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Génération d’avatar 3D du corps humain à partir d’images 2D en utilisant la silhouette
du corps, l’orientation des os et la triangulation des articulations

Jordy AJANOHOUN

RÉSUMÉ

Dans ce mémoire, nous abordons le problème de l’estimation de la pose et de la morphologie 3D

d’une personne à partir d’images multi-vues. Comme d’autres méthodes adressant ce problème,

nous utilisons le modèle corporel paramétrique nommé Skinned Multi-Person Linear model

(SMPL). L’objectif est alors de trouver les paramètres du modèle SMPL qui correspondent le

mieux à la morphologie et à la pose 3D de l’individu sur les images. Le principal défi réside dans

l’estimation précise de ces paramètres. Pour y parvenir, nous estimons dans un premier temps la

localisation 2D des articulations de l’individu sur l’image. Ensuite, au moyen d’une triangulation

algébrique linéaire, nous estimons la localisation 3D de ces articulations à partir des localisations

2D estimées. Cela permet d’obtenir une estimation de la localisation 3D des articulations

plus fiable. Par la suite, nous faisons correspondre les articulations 3D et la silhouette 2D du

modèle 3D du corps avec celles estimées de l’individu. Pour ce faire, nous introduisons un

nouveau processus d’optimisation en deux étapes avec une nouvelle fonction objectif. Cette

dernière permet d’obtenir une meilleure initialisation pour l’optimisation finale et simultanée

de la pose et la morphologie. Enfin, nous mettons en lumière que la position sémantique des

articulations dans le modèle paramétrique et dans les bases de données d’évaluation n’est pas

identique. Pour tenir compte de cette divergence, nous introduisons, pour chaque articulation,

un vecteur de recalage calculé dans le repère local de l’articulation. Notre approche entièrement

automatique est évaluée sur les bases de données Human3.6M et HumanEva, montrant des

résultats supérieurs aux méthodes de l’état de l’art.

Mots-clés: reconstruction 3D, estimation de pose et de morphologie humaine, modèle du

corps, multi-vues, vision par ordinateur





3D Human Body Mesh Generation from 2D Images Using Body Silhouette, Bone
Orientation, and Joints Triangulation

Jordy AJANOHOUN

ABSTRACT

In this dissertation, we address the problem of 3D human pose and shape estimation from

multi-view images. Like similar methods, we make use of the Skinned Multi-Person Linear

(SMPL) parametric body model, and try to regress the model parameters that best fit the shape

and pose of the individual on the images. The main challenge lies in accurately inferring these

parameters. To solve this problem, we first estimate 2D joints. Then, we use a linear algebraic

triangulation to lift estimated 2D joints to 3D, resulting in a joint estimation with fewer errors.

Next, we fit the 3D parametric body model to the 3D joints while imposing silhouette and bone

orientation consistency between the 3D model and the detected individual in the images. We do

so by minimizing a new set of objective functions through a two-step optimization process that

provides a good initialization for the refinement of the shape and pose parameters. Finally, we

demonstrate that the semantic position of joints in the body model and in the validation data

sets do not exactly match. To account for this discrepancy we introduce, for each joint, a shift

vector computed in the joint’s local space. Our fully automatic approach is evaluated on the

widely used benchmarks Human3.6M and HumanEva, showing superior results with respect to

state-of-the-art methods.

Keywords: 3D reconstruction, human shape and pose estimation, body model, multi-view,

computer vision
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INTRODUCTION

In areas such as virtual/augmented reality, healthcare, virtual try-on, and video games, it is

important to be able to accurately model, in 3D, the body of an individual. It means to generate

an accurate 3D mesh of the body. This problem is known as 3D human body reconstruction.

It benefited from a lot of attention in recent years since it profits to various applications. For

example, tailors could instantly extract measurements from the mesh, surgeons could plan

various operations using the mesh, car crash-test simulations could be more and more realistic,

clients could try-on clothes virtually online with their own specific avatar, and so on. In such

contexts, only the shape and the pose of the subject are essential; we are not looking for hairiness,

facial detail, or texture. To achieve so, related work relied mainly on three types of inputs:

3D point clouds, anthropometric measurements, and 2D images. This thesis investigates the

generation of an individual’s accurate 3D body mesh from 2D images (Fig. 0.1).

Figure 0.1 Input and desired output
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We are interested in cases where the input is several images of a person taken at the same time.

The subject can be in any pose and located anywhere on the image. Occlusion of some body

parts is allowed but not of the whole body. The only constraints we have is that the whole body

should appear on each images, and only the subject should be on these images. No other people

should be visible. The output is an accurate full-body 3D mesh having the shape and the pose of

the individual.

There are several challenges in this task. First, the human body is complex and there are as many

shapes as humans. Besides, inferring 3D from 2D is ambiguous by nature. Occlusion makes the

problem even harder since some body parts could be hidden.

Current methods use parametric human body models, such as the Skinned Multi-Person Linear

model (SMPL), and try to regress the parameters that best fit the individual on the images. Some

methods train a neural network to make this task, others design complex objective functions

and optimize them looking for the accurate parameters. Training a neural network in order to

accomplish this task is hard because there is not enough end-to-end annotated data to feed them

(databases with images and the corresponding accurate 3D mesh or model parameters for each

of them). Consequently, they have to use several tricks and other databases with 2D silhouettes

and 2D poses to bypass this limitation. However, there is still an impact on the accuracy they

can reach since the ideal data is lacking. Furthermore, most of them use only one view and

suffer from the ambiguity of inferring 3D from 2D. The neural network is supposed to implicitly

learn to deal with this ambiguity through the training, but often fails because the examples given

to it do not associate 2D images to 3D mesh or 3D features. The examples map 2D images to

other 2D features such as 2D pose and 2D silhouette. Having difficulties with overcoming these

limitations, other efforts follow another path by setting up an optimization problem (no learning

needed) with hand-designed constraints to deal with the ambiguity. These optimization-based
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methods, contrary to efforts with neural networks, explicitly define the depth ambiguity problem

through formalization with mathematical constraints.

Methods designing objective functions are more robust but heavily rely on the quality of the

objective functions. 2D pose and 2D silhouette estimates are integrated in the objective functions.

Therefore, the quality of these functions depends on the accuracy of the estimates besides

the intrinsic quality of the terms and constraints they are made of. There is a need for the

improvement of these estimates and the way they are integrated and used in the optimization

process. The closest work to ours is Multi-View SMPLify (MuVS) by Huang et al. (2017). It is

a multi-view and optimization-based method whose objective function is constructed from the

estimated 2D pose and 2D silhouette on each view. MuVS aggregates the 2D pose and silhouette

estimations from all the views into a single objective function. It helps to reduce the depth

ambiguity but the objective function suffers from numerous local optima due to the way the

aggregation is done (a sum through all the views). Consequently, MuVS only works well when

initialized close to the real solution. Furthermore, MuVS uses the SMPL model (Loper et al.,

2015) and simultaneously optimizes the pose and shape parameters. Although this strategy

works, it is not optimal because of the tight relationship and interdependence between the pose

and the shape parameters in SMPL. This complex relationship makes the optimization problem

harder and the initialisation even more crucial. Given the current limitations of the state of the

art, our objective is to propose a more precise and robust method to generate a 3D mesh of a

subject from images. In achieving our objective, we designed key contributions that can be

summarized as follows:

• A bone orientation constraint (BOC) to recover the pose parameter independently from the

shape parameter;

• A more precise initialization for the simultaneous optimization of pose and shape parameters

thanks to the BOC;

• A two-step optimization process that improves the accuracy of the pose and shape estimations.
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The remainder of this dissertation is organized as follows. First, the literature on human body

models as well as pose and shape estimation from images are reviewed. Then, we describe our

approach to accurately estimate 3D human pose and shape from multi-view images. Finally,

experimental results are presented and discussed, before concluding with potential future works.



CHAPTER 1

RELATED WORK

The goal in 3D human body reconstruction is to generate an accurate 3D mesh of the subject’s

body. Therefore, the 3D mesh is central in this problem. In the related work, instead of computing

each vertex location and how they are arranged in triangles to form the mesh, parametric human

body models are used. They allow to generate a 3D body mesh from a specified set of parameters

such as its shape and its pose. Parametric body models therefore considerably reduce the problem

complexity, since only the value of the parameters have to be computed from the images, and

not the complete mesh from scratch. Consequently, 3D body modeling is an essential part of the

problem and the body model choice matters. Due to the key role of the 3D mesh, in this chapter,

we first review the literature on 3D human body modeling. Then, since human pose estimation

is systematically used and key to infer the model parameters, we present the related work on this

topic. We conclude this chapter by reviewing in detail how current methods use the body model

and the pose estimation to generate a subject’s full-body 3D mesh from images. We take this

occasion to also discuss the dissatisfaction with current methods.

1.1 3D Human Body Modeling

In 3D animation software and video games, to animate the characters modelled by a surface

mesh, we equip them with bones and joints. We can see it as the process used to animate puppets

or simply as the human body is made. The set of bones forms the skeleton and the mesh models

the skin. Each vertex of the mesh is then linked (via a coefficient) to one or more joints in

such a way that it follows the motion of the joints coherently. This technique is called blend

skinning (Jacobson, Deng, Kavan & Lewis, 2014). The closer a vertex is to a particular joint,

the higher the coefficient that binds the two will be. Therefore, the movement of the joint will

have an important impact on the displacement of the vertex. On the other hand, the lower the

coefficient is, the lower will be the influence. For example, the vertices that make up the right

tibia will have a high coefficient with the right knee joint, but null with the left elbow joint. It
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is intuitive, bending the right knee immediately changes the position of the right tibia. In the

opposite, rotating the left forearm has no consequence on the position of the tibia.

