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FOREWORD

The work contained in this thesis consists of the research outcomes accomplished during my

doctoral degree under the supervision of Dr. Georges Kaddoum from August 2016 to August

2021. This work was financially supported by the Mitacs Globalink Graduate Fellowship, the

FRQNT B2X Fellowship and the Mitacs Accelerate Fellowship.

The main topic of this thesis is the modelling and optimization of multiple access technologies

for 5G networks and beyond. During my Ph.D. studies, I composed one accepted conference

paper, one accepted journal paper and two journal papers currently under review. Additionally, I

was a co-author on five journal papers, one conference paper and one magazine article.

The first two chapters of the thesis include the background of multiple access technologies and

an in-depth review of the state-of-the-art. The remaining chapters are based on the publications

authored during my doctorate. Finally, chapter six presents the conclusions of the thesis and

presents future research directions.
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Modélisation et Optimisation des Accès Multiples sur les Réseaux 5G et Au-Delà

Joao Victor DE CARVALHO EVANGELISTA

RÉSUMÉ

Au cours des cinq dernières années, la 5G est passée d’un ensemble d’exigences à une norme de

communication cellulaire entièrement spécifiée. Les objectifs de conception de la 5G ont suivi

la tendance des normes LTE et ont ajouté la prise en charge de nouveaux services parallèlement

aux améliorations des communications voix et données. Naturellement, ces nouveaux services

ont des exigences de qualité de service différentes de celles des applications voix et données.

Pour prendre en charge une myriade d’applications différentes avec des exigences distinctes, la

conception des spécifications 5G doit être très flexible, prenant en charge plusieurs numérologies,

structures de trames et procédures d’accès aléatoire. Ces changements ont exigé une refonte

radicale de plusieurs technologies utilisées dans les réseaux précédents, notamment en repensant

l’accès multiple.

Les nouveaux services pris en charge par la 5G sont regroupés en trois ensembles d’applications

en fonction de leurs besoins : l’évolution du haut-débit mobile (eMBB), les communications

machine massives (mMTC) et les communications à ultra haute fiabilité et faible latence

(URLLC). Alors que les services eMBB font principalement référence à l’amélioration des

applications de données actuelles, les applications mMTC et URLLC n’étaient auparavant pas

prises en charge par les anciennes normes cellulaires.

Au moment de la rédaction de cette thèse, la spécification de la 5G non autonome, essentiellement

la 5G fonctionnant au-dessus des réseaux LTE existants, est terminée. La spécification de la 5G

autonome devrait être finalisée dans l’année à venir. Néanmoins, le développement de nouvelles

normes cellulaires est un processus progressif, et il reste encore beaucoup à faire pour répondre

aux exigences stipulées pour les réseaux 5G et au-delà. Par conséquent, le sujet principal de

ce travail est de proposer de nouveaux modèles mathématiques pour permettre l’évaluation

théorique des performances des réseaux 5G en ce qui concerne l’accès multiple et de proposer

de nouvelles méthodes d’optimisation pour garantir les performances nécessaires aux services

5G. Dans ce contexte, le deuxième chapitre de cette thèse s’intéresse à l’optimisation de l’accès

multiple à code clairsemé (SCMA). Le SCMA permet au réseau de servir plus d’utilisateurs que

de ressources orthogonales, et émerge donc comme un catalyseur de connectivité massive. Nous

formulons deux problèmes d’optimisation : l’un cherchant à maximiser le débit total du réseau

et l’autre l’équité. Nous prouvons formellement la complexité des deux problèmes et proposons

deux algorithmes d’optimisation sous-optimaux et comparons leurs performances avec d’autres

algorithmes de la littérature. De plus, nous analysons l’impact des informations d’état de canal

non à jour sur les performances des algorithmes.

Le troisième chapitre de cette thèse se concentre sur la modélisation des réseaux d’accès en

liaison montante sans autorisation habilité par le SCMA. Nous modélisons ce système dans le

cadre de la géométrie stochastique et dérivons des expressions analytiques de pour la densité
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spectrale de surface et la probabilité de réussite de la transmission. Enfin, nous comparons les

performances et l’évolutivité du SCMA avec un système d’accès multiple orthogonal.

Dans le quatrième chapitre, nous concentrons nos efforts sur les aspects du service URLLC.

Nous considérons un système d’accès en liaison montante sans autorisation fonctionnant sur

le spectre des ondes millimétriques avec des stations de base équipées de réseaux d’antennes

massifs pour effectuer une formation de faisceau conjuguée afin de séparer les signaux de

differents utilisateurs. Nous utilisons un modèle géométrique stochastique spatio-temporel pour

dériver des expressions pour la fiabilité du système et la probabilité de défaillance d’accès,

et du délai. Enfin, nous étudions l’impact du nombre d’antennes de stations de base sur les

performances et évaluons l’adéquation de ce schéma pour satisfaire les exigences strictes de

qualité de service des applications URLLC.

Le cinquième chapitre de cette thèse concerne le problème d’adaptation de la liaison distribuée

dans le cadre d’une transmission sans autorisation en liaison montante dans un système mMTC.

Comme les applications mMTC sont limitées en puissance, nous modélisons le problème comme

une minimisation intercouche de puissance moyenne sous des contraintes de délai spécifiques

à l’utilisateur. Nous formulons le problème sous la forme d’un jeu stochastique partiellement

observable et proposons trois algorithmes distribués différents basés sur l’apprentissage par

renforcement. Nous évaluons les performances des algorithmes concernant la consommation

électrique moyenne et le délai du réseau. De plus, nous comparons les performances des

algorithmes avec une solution de base basée sur un protocole de demande de répétition

automatique hybride réactif augmentant la puissance. Nous concluons le chapitre en analysant

les compromis impliquant les performances des algorithmes et la surcharge de signalisation

qu’ils nécessitent.

Mots-clés: 5G, réseaux d’accès de liaison montante sans autorisation, accès multiple, mMTC,

URLLC



Modeling and Optimization of Multiple Access for 5G Networks and Beyond

Joao Victor DE CARVALHO EVANGELISTA

ABSTRACT

5G has evolved from a set of requirements to a fully specified cellular communication standard

in the last five years. 5G’s design goals followed the trend in LTE standards and added support

to new services alongside voice and data communications improvements. Naturally, these new

services have different quality of service requirements than voice and data applications. To

support a myriad of different services with distinct requirements, the design of 5G specifications

must be highly flexible, supporting multiple numerologies, frame structures, and random access

procedures. These changes demanded a radical redesign of several technologies used in previous

networks, including rethinking multiple access.

The new services supported by 5G are grouped into three sets of applications based on their

requirements: enhanced Mobile Broadband (eMBB), massive Machine Type Communication

(mMTC), and Ultra-Reliable Low-Latency Communications (URLLC). While eMBB services

mainly refer to the enhancement of current data applications, both mMTC and URLLC address

applications not supported by past cellular standards.

At the time of writing this thesis, the specification of non-standalone 5G, basically 5G operating

on top of legacy LTE networks, is finished. The specification for standalone 5G should be

finalized in the coming year. Nonetheless, the development of new cellular standards is a gradual

process, and there is much work to be done to fulfill the requirements stipulated for 5G networks.

Therefore, the main topic of this work is to propose novel mathematical models to allow the

theoretical evaluation of the performance of 5G networks with regards to the multiple access and

propose novel optimization methods to guarantee the performance needed for the 5G service.

In this setting, the second chapter of this thesis is concerned with optimizing sparse code multiple

access (SCMA). SCMA allows the network to schedule more users than orthogonal resources,

emerging as an enabler of massive connectivity. We formulate two optimization problems: one

seeking to maximize the sum rate of the network and the other the fairness. We formally prove

the complexity of both problems and propose two sub-optimal optimization algorithms and

compare their performances with available algorithms from the literature. Moreover, we analyze

the impact of outdated channel state information on the algorithms performance.

The third chapter of this thesis focuses on the modelling of SCMA enabled grant-free access

networks. We model this system within the stochastic geometry framework and derive closed-

form analytical expressions for the area spectral density and the probability of transmission

success. Finally, we compare SCMA’s performance and scalability with an orthogonal multiple

access system.

In the fourth chapter, we focus our efforts on the multiple access aspects of the uplink URLLC

service. We consider a grant-free access system operating on the millimetre-wave spectrum
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with base stations equipped with massive antenna arrays to perform conjugate beamforming to

separate the signal from distinct users. We use a spatiotemporal stochastic geometric model to

derive closed-form expressions for the system’s reliability and latent access failure probability.

Finally, we investigate the impact of the number of base station antennas on the performance

and evaluate the suitability of this scheme to satisfy the stringent URLLC quality of service

requirements.

The fifth chapter of this thesis concerns the distributed link adaptation problem of the uplink

transmissions in a grant-free mMTC system. As mMTC applications are power limited, we model

the problem as a cross-layer average power minimization under user-specific delay constraints.

