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Navigation par robot sur les chantiers de construction à l’aide de la modélisation des
informations du bâtiment et du système d’information géographique

Sina KARIMI

RÉSUMÉ

La productivité est un des problèmes majeurs auquel l’industrie de la construction doit s’attaquer.

L’intérêt de gagner en efficacité dans les projets de construction croit surtout grâce à l’avancement

d’autres disciplines technologiques telles que la robotique, les capteurs, etc. Parmi les différentes

propositions pour faire face aux problèmes de productivité, l’automatisation dans la construction

a montré un grand potentiel. Le suivi de l’avancement des projets de construction est l’un

des défis qui nécessite un certain niveau d’automatisation. Les méthodes conventionnelles

de suivi des progrès reposent sur des données textuelles et une interprétation subjective des

employés impliqués. Avec l’évolution des robots mobiles ces dernières années, l’intérêt pour

leur déploiement sur chantier augmente grâce à leur capacité à naviguer et à acquérir des données

de manière autonome. Les robots peuvent collecter de nouveaux types de données sur site qui

peuvent être utilisées pour le suivi des progrès. L’une des étapes du déploiement des robots

mobiles sur les chantiers est la navigation autonome. La navigation robotique intérieure et

extérieure peut être améliorée avec les données relatives au bâtiment, tel que la modélisation

des informations du bâtiment (BIM) et le système d’information géographique (GIS). Le BIM

peut fournir les caractéristiques des éléments de construction et le GIS les informations sur le

site environnant d’un projet de construction. Le BIM-GIS permettra d’utiliser des informations

sémantiques qui pourraient être utilisées pour un meilleur évitement d’obstacles, une meilleure

planification des trajectoires et une navigation sémantique. La navigation sémantique des robots

mobiles est possible pour les non-experts car elle permet le partage de connaissances spécifiques

au domaine. Dans cette thèse, nous développons les éléments suivants:

• une revue systématique de la littérature (SLR) utilisant de nouvelles méthodes d’analyse

bibliométrique combinées à une analyse qualitative pour identifier l’état de l’art et les lacunes

dans l’utilisation du BIM et du SIG pour la navigation robotisée.

• une approche basée sur l’ontologie pour relier les connaissances de la construction et de

la navigation robotique à l’aide d’ontologies établies. L’ontologie est ensuite utilisée pour

récupérer les informations pertinentes à traduire dans le système robotique.

• un “Path Planning” basé sur le BIM utilisant la sémantique de l’IFC, qui est intégrée au

système de navigation du robot en utilisant la géométrie et la sémantique des éléments de

construction.

Les connaissances liées au bâtiment utilisées dans cette recherche sont rassemblées à partir

de différentes sources, incluant une revue documentaire détaillée et approfondie, une étude de

cas et des normes établies du domaine robotique. Avec l’aide d’un partenaire industriel, nous

avons réalisé des tests expérimentaux sur le terrain pour valider notre approche. Ces recherches

contribuent du déploiement de robots sur les chantiers de construction pour la collecte de

données utilisables pour de nombreuses applications telles que la surveillance de l’avancement,
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le contrôle qualité ou la sécurité. Les solutions développées peuvent être utilisées pour un

déploiement de robot mobile plus sûr, plus facile et plus intuitif sur les chantiers de construction.

Mots-clés: BIM, GIS, IFC, robot mobile, ontology, path planning, collecte de données,

navigation



Robot Navigation on Construction Sites using Building Information Modeling and
Geographic Information System

Sina KARIMI

ABSTRACT

Productivity is one of the issues that construction industry needs to address. The interest in

gaining higher rate of efficiency in construction projects is growing especially with advancement

in other technological disciplines such as robotics, sensors, etc. Among different propositions to

cope with productivity issue, construction automation has shown great potential in this regard.

Progress monitoring of construction projects is one of the challenges that requires some level of

automation. Conventional methods of progress monitoring rely on textual data and subjective

interpretation of the employees involved in this regard. With advancement in mobile robots’

capabilities in recent years, the interest in deploying robots on construction sites is increasing

since they are able to navigate autonomously and acquire data. The robots can gather new

kinds of on-site data that can be used for progress monitoring. One of the steps in mobile

robot deployment on construction sites, is the autonomous navigation. Indoor and outdoor

robot navigation can be improved with the building-related data namely Building Information

Modeling (BIM) and Geographic Information System (GIS). The former can provide the building

elements features and the latter would provide the surrounding site information of a construction

project. BIM-GIS would provide semantic information that can be used for enhanced obstacle

avoidance, improved path planning, and semantic navigation. The semantic navigation of mobile

robots enables non-experts since they share their domain-specific knowledge. In this dissertation,

we develop the following:

• A Systematic Literature Review (SLR) using novel methods of bibliometric analysis combined

with qualitative analysis to identify the state-of-the-art and the gaps in using BIM and GIS

for robot navigation.

• An Ontology-based approach to bridge the construction and robot navigation knowledge

using established ontologies. The ontology is then used to retrieve the relevant information

to be translated to the robotic system.

• A BIM-based path planner using IFC semantics integrated with robot navigation system

using building elements geometries and semantics.

The building-related knowledge used in this research is gathered from different sources including

detailed and thorough literature review, a case study and established standards of the robotic

domain. We used experimental field test to validate our approach with an industrial partner.

This research contributes to the field of robot deployment on construction sites to collect data

that can be used for many applications such as progress monitoring, quality control and safety

inspection. The developed solutions can be used for safer, easier and more intuitive mobile robot

deployment on construction sites.

Keywords: BIM, GIS, IFC, mobile robot, ontology, path planning, data collection, navigation
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INTRODUCTION

In many countries, the construction industry is considered an important portion of the economy

since it involves a high number of workers and budget (Bogue, 2018). For this reason, increase in

productivity of construction sector has always been an issue. According to Chen, de Soto & Adey

(2018), automation of monotonous and repetitive tasks would significantly enhance construction

efficiency. The authors argue that there are many ways for automating construction processes

such as automation in design phase or use of robots on construction sites. Numerous studies

indicated that deploying robots on construction sites would provide great opportunities for

construction stakeholders in terms of productivity. For example, the article of (de Soto, Agustí-

Juan, Hunhevicz, Joss, Graser, Habert & Adey, 2018) compares the performance of a concrete

wall built by a robotic system to one built from conventional methods, and investigates the

impact of digital fabrication (dfab) using a robotic platform. In this direction, Delgado, Oyedele,

Ajayi, Akanbi, Akinade, Bilal & Owolabi (2019) have shown that automated robotic systems

have the potential to "revolutionise" the construction industry by improving productivity in

terms of cost and time. Bock & Linner (2015) argue that many construction methods has faced

limitation in terms of implementation, therefore, it is now a necessity to employ robots in order

to adopt new and innovative construction methods. In addition to the great advantages for the

productivity of construction projects, automated robots can have positive impacts on the safety

of construction labors (Castro-Lacouture, 2009). Despite the numerous benefits that automated

robotic systems can bring to the construction projects, this industry is far behind compared to

manufacturing in terms of adopting robots. Delgado et al. (2019) studied the challenges of robot

adoption for construction project and they identified various challenges for robot deployment on

construction sites. Inspired by the results of other studies, in this research, we focus on the use

of an autonomous Unmanned Ground Vehicle (UGV) for automating data collection task for the

purpose of progress monitoring of construction projects.
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Progress monitoring of construction projects is a challenging task due to dynamic, complex

and decentralized nature of construction processes (Tuttas, Braun, Borrmann & Stilla, 2017).

To enhance the efficiency in this regard, the automation of progress monitoring is required

as the projects evolve. To achieve this, the first step is to collect accurate and reliable data

repetitively during the construction phase. Conventional methods of data collection for progress

monitoring rely on periodic observation, manual data collection (which is mostly textual data),

and individual interpretation of the construction state Álvares & Costa (2019)). These processes

are error-prone, time-consuming and inefficient since the data collection is subjective in terms

of interpretation (Teizer, 2015). A fundamental prerequisite in automated data collection using

UGVs is the ability of the mobile robot to navigate the construction site autonomously and to

capture the relevant and accurate data. In this respect, semantic navigation of mobile robots on

construction sites has attracted the interest of construction stakeholders in recent years since it

addresses the technical aspects of robot deployment for non-experts (Delgado et al., 2019).

Building Information Modeling (BIM) is the digital representation of the building semantics and

geometries in a data management environment (Eastman, Eastman, Teicholz, Sacks & Liston,

2011). BIM has a great number of applications for the Architecture, Engineering, Construction

and Operation (AECO) industry, such as design-to-maintenance data management (Doumbouya,

Guan, Gao, Pan et al., 2017), 4D simulation (Hatori, Satou, Onodera & Yashiro, 2020) and

indoor path planning (Palacz, Ślusarczyk, Strug & Grabska, 2019). In parallel with BIM,

Geographic Information System (GIS) has enabled the AECO experts to analyze the geo-spatial

data of the surrounding environment at urban scale (Karan & Irizarry, 2015). Many applications

of BIM-GIS integration are studied and are proposed to the construction stakeholders such

as optimal location for tower cranes (Irizarry & Karan, 2012), energy consumption analysis

(Afkhamiaghda, Mahdaviparsa, Afsari & McCuen, 2019), optimization of emergency response

route (Tashakkori, Rajabifard & Kalantari, 2015), indoor-outdoor route planning (Teo & Cho,

2016). Numerous studies have investigated the indoor path planning problem for mobile robots



3

using BIM semantics such as (Lin, Lin & Tserng, 2017; Hamieh, Deneux & Tahon, 2017; Palacz

et al., 2019). However, there are limitations in this field which are as follows:

• Studies investigating indoor robot path planning mainly focus on the geometry of building

elements not on semantics.

• Some research papers address robot navigation using BIM; some using GIS. However,

BIM-GIS integration application in robot navigation is yet to be studied.

• Semantic robot navigation during construction phase leveraging IFC data schema (integrated

with ROS) is not studied.

Figure 0.1 Overall Research Project and the portion covered in this thesis

As illustrated in Figure 0.1, The current thesis is part of a larger research project which aims at

automated progress monitoring of construction projects. The red dashed rectangular shows the

part covered by this thesis and its integration with the robot navigation system.





CHAPTER 1

RESEARCH METHODOLOGY

1.1 Research Process

This research integrates knowledge from the construction and the robotics domains and hence,

an holistic methodology is needed to be able to successfully complete it. Thus, we follow

design-science research methodology to develop the artifacts that are needed for the purpose of

the current study. As illustrated in Figure 1.1, the main steps of design-science methodology

adopted is as follows: "Problem Identification", "Knowledge Acquisition", "Design Cycle" and

"Evaluation".

Figure 1.1 Overall Design-science Research Methodology

Adapted from Hevner & Chatterjee (2010, p. 16)
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1.1.1 Problem Identification

Data used in any analysis need to be reliable and comprehensive. Progress monitoring in

construction projects is not an exception. Therefore, there is a growing need in the AEC

industry for accurate and automated data collection for progress monitoring, and robots (aerial

or terrestrial) have the potential to help fulfilling this need. Unmanned Aerial Vehicles (UAV)

are widely being used for outdoor environments, yet the major challenge remains for indoors.

Hence, current research focuses on using Unmanned Ground Vehicles (UGV) to address the

limitations in this regard.

To overcome the challenges in robot navigation, this research uses different techniques and

algorithms. The state-of-the-art navigation strategy can be improved with building-related data.

We propose the use of BIM and GIS for more efficient navigation, improved obstacle avoidance,

and ultimately, more reliable data collection. According to Chapman, Butry & Huang (2010),

the use of robotics in construction would have significant results including decrease in man-hour

and cost as well as increase in productivity. However, little attention is paid to the use of robotic

in data collection and progress monitoring while the few studies conducted in this regard lack the

full integration with construction technologies. Hence, the AEC industry needs more research

on deploying robots integrated with the use of BIM and GIS to reduce the errors and enhance

efficiency. Therefore, the goal of this research is to collect data on construction sites using

mobile robotic platforms in which the potential of integrated BIM-GIS semantics is used to

enhance robot’s navigation.

The motivation for this research is twofold: first, it is based on observation of the problems

in the construction industry, and secondly, it builds on the existing body of knowledge. The

construction industry is looking for new methods to collect accurate and reliable data that can

lead to enhanced efficiency for progress monitoring. The conventional progress monitoring

measures are error-prone and inaccurate. Therefore, there is a growing need in the AECO

industry to use mobile robot platforms in order to autonomously track the projects progress.
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1.1.2 Knowledge Acquisition

We reviewed a vast number of scientific works in the literature to profoundly enhance our

understanding of the different approaches adopted for our problem. We identified the current

practices to leverage BIM-GIS in robot navigation as well as the techniques used to address this

problem. Our research uses, combines, extends previous studies in the robot navigation field

and finally complements leveraging BIM-GIS by adding high-level building-related information

to low-level navigation system in a full stack navigation.

Figure 1.2 Workflow from Literature Review to Research Questions

Figure 1.2 illustrates the workflow followed from the Systematic Literature Review (SLR)

to the research questions. In this direction, the existing body of knowledge is investigated
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using bibliometric and qualitative analysis methods in order to gain in-depth knowledge of the

state-of-the-art in this regard. Since there was no study incorporating BIM-GIS semantic in

robot navigation, we divided the literature review to three parts namely: BIM-Robot Navigation,

GIS-Robot Navigation and BIM-GIS integration to study the opportunities, challenges and

gaps in this field. The purpose is to identify what building-related data can contribute to

the autonomous robot navigation that is provided by BIM and GIS. Therefore, the research

opportunity is identified and consequently the research questions are formulated. More detail on

the SLR is described in chapter 2.

1.1.3 Design Cycle

Design Cycle stage of the methodology has the biggest portion of the research process. As

Hevner & Chatterjee (2010) argue, design cycle is the core concept of the design science

methodology which iterates the development of the artifact to be evaluated in the next step. The

requirements for developing the artifact are identified in the knowledge acquisition step (by

conducting extensive literature review). However, the design cycle stage still collects data while

the artifact is being developed. The design cycle is meant to answer the research objective and

research questions which are formulated in section 1.1.3.1 and 1.1.3.2 respectively.

1.1.3.1 Research Objective

The current research project intends to develop an artifact that leverages BIM-GIS semantics

in order to contribute to quicker, smarter and more precise autonomous robot navigation on

construction sites for the purpose of data collection. The research objective is to increase

efficiency of data collection in construction projects.

1.1.3.2 Research Questions

We formulated the research questions based on the problem identified from the industry and

body of knowledge which are as follows:



9

1. What is the relevant information from BIM and GIS to be used in integration for robot

navigation?

2. How the construction and robotic knowledge can come together to semantically transfer the

building information to the robotic system?

3. How BIM-GIS data can integrate with the robot navigation system into a practical imple-

mentation enabling semantic navigation?

To answer the first question, we conducted a systematic literature review to identify the state-of-

the-art for integration of BIM and GIS with robot navigation. In this direction, we extensively

studied the scholarly papers to identify what building-related information can be leveraged

for robot navigation. Chapter 2 is the published paper providing detailed information in this

regard. The second paper (submitted) is an ontology developed to answer the second research

question. In this paper, a Building Information Robotic System (BIRS) is developed to integrate

the building data to the robot operating system (ROS). The ontology leverages the outputs of the

first research question to facilitate data translation from BIM-GIS to ROS. Chapter 3 describes

the procedure on the ontology development and its outputs. Finally, chapter 4 answers to the

third research question by using the the semantic information (identified by the second paper)

for indoor semantic path planning from IFC data.

1.1.4 Evaluation

The developed artifacts (BIRS and the semantic optimal path planner) produce results to

address the research objective and answer the research questions. In the adopted design science

methodology, the results need to be evaluated at the final step. In this direction, we evaluate the

developed artifact using field experiment of a case study. More information in this regard is

provided in chapter 3 where the BIRS ontology is evaluated; and in chapter 4 where the paper

regarding the semantic optimal path planner is evaluated through a case study.
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1.2 Thesis Outline

The current dissertation is a paper-based thesis and it is structured as follows: Chapter 2 is the

paper published in Archives of Computational Methods in Engineering, in January 2021, entitled

Integration of BIM and GIS for construction automation, a Systematic Literature Review (SLR)

combining bibliometric and qualitative analysis. It explains the state-of-the-art in BIM-GIS

integration and how it can be used for construction automation and more specifically, in mobile

robot navigation. The authorship credits are as follows:

• Sina Karimi: Conceptualization; Data analysis, Investigation, Methodology, Software,

Writing - original draft.

• Ivanka Iordanova: Guidance, Writing - review and editing.

Chapter 3 is the paper submitted to Journal of Information Technology in Construction, in

February 2021, entitled An Ontology-based Approach to Data Exchanges for Robot Navigation

on Construction Sites. It provides the details on how the ontology is formalized and how

building-related data can be semantically translated to the robot. The authorship credits are as

follows:

• Sina Karimi: Conceptualization; ontology development, Methodology, Software program-

ming, Writing - original draft.

• Ivanka Iordanova: Guidance on Construction, Writing - review and editing.

• David St-Onge: Guidance on Robotics, Software programming, Writing - review and

editing.

Chapter 4 is the paper submitted to IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), in February 2021, entitled Semantic Optimal Robot Path Planning Using

Building Information Graphs on Construction Sites. It describes a novel path planning method

using BIM/IFC semantics in robot navigation to increase accuracy and enabling semantic

navigation of an autonomous robot. The authorship credits are as follows:
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• Sina Karimi: Conceptualization; Optimal Path Planning Development, Software program-

ming, conduct experiments, Writing - original draft (except for Experiment and Results

sections).

• Rafael Gomes Braga: Hardware and software integration; Simulation; Graphical interface;

conduct experiments, Writing (Experiment and Results sections)

• Ivanka Iordanova: Guidance on Construction, Writing - review and editing.

• David St-Onge: Guidance on Robotics, Software programming, Writing - review and

editing.

Finally, conclusion presents a brief overview of the findings for research questions of this study,

highlights the limitations of the research, and suggests directions for future studies.





CHAPTER 2

INTEGRATION OF BIM AND GIS FOR CONSTRUCTION AUTOMATION, A
SYSTEMATIC LITERATURE REVIEW (SLR) COMBINING BIBLIOMETRIC AND

QUALITATIVE ANALYSIS

Sina Karimi1 , Ivanka Iordanova1

1 Department of Construction Engineering, École de Technologie Supérieure,

1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3

Article published in Archives of Computational Methods in Engineering, January 2021.