There are different ways to calculate the response of a vertex to joint motion. Meaning its

position after motion. One technique used for this is the linear blend skinning (LBS) (Lewis,

Cordner & Fong, 2000) which, as its name indicates, simply uses a linear relationship taking into

account the binding coefficients. Other approaches are not linear like the dual-quaternion blend

skinning (DQBS) (Kavan, Collins, Žára & O’Sullivan, 2007). Each solution has its advantages

and disadvantages. But generally, these blend skinning techniques have common well-known

flaws such as taffy and bowtie effects (Jacobson et al., 2014; Loper et al., 2015).

This whole process with joints, bones, and vertices imitates the human body. It describes how

the vertices of the mesh are connected to the bone structure and the joints. The difficulty is to

determine which vertices to associate with which joints and with which weight (coefficient), but

also which equation to use to calculate the new position of the vertices after a motion. Of course

this requires a judicious and adequate choice of skeleton and joints beforehand. The goal is to

achieve a modeling of the human body as realistic as possible and that remains so regardless of

the poses.

Most research (Bogo et al., 2016; Huang et al., 2017; Kolotouros et al., 2019b; Madadi,

Bertiche & Escalera, 2020; Omran et al., 2018; Pavlakos et al., 2018) relies on body models

based on statistical data on the human body to determine how to deform a mesh according to the

pose and the shape. Indeed, the body of a 10-year-old child does not deform exactly the same

way as the body of a 50-year-old adult. The use of a statistical approach makes it possible to take

into account the different shapes. Of course, this is if the training data for the statistical model

contains observations on a wide variety of human bodies. The data must be representative of the

population.

Many efforts (Allen, Curless & Popović, 2003; Allen, Curless, Popović & Hertzmann, 2006;

Chen, Liu & Zhang, 2013; Freifeld & Black, 2012; Hasler, Stoll, Sunkel, Rosenhahn & Seidel,

2009; Loper et al., 2015) focus on the learning of a realistic model for the human body from
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statistical data. These models consider that any human body can be modeled starting from a mesh

of the average human body, which is then deformed to map the targeted shape. Deformation in

this context means the displacement of some vertices or triangles of the mesh. This concept

is fundamental and its formulation comes from Lewis et al. (2000). It is the way of defining,

formalizing, and learning these deformations that varies across the models. For example, Allen

et al. (2003) are only interested in the shape; their model does not take into account how the body

deforms according to the pose. They use a principal component analysis (PCA) to characterize

the space of human body shapes. Shape-based deformations then become a linear combinations

of basic deformations. These basic deformations are the principal components retained from

the PCA. Allen et al. (2006) focused on pose besides shape. They also used a PCA for the

shape space. For the pose, their idea was to reduce the space of the poses to a few key poses,

in the same spirit as the PCA. For each of these key poses, they calculated the displacement

of each vertex relative to the starting average human body mesh. They thus obtained a base of

vertex displacements that depend on the pose. The final pose-dependent deformations are a

linear combination of the key pose displacements. Another example of body model focusing

on pose besides shape is the BlendSCAPE model (Hirshberg, Loper, Rachlin & Black, 2012),

an improvement and the successor of the SCAPE model (Anguelov, Srinivasan, Koller, Thrun,

Rodgers & Davis, 2005). The idea in BlendSCAPE and SCAPE is similar to Allen et al. (2006)

but a major difference is that the deformations are triangle-based in BlendSCAPE and SCAPE,

instead of vertex-based for Allen et al. (2006). One of the main disadvantages of SCAPE is that

it learns the shape-dependent and pose-dependent deformations independently, which neglects

the correlations between the body shape and pose. BlendSCAPE improves SCAPE by taking

into account these correlations. More recently, the SMPL model (Loper et al., 2015) has been

proposed. In SMPL, the pose-dependent and shape-dependent deformations are vertex-based

and the correlations between both are integrated. Contrary to SCAPE, BlendSCAPE, and the

model of Allen et al. (2006), SMPL models the deformations in a linear way which greatly

improves the efficiency.
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According to Loper et al. (2015), triangle-based models, even though generally providing the

most realistic results, hardly integrate into the graphic pipeline and graphic engines. This

is because they may not be based on a blend skinning technique contrary to vertex-based

models. Comparing to other models, SMPL is the most accurate model with lowest computation

complexity, still according to Loper et al. (2015). Since SMPL is the leading model in 3D body

reconstruction from images (Bogo et al., 2016; Huang et al., 2017; Kolotouros et al., 2019b;

Madadi et al., 2020; Omran et al., 2018; Pavlakos et al., 2018), we review below how it works

and how it is built.

1.1.1 SMPL Model

SMPL allows to generate a realistic 3D human body mesh (Fig. 1.1) given a shape �𝛽 and a pose

�𝜃 parameters specified by the user. This section presents an overview of the SMPL (Loper et al.,

2015) model. We refer the reader to the SMPL paper for a full description.

Figure 1.1 Example of 3D meshes generated with SMPL.

Taken from Loper et al. (2015)
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To generate the mesh having the shape specified with �𝛽 in the pose specified with �𝜃, the SMPL

procedure always begins with a mesh (called initial mesh) that models the average human body in

“T” pose (Fig. 1.2a). This (T-shaped) pose is called the base pose or null pose and is denoted �𝜃∗.

The mesh consists of 𝑁 = 6890 vertices and 𝐾 = 23 joints. It can be written as a concatenation

vector of the vertices: T̄ ∈ R3𝑁 . It is also equipped with a skeleton, and each vertex is bound to

each joint via a blend skinning coefficient (which can be zero). All these weights are stored in

the vector W ∈ R𝑁×𝐾 . No matter the value of �𝛽 and �𝜃, the SMPL procedure always begins with

this initial mesh. Then, three steps (Fig. 1.2), are executed to deform this initial mesh towards

the output mesh having the specified shape �𝛽 and in the specified pose �𝜃. The whole procedure

is fully automatic, the user has only to provide the shape and the pose. The initial mesh has

exactly the same number of vertices, faces, and joints than the output mesh.

Figure 1.2 SMPL overview. Taken from Loper et al. (2015)

The first step consists in modifying the initial mesh so that it no longer models the mean human

body shape but the shape specified with �𝛽, still in the null pose. The idea is to translate the

vertices of the initial mesh in order to change its shape to obtain the shape corresponding to

�𝛽. These translations will allow, for example, to enlarge the initial mesh, reduce the volume

of its arms, etc. They are a function of �𝛽. The translation vector to be applied to each vertex
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is computed and concatenated into the vector 𝐵𝑆 ( �𝛽) ∈ R
3𝑁 . At the end of the first step, the

resulting mesh is then T̄ + 𝐵𝑆 ( �𝛽) with

𝐵𝑆 ( �𝛽;S) =
| �𝛽 |∑

𝑛=1

𝛽𝑛S𝑛 (1.1)

where the matrix S = [S1, ..., S| �𝛽 |] ∈ R3𝑁×| �𝛽 | and the vector �𝛽 = [𝛽1, ..., 𝛽| �𝛽 |]
𝑇 ∈ R|

�𝛽 |. The

translations to be performed are a linear combination of a translation base. This base S has

been previously learned from a database of 3D scans by using a PCA and it is fixed in the

model (Loper et al., 2015). The number of selected principal components is | �𝛽 | = 10 and it is

up to the user to specify �𝛽 which contains the coefficients of the linear combination. The PCA

has been performed on 3D scans from the CAESAR database (Robinette, Blackwell, Daanen,

Boehmer & Fleming, 2002). For the notation, the parameters after “;” are the model parameters

that have been learnt and fixed during the learning phase. While the parameters before are those

specified by the users when using the model. The learning phase is detailed in the next section.

Since the initial mesh is modified to change its shape to �𝛽, the location of the joints must also be

readjusted to be able to animate the mesh correctly. The position of the joints are computed

from �𝛽. The function J( �𝛽) : R|
�𝛽 | ↦→ R3𝐾 is the function that determines these positions. The

function is defined as follows:

J( �𝛽; J , T̄,S) = J · (T̄ + 𝐵𝑆 ( �𝛽;S)) (1.2)

with J ∈ R3𝐾×3𝑁 a matrix which, when multiplied by the vector of the mesh vertices in the null

pose, gives the correct location of its joints. This matrix J contains somehow the information

of which vertices are important, and how to combine them, to compute the position of the joints.

The goal of the second step is to pre-correct errors due to blend skinning. If a standard technique

of blend skinning (LBS or DQBS for example) is directly applied to the current mesh, T̄+ 𝐵𝑆 ( �𝛽),

the result will not necessarily be satisfactory because of the defects of these techniques. SMPL’s

trick to overcome this problem is to modify the mesh before the blend skinning in order to
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anticipate the errors due to blend skinning (Fig. 1.2c). In SMPL, this pre-correction is noted

𝐵𝑃 ( �𝜃) ∈ R
3𝑁 and depends on the pose parameter �𝜃 (specified by the user). The pose in SMPL is

described by the rotation of each of the skeleton joints relative to its parent in the kinematic

tree, with the null pose as reference. When all the rotations are null it is equivalent to the

“T” pose �𝜃∗. The rotations must be specified in axis-angle. There are 𝐾 = 23 joints, hence

| �𝜃 | = 3 × 23 + 3 = 72 coefficients (3 for each joint and 3 for the global orientation of the whole

body).