We formulate the problem as a partially observable stochastic game and propose three different

distributed algorithms based on reinforcement learning. We evaluate the performance of the

algorithms concerning the network’s average power consumption and delay. Furthermore,

we compare the algorithms’ performance with a baseline solution based on a power-boosting

reactive hybrid automatic repeat request protocol. We conclude the chapter by analyzing the

tradeoffs involving the algorithms’ performance and the signalling overhead they require.

Keywords: 5G, grant-free access, multiple access, mMTC, URLLC
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INTRODUCTION

0.1 Motivation

In the past decades, wireless communications have significantly impacted several industries

and shaped how people interact nowadays. Military goals drove the first efforts on wireless

communication development, and for a long time, access to this technology remained out of

the reach of the general public. First-generation systems (1G) were introduced in the early

eighties and introduced the public to the possibility of communication without the need for wires.

Second-generation systems (2G) switched from the analog modulated signals of 1G to digitally

modulated ones, where the voice was quantized, modulated and transmitted as a continuous

stream of bits. This transition was motivated by the higher capacity, improved cost, efficiency,

and speed of digital systems. Data applications were gradually introduced in 2G systems

and were consolidated on third-generation systems (3G). 3G maintained voice support and

added support for data transmission over circuit-switched systems. The evolution of electronic

hardware made handheld devices with huge computing power possible. This resulted in a higher

demand for widespread connectivity and new data-hungry services, which required similar

performance as wired broadband systems. This new demand gave birth to fourth-generation

systems (4G) purely focused on data services. Voice over internet protocol (VoIP) and voice

over long term evolution (VoLTE) were introduced to provide voice and multimedia services

using packet data to replace the previous circuit-switched format. Despite the increased data

rates brought by 4G, there are new consumer demands that this technology cannot satisfy. For

instance, the introduction of augmented reality (AR), the increase of multimedia over voice

services, and the massive connectivity required by the internet of things (IoT).

In this context, fifth-generation (5G) cellular networks are designed with the ambitious goals of

satisfying multiple emergent use-cases with conflicting requirements. Thus, 5G services are

split into three categories according to their quality of service (QoS) requirements:
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• Enhanced Mobile Broadband (eMBB): This category consists of most of the services

previously offered by LTE. So, eMBB service targets traditional human-to-human (H2H)

communications, transmitting both voice and data. Thus, the mission of the 5G eMBB

technologies is to enhance the QoS by supporting larger data volumes, better user experience,

higher data rates, and higher mobility.

• Massive Machine-Type Communication (mMTC): This category consists of services

aimed at applications consisting on a massive number of machine type devices (MTDs), such

as remote sensors and smart city monitoring. This type of applications have fundamentally

different QoS requirements from traditional services under the eMBB umbrella. MTDs

usually have to transmit small packets sporadically and usually do not require high data

rates and large data volumes. Moreover, these devices must operate with very little power

consumption, enabling extremely long battery life (up to tens of years).

• Ultra Reliable Low-Latency Communications (URLLC): This category encompasses

critical services that require low-latency and very high reliability, such as critical IoT (cIoT)

systems, vehicular networks, urban safety and critical industrial automation.

Despite the development of 5G, LTE networks are not going anywhere. Therefore, the integration

and coexistence of LTE and 5G is another topic of concern to radio engineers and researchers

alike.

In order to meet the ambitious goals set by 5G specifications, the third generation partnership

project (3GPP), a consortium of worldwide telecommunication standards organizations, decided

that a complete redesign of the radio access technology (RAT) was necessary. In the fall of 2015,

the first steps towards this goal were taken to introduce a new RAT standard, namely 5G New

Radio (NR). The standardization process of NR is done in steps marked by 3GPP releases. In

December 2020, 3GPP release 17 (the third release of 5G standards) was unveiled, and currently,

the standards organizations and telecom companies are working on the specifications for release
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18. So far, the leading technologies introduced by 5G NR are (Dahlman, Parkvall & Skold,

2018):

• Higher frequency operation and spectrum flexibility.

• Ultra-lean design.

• Flexible orthogonal frequency division multiplexing (OFDM) numerology.

• Flexible frame structure with slots of different durations.

• Flexible duplex schemes, with frequency division duplexing (FDD) and time division

duplexing (TDD) being used in different frequency bands.

• Advanced antenna systems enabled by a massive number of antennas.

• Streamlined initial access and addition of two-step random access.

• Carrier aggregation and dual connectivity support between NR and LTE.

• Dual active protocol stack to reduce handover overhead.

• Crosslink interference mitigation and remote interference management.

• Integrated access backhaul.

• NR operation in unlicensed spectra.

The introduction of new technologies demands for new mathematical models to characterize the

performance of 5G networks. Additionally, the goal of servicing new classes of applications has

shifted the sole focus from improving the network data rates to more complex QoS requirements,

such as low-latency and high reliability in URLLC applications and massive scalability in

mMTC.

0.2 Problem Statement

In this thesis, we focus our efforts on the role of multiple access technologies in enabling

the QoS requirements of 5G services. Traditionally, cellular networks follow an orthogonal

multiple access (OMA) approach to user scheduling. Each user must request a channel, and

the base station (BS) must resolve the requests and allocate dedicated orthogonal channels
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(also referred to as grants) to these users to finally transmit their data. This method works

pretty well to satisfy the QoS requirements of voice and data services. However, it has severe

limitations to fulfill novel applications that 5G networks must serve. In this context, the adoption

of non-orthogonal multiple access (NOMA) schemes has become a hot research topic within

the wireless communications community (Vaezi et al., 2019). In NOMA, multiple devices are

allowed to share the same network resources (Ding, Yang, Fan & Poor, 2014). As the wireless

spectrum is both finite and expensive, this enables the network to overload its resources, serving

a larger number of users than in OMA, which is perfectly aligned with 5G applications that

require massive connectivity. Additionally, NOMA can enhance the uplink ergodic sum rate of

the network by benefiting from the near-far effect experienced by users near the BS and on the

cell edge, and from the small scale fading (Wei, Yang, Ng, Yuan & Hanzo, 2019). However,

users sharing the same resources will naturally interfere with each other, so careful optimization

of the subcarrier scheduling, the user grouping, and the power allocation is essential to reap the

benefits promised by NOMA technologies. Therefore, one of the objectives of this thesis is to

study novel optimization strategies that optimize resource allocation in NOMA.

Furthermore, we consider the role of grant-free, as opposed to grant-based, uplink data

transmission in fulfilling the QoS requirements of mMTC and URLLC services. In grant-based

multiple access, the users must send a request for a dedicated channel before initiating data

transmission. After receiving requests from all active users, the BS resolves conflicts and

schedules dedicated network resources to receive the data transmission of selected users. This

access paradigm is particularly suitable for eMBB services, primarily for H2H voice and data

applications. LTE standards adopt it in a four-step random access procedure (Vilgelm, Schiessl,

Al-Zubaidy, Kellerer & Gross, 2018). However, mMTC applications need to serve a massive

number of user devices that transmit small packets sporadically, using the least amount of

power possible. In this scenario, the devices might spend more power requesting a dedicated

channel than transmitting data (Au et al., 2014). In this setting, grant-free access presents
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itself as an attractive solution. In grant-free access, the device transmits its data directly on the

random access channel, potentially saving the power that would be spent requesting dedicated

resources and even increasing its throughput (Gao & Dai, 2019). It is worth highlighting that

grant-free access is subjected to collisions, requiring data retransmissions. Thus, grant-free

access systems need to be well designed to obtain power savings in comparison to grant-based.

This poses a challenging problem of optimizing the channel access in grant-free systems with

little coordination from a central BS. Hence, in this thesis, we investigate aspects related to the

decentralized optimization of grant-free access networks and their scalability with respect to the

number of supported users.

On top of the power spent in the resource request procedure, grant-based access also incurs an

additional latency. In LTE networks, it takes at least 10 ms to transmit a single packet from

the moment it arrives at the physical layer queue. Therefore, grant-free access is a promising

path to reach the stringent latency constraints required in URLLC networks. The analysis

of URLLC applications required the development of new mathematical models. Typically,

physical layer researchers would analyze the performance of cellular systems with detailed

models for the wireless channel, user location and transmitted signals with little to no regard to

the temporal aspects of the network. On the other hand, medium access control (MAC) and

network layer research would analyze the systems’ temporal aspects through detailed queuing

models while abstracting most of the radio signals and propagation aspects. However, both

physical and temporal aspects are of utmost importance to fully characterize the performance

of URLLC services. This fomented the development of novel spatiotemporal models based

on the integration of stochastic geometry with the temporal modeling of the network (Chisci,

ElSawy, Conti, Alouini & Win, 2019). In this work, we are also concerned with developing

mathematical models for the spatiotemporal analysis of the impact of new 5G technologies in

URLLC services.
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0.3 Research Objectives

The set of services expected to be supported by 5G and next-generation networks is exceptionally

diverse. Thus, a one-size-fits-all approach to the network design is doom to fail. In this

context, 5G NR is designed to be highly flexible and future-proof. As a consequence, distinct

mathematical models are required to characterize the performance of different classes of services.

