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Ali YALPANIAN 
 

RÉSUMÉ 

 

L'amélioration des caractéristiques des paliers et des contacts en général est un besoin constant 

de l'industrie. Cette étude propose une méthode précise, fiable et efficace qui peut traiter des 

surfaces de contact qui ont différentes géométries d'aspérités négatives ou positives, tout en 

tenant compte de la thermoélasticité. Cet objectif est atteint en ajoutant la capabilité 

thermoélastique et la capacité de traitement des bords courbés à la méthode semi-analytique 

du demi-espace (SAM) développée par Hartnett (Hartnett, 1980). 

Pour préparer un modèle de simulation de contact complet, l'étude identifie les faiblesses de la 

méthode du demi-espace disponible, qui s'est déjà avérée plus efficace et moins longue que les 

approches FEA, et cible ces faiblesses. L'une des faiblesses des méthodes basées sur le demi-

espace est l'incapacité à simuler de manière fiable les bords courbés. Afin de traiter les bords 

courbés, l'étude définit, d'abord, la position de la pression d'équilibrage pour chaque position à 

l'intérieur de la zone de contact afin d'éliminer la contrainte cisaillement qui reste à la surface 

libre courbé. Deuxièmement, il introduit un facteur de correction pour la pression d'équilibrage 

afin d'éliminer la contrainte normale qui reste sur la surface libre courbé. 

Une autre faiblesse importante de SAM est l'incapacité de prise en compte des effets 

thermoélastiques, en particulier, en présence des bords libres. Pour remédier à cette faiblesse, 

l'étude introduit des facteurs d'influence thermoélastiques à calculer une seule fois au début du 

processus de simulation. Semblable aux erreurs élastiques imposées par les bords libres, en 

raison de l'hypothèse du demi-espace, les bords libres imposent également certaines erreurs 

lors considération thermoélastique. Ces erreurs proviennent du débit de chaleur et de la 

contrainte normale thermoélastique généré à la surface libre. Cette étude traite, d'abord, les 
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bords libres plats en tirant parti du débit de chaleur généré à la surface libre afin de définir la 

frontière thermique correspondante en appliquant des patchs de chaleur d'équilibrage et en 

introduisant un facteur de modification des frontières thermiques. À la deuxième étape, le 

processus calcule un facteur de correction pour le patch de chaleur d'équilibrage appliqué pour 

tenir compte de la contrainte normale thermoélastique générée à la surface libre plat. 

A l'étape suivante, l'étude considère les bords libres courbés tout en prenant en compte les 

effets thermoélastiques. Depuis que les premières étapes de l'étude ont déjà traité les aspects 

élastiques des bords libres courbés, cette étape se concentre uniquement sur les aspects 

thermoélastiques. Pour ce faire, l'étude calcule, d'abord, la position des patchs de chaleur 

d'équilibrage, puis applique le facteur de modification de la frontière thermique introduit dans 

les étapes précédentes pour définir la frontière thermique au bord libre courbé. Ensuite, l'étude 

calcule un facteur de correction pour le patch de chaleur d'équilibrage afin d'éliminer la 

contrainte normale thermoélastique générée à la surface libre courbé pour une frontière 

thermique spécifique (frontière thermique adiabatique). Dans l'étape finale, l'étude introduit 

une dernière modification du facteur de correction introduit à l'étape précédente pour tenir 

compte d'autres frontières thermiques. 

Étant donné que le modèle proposé est suffisamment flexible pour gérer tout contact avec un 

profil de pression arbitraire et variable, l'étude a utilisé le modèle développé pour modéliser un 

contact de roulement thermoélastique thermique élastohydrodynamique avec des bords libres. 

Ensuite, l'étude a effectué une analyse factorielle complète sur les effets des trois principales 

variables de contact (Charge, vitesse moyenne et grade de viscosité du lubrifiant utilisé) sur 

les paramètres caractéristiques du contact lubrifié (Pression maximale, température maximale 

et épaisseur minimale du film de lubrifiant). 

 

Mots-clés : mécanique de contact, déplacement thermoélastique, méthode demi-analytique, 

Lubrification élasthydrodynamique 
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ABSTRACT 

 

Improvement of the characteristics of bearings and contacts in general is a constant need of the 

industry. This study proposes a precise, reliable and time efficient method that, while taking 

into account thermoelasticity, it can also handle contact surfaces with different negative or 

positive asperity geometries. This goal is achieved by adding thermoelastic consideration and 

curved edge treatment capability to the well-known half-space semi-analytical method (SAM) 

developed by Hartnett (Hartnett, 1980). 

To prepare a comprehensive contact simulation model, the study identifies the weaknesses of 

the available half-space method, which has already been proven more effective and less time 

consuming than FEA approaches, and targets those weaknesses. One of the weaknesses of the 

half-space based methods is the inability to reliably simulate the curved edges. In order to 

handle curved edges, first, the study defines the position of the counterbalance pressure for 

each position inside the contact area to eliminate the remaining shear stress at the curved free-

surface. Second, it introduces a correction factor for the counterbalance pressure to eliminate 

the remaining normal stress on the curved free-surface. 

Another important weakness of SAM is the consideration of thermoelastic effects, specifically 

in the presence of free-edges. To rectify this weakness, the study introduces thermoelastic 

influence factors to be calculated only once at the beginning of the simulation process. Similar 

to elastic errors imposed by free-edges, because of the half-space assumption, free-edges 

impose some errors for thermoelastic considerations as well. These errors come from the 

generated heat flux and thermoelastic normal stress at the free-surface. This study first treats 

straight free-edges by taking advantage of the generated heat flux at the free-surface in order 
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to define the corresponding thermal boundary condition by applying counterbalance heat 

patches and introducing a thermal boundary modification factor. At the second step, the process 

calculates a correction factor for the applied counterbalance heat patch to account for the 

generated thermoelastic normal stress at the straight free-surface. 

At the next step, the study considers the curved free-edges while taking into account the 

thermoelastic effects. Since the initial steps of the study have already treated the elastic aspects 

of the curved free-edges, this step focuses only on the thermoelastic aspects. To do so, first, 

the study calculates the position of the counterbalance heat patches and then applies the thermal 

boundary modification factor introduced in the previous steps to define the thermal boundary 

condition at the curved free-edge. Then, the study calculates a correction factor for the 

counterbalance heat patch to eliminate the thermoelastic normal stress generated at the curved 

free-surface for a specific thermal boundary condition (adiabatic boundary condition). In the 

final step, the study introduces a final modification for the correction factor introduced in the 

previous step to account for other thermal boundary conditions. 

Since the proposed model is flexible enough to handle any contact with arbitrary and variable 

pressure profile, the study used the developed model for modeling a thermoelastic thermal 

elastohydrodynamic rolling contact with free-edges. Then, the study performed a 

comprehensive factorial analysis on the effects of the three main contact variables (Load, 

average velocity and viscosity grade of the employed lubricant) on the characteristic 

parameters of the lubricated contact (Maximum pressure, maximum temperature and minimum 

film thickness). 

 

Keywords: contact mechanic, thermoelastic deformations, semi-analytical method, 

elastohydrodynamic lubrication 
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n Dimensionless radius ratio 

nsf Normal stress elimination correction factor for v=0.3 

nsfv General normal stress elimination correction factor 

nsfTE Thermoelastic normal stress elimination correction factor 

P Pressure (Pa) 𝑃ത Dimensionless pressure 

p Auxiliary variable 𝑃ு Maximum Hertzian pressure (Pa) 

PM Proposed method 

Q (1st Article) Distributed load (N/m) 

q (1st Article) Auxiliary variable 

q / Q (2nd & 3rd 
Article) 

Heat generation/partition (W) 

Q* (1st Article) Modified distributed load (N/m) 

Q* (2nd Article) Equivalent counterbalance heat (W) 𝑄෠  Distributed heat flux (W/m) 𝑄෠∗ Modified distributed heat load (W/m) 

q'' Heat flux (W/m2) 𝑞′′തതത Dimensionless heat flux 

q''' Volumetric heat generation (W/m3) 

R (1st & 3rd Article) Radius of the free edge (The circular boundary) (m) 𝑅 (2nd Article) Equivalent contact radius in rolling direction (m) 𝑅௖ Electrical contact resistance (ohm) 

RFW Rotational friction welding 

RH Right hand side of the equality equation 

RMS Root mean square 
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RS Right hand side of the equality equation 

r Radial position (m) 

r’ The distance between the line of action of Cz and the free edge 
(The circular boundary) 

rz Radial position of the line of action of Cz 𝑟̅ Dimensionless radius (r/R) 

s (1st Article) Auxiliary variable 

s (2nd & 3rd Article) Distance (m) 𝑠଴ Heat-affected zone radius (m) 

SAM Semi-analytical method 

SS Sliding speed (m/s) 

t Auxiliary variable 

T Temperature ( ̊K) 

ΔT Temperature difference ( ̊K) 

TEHL Thermal Elastohydrodynamic lubrication 

TTEHL Thermoelastic Thermal Elastohydrodynamic lubrication 

TTEHL-TB Thermoelastic Thermal Elastohydrodynamic lubrication with 
thermal boundary 𝑈ഥ Dimensionless velocity  

u General parameter for an ordinary differential equation 
integration 𝑢௙ Lubricant velocity in rolling direction (m/s) 𝑣௙ Lubricant velocity in lateral direction (m/s) 

w Normal displacement (m) 

wQ (1st Article) The normal displacement at ri caused by a ring load Q of radius 
ro over the half-space 

wQ (2nd Article) The normal displacement at a distance 𝑙௭்ா from the free edge 
caused by the mirroring heat load (m) 
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wQ* (1st Article) The combined normal displacement at ri caused by a ring load of 
radius ro over the half-space and the normal stress elimination 
process 

wQ* (2nd Article) The normal displacement at a distance 𝑙௭்ா from the free edge 
caused by the mirroring heat load and the normal stress 
elimination process (m) 

wE, wTE The normal displacement at a distance 𝑙௭்ா from the free edge 
caused by the loads obtained from accumulation of the normal 
stresses (m) 

x, ξ Cartesian coordinate position (Horizontal) (m) 

y, ζ Cartesian coordinate position (Vertical) (m) 
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z The position in z direction (m) 𝑥̅,𝑦ത, 𝑧̅ Dimensionless Cartesian coordinate positions 

α The approach between the two bodies in contact (m) 

β (1st & 3rd Article) The angle between θ=0 line and the line between the force point 
on a ring load and the point at (θ=0, r=R) 

β (2nd Article) Coefficient of thermal expansion (lubricant) (K-1) 

γ Coefficient of thermal expansion (solid) (K-1) 

η Dynamic viscosity of the lubricant (Pa.s) 

θ Angular position 

κ Thermal diffusivity (m2/s) 

μ Friction coefficient 

ν Poisson ratio 

ρ Auxiliary variable 

σ, σf Normal stress (Pa) 𝜎ത Dimensionless normal stress 

τ Shear stress (Pa) 𝜏̅ Dimensionless shear stress 
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φ Angular limit 𝛷 Heat flux resultant (W/m) 
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Index Identifier of the parameters related to  

a Body number one 

b Body number two 

c Center 

cy Cylinder 

E Elastic (Piezoelastic) 

H Physical equivalent of infinity 

ha Half-space 

I Index of the point that its displacement is being calculated 

i The inner ring load 

J Index of the pressure patch 

j The point where displacement is being calculated 

k The pressure patch 

L, U Four sides of a rectangular element 

o The outer ring load 

r Radial direction 

TE Thermoelastic 

u Sigma parameter 

x, y, z Cartesian coordinate directions 

 



 

INTRODUCTION 

 

Mechanical contacts are key elements of many power transfer systems used in different 

equipment, including the power train gearboxes of wind turbines, helicopters and aircrafts 

(Bhaumik, Sujata, Kumar, Venkataswamy, & Parameswara, 2007 ; Budinski, 2014 ; Siddiqui, 

Deen, Khan, & Ahmad, 2013 ; Tazi, Châtelet, & Bouzidi, 2017). In many cases, their failure 

has proven to be catastrophic. For example, one of the main reasons for the crash of Sikorsky 

S-92A, C-GZCH on March 12, 2009 (St. John’s, Newfoundland and Labrador, 35 NM E) was 

failure of the tail gearbox (A09A0016, 2010). Therefore, the proper design of the power 

transfer elements is of utmost importance.  

The presents study aims to prepare a precise, reliable and time efficient multipurpose contact 

simulation tool that takes into account the thermoelastic effects. This simulation tool is able to 

is able to handle the textured surfaces that are recently getting noticed because of the 

advancements in smart surface engineering (Erdemir, 2005 ; Gropper, Wang, & Harvey, 2016 ; 

Manser, Belaidi, Hamrani, Khelladi, & Bakir, 2019 ; Ohue & Tanaka, 2013). The contributions 

of this research are presented in three published (or submitted) articles integrated into an 

article-based thesis. 

This introduction first presents the problematic of the research, the main research objective and 

its sub-objectives, the corresponding methodologies and finally the document structure. 

0.1  Research problem 

To control the life span of a set with mechanical contacts, without compromising its 

characteristics, it is important to know the precise behavior of the contact under real conditions 

including thermal behavior of the lubricant and thermoelastic response of the solids. 

By knowing the affecting factors controlling this behavior, it would be possible to adapt the 

surface design, treatment and/or operating conditions to the tribological needs and avoid 

phenomena like early pitting, wear and jamming in bearings and gears. Aside from the thermal 

aspects of the contact problems, there are some geometrical aspects that also need to be taken 
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into account. Therefore, the general problem of this research is lack of a comprehensive model 

that, while being time efficient, is also reliable, precise and multipurpose. 

Finite element analysis (FEA) and Semi-analytical method (SAM) are two of the most common 

methods employed for contact analysis. In most cases, FEA gives reasonably acceptable 

precision for different mechanical problems but sometimes the cost is too high. Typically, a 

3D FEA requires a considerable memory size and consumes a lot of time for preparation and 

analysis (Effertz, Fuchs, & Enzinger, 2017 ; Tian & Bhushan, 1996). Also, for complicated 

multi-physics problems like, thermal EHL contacts, the complexity of the analysis is rather 

high, and the results are not necessarily as reliable as they usually are for the simple problems. 

For such contact problems, semi-analytical methods (SAM) give reliable results with far less 

costs in comparison with FEA (Hartnett, 1980 ; J. Li & Berger, 2003). 

Therefore, this study aims to develop an improved SAM that has the earlier mentioned 

properties. These half-space base methods have some limitations that confine their 

applicability. During the past few decades some of these limitations have been overcome by 

modifications proposed by researchers (Guilbault, 2011 ; Hanson & Keer, 1995 ; Hetényi, 

1960, 1970 ; Keer, Lee, & Mura, 1983). Hartnett’s SAM (Hartnett, 1980)  is a well-known 

method that has been used in many of these studies. 

The main assumption in Hartnett’s SAM (Hartnett, 1980) is half-space assumption for 

contacting bodies. Aside from the main benefit of this assumption, which is simplification of 

the contact analysis, it also imposes some imprecision. For example, the pressure profile 

obtained from Hartnett’s method for contacts with free-edges is rather erroneous. Since 

Hartnett’s method is a rather fast and practical method, many researchers have tried to 

overcome these mentioned shortcomings (Guilbault, 2011 ; Hanson & Keer, 1995 ; Keer et al., 

1983). Nevertheless, there are some limitations that have not been addressed yet; like 

thermoelasticity effects or curved free-edges that can be found in surfaces with different 

asperities and cavities or some textured surfaces (SKF, 2012). 

A lot of EHL contact analysis models use the principles of Hartnett’s SAM method. Most of 

these models do not take into account the effect of the heat generated in the lubricant on the 
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contacting solids (Guilbault, 2013 ; Mihailidis, Agouridas, & Panagiotidis, 2013 ; X. Wang, 

Liu, & Zhu, 2017). Therefore, there are not many studies that consider thermoelasticity effects 

and the ones that do still need a lot of work (W. Z. Wang, Hu, Wang, & Liu, 2006).  

Hence, the main problem that this thesis intends to address is the absence of a comprehensive 

model that can handle different practical contacts than contain curved and/or straight free-

edges. 

So, the main objective of this thesis is: 

To develop a comprehensive numerical contact method that handles both straight and curved 

free-edges while taking into account the effects of thermoelasticity. 

This main problem can be divided into three separate but related problems and in turn lead to 

sub-objectives of this thesis. The first problem is current SAMs’ inability to handle contacts 

with curved edges in a fast and reliable manner. The second and third problems are lack of a 

fast and reliable approach for SAM to take into account thermoelasticity for contacts with 

straight and/or curved free-edges.  

0.2  Objectives 

Dividing the main objective results in tangible sub-objectives that can be reached in 

consecutive steps. This section briefly describes these sub-objectives. The next section will 

explain the methodologies employed in order to obtain these sub-objectives. 

0.2.1  First sub-objective 

The first sub-objective is: 

To introduce an adjustment to SAM that gives it the capability of handling non-thermoelastic 

contacts with curved free-edges. 

This adjustment should not compromise the precision of the SAM while keeping its main 

characteristics: time efficiency and reliability. 
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0.2.2  Second sub-objective 

The second sub-objective is: 

To infuse the capability to consider thermoelastic effects into SAM in a relatively simple 

approach and at the same time giving it the capability of handling straight free-edges. 

The precision, reliability and rapidity of the resulting SAM is important. 

0.2.3  Third sub-objective 

The third sub-objective is: 

To introduce another adjustment to the developed thermoelastic SAM in order to make it 

capable of handling curved free-edges as well. 

As before, while being precise and reliable, the final model should not be excessively time 

consuming. 

0.3  Methodologies 

This section lays down a rough scheme of the methodologies employed for reaching each of 

the sub-objectives described in the previous section. These methodologies are explained in 

more detail in the articles presented in the following sections. 

0.3.1  Methodology for obtaining the first sub-objective 

In order to obtain the first objective, first, the process calculates the shear stress generated on 

the curved free-surface by applying a load on the contact surface because of the half-space 

assumption. In the next step, the process finds the position of the corresponding 

counterbalancing load that creates an accumulated stress of the same magnitude on the curved 

free-surface to eliminate the generated shear on the curved free-surface. Then, the procedure 

modifies the magnitude of the counterbalance load in order to eliminate the effects of the 

remaining normal stress on the curved free-surface. To do so, the procedure calculates the 

generated normal stress on the curved free-surface by the applied load. Afterwards, a cyclic 
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normal stress elimination process defines overcorrection the overcorrection for the 

counterbalance load. The first article explains this cyclic procedure in more detail. 

In the end, this methodology leads to two simple steps for the treatment of curved free-edges 

using SAM. The first step gives the position of a counterbalancing load and the second 

modifies its magnitude. 

0.3.2  Methodology for obtaining the second sub-objective 

In the first step in pursuit of the second objective, the thermoelastic displacement equation 

proposed by Barber (Barber, 1971) helps the creation of a thermoelastic influence factor that 

can easily be integrated into Hartnett’s SAM (Hartnett, 1980). Similar to the influence factor 

introduced by Hartnett, the thermoelastic influence factor introduced here depends only on the 

grid geometry. Hence, it can be calculated only once at the beginning of the calculation process. 

Half-space assumption results in generation of heat flux at the free-surface. An antagonistic 

heat flux at the free-surface can eliminate this generated heat flux. This antagonistic heat flux 

can be created by applying a symmetric counterbalance heat load on the surface of the half-

space. Nonetheless, instead of the complete elimination of the generated heat flux, the process 

modifies the counterbalance heat load to define desired thermal boundary conditions at the 

free-surface by taking advantage of the convection-conduction relation described by Biot 

number. 

The next step for obtaining the second objective is to eliminate the remaining thermoelastic 

normal stress on the free-surface because of the half-space assumption. To do so, the process 

calculates the normal stress engendered on the free-surface and replaces it with an equivalent 

force. Then, it eliminates this equivalent force in a cyclic procedure that is explained in more 

detail in the second article. This procedure results in an overcorrection factor for the 

counterbalance heat load. 
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In the end, following this methodology results in thermoelastic influence factor, a 

counterbalance load to define the thermal boundary at the free-surface and finally a correction 

factor for eliminating the remaining thermoelastic stress at the free-surface. 

0.3.3  Methodology for obtaining the third sub-objective 

To obtain the third objective, first, the procedure calculates the heat flux generated at the curved 

free-surface because of the half-space assumption. Then, it proposes another position outside 

the contact zone for applying a counterbalance heat load in order to eliminate the generated 

heat flux. When the counterbalance position is defined, the procedure applies the earlier 

described thermal boundary definition factor to account for the thermal boundary condition at 

the curved free-surface. 

To eliminate the thermoelastic normal stresses that are also generated on the curved free-

surface because of the half-space assumption, a cyclic approach similar to the one performed 

for the second objective, but instead for the curved free-surface, gives the modification factor 

for elimination of the remaining thermoelastic normal stresses assuming adiabatic thermal 

boundary condition. This factor modifies the counterbalance heat load as well. 

Since the thermoelastic normal stress elimination factor is calculated for an adiabatic boundary 

condition, the next step calculates an extra overcorrection factor to account for the effect of 

thermal boundary condition on the thermoelastic normal stress elimination factor. The process 

of calculating the extra overcorrection factor is done analytically. 

Ultimately, the explained methodology introduces three factors to be applied into the model 

that was prepared after accomplishing the second sub-objective. The first factor gives the 

position of the counterbalance heat load for defining the thermal boundary condition. The 

second one, adjusts the counterbalance heat load in order to eliminate the thermoelastic normal 

stress for adiabatic boundary condition. And the third, overcorrects the adjusted counterbalance 

heat load once more to tune the thermoelastic normal stress elimination factor for different 

thermal boundary conditions. 



7 

 

 

 

0.4  Structure of the thesis 

This thesis is comprised of six main chapters excluding the references. The first chapter is the 

introduction to the main subject of the thesis followed by the problematic of the research, the 

objectives and a short description of the methodology laid out for reaching those objectives. 

At the end of chapter one, the general structure of the thesis is presented (This section). The 

second chapter is a brief literature review of the works done in the main subjects of this thesis. 

The next three chapters (Articles 1, 2 and 3) are respectively the detailed presentation of each 

sub-objective presented above, their methodologies and the obtained results. The last chapter 

of this thesis bring forth the overall conclusion that includes the main achievements of this 

work, the restraining limitations and finally some recommendations for future research 

subjects. 
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CHAPTER 1  
 

LITERATURE REVIEW 

This section presents a comprehensive review of the previous studies performed on subjects 

related to the intended contact analysis of this thesis. The following subsections present the 

main subjects related to creating a comprehensive contact model that handles lubrication, 

thermal effects on lubricants, thermoelastic responses of the contacting bodies and various 

types of free-edges. 

Since loading is present in any contact analysis, the first subsection presents the common 

relation used in different SAMs for calculating the generated load in the contact. The next 

subsection covers the elastic response of the contacting bodies to the applied pressure. 

Afterwards, possible types of heat generation in contacts are discussed. The subsection that 

comes after describes the thermoelastic response of the contacting bodies to the applied heat. 

The next subsection pronounces the importance of free-edges and the issues raised by them in 

half-space based simulations. After the main phenomena related to the contacting bodies are 

discussed, the next subsection describes the lubricant properties and their dependence on 

pressure and temperature. Following that, the next subsection presents the required 

hydrodynamic and energy equations for a lubricated contact. Finally, an overview lays out the 

experimental and numerical approaches employed in different studies for such contact analysis. 

1.1  Load 

Existence of the load ensures existence of the contact. As many references have explained 

(Hartnett, 1980 ; Najjari & Guilbault, 2014 ; Yalpanian & Guilbault, 2020), the load balance 

equation, which ensures the load equilibrium over the solution domain, is simply expressed as: 
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𝐿𝑜𝑎𝑑 = ඵ 𝑃ሺ𝑥,𝑦) 𝑑𝑥𝑑𝑦୅  ( 1.1 ) 

where P is the applied pressure and (x, y) are the planar coordinates. Assuming that the contact 

area is rather small in comparison with the curvature of the contacting bodies, Eq. ( 1.1 ) 

considers a flat projection of the contact area A for the integration. This equation is valid for 

every type of contact that complies with the contact size assumption. 

1.2  Piezo-elasticity 

Piezoelasticity is the base of dry contact pressure calculation. Hertz theory is the most common 

basic contact pressure calculation approach (Johnson, 1987). Based on the theory of elasticity, 

Hertz proposed a reliable but limited contact theory. Since then, many researchers have worked 

on developing more practical and general methods (Bachtar, Chen, & Hisada, 2006 ; Guilbault, 

Gosselin, & Cloutier, 2005 ; Hartnett, 1980). One of the pioneering works on this subject is the 

work performed by Hartnett (Hartnett, 1980). He proposed a numerical method to calculate the 

pressure distribution of a contact with any physical shape. To do so he used the results of 

Boussinseq solution for a half-space. 

1.2.1  Hertz’s Theory 

To describe Hertz’s theory, we can see the pressure at the contact point as a singular point 

compared to the whole body. If, about the singular point, we describe a closed surface of small 

dimensions compared to the whole body, but very large in comparison with the element in 

which the forces act, the deformations outside and inside this surface may be treated 

independently of each other. Outside, the deformations depend on the shape of the whole body, 

the finite integrals of the force-components at the singular point, and the distribution of the 

remaining forces; inside, they depend only on the distribution of the forces acting inside the 

element (Hertz, 1896). 

Hertz assumed the surfaces in contact are imagined as perfectly smooth and no tangent force 

exist in the contact. The following assumptions are made by Heinrich Hertz for his theory 

(Adams & Nosonovsky, 2000 ; Herák, Chotěborský, Sedláček, & Janča, 2018). 
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• The dimensions of the contact area must be small compared to the dimensions of each 
body and to the radii of curvature of the surfaces. 

• Isotropy and homogeneity of the contact zone. 

• The strains are sufficiently small for linear elasticity to be valid. 

• The contact is frictionless, so that only the normal stress is transmitted. 

• Projected areas for point contacts are elliptical. 

• Each body is approximated by an elastic half-space. 

Hertz’s approach takes the point of first contact as the origin of a Cartesian coordinate system 

with the x–y plane as the common tangent plane while the z–axis is directed inwards. During 

the compression by the normal load P, distant points T1 and T2 displace distances δ1 and δ2 

respectively parallel to the z–axis towards the coordinate’s origin O. The quantity δ= δ1+ δ2 is 

called the normal approach or the interference (Adams & Nosonovsky, 2000). In addition to deformation, 

the contact pressure also causes internal or subsurface stresses (Johnson, 1987). 

 

Figure  1.1 Hertz contact of two nonconforming elastic bodies  
Reproduced from Adams & Nosonovsky (2000, p. 432)  

Calculation of Hertzian parameters including the maximum pressure and the contact area is 

available in many references and can be used as a tool for verifying the numerical results. 
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Although, the Hertz calculations might not be accurate for some practical problems, but its 

results are very close to reality. 

1.2.2  Boussinesq’s results for a Half-space 

Boussinesq and Cerruti solved the problem of point loading on a half-space using potential 

functions (Johnson, 1987). Using Boussinesq’s results for a half-space, it is possible to 

calculate the normal deformation at any point in a half-space including its surface. Eq. ( 1.2 ) 

shows the formula for calculating the normal displacement at any point in a half-space caused 

by applying pressure on an area A of the half-space surface (de Mul, Kalker, & Fredriksson, 

1986). 

𝑤ாሺ𝑥,𝑦, 𝑧) = ሺ1 + 𝑣)2𝜋𝐸 ඵ 𝑃ሺ𝜉, 𝜁)ቆ 𝑧ଶሺ(𝑥 − 𝜉)ଶ + (𝑦 − 𝜁)ଶ + 𝑧ଶ)ଷ ଶൗ஺+ 2(1 − 𝑣)ඥ(𝑥 − 𝜉)ଶ + (𝑦 − 𝜁)ଶ + 𝑧ଶቇ 𝑑𝜉𝑑𝜁 

( 1.2 ) 

In this formula, 𝑤ா is the normal displacement at the surface, z is the depth from the surface, 𝑃(𝜉, 𝜁) is the distributed pressure applied on the area A of the half-space surface, (𝜉, 𝜁) are 

local coordinates, 𝑣 is the Poisson ratio and E is Young's modulus. This formula only considers 

the pressure. Shear forces and thermoelastic effects are not included. 

1.2.3  Compatibility Equation 

Eq. ( 1.3 ) defines the relation between the initial separation g of bodies a and b from the 

contact plane and the linear elastic deformation of the solids (𝑤ா௔, 𝑤ா௕). In a dry contact this 

equation gives the contact pressure. In this equation, α represents the mutual approach of the 

bodies (de Mul et al., 1986 ; Hartnett, 1980). 

൜𝑤ா௔ + 𝑤ா௕ + 𝑔௔ + 𝑔௕ = 𝛼 ,𝑃 > 0𝑤ா௔ + 𝑤ா௕ + 𝑔௔ + 𝑔௕ > 𝛼 ,𝑃 = 0 ( 1.3 ) 



13 

 

 

 

In hydrodynamic contacts like EHL, usually the Reynolds equation gives the pressure while a 

modified complimentary equation gives the lubricant film thickness of the lubricated contacts 

(Greenwood & Kauzlarich, 1973 ; Najjari & Guilbault, 2014). 

1.2.4  Stress Field 

One of the most important issues in any moving contact is the failure, which is mostly referring 

to wear, scuffing and similar problems like pitting. The start of most of these failures is due to 

passing some stress threshold; therefore, in most studies one of the goals is to identify the stress 

field. This is not bound to a specific type of contact. Theory of elasticity helps in finding 

internal stresses based on the applied surface stresses (Stachowiak & Batchelor, 2014). 

A map of the stress field can be used for predicting the point of crack growth or the point where 

plasticity happens first (Adams & Nosonovsky, 2000). It can also be used for other purposes 

like defining the depth for a contact that is being simulated by the half-space assumption (de 

Mul et al., 1986) or defining quarter space correction factor for the half-space based methods 

(Guilbault, 2011).  

1.3  Heat 

Generation of heat in mechanical contacts happens for different reasons. Four of the most 

common types of contact heat generation are frictional and electrical heating for dry contacts 

as well as shear and compression heating for lubricated contacts. Some of these types might 

happen simultaneously (Bansal, 2009 ; Mihailidis et al., 2013 ; Sukumaran, Baets, & 

Fauconnier, 2018 ; W. Z. Wang et al., 2006). Heat generation has diverse effects on the 

behavior of the contact in general and more specifically in physical properties of the lubricant 

(Greenwood & Kauzlarich, 1973 ; Najjari & Guilbault, 2014) or the thermal response of the 

contacting bodies (Barber, 1971 ; J. R., Barber, 1982). 

1.3.1  Frictional heat generation in dry contacts 

Frictional heating is the conversion of kinematic energy to thermal energy during a friction 

process. The produced energy depends on intrinsic parameters like material properties of the 
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contacting bodies and the external condition parameters applied to the contact like load and 

sliding speed. Although these parameters vary for each specific contact, their heat generation 

(q) is generally calculated by the same formula (Eq. ( 1.4 )) (Sukumaran et al., 2018). 

𝑞 = 𝜇𝑃𝑈 ( 1.4 ) 

In Eq. ( 1.4 ), 𝜇 is the coefficient of friction, U is the sliding velocity, and P is the contact 

pressure.  

1.3.2  Electrical heat generation in dry contacts 

The electrical heat generation happens due to a phenomenon called Joule or Ohmic heating. 

When electrical current passes through a conductive material or the contact between to 

conductors, by overcoming the electrical resistance it produces thermal energy (Bansal, 2009). 

In the case of electrical contact, this heat generation is reversely related to the contact pressure 

(M. G. Cooper, B. B. Mikic, 1969). Eq. ( 1.5 ) gives the general formula for the electrical heat 

generation (q). 

𝑞 = 𝑅௖𝐼ଶ𝐴  ( 1.5 ) 

In this equation, 𝑅௖ is the electrical contact resistance, I is the electrical current and A is the 

contact area. 

1.3.3  Shear heating in lubricated contacts 

In TEHL contacts, the heat generation is usually dominated by viscous shear heating. 

Overcoming the shear stress in lubricant layers produces heat. Eq. ( 1.6 ) gives the shear heating 

term solved in TEHL energy equation (Greenwood & Kauzlarich, 1973 ; W. Habchi & Vergne, 

2015).  
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𝑞௦௛௘௔௥ = 𝜂 ൥ቆ𝜕𝑢௙𝜕𝑧 ቇଶ + ቆ𝜕𝑣௙𝜕𝑧 ቇଶ൩ ( 1.6 ) 

where 𝜂 is the dynamic viscosity of the lubricant, 𝑢௙ is the lubricant’s velocity in rolling 

direction and 𝑣௙ is the lubricant’s velocity in lateral direction.  

