establish a comprehensive performance assessment criterion for MHs used to solve 

SDO problems. The new criterion introduced new performance measures such as 

Fitness-Distance correlation factor, performance rate and solution quality. 

Additionally, the MHs performance was examined at different levels of convergence 

rate (slow, fast). Theses measures used together with traditional performance measures 

of computational price, computational time and successful rate (reliability) for the first 

time to evaluate the MHs performance as SDO problems optimizer. Lastly, the 

comparison criterion examines all numerical experiments for 200 times each and for 

ten different seed numbers. The number of experiments devoted to overcoming the 
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stochastic behaviour of MHs while using different seeds number aims to make the 

assessment results able to be reproduced, see CHAPTER 5.    

 

- Propose a new robust design optimization framework to solve NP-hard SDO problems 

using the anti-optimization approach. The proposed framework uses ANN models to 

predict the value of the expensive objective functions of the SDO problem, see 

CHAPTER 6.   

 

- Lastly, introduce two novel SDO problems of customized I-beam profile overhead 

gantry crane and a perforated composite laminated plate. Both new SDO problems 

developed based on two different materials. The  new SDO problem presented in two 

individual published journal papers, see CHAPTER 3 and CHAPTER 4. 

 

Moreover, some other sub contributions have been introduced in the current work, such as 

examining the impact of random numbers generator of the initial solution on the final solution 

obtained by MH. All the Matlab routines of different MHs implemented here are available in 

the appendices, and soon they will be uploaded online as open-source repositories for 

interested researchers. 

 

Published work  

Eventually, the thesis has led to five journal publications, three of them are published while 

two are submitted. Additionally, four conference papers (and extended abstracts) have worked 

out, and the details of all publications are listed here below.  

 
Journals 

- Ahmid, A., Le, V., Dao, T. (2017). An Optimization Procedure for Overhead Gantry 

Crane Exposed to Buckling and Yield Criteria. IRA International Journal of 

Technology & Engineering (ISSN2455-4480),8(2),28-38. DOI :http:// dx.doi.org 

/10.21013/jte.v8.n2.p3 
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- Ahmid, A., Dao, T. M., & Van Ngan, LÊ. (2019). Comparison Study of Discrete 

Optimization Problem Using Meta-Heuristic Approaches: A Case Study. International 

Journal of Industrial Engineering, 1(2), 97-109. 

 

- Ahmid, A., Dao, T. and Le, V., (2020). An Adaptive Discrete Cuckoo Search 

Algorithm to Solve Structural Optimization Problems. Journal of Multidisciplinary 

Engineering Science and Technology (JMEST), 7(6). 

 

- Ahmid, A., Le, V., and Dao, T. (2020). Enhanced HyperCube Framework ACO For 

Structural Combinatorial Optimization Problems (submitted to Elsevier Composite 

Structures journal). 

 

- Ahmid, A., Le, V., Dao, T., Optimization of Perforated Composite Laminated Plate 

Subjected to Uncertain Geometrical and Loading Conditions (submitted to Computers 

& Structures journal ). 

 

Conferences  

- Ahmid A., Le V., & Dao, T. (2017). Optimization procedure for an I-beam crane 

subjected to yield and buckling criteria. In 2017 World congress on advances in 

structural engineering and mechanics (ASEM17) (pp. 1–12). Ilsan, Seoul, Korea: 

ASEM. 

 

- Ali Ahmid, T.M.Dao and V.N.Le (2019). Optimization of the Mechanical Structures 

Design Problem by Meta-Heuristics Approach: A Case Study. Industry, Engineering 

and Management Systems Conference (IEMS). California, US  (extended abstract). 
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- Ahmid A., Le V., & Dao, T. (2019). Composite Plate Design Optimization Using 

Enhanced Hyper-Cube Ant Colony Optimization Algorithm. In NAFEMS World 

Congress (NWC). Quebec, Canada. 
 

- Ali Ahmid, T.M.Dao and V.N.Le (2021). Enhanced Hyper Cube Framework ACO For 

Structural Combinatorial Optimization Problems. Proceedings of the International 

Conference on Industrial Engineering and Operations Management. Singapore, March 

9-11, 2021  (extended abstract).



 

APPENDIX I 
 
 

  COMPARISON STUDY OF DISCRETE OPTIMIZATION PROBLEM USING 
META-HEURISTIC APPROACHES: A CASE STUDY  

 

 

A.Ahmid a , T. M. Dao b and V. N. Lê c  
 
 

a,b,c Department of Mechanical Engineering, École de Technologie Supérieure, 
1100 Notre-Dame West, Montreal, Quebec, Canada H3C 1K3 

 
 

APPENDIX IPaper published in International Journal of Industrial Engineering and 

Operations Management (IJIEOM), Volume. 1, No. 2, pp. 97-109, December 2019  

 

 

Abstract 

This paper presents the performance comparison of five meta-heuristic algorithms to solve a 

discrete optimization problem. The comparison is undertaken for a case of simply supported 

plate subjected to biaxial loading conditions. Furthermore, the optimization objective is to 

determine the optimal stacking sequence design of a laminate that maximizes the critical 

buckling load factor (𝜆௖௕). The chosen meta-heuristics have been implemented using 

MATLAB with the same convergence criteria and the same maximum number of iterations to 

ensure a fair comparison. The implemented assessment criterion has performance measures of 

average CPU time, solution price, reliability, and normalized price. The results have 

demonstrated the outperformance of the Ant Colony Optimization Algorithm (ACOA) over 

other algorithms, which confirms the findings of previous studies. Moreover, the Tabu search 

algorithm (TS) and the Discrete Particle Swarm Optimization algorithm (DPSO) performed 

poorly due to their limited exploration capability. Additionally, the Genetic Algorithm (GA) 

and the Simulated Annealing algorithm (SA) exhibited a high level of reliability but showed 

an expensive solution cost. This study presents an adequate comparison approach of meta-

heuristics, where it extends the comparison scope to cover the performance analysis of meta-
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heuristics more than that previously done in the domain of stacking sequence design 

optimization. 

 

Keywords: optimization, meta-heuristic, composite laminated plate, buckling load factor. 

 

Introduction 

The high competition in production design puts pressure on the designers to introduce a good 

quality and low-cost product that comply with the engineering standards. With limited resource 

context, the designer needs to benefit from all available resources and optimization techniques 

can solve such an issue. In early time, the gradient optimization techniques were commonly 

used in different engineering design applications due to their fast and accurate solutions. But 

with growing complexity and variety of applications, they became costly or incapable to find 

the Optima. On the other hand, metaheuristics exhibited a significant performance in solving 

optimization problems where the gradient methods failed to do so. The optimization of 

composite laminated structure design is an excellent example of such type of optimization 

problems (Ali Kaveh, 2017). 

 

Composite laminated structures are usually formed by laying several thin layers (plies) on top 

of each other and binding them with a matrix material. The combination of layers and matrix 

is called a laminate, which consists of microscale-oriented fibers that emerge in the matrix 

material. The matrix material distributes and transforms the load over the fibers. Additionally, 

the tensile strength of the fibers is high in their orientated direction, whereas the matrix material 

has a high compression strength in any direction but has low tensile strength. The designer 

should select the right combination of both materials to achieve the optimal design. Several 

design variables should be appropriately determined such as a number of layers, the thickness 

of each layer, ply orientation angle, and stacking sequence that ensures the highest possible 

performance of the structure subjected to specific loading conditions (R. M. Jones, 2014; 

Vasiliev, 2017). 
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Buckling failure mode occurs suddenly when the composite laminated structure is exposed to 

compressive loading that exceeds a particular critical value. This failure mode is dangerous, 

especially for applications such as airplanes and ships, where human lives become threatened. 

The designer of composite laminated structures then must try to increase the capacity of the 

structure to bear the buckling load through optimizing the structure parameters. When the 

thickness of the structure is constant, the stacking sequence of the laminate turns into the 

significant design variable that can maximize the critical buckling loading of the structure 

(Nikbakt et al., 2018). 

 

The optimization of the laminated composite structures is subjected to the design and 

manufacturing constraints such as a limited number of fiber orientations. The optimization of 

the laminate then becomes a hard combinatorial optimization problem (Peeters & Abdalla, 

2017; A. R. M. Rao, 2009; Zein et al., 2016). Ghiasi et al. (2010) reviewed different techniques 

used in the recent decades to optimize composite laminated designs and concluded that meta-

heuristics are superior to gradient-based methods. Furthermore, (Nikbakt et al., 2018) reported 

the outperformance of meta-heuristics alongside gradient optimization algorithms due to their 

efficiency and stability. However, meta-heuristic algorithms are an ongoing optimization 

research domain to solve medium as well as large-scale problems that appear in different 

disciplines. Furthermore, trajectory-based meta-heuristics demonstrated a substantial local 

search capacity on its track to find the optimal solution, whereas population-based meta-

heuristics exhibited a significant ability to explore the design space. Even though meta-

heuristics, in general, could solve the discrete optimization problems efficiently, we still need 

to determine which algorithm outperforms the others for a specific problem according to the 

No Free Lunch theorem (NFL) by Wolpert and Macready (1997). 

 

The literature is full of comparison studies of meta-heuristics that have been used to solve 

various engineering problems, e.g., TSP and scheduling, but little were devoted to the stacking 

sequence design problem. Furthermore, the previously published papers in the field were 

limited to two comparison approaches. First, the comparison of a newly developed algorithm 

(or enhanced version of a well-known algorithm) to previously published results of another 
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meta-heuristic (Aymerich & Serra, 2008; Jing et al., 2015). Second, the selection of more than 

two algorithms and carrying out the performance comparison based on the author 

implementation of the meta-heuristics (M. W. Bloomfield, J. E. Herencia, & P. M. Weaver, 

2010). Both approaches brought valuable information that increased the knowledge about 

meta-heuristics performance as an optimizer of stacking sequence design. Although these 

comparison approaches are interesting, they still have some drawbacks such as the diversity of 

convergence criteria for the compared algorithms as in the first approach or the comparison 

limitation to one category of meta-heuristics as in the second approach. 

 

To avoid this shortcoming, five different meta-heuristics were selected in this study to 

represent both population-based and trajectory-based meta-heuristics. The chosen algorithms 

frequently appeared in the literature of stacking sequence design optimization (Nikbakt et al., 

2018). The five meta-heuristic algorithms have been implemented using MATLAB with the 

same convergence criteria and the same maximum number of runs to ensure a fair comparison. 

An assessment criterion has been performed by considering different performance measures 

such as average CPU time, reliability, and normalized price. Additionally, a well-known 

benchmarking problem was selected as a case study to carry out the comparison(A. Kaveh, 

Dadras, & Malek, 2017; R. Le Riche & Haftka, 1993). Eventually, the overall objective of this 

work is to develop an improved knowledge of optimization techniques and the selection of the 

most efficient algorithm that solves the stacking sequence design optimization problem. 

 

Meta-heuristic Algorithms 

Meta-heuristics are known as stochastic approaches that are frequently used in solving 

complex optimization problems. There are many classifications of meta-heuristics, and we 

have adopted the one illustrated in Figure-A I - 1, which classifies meta-heuristics into two 

categories population-based and trajectory-based. Moreover, five different algorithms were 

selected to represent both categories of meta-heuristics. Genetic algorithm (GA), Ant Colony 

Optimization (ACO), and Particle Swarms Optimization (PSO) are population-based meta-

heuristics, whereas Simulated Annealing (SA) and Tabu Search (TS) are trajectory-based 
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meta-heuristics. This section provides a short review of each meta-heuristic and the 

implementation structure of the algorithms used in this study. 

 
 

 
 

Figure-A I - 1 Metaheuristics classification 
 

Genetic Algorithm (GA) 

Holland suggested the original genetic algorithm in the 1960s, which was later detailed in its 

generally known form by Goldberg (1988). It is based on Darwin’s theory of natural evolution, 

and it is implemented using elements of the natural genetics of reproduction, crossover, and 

mutation. GA shows its worthiness over classical optimization methods in solving composite 

laminated design optimization problems (Nikbakt et al., 2018). The significant adaptation of 

GA to optimize composite laminate design is credited to Le Riche (1993), as he proposed a 

modified GA that replaces binary coding of solution strings by integer coding. This 

formulation turned the binary GA algorithm into Permutation Genetic Algorithm (PGA). The 

results show a 2% reduction in the solution cost compared to binary GA(R. Le Riche & Haftka, 

1993). The gene-rank GA introduced by B. Liu et al. (2000) is a permutation GA with gene-

rank crossover operator. He compared his proposed GA with standard GA and older 

permutation GAs, and the gene-rank GA demonstrated better computational performance. 

Furthermore, Ehsani et al. (2016) used binary GA to determine the optimal stacking sequence 

of grid laminate by considering the different boundary conditions of the laminate edges. 

Moreover, GA algorithms are known for their expensive solution due to the slow convergence 

to the optimal solution. To overcome such drawback, Vosoughi et al. (2017) made hybrid GA 

with PSO algorithms as an operator to increase the convergence rate of standard GA. However, 

Trajectory-based 

(e.g. SA, TS) 

Population-based 

(e.g. GA, ACO, PSO) 

Meta-heuristics 
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binary GA is still used as stacking sequence design optimizer. It offers a costly solution, while 

PGA demonstrates good performance for cheaper solutions. 

 

In this study, the PGA structure was selected, as described by Le Riche (1993), to implement 

a GA program in MATLAB. Algorithm-A I - 1 illustrates the steps of PGA meta-heuristic. 

The algorithm is initialized by generating a random initial solution, and then it evaluates the 

fitness of the chromosomes (solutions). Based on their fitness value, the chromosomes are 

sorted from the maximum to the minimum, and the best-ranked individuals are selected for the 

reproduction process. To proceed with the reproduction, a pair of best individuals are randomly 

selected to be parents, and the crossover operator is applied to generate the children (new 

solution). Mutation and permutation operators are then applied to improve the new population 

exploration. This loop continues until the termination criteria is satisfied. 

 

Algorithm-A I - 1 Permutation Genetic Algorithm procedure 
 
Initialization: 

- Generate initial random population. 
- Evaluate the population chromosomes fitness. 

While (termination criteria not satisfied) Do 
- Select best-ranked individuals to reproduction. 
- Randomly select a pair of individuals to be parents 
- Apply crossover 
- Apply mutation to children 
- Apply permutation to children 
- Evaluate chromosomes fitness.  

End PGA algorithm for discrete optimization problems 

 

In the original PGA, which was proposed by Le Riche (1993), the different solutions have 

integer representation using 1, 2, and 3 numbers; where 1,2 and 3 represent 0°, ±45°, and90° 
fiber orientations, respectively. The laminate with [±45°, 0°ଶ, 90°ଶ, ±45°, ±45°, 90°ଶ, 0°ଶ]s  

stacking sequence have been represented by [2 1 3 2 2 3 1] s. The different PGA operators of 

crossover, mutation, and permutation have been illustrated as follows: 
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Crossover: Parent #1:    3 2 1 2 3 2 2 1 

Parent #2:    2 2 1 3 2 1 3 2  

Child #1:    3 2 1 3 2 1 2 1 

Child #2:    2 2 1 2 3 2 3 2 

Mutation:     Before:    3 2 1 2 3 2 2 1 

      After:    3 2 1 2 3 3 2 1  
 

 
Permutation: Before:   

1    2 3 4 5 6 7 8 

 

 
2 2 1 3 2 1 3 2 

   After: 
1 2 6 5 4 3 7 8 

2 2 1 2 3 1 3 2 

 

Ant Colony Optimization Algorithm (ACOA) 

Dorigo (1991) developed the Ant Colony Optimization system that is inspired by the natural 

phenomena of the food searching strategy of the ant colony. He proposed a mathematical 

model that simulates this strategy of the cooperative attitude of an actual ant colony to find the 

optimal solution. He implemented his model to solve well-known optimization problems such 

as the travel salesman problem (TSP). The proposed model consists of four major steps. First, 

a suitable number of ants is assumed. Second, the probability of path selection is determined. 

Third, random numbers from 0 to 1 for each ant are generated. This step is repeated for all 

design variables, and it is followed by objective function evaluation and assessment. Fourth, 

the model checks the convergence process. ACO has been extended in different engineering 

areas to solve problems such as discrete structural design or composite laminated structures. 

Aymerich (2008)  investigated the computational efficiency of ACO as an optimizer that 

maximizes the buckling load of a simply supported plate exposed to uniaxial loading. He 

compared the solution quality and robustness of ACO with GA and TS algorithms for the same 

reference case study, and the results show that the ACO algorithm has better performance. 

Furthermore, Koide et al. (2013) used the ACOA combined with finite element analysis to 

maximize the buckling load factor. They compared the obtained results of their proposed 

optimization solution with those previously obtained for GA by Le Riche (1993). 
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The structure of the proposed ACOA by Aymerich (2008)  was mainly considered in the this 

study, and Algorithm-A I - 2 summarizes the steps of the implemented ACO. The procedure 

starts with random initial laminate stacking being selected from the feasible solution set 

(possible fiber orientations). This step is followed by an evaluation of the objective function 

which will be stored in the ant routing table and used to generate a new feasible stacking 

sequence. Then, the local search movements of permutation and swap are applied to all 

generated solutions by ants in order to find better solutions. The local movement of 

permutation of ACO has the same effect of the permutation operator of PGA whereas the swap 

(also called two points mutation) movement occurs by randomly selecting and switching 

positions of two bits of the solution string. Finally, the global pheromone table is updated, 

according to Eq.(A I- 1), where only the ants with the best solution deposited more pheromone 

trail on their path to the solution. This procedure continues until the termination criterion is 

satisfied. 

 

 

 

 

 

 

 

 

 

 

 

 

The pheromone is updated according to the following rule: 

 

where: 

 

Algorithm-A I - 2 Ant Colony Optimization Algorithm procedure 
 
Initialization 

- Initialize the ACO parameters 
While (termination criteria not satisfied) Do 

-   Construct Initial Solutions Table by Ants 
-   Evaluation 
- Local Search: 
 Permutation 
 Swap 

- New Solutions evaluation  
- Apply Pheromones Updating Rule 

End ACO algorithm for combinatorial optimization problems 

  𝜏௜௝௞(௧) = (1 − 𝜌). 𝜏௜௝௞(௧ିଵ) + ∑ 𝛥𝜏௜௝௞(௧ିଵ)௡௞                               (A I- 1) 
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 𝜌 denotes the evaporation rate, 𝑡 is the current iteration number, 𝑚 is the number of the optimal 

solution ants, and 𝑓௞ is the fitness value of each ant. 

 

Discrete Particle Swarm Optimization (DPSO) 

Kennedy (1995) developed particle swarm optimization (PSO), and it is classified as a 

population-based metaheuristic. PSO is used to solve non-linear optimization problems with 

continues domain. PSO mimics the social behavior of a flock of birds, where each bird (called 

particle) moves with the flock according to two vectors of position and velocity. Each particle 

updates its position and velocity based on simple vector addition and subtraction until the 

optimal solution is found. Furthermore, PSO has various forms since it was invented, and the 

most popular one is known as G-best PSO. Additionally, PSO is known for its significant 

ability to explore a solution space with a fast convergence rate (Parsopoulos & Vrahatis, 2002). 

Different variants of PSO were developed to solve optimization problems of various 

engineering applications. Multiple versions of Discrete PSO (DPSO) were designed to solve 

combinatorial optimization problems such as stacking sequence optimization (Zadeh, Fakoor, 

& Mohagheghi, 2018). Chang et al. (2010) proposed a new variant of DPSO called Permutation 

Discrete Particle Swarm (PDPSO). He used PDPSO to determine the optimum stacking 

sequence of a laminate subjected to the buckling load criteria. 

 

 

 

 

 

  𝛥𝜏௜௝௞(௧ିଵ) = ෍ 𝑓௞∑ 𝑓௞௠௞ୀଵ
௠
௞ୀଵ                                    (A I- 2) 

Algorithm-A I - 3 DPSO Algorithm procedure 
 
Initialization: 

- Generate initial random swarm. 
- Evaluate the initial swarm speed and position. 

While (termination criteria not satisfied) Do 
- Update swam speed and position  
- Evaluate the new swarm fitness 

End DPSO algorithm for combinatorial optimization problems 
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DPSO algorithm, as described by Zadeh (2018), has been adopted in this comparison study. 

Algorithm-A I - 3 illustrates the different steps of implemented DPSO. It is initialized by 

selecting random swarm of particles and a set of possible solutions, and then this swarm fitness 

is evaluated. The best global position is devoted to the particle with maximum fitness in the 

initial swarm. The local particle speed and position update according to Eq.(A I- 3) and (A I- 

4) to generate a new swarm. The evaluation of the new swarm is then carried out, and the 

global best position is updated if the fitness of best local position of the new swarm is higher 

than the fitness of the stored best global position. This loop continues until the termination 

criterion is satisfied. 

 

The particle speed and positions are updated according to the following equations: 

where  𝑋௞ାଵ௜  and 𝑉௞ାଵ௜  represent the updated position and speed respectively. 

 

Simulated Annealing (SA) 

In 1953, Metropolis presented the concept of the simulated annealing algorithm. It is based on 

the mathematical analogy of the thermal annealing process of critically heated metals. When 

the heated metal reaches the melting temperature, the molten molecules move randomly 

concerning each other. Continued reduction of the temperature limits the movement of these 

molecules and therefore, leads them to be highly ordered until the crystal state is reached, 

which represents the lowest internal strain energy. The cooling rate has a direct impact on 

achieving the crystal state; the faster rate will not provide the molecules enough time to form 

a crystal, and they will attain a polycrystalline state instead, which has higher strain energy. 

Therefore, the crystallization of molten metals needs a controlled rate of cooling to obtain the 

lowest strain energy state, and this process is called annealing (Kirkpatrick et al., 1983). 

