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Analyse de l’impact du conditionnement du signal d’horloge sur le comportement des 
circuits intégrés programmables FPGA 

 
Jafar HONARMAND 

 
RÉSUMÉ 

 

Le projet de maîtrise se concentre sur la recherche de l'effet du bruit sur les délais et sur la 
définition du pire des cas en mode fonctionnel pendant que la méthode du conditionnement du 
signal d »horloge (clock gating) s'applique au circuit de mesure. Dans la revue de la littérature, 
des efforts sont faits pour vérifier que cette méthode est l’une des techniques de réduction de 
la consommation d'énergie les plus pratiques dans la conception de circuits sur FPGA. 
Cependant, le point qui est pris en compte dans la mesure est que cette méthode peut induire 
du bruit sur l’alimentation lorsque  les autres parties du circuit restent actives. De plus, une 
seule horloge est utilisée pour éviter les produits d'intermodulation et les fluctuations 
indésirables. La conception proposée comprend deux lignes à retard différentes. Les deux 
lignes à retard sont utilisées pour calculer l'effet de bruit avec cette différence, l'une crée un 
codage unaire et l'autre crée à la fois le codage unaire et des impulsions. Les impulsions sont 
représentatives de différents retards dans la conception. 
 
Les résultats confirment la présence de deux phases transitoires: quand l’injection du bruit 
débute et quand elle est arrêtée. Des fluctuations de délais apparaissent pendant ces deux 
phases transitoires, le début de l’injection ralentissant en moyenne la logique combinatoire et 
la fin de l’injection l’accélérant.  
 

 

Mots-clés: FPGA, mode fonctionnel, retard, bruit 





 

Analysis of clock gating impact on FPGA behavior  

 

Jafar HONARMAND 
 

ABSTRACT 

 

This master's project is concentrated on finding the noise effect on delays and defining the 
worst-case scenario in the functional mode while clock gating is applied to the measurement 
circuit. In the literature review, efforts are made to verify that clock gating is one of the most 
practical power consumption reduction technique in FPGA-based design. However, the point 
that is considered in the measurement is that clock gating could induce noise on VDD with 
other parts of the design that remain active. To avoid unwanted fluctuations such as 
intermodulation due to the use of multiple clocks, only one clock is used. The proposed design 
includes two different delay lines. Both delay lines are used to calculate the noise effect in the 
design with this difference, one creates a thermometer coded output, and the other creates both 
thermometer coded output and pulses. The pulses are representative of different delays in the 
design.  
 
The results confirm the presence of two transient phases: one when the noise is started and the 
other one when the noise is stopped. Fluctuations in delay appear in both phases. Starting the 
noise overall slows down the combination logic while stopping the noise makes it faster.  
 

 

Keywords: FPGA, functional mode, delay, noise
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INTRODUCTION 
 

Power consumption is one of the significant concerns in the design of microchips. Researchers 

are aimed to find new solutions and methods to decrease power consumption. Clock gating is 

a power consumption reduction method that is used in FPGA and ASIC devices. The major 

power-consuming in electronics products is the systems clock signal, and it is responsible for 

the transition state of the elements, which typically leads to the switching power consumption 

(Shanmugasundaram, 2018). Clock gating could be applied to decrease the switching activity 

on circuit signals (Yeap, 2012). This technique is used to turn off the clock for the blocks that 

are not used for a period of time in the design. In FPGA, to apply the clock gating, the clock 

control elements need to be provided by the manufacturer. Different manufacturers such as 

Xilinx and Altera implement some specific primitives for clock gating. The seven-series Xilinx 

FPGA provides BUFGCE to produce clock gating. BUFGCE could be used to shut down 

multiple regions during non-operation. Toggling the enable of the BUFGCE is meaning of 

stopping entirely dynamic power consumption (Xilinx, 2018). Clock gating is a simple and 

adequate power consumption reduction method, but the drawback of using clock gating , which 

includes noise on power (VDD) when enabled or disabled, needs to be considered and 

measured.  

 

Indeed, noise impacts the delays, and defining this effect will help find the worst-case scenario, 

which is when the chip is running, and the noise on the VDD may cause an increase on the 

combinational logic delay. Therefore, two parts needed to be created to find the worst-case 

scenario: a circuit to measure delays and a noise source to emulate clock gating. Time to Digital 

Converters (TDCs) are potential delay measurement circuits. Some, like (Narasimman, 

Prabhakar, & Chandrachoodan, 2015), (Chan & Roberts, 2004) and (Soni, Patel, Panda, & 

Sarbadhikari, 2017) presents different types of TDCs. Since the TDC structure is an entirely 

digital, simple, and compact structure that provides flexibility and low-cost design in the 

FPGA, it could be used to implement a delay line. However, the structure needs to be adapted 

to allow delay measurements during the transient noise phases caused by enabling or disabling 

clock gating. Examples of the noise sources allowing clock gating emulation are already 
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available in the literature (Larche, 2013) and (Gnad, Oboril, Kiamehr, & Tahoori, 2018). They 

need to be adapted to allow different noise modes. 

 

Thesis objectives  
 
The principal objective of this research project is to study the impact of power noise on delays 

in the functional mode, induced by clock gating. A particular emphasis is put on the transient 

noise phases appearing when clock gating is enabled and disabled, under different noise modes 

and at different clock frequencies. To do that, a new design is proposed and implemented to 

obtain and compare the results in terms of delays. 

 

Thesis organization 
 
This thesis is organized into three different Chapters as follows: 

• Chapter 1 presents the primary material required for this work, such as the Xilinx platform 

used in the design, description of essential elements and primitives, and design 

implementation details in Vivado software. Furthermore, the overview of the related work 

is discussed in this chapter. 

• Chapter 2 presents the proposed design, which allows examining the impact of noise on 

delays at different frequencies. The proposed design aims to use different delay elements 

for comparison purposes at a wide range of frequencies. 

• Chapter 3 presents the results and analysis in the design in terms of delay while the noise 

affects the system.  

A brief conclusion is the last part of this research. 

 

Thesis contribution 
  
To the best of our knowledge, this is the first time measuring delays, for each clock period, 

during transient phases induced by clock gating for a wide range of clock frequencies, is 

considered. The results for different noise modes clearly show the impact of clock gating. 



 

CHAPTER 1 
 
 

LITERATURE REVIEW AND FPGA ARCHITECTURE 

 

1.1 Literature review 

This research aims to demonstrate the behavior of chips at different frequencies when clock 

gating affects this behavior. Moreover, this work used the Xilinx Zynq-7000 SoC FPGA, based 

on a 28 nm technology. Notably, computing the noise impact on the delays and defining the 

worst-case scenario in the functional mode, namely when the chip is running, are the topics of 

interest in this research. The worst-case scenario will be when the noise on the VDD causes an 

increase on the combinational logic delay. The literature review section is divided into three 

parts that discuss the clock gating as a power consumption reduction technique, the comparison 

of different delay lines, the noise source, and existing delay measurement platforms. 

 

 

1.1.1 Clock gating 

Clock gating is a well-known power optimization approach used in FPGA devices (as well as 

in ASICs) to reduce additional switching activity. Clock gating is an easy and efficient method 

to decrease the dynamic power consumption by turning off the non-used parts in the design 

and go to the standby state (Pedram & Rabaey, 2002). By applying the clock gating technique, 

we could decrease the power by reducing the switching activity in the FPGA elements such as 

flip-flops, gates, and clock trees (Y. Zhang, Roivainen, & Mammela, 2006). It is required to 

use the appropriate clock control components prepared by the manufacturer to apply the clock 

gating inside an FPGA. In Altera devices, it is possible to generate a global clock with enabling 

port applying the mega function ALTCLKCRTL (Altera 2018). The other manufacturers like 

Xilinx have also proposed solutions for clock gating in their products, such as Intelligent clock 

gating (Xilinx 2012). Intelligent clock gating is used to decrease the dynamic power 
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consumption on parts of the design. As this technique is based on controlling the CE of the 

slices, deactivating many slices would be impossible and will increase the power consumption. 

The idea of using Xilinx primitives comes from (Oliver, Curto, Bouvier, Ramos, & Boemo, 

2012), where it uses only the available clock control signal due to additional skew. This clock 

gating method uses the BUFGCE primitive described before. One of the main disadvantages 

of clock gating is that it can induce noise on VDD with other parts of the design that remain 

active. This noise can in turn affect delays in the related combinational logic. This is the impact 

we aim to measure in this project. 

 

 

1.1.2 Comparison of different delay lines 

Several methods for measuring the delay have been developed. Measurements of the interest 

path delays inside the specific FPGAs using two ring oscillators and analyzing their operating 

frequencies are presented in (Ruffoni & Bogliolo, 2002). An on-chip path delay measurement 

is introduced in (Pei, Li, & Li, 2009) to measure the delay in the circuit for efficiently detecting 

and debugging delay faults in the fabricated integrated circuits. Some other techniques are 

suggested in (Katoh, Tanabe, Zahidul, Namba, & Ito, 2009), (Raychowdhury, Ghosh, & Roy, 

2005), (Matsumoto, 2005), and (Wong, Sedcole, & Cheung, 2008), either measure the speed 

of combinational circuit paths or even complete sequential circuits (Wong & Cheung, 2011). 

A Time to Digital Converter (TDC) changes a time interval among different pulses into digital 

numbers. A TDC structure is an entirely digital, simple, and compact structure that provides 

flexibility and low-cost design in the FPGA, and TDC is a common way to design a delay line 

(Soni et al., 2017). Figure1.1 and 1.2 illustrate the principle of the TDC delay line (also known 

as tapped delay line) and its timing diagram. Buffers are the delay elements in this delay line 

(Yao, 2011). The start signal is going through the design by delay elements and is captured 

with the arrival of the rising edge of the stop signal. The sampling procedure generates by flip-

flops shows the position of the delay line elements when the stop signal happens. The output 

of the flip-flops is a thermometer code that shows one if the start signal reaches the stop signal 

rising edge and zero if the start signal does not reach the stop signal rising edge. 



 

 

 
 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

The TDC delay line also could be implemented with CARRY4 as delay units (M. Zhang, 

Wang, & Liu, 2020). The advantages of using a carry chain are high accuracy and resolution. 

Each CARRY4 block consists of four MUXCY elements and could be used as a fast delay 

element in the design without adding the net delay for each element. The other feature in the 

 

Figure 1.1 Principle of the TDC delay line                                        
Taken from Yao (2011) 

Figure 1.2 TDC delay line timing diagram                     
Taken from Yao (2011) 
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design of the CARRY4 is when the first element is placed, the position of another will 

automatically determine by the tool. The CARRY4 delay line sampling model is the same as 

buffer delay line TDC, and the data are captured in the stop signal rising edge. The delay of 

each CARRY4 is between 60 to 70 ps based on the device and its speed (Torres et al., 2013). 

Figure 1.3 presents the Xilinx CARRY4 block which the MUXCYs are used as a delay element 

to improve the resolution. Note that using MUXCY as a delay element will increase the number 

of components in the delay line and might cause the metastability problem in the results, and 

we need to post-processed them. Therefore, as a first try in this research, we use CARRY4 

logics as delay elements. To the best of our knowledge, the novelties of this project come from 

the capabilities of our experimental setup to measure delays during transient phases induced 

by clock gating for a rather wide range of clocks frequencies. We use two different delay lines. 

Both delay lines are based on the general structure shown in Figure 1.2. One uses buffers as 

delay elements, and the other one uses the CARRY4 block. The number of delay elements 

need to be determined in this design. The flexibility with respect to the clock frequency is 

provided by the adjustable buffer chain of delay elements prior to the delay lines. This part 

allows having more accurate results compared with the clock rising edge at each experiment. 

 

 

 

 

 

 
 
 
 Figure 1.3 Xilinx CARRY4 block                       

Taken from Torres et al (2013) 



 

1.1.3 The noise source model 

As mentioned before, using clock gating as a power consumption technique will cause transient 

phases in the circuit power distribution. Any stop and starts of the clock gating will induce 

switching activity and need to be considered.  

 

Using an appropriate noise source in the design is the essential part to get reliable results. The 

noise source presented in (Larche, 2013) contains three shift registers. Each one has 1200 flip-

flops to which the different clock is applied. The first flip-flop is a toggle flip-flop, and its 

output going into the 1199 remaining flip-flops. There are four possibilities to generate the 

noise, which 0, 1200, 2400, and 3600 flip-flops could be activated each time to create the 

required noise in the design. As shown in Figure 1.4, the noise source block diagram is working 

with different frequencies, and it would add the intermodulation product effects to the design. 

Intermodulation distortion occurs in nonlinear devices and produces unwanted additional 

signals, resulting from the interaction of two or more signals (Thibeault & Gagnon, 2018). 

Appling the BUFGCE clock gating technique will use only one clock as a clock reference to 

avoid the intermodulation product effects in the design. Another issue that is not considered in 

this design is that 1200 clock periods are needed to feed all the flip-flops in each chain. If the 

clocks do not feed all the flip-flops, then the maximum noise would not be added to the design. 

 

Also, applying the noise source by using a line of toggling flip-flop is used in (Gnad et al., 

2018). In this case switching activity could be control simultaneously from the control part. 