1.3.4  Compressive heating in lubricated contacts 

In TEHL contacts, where the purely rolling condition applies, the compressive heating of the 

lubricant can become at least equally as important as shear heating. The compressive heating 

is a consequence of a pressure build-up at the inlet of TEHL contacts that leads to a lubricant 

compression accompanied by a generation of heat. At the exit, the pressure drop causes 

lubricant decompression acting like a heat sink. This combined heating/cooling mechanism 

which is caused by lubricant compression/decompression is referred to as “compressive 

heating”. Eq. ( 1.7 ) gives the compressive heating term solved in TEHL energy equation (W. 

Habchi & Vergne, 2015). 

𝑞஼௢௠௣ = 𝛽𝑇 ൬𝑢௙ 𝜕𝑃𝜕𝑥 + 𝑣௙ 𝜕𝑃𝜕𝑦൰ ( 1.7 ) 

where 𝛽 is the coefficient of thermal expansion. 

1.4  Thermo-elasticity 

The thermoelastic deformations on a half-space have already been studied for a while. In 1979, 

Burton produced a thermoelastic numerical model for a frictionally heated contact. He 

conducted experiments to compare the results with his model (Burton, 1980). Around the same 

time, Barber proposed transient analytical model for a thermoelastic contact to predict the 

beginning of the thermoelastic instability (Barber, 1980). In 2000, Liu and Wang suggested a 

model for simulating a 2D thermoelastic frictional contact and proposed some analytical 

formulas (G. Liu & Wang, 2000). Recently, Barber et al. also studied thermoelasticity of a 
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stagnated Hertzian contact in 2009 (Jang, Cho, & Barber, 2009), where the friction was not 

considered. Barber (Barber, 1971) also studied the thermoelastic effects of a heat source over 

a half space. Bryant (Bryant, 1988) performed a similar study for a moving heat patch. 

As the name entails, a half-space is a semi-infinite matter. Therefore, no matter how long a 

heat source is applied on that, it will continue absorbing the heat and, as a result, achieving a 

steady state is intrinsically impossible. Therefore, if a steady state heat source is applied on the 

surface of a half-space, the thermoelastic deformation is in fact time dependent and converges 

to infinity (Figure  1.2-a). Therefore, Barber (Barber, 1971) proposed the definition of a heat 

affected zone radius (𝑠଴) so that the thermoelastic displacement can be practically defined in 

steady state problems (Figure  1.2-b). 

 
(a) 

 
(b) 

Figure  1.2 a) Time convergence of thermoelastic displacement, b) Steady state 
thermoelastic displacement 

Barber’s displacement equation for a half-space is: 

𝑤 = 𝑞𝛼(1 + 𝜈)2𝜋𝑘 log (𝑠଴ 𝑠⁄ ) ( 1.8 ) 

where 𝛼, 𝑘, 𝜈 are respectively the coefficient of thermal expansion, thermal conductivity, 

Poisson’s ratio of the material and s is the distance from the applied heat source. 
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1.5  Free-edge 

In many contacts like textured surfaces (Manser et al., 2019 ; Siripuram & Stephens, 2004 ; 

Wakuda, Yamauchi, Kanzaki, & Yasuda, 2003) or rollers (Z. Liu et al., 2019 ; Najjari & 

Guilbault, 2014), the contact gap changes abruptly. When half-space based simulation methods 

like SAM are employed, free-edges cause considerable deviation in the contact results 

(Guilbault, 2011 ; Keer et al., 1983 ; Yalpanian & Guilbault, 2020). These deviations are 

introduced to the results by the half-space assumption for the normal displacement 

calculations. Half-space assumption leaves unreal shear and normal stresses on the free-

surfaces because of the superfluous constraints. Researchers have proposed different methods 

to relieve the constraints applied to the free-surface by half-space assumption. Hetényi 

(Hetényi, 1960, 1970) and Keer et al. (Hanson & Keer, 1995 ; Keer et al., 1983) developed 

different methods to treat the aforementioned problem. They introduced a complicated, time 

consuming and considerably precise method for capturing the effects of the free-surface. Mul 

and Fredrikson (de Mul et al., 1986) proposed a simple mirroring technique, which was used 

later by other researchers (Figure  1.3). Their method relieves the shear stress on the free-

surface but leaves the normal stress. 

 

Figure  1.3 Schematics of the method proposed by Mul and Fredrikson for removing the 
shear stress from the free-surface  

Reproduced from de Mul et al. (1986, p. 146) 
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Guilbault suggested an overcorrection factor (Eq. ( 1.9 )) for their mirroring technique in order 

to account for the normal stress as well (Guilbault, 2011). His method is almost as precise as 

the methods proposed by Hetényi (Hetényi, 1960, 1970) and Keer et al. (Hanson & Keer, 

1995 ; Keer et al., 1983) while being simpler and far less time consuming. To eliminate the 

remaining normal stress, he balanced out the normal stress in a cyclic process until the 

remaining stress was negligible (Figure  1.4).  

 

Figure  1.4 Free edge correction process proposed by Guilbault  
Reproduced from Guilbault (2011, p. 4)  

ψ = 1.29 − 1(1 − 𝑣) ሾ0.08 − 0.5𝑣ሿ ( 1.9 ) 

Since only the free-edge treatments for non-thermoelastic straight edges existed, the half-space 

based works that studied the asperities usually consider only continuous profiles with no free-

edges that could cause deviation in the results (W. Z. Wang et al., 2006 ; X. Wang et al., 2017). 

1.6  Lubricant Properties 

In normal circumstances, most of the lubricant properties can be considered as constants but, 

when there are considerable changes in conditions like pressure and temperature, their 

dependencies cannot be ignored. Two of the most important physical properties of a lubricant 

that strongly depend on pressure and temperature are viscosity and density. The following 

paragraphs briefly explain the dependency of these lubricant properties. 
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Two of the most commonly used viscosity relations for EHL calculations are Barus’ and 

Roeland’s Viscosity-Pressure-Temperature relations. Houpert mentioned (Houpert, 1985) that 

Barus’ viscosity relation has been experimentally confirmed to be valid at low pressures, yet 

for high pressures, Roeland’s relation is recommended. Therefore, Roelands’ relation is widely 

used for EHL simulations (Houpert, 1985). Eq. ( 1.10 ) shows Roeland’s viscosity equation 

(Najjari & Guilbault, 2014). 

𝜂ோ௢௘௟௔௡ௗ = 𝜂଴ 𝑒𝑥𝑝 ቊሾln(𝜂଴) + 9.67ሿ ቈ−1
+ (1 + 5.1 × 10ିଽ𝑃)௭భ ൬ 𝑇 − 138𝑇଴ − 138൰ି௦భ቉ቋ 

( 1.10 ) 

where, 𝑧ଵ and 𝑠ଵ are Roelands’ parameters defined for each lubricant and are considered 

constant at any pressure and temperature. 𝜂଴ is the initial viscosity, 𝑇଴ is the initial temperature, 

T is the contact temperature and P is the contact pressure. 

The influence of severe shear conditions leading to a shear-thinning response of the lubricant 

is important. It is often described by the Carreau’s expression (Eq. ( 1.11 )) (Marx, Fernández, 

Barceló, & Spikes, 2018 ; Yasuda, Armstrong, & Cohen, 1981). Under low shear rates (𝛾ሶ), 
Newtonian lubricants present a shear independent viscosity (𝜂), while at high shear rates, the 

viscosity is a function of the shear rate itself and, occasionally, a second Newtonian constant 

viscosity (𝜂ஶ). Bair and Khonsari (Bair & Khonsari, 2006), based on their observation of the 

difference between film thickness of different lubricants, described the lubricant’s behavior by 

Carreau’s expression as follows. 

𝜇 = 𝜂ஶ + (𝜂 − 𝜂ஶ) ቈ1 + ൬𝜂𝛾ሶ𝐺 ൰ଶ቉(௡ିଵ) ଶ⁄
 ( 1.11 ) 

Since generally the power-law region does not fully develop, Guilbault (Guilbault, 2013) 

considered the same assumption and used the following equation instead. 
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𝜇 = 𝜂 ቈ1 + ൬𝜂𝛾ሶ𝐺 ൰ଶ቉(௡ିଵ) ଶ⁄
 ( 1.12 ) 

Many researchers used modified versions of Carreau’s expression as well; Habachi et al. used 

Carreau–Yasuda equation (W. Habchi et al., 2010). 

The limiting shear stress is another important concept that is used widely in EHL analysis (Wan 

& Wong, 2009 ; Y. Zhang & Wen, 2002). It is recognized that 𝜏௅ is nearly proportional to the 

pressure (P), and influenced by the temperature (Guilbault, 2013). Equations similar to Eq. ( 

1.13 ) are often used for 𝜏௅ modeling, where the ratio Λ has a value around 0.04–0.08. 

𝜏௅ = Λ𝑃 ( 1.13 ) 

Taking into account the limiting shear stress effect, Eq. ( 1.14 ) offers a good rheological model 

for viscosity: 

𝜇 = 𝑚𝑖𝑛 ቈ𝜂 ൤1 + ቀఎఊሶீ ቁଶ൨(௡ିଵ) ଶ⁄ , ஃ௉ఊሶ ቉. ( 1.14 ) 

As for the density–pressure–temperature relationship, Dowson’s formula is commonly used in 

many simulations (Ghosh & Hamrock, 1983 ; Khan, Sinha, & Saxena, 2009 ; Najjari & 

Guilbault, 2014). Eq. ( 1.15 ) shows Dowson’s density relation (Dowson, 1997). 

𝜌஽௢௪௦௢௡ = 𝜌଴ ቂ1 + ଴.଺×ଵ଴షవ௉ଵାଵ.଻×ଵ଴షవ௉ቃ ൫1 − 𝑏ௗ(𝑇 − 𝑇଴)൯. ( 1.15 ) 

In Eq. ( 1.15 ), 𝜌଴ is the initial density and 𝑏ௗ is Dowson’s thermal constant. 

1.7  Hydrodynamics (Reynolds Equation) 

For the first time, Osborne Reynolds analyzed the lubrication of bearings, and described the 

connection between bearing geometry, load and motion with the viscosity of the lubricant and 

initiated the subject of lubrication hydrodynamics (Guilbault, 2013). Reynolds equation 
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describes behavior of the thin layer of lubricant in a lubricated contact. As mentioned earlier, 

in a lubricated contact, instead of the complimentary equation, Reynolds equation calculates 

the pressure and the complimentary equation gives the lubricant film thickness (Dowson, 

1997 ; Najjari & Guilbault, 2014). Reynolds equation simplifies the general Navier-Stokes 

equation for fluid dynamics by ignoring the lubricant velocity and pressure variation across the 

film (Peiran & Shizhu, 1990). Eq. ( 1.16 ) shows the generalized Reynolds equation for the 

steady state problems (Najjari & Guilbault, 2014 ; Peiran & Shizhu, 1990). 

𝜕𝜕𝑥 ቆ𝜌ℎଷ𝜂 𝜕𝑝𝜕𝑥ቇ + 𝜕𝜕𝑦 ቆ𝜌ℎଷ𝜂 𝜕𝑝𝜕𝑦ቇ = 12𝑈ഥ 𝜕𝜕𝑥 (𝜌ℎ) + 12𝑉ത 𝜕𝜕𝑦 (𝜌ℎ) ( 1.16 ) 

where h is the film thickness, 𝑈ഥ is the average lubricant velocity in rolling direction and 𝑉ത  is 

the average lubricant velocity in axial direction. The two terms in the left side of the equation 

refer to Poiseuille flow and the two terms at the right side refer to Couette flow. Najjari and 

Guilbault used a variation of the Reynolds equation (Eq. ( 1.17 )) to solve the 3D EHL problem 

of a finite line contact considering different crown shapes for a roller bearing (Najjari & 

Guilbault, 2014). 

𝜕𝜕𝑥 ቆ𝜌ℎଷ𝜂 𝜕𝑝𝜕𝑥ቇ + 𝜕𝜕𝑦 ቆ𝜌ℎଷ𝜂 𝜕𝑝𝜕𝑦ቇ = 12𝑈ഥ 𝜕𝜕𝑥 (𝜌ℎ) ( 1.17 ) 

Khan et al. (Khan et al., 2009), Ghosh and Hamrock (Ghosh & Hamrock, 1983) and many 

other researchers have also used other variations of Reynolds equation. 

1.8  Energy Equations 

Energy equations are derived from a general form based on the conditions and the assumptions. 

Energy equation can be derived for both solids and lubricants. Energy equation for solids can 

simply be written as (Incropera & De Witt, 1981): 
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𝑘 𝜕ଶ𝑇𝜕𝑧ଶ = 𝜌𝐶௣𝑢 𝜕𝑇𝜕𝑥 ( 1.18 ) 

In comparison with solids, for lubricants, energy equation is usually more complicated. The 

same as Reynolds equation, energy equation for lubricants is derived from a more general form 

based on the conditions and the assumptions. Eq. ( 1.19 ) presents the general form of energy 

equation (W. Habchi & Vergne, 2015). 

− 𝜕𝜕𝑧 ൬𝑘 𝜕𝑇𝜕𝑧൰ + 𝜌𝑐 ൬𝑢௙ 𝜕𝑇𝜕𝑥 + 𝑣௙ 𝜕𝑇𝜕𝑦൰= 𝛽𝑇 ൬𝑢௙ 𝜕𝑃𝜕𝑥 + 𝑣௙ 𝜕𝑃𝜕𝑦൰ + 𝜂 ൥ቆ𝜕𝑢௙𝜕𝑧 ቇଶ + ቆ𝜕𝑣௙𝜕𝑧 ቇଶ൩ ( 1.19 ) 

where 𝜌 is the lubricant density and c is the lubricant’s thermal capacity.  

The common heat transfer assumption in thermal EHL is neglecting the heat convection across 

the lubricant film and the heat conduction along the film. By assuming that the heat transfer 

coefficient is constant, Najjari and Guilbault simplified the energy equation (Eq. ( 1.20 )) to 

study the free-edge effect and the effect of different crowns on thermal EHL of a line contact 

(Najjari & Guilbault, 2014). 

𝑘 𝜕ଶ𝑇𝜕𝑧ଶ = 𝜌𝐶௣𝑢 𝜕𝑇𝜕𝑥 − 𝛽𝑇𝑢 𝜕𝑃𝜕𝑥 − 𝜂 ൬𝜕𝑢𝜕𝑧൰ଶ ( 1.20 ) 

Greenwood concluded (Greenwood & Kauzlarich, 1973) from Crook’s work (Crook, 1962) 

that the principal mechanism of heat loss is conduction across the inlet to the roller surfaces, 

while convection along the oil film is only important where the oil film temperatures are very 

low. Crook (Crook, 1962) concluded that, in pure rolling, the temperatures arising from the 

friction are confined to the entry side, ahead of the high pressure region. 

Guilbault (Guilbault, 2013) mentioned that the combination of high pressure and shear stress 

could result in a layered lubricant film. The lubricant being layered means that some regions 
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exhibit a solid-like behavior and some others accommodate the shear strain. The shear layer of 

the lubricant presents a liquid like behavior. He assumed that the heat generation only happens 

in the shearing layer. 

1.8.1  Boundary Conditions 

Each researcher applies proper boundary conditions according to the state of the problem they 

have prepared for their work. For most cases, the boundary condition assumptions are as 

follows (Najjari & Guilbault, 2014): 

𝑇௔|௭ೌୀିଷ௪೓ = 𝑇଴ ( 1.21 ) 

𝑇௕|௭್ୀିଷ௪೓ = 𝑇଴ ( 1.22 ) 

𝑘௔ 𝜕𝑇𝜕𝑧௔ฬ௭ೌୀ଴ = 𝑘௔ 𝜕𝑇𝜕𝑧ฬ௭ୀ଴ ( 1.23 ) 

𝑘௕ 𝜕𝑇𝜕𝑧௕ฬ௭್ୀ଴ = 𝑘௔ 𝜕𝑇𝜕𝑧ฬ௭ୀ଴ ( 1.24 ) 

in which the constant 𝑤௛ is the Hertzian width and indexes a and b represent each body. 

1.9  Elastohydrodynamic Lubrication (EHL) 

As Stribeck’s graph shows (Figure  1.5), there are three main categories in lubricated contacts: 

Hydrodynamic, Mixed and Boundary lubrications (Zulkifli, Kalam, Masjuki, Shahabuddin, & 

Yunus, 2013). In hydrodynamic lubrication regime, there is no direct solid contact, while the 

mixed lubrication regime is partly hydrodynamic and partly direct solid contact. In boundary 

lubrication, direct solid contact happens all over the contact area. 

The normal EHL is classified under hydrodynamic contact category, while the starved EHL is 

classified under mixed contact category. High pressure, in comparison with the elasticity 
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modulus of contact bodies, results in change from normal hydrodynamic lubrication to EHL. 

The concept of EHL has been studied for more than fifty years. 

 

Figure  1.5 Stribeck’s curve diagram  
Reproduced from Zulkifli et al. (2013, p. 168)  

EHL combines hydrodynamic lubrication (hydrodynamics) and elastic deformation 

(piezoelasticity) of the contacting bodies under high pressures (load). In EHL, the lubricating 

films are very thin, in the range of 0.1 to 1 μm, but they separate the interacting surfaces, 

resulting in a significant reduction of wear and friction (Stachowiak & Batchelor, 2014). 

Dowson (Dowson & Higginson, 1959) indicated that when the loading is high, the film 

thickness is small compared to the local elastic displacements, as a result, except near the edges 

of the thin film zone, the pressure must be close to the Hertzian pressure of the dry contact 

(Figure  1.6). 
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Figure  1.6 Schematic view of EHL and Hertzian Contacts 

Grubin (GRUBIN, VINOGRADOVA, & KETOVA, 1949), in his pioneering work, introduced 

the elastic deformation of the solids and the piezoviscosity of the lubricant in the hydrodynamic 

calculations. By numerically solving a simplified problem, he was able to derive the first EHL 

regression formula for central film thickness calculations. He also speculated about the 

existence of the pressure spike at the outlet of the contact. Blok and Cameron argued that Ertel 

is the true originator of the work; therefore, the work is referred as Ertel–Grubin (Morales-

Espejel & Wemekamp, 2008). 

In 1972, Greenwood improved Grubin’s work by starting from the elastic pressure distribution 

for an off-center flat instead of Hertzian pressures (Greenwood, 1972). In 1975, Hamrock and 

Dowson did a numerical analysis on isothermal elastohydrodynamic lubrication of a point 

contact (Hamrock & Dowson, 1976). In 1985, Haupert proposed new calculations for traction 

force in EHL contacts (Houpert, 1985). Hamrock and Ghosh studied thermal aspects of an 

elastohydrodynamic lubrication for a line contact in 1983 (Ghosh & Hamrock, 1983). 

Recently, Guilbault developed a thermal EHL model for a 2D infinite line contact using layered 

lubrication film assumption in which he considered heat generation and heat transfer in 

different layers (2013) (Guilbault, 2013). Mihailidis et al. proposed a 3D model for a starved 

thermal EHL for a line contact (Mihailidis et al., 2013). They introduced a fraction factor to 

consider the limit of starvation in EHL contact. Most of these studies considered only the effect 

of thermal considerations on the lubricant. Only a few studies considered the effect of 

thermoelasticity in thermal EHL (W. Z. Wang et al., 2006 ; Xu & F. Sadeghi, 1998). 
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In 1998, Xu and Sadeghi studied thermal EHL of a thrust bearing considering thermal 

distortion due to temperature rise using finite element method (Xu & F. Sadeghi, 1998). Wang 

et al. also considered thermoelasticity for a mixed lubricated point contact ignoring the 

viscosity and density variations across the film (W. Z. Wang et al., 2006). The attention to 

thermoelasticity in thermal EHL is relatively new and still there are works to be done in this 

field. 

Finite element analysis (FEA) is also an accepted simulation approach for contact simulation 

(Bachtar et al., 2006 ; Chatterjee & Sahoo, 2014 ; Sahoo & Ghosh, 2007 ; Yang & 

Komvopoulos, 2005). Employing FEA commercial software is not that simple, especially 

when it comes to the contribution of factors like thermoelasticity and/or FSI (Fluid Solid 

Interaction) (Gropper et al., 2016 ; Lindemann, Skalski, Wlosinski, & Zimmerman, 2006 ; 

Reddy, 2015). It also leads to prohibitive mesh preparation times and computational costs. 

Because of these FEA limitations, SAM is more sought out in contact problems (Hanson & 

Keer, 1995 ; Hartnett, 1980 ; Hetényi, 1960, 1970 ; Keer et al., 1983 ; J. Li & Berger, 2003 ; 

Junshan Li & Berger, 2001). Nonetheless, FEA is a rather helpful and widely accepted tool for 

validation of other methods (Guilbault, 2011). Experimental investigation of contact problems 

is usually entwined with considerable difficulties (Gohar & A. Cameron, 1963 ; Wymer & 

Cameron, 1974). 

1.10  Experimental Measurements 

Experimental studies performed on contacts can be divided into two specific categories, Dry 

contacts and lubricated contacts, specifically EHL contacts. The following sections present 

some of the works that has been done in each of these categories. 

1.10.1  Dry Contact 

Many researchers performed experimental measurement of the contact pressure using pressure 

sensitive films; like the work of Belforte et al. (Belforte, Conte, Bertetto, Mazza, & Visconte, 

2009) who measured contact pressure for seal connection. Zhang et al. (M. Zhang, Suo, Jiang, 

& Meng, 2018) also performed an experimental contact pressure measurement of seals using 

sensitive films. Conte et al. (CONTE, MANUELLO, L.MAZZA, & C.VISCONTE, 2006) used 
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a similar approach for a pneumatic seal contact pressure measurement. As Figure  1.7 shows, 

these pressure sensitive films that are made by PRESCALE Company are mostly useful for 

detecting the irregularities in a contact surface rather than giving a precise pressure profile. 

The precision of these kinds of films is not so high and, especially, its precision is rather 

inadequate for small contacts. Another short coming of these films for study purposes is that 

the pressure range that each pressure sensitive film covers is limited; for example, if a pressure 

profile contains 20 and 100 PSI in a single profile, the sensor film is not capable of capturing 

it. It can merely point out that a high pressure range exists. Figure  1.7 illustrates some sample 

results obtained from an “ultra low pressure” sensitive film (28-85 PSI) for the contacts 

between a cylindrical part with the external diameter of 15 mm and the internal hole diameter 

of 4 mm with; a flat surface (Figure  1.7-a) and another cylindrical part with the same outer 

diameter but without the internal hole (Figure  1.7-b). Both contacts are under an 8 Kg load. 

As Figure  1.7-b illustrates, an irregularity on the surface of one of the cylindrical parts is 

detected by the pressure sensitive film but the results are not conclusive enough to create a 

concrete pressure profile. 

 

Figure  1.7 The results of the sensitive film obtained from a simple experiment 
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There are other experimental studies as well like the study performed by Guilbault (Guilbault, 

2011). He used a rubber sheet and an aluminum cylinder to study the effect of free-edge on the 

contact area in a finite line contact. 

1.10.2  Lubricated Contact (EHL) 

Various elastohydrodynamic measurement techniques have been developed over the years. 

These techniques can be generally classified as electrical resistance, capacitance, X-ray, 

mechanical and optical interferometry methods (Stachowiak & Batchelor, 2014). 

Gohar and Carmen (Gohar & A. Cameron, 1963) were the first ones to experiment on EHL by 

interferometry using a high reflective index glass and a steel ball. Otero et al. used an MPR 

tribological equipment developed by PCS-Instruments to validate their numerical results 

(Otero, Ochoa, Tanarro, Lantada, & Munoz-Guijosa, 2012). In their experiment, they measured 

the traction coefficient in thermal EHL while controlling the heat by an electric cartridge heater 

and fixing the load on the upper ring. Chu et al. (Chu, Hsu, Lin, & Chang, 2009) concluded 

that optical interferometry has been found to be the most widely used and successful method 

in measuring oil film. Hence, they used an inverse approach to improve the extracted data from 

optical interferometry.  

Leeuwen et al. (van Leeuwen, Meijer, & Schouten, 1987) performed the local film thickness 

and temperature measurements in an eccentric cam-flat follower contact by means of miniature 

vapor deposited thin layer transducers. They measured film thickness by calculating the ohmic 

resistance or the capacitance of the film using a transducer on the follower, which was 

constantly being pushed over the cam by a spiral spring. 

Necas et al. (Necas, Sperka, Vrbka, Krupka, & Hartl, 2015) used an experimental setup (Figure  

1.8) for a ceramic ball and a glass disk under pure rolling based on Gohar’s experiment in 1963 

(Gohar & A. Cameron, 1963). The ball and disk could rotate independently so that different 

ratios of slide/rolling was possible. They developed and applied mercury lamp induced 

fluorescence. Their measured data did not exactly match the theoretical results, indicating that 

other parameters like thermal effects could influence the lubricant film. 
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Figure  1.8 Necas' experimental setup for EHL film measurement  
Reproduced from Necas et al.(2015, p. 822)  

Svoboda et al. (Svoboda, Kostal, Kunak, & Krupka, 2014) also performed a similar 

experimental study of grease lubrication in a starved elastohydrodynamic lubricated (EHL) 

contact using optical interferometry. Their experimental setup was also based on a glass disk 

and a sphere or a barrel like roller.  

As can be seen, in all these measurement techniques, the thermal effects or specifically the 

thermoelastic effects are not exactly distinguishable in the measurement. That will cause the 

experimental results to differ from the results obtained from numerical simulations, especially 

with the ones that ignore the thermal aspects or specifically thermoelasticity. 

1.11  Numerical solution approaches 

To determine the pressure distribution within the lubricant film, the process should solve 

Reynolds equation, the complimentary equation for film thickness, the equations for lubricant 

properties (viscosity, density …) and the load balance equation. The solution of energy 

equations give the temperature within the lubricant and the solid bodies. The viscosity, density, 

pressure and temperature are nonlinearly interconnected, so it is too complicated to be solved 

analytically. 

Hamrock and Dowson (Hamrock & Dowson, 1976) were of the first researchers who used the 

aforementioned process for a 2D isothermal study using a simple Gauss-Seidel iteration 
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scheme for pressure calculation. Others have further improved this numerical approach and 

extended the range of operating conditions and were able to surpass the limitations of Hamrock 

and Dowson’s numerical model. 

In general, the numerical simulation approaches employed for contact problems can be divided 

into two categories; the methods based on finite element analysis (FEA) and the half-space 

based semi-analytical methods (SAM). Figure  1.9 shows a general comparison of the SAM 

and FEA based methods. Some of the examples of the studies performed in both approaches 

are as follow. 

 

Figure  1.9 A general comparison between SAM and FEA based Methods 

1.11.1  Researches that have employed SAM 

Ghosh and Hamrock (Ghosh & Hamrock, 1983) used an isothermal approach similar to 

Hamrock’s Method in order to find the pressure distribution as the initial guess for thermal 

cases. They used a standard central finite deference method. The system of simultaneous 

equations was solved by the standard Gauss-Seidel iterative method, yet they had difficulties 

evaluating the surface temperature near the pressure spike. 

Venner and Napel (Venner & Napel, 1992a, 1992b) proposed a multilevel multigrid model 

called multilevel multi-integration technique for EHL of point contact. Later, Venner (Venner 

& Bos, 1994) adapted relaxation models to the multigrid model. Wang et al. (X. Wang et al., 

2017) used a finite difference method while employing influence coefficient algorithms to 
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calculate both the surface deformation and the temperature rise. The approach they used is 

called a semi-systemic approach. The basic idea of the semi-system approach is to consider the 

entraining flow term as a function of unknown nodal pressures. Thus, the construction of the 

coefficient matrix will utilize not only the pressure flow terms but the entraining flow term as 

well. Therefore, the diagonal dominance of the coefficient matrix is guaranteed even when the 

pressure flow becomes extremely weak or even zero. Moes (Moes, 1992) employed a similarity 

method for solving an EHL problem.  

In the work of Wang et al. (W. Z. Wang et al., 2006) who considered thermoelasticity, after 

discretization of the computational domain, influence coefficients (ICs) were obtained for 

elastic deformation and temperature rise. Then, the discrete convolution and FFT (DC-FFT) 

method were used to speed up the calculations of elastic deformation and temperature rise. For 

thermoelastic deformations, since their equation was in frequency response function (FRF) 

mode, they needed to first convert the FRF to ICs, and then apply the DC-FFT method to obtain 

the normal thermoelastic deformation. 

1.11.2  Researches that have employed FEA 

Xu and Sadeghi (Xu & F. Sadeghi, 1998) applied FEA for solid parts and the same Gauss-

Seidel finite difference method for the lubricant. In 2008, Habchi (Wassim Habchi, 2008) 

wrote his PhD thesis on application of finite element approach for solving EHL with Ultra-

Low-Viscosity fluids. He studied thermal and Non-Newtonian effects. Habchi et al. (W. 

Habchi et al., 2010) used a model based on a finite element fully coupled resolution of the 

elastohydrodynamic equations and introduced special formulations in order to stabilize the 

solution of Reynolds equation at high loads. Hsiao et al. (Hsiao, Hamrock, & Tripp, 1999) also 

used FEA for modeling elliptical EHL contacts by an isothermal assumption employing 

Galerkin's weight function. Stupkiewicz (Stupkiewicz, 2009) employed FEA for soft EHL 

problem of a rod seal. 
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1.12  Common practical application 

Some practical applications of a comprehensive contact analysis are in simulation of gears, 

textured bearings and lubricated bearings with feeding or pressure amplifying grooves. One 

example is Polyoxymethylene (POM) composite bearings that are suitable for high loads and 

low speeds. These kinds of bearings are in different forms like cylindrical bushes, flanged 

bushes, thrust washers or sliding plates (Figure  1.10). As Figure  1.10 demonstrates, the 

distinctive feature of such bearings is a pattern of cavities in the contact surface. 

These cavity patterns help improve bearing characteristics, including and not limited to less 

heat generation. Therefore, there have been many studies focused on such textured contact 

surfaces. Morris et al. (Morris, Shahmohamadi, Rahmani, Rahnejat, & Garner, 2018) have 

done a comprehensive study on textured journal bearings. Manser et al. (Manser et al., 2019) 

have also worked on the influence of textured surface on journal bearings. They have studied 

different texture shapes and sizes. Tala-Ighil et al. (Tala-Ighil, Maspeyrot, Fillon, & Bounif, 

2007) have studied the positioning and patterns of texture cavities in journal bearings. 

Siripuram and Stephens (Siripuram & Stephens, 2004) have done a similar study on textures 

of asperities for hydrodynamic lubrication. The studies that are being done on textured surfaces 

require a contact analysis method that is fast and reliable. The study presented in this thesis 

aims to provide a comprehensive contact analysis method that can be used for analysis of such 

textured contact surfaces. 

As Figure  1.10 shows, the main feature of a textured contact surface is the pattern of cavities 

(or asperities (Siripuram & Stephens, 2004)) implemented on the surface. Some common 

surface projections of these cavities are circular and square. Due to presence of curved and 

straight free-edges in these cavities, common SAM is not capable of fully analyzing such 

contacts, especially while considering thermoelastic behavior of the surface material. By 

obtaining all the intended sub-objectives of this thesis, the proposed contact analysis method 

has the ability of handling thermal thermoelastic analysis of contacts, which are textured and 

have cavities with curved or straight free-edges. 
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(a) 

 
(b) 

Figure  1.10 POM Composite bearings; a) Straight cylindrical bushing with a lubrication 
hole, b) sliding plates  

Taken from SKF Catalogue (2012, p. 4, 6)  

Another example is the grooved shoe bearings that are usually designed for heavy duty 

operations with a relatively fast rotation speed (Figure  1.11). These kinds of bearings are used 

in a variety of industrial equipment like; tilting shoe journal bearings used in heavy duty ball 

mills that are being used in mining industry (SKF, s.d.) or the tilting pad thrust bearings used 

in ship industry to allow for more powerful engines and propellers (Stachowiak & Batchelor, 

2014). They can also be found in other heavy duty rotating equipment like supports for turbines 

and generators that weigh over a hundred tons (Kingsbury Inc., 2019). 

There have been many studies on the effect of implementing such grooves and their geometries 

on tilting pad bearings. Mikula (Mikula, 1985, 1988) studied different versions of grooved 

tilting pads and their pressure losses and temperature variations. Instead of performing a sole 

experimental study, in 2017, Varela et al. (Varela, García, & Santos, 2017) studied leading 

groove tilting pads using a numerical approach. Another application of the comprehensive 

contact analysis method that the study of this thesis intends to deliver is analysis of such 

grooved contacts. This method can expedite and facilitate studies on such grooved bearings. 

As Figure  1.11 demonstrates, one of the important features of these bearings is the presence 

of different types of grooves. These grooves may have straight and/or curved free edges. 

Similar to the cases with textured surfaces, common SAM does not possess the capability of 

handling free-edges of the grooves, particularly while taking thermoelastic behavior of the 
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surface material in consideration. The ability of handling thermal thermoelastic contacts with 

curved and/or straight free-edges renders the comprehensive contact analysis method proposed 

in this thesis very useful for fast analysis of such grooved contacts. 