Just like 𝐵𝑆, 𝐵𝑃 is a set of translations to modify the mesh (one translation per vertex). The

model defines

𝐵𝑃 ( �𝜃;P) =
9𝐾∑

𝑛=1

(𝑅𝑛 ( �𝜃) − 𝑅𝑛 ( �𝜃
∗))P𝑛 (1.3)

with 𝑅 : R|
�𝜃 | ↦→ R

9𝐾 the function that maps �𝜃 to the matrices (concatenated into a single

vector) of the rotation to be performed for each joint to pose the mesh. These matrices are

computed from the equation of the blend skinning technique used. 𝑅𝑛 ( �𝜃) is the n-th term of

𝑅( �𝜃). P𝑛 ∈ R
3𝑁 are vectors of vertex displacements and P = [P1, ...,P9𝐾] ∈ R

3𝑁×9𝐾 is a matrix

of all 9𝐾 translation vectors determined and fixed during the learning phase. 𝑅( �𝜃∗) is subtracted

so that the pre-correction is null if �𝜃 is the null pose because, in such case, T̄ + 𝐵𝑆 ( �𝛽) is the final

output mesh. If �𝜃 is different from the null pose, then the mesh resulting from this second step is

𝑇𝑃 ( �𝛽, �𝜃) = T̄ + 𝐵𝑆 ( �𝛽) + 𝐵𝑃 ( �𝜃) where 𝐵𝑃 ( �𝜃) is the pre-correction.

Now that the mesh is pre-corrected, the blend skinning technique to go from the “T” pose to �𝜃

(Fig. 1.2d) can be applied. It can be LBS, DQBS or another one, as long as the parameters of

the SMPL model have been learned using this technique. The final mesh is

𝑀 ( �𝛽, �𝜃) = 𝑊 (𝑇𝑃 ( �𝛽, �𝜃), 𝐽 ( �𝛽), �𝜃,W) (1.4)

with

𝑇𝑃 ( �𝛽, �𝜃) = T̄ + 𝐵𝑆 ( �𝛽) + 𝐵𝑃 ( �𝜃) (1.5)
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where 𝑊 corresponds to the blend skinning technique. It takes as input the mesh 𝑇𝑃 ( �𝛽, �𝜃), the

position of its joints 𝐽 ( �𝛽) ∈ R3𝐾 , the desired pose parameter �𝜃, and the matrix of the blend

skinning weights W. From these parameters, by applying the blend skinning, the new position

of the vertices (in the desired pose) is obtained.

Learning phase

The set of learned parameters of the model is 𝜙 = {T̄,W,S,J ,P}. SMPL distinguishes

these parameters in two groups: those related to the shape {T̄,S} and those related to the pose

{J ,W,P}.

The deformation basis S is obtained through a PCA as discussed before. The mesh of the mean

human body shape T̄, which is the starting point as explained previously, is also an outcome of

this PCA. In an nutshell, this PCA allows to extract the mesh of the mean human body shape, and

to learn how to deform it to obtain any other shape �𝛽 (through the shape-dependent deformation

base S).

For {J ,W,P}, the learning is also done from 3D scans. For each scan (3D point cloud) a

mesh is built. To do so, they align their initial mesh T̄ with the scan using the method of Bogo,

Romero, Loper & Black (2014). The learning is then done on these meshes. There are several

meshes of the same individual in different poses. For each individual, starting from his mesh in

the null pose, the last two steps of the model (pre-correction and blend skinning) are executed in

order to obtain, with minimal errors, his mesh in the other poses. The goal is to find the value of

the parameters {J ,W,P} that minimizes the pose reconstruction error. This error is defined

as the square of the euclidean distance between the vertices of the registered mesh and the one

reconstructed with the SMPL model.

A distinction is made between men and women. There is a model 𝜙𝑚 for men, trained using

only men 3D scans, and 𝜙 𝑓 the equivalent for women.
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The modeling of the body is central in 3D human body reconstruction. The generated mesh

must be deformable to be able to put it in any pose while maintaining its realism. The SMPL

model seems central because it has been used on many occasions. Compared to the other

models mentioned (Allen et al., 2003,0; Anguelov et al., 2005; Hirshberg et al., 2012) SMPL is

more suitable since it models both the shape and the pose, takes into account the correlations

between both, is vertex-based, and is linear. SMPL is the most accurate with lowest computation

complexity (Loper et al., 2015). Moreover, one of the main advantages in using SMPL, besides

being realistic, is that Eq. 1.4 is fully differentiable with respect to pose and shape parameters.

It means that we can easily optimize �𝛽 and �𝜃 given an objective function involving 𝑀 ( �𝛽, �𝜃).

However, the main drawback with SMPL is that it can generate meshes in poses that are

impossible for humans (Fig. 1.3). The rotations in the pose parameter �𝜃 are not limited and there

are no constraints in the mathematical model to limit these rotations. It is up to the user to make

sure that the given pose �𝜃 is really achievable for a human.

Figure 1.3 Example of SMPL mesh with an impossible pose
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1.2 Human Pose Estimation

In the process of 3D body reconstruction from images, human pose estimation is systematically

used (Bogo et al., 2016; Huang et al., 2017; Kolotouros et al., 2019b; Madadi et al., 2020;

Omran et al., 2018; Pavlakos et al., 2018) to guide and drive the estimation of the body model

parameters. Human pose estimation is defined as the problem of localizing the human joints

(also known as keypoints) in images. It can be separated into two categories: 2D pose estimation

and 3D pose estimation. 2D pose estimation consists in estimating a 2D (x,y) coordinates for

each joint. Each 2D coordinates corresponds to a pixel of the image. Conversely, 3D pose

estimation consists in estimating a 3D (x,y,z) coordinates for each joint. Each 3D coordinate

corresponds to a location in a 3D space. In both cases, the problem is difficult due to joint

occlusions, small and barely visible joints, clothing, and because several persons can be present

in the images.

In the context of 3D body reconstruction, we are interested in the 3D pose. However, since

3D pose estimation methods are built on top, or from, 2D pose estimation methods, we first

review 2D pose estimation in this section. The building blocs and the key ideas of human pose

estimation as a domain lie in 2D pose estimation. We then review how these principles are

extended for 3D pose estimation. In both cases, we focus on the most recent efforts relevant to

our work.

1.2.1 2D pose estimation

2D pose (as well as 3D pose) estimation process can be broken down into two stages (Liu et al.,

2015): a pre-processing stage, followed by a stage of anatomical parts detection. Figure 1.4

illustrates the full and detailed process. The steps framed with dotted lines are those that are not

always present in the methods. The pre-processing stage includes camera calibration, feature

extraction from images, and human bodies detection. The remaining steps correspond to the

anatomical parts detection stage.
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Figure 1.4 Human pose estimation pipeline. Taken from Liu et al. (2015)

Successful methods for 2D pose estimation make use of deep neural networks for these stages (Cao

et al., 2021; Fang, Xie, Tai & Lu, 2017; Newell, Yang & Deng, 2016; Pishchulin, Insafutdinov,

Tang, Andres, Andriluka, Gehler & Schiele, 2016; Wei, Ramakrishna, Kanade & Sheikh, 2016).

Each method adopts a different network architecture, leverages different data for the learning,

and uses various strategies to learn better and faster. One of the most recent and accurate (Cao

et al., 2021), OpenPose, is reviewed in detail below since it is further used in our approach.

OpenPose

OpenPose (Cao et al., 2021) is a tool and a method for detecting the 2D pose of all the persons

present in an image. It uses two convolutional neural networks (CNN): a first one to obtain

part affinity fields (PAFs), and a second one to compute the joint locations from these PAFs.

The PAFs are 2D vector fields that indicate where limbs of the human body are on the image

(Fig. 1.5). The output of the first network serves as an input to the second (Fig. 1.6). Below we

describe how OpenPose works at inference time.

First, the input image of dimensions𝑤×ℎ is passed through an external neural network, composed

of the first 10 layers of VGG-19 (Simonyan & Zisserman, 2015), for features extraction. It
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Figure 1.5 Top: 2D poses. Bottom: PAF for the right forearm.

Taken from Cao et al. (2021)

Figure 1.6 OpenPose’s CNNs architecture. Taken from Cao et al. (2021)
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generates a set of features F and these features are the input for the first CNN of OpenPose. This

first CNN computes the set of PAFs L = (L1,L2, ...,L𝐶) with L𝑐 ∈ R
𝑤×ℎ×2 (𝑐 ∈ {1, ..., 𝐶}) a

PAF and 𝐶 the number of limbs. There is one PAF per limb. A PAF (Fig. 1.5) is a 2D grid of

dimensions 𝑤 × ℎ where each cell corresponds to a pixel of the input image and where a 2D

vector is computed. For a given limb 𝑐, this vector is null if the pixel is not a pixel of the limb 𝑐

in the image. Otherwise, it is a vector oriented in the direction of the limb. A limb in OpenPose

is defined as a pair of joints, although not all pairs of joints define a limb of the human body

anatomically speaking. For example, if the limb 𝑐 is the right forearm, the vectors of L𝑐 will be

null for the pixels that do not belong to any right forearm on the image. On the other hand, if a

pixel belongs to a right forearm, the associated vector will be oriented in the forearm direction

(from elbow to wrist). L is computed iteratively (several passes through the network). Each

iteration refines the estimation. In total, 𝑇𝑃 iterations are made (Fig 1.6). The last estimate of L

(after the 𝑇𝑃 iterations) is named L𝑇𝑃 and is sent to the second CNN of OpenPose together with

F.

The second CNN is in charge of computing the set S = (S1, S2, ..., S𝐽) where S 𝑗 ∈ R
𝑤×ℎ is

associated to a particular joint 𝑗 ∈ {1, ..., 𝐽} with 𝐽 the number of joints defined by the model.