The broad objective of this thesis is to propose novel mathematical models and optimization

algorithms to different multiple access technologies while incorporating the particularities of

the service constraints and QoS requirements. More specifically, we focus on the following four

objectives:

• Power-division multiplexing NOMA (PDM-NOMA), previously known as superposition

coding, is superior to OMA (Wei et al., 2019; Chen, Ding, Dai & Zhang, 2017; Zeng, Yadav,

Dobre, Tsiropoulos & Poor, 2017; Liu, Pan, Zhang & Song, 2016) concerning its sum-rate

and ergodic capacity. Moreover, from an information-theoretic perspective, SCMA can

achieve better performance than PDM-NOMA (Moltafet, Yamchi, Javan & Azmi, 2018b).

Therefore, this thesis aims to propose novel optimization methods for uplink SCMA in eMBB

applications and the tradeoff between throughput maximization and fairness.

• When using NOMA, the network can overload its resources by scheduling more users than

there are orthogonal resources available. This property makes NOMA a potential technology

to enable massive connectivity in mMTC. Hence, this thesis aims to develop a mathematical

model to characterize the performance of uplink grant-free SCMA in mMTC networks

concerning its area spectral efficiency and scalability.

• When investigating novel access technologies, it is essential to characterize its interplay

with other established 5G NR methods. So, the third objective of this research is to

model the latency and scalability of uplink grant-free access using massive multiple-input
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multiple-output (MIMO) BSs in millimetre wave (mmWave) frequencies serving URLLC

applications.

• Grant-free access eliminates the overhead of requesting a dedicated channel, thus reducing

the power and latency of a transmission attempt; however, it is susceptible to collisions.

Accordingly, the optimization of the transmitted power, channel access attempt and modulation

and coding selection (MCS) is crucial to avoid collisions when many users are contending for

the same resources. As there is no central coordination to select these parameters, optimizing

such networks is a challenging problem. Therefore, the fourth objective of this thesis is to

propose decentralized optimization algorithms for grant-free mMTC networks.

0.4 Contributions and Outline

The thesis is structured according to the graph shown in Figure 0.1.

Chapter 1 includes a comprehensive literature review of NOMA, grant-free access, and their

roles in 5G. We focus on the aspects and mathematical tools most relevant to the topics covered

in the thesis.

In Chapter 2, we formulate the optimization problems to maximize the sum rate and the fairness of

uplink SCMA systems. We prove that both problems are non-deterministic polynomial-time hard

(NP-hard), and we propose two novel algorithms, based on the successive convex approximation

(SCA) method (Razaviyayn, 2014). We show that these algorithms can find locally optimal

solutions to the sub-problems and that they can perform algorithms designed through heuristics

(Dabiri & Saeedi, 2018). Additionally, we establish the convergence rate of the algorithms and

analyze their performance when only outdated channel state information (CSI) is available.

In Chapter 3, we consider a grant-free uplink SCMA network serving mMTC applications. We

model both the users and the BSs in the system as homogeneous Poisson point processes (HPPPs)

(Haenggi, 2013), and we obtain closed-form analytical expressions for both the probability of
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Figure 0.1 Diagram summarizing the thesis structure

success and the area spectral efficiency of this system. We do the same for OMA systems and

compare their performance concerning the scalability and area spectral efficiency, showing the

gains obtained by using SCMA.

In Chapter 4, we formulate a spatiotemporal model to characterize the performance of an uplink

grant-free system serving URLLC applications. In this model, we consider that the BS is

equipped with a massive antenna array and that the transmissions use the mmWave band of the

spectrum. Also, we include the hybrid automatic repeat request (HARQ) mechanism in the

performance analysis of the system. We analyze the network’s performance with respect to the
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reliability and latency while characterizing the impact of the number of antennas in the BS has

on the performance for different URLLC QoS requirements.

In Chapter 5, we consider the problem of uplink MCS and channel access attempts in a cellular

network designed to provide mMTC service. We formulate this problem as a power minimization

under latency constraints. We show that this problem is intractable and propose three novel

distributed solutions based on multiagent reinforcement learning (MARL). These distributed

solutions differ from the overhead needed for exchanging information so the users can coordinate

their access. We compare these algorithms with a baseline solution concerning the average

power consumption, average latency, average collisions, and overhead.

Finally, we conclude this thesis by summarizing the conclusions from the main chapters and

presenting recommendations for future works on the same subject.





CHAPTER 1

LITERATURE REVIEW

1.1 The 5G Standard

The standardization procedure of new cellular networks is a continuous process as new releases

introduce new technologies to support a constantly developing class of services. Since the fall of

2015, the 3GPP started developing the 5G NR standards. So far, releases 15 and 16 have covered

the basic specifications for non-standalone and standalone 5G, respectively. The 3GPP member

organizations are currently developing the specifications of release 17, which is expected to be

finalized and published in June 2022. In this section, we provide a literature review of the novel

technologies introduced in 5G NR, and the supporting research literature, that are of relevance

to the theme covered in this thesis.

1.1.1 Spectrum

Distinct frequency bands have distinct propagation characteristics. As a rule of thumb,

electromagnetic waves in the higher end of the spectrum (tens of GHz) suffer from higher

propagation, penetration, and blockage losses in comparison to waves on the lower-ends

(hundreds of MHz) (Americas, 2020). From the Friis equation, the free space path loss of an

electromagnetic wave is derived as

𝐿𝐹𝑆 =
𝑃𝑇

𝑃𝑅
=

(
4𝜋𝑑

𝜆

)2

, (1.1)

where 𝑃𝑇 and 𝑃𝑅 are the transmitted and received powers, respectively, 𝑑 is the distance between

the transmitter and the receiver, and 𝜆 is the wavelength. Consequently, as the wave frequency

increases (and the wavelength decreases), the received power decreases following an inverse

square law. Moreover, objects in the wave’s propagation path are relatively large compared to

the wave’s wavelength, resulting in more diffused scattering and higher attenuation of the signal.
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Hence, the signal strength of reflected waves is significantly lower. Due to the severe signal

strength loss experienced by these reflected signals, mmWave typically requires a line-of-sight

(LOS) link.

For this reason, cellular standards up to LTE have used the spectrum bands from 450 MHz

to 6 GHz to provide wide area coverage. On the other hand, electromagnetic signals on the

higher end of the spectrum can transmit way more information. Two of the requirements of

5G networks are the hundred-fold and ten-fold increase in the area spectral efficiency and in

the connection density, respectively, when compared to LTE (ITU, 2015) are impossible to be

achieved without expanding the spectrum usage. Hence, to support such ambitious requirements,

5G NR release 15 standardized the spectrum usage in the mmWave range. The spectrum is

divided into two regions (3GPP, 2021a):

• Frequency range 1 (FR1): from 410 MHz to 7125 MHz.

• Frequency range 2 (FR2): from 24.25 GHz to 52.6 GHz.

This spurred the need to adapt current wireless communications mathematical models and

protocols to the particularities of mmWave propagation.

The importance of mmWave in 5G NR has attracted much attention from the wireless research

community to the modelling of mmWave networks. In (Rappaport et al., 2013), the authors

present the motivation for mmWave systems, and the methodology and hardware required

to analyze communications signals on the mmWave spectrum. They collect propagation

measurements and propose statistical models to characterize the propagation characteristics of

mmWave signals in urban environments in the 28 GHz and 38 GHz bands. In (Mezzavilla et al.,

2018), Mezzavilla et al introduce a discrete-event mmWave network simulator that enables the

development of cross-layer simulations of 5G protocols. In (Thornburg, Bai & Heath, 2016),

the authors propose several blockage models based on stochastic geometry to effectively model

the impact of blockers in an extensive wireless network in a mathematically tractable way.

Besides modelling mmWave, a rich body of literature investigating mmWave as an enabling

technology for various 5G services has been developed. In (Ford et al., 2017), the authors
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present a survey of the challenges and possible solutions involved in delivering end-to-end,

reliable, ultra low-latency services in mmWave cellular systems. In (Roh et al., 2014), the

authors use collected measurements and theoretical propagation models to develop novel hybrid

beamforming schemes. The authors perform link-level and system-level simulations and indoor

and outdoor measurements to demonstrate the performance gains obtained by the proposed

schemes.

1.1.2 Numerology and Transmission Structure

The (3GPP, 2021b) document defines 5G NR’s transmission structure. Similar to LTE, 5G

NR also uses an OFDM waveform for its time dispersion characteristics and the easiness of

exploiting time and frequency domains when structuring different signals and channels, both

in the uplink and downlink. However, while LTE has a fixed OFDM numerology (subcarrier

spacing, cyclic prefix length and symbol duration), 5G NR employs a scalable numerology,

designed to accomodate the requirementes of different services and operation on distinct

frequency bands. Table 1.1 shows the five numerology configurations available on 5G NR.