 
(a) 

 
(b) 

Figure  1.11 Tilting shoe bearings; a) Leading edge groove thrust bearing (Taken from 
Kingsbury guide (2019, p. 12), b) Tilting pad journal bearing (Taken from SKF Catalogue 

(Hydrostatic shoe bearing arrangement) 

Overall, literature review establishes the need for a comprehensive, fast, and reliable contact 

analysis method that can handle different non-plain contacts (Textured or grooved). 

1.13  Summary 

This review showed that there are some studies performed on steady state thermoelastic 

contacts, but they are not complete yet. In addition, the works performed on free-edges have 

only considered straight free-edges like the two ends of a finite cylinder while other types of 

free-edges like inside a circular hole or pit and around a circular asperity are ignored. To our 

knowledge, at the time of preparing this thesis, no study was reported on the consideration of 

free-edges in a half-space based method that considers thermoelasticity. Some of the works 

and results mentioned in this literature review help in filling the gaps mentioned for free-edge 

studies. The work of Mul et al. (Veress, Molnár, & Rohács, 2009) on basic mirroring technique 

and depth consideration is one of them. Another one is the result of Guilbault’s work on free-

edge to eliminate the normal stresses at the free-surface (Guilbault, 2011). Barber’s work 



35 

 

 

 

(Barber, 1971) is specifically useful in integrating thermoelasticity to the basic half-space 

based SAM. 

It can also be deduced from the literature review that there are only a few studies performed 

on thermal EHL, which considered thermoelasticity and they are limited and not suitable for 

contacts like finite roller contacts. Najjari’s work on thermal EHL (Najjari & Guilbault, 2014) 

and Guilbault’s work (Guilbault, 2013) on layered heat generation inside the lubricant give 

insight to the thermal EHL aspects including lubricant properties and shear heating relations. 
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2.1  Abstract 

This study proposes a simple method for simulating contacts with curved edges. It develops a 

fast correction approach to eliminate the errors introduced on curved free surfaces by the half-

space assumption in semi-analytical methods. The complete procedure first defines a 

counterbalance radius to eliminate the shear stress generated on free surfaces, and then 

introduces a correction factor for the counterbalance load to account for the normal stresses 

generated on free surfaces. A comparison with FEA results shows a 92% improvement after 

applying the shear correction and a greater-than-96% improvement after applying the complete 

correction (shear and normal stresses). Computational costs are also significantly lower than 

those required by FEA, and are at least 9 times so for the studied cases. 

Keywords: Contact mechanics, Numerical analysis, Simulation 

2.2  Introduction and literature survey  

This study presents a simple method for including the effects of curved free edges in contact 

models based on half-space theory. The proposed method addresses a problem which is 

common in various contact problems, such as rotational friction welding (RFW) (RFW) (Jl, 

Renee, & Jacoby, 1991 ; W. Li, Vairis, Preuss, & Ma, 2016 ; Lindemann et al., 2006 ; Reddy, 
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2015) or patterned and textured contacts (D.B. Hamilton, 1966 ; Etsion, Kligerman, & 

Halperin, 1999 ; Gropper et al., 2016 ; Wakuda et al., 2003). Contact problems that involve 

simple geometries may be solved using Hertz theory (Hertz, 1896), which for its part, involves 

three basic assumptions: 

1) The contact is frictionless; 

2) The contact area is small as compared to the size of bodies; 

3) The contact area is small as compared to the curvature radii of surfaces. 

While the first assumption has the obvious consequence of restricting the load to a pressure, 

the two others involve less transparent simplifications: the second eliminates any possible 

influence by nearby boundaries, whereas the third assumes that the bodies may be viewed as 

half-spaces submitted to linear elastic strains only. Over the years, numerous approaches have 

also been developed for contact problems, and impose similar simplifications, while breaching 

the simplicity of the contact geometries (de Mul et al., 1986 ; Hartnett, 1980 ; S. Liu & Hua, 

2009). Among these approaches, the Semi-analytical method (SAM) proposed by Hartnett 

(Hartnett, 1980) is very effective. This method takes advantage of Boussinesq’s half-space 

solution (Johnson K.L., 1985). Similar SAM methods have also been used for rough surfaces 

(Chen & Wang, 2009 ; Poon & Sayles, 1994 ; Tian & Bhushan, 1996 ; Willner, 2008). 

Although these methods may be applicable to almost any contact problem, they still present 

some limitations that must be addressed. For example, Hetényi (Hetényi, 1960, 1970) and Keer 

(Hanson & Keer, 1995 ; Keer et al., 1983) proposed different solutions to eliminate the effect 

of the shear and normal stress distributions generated on the free boundaries by the half-space 

assumption. de Mul et al. (de Mul et al., 1986) observed that the shear stress distribution greatly 

influences the loaded surface displacement, while the normal stress demonstrates fewer 

controlling effects. Therefore, a partial elimination which neglects the normal stress 

distribution influences should offer sufficient precision in most situations, while resulting in a 

significant reduction of calculation times. However, in sensitive applications, the effect of 

normal stresses may culminate in unacceptable displacement evaluation, especially close to the 

free boundaries. In such conditions, both shear and normal stress distributions should be 

eliminated. The solutions proposed in Refs. (Hanson & Keer, 1995 ; Hetényi, 1960, 1970 ; 
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Keer et al., 1983) for normal stress elimination, although very precise, are rather unsuitably 

time-consuming. Guilbault (Guilbault, 2011) proposed a simpler solution for normal stress 

elimination on straight free surfaces using a simple correction factor. This approach provides 

high precision levels without increasing calculation times, as compared to partial correction. 

Finite element analysis (FEA) may also enable valuable simulations (Bachtar et al., 2006 ; 

Chatterjee & Sahoo, 2014 ; Sahoo & Ghosh, 2007 ; Yang & Komvopoulos, 2005). However, 

while employing FEA commercial software, could, on the one hand, be rather simple, on the 

other hand, FEA often leads to prohibitive mesh preparation times and computational costs. 

Moreover, additional drawbacks of FEA in contact problems arise with the analysis of 

phenomena such as thermoelasticity and conditions such as elastohydrodynamics (Gropper et 

al., 2016 ; Lindemann et al., 2006 ; Reddy, 2015) , where contributing thermal factors and FSI 

(Fluid Solid Interaction) should be considered. Due to these limitations, SAM is more 

commonly sought to deal with contact problems (Hanson & Keer, 1995 ; Hartnett, 1980 ; 

Hetényi, 1960, 1970 ; Keer et al., 1983 ; J. Li & Berger, 2003 ; Junshan Li & Berger, 2001). 

Nevertheless, FEA could be a considerably helpful tool for validating other methods. Actually, 

the difficulty encountered with experimental investigations of contact problems makes FEA a 

valuable and widely accepted validation aid. 

The solutions available in the literature for releasing free surfaces in half-space-based methods 

are mostly targeted at planar free surfaces (Guilbault, 2011 ; Hetényi, 1970). However, there 

are also some practical contacts bordered by curved edges and curved free surfaces. Rotational 

friction welding (Jl et al., 1991 ; W. Li et al., 2016 ; Lindemann et al., 2006 ; Reddy, 2015) and 

textured contacts with cylindrical holes or protrusions (D.B. Hamilton, 1966 ; Etsion et al., 

1999 ; Gropper et al., 2016 ; Wakuda et al., 2003) are good examples that still need to be 

addressed. 

This paper develops a half-space-based method that accounts for curved free edges. This 

method involves two simple steps targeting the elimination of shear and normal stresses. The 

first step relates each radial contact position to a corresponding position outside the boundary 

in order to eliminate the half-space intrinsic shear stress present on the free surface; an external 
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pressure applied at this position counterbalances the shear stress distribution. For straight 

boundaries, this external pressure would be known as a mirror pressure. This method gives a 

relation applicable to both cylindrical protrusions and cavities. Second, based on the procedure 

put forward in Ref. (Guilbault, 2011), the present study formulates a correction factor to be 

applied on the external pressure exerted in the first step to correct the shear stress. This 

correction factor aims at compensating for the influence of the normal stress distribution on 

the displacement. 

The following section describes the basis of the SAM approach, while the next sections develop 

the shear and normal stress elimination processes. Finally, the last section validates the solution 

developed by comparing the predictions obtained for different contact problems with FEA 

results. 

2.3  Half-space method basis  

The Hartnett numerical method (Hartnett, 1980) applies the results of the Boussinesq half-

space solution. This method assumes that the contact is part of a half-space, and is limited to 

linear deformation. Eq. ( 2.1 ) gives the normal displacement at point (𝑥, 𝑦) due to a distributed 

pressure 𝑃(𝜉, 𝜁) acting on the area A. 

𝑤(𝑥,𝑦) = 1 − 𝑣ଶ𝜋𝐸 ඵ 𝑃(𝜉, 𝜁)ඥ(𝑥 − 𝜉)ଶ + (𝑦 − 𝜁)ଶ୅ 𝑑𝜉𝑑𝜁 ( 2.1 ) 

where 𝑤 is the normal displacement, v is the Poisson ratio and E is the modulus of elasticity. 

The Hartnett procedure includes a complimentary equation defining the relation between the 

existing initial separation g of bodies a and b from the contact plane as well as the linear 

deformation of the solids (wa, wb) (Eq. ( 2.2 )). In this equation, α is the approach of the bodies. 

Figure  2.1 illustrates the variables. 

൜𝑤௔ + 𝑤௕ + 𝑔௔ + 𝑔௕ = 𝛼 ,𝑃 > 0𝑤௔ + 𝑤௕ + 𝑔௔ + 𝑔௕ > 𝛼 ,𝑃 = 0 ( 2.2 ) 
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Figure  2.1 Physical representation of complimentary equation 

2.3.1  Half-space numerical approach (Influence Factor) 

In SAM, a blanket is divided into rectangular contact patches bearing uniform pressures. 

Hence, Eq. ( 2.2 ) transforms to: 

෍𝑃௞ × 𝑓௝௞஺ = 𝛼 − 𝑔௔௝ − 𝑔௕௝ 
where 𝑓௝௞ is a set of influence factors resulting from Eq. ( 2.1 ) and formulated by Eq. ( 2.3 ). 

𝑓௝௞(𝑥,𝑦) = ቆ1 − 𝑣௔ଶ𝜋𝐸௔ + 1 − 𝑣௕ଶ𝜋𝐸௕ ቇඵ 1ඥ(𝑥 − 𝜉)ଶ + (𝑦 − 𝜁)ଶ஺ 𝑑𝜉𝑑𝜁 ( 2.3 ) 

where (x, y) are the coordinate locations of the center of the displaced patch k with respect to 

the center of the loaded patch j in a local frame. 
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2.3.2  Half-space stresses 

The Boussinesq formula also provides the shear and normal stresses at a position (𝑥,𝑦, 𝑧) of a 

half-space where the point load F on the surface is located at the origin, while the z axis is 

inward and aligned with the surface normal. Eqs. ( 2.4 ) and ( 2.5 ) formulate these stresses, 

respectively: 

𝜎௫ = 𝐹2𝜋 ቈ(1 − 2𝜐)𝑑ଶ ቊቀ1 − 𝑧𝑐ቁ 𝑥ଶ − 𝑦ଶ𝑑ଶ + 𝑧𝑦ଶ𝑐ଷ ቋ − 3𝑧𝑥ଶ𝑐ହ ቉ ( 2.4 ) 

𝜏௫௭ = − 3𝐹2𝜋 𝑥𝑧ଶ𝑐ହ  ( 2.5 ) 

In these equations 𝑑 = (𝑥ଶ + 𝑦ଶ)భమ and 𝑐 = (𝑑ଶ + 𝑧ଶ)భమ.  
2.4  Free edge 

An edge causes abrupt changes in the contact condition. Because of the half-space assumption, 

free surfaces lead to extreme pressure peaks in the Hartnett’s SAM. These pressure rises 

originate from an artificial over-constraint of the free surface caused by the half-space internal 

shear and normal stress distributions generated onto them (Figure  2.2). As mentioned earlier, 

de Mul et al. (de Mul et al., 1986) indicated that the effect of shear stresses on the half-space 

surface displacement, and thus on the contact pressure profile, is considerably greater than the 

normal stress influence. Therefore, a partial elimination of the boundary stress could be 

adequate for most practical cases. More importantly, while the shear stress elimination with 

the mirroring process has a low incidence on the solution times, the normal stress cancelation 

leads to prohibitive calculations. 



43 

 

 

 

 

Figure  2.2 Effects of half-space assumption on free edges 

The main idea underlying the procedure developed in Ref. (Guilbault, 2011) involves the use 

of a sequential calculation of normal stresses and their mirror corrections to establish the 

resulting displacements. The normal stress distributions are replaced by their equivalent forces. 

The final displacement assessed for the normal stress is introduced via a simple correction 

factor applied as a multiplier of the external pressure exerted to correct the shear stress effects; 

the resulting shear stress overcorrection compensates for the normal stress distribution 

influences. This study employs a similar approach. 

2.5  Shear stress elimination on cylindrical free surface  

Unlike the planar free surface case, the shear stress present on curved free surfaces cannot be 

eliminated by mirroring each point with a corresponding point situated at the same distance 

from the free edge. Thus, the accumulated shear stress at the free surface caused by a circular 

arc load has to be associated with a corrective radial position that generates the same 

accumulated shear stress at the free surface, but in the opposite direction. 

2.5.1  Shear stress generated at the free surface 

In order to define the correction radius, the stresses caused inside and outside a ring load are 

calculated. The integration along the normal direction (z direction) is done analytically. On the 

other hand, the integration over the load arc (tangential direction 𝜃) is done numerically. More 

details are provided later. Figure  2.3 shows the important parameters used in the stress 

calculation, where R is the radius at the free edge, ri is the radius of the arc load, and ro is the 
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radius of the correction arc load required to eliminate the shear stress generated on the free 

surface of the protrusion. 

Actually, while this description considers a cylindrical protrusion of radius R, the same 

procedure could also describe a cylindrical cavity of radius R. Therefore, the two next 

subsections look specifically at the internal load on a radius ri and the external load on a radius 

ro. The main coordinate system considered here is the cylindrical coordinate system (r, 𝜃, z) 

illustrated in Figure  2.3. 

 

Figure  2.3 Parameters for a circular protrusion 

The following variable definitions are introduced in the stress formulas, 𝑐௜,௢ଶ = 𝑑௜,௢ଶ + 𝑧ଶ 

while the next parameters are dimensionless: 

𝑛௜ = 𝑟௜𝑅 ,𝑛௢ = 𝑅𝑟௢ , 𝑧̅ = 𝑧𝑅 , 𝜏௥̅௭ = 𝜋𝑅𝜏௥௭𝑄  

where 𝜏௥௭ is the shear stress at 𝜃 = 0 and Q is the constant force distributed over the arc. di,o, 

βi,o, z are the variables defining the relative position of each infinitesimal load (𝐹 = 𝑄𝑟௜,௢𝑑𝜃) 

on the inner (subscription i) or outer (subscription o) ring loads and the point (R, 0, z) where 

the stress is calculated. Eq. ( 2.6 ) gives the shear stress at the point (R, 0, z) generated by a 

point force F: 
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𝜏௥௭|ఏୀ଴ = − 3𝐹2𝜋 𝑑௜,௢ cos൫𝛽௜,௢൯ 𝑧ଶ𝑐௜,௢ହ  ( 2.6 ) 

2.5.1.1 Shear stress distribution generated at a radius R by an arc load ri 

The dimensionless shear stress distribution generated on a cylindrical surface of radius R at 𝜃 = 0 by an arc load of radius ri situated on the top of a half-space (see Figure  2.3) is given 

by Eq. ( 2.7 ), where the 𝜑 is the limit angle of the load arc, which will be explained later, and 𝑧̅ is the dimensionless z/R ratio. Figure  2.3 illustrates these conditions and the shear stress 

distribution. 

𝜏̅௥௭௜ = −3𝑧̅ଶ𝑛௜ න (1 − 𝑛௜ cos(𝜃))(1 + 𝑛௜ଶ − 2𝑛௜ cos(𝜃) + 𝑧̅ଶ)ଶ.ହ 𝑑𝜃ఝ
଴  ( 2.7 ) 

Figure  2.4-a presents the shear stress distribution along z at r = R for five ni ratios. 

 
(a) 
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(b) 

 
(c) 

 
(d) 

 
(e) 

Figure  2.4 Dimensionless shear stress distribution at a radius R; caused by an arc load (a) 
over the ring of radius ri (b) over the ring of radius ro (c) over the ring of radius ro positioned 

to generate a shear force equivalent to the stress accumulated along the z direction and 
dimensionless normal stress distribution at a radius R; caused by a ring load (d) over the ring 

of radius ri (e) over the corresponding ring of radius ro defined by Eq. ( 2.12 ) 

The shear stress elimination procedure works with the force (Bz) equivalent to the accumulation 

of the shear stress along the z direction at radius R. Eq. ( 2.8 ) gives the equivalent force 𝐵௭௜ 
generated by an arc load of radius ri when 𝜃 = ሾ−𝜑,𝜑ሿ. The angular integration in Eq. ( 2.8 ) 

over the arc load sums up the shear stress at the depth z caused by infinitesimal loads (𝐹 =𝑄𝑟௜𝑑𝜃), while the linear integration along z gives the force equivalent to the accumulation of 

the shear stress. 
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𝐵௭௜ = න න 𝜏௥௭ 𝑑𝑧ஶ
଴ 𝑑𝜃ఝ

ିఝ ቤ௥೔= − 3𝑛௜𝑄𝜋𝑅 න න (1 − 𝑛௜ cos(𝜃))𝑧̅ଶ൫(1 + 𝑛௜ଶ − 2𝑛௜ cos(𝜃)) + (𝑧̅)ଶ൯ହଶ 𝑑𝑧ஶ
଴ 𝑑𝜃గ

଴  
( 2.8 ) 

2.5.1.2 Shear stress distribution generated at a radius R by an arc load ro 

The shear stress distribution generated on a cylindrical surface of radius R at 𝜃 = 0 by an arc 

load of radius ro situated on the top of a half-space is formulated by Eq. ( 2.9 ). Figure  2.3 

illustrates these conditions as well as the shear stress distribution. 

𝜏̅௥௭௢ = −3𝑧̅ଶ𝑛௢ଷ න (𝑛௢ − cos(𝜃))𝑑𝜃(1 + 𝑛௢ଶ − 2𝑛௢ cos(𝜃) + 𝑛௢ଶ𝑧̅ଶ)ଶ.ହఝ
଴  ( 2.9 ) 

Figure  2.4-b,c illustrate the shear stress distribution generated at the position r = R for five no 

ratios. The no ratios considered in Figure  2.4-b correspond to ni values of Figure  2.4-a, while 

those in Figure  2.4-c produce shear stress force equivalent to those generated by the ni values 

in Figure  2.4-a, as will be explained later in Section 2.5.2 . Eq. ( 2.10 ) gives the equivalent 

force 𝐵௭௢ generated by an arc load of radius ro where 𝜃 = [−𝜑,𝜑]. 
𝐵௭௢ = න න 𝜏௥௭ 𝑑𝑧ஶ

଴ 𝑑𝜃ఝ
ିఝ ቤ௥೚= 3𝑄𝑛௢ଷ𝜋𝑅 න න (𝑛௢ − cos(𝜃))𝑧̅ଶ൫(1 + 𝑛௢ଶ − 2𝑛௢ cos(𝜃)) + (𝑛௢𝑧̅)ଶ൯ହଶ 𝑑𝑧ஶ

଴ 𝑑𝜃గ
଴  

( 2.10 ) 

2.5.2  Shear stress elimination process 

In order to eliminate the shear stress generated at r=R by an arc load of radius ri, a neutralizing 

external load applied on an arc of radius ro with the same angular limit (±𝜑) should produce 
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an equivalent shear force (𝐵௭௜ = 𝐵௭௢). This neutralizing distributed load would play the same 

role as a mirror pressure for a straight boundary. 

Displacing a point force over a circle of radius ro generates shear stresses at the position (R,0, 

z), which alternate from negative to positive distributions. On the other hand, all the positions 

over a circle of radius ri generate negative shear stress distributions. Therefore, the angular 

limit of the correction arc has to be established considering only the fraction of the circle of 

radius ro that generates shear stresses of the same sign as the one generated by a point force 

situated on the circle of radius ri. This condition determines the required 𝜑. Figure  2.5 

illustrates the considered region for a radius ri and its corresponding radius ro. 

A rapid comparison of the curves displayed in Figure  2.4 indicates that while producing an 

equal shear force might be simple, generating a commensurate shear stress distribution should 

be difficult. Therefore, the procedure only assures a force equilibrium, equating Eqs. ( 2.8 ) 

and ( 2.10 ) as indicated by Eq. ( 2.11 ). After some manipulations, Eq. ( 2.11 ) proves to have 

no closed form solution. An approximate solution is thus obtained for 𝐵௭௜ = 𝐵௭௢ using a 

numerical approach. The procedure considers the depth z=10R as infinity. 

−𝑛௜𝑄𝜋𝑅 න ቈ (1 − 𝑛௜ cos(𝜃))(1 + 𝑛௜ଶ − 2𝑛௜ cos(𝜃))቉ 𝑑𝜃ఝ
଴ = 𝑄𝜋𝑅න ቈ (𝑛௢ − cos(𝜃))(1 + 𝑛௢ଶ − 2𝑛௢ cos(𝜃))቉ 𝑑𝜃ఝ

଴  
( 2.11 ) 

For a given ring load of radius ri, Eq. ( 2.11 ) shows that the computation of the neutralizing 

load arc of radius ro requires the definition of both ri and 𝜑. The arc limit 𝜑 also depends on 

ro, which is not known at the beginning of the process. The arc limit for both inner and outer 

arc loads is considered the same. The calculation process is iterative; it results in calculation 

of both ro and 𝜑. 
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Figure  2.5 Arc limit for stress calculation 

2.5.3  Numerical process and the results 

Both ni and no are by nature limited between 0 and 1. As a result, both sides of the equality in 

Eq. ( 2.11 ) may be drawn in the same graph range. Figure  2.6 draws the left-hand side (LH) 

and the right-hand side (RH) of Eq. ( 2.11 ). Therefore, a very simple numerical solution for no 

may be obtained from a graphical approach, also illustrated in Figure  2.6. For a selected ni 

position, the left-hand side (LH) of Eq. ( 2.11 ) is evaluated numerically, and then the RH is set 

to LH, and the solution process establishes the corresponding ratio of no. Eq. ( 2.12 ) provides 

a curve-fitting expression of this solution, and thus gives ro as a fraction of ri.  
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Figure  2.6 n1-n2 relation graph 

𝑛௢(𝑛௜) = 𝑝ଵ𝑛௜ସ + 𝑝ଶ𝑛௜ଷ + 𝑝ଷ𝑛௜ଶ + 𝑝ସ𝑛௜ + 𝑝ହ𝑛௢ହ + 𝑞ଵ𝑛௢ସ + 𝑞ଶ𝑛௢ଷ + 𝑞ଷ𝑛௢ଶ + 𝑞ସ𝑛௢ + 𝑞ହ ( 2.12 ) 

where 

𝑝ଵ  =  0.2381 𝑝ଶ  =   −0.1652 𝑝ଷ  =  −0.00943 𝑝ସ  =  0.02335 𝑝ହ  =  9.47𝑒 − 5 

𝑞ଵ  =  −3.1 𝑞ଶ  =  3.935 𝑞ଷ  =  −2.214 𝑞ସ  = 0.4578 𝑞ହ  =  0.008826 

Eq. ( 2.12 ) allows mapping any internal area onto its external correction area. Thus, Figure  

2.7 illustrates the correction area obtained outside the contact region for a rectangular contact 

patch using Eq. ( 2.12 ). Eq. ( 2.12 ) gives a specific corresponding radius for any point inside 

the original patch. Transferring the perimeter of the original contact patch (m1, m2, m3, m4) 

results in a curvilinear quadrangle (curved edges). On the other hand, assuming that these edges 

are straight simplifies the calculation of the correction patch area. Hartnett’s influence factor 

calculation formula assumes rectangular contact patches (Hartnett, 1980). Therefore, instead 

of the curvilinear quadrangle, the proposed calculation approach simplifies the correction patch 
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to a rectangle with the same area as the mapped curvilinear quadrangle (Figure  2.7). The aspect 

ratio of the considered rectangle is the same as the original patch.  

 

Figure  2.7 A schematic of the correction patch 

In order to simplify the calculation, it is also possible to consider the correction patch area 

equal to the original patch area. However, while simplifying the process, it introduces some 

imprecision into the calculations. Therefore, the calculation approach for the correction patch 

area may be selected based on the needed precision. The results obtained from both approaches 

are compared later. 

2.6  Normal stress elimination on a cylindrical free surface  

To eliminate the normal stress distribution effect on the displacement of the contact surface, 

the present study develops an approach similar to the procedure put foreward by Guilbault in 

Ref. (Guilbault, 2011). This procedure overcorrects the effects of the shear stress distribution 

on the contact surfaces to compensate for the normal stress distribution consequences on the 

displacement. This strategy avoids increasing the computational cost and time. The process 

groundwork requires the description of the influence of the normal stress distributions 

engendered over a cylindrical surface of radius R by ring loads situated on the top of a half-

space. Moreover, since a normal load applied over a cylindrical surface will in turn generate 
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new shear and normal stress distributions onto the half-space surface, the definition of the 

influences of those stresses must also be established. 

The forces equivalent to the accumulations of normal stresses presented in the following 

sections are also dependent on Poisson ratio, while the positions (lr, rz) of the lines of action of 

these forces remain almost independent of ν. To simplify the calculations, the Poisson ratio is 

initially fixed at a constant value of 0.3, which represents an average evaluation compatible 

with most of the engineering materials. This simplification will be later compensated by a 

correction factor. 

2.6.1  Normal stress generated inside a half-space at a radius R caused by a normal 
ring load 

The normal stress distribution generated at a cylindrical surface of radius R by a ring load 

applied on an elastic half-space is calculated by integrating the Boussinesq formula over a 

complete ring. While an analytical integration along the z direction is relatively simple, the 

circular direction shows a singularity, which significantly complicates the integration process. 

Therefore, the solution combines the analytical integration along the z direction with a 

numerical integration along the cylindrical direction. Eq. ( 2.13 ) gives the normal stress at the 

position (R, 0, z) generated in a half-space by applying a point force 𝐹 = 𝑄𝑟௜,௢𝑑𝜃 on an inner 

(ri) or an outer (ro) rings over a half-space. 

𝜎௥|(ோ,଴,௭) = 𝐹2𝜋 ൥(1 − 2𝜐)𝑑௜,௢ଶ ൝ቆ1 − 𝑧𝑐௜,௢ቇ ቂ൫cos൫𝛽௜,௢൯൯ଶ − ൫sin൫𝛽௜,௢൯൯ଶቃ
+ 𝑧൫𝑑௜,௢ sin൫𝛽௜,௢൯൯ଶ𝑐௜,௢ଷ ൡ − 3𝑧൫𝑑௜,௢ cos൫𝛽௜,௢൯൯ଶ𝑐௜,௢ହ ൩ ( 2.13 ) 

𝜎ത௥ = 𝜋𝑅𝜎௥𝑄  

where 𝜎௥ is the normal stress in radial direction. 
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2.6.1.1 Normal stress distribution generated at a radius R by a ring load of radius ri 

The dimensionless normal stress distribution generated at a cylindrical surface of radius R by 

a ring load (radius ri) situated on top of an elastic half-space (see Figure  2.3) is given by Eq. ( 

2.14 ):  

𝜎ത௥௜ = 𝑛௜ න ቎(1 − 2𝜐)(𝑡௜) ቐቌ1 − 𝑧̅(𝑡௜ + 𝑧̅ଶ)ଵଶቍ (𝑠௜ + 𝑛௜ଶ cos(2𝜃))(𝑡௜)గ
଴

+ 𝑧̅𝑛௜ଶ sin(𝜃)ଶ൫(𝑡௜ + 𝑧̅ଶ)൯ଷଶቑ − 3𝑧̅(𝑠௜ + 𝑛௜ଶ cos(𝜃)ଶ)൫(𝑡௜ + 𝑧̅ଶ)൯ହଶ ቏ 𝑑𝜃 

( 2.14 ) 

where the parameters si and ti are defined as follows: 𝑠௜ = 1 − 2𝑛௜ cos(𝜃) 𝑡௜ = 𝑎௜ + 𝑛௜ଶ 

Figure  2.4 also presents the dimensionless normal stress distributions along 𝑧̅ at r = R. Figure  

2.4-d illustrates the dimensionless normal stress distribution for the ring loads applied on five 

ni ratios, while Figure  2.4-e illustrates the dimensionless normal stress distribution for the ring 

loads applied on five no ratios calculated with Eq. ( 2.12 ) for the ri radiuses used in Figure  

2.4-e (Eq. ( 2.12 )). 

The normal stress elimination procedure also works with the force equivalent to the 

accumulation of the normal stress generated along z direction. Eq. ( 2.15 ) gives the equivalent 

force (𝐶௥௜) acting at 𝜃 = 0 and radius R for a ring load of radius ri. As before, the angular 

integration is done over the ring load to sum up the normal stresses at (R, 0, z), while the linear 

integration along z finally produces the force equivalent to the normal stresses.  
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𝐶௥௜ = න න 𝜎௥  𝑑𝑧ஶ
଴ 𝑑𝜃గ

ିగ ቤ௥೔ = −2𝑄𝜐𝑛௜𝜋 න (1 + 𝑛௜ଶ cos(𝜃)ଶ − 2𝑛௜ cos(𝜃))(1 + 𝑛௜ଶ − 2𝑛௜ cos(𝜃))ଷଶ 𝑑𝜃గ
଴  ( 2.15 ) 

2.6.1.2 Normal stress distribution generated at a radius R by a ring load of radius ro 

Eq. ( 2.16 ) formulates the normal stress distribution at the position (R, 0) generated by a ring 

load of radius ro situated on top of an elastic half-space, where the parameters so and to are 

defined as follows. 𝑠௢ = 𝑛௢ଶ − 2𝑛௢ cos(𝜃) 𝑡௢ = 𝑎௢ + 1 

𝜎ത௥௢ = 𝑛௢ න ቎(1 − 2𝜐)(𝑡௢) ቐቌ1 − 𝑛௢𝑧̅(𝑡௢ + 𝑛௢ଶ𝑧̅ଶ)ଵଶቍ (𝑠௢ + cos(2𝜃))(𝑡௢)గ
଴

+ 𝑛௢𝑧̅ sin(𝜃)ଶ(𝑡௢ + 𝑛௢ଶ𝑧̅ଶ)ଷଶቑ − 3𝑛௢𝑧̅(𝑠௢ + cos(𝜃)ଶ)(𝑡௢ + 𝑛௢ଶ𝑧̅ଶ)ହଶ ቏ 𝑑𝜃 

( 2.16 ) 

As mentioned before, Figure  2.4-e illustrates the normal stress distribution along the 𝑧̅ 
direction and at r = R for five no ratios. Eq. ( 2.17 ) gives the normal force (𝐶௥௢) at 𝜃 = 0 and 

radius R equivalent to the normal stresses distributed along the z direction for an applied ring 

load of radius ro. 

𝐶௥௢ = න න 𝜎௥ 𝑑𝑧ஶ
଴ 𝑑𝜃గ

ିగ ቤ௥೚ = − 2𝑄𝜐𝜋 න (𝑛௢ଶ + cos(𝜃)ଶ − 2𝑛௢ cos(𝜃))(1 + 𝑛௢ଶ − 2𝑛௢ cos(𝜃))ଷଶ 𝑑𝜃గ
଴  ( 2.17 ) 

Eq. ( 2.18 ) provides the position of the line of action (𝑙௥) for the equivalent forces given by 

Eqs. ( 2.15 ) and ( 2.17 ). Figure  2.10 demonstrates how these positions are perceived. 
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 𝑙௥ = ׬ ௭ ఙೝ ௗ௭ಮబ׬ ఙೝ ௗ௭ಮబ  ( 2.18 ) 

2.6.2  Normal displacement over a half-space caused by a normal ring load 

Eq. ( 2.19 ) shows the formula proposed by Lubarda (Lubarda, 2013) for calculating the surface 

displacement (wha) at a radius r caused by a ring load of radius ro over a half-space, where r<ro. 

𝑤௛௔ = 2𝑄(1 − 𝑣)𝜋𝐺 𝐾 ൬𝑟𝑟௢൰ ( 2.19 ) 

with G is the shear modulus and K is the elliptical integral of the first kind. 

2.6.3  Normal stress generated inside a cylinder caused by a radial ring load 

In the proposed strategy, the stress distributions are replaced by the equivalent forces (𝐶௥௜ ,𝐶௥௢) 

established above. These resultants are actually not concentrated forces, but rather, are 

distributed around the cylindrical surface of radius R at a lr position along z. The elimination 

process of the calculated normal force requires the addition of an antagonistic distributed force 

at the same axial position. 