Each S 𝑗 is a 2D grid of dimensions 𝑤 × ℎ where each cell corresponds to a pixel of the input

image. In each cell is computed the probability that the corresponding pixel belongs to the pixels

of the joint 𝑗 (Fig. 1.7). For example, if 𝑗 is the right shoulder, S 𝑗 contains the probability for

each pixel to be a pixel of a right shoulder on the image. This is also known as a heatmap and is

common to many 2D pose estimation methods. The network architecture and the way used to

compute these heatmaps vary across the methods. In OpenPose, only one pixel per joint has the

probability 1 (maximum probability). It can be seen as the center of the joint. The coordinates

of this pixel correspond to the 2D location of the joint. The other pixels of the joint have a high

but not the maximum probability. The closer to the pixel having the maximum probability, the

higher their probability is. S is also estimated iteratively: 𝑇𝐶 passes through the second CNN

are made. Each iteration refines the estimation.
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Figure 1.7 Left elbow and left shoulder heatmaps. Taken from Cao et al. (2021)

A final step consists in using the information of S and L to compute the 2D skeleton of each

person on the image. This means determining which joints of S belong to the same person with

the help of L (PAFs). This problem is known as the matching problem and is NP-Hard (West,

2001). OpenPose uses a greedy approach to solve it. In our work, one of the constraints is that

only one person (the subject) should be on the images, therefore the solution to the matching

problem is obvious and straightforward. OpenPose supports various models of skeleton. We

refer the reader to the OpenPose paper for a full description of the tool and method.

To conclude with 2D pose estimation, OpenPose as well as the other methods (Cao et al., 2021;

Fang et al., 2017; Newell et al., 2016; Pishchulin et al., 2016; Wei et al., 2016) have well-known

issues such as sometimes confusing left and right sides, besides having troubles with occluded

joints and complex poses (Huang et al., 2017). However, their effectiveness is not questionable

and they can reach incredible levels of accuracy on some benchmarks (Cao et al., 2021).

1.2.2 3D pose estimation

There is a large body of research about 3D human pose estimation. Unlike 2D pose estimation,

multi-view images can be used in 3D pose estimation. Two paradigms stand out in the literature:
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the direct regression of 3D joints from images or the estimation of 2D joints followed by their

lifting to 3D.

Direct 3D joint regression is mostly achieved by training a CNN (Joo, Liu, Tan, Gui, Nabbe,

Matthews, Kanade, Nobuhara & Sheikh, 2015; Kocabas, Karagoz & Akbas, 2019; Pavlakos,

Zhou, Derpanis & Daniilidis, 2017a,1; Rhodin, Meyer, Sporri, Muller, Constantin, Fua,

Katircioglu & Salzmann, 2018; Sun, Shang, Liang & Wei, 2017) leveraging data sets like

Human3.6M (Ionescu, Li & Sminchisescu, 2011; Ionescu, Papava, Olaru & Sminchisescu, 2014)

and HumanEva (Sigal, Balan & Black, 2010). The concept of heatmaps discussed with 2D pose

estimators is replaced by volumetric heatmaps for the 3D pose. It is the same idea but in a 3D

volume instead of a 2D grid.

In two-stage methods, 2D pose estimation (Cao et al., 2021; Pishchulin et al., 2016; Wei

et al., 2016) is first performed, after which 2D estimates are lifted to 3D. To this end, various

strategies have been applied, such as: exploit a dictionary of learned 3D poses (Sanzari,

Ntouskos & Pirri, 2016; Tung, Harley, Seto & Fragkiadaki, 2017), take advantage of pictorial

structure models (Belagiannis, Amin, Andriluka, Schiele, Navab & Ilic, 2014), triangulate 3D

locations from 2D positions (Iskakov, Burkov, Lempitsky & Malkov, 2019), and develop a

3D-aware 2D pose estimator using transformers (He, Yan, Fragkiadaki & Yu, 2020).

Direct regression methods have the advantage of being faster than two-stage methods since

they do not rely on 2D pose estimators (Bartol, Bojanić, Petković, D’Apuzzo & Pribanic, 2020;

Desmarais, Mottet, Slangen & Montesinos, 2020). However, two-stage methods tend to be more

accurate and robust (Bartol et al., 2020; Desmarais et al., 2020) than direct regression methods

because they rely on 2D pose estimators which have been extensively studied and improved over

the years. Indeed, 3D pose estimation is more recent than 2D pose estimation (Bartol et al.,

2020; Desmarais et al., 2020) and has been able to raise mainly thanks to the huge advances in

2D pose estimation. The building blocks of the human pose estimation domain comes from

the 2D pose estimation. Surprisingly, what makes two-stage methods competitive compared

to direct regression methods is also their weakness. They suffer from the flaws of 2D pose
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estimators mentioned in the previous section. Their accuracy heavily rely on the accuracy of the

2D joints.

1.3 3D Human Body Reconstruction from Images

Now that 3D human body modeling and human pose estimation have been discussed, we review

in this section how current solutions use them and combine them to generate a subject’s full-body

3D mesh from images. As stated before, SMPL (Loper et al., 2015) is the leading body model

used for this task. The recent and main methods can be classified as either CNN-based (Kanazawa

et al., 2018; Kolotouros et al., 2019b; Madadi et al., 2020; Omran et al., 2018; Pavlakos et al.,

2018) or optimization-based (Bogo et al., 2016; Huang et al., 2017).

1.3.1 CNN-based methods

The CNN-based methods use only one view to estimate the SMPL pose and shape parameters.

The idea is to use intermediate representations of the image to infer the shape and the pose.

Each method uses its own intermediate representations. The main issue with CNN-based

methods is that end-to-end training data is not widely available. There are very few images

annotated with ground-truth SMPL pose and shape or a ground-truth 3D mesh. The only

available data set, UP-3D (Lassner, Romero, Kiefel, Bogo, Black & Gehler, 2017), contains

only 5703 single-view images for the training. Each image comes with its ground-truth SMPL

pose and shape parameters. However, these ground-truths have been generated by running an

optimization-based method presented in the next section (Bogo et al., 2016). Therefore, their

quality is questionable and one could argue that the accuracy of a CNN trained on these data

is theoretically bounded by the accuracy of the optimization-based method. Each CNN-based

method manages this lack of end-to-end training data differently. Below are reviewed, in

chronological order, some key efforts and CNN architectures that have been proposed in this

direction.



21

Human Mesh Recovery

Kanazawa et al. (2018) proposed a generative adversarial network (GAN) (Goodfellow, Pouget-

Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville & Bengio, 2014) to solve the problem.

Figure 1.8 summarizes their architecture. It consists in an encoder ResNet-50 (He, Zhang,

Ren & Sun, 2016), a regression module, and a discriminator. The idea is to extract features

from the image (with the encoder) and to feed the regression network with them to estimate

the SMPL parameters and the camera parameters. The mesh corresponding to the estimated

parameters is then generated, its 3D joints are projected on the image according to the estimated

camera, and the error can be calculated. Since end-to-end training data is not widely available,

2D pose estimation data sets like Leeds Sports Pose (Johnson & Everingham, 2010) are used

to assess the accuracy of the reconstruction. The error is therefore the L2 distance between

the ground-truth 2D joints and the projected mesh joints on the image. Finally, the estimated

SMPL parameters are sent to the discriminator. The discriminator is trained to distinguish the

SMPL parameters that correspond to a realistic pose and shape. To learn that, they leverage the

CAESAR database (Robinette et al., 2002) together with the CMU MoCap database (University,

2007). The output of this discriminator is the probability that the SMPL parameters are not valid.

They are not valid if they do not correspond to a possible shape and pose for the human body.

Figure 1.8 Human Mesh Recovery overview. Taken from Kanazawa et al. (2018)
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Pavlakos et al. (2018)

Whereas Kanazawa et al. (2018) use image features extracted with ResNet-50 as intermediate

representation to estimate the parameters, Pavlakos et al. (2018) proposed another alternative

(Fig. 1.9). The first step of their method consists in estimating the 2D pose (in the form of

heatmaps) and the silhouette (2D binary mask) of the individual from the image. They built

and trained their own CNN for this rather than using existing models because they wanted

one network to extract both at the same time. The second step is the estimation of �𝜃 from

the estimated 2D pose, and the estimation of �𝛽 from the estimated silhouette. The PosePrior

network, composed of two bi-linear units, is in charge of estimating �𝜃. The ShapePrior network,

in charge of estimating �𝛽, has a simple architecture with five layers of 3 × 3 convolutions, each

of them followed by a max-pooling and a bi-linear unit.

Figure 1.9 Overview of Pavlakos et al. (2018). Taken from Pavlakos et al. (2018)

To account for the lack of end-to-end training data, Pavlakos et al. (2018) generated SMPL

meshes with pose and shape parameters that correspond to real people. Then, they rendered

pictures of these meshes and from these pictures they extracted the silhouette and the 2D pose.

Thus, they are in possession of silhouettes and 2D poses corresponding to SMPL meshes and
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they know the corresponding SMPL parameters. This forms their own data set and ground-truths

allowing to train the full pipeline.

Neural Body Fitting

Omran et al. (2018) use a body segmentation of the individual as an intermediate representation

to compute the SMPL parameters (Fig. 1.10). First, a CNN having the same architecture as

RefineNet (Lin, Milan, Shen & Reid, 2017) is used to segment the body of the person. The

result of this segmentation is the input image but with different color masks, one color mask

per limb. Each limb is colored in a different color on the segmented image. Then, from this

segmented image, another CNN, based on the architecture of ResNet-50 (He et al., 2016), is used

to estimate the SMPL and camera parameters. The corresponding estimated mesh can then be

generated and projected on the image to calculate the 2D joint error. Thus, like Kanazawa et al.

(2018), they also use 2D pose estimation data sets for the training. However, unlike Kanazawa

et al. (2018), they use the UP-3D data set (Lassner et al., 2017) to supplement the learning.

During the training, when an image comes from the UP-3D data set, the L2 distance between

the estimated SMPL parameters and the ground-truth parameters is used as error metric to drive

the learning (end-to-end training). Otherwise, the image comes from a 2D pose estimation data

set and the 2D joint error metric is used.