 

  𝑋௞ାଵ௜ = 𝑋௞௜ + 𝑉௞ାଵ௜                                     (A I- 3) 

  𝑉௞ାଵ௜ = 𝑤𝑉௞௜ + 𝑐ଵ𝑟ଵ൫𝑃௕௘௦௧௜ − 𝑋௞௜ ൯ + 𝑐ଶ𝑟ଶ൫𝐺௕௘௦௧௚ − 𝑋௞௜ ൯                                    (A I- 4) 
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Since its introduction, SA has been used to solve several engineering optimization problems, 

including stacking sequence design. Lombardi et al. (1992) used SA to optimize the composite 

laminate buckling load for a plate subjected to biaxial loading under strain limits with iso-

oriented and contiguous plies. They considered the range within 0.1% of the best solution as a 

near or optimal solution in the design space. Erdal et al. (2005) presented an improved version 

of SA called Direct Simulated Annealing (DSA) to maximize the buckling load factor of the 

biaxially loaded laminate. DSA was developed by Ali et al. (2002) to handle continuous 

variable design problems based on memorizing the previous solutions and using a group of 

points instead of one point in its search for the optimal solution. Erdal (2005) adapted the DSA 

algorithm to optimize composite laminate design, which is a discrete optimization problem, 

and he investigated the performance of the algorithm by increasing the difficulty of the 

problem and increasing the design space size. He demonstrated that DSA performed well even 

with larger design space, and it overcame the cons of the original SA that was used by 

Lombardi(1992). Javidrad et al. (2017) proposed a modified SA algorithm that uses the 

parallelization concept, where the search is performed parallel to the multiple initial points, 

and the best-found solution is selected as the optimal solution. The convergence speed, for 

large design spaces, was a result of SA modification. 

 

The structure of the standard SA algorithm was used to implement the algorithm in this 

comparison study, and the main steps of the implemented SA are listed in Algorithm-A I - 4. 

SA starts by generating an initial random solution and then computing the objective function 

value. The initial solution is considered as a current solution, and a new solution is randomly 

generated about it. The energy of the new solution is determined, which is also known as 

accepting probability, as shown in Eq.(A I- 5). If the new solution energy is greater than the 

current solution energy, then the new solution becomes the current solution; otherwise, another 

new solution is generated. The temperature 𝑇 is reduced if the SA loop iterations exceeds the 

certain number of iterations 𝑛. These actions are repeated until the termination criteria is 

satisfied (S. S. Rao, 2009) . 
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Algorithm-A I - 4 Simulated Annealing Algorithm procedure 
 
Initialization: 

- Initialize SA parameters (𝑇, 𝑐,𝑛) 
- Generate initial random solution. 
- Evaluate the initial solution. 

While (termination criteria not satisfied) Do 
- Generate a new solution from the current solution vicinity. 
- Calculate the current solution energy. 
- Calculate the new solution energy. 
- Compare both solutions energy 
- Update the current solution with the biggest. 
- If the number of iterations > 𝑛 
- Reduce the temperature by reduction factor 𝑐.  

End SA algorithm for combinatorial optimization problems 
 

The solution energy level is determining according to Boltzmann distribution probability as 

follow: 

 

 

where   

 ∆𝑓 = 𝑓௡௘௪ − 𝑓௖௨௥௥௘௡௧ 
 𝐾 is Boltzmann’s constant and 𝑇 is the initial temperature. 

 

Tabu Search (TS) 

Tabu Search (TS) is a local searching algorithm that explores the neighborhood of local optima. 

This algorithm uses a memory strategy to prevent recycling of old solutions. The original TS 

was presented by Glover (1991), and since then, it has improved and become widely used in 

solving combinatorial optimization problems such as TSP. Kaw et al. (2003) employed TS to 

optimize the stacking sequence of a rectangular laminate subjected to buckling loads. Three 

different loading cases have been investigated and compared to the previous results obtained 

using GA. The results illustrate a significant reduction in the solution cost by 25% and 55% 

for the first and second case, respectively, whereas a slight decrease of 1% was obtained in the 

  𝑃(𝑋) = 𝑒ି∆௙ ௞்⁄  (A I- 5) 
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third case. Kaw et al. (2003) concluded that TS is a competent optimization tool for stacking 

sequence problems, but it needs a favorable initial solution.  

 

Additionally, Rao (2007) used TS to enhance the local searching capability of the SA algorithm 

to optimize the stacking sequence and the new algorithm called TSA, which demonstrated 

superior performance to GA. Algorithm-A I - 5 explains the structure of the TS algorithm used 

in the current comparison work. TS algorithm is initialized by generating a random initial 

solution and then evaluating it. The neighborhood search of the initial solution is carried out 

by applying three different movements of permutation, swap, and insertion. 

 

 

 

 

 

 

 

 

The first two movements are similar to what have described in GA and ACO, where the 

insertion movement is imposed by selecting a random bit in the solution string and inserting it 

between two adjacent random bits. Next, the newly generated solutions are evaluated, and then 

the maximum fitness value updates the optimal solution. Then, the Tabu list is updated to 

prevent the next neighborhood search from returning to the previously selected solution. These 

steps of the algorithm continue until the termination criterion is satisfied. 

 

 

 

Algorithm-A I - 5  Tabu Search Algorithm procedure 
 
Initialization: 

- Generate initial random solution. 
- Evaluate the initial solution. 

While (termination criteria not satisfied) Do 
- Search the neighborhood: 

• Permutation 
• Swap 
• Insertion  

- Evaluate the new solutions 
- Update the Tabu list. 

End TS algorithm for combinatorial optimization problems 



184 

Optimization Case Study 

The general trend in composite optimization problems is usually aiming to achieve the design 

optimality by considering one of the following aspects: weight minimization, strain energy 

minimization, or critical buckling load maximization, which intends to improve the structural 

strength and reduce the design cost (Nikbakt et al., 2018). Composite laminated design 

variables have a significant impact on the type of optimization problem. For instance, if the 

optimization problem considers a number of plies as a design variable to be determined, and 

the other design variables are imposed, the problem is classified as a discrete optimization 

problem. For such type of optimization problem, the solution could be carried out using some 

simple methods such as enumeration or branch and bound algorithms (Gürdal, Haftka, & 

Hajela, 1999). However, the formulation of the problem needs to consider multiple aspects 

such as optimization level, single or multi-objective, and constraint handling method. 

Additionally, the following sections illustrate the general elements of the formulation of the 

stacking sequence optimization to maximize the buckling load problem. 

 

 Optimization Problem Statement  

This assessment study focuses on the optimization of the stacking sequences that maximize 

the buckling load (strength) of the laminate as a case study. The objective function of 

maximizing the buckling load factor for laminate subjected to buckling load conditions could 

be written as follows: 

 

 

where 𝜆௖௕ is the critical buckling load factor that buckles a simply supported plate subjected 

to in-plane loads of 𝜆𝑁௑  and 𝜆𝑁௬ into p and q half waves in x and, y directions. 𝜆௖௕ could be 

defined, with respect to flexural stiffness, as: 

 

  𝑚𝑎𝑥𝜆௖௕(𝑝, 𝑞) (A I- 6) 
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The smallest value of 𝜆௕(𝑝, 𝑞) is considered as the critical buckling load factor. The critical 

values of 𝑝 and 𝑞 are linked to different factors such as laminate material, number of plies, 

loading conditions, and the plate aspect ratio. In uniaxial loading of a simply supported plate, 

the critical buckling load occurs when 𝑝 = 1 whereas in biaxial critical buckling loads, it needs 

to be determined as the minimum value of 𝜆௖௕ (𝑝, 𝑞) (Söyleyici, 2011). 

 

Solution Representation and Design Space 

The most commonly used fiber orientations are 0°, ±45°, and 90°. In meta-heuristic 

algorithms, the solution (stacking sequence) takes the form of a bit string that consists of a 

combination of plies with these angles. The different solutions are integrally coded with 1, 2, 

and 3 numbers, which respectively represent the three possible fiber orientations. For instance, 

the laminate with [2 1 3 2 2 3 1]s stacking sequence describes the laminate of 

[±45°, 0°ଶ, 90°ଶ, ±45°, ±45°, 90°ଶ, 0°ଶ]s fiber orientations. The simplicity of using an integer 

representation and the significant performance, makes it the most widely used method in meta-

heuristic optimization algorithms for composite laminated design (R Le Riche & Haftka, 

1995). The following formula could determine the Design Space Size (DSS) for a laminate 

represented by 𝑁 plies: 

 

 

where K is devoted to the number of ply orientation angles (e.g., K=3 for 0°ଶ, ±45°, 90°ଶ). 

 

Composite Laminate Design Constraints 

The design of the composite should respect certain limitations of manufacturing and specific 

design considerations. In literature, some rules have been proposed to improve the 

  𝜆௕(p, q) = 𝜋ଶ ൤𝐷ଵଵ൫𝑝 𝑎ൗ ൯ସ + 2(𝐷ଵଶ + 2𝐷଺଺)൫𝑝 𝑎ൗ ൯ଶ + 𝐷ଶଶቀ𝑞 𝑏ൗ ቁସ൨൫𝑝 𝑎ൗ ൯ଶ𝑁௫ + ቀ𝑞 𝑏ൗ ቁଶ𝑁௬  (A I- 7) 

   𝐷𝑆𝑆 = 𝐾ே (A I- 8) 
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effectiveness of a laminate design for different applications, (Peeters & Abdalla, 2017; A. R. 

M. Rao, 2009; Zein et al., 2016). The most used rules are classified and listed below: 

 

- Manufacturing limitations: the thickness of the plies and fiber orientations are 

limited to the available manufactured values, which are usually integer, for ply 

thickness or certain angles such as ±45°, 0°, and 90° and for ply orientations. 

Additionally, the symmetrical laminate makes the manufacturing process more 

straightforward. 

 

- Strength and stiffness considerations: the symmetry of laminate is necessary to 

prevent extension-bending coupling (𝑖. 𝑒. ,𝐵௜,௝ = 0). Furthermore, the balanced 

laminate (which has pairs of plies with the same thickness and different signs of 

same orientation angle 𝜃) condition is needed to avoid shear-extension coupling (𝑖. 𝑒. ,  𝐴ଵ଺ = 𝐴ଶ଺ = 0). All the plies with ±𝜃 will be grouped to minimize the effect 

of bending and twisting coupling. Moreover, the congestion of the same orientation 

plies should be limited to 4 plies for each group to develop a homogeneous laminate 

and reduce inter-laminate stresses and matrix crack failure. Furthermore, the 

stiffness degradation can be reduced by devoting 10% of the total number of plies 

for each orientation angle of 0°, ±45°, and 90°. 
 

Generally, the constraints in stacking sequence optimization with constant laminate thickness 𝑡 could be treated as: 

 

- Symmetry constraint is enforced by optimizing half of the laminate. 

- Balancing constraint is enforced by selecting 𝜃ଶ for the standard fiber orientation 

set of 0°, ± 45°, and 90°. 

- Only 𝑁/4 ply orientations are needed to describe laminate because of balancing 

constraints. 

- Contiguity constraint is handled by using the penalty parameter (𝜌). 
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Objective Function Transformation 

The handling of the constraints is the most critical aspect of the optimization problem 

formulation. The methods used with the algorithms reviewed here fall under one of the 

following categories: 

- Feasibility-based rule. 

- Discrete penalty functions. 

- Hybrid approach. 

A feasibility-based rule lets the algorithms generate the feasible candidate solutions only and 

then find the optimum one from them. Furthermore, the penalty functions are widely used in 

handling the constraints due to their simplicity with consistent results. Hybridization of both 

the previous methods could lead to an improvement in the performance of the algorithm to find 

the global optima (R. Le Riche & Haftka, 1993). More details about the constraints handling 

topic could be found in (Barroso, Parente, & de Melo, 2017; Jiao, Luo, Shang, & Liu, 2014). 

 

 

Comparison and Assessment Criteria  

In addition to the elapsed time (average CPU time), literature has shown that other measures 

can be used to measure the computational effort of an algorithm. The first measure is price (𝑃ௌ), which is defined as the number of objective function evaluations within a search run, and 

it reflects the computational cost of the search process. The second measure is practical 

reliability (𝑃𝑅) , and it is defined as the percentage of runs that achieve Practical Optima (𝑃𝑂) 

at a specific run. The last measure is the normalized price (𝑛𝑃ௌ) which is defined as the ratio 

of price and practical reliability. Practical optima 𝑃𝑂  is defined as the solution within 0.1% 

error value of the best possible solution (Kogiso et al., 1994; R. Le Riche & Haftka, 1993; 

Malan & Engelbrecht, 2014). 

 

 

 𝜆 = (1 − 𝜌). max𝜆௖௕(𝑝, 𝑞) (A I- 9) 
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Benchmarking Numerical Example  

MATLAB programs were written for each algorithm reviewed here, which are described in 

pseudo codes as illustrated in Algorithm-A I - 1 to Algorithm-A I - 5. The literature has shown 

persistent development of new composite optimization solutions. To verify these new 

solutions, there is a crucial demand to select the well-known benchmarking problems. The 

widespread benchmarking problem used in the literature of stacking sequence optimization is 

accredited to Le Riche (1993), and it is indeed widely used in the reviewed studies of the 

current work. The original problem describes a simply supported plate subjected to an in-plane 

biaxial loading, as shown in.Figure-A I - 2. 

 

 The thickness of each ply 𝑡 is assumed constant, and the plies’ orientations are limited to 0°, ±45°, and 90° sets of angles. The number of plies 𝑁 is constant. The required properties, 

dimensions, and loading conditions are listed in Table-A I - 1 and Table-A I - 2. Furthermore, 

 

Figure-A I - 2 Simply supported plate subjected to biaxial loading. 
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the objective function is maximizing the critical buckling load. The constraints are integrated 

to the solution (e.g., balanced laminate, symmetrical, etc.). 

 

Table-A I - 1  Graphite-Epoxy lamina’s properties 
(R. M. Koide, de Franca, & Luersen, 2013) 

 
Elastic Properties Strength Properties 

E1 
(GPa) 

E2 
(GPa) 

G12 
(GPa) 

ν12 XT 
(MPa) 

YT 
(MPa) 

XC 
(MPa) 

YC 
(MPa) 

S12 
(MPa) 

127.59 13.03 6.41 0.3 1500 40 1500 246 68 
 

Table-A I - 2  Dimensions and loading conditions of composite laminated plate  
(R. M. Koide et al., 2013) 

 
Dimensions Loading 

# Plies 
NL 

Thickness 
t (mm) 

Length 
a(mm) 

Width 
b (mm) 

Nx 
(N/m) Nx/Ny 

64 0.127 508 25.4 175 1 
 

The five implemented algorithms were tested on the same machine, as shown in Figure-A I - 

3, for the same number of experiments; 𝑁𝑒𝑥𝑝 = 200. This number was used in the original 

reference case by Le Riche (1993); he used it to tune the PGA parameters and at the same time 

to determine the performance of his proposed PGA. 

================================================================ 
 User: Ali Ahmid                                                                               15-May-2019 00:24:25 
================================================================ 
       Machine Information: 
                    CPU Processor: Intel(R) Core (TM) i7-4790 CPU @ 3.60GHz 
                        CPU clock speed: 3601 MHz 
                    CPU Cache size (L2): 1024 KB 
           Number of physical CPU cores: 4 
      Installed physical memory (RAM): 16 GB 
                  Operating System Type: Windows 
               Operating System Version: Microsoft Windows 7 Enterprise 
================================================================ 

Figure-A I - 3  The specifications of PC-machine used in the current comparison study. 
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An initial random solution was initialized for PGA, SA, and DPSO while TS started with the 

best solution of 10 random solutions. ACOA began with the initial pheromone of value . 004. 

The number of practical optima was determined by considering the near-optimal solutions. In 

this research, the range of the practical optimal solutions was set to just 0.1% of the global 

optima.  

 

Results and Discussion  

The obtained results for the biaxially loaded laminate are listed in Table-A I - 3. Additionally, 

the maximum critical buckling load 𝜆௖௕ values were plotted versus their experiment number, 

as illustrated in Figure-A I - 4. Additionally, the convergence of each algorithm has been 

graphically illustrated in Figure-A I - 5. According to the introduced comparison and 

assessment criteria in section 4, different comparison measures of average CPU time, average 

price, reliability and normalized price were determined and have been illustrated in Figure-A 

I - 6 to Figure-A I - 8. 

 

The first four algorithms reached the same global optimal solution, whereas the Tabu Search 

algorithm missed it slightly, as presented in Table-A I - 3. The optimal stacking sequence 

followed the same pattern of switching between two groups of 90ଶ and ±45 fiber orientations, 

which confirms the results of Erdal (2005), Aymerich (2008), and a more recent study by 

Kaveh (2017); however,  0ଶ angle orientations did not exist in the global optimal solution. In 

Figure-A I - 5, the convergency of trajectory-based meta-heuristics form a series of steps line 

graph on its way to the optimal solution zone in the design space. On the other hand, the 

population-based meta-heuristics form a progressive curve graph to converge to the optimal 

solution. The numerical experiments confirm the random performance fluctuation of the meta-

heuristic algorithms due to their stochasticity, as illustrated in Figure-A I - 4. 

 

In terms of computational effort, SA consumed the less CPU time, with just 2.75 sec to 

complete one run of the algorithm in average, and ACO became the second with 4 sec, while 

DPSO needed around 32 sec, as shown in Figure-A I - 6. The reliability values are shown in 

Figure-A I - 7(b) that demonstrates the outperformance of PGA and SA over ACOA, DPSO, 
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and TS. However, in terms of the solution cost, ACOA ranks above all others, as it only costs 

87.73 runs on average to reach the global optima with 76.5% reliability. Even though PGA and 

SA exhibit high reliability, they produced expensive solutions compared to ACOA, as shown 

in Figure-A I - 8. 

 

Table-A I - 3  The optimal stacking sequence for 64 ply laminates subjected to biaxial 
loading without contiguity constraint (𝑁𝑦/𝑁𝑥 = 1 and 𝑎/𝑏 = 2). 

 

 

However, the current work is devoted to providing a general overview of the performance of 

meta-heuristic algorithms. The critical strength factor that has been considered here is the 

buckling load factor only. Adding the strain failure factor to the optimization criteria could 

affect the final optimal stacking sequence design. Furthermore, the size of the design space is 

another factor that could have a significant impact as well (Todoroki & Haftka, 1998). 

 

Algorithm Optimal Stacking Sequence Critical Buckling Load 
Factor 

PGA [902 902  902  902  902  ±452  ±452  902  ±452 
±452 ±452  902  ±452  ±452  ±452  ±452 ] 3973.01 

ACOA [902 902 902 902 ±452 902 ±452 902 ±452 
902  ±452 ±452 ±452 ±452 ±452 ±452] 3973.01 

SA [902 902  902  902  902  ±452  902 ±452 ±452 
±452 ±452 ±452 ±452 ±452 902 ±452] 3973.01 

DPSO [902 902 ±452 ±452 902 902  902  902 
902 902  902  902 ±452 902    902 902 ] 3973.01 

TS [902 902 902 902 902 ±452 ±452 ±452 902 
±452  902  ±452 ±452 902 ±452 ±452] 3972.50 
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(a) PGA 

(b) ACOA 

(c) DPSO 

    
(d) SA 

       
(e) TS 

Figure-A I - 4 : Maximum critical buckling load factor vs. experiment number 
for the five MHs 
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Figure-A I - 5 Meta-heuristics Convergence for Maximizing Critical Buckling Load 
Factor. 

 

 

Figure-A I - 6 Average elapsed CPU time for the implemented meta-heuristic 
Algorithms 
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a.) Average Price  

b.) Reliability 

 Figure-A I - 7 Average price and reliability for implemented meta-heuristic 

Algorithms 

 

 

Figure-A I - 8 Normalized price comparison for Meta-heuristic 

 

Conclusion  

A comparison of meta-heuristic optimization techniques has been conducted in this article, and 

the basic knowledge of stacking sequence optimization fundamentals has been introduced. 
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Five different well-known optimization algorithms have been implemented and examined. 

This research tried to bridge the gap of previous investigations such as comparing the 

performance of algorithms from the same category of meta-heuristics. In addition, it applied 

the same convergence criteria of the investigated meta-heuristics to ensure a fair performance 

assessment. It may be useful to note that the different meta-heuristics parameters that have 

been used here were taken from previous studies, and any parameters refinement is out of the 

current study scope. 

  

The reliability analysis results reveal that GA and SA offer a more reliable solution than 

ACOA. In terms of solution cost, ACOA ranks above all others, as it only costs 87.73 runs on 

average to reach the global optima with 76.5% reliability, whereas DPSO, the nearest other 

meta-heuristic, costs 120 runs on average with 70.15 % reliability. Based on the current case 

study results, we can conclude that ACOA is a promising algorithm, and this agrees with 

previous studies of  Bloomfield (2010) and Aymerich (2008). The significant performance of 

ACOA is expected, where it is basically designed to solve discrete optimization problems (M. 

W. Bloomfield et al., 2010). 

 

ACOA could be improved by integrating other local search movements rather than only relying 

on permutation and swap movements (Marco Dorigo & Stützle, 2019). GA has low local 

search performance, which could be improved by combining it with other efficient local search 

algorithms such as PSO (M. W. Bloomfield et al., 2010). Eventually, further investigations are 

needed to verify this significant performance of ACOA, such as extend the comparison to 

include bigger design space or more design constraints with respect to stacking sequence 

design. 