Any force distribution applied around the cylindrical surface will in turn generate normal 

stresses and displacements in the z direction. The equations establishing the response of the 

solid to this load are thus also required. The process uses the stress distribution derived from 

the potential function (Eq. ( 2.20 )) given by Timoshenko (Timoshenko S. P., s.d.) for the 

conditions illustrated in Figure  2.8-a. Developing the normal stress distribution for the 

conditions brought in Figure  2.8-a, it is possible to superpose two slightly shifted distributions 

(Figure  2.8-b) to produce a pressure band acting around a cylinder (Figure  2.8-c and d). 
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Figure  2.8 (a) Pressure distribution for the initial potential function, (b) Superposition 
model, (c, d) Pressure band 

Eq. ( 2.21 ) expresses the normal stress along the z direction, where 𝜙 is the potential function 

given by Eq. ( 2.20 ) for the condition illustrated in Figure  2.8-a. Eq. ( 2.22 ) gives the resulting 

normal stress (𝜎௭௙) generated at the depth z for this load condition. Introducing Eq. ( 2.22 ) 

into Eq. ( 2.23 ) gives the axial normal stress (𝜎௭) generated at the depth z by a pressure band 

around a cylinder (Figure  2.8-c,d). The procedure considers the width of the pressure band 

small enough to simulate a line load. To evaluate the width of the band required to reproduce 

a line load, a comparison was made with the results obtained from FEA. This comparison 

showed that dz=0.001R gives acceptable results (Figure  2.9). Figure  2.9 shows, for two 

dimensionless radial positions (r/R= 0.25, 0.75), that the stress distribution obtained from the 

potential function with Q=P dz are in perfect agreement with the results obtained from FEA 

along z direction for a distributed force Q around a cylinder of radius R. The force Q acts at 

z=0. 
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𝜙 = − 𝑄𝜋 𝑑𝑧න [𝜌 𝐼଴(𝑘𝑟) − 𝑘𝑟 𝐼ଵ(𝑘𝑟)] cos(𝑘𝑧)𝑘ସ ቂ(1 − 2𝜐 − 𝜌)𝐼଴(𝑘𝑅) + ቀ𝑘𝑅 + 𝜌𝑘𝑅ቁ 𝐼ଵ(𝑘𝑅)ቃ 𝑑𝑘ஶ
଴  ( 2.20 ) 

𝜎௭௙ = 𝜕𝜕𝑧 ቈ(2 − 𝜐) ቈ𝜕ଶ𝜙𝜕𝑟ଶ + 1𝑟 𝜕𝜙𝜕𝑟቉ + (1 − 𝜐) 𝜕ଶ𝜙𝜕𝑧ଶ ቉ ( 2.21 ) 

𝜎௭௙ =  − 𝑄𝜋 𝑑𝑧 × 
න 𝑠𝑖𝑛(𝑘𝑧)൫2𝑅𝑘ଷ𝐼ଵ(𝑘𝑅)𝐼଴(𝑘𝑟) − 𝑅ଶ𝑘ସ𝐼଴(𝑘𝑅)𝐼଴(𝑘𝑟) + 𝑅𝑘ସ𝑟𝐼ଵ(𝑘𝑅)𝐼ଵ(𝑘𝑟)൯𝑘ଷ ቂ൫𝐼ଵ(𝑘𝑅)൯ଶ(𝑅ଶ𝑘ଶ − 2𝑣 + 2) − 𝑅ଶ𝑘ଶ൫𝐼଴(𝑘𝑅)൯ଶቃ 𝑑𝑘ஶ
଴

( 2.22 ) 

𝜎௭ = ቀ𝜎௭௙ − 𝜎௭ାௗ௭௙ቁ ( 2.23 ) 

while I0 and I1 are modified Bessel functions of the first kind and the parameter 𝜌 is defined as 

follows: 

𝜌 = 2(1 − 𝜈) + 𝑘𝑅 𝐼଴(𝑘𝑅)𝐼ଵ(𝑘𝑅) 



58 

 

 

Figure  2.9 Potential function validation.  

Eq. ( 2.24 ) gives the normal force (𝐶௭) equivalent to normal stresses 𝜎௭ generated at both z 

and –z positions over the range 0 to R by an applied radial ring load around a cylinder of radius 

R (shown in Figure  2.9). 

𝐶௭ = න 𝜎௭𝑑𝑟ோ
଴ ቤ௭ = න 𝜎௭𝑑𝑟ோ

଴ ቤି௭ ( 2.24 ) 

Eqs. ( 2.25 ) and ( 2.26 ) respectively give the position of the line of action of the equivalent 

axial force (Cz) in relation to the edge (r’z) and its radial position rz (see Figure  2.10). 
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𝑟′௭ = ׬ (𝑅 − 𝑟) 𝜎௭ 𝑑𝑟ோ଴ ׬ 𝜎௭ 𝑑𝑟ோ଴  ( 2.25 ) 

𝑟௭ = 𝑅 − 𝑟′௭ = ׬ 𝑟 𝜎௭ 𝑑𝑟ோ଴׬ 𝜎௭ 𝑑𝑟ோ଴  ( 2.26 ) 

2.6.4  Axial displacement caused by a radial ring load around a cylinder 

Eq. ( 2.27 ) gives the axial displacement in the z direction caused by the conditions illustrated 

in Figure  2.8-a. Introducing the potential function (Eq. ( 2.20 )) into Eq.( 2.27 ) results in Eq. 

( 2.28 ), which gives the axial displacement wz at a position (r, z). Introducing the displacement 

obtained from Eq. ( 2.28 ) for the conditions of Figure  2.8-a into Eq. ( 2.29 ) gives the axial 

displacement wcy caused by a pressure band acting around a cylinder (Figure  2.8-c,d). The 

width of the pressure band is dz=0.001R as before. 

𝑤௭ = 12𝐺 ቈ2(1 − 𝑣)∇ଶ𝜙 − 𝜕ଶ𝜙𝜕𝑧ଶ ቉ ( 2.27 ) 

𝑤௭ = 𝑄2𝜋𝐺 𝑑𝑧 
න 𝑐𝑜𝑠(𝑘𝑧)𝑅൫𝑅𝑘𝐼଴(𝑘𝑅)𝐼଴(𝑘𝑟) − 𝑘𝑟𝐼ଵ(𝑘𝑅)𝐼ଵ(𝑘𝑟) + 2𝐼ଵ(𝑘𝑅)𝐼଴(𝑘𝑟)(𝑣 − 1)൯𝑘 ቂ൫𝐼ଵ(𝑘𝑅)൯ଶ(𝑅ଶ𝑘ଶ − 2𝑣 + 2) − 𝑅ଶ𝑘ଶ൫𝐼଴(𝑘𝑅)൯ଶቃ 𝑑𝑘ஶ
଴

( 2.28 ) 

𝑤௖௬ = (𝑤௭ − 𝑤௭ାௗ௭) ( 2.29 ) 

2.6.5  Normal stress elimination process 

The following description is illustrated in Figure  2.10. The elimination of the normal stress 

generated by a ring load acting over a half-space at a radius ri and its corresponding shear 

correction ring load acting at the radius ro requires a counterbalancing equivalent normal stress. 
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The proposed procedure replaces the generated normal stresses (𝜎௥) by their equivalent forces 𝐶௥௜,௢ (Eqs. ( 2.15 ) and ( 2.17 )), which are actually radial loads occurring around a cylinder at 

the axial position given by their line of action lr (Eq. ( 2.18 )). Eliminating these radial forces 

requires an equivalent antagonistic load (Cr) at the same position. This correction force in turn 

causes shear and normal stresses on the half-space surface of radius R. To eliminate this new 

shear stress, the process applies the same load at a symmetrical position. These two correction 

forces cause new normal stresses (𝜎௭) on the half-space surface. The next step of the procedure 

replaces these 𝜎௭ normal stresses by the equivalent force Cz (Eq. ( 2.24 )), which is actually a 

ring load acting over the half-space at a radius 𝑟௭೔ (Eq. ( 2.26 )). As before, eliminating this 

equivalent force requires an equivalent antagonistic load (Cz) at the same position, which again 

requires a counterbalance load at a corresponding radius 𝑟௭೚ for eliminating the new shear 

stresses on the cylindrical free surface caused by Cz. Again, the loads at 𝑟௭೔ and 𝑟௭೚ generate 

new normal stresses on the free surface of the body. As before, the procedure replaces these 

normal stresses by their equivalent forces at the positions of their lines of action. Theoretically, 

this cyclic procedure is infinite. However, the effects of the equivalent forces are reduced after 

some cycles.  

Ultimately, the displacement of the half-space at ri caused by the initial shear eliminating load 

at ro (𝑤ொ) and the correction forces Cr (𝑤௖௬) and Cz (𝑤௛௔) (Figure  2.10) accumulate and 

produce a total displacement wQ* (Eq. ( 2.30 )). Since the correction forces fade as the process 

evolves, wQ* converges to a fixed value for each initial ri radius. 

𝑤ொ∗ = 𝑤ொ + ෍൫𝑤௛௔ + 𝑤௖௬൯ ( 2.30 ) 

Similar to the approach of Ref. (Guilbault, 2011), this study assumes a Q* distributed load at 

ro that causes a surface displacement wQ*. Therefore, Q* becomes equal to Q(wQ*/wQ). This 

Q* eliminates the influence of both shear and normal stress distributions produced by a ring 

load Q of radius ri. If Q* is written as Q*=nsf Q, Eq. ( 2.31 ) gives nsf, while Eqs. ( 2.32 ) and 

( 2.33 ) give the nsf factor final formulation established from the combination of the previous 

equations. The obtained nsf is valid for any dimensionless radius between 0 and 1. 
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𝑛𝑠𝑓 = 𝑄∗𝑄 = 𝑤ொ∗𝑤ொ  ( 2.31 ) 

 

Figure  2.10 Initial steps of residual normal stress elimination process 

 

𝑛𝑠𝑓 = 𝑝ଵ𝑛௜ସ + 𝑝ଶ𝑛௜ଷ + 𝑝ଷ𝑛௜ଶ + 𝑝ସ𝑛௜ + 𝑝ହ𝑛௜ଷ + 𝑞ଵ𝑛௜ଶ + 𝑞ଶ𝑛௜ + 𝑞ଷ                      (0 ൏ 𝑛௜ ൑ 0.67) ( 2.32 ) 

𝑝ଵ  =  −0.03995 𝑝ଶ  =   1.227 𝑝ଷ  =  1.252 𝑝ସ  =  0.05578 𝑝ହ  =  7.16𝑒 − 5 

𝑞ଵ  =  1.284 𝑞ଶ  =  0.0615 𝑞ଷ  =  0.000111   
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𝑛𝑠𝑓 = 𝑝ଵ𝑛௜ହ + 𝑝ଶ𝑛௜ସ + 𝑝ଷ𝑛௜ଷ + 𝑝ସ𝑛௜ଶ + 𝑝ହ𝑛௜ + 𝑝଺𝑛௜ହ + 𝑞ଵ𝑛௜ସ + 𝑞ଶ𝑛௜ଷ + 𝑞ଷ𝑛௜ଶ + 𝑞ସ𝑛௜ + 𝑞ହ      (0.67 ൏ 𝑛௜ ൏ 1) ( 2.33 ) 

𝑝ଵ  =  −1.797 𝑝ଶ  =   0.7247 𝑝ଷ  =  0.7923 𝑝ସ  =  0.2787 𝑝ହ  =  0.1678 

𝑝଺  =  2.717 𝑞ଵ  =  −1.628 𝑞ଶ  =  −0.7441 𝑞ଷ  =  0.06873 𝑞ସ  = 𝑙2.203 

𝑞ହ  =  1.871     

As mentioned earlier, the actual results obtained in the previous section depend on Poisson 

ratio. Therefore, since previous developments assumed a constant value, Eqs. ( 2.32 ) and ( 

2.33 ) are expressions valid for ν=0.3. Nevertheless, nsf may be corrected to account for any ν 

value. Figure  2.11 shows the nsfν factor for various Poisson ratios. These curves may be 

amalgamated to form an nsfν evaluation valid for any ν. Eq. ( 2.34 ) gives nsfν as a function of 

nsf given by Eqs. ( 2.32 ) and ( 2.33 ). 

 

Figure  2.11 Normal stress correction factor for different Poisson ratios 
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The results obtained from Eq. ( 2.34 ) are less precise for the last 30% of the dimensionless 

radius (r/R), specially for Poisson ratios that are not close to 0.3. In cases requiring higher 

precision, the graphs in Figure  2.11 provide more precise nsf values. 

𝑛𝑠𝑓௩ = 1 + 10𝑣3 (𝑛𝑠𝑓 − 1) ( 2.34 ) 

2.7  Summarized implementation process 

The elimination process of the free boundary stress follows the following steps: 

1) Eq. ( 2.12 ) maps the contact patch onto a correction patch and gives the position of the 

counterbalance pressure; 

2) Calculate the area of the correction patch and replace it with a square patch of the same 

area (see Figure  2.7); 

3) Apply the pressure (same as the contact patch) onto the correction patch and calculate 

the correction force Q required to eliminate the shear stress distribution (partial 

correction); 

4) Calculate nfs the correction factor with Eqs. ( 2.32 ) and ( 2.33 ), and multiply Q by nfs 

to obtain Q*. Q* eliminates both the shear stress and the normal stress distributions 

(complete correction). 

2.8  Model validation 

The simple problem illustrated in Figure  2.12 serves as a validation arrangement for the 

developed model. This sample problem assumes two long coaxial cylinders with the same 

radius R pressed against each other. The considered Poisson ratio is 0.3. The contact pressure 

distribution obtained from the proposed model is compared with the results obtained from 

FEA. 
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Figure  2.12 Rod problem 

For a complete illustration of the nsf role, Figure  2.13-a compares the contact pressure 

evaluated over the contact area by Hartnett’s procedure without any correction, with partial 

correction (shear) and with a complete stress correction (shear and normal) produced by nsf 

with the FEA results obtained for the Figure  2.12 conditions. Those results are presented on a 

dimensionless graph; the horizontal axis is 𝑟̅ = 𝑟/𝑅, while the vertical axis is 𝑃ത = 𝑃/𝑃௔௩௘. The 

graph also includes the results obtained with a partial correction when the correction patches 

have the same size as the contact patch. 
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(a) 

 
(b) 

Figure  2.13 (a) Dimensionless contact pressures obtained for R=10 mm, L=50N; (b) 
Contact pressure correction percentage compared to no-correction 

Figure  2.13-a shows that when maintaining the correction patch size equal to the size of the 

contact patches, the partial correction does not really improve the results. On the other hand, 

by adapting the correction patch size, the sole shear stress correction significantly improves 

the results as compared to the no-correction condition and brings the results close to the 

reference FEA evaluations. Nevertheless, the precision decreases in the immediate vicinity of 

the free edge, where 𝑟̅ approaches 1; the remaining effects of the normal stress (after a shear 

correction) mainly affects the predictions close to the free boundary. Adding the normal stress 

correction with nsf further enhances the precision of the results close to the boundary, but has 

no practical effect at positions where 𝑟̅ ൏ 0.9. However, it is also worth mentioning that the 

inclusion of nsf into the calculation procedure does not change the computation times 

compared to the sole shear correction. Moreover, these computation times remain small in 

comparison to those required for FEA. For example, for the precision shown in Figure  2.13-

a, the calculation times were respectively 15 s, 25 s, 27 s and 464 s for the no-correction, sole 

shear correction (estimated patch area), complete correction and FEA. These calculations were 
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made on a computer with a Quad core 3.4GHz CPU. Finally, Figure  2.13-b shows the 

correction percentage of the complete correction in comparison with the no-correction results; 

despite the pressure peak at the edge, the correction percentage remains about 85%. The small 

remaining difference in comparison with FEA results may be attributed to the Hartnett 

procedure being based on rectangular pressure patches, which actually only approximate the 

real curved shape of the boundary. 

 

Figure  2.14 Dimensionless contact pressures obtained for obtained for different R and L 
values 

To complete the validation, the prediction of the proposed method are compared to the FEA 

evaluation for three values of R (5 mm, 10 mm and 15 mm) and two force amplitudes L (50 N, 

70 N). Figure  2.14 presents the pressure graph using the dimensionless variables (pressure and 

radius) defined above. The calculations were made with constant numbers of elements, which 

is equivalent to constant dimensionless mesh sizes. The results were established using the 

complete correction. The graph shows that the proposed approach provides a constant precision 

for a given dimensionless mesh size. 
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The global precision also depends on the dimensionless size of the contact patches. Therefore, 

in order to clarify the effects of the patch size, the following analysis compares three different 

contact mesh refinements for a fixed condition (L= 50 N, R= 10 mm). The contact meshes are 

made of rectangular patches with smaller sizes close to the free boundary. Figure  2.15 shows 

the shape of a typical contact mesh. As indicated earlier, Eq. ( 2.12 ) maps each rectangular 

patch from inside the boundary to a nonrectangular correction patch outside the boundary 

(Figure  2.7). 

 

Figure  2.15 Typical contact mesh with rectangular patches 

Table 2.1 juxtaposes the calculated differences between the model predictions and the FEA for 

three mesh sizes. The calculations are made at four dimensionless radial positions. These 

results demonstrate the precision of the proposed method and indicate that the remaining 

differences are attributable to the decrease of the rectangular contact patches with a reduction 

of the patch size. Finally, while being as precise as FEA, as already mentioned, the proposed 

modeling procedure is less time-demanding. For example, the calculation times for the 

evaluations of Table 2.1 were 14 s, 200 sec, 135 s and 2885 s for the 51 patch model, 151 patch 

model, the 51 nodes FEA and the 151 FEA respectively; the model is more than 9 times faster 

than the FEA with the 51 patch mesh and more than 14 times with the 151 patch one. 
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Table 2.1  The percentage of pressure difference in comparison with FEA results for 
various mesh refinement 

Position ( r/R ) 
Number of patches along R 

51 151 451 

0.00 1.80% 0.66% 0.63% 

0.33 1.59% 0.58% 0.55% 

0.66 1.00% 0.41% 0.38% 

0.99 -12.34% -0.92% 0.05% 

2.9  Conclusion 

The first part of this paper develops a simple approach for the elimination of the shear stresses 

generated on curved free surfaces caused by the half-space assumption present in semi-

analytical methods applied to contact simulation. A common simple approach for the 

elimination of the shear stresses generated on a planar free surface should consider a 

counterbalance pressure patch located at the same distance from the free edge, but on the mirror 

side. Since this approach is not optimal for curved edges, this study introduces a counterbalance 

radius based on the free edge radius to map the shear correction patch. A graph showed the 

relation between each dimensionless radius inside the free edge and its corresponding 

dimensionless radius outside the boundary. This relationship between inside radii and their 

corresponding parts is also formulated in an equation that allows a complete mapping of a 

rectangular pressure patch. A comparison with FEA results shows that applying the proposed 

shear correction approach reduces the errors intrinsic to the half-space assumption by up to 

92%. The evaluations show that the effectiveness of the proposed approach is not a function 

of the free edge radius or the applied load. 

The second part of this paper proposes a correction factor to eliminate the influence of the 

intrinsic normal stress generated by the halfspace assumption on the surface displacement. This 

correction factor modifies the amplitude of the pressure applied on the shear correction patch 

defined in the first part. The complete calculation procedure thus reduces to two simple 
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equations: the first one establishes the correction patch size and position required to eliminate 

the shear stress on the free edge, while the second one defines the correction adjustment 

required to compensate for the normal stress influences. A final comparison with FEA results 

shows that applying the complete correction (shear and normal stresses) further reduces the 

errors by up to 96%. As before, the effectiveness of the presented factor is independent of the 

dimensions and the load. 

Finally, in addition to its simplicity and effectiveness compared to FEA, the proposed approach 

is less time-consuming, ignoring the preparation time required by FEA. The proposed approach 

shows, for the studied cases and equivalent precision, calculation times at least 9 times lower 

than those of the FEA. 
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A FAST THERMOELASTIC MODEL BASED ON THE HALF-SPACE THEORY 
APPLIED TO ELASTOHYDRODYNAMIC LUBRICATION OF LINE 
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3.1  Abstract 

This study allows contact models based on semi-analytical methods including the impacts of 

thermoelastic deformations in contacts of finite dimension bodies. The proposed method 

controls heat flows crossing free boundaries. A comparison with FEA reveals that the proposed 

method can reduce the calculation times by more than 98%. The paper introduces the 

thermoelasticity effects into thermal-elastohydrodynamic lubrication (TEHL) modeling of line 

contact problems. The analysis reveals that including thermoelastic deformations changes the 

pressure profile, and tends to localize the pressure close to the distribution center. Compared 

to TEHL simulations, the examined configurations caused an overall increase in the maximum 

pressure by about 9%, an overall film thickness reduction of about 7%, and an overall 

temperature increase of about 2 K. 

Keywords: Contact Mechanic, Thermoelastic Deformations, Semi-Analytical Method, 

Elastohydrodynamic Lubrication 
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3.2  Introduction and literature survey 

This study presents a simple method for incorporating the effects of thermoelasticity in the 

modeling of contacts with free edges based on steady-state half-space theory. This class of 

problem includes contact conditions ranging from dry to Thermal Elastohydrodynamic 

Lubrication (TEHL) contacts. The proposed method addresses problems commonly 

encountered in different industrial applications, such as line contacts in roller bearings and 

gears (M. Liu et al., 2019 ; Z. Liu et al., 2019 ; Meng, Yu, Xie, & Mei, 2018 ; K. L. Wang & 

Cheng, 1980) or in static electrical contacts in power transfer equipment (Albers, Martin, & 

Lorentz, 2011 ; Chin-Tu & Bryant, 1994 ; Williamson & Majumdar, 1992). In many of these 

devices, the real loads and pressure distributions may potentially be affected by thermoelastic 

displacements. Actually, the true level of influence of thermoelasticity is not really known, 

since precise experimental measurements are virtually impossible, while the great majority of 

the available modeling strategies simply neglect it. 

In reality, when considering simple contact configurations and ignoring thermal 

considerations, Hertz theory (Hertz, 1896) provides precise evaluations of contact areas and 

pressure distributions. In essence, this theory imposes the following restrictions:  a) The 

combined surfaces induce no friction; b) The contact zone covers a limited portion of the 

surfaces; and c) The width of the contact zone is small in proportion to the surface radii. While 

the essence of restriction a) is clear, b) and c) enforce less obvious limitations, with b) 

eliminating the consequential effect of surrounding borders, and c) leading to the solids being 

considered as half-spaces solely accepting elastic displacements.  

Researchers have also proposed methods close to the Hertz theory, but better adapted to 

irregular surfaces   (de Mul et al., 1986 ; Hartnett, 1980 ; S. Liu & Hua, 2009). For instance 

Ref. (Hartnett, 1980) by Hartnett introduces a Semi-Analytical Method (SAM) based on the 

half-space theory (Johnson K.L., 1985), which is a very effective one of them. Rough surfaces 

have also been solved using similar semi-analytical methods (Chen & Wang, 2009 ; Poon & 

Sayles, 1994 ; Tian & Bhushan, 1996 ; Willner, 2008). The presence of free surfaces for cases 

such as roller bearings introduces some errors to such methods due to the stresses (normal and 

shear) forced on those surfaces by the half-space concept. Few authors ((Hanson & Keer, 
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1995 ; Hetényi, 1960, 1970 ; Keer et al., 1983)) implemented effective tactics for eliminating 

these stresses, and while the solutions were precise, they were nonetheless rather tedious. To 

the same end, Guilbault and Yalpanian (Guilbault, 2011 ; Yalpanian & Guilbault, 2020) 

proposed simpler solutions based on correction factors. This correction factor approach 

provides high precision levels for contacts involving free surfaces without imposing additional 

calculation times, and is efficient for a large range of body shapes. However, despite the 

powerful modeling methods offered by this approach, free surfaces still engender additional 

errors when the thermoelasticity aspect of the problem is considered. 

Finite element analysis (FEA) is another valuable simulation approach (Bachtar et al., 2006 ; 

Chatterjee & Sahoo, 2014 ; Sahoo & Ghosh, 2007 ; Yang & Komvopoulos, 2005). The FEA 

commercial software option can be quite easy to use, but quickly becomes complicated when 

the contribution of thermal factors such as thermoelasticity and/or FSI (Fluid Solid Interaction) 

need to be taken into account (Gropper et al., 2016 ; Lindemann et al., 2006 ; Reddy, 2015). 

Actually, even if a commercial software application is able to guarantee simple 

implementation, FEA still involves prohibitive mesh preparation times and computational 

costs. Given these FEA limitations, the SAM option is more common in contact problems 

(Hanson & Keer, 1995 ; Hartnett, 1980 ; Hetényi, 1960, 1970 ; Keer et al., 1983 ; J. Li & 

Berger, 2003 ; Junshan Li & Berger, 2001). Nevertheless, FEA is still quite helpful as a tool 

for validating other methods. In fact, as a validation approach, FEA is a widely accepted 

replacement for experimental investigations, especially for contact problems, which are 

entangled with considerable difficulties. 

To the authors’ knowledge, there are currently no SAM that can properly handle thermoelastic 

contacts with free edges. However, there are practical cases of thermal contacts partially or 

fully surrounded by free surfaces. In addition to the industrial applications mentioned earlier, 

contacts with textured surfaces (D.B. Hamilton, 1966 ; Etsion et al., 1999 ; Gropper et al., 

2016 ; Wakuda et al., 2003) and some contacts in friction welding (Effertz et al., 2017 ; 

Jedrasiak, Shercliff, McAndrew, & Colegrove, 2018 ; Jl et al., 1991 ; Kuroki, Hiroshi; Nezaki, 
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Koji; Wakabayashi, Tsukasa; Nakamura, 2014) are also relevant cases of configurations 

combining thermoelastic deformations and free edges . 

The present work introduces an improved SAM handling about any thermoelastic contact 

definition, whether or not it involves free surfaces. The procedure comprises two parts. The 

first part introduces thermoelastic influence factors into the half-space-based SAM to account 

for thermoelastic displacements over the contact area. The second adjusts these thermoelastic 

influence factors to incorporate the influence of the thermal boundaries, namely to eliminate 

the normal component of the artificial thermoelastic stresses activated on the free surfaces by 

the half-space hypothesis. 

The next section describes the rationale of the proposed SAM, and the sections that follow 

establish the thermal boundary condition treatment and thermoelastic normal stress elimination 

processes. The model development is followed by a validation comparing the model 

predictions with the FEA results obtained for a simple problem. Finally, the proposed method 

is used to describe the effect of thermoelasticity on the TEHL of line contact problems. 

3.3  Method based on the half-space hypothesis 

The Hartnett representation (Hartnett, 1980) puts into action the Boussinesq half-space 

formulation. Hence, the model presumes linear deformations. Eq. (3.1) gives the normal 

displacement at any point (𝑥,𝑦) of the half-space surface when a pressure 𝑃(𝜉, 𝜁) is distributed 

over an area A of this surface: 

𝑤(𝑥,𝑦) = 1 − 𝜈ଶ𝜋𝐸 ඵ 𝑃(𝜉, 𝜁)ඥ(𝑥 − 𝜉)ଶ + (𝑦 − 𝜁)ଶ୅ 𝑑𝜉𝑑𝜁 (3.1) 

where 𝑤 is the displacement normal to the surface, v the Poisson ratio, and E the Young 

modulus. 

To define the contact conditions between two bodies, the Hartnett procedure also requires Eq. 

(3.2). This expression combines the initial separation (g) of body a and body b from the contact 

plane with their linear normal deformations (wa, wb). In Eq. (3.2), α is the normal approach of 
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the bodies. This representation facilitates the inclusion of thermoelastic displacements (𝑤்ா) 

of the half-space surface. Eq. (3.3) presents a modified formulation including the 

thermoelasticity contribution. Figure  3.1 illustrates the variables for both equations: 

൜𝑤௔ + 𝑤௕ + 𝑔௔ + 𝑔௕ = 𝛼 ,𝑃 > 0𝑤௔ + 𝑤௕ + 𝑔௔ + 𝑔௕ > 𝛼 ,𝑃 = 0 (3.2) 

൜𝑤௔ + 𝑤௕ − 𝑤்ா௔ − 𝑤்ா௕ + 𝑔௔ + 𝑔௕ = 𝛼 ,𝑃 > 0𝑤௔ + 𝑤௕ − 𝑤்ா௔ − 𝑤்ா௕ + 𝑔௔ + 𝑔௕ > 𝛼 ,𝑃 = 0 
(3.3) 

 

 

Figure  3.1 Contact definition 



76 

 

3.3.1  Half-space numerical approach for elastic deformation  

The Hartnett SAM divides the contact plane, referred to as a blanket, into rectangular contact 

patches, each bearing a uniform pressure. Hence, for the contact patches belonging to the 

contact area, Eq. (3.2) may be rewritten as: 

෍𝑃௜ × 𝑓௜௝஺ = 𝛼 − 𝑔௔௝ − 𝑔௕௝ (3.4) 

where 𝑓௜௝ are influence factors formulated by Eq. (3.5). 

𝑓௜௝(𝑥,𝑦) = ቆ1 − 𝜈௔ଶ𝜋𝐸௔ + 1 − 𝜈௕ଶ𝜋𝐸௕ ቇඵ 1ඥ(𝑥 − 𝜉)ଶ + (𝑦 − 𝜁)ଶ஺ 𝑑𝜉𝑑𝜁 (3.5) 

In Eq. (3.5), (x, y) are the Cartesian coordinates in a local coordinate system of the central point 

of the affected patch j with respect to the central point of patch i that supports the load. 

3.3.2  Half-space stress formulation 

The half-space theory formulates the elastic stresses (shear 𝜏௫௭ and normal 𝜎௫) caused at any 

position (𝑥,𝑦, 𝑧) by a concentrated force F active at (0,0,0) the origin on the surface (the 

inward z axis is normal to the surface). Therefore, assuming that F and the normal to the 

examined free boundary are in the z direction and the x direction, respectively, while the space 

dimension along the y axis remains large, the dominant stresses active on the free surface may 

be reduced to the shear stress 𝜏௫௭ and the normal stress 𝜎௫. Eqs. (3.6) and (3.7) formulate these 

stresses:  



77 

 

 

 

𝜎௫ = 𝐹2𝜋 ቈ(1 − 2𝜈)𝑑ଶ ቊቀ1 − 𝑧𝑐ቁ 𝑥ଶ − 𝑦ଶ𝑑ଶ + 𝑧𝑦ଶ𝑐ଷ ቋ − 3𝑧𝑥ଶ𝑐ହ ቉ (3.6) 

𝜏௫௭ = − 3𝐹2𝜋 𝑥𝑧ଶ𝑐ହ  (3.7) 

where 𝑑 = (𝑥ଶ + 𝑦ଶ)భమ and 𝑐 = (𝑑ଶ + 𝑧ଶ)భమ. 
3.4  Thermal aspects 

The heat generated at different contact positions engenders thermal displacements which 

modify the contact conditions (Eq. (3.3). For dynamic contacts, heat generation usually results 

from dry friction, from lubricant shearing (Eq. (3.8), and compression (Eq. (3.9), or under a 

partial lubrication regime, from a combination of both conditions (Balci, Yildirim, & Dag, 

2015 ; Sukumaran et al., 2018). In static contacts, it is often an electrical resistance at the 

surface junction between two bodies that causes a heat dissipation (Eq. ( 1.7 )) (Bahrami, 

Yovanovich, & Culham, 2005 ; M. G. Cooper, B. B. Mikic, 1969 ; Mikic, 1974). As suggested 

in Eq. (3.3, the resulting thermoelastic displacements may be regarded as unidirectional and 

normal to the contact surface. 𝑞′′ௗ௥௬ = 𝜇𝑃𝑆𝑆, where q''dry is the heat flux (W/m2), 𝜇 is the 

coefficient of friction, SS is the sliding velocity (m/s), and P is the contact pressure (N/m2).  

 𝑞′′′௦௛௘௔௥ = 𝜂 ൤ቀడ௨೑డ௭ ቁଶ + ቀడ௩೑డ௭ ቁଶ൨ (3.8) 

where q'''shear is the shear heat flux per length ((W/m2)/m) or volumetric shear heat generation 

(W/m3), 𝜂 is the dynamic viscosity of the lubricant (Pas), 𝑢௙ is the lubricant velocity in the 

flow direction (m/s), and 𝑣௙ is the lubricant velocity in the lateral direction (m/s).  

In TEHL contacts, compressive heating results from a pressure build-up at the inlet. It is also 

worth indicating that at the outlet, the pressure drop causes a lubricant decompression acting 
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as a heat sink. This combined heating/cooling mechanism is designated as compressive 

heating.  

𝑞′′′௖௢௠௣ = 𝛽𝑇 ൬𝑢௙ 𝜕𝑃𝜕𝑥 + 𝑣௙ 𝜕𝑃𝜕𝑦൰ (3.9) 

where q'''comp is the compressive heat flux per length ((W/m2)/m) or volumetric compressive 

heat generation (W/m3), T is the lubricant temperature ( ̊K), and 𝛽 is the coefficient of thermal 

expansion of the lubricant (K-1). 

𝑞′′௘௟௘௖ = 𝑅௖𝐼ଶ𝐴  (3.10) 

where q''elec is the electrical heat flux (W/m2), 𝑅௖ is the electrical contact resistance, I is the 

electrical current, and A is the contact area. 