Figure 1.10 Neural Body Fitting overview. Taken from Omran et al. (2018)
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Convolutional Mesh Regression

Kolotouros et al. (2019b) have a very different approach (Fig. 1.11) from the others. Indeed,

they first estimate the complete SMPL mesh (the 3D position of each of the 𝑁 vertices). Then,

based on the mesh they have estimated, they regress the SMPL parameters. To achieve this, they

use a Graph CNN (Litany, Bronstein, Bronstein & Makadia, 2018). They claim that this type of

architecture allows to encode the structure of the SMPL mesh. In a way, this architecture can

learn the SMPL mesh structure and be able to reproduce it. The process is as follows. The input

image is encoded (features extraction with ResNet-50) and the features are attached to each

vertex of the initial SMPL mesh T̄ ∈ R3𝑁 (average body mesh). Then, the vertices (together

with the extracted features) are sent to the CNN graph which computes new coordinates for

each vertex in order to deform the mesh. The output mesh is supposed to have the shape and

the pose of the individual on the image. The CNN graph learns to deform the initial SMPL

mesh to reach the shape and pose of the individual. It also estimates the camera parameters,

allowing the projection of the mesh to compute the 2D joint error. Like Kanazawa et al. (2018),

2D pose estimation data sets are used for the training since end-to-end training data is not widely

available.

Figure 1.11 Convolutional Mesh Regression overview.

Taken from Kolotouros et al. (2019b)
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Finally, the mesh estimated by the CNN graph is sent to a multi-layer perceptron whose purpose

is to estimate �𝛽 and �𝜃 from the mesh. The idea is to find the SMPL parameters that best match

this mesh.

The variation across the methods is the intermediate representation of the image used to estimate

the SMPL parameters. Features extracted with ResNet-50 are used for Kanazawa et al. (2018) and

Kolotouros et al. (2019b), while Omran et al. (2018) use body segmentation and Pavlakos et al.

(2018) silhouette and 2D pose. The disadvantage with features extraction is that information

is lost. Indeed, using only features of the image and not the complete image itself, some

details possibly useful are set aside. CNN methods are generally less accurate and robust than

optimization-based methods (Kolotouros, Pavlakos, Black & Daniilidis, 2019a; Pavlakos et al.,

2018) which follow. In addition, they do not generalize well either (Kolotouros et al., 2019a),

probably because they use only one view and because of the lack of end-to-end training data.

1.3.2 Optimization-based methods

Optimization-based solutions formalize the problem through one or several objective functions

to be solved. The goal is to find the value of the SMPL parameters minimizing the objective

functions. These functions require human-made priors and constraint terms to relax the objective

function. Below, two key optimization-based methods are reviewed: SMPLify (Bogo et al.,

2016) and MuVS (Huang et al., 2017).

SMPLify

The input for SMPlify is a single image (single-view method) and the output is the SMPL

mesh. The problem is solved in two steps (Fig. 1.12). First, the 2D joints are estimated, 𝐽𝑒𝑠𝑡 ,

using DeepCut (Pishchulin et al., 2016). For each joint 𝑖, DeepCut also provides a confidence

value, 𝑤𝑖, indicating the degree of confidence in the estimate. Then, the SMPL parameters are

estimated from the knowledge of these 2D joints. For this, an objective function is defined. This

function aims for minimizing the error between the position of the joints estimated by DeepCut
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Figure 1.12 SMPLify overview. Taken from Huang et al. (2017)

and the projected SMPL joints. The energy function is:

𝐸 (𝛽, 𝜃) = 𝐸𝐽 (𝛽, 𝜃;𝐾, 𝐽𝑒𝑠𝑡) + 𝜆𝜃𝐸𝜃 (𝜃) + 𝜆𝛼𝐸𝛼 (𝜃) + 𝜆𝑠𝑝𝐸𝑠𝑝 (𝜃; 𝛽) + 𝜆𝛽𝐸𝛽 (𝛽) (1.6)

where 𝐾 corresponds to the camera parameters (for the projection of the SMPL 3D joints), and

𝜆𝜃 , 𝜆𝛼, 𝜆𝑠𝑝, 𝜆𝛽 are scalar weights. The term 𝐸𝐽 (𝛽, 𝜃;𝐾, 𝐽𝑒𝑠𝑡) corresponds to the error between

the DeepCut joints 𝐽𝑒𝑠𝑡 and the projected SMPL joints. Since the problem of inferring 3D from

2D is fundamentally ambiguous, constraint terms are added. While in CNN-based methods these

constraints should be implicitly learnt by the network during the training, in optimization-based

methods they have to be hand-designed. This is what is done in SMPLify with the term

𝐸𝛼 (𝜃) =
∑

𝑖∈{𝑒𝑙𝑏𝑜𝑤𝑠,𝑘𝑛𝑒𝑒𝑠}

exp(𝜃𝑖) (1.7)

which penalizes the poses where elbows and knees bend abnormally. In this term, the sum

only concerns the elbow and knee joints. Furthermore, 𝜃𝑖 is the part of 𝜃 responsible for the

rotation of the i-th joint. The exponential is used to penalize in a very strong way the poses

where the knee and elbow rotations are too important. As a reminder, the null pose �𝜃 = �0 (i.e.

𝜃𝑖 = 0 ∀𝑖) is the “T” pose. A pose where elbows and knees are not bent at all. The “negative”

rotations in this context correspond to the natural knee and elbow rotations. Therefore, they are

slightly penalized with the exponential. This is not the case for the “positive” rotations which

are strongly penalized since they correspond to abnormal bending.
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While 𝐸𝛼 (𝜃) penalizes the poses that are impossible for a human body, the pose prior 𝐸𝜃 (𝜃)

penalizes the poses that are least likely, although achievable by the human body. It is a statistical

model trained on the CMU MoCap database (University, 2007) to learn the most likely poses.

In the same vein, the shape prior

𝐸𝛽 (𝛽) = 𝛽𝑇Σ−1
𝛽 𝛽 (1.8)

penalizes the least likely shapes. In this term, Σ−1
𝛽 is the diagonal matrix of the squared singular

values coming from the PCA of the SMPL model.

Finally, the term 𝐸𝑠𝑝 (𝜃; 𝛽) is used to penalize solutions containing interpenetration. For this,

the SMPL mesh corresponding to the parameters 𝛽 and 𝜃 is approximated with a set of capsules

(Figure 1.13). Each limb of the mesh is approximated with a capsule, which facilitates the

computation to determine whether there is interpenetration between the limbs or not. Indeed,

making this calculation for a volume such as the human body is complex and requires a lot

of computing time. On the other hand, it is very fast when dealing with convex objects such

as these capsules. It is easier to check whether or not they intersect. Each capsule is defined

by its height and radius. Thus, Bogo et al. (2016) have trained a model (Ridge regression

with cross-validation) that automatically determines the radius and height of each capsule from

the shape 𝛽. The term 𝐸𝑠𝑝 (𝜃; 𝛽) is the sum of the intersection volumes between the capsules

that are not supposed to intersect. Indeed, we can see on the figure 1.13 that to have a good

approximation of the body with the capsules, some capsules must necessarily intersect. It is

important to mention that this term penalizes but does not prevent interpenetration.

The focal length of the camera with which the image was taken is assumed to be known. The

optimization method used is Powell’s Dogleg (Nocedal & Wright, 2006). SMPLify suffers from

depth ambiguity issues since it relies on a single view. Human-made priors cannot recover all

failure cases due to the depth ambiguity. This is why MuVS (Huang et al., 2017) has been

proposed.
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Figure 1.13 SMPL mesh approximation with capsules. Taken from Bogo et al. (2016)

MuVS

MuVS (Huang et al., 2017) is the multi-view version of SMPLify. It is built upon SMPLify and

uses a similar optimization process. The main difference is that the objective function considers

2D pose estimation through all views and also integrates 2D silhouettes. The function is defined

as follows:

𝐸 (𝛽, 𝜃) = 𝜆𝜃𝐸𝜃 (𝜃) + 𝜆𝛽𝐸𝛽 (𝛽) +
𝑉∑

𝑣=1

(𝐸𝐽 (𝛽, 𝜃;𝐾𝑣, 𝐽
𝑣
𝑒𝑠𝑡) + 𝐸𝑆 (𝛽, 𝜃;𝐾𝑣, 𝑆𝑣)) (1.9)

where 𝜆𝜃 and 𝜆𝛽 are scalar weights, 𝑉 is the total number of views, 𝐾𝑣 corresponds to the camera

parameters of the v-th view, 𝐽𝑣𝑒𝑠𝑡 corresponds to the 2D joints estimated on view 𝑣, and 𝑆𝑣 is the

2D silhouette (binary mask) estimated on view 𝑣. The pose prior 𝐸𝜃 , the shape prior 𝐸𝛽, and

the 2D joint error term 𝐸𝐽 are the same as in SMPLify. The silhouette error term 𝐸𝑆 aims for

silhouette consistency between the SMPL mesh and the individual. Huang et al. (2017) use the

silhouette consistency term defined by Lassner et al. (2017). The more the two silhouettes differ

on each view, the more the value of this term is high. 𝐾𝑣 is needed in this term because the

SMPL mesh silhouette is rendered according to each view 𝑣. Notice that unlike SMPLify, the

terms 𝐸𝑠𝑝 and 𝐸𝛼 are no longer in the objective function. According to Huang et al. (2017),

they are no longer useful in a multi-view setting since the problem is more constrained. The

depth ambiguity is significantly reduced thanks to the multiple views, hence abnormal bending

and solutions with interpenetration are naturally avoided.
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2D pose estimators have well-known issues like sometimes confusing left and right sides, besides

having troubles with occluded joints and complex poses. For optimization-based methods,

inaccurate 2D joint estimates lead to local minima of the energy function that can be too far from

the global optimum result aimed for. MuVS (Huang et al., 2017) tries to improve with respect

to these shortcomings with the aid of the body’s silhouette. Adding a silhouette consistency

constraint between the images and the recovered shape allows to reduce the impact of incorrect

2D joint locations, and adds a direct constraint on the shape that was not previously available

(SMPLify). However, even if silhouettes are well estimated, during the optimization process,

the solver still makes a trade-off between optimizing the silhouette consistency term, the joint

error term, and the other prior terms. Despite its deficiencies, the joint error term is crucial to

the convergence of the optimization process since the silhouette alone does not constrain the

location of joints within the silhouette. Another attempt of MuVS to mitigate joint inaccuracies

is to use temporal smoothing when successive frames are available. A temporal smoothing

stage with a specific objective function is introduced to constrain the acceleration of each 3D

joint along the successive frames. The acceleration can be a manifestation of an error in the

2D estimates. Nevertheless, there is still a trade-off between the other terms in the objective

function (to still constrain the SMPL parameters) and successive frames must be available.