 

 

 

 



 



 

APPENDIX II 
 
 

 PERMUTUATION GENTIC ALGORITHM FOR OPTIMIZATION OF 
COMPOSITE LAMINATED PLATE SUBJECTED TO BUCKLING LOADING 

 

PermutationGA.m 

function 
[xopt,fopt,ige]=PermutationGA(objfunc,nvar,xd,ii,nPop,Ps,Pc,Pm,Imax) 
%%% Permutation GA to maximize or minimze f(x)..the permutation 
%%% probability is 100% 
%  [xopt,fopt]= PermutationGA(objfunc,nvar,xd,sPop,Ps,Pc,Pm,Imax) 
%        xopt = Optimal Solution 
%        fopt = Optimal solution 
%          f  = Objective Function  
%       nVar  = no. of design variables 
%         xd  = Discrete design variables values vector  
%        nPop = Size of the population 
%          Ps = Probability of selection 
%          Pc = Probability of Crossover 
%          Pm = Probability of mutation 
%        Imax = max number of generations 
%%%-----------------------------------------------------------------------
% 
 if nargin < 9, Imax=1000;end   % Number of generations  
 if nargin < 8,   Pm=.08 ;end   % Mutation probability 
 if nargin < 7,   Pc=1.0 ;end   % Crossover probability 
 if nargin < 6,   Ps=0.5 ;end   % Selection fraction 
 if nargin < 5, nPop=8   ;end   % Population size 
  
%------------------------------------------------------------------------- 
%                            1. Initialization 
%-------------------------------------------------------------------------
% 
ige=0; 
for n=1:nPop,x(n,:)= randi([1 length(xd)],1,nvar); end % generate random 
population 
for n=1:nPop,funcx(n,:)=feval(objfunc,x(n,:)); end % evaluate all  
                                                   % population members. 
%------------------------------------------------------------------------- 
%                             2. Selection 
%-------------------------------------------------------------------------
% 
[funcx,ind]=sort(funcx,'descend');            % max fitness is first. 
 x=x(ind,:);                                  % sorting population from..  
                                              % ..lowest to largest. 
maxfx(1)=max(funcx);                          % maximum population 
fitness. 
meanfx(1)=mean(funcx);                        % mean population fitness. 
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keep=floor(Ps*nPop);                          % no. of survivors.  
                                          
nM=ceil(Pc*(nPop-keep))/2;                    % no. of mating parents. 
odds=1; 
for i=2:keep,odds=[odds i*ones(1,i)];end 
nodds=length(odds); 
pik1=ceil(nodds*rand(1,nM)); % parent#1 
pik2=ceil(nodds*rand(1,nM)); % parent#2 
ma=odds(pik1);% index of mother  
pa=odds(pik2);% index of father 
% ----------------- 
% fid_ali=fopen('PGA_data(ii).txt','w'); 
% ---------------- 
% fid_ali = fopen(sprintf( 'PGA_Conv\PGAConv%i.txt',ii),'w' );  % where j 
is your loop variable 
% fid_ali = fopen(strcat([ 'PGA_Conv\PGAConv',num2str(ii),'.txt']),'wt'); 
while ige<Imax 
ige=ige+1; 
%------------------------------------------------------------------------- 
%                              3. Crossover 
%-------------------------------------------------------------------------
% 
  for i=1:nM 
    pa1=x(ma(i),:); 
    pa2=x(pa(i),:); 
    indx=2*(i-1)+1;                           % skipping index 
    chroms2=[pa1;pa2]; 
    x(keep+indx:keep+indx+1,:)=crossover(chroms2,nvar); 
  end 
%------------------------------------------------------------------------- 
%                              4. Mutation 
%-------------------------------------------------------------------------
% 
numt=ceil(Pm*nPop); 
 for j=1:numt 
    xn=randi([1 nPop]); 
    x(xn,:)=mutuation(x(j,:),nvar); 
 end 
%------------------------------------------------------------------------- 
%                              5. Permutation 
%-------------------------------------------------------------------------
% 
for np=1:nPop 
    x(np,:)=permutuation(x(np,:),nvar); 
end 
  
for nk=1:nPop,funcx(nk,:)=feval(objfunc,x(nk,:)); end 
[funcx,ind]=sort(funcx,'descend'); 
x=x(ind,:); 
% disp('     ind            x            funcx') 
% disp('---------------------------------------') 
% disp([ind x funcx]) 
maxfx(ige)=max(funcx); 
minfx(ige)=min(funcx); 
meanfx(ige)=mean(funcx); 
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fbest=maxfx(ige); 
if maxfx(ige)-minfx(ige)<eps,break;end 
end 
% -----------Declare the optimum solution of Xopt & fopt-----------------% 
[fopt,ixb]=sort(fbest,'descend'); 
 xopt=x(ixb,:); 
%------------------------------------------------------------------------- 
%                           Displays the output                            
%-------------------------------------------------------------------------
% 
day=clock; 
disp(datestr(datenum(day(1),day(2),day(3),day(4),day(5),day(6)),0)) 
disp(['Optimized Function is ' 'CBLF']) 
format short g 
disp(['Popsize = ' num2str(nPop) ' mutrate = '... 
num2str(Pm) ' Number of variables = ' num2str(nvar)]) 
disp(['      Best cost(fopt)= ' num2str(fopt)]) 
disp([' Best solution (xopt):']) 
disp(['                       ' num2str(xopt)]) 
 
  

 crossover.m 

function chroms2=crossover(chroms2,nvar) 
    rp1=randi([1 nvar]);    % 1st random point  
    rp2=randi([1 nvar]);    % 2nd random point 
    cr1=min(rp1,rp2);       % 1st crossover point 
    cr2=max(rp1,rp2);       % 2nd crossover point 
    tmp=chroms2(1,cr1:cr2); % switcher  
    chroms2(1,cr1:cr2)=chroms2(2,cr1:cr2); 
    chroms2(2,cr1:cr2)=tmp; 
 
 

mutation.m 
         
function chrom1= mutation(chrom1,nvar) 
    mp1=randi([1 nvar]); 
    mp2=randi([1 nvar]); 
    tmp=chrom1(mp1); 
    chrom1(mp1)=chrom1(mp2); 
    chrom1(mp2)=tmp; 
 
  

permutation.m 
 
function pchrom1=permutation(pchrom1,nvar) 
rp1=randi([1 nvar]); 
rp2=randi([1 nvar]); 
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prp1=min(rp1,rp2); 
prp2=max(rp1:rp2); 
pchrom1(prp1:prp2)=pchrom1(flip(prp1:prp2)); 
 
 

 



 

APPENDIX III 
 
 

MATLAB CODES FOR ANT COLONY OPTIMIZATION ALGORITHMS  
 

Ant Colony Optimization Matlab Folder Structure  

 
 

MainACO.m 

%=========================================================================
% 
%    File: MainACO.m 
%  Author: Ali Ahmid 
% Version: V2.0 March 2020 
%       ?: This is the main ACO Algorithms file where the user can enter  
%          his model information and select the different ACO algorithms 
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%=========================================================================
% 
%% Adding working directories  
addpath(genpath('00_Index')) 
addpath(genpath('01_ACOAlgorithm')) 
addpath(genpath('02_EACOAlgorithm')) 
addpath(genpath('03_RBACOAlgorithm')) 
addpath(genpath('04_MMACOAlgorithm')) 
addpath(genpath('05_HCFACOAlgorithm')) 
addpath(genpath('06_BWACOAlgorithm')) 
addpath(genpath('07_EHCFACOAlgorithm')) 
addpath(genpath('08_HCFMMACOAlgorithm')) 
addpath(genpath('09_EHCFMMACOAlgorithm')) 
%% Resetting the working space and declare Global variables 
clear,clc 
clear global 
global Data ii MachineInformation iseed is maxIconv mk 
%% Check operating system and CPU specification 
MachineInformation=cpuinfo; 
%% Intializiation of Data file 
Data=LaminateData; 
%% Selecting the Options file 
% Options=Data.ACOptions; 
Options =Data.MMACOptions; 
% Options =Data.BWACOptions; 
%% Converegence rate 
ConvRate= struct('fast',10,'slow',56); 
maxIconv=[ConvRate.fast,ConvRate.slow]; 
for mk=1:length(maxIconv) 
%% The Expierments Execution 
iseed=[301 2 50 75 111 200 167 225 11 25]; 
for is=1:length(iseed) 
    rng(iseed(is)); 
Iexp=200; 
% Select the ACO Variant 
     for ii=1:Iexp,Solution(ii) = MMACO(Options);end   
  %% Experiments Statistics  
    ExperiementSolution.fopt        = [Solution.fopt];   
    ExperiementSolution.xopt        = [Solution.xopt]; 
    ExperiementSolution.Maxfopt     = max(ExperiementSolution.fopt); 
    ExperiementSolution.Minfopt     = min(ExperiementSolution.fopt); 
    ExperiementSolution.Meanfopt    = mean(ExperiementSolution.fopt); 
    ExperiementSolution.Medianfopt  = median(ExperiementSolution.fopt); 
    ExperiementSolution.Stdfopt     = std(ExperiementSolution.fopt); 
    ExperiementSolution.AvgPrice    = mean([Solution.ige]); 
    ExperiementSolution.Relaibility = sum(ExperiementSolution.fopt>= 
3973.01/1.001)/Iexp*100; 
    ExperiementSolution.NormPrice   = 
ExperiementSolution.AvgPrice/(ExperiementSolution.Relaibility(1)/100); 
    ExperiementSolution.Quality     = (1-(3973.01-
ExperiementSolution.fopt)/3973.01)*100;%(1-
ExperiementSolution.Stdfopt/ExperiementSolution.Meanfopt)*(ExperiementSolu
tion.Meanfopt/ExperiementSolution.Maxfopt)*100; 
    ExperiementSolution.AvgQuality  = sum(ExperiementSolution.Quality 
)/Iexp; 
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    ExperiementSolution.Robustness  = ExperiementSolution.Meanfopt/ 
ExperiementSolution.Stdfopt; 
    ExperiementSolution.PerRate     = sum( ExperiementSolution.fopt>= 
ExperiementSolution.Maxfopt/1.001)/(ExperiementSolution.AvgPrice*Iexp); 
    ExperiementSolution.AvgFDC      = sum([Solution.cFD])/Iexp; 
    ExperiementSolution.AvgR        = sum([Solution.r])/Iexp; 
    ExperiementSolution.ElapsedTime = sum([Solution.ElapsedTime])/Iexp; 
    ExperiementSolution.maxTau      = [Solution.maxTauExp]; 
    ExperiementSolution.minTau      = [Solution.minTauExp]; 
     close Figure 1 
%% Saving results into ExperimentResultsXXXACO.txt  
if mk==1 
%     
fid=fopen(sprintf('00_Index/01_ExperimentResults_ACOA/01_ExpRslt_fast_conv
ergence/01_ExperimentResultsACOA%i.txt',is),'w'); 
%     
fid=fopen(sprintf('00_Index/02_ExperimentResults_EACO/01_ExpRslt_fast_conv
ergence/02_ExperimentResultsEACO%i.txt',is),'w'); 
%     
fid=fopen(sprintf('00_Index/03_ExperimentResults_RBACO/01_ExpRslt_fast_con
vergence/03_ExperimentResultsRBACO%i.txt',is),'w'); 
    
fid=fopen(sprintf('00_Index/04_ExperimentResults_MMACO/01_ExpRslt_fast_con
vergence/04_ExperimentResultsMMACO%i.txt',is),'w'); 
%     
fid=fopen(sprintf('00_Index/05_ExperimentResults_HCFACO/01_ExpRslt_fast_co
nvergence/05_ExperimentResultsHCFACO%i.txt',is),'w'); 
%     
fid=fopen(sprintf('00_Index/06_ExperimentResults_BWACO/01_ExpRslt_Fast_con
vergence/02_ExperimentResultsBWACO%i.txt',is),'w'); 
%     
fid=fopen(sprintf('00_Index/07_ExperimentResults_EHCFACO/01_ExpRslt_fast_c
onvergence/07_ExperimentResultsEHCFACO%i.txt',is),'w'); 
%     
fid=fopen(sprintf('00_Index/08_ExperimentResults_HCFMMACO/01_ExpRslt_fast_
convergence/08_ExperimentResultsHCFMMACO%i.txt',is),'w'); 
%     
fid=fopen(sprintf('00_Index/09_ExperimentResults_EHCFMMACO/01_ExpRslt_fast
_convergence/09_ExperimentResultsEHCFMMACO%i.txt',is),'w'); 
else  
%     
fid=fopen(sprintf('00_Index/01_ExperimentResults_ACOA/02_ExpRslt_slow_conv
ergence/01_ExperimentResultsACOA%i.txt',is),'w'); 
%     
fid=fopen(sprintf('00_Index/02_ExperimentResults_EACO/02_ExpRslt_slow_conv
ergence/02_ExperimentResultsEACO%i.txt',is),'w'); 
%     
fid=fopen(sprintf('00_Index/03_ExperimentResults_RBACO/02_ExpRslt_slow_con
vergence/03_ExperimentResultsRBACO%i.txt',is),'w'); 
    
fid=fopen(sprintf('00_Index/04_ExperimentResults_MMACO/02_ExpRslt_slow_con
vergence/04_ExperimentResultsMMACO%i.txt',is),'w'); 
%     
fid=fopen(sprintf('00_Index/05_ExperimentResults_HCFACO/02_ExpRslt_slow_co
nvergence/05_ExperimentResultsHCFACO%i.txt',is),'w'); 
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%     
fid=fopen(sprintf('00_Index/06_ExperimentResults_BWACO/02_ExpRslt_slow_con
vergence/06_ExperimentResultsBWACO%i.txt',is),'w'); 
%     
fid=fopen(sprintf('00_Index/07_ExperimentResults_EHCFACO/02_ExpRslt_slow_c
onvergence/07_ExperimentResultsEHCFACO%i.txt',is),'w'); 
%     
fid=fopen(sprintf('00_Index/08_ExperimentResults_HCFMMACO/02_ExpRslt_slow_
convergence/08_ExperimentResultsHCFMMACO%i.txt',is),'w'); 
%     
fid=fopen(sprintf('00_Index/09_ExperimentResults_EHCFMMACO/02_ExpRslt_slow
_convergence/09_ExperimentResultsEHCFMMACO%i.txt',is),'w'); 
end 
  
    
fprintf(fid,'%s\r\n','====================================================
====================='); 
    fprintf(fid,'%s                                       
%s\n','User:_________',num2str(datestr(clock))); 
    
fprintf(fid,'%s\r\n','====================================================
====================='); 
    fprintf(fid,'%s\r\n','Machine Information: '); 
    fprintf(fid,'%s\n',' '); 
    fprintf(fid,'%s\r\n',['               CPU Processor:' 
num2str(MachineInformation.Name)] ); 
    fprintf(fid,'%s\r\n',['             CPU clock speed:' 
MachineInformation.Clock] ); 
    fprintf(fid,'%s\r\n',['         CPU Cache size (L2):' 
MachineInformation.Cache] ); 
    fprintf(fid,'%s\r\n',['Number of physical CPU cores:' 
num2str(MachineInformation.NumProcessors)] ); 
    fprintf(fid,'%s\r\n',['       Operating System Type:' 
MachineInformation.OSType] ); 
    fprintf(fid,'%s\r\n',['    Operating System Version:' 
MachineInformation.OSVersion] ); 
    
fprintf(fid,'%s\r\n','====================================================
====================='); 
  
%       fprintf(fid,'                         %s\n','ACO Varient: ACO'); 
%     fprintf(fid,'                         %s\n','ACO Varient: EACO'); 
%     fprintf(fid,'                         %s\n','ACO Varient: RBACO'); 
    fprintf(fid,'                         %s\n','ACO Varient: MMACO'); 
%     fprintf(fid,'                         %s\n','ACO Varient: HCFACO'); 
%     fprintf(fid,'                         %s\n','ACO Varient: BWACO'); 
%     fprintf(fid,'                         %s\n','ACO Varient: EHCFACO'); 
%     fprintf(fid,'                         %s\n','ACO Varient: 
HCFMMACO'); 
%     fprintf(fid,'                         %s\n','ACO Varient: 
EHCFMMACO'); 
  
    fprintf(fid,'%s\r\n',   ['    Global Optimal Solution = ' 
num2str(ExperiementSolution.Maxfopt)]); 



205 

    fprintf(fid,'%s\r\n',   ['   Minimum Optimal Solution = ' 
num2str(ExperiementSolution.Minfopt)]); 
    fprintf(fid,'%s\r\n',   ['   Mean of Optimal Solution = ' 
num2str(ExperiementSolution.Meanfopt)]); 
    fprintf(fid,'%s\r\n',   [' Median of Optimal Solution = ' 
num2str(ExperiementSolution.Meanfopt)]); 
    fprintf(fid,'%s\r\n',   ['Solution Standrad Deviation = ' 
num2str(ExperiementSolution.Stdfopt)]); 
    fprintf(fid,'%s\r\n',   ['              Average Price = ' 
num2str(ExperiementSolution.AvgPrice)]); 
    fprintf(fid,'%s %s\r\n',['                 Relability = ' 
num2str(ExperiementSolution.Relaibility)],'%'); 
    fprintf(fid,'%s\r\n',   ['           Normalized Price = ' 
num2str(ExperiementSolution.NormPrice)]); 
    fprintf(fid,'%s %s\r\n',['   Average Solution Quality = ' 
num2str(ExperiementSolution.AvgQuality)],'%'); 
    fprintf(fid,'%s\r\n',   ['                Average FDC = ' 
num2str(ExperiementSolution.AvgFDC)]); 
    fprintf(fid,'%s\r\n',   ['     Correlation Coefficent = ' 
num2str(ExperiementSolution.AvgR)]); 
    fprintf(fid,'%s\r\n',   ['        Solution Robustness = ' 
num2str(ExperiementSolution.Robustness)]); 
    fprintf(fid,'%s\r\n',   ['           Performance Rate = ' 
num2str(ExperiementSolution.PerRate)]); 
    fprintf(fid,'%s %s\r\n',['       Average Elapsed Time = ' 
num2str(ExperiementSolution.ElapsedTime)],'sec'); 
    
fprintf(fid,'%s\r\n','====================================================
====================='); 
    fprintf(fid,'%s %12s %12s %12s %12s\r\n','Expeirment 
#','Foptimal','SolQuality','MaxExpTau ','MinExpTau'); 
    fprintf(fid,'%s %12s %12s%12s  
%12s\r\n','============','========','==========','=========','========='); 
    fprintf(fid,'     %-8.0f    %-8.3f      %-8.2f   %-8.5f      %-
8.5f\r\n',[(1:Iexp);ExperiementSolution.fopt;ExperiementSolution.Quality;E
xperiementSolution.maxTau;ExperiementSolution.minTau]); 
    
fprintf(fid,'%s\r\n','====================================================
====================='); 
fclose(fid); 
      
rng('default') 
end 
end 

 ACOA.m 

function Solution=ACOA(Options) 
global Data ii iseed is maxIconv mk 
tic 
%% Ant Colony Optimization Algorithm (ACO) to maximize f(x) 
%        Solution = ACO(Options) 
%   Solution.xopt = Optimal Solution 
%   Solution.fopt = Optimal solution 



206 

%         Data.f  = Objective Function  
%      Data.nVar  = no. of design variables 
%        Data.xd  = Discrete design variables values vector e.g[0 45 90] 
%       Data.nAnt = no. of Ants 
%    Options.Tau0 = Initial phormone 
%    Options.zeta = Global updating scale factor 
%    Options.rho  = Evaporation Rate 
%    Options.Imax = Max no. of iterations 
%%%-----------------------------------------------------------------------
% 
%% Check ACO Options 
if ~isempty(Options) && ~isa(Options,'struct') 
         error('Options must be a valid structure.'); 
elseif isempty(Options) 
  