3.4.1  Thermoelastic displacement 

Several studies have proposed analytical models to establish the thermoelastic displacements 

generated by a heat source acting on the surface of a half-space (Akbari, Sinton, & Bahrami, 

2009 ; Barber, 1971 ; J. R., Barber, 1982 ; Sternberg & Mcdowell, 1957). These models show 

that a steady heat source applied on the surface of a half-space leads to infinite thermoelastic 

displacements of that surface. In order to provide better representations of real body conditions, 

in Ref. (Barber, 1971), Barber defined a heat-affected zone radius (𝑠଴), allowing the 

thermoelastic displacements to be evaluated under steady-state conditions. Figure  3.2 

illustrates the concept, while Eq. (3.11) gives the normal displacement 𝑤 at a distance s smaller 

than s0 from the heat source q.  
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Figure  3.2 Steady-state thermoelastic displacement 

𝑤 = 𝑞𝛾(1 + 𝜈)2𝜋𝑘 log ቀ𝑠଴𝑠 ቁ (3.11) 

where 𝛾, 𝑘 and 𝜈 are the coefficient of thermal expansion ( ̊K-1), the thermal conductivity (W/m  ̊K) and the Poisson ratio of the half-space material, respectively. 

Assuming there is a uniform heat flux (𝑞′′) over a rectangular patch of area A, and that 𝑠଴ is 

considerably larger than the dimensions of this patch, integrating Eq. (3.11) into A gives the 

overall thermoelastic displacement expressed by Eq. (3.12): 

𝑤 = 𝛾(1 + 𝜈)2𝜋𝑘 ቊ𝑞"ቆlog(𝑠଴)ඵ 𝑑𝐴஺ −ඵ log(𝑠)  𝑑𝐴஺ ቇቋ = ෍𝑞"௜ × 𝑓 ா (3.12) 

where 𝑞′′ is the heat flux (W/m2). Eq. (3.12) indicates that the thermoelastic displacement at a 

position s of the surface caused by a given heat flux essentially depends on material properties 

and geometric parameters. Therefore, thermoelastic displacements may be predefined and 

integrated into a numerical process via a thermoelastic influence factor (𝑓 ா). A multiplication 

of the heat generated over a given rectangular patch i by this influence factor gives the 

displacement at a position s. Thus, Eq. (3.13) integrates the thermoelastic displacements into 

Eq. (3.4) as follows: 
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∑ 𝑃௜ × 𝑓௜௝஺ − ∑ 𝑞௜ᇱᇱ × 𝑓 ா௜௝஺ = 𝛼 − 𝑔௔௝ − 𝑔௕௝  (3.13) 

Reference (Hartnett, 1980) offers a complete description of the implementation of Eq. (3.13) 

and of the associated solution algorithm. Eq. (3.14) formulates the thermoelastic influence 

factor defined for a displaced rectangular patch j, which has its center located at (x, y) with 

respect to the center of the loaded patch i. The lengths of patch i are 2a and 2b along the x and 

y axes, respectively. The patch size and position respect the mesh definition prepared for the 

elastic displacement calculations. 

𝑓 ா,௜௝ = 𝛼(1 + 𝜐)2𝜋𝑘 ൤4log(𝑠଴)𝑎𝑏− ൜൤𝑥௎𝑦௎(log(𝑥௎ଶ + 𝑦௎ଶ) − 3) + 𝑥௎ଶ𝑡𝑎𝑛ିଵ ൬𝑥௎𝑦௎൰ + 𝑦௎ଶ𝑡𝑎𝑛ିଵ ൬𝑦௎𝑥௎൰൨− ൤𝑥௅𝑦௎(log(𝑥௅ଶ + 𝑦௎ଶ) − 3) + 𝑥௅ଶ𝑡𝑎𝑛ିଵ ൬𝑥௅𝑦௎൰ + 𝑦௎ଶ𝑡𝑎𝑛ିଵ ൬𝑦௎𝑥௅൰൨− ൤𝑥௎𝑦௅(log(𝑥௎ଶ + 𝑦௅ଶ) − 3) + 𝑥௎ଶ𝑡𝑎𝑛ିଵ ൬𝑥௎𝑦௅൰ + 𝑦௅ଶ𝑡𝑎𝑛ିଵ ൬𝑦௅𝑥௎൰൨+ ൤𝑥௅𝑦௅(log(𝑥௅ଶ + 𝑦௅ଶ) − 3) + 𝑥௅ଶ𝑡𝑎𝑛ିଵ ൬𝑥௅𝑦௅൰ + 𝑦௅ଶ𝑡𝑎𝑛ିଵ ൬𝑦௅𝑥௅൰൨ൠ൨ 
(3.14) 

In Eq. (3.14), L and U indices refer to the lower and upper positions, respectively. Hence, 𝑥௅ = 𝑥 − 𝑎, 𝑥௎ = 𝑥 + 𝑎, 𝑦௅ = 𝑦 − 𝑏 and 𝑦௎ = 𝑦 + 𝑏. 

The thermoelastic influence factor approach allows a straightforward integration of the 

thermoelastic displacements into the simple elastic process introduced by Hartnett (Hartnett, 

1980). However, unlike the elastic displacements, which are inward when the surface sustains 

a pressure load, the thermoelastic displacements generated by a surface heat source are 

outward. Moreover, generally, the generated heat is a function of the contact pressure, while 

the contact pressure depends on both the elastic and thermoelastic displacements. As a result, 

the solution process of a thermoelastic model might be slightly less stable than that of a purely 

elastic model.  
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3.5  Free edge 

SAM based on the half-space assumption, such as the Hartnett model, result in incorrect 

pressure increases in the vicinity of free surfaces of real bodies. These pressure rises result 

from artificial constraints of the free surfaces engendered by the internal shear and normal 

stress distributions that are inherent to the half-space assumption (Figure  3.3-a). 

It has long been demonstrated that applying a counterbalance pressure eliminates the artificial 

shear stress from the free surface. The counterbalance pressures mirror the pressure distribution 

with respect to the free surface. Moreover, the additional operation introduced into the 

representation does not significantly affect the computation burden. The literature also offers 

exact correction methods to completely release the traction-free surfaces from the artificial 

normal stress (Hanson & Keer, 1995 ; Hetényi, 1970). However, these procedures require 

significant computation efforts. On the other hand, the approach put forward by Guilbault in 

(Guilbault, 2011) is simpler, while offering a comparable precision. The process removes the 

normal internal stress influence on the surface displacements without engendering any increase 

in calculation times; the mirrored pressures correcting the shear stress are multiplied by an 

overcorrection factor, which compensates for the normal stress influence on the surface 

displacements.  

In reality, both elastic and thermoelastic displacement calculations can engender pressure 

increases close to the free surfaces. Here, elastic refers to the elastic response of the solids to 

a pressure, while thermoelastic refers to the thermoelastic response of the solids to a heat 

source. 

The stress generated inside a half-space by a surface heat load is planar (Sternberg & 

Mcdowell, 1957); a surface heat load causes internal normal stress distributions, but no shear 

stress. Therefore, a thermoelastic modeling approach based on the half-space assumption 

results in inherent normal stress distributions (Figure  3.3-b) on any free surface. In reality, 

eliminating this undesired effect is not a real problem, since any of the strategies developed for 

the elastic problem may be adapted to this thermoelastic consideration.  However, in addition 
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the stress-strain aspect, the pattern of the inborn heat flux must also be adapted to the free 

boundary presence.  

The next section introduces the procedure put forward to reproduce adiabatic or convective 

conditions over an internal surface of a half-space in order to simulate a free boundary, while 

Section 3.7  presents the normal stress elimination strategy adapted to the thermoelastic 

problem. 

 
(a) 

 
(b) 

Figure  3.3 Repercussions of the half-space hypothesis on a boundary 

3.6  Thermal correction for free boundaries  

The definition of an adiabatic condition coincides with numerous practical situations. This state 

probably also corresponds to the easiest boundary condition to simulate for a free surface. 

Nevertheless, it cannot represent all physical situations. For many free surfaces where a 

convective heat transfer is dominant, the adiabatic assumption is not valid. Therefore, after an 

analysis of the adiabatic condition, Section 3.6.2  develops a general model suitable for any 

convective thermal boundary. Before that, however, Section 3.6.1  introduces the basic 

equations.  
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3.6.1  Heat flux generated by a heat load acting on the surface of a half-space 

The internal heat flux generated by a steady-state heat load q (W) acting over a surface element 

(∆𝐴) of a half-space may be deduced in any direction from the associated temperature 

distribution. Eq. (3.15) formulates the half-space temperature distribution resulting from a 

steady-state heat load q (Mark Kachanov, Boris Shafiro, 2003):  

∆𝑇 = 𝑞4𝜋𝑘 1ඥ𝑥ଶ + 𝑦ଶ + 𝑧ଶ (3.15) 

where ∆𝑇 is the temperature variation, k is the thermal conductivity (W/m  ̊K), and the (x,y,z) 

position indicates the temperature evaluation point in a local coordinate system located at the 

heat load position with axis z oriented inward. 

Considering the Fourier’s law (𝑞′′௫ = −𝑘 𝜕(∆𝑇) 𝜕𝑥⁄ ) and the temperature distribution given 

by Eq. (3.15), Eq. (3.16) establishes the heat flux along the x axis (𝑞′′௫ in (W/m2)). Eq. (3.17) 

describes a dimensionless version (𝑞′′௫തതതതത) of Eq. (3.16): 

𝑞′′௫ = − 𝑞4𝜋 ቆ 𝑥(𝑥ଶ + 𝑦ଶ + 𝑧ଶ)ଷ ଶൗ ቇ (3.16) 

𝑞′′௫തതതതത = − 4𝜋𝑞′′௫𝑞′′ = 𝑥̅(𝑥̅ଶ + 𝑦തଶ + 𝑧̅ଶ)ଷ ଶൗ  (3.17) 

where 𝑞′′ = ௤∆஺ (W/m2) is the heat flux acting on the surface of the half-space and 𝑥̅,𝑦ത, 𝑧̅ are 

dimensionless coordinates defined as 𝑥̅ = ௫√∆஺ , 𝑦ത = ௬√∆஺ , 𝑧̅ = ௬√∆஺. Figure  3.4 shows 𝑞′′௫തതതതത 
distributions calculated along 𝑧̅ for different 𝑥̅ positions when 𝑦ത = 0: 
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Figure  3.4 Dimensionless heat flux distribution at different 𝑥̅ positions 

3.6.2  Definition of the thermal boundary  

An adiabatic boundary condition signifies the absence of a crossing heat flux. On the other 

hand, the half-space formulation supposes that the heat flux can propagate freely across an 

infinite domain. Thus, the simulation of a free surface under an adiabatic condition requires 

the elimination of the heat flux crossing this surface. The elimination process is quite simple: 

an opposite heat flux with an amplitude equivalent to that of the present flux should be 

generated on the free surface. A heat load mirroring the active heat load with respect to the free 

surface, or positioned on the opposite side at the same distance from the free surface, generates 

the desired heat flux. This thermal corrective strategy is designed to work with the Hartnett 

SAM. Thus, the original contact algorithm defined in (Hartnett, 1980) remains unchanged. The 

thermal part only integrates the heat flux effect over each original contact patch and 

corresponding mirror correction. Figure  3.5 illustrates the heat load mirroring operation. The 

figure also introduces the multiplier Cbc. This factor will allow generating conditions of 

convective heat transfer. Hence, the thermal boundary presented in Figure  3.5 is adiabatic 

when Cbc is set to 1.0. 
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Figure  3.5 Thermoelastic boundary definition for a planar free surface 

Under convective conditions, the coefficient of heat convection (h (W/m2K)) quantifies the 

level of convective heat transfer over a surface area. The role of h is thus similar to that of k, 

the coefficient of heat conduction inside conductive material. Therefore, replicating a 

convective thermal boundary may be realized simply by assuming that another solid made of 

the same material, but with an adapted heat conduction coefficient, is connected to the free 

surface. Hence, while a Cbc value of one corresponds to an adiabatic condition, a zero value 

implies that the heat conduction is not affected by the presence of the free surface. Assuming 

a linear behavior for Cbc allows defining the appropriate value for each convection coefficient.  

The dimensionless Biot number (Bi) given by Eq. (3.18) compares the internal thermal 

conduction to the surface thermal convection of a given solid (Incropera & De Witt, 1981). A 𝐵𝑖 = 1.0 means that the conduction and the convection are equivalent. In Eq. (3.18), 𝐿௘ is an 

effective length often defined as the ratio between the volume of the solid and its surface. 

Establishing a linear relation for Cbc from Eq. (3.18) is thus straightforward. Eq. (3.19) presents 

the obtained relation.   

In the present problem definition, where the solids are considered as half-spaces, the common 

definition of Le is not relevant. In reality, when analysing Eq. (3.19), it becomes clear that Bi 

may potentially be replaced by Le, if this effective length is redefined as the separation between 

the actual solid and the adjoined body. This redefinition thus refers to a gap length (Lg) 

reflecting the coefficient of convection. Eq. (3.19) also shows the final formulation. 
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The correction procedure obtained with the combination of the factor Cbc and the mirrored 

thermoelastic cells is equivalent to the procedure described in Ref. (de Mul et al., 1986) for the 

elastic problem. The thermoelastic and elastic contributions are thus easily combined and solve 

simultaneously for various thermal boundary conditions. However, when limited to this 

procedure, both elastic and thermoelastic components generate normal stress distributions 

which remain active on the free surfaces.  

3.7  Thermoelastic normal stress elimination on a free surface  

The influence of the remaining thermoelastic normal stress distributions on the displacement 

of the contact surface may be corrected following an approach similar to the one proposed by 

Guilbault (Guilbault, 2011) for the elastic problem. The reference procedure overcorrects the 

influence of the shear stress to compensate for the effect of the normal stress distribution on 

the displacement of the half-space surface. This approach prevents additional computational 

efforts. Here, the correction strategy should modify the mirrored heat load to decrease the 

effects of the thermoelastic normal stress distribution on the displacement as well.  

Although the procedure aims at correcting the influence of normal stresses engendered by a 

heat flux distribution over a given contact surface, the calculation process is essentially elastic, 

and leads to developments similar to those presented in (Guilbault, 2011). The calculation 

process involves the following steps: 1- it first calculates the total equivalent normal force 

present on the surface, as well as its position; 2- it applies an opposite normal force of the same 

amplitude at the position of the force to be corrected; 3- to avoid the generation of a shear stress 

distribution on the half-space surface, the process also applies a mirror correction force with 

respect to the half-space surface; 4- these two forces engender a new normal stress distribution 

𝐵𝑖 = ℎ 𝑘 𝐿௘ (3.18) 

𝐶௕௖ = 𝑓(1 −  𝐵𝑖) = 1 − 𝐿௚  (3.19) 
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over the half-space surface, which in turn must also be eliminated; 5- the previous steps are 

then repeated for the half-space surface. This process is alternatively repeated on the free 

boundary and the half-space surface and converges after an infinite number of iterations. 

3.7.1  Basic stress and displacement equations 

In agreement with the stress description presented in Section 3.3.2 , when the coordinate system 

remains as defined before with axis z oriented inward, the internal half-space stress 𝜎௫௧௘ 

expressed by Eq. (3.20) (Mark Kachanov, Boris Shafiro, 2003) represents the influential 

thermoelastic stress component. This component is active in the x direction or normal to the 

free surface at the position y = 0. This position is in line with the corrective load located at a 

mirror position in the classical correction method described in Section 3.5 . 

𝜎௫௧௘ = −𝑞𝐺𝛾4𝜋𝑘 (1 + 𝜈) ൤ 1𝑧 + √𝑥ଶ + 𝑧ଶ൨ (3.20) 

where q is a heat load acting on the half-space surface and G is the shear modulus. 

Eq. (3.21) gives the total equivalent normal force (FTE). This force results from the integration 

along z of the normal stress distribution over a given surface located at a position x. Eq. (3.21) 

converts the infinite range of the integral associated with the asymptotic behavior of 𝜎௫௧௘ into 

a finite integration length. This length starts at the half-space surface and goes down to a 

defined physical depth (H). Eq. (3.22) gives the position of the line of action (𝑙்ா) of FTE along 

z. 
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𝐹்ா = න 𝜎௫௧௘𝑑𝑧ஶ
଴ = − 𝐺𝛼4𝜋𝑘 (1 + 𝜈)න 1𝑧 + √𝑥ଶ + 𝑧ଶ 𝑑𝑧ு

଴  (3.21) 

𝑙்ா = ׬ 𝑧 𝜎௫௧௘𝑑𝑧ு଴ 𝐹்ா  (3.22) 

Eq. (3.6) presented before gives the internal half-space elastic stress in the x direction. Eq. 

(3.23) shows a reduced version of the expression when y is set to 0: 

𝜎௫௘ = 𝐹2𝜋 ൥൬1 − 𝑧√𝑥ଶ + 𝑧ଶ൰ (1 − 2𝜈)𝑥ଶ − 3𝑧𝑥ଶ(𝑥ଶ + 𝑧ଶ)ହଶ൩ (3.23) 

As before with Eq. (3.21), for the total equivalent thermoelastic normal force FTE, Eq. (3.24) 

shows the total equivalent elastic normal force (FE). Again, this force results from the 

integration along z of the normal stress distribution over a given surface located at a position 

x. The infinite integral is also reduced to the same finite integration length H. Eq. (3.25) gives 

the position of the FE line of action (𝑙ா) along z: 

𝐹ா = න 𝜎௫௘𝑑𝑧ஶ
଴ = න 𝜎௫௘𝑑𝑧ு

଴  (3.24) 

𝑙ா = ׬ 𝑧 𝜎௫ா  𝑑𝑧ஶ଴ 𝐹ா  
(3.25) 

Eq. (3.11) provides a general formulation of the normal thermoelastic displacement of a half-

space surface. Eq. (3.26) reduces this expression along the x axis. In this relation, the position 

x corresponds to the distance from the heat load  (Barber, 1971). Similarly, Eq. (3.27) 

formulates the normal elastic displacement of the half-space surface at a distance x from the 

normal force active on the half-space surface (Johnson, 1987): 
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𝑤்ா = 𝑞𝛾(1 + 𝜈)2𝜋𝑘 ln ቀ𝑠଴𝑥 ቁ (3.26) 

𝑤ா = −ி(ଵିఔ)ଶగீ௫   (3.27) 

Finally, Eq. (3.28) gives the internal elastic displacement in the x direction (𝑢ா) along the x 

axis and at a given depth z from the half-space surface, when y is 0 (Johnson, 1987): 

𝑢ா = 𝐹4𝜋𝐺 ൤𝑧𝑥𝑐ଷ − (1 − 2𝜈) 𝑥𝑐(𝑐 + 𝑧)൨ (3.28) 

where 𝑐 = √𝑥ଶ + 𝑧ଶ. 

3.7.2  Normal stress elimination process 

The remaining thermoelastic normal stress on the free surface results from a combination of 

the effects of both the initial and the mirror heat loads. Therefore, the adiabatic thermal 

boundary, which imposes the maximum mirror heat loads, leads to the largest normal stress 

amplitude. Thus, the following study considers the adiabatic boundary condition (Cbc  = 1) to 

analyse the thermoelastic normal stress elimination process.  

The following description is illustrated in Figure  2.10. In addition to their contribution to the 

displacement of the half-space surface (given by Eq. (3.26)), a heat load Q acting on a half-

space surface at a distance 𝑙௭்ா from the free edge (along the x direction) and its mirror load 

Q’ engender a superposition of normal stress distributions 𝜎௫௧௘ on the free surface. Eliminating 

this thermoelastic normal stress combination requires a counterbalancing equivalent normal 

stress. The proposed procedure replaces the generated normal stresses with their equivalent 

forces 𝐹்ா (calculated by Eq. (3.21)). The total antagonistic force is then applied at a distance 𝑙௫்ா from the half-space surface or at the position of the action line of 𝐹்ா defined by Eq. 

(3.22). In turn, this correction force generates shear and normal stresses on the half-space 
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surface. A correction force 𝐹்ா′ placed at a mirror position with respect to the surface half-

space eliminates the shear stress. These two correction forces then cause additional elastic 

displacements of the half-space surface, which are deduced from a rotated version of Eq. 

(3.28). They also cause a superposition of elastic normal stresses (𝜎௭௘) in the z direction on the 

half-space surface. These stresses and their equivalent forces in the z direction, as well as their 

acting positions, are established by a formulation equivalent to the one given by Eq. (3.23) to 

Eq. (3.25) along the x axis. An equivalent force 𝐹ாଵmay thus be applied to eliminate the force 

generated normal to the plan of the half-space surface. This corrective operation again requires 

the action of a force 𝐹ா′ଵ mirroring 𝐹ாଵ. In addition to their contribution to the elastic 

displacement of the half-space surface calculated with Eq. (3.27), these correction forces cause 

the reoccurrence of a normal stress distribution on the free surface, which requires the addition 

of the correction force mirror set comprised of 𝐹ாଶand 𝐹ா′ଶ. These first few elimination steps 

conclusively initiate an iterative correction process. Since the positions of the force action line 

(illustrated by Eq. (3.25)) increase at each iteration, the process is convergent. The present 

description summarizes the detailed explanations of the procedure published by the authors in 

Refs. (Guilbault, 2011 ; Yalpanian & Guilbault, 2020). The reader is thus referred to these 

papers for a complete portrayal. 

At the end of the releasing process of the free boundary, the displacement of the half-space 

surface at the position of the initial heat load 𝑄 will combine the displacement contributions  𝑤்ாିொ and  𝑤்ாିொᇱ (Eq. (3.26)) produced by 𝑄 and its mirror heat load 𝑄′, respectively, the 

displacement 𝑢ாିி೅ಶᇱ (Eq. (3.28)) produced by the mirror load 𝐹்ா′, as well as the 

contributions  𝑤ாିிಶభᇱ (Eq. ( 2.19 )) produced by the  mirror load 𝐹ாଵ′. To these displacements, 

the complete iterative process will pile up displacements ൫𝑤ாିிಶᇱ൯௜ and ൫𝑢ாିிಶᇱ൯௜ engendered 

by the elastic correction forces.  Hence, the complete iterative correction will cause a final half-

space surface displacement 𝑤ொ೟೚೟ೌ೗ given by Eqs. (3.29-a) and (3.29-b).    
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𝑤ொ೟೚೟ೌ೗ = 𝑤்ாିொ + 𝑤ொ (3.29-a) 

𝑤ொ =  𝑤்ாିொᇲ + 𝑢ாିி೅ಶᇱ + ෍൫𝑤ாିிಶᇱ൯௜ + ෍൫𝑢ாିிಶᇱ൯௜ஶ
௜ୀଵ

ஶ
௜ୀଵ  (3.29-b) 

In order to avoid the calculation efforts involved in the correction process described by the 

infinite series in Eqs. (3.29-a) and (3.29-b), the proposed correction strategy assumes instead 

that a modified mirror heat load Q* located at 𝑙௭்ா from the free boundary at the mirroring 

position should produce a displacement of the half-space surface equal to wQ. Thus, Q* should 

be calculated as indicated by Eq. (3.30-a), where nsfTE is the thermoelastic normal stress 

elimination factor. This factor is thus written as indicated by Eq. ( 2.31 ). 

Eq. (3.30-b) allows calculating nsfTE for any 𝑙௭்ா. The equation system formed by Eq. (3.20) 

to Eq. (3.28) depends on the Poisson ratio. Here, in order to simplify the calculations, the 

Poisson ratio is initially fixed at a constant value of 0.3, since this value is compatible with 

most engineering materials. 

The formulation of Eq. (3.30-b) concentrates the influence of the normal stresses generated by 

heat loads on the surface displacement. To evaluate nsfTE, a series of simulations considering 

various 𝑙௭்ா distances of the heat load from the free boundary were realized. The investigation 

examined dimensionless distances 𝑥̅ =  𝑙௭்ா 𝑠଴⁄ , where 𝑠଴ was fixed at 10 mm. Figure  2.11 

displays the obtained results. The results are also summarized by the curve fit given by Eq. 

(3.31). Figure  2.11 shows that the calculated nsfTE factors are always lower than 3%, and 

globally below 1%. They thus have no significant effect on the contact pressure calculation. 

Therefore, it is reasonable to conclude that the influence on the surface displacement of the 

𝑄∗ = ቂ𝑤ொ 𝑤்ாିொᇲൗ ቃ 𝑄 = 𝑛𝑠𝑓 ா𝑄 (3.30-a) 

𝑛𝑠𝑓 ா = ቂ𝑤ொ 𝑤்ாିொᇲൗ ቃ (3.30-b) 
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internal normal stress distributions engendered by a heat load on a half-space may be neglected, 

and a sole correction of the heat fluxes crossing the free boundaries is sufficient.  

Since the nsfTE calculation included (Eq. (3.31)) only considered a 0.3 Poisson ratio, the second 

half of the investigation examined the changes caused by modifications of the Poisson ratio. 

While the final results are not included here, they showed that the thermoelastic normal stress 

effects also remain inconsequential with other Poisson ratios. 

 

 

Figure  3.6 First few actions of the artificial stress correction procedure 
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𝑛𝑠𝑓 = 𝑥̅ହ − 15.3𝑥̅ସ + 289.6𝑥̅ଷ + 125𝑥̅ଶ + 32.9𝑥̅ + 37.83𝑥̅ହ − 15.32𝑥̅ସ + 292.1𝑥̅ଷ + 118.2𝑥̅ଶ + 35.37𝑥̅ + 36.51 (3.31) 

 

Figure  3.7 Thermoelastic normal stress correction factor 

3.8  Validation 

Figure  3.8 shows a very thick square solid of area l2 submitted to a constant heat flux q''. Four 

straight free boundaries form this solid. To validate the proposed modeling strategy, its 

displacement predictions are compared to the thermoelastic displacement results obtained from 

a Finite Element Analysis (FEA) of the same solid submitted to the same heat flux q''.  The 

present comparison considers that the free boundaries are under adiabatic conditions (FEA and 

proposed method). Figure  3.8 also shows the FEA model of the solid bar. The bar length is 

10 l, the mesh is made of solid 8 node elements, and the bar cross-section is meshed with 71 x 

71 constant length elements, while the lengthwise mesh is progressive and is composed of 100 

divisions. Finally, in addition to the constant heat flux q'' applied on the top surface, the lower 

surface is insulated. 
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Figure  3.8 Validation model  

As mentioned earlier, the proposed method requires the definition of a heat-affected zone 

radius (𝑠଴). In order to cover the complete area and the additional surface involved during the 

mirroring procedure, the radius 𝑠଴ is set to 2√2𝑙. Figure  3.9 shows the radius of the included 

thermoelastic zone when the lower right corner of the area is considered.  
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Figure  3.9 Definition of the adiabatic zone and thermoelastic zone radius 

Figure  3.10-a superimposes the model predictions (identified as ATE) and the FEA results 

obtained for the adiabatic condition. In addition, in order to put the influence of the adiabatic 

thermal condition into perspective, the graph in Figure  3.10-a also includes the thermoelastic 

displacements predicted by the model when imposing no thermal correction (identified as TE). 

The presented values were taken along the diagonal direction of the heated zone. They compare 

the thermoelastic displacement 𝑤்ா to 𝑤்ா௖ , the thermoelastic displacement calculated at the 

center of the contact area. The abbreviations TE and ATE refer to the model calculations made 

considering the thermoelastic and the adiabatic thermoelastic conditions, respectively. The 

curves in Figure  3.10-a show that the model predictions for the adiabatic thermoelastic 

conditions (ATE) are in perfect agreement with the results obtained from FEA with adiabatic 
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thermoelastic conditions. Moreover, a comparison of the TE and ATE curves demonstrates the 

influence of the free boundary heat flux correction. 

Since the proposed solution is designed to be integrated into a contact model composed of 

rectangular pressure cells, it also requires a division of the surface into rectangular cells. The 

results of Figure  3.10-a were obtained for a grid made of 71 x 71 square cells. To illustrate the 

influence of the grid resolution, Figure  3.10-b compares the results obtained for different grid 

sizes: 71 x 71, 105 x 105 and 141 x 141 square cells. Since Figure  3.10-a demonstrates that 

ignoring the thermal correction (TE curve) significantly reduces the result accuracy, Figure  

3.10-b only includes the displacements calculated when considering the ATE condition. To 

complete the comparison, Figure  3.10-b also displays the FEA results. Although the numerical 

noise in all grid sizes is virtually negligible, Figure  3.10-b shows that finer meshes cause less 

numerical noises. In fact, the curves suggest that the precision of the proposed approach is not 

really affected by the grid size. On the other hand, the calculation time also depends on the grid 

size. Table 3.1 indicates the calculation time of each configuration. The computation time of 

the FEA was 780 sec. Table 3.1 also compares the computation time associated with each grid 

size to that of the FEA, and indicates the reduction obtained.  

Since finer meshes do not significantly improve the precision, and because the computation 

time substantially increases with the cell numbers, it is reasonable to conclude that the cell size 

and the grid definition may be solely established from the contact modeling requirements or 

the elastic part of the problem. 



97 

 

 

 

 
(a) 

 
(b) 

Figure  3.10 Grid size effect comparison for adiabatic thermal boundary 
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Table 3.1  Computation times for various grid sizes compared to FEA 

 
Grid size 71 × 71 105 × 105 141 × 141 

Time (sec) 10 48 154 

Time reduction (%) 98.7 93.9 80.3 

 

3.9  Thermoelasticity and thermal boundary definition in TEHL 

As mentioned earlier, thermoelasticity potentially changes TEHL conditions. The proposed 

thermoelastic simulation approach may easily be integrated into an elastohydrodynamic model. 

The TEHL model put forward in (Najjari & Guilbault, 2014) was reproduced for the present 

study, and the developed thermoelastic model was integrated into the solution procedure. In 

order to put the thermoelasticity effects into perspective and illustrate the influence of the 

thermal boundary condition on TEHL, the analysis below examines 27 configurations 

combining three levels of the following parameters: 1- the lubricant viscosity, 2- the entraining 

velocity and 3- the applied load. These configurations are each submitted to three modeling 

conditions: a) a thermal elastohydrodynamic lubrication or TEHL condition, b) a thermoelastic 

TEHL, where the half-space intrinsic heat flux is not eliminated from the boundaries or TTEHL 

condition, and c) a thermoelastic TEHL, where the half-space intrinsic heat flux is eliminated 

from the boundaries to produce an adiabatic boundary condition or TTEHL-TB condition. 

Since the adiabatic condition is the more potent condition, the presented analysis does not 

consider the convective condition. To help in the analysis of the resulting 81 layouts, Section 

3.9.2  begins with a description of a specific case. Moreover, before the thermoelastic aspect 

is incorporated into the EHL model, Section 3.9.1  first demonstrates the capacity and precision 

of the TEHL model prepared for this investigation. As Ref. (Najjari & Guilbault, 2014) 

provides a complete description of the original TEHL, the present study does not depict it. The 

two models are completely equivalent. In particular, they include the non-Newtonian behavior 

of the lubricant.  
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3.9.1  TEHL model 

In Ref. (Wymer & Cameron, 1974), Wymer and Cameron published experimental film 

thickness measurements for various line contact conditions. The author of Ref. (Najjari & 

Guilbault, 2014) validated their model via a comparison with the Ref. (Wymer & Cameron, 

1974) results. The present validation adopts the same strategy. Thus, Figure  3.11 superimposes 

the Wymer and Cameron’s film measurements on the model predictions. Table 3.2 provides 

the roller geometry and the lubricant properties values required for the calculations (Najjari & 

Guilbault, 2014).  

Figure  3.11 demonstrates that the results obtained from the prepared TEHL model conform 

quite well to the experimental measurements taken along both the rolling and the axial 

directions. Based on this graphical comparison, the next sections consider that the TEHL model 

predictions are fully valid. 
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Table 3.2  Mechanical properties of the solids and the oil tested by Wymer and Cameron 
(Taken from Ref. (Najjari & Guilbault, 2014)) 

Cylinder 

Radius R (mm) 4.1 

Length L (mm) 13.7 

Total cone angle (degree) 7.9  

Elastic modulus E (GPa) 206  

Poisson ratio ν 0.3 

Density ρ (kg/m3) 7850  

Thermal conductivity k (W/(m  ̊K)) 46  

Specific heat (J/(kg  ̊K)) 470  

Flat surface 

Elastic modulus E (GPa) 75  

Poisson ratio ν 0.22 

Density ρ (kg/m3) 2500 

Thermal conduct k (W/(m  ̊K)) 0.78 

Specific heat (J/(kg  ̊K)) 840  

Oil 

Baseline temperature T0 (K̊) 313  

Viscosity at 303 ̊K (Pa.s) 0.900  

Viscosity at 393 ̊K (Pa.s) 0.015 

Visc.-Press. coef. at 303 ̊K (GPa-1) 30.2  

Visc.-Press. coef. at 393 ̊K (GPa-1) 16.4 

Density ρ at 313 ̊K  (kg/m3) 888 

Density ρ at 373  ̊K (kg/m3) 853  

Thermal conductivity k (W/(m  ̊K)) 0.125 

Specific heat (J/(kg  ̊K)) 2000  

Modulus G at 303  ̊K (GPa) 0.1+3.0*P  

Slope factor n at 313  ̊K 0.570 

Slope factor n at 373  ̊K 0.993 
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(a) 

 

(b) 

Figure  3.11 Comparison of the TEHL film thickness results for two dimensionless 
velocities (𝑈ഥ) (Experimental results from (Najjari & Guilbault, 2014 ; Wymer & Cameron, 

1974)); (a) Central film thickness in rolling direction and (b) Film thickness in the axial 
direction 
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3.9.2  Comparison of the EHL, TEHL, TTEHL and TTEHL-TB results obtained for a 
specific case 

The factorial design of Section 3.9.3  considers the contact family described by an equivalent 

cylinder of radius (R) 20 mm and length (L) 10 mm pressed against a flat surface of the same 

length. Table 3.3 shows the properties of material of the contact pair and lubricant, 

respectively. The present section examines the system where the active load (F) is 4000 N, the 

lubricant entraining speed (ES) is 23 m/s, the sliding speed (SS) is 2.4 m/s, while the lubricant 

viscosity grade (ISO VG) is 150.   