Note that this work is used a fixed 100 MHz frequency and the changes to the clock frequency 

did not take into consideration which is the one of the design’s goal. Based on that, this design 

must be modified to get the maximum noise more instantly by finding the required number of 

toggling flip-flops. 
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Figure 1.4 Proposed noise generator block                                                                            
Taken from Larche (2013) 

 

 

1.1.4 Delay measurement platforms 

In addition to the specific items discussed before (delay lines, noise sources), one also must 

pay attention to the overall functionalities of exiting delay platforms. There exists different 

platforms using different techniques to measure the delay, such as ring oscillator delay 

measurement, time to voltage delay measurement (Wong, 2011), and pulse width based 

measurement (Larche, 2013). In this thesis, we are mostly interested by the last two techniques, 

when used to measure the impact of noise on delays in an FPGA. From that perspective, the 

closest two existing platforms are the ones presented in (Larche, 2013) and (Gnad et al., 2018).  

 

The platform developed by (Larche, 2013) was designed to perform delay measurement in 

steady state conditions to reveal to impact of intermodulation noise caused by two different 

clock domains. From (Larche, 2013) we reused and adapted the proposed pulse width based 



 

measurement technique to measure the delay margin. Figure 1.5 shows the delay measurement 

part of their design, including two flip-flops, one AND gate, one NOT gate, and one XOR gate. 

Combined with the inverter, the first (leftmost) flip-flop is of toggling type and is launching a 

transition when enabled by the CE input signal. The launched transition travels along the delay 

line, which is made of a simple AND type logic gate, and is captured by the rightmost flip-

flop. The XOR gate allows measuring the delay margin pulse whose width is a good estimate 

of the difference between the delay of the end of the line and the arrival of the next rising edge 

of the clock. Note that this signal is measured on a pin of the FPGA, which requires the pulse 

width to be large enough not to be filtered out. In addition to what was mentioned earlier about 

the noise source, the main differences with our platform is the fact that: 1) we are interested 

measuring the impact of noise on delays in the transient phases,  and 2) we measure pulse 

widths inside the FPGA. 

The platform developed by (Gnad et al., 2018) was also designed to perform delay 

measurement in steady state conditions In addition to what was mentioned earlier about the 

noise source, the main differences with our platform is the fact that: 1) we measure the impact 

of noise on delays in the transient phases,  and 2) we support an addition noise mode, where 

transitions are sent along the clock distribution network but no flip-flop is toggling.  

 

 

 

 

 

Figure 1.5 Delay measurement block taken from Larche (2013) 
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1.2 FPGA introduction 

This chapter introduces the primary material required for a better understanding of this work. 

Initially, the platform and the Xilinx Field Programmable Gate Array (FPGA) logic circuit 

used in this design are discussed in detail. Furthermore, some essential elements will be 

described as follows: Clock Management Tiles (CMTs), BUFGCE primitive, Xilinx Analog 

to Digital Converter (XADC) block, Intellectual Property (IP) core design components like 

Internal Logic Analyzer (ILA), Virtual Input/Output (VIO) and First-In-First-Out (FIFO) 

generator. Afterward, the design implementation in Vivado software will be addressed. Finally, 

an overview of the related work will be discussed. 

 

1.3 Platform and the FPGA used in the design 

The Xilinx ZC702 evaluation board is used in our design. The board's physical appearance and 

block diagram are shown in Figure 1.6 and Figure 1.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 ZC702 physical appearance                   
Taken from Xilinx (2019) 



 

 

 

 
 
 
 
 
 
 
 
 
 
  

 
 

 

The ZC702 board features are listed as follows: 

•  Compatible with all versions of Vivado; 

• 1 GB DDR3 component memory; 

• 128 Mb flash memory; 

• USB JTAG interface; 

• Clock source: 

o Fixed differential 200 MHz LVDS oscillator; 

• User I/Os: 

o Two programmable user pushbuttons; 

o Eight user LEDs; 

o Dual row Pmod; 

o Single row Pmod; 

• Power on/off switch; 

• Xilinx Zynq XC7Z020-1CLG484C device; 

 

Figure 1.7 ZC702 block diagram                       
Taken from Xilinx (2019) 
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o Internal XADC; 

o 53200 slice LUTs; 

o 106400 slice registers;  

o 13300 slice; 

o 53200 LUT as logic; 

o 17400 LUT as memory; 

o 53200 LUT flip-flop pairs;  

o 140 blocks RAM; 

o 200 bounded IOB;  

o 192 IBUFDS; 

o 32 BUFGCTRL; 

o Up to 4 clock generator. 

 

The Xilinx Zynq-7000 XC7Z020-1CLG484C SoC FPGA is used in the ZC702 board includes 

both a Processing System (PS) and 28 nm Programmable Logic (PL) on a single device. The 

Zynq-7000 SoC block diagram is shown in Figure 1.8. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 Figure 1.8 Zynq-7000 SoC block diagram                  

Taken from Xilinx (2018) 



 

1.4 FPGA logic circuit 

An FPGA is a semiconductor Integrated Circuit (IC) device produced to be configured by a 

user, and its main components are the Configurable Logic Blocks (CLBs), the programmable 

interconnects, the Input/Output Blocks (IOBs), and the CMTs. The number and the position of 

the elements are unique for each device.  

 

1.4.1 CLBs 

The CLBs are the essential part of any circuits' design, including two slices, one SLICEM, one 

SLICEL, or two SLICEL. Figure 1.9 presents the CLB details in Zynq-7000 with SLICEM 

(Slice0) and SLICEL (Slice1). About 67% of the slices are SLICEL, and the balance is 

SLICEM. The difference between SLICEL and SLICEM is the latter supports two additional 

functions: storing data using distributed RAM and shifting data with 32-bit registers .The slices 

are not connected directly together. Both slices connect to the switch matrix to reach the 

general routing. 

 

 

 

 

 

Figure 1.9 Zynq-7000 CLB details with SLICEM and SLICEL                       
Taken from Xilinx (2016) 
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Each slice includes the following parts: 

• Look-Up Table (LUT): Four 6-input LUTs in each slice are used as function generators. 

Each LUT has six inputs (A1 to A6) and two outputs (O5 and O6).  

• Storage components: There are eight storage components through a slice. Four can be 

used as a D flip-flop or latch, and the others only can be used as a D flip-flop. All the 

essential signals like a clock, CE, set, and reset are connected to all the storage components. 

• Multiplexers: Are used to combine LUTs into different functions.  

• Carry logic: There are four carry multiplexers (MUXCY) and four XOR gates in each 

slice. Carry logic provides fast operation in each slice. In this design, carry logic is used as 

a fast delay element because the connection between them follows a specific routing that 

does not add the net delay to each carry logic's design. As shown in Figure 1.10, the signal 

is entering from the CI input of each carry logic and going out from the CO3 output. 

 

 

 
 
 
 
 
 
 

 

 

 

 

 

 
 

 

 

 

Figure 1.10 Carry logic connection in a slice         
Taken from Xilinx (2016) 



 

1.4.2 Programmable interconnects 

The Programmable interconnects provide the routing path between different FPGA parts, such 

as CLBs and IOBs.These vertical and horizontal connections are connected to several switch 

matrices to reach the other resources. Figure 1.11 shows the example of FPGA programmable 

interconnects. 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

1.4.3 IOBs 

An IOB connects the inside FPGA architecture to the exterior design through interfacing pins. 

In Xilinx FPGAs, each I/O group is called a bank, and as shown in Figure 1.12, Zynq-7000 

XC7Z020 has four I/O banks consisting of 50 IOBs. The HR I/O banks are produced to work 

with voltages higher than 3.3V. 

 

 

Figure 1.11 Example of FPGA programmable 
interconnects taken from Xilinx (2016) 
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1.4.4 Clock management tiles 

The CMTs are used to create the required clocks in the design. Each CMT includes one Mixed-

Mode Clock Manager (MMCM) and one Phase-Locked Loop (PLL). In our design, we need 

to generate eight different phases of 450 MHz, the fast clock for the pulse width measurement. 

To do that, two PLLs are used, the first one generating 0,90,180,270 degrees, and the second 

one generating 45,135,225,315 degrees of the 450 MHz clock. Furthermore, the following 

three clocks need to be generated: 1) the design reference clock to create the synchronous 

pulses, 2) a copy of that clock to control the noise block and 3) a clock twice the reference 

clock frequency for the measurement part. Two MMCMs are used to create the specified three 

clocks. Figure 1.13 presents the MMCM and PLL primitives. 

 

The system clock, a 200 MHz differential clock, is used as an input clock in our work. This 

clock is connected to package pins D18 and C19, respectively, for the positive and negative 

parts in the FPGA. Since each clock needs to connect to the buffer after going inside the FPGA, 

an IBUFDS is applied to change the input clock to the single-ended clock.  

Figure 1.12 Zynq-7000 XC7Z020 I/O banks taken from Xilinx (2018) 



 

 

 

 

 
 
 
 
 
 
 
 
 
 

 

The BUFGCTRL is the primitive from which all different buffer primitives are created. The 

first one derived from it for our design is BUFG, which is a simple one-input one-output global 

clock buffer. Connecting the unrequired pins of BUFGCTRL to VDD or ground will create a 

BUFG. Figure 1.14 shows the relation between BUFG and BUFGCTRL. 

 

 

 

 

 

 
 
 
 

 
 
 

 

 

Figure 1.13 MMCM and PLL primitives        
Taken from Xilinx (2018) 

Figure 1.14 Relation between BUFG and BUFGCTRL            
Taken from Xilinx (2018) 
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1.5 BUFGCE primitive 

A second clock buffer primitive derived from BUFGCTRL for our design is BUFGCE, which 

is used to perform clock gating. Clock gating is the way to shut down the design's non-

operating parts, while there is no need to use them. As shown in Figure 1.15, BUFGCE has 

three pins: input clock, output clock, and Clock Enable (CE). In case CE is zero, the BUFGCE 

output is zero, meaning that the clock would be deactivated. When CE changes to one, the 

clock would be activated. We use two BUFGCE to control the noise generator in the design. 

Controlling these BUFGCEs will let us active the noise when we need that, and in other 

circumstances, even while the rest of the design is working, this part does not consume 

dynamic power. 

 

 

 

 

 
 
 

 
 
 

 
 
1.6 XADC block 

The XADC block provides temperature sampling in Zynq-7000 SoC devices. The sampling 

operations are performed at the speed of one Mega sample per second by internal sensors. 

Figure 1.16 shows the XADC primitive and its window in Vivado software. Using XADC in 

our design allows measuring the temperature while doing the experiments to monitor if there 

is a significant impact on the results. 

 

 

Figure 1.15 BUFGCE primitive       
Taken from Xilinx (2018) 



 

 

1.7 IP core design components 

The Intellectual Property (IP) core design is a technique in which the FPGA designer could 

use pre-designed blocks with specific capabilities. Xilinx has produced a wide range of these 

IPs, which are used in various types of FPGAs. In our work, several IP core components are 

used, which are discussed in the following subsections 

. 

 

1.7.1 ILA 

The Xilinx logic core ILA is an FPGA logic analyzer that monitors any required internal signal 

in a design. Trigger options, data storage, and monitoring the signals' waveform are 

characteristics of this logic core. Figure 1.17 shows the ILA logic core symbol. The ILA input 

clock is synchronous to the design and provides sampling at each clock reference period. To 

monitor the required signals, we need to connect these signals to the ILA probes. The number 

of probes could be selected up to 1024, and for each probe, the width can be selected up to 

4096 bits. The user could arrange the trigger place for any probes, identifying rising or falling 

edges. 

 

Figure 1.16 XADC primitive and its window in Vivado                               
Taken from Xilinx (2018) 
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In this project, as shown in Figure 1.18 the ILA includes eight probes as below: 

• Probe0[0:0]: A 1-bit probe to monitor the output of one counter, allowing to indirectly 

measure the design reference clock frequency, which is  too fast to be read directly by the 

ILA. 

• Probe1[0:0]: A 1-bit probe to monitor the Ce_toggling1 signal, which is the CE signal 

enabling applying noise (namely, enabling toggle flip-flops and their related clock signals). 

This probe is used as the first trigger in the design. The ILA is set to detect the rising edge 

for this probe. 

• Probe2[0:0]: A 1-bit probe to monitor the Ce_toggling2 signal, which is the CE signal 

enabling the measurement part. This probe is used as the second trigger in the design. The 

ILA is set to detect the rising edge for this probe. 

• Probe3[7:0]: A 8-bit probe  used to monitor the first generated delay in the design, which 

is Sum_start_b4. This delay is designed to be less than one clock reference period. 

• Probe4[7:0]: A 8-bit probe used to monitor the second generated delay in the design, 

which is Sum_delay_margin. This delay allows to estimate the delay margin between a 

given point in a delay line (namely the b4 signal) and the next rising edge of the clock 

reference. 

Figure 1.17 ILA logic core symbol         
Taken from Xilinx (2016) 



 

• Probe5[7:0]: A 8-bit probe  used to monitor the third generated delay in the design, which 

is Sum_delay-line. This delay is designed to be greater than one clock reference period. 

• Probe6[7:0]: A 8-bit probe used to monitor values (called q0 to q7) captured by a register 

, along the first delay line in the design, namely the buffer delay line. These values, which 

are thermometer coded, show the progression of a transition along the delay line.  