DefaultOpt=struct('nAnt',25,'Imax',1000,'rho',0.07,'Tau0',0.004,'zeta',.03
); 
  Options = DefaultOpt; 
end 
%% Assiging ACO Parameters value 
 Imax= Options.Imax;  
  rho= Options.rho;   
 zeta= Options.zeta; 
 Tau0=Options.Tau0; 
 nAnts=Options.nAnt; 
 %% % Intialization  
nNodes=length(Data.xd); 
Tau=Tau0*ones(Data.nVar,nNodes); 
Solution.fx=[]; 
Solution.x=[]; 
ige=0; 
%% Check the convergence rate ConvRate 
    if mk == 1 
        mxIconv=maxIconv(1); 
 %% Create ACOutput.txt File 
 if is < length(iseed)  
 fid_ali1 = fopen( sprintf( 
'01_ACOAlgorithm/01_fast_convergence/0%i_Seeds(%i)/ACOAutput%i.txt',is,ise
ed(is),ii),'w' );   
 else 
 fid_ali1 = fopen( sprintf( 
'01_ACOAlgorithm/01_fast_convergence/%i_Seeds(%i)/ACOAutput%i.txt',is,isee
d(is),ii),'w' ); 
 end 
    elseif mk==2 
        mxIconv=maxIconv(2); 
 if is < length(iseed)  
 fid_ali1 = fopen( sprintf( 
'01_ACOAlgorithm/02_slow_convergence/0%i_Seeds(%i)/ACOAutput%i.txt',is,ise
ed(is),ii),'w' );   
 else 
 fid_ali1 = fopen( sprintf( 
'01_ACOAlgorithm/02_slow_convergence/%i_Seeds(%i)/ACOAutput%i.txt',is,isee
d(is),ii),'w' ); 
 end 
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    end 
%%     
 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
 fprintf(fid_ali1,'%s                                              
%s\n','User:_________',num2str(datestr(clock))); 
 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
 fprintf(fid_ali1,'                         %s\n','ACO Varient: ACOA'); 
 fprintf(fid_ali1,'%s\n',['         Expeirement no.(Iexp) = ', 
num2str(ii)]); 
 fprintf(fid_ali1,'%s\n',['                         Seeds = ', 
num2str(iseed(is))]); 
 %% Main ACOA Loop 
 while ige<Imax 
    ige=ige+1; 
for k=1:nAnts 
% Construct Solution 
    for j=1:Data.nVar  
        P=Tau(j,:); 
        P=P/sum(P); 
        Solution.x(k,j)=RouletteWheelSelection(P);      
    end 
     Solution.fx(k)=feval(Data.f,Solution.x(k,:)); 
end 
%% % Tour Statistics 
             [Solution.fx,ind] = sort(Solution.fx,'descend'); 
               Solution.x(:,:) = Solution.x(ind,:); 
           Solution.fbest(ige) = Solution.fx(1); 
       Solution.xbest(1,:,ige) = Solution.x(1,:); 
    % Check for current fbest 
               [fbestCheck,kk] = max(Solution.fbest(1:ige)); 
                    xbestcheck = Solution.xbest(1,:,kk); 
       if Solution.fbest(ige) <= fbestCheck 
           Solution.fbest(ige) = fbestCheck; 
       Solution.xbest(1,:,ige) = xbestcheck; 
       end 
          Solution.fworst(ige) = Solution.fx(end);  
      Solution.xworst(1,:,ige) = Solution.x(end,:); 
       Solution.fmean(1,:,ige) = mean(Solution.fx); 
           Solution.Segma(ige) = sum(Solution.fx==Solution.fx(1)); 
Solution.BxWxLocalDis(1,:,ige) = Data.nVar-sum(Solution.xbest(1,:,ige)... 
     == Solution.xworst(1,:,ige)); 
  %% Plotting results 
       x = Solution.xbest(1,:,ige); 
       y = Data.nVar; 
       PlotSolution(x,y)  
%% Daimon actions 
%      NA 
%% Pheromone Updating   
       % Phormen Evaporation (for all paths ) 
       Tau=(1-rho)*Tau; 
       % Pheromone Depositing (for the best path ) 
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           for i=1:Data.nVar 
       Tau(i,Solution.xbest(1,i,ige))= 
Tau(i,Solution.xbest(1,i,ige))+zeta*Solution.Segma(ige)*Solution.fworst(ig
e)/Solution.fbest(ige); 
           end 
             tempMaxTau(ige,:) = max(Tau); 
             tempMinTau(ige,:) = min(Tau); 
          Solution.maxTau(ige) = max(tempMaxTau(ige,:)); 
          Solution.minTau(ige) = min(tempMaxTau(ige,:)); 
       %% Convergence check 
 Iconv = sum(Solution.fbest(1:ige)==max(Solution.fbest(1:ige))); 
Iwconv = sum(Solution.fbest(1:ige)==Solution.fworst(1:ige)); % Counter of 
fbest=fworst 
           if Iwconv >100 | Iconv>mxIconv , break;end        
 end 
 % ACOA Solution results 
         [Solution.fopt, jj] = max(Solution.fbest(1:ige)); 
               Solution.xopt = Solution.xbest(1,:,jj); 
          Solution.noGoptima = sum(unique( 
Solution.fbest(1:ige)>=Solution.fopt/1.001)); 
                Solution.ige = ige; 
                      [~,mm] = find(Solution.fbest(1:ige) == 
Solution.fopt); 
           Solution.FrstGopt = mm(1); 
           Solution.Minfbest = min(Solution.fbest(:)); 
          Solution.Meanfbest = mean(Solution.fbest(:)); 
           Solution.Stdfbest = std(Solution.fbest(:)); 
   for i=1:ige             
       Solution.GlobalDis(i) = Data.nVar-sum(Solution.xopt == 
Solution.xbest(1,:,i));  
   end 
                Solution.cFD = sum((Solution.fbest-Solution.Meanfbest).*( 
Solution.GlobalDis-mean( Solution.GlobalDis)))/ige; 
                  Solution.r = Solution.cFD/(Solution.Stdfbest*std( 
Solution.GlobalDis)); 
            Solution.PerRate = sum(Solution.fbest(:)>= 
Solution.fopt/1.001)/(Solution.ige*Imax); 
        Solution.ElapsedTime = toc; 
        Solution.LinConvRate = zeros(1,ige); 
        for i=1:ige 
            if Solution.GlobalDis(i)~= 0 
        Solution.LinConvRate(i) = (Solution.fopt-
Solution.fbest(i))/Solution.GlobalDis(i); 
            else 
              Solution.LinConvRate(i) = 0; 
              break; 
            end 
        end 
        Solution.maxTauExp=max(Solution.maxTau(1:ige)); 
        Solution.minTauExp=min(Solution.minTau(1:ige)); 
%% Write ACOA results Output File 
fprintf(fid_ali1,'%s\r\n',['           Number of variables = ' 
num2str(Data.nVar)]); 
fprintf(fid_ali1,'%s\r\n',['                   no. of Ants = ' 
num2str(nAnts)]); 
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fprintf(fid_ali1,'%s\r\n',['            Maximum CBLF(fopt) = ' 
num2str(Solution.fopt)]); 
fprintf(fid_ali1,'%s\r\n',['        Optimal Solution(xopt) = ' 
'[',num2str(Solution.xopt),']']); 
fprintf(fid_ali1,'%s\r\n',['   Number of Practical Optima  = ' 
'[',num2str(Solution.noGoptima),']']); 
fprintf(fid_ali1,'%s\r\n',['        no. of Iterations(ige) = ' 
num2str(ige)]); 
fprintf(fid_ali1,'%s\r\n',[' 1st Global optima Found @ ige = ' 
num2str(Solution.FrstGopt)]); 
fprintf(fid_ali1,'%s\r\n',['        Minimum Best  Solution = ' 
num2str(Solution.Minfbest)]); 
fprintf(fid_ali1,'%s\r\n',['        Mean of Best  Solution = ' 
num2str(Solution.Meanfbest)]); 
fprintf(fid_ali1,'%s\r\n',['          SD of Best  Solution = ' 
num2str(Solution.Stdfbest)]); 
fprintf(fid_ali1,'%s\r\n',['  Fitness Distance Correlation = ' 
num2str(Solution.cFD)]); 
fprintf(fid_ali1,'%s\r\n',['        Correlation Coefficent = ' 
num2str(Solution.r)]); 
fprintf(fid_ali1,'%s\r\n',['                  Elapsed Time = ' 
num2str(Solution.ElapsedTime)]); 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
fprintf(fid_ali1,'%3s %10s %11s %10s %10s %9s %5s  %6s  
%6s\r\n','ige','Fbest(ige)','Fworst(ige)','Fmean(ige)','BWLocalDis','Globa
lDis','Segma','MaxTau','MinTau'); 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
fprintf(fid_ali1,'%-3.0f  %-10.3f %-11.3f %-10.3f   %-9.1f  %-5.1f   %-
6.1f%-6.4f  %-
6.4f\r\n',[(1:ige);Solution.fbest(:)';Solution.fworst(:)';Solution.fmean(:
)';Solution.BxWxLocalDis(:)';Solution.GlobalDis(:)';Solution.Segma(:)';Sol
ution.maxTau(:)';Solution.minTau(:)']); 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
fclose(fid_ali1); 
% end 
  
 

EACO.m 

function Solution=EACO(Options) 
global Data ii iseed is maxIconv mk 
tic 
%% Elitisem Ant Colony Optimization Algorithm (EACO) to maximize f(x) 
%        Solution = EACO(Options) 
%   Solution.xopt = Optimal Solution 
%   Solution.fopt = Optimal solution 
%         Data.f  = Objective Function  
%      Data.nVar  = no. of design variables 
%        Data.xd  = Discrete design variables values vector e.g[0 45 90] 
%       Data.nAnt = no. of Ants 
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%    Options.Tau0 = Initial phormone 
%    Options.zeta = Global updating scale factor 
%    Options.rho  = Evaporation Rate 
%    Options.Imax = Max no. of iterations 
%%%-----------------------------------------------------------------------
% 
% Check ACO Options 
if ~isempty(Options) && ~isa(Options,'struct') 
         error('Options must be a valid structure.'); 
elseif isempty(Options) 
  
DefaultOpt=struct('nAnt',25,'Imax',1000,'rho',0.07,'Tau0',0.004,'zeta',.03
); 
  Options = DefaultOpt; 
end 
%% Assiging ACO Parameters value 
 Imax= Options.Imax;  
  rho= Options.rho;   
 zeta= Options.zeta; 
 Tau0=Options.Tau0; 
 nAnts=Options.nAnt; 
 %% % Intialization  
nNodes=length(Data.xd); 
Tau=Tau0*ones(Data.nVar,nNodes); 
Solution.fx=[]; 
Solution.x=[]; 
ige=0; 
%% Check the convergence rate ConvRate 
    if mk == 1 
        mxIconv=maxIconv(1); 
 %% Create ACOutput.txt File 
 if is < length(iseed)  
 fid_ali1 = fopen( sprintf( 
'02_EACOAlgorithm/01_fast_convergence/0%i_Seeds(%i)/EACOutput%i.txt',is,is
eed(is),ii),'w' );   
 else 
 fid_ali1 = fopen( sprintf( 
'02_EACOAlgorithm/01_fast_convergence/%i_Seeds(%i)/EACOutput%i.txt',is,ise
ed(is),ii),'w' ); 
 end 
    elseif mk==2 
        mxIconv=maxIconv(2); 
 if is < length(iseed)  
 fid_ali1 = fopen( sprintf( 
'02_EACOAlgorithm/02_slow_convergence/0%i_Seeds(%i)/EACOutput%i.txt',is,is
eed(is),ii),'w' );   
 else 
 fid_ali1 = fopen( sprintf( 
'02_EACOAlgorithm/02_slow_convergence/%i_Seeds(%i)/EACOutput%i.txt',is,ise
ed(is),ii),'w' ); 
 end 
    end 
%%     
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fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
 fprintf(fid_ali1,'%s                                              
%s\n','User:_________',num2str(datestr(clock))); 
 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
 fprintf(fid_ali1,'                         %s\n','ACO Varient: EACO'); 
 fprintf(fid_ali1,'%s\n',['         Expeirement no.(Iexp) = ', 
num2str(ii)]); 
 fprintf(fid_ali1,'%s\n',['                         Seeds = ', 
num2str(iseed(is))]); 
 %% Main EACO Loop 
 while ige<Imax 
    ige=ige+1; 
for k=1:nAnts 
% Construct Solution 
    for j=1:Data.nVar  
        P=Tau(j,:); 
        P=P/sum(P); 
        Solution.x(k,j)=RouletteWheelSelection(P);      
    end 
     Solution.fx(k)=feval(Data.f,Solution.x(k,:)); 
end 
%% % Tour Statistics 
             [Solution.fx,ind] = sort(Solution.fx,'descend'); 
               Solution.x(:,:) = Solution.x(ind,:); 
           Solution.fbest(ige) = Solution.fx(1); 
       Solution.xbest(1,:,ige) = Solution.x(1,:); 
    % Check for current fbest 
               [fbestCheck,kk] = max(Solution.fbest(1:ige)); 
                    xbestcheck = Solution.xbest(1,:,kk); 
       if Solution.fbest(ige) <= fbestCheck 
           Solution.fbest(ige) = fbestCheck; 
       Solution.xbest(1,:,ige) = xbestcheck; 
       end 
          Solution.fworst(ige) = Solution.fx(end);  
      Solution.xworst(1,:,ige) = Solution.x(end,:); 
       Solution.fmean(1,:,ige) = mean(Solution.fx); 
           Solution.Segma(ige) = sum(Solution.fx==Solution.fx(1)); 
Solution.BxWxLocalDis(1,:,ige) = Data.nVar-sum(Solution.xbest(1,:,ige)... 
     == Solution.xworst(1,:,ige)); 
  %% Plotting results 
       x = Solution.xbest(1,:,ige); 
       y = Data.nVar; 
       PlotSolution(x,y)  
%% Daimon actions 
%      NA 
%% Pheromone Updating   
       % Phormen Evaporation (for all paths ) 
          Tau=(1-rho)*Tau; 
       % Pheromone Depositing (for the best path ) 
           for i=1:Data.nVar 
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       Tau(i,Solution.xbest(1,i,ige))= 
Tau(i,Solution.xbest(1,i,ige))+zeta*Solution.Segma(ige)*Solution.fworst(ig
e)/Solution.fbest(ige)+Solution.Segma(ige)*Solution.fbest(ige)/sum(Solutio
n.fx); 
           end 
             tempMaxTau(ige,:) = max(Tau); 
             tempMinTau(ige,:) = min(Tau); 
          Solution.maxTau(ige) = max(tempMaxTau(ige,:)); 
          Solution.minTau(ige) = min(tempMaxTau(ige,:)); 
  
%% Convergence check 
 Iconv = sum(Solution.fbest(1:ige)==max(Solution.fbest(1:ige))); 
Iwconv = sum(Solution.fbest(1:ige)==Solution.fworst(1:ige)); % Counter of 
fbest=fworst 
           if Iwconv >100 | Iconv>mxIconv , break;end        
 end 
 % EACO Solution results 
         [Solution.fopt, jj] = max(Solution.fbest(1:ige)); 
               Solution.xopt = Solution.xbest(1,:,jj); 
          Solution.noGoptima = sum(unique( 
Solution.fbest(1:ige)>=Solution.fopt/1.001)); 
                Solution.ige = ige; 
                      [~,mm] = find(Solution.fbest(1:ige) == 
Solution.fopt); 
           Solution.FrstGopt = mm(1); 
           Solution.Minfbest = min(Solution.fbest(:)); 
          Solution.Meanfbest = mean(Solution.fbest(:)); 
           Solution.Stdfbest = std(Solution.fbest(:)); 
   for i=1:ige             
       Solution.GlobalDis(i) = Data.nVar-sum(Solution.xopt == 
Solution.xbest(1,:,i));  
   end 
                Solution.cFD = sum((Solution.fbest-Solution.Meanfbest).*( 
Solution.GlobalDis-mean( Solution.GlobalDis)))/ige; 
                  Solution.r = Solution.cFD/(Solution.Stdfbest*std( 
Solution.GlobalDis)); 
            Solution.PerRate = sum(Solution.fbest(:)>= 
Solution.fopt/1.001)/(Solution.ige*Imax); 
        Solution.ElapsedTime = toc; 
        Solution.LinConvRate = zeros(1,ige); 
        for i=1:ige 
            if Solution.GlobalDis(i)~= 0 
        Solution.LinConvRate(i) = (Solution.fopt-
Solution.fbest(i))/Solution.GlobalDis(i); 
            else 
              Solution.LinConvRate(i) = 0; 
              break; 
            end 
        end 
        Solution.maxTauExp=max(Solution.maxTau(1:ige)); 
        Solution.minTauExp=min(Solution.minTau(1:ige)); 
%% Write EACO results Output File 
fprintf(fid_ali1,'%s\r\n',['           Number of variables = ' 
num2str(Data.nVar)]); 
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fprintf(fid_ali1,'%s\r\n',['                   no. of Ants = ' 
num2str(nAnts)]); 
fprintf(fid_ali1,'%s\r\n',['            Maximum CBLF(fopt) = ' 
num2str(Solution.fopt)]); 
fprintf(fid_ali1,'%s\r\n',['        Optimal Solution(xopt) = ' 
'[',num2str(Solution.xopt),']']); 
fprintf(fid_ali1,'%s\r\n',['   Number of Practical Optima  = ' 
'[',num2str(Solution.noGoptima),']']); 
fprintf(fid_ali1,'%s\r\n',['        no. of Iterations(ige) = ' 
num2str(ige)]); 
fprintf(fid_ali1,'%s\r\n',[' 1st Global optima Found @ ige = ' 
num2str(Solution.FrstGopt)]); 
fprintf(fid_ali1,'%s\r\n',['        Minimum Best  Solution = ' 
num2str(Solution.Minfbest)]); 
fprintf(fid_ali1,'%s\r\n',['        Mean of Best  Solution = ' 
num2str(Solution.Meanfbest)]); 
fprintf(fid_ali1,'%s\r\n',['          SD of Best  Solution = ' 
num2str(Solution.Stdfbest)]); 
fprintf(fid_ali1,'%s\r\n',['  Fitness Distance Correlation = ' 
num2str(Solution.cFD)]); 
fprintf(fid_ali1,'%s\r\n',['        Correlation Coefficent = ' 
num2str(Solution.r)]); 
fprintf(fid_ali1,'%s\r\n',['                  Elapsed Time = ' 
num2str(Solution.ElapsedTime)]); 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
fprintf(fid_ali1,'%3s %10s %11s %10s %10s %9s %5s  %6s  
%6s\r\n','ige','Fbest(ige)','Fworst(ige)','Fmean(ige)','BWLocalDis','Globa
lDis','Segma','MaxTau','MinTau'); 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
fprintf(fid_ali1,'%-3.0f  %-10.3f %-11.3f %-10.3f   %-9.1f  %-5.1f   %-
6.1f%-6.4f  %-
6.4f\r\n',[(1:ige);Solution.fbest(:)';Solution.fworst(:)';Solution.fmean(:
)';Solution.BxWxLocalDis(:)';Solution.GlobalDis(:)';Solution.Segma(:)';Sol
ution.maxTau(:)';Solution.minTau(:)']); 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
fclose(fid_ali1); 
 
 
 
 
 

RBACO.m 

function Solution=RBACO(Options) 
global Data ii iseed is maxIconv mk 
tic 
  
%% Rank Based Ant Colony Optimization Algorithm (RBACO) to maximize f(x) 
%        Solution = RBACO(Options) 
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%   Solution.xopt = Optimal Solution 
%   Solution.fopt = Optimal solution 
%         Data.f  = Objective Function  
%      Data.nVar  = no. of design variables 
%        Data.xd  = Discrete design variables values vector e.g[0 45 90] 
%       Data.nAnt = no. of Ants 
%    Options.Tau0 = Initial phormone 
%    Options.rho  = Evaporation Rate 
%    Options.Imax = Max no. of iterations 
%%%-----------------------------------------------------------------------
% 
%% Check ACO Options 
if ~isempty(Options) && ~isa(Options,'struct') 
         error('Options must be a valid structure.'); 
elseif isempty(Options) 
  
DefaultOpt=struct('nAnt',25,'Imax',1000,'rho',0.07,'Tau0',0.004,'zeta',.03
); 
  Options = DefaultOpt; 
end 
%% Assiging ACO Parameters value 
 Imax= Options.Imax;  
  rho= Options.rho;   
 zeta= Options.zeta; 
 Tau0=Options.Tau0; 
 nAnts=Options.nAnt; 
 %% % Intialization  
nNodes=length(Data.xd); 
Tau=Tau0*ones(Data.nVar,nNodes); 
Solution.fx=[]; 
Solution.x=[]; 
ige=0; 
%% Check the convergence rate ConvRate 
    if mk == 1 
        mxIconv=maxIconv(1); 
 %% Create ACOutput.txt File 
 if is < length(iseed)  
 fid_ali1 = fopen( sprintf( 
'03_RBACOAlgorithm/01_fast_convergence/0%i_Seeds(%i)/RBACOutput%i.txt',is,
iseed(is),ii),'w' );   
 else 
 fid_ali1 = fopen( sprintf( 
'03_RBACOAlgorithm/01_fast_convergence/%i_Seeds(%i)/RBACOutput%i.txt',is,i
seed(is),ii),'w' ); 
 end 
    elseif mk==2 
        mxIconv=maxIconv(2); 
 if is < length(iseed)  
 fid_ali1 = fopen( sprintf( 
'03_RBACOAlgorithm/02_slow_convergence/0%i_Seeds(%i)/RBACOutput%i.txt',is,
iseed(is),ii),'w' );   
 else 
 fid_ali1 = fopen( sprintf( 
'03_RBACOAlgorithm/02_slow_convergence/%i_Seeds(%i)/RBACOutput%i.txt',is,i
seed(is),ii),'w' ); 



215 

 end 
    end 
%%     
 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
 fprintf(fid_ali1,'%s                                              
%s\n','User:_________',num2str(datestr(clock))); 
 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
 fprintf(fid_ali1,'                         %s\n','ACO Varient: RBACO'); 
 fprintf(fid_ali1,'%s\n',['         Expeirement no.(Iexp) = ', 
num2str(ii)]); 
 fprintf(fid_ali1,'%s\n',['                         Seeds = ', 
num2str(iseed(is))]); 
 %% Main ACOA Loop 
 while ige<Imax 
    ige=ige+1; 
for k=1:nAnts 
% Construct Solution 
    for j=1:Data.nVar  
        P=Tau(j,:); 
        P=P/sum(P); 
        Solution.x(k,j)=RouletteWheelSelection(P);      
    end 
     Solution.fx(k)=feval(Data.f,Solution.x(k,:)); 
end 
%% % Tour Statistics 
             [Solution.fx,ind] = sort(Solution.fx,'descend'); 
               Solution.x(:,:) = Solution.x(ind,:); 
           Solution.fbest(ige) = Solution.fx(1); 
       Solution.xbest(1,:,ige) = Solution.x(1,:); 
    % Check for current fbest 
               [fbestCheck,kk] = max(Solution.fbest(1:ige)); 
                    xbestcheck = Solution.xbest(1,:,kk); 
       if Solution.fbest(ige) <= fbestCheck 
           Solution.fbest(ige) = fbestCheck; 
       Solution.xbest(1,:,ige) = xbestcheck; 
       end 
          Solution.fworst(ige) = Solution.fx(end);  
      Solution.xworst(1,:,ige) = Solution.x(end,:); 
       Solution.fmean(1,:,ige) = mean(Solution.fx); 
           Solution.Segma(ige) = sum(Solution.fx==Solution.fx(1)); 
Solution.BxWxLocalDis(1,:,ige) = Data.nVar-sum(Solution.xbest(1,:,ige)... 
     == Solution.xworst(1,:,ige)); 
                        wRank = Solution.Segma(ige)-1; 
  %% Plotting results 
       x = Solution.xbest(1,:,ige); 
       y = Data.nVar; 
       PlotSolution(x,y)  
%% Daimon actions 
%      NA 
%% Pheromone Updating   
       % Pheromone Evaporation (for all paths ) 
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          Tau=(1-rho)*Tau; 
          if wRank==0 
              Solution.rank=Solution.fbest(ige)/sum(Solution.fx); 
          else 
       % Pheromone Depositing (for the best path ) 
       for mu=1:wRank 
            Solution.rank(mu)=(Solution.Segma(ige)-
mu)*Solution.fx(mu)/sum(Solution.fx); 
       end 
          end 
          d=sum(Solution.rank) 
       for i=1:Data.nVar 
         Tau(i,Solution.xbest(1,i,ige))= Tau(i,Solution.xbest(1,i,ige))+ 
sum(Solution.rank)+zeta*Solution.Segma(ige)*Solution.fworst(ige)/Solution.
fbest(ige); 
       end       
  