The description below involves the following dimensionless variables: the contact pressure 𝑃 𝑃ு⁄ , where P and 𝑃ு are the contact pressure and the maximum Hertzian pressure, 

respectively, and the positions ௫௕ and ௬௕ in the rolling and the axial directions, respectively. In 

these definitions, b denotes the half width of the contact area. 

Table 3.3  Mechanical properties of the solids and oil 

Solid material 

Elastic modulus E (GPa) 206  

Poisson ratio ν 0.3 

Density ρ (kg/m3) 7850  

Thermal conduct k (W/(m  ̊K)) 47  

Specific heat (J/(kg  ̊K)) 460  

Oil 

Baseline temperature T0 ( ̊K) 313  

Viscosity at 313 ̊K (Pa.s) 0.1335  

Viscosity at 373 ̊K (Pa.s) 0.0132  

Visc.-Press. coef. at 313 K̊ (GPa-1) 12.306  

Visc.-Press. coef. at 373 K̊ (GPa-1) 9.201 

Density ρ at 313 ̊K (kg/m3) 890  
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Density ρ at 373 ̊K (kg/m3) 870 

Thermal conduct k (W/(m  ̊K)) 0.14  

Specific heat (J/(kg  ̊K)) 1880  

Gamma ratio 0.046 

Slope factor n at 313 ̊K 0.60 

Slope factor n at 373 ̊K 0.99 

 

Figure  3.12 compares the contact pressures predicted for the examined conditions: TEHL, 

TTEHL and TTEHL-TB. In addition, to complete the description and illustrate the influence 

of variations of the lubricant properties caused by the temperature, the figure also integrates 

the EHL condition into the graphical comparison. Figure  3.12-a to d display the map plots, 

while Figure  3.12-e and f show the linear distributions measured along the rolling direction at 

the mid-position and in the axial direction along the initial contact line, respectively. 

A comparison of Figure  3.12-a and b (EHL and TEHL) indicates, for this specific layout, that 

the influence of the temperature on the non-Newtonian response of the lubricant tends to 

concentrate the maximal pressure amplitude toward the center of the contact, and to extend the 

distribution into the outlet zone. It also reduces the outlet spike. Figure  3.12-e and f also clearly 

depict these effects.  

Adding the thermoelasticity consideration without considering the thermal boundary (TTEHL) 

leads to a contact pressure profile closer to that of a point contact. The results displayed in 

Figure  3.12-c, e and f evidence this outcome. This tendency is due to the fact that the 

thermoelasticity contribution depends on the pressure. Since the heat flux at the cylinder and 

surface ends is not restricted, the thermoelasticity impact becomes more important far from the 

body limits. Consequently, the thermal deformation tends to inflate the surface more 

significantly in the middle of the maximum pressure zone.  

Eliminating the heat flux at the contact extremities via an adiabatic condition (TTEHL-TB) 

reduces the influence of the contact boundaries and mitigates the concentration of the thermal 
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deformation in the central portion of the pressure zone. However, even though the generated 

heat deforms the surface more evenly, the thermal deformation still visibly modifies the 

pressure distribution. Comparing the plot of Figure  3.12-d with that of Figure  3.12-b reveals, 

for this specific layout, that the dimensionless pressure increases from 1.2 to 1.32. More 

specifically, Figure  3.12-e indicates maximum dimensionless pressures of 1.25 and 1.37 for 

the TEHL and TTEHL-TB simulations, respectively, which corresponds to an increase of 

9.6%. While this thermoelasticity effect is not severe, it is clearly not negligible. Moreover, it 

is important to recall here that the simulation considered an adiabatic condition for the free 

boundaries, and because that condition causes significant thermal changes in the boundary 

areas, it results in less impactful consequences on pressure distributions than convective 

conditions. Therefore, we can reasonably assume that real boundaries, which should be better 

represented by mixed conduction-convection conditions, allow some level of heat flow, and 

hence, have a more impactful influence on pressure distributions. It may thus be conjectured 

that pressure increases caused by free boundaries described by precisely known thermal 

boundary conditions should be closer to an intermediate response between the increases 

associated with the TTEHL and the TTEHL-TB.   Section 3.9.3  sheds more light on the 

influence of the thermal boundary condition on the pressure distributions and on the possible 

interactions among the factors of the factorial design. 
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Figure  3.12 Dimensionless contact pressure for four different assumptions: a- EHL, b- 
TEHL, c- TTEHL, d- TTEHL-TB, e- Dimensionless pressure at the mid-section in rolling 

direction, f- Dimensionless pressure at the mid-section in axial direction 
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3.9.3  Factorial design analysis 

The considered factorial design constructed for the cylindrical contact family R - 20 mm, 

L - 10 mm (cylinder against a flat surface), includes three levels of factor F (the applied load), 

of factor ES (the lubricant entraining speed), and of factor ISO VG (the lubricant viscosity 

grade), while SS (the sliding speed) is fixed at 2.4 m/s and the lubricant temperature at the 

contact inlet position is 333 ̊K. Table 3.4 shows the factor levels.  

Table 3.4  Factor levels 

Factors 
Levels 

-1 0 1 

F (N) 4000 6000 8000 

ES (m/s) 3 13 23 

ISO VG 100 150 220 

The proposed investigation analyses the factor effects on three contact parameters: the 

dimensionless form of the maximum contact pressure (MP = 𝑃 𝑃ு⁄ ), the maximum contact 

temperature measured in ̊K (MT), and a dimensionless form of the minimum film thickness 

(MF). This dimensionless thickness is defined as ℎ଴ 𝑅⁄ , where ℎ଴ is the minimum film 

thickness and 𝑅 is as defined above the equivalent cylinder radius. The materials properties are 

those indicated in Table 3.3. Figure  3.13, Figure  3.14 and Figure  3.15 present the two-factor 

interaction plots prepared for MP, MT, MF, respectively, when taking the three modeling 

conditions (TEHL, TTEHL and TTEHL-TB) into consideration. In these graphs, the horizontal 

axe describes the lowest (-1), the middle (0), and the highest (1) levels of the factors defined 

in Table 3.4. To complete the description, Table 3.5, Table 3.6 and Table 3.7 present the values 

of the factor main effects and of their interactions calculated for MP, MT, MF,  respectively. 

 

  



107 

 

 

 

ES F ISO VG 

a) TEHL 

   

   
b) TTEHL 
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c) TTEHL-TB 

   

   

Figure  3.13 MP- Interaction plots for the TEHL, TTEHL and TTEHL-TB modeling 
conditions   

 

Table 3.5  Factor main and interaction effects on MP 

Effects TEHL TTEHL TTEHL-TB 

F 0.02422 -0.06431 0.06396 

ISO VG -0.00238 0.09737 0.00754 

ES -0.02951 0.15921 0.00572 

F-ES 0.00784 0.08529 0.05186 

ES-ISO VG 0.00318 0.03892 0.00691 

ISO VG-F 0.00419 -0.00930 0.00232 

F-ES-ISO VG 0.00520 0.00536 -0.00485 
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ES F ISO VG 

a) TEHL 

   

   
b) TTEHL 
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c) TTEHL-TB 

   

   

Figure  3.14 MT (measured in ̊K)- Interaction plots for the TEHL, TTEHL and TTEHL-TB 
modeling conditions   

Table 3.6  Factor main and interaction effects on MT (measured in ̊ K) 

Effects TEHL TTEHL TTEHL-TB 

F 11.99711 13.60256 14.78778 

ISO VG 1.83367 5.04144 2.90656 

ES -4.18822 -1.63444 -4.61456 

F-ES -0.71000 1.66200 0.39817 

ES-ISO VG 0.58433 1.46083 0.90350 

ISO VG-F -0.36250 -0.32733 -0.03000 

F-ES-ISO 
VG -0.25350 -0.00125 0.31050 

 

 

 



111 

 

 

 

ES F ISO VG 

a) TEHL 

   

   
b) TTEHL 
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c) TTEHL-TB 

   

   

Figure  3.15 MF- Interaction plots for the TEHL, TTEHL and TTEHL-TB modeling 
conditions   

 

Table 3.7  Factor main and interaction effects on MF 

Effects TEHL TTEHL TTEHL-TB 

F -0.00107 -0.00082 -0.00106 

ISO VG 0.00062 0.00040 0.00054 

ES 0.00148 0.00115 0.00132 

F-ES -0.00043 -0.00023 -0.00044 

ES-ISO VG 0.00002 -0.00014 -0.00002 

ISO VG-F -0.00015 -0.00005 -0.00015 

F-ES-ISO VG -0.00002 0.00008 -0.00003 

 

Figure  3.13-a and the first column of Table 3.5 show, for the TEHL modeling condition, that 

ES and F have opposite effects on MP, while the ISO VG factor demonstrates a lower influence. 

The results manifest the clear influence of F: MP goes up with a load augmentation, and vice 
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versa. Figure  3.14-a and Figure  3.15-a completed in parallel with the first columns of Table 

3.6 and Table 3.7 show the influence of F on MT and MF, respectively. An increase in F causes 

a temperature rise and a film thinning. These first observations are in agreement with common 

knowledge in lubrication. On the other hand, while, as expected, increasing ISO VG engenders 

a film thickening (Table 3.7) and a temperature rise (Table 3.6) due to shear dissipation, an 

increased impact of viscosity on MP is less obvious. The main effect of ISO VG in Table 3.5 

shows that it globally tends to have a reducing action on MP. However, the plots in Figure  

3.13-a suggest that the real impact of ISO VG is affected by the other factors. The interaction 

effects in Table 3.5 confirm this observation. The impacts of the ES factor are similar; 

unsurprisingly, an increase in this factor results in a film thickening (Figure  3.15-a and Table 

3.7), and in a temperature reduction (Figure  3.14-a and Table 3.6) caused by the associated 

lubricant flow intensification, whereas its influence on MP is somewhat puzzling. The model 

predictions show that an increase in ES tends to lower the pressure, while Table 3.5 indicates 

that the interaction effects with the other factors are not dominant.  

Altogether, despite light interactions between the factors, the results in Table 3.5 clearly 

indicate that increasing F in TEHL simulations engenders pressure increases, even though the 

two other factors may tend to lower the rise. On the other hand, the interaction effects presented 

in Table 3.6 and Table 3.7 indicate that the overall influence of F on the lubricant film 

temperature and thickness is more significantly affected by the two other factors.  

When compared with the TEHL condition, Figure  3.13-b and the second column of Table 3.5 

associated with the TTEHL modeling assumption indicate that including the thermoelastic 

deformations strongly modifies the system response. MP demonstrates a significant overall 

increase (30.5%); unrestricted heat flow at the free boundaries concentrates the thermoelastic 

deformations of the bodies far from their limits, and thus, tends to localize the pressure close 

to the center of the distribution. The simulations under a TTEHL assumption also substantially 

affect MT and MF.  Compared to the TEHL predictions, MT shows an overall increase of 8.0 ̊K. (Figure  3.14-b), while MF displays a global reduction of 14.2% (Figure  3.15-b). Moreover, 

comparing the TTEHL results in Table 3.5 to the TEHL column reveals that the main effects 
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of all three factors on MP are inverted. Conversely, the same comparison made in Table 3.6 

and Table 3.7 shows evaluations of the main effects on MT and MF indicative of tendencies 

similar to those obtained under a TEHL assumption. For instance, since the heat generation is 

proportional to the pressure, increasing the load F causes a temperature augmentation (Table 

3.6, second column), leading to a reduction of the lubricant viscosity in the maximum pressure 

zone, which in turn lessens the pressure localization (Table 3.5, second column). This viscosity 

decrease simultaneously favours a lubricant film thinning (Table 3.7, second column). On the 

other hand, the factors ISO VG and ES have more global effects: increasing ISO VG causes a 

distributed heat generation augmentation and a consistent temperature rise (Table 3.6, second 

column), leading to a viscosity reduction. The diffused nature of the viscosity adaptation does 

not significantly modify the shape of the thermoelastic deformation distribution, and thus does 

not alter the MP amplification brought in by the TTEHL assumption. An ES increase, which is 

equivalent to a lubricant flow increase, causes a temperature reduction (Table 3.6, second 

column) and a corresponding viscosity boost, which has consequences similar to an ISO VG 

augmentation. Although both the ISO VG and ES factors favour a lubricant film thickening 

(Table 3.7, second column), the distributed character of the viscosity changes prevents any 

drastic modification of the thermoelastic deformation distribution shape associated with a 

TTEHL modeling assumption. 

Figure  3.13-c and the third column of Table 3.5 portray the MP response obtained when 

considering the TTEHL -TB modeling condition. The Figure  3.13-c plots show trends more 

akin to those obtained under the TEHL assumption (Figure  3.13-a). Nevertheless, MP still 

shows a global rise of 8.9%, when compared to the TEHL predictions; the controlled heat flow 

at the boundaries attenuates the pressure concentration engendered by the body thermoelastic 

deformations. The adiabatic conditions imposed at the body boundaries also reduce the overall 

MT increase from 8.04 ̊K, for the TTEHL assumption, to 1.7 ̊K, on average (Figure  3.14-c), 

while they lessen the MF reduction from the 14.2% observed before to an overall drop of less 

than 6.7% (Figure  3.15-c). Since the considered adiabatic condition is more forceful than real 

running conditions, it should be assumed that these error evaluations correspond to the lower 

bound of the actual imprecision associated with TEHL model predictions.  
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Specifically, the results obtained considering a TTEHL-TB condition show that, increases of 

F still reduce the lubricant film thickness (Table 3.7, third column) and push up the lubricant 

temperature (Table 3.6, third column). However, the temperature elevations are distributed 

more uniformly and remain lower than those associated with the TTEHL assumption. Hence, 

their influence is not strong enough to engender drastic changes of the pressure distribution 

shape. While this influence is still greater far from the boundaries, the thermoelastic 

deformations of the surfaces extend up to the body ends. Therefore, contrary to the TTEHL 

condition, imposing controlled heat flow at the body boundaries enables F increases to 

intensify MP (Table 3.5, third column). The TTEHL-TB assumption also sustains the diffused 

nature of the ISO VG and ES influence, which were described above for the TTEHL modeling 

condition. Accordingly, augmenting ISO VG still increases MF (Table 3.7, third column) and 

causes distributed heat generation increases associated with coherent temperature rises (Table 

3.6, third column), while ES increases still lead to lubrication film thickening (Table 3.7, third 

column) and provoke temperature reductions (Table 3.6, third column), boosting the viscosity.   

In summary, the results presented in the third columns of Table 3.5, Table 3.6 and Table 3.7 

demonstrate that the load factor F has a dominant influence on MP, the pressure parameter, 

and on MT, the temperature parameter, and while both the viscosity ISO VG and the entraining 

speed ES factors also demonstrate a clear influence on MT, they only marginally affect MP. In 

fact, since ES determines the lubricant flow, which controls the volume of lubricant trapped 

in-between the surfaces and its temperature, and as a direct consequence, its viscosity, the 

results show that the factor influence on MT is greater than that of ISO VG. For the same reason, 

ES has a greater impact on MF than do F and ISO VG. 

Finally, while the TTEHL assumption, which admits a maximum heat flow at the free 

boundaries, should be considered as a theoretical and over-simplified modeling approach, at 

the other end of the spectrum, the TTEHL-TB condition provides conservative evaluations of 

the intrinsic imprecision of TEHL simulations. 
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3.10  Conclusion 

The first part of this paper  implements the heat-affected zone definition proposed by Barber 

(Barber, 1971) to present thermoelastic influence factors, and enable contact models based on 

SAM. The goal here is to predict the impacts of thermoelastic deformations. Next, the study 

develops a modeling approach to include the influence of thermal boundary conditions on 

problems defined by a contact area delimited by free surfaces. This method introduces mirror 

heat patches to control the heat flows crossing the free boundaries. The investigation also 

examines the influence of the thermoelastic stress distributions generated on the free surfaces 

during the procedure. The study thus proposes a method to release the free surfaces from these 

stresses. The analysis demonstrates that the thermoelastic stresses have no substantial influence 

on the final results, and that they may simply be ignored.  

The study also compares the predictions obtained from the proposed method to evaluations 

produced by finite element simulations. This validation demonstrates that the method 

developed to incorporate the thermoelastic deformations into the modeling of contacts between 

bodies of finite dimensions provides very accurate descriptions, while significantly reducing 

the computation burden. Indeed, for the considered problems and equivalent precision levels, 

when compared to FEA, the proposed method reduced the calculation times by more than 98%.  

The second part of the paper introduces the thermoelasticity effects into thermal-

elastohydrodynamic lubrication or TEHL modeling of line contact problems. The analysis 

shows that, when compared to TEHL simulations, the inclusion of thermoelastic deformations 

changes the pressure profile, and particularly, tends to localize the pressure close to the center 

of the distribution. The considered factorial design analysis exposes the imprecision level 

introduced by the TEHL simplification when applied to systems involving heat generation. 

This analysis assumes that the free boundaries were all under an adiabatic condition. Since this 

assumption is more restrictive than real operating conditions, the predicted effects of the finite 

dimensions of the bodies essentially correspond to attenuated impacts. Specifically, the 

appraisals presented describe lower bounds of the actual imprecision associated with TEHL 

model predictions. While the deviation from the maximum pressure prediction is larger, the 

calculation of the film thickness is also significantly affected, whereas the error on the 
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temperature remains low. The configurations examined showed overall increases in the 

maximum pressure of around 9%, an overall decrease in the film thickness close to 7%, and an 

overall temperature increase of about 2 ̊K. 
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4.1  Abstract 

This paper develops a modeling approach for simulation of thermal contacts delimited by 

curvilinear edges. The study introduces a correction for semi-analytical methods based on the 

half-space assumption to account for thermal boundary conditions. The approach establishes a 

correction radius to control the heat flux and adjusts the corrective heat load to handle the 

thermoelastic normal stress on free surfaces. Compared to Finite element analysis (FEA), the 

displacement calculated with the approach demonstrates a 99% improvement. A comparison 

of the complete thermal modification and normal stress elimination with FEA for a thermal 

contact shows more than 73% improvement, leading to an error margin of under 5%. The 

calculation burden is also drastically reduced as compared to that of a FEA. 

Keywords: Contacts, Numerical simulation, Thermoelastic analysis 

4.2  Introduction and literature review 

This paper develops an efficient numerical approach to incorporate the influence of curvilinear 

free boundaries in thermoelastic contact simulations built on the half-space concept. Here, 

thermoelastic refers to the stress-strain response of a solid to a heat source, while elastic refers 

to the elastic stress-strain response of a solid submitted to a pressure. The study considers an 
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aspect which is typical of numerous thermal contacts problems. The following are few 

examples: elastohydrodynamic contacts involving textured surfaces (D.B. Hamilton, 1966 ; 

Erdemir, 2005 ; Gropper et al., 2016 ; Manser et al., 2019 ; Siripuram & Stephens, 2004 ; 

Wakuda et al., 2003), contacts generated during rotational friction welding (Jl et al., 1991 ; W. 

Li et al., 2016 ; Lindemann et al., 2006 ; Reddy, 2015), and contacts between electrical 

connectors (Albers et al., 2011 ; Chin-Tu & Bryant, 1994 ; Williamson & Majumdar, 1992). 

In reality, when examining simple contact problems not affected by heat, the classical Hertz 

theory (Hertz, 1896) results in precise evaluations. This theory involves three conditions: 1- a 

frictionless contact area; it also reckons that the contact zone is tiny as compared with 2- the 

body dimensions and 3- their curvature radii. Condition 1 imposes a clear restriction. On the 

other hand, conditions 2 and 3 enforce less evident simplifications; condition 2 excludes the 

potential effects of neighboring body limits, while condition 3 reduces the solids to half-spaces 

solely admitting elastic deformations. 

Numerous modeling approaches have been developed over the years to examine contact 

problems contravening the Hertz restrictions (de Mul et al., 1986 ; Hartnett, 1980 ; S. Liu & 

Hua, 2009). Among these, the Hartnett (Hartnett, 1980) Semi-Analytical Method (SAM) 

certainly belongs to the most effective. This approach implements the Boussinesq half-space 

solution (Johnson K.L., 1985). However, in problems involving bodies limited by free 

boundaries, the half-space concept occasions shear and normal stresses on those limiting 

surfaces, and thus introduces a certain degree of imprecision close to the edges. Hetényi 

(Hetényi, 1960, 1970) and Keer (Hanson & Keer, 1995 ; Keer et al., 1983) developed precise 

solutions for the elimination of these stresses. However, the solutions are rather ponderous. 

Alternatively, the solution Guilbault (Guilbault, 2011) proposed provides a treatment that is 

almost as precise, while avoiding increasing the calculation burden. This technique eliminates 

the normal stress effects on the surface displacements through correction factors. Yalpanian 

and Guilbault (Yalpanian & Guilbault, 2020) presented a similar method to release curvilinear 

free surfaces from shear and normal stress distributions. Recently, they proposed a method to 

include the effects of thermoelasticity in models built on the half-space concept to describe 

contacts limited by planar free surfaces (Yalpanian & Guilbault, 2021). 
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The FEA option is also a well-recognized approach for solving non-Hertzian contact problems 

(Bachtar et al., 2006 ; Chatterjee & Sahoo, 2014 ; Sahoo & Ghosh, 2007 ; Yang & 

Komvopoulos, 2005). However, properly using FEA commercial software is not always 

simple, especially when it comes to the contribution of factors such as thermoelasticity 

(Gropper et al., 2016 ; Lindemann et al., 2006 ; Reddy, 2015). Nevertheless, most noteworthy 

is the fact that this option still often involves excessive mesh production costs and solution 

times. Alternatively, SAMs are less affected by these limitations, and thus represent an 

attractive option for modeling contact problems (Hanson & Keer, 1995 ; Hartnett, 1980 ; 

Hetényi, 1960, 1970 ; Keer et al., 1983 ; J. Li & Berger, 2003 ; Junshan Li & Berger, 2001). 

Indeed, since experimental investigations of contact problems carry considerable difficulties, 

the FEA avenue remains a highly helpful and widely accepted validation tool. 

To the best of the authors’ knowledge, presently, no SAM can properly handle thermoelastic 

contacts bordered by curved edges. Therefore, the present work introduces a half-space-based 

representation that encompasses thermoelastic displacements in thermal contacts bounded by 

curved free surfaces. The analysis involves two steps: the first integrates the thermal boundary 

condition at the free surfaces into the solution, while the second concentrates on eliminating 

the influence of the thermoelastic normal stresses introduced to the boundaries by the half-

space hypothesis on the surface displacements. The adopted approach is analogous to the 

technique put forward in Ref. (Yalpanian & Guilbault, 2021) for straight boundaries. While 

for straight boundaries, the first step works with straight directions to control the heat flux 

crossing a given boundary and relate each contact area to a mirror position, with curved 

boundaries, the procedure considers radial directions instead. This method connects each 

contact area to a correlated locus external to the boundary, and thus leads to a relation that is 

valid for both external and internal cylindrical shape alternatives. Moreover, like the solution 

for straight boundaries, the second step adopts a corrective factor approach to counterbalance 

the impact of normal stress on the displacements of the half-space top surface. 

Section 4.3  describes the fundament of the SAM avenue, after which some common 

mechanisms of heat generation in contacts are briefly introduced. The next sections develop 
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the thermal boundary simulation procedure and establish the thermoelastic normal stress 

influence elimination process. Each step of the solution development includes a validation 

comparing the prediction of the proposed method with results obtained from FEA. 

4.3  Fundament of the half-space representation  

Based on the Boussinesq half-space solution, the numerical method introduced by Hartnett 

(Hartnett, 1980) reduces a contact pair to two half-spaces supporting linear deformations. The 

half-space assumption provides a solution to determine the displacement of the surfaces 

submitted to a load. Accordingly, Eq. ( 4.1 ) establishes the normal displacement at any point (𝑥,𝑦) of the half-space surface induced by a pressure 𝑃(𝜉, 𝜁) distributed on an area A of this 

surface: 

𝑤(𝑥,𝑦) = 1 − 𝑣ଶ𝜋𝐸 ඵ 𝑃(𝜉, 𝜁)𝑠୅ 𝑑𝜉𝑑𝜁 ( 4.1 ) 

where 𝑤 is the elastic surface displacement in the normal direction, E is the Young modulus, 

v corresponds to the Poisson ratio and 𝑠 = ඥ(𝑥 − 𝜉)ଶ + (𝑦 − 𝜁)ଶ.  

The contact modeling procedure first defines the original distance (g) of the two solids a and 

b from the tangent plane along with their linear normal deformation (wa, wb). Eq. ( 4.2 ) 

expresses this relation. In Eq. ( 4.2 ) α represents the normal approach of the bodies. As 

explained in Ref. (Yalpanian & Guilbault, 2021), Eq. ( 4.2 ) also allows including the 

thermoelastic displacements (𝑤்ா) of the half-space surfaces.  Eq. ( 4.3 ) presents the resulting 

expression. Figure  4.1 illustrates the variables. 

൜𝑤௔ + 𝑤௕ + 𝑔௔ + 𝑔௕ = 𝛼 ,𝑃 > 0𝑤௔ + 𝑤௕ + 𝑔௔ + 𝑔௕ > 𝛼 ,𝑃 = 0 ( 4.2 ) 

൜𝑤௔ + 𝑤௕ − 𝑤்ா௔ − 𝑤்ா௕ + 𝑔௔ + 𝑔௕ = 𝛼 ,𝑃 > 0𝑤௔ + 𝑤௕ − 𝑤்ா௔ − 𝑤்ா௕ + 𝑔௔ + 𝑔௕ > 𝛼 ,𝑃 = 0 
( 4.3 ) 
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Figure  4.1 Contact model variables 

The literature shows that a steady heat source applied on the surface of a half-space leads to 

infinite thermoelastic displacements of that surface (Yalpanian & Guilbault, 2021). Therefore, 

to allow modeling thermoelastic displacements of real bodies under steady state conditions, 

Barber (Barber, 1971) defined a heat affected zone radius (𝑠଴). Figure  4.2 shows the 𝑠଴ 

definition and illustrates its role. Eq. ( 4.4 ) completes the description and gives the normal 

displacement 𝑤 at a distance s smaller than s0 from the heat source q.  
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Figure  4.2 Steady state thermoelastic deformation 

𝑤்ா = 𝑞𝛾(1 + 𝜈)2𝜋𝑘 log ቀ𝑠଴𝑠 ቁ ( 4.4 ) 

where 𝛾, 𝑘 and 𝜈 are the coefficient of thermal expansion ( ̊K-1), the thermal conductivity (W/m  ̊K) and the Poisson ratio of the half-space material, respectively. 

Accordingly, when a uniform heat flux (𝑞′′) acts over a rectangular patch of area A and side 

lengths considerably smaller than 𝑠଴, integrating Eq. ( 4.4 ) over A gives the overall 

thermoelastic displacement 𝑤்ா brought in Eq. ( 4.3 ). Eq. ( 4.5 ) formulates the resulting 

relation (Yalpanian & Guilbault, 2021): 

𝑤்ா = 𝛾(1 + 𝜈)2𝜋𝑘 ቊ𝑞ᇱᇱ ቆlog(𝑠଴)ඵ 𝑑𝐴஺ −ඵ log(𝑠)𝑑𝐴஺ ቇቋ ( 4.5 ) 

4.3.1  Half-space modelling approach for elastic deformation 

The Hartnett’s SAM divides the so-called blanket contact plane into rectangular contact cells 

of area A and lengths 2a and 2b along the x- and y-axes, respectively. Each cell I may support 

a uniform pressure (Pi). Now, assuming that the contact patches may also sustain a uniform 

heat flux (𝑞′′ூ), Eq. ( 4.3 ) may be rewritten for a displaced rectangular cell J, centered at (x, y) 

with respect to the central point of the loaded patch I as: 
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෍𝑃ூ × 𝑓ூ௃ூ −෍𝑞′′ூ × 𝑓 ாூ௃ூ = 𝛼 − 𝑔௔௃ − 𝑔௕௃ ( 4.6 ) 

where 𝑓ூ௃ represents the influence factors calculated with Eq. ( 4.1 ) (𝑓ூ௃(𝑥,𝑦) =ቀଵିఔೌమగாೌ + ଵିఔ್మగா್ ቁ∬ ଵ௦஺ 𝑑𝐴) and 𝑓 ாூ௃ denotes the influence factors defined via Eq. ( 4.5 ) 

(𝑓 ாூ௃(𝑥, 𝑦) = ቀఊೌ(ଵାఔೌమ)ଶగ௞ೌ + ఊ್(ଵାఔ್మ)ଶగ௞್ ቁ ቄlog(𝑠଴)∬ 𝑑𝐴஺ −∬ log(𝑠)  𝑑𝐴஺ ቅ). The final 

expression of 𝑓 ாூ௃(𝑥,𝑦) was put forward in (Yalpanian & Guilbault, 2021). Eq. ( 4.7 ) gives 

this expression for one side of the contact pair. On the other hand, the final expression of 𝑓ூ௃(𝑥, 𝑦) may be found in many references, such as in (Guilbault, 2011 ; Hartnett, 1980), for 

example. These influence factors depend on the constant material properties of the solids and 

the distance between each contact cell I and J. Hence, they can be calculated only once at the 

beginning of the numerical process. 

𝑓 ா಺಻ = 𝛾(1 + 𝜈)2𝜋𝑘 ൤4log(𝑠଴)𝑎𝑏− ൜൤𝑥௎𝑦௎(log(𝑥௎ଶ + 𝑦௎ଶ) − 3) + 𝑥௎ଶ𝑡𝑎𝑛ିଵ ൬𝑥௎𝑦௎൰ + 𝑦௎ଶ𝑡𝑎𝑛ିଵ ൬𝑦௎𝑥௎൰൨− ൤𝑥௅𝑦௎(log(𝑥௅ଶ + 𝑦௎ଶ) − 3) + 𝑥௅ଶ𝑡𝑎𝑛ିଵ ൬𝑥௅𝑦௎൰ + 𝑦௎ଶ𝑡𝑎𝑛ିଵ ൬𝑦௎𝑥௅൰൨− ൤𝑥௎𝑦௅(log(𝑥௎ଶ + 𝑦௅ଶ) − 3) + 𝑥௎ଶ𝑡𝑎𝑛ିଵ ൬𝑥௎𝑦௅൰ + 𝑦௅ଶ𝑡𝑎𝑛ିଵ ൬𝑦௅𝑥௎൰൨+ ൤𝑥௅𝑦௅(log(𝑥௅ଶ + 𝑦௅ଶ) − 3) + 𝑥௅ଶ𝑡𝑎𝑛ିଵ ൬𝑥௅𝑦௅൰ + 𝑦௅ଶ𝑡𝑎𝑛ିଵ ൬𝑦௅𝑥௅൰൨ൠ൨ 
( 4.7 ) 

Where L and U indices refer to the lower and upper positions, respectively. Hence, 𝑥௅ = 𝑥 −𝑎, 𝑥௎ = 𝑥 + 𝑎, 𝑦௅ = 𝑦 − 𝑏 and 𝑦௎ = 𝑦 + 𝑏. 

4.3.2  Half-space stress formulation 

The half-space theory also formulates the elastic shear (𝜏௫௭) and normal stresses (𝜎௫) at a point (𝑥,𝑦, 𝑧) of a half-space, when a point force F is situated at the origin on the surface (the inward 

z-axis is parallel to the surface normal),  
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𝜎௫ = 𝐹2𝜋 ቈ(1 − 2𝜈)𝑑ଶ ቊቀ1 − 𝑧𝑐ቁ 𝑥ଶ − 𝑦ଶ𝑑ଶ + 𝑧𝑦ଶ𝑐ଷ ቋ − 3𝑧𝑥ଶ𝑐ହ ቉ ( 4.8 ) 

𝜏௫௭ = − 3𝐹2𝜋 𝑥𝑧ଶ𝑐ହ  
( 4.9 ) 

where 𝑑 = (𝑥ଶ + 𝑦ଶ)భమ and 𝑐 = (𝑑ଶ + 𝑧ଶ)భమ.  
In addition to the stresses induced by a surface pressure, a heat load (q (W)) acting on the half-

space surface also generates thermoelastic stresses. These thermoelastic stresses are planar 

(𝜏௫௭௧௘ = 0) (Sternberg & Mcdowell, 1957), and may thus be expressed by Eq. ( 4.10 ) (Mark 

Kachanov, Boris Shafiro, 2003): 

𝜎௫்ா = −𝑞𝐺𝛾4𝜋𝑘 (1 + 𝜈) ൤ 1𝑧 + √𝑥ଶ + 𝑧ଶ൨ ( 4.10 ) 

In Eq. ( 4.10 ), G is the shear modulus, 𝛾 is the coefficient of thermal expansion, k is the thermal 

conductivity and 𝜈 is the Poisson ratio. 