Table 1.1 5G NR scalable numerology

Frequency Band Subcarrier Spacing (kHz) Symbol Time (𝝁s) Cyclic Prefix (𝝁s)
FR1 15 66.7 4.7

FR1 30 33.3 2.3

FR1 & FR2 60 16.7 1.2

FR2 120 8.33 0.59

FR2 240 4.17 0.29

5G NR transmissions are split into frames composed of 10 equally divided subframes in the

time domain. The subframes are, in turn, composed of slots, and each slot contains 14 OFDM

symbols. One frame lasts 10 ms, and one subframe lasts 1 ms. The length of each slot depends on

the numerology selected. Figure 1.1 shows the 5G NR frame structure for different numerologies.

As the subframe length is fixed, the larger the subcarrier spacing, the more slots are contained
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within the subframe. As each slot accounts for a different transmission opportunity, higher-order

numerologies enable low-latency communications.

Figure 1.1 5G NR Frame
Taken From Dahlman et al. (2018)

1.1.3 Random Access

The 5G NR standards specification concerning random access is defined in (3GPP, 2018a). It

offers two access options: four-step random access and two-step random access 1. As the name

suggests, four-step random access requires each user to undergo a four-step process to acquire a

dedicated channel to transmits its data. These steps are summarized below:

• Step 1: The users who have packets in their queues transmit a randomly chosen orthogonal

preamble. The user repeats this step until it receives the feedback indicated in Step 2.

• Step 2: The network transmits a random access response (RAR) signal back, indicating the

reception of the preambles, along with necessary control information.

1 The terms two-step random access, packet-based access, contention-based access, and grant-free access

denote the same philosophy of random access. Additionally, four-step random access, connection-based

access, contention-free access, and grant-based access also mean the same approach. In this thesis, we

use all these synonyms interchangeably
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• Step 3: The users send a message on the uplink to resolve contention (multiple users

transmitting the same preamble on Step 1).

• Step 4: The network replies to the message sent on Step 3 with a contention resolution

message.

This random access procedure must be realized on the initial access, during handover, to

reestablish uplink synchronization, and whenever a device needs to transmit but has not been

scheduled resources to do so yet.

We outline the steps required to perform two-step random access below:

• Step 1: The users who have packets in their queues transmit a randomly chosen orthogonal

preamble together with its payload.

• Step 2: The network sends back a message indicating successful/failed reception of Step 1

together with any necessary control information.

Figure 1.2 illustrates the differences between the different random access procedures.

Figure 1.2 Illustration of the access procedure in the two-step

random access on the left and four-step random access on the

right
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There is a clear difference between the two access procedures. The four-step random access

mechanism guarantees that the payload transmission happens on a dedicated orthogonal resource,

eliminating all sources of intracell interference. However, all users must request a channel before

transmitting any data. This configuration is particularly suitable for eMBB services. On the

other hand, in the two-step random access scheme, the users skip the resource request stage

entirely and transmit their data directly on the random access channel. However, there is a price

to pay. Since in this configuration the users transmit their data on the same network resources,

the transmissions are vulnerable to collisions. This scheme is suitable for applications requiring

ultra-low latency, as there is no time wasted on requesting a network resource and spending

power on transmitting small packets sporadically.

Historically, cellular networks have relied on four-step random access systems up to the LTE

standards. Hence, the inclusion of two-step random access led to a growing interest by the

research community to design and optimize 5G NR networks for the services for which such

scheme is suitable.

In (Gao & Dai, 2019), the authors investigate the threshold of the time needed to transmit a

packet for which it makes more sense to use grant-based access as opposed to grant-free. They

identify that grant-free transmission is more efficient than grant-based concerning the throughput

when carrier sensing is present. This result is significant when considering grant-free access for

mMTC services. A similar analysis is conducted in (Gharbieh, ElSawy, Yang, Bader & Alouini,

2018). However, instead of using queuing models, Gharbieh et al use a spatiotemporal model

that incorporates stochastic geometry to model the spatially dependent behaviour of the system,

and queuing theory, to model its temporal aspects. Despite arriving at similar results, this work

introduces spatiotemporal models as a powerful tool to analyze the latency and throughput in

large wireless networks. In (Au et al., 2014) the authors propose a grant-free access network

using SCMA to enable massive connectivity. They conduct a link-level analysis of the proposed

system and present an interesting observation, when transmitting small packets as much as 30%

of the power spent while transmitting one packet is wasted on the grant request.
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Much research on grant-free access to enable URLLC service has also been developed. In

(Singh, Tirkkonen, Li & Uusitalo, 2018), the authors consider a system where the users need to

transmit small packets with high reliability. They propose grant-free access as a mean to achieve

low latency and data repetition to achieve reliability. They obtain an analytical expression that,

for a given reliability requirement, determines when grant-free access is advantageous compared

to grant-based transmission. In (Liu, Wu, Zhang, Fang & Li, 2020), Liu et al, develop a

sophisticated spatiotemporal model to evaluate the performance of grant-free access for URLLC

applications. They compare the latency and reliability of the system with reactive, 𝐾-repetition,

and proactive HARQ protocols with power-boosting.

1.2 Non-orthogonal Multiple Access

In a multiuser communication system, the system must split resources between the users, a

process known as channelization, in order for multiple users to receive and transmit information

simultaneously. There are two different types of multiuser channels, the downlink channel and

the uplink channel. In the downlink channel, one source is transmitting to many receivers (In a

mobile network, a BS is transmitting to users), Figure 1.3 illustrates this concept. Meanwhile,

many sources transmit to a single receiver in the uplink channel (In a mobile network, many users

transmit to a BS). This concept is illustrated in Figure 1.4. In OMA systems, the channelization

procedure splits the networks resources in an orthogonal fashion. Therefore, data streams of

different users do not interfere with each other. Hence, the receiver can separate the streams

from different users efficiently. On the other hand, in NOMA systems, the resources are split

non-orthogonally, resulting in an overlap of the resources allocated to different users. In order

to separate data streams from different users, the receiver must apply MUD techniques. OMA

systems minimize inter-user interference by allocating non-overlapping resources to each user.

However, due to the finite nature of available resources, the number of users allowed to transmit

and receive simultaneously is limited. Furthermore, not all users need to transmit/receive at

full capacity of their allocated channels at all times. Hence, OMA systems tend to be wasteful

with regard to network resources. In this scenario, given the current spectrum scarcity and
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Figure 1.3 Downlink channel diagram

Figure 1.4 Uplink channel diagram

the requirement of massive connectivity imposed by 5G goals, NOMA becomes an attractive

solution.
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Two main subsets of NOMA schemes are proposed for 5G, power division NOMA (PDM-

NOMA), focusing on single-carrier systems, and code division NOMA (CDM-NOMA) on

multi-carrier systems. In the following sections, a description of the fundamentals of both

subsets, along with a review of the state-of-the-art, is presented.

1.2.1 Power Division Multiplexing NOMA

The main idea of PDM-NOMA is to allocate different power levels for users sharing the same

resources such that the receiver can perform successive interference cancellation (SIC) to remove

the messages destined to other users and decode their intended message. An illustrative diagram

of the distinction between the resource allocation in OMA versus PDM-NOMA networks is

shown in Figure 1.5, where blocks of different colours represent different users.

Figure 1.5 Resource allocation in OMA versus PDM-NOMA

In a PDM-NOMA downlink scheme, in which 𝐽 users share the same resource and their channels

are ordered such that |ℎ1 |2 ≥ |ℎ2 |2 ≥ · · · ≥ |ℎ𝐽 |2, the BS transmits the messages to all users on

the same resource, with different powers allocated to each message. Thus, the signal received by

user 𝑗 is given by

𝑦 𝑗 = ℎ 𝑗

𝐽∑
𝑖=1

√
𝛽𝑖𝑃𝑠𝑖 + 𝑛 𝑗 , (1.2)

where 𝛽𝑖 is the power ratio allocated to user 𝑖, such that 𝛽1 < 𝛽2 < · · · < 𝛽𝐽 , 𝑃 is the total power

budget, 𝑠𝑖 is the message to the 𝑖-th user, ℎ 𝑗 is the fading channel gain between the base station
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and user 𝑗 , and 𝑛 𝑗 is the receiver noise of user 𝑗 . In the uplink scenario the received signal at

the base station is given by

𝑦𝐵𝑆 =
𝐽∑

𝑖=1

√
𝛽𝑖𝑃ℎ𝑖𝑠𝑖 + 𝑛. (1.3)

The symbol transmitted in a NOMA link is the superposition of the symbols transmitted to all

users. Figure 1.6 shows the resulting quadrature amplitude modulation (QAM) superposed

constellation for a 2-user PDM-NOMA downlink as an example.

Figure 1.6 Superposed

constellation of 2-user

PDM-NOMA

In the downlink, each user employs SIC to separate its message. Specifically user 𝑗 , such that

1 ≤ 𝑗 ≤ 𝐽, decodes the messages from users 𝐽 to 𝑗 + 1 (the users with channel quality worse than

user 𝑗) and remove them from the received signal, sequentially. While decoding a message, the

messages from users with better channel quality are treated as interference. A similar decoding

procedure is executed in the uplink scenario, with the addition that the BS must go through the

messages from all users.