             tempMaxTau(ige,:) = max(Tau); 
             tempMinTau(ige,:) = min(Tau); 
          Solution.maxTau(ige) = max(tempMaxTau(ige,:)); 
          Solution.minTau(ige) = min(tempMaxTau(ige,:)); 
       %% Convergence check 
 Iconv = sum(Solution.fbest(1:ige)==max(Solution.fbest(1:ige))); 
Iwconv = sum(Solution.fbest(1:ige)==Solution.fworst(1:ige)); % Counter of 
fbest=fworst 
           if Iwconv >100 | Iconv>mxIconv , break;end        
 end 
 % RBACO Solution results 
         [Solution.fopt, jj] = max(Solution.fbest(1:ige)); 
               Solution.xopt = Solution.xbest(1,:,jj); 
          Solution.noGoptima = sum(unique( 
Solution.fbest(1:ige)>=Solution.fopt/1.001)); 
                Solution.ige = ige; 
                      [~,mm] = find(Solution.fbest(1:ige) == 
Solution.fopt); 
           Solution.FrstGopt = mm(1); 
           Solution.Minfbest = min(Solution.fbest(:)); 
          Solution.Meanfbest = mean(Solution.fbest(:)); 
           Solution.Stdfbest = std(Solution.fbest(:)); 
   for i=1:ige             
       Solution.GlobalDis(i) = Data.nVar-sum(Solution.xopt == 
Solution.xbest(1,:,i));  
   end 
                Solution.cFD = sum((Solution.fbest-Solution.Meanfbest).*( 
Solution.GlobalDis-mean( Solution.GlobalDis)))/ige; 
                  Solution.r = Solution.cFD/(Solution.Stdfbest*std( 
Solution.GlobalDis)); 
            Solution.PerRate = sum(Solution.fbest(:)>= 
Solution.fopt/1.001)/(Solution.ige*Imax); 
        Solution.ElapsedTime = toc; 
        Solution.LinConvRate = zeros(1,ige); 
        for i=1:ige 
            if Solution.GlobalDis(i)~= 0 
        Solution.LinConvRate(i) = (Solution.fopt-
Solution.fbest(i))/Solution.GlobalDis(i); 
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            else 
              Solution.LinConvRate(i) = 0; 
              break; 
            end 
        end 
        Solution.maxTauExp=max(Solution.maxTau(1:ige)); 
        Solution.minTauExp=min(Solution.minTau(1:ige)); 
%% Write RBACO results Output File 
fprintf(fid_ali1,'%s\r\n',['           Number of variables = ' 
num2str(Data.nVar)]); 
fprintf(fid_ali1,'%s\r\n',['                   no. of Ants = ' 
num2str(nAnts)]); 
fprintf(fid_ali1,'%s\r\n',['            Maximum CBLF(fopt) = ' 
num2str(Solution.fopt)]); 
fprintf(fid_ali1,'%s\r\n',['        Optimal Solution(xopt) = ' 
'[',num2str(Solution.xopt),']']); 
fprintf(fid_ali1,'%s\r\n',['   Number of Practical Optima  = ' 
'[',num2str(Solution.noGoptima),']']); 
fprintf(fid_ali1,'%s\r\n',['        no. of Iterations(ige) = ' 
num2str(ige)]); 
fprintf(fid_ali1,'%s\r\n',[' 1st Global optima Found @ ige = ' 
num2str(Solution.FrstGopt)]); 
fprintf(fid_ali1,'%s\r\n',['        Minimum Best  Solution = ' 
num2str(Solution.Minfbest)]); 
fprintf(fid_ali1,'%s\r\n',['        Mean of Best  Solution = ' 
num2str(Solution.Meanfbest)]); 
fprintf(fid_ali1,'%s\r\n',['          SD of Best  Solution = ' 
num2str(Solution.Stdfbest)]); 
fprintf(fid_ali1,'%s\r\n',['  Fitness Distance Correlation = ' 
num2str(Solution.cFD)]); 
fprintf(fid_ali1,'%s\r\n',['        Correlation Coefficent = ' 
num2str(Solution.r)]); 
fprintf(fid_ali1,'%s\r\n',['                  Elapsed Time = ' 
num2str(Solution.ElapsedTime)]); 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
fprintf(fid_ali1,'%3s %10s %11s %10s %10s %9s %5s  %6s  
%6s\r\n','ige','Fbest(ige)','Fworst(ige)','Fmean(ige)','BWLocalDis','Globa
lDis','Segma','MaxTau','MinTau'); 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
fprintf(fid_ali1,'%-3.0f  %-10.3f %-11.3f %-10.3f   %-9.1f  %-5.1f   %-
6.1f%-6.4f  %-
6.4f\r\n',[(1:ige);Solution.fbest(:)';Solution.fworst(:)';Solution.fmean(:
)';Solution.BxWxLocalDis(:)';Solution.GlobalDis(:)';Solution.Segma(:)';Sol
ution.maxTau(:)';Solution.minTau(:)']); 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
fclose(fid_ali1); 
  

MMACO.m 

function Solution=MMACO(Options) 
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global Data ii iseed is maxIconv mk 
tic 
%% Max-Min Ant Colony Optimization Algorithm (MMACO) to maximize f(x) 
%        Solution = MMACO(Options) 
%   Solution.xopt = Optimal Solution 
%   Solution.fopt = Optimal solution 
%         Data.f  = Objective Function  
%      Data.nVar  = no. of design variables 
%        Data.xd  = Discrete design variables values vector e.g[0 45 90] 
%       Data.nAnt = no. of Ants 
%    Options.Tau0 = Initial phormone 
%   Options.pbest = probabilitiy of the best solution 
%    Options.rho  = Evaporation Rate 
%    Options.Imax = Max no. of iterations 
%%%-----------------------------------------------------------------------
% 
%% Check MMACO Options 
if ~isempty(Options) && ~isa(Options,'struct') 
         error('Options must be a valid structure.'); 
elseif isempty(Options) 
  DefaultOpt 
=struct('nAnt',25,'Imax',1000,'rho',.98,'Tau0',1,'pbest',.05,'zeta',0.03); 
     Options = DefaultOpt; 
end 
%% Assiging MMACO Parameters value 
 Imax=Options.Imax;  
 rho=Options.rho;   
 Tau0=Options.Tau0; 
 nAnts=Options.nAnt; 
 pbest=Options.pbest; 
 zeta=Options.zeta; 
  %% % Intialization  
nNodes=length(Data.xd); 
Tau=Tau0*ones(Data.nVar,nNodes); 
Solution.fx=[]; 
Solution.x=[]; 
ige=0; 
%% Check the convergence rate ConvRate 
    if mk == 1 
        mxIconv=maxIconv(1); 
 %% Create MMACOutput.txt File 
 if is < length(iseed)  
 fid_ali1 = fopen( sprintf( 
'04_MMACOAlgorithm/01_fast_convergence/0%i_Seeds(%i)/MMACOutput%i.txt',is,
iseed(is),ii),'w' );   
 else 
 fid_ali1 = fopen( sprintf( 
'04_MMACOAlgorithm/01_fast_convergence/%i_Seeds(%i)/MMACOutput%i.txt',is,i
seed(is),ii),'w' ); 
 end 
    elseif mk==2 
        mxIconv=maxIconv(2); 
 if is < length(iseed)  
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 fid_ali1 = fopen( sprintf( 
'04_MMACOAlgorithm/02_slow_convergence/0%i_Seeds(%i)/MMACOutput%i.txt',is,
iseed(is),ii),'w' );   
 else 
 fid_ali1 = fopen( sprintf( 
'04_MMACOAlgorithm/02_slow_convergence/%i_Seeds(%i)/MMACOutput%i.txt',is,i
seed(is),ii),'w' ); 
 end 
   end 
 %% Create MMACOutput.txt File 
 
fprintf(fid_ali1,'%s\r\n','===============================================
=========================='); 
 fprintf(fid_ali1,'%s                                       
%s\n','User:Ali Ahmid',num2str(datestr(clock))); 
 
fprintf(fid_ali1,'%s\r\n','===============================================
=========================='); 
 fprintf(fid_ali1,'                         %s\n','ACO Varient: MMACO'); 
 fprintf(fid_ali1,'%s\n',[' Expeirement no.(Iexp)= ', num2str(ii)]); 
   
%% % Main ACOA Loop 
while ige<Imax 
ige=ige+1; 
for k=1:nAnts 
% Construct Solution 
    for j=1:Data.nVar  
        P=Tau(j,:); 
        P=P/sum(P); 
        Solution.x(k,j)=RouletteWheelSelection(P);      
    end 
% Solution Evaluation 
Solution.fx(k)=feval(Data.f,Solution.x(k,:)); 
end 
%% % Tour Statistics 
             [Solution.fx,ind] = sort(Solution.fx,'descend'); 
               Solution.x(:,:) = Solution.x(ind,:); 
           Solution.fbest(ige) = Solution.fx(1); 
       Solution.xbest(1,:,ige) = Solution.x(1,:); 
    % Check for current fbest 
               [fbestCheck,kk] = max(Solution.fbest(1:ige)); 
                    xbestcheck = Solution.xbest(1,:,kk); 
       if Solution.fbest(ige) <= fbestCheck 
           Solution.fbest(ige) = fbestCheck; 
       Solution.xbest(1,:,ige) = xbestcheck; 
       end 
          Solution.fworst(ige) = Solution.fx(end);  
      Solution.xworst(1,:,ige) = Solution.x(end,:); 
       Solution.fmean(1,:,ige) = mean(Solution.fx); 
           Solution.Segma(ige) = sum(Solution.fx==Solution.fx(1)); 
Solution.BxWxLocalDis(1,:,ige) = Data.nVar-sum(Solution.xbest(1,:,ige)... 
     == Solution.xworst(1,:,ige)); 
  %% Plotting results 
       x = Solution.xbest(1,:,ige); 
       y = Data.nVar; 
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       PlotSolution(x,y) 
%% Daemon Actions 
                    %NA 
%% Pheromone Updating   
       
% Pheromone Evaporation (for all paths ) 
         Tau=(1-rho)*Tau; 
       % Determine Tmax and Tmin 
         Solution.TauMax(ige)=(1-rho)^-
1*Solution.fworst(ige)/Solution.fbest(ige); 
         Solution.TauMin(ige)=Solution.TauMax(ige)*(1-
nthroot(pbest,nAnts))/((nAnts/2-1)*nthroot(pbest,nAnts)); 
       % Pheromone Depositing (for the best path ) 
         for i=1:Data.nVar 
          
Tau(i,Solution.xbest(:,i,ige))=Tau(i,Solution.xbest(1,i,ige))+zeta*Solutio
n.Segma(ige)*Solution.fworst(ige)/Solution.fbest(ige); 
            if Tau(i,Solution.xbest(1,i,ige))> Solution.TauMax(ige) 
            Tau(i,Solution.xbest(1,i,ige))=Solution.TauMax(ige); 
            elseif Tau(i,Solution.xbest(1,i,ige))< Solution.TauMin(ige) 
             Tau(i,Solution.xbest(1,i,ige))=Solution.TauMin(ige); 
            else  
            end 
         end 
       %% Convergence check 
 Iconv = sum(Solution.fbest(1:ige)==max(Solution.fbest(1:ige))); 
Iwconv = sum(Solution.fbest(1:ige)==Solution.fworst(1:ige)); % Counter of 
fbest=fworst 
           if Iwconv >100 | Iconv>mxIconv , break;end        
 end 
 % ACOA Solution results 
         [Solution.fopt, jj] = max(Solution.fbest(1:ige)); 
               Solution.xopt = Solution.xbest(1,:,jj); 
          Solution.noGoptima = sum(unique( 
Solution.fbest(1:ige)>=Solution.fopt/1.001)); 
                Solution.ige = ige; 
                      [~,mm] = find(Solution.fbest(1:ige) == 
Solution.fopt); 
           Solution.FrstGopt = mm(1); 
           Solution.Minfbest = min(Solution.fbest(:)); 
          Solution.Meanfbest = mean(Solution.fbest(:)); 
           Solution.Stdfbest = std(Solution.fbest(:)); 
   for i=1:ige             
       Solution.GlobalDis(i) = Data.nVar-sum(Solution.xopt == 
Solution.xbest(1,:,i));  
   end 
                Solution.cFD = sum((Solution.fbest-Solution.Meanfbest).*( 
Solution.GlobalDis-mean( Solution.GlobalDis)))/ige; 
                  Solution.r = Solution.cFD/(Solution.Stdfbest*std( 
Solution.GlobalDis)); 
            Solution.PerRate = sum(Solution.fbest(:)>= 
Solution.fopt/1.001)/(Solution.ige*Imax); 
        Solution.ElapsedTime = toc; 
        Solution.LinConvRate = zeros(1,ige); 
        for i=1:ige 
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            if Solution.GlobalDis(i)~= 0 
        Solution.LinConvRate(i) = (Solution.fopt-
Solution.fbest(i))/Solution.GlobalDis(i); 
            else 
              Solution.LinConvRate(i) = 0; 
              break; 
            end 
        end 
        Solution.maxTauExp=max(Solution.TauMax(1:ige)); 
        Solution.minTauExp=min(Solution.TauMin(1:ige)); 
  
%% Write MMACO results Output File 
fprintf(fid_ali1,'%s\r\n',['           Number of variables = ' 
num2str(Data.nVar)]); 
fprintf(fid_ali1,'%s\r\n',['                   no. of Ants = ' 
num2str(nAnts)]); 
fprintf(fid_ali1,'%s\r\n',['            Maximum CBLF(fopt) = ' 
num2str(Solution.fopt)]); 
fprintf(fid_ali1,'%s\r\n',['        Optimal Solution(xopt) = ' 
'[',num2str(Solution.xopt),']']); 
fprintf(fid_ali1,'%s\r\n',['   Number of Practical Optima  = ' 
'[',num2str(Solution.noGoptima),']']); 
fprintf(fid_ali1,'%s\r\n',['        no. of Iterations(ige) = ' 
num2str(ige)]); 
fprintf(fid_ali1,'%s\r\n',[' 1st Global optima Found @ ige = ' 
num2str(Solution.FrstGopt)]); 
fprintf(fid_ali1,'%s\r\n',['        Minimum Best  Solution = ' 
num2str(Solution.Minfbest)]); 
fprintf(fid_ali1,'%s\r\n',['        Mean of Best  Solution = ' 
num2str(Solution.Meanfbest)]); 
fprintf(fid_ali1,'%s\r\n',['          SD of Best  Solution = ' 
num2str(Solution.Stdfbest)]); 
fprintf(fid_ali1,'%s\r\n',['  Fitness Distance Correlation = ' 
num2str(Solution.cFD)]); 
fprintf(fid_ali1,'%s\r\n',['        Correlation Coefficent = ' 
num2str(Solution.r)]); 
fprintf(fid_ali1,'%s\r\n',['                  Elapsed Time = ' 
num2str(Solution.ElapsedTime)]); 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
fprintf(fid_ali1,'%3s %10s %11s %10s %10s %9s %5s  %6s  
%6s\r\n','ige','Fbest(ige)','Fworst(ige)','Fmean(ige)','BWLocalDis','Globa
lDis','Segma','MaxTau','MinTau'); 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
fprintf(fid_ali1,'%-3.0f  %-10.3f %-11.3f %-10.3f   %-9.1f  %-5.1f   %-
6.1f%-6.4f  %-
6.4f\r\n',[(1:ige);Solution.fbest(:)';Solution.fworst(:)';Solution.fmean(:
)';Solution.BxWxLocalDis(:)';Solution.GlobalDis(:)';Solution.Segma(:)';Sol
ution.TauMax(:)';Solution.TauMin(:)']); 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
fclose(fid_ali1); 
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HCFACO.m 

 
function Solution=HCFACO(Options) 
global Data ii iseed is maxIconv mk 
tic 
%% Hyper-Cube Ant Colony Optimization (EHCFACO) to maximize f(x) 
%        Solution = HCFACO(Options) 
%   Solution.xopt = Optimal Solution 
%   Solution.fopt = Optimal solution 
%         Data.f  = Objective Function  
%      Data.nVar  = no. of design variables 
%        Data.xd  = Discrete design variables values vector e.g[0 45 90] 
%       Data.nAnt = no. of Ants 
%    Options.Tau0 = Initial phormone 
%    Options.rho  = Evaporation Rate 
%    Options.Imax = Max no. of iterations 
%%%-----------------------------------------------------------------------
% 
%% Check HCFACO Options 
if ~isempty(Options) && ~isa(Options,'struct') 
         error('Options must be a valid structure.'); 
elseif isempty(Options) 
  
DefaultOpt=struct('nAnt',25,'Imax',1000,'rho',0.07,'Tau0',0.004,'zeta',.03
); 
  Options = DefaultOpt; 
end 
%% Assiging HCFACO Parameters value 
 Imax= Options.Imax;  
  rho= Options.rho;   
  Tau0=Options.Tau0; 
 nAnts=Options.nAnt; 
 %% % Intialization  
nNodes=length(Data.xd); 
Tau=Tau0*ones(Data.nVar,nNodes); 
Solution.fx=[]; 
Solution.x=[]; 
ige=0; 
%% Check the convergence rate ConvRate 
    if mk == 1 
        mxIconv=maxIconv(1); 
 %% Create HCFACOutput.txt File 
 if is < length(iseed)  
 fid_ali1 = fopen( sprintf( 
'05_HCFACOAlgorithm/01_fast_convergence/0%i_Seeds(%i)/HCFACOutput%i.txt',i
s,iseed(is),ii),'w' );   
 else 
 fid_ali1 = fopen( sprintf( 
'05_HCFACOAlgorithm/01_fast_convergence/%i_Seeds(%i)/HCFACOutput%i.txt',is
,iseed(is),ii),'w' ); 
 end 
    elseif mk==2 
        mxIconv=maxIconv(2); 
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 if is < length(iseed)  
 fid_ali1 = fopen( sprintf( 
'05_HCFACOAlgorithm/02_slow_convergence/0%i_Seeds(%i)/HCFACOutput%i.txt',i
s,iseed(is),ii),'w' );   
 else 
 fid_ali1 = fopen( sprintf( 
'05_HCFACOAlgorithm/02_slow_convergence/%i_Seeds(%i)/HCFACOutput%i.txt',is
,iseed(is),ii),'w' ); 
 end 
    end 
%%     
 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
 fprintf(fid_ali1,'%s                                              
%s\n','User:_________',num2str(datestr(clock))); 
 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
 fprintf(fid_ali1,'                         %s\n','ACO Varient: HCFACO'); 
 fprintf(fid_ali1,'%s\n',['         Expeirement no.(Iexp) = ', 
num2str(ii)]); 
 fprintf(fid_ali1,'%s\n',['                         Seeds = ', 
num2str(iseed(is))]); 
 %% Main HCFACO Loop 
 while ige<Imax 
    ige=ige+1; 
for k=1:nAnts 
% Construct Solution 
    for j=1:Data.nVar  
        P=Tau(j,:); 
        P=P/sum(P); 
        Solution.x(k,j)=RouletteWheelSelection(P);      
    end 
     Solution.fx(k)=feval(Data.f,Solution.x(k,:)); 
end 
%% % Tour Statistics 
             [Solution.fx,ind] = sort(Solution.fx,'descend'); 
               Solution.x(:,:) = Solution.x(ind,:); 
           Solution.fbest(ige) = Solution.fx(1); 
       Solution.xbest(1,:,ige) = Solution.x(1,:); 
    % Check for current fbest 
               [fbestCheck,kk] = max(Solution.fbest(1:ige)); 
                    xbestcheck = Solution.xbest(1,:,kk); 
       if Solution.fbest(ige) <= fbestCheck 
           Solution.fbest(ige) = fbestCheck; 
       Solution.xbest(1,:,ige) = xbestcheck; 
       end 
          Solution.fworst(ige) = Solution.fx(end);  
      Solution.xworst(1,:,ige) = Solution.x(end,:); 
       Solution.fmean(1,:,ige) = mean(Solution.fx); 
           Solution.Segma(ige) = sum(Solution.fx==Solution.fx(1)); 
Solution.BxWxLocalDis(1,:,ige) = Data.nVar-sum(Solution.xbest(1,:,ige)... 
     == Solution.xworst(1,:,ige)); 
  %% Plotting results 
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       x = Solution.xbest(1,:,ige); 
       y = Data.nVar; 
       PlotSolution(x,y)  
   %% Daimon actions 
%      NA 
%% Pheromone Updating   
%        gama_s=Solution.fbest(ige)/sum(Solution.fx); 
%        S(1,:,ige)=ones(1,Data.nVar); 
       % Pheromone Depositing (for the best path ) 
      for i=1:Data.nVar  
       