• Probe7[47:0]: A 48-bit probe used to monitor  another set of values (called Q_carry4), 

captured by another register along the second delay line in the design, namely the carry4 

delay line. These values, which are also thermometer coded, show the progression of a 

transition along the second delay line. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
The probes' signals are captured at the clock reference speed, according to the probes and 

triggers settings. Also, in this step, the samples are saved in Block Random Access Memories 

(BRAMs). BRAMs are used to store data on a large scale inside the FPGA. In our design, the 

number of BRAMs used by the ILA to sort the data is 2.5. As shown in Figure 1.19, an auto-

instantiated debug core hub is used as a link to transfer the ILA captured data to the PC. This 

section connects the JTAG chain within the BSCANE2 component to the ILA within the 

design. 

Figure 1.18 Design's ILA    
details 
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When the design implementation is finished, and the device is programmed, the data appears 

in Vivado ILA software's waveform window. Another ILA capability is to export the data in 

three formats, namely Native (as an ASCII), Comma-Separated Values (CSV), or Value 

Change Dump (VCD) files. This work's preferred format is CSV to export the waveform 

window data because post-processing is required. Export the data to a CSV gives the data in 

binary formatted, and because the delay values in the design are decimal, the radix needs to be 

changed. 

Figure 1.20 presents the complete ILA waveform window in the design. As we can observe, 

there are two transient phases in the design: at the beginning and end of the Ce_toggling1. The 

Ce_toggling1 is set to be one microsecond to reach the steady-state condition in the design. 

Capturing the q0 to q7 and Q_carry4 values are started right after the first transient and 

continue after we stop the noise to monitor the second transient effect. The Ce_toggling2 is 

shown the entire measurement time (1.25 microseconds) in the design, and when it is finished, 

the delay values are ready to be read. 

 

 

Figure 1.19 ILA to PC connections                   
Taken from Xilinx (2016,2021) 



 

 

 

 

1.7.2 VIO 

The Xilinx logic core VIO is used to monitor and control the inner FPGA signals. Up to 256 

input and output probes could be selected. Also, each probe width could be set to up to 256 

bits. The VIO input clock is synchronous to the design. Also, it is possible to connect the VIO 

probes to the LEDs. Figure 1.21 shows the VIO block diagram, which contains input and 

output registers and the connections to the JTAG interface, which follows the same pattern as 

the ILA through the debug hub. 

 

 

Figure 1.20 Complete ILA waveform window 
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As shown in Figure 1.22, in this project, the VIO uses seven output probes as below: 

•  Probe_out0[5:0]: A 6-bit probe used to select the number of delay elements in a block 

called the buffer chain, which corresponds to the first (upstream) part of the first delay 

line(buffer delay line). In this buffer chain, the delay elements are buffers (LUT1), and it 

could be increased up to 64 in the design. Furthermore, this 6-bit probe is connected to 

LEDs to monitor the buffer chain delay element's number. The used LEDs are DS17, DS18, 

DS22, DS21, DS20, and DS19. The LEDs output pins are W10, V7, W5, W17, D15, E15. 

• Probe_out1[0:0]: A 1-bit probe used to control a first part of the noise generator block in 

the design. 

•  Probe_out2[0:0]: A 1-bit probe used to control a second part of the noise generator block 

in the design. 

• Probe_out3[5:0]: A 6-bit probe used to select the number of delay elements in a block 

called the carry4 chain, which corresponds to the first (upstream) part of the second delay 

line (carry4 delay line). In this carry4 chain, the delay elements are carry4 logics, and it 

could be increased up to 36 in the design.  

• Probe_out4[0:0]: A 1-bit probe used to control a third part of the noise generator block in 

the design. 

Figure 1.21 VIO block diagram                                  
Taken from Xilinx (2018) 



 

•  Probe_out5[0:0]: A 1-bit probe used to control a fourth part of the noise generator block 

in the design. 

• Probe_out6[0:0]: A 1-bit probe used to select between even and odd periods during the 

measurements.  

 

 

 

 

 
 
 
 
 
 
 
 

 
 
 
1.7.3 FIFO generator 

The Xilinx logic core FIFO generator is used to produce a memory to store data that can be for 

example accessed from outside the FPGA.  As shown in Figure 1.23, which presents the native 

interface FIFOs signal diagram, a FIFO includes reading and writing parts, storage, and some 

logics. A synchronous FIFO, which is used in our design, is a FIFO where the same clock is 

used to write and read. Different methods are used to implement the native FIFO, like common 

clock BRAM, independent clocks BRAM, and independent clocks distributed RAM. In this 

design, the independent clocks distributed RAM scheme is used to implement the FIFO, which 

is based on LUTs. Write and read clocks in our design are the same, and both are connected to 

the reference clock. The data are written in the FIFO with the next writing clock rising edge 

when the write enable is high. The data are read from the FIFO with the next reading clock 

Figure 1.22 Design’s VIO 
details 
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rising edge when the write enable is high. The empty level is changed when the reading part is 

finished, and it is synchronous with the read clock. 

 

 
 

 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
1.8 Design implementation in Vivado software 

The Vivado software is used to support the Xilinx ZYNQ-7000, Ultra-Scale, and all more 

recent FPGAs families. Vivado supports both VHDL and Verilog source files.  In this project, 

we used Verilog. As part of  a Register Transfer Level (RTL) design flow, Vivado presents a 

new feature that used IPs in the design. The different IPs are located in the IP integrator 

environment. The Xilinx FPGA design steps in Vivado are as following: 

• Design entry: This step is started by creating a new project and defining inputs and outputs. 

The hardware description language (Verilog), the required IP sources, and logical and 

physical constraints need to be chosen at this step. After finishing the design entry, the 

behavioral simulation could be done, which shows the design's inputs and output 

 

Figure 1.23 Native interface FIFOs signal diagram          
Taken from Xilinx (2017) 



 

waveform. This simulation does not consist of delay details and ensures that the design 

code is working correctly. 

• Synthesis: This step is used to transform an RTL-specified design into a gate-level 

description that is mapped into the available FPGA resources. Vivado is used in a well-

optimized way to decrease the number of components in the design. To avoid replacing 

any module in the design with the optimization tool before this step, we need to set the 

attribute called (* DONT_TOUCH = "yes" *). Setting this attribute to “yes” for a module 

will prevent any changes during the synthesis process. 

• Implementation: Vivado's implementation involves the essential steps of placing and 

routing the design and its related mapped FPGA resources. The placement is  corresponded 

to selecting the physical location of the mapped FPGA resources, and the routing is the 

operation by which the connections among the blocks are created using the available FPGA 

interconnects. Post simulation with all the delays and static timing analysis, which shows 

the worst-case scenario delays for all the design elements, are accessible after this step. 

• Bitstream and debug probes files generation: This step is used to convert the 

implementation design details to a bitstream, which is downloaded in the FPGA to 

implement the design. In our case, it includes both ILA and VIO that are used to probe and 

control the design. The use of the ILA and VIO cores trigs the generation of a debug probes 

file, which includes information about the probes used by the ILA and VIO in the design. 

 

Figure 1.24 and 1.25 show the FPGA internal view before, and after implementation in 

Vivado. The pink color shows the delay block placement, and the yellow color shows the 

measurement part placement of the design in Figure 1.25. 
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Figure 1.24 FPGA internal view before 
implementation 

Figure 1.25 FPGA internal view after 
implementation 



 

Table 1.1 shows the design utilization report, which shows the components used in each 

part of the design and the entire design.  

 

 

Table 1.1 Design utilisation report 

 

 
 
1.9 Conclusion 

In this chapter, initially, the basic FPGA concepts were described to provide the design 

requirements. Afterward, the review of related works was done to determine the elements to 

complete this master's project. According to this review, the most suitable power consumption 

technique is the clock gating when the Xilinx BUFGCE primitives are used. Also, the TDC 

delay line is selected to measure the delay line because it is easy to create. Two delay elements 

are selected to use in the delay lines, namely buffer and CARRY4. Finally, an existing noise 

source that will be adapted to fulfill our needs was presented. Since we are not interested in 

using different clock frequencies as they add unwanted noise sources to the design and that we 

need to inject the noise more instantly, some changes to the selected noise block are required. 

 

 

Name
Slice 
LUTs

 (53200)

Slice 
Registers
 (106400)

F7 
Muxes
(26600)

F8 
Muxes
(13300)

Slice
(13300)

LUT as 
Logic 

(53200)

LUT as 
Memory 
(17400)

LUT Flip 
Flop Pairs 

(53200)

Block 
Ram Tile 

(140)

Bonded 
IOB 
(200)

IBUFDS
(192)

BUFGCTRL
(32)

MMCM 
(4)

PLL 
(4)

BSCANE2 
(4)

Top 34261 36371 42 4 10053 33503 758 32168 2.5 11 1 17 2 2 1
Clk_gen 1 0 0 0 1 1 0 0 0 0 1 14 2 2 0
Clk_div 1 5 0 0 2 1 0 1 0 0 0 0 0 0 0

Dbg_hub 484 739 0 0 222 460 24 313 0 0 0 1 0 0 1
Debounce_ce 1 2 0 0 1 1 0 0 0 0 0 0 0 0 0
Debounce_rst 1 2 0 0 2 1 0 0 0 0 0 0 0 0 0

Delay 92 59 0 4 118 92 0 6 0 0 0 0 0 0 0
FSM 34 13 0 0 10 34 0 12 0 0 0 0 0 0 0
ILA 983 1677 32 0 418 825 158 544 2.5 0 0 0 0 0 0

Noise_gen 30000 30000 0 0 8156 30000 0 30000 0 0 0 2 0 0 0
Sum 2540 3595 0 0 1047 1964 576 1183 0 0 0 0 0 0 0
VIO 124 279 1 0 76 124 0 90 0 0 0 0 0 0 0



 

CHAPTER 2 
 

PROPOSED DESIGN 

 

2.1 Introduction 

In this research, we want to design an FPGA-based measurement circuit to observe the impact 

of power noise on delay at different frequencies, based on the following specifications: 

• To allow different types of measurements, for comparison purposes, such as delays and 

delay margins, through the use of different delay elements. 

• To allow measurements with clock frequencies from 100 to 220 MHz, and to ensures that 

the delay elements stay unchanged and that the routing remains identical in the FPGA, 

from one frequency to another. 

• To allow injection of noise on the power grid to emulate the clock gating and its impact of 

adjacent modules. 

• To provide means to automatically generate files (CSV format) of the results. 

This chapter will explain the details of the proposed design. 

•  To apply three different noise modes in the design 

• To measure two transient phases in the design 

 

2.2 Measurement circuit 

This section describes the design structure in the FPGA. Figure 2.1 shows the measurement 

circuit top-level block diagram. There are four inputs and two outputs. The inputs are 

CLOCK_IN_P, CLOCK_IN_N, CE, and Reset. CLOCK_IN_P and CLOCK_IN_N are two 

differential inputs of the 200 MHz system clock, which is used as an input clock in the design. 

CE and Reset are provided by two user pushbuttons on the board. The first output is the Light 

Emitting Diode (LED) bus signal, LED[5:0], whose purpose will be described later. The 

second output is the ILA Output that we could access on PC. As explained in Chapter 1, ILA 

is located inside the FPGA and monitors any required internal signals in a design. An auto-



 

instantiated debug core hub is used as a link to transfer the ILA captured data to the PC. The 

BSCANE2 primitive inside the debug core hub is connected to the dedicated PL pins, which 

are later connected to the JTAG interface. The Xilinx platform cable is used to connect the 

board (JTAG interface) to the PC (Vivado software). The signals can be monitored from the 

ILA waveform window in the Vivado software or generated as a CSV file for post-processing 

purposes. The CSV file in a particular format that provides data in a table-structured form. The 

CSV file contains all the design outputs and, because of that, involves multiple bits. The 

outputs in the CSV file are a 1-bit output to create the Most Significant Bit (MSB) output of a 

counter fed by the reference clock, 8-bit output to determine the delay values, and a 48-bit to 

show the q-carry4 output in the carry4 delay line, which will be described in following sections.  

 

 

 

 

 

Figure 2.2 shows the measurement circuit expanded block diagram that includes ten main 

blocks, which are: 

 

 

 

Figure 2.1 Measurement circuit top-level block diagram 
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• The delay block: This block is used to create five different outputs encapsulating the 

measured delays using two separate delay lines. Three of the outputs are under the form of 

a pulse whose width is a good approximation of the related delay. The two others are busses 

using thermometer encoding of the measured delays. The three pulse-shaped outputs are 

sent to the Sum_Circuit block to be post-processed. The delay block is described in more 

details in Section 2.2.1. 

 

• The noise generator block: This block creates a power noise source based on the FPGA's 

limitations and characteristics, mainly using toggling flip-flops. By enabling and disabling 

this block, it creates transient phases allowing the emulation of adjacent block clock gating. 

The noise generator supports a few noise modes. This block is described in more details in 

Section 2.2.2. 

 

• The Sum_Circuit block: This block is used to measure the three pulses widths generated 

by the delay block. This block is described in more details in Section 2.2.3. 

 

Figure 2.2 Measurement circuit expanded block diagram 



 

• The ILA block: As mentioned in Chapter 1, this block is a Xilinx IP core, and it is used 

to monitor internal signals of the design. This block is described in more details in 

APPENDIX І. 

 

• The VIO block: As mentioned in Chapter 1, this block is also a Xilinx IP core, and it is 

used to control internal FPGA signals. VIO allows modifying the length of both delay lines. 