To conclude on 3D human body reconstruction from images, CNN-based and optimization-based

methods both have advantages and disadvantages. On one hand, CNN-based methods are faster

at inference time but generally less accurate and robust than optimization-based methods. The

3D joint mean error on the Human3.6M database (Ionescu et al., 2011,1) varies from 181 𝑚𝑚 to

55 𝑚𝑚 for these methods (Kanazawa et al., 2018; Kolotouros et al., 2019b; Madadi et al., 2020;

Omran et al., 2018; Pavlakos et al., 2018). This is explained by the lack of end-to-end training

data and the use of only one view. On the other hand, optimization-based methods are slower,

require hand-designed constraints, and heavily rely on the accuracy of the joint estimates, but

are more robust and accurate. MuVS achieves a 3D joint mean error of 47 𝑚𝑚 on Human3.6M.

However, MuVS still suffers from the quality of the 2D joint estimates and optimizes shape and

pose simultaneously, making the optimization harder and time consuming due to the complex
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interleaving of shape and pose in SMPL. Moreover, optimization-based methods suffer from

numerous local optima and only work well when initialized close to the real solution. We believe

that there is a more natural road for improving optimization-based methods than CNN-based

methods which require end-to-end training data.



CHAPTER 2

MULTI-VIEW 3D BODY RECONSTRUCTION

Given multi-view images of a human subject taken at the same time, together with camera

parameters for each view, our goal is to generate a realistic and precise 3D body model of the

subject as we saw in Figure 0.1. Like in other papers (Bogo et al., 2016; Huang et al., 2017;

Kanazawa et al., 2018; Kolotouros et al., 2019b; Omran et al., 2018; Pavlakos et al., 2018), we

use the SMPL body model (Loper et al., 2015) to reach this goal. The challenge is to find out

both the 3D shape and the 3D pose of the individual, from the images. As in other efforts (Huang

et al., 2017; Kanazawa et al., 2018; Lassner et al., 2017; Pavlakos et al., 2018), we use the

2D pose and 2D silhouette estimations to infer accurate 3D pose and 3D shape. The proposed

approach is summarized in Figure 2.1. While MuVS (Huang et al., 2017) aggregates the 2D

pose estimations from all the views into a single objective function, our optimization-based

approach relies on two objective functions, both directly integrating 3D joint positions. We

triangulate these 3D joints from 2D joint estimations by weighting the contribution of each

view to the final 3D joint position. To determine the influence of each view, we rely on the 2D

pose estimator’s confidence values. This leads to better estimates for the 3D joints which are

later injected in our shape and pose objective functions, reducing the undesirable local optima.

Furthermore, we design a different optimization process with a novel objective function. This

function aims to achieve bone orientation consistency between the 3D skeleton (triangulated

joints) and the 3D body model. Thanks to our bone orientation constraint (BOC), we are able to

closely approximate the pose parameter and take advantage of this information when conducting

the final optimization stage (simultaneous shape and pose refinement). Finally, we demonstrate

that the semantic position of joints in the body model and in the validation data sets do not

exactly match. To account for this discrepancy we introduce, for each joint, a shift vector

computed in the joint’s local space. Results on widely used benchmark data sets (HumanEva and

Human3.6M) show that our approach has a higher accuracy than the state-of-the-art methods.
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Figure 2.1 Overview of the proposed approach

The remainder of this chapter is organized as follows. Section 2.1 explains how 2D poses and

body silhouettes are estimated. Then, the 3D pose triangulation is discussed in Section 2.2.

Finally, our two-step optimization process is described in Section 2.3.

2.1 2D Pose and Body Silhouette

We first estimate the 2D pose and body silhouette on each view 𝑣 ∈ {1, 2, 3, ..., 𝑉}, where 𝑉

is the number of views. We use OpenPose (Cao et al., 2021) to estimate the 2D pose on each

image. For each view, OpenPose provides 25 joint locations and a confidence value for each

joint 𝑗 . The OpenPose skeleton contains 4 joints which are not part of the SMPL skeleton (left

eye, right eye, left ear, and right ear). We only keep the 21 joints shared by the two skeletons.

Concerning the silhouette, Cross-Domain Complementary Learning (CDCL) (Lin, Wang, Luo,

Chen, Liu & Sun, 2021) is used. For the view 𝑣, the corresponding silhouette image is denoted

𝑆𝑣 , which consists in a binary image with pixels belonging to the silhouette having a value of 1.

Our approach is versatile; other human body silhouette tools could be used instead.



33

2.2 3D Pose Triangulation

We use a linear algebraic triangulation (Iskakov et al., 2019) combined with OpenPose’s joint

confidence values to lift the 2D joints to 3D. Given a joint 𝑗 , its 2D estimated position on

each view 𝑣, and the camera parameters (intrinsic and extrinsic) of each view, the algebraic

triangulation consists in solving the following system of equations:

((w 𝑗 · J) ◦ 𝐴𝑗 )ỹ 𝑗 = 0 (2.1)

where ỹ 𝑗 is the unknown location of the 3D joint 𝑗 and 𝐴𝑗 ∈ R
2𝑉×4 is a matrix that allows

to calculate, for all 𝑉 views, the difference between the estimated 2D joint locations and the

projected 3D joint locations. The weights w 𝑗 = (𝑤1, 𝑗 , 𝑤1, 𝑗 , 𝑤2, 𝑗 , 𝑤2, 𝑗 , ..., 𝑤𝑉, 𝑗 , 𝑤𝑉, 𝑗 )
ᵀ ∈ R2𝑉×1

correspond to confidence values. The weight 𝑤𝑣, 𝑗 ∈ [0, 1] denotes the confidence in the

estimate of joint 𝑗 on view 𝑣. These weights are multiplied (matrix product) by the all-ones

row vector J ∈ R4 and operator ◦ denotes the Hadamard product. The idea behind the linear

system of Eq. 2.1, is to recover the homogeneous coordinates, ỹ 𝑗 ∈ R
4, of the joint 𝑗 knowing

its 2D projection on the 𝑉 images. The 3D joint location 𝐽3𝐷 𝑗 ∈ R
3 is then computed from

the homogeneous coordinates. The system is solved independently for each joint using a

differentiable singular value decomposition. We refer the reader to the original paper (Iskakov

et al., 2019) for full details. Iskakov et al. (2019) use their own 2D pose estimator (and confidence

values) trained to map Human3.6M joints. We use OpenPose instead because its joints are at the

same semantic positions as in the SMPL model.

The weights w 𝑗 are crucial since they adjust the contribution of each view in the triangulation.

When a joint is likely to be occluded in one of the views, the weight for this view is low, ensuring

that other views with larger confidences will drive the convergence to the right location. Thus,

the emanating 3D joint contains less uncertainty than the 2D ones. For instance, in Figure 2.2,

this allowed to correctly converge despite the inaccurate left elbow (pink) estimation in the view

corresponding to the second row. Note the adjustment of the left elbow after the triangulation.
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We automatically detect that this joint is likely to be inaccurate and thus decrease its contribution

to the triangulation process, resulting in an accurate 3D joint location.

Input images 2D joint estimates Projected 3D joints

Figure 2.2 Example of joints correction thanks to the triangulation

2.3 Two-Step Optimization Process

We now describe our optimization process to infer SMPL parameters from the 3D joints and the

silhouettes. SMPL does not constrain invalid pose and shape values. Therefore, given an energy

function, one may converge to a non-human pose and/or shape if the problem is not constrained

enough. Furthermore, SMPL joint locations after posing, 𝐽 ( �𝛽, �𝜃) ∈ R3×23, depend on SMPL



35

joint locations 𝐽 ( �𝛽) which are a function of the shape. This means that each modification of the

shape �𝛽 necessarily leads to a change in 𝐽 ( �𝛽, �𝜃), even if the pose �𝜃 remains unchanged.

In SMPLify (Bogo et al., 2016) and MuVS (Huang et al., 2017), both the shape and the pose

are estimated simultaneously. As a consequence, the cost functions are complex and result in

multiple local optima. That is the reason why optimization-based methods are sensitive to the

initialization point.

In our approach, we overcome these obstacles in a novel fashion. The triangulated 3D joints allow

us to provide a robust initialization for �𝜃. The proposed optimization process is decomposed

into two steps: SMPL mesh bone orientation, followed by simultaneous posing and shaping.