“Reproduced with permission from Springer Nature”

2.1 Abstract

For several decades now, the construction industry is suffering from low productivity, especially

in comparison to manufacturing industries which have succeeded to benefit from digitalization

of their processes. Furthermore, scarceness of qualified workforce is expected in the near

future. Construction Automation is introduced as a solution to these challenges. The capabilities

of construction robots are improving at an accelerated pace. They are starting to be used in

non-laboratory contexts for automating processes ranging from infrastructure inspection to

digital fabrication. One fundamental requirement of employing robots in construction is their

autonomous positioning. Building Information Modelling (BIM) and Geographic Information

System (GIS) are now a necessity for the construction projects. Integration between BIM

and GIS provides holistic digital representation of the built environment that robots could

potentially utilize for positioning purposes. Preceding this research, a number of reviews have

been conducted on BIM-GIS integration, but none studied it from automation perspective. This

research addresses this deficiency through a systematic literature review of the state-of-the-art on

BIM-GIS integration with the purpose of robot positioning and navigation on construction sites.

Using software tools and “science-mapping” methods, 236 papers were explored. Trends,

challenges, potentials, and deficiencies identified and mapped. Citation patterns of journal
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articles along with the analysis of studies; visualized and analyzed. Bibliometric analysis

is followed by a thorough qualitative analysis of the articles identified by the systematic

methodology indicating limitations of current studies such as vertical navigation, inaccuracy,

dynamics of construction sites, indoor-outdoor navigation. Requirements for robot positioning

using BIM-GIS integration are defined.

Keywords: Construction Automation, Construction robots, Productivity, Building Information

Modelling, BIM, Geographical Information Systems, GIS, Bibliometric, Science-mapping,

Review.

2.2 Introduction

Productivity has always been an issue in construction industry (Chen et al., 2018). According to

Scape Group, 58% of construction suppliers and contractors identify scarceness of qualified

workforce as the major challenge of improving the productivity of the construction industry

in the near future (The Scape Group, 2016). Studies indicate that the construction industry is

falling behind the overall global improvement in productivity (Bock & Linner, 2015). A great

number of reasons have been identified, such as persistence of employing traditional methods,

lack of implementing industrial approaches of construction processes, taking little benefit from

the use of digital tools and communication technologies (de Soto et al., 2018). Numerous

studies, consequently, are carried out to tackle this issue. Barbosa, Woetzel & Mischke (2017)

propose adaptation of technology, through leveraging cross-functional teams, and implementing

brand new technology simultaneously with the training for it. Another study identifies the

privileges of applying Scrum strategy from design to the construction phase (Streule, Miserini,

Bartlomé, Klippel & De Soto, 2016). Agarwal, Chandrasekaran & Sridhar (2016) have

developed a framework to better exploit and leverage current technologies namely, ‘rapid digital

mapping’, ‘Building Information Modelling’ (BIM), ‘collaboration within a digital workplace’,

‘Internet of Things’ (IoT), and ‘future-proof design and construction’. ‘Future-proof design’ is

mainly referred to as future anticipation design and development methods not to detriment the

future of the existing buildings (Rich, 2014). Some researchers propose that the construction
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industry should undergo a deep transformation in order to be able to adopt advanced technology.

According to Bock & Linner (2015), the required change in construction industry comes from

the current emerging technology referred to as “Industry 4.0”.

In that direction, Bowmaster & Rankin (2019) have recently modified the multidimensional

framework proposed by Froese & Rankin (2014), with the purpose to examine the level of

maturity of Canadian construction industry in respect to industry 4.0 technologies. The authors

conclude that very little research has been carried out with regard to ‘construction-based’

automation and robotics in Canada causing a gap of ‘prototype development’ in ‘cyber-physical

systems’ of navigating and positioning (Bowmaster & Rankin, 2019).

Performing research on one of the pillars of Industry 4.0, de Soto et al. (2018) investigate the

productivity of digital fabrication in construction industry with a robot fabricating a complex

concrete wall. The results show higher productivity when robotically fabricating a wall in

comparison to a conventional method, and provide evidence that employing robots would

enhance construction productivity.

Actually, a robot can be associated with every on-site inspection or digital fabrication practice,

and a key part of the process is determining the robot’s position. Therefore, positioning of robots

becomes a fundamental step in construction inspection or digital fabrication.

A virtual representation of the project and its environment can provide a holistic overview of the

construction in relation to the existing infrastructures and the surrounding environment. Today,

two well developed technologies namely Building Information Modelling (BIM) and Geographic

Information System (GIS) provide the digital environment for facilitating the analysis and

management of spatial and non-spatial data (Ma & Ren, 2017). BIM, basically, represents

geometric and semantic functions of construction projects and provides a shared database

enabling construction practitioners to collaborate effectively (Wang, Pan & Luo, 2019). BIM

facilitates data management of buildings’ lifecycle including design, construction, operation,

and maintenance of built assets (Doumbouya et al., 2017). On the other hand, GIS provides

location-related analysis along with spatial representation of built environment in various fields
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of science (Longley, Goodchild, Maguire & Rhind, 2005). Provided the capability of spatial data

analysis by GIS, it is applicable to a broad range of practices including in construction industry

(Wang et al., 2019). In addition, several GIS-based simulation studies have been conducted for

various purposes, which makes this field of knowledge more practical (Li, Quan & Yang, 2016).

Built environment stakeholders and geospatial specialists have investigated the integration

of BIM and GIS in various research topics and practical applications, such as Smart City

(Yamamura, Fan & Suzuki, 2017), urbanization (Tashakkori et al., 2015), internet of things

(IoT) (Brundu, Patti, Osello, Del Giudice, Rapetti, Krylovskiy, Jahn, Verda, Guelpa, Rietto et al.,

2016), noise assessment (Deng, Cheng & Anumba, 2016a), energy consumption (Afkhamiaghda

et al., 2019), flood influence evaluation (Amirebrahimi, Rajabifard, Mendis & Ngo, 2016b),

and environmental data analysis (Morris, 2003). Despite the great benefits of BIM and GIS

integration, the process and methodology of such integration are challenging. Wang et al. (2019)

argue that the different focuses of BIM and GIS causes the integration challenge. The former

focuses on building components while the latter - on geospatial information and environment

around the building. BIM is more concerned with the internal details of building projects

forming micro-level data, whereas GIS is specialized in geospatial analysis. Nevertheless, BIM

and GIS have great potential to be used together for the robot navigation and positioning. GIS

would provide geo-referenced locations enabling robots to generate a navigation path, and BIM -

semantic and geometrical information of the building or infrastructure, thus helping robots to

detect obstacles and ultimately generating a navigable path.

This study is the first stage of a larger research project aiming at using BIM and GIS for robots’

positioning on construction sites in order to reduce the complexity of the current navigation

generating methods by using the common digital environment of the construction project. To

be able to define the research focus, initially, current studies in BIM and construction robotics

and their characteristics are investigated. Then, GIS and construction robotics are explored to

examine how GIS can contribute to construction robots’ navigation. In addition, the related

works with regard to BIM and GIS integration are studied to examine the current solutions

and to identify existing limitations. The research contributes to the scientific knowledge on
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robots’ navigation on a construction site by systemizing the-state-of-the-art in the domain, and

by identifying the requirements of robot’s navigation on construction sites, integrated with BIM

and GIS. The practical application of the projected results will make possible the automatic

construction of more complex and ’real-life’ building elements, integrating heterogeneous

building systems. Ultimately, this has the potential to affect positively the productivity, health

and safety on construction sites, as well as the quality and sustainability of a project.

2.3 Methodology

The methodology used in this study is Systematic Literature Review (SLR), which is defined as

the identification, evaluation, and interpretation of a field of research that can be reproduced

with the same protocol by other researchers (Kitchenham, 2004). The utilized SLR employs

a combination of qualitative analysis (Moher, Shamseer, Clarke, Ghersi, Liberati, Petticrew,

Shekelle & Stewart, 2015) and bibliometric network visualization referred to as “science

mapping” (Van Eck & Waltman, 2014). The former focuses on qualitatively examining the

papers collected through science mapping co-occurrence method, and the latter provides a

comprehensive overview of the status in the field. Common methods studied in science

mapping are “keyword co-occurrence,” “citation relations,” and “co-authorship relations.”

Bibliometric network visualization facilitates the analysis of a vast number of scientific networks

by visualizing patterns systematically in bibliographical databases (Cobo, López-Herrera,

Herrera-Viedma & Herrera, 2011).

Science mapping is capable of denoting the potentials of a specific field. In the context of the

current study it is about the potentials of BIM and GIS integration in relation to construction robot

navigation and positioning. Figure 2.1 illustrates the overall relationships between bibliometric

analysis and qualitative analysis. Keywords co-occurrence is the mutual step in both analyses.

Its results in bibliometric analysis is used in qualitative analysis in order to identify the most

relevant articles.
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Figure 2.1 Overall Relationship of the SLR methodology with

bibliometric and qualitative analyses

Figure 2.2 illustrates the overall methodology used to identify the most relevant papers to

be investigated in the context of the qualitative analysis of this study. In the first phase, this

methodology uses the keywords co-occurrence conducted in the bibliometric analysis.

Figure 2.2 Context determination framework to search relevant

scholarly journals
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As presented on the Figure 2.2, the initial keywords co-occurrence analysis is performed on the

Web of Science database. It allows for new keywords to be added to the paper identification

process. This yielded 236 papers. At the next step, after having identified the journals whose

focus is the closest to our target domain, the search is extended to include the following databases:

Scopus, Engineering Village, IEEE and the ISARC proceedings, thus resulting 1730 papers.

After eliminating the duplicated and the inclusions, we obtain 1021 papers. Their titles, keywords

and abstracts are then carefully read to determine their relevance to the targeted domain. Thus,

finally, 64 scholarly papers are qualitatively analyzed. The following points present in detail the

methodology and the results of the science mapping part of this research.

2.3.1 Keywords co-occurrence analysis

The purpose of this analysis is to provide a holistic overview of construction robots’ navigation

and positioning employing BIM and GIS integration. The search strategy is initially to investigate

robots’ navigation with BIM-GIS integration together. It gave an empty result (0 papers). Hence,

to attain the aforementioned goal, the bibliometric study is divided into 3 keyword clusters to

investigate their relation with each other. In this step, each category is explored to include the

most relevant papers for the qualitative analysis presented in section 2.4.2.

• BIM and Construction Robotics: (bim OR “building information model*”) AND (automat*

OR robot* OR “digital fabrication” OR dfab) AND (navigat* OR traject* OR path*)

As illustrated in Figure 2.3, the combination of BIM and construction robotics comprises

various subdomains, which indicates the applications and the potentials of BIM in construction

automation especially in construction robotics. Figure 2.3, also reveals various technologies

employed for robots. It illustrates that “navigation” is a field of study that researchers work on,

and suggests that the application of BIM in the construction industry can be related to robot

navigation. Additionally, Figure 2.3 denotes adjacent subdomains around it, namely: “point

cloud”, “path planning”, “indoor navigation”, “indoor modeling”. To explore the application(s)

of BIM in Construction Robotics (CR), scholarly papers categorized under each subdomain
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Figure 2.3 Keywords network of BIM and Construction Robotics

are identified and subsequently a qualitative analysis is conducted to investigate features and

functions in this regard.

• GIS and Construction Robotics: (gis OR “geographic information system*”) AND

(automat* OR “construct* robot*” OR “digital fabrication” OR dfab) AND (navigat* OR

traject* OR path*)

Figure 2.4 demonstrates the hidden concepts of GIS and construction robotics and how GIS

helps navigating and positioning robots. Similar to BIM and construction robotics keywords

analysis, one important application of GIS in robotics is “navigation”. The other concepts such

as “path planning,” “digital elevation models,” “algorithm,” “tracking,” “gps,” “remote sensing”

play different roles in GIS and construction robotics domain. To understand the functions of

each concept in navigating construction robots with GIS, detailed qualitative analysis is carried

out (in section 2.4.2) to identify features and methods presented in the papers.

• BIM and GIS: (bim OR “building information model*”) AND (gis OR “geographic

information system*”)
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Figure 2.4 Keywords network of GIS and Construction Robotics

Many subdomains of the BIM and GIS interaction are revealed on Figure 2.5. The purpose

of conducting this analysis is to collect data needed to integrate building information models

and geographic information system in the desired research direction. Figure 2.5 indicates

the current applications of such an integration. “facility management,” “layout,” “smart city,”

“optimization,” “integration,” and “indoor” are some of those. It is also important to mention

that IFC (Industry Foundation Classes) and CityGML (City Geography Markup Language) are

open standard data model and exchange format for BIM and GIS respectively. Both appear

in the keywords network as subdomains. As the two previous categories presented, journal

papers categorized under each subdomain is studied qualitatively to provide a comprehensive

understanding of current contributions and requirements of integrating them.

All the sets of data derived from Web of Science Core Collection, initially, are submitted to

VOSviewer to construct a co-occurrence network of keywords, subsequently, are imported to

Gephi to create customizable and detailed visualization and more importantly to run further
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Figure 2.5 Keywords network of BIM and GIS

analysis. With Gephi computing tool, similar concepts such as “building information modelling”,

“building information modelling” and BIM are merged.

Cobo et al. (2011) provide a review of a number of available tools for the purpose of bibliometric

analysis, namely: Bibexcel, CiteSpace, CoPalRed, IN-SPIRE, Leydesdorff’s Software, Network

Workbench Tool, Sci2 Tool, VantagePoint, VOSViewer. The authors conduct a survey to find the

advantages and drawbacks of each of the above-mentioned tools. In addition, Van Eck & Waltman

(2014) compare two “general network analysis tools” - Pajek (De Nooy, Mrvar & Batagelj, 2018)

and Gephi (Bastian, Heymann & Jacomy, 2009) in order to analyze the visualize networks.

The authors conclude that Gephi provides more tools on detailed customizable visualization

compared to Pajek (Van Eck & Waltman, 2014). According to the above-mentioned analysis

and for the purposes of this study, VOSViewer, CiteSpace, and Gephi are selected to perform the

bibliometric analysis.



23

• VOSviewer is devised to constitute and map bibliometric data (Van Eck & Waltman, 2010).

• Gephi enables the researcher to carry out deeper analysis on mapped graphs and to make

modifications to the networks (Cherven, 2015).

• CiteSpace analyzes the trends developing in a specific domain. It also manages to visualize

various network layouts, detects clusters and analyzes within a given time period (Chen,

2014).

The Web of Science Core Collection is selected as the preliminary database to run keywords

co-occurrence by VOSviewer due to its flexibility to search various combinations of terms, its

thorough journals (Chen et al., 2018) and its compatibility with VOSviewer computing tool.

Furthermore, Web of Science Core Collection enables authors to investigate the peer-reviewed,

high quality scholarly articles from all over the world. Other widely known databases such as

Scopus, Engineering Village, IEEE, and I.S.A.R.C. (International Symposium for Automation

and Robotics) proceedings are included later to make this research as thorough as possible (see

section 2.3.3).

A keywords network is generated by running co-occurrence type of analysis on the dataset

to constitute a graph based on the keywords. The nodes of the graph indicate the fields of

research and the subdomains of which they consist. This is useful for identifying underlying

concepts, adjacent topics and hidden links between themes; to illustrate the potentials and more

importantly to determine the context of research for qualitative analysis. The fundamental step of

bibliometric analysis is to determine the contexts of research, which are relevant to the objective

of the survey. In other words, the choice of keywords for the search in the databases, models the

entire bibliometric analysis (Cobo et al., 2011).

2.3.2 Identification

Once the keywords network is formed, the subdomains and their keywords identified, the search

proceeds a step forward and refines the context determination to the desired ones. Based on

the procedure described in section 2.3.1, Web of Science Core Collection refinement provides
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the articles, which are the relevant ones to the scope of the study. It is noteworthy to mention

that the identified papers are published by 2020. The papers collected by now are the only ones

available in Web of Science Core Collection, but they still do not provide a comprehensive

outlook to the field, so the search is extended to other databases.

2.3.3 Extension

To enable the literature to synthesize as many as possible related works, Scopus, Engineering

Village, and IEEE (Institute of Electrical and Electronics) are added to the search. The I.S.A.R.C.

(International Symposium for Automation and Robotics in Construction) proceedings are

included too, as the papers published there represent the advances, contributions, and concerns of

the researchers for all fields of construction with great concentration on Construction Automation,

Robotics, IT, etc. (The International Association for Automation and Robotics in Construction,

2019).

2.3.4 Eligibility

Eligibility comprises two main steps, which are the identifications of duplicates and inclusion.

The former identifies and subsequently removes the duplicated articles from the database and the

latter only brings the papers which are precisely to the point of current study into consideration,

which is the application of BIM and GIS integration in robots’ positioning on construction sites.

Although the number of scholarly papers remarkably increased in the extension phase, there are

for sure many articles, which are duplicated in the different databases. To tackle this problem,

all the databases’ information is downloaded and is converted to .csv format in order for Excel

to identify the duplicate ones and remove them. The I.S.A.R.C proceedings do not provide such

export format so this procedure is done manually.

The final step is to submit only those articles studying, partially or thoroughly, the focus of the

current research to qualitative analysis. To reach this objective, all the articles available so far

are filtered based on their titles, keywords, and abstracts.
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2.4 Findings

2.4.1 Bibliometric Analysis of BIM-GIS Integration

The Science mapping provided in this section is conducted on 236 papers of BIM and GIS from

Web of Science Core Collection to provide a generic comprehensive overview of the field. The

first study on Building Information Modeling and Geographic Information System occurred in

2008, carried out by Lapierre & Cote (2007), and is published by “URBAN AND REGIONAL

DATA MANAGEMENT.” As it is illustrated in Figure 2.6, from 2008 to 2019, there has been an

important growth of the research in the field. In 3 years, during 2014 to 2017, a sharp increase

has occurred which implies an exceptional interest of researchers in BIM and GIS together. It

is also interesting to note that based on the forecasting line provided, it is predicted that this

growth continues. New fields of BIM and GIS integration might emerge, or current solutions

might be considerably improved.

Figure 2.6 Distribution of papers over years

Adapted from Web of Science (2020)
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2.4.1.1 Keywords co-occurrence analysis

Following publishers’ requirements, the authors of scientific papers indicate their research

focus through keywords. In bibliometric studies, the analysis of the keywords shows the width

of the research domain, and draws the boundaries in that specific domain (Su & Lee, 2010).

Graphs constituted by related keywords illustrate the relationships among subdomains existing

in the studied field (Van Eck & Waltman, 2014). Hence, an analysis is performed based on the

keywords co-occurrence method. Every couple of nodes (keywords) is linked via an edge and

each edge carries a weight. The number of publications in which two keywords occur together

is represented by weight metrics (Van Eck & Waltman, 2014).

In this research, VOSviewer software visualizes and shapes the networks of subdomain studies

based on the data retrieved from Web of Science Core Collection. Gephi is employed in order to

conduct further data analysis of the file exported from VOSviewer. Within Gephi environment,

similar areas of studies (such as “geographic information system (gis)”, “geographic information

system”, and “gis”) are merged. The result is a graph comprising 30 nodes illustrated in Figure

2.7.