Tau(i,Solution.xbest(1,i,ige))=Tau(i,Solution.xbest(1,i,ige))+rho*Solution
.Segma(ige)*Solution.fbest(ige)/sum(Solution.fx); 
%rho*Solution.Segma(ige)*(gama_s*S(1,i,ige)-
Tau(i,Solution.xbest(1,i,ige)));%rho*zeta*Solution.Segma(ige)*Solution.fbe
st(ige)/sum(Solution.fx);% 
      end  
       tempMaxTau(ige,:) = max(Tau); 
       tempMinTau(ige,:) = min(Tau); 
    Solution.maxTau(ige) = max(tempMaxTau(ige,:)); 
    Solution.minTau(ige) = min(tempMaxTau(ige,:)); 
       %% Convergence check 
 Iconv = sum(Solution.fbest(1:ige)==max(Solution.fbest(1:ige))); 
Iwconv = sum(Solution.fbest(1:ige)==Solution.fworst(1:ige)); % Counter of 
fbest=fworst 
           if Iwconv >100 | Iconv>mxIconv , break;end        
 end 
 % HCFACO Solution results 
         [Solution.fopt, jj] = max(Solution.fbest(1:ige)); 
               Solution.xopt = Solution.xbest(1,:,jj); 
          Solution.noGoptima = sum(unique( 
Solution.fbest(1:ige)>=Solution.fopt/1.001)); 
                Solution.ige = ige; 
                      [~,mm] = find(Solution.fbest(1:ige) == 
Solution.fopt); 
           Solution.FrstGopt = mm(1); 
           Solution.Minfbest = min(Solution.fbest(:)); 
          Solution.Meanfbest = mean(Solution.fbest(:)); 
           Solution.Stdfbest = std(Solution.fbest(:)); 
   for i=1:ige             
       Solution.GlobalDis(i) = Data.nVar-sum(Solution.xopt == 
Solution.xbest(1,:,i));  
   end 
                Solution.cFD = sum((Solution.fbest-Solution.Meanfbest).*( 
Solution.GlobalDis-mean( Solution.GlobalDis)))/ige; 
                  Solution.r = Solution.cFD/(Solution.Stdfbest*std( 
Solution.GlobalDis)); 
            Solution.PerRate = sum(Solution.fbest(:)>= 
Solution.fopt/1.001)/(Solution.ige*Imax); 
        Solution.ElapsedTime = toc; 
        Solution.LinConvRate = zeros(1,ige); 
        for i=1:ige 
            if Solution.GlobalDis(i)~= 0 
        Solution.LinConvRate(i) = (Solution.fopt-
Solution.fbest(i))/Solution.GlobalDis(i); 
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            else 
              Solution.LinConvRate(i) = 0; 
              break; 
            end 
        end 
        Solution.maxTauExp=max(Solution.maxTau(1:ige)); 
        Solution.minTauExp=min(Solution.minTau(1:ige)); 
%% Write HCFACO results Output File 
fprintf(fid_ali1,'%s\r\n',['           Number of variables = ' 
num2str(Data.nVar)]); 
fprintf(fid_ali1,'%s\r\n',['                   no. of Ants = ' 
num2str(nAnts)]); 
fprintf(fid_ali1,'%s\r\n',['            Maximum CBLF(fopt) = ' 
num2str(Solution.fopt)]); 
fprintf(fid_ali1,'%s\r\n',['        Optimal Solution(xopt) = ' 
'[',num2str(Solution.xopt),']']); 
fprintf(fid_ali1,'%s\r\n',['   Number of Practical Optima  = ' 
'[',num2str(Solution.noGoptima),']']); 
fprintf(fid_ali1,'%s\r\n',['        no. of Iterations(ige) = ' 
num2str(ige)]); 
fprintf(fid_ali1,'%s\r\n',[' 1st Global optima Found @ ige = ' 
num2str(Solution.FrstGopt)]); 
fprintf(fid_ali1,'%s\r\n',['        Minimum Best  Solution = ' 
num2str(Solution.Minfbest)]); 
fprintf(fid_ali1,'%s\r\n',['        Mean of Best  Solution = ' 
num2str(Solution.Meanfbest)]); 
fprintf(fid_ali1,'%s\r\n',['          SD of Best  Solution = ' 
num2str(Solution.Stdfbest)]); 
fprintf(fid_ali1,'%s\r\n',['  Fitness Distance Correlation = ' 
num2str(Solution.cFD)]); 
fprintf(fid_ali1,'%s\r\n',['        Correlation Coefficent = ' 
num2str(Solution.r)]); 
fprintf(fid_ali1,'%s\r\n',['                  Elapsed Time = ' 
num2str(Solution.ElapsedTime)]); 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
fprintf(fid_ali1,'%3s %10s %11s %10s %10s %9s %5s  %6s  
%6s\r\n','ige','Fbest(ige)','Fworst(ige)','Fmean(ige)','BWLocalDis','Globa
lDis','Segma','MaxTau','MinTau'); 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
fprintf(fid_ali1,'%-3.0f  %-10.3f %-11.3f %-10.3f   %-9.1f  %-5.1f   %-
6.1f%-6.4f  %-
6.4f\r\n',[(1:ige);Solution.fbest(:)';Solution.fworst(:)';Solution.fmean(:
)';Solution.BxWxLocalDis(:)';Solution.GlobalDis(:)';Solution.Segma(:)';Sol
ution.maxTau(:)';Solution.minTau(:)']); 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
fclose(fid_ali1); 
 
 

BWACO.m 
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function Solution=BWACO(Options) 
global Data ii iseed is maxIconv mk 
tic 
%% Best-Worst Ant Colony Optimization Algorithm (MMACO) to maximize f(x) 
%        Solution = BWACO(Options) 
%   Solution.xopt = Optimal Solution 
%   Solution.fopt = Optimal solution 
%         Data.f  = Objective Function  
%      Data.nVar  = no. of design variables 
%        Data.xd  = Discrete design variables values vector e.g[0 45 90] 
%       Data.nAnt = no. of Ants 
%    Options.Tau0 = Initial phormone 
%   Options.pbest = probabilitiy of the best solution 
%    Options.rho  = Evaporation Rate 
%    Options.Imax = Max no. of iterations 
%%%-----------------------------------------------------------------------
% 
%% Check ACO Options 
if ~isempty(Options) && ~isa(Options,'struct') 
         error('Options must be a valid structure.'); 
elseif isempty(Options) 
  DefaultOpt 
=struct('nAnt',25,'Imax',1000,'rho',0.1,'Tau0',1,'pbest',.05,'lamda',0.6,'
zeta',.03); 
     Options = DefaultOpt; 
end 
%% Assiging ACO Parameters value 
 Imax=Options.Imax;  
  rho=Options.rho;   
  Tau0=Options.Tau0; 
 nAnts=Options.nAnt; 
 zeta=Options.zeta; 
 pbest=Options.pbest; 
 %% % Intialization  
nNodes=length(Data.xd); 
Tau=Tau0*ones(Data.nVar,nNodes); 
Solution.fx=[]; 
Solution.x=[]; 
ige=0; 
%% Check the convergence rate ConvRate 
    if mk == 1 
        mxIconv=maxIconv(1); 
 %% Create BWACOutput.txt File 
 if is < length(iseed)  
 fid_ali1 = fopen( sprintf( 
'06_BWACOAlgorithm/01_fast_convergence/0%i_Seeds(%i)/BWACOutput%i.txt',is,
iseed(is),ii),'w' );   
 else 
 fid_ali1 = fopen( sprintf( 
'06_BWACOAlgorithm/01_fast_convergence/%i_Seeds(%i)/BWACOutput%i.txt',is,i
seed(is),ii),'w' ); 
 end 
    elseif mk==2 
        mxIconv=maxIconv(2); 
 if is < length(iseed)  
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 fid_ali1 = fopen( sprintf( 
'06_BWACOAlgorithm/02_slow_convergence/0%i_Seeds(%i)/BWACOutput%i.txt',is,
iseed(is),ii),'w' );   
 else 
 fid_ali1 = fopen( sprintf( 
'06_BWACOAlgorithm/02_slow_convergence/%i_Seeds(%i)/BWACOutput%i.txt',is,i
seed(is),ii),'w' ); 
 end 
   end 
 %% Create BWACOutput.txt File 
 
fprintf(fid_ali1,'%s\r\n','===============================================
=========================='); 
 fprintf(fid_ali1,'%s                                       
%s\n','User:_________',num2str(datestr(clock))); 
 
fprintf(fid_ali1,'%s\r\n','===============================================
=========================='); 
 fprintf(fid_ali1,'                         %s\n','ACO Varient: BWACO'); 
 fprintf(fid_ali1,'%s\n',[' Expeirement no.(Iexp)= ', num2str(ii)]); 
   
%% % Main BWACO Loop 
while ige<Imax 
ige=ige+1; 
for k=1:nAnts 
% Construct Solution 
    for j=1:Data.nVar  
        P=Tau(j,:); 
        P=P/sum(P); 
        Solution.x(k,j)=RouletteWheelSelection(P);      
    end 
% Solution Evaluation 
Solution.fx(k)=feval(Data.f,Solution.x(k,:)); 
end 
%% % Tour Statistics 
             [Solution.fx,ind] = sort(Solution.fx,'descend'); 
               Solution.x(:,:) = Solution.x(ind,:); 
           Solution.fbest(ige) = Solution.fx(1); 
       Solution.xbest(1,:,ige) = Solution.x(1,:); 
    % Check for current fbest 
               [fbestCheck,kk] = max(Solution.fbest(1:ige)); 
                    xbestcheck = Solution.xbest(1,:,kk); 
       if Solution.fbest(ige) <= fbestCheck 
           Solution.fbest(ige) = fbestCheck; 
       Solution.xbest(1,:,ige) = xbestcheck; 
       end 
          Solution.fworst(ige) = Solution.fx(end);  
      Solution.xworst(1,:,ige) = Solution.x(end,:); 
       Solution.fmean(1,:,ige) = mean(Solution.fx); 
           Solution.Segma(ige) = sum(Solution.fx==Solution.fx(1)); 
Solution.BxWxLocalDis(1,:,ige) = Data.nVar-sum(Solution.xbest(1,:,ige)... 
     == Solution.xworst(1,:,ige)); 
  %% Plotting results 
       x = Solution.xbest(1,:,ige); 
       y = Data.nVar; 
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       PlotSolution(x,y) 
%% Daemon Actions 
                    %NA 
%% Pheromone Updating   
       % Phormen Evaporation (for all paths ) 
       llamda=.6; 
        % Pheromone Evaporation (for all paths ) 
         Tau=(1-rho)*Tau; 
       % Determine Tmax and Tmin 
         Solution.TauMax(ige)=(1-rho)^-
1*zeta*Solution.Segma(ige)*Solution.fworst(ige)/Solution.fbest(ige); 
         Solution.TauMin(ige)=Solution.TauMax(ige)*(1-
nthroot(pbest,nAnts))/((nAnts/2-1)*nthroot(pbest,nAnts)); 
       % Pheromone Depositing (for the best path ) 
         for i=1:Data.nVar 
          
Tau(i,Solution.xbest(:,i,ige))=Tau(i,Solution.xbest(1,i,ige))+zeta*Solutio
n.Segma(ige)*Solution.fworst(ige)/Solution.fbest(ige); 
            if Tau(i,Solution.xbest(1,i,ige))> Solution.TauMax(ige) 
            Tau(i,Solution.xbest(1,i,ige))=Solution.TauMax(ige); 
            elseif Tau(i,Solution.xbest(1,i,ige))< Solution.TauMin(ige) 
             Tau(i,Solution.xbest(1,i,ige))=Solution.TauMin(ige); 
            else  
            end 
         end 
          
          for i=1:Data.nVar 
          Tau(i,Solution.xbest(:,i,ige))=Tau(i,Solution.xbest(1,i,ige))-
llamda*Solution.fworst(ige)/sum(Solution.fx); 
          end 
          tempMaxTau(ige,:) = max(Tau); 
             tempMinTau(ige,:) = min(Tau); 
          Solution.maxTau(ige) = max(tempMaxTau(ige,:)); 
          Solution.minTau(ige) = min(tempMaxTau(ige,:)); 
%% Convergence check 
 Iconv = sum(Solution.fbest(1:ige)==max(Solution.fbest(1:ige))); 
Iwconv = sum(Solution.fbest(1:ige)==Solution.fworst(1:ige)); % Counter of 
fbest=fworst 
           if Iwconv >100 | Iconv>mxIconv , break;end        
 end 
 % BWACO Solution results 
         [Solution.fopt, jj] = max(Solution.fbest(1:ige)); 
               Solution.xopt = Solution.xbest(1,:,jj); 
          Solution.noGoptima = sum(unique( 
Solution.fbest(1:ige)>=Solution.fopt/1.001)); 
                Solution.ige = ige; 
                      [~,mm] = find(Solution.fbest(1:ige) == 
Solution.fopt); 
           Solution.FrstGopt = mm(1); 
           Solution.Minfbest = min(Solution.fbest(:)); 
          Solution.Meanfbest = mean(Solution.fbest(:)); 
           Solution.Stdfbest = std(Solution.fbest(:)); 
   for i=1:ige             
       Solution.GlobalDis(i) = Data.nVar-sum(Solution.xopt == 
Solution.xbest(1,:,i));  



229 

   end 
                Solution.cFD = sum((Solution.fbest-Solution.Meanfbest).*( 
Solution.GlobalDis-mean( Solution.GlobalDis)))/ige; 
                  Solution.r = Solution.cFD/(Solution.Stdfbest*std( 
Solution.GlobalDis)); 
            Solution.PerRate = sum(Solution.fbest(:)>= 
Solution.fopt/1.001)/(Solution.ige*Imax); 
        Solution.ElapsedTime = toc; 
        Solution.LinConvRate = zeros(1,ige); 
        for i=1:ige 
            if Solution.GlobalDis(i)~= 0 
        Solution.LinConvRate(i) = (Solution.fopt-
Solution.fbest(i))/Solution.GlobalDis(i); 
            else 
              Solution.LinConvRate(i) = 0; 
              break; 
            end 
        end 
        Solution.maxTauExp=max(Solution.TauMax(1:ige)); 
        Solution.minTauExp=min(Solution.TauMin(1:ige)); 
  
%% Write EHCFMMACO results Output File 
fprintf(fid_ali1,'%s\r\n',['           Number of variables = ' 
num2str(Data.nVar)]); 
fprintf(fid_ali1,'%s\r\n',['                   no. of Ants = ' 
num2str(nAnts)]); 
fprintf(fid_ali1,'%s\r\n',['            Maximum CBLF(fopt) = ' 
num2str(Solution.fopt)]); 
fprintf(fid_ali1,'%s\r\n',['        Optimal Solution(xopt) = ' 
'[',num2str(Solution.xopt),']']); 
fprintf(fid_ali1,'%s\r\n',['   Number of Practical Optima  = ' 
'[',num2str(Solution.noGoptima),']']); 
fprintf(fid_ali1,'%s\r\n',['        no. of Iterations(ige) = ' 
num2str(ige)]); 
fprintf(fid_ali1,'%s\r\n',[' 1st Global optima Found @ ige = ' 
num2str(Solution.FrstGopt)]); 
fprintf(fid_ali1,'%s\r\n',['        Minimum Best  Solution = ' 
num2str(Solution.Minfbest)]); 
fprintf(fid_ali1,'%s\r\n',['        Mean of Best  Solution = ' 
num2str(Solution.Meanfbest)]); 
fprintf(fid_ali1,'%s\r\n',['          SD of Best  Solution = ' 
num2str(Solution.Stdfbest)]); 
fprintf(fid_ali1,'%s\r\n',['  Fitness Distance Correlation = ' 
num2str(Solution.cFD)]); 
fprintf(fid_ali1,'%s\r\n',['        Correlation Coefficent = ' 
num2str(Solution.r)]); 
fprintf(fid_ali1,'%s\r\n',['                  Elapsed Time = ' 
num2str(Solution.ElapsedTime)]); 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
fprintf(fid_ali1,'%3s %10s %11s %10s %10s %9s %5s  %6s  
%6s\r\n','ige','Fbest(ige)','Fworst(ige)','Fmean(ige)','BWLocalDis','Globa
lDis','Segma','MaxTau','MinTau'); 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
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fprintf(fid_ali1,'%-3.0f  %-10.3f %-11.3f %-10.3f   %-9.1f  %-5.1f   %-
6.1f%-6.4f  %-
6.4f\r\n',[(1:ige);Solution.fbest(:)';Solution.fworst(:)';Solution.fmean(:
)';Solution.BxWxLocalDis(:)';Solution.GlobalDis(:)';Solution.Segma(:)';Sol
ution.maxTau(:)';Solution.minTau(:)']); 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
fclose(fid_ali1); 
  
 

EHCFACO.m 

function Solution=EHCFACO(Options) 
global Data ii iseed is maxIconv mk 
tic 
%% Enhanced Hyper-Cube Ant Colony Optimization (EHCFACO) to maximize f(x) 
%        Solution = EHCFACO(Options) 
%   Solution.xopt = Optimal Solution 
%   Solution.fopt = Optimal solution 
%         Data.f  = Objective Function  
%      Data.nVar  = no. of design variables 
%        Data.xd  = Discrete design variables values vector e.g[0 45 90] 
%       Data.nAnt = no. of Ants 
%    Options.Tau0 = Initial phormone 
%    Options.rho  = Evaporation Rate 
%    Options.Imax = Max no. of iterations 
%%%-----------------------------------------------------------------------
% 
%% Check EHCFACO Options 
if ~isempty(Options) && ~isa(Options,'struct') 
         error('Options must be a valid structure.'); 
elseif isempty(Options) 
  DefaultOpt=struct('nAnt',25,'Imax',1000,'rho',0.1,'Tau0',0.004); 
  Options = DefaultOpt; 
end 
%% Assiging ACO Parameters value 
  Imax = Options.Imax;  
   rho = Options.rho;   
  Tau0 = Options.Tau0; 
 nAnts = Options.nAnt; 
%% % Intialization  
nNodes = length(Data.xd); 
   Tau = Tau0*ones(Data.nVar,nNodes); 
   ige = 0; 
 %% Check the convergence rate ConvRate 
    if mk == 1 
        mxIconv=maxIconv(1); 
 %% Create EHCFACOutput.txt File 
 if is < length(iseed)  
 fid_ali1 = fopen( sprintf( 
'07_EHCFACOAlgorithm/01_fast_convergence/0%i_Seeds(%i)/EHCFACOutput%i.txt'
,is,iseed(is),ii),'w' );   
 else 
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 fid_ali1 = fopen( sprintf( 
'07_EHCFACOAlgorithm/01_fast_convergence/%i_Seeds(%i)/EHCFACOutput%i.txt',
is,iseed(is),ii),'w' ); 
 end 
    elseif mk==2 
        mxIconv=maxIconv(2); 
 if is < length(iseed)  
 fid_ali1 = fopen( sprintf( 
'07_EHCFACOAlgorithm/02_slow_convergence/0%i_Seeds(%i)/EHCFACOutput%i.txt'
,is,iseed(is),ii),'w' );   
 else 
 fid_ali1 = fopen( sprintf( 
'07_EHCFACOAlgorithm/02_slow_convergence/%i_Seeds(%i)/EHCFACOutput%i.txt',
is,iseed(is),ii),'w' ); 
 end 
    end 
 
fprintf(fid_ali1,'%s\r\n','===============================================
=========================='); 
 fprintf(fid_ali1,'%s                                       
%s\n','User:_________',num2str(datestr(clock))); 
 
fprintf(fid_ali1,'%s\r\n','===============================================
=========================='); 
 fprintf(fid_ali1,'                         %s\n','ACO Varient: EHCFACO'); 
 fprintf(fid_ali1,'%s\n',['         Expeirement no.(Iexp) = ', 
num2str(ii)]); 
 fprintf(fid_ali1,'%s\n',['                         Seeds = ', 
num2str(iseed(is))]); 
 %% Main EHCFACO Loop 
 while ige<Imax 
    ige=ige+1; 
for k=1:nAnts 
% Construct Solution 
    for j=1:Data.nVar  
        P=Tau(j,:); 
        P=P/sum(P); 
        Solution.x(k,j)=RouletteWheelSelection(P);      
    end 
     Solution.fx(k)=feval(Data.f,Solution.x(k,:)); 
end 
%% % Tour Statistics 
             [Solution.fx,ind] = sort(Solution.fx,'descend'); 
               Solution.x(:,:) = Solution.x(ind,:); 
           Solution.fbest(ige) = Solution.fx(1); 
       Solution.xbest(1,:,ige) = Solution.x(1,:); 
    % Check for current fbest 
               [fbestCheck,kk] = max(Solution.fbest(1:ige)); 
                    xbestcheck = Solution.xbest(1,:,kk); 
       if Solution.fbest(ige) <= fbestCheck 
           Solution.fbest(ige) = fbestCheck; 
       Solution.xbest(1,:,ige) = xbestcheck; 
       end 
          Solution.fworst(ige) = Solution.fx(end);  
      Solution.xworst(1,:,ige) = Solution.x(end,:); 
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       Solution.fmean(1,:,ige) = mean(Solution.fx); 
           Solution.Segma(ige) = sum(Solution.fx==Solution.fx(1)); 
Solution.BxWxLocalDis(1,:,ige) = Data.nVar-sum(Solution.xbest(1,:,ige)... 
     == Solution.xworst(1,:,ige)); 
  %% Plotting results 
       x = Solution.xbest(1,:,ige); 
       y = Data.nVar; 
       PlotSolution(x,y)  
%% Daimon actions 
%       Insertion  
      
xtemp=Insertion(Solution.xbest(1,:,ige),randi(Data.nVar),randi(Data.nVar))
; 
      ftemp=feval(Data.f,xtemp); 
      if 
ftemp>Solution.fbest(ige),Solution.fbest(ige)=ftemp;Solution.xbest(1,:,ige
)=xtemp;end 
              
%       Node flip (equavelent to mutuation) 
      xtemp=xflip(Solution.xbest(1,:,ige),randi(Data.nVar)); 
      ftemp=feval(Data.f,xtemp); 
      if 
ftemp>Solution.fbest(ige),Solution.fbest(ige)=ftemp;Solution.xbest(1,:,ige
)=xtemp;end 
      %% Plotting results 
       x = Solution.xbest(1,:,ige); 
       y = Data.nVar; 
       PlotSolution(x,y)  
%% Pheromone Updating   
       % Pheromone Depositing (for the best path ) 
      for i=1:Data.nVar  
       