It also controls the noise generator block. This block is described in more details in 

APPENDIX ІІ. 

 

• The clock generator block: This block provides the required clocks in the design that are: 

Clk_cnt [7:0], Clk_ref, Clk_ref_2x, and Clk_ref2. Clk_cnt [7:0] is a 450 MHz clock bus 

with eight different phases used by the Sum_Circuit block. Clk_ref is the reference clock 

in the design. Clk_ref_2x is the Clk_ref multiplied by two, used by the Sum_Circuit block. 

Clk_ref2 is a perfect copy of Clk_ref used as an input in the noise generator block. Also, 

this block generates the system reset, which is the rst signal. This block is described in 

more details in APPENDIX ІІІ. 

 

• The reset debounce block: This block is used to prevent the impacts of using a user 

pushbutton as a Reset input. The user pushbutton sw7 on the board is used to reset the 

system manually after each experiment. Using any pushbutton causes bounces in the signal. 

The reset debounce block ensures that Reset signal is clean and without unwanted bounces. 

This block is described in more details in APPENDIX Ⅳ. 

 

• The clock enable debounce block: This block prevents the impact of using the user 

pushbutton sw5 on the board as a measurement clock enable, which is CE input. The clock 

enable debounce block ensures that the CE signal is clean and without unwanted bounces. 

This block is described in more details in APPENDIX Ⅴ. 

 

• The FSM block: This block contains a finite state machine that creates two signals:  

Ce_toggling1 and Ce_toggling2. Ce_toggling1 is used by the noise generator block. It 
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indicates when the noise should be injected, if any. Ce_toggling2 is used by the delay and 

the Sum_Circuit blocks.  It indicates when the measurements should be done. This block 

is described in more details in APPENDIX Ⅵ. 

 

• The counter block: This block generates a synchronization reference signal that 

corresponds to the Clk_ref divided by 32. This signal is read by ILA, as a means to make 

sure that the Clk_ref signal is at the right frequency. This block is described in more details 

in APPENDIX Ⅶ. 

 

2.2.1 Delay block 

In this section, the delay block is explained in detail. Figure 2.3 presents the delay block 

diagram. The delay block consists of two different delay lines, namely the carry4 and the buffer 

delay line, a T flip-flop, two D flip-flops, three NOT gates, a 2:1 multiplexer, and three AND 

gates. Both delay lines are fed by the same rising transition appearing at the start point. This 

rising transition is provided by the T flip-flop and can be delayed (or not) by the D flip-flop X 

before entering the delay lines. 

 

 

Figure 2.3 Delay block diagram 



 

As the setup measures delay every two clock cycles, delaying the rising transition by one clock 

period allows measuring delays at each clock cycle (odd or even). Figure 2.4 displays the start 

point timing diagram. 

 

 

The carry4 delay line only produces a 48-bit signal, Q_Carry4[47:0], using a thermometer 

encoding. This delay line provides the measurements with the best resolution. Its length can 

be modified by the Carry4_Sel [5:0] signal (from VIO) to fit better the clock period used. As 

shown in Figure 2.5, the carry4 delay line includes a carry4 chain, 48 flip-flops, and 48 carry4 

logics. There are five inputs and one input in this delay line. The inputs are: start, 

Ce_toggling2, Clk_ref, Carry4_Sel [5:0], and rst and the output is Q_carry4 [47:0]. 

 

Figure 2.5 Carry4 delay line block diagram 

 

 

Figure 2.4 Start point timing diagram 
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Figure 2.6 presents the carry4 chain block diagram, which includes 36 carry4 logics and 13 

LUTs. Start and Carry4_Sel [5:] are two inputs, and c0 is the output in the carry4 chain block. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The carry4 chain inside the carry4 delay line is set to be controlled by the user. 36 carry4 logics 

are connected together to form the carry4 chain. Except for the first carry4, which start signal 

is connected to its CI input, in all other carry4s, the CO output is connected directly to the CI 

input of the next one. LUTs are used as 4:1 multiplexers where the four first pins are the inputs, 

and the last two are used as the select lines. Six select lines are connected to the Carry4_Sel 

[5:0], which is controlled by the VIO. The c0 signal is connected to the first of 48 carry4 

logics, each of them feeding a D flip-flop. The D flip-flops capture the data at the next Clk_ref 

rising edge, and any changes in the carry4 chain number will change the thermometer state. 

The carry4 chain value is adjusted to get the best value for Q_carry4 [47:0], where the Clk_ref 

rising edge is in the middle of the last 48 carry4 logics. Figure 2.7 shows the carry4 delay line 

Figure 2.6 Carry4 chain block diagram 



 

timing diagram where the captured data is precisely in the middle value namely when 

Q_carry4 [47:0] contains 24 bits at zero and 24 bits at one. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 
 

The buffer delay line is used to produce four different signals. The first one is an 8-bit signal, 

q [7:0], also using a thermometer encoding. It is similar to the signal Q_Carry4[47:0] but with 

a coarser granularity. The second signal produced is called Delay_margin_pulse, a 1-bit signal 

containing a pulse whose width approximates the delay margin (namely the time between the 

arrival of the rising transition and the next clock rising edge). This delay margin is measured 

with respect to the b4 point, which is a selected point inside the buffer delay line. The third 

signal produced is called Start_b4_pulse, a 1-bit signal containing a pulse whose width 

approximates the delay between the start and the b4 points. Finally, the fourth signal produced 

is called Delay_line_pulse, a 1-bit signal containing a pulse whose width approximates the 

delay between the start and the b8 (end of the delay line) points. 

 

Figure 2.7 Carry4 delay line timing diagram 
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As shown in Figure 2.8 the buffer delay line includes a buffer chain, eight flip-flops, and eight 

buffers (LUT1). There are five inputs and one input in this delay line. The inputs are: start, 

Ce_toggling2, Clk_ref, Buffer_Chain_Sel [5:0], and rst, and the outputs are b4, b8, and q [7:0]. 

 

 

 

Figure 2.9 shows the buffer chain block diagram, which includes 64 buffers and a 64:1 

multiplexer. Start and Buffer_Chain_Sel [5:] are two inputs, and b0 is the output in the buffer 

chain block. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Buffer delay line block diagram 

 

Figure 2.9 Buffer chain block diagram 



 

The buffer chain is inside the buffer delay line and its number of buffers can be adjusted by 

the user. Sixty-four buffers are connected together to create the buffer chain. The first buffer 

input is the start signal, and its output connects to the next buffer. The chain is continued by 

connecting the output of the second buffer to the input of the third one and etc. All the sixty-

four states are connected to the 64:1 multiplexer controlled by Buffer_Chain_Sel [5:0] from 

the VIO. The b0 signal is connected to the first of eight buffers, each of them feeding a D flip-

flop. D flip-flops capture the data at the next Clk_ref rising edge, and any changes in the buffer 

chain number will change the thermometer state. The buffer chain is adjusted to provide the 

most suitable value for q [7:0], where the Clk_ref rising edge is ideally in the middle of the 

last eight buffers. Figure 2.10 shows the buffer delay line timing diagram where the captured 

data is precisely in the middle value namely when q [7:0] contains 4 bits at zero and 4 bits at 

one. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 2.10 Buffer delay line timing diagram 
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The Q-carry4 [47:0] bus from the carry4 delay line and the q [7:0] bus from the buffer delay 

line are directly connected to the ILA to monitor the values. As the design goal is to observe 

the noise effect on delays, we need to apply a source of power noise described in detail in the 

following subsection. The generated pulses, which represent different delays in the design, in 

odd or even periods, as presented in the delay timing diagram in Figure 2.11, will go into the 

Sum_Circuit block, for post-processing. Sum_Circuit block diagram will be discussed in 

subsection 2.2.3 

 

 

 

2.2.2 Noise generator block 

The noise generator block is used to create a power noise source in the design. The design goal 

is to monitor the delays behavior in the presence of noise while we apply the clock gating. As 

presented in Chapter 1, the BUFGCE primitives could be used to create the clock gating. 

Enabling and disabling the noise generator block by BUFGCEs creates transient phases 

allowing adjacent block clock gating emulation. The main idea in the noise generator block is 

to use toggling flip-flops as primary noise elements. Controlling all the toggling flip-flops 

simultaneously by their clock or CE inputs will ensure that all the flip-flops are fed 

concurrently. Besides, there is no need to wait for many clock cycles to reach the maximum 

 

Figure 2.11 Delay block timing diagram 



 

adjusted noise because as there is no connection between the flip-flops, and the behavior of 

each toggling flip-flop is independent of the other ones. As well as controlling the noise 

generator block by BUFGCE and choosing the toggling flip-flops as noise elements, we prefer 

to apply two different approaches to activate the noise generator block in our design. First, by 

controlling the flip-flops by their clock inputs. Second, controlling the flip-flops by their inputs 

CE and separately from their clock.  

 

To control the noise generator block, as shown in Figure 2.12, we need a specific CE, namely 

Ce_toggling1. There are two transient phases in the design. The first one occurs when 

Ce_toggling1 is enabled and that the Clk_noise1 and Clk_noise2 are activated (if the other 

control signals, defined below, allow it). The second one occurs when Ce_toggling1 is 

disabled, causing  the Clk_noise1 and Clk_noise2 to be deactivated. The time between the first 

and second transient phases is set to be one microsecond to reach the steady-state condition.  

 

 

 

Figure 2.13 presents the noise generator block diagram. The six inputs in this block are: 

Clk_ref2, Noise_en1, Noise_en2, Ce_1, Ce_2 and Ce_toggling1. Clk_ref2 is the perfect copy 

of Clk_ref and is created in the clock generator block. Ce_toggling1 is one of the FSM outputs 

Figure 2.12 Noise generator timing diagram 
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and its activation duration is set to be one microsecond. The other inputs are controlled from 

VIO to change the state from enable to disable or vice versa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.14 shows that the noise generator block includes two AND gates, two BUFGCE 

primitives, and two noise blocks. 

 

Figure 2.13 Noise generator block diagram 



 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.15 displays the Noise_1 and Noise_2 blocks diagram in detail. Each noise block can 

be controlled separately. Each noise block can be set to one of the three following modes: 

• No noise: The Noise_en1 (Noise_en2) is set to 0; there is no switching activity in the 

related clock signal distribution and no switching toggle flip-flops 

• Clock switching activity only: The Noise_en1 (Noise_en2) is set to 1 but the Ce_1 (Ce_2) 

is set to 0; there is switching activity in the related clock signal distribution, but no 

switching toggle flip-flops. 

• Full switching activity: The Noise_en1 (Noise_en2) is set to 1 as well as the Ce_1 (Ce_2); 

there is switching activity in the related clock signal distribution and switching toggle flip-

flops. 

Figure 2.14 Noise generator expanded block diagram 
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There are five lines of 3000 toggle flip-flops inside each noise block. Clk_noise1 is feeding all 

the 15000 toggle flip-flops inside the Noise_1 block. Clk_noise2 is feeding all the 15000 toggle 

flip-flops inside the Noise_2 block. The only difference between Noise_1 and Noise_2 blocks 

is their clock enable, which Ce_1 is used for Noise_1 and Ce_2 is used for Noise_2. For each 

toggle flip-flop in the noise generator's design, a flip-flop and a LUT are needed. Each CLB 

contains four flip-flops and eight LUTs. The best way to design a toggle flip-flop is to use LUT 

flip-flop pairs. The number of pairs inside the FPGA is limited to 53000, approximately 50% 

of the pairs are used to create the noise generator block in the design, and the remaining will 

be used for the other part of the design if required. 

  

2.2.3 Sum_Circuit 

The Sum_Circuit block is used to measure the pulses width generated by the delay block. As 

explained in the delay block section, the three pulse-shaped outputs are representative of the 

 

Figure 2.15 Noise_1 and Noise_2 block diagram 



 

different delays in the design. The mechanism used in the measurement is counter-based. A 

high-speed clock (Clk_cnt = 450 MHz) is used to measure each pulse width. Measurement is 

taken eight times with eight different Clk_cnt phases to increase the design resolution and have 

better width estimations of the generated pulses in both odd and even measurement modes. 

The measurement is performed in the period of 1.25 microseconds when the Ce_toggling2 is 

enabled. This time exactly starts when the noise block is enabled but continues 0.25 

microseconds more than the time, we disable the noise block. Figure 2.16 illustrates the 

Sum_Circuit block diagram. 

 
 

 
Figure 2.16 Sum_Circuit block diagram 
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The eight inputs in this block are Clk_cnt [7:0], rst, Clk_ref, Clk_ref_2x, Delay_margin_pulse, 

Delay_line_pulse, Start_b4_pulse and Ce_toggling2. The three outputs in this block are 

Sum_delay_margin [7:0], Sum_start_b4 [7:0], Sum_delay_line [7:0].  

 

Three blocks inside the Sum_Circuit are used to measure and store the pulses width at eight 

different Clk_cnt phases. Sum_Cir_1, Sum_Cir_2, and Sum_Cir_3, respectively, are used to 

measure the  Delay_margin_pulse, Start_b4_pulse, and Delay_line_pulse width. 

 

As shown in Figures 2.17 to 2.19, each Sum_Cir block is used to measure one pulse width and 

contains eight identical Meas blocks, each of them working with a different Clk_cnt phase. 