Gephi is capable of analyzing various statistics on a given network. The weighted degree of a

node represents the weighted number relations (edges) it has (Opsahl, Agneessens & Skvoretz,

2010). In other words, the higher the number of weighted degree of a relation is, the more

influential that domain is. A ‘data laboratory’ of Gephi consisting of the metric analysis of

the graph on Figure 2.7 is presented in Table 2.1. Moreover, different layouts are available for

different purposes in accordance with features of topologies (Gephi.org, 2019). The current

analysis emphasizes the rankings of the research areas. The visualization of the data, therefore,

is based on the ranking of the nodes.

Based on the information provided by bibliometric analysis, the following conclusions can be

made:

1. The integration of BIM and GIS environments in construction has attracted a great amount

of attention in recent years, but its potential applications in construction automation
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Figure 2.7 Core Research Focus - BIM and GIS

and construction robots’ positioning has not been studied. As seen from the keywords

subdomains table (apart from BIM and GIS, which are the focal fields of this literature

review), “citygml”, “management” and “interoperability” attracted higher attention. In

addition, analysis of the node weighted degree reveals that these three research areas have

much higher relative importance compared to all the others. On the other hand, less

attention has been paid to “cultural heritage”, “methodology”, and “smart city” indicating

that researchers investigated these research areas less frequently within the body of the

existing literature. More importantly, Figure 2.7 and Table 2.1 denote that construction

automation is not one of the studied sub-domains and hence, requires more attention from

researchers.

2. The research areas which are in the middle of Table 2.1 depict the potential areas in BIM &

GIS integration. “Augmented Reality”, “Facility Management”, and “layout” are examples
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Table 2.1 Ranking of the subdomains in relation to BIM-GIS

integration

Label Degree Weighted Degree
BIM 31 52.96

GIS 31 16.38

CityGML 21 15.33

Management 23 12.98

Interoperability 19 12.21

Model 29 11.93

Construction 23 11.48

IFC 15 11.11

Facility Management 19 10.32

Support 20 9.49

System 21 9.37

Framework 18 9.00

CAD 9 7.00

Information 17 6.66

Semantic Web 19 6.50

Design 17 6.40

Integration 17 6.35

Ontology 14 6.35

Performance 9 5.82

Technology 12 5.52

Building 10 5.21

Visualization 13 4.96

Indoor 16 4.77

3D GIS 8 4.49

Layout 13 4.34

Augmented Reality 14 4.26

Optimization 9 4.05

Cultural Heritage 7 4.00

Methodology 10 3.09

Smart City 8 2.76

of such potentials. However, other areas, which are not listed in Table 2.1 are either not

investigated or received much less attention, which shows the research gaps in this field.

Other finding of this scientometric analysis reveal that a great deal of research is directed

towards the “management” aspect of construction projects. Table 2.1, however, denotes that
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many authors have contributed to the domain by investigating “interoperability” of BIM

and GIS, indicating one of the obstacles for the integration of the two digital environments.

On the other hand, the “smart city” facet of BIM and GIS integration has one of the lowest

weighted degrees (see Table 2.1) revealing that applications of BIM and GIS integration

have been more studied in “building” projects rather than in “city planning” even though it

could be utilized for both small and large scale projects.

3. As shown on Figure 2.7, “ifc (Industry Foundation Classes)” and “citygml (City Geographic

Markup Language)” are two data schemas being used for BIM and GIS integration. The

former is the open-format standard data schema for BIM and the latter has been developed for

GIS interoperability. The bibliometric visualization of the literature database denotes that

every region, where several nodes are located close to each other, establishes relationship

within the area. For instance, “integration,” “interoperability,” “ifc”, “citygml” and “semantic

web” are located close to each other within the network (see Figure 2.7) indicating that

authors used semantic web technology to enable integration of BIM and GIS with IFC and

CityGML schemas.

2.4.1.2 Document co-citation analysis

The document co-citation method reveals citation patterns among research studies and provides

information regarding the intellectual structure of the studies (Chen, Ibekwe-SanJuan & Hou,

2010). Creating a network of document co-citation analysis is a common approach for providing

this kind of information via science mapping (Chen et al., 2010). CiteSpace is the selected

software to conduct this analysis by creating citation clusters which is the most common method

for network of co-citation analysis (Hosseini, Martek, Zavadskas, Aibinu, Arashpour & Chileshe,

2018). Figure 2.8 visualizes the paper clusters computed by CiteSpace, using the Log-Likelihood

Ratio (LLR) algorithm. In statistical analysis, a log-likelihood ratio is a test to identify a null

model against an alternative model (Dunning, 1993). LLR algorithm is mainly used to calculate

p-value to decide on rejection of a null model (Dunning, 1993). In this regard, after using “filter

out small clusters”, eight clusters (out of 61) are detected as the main research areas where
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cluster 0 is the largest in terms of size, indicating that this cluster contains the largest number of

publications, while cluster 8 is the smallest cluster of the important ones. The labels attached to

clusters of Figure 2.8 are proposed by CiteSpace. It should be mentioned that CiteSpace focuses

on formation of clusters rather than on the underlying contents in the given clusters (Chen et al.,

2010).

Figure 2.8 Clustering structure of BIM and GIS integration

Metrics evaluated by CiteSpace computing tool are Modularity 𝑄 = 0.7127 and Mean

𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 = 0.5206. The metric modularity (0 < 𝑄 < 1) indicates to what extent a

network is capable of being independent (Shibata, Kajikawa, Takeda & Matsushima, 2008). The

amount of modularity represents the quality of a network’s structure meaning that modularity

close to 1 indicates a network is well-structured while modularity close to 0 illustrates unclear
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Table 2.2 Core clusters of document co-citation analysis if BIM and GIS

Cluster ID Size Silhouette Mean Year Focus of Cluster
0 89 0.705 2014 Geographic Information System

1 29 0.918 2006 Construction Safety

2 29 0.838 2008 3D GIS

3 28 0.845 2013 Facility Management

4 28 0.800 2011 Key Factors for BIM Adoption

5 27 0.954 2008 Conservation

6 22 0.870 2010 Flood Damage Assessment

7 15 0.857 2014 3D Modelling

cluster boundaries within a network (Chen et al., 2010). Table 2.2 illustrates the details of

clusters retrieved from CiteSpace.

The other metric “Silhouette” represents the uncertainty of a given cluster and is ranged from -1

to 1, meaning that a silhouette close to 1 indicates a cluster well separated from other clusters,

whereas a silhouette close to -1 introduces heterogeneity of members within a given cluster

(Rousseeuw, 1987). By interpreting aforementioned information of the study (Figure 2.8; Table

2.2), the following results can be formulated:

4. By applying document co-citation analysis, the number of articles considered for the

clustering are more than the number of articles in the database indicating the fact that

there are some that appear in more than one cluster. This indicates that the studies have

high integrity and research endeavors took benefit from the previous ones meaning that

the research in BIM-GIS integration is built on the studies conducted before. Results of

studies conducted in the field of BIM and GIS reflect that researchers exchange their ideas

and focus on the field. However, investigators have not studied potentials of BIM and GIS

integration in relation to construction automation, which needs to be investigated.

5. An overview on the Mean Year indicates on what subdomain researchers focused during the

years. Document co-citation analysis of BIM-GIS integration reveals that the recent attempts

are mainly slanted towards Geographic Information System, 3D Modelling and Facility

Management. Also, construction safety appears as the one of the earliest applications of

BIM-GIS integration studied by researchers. Other research focuses are also complied in
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the list on Table 2.2. Citation patterns of BIM and GIS integration (see Figure 2.8) reveal

that authors of existing literatures have not investigate the construction automation relations

with BIM-GIS integration domain and there exists a lack of exchange of ideas between

these two domains.

6. Given the structure of the clusters demonstrated in Figure 2.8, BIM-GIS studies indicate

a relatively high structural integrity. Silhouette values indicated in Table 2.2 show that

clusters of the visualized network are connected through citations inside and outside of their

clusters. As Hicks (1999) argues, such structure of clusters occurs when authors cite studies

from other clusters, which creates a well-formed citation pattern of a given field. Therefore,

as BIM-GIS forms well-structured clusters, this draws a promising future of the field.

2.4.1.3 Direct citation of sources

Direct citation of sources indicates prominent journals in a field of study (Van Eck & Waltman,

2014). Identification of prominent journals is beneficial to readers, authors, and editors. It

enables readers to select which journals are focused on their field of study in order to find

creditable articles, and it indicates to authors where to publish their studies in order to reach

more potential readers in their field (Guidry, Guidry Hollier, Johnson, Tanner & Veltsos, 2004).

Figure 2.9 Graph of prominent journals in BIM & GIS
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Among Gephi’s statistics, HITS (Hyperlink-Induced Topic Search) algorithm is capable of rating

web pages (Gephi, 2019). The HITS metric calculates two values for a web page; authority and

hub value. By estimating “authority” Gephi provides each node (journal) a score indicating the

value of the content within the journal. It also provides a “hub” value for outgoing links of each

node (journal) indicating the value of links (Khokhar, 2015). Figure 2.9 illustrates 10 prominent

journals in the field of BIM and GIS integration ranked based on the score calculated by Gephi

using the HITS algorithm.

Table 2.3 also illustrates the top journals of the field accompanied by their rank, “authority”

value, “hub” score, and the main research areas of each one. The most important outlet of the

field is by far “Automation in Construction” with highest hub score (0.772) and highest weighted

out degree (71.0). To provide better insight of each journal’s research areas, their subdomains

are also listed in the table. This helps authors and readers to refine their choice of journals to

either publish their work or to read about their field of research. The HITS analysis in Gephi

shows the following results:

The analysis of the network in Figure 2.9 can be interpreted as follows:

7. The majority of the articles in BIM and GIS integration are published in two journals

namely, Automation in Construction and ISPRS International Journal of Geo-information.

It is worthy to note that comparison between “weighted out degree” values of these journals

shows that flow of information begins from Automation in Construction rather than ISPRS

International Journal of Geo-information with a high difference (see Table 2.3).

8. The investigation of BIM and GIS integration with regard to construction automation is

a focus of study of none of the journals. This fact corroborates the findings of current

literature in previous sections that potentials of BIM and GIS integration from construction

automation view has not been studied sufficiently. This fact confirms that more attention

needs to be paid for applications of BIM-GIS in construction automation.
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Table 2.3 Prominent journals of BIM and GIS

Rank Journal Weighted
out Degree Authority Hub Research Areas

1
Automation in Con-

struction
71 0.043792 0.772793

Construction Build-

ing Technology, En-

gineering

2

ISPRS Interna-

tional Journal of

Geo-information

22 0.486019 0.379324
Physical Geography,

Remote Sensing

3
Building and Envi-

ronment
9 0.222176 0.358016

Construction Build-

ing Technology, En-

gineering

4
Computers in Indus-

try
8 0.325105 0.267654

Computer Science,

Engineering

5

5th International

Conference on 3D

Geo-information

8 0 0.152319

Image Science Pho-

tography Technol-

ogy, Physical Geog-

raphy, Remote Sens-

ing

6

eWork and eBusiness

in Architecture, En-

gineering and Con-

struction

6 0.222176 0.139729

Computer Science,

Construction Build-

ing Technology, En-

gineering

7

Journal of Comput-

ing in Civil Engineer-

ing

1 0.434159 0.127924
Construction Build-

ing Technology

8 Buildings 0 0.222176 0
Computer Science,

Engineering

9

Journal of Informa-

tion Technology in

Construction

0 0.444958 0 Engineering

10
Journal of Spatial

Science
0 0.33123 0

Physical Geography,

Remote Sensing

11
Urban and Regional

Data Management
0 0.109054 0

Remote Sensing, En-

gineering

2.4.1.4 Co-authorship analysis

Conducting a co-authorship analysis enables researchers to explore and investigate the collab-

oration networks of pioneer researchers, institutions, and countries to acquire more profound
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knowledge of the field, develop expertise, increase productivity, and decrease isolation (Ding,

2011). Additionally, it would be worthy to the scientist who are carrying out research in a specific

field to identify the prominent researchers, institutions, and countries to keep track of innovations,

novel approaches, or recently developed ideas. Luwel (2004) argues that co-authorship analysis

provides thorough investigation of scientific collaboration which ultimately leads to higher

productivity of the work, higher citation, and attraction of attention. Based on what is discussed

above, the following part of the literature analysis is divided into 3 sections namely, pioneer

researchers, pioneer institutions, pioneer countries with regard to BIM and GIS integration.

• Pioneer Researchers

As Figure 2.10 illustrates, there are two major clusters of collaborating researchers in the

reference field. Each of the clusters introduces, directly or indirectly, prominent authors in

BIM and GIS integration. Direct indication of co-authorship refers to papers the authors

published in collaboration, while indirect co-authorship refers to having mutual co-authors.

Additionally, HITS algorithm is run to rank the prominent authors through applying authority

scores (Khokhar, 2015). Quality of the connected nodes with link to other influential nodes

of the graph constitutes the authority score (Lu & Feng, 2009). Gephi ranks the nodes with

authority score to visualize the prominent researchers in terms of their influence to the field.

Thus, the following interpretation can be made of the results shown on Figure 2.10:

9. The majority of the BIM and GIS integration researchers collaborate. However, an integral

network of collaboration is far to be present. Some isolated authors should identify the

collaboration networks in order to be able to enhance their productivity. Nearly 40% of the

authors have established a strong relationship working in BIM and GIS, which provides

prospects for improving productivity of the field in future. Nevertheless, there are a few

authors who do not belong to any cluster reflecting the fact that those authors of the network

(Figure 2.10) are carrying on the research in isolation.

• Pioneer Institutions

Similar to individuals’ collaboration in the BIM and GIS domain, a network of institutional

collaboration can be created to identify the prominent universities and institutes around the world.
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Figure 2.10 Prominent researchers in BIM and GIS

As Figure 2.11 illustrates, the HITS algorithm ranks the institutions based on the “hub” score

to show the influence of the nodes’ actors (Khokhar, 2015). The size of the nodes represents

the “hub” score showing the influence of the institution on others. Interpretation of the HITS

algorithm analysis along with the network demonstrated in Figure 2.11, shows that:

10. Apart from the four isolated ones, the majority of the institutions working on BIM and GIS

collaborate. However, this collaboration does not establish a strong relationship among

them (visualized by the low number of connections). This indicates one of the problems in

the field. Solving this lack of collaboration has the potential to result in significant progress

and productivity improvement of the BIM and GIS integration field.

• Pioneer Institutions

Following a procedure similar to the one identifying prominent researchers and pioneer

institutions, Gephi reveals the influential countries in the BIM and GIS integration domain.

Directed and undirected edges map the flow of information and closeness among countries (as

shown on Figure 2.12). Co-authorship analysis of countries can contribute to redefine strategies

and to establish policies to improve productivity. Based on the statistical analysis and the graph

illustrated in Figure 2.12, the results can be interpreted as follows:
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Figure 2.11 Pioneer institutions of BIM and GIS

11. Taiwan is the only country, which does not work in collaboration with other prominent

countries, while the United States connects with all countries. In addition, the flow of

information correlates with the USA, which is the most prominent country in BIM and GIS

integration.

12. According to the average degree values calculated by Gephi, Canada can be categorized as

a country where BIM and GIS integration has not been greatly studied. About 5% (13 out

of 236) of the investigated articles are developed in Canada. The names and affiliations of

the authors with more than 2 published papers are listed in Table 2.4:

Table 2.4 Prominent researchers of Canada in BIM & GIS integration

Author Affiliation Number of
publications Publication Year

Hammad. A. Concordia University 2 2016, 2017

Salimzadeh. N. Concordia University 2 2016, 2017

Pottinger. R.
University of British

Columbia
2 2017, 2018

Staub-French. S.
University of British

Columbia
2 2017, 2019

Zadeh. PA.
University of British

Columbia
2 2017, 2019
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Figure 2.12 Pioneer countries in research on BIM and GIS integration

The data on Table 2.4 implies that BIM and GIS integration field has not been broadly studied in

Canada, so more investigations needs to be carried out in this domain.

2.4.2 Qualitative Analysis

Section 2.4.1 of the current literature review adopted bibliometric analysis to investigate the

integration between BIM and GIS. The systematic literature review identified the most relevant

articles to the research topic to study in depth the contributions to the field. In what follows, these

papers are classified into three categories for explicit distinction between different subdomains,

namely: BIM and robotics, GIS and robotics, and BIM and GIS in relation to robots’ positioning

and navigation on construction sites.

2.4.2.1 BIM and Robotics

The purpose of the current literature review is to investigate the potentials of BIM-GIS integration

in relation to construction automation especially in robot’s navigation on construction sites.
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After having a comprehensive bibliometric analysis of the BIM and GIS integration domain,

this section is to qualitatively investigate, in depth, the previous contributions of researchers

regarding the applications of BIM in robots’ navigation. The application of GIS is investigated

afterwards. This section describes the previous research attempts followed by the interpretations

of the studied papers.

Delbrügger, Lenz, Losch & Roßmann (2017) have developed a BIM-based navigation framework

for digital twins of factories. It comprises of building information model and factory equipment

classified as fixed and dynamic. In addition to BIM, the proposed framework incorporates

path-finding technology. The authors have developed a navigation core utilizing two approaches

namely, corridor map method and navigation mesh. The former refers to convex polygons

covering navigable surfaces, which are mainly triangles (Arkin, 1987) and the latter represents

edges as navigation corridors with a free space for collision-avoidance provided by a sphere

(Geraerts & Overmars, 2007). The navigation framework for digital twins of factories improves

the IFC-format imported files by initially importing the ifcXML file to IFC Engine (EDF ltd,

2019) and subsequently submitting the file into VEROSIM (Delbrügger et al., 2017). VEROSIM

supports IFC and CityGML files to run simulation for spatial analysis (Verosim Solutions, 2019).

Delbrügger et al. (2017) classify building components as navigable surfaces and objects as

either obstacle or agent. Obstacles can be either static or dynamic. They have also developed a

scene content containing all the possible components in factories and mapped each element to

navigation criteria.

Ibrahim, Roberts, Golparvar-Fard & Bretl (2017) have developed interactive model-based path

planning for Unmanned Aerial Vehicles (UAV) to capture data on construction sites. They

use a semi-automated approach with a drone to capture visual data on construction sites.

Interoperability problems have been eliminated using a web platform technology. With a mobile

application, used to plan the flight, the proposed system integrates web platform with visual

model derived from the UAV’s camera to compare the construction progress with the schedule.

A BIM model is used to plan the aerial trajectory in order to inspect the related sectors of the

construction sites.
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Darwish, Li, Tang, Li, Chen et al. (2019) have created a framework in which RGB and depth

(RGB-D) sensors are used to visualize indoor environments, taking structural constraints into

account. They propose two main purposes of the RGB-D sensors namely, robot collision

avoidance within indoor environment (Endres, Hess, Sturm, Cremers & Burgard, 2013) and

3D model reconstruction (Tsai, Chiang, Chu, Chen, El-Sheimy & Habib, 2015). Darwish et al.