In order to enhance the performance of PDM-NOMA, the combination of NOMA with different

technologies has been proposed. Two of these approaches are mentioned in this work: MIMO
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PDM-NOMA and cooperative PDM-NOMA. In MIMO PDM-NOMA, the combination of

NOMA with MIMO can improve signal diversity and interference reduction in the beamforming

mode and spectral efficiency on the spatial multiplexing mode. In cooperative PDM-NOMA,

the main goal is to improve the coverage of cell-edge users.

1.2.1.1 MIMO PDM-NOMA

Both MIMO and NOMA technology were proposed to improve the spectral efficiency of a

network. Hence, by effectively combining them, even more significant improvements are

expected.

In this scenario, both BS and users are equipped with multiple antennas. In downlink

transmission, the BS has two options: use its antennas for beamforming in order to improve the

signal-to-interference-plus-noise ratio (SINR), or, for spatial multiplexing, increasing the overall

throughput.

Considering MIMO PDM-NOMA with beamforming, the users are grouped into clusters, such

that users in the same cluster have highly correlated channel vectors. The same beam is used to

transmit to users in the same cluster, and they perform SIC to obtain their intended signal. Figure

1.7 illustrates the case considering 4 users. Ideally, the beam intended for one cluster must be

orthogonal to the channel vector of users from other clusters to minimize inter-cluster interference.

In (Ding, Adachi & Poor, 2016a), the authors propose a beamforming PDM-NOMA scheme

supporting 2𝑁 users served on the same time-frequency resources with 𝑁 beams, where the

beams are obtained through zero-forcing (ZF) (Goldsmith, 2005). An alternative implementation

is proposed in (Choi, 2015), where a two-stage beamforming approach based on multicast

transmission is presented by the authors.

In contrast to beamforming PDM-NOMA, in spatial multiplexing PDM-NOMA, the goal is to

increase the spatial multiplexing gain using multiple antennas. Thus, each antenna transmits an

independent data stream, increasing the spectral efficiency of the cell. In spatial multiplexing,

PDM-NOMA information transmitted to multiple users are multiplexed in the power domain
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Figure 1.7 Diagram of MIMO PDM-NOMA

system

into each independent data stream. Therefore, SIC is performed independently on each data

stream to recover the transmitted information. In traditional MIMO systems, the factor of

spectral efficiency increase is equal to the minimum between the numbers of transmitting and

receiving antennas (Goldsmith, 2005). In (Sun, Han, I & Pan, 2015), the achievable rate of a

spatial multiplexing PDM-NOMA system is derived, and two algorithms are proposed for power

allocation in this scenario. Results are presented for a two-user scenario, and they show that the

achievable rate of spatially multiplexed PDM-NOMA is roughly two times larger than spatially

multiplexed OMA.

1.2.1.2 Cooperative PDM-NOMA

Cooperative communications is an effective way to provide spatial diversity and to increase

coverage in a wireless network. The main goal of introducing cooperative NOMA is to reduce

the outage probability of cell-edge users and improve their overall QoS. As in PDM-NOMA,

users with good channel quality must perform SIC to recover their messages, which means that

they have prior information about the messages transmitted to users with the worse channel.

PDM-NOMA is very well suited for the application of cooperative communications. In this

scenario, the users with good channels act as relays to the users with a bad channel. The

transmission procedure is divided into two steps, the transmission step and the cooperative step.
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During the transmission step, the BS transmits messages to all 𝐽 users, which perform SIC to

decode their information. The cooperative step consists of 𝐽 − 1 time slots, during time slot

𝑖 ∈ [2, 𝐽], user 𝑖 relays 𝑁 − 𝑖 messages to the users with channels worse than his. This scheme is

proposed and analyzed in (Ding, Peng & Poor, 2015), and it is shown that it achieves maximum

diversity gain for all users. However, this scheme does not scale well, as when the number of

users served on the same resources increases, more time slots have to be added to the cooperative

step. A possible approach to overcome this issue is to arrange the users into groups, where the

cooperative step is performed only within the group. The work in (Ding, Fan & Poor, 2016b)

proposes an algorithm for pairing users and evaluates its performance.

1.2.2 Code Domain Multiplexing NOMA

The main difference from PDM-NOMA is that CDM-NOMA was conceived with the multi-

carrier transmission in mind. The idea is to assign multiple carriers to each user based on a code.

In CDM-NOMA, the transmitter introduces redundancy in the transmitted symbol via code and

spreading to enable receivers to perform MUD and separate signals from different users. The

MUD procedure is usually performed by a message-passing algorithm (MPA), which is optimal

in the maximum a priori (MAP) sense, achieving a good balance between performance and

complexity.

In the multi-carrier multiple access schemes presented below, a scenario where 𝐽 users

communicate with a BS over 𝐾 network resources, which can be OFDM subcarriers, MIMO

spatial layers, etc, is assumed.

1.2.2.1 Multi Carrier Low Density Spreading Multiple Access

Multi-carrier OFDM modulation was originally proposed as a way to overcome inter symbol

interference (ISI) in wideband communications (Goldsmith, 2005). However, it does not exploit

the diversity gain, which can be obtained in multi-carrier transmission over frequency-selective

multipath channels. An alternative scheme was proposed (Yee & Linnartz, 1994), named multi-
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carrier code division multiple access (MC-CDMA), which provides full diversity gain, but does

not preserve orthogonality. Thus, it has to employ MUD to overcome inter-carrier interference

(ICI). In this scheme, the transmitted symbols are spread over all available carriers, and the

receiver performs MUD to extract its intended message. One of the drawbacks of MC-CDMA

is that the decoding complexity increases exponentially with the number of carriers available,

rendering this system unfeasible to scale. In (Choi, 2004) a variation of MC-CDMA is proposed,

where the transmitted symbols are spread over 𝑁 << 𝐾 subcarriers, where 𝑁 is the degree of

spreading and 𝐾 is the number of available sub-carriers. This scheme achieves a diversity gain

of 𝑁 , but the decoding complexity is reduced. Hence, the degree of spreading 𝑁 is a tradeoff

parameter between decoding complexity and diversity gain. In (van de Beek & Popovic, 2009)

a procedure to generate low density spreading sequences, which are referred to as signatures,

is proposed and its performance is evaluated. The proposed approach generates low density

uniquely decodable signatures with maximum, minimum distance between distinct codewords.

In Figure 1.8 a diagram of both downlink and uplink LDSMA systems is presented. In (a),

x = [𝑥1 𝑥2 · · · 𝑥𝐽]𝑇 represents the vector of the symbols transmitted to each user, the matrix

S = [s1 s2 · · · s𝐽] is the matrix of signatures, where s𝑖 is the signature of the 𝑖-th user. The

vectors n𝑖 and y𝑖 denote the noise vector and the received signal at user 𝑖, respectively. In (b), the

scalar 𝑥𝑖 is the symbol transmitted by user 𝑖, the vectors n and y are the noise and the received

signal at the BS, respectively.

Figure 1.8 (a) Diagram of downlink LDSMA system

(b) Diagram of uplink LDSMA system
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1.2.2.2 Sparse Code Multiple Access

The SCMA scheme was first proposed in (Nikopour & Baligh, 2013) as an extension of

MC-LDSMA. In the CDMA and the MC-LDSMA schemes, coded bits are first mapped into

a symbol, and this symbol is spread through different resources (in the case of CDMA, a

quasi-orthogonal spreading sequence is used while in MC-LDSMA, a sparse one is used). On

the other hand, the principle of SCMA is to encode the input coded bits into a multi-dimensional

constellation sparsely spread onto multiple resources, thus, benefiting from the shaping gain

factor of multi-dimensional constellations (Forney Jr. & Wei, 1989). Figure 1.9 compares the

structure of the LDS/CDMA modulator with the SCMA one. In an SCMA system, 𝐽 data layers

(users on the downlink scenario) are multiplexed over 𝐾 resources (OFDM sub-carriers, MIMO

spatial layers, ...), where each layer is transmitted over 𝑁 resources. The overloading factor of

the system is given by 𝜆 � 𝐽
𝐾 .

The SCMA encoder consists of a mapping 𝑓 : Blog2 (𝑀) → X, where X ⊂ C𝐾 with cardinality

|X| = 𝑀, and, 𝑀 is the order of the modulation being used. Then, we have that x = 𝑓 (b),
where x is a 𝐾 dimensional vector with 𝑁 < 𝐾 non-zero entries. The encode function 𝑓 (·) can

be rewritten as the composition of two operations: a constellation mapping 𝑔 : Blog2 (𝑀) → C,

where C ⊂ C𝑁 , and a binary mapping V ∈ B𝐾×𝑁 , so, 𝑓 � V𝑔. It is worth noting that V maps an

𝑁-dimensional codeword into a 𝐾 dimensional one and in order to guarantee the sparse structure

of the code V must have 𝐾 − 𝑁 all zero rows. So, V is constructed by inserting 𝐾 − 𝑁 all zero

rows into I𝑁 , where I𝑁 is an 𝑁 × 𝑁 identity matrix.