The output of each of Sum_Cir block is the sum of all eight Meas block outputs. 

  

 

 

 
 
 
 
 
 
 
 
 
 

 
 
 

 

Figure 2.17 Sum_Cir_1 block diagram 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.18 Sum_Cir_2 block diagram 

 

Figure 2.19 Sum_Cir_3 block diagram 
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Sum_Cir blocks are identical, only their input pulses and their outputs differ. Each Meas block 

contains one AND gate, two NOT gates, a M_counter block, a FIFO, and a register. As an 

example, Figure 2.20 shows the Meas0 block diagrams in detail. 

 

 

 

 
 
 
 
 
 
 
 
 

 

 

 

As we can find in Figure 2.20, the Meas0 block is used to measure the Delay_margin_pulse 

width. M_counter_delay_margin_i0 is the part that is counting the pulse width based                               

on the number of Clk_cnt0 period with respect to Ce_toggling2 enabling time.                                    

The M_counter_delay_margin_i0 block diagram design details are provided in Appendix VIII. 

 

 
2.3 Conclusion 

One of the purposes of this design is to ensure that we could implement the experiments under 

similar conditions and avoid modification. To do that, the entire block's position in the 

implementation is fixed. Besides, as explained in subsection 2.2.1, two different delay elements 

are used to create delay lines in the design to have a wide frequency range for the measurement. 

Figure 2.20 Meas0 block diagram 



 

Furthermore, the noise source is created based on the explanations that allow applying three 

different modes: no noise, clock switching activity only, and full switching activity in the 

measurement circuit. Finally, as explained in subsection 2.2.3, the Sum_Circuit block is used 

to measure the three pulses widths generated by the delay block.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 





 

CHAPITRE 3 
 
 

RESULTS AND ANALYSIS 

 

3.1 Introduction 

From the proposed design presented in Chapter 2, the following measurements are taken: 

•  Q_carry4 [47:0];  

• q [7:0];  

• Start_b4_pulse; 

• Delay_line_pulse; 

• Delay_margin_pulse. 

 

As mentioned in Chapter 2, the measurements are done on either the odd or the even samples, 

in different noise modes. The first two measured values (Q_carry4 [47:0] and q [7:0]) are 

directly connected to the ILA. The last three measured values (Start_b4_pulse, 

Delay_line_pulse, Delay_margin_pulse) are pulses and are first processed using an 8-phases 

clock circuit. The resulting measurements, called Sum_start_b4 [7:0], Sum_delay_line [7:0], 

and Sum_delay_margin [7:0], represent 8 times the related pulse width expressed in terms of 

Clk_cnt periods (one period = 2.2ns). Those are values sent to the ILA. Some processing is 

therefore required to get the final pulse width estimation, namely divide them by 8 and then 

multiply them by 2.2, leading to three following final estimations: Ave_Start_b4, 

Ave_Delay_line, Ave_Delay_margin. 

The TDC delay was adjusted such that Start_b4_pulse < Tclk_ref , Delay_line_pulse > Tclk_ref , 

where Tclk_ref is one Clk_ref period. 

 

As also mentioned in Chapter 2, each noise block of the noise generator can be set to 3 different 

modes: 1) No noise, 2) clock switching activity only, and 3) full switching activity.   
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To ensure that the Clk_ref is at the desired frequency during the experiments, this signal is 

used to clock a 5-bit counter, whose MSB is monitored by the ILA, which is also clocked by 

the Clk_ref signal. Figure 3.1 shows the example of the monitored counter MSB (whose 

frequency is 1/32 of that of Clk_ref ) by the ILA. 

 

 

 

As shown in the global design timing diagram in Figure 3.2, the measurement period is 1.25 

microseconds. Also, with the same start point, the noise, if any, is activated for one 

microsecond. As mentioned before, there are two transient phases during this period. The first 

transient phase always happens at the beginning of the measurement, and the second one is 

happening after the time we stop the noise by deactivating the Ce_toggling1. The widths of 

three measured pulses are estimated in both even and odd periods, based on the number of 

Clk_cnt periods sampled at eight different phases. The odd and even results are sorted and 

added separately, are sent to the ILA to monitor, and then to the PC by using the communicaton 

channel embedded in the JTAG interface. The data are combined and interpret in the CSV file 

with a fully automatic process in the last step. 

 

 

Figure 3.1 Example of the counter MSB monitored by the ILA 
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3.2 Adjustments with respect to frequency 

One design goal is to collect the measurements at different frequencies, from 100 to 220 MHz. 

Since the measurement time is set to be 1.25 microseconds, and that the noise activation time 

is set to be one microsecond, the determination of the total sample number, the location of both 

transients, and of the best delay elements value at each frequency are essential. The following 

subsections describe them in detail. 

 

3.2.1 Sample number at each frequency 

Indeed, at each frequency, the total sample number varies based on the Clk_ref period. 

Increasing the clock speed will cause a decrease in the clock period, and as a result, the total 

sample number will be increased. Table 3.1 presents the total sample number at each 

frequency. Also, the location of the transients based on the sample number is provided in this 

table. The total samples' number at each frequency is obtained when the measurement time 

 

Figure 3.2 Global design timing diagram 
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(1.25 microsecond) is divided by the clk_ref period. The first transient is always located at the 

beginning of the measurement and in sample three. The first sample for both even and odd 

periods is zero because the whole register's values are initially zero. The second transient 

location is also essential because we need to find where the noise effect, due to the clock gating 

disabling (if any), appears during the measurements. The second transient location is obtained 

by dividing the noise activation time (one microsecond) by the Clk_ref period. 

 

    Table 3.1 Total sample number and the location of the transients at each frequency 

 
 

 

 

 

 

 

 

 

3.2.2 Delay element value at each frequency 

As mentioned before, there are two delay lines in our measurement circuit. Recall that each of 

them starts with a programmable part containing series of delay elements that can be adjusted, 

via the VIO, the best possible measurement setup. As described in Chapter 2, the delay element 

in the buffer delay line is a buffer or LUT, and in the carry4 delay line, the delay element is a 

carry4 logic. Preliminary experiments were performed in order to find the best number of delay 

elements to put in the programmable part of each delay line, which is the one providing the 

delay line middle value, namely when Q_carry4 [47:0] contains 24 bits at zero and 24 bits at 

one, and when q [7:0] contains 4 bits at zero and 4 bits at one, respectively. Table 3.2 shows 

the best delay element number in the programmable part of each delay line. 

Clk_ref 
(MHz) 

Clk_ref 
Period 

(ns) 

Total 
Sample 
Number 

First Transient 
Location-Sample 

Number 

Second Transient 
Location-Sample 

Number  
100 10 125 3 100  

120 8.33 150 3 120  

140 7.14 175 3 140  

160 6.25 200 3 160  

180 5.55 225 3 180  

200 5 250 3 200  

220 4.54 275 3 220  
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Table 3.2 Best delay element number in the programmable part of each delay line 

 

 

3.3 Results collection and analysis 

The results are divided into two parts: 

 

1) Carry4 delay line results; 

2) Buffer delay line results. 

 
For both parts, sampling is done in two separate stages, which include odd periods sampling 

and even period sampling. Each experiment is repeated twenty times for both odd and for even 

periods and averaged to reduce non-correlated noise effects. After the generation of both (even, 

odd) sample set, the results are merged in an interleaved way, and their variance is calculated. 

The steady-state value, which is the value just before the beginning of the second transient 

phase, is used as the reference value because it is stable, and the fluctuations are minimum. In 

order to normalize the results over the frequency range used, we subtract the reference value 

from the value of measurements taken in the two transient phases. The following formula is 

used to calculate this difference 

 

 Diff_merged = Diff (i,0) if i Even , Diff (i,1) if i Odd (3.1) 

 

 

Frequency (MHz) Carry4-Num Buffer-Num 
100 - 13 
120 36 8 
140 19 5 
160 14 3 
180 8 1 
200 1 - 
220 1 - 
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Where: 

 Diff (i,0) = Value (i,0) - Reference Value (3.2) 

 Diff (i,1) = Value (i,1) - Reference Value                           (3.3) 

 

 

3.3.1 Carry4 delay line results 

As mentioned in Chapter 2, Q_carry4 [47:0], the carry4 delay line output, is used to find the 

noise effect on delays. Q_carry4 [47:0] is connected directly to the ILA and it uses 

thermometer encoding. From the literature review, we found that the delay element value in 

this delay line has the low value around 60 ps, and there is no net delay to connect each carry4 

logic to the next one. Various experiments were done at different frequencies to provide an 

estimate for carry4 logic delay. The frequency range for this delay line is from 120 to 220 

MHz.  

 

As detailed in Appendix IX, the estimated carry4 logic delay value is about 55 ps. This short 

delay value allow the detection of rather small delay changes. It also allows using a greater 

frequency range when compared to the buffer delay line, which is discussed later.  

 

As explained the Q_carry4 [47:0] values are generated 20 times for both even and odd periods 

and their variance is calculated. Finally, the Diff-merged value is calculated. Figures 3.3 and 

3.4 show the Diff_(I,1) and Diff_(I,0) Q_carry4 [47:0] at 220 MHz with full switching noise 

activity, for even and odd periods, respectively. The results are presented in the time domain 

(x-axis), by multiplying the Q_carry4 [47:0] sample number by the clock period. This allows 

comparing results obtained at different frequencies. To get the complete picture, results from 

odd and even periods need to be merged in an interleaved fashion. The result of this merging 

operation appears in Figure 3.5.  
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Figure 3.3 Results from odd periods (Diff (i,1)) for Q_carry4 [47:0]        
at 220 MHz, full switching noise activity 
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Figure 3.4 Results from even periods (Diff (i,0)) for Q_carry4 [47:0]         
at 220 MHz, full switching noise activity 
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The experiments were performed (full switching noise activity) at other frequencies by 

changing the Clk_ref to find a reliable and robust pattern. The merged results obtained at 200 

and 180 MHz are shown in Figures 3.6 and 3.7, respectively. Additional Q_carry4 [47:0] 

results are presented in APPENDIX X. 
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Figure 3.5 Merged results (Diff_merged) for Q_carry4 [47:0] at 220 MHz, 
full switching noise activity 



59 

 
 
 

 
 

 

 

 

 

 

 

Figure 3.6 Merged results (Diff_merged) for Q_carry4 [47:0] at 200 MHz,                                
full switching noise activity 
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Figure 3.7 Merged results (Diff_merged) for Q_carry4 [47:0] at 180 MHz, 
full switching noise activity 
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In the previous figures, we could observe that the changes follow a similar pattern. As shown 

in Figure 3.7 when the Clk_ref is 180 MHz, the pattern obtained from the results at different 

frequencies can be divided into seven parts as below: 

 

3) There is a sharp increase in the delay value when the noise starts. The first transient starts 
at this moment (highlighted in red). 

 

4) After the first dramatic rise, some (medium size) fluctuations occur in the delay. This part 
usually ends before the twentieth sample after the first transient (highlighted in green). 

 

5) There are small fluctuations in the delay (highlighted in blue). 
 

6) There is a rather constant short behavior before the second transient. This part (highlighted 
in black) shows that the delay value have reached the steady-state condition. . 

 

7) There is a sharp decrease in the delay value when the noise stops. The second transient 
starts at this moment (highlighted in orange). 

 

8) After the second dramatic decrease, some (medium size) fluctuations occur in the delay. 
This part usually ends before the twentieth sample after the second transient (highlighted 
in purple). 

 

9) There is a delay reduction in this part. The delay value is reduced until it reached the value 
of the no-noise state in the design (highlighted in yellow). 

 

As the delay of a gate increases when the VDD value decreases (and vice and versa), we can 

assume, in absence of direct VDD measurements, that the shape of the delay curves gives us 

some hints about the shape of the VDD ones. The sharp increase in the delay value at the 

beginning of the first transient phase is coherent with the fact that the start of the noise activity 

induced a sharp increase in current consumption, which in turn leads to a VDD droop. This 

type of behavior was expected and in line with other similar observations in the literature. 

 

In another experiment, we compare the Diff_merged results for different noise modes at 220 

MHz. As shown in Figure 3.8, three modes are compared. The first one (highlighted in black) 

is the no noise mode. The second one ((highlighted in orange) is the clock switching activity 
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only. The third one (highlighted in blue) is the full switching activity. The results show that 

fluctuations in the clock switching activity reach about the same maximum and minimum 

values but last shorter than the ones observed with full switching activity. This suggests that 

the noise induced by the clock distribution network itself is more important than the noise 

induced by the switching FFs. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Note that we expect enabling only one noise block at the time would lead to results 

with less significant fluctuations in the delay values. 

 

Table 3.3 shows the delay fluctuation for different frequencies and noise modes. The first 

column from the left shows the frequency and the second column shows the three 

different noise modes at each frequency. The four other columns show the maximum and 

minimum values for the first and second transient phases. All Table 3.3 results are 

calculated from Diff-merged results. For example, at 220 MHz when no noise is applied, 

there is no observed fluctuation in the first and second transient phases, all the values 
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Figure 3.8 Merged results (Diff_merged) for Q_carry4 [47:0] at 220 MHz for 
different noise modes 
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being equal to zero. Furthermore, always at 220 MHz, in the Clock Switching Activity 

Only (CSAO) mode, the first transient maximum value is estimated at 77 ps. This value 

is obtained by multiplying the peak value of 1.4 (Fig. 3.8) by the estimated carry4 delay 

(55 ps). The biggest delay fluctuations were obtained at 200 MHz, in full switching 

activity mode, with a maximum value of 129 ps for the first transient phase and a 

minimum value of -146 ps for the second transient phase.  