First, �𝛽 is initialized to the mean shape and �𝜃 to an initial pose (Fig. 2.3a). The first step of the

optimization process (bone orientation constraint) consists in estimating only the pose parameter

(Fig. 2.3b). We want the 3D mesh, which is currently in the initial pose, to be posed as in the

multiple views. To that end, we designed a new objective function. Let 𝐵 be the set of bones of

the triangulated 3D skeleton. A bone 𝑏 ∈ 𝐵 is defined by two consecutive joints (child-parent)

in the skeleton’s kinematic tree. We name these joints child(𝑏) and parent(𝑏). Given a bone 𝑏

and a 3D pose 𝐽 (3D joint locations), the function Φ(𝐽, 𝑏) returns the normalized orientation

vector of the bone 𝑏 in 𝐽:

Φ(𝐽, 𝑏) =
𝐽child(𝑏) − 𝐽parent(𝑏)

| |𝐽child(𝑏) − 𝐽parent(𝑏) | |2
(2.2)

Then, our objective function is:

𝐸pose( �𝜃) = 𝜆𝜃𝐸𝜃 ( �𝜃) + 𝜆bone

∑

𝑏∈𝐵

| |Φ(𝐽 ( �𝛽, �𝜃), 𝑏) −Φ(𝐽3𝐷, 𝑏) | |
2
2 (2.3)

where 𝐽3𝐷 denotes the triangulated 3D joints, 𝐽 ( �𝛽, �𝜃) denotes the SMPL mesh 3D joints,

𝜆𝜃 = 1 and 𝜆bone = 100 are weights, and 𝐸𝜃 ( �𝜃) is the same pose prior (learned from the CMU

data set) used by Huang et al. (2017) in MuVS and Bogo et al. (2016) in SMPLify. The pose

prior role is to prevent convergence to non-human poses. During this optimization, �𝛽 is kept

fixed to the mean shape.
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With Eq. 2.3, we are constraining the bones to have orientations consistent with the triangulated

3D joint positions. Normalizing the limb orientation vectors in the equation is crucial because

the non-normalized vectors are a function of shape (limb lengths) besides pose. We are able to

get a close approximation of �𝜃 alone, without caring about the shape �𝛽, because we get rid of the

bone lengths by normalizing. Whatever the individual’s shape, by minimizing Eq. 2.3, we are

able to obtain accurate bone orientations (e.g. �𝜃). This strategy resolves concerns arising from

the simultaneous optimization of shape and pose used in previous papers (Bogo et al., 2016;

Huang et al., 2017). One important advantage with our technique is that we can then use this

estimation of �𝜃 to initialize the final optimization step.

In the final step (Fig. 2.3c), we also want to recover the shape �𝛽, therefore, the bone lengths

matter. Our energy function is then:

𝐸final( �𝛽, �𝜃, �𝛾) = 𝜆𝜃𝐸𝜃 ( �𝜃) + 𝜆𝛽𝐸𝛽 ( �𝛽) + 𝜆𝐽 | |𝐽3𝐷 − 𝐽 ( �𝛽, �𝜃) + �𝛾 | |22 + 𝜆𝑆

𝑉∑

𝑣=1

𝐸𝑆 ( �𝛽, �𝜃;𝐾𝑣, 𝑆𝑣) (2.4)

where �𝛾 ∈ R3 is the SMPL mesh global translation, 𝜆𝜃 = 5, 𝜆𝛽 = 300, 𝜆𝐽 = 1, and 𝜆𝑆 = 1
10

are

weights, and 𝐸𝛽 ( �𝛽) is the shape prior learnt from the SMPL body shape training data (Loper

et al., 2015). 𝐾𝑣 corresponds to the camera parameters of the v-th view and 𝐸𝑆 ( �𝛽, �𝜃;𝐾𝑣, 𝑆𝑣) is

the silhouette consistency term defined by Lassner et al. (2017). Contrary to MuVS, we use

3D rather than 2D joints data in this last stage. As a consequence, our objective function does

not contain joint projection operations, and has fewer terms. In our case, the number of views

comes up first when triangulating 3D joints. However, the triangulation is solved for each joint

independently, and through a singular value decomposition, which is simpler than having more

terms to deal with during the optimization.

Like SMPLify and MuVS, we use the differentiable renderer OpenDR (Loper & Black, 2014)

to optimize the objective functions (Eq. 2.3 and 2.4) using Powell’s Dogleg method (No-

cedal & Wright, 2006).
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a) Initialisation

b) BOC c) Simultaneous posing and shaping

Figure 2.3 Example using our two-step optimization process





CHAPTER 3

EXPERIMENTAL RESULTS AND DISCUSSION

We evaluate our approach on two widely used multi-view images data sets: HumanEva-I (Sigal

et al., 2010) and Human3.6M (Ionescu et al., 2011,1). They both contain ground-truth 3D joint

locations recovered from motion capture. Since HumanEva-I is a significantly smaller data set

than Human3.6M, as other work (Bogo et al., 2016; Huang et al., 2017), we use HumanEva-I

to make design choices and validate our approach, whereas Human3.6M serves to gauge the

solution’s generalization. We first present quantitative results followed by qualitative results.

We measure the performance with the commonly used Mean Per Joint Position Error (MPJPE)

metric and compare our approach to the state-of-the-art alternatives. Neither OpenPose nor

CDCL training data sets overlap with our test sets. As is common practice (Bogo et al., 2016;

Loper et al., 2015), we separate the models between male and female. We also manually fine

tune all cost function weights on the training data set of HumanEva.

HumanEva-I and Human3.6M joints differ from the SMPL joints as showed in Figure 3.1 for

Human3.6M. Despite the fact that the SMPL mesh and its silhouette (green contour on the left

image) match the individual on the image, there is a shift between the ground-truth Human3.6M

joints (blue squares) and the SMPL joints (green squares). To account for this discrepancy, we

compute one shift vector (in the local bone coordinate) for each of the SMPL joints. Among the

first 1000 frames of each video for Human3.6M, we took every 100th frame and computed the

shift between the result of our optimization and the ground-truth. We then apply the mean of the

shift vectors before computing the MPJPE for all of the other frames. For HumanEva-I we took

every 20th frame among the first 300 frames. Shift vectors are only applied when computing the

MPJPE for our approach since for the other methods (in Tables 3.1 and 3.2), the MPJPEs report

the values found in the respective papers.
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Figure 3.1 Shift between the ground-truth Human3.6M and the SMPL joints

3.1 Validation on HumanEva-I

We carry out a first validation on the HumanEva-I data set. On the order of 50, 000 images are

available in HumanEva-I. There are six predefined actions, each performed by four subjects.

Following a common practice (Bogo et al., 2016; Huang et al., 2017), we report results for

subjects S1, S2, and S3 on the “Walking” and “Box” actions of the validation set. We use all

three views and the ground-truth camera parameters.

Table 3.1 MPJPE (mm) comparison on

HumanEva-I (the smaller the better)

Method Walking Box Mean

MuVS 65.92 75.46 70.69

MuVSS 58.32 68.41 63.37

MuVSS, T 56.68 67.79 62.23

Ours 48.59 61.45 55.02

OursSV 47.22 59.88 53.55

OursBOC 42.63 53.75 48.19

OursBOC, SV 41.96 51.12 46.54
OursBOC, SV, S 42.13 53.03 47.58
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Table 3.1 compares our approach with MuVS. The first row (“MuVS”) refers to the MuVS

optimization process using strictly 2D joint error terms as well as shape and pose priors (without

using temporal information or silhouettes). Superscript S means adding the silhouette consistency

term and superscript T the temporal information as described by Huang et al. (2017). “Ours”

corresponds to our approach without the BOC step in the optimization process and without using

the silhouettes. We notice that introducing 3D joints triangulated with OpenPose’s confidence

values (“Ours”) significantly improves the MPJPE as compared to using 2D joints computed

with Deepcut (Pishchulin et al., 2016) (MuVS). We empirically observed that most of the time,

Deepcut’s confidence values are all around 99% which is not convenient to identify and reduce

the weight of incorrectly detected joints. Moreover, OpenPose is generally more accurate than

Deepcut. Adding the shift vectors when computing the MPJPE (superscript SV) for our approach

leads to a slight improvement. “OursBOC” illustrates the effectiveness of our BOC in further

decreasing the error. Unlike MuVS, incorporating the silhouette consistency term into our final

energy function does not reduce further the MPJPE. Maybe because the joint errors left after

the triangulation cannot be further decreased with the help of the silhouettes, compared to the

joint errors left in MuVS (before the optimization). However, our approach outperforms MuVS

without taking advantage of temporal nor silhouette information.

3.2 Generalization on Human3.6M

Human3.6M is a multi-view images data set composed of around 3.6 million images. Human3.6M

poses are more challenging than HumanEva-I because of asymmetric and other complex

poses. As in other studies (Huang et al., 2017; Pavlakos et al., 2017b; Trumble, Gilbert,

Hilton & Collomosse, 2018), we use subjects 9 and 11 to evaluate our approach. We use all four

views and the ground-truth camera parameters.

Table 3.2 compares our approach with other state-of-the-art methods (He et al., 2020; Huang

et al., 2017; Iskakov et al., 2019; Kanazawa et al., 2018; Kolotouros et al., 2019a; Pavlakos

et al., 2017b; Trumble et al., 2018). In the table, “Shape” indicates if the method estimates the

shape besides the pose, “PA” indicates if Procrustes analysis is applied before computing the
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Table 3.2 MPJPE (mm) comparison on Human3.6M

Method Shape PA MV MPJPE

Kanazawa et al. (2018) Yes Yes No 66.65

Trumble et al. (2018) No No Yes 62.50

Kolotouros et al. (2019a) Yes Yes No 62.00

Pavlakos et al. (2017b) No No Yes 56.89

MuVSS, T Yes Yes Yes 47.09

Ours Yes Yes Yes 54.86

OursSV Yes Yes Yes 39.56

OursBOC Yes Yes Yes 46.37

OursBOC, SV, S Yes Yes Yes 33.07

OursBOC, SV Yes Yes Yes 30.13

Iskakov et al. (2019) No Yes Yes 20.80

He et al. (2020) No Yes Yes 19.00

MPJPE, and “MV” states if the method uses multiple views. See Section 3.1 for the meaning

of the subscripts. All the methods in the table are multi-view methods except Kanazawa et al.