An SCMA system contains 𝐽 separate layers, each representing one user data layer, defined

by S 𝑗 (V 𝑗 , 𝑔 𝑗 , 𝑀𝑗 , 𝑁 𝑗 , 𝐾) ∀ 𝑗 ∈ {1, . . . , 𝐽}. Without loss of generality it is assumed that all

users use a constellation of same order and the same number of resources, thus, 𝑀𝑗 = 𝑀 and

𝑁𝑗 = 𝑁 for all 1 ≤ 𝑗 ≤ 𝐽. The whole SCMA system can be represented as the set of layers
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Figure 1.9 Comparison between SCMA and

LDS/CDMA

S([V 𝑗 ]𝐽
𝑗=1

, [𝑔 𝑗 ]𝐽
𝑗=1

, 𝐽, 𝑀, 𝑁, 𝐾). The received signal is given by

y =
𝐽∑

𝑗=1

diag(h 𝑗 )x 𝑗 + n

=
𝐽∑

𝑗=1

diag(h 𝑗 )V 𝑗 𝑔(b 𝑗 ) + n, (1.4)

where x 𝑗 = (𝑥1 𝑗 , . . . , 𝑥𝐾 𝑗 )𝑇 is the codeword of layer 𝑗 , h 𝑗 = (ℎ1 𝑗 , . . . , ℎ𝐾 𝑗 )𝑇 is the channel

vector of layer 𝑗 and 𝑛 ∼ CN(0, 𝑁0I𝐾) is the complex Gaussian noise vector. In a downlink

scenario all layers are transmitted by the same transmit point (the BS), thus, the channel for each

layer is identical at the receiver, leading to hj = h.

The structure of the SCMA code can be neatly conveyed through a factor graph representation.

Let F ∈ B𝐾×𝐽 be the factor graph matrix, each element [F]𝑘 𝑗 indicates if the layer 𝑗 transmits

information on resource 𝑘 . F can be obtained from {V 𝑗 }𝐽
𝑗=1

as F = (f1, . . . , f𝐽), where

f 𝑗 = diag(V 𝑗V𝑇
𝑗 ). The total number of data layers assigned to each resource is given by the

vector d = (𝑑1, . . . , 𝑑𝐾)𝑇 =
𝐽∑

𝑗=1
f 𝑗 . The complexity of decoding a SCMA symbol on each

resources is of the order O(𝑀𝑑). Figure 1.10 shows an example of a factor graph for 𝐾 = 4,

𝑁 = 2 and 𝐽 = 6. The filled squares represent the 𝐾 resources available, and the empty circles

represent the 6 users. The edges of the graph denote that information is being transmitted to or

from a user in a resource.
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Figure 1.10 Factor graph of an SCMA

system with 𝐾 = 4, 𝑁 = 2 and 𝐽 = 6

It was shown in (Nikopour & Baligh, 2013) that the SCMA scheme outperforms the equivalent

MC-LDSMA scheme in terms of the block error rate (BLER) while having the same decoding

complexity. In (Taherzadeh, Nikopour, Bayesteh & Baligh, 2014) a systematic approach, based

on the design principles of lattice constellations, for the design of SCMA codebooks is proposed.

A grant-free contention-based uplink transmission scheme for a random access channel, based

on SCMA, is proposed in (Au et al., 2014). The motivation for such a scheme is to eliminate

the overhead and latency incurred in scheduled uplink transmissions of a small amount of

data, which is of particular interest for IoT networks. The primary resource block of the

system is a pair of a codebook and a pilot sequence. As long as two users simultaneously

transmitting do not use the same codebook and pilot sequence, the receiver can decode both

users efficiently. Compared to a grant-free contention-based orthogonal frequency division

multiple access (OFDMA) scheme, SCMA enables higher overloading, increased coverage,

and lower probability of dropping packets. In (Nikopour et al., 2014) an SCMA downlink

system with codebook overloading is proposed. In this system, two users are assigned the same

codebook but with different power allocations. Despite having the same codebook, because the

users have different power allocations, the MPA decoding algorithm can separate the messages

from distinct users. A user pairing algorithm is also proposed. The algorithms pair two users

such that the sum rate capacity of the network is maximized. This scheme aligns with the 5G

requirement of providing massive connectivity. In (Bao, Ma, Xiao, Ding & Zhu, 2017) the effect

of path loss on the uplink MIMO SCMA performance is investigated. An SCMA cell with
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randomly deployed users is considered, and maximum likelihood (ML) decoding is assumed on

the receiver side. The conclusions of the analysis show that large-scale path loss decreases only

the coding gain provided by SCMA, but the diversity order provided by the multiple antenna

architecture and the signal-space diversity is preserved.

1.2.3 Resource Management in NOMA

It is foreseen that 5G networks will employ OFDM-like resource division, i.e. the available

network resources are divided into time-frequency resource blocks. Hence, to improve spectral

efficiency and provide massive connectivity, multiple users can be allocated to the same resource

blocks employing NOMA techniques.

The resource allocation problem in OFDM based single-tier NOMA network consists of selecting

the sets of users who are scheduled to share the same resources, distribute the power among

the multiplexed users on each sub-band and allocating the power across these sub-bands,

optimizing some network utility function. This optimization problem is of the non-convex

combinatorial type. The authors of (Sun, Ng, Ding & Schober, 2016) analyze the problem

of finding the maximum average sum rate in this scenario. An optimal solution employing

monotonic optimization (Qian & Zhang, 2010) is obtained. Despite having high computational

complexity, rendering this approach unpractical, the optimal solution is an excellent reference

to determine the performance of sub-optimal, low complexity algorithms. In the same paper,

a sub-optimal approach with lower complexity employing successive convex approximation

(Razaviyayn, 2014) is proposed. It is shown that this approach achieves close to optimal results

and outperforms the other baseline approaches studied in this work. In (Parida & Das, 2014)

a two-step heuristic algorithm to solve the same optimization problem is proposed. Firstly, a

greedy user selection scheme is employed, and an iterative power allocation method based on

the difference of convex (DC) programming is employed. Afterwards, the same DC algorithm is

employed to allocate power across the sub-bands. The algorithm’s performance is compared

with OFDMA and with similar two-step heuristic algorithms employing a different combination

of techniques to obtain a solution. The authors show that the proposed two-step DC-DC
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approach outperforms the alternatives in the mean user throughput and the percentage of user

pairing in all scenarios under consideration. In (Wei, Ng & Yuan, 2016) a similar problem is

considered. However, the authors chose the minimum transmission power to achieve all users’

minimum QoS as the network utility function. The authors use a heuristic for user scheduling

that results in a sub-carrier allocation satisfying the constraints of the original optimization

problem. The original multi-carrier optimization problem can be simplified into a per carrier

one. An analytical solution for the simplified problem is provided, and the simulation results

show that the proposed scheme outperforms OMA in the power consumption sense. Most

of these methods apply a heuristic step to select user sets and assign sub-bands to these sets.

Generally, these heuristics do not provide any performance guarantees concerning the optimality

of the obtained solutions. Another approach present in the literature is to model the user set and

sub-band allocation as a non-cooperative game. In (Di, Bayat, Song & Li, 2015) this problem is

solved as a many-to-many two-sided matching game, which provides a low complexity algorithm

with good optimality guarantees. The same authors published a similar solution to the channel

allocation problem on uplink SCMA networks in (Di, Song & Li, 2016). A two-tier HetNet

with small cells using NOMA is considered in (Qian, Wu, Zhou & Shen, 2017). The problem

is formulated as two interactive objective functions maximizing the system-wide utility while

minimizing the total transmit power. The resulting problem is non-convex and combinatorial,

hence, a challenging one. This problem is mapped to a coalition formation game and solved

using primal decomposition theory within the framework of simulated annealing. Then, proof

of convergence of the proposed algorithm to a global solution in polynomial time is presented.
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2.1 Abstract

In this work, we consider a sparse code multiple access uplink system, where 𝐽 users simul-

taneously transmit data over 𝐾 subcarriers, such that 𝐽 > 𝐾, with a constraint on the power

transmitted by each user. To jointly optimize the subcarrier assignment and the transmitted power

per subcarrier, two new iterative algorithms are proposed, the first one aims to maximize the

sum-rate (Max-SR) of the network, while the second aims to maximize the fairness (Max-Min).

In both cases, the optimization problem is of the mixed-integer nonlinear programming (MINLP)

type, with non-convex objective functions, which are generally not tractable. We prove that both

joint allocation problems are NP-hard. To address these issues, we employ a variant of the block

successive upper-bound minimization (BSUM) (Razaviyayn, Hong & Luo, 2013) framework,

obtaining polynomial-time approximation algorithms to the original problem. Moreover, we

evaluate the algorithms’ robustness against outdated channel state information (CSI), present

an analysis of the convergence of the algorithms, and a comparison of the sum-rate and Jain’s

fairness index of the novel algorithms with three other algorithms proposed in the literature. The

Max-SR algorithm outperforms the others in the sum-rate sense, while the Max-Min outperforms

them in the fairness sense.
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2.2 Introduction

The fifth generation (5G) of wireless networks is expected to deliver better coverage and a higher

capacity to massively connected users. One of the fundamental aspects to achieve this goal is

the design of multiple access techniques.