(2019) focus on the latter application in their proposed framework, which considers all the

features in RGB and depth images to reconstruct an indoor environment.

Nahangi, Heins, McCabe & Schoellig (2018) present a method with which UAV localization

and navigation can be tackled in GPS-denied indoor construction environments. The proposed

method uses connected coordinates of BIM model with AprilTags. With UAV’s camera, the

data of tags are captured and are transformed so that the UAV can localize. The authors confirm

that the Global Positioning System (GPS) is accurate and reliable for outdoor environments, but

inefficient for the indoor ones. AprilTags is a visual fiducial system in which the tags can be

ordinarily printed. The coordinates of the tags correspond with those in a BIM model so that the

UAV is able to localize itself in global coordinate system (Nahangi et al., 2018). In order to

localize the UAV, an on-board camera is employed to detect the AprilTags.

Lin et al. (2017) have developed a method for automatic generation of indoor environment

employing BIM and GIS at geometry level. With integration of BIM, GIS and i-GIT algorithm,

they generate several possible routes for navigation purposes. To accomplish the automatic

indoor navigation, they have developed a collective algorithm named Intelligent Generation

of Indoor Topology (i-GIT) which supports IFC schema and automatically generates space

boundaries for vertical and horizontal navigation. A set of algorithms are employed to generate

floor-level paths and non-planar paths and to reduce the complexity and redundancy of path

nodes. The former refers to horizontal navigation while the latter responds to vertical navigation

needs. ESRI ArcScene is utilized to identify space boundaries of the IFC file and the algorithms

were run in that environment.
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Siemiatkowska, Harasymowicz-Boggio, Przybylski, Różańska-Walczuk, Wiśniowski & Kowalski

(2013) adopt a semantic approach based on a BIM model for robot delivery indoor navigation.

They have developed a hierarchical action planning to incorporate time-optimized robot

navigation including two technologies namely, object detection based on point cloud and object

detection based on image. Both horizontal and vertical navigation are taken into account and

are tested within dynamic environment. They employ BIM to extract semantic information and

indoor topology in order to be able to run the hierarchical action planning. Hamieh et al. (2017)

have developed BIM-based indoor path planning method named BiMov using four definition

phases. The first phase identifies all possible paths within a space using algorithms run on an

IFC file. The second phase reduces the number of paths by discriminating between a mobile

object, a person, or a bulky equipment. The possible paths within a space are further refined

in third phase based on the content of the path, which can be influenced by the presence of

machinery or restricted areas. Phase 4 considers number of paths affected by real-time situation

or building’s passages. Although the authors presented four-stage planning regarding robot

navigation within indoor environments, they put emphasis only on the first two phases.

Quintana, Prieto, Adán & Bosché (2018) have developed a method using BIM, 3D laser scanner,

and a color camera to detect 3 positions of a door within indoor environment. To attain this

goal, they integrate geometry and color information obtained from the environment to detect the

angle of a given door, and identify it as open, semi-open, and closed. Their system also provides

an accurate position of the door in the world-coordinate-system.

Kayhani, Heins, Zhao, Nahangi, McCabe & Schoelligb (2019) assess the Extended Kalman Filter

(EKF) to improve indoor localization using AprilTags. They use that improvement to navigate

Unmanned Aerial Vehicle (UAV) within an indoor environment. They adopt a probabilistic

approach towards data fusion in order to improve pose estimation accuracy. In this method,

the authors employ BIM to identify coordinates of fiducial markers with a UAV equipped with

camera to identify the relative pose. All the information is ultimately put together to calculate

the coordinates in the global coordinate system. They use EKF to consider uncertainty, which is
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the characteristic of construction sites. BIM, in this approach, is specifically used to help the

drone to identify the 3D coordinates of the AprilTags.

Neges, Wolf, Propach, Teizer & Abramovici (2017) have developed a system based on the

Bluetooth Low Energy (BLE) to improve the quality of indoor location tracking on construction

sites and for facility management purposes. The authors classify the work spaces systematically

using a building information model and, then, place BLE beacons on different locations. The

result of the study shows that the functionality of the proposed method is limited. The experiment

also indicates that the signal strength and method robustness is greatly affected by the dynamic

nature of construction sites and facilities.

Palacz et al. (2019) propose a method to navigate indoor mobile robots using the IFC schema

of BIM and a graph, combined with artificial intelligence. They argue that the structure of

buildings and the semantics of building components have great influence on the possible routes

between two points. This graph-based navigation approach assigns attributes to graph nodes

and graph edges. The former contains semantics of building elements and the latter stores the

cost of navigation between spaces dependent on different variables namely, opening width, lift

existence, space distance, and door types. The authors argue that the information derived from

IFC schema only includes construction elements, while other elements such as chairs, anything

left on the floor, etc. should be considered. Hence, an additional algorithm could the robot

navigation for passing obstacles. This contribution assumes the robot has such algorithm built

in (Palacz et al., 2019).

Kim, Chen, Kim & Cho (2018) have provided a method in which a mobile robot collects spatial

data specifically developed for construction sites with many uncertainties. The proposed system

uses Simultaneous Localization and Mapping (SLAM) techniques to build a map of construction

site for navigation through point clouds. However, the SLAM technique does not provide

obstacle-awareness for a mobile robot so that kinematic modelling of the robot is analyzed.

The authors, then, develop an algorithm based on fuzzy control to navigate the mobile robot in
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unknown environments with obstacles. In this method, real-time 3D environment reconstruction

based on laser scanning is used instead of a building information model (Kim et al., 2018).

Based on the literatures reviewed the following findings are presented:

1. Many indoor navigation and localization methods are introduced and investigated especially

with integration to BIM. Indoor localization methods can be classified in three main

categories (Ibrahima & Moselhib, 2015):
• Wave-based propagation: comprising devices receiving waves of two frequency ranges,

namely: ultrasonic and sound waves. Different types of receivers are also presented - such

as radio frequency (RF), ultra-wideband (UWB), and wireless local area network (WLAN)

(Caldas, Torrent & Haas, 2006; Goodrum, McLaren & Durfee, 2006; Jang & Skibniewski,

2008). Nonetheless, researchers studying the abovementioned techniques have reported

several limitations with regard to accuracy. Infrared accuracy is reported at room-level

(i.e. its accuracy is limited and it would not be a functional option for larger spaces) and

its performance is disrupted by sunlight. WLAN and RFID accuracy is insufficient and

varies from 4-9 m. UWB, in contrast, provides 9 cm accuracy but it is expensive and

requires complicated deployment of transmitters, which makes it inefficient.

• Image-based localization: relies on computer vision techniques and image matching.

Computer vision techniques, itself, are categorized into two methods: Global and Local.

The former refers to detecting edges and recognizing features, whereas the latter detects

landmarks with the help of tags and images. The reported studies indicate that these

methods suffer from lack of precision and, more importantly, are not appropriate for

dynamic environments such as construction sites.

• Inertia-based localization: this method uses an initial location and navigates through ac-

celerometers, inertia measurement units (IMU), and other motion detectors. Ibrahima & Mosel-

hib (2015) have developed a localization technique, which combines IMU and Kalman

Filter. Their method produce a higher accuracy compared to ultrasonic and sound waves,

but it remains yet inefficient due to the very demanding computational calculations.

2. Researchers use algorithm-based approaches to navigate mobile robots. Taneja, Akinci,

Garrett Jr & Soibelman (2016) categorize them into three major classes namely: center-line
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based, metric-based, and visibility-based. Center-line based algorithms select the medial

axis of an indoor space, metric-based algorithms move along the navigable boundaries of a

given space, and visibility-based algorithms are comprised of nodes and edges representing

the end points of a path and the visible lines of a given indoor environment respectively.

The limitation associated with these algorithms is that they do not consider the dynamic

objects and furniture of an indoor environment to which construction sites are subject.

2.4.2.2 GIS and Robotics

This section of the literature review studies qualitatively the applications of GIS in robots’

navigation on construction sites independent from BIM. In this part, the papers identified in the

methodology section are investigated in depth to have a comprehensive overview of GIS and

robots’ positioning on construction sites. In what follows, the papers are described and later,

discussed.

Mangiameli, Muscato, Mussumeci & Milazzo (2013) have developed a method based on GIS

for generation of raster maps showing obstacles in urban areas. The authors develop this method

to enable flight planning of an UAV. Their approach first represents the building data as a vector

data shapefile, and then, converts it to raster to be able to use GIS. The authors use Spline

algorithm to extract buildings’ height for the raster map, identification of possible path within

urban environment, and conversion of the path identified to waypoints for navigation of UAV.

The possible obstacles are determined and subsequently are georeferenced in order to be avoided.

Zaki & Dunnigan (2017) identify three challenges to navigate autonomous robots, namely:

representation and schemes, planning algorithm, and the integration architecture of both. They

combine GIS modelling and description logic for representation and schemes, modify and fuse

algorithms, and ultimately introduce a navigation architecture. GIS and ontology are used to

constitute digital representation of dynamic data. The proposed framework does not consider

neither vertical navigation nor moving obstacles.
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Yang, Wang, Kwan & Yang (2015) propose a GIS platform in which the GIS database is modified.

The authors introduce properties such as road width, lane number, lane info, and if-traffic to be

able to describe the environment of the Unmanned Ground Vehicle (UGV). In addition, they

redefine road models and turning strategy to generate a cost map navigating system for UGV

navigation in urban environments.

Fernández-Caramés, Serrano, Moreno, Curto, Rodríguez-Aragón & Alves (2016) introduce a

method for integration of indoor localization approach and GIS for the purpose of real-time

navigation. They employ GIS to analyze indoor spatial data and develop a method that detects a

door within indoor environment with data fusion of laser and vision sensors. Extended Kalman

Filter is used for path finding.

Tur, Zinggerling & Murtra (2009) have developed a map-based navigation system in urban

environments using GIS. The proposed system enables a robot or a team of robots to navigate

within urban environments with prior assumption that an understandable navigation map is

available. In this system, robots can connect to the map and navigate based on it. The authors

highlight communication protocols and cooperation issues as the important aspects of the work.

Sun, Yang & Liu (2018) have proposed GLANS (GIS Based Large-Scale Autonomous Navigation

System) for robot navigation in urban settings. They argue that current simultaneous localization

and mapping (SLAM) techniques cannot be utilized for large-scale environments. In this method,

a GIS database suggests a topological path on which the mobile robot can navigate, detect

obstacles and consequently modify the path. Moreover, the adjustment results can be shared

with other mobile robots so that the navigation and localization process is optimized. Their

method is independent of the Global Positioning System (GPS).

Park, Kim & Lee (2013) have developed a GIS-based method to analyze trafficability of terrain

for autonomous robot navigation. In this method, GIS is employed to analyze the possibility of

having a piece of terrain under traffic of unmanned ground vehicles by generating grid maps.

The GIS database analyzes the spatial data of a given environment and assigns a cost to each
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grid. Once all the grids are assigned with a cost value, a path can be generated to navigate the

mobile robot.

Rackliffe, Yanco & Casper (2011) have developed a GIS-based approach with which UAV can

be landed and UGV can be navigated. In this method, they integrate GIS with sensor data of the

vehicle in urban settings.

The literature review conducted on robot navigation using GIS technology indicated that

algorithms and the implementation play a key role in this regard.

3. The majority of the research on robot navigation with Geo-referenced locations focuses on

algorithms and computational issues. However, there are some uncertainties associated with

a given space that should be considered. Construction sites, for instance, are dynamic and

are associated with many uncertainties. Dealing with uncertainties, is one issue that cannot

be addressed by predetermined algorithms so that other approaches should be included.

4. Zaki & Dunnigan (2017) argue that algorithms applicable to path planning are different

from the ones for motion planning. They define “path planning algorithms” as “seeking

the most appropriate path to a given point”, and “motion planning algorithms” as “robot’s

actual movement.” Thus, they classify motion-planning algorithms into eight categories

namely, 1) “Bug Algorithms,” “Roadmap,” 2) “Cell Decomposition,” 3) “Potential Fields,”

4) “Sampling-based motion planning,” 5) “Kalman filtering,” 6) “Heuristic Approaches” and,

7) “Mathematical programming.” The common characteristics of all the above-mentioned

algorithms is that they are not mutually exclusive, thus combinable.

Moreover, path planning algorithms are divided into five categories namely, 1) “sampling-

based algorithms,” 2) “node-based optimal-based algorithms,” 3) “mathematical model

based algorithms,” 4) “bio-inspired algorithms,” and 5) “multi-fusion based algorithms”

(Zaki & Dunnigan, 2017).
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2.4.2.3 BIM and GIS (in respect to construction automation)

The main objective of this section is to identify the requirements of BIM and GIS integration for

the purpose of construction robot navigation and positioning. To attain this goal, first, the tools

and methods for integration of BIM and GIS are presented. Then, a comparison of the different

methods and tools will determine whether one of them is appropriate for the future purposes of

this research, or a novel approach should be developed to assist construction robot navigation

and positioning.

Hwang, Hong & Choi (2013) have created a roadmap to develop a prototype of interoperable

framework to facilitate BIM and GIS integration. In this direction, they employ IFC format of a

BIM model to integrate it into GIS environment.

Liu, Li, Zlatanova & Liu (2018) explore BIM as a technology facilitating collaborations between

construction stakeholders and management of building components data. They bring IFC into

consideration as interoperable data format of BIM containing spatial information of building

components. They also perceive GIS as a platform to provide further spatial analysis on the

information provided by IFC. The authors focus on identifying the requirements for “a generic

3D indoor framework” and identify four of them to be relevant for indoor spatial analysis,

namely (Liu et al., 2018): “Generation of a vector map,” “Management of data,” “Analysis of

environment,” and “Management of safety.”

Irizarry & Karan (2012) employ GIS to conduct spatial data analysis to find the best location and

number of cranes on construction sites. To do this, they need semantic information with regard to

the building elements, and they find BIM as a response to this need. To overcome the challenges

of the integration of BIM and GIS, they combine an “optimal algorithm”, GIS, and BIM to

create a model, optimizing the location and the number of tower cranes (Irizarry & Karan, 2012).

Zhu, Wang, Wang, Wu & Kim (2019b) have developed an open-source approach (OSA) to

integrate BIM and GIS using IFC and shapefile format respectively. They utilize IFC-Tree

as the spatial structure of IFC to export data into shapefile format through developing and



48

implementing Automatic Multipatch Generation (AMG) algorithm. Their work needs to be

improved in terms of efficiency so their next contribution is built upon.

Zhu, Wang, Chen, Wu & Kim (2019a) introduce an enhanced open-source approach (E-OSA) to

integrate geometric data derived from IFC into shapefile in order to contribute to BIM and GIS

integration. The authors improve the efficiency of their previous contribution which is open-

source approach (OSA). In this enhanced approach, Brep, swept solid, mapped representation

and clipping are successfully transformed into Brep within a shapefile format using an algorithm.

It is also discussed that CityGML and Shapefile as the most prominent data exchange formats

with their pros and cons (Zhu et al., 2019a).

Wang et al. (2019) consider BIM as the digital representation of a shared database of construction

projects to enable construction practitioners collaborate throughout the project lifecycle. The

authors take GIS into account as geographical, cartographical, and remote sensing technology,

which comprises spatial data and classify key applications of BIM and GIS integration into 1)

integration of data, 2) projects’ lifecycle applications 3) management of energy, and 4) manage-

ment of urban environments. Additionally, data integration is identified as the fundamental and

the most challenging step in this regard.

Hong, Hwang & Kang (2012) have studied the correlation of IFC and CityGML as the most

prominent data format with regard to BIM and GIS respectively. They identify features of the

two, prior to mapping the IFC to CityGML at various level of details (LoD), from LoD0 to

LoD4. The authors consider their contribution as the foundation of BIM and GIS of indoor and

outdoor environment (Hong et al., 2012).

Adouane, Stouffs, Janssen & Domer (2020) have developed a model-based approach to facilitate

IFC data conversion into CityGML. They encounter semantic and geometry as the main

challenges in this regards. In this direction, they have also developed a series of additive

algorithms to overcome the issues occurred in the project. Their work indicates that the

semantical and geometrical issues occurring when converting IFC into CityGML, could be

handled by a set of algorithms (Adouane et al., 2020).
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Zhu, Wright, Wang & Wang (2018) assess integration of BIM and GIS at data level. They

conduct literature review on scholarly papers to investigate data models in terms of relevance

and features, examine other potential data models for BIM and GIS integration, and provide

roadmap for future works. BIM and GIS are considered as well-developed technologies where

BIM is employed throughout a building lifecycle, while GIS mostly correlates with location

issues and spatial data analysis in various domains. They have identified the challenges and the

methods to integrate BIM and GIS.

Isikdag, Zlatanova & Underwood (2013) have developed BO-IDM based on building information

for indoor navigation purposes. They determine the requirements for BIM and GIS integration

and they attain this goal through simplifying BIM models (Isikdag et al., 2013). Even though the

proposed framework is practical, it shows important limitations such as removing a void for the

sake of simplicity, thereby making it insufficient for the purposes of automation in construction.

Based on the scientific works mentioned in this section, the following conclusions can be drawn:

5. BIM and GIS integration occurs at different levels. Researchers defined several levels of

integration with regard to BIM and GIS integration so a common definition with consensus

on it is not available. BIM and GIS could integrate mainly on two levels, which interrelate

fundamental level and application level (Irizarry, Karan & Jalaei, 2013). Fundamental

level refers to data exchange and interoperability of BIM and GIS, while application

level refers to developing new software tools to benefit from BIM and GIS advantages.

Another classification comprises 5 categories namely, “schema-based,” “service-based,”

“ontology-based,” “processes-based,” and “system-based” (Kang & Hong, 2015). A third

classification comprises of three levels namely, data, process, and application (Amirebrahimi,

Rajabifard, Mendis & Ngo, 2016a). Data level incorporates extending current data schemas

or modifying data formats to fit other software. Process level refers to cooperation of data

schemas, while at the application level, new software is developed to incorporate BIM

and GIS privileges. Although the aforementioned classifications define different levels

of integration, much of the research attempts are being carried out on data level. In this
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direction, Zhu et al. (2018) have extended the data level into two sub-levels, which are

geometry level and semantic level. The former focuses on geometry transformation of data,

whereas the latter concentrates on full attribute data translation.