4.4  Heat generation 

Although the thermal aspect is usually ignored in contact modeling, real contact configurations 

often involve some heat generation. Moreover, a large proportion of the heat generated in 

contact dissipates through the solids and induces thermoelastic deformations which modify the 

contact conditions. In contact modeling, thermoelastic displacements may be regarded as 

unidirectional and progressing normal to the contact surface. Most often, the heat generation 

in dynamic contacts results from dry friction or from lubricant shearing (Balci et al., 2015 ; 

Sukumaran et al., 2018). On the other hand, in static contacts, it is often an electrical resistance 

at the surface junction between two bodies that provokes a heat dissipation (Bahrami et al., 

2005 ; M. G. Cooper, B. B. Mikic, 1969 ; Mikic, 1974). The present analysis simply assumes 

that a heat source affects the contact pair and overlooks the heat generation process. 
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4.5  Thermal boundary 

SAMs based on the half-space assumption implicitly lead to significant deviations of the 

pressure evaluations close to body ends. As already mentioned, under pure pressure loadings, 

the origin of these deviations is the artificial restraint of the free surfaces prompted by the 

internal stress distributions (shear and normal) inherent to the assumption (Figure  4.3-a). On 

the other hand, when including a heat source, both the thermoelastic displacement controlled 

by the heat flow at the free surfaces and the thermoelastic normal stress distributions produced 

on the same free surfaces contribute to the deviation (Figure  4.3-b) (Yalpanian & Guilbault, 

2021).  

The elimination of the thermoelastic normal stress distributions poses no real problem, since 

strategies such as the one developed in (Yalpanian & Guilbault, 2020) for the elastic problem 

with curved free surfaces may be adapted to this thermoelastic consideration.  In contrast, the 

internal heat, which must also be harmonized with the free curved boundary presence, 

necessitates the preparation of a specific procedure.  

 

Figure  4.3 Consequences of half-space hypothesis on free edges 
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The adiabatic boundary is the easiest boundary condition to model. Moreover, an adiabatic 

simplification may virtually parallel numerous real conditions. Nevertheless, for many free 

surfaces where a convective heat transfer is dominant, the adiabatic assumption is not valid. 

Interestingly, however, as suggested in (Yalpanian & Guilbault, 2021), simple adjustments of 

the position of the correction heat loads allow converting the adiabatic condition into a wide 

range of convective boundary conditions. Therefore, the first step of the modeling procedure 

development focuses on the adiabatic boundary condition. It establishes the position of 

correction heat loads required to transform the condition of a curved free surface from 

unconstrained heat flux to adiabatic. 

Eq. ( 4.11 ) formulates the heat flux 𝑞′′௫  (W/m2) generated in an arbitrary x direction at an 

internal point (x,y,z) of a half-space, when a steady state heat load q (W) acts over a surface 

element (∆𝐴) of this half-space. This formulation refers to a local coordinate system located at 

the heat load position with axis z oriented inward (Yalpanian & Guilbault, 2021). Thus, Eq. ( 

4.11 ) allows determining the heat flux crossing a surface selected at the position of a body 

boundary. 

𝑞′′௫ = − 𝑞4𝜋 ቆ 𝑥(𝑥ଶ + 𝑦ଶ + 𝑧ଶ)ଷ ଶൗ ቇ ( 4.11 ) 

In contrast with the planar surface condition, adding an identical mirror heat load at an equal 

distance from the edge along the direction normal to the free surface does not guarantee a 

precise correction of the heat flux crossing a curved free boundary. In reality, to establish an 

adiabatic condition and cancel out the boundary crossing heat flux, the mirror heat load 

generates a counterbalance heat flux distribution of the same resultant amplitude and centroid. 

Therefore, to produce the same effect on curved free boundaries, the adopted strategy must 

first determine the resultant of the heat flux distribution as well as its line of action, and then 

determine the radial position and amplitude of a corrective heat load producing an opposing 

heat flux distribution. 
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4.5.1  Heat flux at the free surface 

To define corrective heat loads, the resultant amplitude and the line of action of the heat flux 

induced by a heat load distributed over an arc must be defined along the radial inward and 

outward directions. The required integral along direction z (normal direction) is analytical, 

whereas the integral along the heated arc (tangential coordinate 𝜃) is obtained from a numerical 

procedure. Section 2.5.2  presents all the details. Figure  4.4 displays the parameters required 

for the process, with R representing the free surface radius, and where ri denotes the radius of 

the heat loaded arc, and ro denotes the radius of the arc supporting the correction heat load 

canceling out the heat flux crossing the free surface. 

Although the following portrayal describes a cylindrical solid of radius R, the process is also 

valid for a cylindrical hole of the same radius. The following subsections define the half-space 

internal heat flux generated at a radius R in the outward direction by a heat load 𝑄෠௥೔ (W/m) 

distributed over an arc of radius ri and in the inward direction by a heat load 𝑄෠௥೚ (W/m) 

distributed over an arc of radius ro. All the definitions here refer to the cylindrical coordinate 

system (r, 𝜃, z) displayed in Figure  4.4. 

 

Figure  4.4 Parameters for a cylindrical solid 

 

The equation developments presented below includes the following variable definitions: 
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𝑐௜,௢ଶ = 𝑑௜,௢ଶ + 𝑧ଶ  is the distance between a chosen point Li at (ri, βi, 0) on the loaded ring ri 

or Lo at (ro, βo, 0) on the loaded ring ro and the location (R, 0, z) of the heat flux calculation. 

The variables di and do are the surface distances between Li or Lo and the point (R, 0, 0), 

respectively, while βi and βo are the related angles shown in Figure  4.4. The next parameters 

describe dimensionless variables: 

𝑛௜ = ௥೔ோ ,𝑛௢ = ோ௥೚ , 𝑧̅ = ௭ோ , 𝑞′′തതത௥ = గோ௤ᇱᇱೝொ෠   

Where 𝑞′′௥ is the radial heat flux defined by Eq. ( 4.11 ) when 𝑥ଶ + 𝑦ଶ is replaced by r2 and 𝜃 

is set to 0, and 𝑄෠  is the heat load distributed over the considered arc. Therefore, if 𝑄 =𝑄෠௥௜,௢𝑟௜,௢𝑑𝜃 is the total heat load (in W) over the considered arc, Eq. ( 4.12 ) rewrites Eq. ( 4.11 

) and gives the radial heat flux at the location (R, 0, z) prompted by a distributed heat load over 

a given arc on the surface half-space: 

𝑞′′௥|ఏୀ଴ = − 𝑄4𝜋 ቆ𝑑௜,௢ cos൫𝛽௜,௢൯𝑐௜,௢ଷ ቇ ( 4.12 ) 

Integrating the heat flux given by Eq. ( 4.12 ) over the heat loaded arc [−𝜑,𝜑],  Eq. ( 4.13 ) 

and Eq. ( 4.14 ) give the dimensionless heat flux distribution 𝑞′′തതത௥೔,೚ generated along the vertical 

axis z at 𝜃 = 0 on a surface defined by a radius R when a heat load is distributed on the top 

surface of a half-space over an arc of angle [0,𝜑] and radius ri or ro, respectively (see Figure  

4.4). The limit angle 𝜑 will be considered in more details later. 

𝑞′′തതത௥௜ = −න 1 −  𝑛௜ 𝑐𝑜𝑠(𝜃)൫𝑛௜ଶ + 1 − 2 𝑛௜ 𝑐𝑜𝑠(𝜃)൯ 𝑑𝜃ఝ
ିఝ  ( 4.13 ) 

𝑞′′തതത௥௢ = −𝑛௢ න 𝑐𝑜𝑠(𝜃) − 𝑛௢൫1 + 𝑛௢ଶ − 2 𝑛௢ 𝑐𝑜𝑠(𝜃)൯ 𝑑𝜃ఝ
ିఝ  

( 4.14 ) 

Figure  4.5-a shows the 𝑞′′തതത௥௜distributions calculated for five ni ratios along 𝑧̅, while Figure  4.5-

b presents the corresponding 𝑞′′തതത௥௢ distributions established for no values matching the selected 



131 

 

 

 

ni ratios. A visual inspection of these two plots reveals that the corresponding curves display 

different behaviors. Therefore, since the ultimate objective is to superimpose opposite heat 

flux, Figure  4.5-c shows the 𝑞′′തതത௥௢ distributions better opposing the heat flux of Figure  4.5-a. 

In fact, the curves in Figure  4.5-c do not display perfectly opposed distributions, but 

distributions solely offering commensurate resultants. These curves stem from five no ratios 

not equal to the ni values considered in Figure  4.5-a. Section 2.5.2  will examine the underlying 

relationship more thoroughly. 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

Figure  4.5 Dimensionless heat flux distributions over a surface of radius R produced by a 
heat load acting (a) on an arc ri, (b) on an arc ro, (c) on an arc ro selected to produce a heat 

flux equivalent to the heat distributions in (a); (d) and (e) dimensionless thermoelastic normal 
stress prompted over a surface of radius R by a heat load distributed (d) on an arc ri, and (e) 

on an arc ro defined by Eq. ( 2.12 ) 

The heat flux elimination procedure searches for a heat flux resultant (Φz) equivalent to the 

resultant amplitude of the heat flux induced on a surface of radius R by a distributed heat load 

on the top surface of a half-space. Eq. ( 4.15 ) establishes the resultant amplitude of the heat 

flux 𝛷௭௜ from an integration of Eq. ( 4.12 ) along z ∈ [0,∞[ and over an arc of radius ri when 𝜃 

is assumed to be [−𝜑,𝜑]. Eq. ( 4.16 ) presents the corresponding relation 𝛷௭௢ defined for an 

arc load of radius ro when also assuming the following integration intervals 𝜃 ∈ [−𝜑,𝜑] and z ∈ [0,∞[. 

Φ௭௜ = න න 𝑞′′௥ 𝑑𝑧ஶ
଴ 𝑑𝜃ఝ

ିఝ ቤ௥೔= − 𝑄෠𝜋𝑅න න 1 −  𝑛௜  𝑐𝑜𝑠(𝜃)(𝑛௜ଶ + 1 − 2 𝑛௜  𝑐𝑜𝑠(𝜃) + 𝑧̅ଶ)ଷ ଶൗ 𝑑𝑧ஶ
଴ 𝑑𝜃గ

ିగ  

( 4.15 ) 
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Φ௭௢ = න න 𝑞′′௥ 𝑑𝑧ஶ
଴ 𝑑𝜃ఝ

ିఝ ቤ௥ೀ= −𝑄෠𝑛௢𝜋𝑅 න න 𝑛௢ −  𝑐𝑜𝑠(𝜃)(1 + 𝑛ைଶ − 2 𝑛௢ 𝑐𝑜𝑠(𝜃) + (𝑛௢𝑧̅)ଶ)ଷ ଶൗ 𝑑𝑧ஶ
଴ 𝑑𝜃గ

ିగ  

( 4.16 ) 

4.5.2  Heat flux elimination process 

To eliminate the heat flow generated across a surface of radius R by an arc heat load of radius 

ri, a counteracting exterior heat load imposed on a ro arc with equal limits (±𝜑) should generate 

a congruous heat flux resultant (Φ௭௜ = Φ௭ை). The role of this counterbalancing heat load 

distribution is equivalent to that of a mirror heat load used to free a straight boundary. 

A concentrated heat source moved along an arc of radius ri smaller than R generates a heat flux 

at the position (R,0, z) exclusively in the outward direction. Then again, the same experience 

along an arc of radius ro larger than R induces heat flux alternating from the outward to the 

inward directions. Therefore, to cancel out a heat flux caused by a heat load active at a radius 

ri, the length of the corrective arc must match the portion of the circle of radius ro causing a 

heat flux in the inward direction. This prerequisite defines the appropriate angle 𝜑. Figure  4.6 

shows the analyzed portion of arc ri and the associated section of arc ro. 

A first inspection of the plots in Figure  4.5 suggests that although generating a proportionate 

heat flux resultant may be simple, producing an equivalent heat flux distribution could be much 

more challenging. Accordingly, the proposed procedure only searches for a heat flux resultant 

equilibrium. Eq. ( 4.17 ) formulates the equilibrium Φ௭௜ = Φ௭ை (from Eqs. ( 4.15 ) and ( 4.16 

)). Besides, since Eq. ( 4.17 ) has no closed form solution, an adapted numerical method is 

required to evaluate the solution. The numerical calculation supposes that a depth z=10R 

corresponds to infinity. 
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න 1 −  𝑛௜  𝑐𝑜𝑠(𝜃)൫𝑛௜ଶ + 1 − 2 𝑛௜  𝑐𝑜𝑠(𝜃)൯ 𝑑𝜃ఝ
ିఝ = 𝑛௢ න 𝑐𝑜𝑠(𝜃) − 𝑛௢൫1 + 𝑛௢ଶ − 2 𝑛௢ 𝑐𝑜𝑠(𝜃)൯ 𝑑𝜃ఝ

ିఝ  ( 4.17 ) 

For a heat load distributed over an arc defined by a radius ri, Eq. ( 4.17 ) rapidly indicates that 

the calculation of the counteracting distributed heat load over the ro arc necessitates the 

specification of the two parameters ri and 𝜑. Indeed, this limit angle 𝜑 also hinges on ro, and 

furthermore, parameter ro must also be defined during the process. Thus, to determine ro and 𝜑, the procedure involves iterative calculations. The procedure also assumes that the limit 

angle 𝜑 is the same for the two arcs sustaining the heat loads (interior ri and exterior ro).  

 

Figure  4.6 Arc limit for heat flux calculation 

4.5.2.1  Numerical evaluation of ro  

Parameters ni and no are, by definition, included within the [0-1] range. Therefore, the two 

sides of Eq. ( 4.17 ) may be combined in a graph with a single scale. Figure  4.7 shows the two 

sides of Eq. ( 4.17 ) (LS being the left-hand side and RS the right-hand side). Then, no is 

established using the graphical solution illustrated in Figure  4.7. This solution strategy is 

described as follows: 1- for any selected ni locus, the left-hand side (LS) of Eq. ( 4.17 ) is 

calculated numerically; 2- next the LS value is assigned to RS to determine the related value of 
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no. Eq. ( 4.18 ) gives the expression offering the best fit to the results, and hence establishes 

the relationship between ro and ri.  

 

Figure  4.7 Eq. ( 2.11 ) solution strategy or ni-no relation graph 𝑛௢(𝑛௜) = 0.0505 𝑛௜ଶ + 0.2285 𝑛௜ + 0.7212 ( 4.18 ) 

Eq. ( 4.18 ) allows mapping any heat loaded area located inside the free boundary onto an 

external counterbalance area. Figure  4.8 displays the external corrective area established for a 

rectangular patch of the contact zone. In reality, Eq. ( 4.18 ) defines a correspondent radius for 

any location of the initial patch. Therefore, mapping the contour of the initial patch results in 

a four-sided zone with curved edges. On the other hand, the Hartnett’s SAM involves 

rectangular pressure cells (Hartnett, 1980). Hence, to simplify the procedure, the proposed 

strategy replaces the curvilinear four-sided zone with a rectangle preserving the surface area 

of the mapped zone. The substitute rectangle also preserves the aspect ratio of the original 

mapped patch.  

The simplification may be pushed even further; in particular, it could be feasible to set the 

counterbalance patch area identical to that of the original loaded cell. Nevertheless, while 
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easing the process, this avenue would reduce the modeling precision. Thus, to preserve the 

model accuracy, the present analysis does not consider this option. 

 

 

Figure  4.8 Contact cell and correction patch 

4.5.3  Adiabatic boundary validation 

The section examines the thermal model precision and validates the strategy put forward to 

describe an adiabatic boundary condition. Therefore, to isolate the adiabatic boundary 

condition influence and eliminate the repercussion of the thermoelastic normal stresses at the 

free surface, the procedure examines an axisymmetric structure made of a material presenting 

an orthotropic coefficient of thermal expansion in the axial direction z. This structure is 

submitted solely to a uniform heat load distributed over the contact surface.  This validation 

step compares the model predictions to FEA results obtained for the same layout. Both the 

selected structure and the imposed heat load are symmetrical. Therefore, for this particular 

system, the FEA may be reduced to a 2D axisymmetric model. This simplified representation 

offers a better precision and a faster solution than a 3D model.  Since the considered contact 

surface bears no pressure, the combination of the top uniform heat flux with the adiabatic 

boundary condition at the free surface results in a uniform temperature distribution, and thus, 

in consistent uniform thermoelastic displacements of the contact surface. Figure  4.9 illustrates 

the considered problem, where T is the temperature, T0 is the imposed temperature at the lower 

boundary and TH is the resulting temperature at the contact surface. Figure  4.9 also displays 
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the temperature profile along H, the axial dimension of the structure. This profile is obviously 

axisymmetric.  

 

Figure  4.9 Temperature profile 

As mentioned in Section 4.3 , the proposed method integrates the definition of a heat-affected 

zone radius (𝑠଴). In order to cover the complete area and the additional surface involved during 

the mirroring procedure, the radius 𝑠଴ is set to 1.387R. This value was established based on an 

analysis similar to the one introduced when examining the graph in Figure  4.5-c. Hence, since 

the center of the circular contact surface belongs to the heat loaded zone, the smallest possible 

value for ni is zero. On the other side, the no ratio generating an opposed heat flux with an equal 

resultant amplitude on the R free surface is 0.721. This ratio (𝑟௢ = ோ௡೚) leads to s0 = 1.387R. 

Therefore, this result is assumed to be valid regardless of the position, and is thus applied to 

all heated contact patches. Figure  4.10 illustrates this description when the considered contact 

patch is located at the center point of the heat loaded zone.  
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Figure  4.10 Counterbalance zone 

Figure  4.11 compares the model predictions and the FEA results. The graph presents 

dimensionless displacements given by (𝑤்ா − 𝑤்ா௖) 𝑅⁄ , where 𝑤்ா௖ is the thermoelastic 

displacement calculated at the center of the contact area. The model precision varies with the 

size of the contact patch. The results presented in Figure  4.11-a were established for a grid 

made of 50 x 50 square cells.  To show the influence of the grid resolution, Figure  4.11-b 

superimposes the models results obtained with a finer grid size of 100 x 100 square cells to the 

plot of Figure  4.11-a. 

The curves in Figure  4.11-a show that the model predictions correspond almost perfectly to 

the values determined by FEA simulations. This plot also evidences the influence of the free 

boundary heat flux correction. A comparison of the RMS deviation from the FEA evaluations 

indicates that the procedure put forward to correct the free boundary improves the predictions 

and reduces the RMS deviation associated with the no-correction case by more than 97%. 

Figure  4.11-b shows that reducing the size (side length) of the contact patch by 35% further 

improves the results; compared with the uncorrected boundary case, the fine grid reduces the 

RMS deviation by more than 99%. Table 4.1 compares the calculation times of these three 

models (no-corrections and two grid sizes) to the duration of the reference FEA simulation. In 
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addition to significant reductions of the computation effort, Table 4.1 shows that the free 

boundary correction procedure requires no additional time.  

 
(a) 

 
(b) 

Figure  4.11 Thermal boundary validation 
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Table 4.1  Computation times for two grid sizes compared with FEA 

 

Grid size 

No correction Corrected free boundary 50 × 50 50 × 50 100 × 100 

Time (sec) 2 2.5 6.5 

Time reduction 

(%) 

93.5 
91.9 78.9 

4.6  Cylindrical surface relief from normal stress  

The present study deploys a solution strategy combining the approaches proposed by the 

authors in Ref. (Yalpanian & Guilbault, 2021) and Ref. (Yalpanian & Guilbault, 2020). Those 

approaches were developed to integrate thermoelastic effects in straight edge contacts and to 

release curved free surfaces from residual normal stress distributions in models based on the 

half-space assumption, respectively. When including thermoelastic deformations, the residual 

normal stresses affecting the free surfaces result from the combined effects of both the initial 

and the correction heat loads. Basically, the proposed strategy adapts the correction heat load 

to eliminate the consequences of the thermoelastic normal stress distribution on the 

displacements of the half-space. 

Although the procedure aims at correcting the influence of normal stresses induced by a heat 

flux distribution over a given contact surface, the calculation process is essentially elastic, and 

leads to developments similar to those presented in Ref. (Yalpanian & Guilbault, 2020). The 

calculation process involves the following steps: 1- it first calculates the resultant normal force 

present at the free surface position, as well as its position; 2- it applies an opposite normal force 

of the same amplitude at the position of the force to be corrected; 3- to avoid the generation of 

a shear stress distribution on the half-space surface, the process also applies a mirror correction 

force with respect to the half-space surface; 4- these two forces provoke a new normal stress 

distribution over the half-space surface, which in turn must also be eliminated; 5- corrective 

actions similar to the previous steps are then required for the half-space surface. However, as 

for the correction of the heat flow generated across a surface of radius R, the curved edges 

defining the contact area require the definition of a corrective outer load located on an arc of 
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radius ro. Steps 1 to 5 are alternatively repeated to release the free boundary and the half-space 

surface and converge after an infinite number of iterations. However, after the first iteration, 

the efforts considered in Step 1 are no longer thermoelastic forces, but rather, elastic forces 

produced during the correction progression. 

The following sections determine the thermoelastic normal stress distributions brought about 

on a curved surface (radius R) by a heat load distributed on the half-space over an arc of radius 

ri (Step 1), and establish the position of the neutralizing external load required in Step 5. Steps 

2, 3 and 4 do not involve any action specific to the presence of the curved free boundary. The 

last subsection introduces the complete releasing process. 

4.6.1  Thermoelastic formulation 

4.6.1.1 Normal stress induced at a radial position R by a heat load distributed over an arc of 

radius r 

The thermoelastic normal stress distribution induced over a cylindrical surface (defined by a 

radius R) by a heat load distributed over an arc of radius r on a half-space is calculated using 

the Fourier integral (Baddour, 2011 ; Spiga & Carpinteri, 1984). Eq. ( 4.19 ) formulates this 

normal stress (𝜎௥೅ಶ) for the position (R, 0, z). This equation is valid for both inner (ri) and outer 

(ro) positions of the arc heat load.  

𝜎௥೔,೚்ா = −𝛾𝐸𝑄෠௥೔,೚  𝑟௜,௢𝑘 න exp(−𝑢𝑧) 𝐽଴(𝑢)𝐽ଵ ൬𝑢𝑅𝑟௜,௢൰𝑅𝑟௜,௢ 𝑢  𝑑𝑢ஶ
଴  ( 4.19 ) 

where E is the Module of elasticity (Pa), 𝛾 is the thermal expansion (K-1), k is the thermal 

conductivity (W/m  ̊K), a is a Fourier integration parameter, while 𝐽଴ and 𝐽ଵ are Bessel 

functions. The following equation (Eq. ( 4.20 )) gives the dimensionless version of this normal 

stress: 
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𝜎௥ഢ,೚തതതതത்ா = 𝜎௥೔,೚௧௘ 𝑘 𝛾𝐸𝑄෠௥೔,೚𝑟௜,௢ ( 4.20 ) 

The introduction of the dimensionless parameter 𝑛௜ into Eq. ( 4.20 ) gives the dimensionless 

thermoelastic normal stress caused by a heat load distributed over a radius ri on the half-space 

surface (Eq. ( 4.21 )). Eq. ( 4.22 ) expresses the same relation for ro: 

𝜎௥ഢതതതത்ா = −න exp(−𝑢𝑧) 𝐽଴(𝑢)𝐽ଵ ቀ𝑢𝑛௜ቁ𝑢𝑛௜  𝑑𝑢ஶ
଴  ( 4.21 ) 

𝜎௥೚തതതത்ா = −න exp(−𝑢𝑧) 𝐽଴(𝑢)𝐽ଵ(𝑢𝑛௢)𝑛௢𝑢  𝑑𝑢ஶ
଴  

( 4.22 ) 

Identical to the above procedure for the correction of the heat flux at the free boundary, the 

technique proposed for the thermoelastic normal stress suppression works with the resultant 

force and the line of action of the stress distribution. Eq. ( 4.23 ) establishes the resultant force 𝐹ఙೝ೔೅ಶcalculated over the free boundary at θ = 0 (see Figure  4.4) and along the z direction, 

when the heat load is distributed over an internal arc [0, 2π] of radius ri. Eq. ( 4.24 ) gives the 

corresponding resultant force 𝐹ఙೝ೚೅ಶ  when the loaded arc is external and has a radius ro.   

𝐹ఙೝ೔೅ಶ = න න exp(−𝑢𝑧) 𝐽଴(𝑢)𝐽ଵ ቀ𝑢𝑛௜ቁቀ𝑢𝑛௜ቁ  𝑑𝑢ஶ
଴ 𝑑𝑧ஶ

଴  ( 4.23 ) 

𝐹ఙೝ೚೅ಶ = න න exp(−𝑢𝑧) 𝐽଴(𝑢)𝐽ଵ(𝑢𝑛௢)(𝑢𝑛௢)  𝑑𝑢ஶ
଴ 𝑑𝑧ஶ

଴  
( 4.24 ) 

Eq. ( 4.25 ) formulates 𝑙௥೅ಶ the position of the resultant force along the axis z measured from 

the half-space top surface.  
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𝑙௥೔,೚೅ಶ = ׬ 𝑧 𝜎௥்ா  𝑑𝑧ஶ଴׬ 𝜎௥்ா 𝑑𝑧ஶ଴  ( 4.25 ) 

4.6.1.2 Normal displacement of the surface of a half-space induced by a heat load distributed 

over an arc of radius r 

Eq. ( 4.26 ) writes the thermoelastic displacement (𝑊்ாିொೝ೔) caused at the radius ri by a heat 

load 𝑄෠௥೚ distributed over the correction arc of radius ro. Eq. ( 4.26 ) includes the value of s0 

(= 1.387 R) considered in the previous sections. This expression result from the integration of 

Eq. ( 4.4 ) along the ring of radius ro. This relation considers a specific point (ri, 0). However, 

because of the axisymmetric nature of the ring shape, Eq. ( 4.26 ) represents any point of a ring 

of radius ri. The applied heat charge is 𝑞 = 𝑟௢𝑄෠௥೚𝑑𝜃 and the distance is 𝑠 =ඥ𝑟௢ଶ + 𝑟௜ଶ − 2𝑟௢𝑟௜ cos(𝜃). 

𝑊்ாିொೝ೔ = ቆ𝑄෠௥೚𝑅𝑘𝑛௢ ቇ𝛼(1 + 𝜈)2𝜋 ൥2𝜋 log(1.387)
− 2න log ቀඥ1 + 𝑛௜𝑛௢ଶ − 2𝑛௜𝑛௢  cos 𝜃ቁ  𝑑𝜃గ

଴ ൩ ( 4.26 ) 

4.6.2  Elastic formulation 

4.6.2.1 Normal stress induced at a radial position R by a normal load distributed over an arc 

of radius r 

The method proposed for the calculation of the elastic normal stresses was originally put 

forward in Ref. (Yalpanian & Guilbault, 2020); this reference provides a complete description 

of the procedure. Hence, the present section only recapitulates the concepts behind the 

approach and highlights the important formulas.  
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In summary, a pressure active on a half-space results in internal stress distributions. It is well 

known that placing a counterbalance pressure at a selected position with respect to a specific 

boundary allows eliminating the internal shear stress over that boundary. Likewise, to free the 

boundary from the remaining normal stress, the correction procedure must include the addition 

of an opposite equivalent stress distribution. As indicated above in the description of the five-

step solution, the process is iterative and involves lengthy calculations. Therefore, with the 

objective of eliminating the laborious iterative process, the procedure put forward in Ref. 

(Guilbault, 2011) and adapted to curved boundaries in Ref. (Yalpanian & Guilbault, 2020) , 

aims solely at canceling out  the impact of the residual normal stress on the displacement of 

the half-space top surface. The proposed strategy simply accentuates the shear stress correction 

produced by the corrective load to compensate for the normal stress influence. This adaptation 

of the counterbalance load contribution is produced by a correction factor. To define this factor, 

the approach first establishes the normal stress effect on the displacement, and then a simple 

comparison with the displacement correction produced by the counterbalance load allows to 

define the required adaptation. As with the heat load correction, the process is based on the 

resultant force generated by the normal stress distribution (𝜎௥ா) and its line of action. Thus, 

Ref. (Yalpanian & Guilbault, 2020) first defines the resultant normal force (𝐹ఙೝಶ) on the free 

boundary as well as is position (𝑙௥ா) along the z-axis from the half-space top surface. Thus, 𝐹ఙೝಶis the resultant of the 𝜎௥ಶ stress induced on a free surface defined by a radius R by a load 𝐹෠ distributed on a ring of radius r.  

Eq. ( 4.27 ) establishes the normal force 𝐹ఙೝ೔ಶacting at the position 𝜃 = 0, r = R and z = 𝑙௥ಶ௜ , 
resulting from a force load distributed over a ring of radius ri on top of the half-space. Eq. ( 

4.28 ) gives the equivalent normal force 𝐹ఙೝ೚ಶ calculated for a force load distributed over a ring 

of radius ro. Finally, Eq. ( 4.29 ) formulates 𝑙௥ಶ. 
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𝐹ఙೝ೔ಶ = −𝐹෠𝜈𝑛௜𝜋 න (1 + 𝑛௜ଶ cos(𝜃)ଶ − 2𝑛௜ cos(𝜃))(1 + 𝑛௜ଶ − 2𝑛௜ cos(𝜃))ଷଶ 𝑑𝜃గ
ିగ  ( 4.27 ) 

𝐹ఙೝ೚ಶ = −𝐹෠𝜈𝜋 න (𝑛௢ଶ + cos(𝜃)ଶ − 2𝑛௢ cos(𝜃))(1 + 𝑛௢ଶ − 2𝑛௢ cos(𝜃))ଷଶ 𝑑𝜃గ
ିగ  

( 4.28 ) 

𝑙௥ಶ = ׬ 𝑧 𝜎௥ಶ  𝑑𝑧ஶ଴׬ 𝜎௥ಶ 𝑑𝑧ஶ଴  
( 4.29 ) 

4.6.2.2 Normal displacement of the surface of a half-space induced by a normal load 

distributed over an arc of radius r 

Eq. ( 4.30 ) writes the normal displacement 𝑤ாೝ೔  induced at a radial position ri of a half-space 

top surface, when a normal load 𝐹ఙ೥ಶ (calculated using Eq. ( 4.33 )) is distributed over a ring 

of radius 𝑟௢ (Figure  4.13). This formulation was proposed by Lubarda (Lubarda, 2013). 

𝑤ாೝ೔ = ଶி෠(ଵି௩)గீ 𝐾 ቀ ௥௥ೀቁ  ( 4.30 ) 

Where G is the shear modulus and K is the elliptical integral of the first kind. 

4.6.2.3 Normal stress produced on a cylindrical section by a radial lateral load  

The presented technic replaces the free surface stress distributions resulting from the heat and 

force loads active on the half-space top surface by their resultant forces (𝐹ఙೝ೔೅ಶ, 𝐹ఙೝ೚೅ಶ, 𝐹ఙೝ೔ಶ 

, 𝐹ఙೝ೚ಶ). These resultants are distributed radial forces acting around the surface defined by the 

R radius at a position z = lr. Figure  4.12 illustrates this description and shows a radial force 

Fσ. The elimination process of these normal forces results from the adding of a counteractive 

distributed force at the same location along the axial direction. 
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The addition of any force distribution around the cylindric surface (of radius R) causes normal 

stresses and displacements oriented along the z axis in response. Therefore, the relations 

defining the effect of a radial load on the body are also needed. Ref. (Yalpanian & Guilbault, 

2020) presents the complete development work leading to the formulation.  Therefore, the 

present article only includes the final expressions required for the thermoelastic normal stress 

elimination process.  

 

Figure  4.12 Radial force distribution 

The procedure replaces the radial force Fσ by a pressure strip of axial thickness dz. This 

thickness is chosen sufficiently narrow to parallel a line load (dz=0.001R) (Yalpanian & 

Guilbault, 2020). Eq. ( 4.31 ) formulates the normal stress (𝜎௭ா) induced along the z axis at a 

distance z by a pressure strip encircling a cylinder. As indicated by Eq. ( 4.31 ), the pressure 

band results from the overlap of two pressure loads located at z and z + dz distances from the 

considered position. Eq. ( 4.32 ) gives 𝜎௭ா. This relation intrinsically assumes that the radial 

force Fσ acts at z = 0.  