Orthogonal multiple access (OMA) techniques allocate different users into orthogonal network

resources, to minimize the interference between users. For instance, time division multiple access

(TDMA), code division multiple access (CDMA) and orthogonal frequency division multiple

access (OFDMA) assign orthogonal time slots, codes and subcarriers to users, respectively.

However, due to the increasing demand for data communications and the introduction of

new data-hungry technologies, such as virtual and augmented reality (VR/AR) and massively

deployed internet of things (IoT) devices, a tenfold increase in traffic is expected by 2020

(Ericsson, 2015). As the number of orthogonal network resources available is finite, this

design paradigm is incompatible with the massive traffic and connectivity requirements of 5G

networks. Recently, early information-theoretic works on multi-user communications (Cover,

1972; Ahlswede, 1973) have reemerged under the name non-orthogonal multiple access (NOMA)

as a potential solution to deal with this requirement. Although NOMA methods are rooted in the

information-theoretic literature, the recent interest has been focused on communication-theoretic

aspects such as developing efficient NOMA coding and modulation schemes, with desired

error-rate performance and multi-user communication capabilities. Differently from OMA,

in NOMA techniques, multiple users are allocated to the same network resources, permitting

the allocation of more users and more efficient use of the available resources. In NOMA,

each receiver must perform multiuser detection (MUD) to recover the intended transmitted

signal. NOMA techniques can be classified into two different groups, power division NOMA

(PD-NOMA), code division NOMA (CD-NOMA). Recently, power domain sparse code multiple

access (PSMA) (Moltafet, Mokari, Javan, Saeedi & Pishro-Nik, 2018a) has been proposed as

a hybrid of PD-NOMA and CD-NOMA. An extensive performance comparison of NOMA

methods in a single cell system is found in (Wang, Wang, Lu, Xie & Quan, 2015), while the
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comparison between PD-NOMA and CD-NOMA in heterogeneous network is presented in

(Moltafet et al., 2018a)

In CD-NOMA, the transmitter introduces redundancy to the transmitted symbol, via code

and/or spreading, to enable receivers to perform MUD and separate signals from different users.

Furthermore, CD-NOMA has additional advantages in comparison to PD-NOMA (Moltafet

et al., 2018b), such as the coding gain and the shaping gain (i.e., methods using multidimensional

constellations) (Nikopour & Baligh, 2013).

Motivated by these advantages, this paper is focused on one of the promising CD-NOMA

techniques, named sparse code multiple access (SCMA) (Nikopour & Baligh, 2013). In SCMA,

sparse multidimensional codebooks are assigned to each user, and each user’s data layer is

sparsely spread throughout the network resources. In comparison to OFDMA, SCMA allows

for more users than subcarriers available to be served simultaneously, while reducing the peak

average power ratio (PAPR) due to the sparsity of the subcarrier allocation. SCMA was first

proposed in (Nikopour & Baligh, 2013), as a multidimensional generalization of the low density

spreading code division multiple access (LDS-CDMA) that yielded better results regarding

detection error. In (Taherzadeh et al., 2014), a method to design SCMA codebooks based on

lattice coding was proposed. In (Nikopour et al., 2014), a downlink SCMA system is considered,

and an algorithm for user pairing along with rate adjustment and a detection strategy is proposed

for a multiuser SCMA scheme. It is shown that this scheme can achieve robustness to mobility

and high data rates.

2.2.1 Related Work

Regarding resource management and allocation in SCMA networks, an algorithm to maximize

the rate of successful accesses on a random access massive machine communications network

is suggested in (Xue, Qiu & Li, 2016). In (Luo, Li & Su, 2017), a resource allocation and

subcarrier pairing scheme combining OFDMA and SCMA for a dual-hop multiuser relay network

is proposed. The problem of assigning SCMA subcarriers to maximize sum rate in uplink
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transmission is formulated as matching game in (Di et al., 2016). A grant-free contention based

uplink SCMA scheme was proposed in (Au et al., 2014). In (Li et al., 2016), the capacity of an

SCMA cell with a Gaussian input is derived and a joint subcarrier and power allocation algorithm

is proposed. In (Dabiri & Saeedi, 2018), three algorithms for dynamic subcarrier allocation

are presented and their link-level performance is evaluated, one of which takes user fairness

in consideration. However, the system-level capacity of these algorithms is not investigated

and their fairness is compared in terms of the bit error rate (BER) difference between the best

and the worst user. In (Cui, Fan, Lei, Ma & Ding, 2017), a low complexity bisection-based

power allocation algorithm, aiming to maximize the capacity of the SCMA system with a finite

alphabet is proposed. A stochastic geometry framework to obtain the system-wide area spectral

efficiency of underlaid and overlaid device-to-device (D2D) SCMA networks is developed

in (Liu, Sheng, Liu, Shi & Li, 2017) and a power allocation strategy to minimize cross-tier

interference in underlaid mode and an optimal subcarrier allocation for the overlaid mode are

presented. In (Zhu, Qiu & Chen, 2017), a joint subcarrier and power allocation algorithm to

maximize the proportional fairness utility function of the downlink SCMA system is proposed.

The subcarrier and power allocation are split into two problems. The power allocation problem

is transformed to a convex equivalent and the remove-and-reallocate algorithm is proposed

to solve the combinatorial subcarrier problem. A similar technique of convexification and

alternating optimization is employed in (Abedi, Mokari, Javan & Jorswieck, 2018) to solve a

SCMA resource allocation problem taking into account content caching, energy harvesting and

physical layer security.

Despite the extensive body of literature regarding the analytical characterization and resource

management in SCMA, a few core issues are yet to be properly addressed. Firstly, the network

overloading achieved by non-orthogonal scheduling also results in an additional source of

interference. Hence, it is fundamental to approach the resource allocation problem from a

fairness perspective, as algorithms that maximize the sum-rate do so at the expense of users

with poor channel condition. In this vein, one of the algorithms proposed in this paper follows

a fairness maximization path. Secondly, as shown in this manuscript, the joint subcarrier and
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power allocation problem is NP-hard. The algorithms currently proposed in the literature propose

heuristics to achieve sub-optimal solutions. In face of that, we propose a more systematic

approach by relaxing the problem and following the BSUM framework.

To the best of our knowledge, no previous works have investigated the fairness in joint subcarrier

and power allocation in uplink SCMA transmission in depth. Furthermore, the algorithms

proposed in this paper have stronger optimality guarantees in comparison with algorithms

proposed in previous works.

2.2.2 Contributions

In this paper, we formulate two optimization problems for joint subcarrier and power allocation

in SCMA networks, one aiming to maximize the sum-rate and another one for maximizing the

fairness and propose two algorithms to solve them. The first algorithm’s goal is to maximize

the sum-rate of the network. While this is an essential criterion in cellular networks, fairness

between users is equally important. Thus, to include fairness in the optimization, we propose

the Max-Min algorithm aimed to maximize the minimum rate among the users. The obtained

results demonstrate better performance than the former algorithm in terms of fairness, at the

cost of a lowered sum rate.

Both problems are of the non-convex mixed integer nonlinear programming (MINLP) type.

We prove that both problems are NP-hard 1. Then, we propose two algorithms based on the

BSUM framework, proposed in (Razaviyayn et al., 2013). The proposed algorithms maximize a

lower bound approximation of the objective functions by updating the optimization variables

in blocks. As shown in (Razaviyayn et al., 2013), if the lower bound approximation satifies

some conditions, this approach has guaranteed convergence to a stationary point, assuring a

1 As shown in (Moltafet, Azmi, Mokari, Javan & Mokdad, 2018; Mokdad, Azmi, Mokari,

Moltafet & Ghaffari-Miab, 2019) for the energy-efficiency and heterogeneous cloud radio access

networks in PD-NOMA networks respectively, this problems can be reformulated as a monotonic

optimization problem, and the optimal joint allocation can be found using the polyblock outer-

approximation algorithm, albeit, the algorithm complexity grows exponentially with the size of the

problem.
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locally optimal solution. Additionally, we compare both algorithms and the ones proposed in

(Dabiri & Saeedi, 2018) in the sum-rate and the Jain’s fairness index sense. Results show that

the Max-SR algorithm outperforms all other algorithms regarding sum-rate, while the Max-Min

algorithm outperforms all others regarding fairness. Furthermore, we evaluate the fairness and

sum-rate performance of the algorithms under outdated CSI. Finally, we compare the BER

performance of the two proposed algorithms.

To summarize, the list below presents the main accomplishments in this work:

• We prove that the joint power and subcarrier allocation problem is NP-hard.

• We propose a Max-SR algorithm which achieves a better sum-rate in comparison to the ones

proposed in (Dabiri & Saeedi, 2018).

• We propose a Max-Min algorithm which achieves better fairness, in terms of the Jain’s

fairness index, in comparison to the ones proposed in (Dabiri & Saeedi, 2018).