6. Many researchers have identified various data exchange formats for both BIM and GIS.

The former comprises less formats in terms of quantity compared to the latter. There

is a consensus among the researchers, however, that IFC is the promising data schema

representing BIM (Adouane et al., 2020; Liu et al., 2018; Irizarry & Karan, 2012; Zhu

et al., 2019b,a). BuildingSMART (formerly the International Alliance for Interoperability)

developed IFC as an EXPRESS-based tool (Mignard & Nicolle, 2014). IFC uses three

types of geometrical definitions to represent 3D models: boundary-representation (b-rep),

constructive solid geometry (CSG), and sweep volumes (Donkers, Ledoux, Zhao & Stoter,

2016). B-rep uses the object’s boundary surfaces to represent a 3D complex object

(Wu & Hsieh, 2007), CSG applies a set of Boolean operators namely, union, intersection,

and difference on primitive shapes such as spheres, cones, pyramids, or cylinders (Wyvill,

Guy & Galin, 1999), and sweep volumes uses a path to extrude 2D objects in order to create

solid shapes (Zhu et al., 2018). American Institute of Architects (AIA) defined IFC Levels

of Development (LOD) from lowest to highest amount of information they contain. The

five levels are LOD100, LOD200, LOD300, LOD400, and LOD500. The BIMForum have

developed LOD350 in addition to the aforementioned levels as there was a need for a Level

of development between LOD300 and LOD400 in order to detect/avoid clashes, layout,

etc. (Zhu et al., 2018). BuildingSMART have also developed other IFC schemas such as

XML-based IFC standard and ifcXML in addition to EXPRESS-based IFC standard (Deng,

Cheng & Anumba, 2016b) which can be used for BIM-GIS integration.

7. Contrary to the case with BIM, researchers have not reached a consensus regarding GIS

data exchange format. City Geographic Markup Language (CityGML) and Shapefile are

two primary formats in terms of data exchange schema in GIS. The Environmental System

Research Institute (ESRI) has developed Shapefile as an open data schema containing

attributes and spatial features (Environmental Systems Research Institute, Inc., 1997). On

the other hand, CityGML is an XML-based standard. The Open Geospatial Consortium
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(OGC) has approved it as the standard open data schema representing 3D models of cities

and landscapes (Deng et al., 2016a). Although Shapefile data schema is the native format of

GIS and can be exported to non-GIS software tools such as Collaborative Design Activity

(COLLADA), SketchUp, and 3D Studio Max (Environmental Systems Research Institute,

Inc., 2008), CityGML is more suitable for BIM and GIS integration. This is because

Shapefile is a non-semantic data model while CityGML is. Moreover, CityGML can provide

bidirectional data transformation for BIM and GIS integration while Shapefile only allows

transforming data from BIM to GIS (Zhu et al., 2019a).

8. CityGML is defined based on the Levels of Detail (LoD) provided in a 3D model from

LoD0 to LoD4 (Zhu et al., 2018). CityGML also uses boundary representation (b-rep) to

visualize 3D models and it allows users to extend it through application domain extension

(ADE).

Figure 2.13 Levels of details on a residential house

Taken from Gröger et al. (2012, p. 67)

Figure 2.13 illustrates various levels of detail on a residential house. LoD0 is just the footprints

of the house in 2 dimensional environments, while LoD1 represents in solid shapes with a flat

roof. LoD2 becomes more advanced in terms of showing details compared to LoD1. LoD3 and

LoD4, both, demonstrate the openings of the building but LoD4 incorporates interior spaces and

components such as interior walls, and doors.
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2.5 Discussion

The current study is a systematic literature review (SLR) combining scientometric analysis

and qualitative analysis. The former is used to investigate a large dataset of articles on BIM

and GIS integration, which is difficult to conduct with conventional methods, and the latter is

utilized to deeply explore the field with relation to robot navigation for construction sites. The

literature review methodology adopts a systematic approach in order to be able to investigate the

field comprehensively. It extends earlier review works and examines the domain of BIM-GIS

integration from a new – automation in construction - perspective in order to address the existing

limitations and to reduce complexity.

This SLR testifies that the current solutions relying on BIM with developed localization methods

show many limitations such as lack of vertical navigation (i.e. from one floor to another floor),

inaccuracy, not considering the dynamic nature of construction sites, etc. Therefore, more

research needs to be performed in this regard or new approaches needs to be developed. The

current study, which is part of a larger research project aimed to provide digital framework for

robot navigation on construction sites, investigates the BIM-GIS domain to find its potential for

improving robot navigation.

GIS, on the other hand, enables researchers to develop methods for robot navigation both for

indoor and outdoor applications through applying various algorithms. The reported contributions

are associated with high complexity and are unsatisfactory, as they do not consider construction

sites uncertainties such as constant changes. Additional complexity comes from the analysis of

data obtained from robot sensors. In this direction, complexity could be reduced exponentially

through defining navigable surfaces in which building components are excluded.

BIM and GIS technologies are becoming omnipresent in construction projects and provide great

benefits to the project stakeholders. However, due to their intrinsic differences, specifically

in terms of focus, the integration of BIM and GIS is somewhat challenging and still under

investigation. A number of research attempts are carried out to tackle navigation issues with

either BIM or GIS for indoor environments, but they are still incompatible with construction
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sites’ characteristics. BIM and GIS integration shows great potentials to be employed for robot

navigation purposes as several research studies confirm it. GIS can be utilized to identify optimal

path so that construction robots would be able to navigate and localize properly. BIM can also

be used in this regard. BIM can provide a priori obstacle detection to robot through geometry

and semantics of 3D models. Integration of BIM and GIS has the potential to considerably

reduce the complexity of conventional navigation methods beside other opportunities it provides.

Moreover, other methods should be incorporated to detect objects on construction sites, and

react to its dynamic context.

Figure 2.14 Requirements of BIM-GIS integration for robot navigation

Figure 2.14 illustrates the identified requirements for a digital framework for robots’ positioning

on construction sites. Having identified the requirements, our future research will seek to

propose a novel approach to construction robots’ navigation, integrated with BIM and GIS to

cover the limitations of previous attempts and to decrease the complexity substantially.
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2.6 Conclusion and future work

Studies have indicated that construction industry is suffering from low productivity, compared to

other industries; also, scarceness of qualified workforce is foreseen in near future. Construction

automation is introduced as one possible solution to these challenges. It is comprised of

many aspects and practices but one of its functionalities is Digital Fabrication (Dfab). To

enable construction robots to accomplish the assigned tasks perfectly, they need to be precisely

positioned on the intended place. BIM and GIS have indicated great potential in this regard.

Since BIM and GIS are already being used for other purposes in construction projects, relying

on them for robots’ navigation would reduce the complexity and the amount of time spent to

implement other methods. However, BIM-GIS integration is challenging due to their different

intrinsic focus. Hence, the current study adopts a Systematic Literature Review (SLR) to

thoroughly review the research in the domain. In addition, scientometric analysis is used to

investigate 236 articles. To deeper understand the challenges of the BIM-GIS integration in

respect to robot navigation, qualitative analysis is carried out on the topics derived from keywords’

co-occurrence method. Based on the qualitative analysis, challenges, gaps, and limitations of

current solutions are investigated and the requirements to address limitations are determined.

More importantly, this research aims to propose a novel approach using BIM and GIS integration

for construction robots’ navigation. Future work can also incorporate non-scholar sources such

as texts and articles on websites in order to be investigated.
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3.1 Summary

As-built modeling and reconstruction require data of high quality from spatial structure

environment and the surrounding site in construction projects, in terms of both frequency

and accuracy. As-planned information can be acquired for indoor structure through Building

Information Modeling (BIM) and for outdoor environment from Geographic Information

System (GIS). These data should be collected in different phases of a facility life cycle, thereby

making this essential task repetitive and monotonous. For this reason, the use of autonomous

Unmanned Ground Vehicles (UGV) has attracted construction stakeholders’ attention in recent

years. However, the tools of both industries are yet to be integrated in a coherent deployment

infrastructure. Specifically, there is no standard format for data exchanges between the

construction and robotic domains. Hence, the semantics of BIM-GIS cannot be automatically

integrated by any robotic platform. To enable semantic data transfer across domains, semantic

web technology has been widely used in multidisciplinary areas for interoperability. We exploit

it to pave the way to a smarter, quicker and more precise robot navigation on construction sites.

This paper develops a semantic web ontology integrating robot navigation and data collection to

convey the meanings from BIM-GIS to the robot. The proposed Building Information Robotic

System (BIRS) provides construction data that are semantically transferred to the robotic platform
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and can be used by the robot navigation software stack on construction sites. To reach this

objective, we first need to bridge the knowledge representation between construction and robotic

domains. Then, we develop a semantic database to integrate with Robot Operating System

(ROS) which can communicate with the robot and the navigation system in order to provide the

robot with semantic building data at each step of data collection. Finally, the proposed system is

validated through a case study.

Keywords: BIM, GIS, ROS, mobile robot, ontology, navigation, data exchange

3.2 Introduction

Progress monitoring of construction projects needs accurate and comprehensive data collection

to increase productivity and support risk management. Manual data collection is inefficient

due to its high cost, inaccuracy, error-prone nature (Rebolj, Pučko, Babič, Bizjak & Mongus,

2017). Among different propositions such as implementation of new technologies by leveraging

cross-functional teams (Barbosa et al., 2017) and Scrum strategy deployment in various phases

of construction (Streule et al., 2016), the use of autonomous robots has shown great potential

to achieve efficiency and high precision of data collection (Ardiny, Witwicki & Mondada,

2015). The fundamental requirement of automated data collection is for the robot to be

able to (1) navigate autonomously in a dynamic environment and (2) acquire relevant and

accurate data. With the growth of mobile robots’ capabilities in recent years, the interest in

having high-level semantic information integrated within the robot is increasing: it is expected

to ultimately make the robots easier to deploy (Crespo, Castillo, Mozos & Barber, 2020).

Robots with semantic representation and recognition (association of location-semantic) of

their environment are more intuitive to operate for non-experts, because they share conceptual

understanding (Kostavelis & Gasteratos, 2017). Among the various challenges to implement

semantic navigation, one is the association of high-level information with the geometry of the

environment, such as discrete maps often referred to as occupancy grids. To achieve this, one

needs to develop a knowledge representation (Crespo et al., 2020), for which domain-specific

ontologies are well suited (Gruber, 1995). Therefore, this study intends to facilitate data exchange
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between construction and robotic domains by developing an ontology which supports formal

representation of the domains’ knowledge. The resulting ontology then becomes a base structure

for data extraction of BIM-GIS; relevant to robot navigation.

BIM is used throughout the entire life cycle of a facility in many aspects, for instance to track its

state from design to maintenance (Doumbouya et al., 2017), for smart city integration (Afsari,

Florez, Maneke & Afkhamiaghda, 2019), 4D simulation (Hatori et al., 2020), and clash detection

(Savitri, Pramudya et al., 2020). In a similar way, GIS has enabled Architects, Engineers,

Contractors (AEC) to acquire geo-spatial data with regards to surrounding site conditions and

topographical information of a construction site (Karan & Irizarry, 2015). The integration

of BIM and GIS grants new opportunity in construction projects such as finding the optimal

location for tower cranes (Irizarry & Karan, 2012), assessing the occupants behaviour impact

on energy consumption (Afkhamiaghda et al., 2019), assessing urban energy performance

(Yamamura et al., 2017), helping with emergency response route (Tashakkori et al., 2015),

merging indoor-outdoor combined route planning (Teo & Cho, 2016) and pre-construction

planning (Karan & Irizarry, 2015). Integration of BIM-GIS data provides a holistic overview

of digital built environment including the facility and the environment around it at urban scale

that can be used for robot navigation on construction sites for data acquisition of the existing

condition. However, the construction and robotic worlds need to share a common semantic

interoperability.

Semantic web technologies provide high-level data exchange among various domain knowledge

representations enabling interoperability through attachment of decentralized data with semantics

to different concepts (Kalfoglou, 2009). In an ontology, concepts, semantics and their relations

with one another are defined through taxonomies (hierarchical structure of data) and relationships

(Van Rees, 2003), thereby providing a machine-understandable structure in which concepts and

knowledge are represented (El-Diraby, Lima & Feis, 2005). Ontologies can be categorized into

three levels based on their components and level of detail namely: top-level (or upper), domain

and application ontologies. Top-level ontologies formalize a generic ontology across all domains

whereas domain ontologies provide knowledge representation which is formal, reusable and
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shareable across a specific domain. Application ontologies aim to create focused ontology for a

given application (Karan, Irizarry & Haymaker, 2016).

The Institute of Electrical and Electronics Engineers published a standard (IEEE 1872-2015)

(708, 2015) for Robotics and Automation ontologies based on the Core Ontology for Robotics

and Automation (CORA). In this paper, we leverage IEEE 1872-2015 in order to bridge it with

construction-based knowledge. This standard provides formal and shareable representation of

the robotics and automation domain along with the definition of concepts and the relationships

between concepts, attributions and constraints. The proposed ontology is a domain ontology

that needs to be derived into specific implementations. Since some of the concepts discussed

in the CORA are not thoroughly defined, CORAX (CORA’s extension) was proposed to cover

these gaps (708, 2015). The other standard we leveraged is the IEEE 1873-2015 (730, 2015).

Robot Map Data Representation for Navigation (MDR) standard focuses on the interoperability

between robots, humans, and machines in terms of 2D metric and topological maps rather than

3D or semantic maps. Hence, the current study intends to bridge the semantic information of

BIM and GIS using some of the concepts in MDR in order to enrich map representation for

human-robot data exchange.

The current study’s objective is to enable semantic interoperability between BIM, GIS, and robot

navigation system to translate semantic data from BIM and GIS to the Robot Operating System

(ROS). Since there is no standard format to translate data between BIM-GIS and ROS, the

semantics of the IFC and CityGML is not understood by the robotic platform, thereby making

it essential for the robot to be able to “call” for the semantic information. Building elements’

semantics can be provided to the ROS so that different information would be accessible to the

robot when and where it is needed. The proposed bridging ontology is based on the extension of

IEEE 1872-2015 and IEEE 1873-2015 standards. To reach this objective, we develop a Building

Information Robotic System (BIRS) which conveys semantic data to ROS. The current study’s

contributions are:

• An ontology bridging BIM-GIS data to IEEE 1872-2015 and IEEE 1873-2015 standards.

• Cross-domain data structure enabling exchanges between construction and robotic domains.
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• A practical implementation of the proposed ontology and data structure to deploy it on an

autonomous mobile robot navigating a construction site.

The remainder of this paper is structured as follows: Section 3.3 describes other scientific works

related to the studied domain to provide a background of what has been achieved so far as well as

their contribution. Section 3.4 provides a detailed explanation of the methodology and how our

ontology is developed to facilitate data exchange. Section 3.5 presents how the ontology can be

used as well as the results from a case study. Finally, section 3.6 concludes the research carried

out with the limitations of the proposed system as well as some future research directions.

3.3 Related Work

Even though the growth of World Wide Web has resulted in incredible increase of the information

coming from heterogeneous data sources, users are able to navigate through the information easily.

This implies the power of semantic web in a way that is understandable by humans and machines

(Berners-Lee & Hendler, 2001). The implementation of semantic web requires formal knowledge

representation of domains (ontologies) in which the concepts and the relationships between them

are explicitly described. Ontology is defined in different ways in the various domains. Guarino

(1995) defines ontology as "an artefact constituted by a specific vocabulary used to describe a

certain reality, along with a set of explicit assumptions related to the desired meaning of the

vocabulary” in the context of Artificial Intelligence. Studer, Benjamins & Fensel (1998) define

ontology at a higher level: "a formal, explicit specification of a shared conceptualization."

When it comes to developing an ontology, vocabulary does not suffice to convey the intended

meaning. In order to make an ontology efficient and functional, other parameters are taken

into account namely the concepts (terms which are mainly abstract and are aligned to the

taxonomies), relationships (the semantic connection between concepts), instances (an existing

entity representing features of concepts) and axioms (defined rules across the domain which

is valid) (González, Piñeiro, Toledo, Arnay & Acosta, 2020). The potentials of ontologies

have resulted in the increase of interest in using them and therefore, novel forms of knowledge

representation are created. In this direction, the World Wide Web Consortium (W3C) developed
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the Resource Description Framework (RDF) to function as a "standard model for data interchange

on the Web” (World Wide Web Consortium (W3C), 2014).

In the construction industry, the earliest studies on semantic web technologies aimed at achieving

a higher level of efficiency for the federated information through adopting ontological approach

to retrieve the "related concepts" to manage on-site problems (Elghamrawy & Boukamp, 2008).

Another study uses ontology to search and extract the construction data because the AEC data

are numerous and somewhat hard to retrieve (Staub-French & Nepal, 2007). Sensing data

integration for construction management through semantic web was also subject to several

earlier contributions. (Elghamrawy & Boukamp, 2010) developed an ontology in which Radio-

frequency identification (RFID) technology is used to archive and retrieve construction document

information. Liu, Li & Jiang (2016) use ontology for cost estimation of construction projects

in China. Barbau, Krima, Rachuri, Narayanan, Fiorentini, Foufou & Sriram (2012) developed

a plugin for a software tool supporting ontology development (i.e. Protégé) to translate the

STEP’s EXPRESS schema into Web Ontology Language (OWL). Farias, Roxin & Nicolle

(2015) propose a framework to create an OWL ontology for COBie, a standard in BIM for

Facility Management. González et al. (2020) describe the development of an ontology to

support indoor navigation which is based on IfcOWL ontology translating IFC schema into OWL.

Venugopal, Eastman & Teizer (2015) develop a model for data exchanges using IFC schema

based on ontologies. Ontological approaches are also suggested for information exchanges in

precast concrete (Venugopal, Eastman & Teizer, 2012). The literature shows that ontologies are

nowadays common for information exchanges across the AEC industry but they do not fully take

advantage of established ontologies in other domains such as robotics. Therefore, we propose a

bridging ontology between construction and robotic domains to cover this gap.

Many other fields have leveraged ontologies to extend interoperability across other domains.

In the AEC industry, the nature of the information is decentralized and fragmented (Atazadeh,

Kalantari, Rajabifard, Ho & Ngo, 2017) which results in obstruction for interoperability

purpose. The data from different sources come with different formats and they follow different

ontologies. Each of those ontologies are designed for different needs, therefore, it may obstruct
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interoperability in the AEC industry (Aziz, Anumba, Ruikar, Carrillo & Bouchlaghem, 2006).

Hence, there has been a considerable number of attempts to provide open source data schema

for BIM interoperability such as BIMXML and COINS (Zhu et al., 2018). However, Industry

Foundation Classes (IFC) is the primary open-source, EXPRESS-based data schema being

used across the AEC domain (Mignard & Nicolle, 2014). IFC schema is comprised of four

layers namely: resource layer, core layer, interoperability layer and domain/application layer

(Terkaj & Viganò, 2017). IFC is a hierarchical data schema in which classes inherit the properties

of upper layers (González et al., 2020). Furthermore, many papers address the challenges of

BIM and GIS integration in which some studies adopt ontological approach. More information

in this regard and the requirements for utilizing BIM-GIS integration in robot navigation can be

found in the review by (Karimi & Iordanova, 2021).