 

Table 3.3 Delay fluctuations (ps) for different frequencies and noise                                    
mode for Q_carry4 [47:0] results (CSAO = Switching                                                                

Activity Only, FSA = Full Switching Activity) 
 

 
 

 

3.3.2 Buffer delay line results 

This section describes the results obtained from five outputs, which are: LED [5:0],  

Ave_start_b4, Ave_delay_line, Ave_delay_margin and q [7:0]. The delay element value in this 

delay line has a larger value than the one of the carry4 delay line. Based on the worst-case 

Frequency 
(MHz)

Noise 
mode

First 
Transient

Max Value

First 
Transient
Min Value

2nd 
Transient

Max Value

2nd 
Transient
Min Value

No 0 0 0 0
CSAO 69 -17 0 -63
FSA 85 -34 0 -85
No 0 0 0 0

CSAO 69 -25 0 -74
FSA 96 -41 0 -96
No 0 0 0 0

CSAO 85 -30 0 -80
FSA 96 -41 0 -96
No 0 0 0 0

CSAO 69 -58 14 -116
FSA 83 -69 19 -132
No 0 0 0 0

CSAO 107 -50 74 -107
FSA 129 -58 96 -146
No 0 0 0 0

CSAO 77 -74 13 -121
FSA 88 -88 17 -143

160

180

200

220

120

140
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delay in static timing, the buffer element delay value is around 124 ps plus the net delay. 

Because of that, the application Clk_ref frequency range is reduced to [100 MHz, 180 MHz]. 

As mentioned before, the LED [5:0] output is there to verify that the correct buffers' number 

is used during the experiments, which is visible on the board. Figure 3.9 shows a LED [5:0] 

example when the buffer number is set to seven. The 6-bit binary output, in this case, is 000111, 

which represents the number seven in the adjustable buffer chain in this delay line. The results 

collection method is similar to the one used for Q_carry4 [47:0], meaning that results must be 

merged in an interleaved way and that equations 3.1 to 3.3 must be used for Ave_start_b4, 

Ave_delay_line, Ave_delay_margin and q [7:0]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As explained in Chapter 2 and shown in Figure 3.10,  the delay block is used to create q[7:0], 

Sum_start_b4 [7:0], Sum_delay_line [7:0] and Sum_delay_margin [7:0]. 

 

 

Figure 3.9 LED [5:0] example when the buffer number            
is seven  in the VIO 
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As also described in Chapter 2, while the q[7:0] is directly sent to the ILA, the three others are 

pulses post-processed by the Sum_Circuit block, which produces Sum_delay_margin, 

Sum_start_b4 and Sum_delay_line. These three signals are then monitored by the ILA, and 

post-processed (namely divided by eight and multiplied by the 450 MHz clock period, 2.2ns) 

in an Excel file to get Ave_delay_margin, Ave_start_b4 and Ave_delay_line, respectively.  Let 

us recall that these three last signals represent the avarage value of the delay margin (time 

between b4 and the next Clk_ref rising edge), the delay between the start and the b4 points, 

and the delay between the start and the b8 points, respectively (see Fig. 3.11).   

 

In some cases, we need to consider the delay between the FF launching the rising transition 

and the start point.This delay was estimated and taken into account when relevant. Details are 

provided in APPENDIX XI. Taking into account this delay allows dealing with the difference 

between the odd and even measurement paths and gives a better estimate of the delay form the 

rising edge of the clock for Ave_start_b4 and Ave_delay_line. 

 

Figure 3.10 Delay block 
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As mentioned earlier, each experiment for both even and odd periods is repeated 20 times, and 

the Diff_merged results obtained for Ave_start_b4 with Clk_ref at 180 MHz and with full 

switching activity is shown in Figure 3.12. The other frequencies' results are presented in 

APPENDIX X. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 Buffer delay line measurement details 

Figure 3.12 Merged results (Diff_merged) for Ave_start_b4 at 180 MHz, full           
switching activity 
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Additionally, the Diff_merged results gathered for Ave_delay_line at 180 MHz presents in 

Figure 3.13. The other results are shown in APPENDIX X. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

The results show a pattern similar to one observed with Q_carry4 [47:0], namely a significant 

delay increase at the beginning of the first transient phase, and a significant delay decrease at 

the beginning of the second transient phase. Overall, mainly due to the Sum_Circuit block's 

limited resolution, the results are noisier compared to Q_carry4 [47:0] results 

 

The other output we investigated is Diff_merged Ave_delay_margin. As presented in Figure 

3.14, the results show that the minimum and maximum values are happening after the first and 

second transient phases, respectively. This behavior is coherent with the previous results as an 

increase in a combinational delay (Ave_start_b4) leads to a decrease in the delay margin. 

Overall, the results for Ave_delay_margin also suffer from the limited resolution of the 

Sum_Circuit block. The additional results are presented in APPENDIX X. 
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Figure 3.13 Merged results (Diff_merged) for Ave_delay_line at 180 MHz, 
full switching activity 
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Theoretical delay margin calculation method and comparison with the measurement results 

with the complete timing diagram details are provided in APPENDIX XII. 

  

Table 3.4 shows the delay fluctuation for different frequencies and noise modes for three delay 

outputs in the buffer delay line. As for Table 3.3, the first and second columns from the left 

are shown the frequency and the three different noise modes at each frequency. The twelve 

other columns show the maximum and minimum values for the first and second transient for 

each output, namely Ave_start_b4, Ave_delay_line, and Ave_delay_margin. All Table 3.4 

results are also calculated from Diff-merged results. For example, for Ave_start_b4 at 180 

MHz when no noise is applied, there is no observable fluctuation in the Diff-merged results, 

and all the values are zero. Furthermore, always at 180 MHz, in the Full Switching Activity 

(FSA) mode, the first transient maximum and minimum values are 260 ps and -90 ps, 

respectively. 
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Figure 3.14 Merged results (Diff_merged) for Ave_delay_margin at 180 
MHz, full switching activity 
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Table 3.4 Delay fluctuations (ps) for different frequencies and noise mode for                            
Ave_start_b4, Ave_delay_line and Ave_delay_margin                                                    

(CSAO = Clock Switching Activity Only, FSA = Full Switching Activity) 

 
 

In this design, as shown in detail in Figure 3.15, the sum of Start_b4_pulse, 

Delay_Margin_pulse and the delay before the start point is in theory equal to Tclk_ref. For 

example, the average of the odd measured samples at 180 MHz (the maximum frequency for 

buffer delay line) when full switching activity is applied in the design leads to the following 

values: Ave_start_b4 = 2.77 ns (as an approximation of Start_b4_pulse) and 

Ave_delay_margin = 0.84 ns (as an approximation of Delay_Margin_pulse). Considering that 

the delay before the start point in this case is about 2 ns,  summing the last three values leads 

to  2.77 + 0.84 + 2 = 5.61 ns ≃ Tclk_ref  (5.55 ns). This shows that the results are consistent 

with the design goals. 

 

 

 

 

 

 

First 
Transient

Max Value

First 
Transient
Min Value

2nd 
Transient

Max Value

2nd 
Transient
Min Value

First 
Transient

Max Value

First 
Transient
Min Value

2nd 
Transient

Max Value

2nd 
Transient
Min Value

First 
Transient

Max Value

First 
Transient
Min Value

2nd 
Transient

Max Value

2nd 
Transient
Min Value

No 0 0 0 0 0 0 0 0 0 0 0 0
CSAO 65 -60 0 -20 40 -10 0 -50 15 -25 0 -15
FSA 75 -75 0 -25 55 -15 0 -55 20 -40 0 -15
No 0 0 0 0 0 0 0 0 0 0 0 0

CSAO 65 -70 0 -30 75 -25 0 -45 35 -35 0 -20
FSA 80 -80 0 -45 105 -30 0 -50 40 -45 0 -25
No 0 0 0 0 0 0 0 0 0 0 0 0

CSAO 100 -45 55 -75 80 -35 75 -95 60 -175 100 -65
FSA 140 -60 70 -90 130 -40 80 -110 60 -210 120 -70
No 0 0 0 0 0 0 0 0 0 0 0 0

CSAO 75 -45 90 -30 85 -140 20 -190 55 -100 85 -50
FSA 90 -50 100 -40 110 -160 30 -240 70 -140 130 -70
No 0 0 0 0 0 0 0 0 0 0 0 0

CSAO 180 -80 50 -120 120 -85 40 -150 50 -140 85 -65
FSA 260 -90 60 -160 130 -130 40 -180 50 -190 100 -80

100

120

140

160

180

Frequency 
(MHz) Noise mode

Ave_start_b4 Ave_delay_line Ave_delay_margin
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The last output in buffer delay line is q [7:0]. As mentioned before, q [7:0] is similar to the 

Q_carry4 [47:0] but provides coarser results, and it is post-processed to obtain the 

Diff_merged q [7:0] values. Comparing the Diff_merged q [7:0] results with the Diff_merged 

Q_carry4 [47:0] results shows the same pattern. The Diff_merged q [7:0] at 180 MHz with 

full switching activity is shown in Figure 3.16. Additional results are presented in APPENDIX 

X. 

 

Figure 3.15 Delay’s relation in the design 
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Table 3.5 shows the delay fluctuation for different frequencies and noise modes for q [7:0] 

output. The calculation method is similar to the one used for Table 3.3, which shows the 

Q_carry4 [47:0] results. The only difference is that the delay of each buffer is approximately 

124 ps and needs to multiply by the Diff-merged values to get the delay fluctuation for q [7:0] 

output. 
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Figure 3.16 Merged results (Diff_merged) for q [7:0] at 180 MHz, full 
switching activity 
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Table 3.5 Delay fluctuations (ps) for different frequencies and noise mode for                               
q [7:0] (CSAO = Clock Switching Activity Only, FSA = Full Switching Activity) 

 

 
 

 

3.4 Discussion  

3.4.1 Temperature effect on the measurement 

The potential temperature effect on the measurements needs to be considered. We performed 

an experiment to quantify this effect, using the FPGA inner temperature monitoring 

capabilities. The experiment started at room temperature  (23°C) when the board was off. The 

maximum temperature was expected to occur in the full switching activity mode. After turning 

on the board, programming the FPGA and adjusting the VIO to have the maximum noise, the 

board temperature reached around 33°C. Then measurements were taken for about an hour. 

Figures 2.16 and 2.17 show the board temperature during the measurements taken at 120 and 

220 MHz, respectively. Note the results are shown from 0 to 24 minutes, then after an hour. 

Frequency 
(MHz) Noise mode

First 
Transient

Max Value

First 
Transient
Min Value

2nd 
Transient

Max Value

2nd 
Transient
Min Value

No 0 0 0 0
CSAO 25 -25 6 -19
FSA 37 -50 12 -31
No 0 0 0 0

CSAO 31 -31 14 -19
FSA 56 -43 25 -37
No 0 0 0 0

CSAO 68 -56 25 -149
FSA 99 -105 43 -192
No 0 0 0 0

CSAO 74 -40 43 -118
FSA 99 -62 62 -149
No 0 0 0 0

CSAO 56 -37 15 -74
FSA 74 -56 25 -99

100

120

140

160

180
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Comparing the results shows that the maximum temperature after one hour at 120 MHz is 

49.7°C and at 220 MHz is 53.8°C, which is a 4.1°C increase. Based on that, we could conclude 

 

 

Figure 3.17 Board temperature while experiments for Q_carry4 [47:0] 
results at 120 MHz 

Figure 3.18 Board temperature while experiments for Q_carry4 [7:0] 
results at 220 MHz 
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that, for every 20 MHz increase in frequency, the temperature range increases by 0.82°C, 

which does not show a significant increase. 

 

Furthermore, examining the Q_carry4 [47:0] results could give us a better conclusion in terms 

of temperature relationship. Tables 3.6 and 3.7 show the correlation coefficients between the 

samples and the temperature. Nineteen sets of Q_carry4 [47:0] results in the full switching 

activity mode were collected at two different frequencies, namely 120 and 220 MHz. To 

quantify the correlation between samples and temperature, Pearson's correlation coefficient 

was applied. This coefficient gives values are between +1 and -1. Coefficient absolute values 

of +0.70 and higher are usually interpreted as a sign of strong correlation (Mindrila & 

Balentyne, 2017). Examining the 200 correlation coefficients at 120 MHz and 275 correlation 

coefficients at 220 MHz shows that the maximum absolute value was 0.4, which means a weak 

correlation with temperature. Based on these results, we concluded that the temperature effect 

was negligible during the experiments. 