(2018) and Kolotouros et al. (2019a), which are single-view. We notice that almost all the

multi-view methods perform better than the single-view ones, highlighting the fact that multiple

views significantly improve the accuracy. Note that among the multi-view methods, only MuVS

and our approach return a complete 3D human body mesh. The other methods optimize only for

joint locations, which is a more constrained problem than simultaneously optimizing for shape

and joint location. As such, Iskakov et al. (2019) and He et al. (2020) outperform our approach,

as they do not optimize for a body mesh. Unlike these methods, we compute the parameters for

a full data-driven body shape, which incurs a trade-off between the accuracy of the pose and

the body shape. Even so, our approach outperforms most of the methods that compute only

joint locations. Moreover, on Human3.6M our approach significantly outperforms the temporal

version of MuVS. Finally, the shift vectors significantly reduce the MPJPE on Human3.6M

(Table 3.2) contrary to HumanEva-I (Table 3.1).
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3.3 Qualitative Evaluation

We evaluated the visual quality of the reconstructed 3D body mesh with our approach on

Human3.6M. Figures 3.2 and 3.3 show some examples of the application of our approach to

non-trivial poses and two body shapes (respectively subject 9 and 11). The green contour

corresponds to the reconstructed body mesh silhouette and the mesh itself is in pink. We can see

that our approach is effective and accurately recovers both the shape and the pose even in some

challenging situations from Human3.6M.

3.4 Discussion

Using the same tools (Python2.7 and OpenDR) on the same machine, the execution time of

MuVS when using temporal smoothness (MuVSS, T) is around 13 minutes for each frame. For

our approach without the silhouette consistency term (OursBOC, SV), the execution time is around

4 minutes per frame. Our approach is faster and more accurate than MuVS, and the use of 3D

joints plays a role. The 3D joints simplify the objective functions since they allow to reduce the

number of terms. The complexity of having multiple views for the joints estimation is moved to

the triangulation in our case. We think this is good because the triangulation is solved with a

learned differentiable singular value decomposition, as opposed to having more terms to deal

with in the optimization process. The more terms there are in the objective functions, the more

the solver struggles and must do a trade-off between all the terms. However, it is not the only

reason why we are faster, we also have a different optimization process with a better initialization

of the pose. We try to pull apart pose and shape in order to better estimate each one (divide and

conquer). The motivation behind is that when interleaving the estimation of shape and pose, the

objective function is more complex to solve because, given a 3D pose (3D joint locations) and

shape, each modification of the shape parameter needs a re-computation of the pose parameter

to keep the 3D joint locations unchanged.

We use the shift vectors because the semantic position of joints in the SMPL model and in the

validation data sets do not exactly match. Our final joint estimates are the SMPL joints but
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Figure 3.2 Qualitative results on Human3.6M subject 9
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Figure 3.3 Qualitative results on Human3.6M subject 11



46

we compute the MPJPE relative to Human3.6M and HumanEva joints. Therefore, to account

for this discrepancy, we have introduced the shift vectors. In Table 3.2, the methods (He et al.,

2020; Iskakov et al., 2019; Pavlakos et al., 2017b; Trumble et al., 2018) that only compute joint

locations do not use SMPL. They train neural networks to regress joint locations from images.

These neural networks are trained on the Human3.6M training set, thus learning to regress

Human3.6M joints. Consequently, applying shift vectors to them does not make sense. For the

other methods (Huang et al., 2017; Kanazawa et al., 2018; Kolotouros et al., 2019a) which,

like us, compute shape and pose using SMPL, it would be interesting to assess the effect of the

shift vectors. We did not conduct this comparison since official full implementations of these

methods are not publicly available. This is why, for fairness comparison, we also reported the

MPJPE for our approach without using the shift vectors. Even without using the shift vectors,

our approach outperforms all methods (Huang et al., 2017; Kanazawa et al., 2018; Kolotouros

et al., 2019a) computing shape besides pose.

One drawback of the proposed approach is its dependency on OpenPose because we cannot

rely on other joint detectors unless they comply with SMPL’s joint positions. There is not a

consensus for the joint definitions across the data sets and the pose estimators. Even if OpenPose

and SMPL joint positions look similar, there is also a discrepancy between them. We do not

measure this discrepancy. Although it is small, at the precision we achieve, it could still be

significant. This could also partially explain why Iskakov et al. (2019) and He et al. (2020)

perform better than our approach.



CONCLUSION AND RECOMMENDATIONS

In this dissertation, we have presented an approach to accurately estimate 3D human shape

and pose in the multi-view setting. The literature review on human shape and pose estimation

from images pointed out the usefulness of 3D human body models for this task. All of the

reviewed methods use a parametric body model, most of the time the SMPL model (Loper

et al., 2015), and try to infer the model parameters that best fit the 3D shape and pose of

the subject on the images. Two categories raised from the previous efforts in that direction:

CNN-based methods and optimization-based methods. In both cases, intermediate clues such as

2D pose and 2D silhouette are used to estimate the model parameters (3D pose and 3D shape).

CNN-based methods build and train deep neural networks to infer these parameters from the

images using intermediate representations such as 2D pose, 2D silhouette, body segmentation,

and so fourth. Although faster at inference time, the literature review allowed to conclude that

these methods are usually less accurate and robust than optimization-based methods. Mainly

because end-to-end training data is not widely available to train the neural networks. In contrast,

optimization-based methods rely on the crafting of objective functions that are then optimized at

inference time to compute the model parameters. These objective functions include 2D pose and

2D silhouette terms to drive the optimization. In this way, no training and no training data are

required. However, the major disadvantages of optimization-based methods are their slowness,

their sensibility regarding the initialisation, and the fact that they heavily rely on the quality of the

pose and silhouette estimations. MuVS (Huang et al., 2017) is one of these optimization-based

methods and is the closest work to ours. While one of the most accurate method for human

shape and pose estimation, MuVS is not exempt from these optimization-based method flaws.

In this work, we have improved MuVS in several ways. First, we use 3D joints instead of 2D

positions to infer the SMPL pose and shape parameters. We achieve this by triangulating 3D

joint locations from 2D locations with a weighted algebraic triangulation. Second, we designed a

new optimization process from the 3D joints to regress the SMPL parameters. This optimization
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process incorporates a new bone orientation constraint (BOC) step which consists in solving a

novel objective function to recover the SMPL pose parameter, independently from the shape.

This allows us to decouple the pose parameter estimation from the final mutual shape and pose

refinement. But also to accurately approximate the exact pose parameter and initialize the

final optimization stage with it. All this leads to a significantly better (3D) joint estimation

and therefore to a better final mesh. Finally, we demonstrated that the semantic position of

joints in the SMPL model and in the validation data sets do not exactly match. To account

for this discrepancy we introduced, for each joint, a shift vector computed in the joint’s local

space. Evaluation on widely used benchmarks demonstrated the effectiveness of our approach

in comparison to the state-of-the-art methods.

Future work could investigate ways of reducing the execution time. The 2D pose and 2D

silhouette estimations are very fast nowadays, OpenPose (Cao et al., 2021) supports real-

time pose estimation for example. The performance bottleneck in our approach is rather the

optimization process. We solve the optimization problems using the differentiable renderer

OpenDR (Loper & Black, 2014) which allows to derive the silhouette of the SMPL mesh, as

well as its joint locations, according to the SMPL parameters. OpenDR is only available in

Python and is quite slow. Improvements regarding the execution time could be achieved using

another faster differentiable renderer such as the one recently introduced in TensorFlow 2.0, or

by implementing the solution in C++. Other optimization methods than the Powell’s Dogleg can

also be investigated to speedup the solving.

Other than the execution time, an interesting future work is to look for other clues and intermediate

representations than 2D pose and 2D silhouette to drive the inference of the 3D pose and 3D

shape. Maybe there are other clues more relevant, or other intermediate representations which

could supplement 2D pose and 2D silhouette. Find one allowing to infer the shape parameters

alone (independently from the pose), as we succeed to do with the pose parameters, will
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simplify the problem and its resolution following the divide and conquer principle. Indeed,

when interleaving the estimation of shape and pose, the objective function is more complex

to solve because, given a 3D pose (3D joint locations) and shape, each modification of the

shape parameter needs a re-computation of the pose parameter to keep the 3D joint locations

unchanged. The SMPL model is built such that given 3D joint locations to reach with the

model’s mesh, the pose parameter value to achieve so depends on the shape parameter value.

Moreover, there is a need for the development of a database allowing to assess the accuracy of

the shape. As said before, end-to-end training data is not widely available. The only data set

with such data, UP-3D (Lassner et al., 2017), is a single-view data set where the ground truth has

been obtained running the optimization-based method SMPLify (Bogo et al., 2016). This is the

reason why the majority of the reviewed papers do not assess the shape accuracy but only the 3D

pose accuracy. The only few papers assessing the shape do it using the UP-3D data set or report

an error about the silhouette. However, the silhouette is not the ideal data for measuring the

accuracy of the 3D shape. It can be relevant when there is a large number of views, otherwise

the silhouette error is not necessarily representative of the 3D shape error. The logical next step

with our approach would be to evaluate the shape accuracy and compare it with the one of the

other methods. It would be interesting to better evaluate the trade-off between joint accuracy

and shape accuracy. Indeed, we have seen that we loose accuracy for the joints when adding the

silhouette consistency term in the optimization, but we do not know quantitatively how much

the shape improves or not.

Finally, we believe that our approach is extensible and that its accuracy could be improved by

testing with future and more sophisticated body models. To better evaluate this accuracy, it is

also worth investigating and propose a more general solution to discrepancies between joint

definitions across the different body models, evaluation data sets, and pose estimators. We hope

our shift vectors will inspire others in future work.
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