There also is a number of ontology-based deployment in robotics outside of the construction

domain. One of the first studies which uses ontology is KnowRob (Knowledge processing

for Robots) (Tenorth & Beetz, 2009). KnowRob ontology provides an open-source knowl-

edge system for service robots managing uncertainties such as sensors’ noise. In KnowRob

ontology, the authors argue that controlling an autonomous robot requires several factors such

as representing more fine-grained action. In another study (Beetz, Beßler, Haidu, Pomarlan,

Bozcuoğlu & Bartels, 2018), the authors extend The KnowRob ontology to retrieve experimental

knowledge ("narrative enabled episodic memory"). OpenEASE is a service, based on the web

knowledge using KnowRob to retrieve, store, supervise, and visualize the robot knowledge

(Beetz, Tenorth & Winkler, 2015). KnowRob also uses RDF to represent the knowledge.

RObot control for Skilled ExecuTion of Tasks in natural interaction with humans; based on

Autonomy, cumulative knowledge and learning (ROSETTA) uses a set of ontologies to constitute

a model in order for the manufacturing robots to be adopted (Olivares-Alarcos, Beßler, Khamis,

Goncalves, Habib, Bermejo-Alonso, Barreto, Diab, Rosell, Quintas et al., 2019). ROSETTA

ontology is based on CORA ontology, itself based on SUMO ontology. Although CORA is

using SUO-KIF language, ROSETTA is written in OWL. Persson, Gallois, Björkelund, Hafdell,

Haage, Malec, Nilsson & Nugues (2010) develop a "knowledge integration Framework" which
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establishes relationships between different segments of ROSETTA. OROSU (Ontology for

Robotic Orthopedic Surgery) is yet another ontology developed based on IEEE 1872-2015

Standard Ontology for Robotics and Automation, uses OWL to retrieve information of the

knowledge-based framework for surgical robotics (Gonçalves & Torres, 2014). (Diab, Akbari,

Ud Din & Rosell, 2019) propose Perception and Manipulation Knowledge (PMK) ontology

for representing and reasoning knowledge in task and motion planning. In PMK ontology,

the authors implement from OWL the ontology using again CORA and SUMO as the base

ontologies (Olivares-Alarcos et al., 2019).

In the sub-domain of semantic knowledge for robot navigation, Kollar & Roy (2009) adopt

an ontological approach to enable human-robot interaction, specific to the task of search and

find. Galindo, Saffiotti, Coradeschi, Buschka, Fernandez-Madrigal & González (2005) propose

a multi-hierarchical approach for semantic navigation comprising of spatial and conceptual

hierarchies. The former describes conventional metric approach of the building spaces and

the latter incorporates semantic information of the environment. However, the BIM semantics

still remains neglected even if it can add more semantic information to robot navigation. With

great contribution to semantic navigation, none of them studied the necessity of incorporating

BIM semantics to robot navigation during and/or after construction phase. There are also

already several works addressing BIM usage for robot navigation. Delbrügger et al. (2017)

developed a framework for digital twin factories supporting human and robot indoor navigation.

Ibrahim et al. (2017) studied the use aerial robots to capture data from construction sites in an

interactive way. Another study examined the use of BIM for localization of Unmanned Aerial

Vehicle (UAV) in indoor environment taking advantage of April tags (Nahangi et al., 2018).

Siemiatkowska et al. (2013) studied the use of BIM-based map representation in which the robot

could localize semantically using hierarchical path planning. Hamieh et al. (2017) developed a

four step BIM-based path planning strategy which uses hierarchical refinement of the number of

paths. Palacz et al. (2019) proposed graph-based approach for indoor navigation using BIM/IFC.

Despite their great contributions, none of the aforementioned works studied the automatic

translation of semantic data from BIM to the ROS. There also have been several research attempts
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in which the authors used GIS for robot navigation (Mirats-Tur, Zinggerling & Corominas-Murtra,

2009; Yang et al., 2015; Yan, Zhao & Shen, 2013). However, the integration with BIM and the

additional information that can be used for robot navigation is yet to be thoroughly studied.

3.4 Research Methodology

The current study proposes a novel approach which BIM and GIS data are used in robot

navigation during/after construction phase. The research methodology is comprised of two steps:

(1) developing Building Information Robotic System (BIRS) Ontology in order to bridge IFC

and CityGML schemas to IEEE 1872-2015 and IEEE 1873-2015, and (2) enabling cross-domain

interoperability through BIRS Data Exchange. Figure 3.1 illustrates the pipeline establishing the

practical implementation of the robotic system using BIM and GIS for navigation.

Figure 3.1 Proposed pipeline for implementing Building Information Robotic System

(BIRS) supporting development of BIRS Ontology and BIRS Data Exchange
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As illustrated in Figure 3.1, The first step (BIRS Ontology) creates an ontology bridging IFC and

CityGML data to CORA and MDR. The second step (BIRS Data Exchange) reasons the BIRS

ontology to create a BIRS node in ROS in order to translate the semantic data from the ontology

to the robotic system. Both steps in the pipeline are explained in detail in the following sections.

3.4.1 Building Information Robotic System (BIRS) Ontology

The purpose of this section is to develop an ontology supporting BIM and GIS bridging to CORA

and MDR. To achieve this, the existing IEEE standards need to be reorganized (the ontology

classes and axioms remain intact) to facilitate the knowledge translation from engineering to

application ontologies. Then, we express CORA and MDR in the RDF to be compatible with the

development of median level classes. The combination of RDF and XML would enable users

to interchange data among various applications (Karan & Irizarry, 2015). Since the resulting

entities should comply with IEEE 1872-2015 and IEEE 1873-2015 standards, the intermediate

level classes are developed to be integrated with the correspondent concepts from IFC and

CityGML.

In order to extend CORA and MDR in our work, a short recall of the underlying concepts is

required. CORA extends the Suggested Upper Merged Ontology (SUMO) which is a top-level

ontology (Prestes, Carbonera, Fiorini, Jorge, Abel, Madhavan, Locoro, Goncalves, Barreto,

Habib et al., 2013). SUMO supports definition of high-level knowledge concepts in the world.

The highest SUMO class is Entity which has two further sub-classes; Physical and Abstract.

The former describes the entities in 3D space and the latter represents the concepts which do

not have spatial shape. In other words, Abstract contains anything which does not fall into

Physical (Niles & Pease, 2001). Physical is a disjoint partition of Object and Process. Object

describes existent objects in 3D space with no temporal effect on the space while Process follows

a “perdurantist” approach that adds temporal effects and considers 4D orientation (Fiorini,

Carbonera, Gonçalves, Jorge, Rey, Haidegger, Abel, Redfield, Balakirsky, Ragavan et al., 2015).

Abstract, on the other hand, is defined not to be a subclass of Object and is categorized into the
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following sub-classes: Quantity, Attribute, SetOrClass, Relation, and Proposition. Figure 3.2

illustrates the SUMO taxonomies on which the CORA is developed.

Figure 3.2 Basic SUMO taxonomies

Adapted from 708 (2015, p. 7)

IEEE 1872-2015 argues that "Concepts and relations associated with design, interaction, and

environment" are too general to be incorporated in CORA and are not effectively covered

by SUMO (708, 2015). To cover this gap, Fiorini et al. (2015) define a new class Physical

Environment as a three dimensional environment which contains region and other artifacts

existing in 3-D space dependent on the landmark. CORAX incorporates PhysicalEnvironment

as the subclass of Object under Physical which is located in 3 dimensions and consist of

one Region in minimum (708, 2015). IEEE 1872-2015 also defines Design as a subclass of

proposition which has idealization relationship between design and artifact. In SUMO ontology,

content bearing physicals represent propositions such as a descriptive sentence, a graph, etc. No

restriction is applied for ContentBearingPhysicals to represent an idea. Therefore, we integrate

the MDR as the subclass of CORA:ContentBearingObject since MDR aims to facilitate data

interoperability between robots. IEEE 1873-2015 standard (730, 2015) subdivides maps into

Metric and Topological in which Metric maps are the disjoint entity of the Continuous Metric

Maps and Discrete Metric Maps representing physical layout of the environment and the objects

within the robot physical environment. Continuous metric maps are comprised of the geometric

elements while Discrete metric maps utilize bitmap illustration of the environment under which
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OccupancyGridMaps are categorized. OccupancyGridMaps are the most widely used maps

in Simultaneous Localization and Mapping (SLAM) and generally in robot navigation; are

considered as Discrete Metric Maps. Topological maps are generally represented by sets of

nodes and edges (Choi, Choi, Nam & Chung, 2011) which facilitates path planning task with

running an algorithm on the created graph (730, 2015). Figure 3.3 illustrates the overall integral

graph in which all the ontologies come together and shape an integral ontology taxonomy along

with the proposed BIRS entities.

Figure 3.3 Integration of CORA and MDR ontologies with Building Information Robotic

System (BIRS) Ontology indicating sub-class relationships (:SubClassOf)

Adapted from 708 (2015, p. 16) and 730 (2015, p. 3)

We extend an intermediate level between CORAX:PhysicalEnvironment and CORA:Region

to differentiate between indoor and outdoor environments. This is required by the digital

representation of the built environment that correlates with building components and their

semantic attributes with the topographic and the existing condition information of the construction

site (Karan & Irizarry, 2015). Therefore, SpatialStructureElement and Topography can be the

median level which define Region more effectively. We follow the extension of CORA and MDR

by including Landmark, Space and Uncertainty as the sub-classes of Region bridging construction

physical environment comprised of BIM and GIS. TABLE 3.1 provides the definition of the new

concepts provided in the BIRS.
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Table 3.1 BIRS concepts definition

Concept Definition Reference

Landmark

"A feature that is used for localization of a mobile
robot. It is a feature whose pose in a coordinate
system can possibly be measured (localized) by
the robot’s sensors with respect to a given map."

(730, 2015)

Space

"represents an area or volume bounded actually
or theoretically. Spaces are areas or volumes that
provide for certain functions within a building."

buildingSMART

Uncertainty

Dynamics of the construction site which can-

not be considered as the landmarks and have

temporal effects on the construction job-site.

-

Landmarks are the physical building elements which the robot can use for localization. IfcBuildin-

gElement is the entity which defines the properties of the building elements. Semantics of classes

and properties are defined through axioms in the proposed BIRS ontology. The SubClassOf

axiom is a demonstration of the defined relationship between the higher and the lower entity

(Karan et al., 2016). As an instance, since the IfcWall is a subclass of IfcBuildingElement,

IfcWall inherits all the properties of IfcBuildingElement. It is also applicable to all IFC classes

due to the fact that IFC is a hierarchical data schema. In BIRS, the building elements extracted as

the sub-class of IfcBuildingElement are IfcWall, IfcCurtainWall, IfcColumn, IfcDoor, IfcRailing,

and IfcStair. Figure 3.4 illustrates the relationships of BuildingElement with higher entity

(landmark) and the properties associated with it in IFC schema. There are several quite essential

properties in IfcBuildingElement for the translation of a building layout into a ROS compatible

format. The shape and the location of the landmark can be derived through ObjectPlacement and

Material properties. IfcProduct is the super-type of the IfcBuildingElement through which the

local placement is defined. The coordinates of the geometric representation of BuildingElement

is defined through LocalPlacement. Using the material properties of the landmark would be a

contribution to robot navigation as well, but accessible through another pipeline than layout.

Using the aforementioned IFC classes in the BIRS ontology, a BIM-based occupancy grid map

is within reach. This map can be extracted in two ways. One is to use tools such as ifcConverter

in order to export the map from IFC files to .svg, then to a ROS-compatible format such as .png,
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and the second method would use the BIM design authoring tools such as Autodesk Revit and

Graphisoft ArchiCAD in order to export the map in .png format.

Figure 3.4 Partial indication of IFC classes relationships in BIRS ontology

From the extracted data, a topological map with each space considered as a node is expected

as the output. Figure 3.3 illustrates the relationships between space, topological map and

CORA:Region. In this respect, a space is a node that is bounded using the IfcRelSpaceBoundary

relationship which itself provides boundaries for building elements. As illustrated in Figure

3.4, IfcRelSpaceBoundary provides relationships with landmarks and nodes used to generate

the topological map containing the semantic information of the spaces and the landmarks for

the purpose of robot navigation (implemented in Python). The use of IFC semantics for robot

navigation is twofold. It contains the information of the landmark material in case the robot

gets into a space for which the laser provides a point cloud unable to segment. In addition, the

information of the nodes which are representing space names would enable semantic navigation.

The application of the ontology for outdoor environments with knowledge of obstacles helps the

robot to avoid collision. For the robot to gather information about surrounding of the building,

existing and natural artifacts are integrated namely: existing buildings, water surfaces and

vegetation are considered as obstacles. Figure 3.5 illustrates the relationships between CityGML

and the BIRS ontology. The most important properties of outdoor artifacts are their location.
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The geo-location properties of the landmarks are translated to BIM. Then, the integrated data

are translated to the robot local position system to support obstacle avoidance. The procedure on

how the GIS information is transferred to BIM is beyond the scope of the current study. More

information in this regard can be found in (Karan, Sivakumar, Irizarry & Guhathakurta, 2014).

Figure 3.5 Partial indication of CityGML classes relationships in BIRS ontology

In the expected topological map, each pair of nodes are connected by an edge and since the

edges are one-way relations, the resulting graph is directed. Extracted data from BIM, the edges

are the transition between spaces (nodes), which is done through the doors (edges). IfcDoor

is the SubClassOf IfcBuildingElement containing height and width which are defined through

IfcDoor properties. Figure 3.6 illustrates the door relationships with regards to the landmark

and to the edge. Furthermore, IfcDoor entity stores the information of door opening direction

through y-axis of ObjectPlacement. BIRS uses IfcDoor information to create the edges. The

center of the door in IfcDoor is defined by IfcLocalPlacement which inherits from its super-type

IfcProduct. As it is illustrated in Figure 3.6, a door is also a landmark with which the robot can

localize itself. If the spaces are not connected through a wall opening, the coordinates of wall

opening are extracted through IfcLocalPlacement of IfcOpeningElement.
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Figure 3.6 IfcDoor relationships in BIRS

ontology

3.4.2 Building Information Robotic System (BIRS) Data Exchange

To achieve cross-domain data exchange using BIRS ontology, the IFC file is imported in Autodesk

Revit 2020 and processed with a Dynamo script (visual programming tool for Autodesk Revit).

The information for creating a semantic topological map is retrieved using the IFC parameters

defined by the BIRS ontology. The correspondent information is then exported as an XML

database containing semantic information for creating the topological map. We then created the

semantic topological map with the nodes and edges in a Python script. Since the data need to

be accessible to ROS, this Python query script (ROS node) parses the BIRS information in the

XML database. The semantic information from BIRS is not directly understood by the robot

since the information is represented as strings with meaning in the ontology. Hence, the node

includes dictionaries translating the complex information to machine-friendly scales. Apart

from the rooms’ names, all the information in the graph’s nodes and edges follow the same

translation process. Any other node in the ROS environment can then subscribe to retrieve

semantic information. As an example, when the robot enters a room with a curtain wall hard to

detect by its sensors, the BIRS node provides the robot with enough information about the room

so it can rely on the BIRS layout (occupancy grid). The BIRS node can quickly find the room

where the robot stands from the rooms boundaries exported automatically using the low-level

information of the navigation system. Due to the nature of the construction projects, there is
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a high number of activities and machinery which temporarily operate during the construction

phase and are not fully represented in BIM. Hence, those entities that cannot be addressed with

BIM, are categorized under Uncertainty in the BIRS and are dealt with the low-level navigation

stack and real-time sensors. Detail on how the low-level navigation operates with the Uncertainty

is beyond the scope of this paper.

3.5 Case Study

Many use cases can potentially benefit from BIM-GIS integration into robot navigation stack.

The selected use cases aim to exemplify the application of using BIM and GIS to help the robot

understand the spatial structure and the topographical environment in an autonomous navigation

stack on construction sites. The context of the case is pavilion D (2922.67𝑚2) of École de

technologie supérieure (ÉTS), which is covered with very light vegetation and surrounded by

streets on two sides (Southwest and Southeast) and by buildings on the other sides. As illustrated

in Figure 3.7, a topological graph database in created for the second floor of the ÉTS, pavilion D

with BIM/IFC information using the BIRS ontology. Each node includes a set of information

identified and extracted using the BIRS ontological approach. We then take BIRS information in

order to create a second map supported by ROS, the a priori metric map (occupancy grid). The

following four use cases are practical deployments tested with a Clearpath Jackal mobile robot.

3.5.1 Semantic Indoor Navigation

In this use case, the robot starts navigation and data collection from "CORRIDOR OUEST

2019" (west hallway) and is instructed to reach "W.C. HOMMES 2002" (men bathroom) in the

building. The destination room, on the Eastern section of the building, needs to be scanned

while the starting point of the robot is on the Western section. The coordinates of the desired

room (center of the room) are provided by the topological map to the robot in order to reach the

destination. The query script provides the destination coordinates in the BIRS node and the

low-level navigation system subscribes to the node and fetches the required information. As

illustrated in Figure 3.8, there is a long path to the destination with multiple rooms in between
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Figure 3.7 Topological Map representation of the ÉTS Pavillon-D

namely, "VESTIBULE 2043", "HALL 2044", "VESTIBULE 2042", "CORRIDOR EST 2007",

and "ESPACE CLLABORATIF 2004". On its way to the destination node, the robot enters

"HALL 2044" which has a large and high wall, made of glass, invisible to the robot’s sensor.

Figure 3.8 illustrates the map created by the SLAM algorithm which used laser scanner for

navigation.

It is shown that the curtain wall is not detected in the navigation system (see left part of Figure

3.8 and Figure 3.9). Before entering the room, the navigation stack fetches information to BIRS

node about the next room. The material of that wall is listed as invisible to the sensor, so

the navigation can rely on the BIM original layout instead of the robot’s sensor. Therefore, it

prevents the robot to collide with the wall. Then, for passing through "VESTIBULE 2042", the

robot’s sensors are able to detect the door entrance. However, the information of both doors for

"VESTIBULE 2042" node such as door width, door height, and the central point of the door

is also provided to complement the real-time sensors data. The robot’s task is to get into the

room "W.C. HOMMES 2002" to scan the room to monitor if the equipment is installed. In the
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Figure 3.8 Map generated by SLAM algorithm (left) and map created from BIM (right)

Figure 3.9 The curtain wall in "HALL 2044" (left) and the outdoor environment (right)

destination node (room) the robot calls the database to query which equipment is to be installed

so that the data collected can be compared with the as-planned model.
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3.5.2 Semantic Outdoor Navigation

Another case study scenario relates to robot navigation in outdoor environments. In this use

case, the robot navigates on the site around the building to collect data while there are several

obstacles to be detected through BIM-GIS in order to contribute to obstacle avoidance. There

is a landscape polygon covered with light vegetation, North of the building which is between

the building of Pavilion-D and another building of the ÉTS facility. The polygon shape of the

artifact contains 9 vertices. The coordinates of each vertex are retrieved from GIS and translated

to the BIM environment. Similarly, the location of the vertices is provided by the BIRS node so

that the polygon forms as an obstacle for the navigation system. Furthermore, outer boundary of

the building is a wall, made of glass which the robot can hardly detect properly (see right part of

Figure 3.9). As shown in Figure 3.10, all the information is encoded within an occupancy grid

map compatible with ROS. The BIRS node provides the robot navigation system with all the

required information, so it successfully complements the low-level information.