Tau(i,Solution.xbest(1,i,ige))=Tau(i,Solution.xbest(1,i,ige))+rho*Solution
.Segma(ige)*Solution.fbest(ige)/sum(Solution.fx);%(gama_s*S(1,i,ige)- 
      end  
       tempMaxTau(ige,:) = max(Tau); 
       tempMinTau(ige,:) = min(Tau); 
    Solution.maxTau(ige) = max(tempMaxTau(ige,:)); 
    Solution.minTau(ige) = min(tempMaxTau(ige,:)); 
       %% Convergence check 
 Iconv = sum(Solution.fbest(1:ige)==max(Solution.fbest(1:ige))); 
Iwconv = sum(Solution.fbest(1:ige)==Solution.fworst(1:ige)); % Counter of 
fbest=fworst 
           if Iwconv >100 | Iconv>mxIconv , break;end        
 end 
 % HCFACO Solution results 
         [Solution.fopt, jj] = max(Solution.fbest(1:ige)); 
               Solution.xopt = Solution.xbest(1,:,jj); 
          Solution.noGoptima = sum(unique( 
Solution.fbest(1:ige)>=Solution.fopt/1.001)); 
                Solution.ige = ige; 
                      [~,mm] = find(Solution.fbest(1:ige) == 
Solution.fopt); 
           Solution.FrstGopt = mm(1); 
           Solution.Minfbest = min(Solution.fbest(:)); 
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          Solution.Meanfbest = mean(Solution.fbest(:)); 
           Solution.Stdfbest = std(Solution.fbest(:)); 
   for i=1:ige             
       Solution.GlobalDis(i) = Data.nVar-sum(Solution.xopt == 
Solution.xbest(1,:,i));  
   end 
                Solution.cFD = sum((Solution.fbest-Solution.Meanfbest).*( 
Solution.GlobalDis-mean( Solution.GlobalDis)))/ige; 
                  Solution.r = Solution.cFD/(Solution.Stdfbest*std( 
Solution.GlobalDis)); 
            Solution.PerRate = sum(Solution.fbest(:)>= 
Solution.fopt/1.001)/(Solution.ige*Imax); 
        Solution.ElapsedTime = toc; 
        Solution.LinConvRate = zeros(1,ige); 
        for i=1:ige 
            if Solution.GlobalDis(i)~= 0 
        Solution.LinConvRate(i) = (Solution.fopt-
Solution.fbest(i))/Solution.GlobalDis(i); 
            else 
              Solution.LinConvRate(i) = 0; 
              break; 
            end 
        end 
        Solution.maxTauExp=max(Solution.maxTau(1:ige)); 
        Solution.minTauExp=min(Solution.minTau(1:ige)); 
%% Write EHCFACO results Output File 
fprintf(fid_ali1,'%s\r\n',['           Number of variables = ' 
num2str(Data.nVar)]); 
fprintf(fid_ali1,'%s\r\n',['                   no. of Ants = ' 
num2str(nAnts)]); 
fprintf(fid_ali1,'%s\r\n',['            Maximum CBLF(fopt) = ' 
num2str(Solution.fopt)]); 
fprintf(fid_ali1,'%s\r\n',['        Optimal Solution(xopt) = ' 
'[',num2str(Solution.xopt),']']); 
fprintf(fid_ali1,'%s\r\n',['   Number of Practical Optima  = ' 
'[',num2str(Solution.noGoptima),']']); 
fprintf(fid_ali1,'%s\r\n',['        no. of Iterations(ige) = ' 
num2str(ige)]); 
fprintf(fid_ali1,'%s\r\n',[' 1st Global optima Found @ ige = ' 
num2str(Solution.FrstGopt)]); 
fprintf(fid_ali1,'%s\r\n',['        Minimum Best  Solution = ' 
num2str(Solution.Minfbest)]); 
fprintf(fid_ali1,'%s\r\n',['        Mean of Best  Solution = ' 
num2str(Solution.Meanfbest)]); 
fprintf(fid_ali1,'%s\r\n',['          SD of Best  Solution = ' 
num2str(Solution.Stdfbest)]); 
fprintf(fid_ali1,'%s\r\n',['  Fitness Distance Correlation = ' 
num2str(Solution.cFD)]); 
fprintf(fid_ali1,'%s\r\n',['        Correlation Coefficent = ' 
num2str(Solution.r)]); 
fprintf(fid_ali1,'%s\r\n',['                  Elapsed Time = ' 
num2str(Solution.ElapsedTime)]); 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
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fprintf(fid_ali1,'%3s %10s %11s %10s %10s %9s %5s  %6s  
%6s\r\n','ige','Fbest(ige)','Fworst(ige)','Fmean(ige)','BWLocalDis','Globa
lDis','Segma','MaxTau','MinTau'); 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
fprintf(fid_ali1,'%-3.0f  %-10.3f %-11.3f %-10.3f   %-9.1f  %-5.1f   %-
6.1f%-6.4f  %-
6.4f\r\n',[(1:ige);Solution.fbest(:)';Solution.fworst(:)';Solution.fmean(:
)';Solution.BxWxLocalDis(:)';Solution.GlobalDis(:)';Solution.Segma(:)';Sol
ution.maxTau(:)';Solution.minTau(:)']); 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
fclose(fid_ali1); 
 
HCFMMACO.m 
 
function Solution=HCFMMACO(Options) 
global Data ii iseed is maxIconv mk 
tic 
%% Hyper-Cube Framework Max-Min Ant Colony Optimization Algorithm 
(HCFMMACO)  
%  to maximize f(x) 
%-------------------------------------------------------------------------
% 
%        Solution = HCFMMACO(Options) 
%   Solution.xopt = Optimal Solution 
%   Solution.fopt = Optimal solution 
%         Data.f  = Objective Function  
%      Data.nVar  = no. of design variables 
%        Data.xd  = Discrete design variables values vector e.g[0 45 90] 
%       Data.nAnt = no. of Ants 
%    Options.Tau0 = Initial phormone 
%   Options.pbest = probabilitiy of the best solution 
%    Options.rho  = Evaporation Rate 
%    Options.Imax = Max no. of iterations 
%%%-----------------------------------------------------------------------
% 
%% Check HCFMMACO Options 
if ~isempty(Options) && ~isa(Options,'struct') 
         error('Options must be a valid structure.'); 
elseif isempty(Options) 
  DefaultOpt 
=struct('nAnt',25,'Imax',1000,'rho',.98,'Tau0',1,'pbest',.05,'zeta',0.03); 
     Options = DefaultOpt; 
end 
%% Assiging HVFMMACO Parameters value 
 Imax=Options.Imax;  
 rho=Options.rho;   
 Tau0=Options.Tau0; 
 nAnts=Options.nAnt; 
%  pbest=Options.pbest; 
 zeta=Options.zeta; 
  %% % Intialization  
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nNodes=length(Data.xd); 
Tau=Tau0*ones(Data.nVar,nNodes); 
Solution.fx=[]; 
Solution.x=[]; 
ige=0; 
%% Check the convergence rate ConvRate 
    if mk == 1 
        mxIconv=maxIconv(1); 
 %% Create ACOutput.txt File 
 if is < length(iseed)  
 fid_ali1 = fopen( sprintf( 
'08_HCFMMACOAlgorithm/01_fast_convergence/0%i_Seeds(%i)/HCFMMACOutput%i.tx
t',is,iseed(is),ii),'w' );   
 else 
 fid_ali1 = fopen( sprintf( 
'08_HCFMMACOAlgorithm/01_fast_convergence/%i_Seeds(%i)/HCFMMACOutput%i.txt
',is,iseed(is),ii),'w' ); 
 end 
    elseif mk==2 
        mxIconv=maxIconv(2); 
 if is < length(iseed)  
 fid_ali1 = fopen( sprintf( 
'08_HCFMMACOAlgorithm/02_slow_convergence/0%i_Seeds(%i)/HCFMMACOutput%i.tx
t',is,iseed(is),ii),'w' );   
 else 
 fid_ali1 = fopen( sprintf( 
'08_HCFMMACOAlgorithm/02_slow_convergence/%i_Seeds(%i)/HCFMMACOutput%i.txt
',is,iseed(is),ii),'w' ); 
 end 
   end 
 %% Create HCFMMACOutput.txt File 
 
fprintf(fid_ali1,'%s\r\n','===============================================
=========================='); 
 fprintf(fid_ali1,'%s                                       
%s\n','User:_________',num2str(datestr(clock))); 
 
fprintf(fid_ali1,'%s\r\n','===============================================
=========================='); 
 fprintf(fid_ali1,'                         %s\n','ACO Varient: 
HCFMMACO'); 
 fprintf(fid_ali1,'%s\n',[' Expeirement no.(Iexp)= ', num2str(ii)]); 
   
%% % Main HCFMMACOA Loop 
while ige<Imax 
ige=ige+1; 
for k=1:nAnts 
% Construct Solution 
    for j=1:Data.nVar  
        P=Tau(j,:); 
        P=P/sum(P); 
        Solution.x(k,j)=RouletteWheelSelection(P);      
    end 
% Solution Evaluation 
Solution.fx(k)=feval(Data.f,Solution.x(k,:)); 
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end 
%% % Tour Statistics 
             [Solution.fx,ind] = sort(Solution.fx,'descend'); 
               Solution.x(:,:) = Solution.x(ind,:); 
           Solution.fbest(ige) = Solution.fx(1); 
       Solution.xbest(1,:,ige) = Solution.x(1,:); 
    % Check for current fbest 
               [fbestCheck,kk] = max(Solution.fbest(1:ige)); 
                    xbestcheck = Solution.xbest(1,:,kk); 
       if Solution.fbest(ige) <= fbestCheck 
           Solution.fbest(ige) = fbestCheck; 
       Solution.xbest(1,:,ige) = xbestcheck; 
       end 
          Solution.fworst(ige) = Solution.fx(end);  
      Solution.xworst(1,:,ige) = Solution.x(end,:); 
       Solution.fmean(1,:,ige) = mean(Solution.fx); 
           Solution.Segma(ige) = sum(Solution.fx==Solution.fx(1)); 
Solution.BxWxLocalDis(1,:,ige) = Data.nVar-sum(Solution.xbest(1,:,ige)... 
     == Solution.xworst(1,:,ige)); 
  %% Plotting results 
       x = Solution.xbest(1,:,ige); 
       y = Data.nVar; 
       PlotSolution(x,y) 
%% Daemon Actions 
                    %NA 
%% Pheromone Updating   
       
% Pheromone Evaporation (for all paths ) 
         Tau=(1-rho)*Tau; 
       % Determine Tmax and Tmin 
         Solution.TauMax(ige)=1; 
         Solution.TauMin(ige)=0; 
       % Pheromone Depositing (for the best path ) 
         for i=1:Data.nVar 
          
Tau(i,Solution.xbest(:,i,ige))=Tau(i,Solution.xbest(1,i,ige))+zeta*Solutio
n.Segma(ige)*Solution.fworst(ige)/Solution.fbest(ige); 
            if Tau(i,Solution.xbest(1,i,ige))> Solution.TauMax(ige) 
            Tau(i,Solution.xbest(1,i,ige))=Solution.TauMax(ige); 
            elseif Tau(i,Solution.xbest(1,i,ige))< Solution.TauMin(ige) 
             Tau(i,Solution.xbest(1,i,ige))=Solution.TauMin(ige); 
            else  
            end 
         end 
       %% Convergence check 
 Iconv = sum(Solution.fbest(1:ige)==max(Solution.fbest(1:ige))); 
Iwconv = sum(Solution.fbest(1:ige)==Solution.fworst(1:ige)); % Counter of 
fbest=fworst 
           if Iwconv >100 | Iconv>mxIconv , break;end        
 end 
 % HCFMMACO Solution results 
         [Solution.fopt, jj] = max(Solution.fbest(1:ige)); 
               Solution.xopt = Solution.xbest(1,:,jj); 
          Solution.noGoptima = sum(unique( 
Solution.fbest(1:ige)>=Solution.fopt/1.001)); 
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                Solution.ige = ige; 
                      [~,mm] = find(Solution.fbest(1:ige) == 
Solution.fopt); 
           Solution.FrstGopt = mm(1); 
           Solution.Minfbest = min(Solution.fbest(:)); 
          Solution.Meanfbest = mean(Solution.fbest(:)); 
           Solution.Stdfbest = std(Solution.fbest(:)); 
   for i=1:ige             
       Solution.GlobalDis(i) = Data.nVar-sum(Solution.xopt == 
Solution.xbest(1,:,i));  
   end 
                Solution.cFD = sum((Solution.fbest-Solution.Meanfbest).*( 
Solution.GlobalDis-mean( Solution.GlobalDis)))/ige; 
                  Solution.r = Solution.cFD/(Solution.Stdfbest*std( 
Solution.GlobalDis)); 
            Solution.PerRate = sum(Solution.fbest(:)>= 
Solution.fopt/1.001)/(Solution.ige*Imax); 
        Solution.ElapsedTime = toc; 
        Solution.LinConvRate = zeros(1,ige); 
        for i=1:ige 
            if Solution.GlobalDis(i)~= 0 
        Solution.LinConvRate(i) = (Solution.fopt-
Solution.fbest(i))/Solution.GlobalDis(i); 
            else 
              Solution.LinConvRate(i) = 0; 
              break; 
            end 
        end 
        Solution.maxTauExp=max(Solution.TauMax(1:ige)); 
        Solution.minTauExp=min(Solution.TauMin(1:ige)); 
  
%% Write HCFMMACO results Output File 
fprintf(fid_ali1,'%s\r\n',['           Number of variables = ' 
num2str(Data.nVar)]); 
fprintf(fid_ali1,'%s\r\n',['                   no. of Ants = ' 
num2str(nAnts)]); 
fprintf(fid_ali1,'%s\r\n',['            Maximum CBLF(fopt) = ' 
num2str(Solution.fopt)]); 
fprintf(fid_ali1,'%s\r\n',['        Optimal Solution(xopt) = ' 
'[',num2str(Solution.xopt),']']); 
fprintf(fid_ali1,'%s\r\n',['   Number of Practical Optima  = ' 
'[',num2str(Solution.noGoptima),']']); 
fprintf(fid_ali1,'%s\r\n',['        no. of Iterations(ige) = ' 
num2str(ige)]); 
fprintf(fid_ali1,'%s\r\n',[' 1st Global optima Found @ ige = ' 
num2str(Solution.FrstGopt)]); 
fprintf(fid_ali1,'%s\r\n',['        Minimum Best  Solution = ' 
num2str(Solution.Minfbest)]); 
fprintf(fid_ali1,'%s\r\n',['        Mean of Best  Solution = ' 
num2str(Solution.Meanfbest)]); 
fprintf(fid_ali1,'%s\r\n',['          SD of Best  Solution = ' 
num2str(Solution.Stdfbest)]); 
fprintf(fid_ali1,'%s\r\n',['  Fitness Distance Correlation = ' 
num2str(Solution.cFD)]); 
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fprintf(fid_ali1,'%s\r\n',['        Correlation Coefficent = ' 
num2str(Solution.r)]); 
fprintf(fid_ali1,'%s\r\n',['                  Elapsed Time = ' 
num2str(Solution.ElapsedTime)]); 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
fprintf(fid_ali1,'%3s %10s %11s %10s %10s %9s %5s  %6s  
%6s\r\n','ige','Fbest(ige)','Fworst(ige)','Fmean(ige)','BWLocalDis','Globa
lDis','Segma','MaxTau','MinTau'); 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
fprintf(fid_ali1,'%-3.0f  %-10.3f %-11.3f %-10.3f   %-9.1f  %-5.1f   %-
6.1f%-6.4f  %-
6.4f\r\n',[(1:ige);Solution.fbest(:)';Solution.fworst(:)';Solution.fmean(:
)';Solution.BxWxLocalDis(:)';Solution.GlobalDis(:)';Solution.Segma(:)';Sol
ution.TauMax(:)';Solution.TauMin(:)']); 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
fclose(fid_ali1); 
 
 
 
 

EHCFMMACO.m 
 
 
function Solution=EHCFMMACO(Options) 
global Data ii iseed is maxIconv mk 
tic 
%% Enhanced Hyper-Cube FramwWork Max-Min Ant Colony Optimization Algorithm  
%  (EHCFMMACO) to maximize f(x) 
%-------------------------------------------------------------------------
% 
%        Solution = EHCFMMACO(Options) 
%   Solution.xopt = Optimal Solution 
%   Solution.fopt = Optimal solution 
%         Data.f  = Objective Function  
%      Data.nVar  = no. of design variables 
%        Data.xd  = Discrete design variables values vector e.g[0 45 90] 
%       Data.nAnt = no. of Ants 
%    Options.Tau0 = Initial phormone 
%   Options.pbest = probabilitiy of the best solution 
%    Options.rho  = Evaporation Rate 
%    Options.Imax = Max no. of iterations 
%%%-----------------------------------------------------------------------
% 
%% Check ACO Options 
if ~isempty(Options) && ~isa(Options,'struct') 
         error('Options must be a valid structure.'); 
elseif isempty(Options) 
  DefaultOpt 
=struct('nAnt',25,'Imax',1000,'rho',.1,'Tau0',0.004,'pbest',.05); 
     Options = DefaultOpt; 
end 
%% Assiging HVFMMACO Parameters value 



239 

 Imax=Options.Imax;  
 rho=Options.rho;   
 Tau0=Options.Tau0; 
 nAnts=Options.nAnt; 
%  pbest=Options.pbest; 
 zeta=Options.zeta; 
  %% % Intialization  
nNodes=length(Data.xd); 
Tau=Tau0*ones(Data.nVar,nNodes); 
Solution.fx=[]; 
Solution.x=[]; 
ige=0; 
%% Check the convergence rate ConvRate 
    if mk == 1 
        mxIconv=maxIconv(1); 
 %% Create EHCFMMACOutput.txt File 
 if is < length(iseed)  
 fid_ali1 = fopen( sprintf( 
'09_EHCFMMACOAlgorithm/01_fast_convergence/0%i_Seeds(%i)/EHCFMMACOutput%i.
txt',is,iseed(is),ii),'w' );   
 else 
 fid_ali1 = fopen( sprintf( 
'09_EHCFMMACOAlgorithm/01_fast_convergence/%i_Seeds(%i)/EHCFMMACOutput%i.t
xt',is,iseed(is),ii),'w' ); 
 end 
    elseif mk==2 
        mxIconv=maxIconv(2); 
 if is < length(iseed)  
 fid_ali1 = fopen( sprintf( 
'09_EHCFMMACOAlgorithm/02_slow_convergence/0%i_Seeds(%i)/EHCFMMACOutput%i.
txt',is,iseed(is),ii),'w' );   
 else 
 fid_ali1 = fopen( sprintf( 
'09_EHCFMMACOAlgorithm/02_slow_convergence/%i_Seeds(%i)/EHCFMMACOutput%i.t
xt',is,iseed(is),ii),'w' ); 
 end 
   end 
 %% Create MMACOutput.txt File 
 
fprintf(fid_ali1,'%s\r\n','===============================================
=========================='); 
 fprintf(fid_ali1,'%s                                       
%s\n','User:_________',num2str(datestr(clock))); 
 
fprintf(fid_ali1,'%s\r\n','===============================================
=========================='); 
 fprintf(fid_ali1,'                         %s\n','ACO Varient: 
EHCFMMACO'); 
 fprintf(fid_ali1,'%s\n',[' Expeirement no.(Iexp)= ', num2str(ii)]); 
   
%% % Main EHCFMMACO Loop 
while ige<Imax 
ige=ige+1; 
for k=1:nAnts 
% Construct Solution 
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    for j=1:Data.nVar  
        P=Tau(j,:); 
        P=P/sum(P); 
        Solution.x(k,j)=RouletteWheelSelection(P);      
    end 
% Solution Evaluation 
Solution.fx(k)=feval(Data.f,Solution.x(k,:)); 
end 
%% % Tour Statistics 
             [Solution.fx,ind] = sort(Solution.fx,'descend'); 
               Solution.x(:,:) = Solution.x(ind,:); 
           Solution.fbest(ige) = Solution.fx(1); 
       Solution.xbest(1,:,ige) = Solution.x(1,:); 
    % Check for current fbest 
               [fbestCheck,kk] = max(Solution.fbest(1:ige)); 
                    xbestcheck = Solution.xbest(1,:,kk); 
       if Solution.fbest(ige) <= fbestCheck 
           Solution.fbest(ige) = fbestCheck; 
       Solution.xbest(1,:,ige) = xbestcheck; 
       end 
          Solution.fworst(ige) = Solution.fx(end);  
      Solution.xworst(1,:,ige) = Solution.x(end,:); 
       Solution.fmean(1,:,ige) = mean(Solution.fx); 
           Solution.Segma(ige) = sum(Solution.fx==Solution.fx(1)); 
Solution.BxWxLocalDis(1,:,ige) = Data.nVar-sum(Solution.xbest(1,:,ige)... 
     == Solution.xworst(1,:,ige)); 
  %% Plotting results 
       x = Solution.xbest(1,:,ige); 
       y = Data.nVar; 
       PlotSolution(x,y) 
%% Daemon Actions 
%       Insertion  
      
xtemp=Insertion(Solution.xbest(1,:,ige),randi(Data.nVar),randi(Data.nVar))
; 
      ftemp=feval(Data.f,xtemp); 
      if 
ftemp>Solution.fbest(ige),Solution.fbest(ige)=ftemp;Solution.xbest(1,:,ige
)=xtemp;end 
              
%       Node flip (equavelent to mutuation) 
      xtemp=xflip(Solution.xbest(1,:,ige),randi(Data.nVar)); 
      ftemp=feval(Data.f,xtemp); 
      if 
ftemp>Solution.fbest(ige),Solution.fbest(ige)=ftemp;Solution.xbest(1,:,ige
)=xtemp;end                     
           
%% Pheromone Updating   
       
% Pheromone Evaporation (for all paths ) 
         Tau=(1-rho)*Tau; 
       % Determine Tmax and Tmin 
         Solution.TauMax(ige)=1; 
         Solution.TauMin(ige)=0; 
       % Pheromone Depositing (for the best path ) 



241 

         for i=1:Data.nVar 
          
Tau(i,Solution.xbest(:,i,ige))=Tau(i,Solution.xbest(1,i,ige))+zeta*Solutio
n.Segma(ige)*Solution.fworst(ige)/Solution.fbest(ige); 
            if Tau(i,Solution.xbest(1,i,ige))> Solution.TauMax(ige) 
            Tau(i,Solution.xbest(1,i,ige))=Solution.TauMax(ige); 
            elseif Tau(i,Solution.xbest(1,i,ige))< Solution.TauMin(ige) 
             Tau(i,Solution.xbest(1,i,ige))=Solution.TauMin(ige); 
            else  
            end 
         end 
       %% Convergence check 
 Iconv = sum(Solution.fbest(1:ige)==max(Solution.fbest(1:ige))); 
Iwconv = sum(Solution.fbest(1:ige)==Solution.fworst(1:ige)); % Counter of 
fbest=fworst 
           if Iwconv >100 | Iconv>mxIconv , break;end        
 end 
 % ACOA Solution results 
         [Solution.fopt, jj] = max(Solution.fbest(1:ige)); 
               Solution.xopt = Solution.xbest(1,:,jj); 
          Solution.noGoptima = sum(unique( 
Solution.fbest(1:ige)>=Solution.fopt/1.001)); 
                Solution.ige = ige; 
                      [~,mm] = find(Solution.fbest(1:ige) == 
Solution.fopt); 
           Solution.FrstGopt = mm(1); 
           Solution.Minfbest = min(Solution.fbest(:)); 
          Solution.Meanfbest = mean(Solution.fbest(:)); 
           Solution.Stdfbest = std(Solution.fbest(:)); 
   for i=1:ige             
       Solution.GlobalDis(i) = Data.nVar-sum(Solution.xopt == 
Solution.xbest(1,:,i));  
   end 
                Solution.cFD = sum((Solution.fbest-Solution.Meanfbest).*( 
Solution.GlobalDis-mean( Solution.GlobalDis)))/ige; 
                  Solution.r = Solution.cFD/(Solution.Stdfbest*std( 
Solution.GlobalDis)); 
            Solution.PerRate = sum(Solution.fbest(:)>= 
Solution.fopt/1.001)/(Solution.ige*Imax); 
        Solution.ElapsedTime = toc; 
        Solution.LinConvRate = zeros(1,ige); 
        for i=1:ige 
            if Solution.GlobalDis(i)~= 0 
        Solution.LinConvRate(i) = (Solution.fopt-
Solution.fbest(i))/Solution.GlobalDis(i); 
            else 
              Solution.LinConvRate(i) = 0; 
              break; 
            end 
        end 
        Solution.maxTauExp=max(Solution.TauMax(1:ige)); 
        Solution.minTauExp=min(Solution.TauMin(1:ige)); 
  