 

Table 3.6 Correlation coefficients between Q_carry4 [47:0] and temperature at 120 MHz 

 

                Sample
Temp -°C 3 4 5 6 7 …. 146 147 148 149 150

33.8 24 29 27 28 25 …. 27 24 28 24 28
38 25 28 27 29 24 …. 28 24 28 24 28
40 25 29 26 28 24 …. 27 24 28 24 28

41.3 25 28 28 30 25 …. 27 25 27 25 27
42.6 25 30 27 29 24 …. 28 24 28 24 28
43.7 25 29 26 29 24 …. 27 24 28 24 28
44.5 24 29 27 28 24 …. 27 24 27 24 28
45 25 28 26 30 26 …. 28 24 28 24 28

45.8 24 30 26 30 24 …. 27 24 28 24 28
46.3 23 30 26 28 24 …. 28 24 27 24 28
46.9 25 30 26 28 24 …. 27 24 27 24 28
47 24 30 27 30 24 …. 27 24 28 24 28

47.4 25 28 26 29 25 …. 27 24 27 24 28
47.6 25 28 26 30 24 …. 27 24 27 24 28
48 24 28 26 28 24 …. 28 24 27 24 28

48.2 23 29 27 30 24 …. 28 24 28 24 28
49 25 30 26 28 24 …. 27 24 27 24 28

49.3 24 28 26 30 25 …. 27 24 27 24 28
49.7 24 30 26 29 24 …. 27 24 27 24 28

Correlation 
Coefficient -0.24 0.16 -0.05 -0.29 0.07 …. 0.17 -0.21 0.26 -0.21 0.21
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Table 3.7 Correlation coefficients between Q_carry4 [47:0] and temperature at 220 MHz 

 

 

 

3.4.2 Results repeatability 

In order to verify that the measurements are not drawn in the noise caused by the lack of 

resolution and that the results were repeatable, ten sets of Ave_delay_margin values were 

collected and analyzed. These sets were collected with the Clk_ref is 140 MHz, in the full 

switching activity mode. The Pearson correlation coefficients between every two sets of 

samples were calculated. Table 3.8 lists the resulting correlation coefficients. 

 

 

 

 

                 Sample
  Temp -°C 3 4 5 6 7 …. 271 272 273 274 275

33.8 40 44 43 45 43 …. 39 43 39 43 40
38 39 43 42 44 42 …. 39 43 40 43 40
40 40 44 43 45 42 …. 39 43 40 43 39

41.3 39 44 42 45 42 …. 40 42 40 42 40
42.6 39 44 42 45 42 …. 40 42 40 42 40
43.7 39 43 42 44 42 …. 40 43 40 42 40
44.5 39 43 42 44 42 …. 40 42 40 42 40
45 39 43 42 44 42 …. 40 43 40 42 40

45.8 39 44 42 45 42 …. 40 42 40 43 40
46.3 40 43 43 44 42 …. 40 43 40 42 40
46.9 39 44 42 44 42 …. 40 43 40 43 40
47 39 44 42 44 42 …. 40 42 40 42 40

47.4 39 44 42 44 42 …. 40 42 40 42 40
47.6 39 44 42 45 42 …. 40 42 40 43 40
48 39 44 43 44 42 …. 40 43 40 42 40

48.2 40 44 42 44 42 …. 40 43 40 43 40
49 39 44 43 45 43 …. 40 42 40 42 40
50 39 43 42 45 42 …. 39 42 39 42 39

53.8 39 44 42 45 42 …. 39 42 39 42 39
Correlation 
Coefficient -0.36 0.09 -0.24 -0.07 -0.29 …. 0.28 -0.40 -0.06 -0.39 -0.26
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The results' examination shows that the correlation coefficients between every two sets of 

samples are greater than +0.7, suggesting a rather strong correlation, and showing that the 

results were repeatable. However, that fact that these coefficient values do not exceed 0.90 also 

indicates the presence of noise. 

 

3.4.3 Delay margin systematic error 

The systematic error in the delay margin estimation can be evaluated using the static timing 

results. Details of this evaluation are provided in APPENDIX XII. According to this 

evaluation, this error is a positive offset of 0.064 ns.  

Relatively speaking, the systematic error percentage can be expressed : 

 

 Systematic error percentage = ( error / Measurement Value) * 100 (3.4) 

                              

Considering that the minimum delay margin at 180 MHz is 0.84 ns, the systematic error would 

be 7.6 %, which  is acceptable. 

 

 

Experiment EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 EX9 EX10
EX 1 1
EX 2 0.83 1
EX 3 0.89 0.83 1
EX 4 0.71 0.87 0.78 1
EX 5 0.79 0.75 0.81 0.75 1
EX 6 0.76 0.74 0.78 0.72 0.79 1
EX 7 0.72 0.86 0.74 0.88 0.80 0.70 1
EX 8 0.71 0.81 0.77 0.89 0.84 0.75 0.82 1
EX 9 0.85 0.86 0.70 0.70 0.82 0.79 0.80 0.77 1

EX 10 0.82 0.88 0.79 0.79 0.86 0.78 0.81 0.82 0.88 1

Table 3.8 Correlation coefficients between measurement sets 
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3.5 Conclusion 

The main objective of this chapter was to present and analyze measurements from our 

experimental setup. 

The measurements were done on either the odd or the even samples at different frequencies 

for both delay lines. The first two measured values (Q_carry4 [47:0] and q [7:0]) were directly 

connected to the ILA and post-processed ion an excel file. The last three measured values 

(Start_b4_pulse, Delay_line_pulse, Delay_margin_pulse) were pulses-shaped outputs needing 

some processing to get the final pulse width estimation. 

 

To analyze the noise effect on delays, we investigated the Q_carry4 [47:0] fluctuations. The 

results clearly showed a dramatic increase after the first transient, while after the second 

transient, there is a notable decrease. The experiment results obtained from the other delay line 

showed a similar but noisier pattern. The overall behavior was also supported by the 

Ave_delay_margin results, which, by definition,  reacted in the opposite direction. 

 

Our results also shown that temperature had a negligible impact and that the delay margin 

systematic error was acceptable. 

 

 

 

 

 

 

 

 

 

 



 

CONCLUSION AND RECOMMENDATIONS 
 

 

This research aimed at quantifying the impact of using a popular power consumption reduction 

technique, namely clock gating, on the delays of surrounding circuits in an FPGA. The design 

implemented in the FPGA includes two delay lines, some control modules, some processing 

and storage modules, noise generators emulating clock gating, and an embedded logic 

analyzer. An experimental setup was developed on a commercial FPGA board. This setup 

allowed measurements at different clock frequencies without modifying the designed routing. 

 

The most critical challenges in this research project were, first, to get the minimum delay value 

for each delay element using the most compact placement. We did the implementation many 

times to find the best place for the delay block and the measurement part of the design. Second, 

to compare the results at different frequencies, we needed to keep the routing unchanged. In 

this way, the delay path is identical from one frequency to another. Finally, since the number 

of components inside the FPGA is fixed, using LUT and register pairs to design a noise 

generator block had to be considered. Implementing the noise generator block in the case we 

wanted to design with more than 50% of pairs was impossible. 

 

An analysis of the results showed that, as expected, both enabling and disabling clock gating 

were inducing transient phases affecting delays. It caused an increase in delays right after 

enabling clock gating. The sharp increase in the delay value was followed by medium-size 

fluctuations, corresponding to the first transient phase. Also, there is a decrease in delays right 

after disabling the noise, followed by medium-size fluctuations, corresponding to the second 

transient phases. Results also showed small fluctuations in the delay between two transient 

phases while the delay value reached the steady-state condition. In the absence of direct VDD 

measurements, we can assume that the shape of the delay curves gives us some hints about the 

shape of the VDD ones. The sharp increase in the delay value at the beginning of the first 

transient phase is coherent with the fact that the start of the noise activity induced a sharp 
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increase in current consumption, which in turn leads to a VDD droop. Results also revealed 

that temperature had a negligible impact on the results.  

 

The Xilinx FPGA used in this master project is based on a 28 nm technology. Using more 

recent FPGAs families could be considered for future work. The newer technology could be 

used to increase the processing speed and also to use the FPGAs s which are bigger in size, to 

increase the noise in the design. 

 

Moreover, direct measurements of VDD would be an interesting extension of this work. This 

measurement would help find the relation between the result from this work, which is 

monitored by the noise effect on delay and the actual noise on VDD. Also, using MUXCY as 

a delay element in order to increase the resolution would be another case of interest. According 

to the placement theory of Carry4 logic and the MUXCY inside, we expect to increase the 

resolution four times when we compare it with the results from this work, at the expense of a 

more challenging manual placement, as the number of components would increase. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

APPENDIX I 
 
 

ILA BLOCK DESIGN DETAILS 
 

As explained in Chapter 1, the ILA is used to monitor relevant signals of the design. 

Sum_delay_margin [7:0], Sum_start_b4 [7:0], Sum_delay_line [7:0], Ce_toggling2, Ce-

toggling1, counter MSB output, q [7:0], Q_carry4 [47:0] are the ILA inputs that we want to 

monitor. The ILA is clock by the Clk_ref signal. The ILA is connected to the JTAG interface 

from the specific channel, allowing connection to the PC through the Xilinx platform cable. 

Figure-A І-1 shows the ILA block diagram. 

 

 

 

 

 
 
 
 
 
 
 
 
 

Figure-A I-1 ILA block diagram 

 





 

APPENDIX II 
 
 

VIO BLOCK DESIGN DETAILS 

 

As explained in Chapter 1, VIO is used to control some internal FPGA signals, including: 

•  Buffer_Chain_Sel [5:0], Carry4_Sel [5:0], and Start_Select . which are signals controlling 

the delay block, which is discussed in subsection 2.2.1.  

• Noise_en1, Noise_en2, Ce_1, and Ce_2, which are signals used to control the noise 

generator block, which is explained in detail in subsection 2.2.3.  

 

The only input in this block is Clk_ref. Figure-A ІІ-1 shows the VIO block diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-A ІІ-1 VIO block diagram 

 

 

 

                                             

 





 

APPENDIX III 
 
 

CLOCK GENERATOR DESIGN DETAILS 

 

Figure-A ІІI-1 illustrates the clock generator block diagram. As explained in Chapter 1, the 

system clock is a 200 MHz differential input, and an IBUFDS is needed to get the single-ended 

clock. The IBUFDS output is connected to the reference clock input of the two PLLs and two 

MMCMs inside the clock generator block. The other input of this block, namely Reset_out, is 

provided by the reset debounce block (described in the following APPENDIX). Clk_ref_2x is 

the Clk_ref multiplied by two is used to create Rst_en and FIFO_Wr_en signals in the 

Sum_Circuit block. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-A ІІI-1 Clock generator block diagram 
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The PLL1 and PLL2 outputs are used to create Clk-cnt [7:0], eight clock signals whose 

frequency is equal to 450 MHz but with eight different phases to increase the measurement 

accuracy.0,90,180,270 degrees from PLL1 and 45,135, 225,315 degrees from PLL2. MMCM1 

creates Clk_ref and Clk_ref_2x, which are used to create the required pulses in the design and 

measure their width. MMCM2 creates Clk_ref2, which is the perfect copy of Clk_ref to be 

used in the noise generator block. From each PLL and MMCM, the locked output connects to 

a NOT gate. The output of NOT gates connects to an OR gate CG1. Finally, the CG 1 output 

generates the rst signal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

APPENDIX IV 
 
 

RESET DEBOUNCE BLOCK DESIGN DETAILS 

 

The entire design needs to be reset manually after each experiment. To reset the system 

manually, we utilize the pushbutton sw7 on the board, which can lead to bounces affecting the 

signal. To ensure that the reset_out signal is clean and without unwanted bounces, we created 

the reset generator block. Figure-A Ⅳ-1 shows the reset debounce top level block diagram. 

Reset_out is a clean signal which goes inside the clock generator block and works as the fifth 

input of the OR gate CG1. Whenever we want to reset the system manually, we will be able to 

do that by pressing the pushbutton sw7. Figure-A Ⅳ-2 shows the expanded reset debounce 

block diagram. 

 

 

 

                  
 
 
 
 
 
 
 

 Figure-A Ⅳ-1 Reset debounce top level block diagram 
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  Figure-A Ⅳ-2 Reset debounce expanded block diagram 
 

The IBUF output is the block input. To make a clear signal, the outputs of two D flip-flops R1 

and R2 are connected to an AND gate. The output of the AND gate is the clean reset_out 

signal. Figure-A Ⅳ-3 displays the reset debounce block waveform in detail. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-A Ⅳ-4 Reset debounce block timing diagram 

 

 



 

APPENDIX V 
 
 

CLOCK ENABLE DEBOUNCE BLOCK DESIGN DETAILS 

 

This block is used to create, from an external signal (CE) coming from the pushbutton sw5 on 

the board, a clean signal, FSM_Start , which is the counter clock enable in the Finite State 

Machine (FSM) block. It is similar to the reset bounce block, with an additional reset signal 

(rst).  Clk_ref, rst, and CE after going into an IBUF are the inputs, and the FSM_Start signal 

is the output in the clock enable debounce block. Figure-A Ⅴ-1 shows the clock enable 

debounce top level block diagram.  

 

 

 

                  
 
 
 
 
 
 
 

 
Figure-A Ⅴ-1 Clock enable debounce top level block diagram 

 

 

Figure-A Ⅴ-2 show the clock enable debounce expanded block diagram. 
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Figure-A Ⅴ-2 Clock enable debounce expanded block diagram 
 

 

The clock enable debounce includes two D flip-flops and an AND gate. To create the clean 

start signal without bounces, the outputs of two D flip-flops C1 and C2, connect to the AND 

gate. The output of the AND gate is the clean FSM-Start signal. Figure-A Ⅴ-3 displays the 

FSM-Start generator timing diagram in detail. 