Figure 3.10 Partial indication of coordinate transfer from GIS to

BIM which creates an occupancy grid map
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3.5.3 Progress Monitoring

In the third scenario, while the robot is navigating the construction site, it enters “CORRIDOR

SUD 2010” (South hallway). As illustrated in Figure 3.11, the robot generates a map (see left

part of 3.11) which is the as-built map (real state) of the section covered by the robot. In this

case, the as-planned map (see right part of Figure 3.11) shows no planned wall at the time of

data collection. This difference is not a sensors default; it shows that the project is ahead of

schedule and the two walls on each side of the hallway were already installed. With the query

script that was developed in the BIRS ontology, the robot has access to the BIM data and it

fetches the information in this regard. There are two uninstalled walls defined as landmarks as

SubClassOf CORA:Region (SubClassOf SpatialStructureElement) in the BIRS ontology and

their correspondent information derived from IFC. As elaborated in the BIRS ontology, the

wall on each side of “CORRIDOR SUD 2010” is a landmark; a building element defined by

IfcBuildingElement. The correspondent information such as the GlobalID, location, material and

room boundary relationships defined in the BIRS ontology is available through the BIRS node.

Figure 3.11 The As-built map created by the robot (left) and the

As-planned map generated from BIM (right)
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Based on the information retrieved from BIRS, the robotic system identifies which walls are

installed ahead of schedule by having all the relevant details provided by the BIRS ontology.

Similarly, this process can be followed for all the building elements which ultimately enables

detailed and accurate comparison between as-planned and as-built.

3.5.4 Safety and Risk

The last use case scenario illustrates the potential for risk analysis on site. In this scenario, when

the robot is collecting data, it detects anomaly which requires assistance. While the robot is on

its way from “CORRIDOR OUEST 2019” to “W.C. HOMMES 2002” to collect data - right

before entering “VESTIBULE 2042” - the robot detects a column as a landmark that is not

planned in that location. Figure 3.12 illustrates the as-planned building layout (see right part of

Figure 3.12) and the detected location of a column in the map generated by the robot (see left

part of Figure 3.12). The BIRS ontology provides the information to the robot that no column is

planned in that location. In this circumstance, an anomaly is detected on “NIVEAU 2” and the

robotic system finds the closest contractor’s office to seek assistance. As illustrated in Figure

3.12, the BIRS ontology provides the robot with the location of contractor’s office. The room’s

location is queried from the BIRS, so the robot can navigate itself to the office.

Figure 3.12 The detected anomaly on the map by the robot (left)

and the as-planned map generated from BIM (right)
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The robot changes its path towards the contractor’s office using a common warning signal to

indicate that an anomaly was detected. This does not necessarily mean that the column is

installed in an incorrect place and that is why the robot seeks assistance. This may happen

when there is an obstacle in the occupancy grid map (generated by the robot) which is not in

the map created from BIM. In this use case scenario, the detected anomaly is reported to the

contractor for further analysis. A remote warning could also be sent if an operation room exists

to supervise the robot’s activities.

3.6 Conclusion

Automating the data collection for progress monitoring of construction projects is challenging.

UGVs are a good fit to fulfill this task but the first step is for the robot to be able to navigate on the

site. There is a number of studies which address the problem of robot navigation with or without

a priori map and utilize various navigation algorithms. The ontology provided by this paper,

makes it possible for the semantic information of the building to contribute to the navigation.

Information such as building elements’ positions, textures, and their connections to one another,

are extracted from IFC files and are fed to the navigation stack. Since the high-level information

is added to the low-level navigation system, ontologies are used to reach this objective. First,

established ontologies of the robotic domain are selected to be bridged with the construction

data from IFC and CityGML to provide a topological database that can be queried. Then, the

retrieved information is used to develop a ROS node that stores IFC and CityGML semantics

to be published in the navigation stack and to be used in the low-level navigation system. The

use cases show that the ontology provides semantic data that helps the robot to navigate and to

understand what information is expected from its sensors. Besides, since there is no standard

data format for data exchange between the BIM authoring tool and ROS, this paper uses the

flexible XML data format, for data exchange between the robot and BIRS. A second type of data

format leveraged the occupancy grids common to the robotic domain. The IfcBuildingElement

and its sub-types are used to create that occupancy grid, thus contributing to the robot navigation.

The topological database also provides the robot with information for the equipment in the
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spaces where data are acquired to be compared with the data previously collected on the site.

This can be used for progress monitoring as well as for safety information for the robot itself.

The applications of the BIRS ontology are not limited to the ones explained in this paper and

many other data exchange problems could be approached by extending the explained ontology

in this paper (such as including Mechanical, Electrical, and Plumbing (MEP) equipment in

the ontology in order to provide a database for facilitating automated comparison between

as-planned vs. as-built). The empirical application of the robot navigation on construction sites

can also be extended to positive impacts on the productivity, risk and safety analysis, circulation

map on the site and sustainability of projects.

As for limitations of the system, semantic web technologies are evolving rapidly, and so are

the tools used for adopting them. For this reason, there is no standard method or strategy for

semantic data exchange between domains, thereby making it somewhat challenging to seek

the best pipeline to implement semantic web technologies. In this paper, we used a set of

established standards and data schemas to enable semantic navigation of mobile robots on

construction sites. The adopted ontologies come with some limitations, so as a result, their

limitations are also applicable to this study. The objective of this study is to bridge the knowledge

representation between the AEC and the robotic domains without adding additional complexity.

Hence, we selected the well-established and broadly used robotic ontologies to be bridged with

IFC and CityGML. In addition, robotic and construction domains utilize a number of different

software tools, platforms and data formats which are incompatible with one another. This is

one of the reasons why we adopted ontological approach for semantic data translation between

domains. However, the query script we developed does not follow a standard and just extracts the

information defined in the BIRS ontology. The current study complements the state-of-the-art

in navigation systems by including semantic information and yet, the practical robot navigation

remains highly dependent on the low-level information received from the sensors as well the

strategies to implement low-level navigation. This work now needs to be extended with the

information of MEP to help avoid potential obstacles and for other applications such progress
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monitoring and quality control. The topological database is also currently being leveraged for

high-level path planning in upcoming works.
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4.1 Abstract

With the growth in automated data collection of construction projects, the need for semantic

navigation of mobile robots is increasing. In this paper, we propose an infrastructure to

leverage building-related information for smarter, safer and more precise robot navigation during

construction phase. Our use of Building Information Models (BIM) in robot navigation is

twofold: (1) the intuitive semantic information enables non-experts to deploy robots and (2) the

semantic data exposed to the navigation system allows optimal path planning (not necessarily

the shortest one). Our Building Information Robotic System (BIRS) uses Industry Foundation

Classes (IFC) as the interoperable data format between BIM and the Robotic Operating System

(ROS). BIRS generates topological and metric maps from BIM for ROS usage. An optimal

path planner, integrating critical components for construction assessment is proposed using a

cascade strategy (global versus local). The results are validated through series of experiments in

construction sites.
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4.2 Introduction

Building Information Modeling (BIM) has brought many advantages by storing building elements’

semantics and geometries (Karan & Irizarry, 2015). Conventional methods of data collection

for the purpose of progress monitoring rely on periodic observations, manual data collection

(which is mostly textual data and a limited number of photos), and personal interpretation of the

project progress (Álvares & Costa, 2019). These aforementioned conventions are error-prone,

time-consuming and cost-ineffective since they are subjective processes (Teizer, 2015). Manual

data acquisition by individuals would result in decentralized data; coming from different sources

in different formats, thereby making it somewhat challenging to manage and analyze them.

According to de Soto et al. (2018), automation of monotonous and repetitive construction

processes would significantly enhance construction efficiency. Hence, there is a growing need in

the construction industry to automate data collection task. In addition, the applications of data

collection using an Unmanned Ground Vehicle (UGV) can provide new kinds of information

and applications such as equipment tracking and 3D reconstruction which would ultimately have

positive impacts on quality control, safety and sustainability of the construction projects.

With tremendous progress in mobile robots capabilities, the interest in adopting mobile robots for

data collection on construction sites is increasing. Rugged platforms with high manoeuvrability

are commercialized for this usage (Pomerleau, 2021) and several works are enhancing their

autonomy for navigating these challenging environments (Kim et al., 2018; Asadi, Chen, Han,

Wu & Lobaton, 2019). A handful of fundamental steps still need to be addressed for the

deployment of robots on construction sites, such as their usage by non-experts (untrained)

operators and the automatic integration of the diverse requirements related to construction

management in their mission planing. Our solution leverages BIM semantics extracted in an

interoperable data schema, IFC, and translated for robot indoor navigation. This semantic

information, intertwined with the robot navigation and mission, help the operator manage the

robotic system as they share conceptual knowledge of their environment (Kostavelis & Gasteratos,

2017).
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This paper proposes a novel method for semantic robot navigation with an optimal path planning

algorithm using building knowledge on construction sites. The optimal path is extracted from

user inputs using BIM/IFC which provide digital representation of the construction project

(Karimi & Iordanova, 2021). The resulting path (which is not necessarily the shortest path)

can be altered with the weights of several criteria such as robot and workers safety, BIM new

information requirement and sensors sensitivity to environmental features. In this step, the

building semantics play an essential role on defining the start, the end and the transitional

coordinates with which the robotic system plans the path. Furthermore, all along the mission,

the local paths are computed based on the relevant complementary information for the low-level

navigation extracted from IFC. This is essential to cope with limitations of the robot. For

instance, a path planner should avoid trajectory near glass walls: they are hard to detect by

many sensors. Luckily, information about wall materials can be retrieved from BIM. Among

the conventional methods on path planning (Crespo et al., 2020), we use topological map

representation in order to store the building semantics in nodes and graphs. The current paper

contributions are as follows:

• An optimal high-level path planner integrated with the low-level navigation (cascade

navigation stack);

• Semantic teleoperation and navigation for autonomous UGV during the construction process;

• Practical implementation of the proposed system deployed on an autonomous mobile robot

navigating a construction site.

The next section will summarize the inspirational works to our approach. Then, section 4.4

describes the generation of topological maps (hypergraphs) from IFC information. Section 4.5

explains the IFC-based path planning algorithm in details. The setup of our field experiment

to validate the proposed system is described in section 4.7. The results of our experimental

validation are discussed in section 4.8. Finally, section 4.9 summarize the contributions and the

next steps of our work.
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4.3 Related Work

Conventional methods of indoor path planning often refer to optimal path as the shortest path

calculated by various algorithms such as A* and Dĳkstra’s (Palacz et al., 2019). To enhance the

performance of these planners, many studies suggested ways to leverage BIM/IFC for indoor

path planning. Wang et al. (Wang, Zuo, Guo, Li, Mei & Qiao, 2020) develop a framework for

converting the BIM digital environment to a cell-based infrastructure to support indoor path

planning. In this work, they emphasize on the "BIM voxelization" process rather than the path

planning problem. In another study, a BIM-based path planning strategy is used for equipment

travel on construction sites (Song & Marks, 2019). The authors extract the start and end points

from BIM and then generate the shortest sequence of rooms for the operator, but does not support

robot path planning. Ibrahim et al. (2017) propose a path planning strategy based on BIM for an

Unmanned Aerial Vehicle (UAV) on construction sites which uses a camera for data capturing.

They use BIM geometries to define a path for outdoor environments but do not address indoor

semantic robot path planning. In this direction, Follini, Terzer, Marcher, Giusti & Matt (2020)

utilize BIM geometries for path planning of an UGV supporting construction logistics application.

Their proposed system uses a human-assisted approach in a controlled environment and is yet

to thoroughly leverage BIM/IFC semantics in a construction site. Ibrahim & Golparvar-Fard

(2019) proposed an optimal route for a data collection mission using an UAV. They utilize 4D

BIM to identify which building spaces are expected to change during the construction phase

(implemented in a simulated environment) so that the flight path navigate through those areas

and collect data.

Delbrügger et al. (2017) developed a framework supporting humans and autonomous robots

navigation which mostly uses building geometries in a simulated environment. Nahangi et al.

(2018) assessed indoor localization of an UAV using AptilTags with their known location in a

BIM-generated map. They present this work as a proof-of-concept for the use of AprilTags in

indoor environment. However, due to inaccuracy of localization in their work, they improve

their previous work by using Extended Kalman Filter (EKF) in their localization framework

(Kayhani et al., 2019). Another study examined the use of BIM in robot localization in which
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the proposed system uses a hierarchical reasoning for path planning (Siemiatkowska et al.,

2013). BIM was also demonstrated to be powerful for the identification of different paths

from which a hierarchical refinement process can find the shortest path (Hamieh, Makhlouf,

Louhichi & Deneux, 2020). That work provides only high-level path (rooms sequence) with

respect to BIM geometries and the integration with ROS is not studied. An approach using

hypergraphs generated from IFC files was also developed in which a modified A* algorithm is

able to detect the optimal path among nodes in the graph (Palacz et al., 2019).

In these inspiring works three aspects of the BIM potential for indoor robot path planning are yet

to be thoroughly studied: (1) considering the full potential of the BIM/IFC semantic rather than

only the geometry (2) integrating the high-level (rooms sequence) with the low-level sensor-based

information in a full navigation stack (3) the field validation of strategy using BIM/IFC for

both global and local path planning. In this paper, we cover these gaps by integrating Building

Information Robotic System (BIRS) into a navigation system in ROS in order to determine the

optimal path and then navigate autonomously.

4.4 topological building maps created from BIM/IFC

IFC data schema provides construction stakeholders with semantic information of buildings

containing attributes and relationships between different entities (Ismail, Strug & Ślusarczyk,

2018). This information can be extracted in graph database (Strug & Ślusarczyk, 2017). However,

the use of that information for reasoning is complex since the IFC files encompass large amounts

of data. In order to cope with this, we first identify the required data for robot navigation on

construction sites, then, we extract and store the data in an XML database. The conceptual

semantic relation between BIM/IFC and robot navigation is covered in a previous paper on BIRS

(Karimi, Iordanova & St-Onge). We extend the hypergraphs of Palacz et al. (2019) with the

semantic and geometric information of IFC files. All the semantic information required to the

global and local planners retrieved from IFC is in the form of a topological map.
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As IEEE 1873-2015 730 (2015) defines, nodes and edges are the components of topological

maps and we fill them with the following information:

• Nodes contain the rooms information namely: room’s name, room’s unique ID, room center,

room area, walls’ unique IDs, wall material, last scan date, construction activity (hazard for

the robot).

• Edges contain the doors information namely: door’s unique ID, door’s location, doors

opening direction.

Figure 4.1 A directed hypergraph of 𝑆 = (𝑉, 𝐸) where

𝑉 = {𝑉1, 𝑉2, ..., 𝑉𝑛} is a set of nodes and 𝐸 = {𝐸1, 𝐸2, .., 𝐸𝑚} is a

set of hyperedges. Each node (𝑉𝑖) is an IfcSpace containing its

relationships and each hyperedge (𝐸 𝑗 ) is an IfcDoor with its

attributes extracted by BIRS (Karimi et al.)

In the hypergraph, one node is created per IfcSpace and for each IfcSpace, the bounding IfcWall

and IfcCurtainWall elements are identified. With the above-mentioned information, a graph

is generated as illustrated in Figure 4.1. Then, the edges need to be attributed with the cost

(weight) of passing over each (from a room to another). In this direction, 𝑊 = (𝑊𝑉,𝑊𝐸 ) is a

pair of weights where 𝑊𝑉 and 𝑊𝐸 are the node and hyperedge weights respectively. 𝑊𝑉𝑖 is the 𝑖

node total weight obtained from:

𝑊𝑉 = 𝑤𝑚 + 𝑤𝑎 + 𝑤𝑠 + 𝑤ℎ (4.1)
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where 𝑤𝑚 depends on the walls material, 𝑤𝑎, on the room area, 𝑤𝑠, on the room scan-age, and

𝑤ℎ, on the room hazards. 𝑊𝐸 𝑗 is the 𝑗 hyperedge weight obtained from:

𝑊𝐸 = 𝑤𝑑 (4.2)

where 𝑤𝑑 depends on the door opening direction. For passing from one node to the other, there

might be several paths the robot can use. The overall weight of a path (from start to end node) is

as follows:

𝑊 =
𝑛∑

𝑖=1

𝑊𝑉𝑖 +

𝑚∑

𝑗=1

𝑊𝐸 𝑗 (4.3)

One challenge for the robot is to be able to detect obstacles. To help the robot predict and avoid

potential failures, the material properties of the walls are extracted through IfcMaterial and its

super-type IfcProduct. The weight of each curtain wall, i.e. walls that are invisible by design,

in each node is 𝑤𝑚 = 12, while all others are 𝑤𝑚 = 4 since they can be easily detected. The

time required to go through a transition node is also taken into account, i.e. bigger rooms take

more time for the robot to cross. Accordingly, the weight for the rooms less than 50𝑚2, between

50𝑚2 to 100𝑚2 and more than 100𝑚2 are 𝑤𝑎 = 2, 𝑤𝑎 = 8 and 𝑤𝑎 = 12 respectively. Since one

of the core purpose of deploying robots on construction sites is to collect data, the scanning

age of all rooms is incorporated. The progress monitoring needs up-to-date data and when the

robot is collecting data it can optimise its path to visit more rooms and collect more data. The

scanning periods are selected according to industry needs, therefore, we assign 𝑤𝑠 = 10, 𝑤𝑠 = 6,

𝑤𝑠 = 0 for the scanning period of less than 1 week, between 1 week and 2 weeks, and more than

2 weeks respectively. Since the construction projects evolve constantly, the safety aspects of

robot navigation are essential. In this direction, the data collection for the spaces with ongoing

construction activities should be postponed to a safer moment for the robot to navigate those

rooms. If the hazardous space is one of the transition nodes, an alternative route needs to be

automatically planned so we assign 𝑤ℎ = 500 for the weight of passing through such spaces.