%% Write EHCFMMACO results Output File 
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fprintf(fid_ali1,'%s\r\n',['           Number of variables = ' 
num2str(Data.nVar)]); 
fprintf(fid_ali1,'%s\r\n',['                   no. of Ants = ' 
num2str(nAnts)]); 
fprintf(fid_ali1,'%s\r\n',['            Maximum CBLF(fopt) = ' 
num2str(Solution.fopt)]); 
fprintf(fid_ali1,'%s\r\n',['        Optimal Solution(xopt) = ' 
'[',num2str(Solution.xopt),']']); 
fprintf(fid_ali1,'%s\r\n',['   Number of Practical Optima  = ' 
'[',num2str(Solution.noGoptima),']']); 
fprintf(fid_ali1,'%s\r\n',['        no. of Iterations(ige) = ' 
num2str(ige)]); 
fprintf(fid_ali1,'%s\r\n',[' 1st Global optima Found @ ige = ' 
num2str(Solution.FrstGopt)]); 
fprintf(fid_ali1,'%s\r\n',['        Minimum Best  Solution = ' 
num2str(Solution.Minfbest)]); 
fprintf(fid_ali1,'%s\r\n',['        Mean of Best  Solution = ' 
num2str(Solution.Meanfbest)]); 
fprintf(fid_ali1,'%s\r\n',['          SD of Best  Solution = ' 
num2str(Solution.Stdfbest)]); 
fprintf(fid_ali1,'%s\r\n',['  Fitness Distance Correlation = ' 
num2str(Solution.cFD)]); 
fprintf(fid_ali1,'%s\r\n',['        Correlation Coefficent = ' 
num2str(Solution.r)]); 
fprintf(fid_ali1,'%s\r\n',['                  Elapsed Time = ' 
num2str(Solution.ElapsedTime)]); 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
fprintf(fid_ali1,'%3s %10s %11s %10s %10s %9s %5s  %6s  
%6s\r\n','ige','Fbest(ige)','Fworst(ige)','Fmean(ige)','BWLocalDis','Globa
lDis','Segma','MaxTau','MinTau'); 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
fprintf(fid_ali1,'%-3.0f  %-10.3f %-11.3f %-10.3f   %-9.1f  %-5.1f   %-
6.1f%-6.4f  %-
6.4f\r\n',[(1:ige);Solution.fbest(:)';Solution.fworst(:)';Solution.fmean(:
)';Solution.BxWxLocalDis(:)';Solution.GlobalDis(:)';Solution.Segma(:)';Sol
ution.TauMax(:)';Solution.TauMin(:)']); 
fprintf(fid_ali1,'%s\r\n','===============================================
================================='); 
fclose(fid_ali1); 
% end 
Insertion.m 
 

function q=Insertion(p,i1,i2) 
    if i1<i2 
        q=p([1:i1-1 i1+1:i2 i1 i2+1:end]); 
    elseif i1>i2 
        q=p([1:i2 i1 i2+1:i1-1 i1+1:end]); 
    else 
        q=p; 
    end 
end 
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Xflip.m 

function p=xflip(p,i) 
if p(i)==3 
    temp=[1 2]; 
    p(i)=temp(1,randi(length(temp))); 
elseif p(i)==2 
    temp=[1 3]; 
    p(i)=temp(1,randi(length(temp))); 
elseif p(i)==1 
    temp=[2 3]; 
    p(i)=temp(1,randi(length(temp))); 
end 
  
 





 

APPENDIX IV 
 
 

MATLAB FILES OF CRITICAL BUCKLING LOAD FACTOR, INPUT DATA AND 
OUTPUT PLOTTING FOR COMPOSITE LAMINATED PLATE CASE STUDY  

 
 

CBLF.m 
 
function [CBLF1,delta]=CBLF(x) 
% This function devoted to determine the critical buckling load factor, 
lamda, of  composite laminate that have the information in LaminateData.m 
file 
 
global Data  % Calling Laminate plate data 
  
%% plies Contigency check 
  [~,i]=find(x==1); 
 [~,ii]=find(x==2); 
[~,iii]=find(x==3); 
delta=0; 
if length(i)>2 
   for nk=1:length(i)-2 
       if i(nk)==i(nk+2)-2 
           delta=.08;break 
       end 
   end 
end 
  
if length(ii)>2 
    for nk=1:length(ii)-2 
       if ii(nk)==ii(nk+2)-2 
           delta=.08;break 
       end           
    end 
end 
if length(iii)>2 
    for nk=1:length(iii)-2 
       if iii(nk)==iii(nk+2)-2 
           delta=.08;break 
       end 
    end 
end 
%% Plies Orientation Matrix [teta] 
   nvar=length(x); 
for k=1:nvar 
    if x(k)==1 
        haf_teta(2*k-1)=0; 
        haf_teta(2*k)=0; 
    end 
    if x(k)==2 
        haf_teta(2*k-1)=45; 
        haf_teta(2*k)=-45; 



246 

    end 
    if x(k)==3 
        haf_teta(2*k-1)=90; 
        haf_teta(2*k)=90; 
    end 
end 
teta=[haf_teta flip(haf_teta)]; 
haf_teta; 
Nplies = length(teta);                 % Number of plies.  
%% Stiffness Matrix  [Q] 
Data.NU21 = (Data.NU12*Data.E2)/Data.E1; 
Q11 = Data.E1/(1 - Data.NU12*Data.NU21); 
Q12 =(Data.NU21*Data.E1)/(1 - Data.NU12*Data.NU21); 
Q22 = Data.E2/(1 - Data.NU12*Data.NU21); 
Q66 = Data.G12; 
  Q = [ Q11 Q12 0; Q12 Q22 0; 0 0 Q66]; 
%% Thickness of i-th ply Group  
t = Nplies * Data.h_ply ; 
for i = 1:(Nplies+1) 
h(i) = -(t/2-((i-1)*(t/Nplies))); 
end 
%% Determining [A][B][D] Matrices 
A=0;B=0;D=0; 
for i=1:Nplies 
c=cos((teta(1,i)*pi)/180); 
s=sin((teta(1,i)*pi)/180); 
T = [ c^2 s^2 2*c*s; s^2 c^2 -2*c*s; -c*s c*s (c^2 - s^2)]; 
Qbar = inv(T) * Q * (inv(T))' ; 
A = A + Qbar * (h(1,i+1) - h(1,i)); 
B = B + 1/2 * Qbar * (h(1,i+1)^2 - h(1,i)^2); 
D = D + 1/3 * Qbar * (h(1,i+1)^3 - h(1,i)^3); 
end 
%% Critical Buckling Load Factor  
p=Data.p; 
q=Data.q; 
r=Data.r; 
a=Data.a; 
lmda_b=ones(p,q); 
for m=1:p 
    for n=1:q 
        lmda_b(m,n)=((pi^2)*((D(1,1)*(m^4) + 2*(D(1,2) + 
2*D(3,3))*((r*m*n)^2) +... 
        D(2,2)*((r*n)^4)))/(((a*m)^2)*Data.Nx + ((r*a*n)^2)*Data.Ny)); 
    end 
end 
CBLF1=(1-delta)*min(lmda_b(:));   
  
  
  
  
  
 

LaminateData.m 
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function Data=LaminateData 
%Input: None 
%Output: Data - structure with optimization problem information 
%-------------------------------------------------------------------------
% 
% Laminate properties 
Data.E1 = 18.5e6;      %127.59;     % Elastic Modulus[GPa]. 
Data.E2 = 1.89e6;      %13.03;      % Elastic Modulus[GPa]. 
Data.G12 =  .93e6;     %6.41;       % Shear Modulus[GPa]. 
Data.NU12 = 0.3;       % Poisson ratio. 
Data.Xt = 2130;        % Longituddinal Tensile Strength  
Data.Xc = 1100;        % Longituddinal compression Strength 
Data.Yt = 80;          % Transversal Tensile Strength 
Data.Yc = 200;         % Transversal compression Strength 
Data.S12 = 160;        % Shear Strength     
% Loading conditions 
Data.Lr=1;             % Loading ratio 
Data.Nx = 1;           % Inplane Load x-direction[N/m]. 
Data.Ny = Data.Lr*Data.Nx;       % Inplane Load y-direction[N/m]. 
Data.Nxy = 0;          %[N/m] 
% Plate dimensions 
Data.h_ply= .005;      %0.127;      %[mm]  Ply thickness 
Data.a= 20;            %.508;       % Plate length[m]. 
Data.b= 10;            %.254;       % Plate  width[m]. 
Data.r=Data.a/Data.b;            % Aspect ratio. 
Data.p= 2;             % Buckling mode in x-direction. 
Data.q= 2;             % Buckling mode in y-direction. 
% Design Variables & Available Oreintations  
Data.nVar=16;          % number of design variables 
Data.xd=[0 45 90];     % Vector of possible fiber orientations 
% Objective Function Definition 
Data.f=@CBLF;          % Defining the objective function 
% ACO Algorithm Options 
Data.ACOptions = 
struct('nAnt',25,'Imax',1000,'rho',0.1,'Tau0',0.004,'zeta',.03); 
Data.MMACOptions = 
struct('nAnt',25,'Imax',1000,'rho',0.1,'Tau0',1,'pbest',.05,'zeta',.03); 
Data.BWACOptions = 
struct('nAnt',25,'Imax',1000,'rho',0.1,'Tau0',1,'pbest',.05,'lamda',0.6,'z
eta',.03); 
  
   
 
 
 
 
 
 
 
 

PlotSolution.m  

function PlotSolution(x,y) 



248 

     
%  Determining the screen corrdinates 
 set(0,'units','inches') 
 %Obtains this inch information 
 Inch_SS = get(0,'screensize'); 
 figW=3;figL=9; 
tfig=figure (1); 
  
 set(tfig,'Units','inches',... 
        'Position',[Inch_SS(3)-figW-1 Inch_SS(4)-figL-1 figW figL],... 
        'PaperPositionMode','auto') 
 plot(x,1:y,'k-o',... 
        'MarkerSize',15,... 
        'MarkerFaceColor','y',... 
        'LineWidth',1.5); 
 axis([0 x(end) 1 y]) 
 set(gca,... 
        'Units','normalized',... 
        'YTick',1:y,... 
        'XTick',1:x(end),... 
        'Position',[.1 .2 .7 .7],... 
        'FontUnits','points',... 
        'FontWeight','normal',... 
        'FontSize',12,... 
        'FontName','Times') 
  set(gcf, 'MenuBar', 'None') 
 xlabel('Orientation angle',... 
        'FontUnits','points',... 
        'FontWeight','normal',... 
        'FontSize',12,... 
        'FontName','Times'); 
 ylabel('Ply number',... 
        'FontUnits','points',... 
        'interpreter','latex',... 
        'FontSize',12,... 
        'FontName','Times',... 
        'Rotation',90); 
        axis equal; 
  
ax = gca; 
outerpos = ax.OuterPosition; 
ti = ax.TightInset;  
left = outerpos(1) + ti(1); 
bottom = outerpos(2) + ti(2); 
ax_width = outerpos(3) - ti(1) - ti(3); 
ax_height = outerpos(4) - ti(2) - ti(4); 
ax.Position = [left bottom ax_width ax_height]; 
             
        grid on; 
        xmin = 0; 
        xmax = 4; 
        xlim([xmin xmax]); 
        set(gca,'XTick',xmin:1:xmax) 
        set(gca,'XTickLabel',{[],1,2,3,[]}); 
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        ymin = min(1:y)-1; 
        ymax = max(1:y)+1; 
        ylim([ymin ymax]); 
        set(gca,'YTick',ymin:1: ymax) 
        Ylables=1:y; 
        set(gca,'YTickLabel',{[],Ylables,[]}); 
        
end 



 

 



 

APPENDIX V 
 
 

 CODES OF ANSYS WORKBENCH AND MATLAB INTERFACING USING 
PYTHON 

 

 
 

Ansys Work Bench  and MATLAB interfacing flowchart 
 
 
CBLF.m 
 
function CBLF1=CBLF(x,B) 
     format short 
   %% plies Contigency check 
  [~,i]=find(x==1); 
 [~,ii]=find(x==2); 
[~,iii]=find(x==3); 
delta=0; 
if length(i)>2 
   for nk=1:length(i)-2 
       if i(nk)==i(nk+2)-2 
           delta=.08;break 
       end 
   end 
end 
  
if length(ii)>2 
    for nk=1:length(ii)-2 
       if ii(nk)==ii(nk+2)-2 
           delta=.08;break 
       end           
    end 
end 
if length(iii)>2 
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    for nk=1:length(iii)-2 
       if iii(nk)==iii(nk+2)-2 
           delta=.08;break 
       end 
    end 
end 
  
%% --------------------------------------------------------------------- 
%% 
    % reading writing python filed 
  
    fid = fopen('DV_update.wbjn', 'r'); 
    fic = fopen('DV_update_0.wbjn', 'w'); % intermediated file.py copy 
%-------------------------------     
while ~feof(fid) 
        tline = fgetl(fid); 
        fprintf(fic,'%s\n',tline); 
        for k=1:length(B) 
            str1=strcat(['    Parameter=parameter',num2str(k),',']); 
     
            if(strcmp(tline,str1)) 
%             fprintf(fic,'    Expression="%4.2f [mm]"\n',v_ali(2,1)); 
if (1<=k)&&(k<=3) 
            fprintf(fic,'    Expression="%12.4f [mm]")\n',B(1,k)); 
elseif (4<=k)&&(k<=27) 
            fprintf(fic,'    Expression="%2.0f")\n',B(1,k)); 
elseif k==28 && B(1,k)==0 
    fprintf(fic,'    Expression="%20.15f -1E-14 [N]")\n',B(1,k)); 
elseif k==28 && B(1,k)~=0 
    fprintf(fic,'    Expression="%20.15f [N]")\n',B(1,k)); 
elseif k==29 && B(1,k)==0 
    fprintf(fic,'    Expression="%20.15f -1E-14 [N]")\n',B(1,k)); 
elseif k==29 && B(1,k)~=0 
    fprintf(fic,'    Expression="%20.15f [N]")\n',B(1,k)); 
end 
    tline = fgetl(fid); 
            end 
        end 
       % ----------------- 
   end 
    fclose(fic);  
    fclose(fid); % Close file.py 
     
  
%------------------------------------------------------------------------- 
% Replacing intermediate file with original file name  
%------------------------------- 
    fid_v1 = fopen('DV_update_0.wbjn', 'r'); % open intermediate file.py 
to copy  
    fid_v0 = fopen('DV_update.wbjn', 'w'); % print into original file.py 
%-------------------------------     
   while ~feof(fid_v1) 
        tline = fgetl(fid_v1); 
        fprintf(fid_v0,'%s\n',tline);       
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   end 
    fclose(fid_v0);  
    fclose(fid_v1); % close file.py 
% ----------------------------------------------------------------------- 
% 
  
dos('"C:\Program Files\ANSYS Inc\ANSYS 
Student\v195\Framework\bin\Win64\RunWB2.exe" -B -R "DV_update.wbjn" ') 
  
% Opening and reading the Ansys WB results file (Output.txt) 
fidd=fopen('Output.txt','r'); 
m = 1; 
tline = fgetl(fidd); 
A{m} = tline; 
while ischar(tline) 
    m = m+1; 
    tline = fgetl(fidd); 
    A{m} = tline; 
end 
fclose(fidd); 
lmda=A{30}; % reading the buckling load factor  
% % (1-delta)* 
CBLF1=sscanf(lmda,'P30,%12f [N]'); 
 
  

Python Interfacing File 
  
# encoding: utf-8 
# 2019 R3 
SetScriptVersion(Version="19.5.112") 
Open(FilePath="C:/Users/aliah/OneDrive - 
ETS/03_Reserach_Activities_Spring2020/03_5th_Journal_paper/07_New_ANSYS_WB
_Models/Uncertainity_24_ply_laminate_model.wbpj") 
os.remove("C:/Users/aliah/OneDrive - 
ETS/03_Reserach_Activities_Spring2020/03_5th_Journal_paper/07_New_ANSYS_WB
_Models/Uncertainity_24_ply_laminate_model_files/.lock") 
  
designPoint1 = Parameters.GetDesignPoint(Name="0") 
parameter1 = Parameters.GetParameter(Name="P1") 
designPoint1.SetParameterExpression( 
    Parameter=parameter1, 
    Expression="    139.5000 [mm]") 
parameter2 = Parameters.GetParameter(Name="P2") 
designPoint1.SetParameterExpression( 
    Parameter=parameter2, 
    Expression="    139.5000 [mm]") 
parameter3 = Parameters.GetParameter(Name="P3") 
designPoint1.SetParameterExpression( 
    Parameter=parameter3, 
    Expression="    111.6000 [mm]") 
parameter4 = Parameters.GetParameter(Name="P4") 
designPoint1.SetParameterExpression( 
    Parameter=parameter4, 
    Expression="45") 
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parameter5 = Parameters.GetParameter(Name="P5") 
designPoint1.SetParameterExpression( 
    Parameter=parameter5, 
    Expression="-45") 
parameter6 = Parameters.GetParameter(Name="P6") 
designPoint1.SetParameterExpression( 
    Parameter=parameter6, 
    Expression="45") 
parameter7 = Parameters.GetParameter(Name="P7") 
designPoint1.SetParameterExpression( 
    Parameter=parameter7, 
    Expression="-45") 
parameter8 = Parameters.GetParameter(Name="P8") 
designPoint1.SetParameterExpression( 
    Parameter=parameter8, 
    Expression="45") 
parameter9 = Parameters.GetParameter(Name="P9") 
designPoint1.SetParameterExpression( 
    Parameter=parameter9, 
    Expression="-45") 
parameter10 = Parameters.GetParameter(Name="P10") 
designPoint1.SetParameterExpression( 
    Parameter=parameter10, 
    Expression="45") 
parameter11 = Parameters.GetParameter(Name="P11") 
designPoint1.SetParameterExpression( 
    Parameter=parameter11, 
    Expression="-45") 
parameter12 = Parameters.GetParameter(Name="P12") 
designPoint1.SetParameterExpression( 
    Parameter=parameter12, 
    Expression="45") 
parameter13 = Parameters.GetParameter(Name="P13") 
designPoint1.SetParameterExpression( 
    Parameter=parameter13, 
    Expression="-45") 
parameter14 = Parameters.GetParameter(Name="P14") 
designPoint1.SetParameterExpression( 
    Parameter=parameter14, 
    Expression="45") 
parameter15 = Parameters.GetParameter(Name="P15") 
designPoint1.SetParameterExpression( 
    Parameter=parameter15, 
    Expression="-45") 
parameter16 = Parameters.GetParameter(Name="P16") 
designPoint1.SetParameterExpression( 
    Parameter=parameter16, 
    Expression="-45") 
parameter17 = Parameters.GetParameter(Name="P17") 
designPoint1.SetParameterExpression( 
    Parameter=parameter17, 
    Expression="45") 
parameter18 = Parameters.GetParameter(Name="P18") 
designPoint1.SetParameterExpression( 
    Parameter=parameter18, 
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    Expression="-45") 
parameter19 = Parameters.GetParameter(Name="P19") 
designPoint1.SetParameterExpression( 
    Parameter=parameter19, 
    Expression="45") 
parameter20 = Parameters.GetParameter(Name="P20") 
designPoint1.SetParameterExpression( 
    Parameter=parameter20, 
    Expression="-45") 
parameter21 = Parameters.GetParameter(Name="P21") 
designPoint1.SetParameterExpression( 
    Parameter=parameter21, 
    Expression="45") 
parameter22 = Parameters.GetParameter(Name="P22") 
designPoint1.SetParameterExpression( 
    Parameter=parameter22, 
    Expression="-45") 
parameter23 = Parameters.GetParameter(Name="P23") 
designPoint1.SetParameterExpression( 
    Parameter=parameter23, 
    Expression="45") 
parameter24 = Parameters.GetParameter(Name="P24") 
designPoint1.SetParameterExpression( 
    Parameter=parameter24, 
    Expression="-45") 
parameter25 = Parameters.GetParameter(Name="P25") 
designPoint1.SetParameterExpression( 
    Parameter=parameter25, 
    Expression="45") 
parameter26 = Parameters.GetParameter(Name="P26") 
designPoint1.SetParameterExpression( 
    Parameter=parameter26, 
    Expression="-45") 
parameter27 = Parameters.GetParameter(Name="P27") 
designPoint1.SetParameterExpression( 
    Parameter=parameter27, 
    Expression="45") 
parameter28 = Parameters.GetParameter(Name="P28") 
designPoint1.SetParameterExpression( 
    Parameter=parameter28, 
    Expression="  -0.279000000000000 [N]") 
parameter29 = Parameters.GetParameter(Name="P29") 
designPoint1.SetParameterExpression( 
    Parameter=parameter29, 
    Expression="  -0.000000000000010 [N]") 
  
  
Update() 
  
# writing the output file of Ansys WB 
  
logFile = open("C:/Users/aliah/OneDrive - 
ETS/03_Reserach_Activities_Spring2020/03_5th_Journal_paper/07_New_ANSYS_WB
_Models/output.txt","w") 
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for Parameter in Parameters.GetAllParameters(): 
        value=Parameter.Value.ToString() 
        logFile.write(Parameter.Name + "," + value + "\n") 
        logFile.flush() 
logFile.close() 
  
Save(Overwrite=True) 
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