 

 

 

                        
 
 
 
 
 
 
 
 
    

Figure-A Ⅴ-3 Clock enable debounce block timing diagram 
 

 

 



 

APPENDIX VI 
 
 

FSM BLOCK DESIGN DETAILS 

 

This appendix describes the FSM block, used to create Ce_toggling1 and Ce_toggling2 signals. 

FSM_Start, Clk_ref, and rst are three inputs in this block. Ce_toggling1 is the noise block clock 

enable, and Ce_toggling2 is the Sum_Circuit and delay blocks clock enable.                   

Figure-A Ⅵ-1 shows the FSM block diagram.  

 

 

 

                                      
 
 
 
 
 
 

 

 

 

 

There is a 9-bit counter inside the FSM block. The FSM_Start pulse is used as a clock enable 

of the counter. After a reset, the counter output remains at zero as long as the FSM_Start is 

equal to zero, causing the Ce_ toggling1 and Ce_toggling2 signals to be zero. When the 

FSM_Start is enabled, from the next Clk_ref rising edge counter starts to count for one 

microsecond, and the Ce_toggling1 and Ce_toggling2 remains at zero. After this first 1-

microsecond delay, Ce_toggling1 becomes one for the next microsecond, and Ce-_oggling2 

becomes one for the next 1.25 microsecond. Figure-A Ⅵ-2 shows the FSM timing diagram. 

 Figure-A Ⅵ-1 FSM block diagram 
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Figure-A Ⅵ-2 FSM timing diagram 
 

 

 



 

APPENDIX VII 
 
 

COUNTER BLOCK DESIGN DETAILS 

 

This appendix describes the counter block used to divide the frequency of the Clk_ref signal 

by a factor of 32, such that it can properly be sampled by the ILA and allows us to make sure 

that the correct Clk_ref is used in the measurements. This block simply contains a 5-bit counter. 

Clk_ref and rst are two inputs connected to the counter clock and SCLR input of the counter, 

respectively. MSB is the counter output that is connected to the ILA. Figure-A Ⅶ-1 shows 

the counter block diagram. 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure-A Ⅶ-1 Counter block diagram 
 

 

 





 

APPENDIX VIII 
 
 

M_COUNTER_DELAY_MARGIN_I0 DESIGN DETAILS 

 

Figure-A ⅦI-1 illustrates the M_counter_delay_margin_i0 block diagram design details. 

 

 

There is a 2-bit counter inside each M_counter, which works with Clk_ref_2x. In this part 

Clk_ref_2x is used instead of Clk_ref to have more clock rising edges between two pulses when 

a faster reaction is needed. The 2-bit counter output (generically named threshold in the 

previous figure) is called threshold2 for Sum_Cir_1 and threshold3 for Sum_Cir_2 and 

Sum_Cir_3. The 2-bit counter output later is shifted for two Clk_ref_2x  clock cycles by using 

two registers Reg_en and Reg_Wr_en. The Reg_Wr_en output is used as a FIFO_Wr_en and 

SCLR inputs in the 8-bit counter. The other inputs in the 8-bit counter are Clk_cnt0 and 

Delay_margin_pulse. After finishing the pulse width counting process, the output, which is 

the Cnt_reg0 [7:0] value, will be saved by another register, Reg_save. The Reg_save output, 

 

Figure-A ⅦI-1  M_counter_delay_margin_i0 block diagram 
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that is Cnt_reg0_save [7:0], will be stored by a FIFO in the next step. Figure 2.22 illustrates 

the M_counter_delay_margin_i0 timing diagram. 

 

 

 

 

 

 

Figure-A ⅦI-2  M_counter_delay_margin_i0 timing diagram 



 

APPENDIX IX 
 
 

CARRY4 LOGIC DELAY VALUE ESTIMATIONS 

 

As shown in Table-A IX-1, there are different possibilities to find the carry4 logic delay. This 

estimation is performed when full switching activity is applied by comparing the results 

obtained from two different clock frequencies but with the same number of delay elements in 

the programmable part of the delay line. In Table-A IX-1, the first two columns (from the left) 

show the two clock frequencies (Frequency1 and Frequency2, where Frequency1 > 

Frequency2), and the next two the related clock periods. The fifth column lists the increase in 

clock period from the fastest (Frequency1) to the lowest (Frequency2) clock frequency. The 

sixth column indicates the selected number of delay elements in the programmable part of the 

delay line. The seventh and eighth columns give the number of remaining 0’s in the delay line 

for Frequency1 and Frequency2, respectively, while the tenth column (F1-F2) is the difference 

between these two last numbers. Finally, the last column provides the estimation of the carry4 

logic delay, obtained by dividing the value of the fifth column (increase in clock period) by 

the value of the tenth column. 

 

Table-A IX-1  Different possibilites to estimate the carry4 logic delay 
 

 

 

 

 

 

 

 

 

 

220 200 4.55 5 0.45 1 40 29 11 0.0409
220 180 4.55 5.56 1.01 1 40 17 23 0.0439
220 160 4.55 6.25 1.7 1 40 4 36 0.0472
200 180 5 5.56 0.56 1 29 19 10 0.0560
200 160 5 6.25 1.25 1 29 4 25 0.0500
200 180 5 5.56 0.56 2 31 19 12 0.0467
200 160 5 6.25 1.25 2 31 8 23 0.0543
200 160 5 6.25 1.25 4 36 8 28 0.0446
200 160 5 6.25 1.25 7 39 13 26 0.0481
180 160 5.56 6.25 0.69 1 17 4 13 0.0531
180 160 5.56 6.25 0.69 2 19 6 13 0.0531
180 160 5.56 6.25 0.69 5 21 11 10 0.0690
180 160 5.56 6.25 0.69 10 32 18 14 0.0493
180 160 5.56 6.25 0.69 14 40 23 17 0.0406
160 140 6.25 7.14 0.89 25 41 29 12 0.0742
160 120 6.25 8.33 2.08 25 41 11 30 0.0693
140 120 7.14 8.33 1.19 19 24 6 18 0.0661
140 120 7.14 8.33 1.19 25 29 11 18 0.0661
140 120 7.14 8.33 1.19 31 36 19 17 0.0700
140 120 7.14 8.33 1.19 36 44 24 20 0.0595

Carry4 Delayperiod1-ns period2-ns Increased Time-ns Fixed Carry4 Chain Value Frecueny1-MHz Frecueny2-MHz First 
value 

2nd 
value F1-F2
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For example, in the first result row, in Table 3.3, two frequencies, namely 220 and 200 MHz, 

are compared when the adjustable part is fixed to be one carry4 logic. The clock period is 

increased from 4.55 to 5 ns while the number of remaining 0’s in Q_carry4 [47:0] is increased 

from 29 to 40 bits. When we divide the increased time (0.45 ns) by the increased value (11 

bits), we have approximately 41 ps delay for each carry4 logic in this specific case. The average 

of all the possibilities gives a delay value of the 55 ps for each carry4 logic, which is a very 

short delay. 

 

 

 

 

 



 

APPENDIX X 
 
 

Q_CARRY4 [47:0] AT DIFFERENT FREQUENCIES 

  

 
 
 
 
 
 
 
 
 
 
 

Figure-A X-1 Merged results (Diff_merged) for Q_carry4 [47:0]                                          
at 160 MHz, full switching noise activity 

Figure-A X-2 Merged results (Diff_merged) for Q_carry4 [47:0]                                          
at 140 MHz, full switching noise activity 
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APPENDIX XI 
 
 

BUFFER DELAY LINE RESULTS AT DIFFERENT FREQUENCIES 

 

 

 

 

 

 
 
 
 
 
 

Figure-A XI-1 Merged results (Diff_merged) for Ave_start_b4                                           
at 160 MHz, full switching activity 

 
 
 
  
 
 
 
 
 
 
 
 

Figure-A XI-2 Merged results (Diff_merged) for Ave_start_b4                                           
at 140 MHz, full switching activity 
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Figure-A XI-3 Merged results (Diff_merged) for Ave_delay_line                                                  
at 160 MHz, full switching activity 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-A XI-4 Merged results (Diff_merged) for Ave_delay_margin                                        
at 160 MHz, full switching activity 
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Figure-A XI-5 Merged results (Diff_merged) for Ave_delay_margin 
at 160 MHz, full switching activity 

 

 

 

 

 

 
 
 
 
 
 
 
 

Figure-A XI-6 Merged results (Diff_merged) for q [7:0]                                                 
at 180 MHz, full switching activity 
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Figure-A XI-7 Merged results (Diff_merged) for q [7:0]                                                                   
at 180 MHz, full switching activity 
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APPENDIX XII 
 
 

DELAY BEFORE START POINT 

The pulses are measured from the start point. The delay between the FF launching the rising 

transition and the start point has no impact, except when comes the time to: 

• Compare the sum of the Ave_start_b4 and Ave_delay_margin values to the Clk_ref period. 

Without this delay, both should be equal. 

• Compare the Ave_delay_line value to the Clk_ref period; the former is supposed to be 

larger than the latter. Based on the static timing analyzer, the Ave_delay_line is equal to 

8.8 ns when the Clk_ref is 100 MHz. 

 

The delay before the start point for both odd and even periods needs to be calculated and 

taken into consideration in these situations. 

 

Figure-A XII-1 shows the delay details before the start point. 

 

 

Figure-A XII-1 Delay details before the start point 
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P1 and P2 are the two paths before the start point, used for the odd and even periods, 

respectively. There are six delay elements. Table-A XII-1 presents the delay element values 

before the start point, according to the static timing analyzer. 

 

Table-A XII-1 Delay elements values before the start point 
 

 

 

 

 

 

 

When we add each relevant path delay element values together, the paths delay would be : 

 

 P1 = 0.518+ 0.485+ 0.369 = 1.372 ns                                      (A XII.1)  

 

 P2 = 0.518+ 0.354+ 0.518+ 0.449+ 0.369 = 2.208 ns               (A XII.2)  

 

According to the previous example (Ave_delay_line = 8.8 ns), when these two delay values 

add to the even and odd measurement results, the Ave_delay_line = 8.8 + 1.372= 10.172 ns for 

odd periods and Ave_delay_line = 8.8 + 2.208= 11.008 ns for even periods, which both are 

more than 10 ns, and they meet the desired timing specifications. During the entire 

measurements, these constant values must be added to the experiment's results. Note that the 

difference between the odd and even paths before the starting point should not affect the merge 

the odd and even measurement sets, as there are expressed in a differential way with respect to 

a reference value. As the error due to the difference between the odd and even paths will affect 

in a similar fashion both each measurement and the reference value, the error will be canceled 

out.

Number Delay Element Value/ ns Path 
1 Flip-flop 0.518 P1 and P2 
2 Net delay 0.354 P2 
3 Net delay 0.485 P1 
4 Flip-flop 0.518 P2 
5 Net delay 0.449 P2 
6 2:1 multiplexer 0.369 P1 and P2 



 

APPENDIX XIII 
 
 

DELAY MARGIN CALCULATION METHOD AND THE SYSTEMATIC ERROR 

 

By definition, the delay margin is the time between  the selected point representing the end of 

the combinational path (in our case b4) and the next clock rising edge. Figure-A XIII-1 shows 

the delay margin in theory. 

 

 

 

 
 
 
 
 

Figure-A XIII-1 Delay margin in theory 
 

In our design, the rising edge on b4 is captured and processed to create a pulse whose width 

is a good estimate of the delay margin. As shown in Figure-A XIII-2 the real delay margin in 

our case would be: 

 

Real delay margin = Tclk_ref – (Delay before start point +Start_to_b4) = Tclk_ref –  clk_to_b4                   

(A XIII-1) 

 



106 

 

 

 
 
 
 
 
 
 

Figure-A XIII-2 Real delay margin timing diagram in the design 
 

On the other hand to quantify the delay margin estimate based on the static timing we need to 

find each delay element as shown in Figure-A XIII-3 and 4. 

 

Figure-A XIII-3 Delay block static timing details 
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Figure-A XIII-4 Buffer delay line static timing details 

 
The Delay_margin_pulse is created by AND gate one of two signals, namely b4 and its 

previous value, inverted. To find the estimated delay margin formula from the timing 

diagram shown in Figure-A XIII-5 and 6, we would have: 

 

              Estimated static delay margin = A – B                                                (A XIII-2) 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure-A XIII-5 Static delay margin timing diagram 1 
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Figure-A XIII-6 Static delay margin timing diagram 2 
 
If : 
 

Delay before start point + Start_to_b4 = Clk_ref_to_b4                                             (A XIII-3)      

 

By writing the equal delay values in XI-1 formula we have: 

 

Estimated static delay margin =  (Tclk_ref + d41 + d42) – (Clk_ref_to_b4+d43)      (A XIII-4)   

    

The systematic error is the difference between the measurement value in the worst-case 

scenario which is the static timing delay margin (formula XI-3) and the real delay margin 

(formula XI-1) as below: 

 

(Tclk_ref + d41 + d42)  – (Clk_ref_to_b4+d43) – (Tclk_ref – Clk_ref_to_b4)  

        =  d41+d42-d43                                                    (A XIII-5)   

 

Where the delays in the worst-case, according to the static timing analyzer,  are equal to: 

D41=0.456 ns, D42=0.847 ns, D43= 1.239 ns                     

  

 In this case XI-4 = 0.064 ns 
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