In this case, another path will be selected by the algorithm if there is any. If there is not an

alternative safe path for the robot, the algorithms provides a warning for high-weight paths so

that the supervisor of the robotic deployment is warned. The hypergraph representing building
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topological map enables the robotic system to find the optimal path by running an algorithm. In

this paper, we use directed hypergraph (with directed hyperedges) allowing us to assign cost

for door opening directions. IfcDoor as a sub-class of IfcBuildingElement provides the center

coordinates of the doors creating hyperedges (with their coordinates) in the hypergraph. IfcDoor

also stores the opening direction through y-axis of ObjectPlacement parameter. For pushing and

pulling the door, we assign 𝑤𝑑 = 2 and 𝑤𝑑 = 6 to the hyperedge’s weight respectively. This is

due to difficulty for pushing and pulling the doors respectively. Ultimately, the total weight of

passing one to the other is the sum of nodes weights and edges.

4.5 Finding The Optimal Indoor Path

As Gallo, Longo, Pallottino & Nguyen (1993) define, directed hypergraphs are divided into

two categories according to their hyperedges namely: forward hypergraph (F-hypergraph) and

backward hypergraph (B-hypergraph). The former is a directed hypergraph in which one node

diverges to several nodes and the latter is the one in which several nodes converge to one node.

As an example of applications, F-hypergraphs are employed for time analysis on transportation

networks Prakash & Srinivasan (2017). Also, B-hypergraphs are used to perform deductive

analysis to find the optimal path in a hypergraph. The combination of B-hypergraph and

F-hypergraph is a BF-hypergraph having both divergent and convergent nodes (Gallo et al.,

1993). In topological building layouts, we deal with BF-hypergraphs since we have spaces which

connect several spaces to other spaces (an example of such nodes is corridors). In addition, we

intend to find the optimal path (a "deductive database analysis" from several possible paths)

based on several criteria which are represented as weights in the hypergraph, therefore, we use

the "Shortest Sum B-Tree" algorithm which finds a hypertree (subhypergraph) of the nodes

as explained in Gallo et al. (1993). We also use additive weighting function to calculate the

cumulative weight of each possible route and then we choose the lighter route which is the

optimal path for the robot.

In order to create the hypergraph, we first retrieve all the relevant IFC information. The process is

done with a Dynamo script (a visual programming tool) to extract the IFC parameters in order to
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Inputs:
layout_graph : hypergraph
tail_room, head_room : node
door : hyperedge
path_weight : hyperedge_total_weight

Outputs:
semantic_path : list<node, hyperedge>
x_y_path : list<nodes_coordinates,
hyperedges_coordinates>
hyperedge_total_weight : number

Figure 4.2 Data structure for IFC-based semantic optimal

path planner algorithm

Figure 4.3 Semantic Graphical User Interface for the intuitive operation of the robot

navigation on construction sites. The controls in the header allow selecting a destination

and generating the path. The panel to the left shows the attributes of the selected room. The

center contains a map of the environment, with the robot’s pose in real time being

represented by the purple arrow. The center points of the rooms and doors in the path are

represented in the map by the yellow circles. The right panel allows the user to reconfigure

the different weights that are applied to the path generation

export the IFC information in a XML database. A Python script is developed to parse the XML

data in order to translate meaningful data to ROS (for example, the rooms center coordinates are

retrieved as strings so they need to be parsed to be integrated with the robotic system). With
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an hypergraph of the whole building, the user defines the start and end nodes (rooms), and let

the algorithm find the optimal path. Since we are implementing BF-hypergraph, each pair of

nodes is connected with two directed hyperedges together, thereby making a comprehensive

B-hypergraph within the BF-hypergraph. This practice allows considering forward and backward

direction in a path so that the door opening direction is considered. "Shortest Sum B-Tree"

algorithm provides the possible hyperedges from a start node to other nodes Gallo et al. (1993).

Then, the retrieved information is used to create a sub-hypergraph from the start node to all other

nodes representing all the possible paths. By giving the destination node to the sub-hypergraph,

the possible paths from start to end node are identified and finally the lowest cumulative weight

of the paths is retrieved. Having a set of nodes and hyperedges from the optimal path, the

building information is extracted to enable semantic navigation. Each node is represented by

the name of the corresponding space and the center coordinates of that room. As illustrated

in Figure 4.2, the optimal path outputs a set room names, their coordinates and a set of door

coordinates in the sequence of node location and hyperedge (door) location. The room names

enable semantic navigation and the 2-D coordinates provide destinations one after the other.

4.6 Semantic Graphical User Interface

A Graphical User Interface (GUI) was developed based on BIM semantics to allow users to

intuitively operate the robot and configure the path planner. The GUI connects to the ROS

running in the robot and presents semantic information of the building and data from the

robot in real time. The integrated high-level and low-level navigation system moves the robot

to the desired destination. The GUI allows the non-expert users to work with their domain

knowledge, thereby making robot deployment more intuitive and simpler. Figure 4.3 illustrates

the interface window. The GUI is developed in Python notebooks, allowing for easy integration

of visualization widgets and customization.

The GUI provides the building’s rooms in a drop-down list, from which the user selects a

destination and then launch the path planner to find the optimal path. The center area of the

GUI shows a map of the building, with the robot’s pose being updated in real time, along with
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the paths objectives. The left panel shows the selected room’s (end node) attributes. The right

panel allows the user to alter the weights of each parameters of the path planner. After changing

and saving the new weights, the user can generate the path again and see the results on the map.

Finally, the user can click on the Move Robot button to trigger the robot to start moving.

4.7 Field deployment

Our approach was validated from simulation to the field with an experimental case study. The

goal was to drive a mobile robot through the corridors of one of the buildings at the École de

technologie supérieure, for which a complete BIM model was available, and collect data. The

semantic path planner was used to generate a set of waypoints from the user inputs, then a low

level A* path planner aided by a collision detection stack navigates the robot.

Our robotic platform, shown in Figure 4.4, is built from a four-wheeled unmanned ground vehicle

(Clearpath Jackal) equipped with wheel encoders, an internal IMU and an onboard NVidia

Xavier computer. The Jackal is delivered with ROS nodes for control, odometry estimation

(from encoders and IMU) as well as diagnostics tools provided by ROS.

The sensing system, which was envisioned for point cloud collection in construction sites,

contains two LiDARs, five depth cameras and one tracking camera. The sensors are positioned

in different directions to cover as much as possible of the robot’s surroundings. While all sensors

collect and record data of the environment, most of them are also used by the navigation stack

for localization and collision avoidance. Below we present a detailed description of each sensor

or group of sensors:

• Front facing cameras: One Intel Realsense D435i depth camera and one Intel Realsense

T265 tracking camera are mounted in front of the robot. The T265 software estimates

the camera’s pose and integrates data from the base odometry (wheel encoders and IMU),

providing accurate odometry that is fed to the localization algorithm. The D435i provides

depth images that are used to detect obstacles immediately in front of the robot, triggering an

emergency stop;
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Figure 4.4 Mobile robot platform equipped with various sensors

• Velodyne Puck 32MR LiDAR: Mounted horizontally on top of the robot, it captures laser

scan data from all around the robot. This information is used by the localization algorithm to

estimate the robot’s global position on the building map;

• Depth cameras: Three Intel Realsense D435i depth cameras are mounted pointing to the

top and left and right sides of the robot. Their purpose is to collect RGB images and depth

images from the walls around the robot and from the ceiling;

• Ouster OS1 LiDAR: The last sensor, an Ouster OS1 LiDAR is mounted in the back of the

robot, inclined by an angle of 45 degrees in order to capture point clouds of the ceiling. Since

this sensor has a large 90° field of view, it is also able to cover the walls and part of the back

of the robot.

Figure 4.5 gives an overview of the system. The robot pose in the map is obtained through the

use of a ROS implementation of the Adaptive Monte Carlo localization algorithm (ROS wiki,

2020; Thrun, 2002). Before deploying the robot, wall geometry information is extracted from

BIM to generate an occupancy grid of the building. During the robot navigation, this map, the
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odometry, and the laser scan data from the horizontally mounted Velodyne LiDAR are fed to

the localization algorithm, which then estimates the robot’s current pose in that map. When a

destination room is selected, the semantic path planner outputs the preferred path to that room

as a list of waypoints, containing the center points of each room, door and corridor in the path.

An A* path plannerHart, Nilsson & Raphael (1968) then calculates the shortest path from the

robot’s current position to the next waypoint in the list. Velocity commands are generated from

the A* path and sent to the robot’s internal controller to drive it though that path.

Figure 4.5 System Overview: A high level planner that process

BIM/IFC information and user inputs is integrated to a low level

navigation stack in a cascade design. The low-level module takes care of

the localization, local path planning and collision avoidance tasks, while

the high-level planner generates paths based on BIM/IFC semantics
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The simulation was performed using the Gazebo Simulator. The building information is exported

to create a 3D model, a digital twin. Clearpath, Gazebo and the ROS community provide

all the required software packages required to generate an accurate simulation of our robotic

platform. Figure 4.6 shows the simulated robot and its environment with different wall textures

and transparency.

Figure 4.6 View of the simulated environment used to test the

BIM/IFC optimal path planning approach. The building 3D model

was built with geometry information extracted from the BIM. The

robot model simulates the sensors and possesses the same

characteristics as the real robot

4.8 Results

The experiment had two main objectives:

1. Test the effectiveness of the semantic path planner in generating the optimal path to reach

the destination, given the building information obtained from BIM/IFC.

2. Test how changes in the building information affect the final path that is generated.
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In our case study, the robot starts in a corridor (CORRIDOR OUEST) on the west side of the

building and must reach an open area (CORRIDIR EST) on the eastern part of the building.

Figure 4.7 shows the building map, and the path in red line generated by applying the A*

algorithm from start to end. This is the shortest possible path between the two points, taking into

consideration only the building geometry and a small safety collision radius around the robot.

When the Semantic Path Planner is applied to the same scenario, a similar result is obtained

as expected, represented by the blue path in Figure 4.7. Since there are no doors, undesirable

materials or hazards in the path, the algorithm outputs a list of rooms that must be visited by the

robot that represent the shortest distance from start to end. The semantic path planner provided

the order of rooms’ names from the start to the end as it is show in the GUI in Figure 4.3.

Therefore, the user operating the robot can intuitively track the path from the data collected.

In this direction, the as-built data can be directly compared to the as-planned since the path

is recorded semantically. Also, the waypoints of rooms’ center coordinates and doors’ center

coordinates are provided by the semantic path planner. If there is a door made of materials

invisible to sensors (such as glass), the complementary door coordinates helps for safer, smarter,

precise data collection. Following this, the A* algorithm finds the shortest path between the

waypoints.

In a second run, the building information was altered to include a construction operation carried

out in the area highlighted with a dashed box in Figure 4.7 (not visible in the GUI). Since

the construction activity represents a hazard with a high cost for the Semantic Path Planner, a

different path passing through another corridor is automatically selected, as illustrated by the

orange path. Nevertheless, the high cost of the shortest path triggered a warning in the system

indicating a hazard to the user through the semantic GUI. Therefore, the user can understand the

risks associated with navigation through an active construction area and decide whether to scan

the environment or postpone it to a safer time. The orange path was automatically generated,

although it is not the shortest path, as the optimal path from the default parameters mentioned in

section 4.5. This path passes along a large curtain wall invisible to the robot’s sensors. The

additional semantic information provided by the BIRS is given to the robot as well as the BIM
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occupancy grid so it contributes to collision avoidance with the wall. The GUI provides the user

with the scan aging of the rooms so the user can decide which rooms to select as the destination

for data collection. This allows the users to run multiple data collection mission with the robot

which increases the efficiency of robot deployment on construction sites. As illustrated in Figure

4.7, the integrated BIM-ROS information provides a cascade navigation system on construction

sites enabling autonomous and accurate data collection of the spaces scanned.

Figure 4.7 High-level and low-level paths: A* generates the shortest path possible

between start and end, not taking advantage of the BIM/IFC semantics. Path 1 has the

lowest total weight among other alternatives. Path 2 is automatically generated when there

is a hazard to the robot in path 1
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4.9 Conclusion

This paper presented a semantic path planner that uses building information from IFC data

schema to generate optimal paths for safe and efficient navigation of autonomous robots on

job sites during the construction phase. We used the BIRS for extracting building information

from IFC represented in a hypergraph structure. Path planning algorithms can then be used to

calculate optimal paths in this graph given the building information. Weights are designated to

each connection in the path to represent how different conditions can affect the robot’s navigation

and to prioritize paths with more desired characteristics. The optimal semantic path is then

integrated with low-level navigation system and A* algorithm is used to calculate the shortest

path within the optimal path. The effectiveness of the path planning to generate different paths

given different conditions was shown in a simulated and real life case study.

This algorithm can be extended in the future to take into consideration Mechanical, Electrical

and Plumbing (MEP) semantics for data collection. Different locations can be added based

on the kind of information needed at a specific time of construction through the GUI in order

to provide the robot more destinations to collect data. Therefore, the high-level path planning

algorithm would provide a more efficient route for data collection as well as semantic navigation.

Also, this paper provided semantic navigation of mobile robot on construction sites, therefore, a

user study will be conducted in order to assess the usability of the semantic navigation approach.
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CHAPTER 5

DISCUSSION

The current thesis develops and implements a system that leverages BIM-GIS information for a

a quicker, smarter and more efficient robot navigation on construction sites. This is the final

output which accomplishes the research objective. The thesis adopts a design science research,

which aims at developing an artifact as the final output to reach the research objective. The

adopted methodology leverages a design cycle in which an artifact is designed, developed and

evaluated in each chapter to provide a robust result to be used in the next steps of the research.

In this direction, three research questions are articulated and each of them leverages DSR to

develop an artifact to find the answer. The artifact of one paper is then used in the next paper to

develop another. All developed artifacts of the papers are then aggregated to develop the final

output of this research. The artifact of each paper is as follows:

• The SLR (chapter 2) develops an artifact which is the construction-related information that

can be leveraged for autonomous robot navigation.

• The BIRS ontology uses the artifact developed in chapter 2 to develop another artifact in

chapter 3 to extracts the relevant information and transfer the semantic building-related data

to the robot navigation system.

• The developed artifact in chapter 3 is used to develop another artifact in chapter 4 which is a

high-level path planner providing complementary building information to plan the optimal

path considering building semantics, geometry and safety measures.

As illustrated in Figure 5.1, the developed artifact of one paper is leveraged in the design cycle

of the next paper. In other words, each paper uses the previous paper’s findings to develop and

build on. Ultimately, all the artifacts come together to reach the research objective. Within this

process, the research questions are answered, thus contributing to the AEC industry and the

body of knowledge.
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Figure 5.1 Connection of the three papers regarding the artifact development

5.1 Papers’ Contributions

Each paper aims at contributing to the body of knowledge by answering to the thesis research

questions which are as follows:

• Paper 1 (Chapter2):

- Mapping Trends, challenges, potentials, and deficiencies in BIM-GIS integration for

robot navigation.

- Visualizing and analyzing the citation patterns of journal articles along with the analysis

of studies

- Defining the requirements for robot positioning using BIM-GIS integration

• Paper 2 (Chapter 3):

- An ontology bridging BIM-GIS data to IEEE 1872-2015 and IEEE 1873-2015 standards.

- Cross-domain data structure enabling exchanges between construction and robotic

domains.
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- A practical implementation of the proposed ontology and data structure to deploy it on an

autonomous mobile robot navigating a construction site.

• Paper 3 (Chapter 4):

• An optimal high-level path planner integrated with the low-level navigation (cascade

navigation stack);

• Semantic teleoperation and navigation for autonomous UGV during the construction process;

• Practical implementation of the proposed system deployed on an autonomous mobile robot

navigating a construction site.





CONCLUSION

Autonomous UGVs can be used to provide accurate and reliable data from construction sites.

Efficient autonomous data collection requires data integration between the construction and

robotic domains to increase adaptability and efficiency of mobile robots. Based on the systematic

literature review (chapter 2), we identified the opportunities to integrate digital data from the

built environment with the robot navigation system. These data can be extract from BIM and GIS

to provide holistic information of the spatial structure and topography of construction projects

respectively. In the scope of this thesis, we focused on enhancing the efficiency of data collection

by leveraging BIM-GIS data in autonomous robot navigation. To achieve this, we developed the

BIRS ontology to (1) extract the relevant information from the digital built environment and (2)

to enable cross-domain semantic data translation. The results of chapter 3 show the application

of this ontology that can be used for progress monitoring of construction projects. In addition,

the relevant complementary information for the low-level navigation is extracted from IFC files.

In order to address robot’s limitation, we developed a path planner which calculates the ’shortest’

path to a given target. It will, for example, avoid a trajectory near glass curtain walls (chapter 4)

since they are invisible to the robot’s sensors and can lead to difficulties in the navigation.

Findings

The current thesis aims to enhance the efficiency of data collection on construction sites, as

stated in the research objective mentioned in section 1.1.3.1. The first research question was

"What are the requirements of using BIM and GIS integration to be utilized in robot navigation

and how a full stack navigation system can be implemented?". The systematic literature review

(chapter 2) finds the answer to this question by articulating what construction-related information

can be leveraged for autonomous robot navigation. This is done through investigating a great

number of scholarly papers; thus, identifying the BIM-related and GIS-related contributions to

robot navigation. Furthermore, BIM-GIS integration has its challenges, therefore, data formats
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to cope with interoperability issues are also investigated and identifies. The second question

which was "How the construction and robotic knowledge can come together to semantically

transfer the building information to the robotic system?" is answered through development of an

ontology supporting semantic data translation (chapter 3). The BIRS ontology, first extracts the

relevant information that has been identified in chapter 2 and then provides a pipeline to transfer

the semantic building-related data to the robot navigation system. The third research question

was "How BIM-GIS data can be integrated with the robot navigation system for practical

implementation of semantic navigation?". This question is answered through development of a

high-level path planner that provides complementary building information to plan the optimal

path considering building semantics, geometry and safety measures. Chapter 4 describes the

answer to the third question.

Limitations and future work

The current thesis focuses on a portion of a bigger research project (automated progress

monitoring of a construction project), specifically on the autonomous data collection using

BIM and GIS. The BIRS ontology leverages semantic web technologies to enable semantic

data translation from the construction to the robotic domain. This was necessary because of

the lack of a standard data format to connect BIM and ROS in both directions. Semantic web

technologies have attracted researchers’ attention in recent years and are evolving rapidly. The

tools of implementing them are also progressing, thereby making it somewhat challenging to find

the best methodology in this regard. We utilized IEEE 1872-2015 and IEEE 1873-2015 standards

to develop the BIRS ontology. These standards come with their limitations which are applicable

to the ontology developed by us. Nevertheless, the BIRS ontology can be further extended to

incorporate MEP information for potential obstacle avoidance, or to provide additional waypoints

for robot navigation.
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As for the BIM-based path planner, the algorithm considers walls, columns, doors, and room

information for path planning. Other building elements, especially MEP data, can be included

in the path planner algorithm to provide a set of locations for the robot to go to and collect data.

The BIM-based optimal path planner enables semantic navigation through a GUI for which a

user-experience study needs to be carried out in future.
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