𝜎௭ா = ቀ𝜎௭ி − 𝜎(௭ାௗ௭)ிቁ ( 4.31 )  

𝜎௭ி =  − 𝐹ఙ𝜋 𝑑𝑧 × 
න 𝑠𝑖𝑛(𝑢𝑧)൫2𝑅𝑢ଷ𝐼ଵ(𝑢𝑅)𝐼଴(𝑢𝑟) − 𝑅ଶ𝑢ସ𝐼଴(𝑢𝑅)𝐼଴(𝑢𝑟) + 𝑅𝑢ସ𝑟𝐼ଵ(𝑢𝑅)𝐼ଵ(𝑢𝑟)൯𝑢ଷ ቂ൫𝐼ଵ(𝑢𝑅)൯ଶ(𝑅ଶ𝑢ଶ − 2𝑣 + 2) − 𝑅ଶ𝑢ଶ൫𝐼଴(𝑢𝑅)൯ଶቃ 𝑑𝑢ஶ
଴

( 4.32 )  

R r
z

Fσ

Top surface

lr
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where I0 and I1 are modified Bessel functions and u is an integration parameter which takes a 

range of values (∈ [0, ∞]). 

Eq. ( 4.33 ) gives the distributed force (𝐹ఙ೥ಶ) resultant (in the axial direction of the cylinder) 

from the normal stresses 𝜎௭ா generated at both z and –z positions.  

𝐹ఙ೥ಶ = න 𝜎௭ா𝑑𝑟ோ
଴ ቤ௭ = න 𝜎௭ா𝑑𝑟ோ

଴ ቤି௭ ( 4.33 ) 

Eq. ( 4.34 ) establishes the location of the line of action or the radius rz of the ring supporting 

the 𝐹ఙ೥ಶ distribution (see Figure  4.13), while Eq. ( 4.35 ) gives the corresponding position from 

the edge (r’z).  

𝑟௭ = ׬ 𝑟 𝜎௭ா  𝑑𝑟ோ଴׬ 𝜎௭ா  𝑑𝑟ோ଴  ( 4.34 ) 

𝑟′௭ = 𝑅 − 𝑟௭ ( 4.35 ) 

4.6.2.4 Axial displacement of a cylindrical section produced by a radial lateral load  

Eq. ( 4.36 ) depicts the axial displacement 𝑤௭ா produced by a pressure strip encircling a 

cylindrical body (Yalpanian & Guilbault, 2020). To reproduce the load condition illustrated in 

Figure  4.12, the size of the pressure strip is again fixed at dz = 0.001R. Eq. ( 4.37 ) formulates 

the displacement generated by the two pressure loads forming the band load. These pressures 

are located at a distance z and z + dz from the considered position, respectively. 

 

𝑤௭ா = ൫𝑤௭ி − 𝑤(௭ାௗ௭)ಷ൯ ( 4.36 ) 
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𝑤௭ி = 𝐹ఙ2𝜋𝐺 𝑑𝑧 × 
න 𝑐𝑜𝑠(𝑘𝑧)𝑅൫𝑅𝑘𝐼଴(𝑘𝑅)𝐼଴(𝑘𝑟) − 𝑘𝑟𝐼ଵ(𝑘𝑅)𝐼ଵ(𝑘𝑟) + 2𝐼ଵ(𝑘𝑅)𝐼଴(𝑘𝑟)(𝑣 − 1)൯𝑘 ቂ൫𝐼ଵ(𝑘𝑅)൯ଶ(𝑅ଶ𝑘ଶ − 2𝑣 + 2) − 𝑅ଶ𝑘ଶ൫𝐼଴(𝑘𝑅)൯ଶቃ 𝑑𝑘ஶ
଴

( 4.37 ) 

4.6.3  Normal stress relief procedure for a cylindrical surface 

The thermoelastic normal stress present on the free surface results from a combination of the 

effects of both the initial and the counterbalance heat loads. Moreover, since an adiabatic 

boundary condition means the absence of a crossing heat flux, this condition imposes the 

maximum counterbalance heat loads, and as a consequence, leads to the largest normal stress 

amplitude. Thus, the present section first considers this severest condition to develop the 

elimination process of the thermoelastic normal stress active on a curved free surface. Since 

the proposed approach follows the strategy initially put forward in Ref. (Guilbault, 2011), it 

neutralizes the normal stress influence on the displacement via an overcorrection factor or a 

thermoelastic normal stress elimination factor (𝑛𝑠𝑓 ா), which modifies the correction brought 

in by a counterbalance heat load.     

As described earlier, in addition to their contribution to the displacement of the half-space 

surface 𝑊்ாିொೝ೔(given by Eq. ( 4.23 )), a heat load distributed over an arc of radius ri and its 

counterbalance heat load Q’ distributed over an arc of radius ro engender a superposition of 

normal stress distributions 𝜎௥೔,೚்ா on the free surface. Hence, eliminating the thermoelastic 

stress accumulation requires an opposite equivalent normal stress. The following description 

details the five-step procedure introduced in Section 4.6 . Figure  4.13 also portrays the 

operation.  

The procedure replaces the normal stress distribution with their resultant force 𝐹ఙೝ೔,೚೅ಶ (given 

by Eqs. ( 4.23 ) and ( 4.24 ))). As indicated earlier, these forces are radial ring loads acting 

around the cylindrical free surface at the axial position 𝑙௥೔,೚೅ಶ   (calculated by Eq. ( 4.25 )). The 

required antagonistic ring loads 𝐹ఙೝ೔,೚೅ಶ are thus applied at the corresponding distances from 
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the half-space top surface. However, in response, this corrective action also generates shear 

and normal stresses on the half-space surface. The shear stress is easily canceled out by the 

mirroring approach. Thus, the procedure introduces equal loads in symmetrical positions with 

respect to the half-space surface (𝐹′ఙೝ೔,೚೅ಶ). These correction and counterbalance forces (two 𝐹ఙೝ೔,೚೅ಶ - 𝐹′ఙೝ೔,೚೅ಶ pairs) cause a build-up of elastic normal displacement 𝑤௭ா (calculated by 

Eq. ( 4.36 )) and stresses 𝜎௭ா on the half-space surface in the z direction (Eq. ( 4.31 )). The 

resultant forces 𝐹ఙ೥ಶ and the radius rz of the rings supporting their distributions are calculated 

with Eq. ( 4.33 ) and Eq. ( 4.34 ), respectively. Opposing force distributions of the same 

amplitudes are then applied to cancel out these normal loads. To avoid the development of a 

shear stress distribution over the free surface of radius R, this corrective operation again 

requires the action of distributed forces 𝐹′ఙ೥ಶ counterbalancing 𝐹ఙ೥ಶ.  The radius of the ring 

supporting the 𝐹′ఙ೥ಶ distribution is calculated via Eq. ( 4.38 ), which is the force load version 

of the heat load formulation given by Eq. ( 4.18 ). Ref. (Yalpanian & Guilbault, 2020) provides 

a detailed description of the development of Eq. ( 4.38 ). The reader is thus referred to these 

papers for a complete portrayal. In Eq. ( 4.38 ) the definition of ni,o remains the same as the 

one considered in Eq. ( 4.18 ). However, the radius involved in their calculation are associated 

with normal stress distributions. Thus, ri becomes 𝑟௭೔ and is determined with Eq. ( 4.34 ), while 

radius ro becomes 𝑟௭೚. The adapted ni,o definitions are given below. These correction forces 

(𝐹ఙ೥ಶ, 𝐹′ఙ೥ಶ) cause the reoccurrence of a normal stress distribution on the free surface. This 

new stress distributions require the addition of the correction forces 𝐹ఙೝ೔,೚ಶషమ as well as their 

counterbalance part 𝐹′ఙೝ೔,೚ಶషమ. These first few elimination steps clearly describe an iterative 

correction process. Moreover, it should be noted that, since the positions of the force action 

line increase at each iteration, the process is convergent.  
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𝑛௢(𝑛௜) = 𝑝ଵ𝑛௜ସ + 𝑝ଶ𝑛௜ଷ + 𝑝ଷ𝑛௜ଶ + 𝑝ସ𝑛௜ + 𝑝ହ𝑛௢ହ + 𝑞ଵ𝑛௢ସ + 𝑞ଶ𝑛௢ଷ + 𝑞ଷ𝑛௢ଶ + 𝑞ସ𝑛௢ + 𝑞ହ ( 4.38 ) 

where 𝑛௜ = ௥೥೔ோ ,𝑛௢ = ோ௥೥೚ and 

𝑝ଵ  =  0.2381 𝑝ଶ  =   −0.1652 𝑝ଷ  =  −0.00943 𝑝ସ  =  0.02335 𝑝ହ  =  9.47𝑒 − 5 

𝑞ଵ  =  −3.1 𝑞ଶ  =  3.935 𝑞ଷ  =  −2.214 𝑞ସ  = 0.4578 𝑞ହ  =  0.008826 

At the end of the boundary releasing operation, the displacement of the half-space surface at 

the position of the initial heat load 𝑄෠௥೔ will combine the effect of the counterbalancing heat 

load 𝑄෠௥೚ deduced from Eq. ( 4.26 ), the displacements caused by the counterbalancing 

thermoelastic forces marked by a prime 𝐹′ఙೝ೔,೚೅ಶ and 𝐹′ఙ೥ಶ (deduced from Eq. ( 4.36 ) and Eq. ( 

4.30 ), respectively), and to this initial corrective passage, the progression of the iterative 

scheme will add on the displacements induced by the succession of the corrective elastic forces  𝐹′ఙೝಶand   𝐹′ఙ೥ಶ (also deduced from Eq. ( 4.36 ) and Eq. ( 4.30 )). 

Hence, the complete iterative scheme will produce the thermoelastic surface displacement 

caused by a heat flux q'' acting on a patch inside the contact area (𝑤ொ௧௢௧௔௟) expressed by Eq. ( 

4.39 ). 

𝑤ொ௧௢௧௔௟ = 𝑤ொ + 𝑤ொ∗ ( 4.39 ) 

𝑤ொ∗ = 𝑊்ாିொೝ೔ + ෍൫𝑤௭ா൯௨ஶ
௨ୀଵ + ෍ቀ𝑤ாೝ೔ቁ௨ஶ

௨ୀଵ  
( 4.40 ) 

Similar to the strategy used in Ref. (Yalpanian & Guilbault, 2021) to avoid the calculation 

efforts involved in the correction process described by the infinite series in Eq. ( 4.40 ), this 

study assumes that a modified counterbalance heat load  𝑞"∗ should produce a displacement of 

the half-space surface equal to 𝑤ொ∗. Consequently, 𝑞"∗ should be calculated as indicated by Eq. 
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( 4.41 ), where nsfTE is the thermoelastic correction factor. This factor is thus written as 

indicated by Eq. ( 4.42 ). 

𝑞"∗ = 𝑛𝑠𝑓 ா  𝑞" ( 4.41 ) 

𝑛𝑠𝑓 ா = ቈ𝑤ொ∗ 𝑊்ாିொೝ೔൘ ቉ ( 4.42 ) 

 

Figure  4.13 First actions of residual thermoelastic normal stress suppression operation 

Eq. ( 4.42 ) allows calculating nsfTE for any 𝑟௜ (radius of the arc submitted to the heat load). 

The obtained equation system depends on the Poisson ratio. To evaluate nsfTE, a series of 

simulations considering various  𝑟௜ radius of the heat load distribution were realized. The 

investigation examined dimensionless distances 𝑛௜, and as before fixed 𝑠଴ at 1.387R (see 

Figure  4.10). The 3rd degree polynomial curve fit given by Eqs. ( 4.43 ) and ( 4.44 ) summarizes 

the results, and since the 𝑛𝑠𝑓 ா factor depends on the Poisson ratio, the constants in Eq. ( 4.44 

) are functions of this parameter. 
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𝑛𝑠𝑓 ா =  𝑎଴  + 𝑎ଵ  nூ  + 𝑎ଶ  nூଶ  + 𝑎ଷ  nூଷ  ( 4.43 ) 

𝑎଴ = 1.7875 −  4.0549 𝑣 + 1.6402 𝑣ଶ 𝑎ଵ =  0.0947 −  0.4272 𝑣 + 0.1734 𝑣ଶ 𝑎ଶ = 0.1598 −  2.5160 𝑣 + 1.0164 𝑣ଶ 𝑎ଷ =  0.5494 −  1.8067 𝑣 + 0.7316 𝑣ଶ 

( 4.44 ) 

4.7  Summary of the proposed approach 

The following steps summarize the approach detailed in the previous sections to release the 

free boundaries from the artificial stress generated during the modeling of thermoelastic 

contacts between bodies limited by curved surfaces. These actions concern the thermoelastic 

aspect of the problem and should be coupled with the procedure put forward in Ref. (Yalpanian 

& Guilbault, 2020) for the elastic contribution: 

1) The pressure-heat patches defined over the contact area may each simultaneously 
sustain a constant pressure load and a constant heat load; 

2) The procedure in Ref. (Yalpanian & Guilbault, 2020) allows defining the corrective 
pressure patch size and position for the correction pressure; 

3) Eq. ( 4.18 ) maps the pressure-heat patch on a corrective heat patch and establishes 
the location of the correction heat load; 

4) Compute the area of the corrective heat patch and exchange it for a square patch of 
equal area (see Figure  4.6); 

5) Impose the heat 𝑞" (equal to the original on the pressure-heat patch) on the corrective 
patch to control the heat flux crossing the free boundary;  

Calculate nfsTE with Eqs. ( 4.43 ) and ( 4.44 ), and multiply the heat flux 𝑞" defined in Section 

4.3  by nfsTE to obtain𝑞"∗. 𝑞"∗ eliminates the thermoelastic normal stress caused on the curved 

surface of radius R by the heat load. 
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4.8  Validation of the model  

Figure  4.14-a shows the contact system considered for the model validation. The problem 

definition assembles two long cylinders of radius R = 10 mm pressed against each other with 

a 10 kN load. In addition, a uniform heat source is distributed over the contact area, while the 

free surfaces are submitted to an adiabatic boundary condition. In the following models, if not 

mentioned specifically, the heat flux is q" = 28.125 kW/m2. The Poisson ratio of the cylinder 

material is 0.3.    

The following validation compares the contact pressure distributions established by the 

proposed model with results obtained from 2D axisymmetric FEA. This 2D FEA simplification 

provides accurate and useful validation results. However, it is limited to fully symmetric 

geometry, support and loading conditions. On the other hand, the developed model is 

equivalent to 3D FEA and can handle any practical conditions. Figure   displays a 

representative contact model composed of rectangular pressure-heat cells. As mentioned 

before, Eq. ( 4.18 ) maps each four-sided cell belonging to the contact zone to an external 

corrective patch. 

 
(a) 

 
 
 

(b) 

Figure  4.14 (a) Rod problem (b) Contact mesh with rectangular pressure-heat patches 
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To illustrate the 𝑛𝑠𝑓 ா role, Figure  4.15-a juxtaposes the FEA results and the pressure 

definition determined by the Hartnett’s method over the contact zone when considering two 

conditions. The first one solely imposes the adiabatic boundary condition on the free surface, 

and neglects the influence of the thermoelastic normal stress or sets 𝑛𝑠𝑓 ா at one. This 

condition is designated as the Partial correction. The second one imposes the adiabatic 

boundary condition on the free surface, and eliminates the impact of the thermoelastic normal 

stress or integrates the 𝑛𝑠𝑓 ா values established via Eqs. ( 4.43 ) and ( 4.44 ) for each correction 

heat patch. This condition is designated as the Complete correction. It is also important to 

mention here, that, for all test cases, the influence of the elastic normal stress produced on the 

free surfaces by the pressure load is eliminated following the procedure developed in 

Ref. (Yalpanian & Guilbault, 2020). Figure  4.15 displays dimensionless graphs: the horizontal 

axes correspond to radial positions 𝑟̅ = 𝑟/𝑅, while the vertical axes show pressure values 𝑃ത =  𝑃/𝑃௔௩௘, where Pave is the average pressure. The model predictions presented in  Figure  

4.15-a were calculated with a relatively coarse mesh composed of 50 pressure-heat patches 

along the horizontal and the vertical directions of the contact area illustrated in Figure  4.14-b. 

Therefore, to describe the influence of the pressure-heat patch size, Figure  4.15-b compares 

the model predictions realized for the same system with a complete correction and three finer 

mesh definitions: 50, 100 and 150 pressure-heat patches along the horizontal and the vertical 

directions of the contact area. Table 4.2 shows the percentages of pressure difference calculated 

for the three mesh predictions in comparison with the FEA results. Table 4.3 completes the 

description with a comparison of the model calculation times with that of the 2D FEA. The 2D 

FEA required 820 sec to establish the results shown in Figure  4.15. 
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(a) 

 
(b) 

Figure  4.15 (a) Comparison of dimensionless contact pressures obtained from the 
proposed model to 2D axisymmetric FEA results; (b) Comparison of dimensionless contact 
pressures obtained from the proposed model with three mesh sizes to 2D axisymmetric FEA 

results 

Table 4.2  Pressure differences for the three mesh sizes compared with the 2D 
Axisymmetric FEA 

 Number of patches along R 

50 x 50 100 x 100 150 x 150 
Max deviation* 
(%) 4.4% 4.2% 3.9% 
*    With the exception of the vicinity of the free edge 



156 

 

Table 4.3  Computation times for the three mesh sizes compared with the 2D FEA 
duration of 820 sec 

 
Mesh size 

50 100 150 

Time (sec) 13 177 1266 

Time reduction 807 643 -446 

Reduction (%) 98,4 78,4 
-54,4 

(increase) 

Figure  4.15-a shows that, while the Partial correction maintains a visible difference when 

compared e the reference FEA results, the Complete correction condition offers evaluations in 

close agreement. The 18.5% average difference level of the Partial correction reduces to 5% 

with a complete elimination of the influence of the thermoelastic normal stress. This correction 

corresponds to a 73% gain in precision.  

The graph in Figure  4.15-a also display a noticeable noise in the predictions. It may be 

suspected that this perturbation is attributable to the mesh size. Figure  4.15 compares different 

mesh sizes composed of regular reckon patches (constant area). A visual comparison shows 

that a reduction of the patch area leads to a drastic diminution of the remaining noise. The 

curves also seem to indicate that the 100 and 150 regular patch meshes provide equivalent 

noise reductions. Table 4.2 gives a precise evaluation of the maximum difference between the 

model predictions and the reference results; compared with the 100-patch mesh, the 150-patch 

case reduces by 0.3% the maximum difference. In reality, even compared with the 50-patch 

mesh the difference reduction obtained with the finer mesh remains quite low (0.5%); the 

maximum difference amplitude of 4.4% demonstrated by the 50-patch mesh indicates that 

these larger patches already provide high-quality results.  

In fact, the considered contact mesh is composed of rectangular patches, which only 

approximate the curved boundary definition, and thus constitute an obvious imprecision 

source. Although the present study did not evaluate this avenue, it remains rational to believe 

that curvilinear trapezoidal contact patches would increase the precision. However, since the 

proposed approach is conceived to work with the Hartnett SAM, which works with rectangular 
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contact patches, modifying the patch form was not an option. Moreover, the analysis presented 

in Ref. (Yalpanian & Guilbault, 2020) demonstrates for contact pressures not affected by a 

thermoelastic contribution that, reducing the size of rectangular patches close to the boundary 

provides sufficient precision improvements. Based on those observations and the result of 

Figure  4.15-b, this conclusion may be assumed to be applicable to thermoelastic contact 

problems. Thus, this reasoning or the fact that the precision close to the contact area edge may 

be further improved explains why the evaluation of the result deviation presented in Table 4.2 

exclude the zone close to free boundary. 

It is also important to underline that the complete correction realized with the insertion of nsfTE 

into the model does not affect the solution times compared with a simple thermal boundary 

correction (Partial correction). But more importantly, in contrast to those required for FEA, 

these solution times globally remain low. Table 4.3 reports the calculation time required for 

each mesh size, as well as the corresponding time economy. These values reveal that the 

calculation times grows exponentially with the patch number. For instance, the time needed 

for the 150-patch mesh solution even exceeds that of the FEA. In reality, since the 50 and 100-

patch meshes assure an equivalent precision, the 150-patch mesh corresponds to an excessive 

refinement, and solely served to establish the convergence of the mesh accuracy. Therefore, it 

should not be further considered in the description of the model performance. The values in 

Table 4.3 show that compared with the FEA simulation, this 50-patch mesh saved more than 

98% of the calculation time. It seems also worth to mention here that all the presented 

calculations were realized on a Quad core 3.4 GHz CPU computer.  

To complement the portrayal of the model precision Figure  4.16 compares the 50-patch mesh 

results to evaluations obtained from the previous 2D FEA and a full 3D FEA. The 2 FEA 

meshes considered in this comparison involved 25 elements along the radial direction, or 50 

elements along the diameter. The calculation times were 13 sec, 820 sec and 1532 sec for the 

proposed model, the 2D FEA and the 3D FEA, respectively. The graph clearly shows that the 

3D FEA model produces result oscillations of the same type of those associated with the 

proposed model. However, the amplitude of the variations resulting from the proposed model 
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predictions are significantly lower, while the proposed model is more than 117 times faster. Of 

course, the required time in 3D FEA increases by the power of three as the number of elements 

increase. In fact, the curve smoothing introduced by the 2D FEA evaluations is a sole 

consequence of the neglection of the third dimension. 

 

Figure  4.16 Comparison of the result precision obtained from the proposed method, 3D 
FEA and 2D axisymmetric FEA assuming 50 diagonal elements in every case 

Finally, to provide a broader picture of the proposed approach precision, the following 

compares the model predictions to FEA evaluations made for eight configurations. These 

layouts combine two values of the radius R:10 mm and 15 mm, two heat fluxes q'' of 

14.0625 kW/m2 and 28.125 kW/m2, and two Poison ratios (ν)  0.3 and 0.4, while the force load 

remains constant for all cases and again fixed at 10 kN.  This instancing exclude the Partial 

correction discussed above. The calculations were all realized with 50 elements along the 

horizontal and vertical directions of the contact area. Therefore, the evaluations realized for 

the larger radius (R = 15 mm) involved contact patches 2.25 times larger than those of the 

R = 10 mm cases. This approach allows also integrating the influence of the mesh size into the 

description. Figure  4.17 presents the dimensionless pressure graph obtained for all layouts. 
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Figure  4.17 Dimensionless contact pressures obtained for different layouts 
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The graphs in Figure  4.17 show that the predictions of the proposed modeling approach match 

quite well the FEA results for all layouts. Thus, the model maintains high precision levels with 

different Poison ratios and heat flux. On the other hand, the more visible result fluctuations 

generated by the less refined mesh used with the R=15 mm layouts confirm the influence of 

the contact patch size. 

4.9  Conclusions 

The primary part of this work develops a modeling strategy based on influence factors to allow 

SAM predicting the impacts of thermoelastic deformations on contacts between bodies 

delimited by curved free boundaries. The proposed strategy represents an extension of the 

approach initially developed for bodies defined by straight surfaces. The objective is to control 

the heat flux crossing the free surfaces. The present study concentrated on imposing adiabatic 

conditions. However, the developed technic could easily be extended to any thermal conditions 

of the boundaries. With straight surfaces, the adiabatic condition involves a counterbalance 

heat load of amplitude equal to that of the contact heat load, but placed at a mirror position 

with respect to the free boundary. This flux control operation over curved boundaries benefits 

from a precise adaptation of both the position and size of the counterbalance heat patch. Thus, 

this study formulates the mapping relation linking the heat load to its counterbalance part. In 

fact, since the proposed approach is designed to work with the Hartnett’s elastic contact model, 

which works with rectangular contact patches, the developed expression defines 

counterbalance patches for rectangular pressure-heat patches.  

A comparison of the thermoelastic displacements predicted by the model with FEA results 

indicate that the developed thermal boundary rectification decreases the errors inherited from 

the half-space concept up to 99%. The proposed modeling strategy also significantly reduces 

the computation burden. Indeed, for the considered problems and equivalent precision levels, 

when compared with FEA, the proposed method reduced the calculation times by more than 

92%.  

The second part of this paper completes the free boundary release procedure, and introduces a 

corrective factor to remove the effect of the thermoelastic normal stress. In addition to the heat 
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flux aspect, the half-space assumption also introduces inherent normal stress distributions on 

free surfaces. In order to preserve the advantageous calculation speed provided by the half-

space approach, the correction strategy solely aims at canceling the half-space top surface 

displacements caused by the normal stress, and pays no attention the stress itself. The technic 

put forward introduces a correction factor to adjust the amplitude of the counterbalance heat 

load controlling the heat flux crossing the free boundary. A unique equation defines this 

correction factor. The complete free boundary correction procedure thus comprises two steps: 

the first determines the dimensions and location of the counterbalance heat patch controlling 

the heat flux crossing the curved free boundary, and the second adjusts the heat amplitude on 

this corrective patch to cancel out the thermoelastic normal stress influence.  

The last part of the paper compares the predictions obtained from the proposed method to 

evaluations produced by finite element simulations. This final validation demonstrates the 

model capacity of accurately coping with bodies of various dimensions and made of various 

materials, as well as with different heat source intensities. In parallel with its manageability 

and efficacy, the proposed modeling approach is also faster than FEA. Indeed, when compared 

with FEA, for the considered problems and the obtained precision levels higher than 95%, the 

proposed method offered calculation time reductions higher than 98%. 
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CONCLUSION AND RECOMMENDATIONS 

 

While improvement of the characteristics of bearings and contacts in general is a constant need 

of the industry, advancements in smart surface engineering and coating technologies have 

given the opportunity of increasing the fatigue and wear life of the contact surfaces by 

introducing different surface textures. The present study aimed to provide the proper tool for a 

thorough analysis of such surfaces by introducing a fast and reliable method for modeling 

contact surfaces with different negative or positive asperity geometries by adding the curved 

edge treatment and also thermoelastic consideration capability to the well-known half-space 

semi-analytical method. In the process of developing this reliable method, this study made the 

following main contributions: 

1) Treating the curved free-edge of a contact in a half-space based method by proposing 

the position of the counterbalance pressure and applying an overcorrection factor in 

order to completely eliminate the superfluous effects of the half-space assumption; 

2) Integrating the thermoelasticity effect to the half-space based method using a simple 

thermoelastic influence factor; and introducing the straight free-edge treatment to a 

thermal contact considering thermoelasticity effects while taking into account the 

thermal boundary condition at the free-surface; 

3) Treating the curved free-edge of a contact considering thermoelasticity by proposing 

the position of the counterbalance heat patch and applying an overcorrection factor in 

order to completely eliminate the superfluous effects of the half-space assumption and 

modifying the introduced over correction factor to account for the thermal boundary 

condition. 

As the first contribution, Chapter 2 (Article 1) presents a thorough study of the contacts with 

curved edges in a dry contact that can easily be applied on any type of contact, including 

lubricated contacts. The performed analysis identified the residual stresses of half-space 

assumption on the curved free-surface. This process, first, finds a radial position for a 
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counterbalance load that eliminates the residual shear stresses on the free-surface generated by 

applying the main load on the contact surface. Applying the counterbalance load reduces the 

errors intrinsic to the half-space assumption by up to 92%. The process further improves the 

precision of the method by introducing a modifying factor for the counterbalancing load. This 

modifying factor is obtained from a cyclic stress elimination approach designed to eliminate 

the remaining residual normal stress on the curved free-surface. Applying this modifying factor 

results in further reduction of the error in comparison with FEA results (up to 96%). For the 

studied cases, considering equivalent precision, the proposed approach shows calculation times 

at least 9 times lower than those of the FEA. Contributions of the first article further improves 

the capability of the half-space based SAM for practical uses. 

The limitations of Article 1 and further recommendations include: 

• The curved edges validated in this study are limited to closed circular edges. A future 

study could consider other geometrical curved edges and the mixed curved and straight 

edges. 

• The validation in this study is performed by comparing the obtained results with those 

of FEA. If possible, a comparison with an experimental data could give a better insight 

to this subject. 

• Current study considers only elastic behavior. It could be beneficial if the future studies 

take into account the plastic behavior of the contact materials as well. 

As for the second contribution, Chapter 3 (Article 2) generalizes the simulation method even 

further to include thermoelasticity effect as well. Doing so, thermal response of the contacting 

solids is also being taken into account. In order to integrate thermoelasticity consideration in 

the simulation method, the second article, first, uses the thermoelasticity formula proposed by 

Barber (Barber, 1971) to develop an additional factor to implement thermoelasticity 

consideration into the developed contact analysis method. This approach greatly simplifies the 

integration of thermoelasticity into the already prepared fast SAM. The next step to achieve a 

general contact analysis model is to consider the straight free-edges while taking into account 
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thermoelasticity. To consider the free edges, the study calculates the heat flux that crosses the 

free-surface because of half-space assumption. Then, it proposes a counterbalance load for 

eliminating this heat flux resulting in an adiabatic thermal condition. Afterwards, a 

modification factor accounts for other thermal boundary conditions at the free border. 

Comparing the results obtained using the proposed method for an adiabatic thermal boundary 

condition with the results obtained from FEA verifies the accuracy and precision of the 

proposed method. It also shows a 98% reduction in calculations time. 

In the next step, the study successfully applied the proposed method in contact analysis of an 

elastohydrodynamicaly lubricated contact by demonstrating the effects of considering 

thermoelasticity effects and free-edge considerations using a factorial analysis. The results 

obtained considering thermoelasticity and adiabatic thermal boundary at the free-edge 

demonstrated an overall increases in the maximum pressure of around 9%, an overall decrease 

in the film thickness close to 7%, and an overall temperature increase of about 2 ̊K. This is 

what was missing from non-thermoelastic analysis of TEHL, which is achieved as part of the 

main goal of preparing a through contact analysis model. 

The limitations of Article 2 and further recommendations include: 

• The thermoelasticity approach considered in this study is in steady state. This 

assumption both simplifies the process and considerably reduces the time consumption 

of the process. To obtain a more general model, future studies could consider time 

dependency as well. This requires a careful attention at time consumption. 

• In this part of the study only straight free-edges are considered. The next part of this 

thesis will focus on curved free-edges for thermoelastic contacts. 

• While the thermal boundary condition modification factor is proposed in this study, a 

further development of this thermal boundary factor could be a more precise tool for 

more general thermal boundary conditions at the free-surface. 
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In terms of the last contributions of this study, as mentioned earlier, in Chapter 4 (Article 4) 

the focus is on handling curved free-edges while considering thermoelasticity in a thermal 

contact analysis. Doing so, this study achieves the intended goal of creating a contact analysis 

method that is rather fast and reliable while considering most practical phenomena in 

mechanical contacts. The proposed modeling strategy that is based on influence factors as well, 

first, identifies a corresponding radius for applying a counterbalancing heat load by calculating 

the heat flux that crosses the considered curved free-surface and countering it. Countering the 

crossing heat flux results in an adiabatic thermal boundary condition at the thermal free-

surface, which is the primary concentration of this study. However, the developed technic 

could easily be extended to any thermal boundary. Therefore, this study formulates the 

mapping relation linking the heat load to its counterbalance part. A comparison of the 

thermoelastic displacements predicted by the model with FEA results indicate that, for a case 

with adiabatic boundary conditions at the free-surface, the errors intrinsic to half-space 

assumption decline up to 99% while reducing the computation times by more than 92%. 

The next part of this study eliminates the effects of the remaining normal stress that is generated 

at the curved free-surface by half-space assumption, when applying a heat load on the contact 

surface. To do so, the process calculates a correction factor for the applied counterbalance heat 

load. Therefore, the complete free boundary correction procedure includes two steps: the first 

determines the dimensions and location of the counterbalance heat patch controlling the heat 

flux crossing the curved free boundary, and the second modifies the counterbalancing heat load 

to cancel out the thermoelastic normal stress influence. Implementing the final model and 

comparing the results obtained for different cases with the results obtained from FEA proves 

that current method improves the precision more than 95% while reducing the required time 

up to 98% percent. 

The limitations of Article 3 and further recommendations include: 

• As before, the curved edges validated in this study for thermal analysis are limited to 

closed circular edges. A future study could consider other geometrical curved edges 

and the mixed curved and straight edges. 
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• This work could benefit from further developing the correction factor for more 

generalized thermal boundary conditions at the free-surface. 

Overall, after achieving the aforementioned contributions, this research presents a fast and 

reliable tool for analysis of a practical contact considering complete thermal aspects of a 

contact analysis. By using this tool, while gaining superior precision, the additional calculation 

time can be avoided. This approach will specifically advance lubricated contact modeling 

quality and swiftness because of its simplicity, speed, and agility. Thus, the excessive 

experimental trials and, consequently, their computational costs can be avoided for practical 

contacts. 

This model is a practical tool specifically for analysis and development of the contacts with 

textured or grooved surfaces. As mentioned earlier in Section 1.12 , this kind of contacts has 

drawn a lot of attention like the studies performed in (Manser et al., 2019 ; Morris et al., 2018 ; 

Siripuram & Stephens, 2004 ; Tala-Ighil et al., 2007). Because of their benefits and importance, 

these textured surfaces are being used by well-known bearing manufacturers like SKF (SKF, 

2012). 
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