• We evaluate the robustness of the algorithms against outdated channel state information (CSI)

This paper is organized as follows: Section 2.3 contains a brief overview of the SCMA encoder

and decoder structure. Also, a description of SCMA signals, and the derivation of its sum-rate

is presented. In Section 2.4, the optimization problems are formulated, and an algorithm for

sum-rate maximization, and, another for fairness maximization are proposed. Furthermore, in

Section 2.5 numerical results are shown, and the performance of the algorithm is evaluated. Also,

a numerical analysis of the convergence is presented. Finally, in Section 2.6 the conclusions are

presented.

2.2.3 Notation

Throughout this paper, italic lowercase letters denote real and complex scalar values, and 𝑥∗

denotes the complex conjugate of 𝑥. Lower case boldface letters denote vectors, while upper

case boldface denote matrices. A lowercase letter with one subscript, 𝑥𝑖, represents the 𝑖-th

element of the vector x, while both 𝑥𝑖, 𝑗 and [X]𝑖, 𝑗 are used to denote the element on the 𝑖-th

row and 𝑗-th column of matrix X. The operators x𝐻 and X𝐻 denote the hermitian conjugate
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of a vector and of a matrix, respectively. The operator det(X) is the determinant of the square

matrix X and tr(X) is its trace. The operator diag(x) denotes a square matrix with its diagonal

components given by x. The operator 𝐸 (·) denotes the expected value of a random variable.

The function 𝑝(·) represents the probability density function (PDF) of a random variable and

x ∼ CN(𝝁, K), where K ∈ R𝑛, denotes that x is a complex Gaussian random vector, with mean

𝝁 and covariance matrix K. The sets R, C and B are the sets of the real, complex and binary

numbers, respectively. A calligraphic uppercase letter, such as X, denotes a set and |X| is its

cardinality. The function ln(·) denotes the natural logarithm of its argument, while the function

𝐼 (·; ·) is the mutual information between two random variables.

2.3 System Model

Figure 2.1 Example of an SCMA uplink system with 𝐽 = 6, 𝐾 = 4, 𝑁 = 2 and

𝑑 𝑓 = 3. The square arrays demonstrate the codebook of each user and each square

represent the available resource elements (RE). An empty square indicates that no

signal is transmitted in the RE and different filling patterns indicate a different

complex value

2.3.1 SCMA Overview

Consider a system consisting of one base station (BS), and let K be the set of available resources

(OFDMA subcarriers, MIMO spatial layers and so on), with |K | = 𝐾, and J be the set of

users served by the BS, with |J | = 𝐽. Each user transmits a symbol from a multidimensional

constellation with order 𝑀. The SCMA encoder is a mapping 𝑓 : Blog2 (𝑀) → S 𝑗 , with

s 𝑗 = 𝑓 (b 𝑗 ), where b 𝑗 ∈ Blog2 (𝑀) is a vector of bits taken at the output of a channel encoder,
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Figure 2.2 Example factor graph with

𝐽 = 6, 𝐾 = 4, 𝑁 = 2 and 𝑑 𝑓 = 3. The

circles denote user nodes and the squares

denote resource nodes

S 𝑗 ⊂ C𝐾 , |S 𝑗 | = 𝑀 and s 𝑗 is a sparse vector with 𝑁 < 𝐾 nonzero elements for all 𝑗 ∈ J . Each

user encodes its transmitted signal from a different multidimensional constellation S 𝑗 .

Therefore, the BS serves up to 𝐽 =
(𝐾
𝑁

)
users simultaneously and up to 𝑑 𝑓 =

(𝐾−1
𝑁−1

)
users are

allocated on the same resource. The overloading factor of the cell is given by 𝜆 = 𝐽/𝐾 . Figure

2.1 shows an example of codebooks and a multiplexed codeword for an SCMA system with

𝐾 = 4, 𝐽 = 6, 𝑁 = 2 and 𝑑 𝑓 = 3. In this figure, each square represents a subcarrier and the

different colors represents the codebook of a different user. The texture of the squares is a

different symbol from the user’s mother constellation, while the blank square indicates that no

signal is transmitted at the subcarrier by the user. In the second row, we give an example of the

resulting received signal, which is a superposition of the transmitted symbol by each user, for

the transmission of an arbitrary pair of bits by each user.

Optimal SCMA decoding is achieved by maximum a posteriori (MAP) decoding. However,

due to the complexity of MAP decoding, message passing algorithms (MPA) that achieve

near-optimal decoding, such as belief propagation (BP) (McEliece, MacKay & Cheng, 1998)

are employed, resulting in a complexity of O(𝑀𝑑 𝑓 ). In order to reduce the decoding complexity

of SCMA, alternative receiver architectures have been proposed, such as the SIC-MPA decoder

(3GPP, 2016; Zou, Zhao & Zhao, 2015) which is a hybrid of the SIC and MPA procedure, and

the list spherical decoding (LSD) algorithm (Wei & Chen, 2017).
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The structure of the SCMA code can be neatly conveyed through a factor graph representation.

Let F ∈ B𝐾×𝐽 be the factor graph matrix, each element 𝑓𝑘, 𝑗 indicates if any information from the

user 𝑗 is transmitted on resource 𝑘 . Figure 2.2 illustrates a factor graph with 𝐽 = 6, 𝐾 = 4, 𝑁 = 2

and 𝑑 𝑓 = 3 corresponding to the codebook shown in Figure 2.1, where the circular vertices

represent each user, the squared vertices denote the resources and the edges between them the

allocation of a user to specific resources.

The reader may refer to (Nikopour & Baligh, 2013) for more details on the encoder/decoder

structure of SCMA.

In a SCMA system, the signal received by the BS at the resource 𝑘 can be written as

𝑦𝑘 =
∑
𝑗∈J

𝑓𝑘, 𝑗 ℎ𝑘, 𝑗 𝑠𝑘, 𝑗 + 𝑛𝑘 , (2.1)

where ℎ𝑘, 𝑗 is the channel coefficient, 𝑠𝑘, 𝑗 is the symbol transmitted from user 𝑗 on the 𝑘-th

resource, with average power 𝑝𝑘, 𝑗 = 𝐸 ( |𝑠𝑘, 𝑗 |2), and 𝑛𝑘 is the 𝑘-th component of n ∼ CN(0, 𝜎2
𝑛 I).

Here, we assume that ℎ𝑘, 𝑗 =
𝑔𝑘, 𝑗√
1+𝑟𝛼𝑗

. Without loss of generality, we assume 𝑔𝑘, 𝑗 is a Rayleigh

distributed random variable representing the small scale fading of the channel of user 𝑗 on

subcarrier 𝑘 , 𝑟 𝑗 is the distance of user 𝑗 from the BS and 𝛼 is the path loss exponent. Throughout

this work, it is assumed that the users send a pilot sequence periodically, and, the BS is able to

perfectly estimate the CSI. From (2.1), the received signal vector at the BS is written as

y = Hx + n, (2.2)

where y ∈ C𝐾 is a complex vector, H ∈ C𝐾×𝐾𝐽 is a matrix composed of submatrices, such that,

H = [H1, H2, · · · , H𝐽], where, H 𝑗 = diag( [ℎ1, 𝑗 , ℎ2, 𝑗 , · · · ℎ𝐾, 𝑗 ]𝑇 ) ∀ 𝑗 ∈ J . The vector x ∈ C𝐾𝐽

is given by x =
[
x𝑇

1
x𝑇

2
· · · x𝑇

𝐽

]𝑇
, where x 𝑗 =

[
𝑓1, 𝑗 𝑠1, 𝑗 𝑓2, 𝑗 𝑠2, 𝑗 · · · 𝑓𝐾, 𝑗 𝑠𝐾, 𝑗

]𝑇
∀ 𝑗 ∈ J .

In this paper, we consider a centralized resource allocation architecture, where 𝐾 users

periodically transmit a pilot signal to the BS. We assume the BS obtains perfect CSI, solves the

optimization problem described in Section 2.4, and tells each user which subcarriers, power,
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and code-rate to use for the next period of time. We assume the channels are quasi-static, so that

users can encode at a fixed rate for a period of time. The process is repeated periodically, where

the allocations are changed, and the BS tells users to change their transmission accordingly.

The sum-rate of a SCMA system is defined as the maximum mutual information between the

received and transmitted signals. Therefore, assuming channel knowledge at the receiver we

have

𝑅sum
SCMA = max

𝑝(x)
𝐼 (x; y|H = H′)

= max
𝑝(x)

ℎ(y|H = H′) − ℎ(n)
(𝑎)≤ ln[(𝜋𝑒)𝐾 det(𝜎2

𝑛 I𝐾 + H′K𝑥H′𝐻)] − 𝐾 ln[𝜋𝑒𝜎2
𝑛 ]

= ln

[
det

(
I𝐾 + 1

𝜎2
𝑛

H′K𝑥H′𝐻
)]

. (2.3)

In (2.3), the inequality in (𝑎) follows since a Gaussian input maximizes the entropy of a random

vector, under a covariance constraint (Cover & Thomas, 2006). In this paper, we are concerned

with maximizing this upper bound in the Max-SR algorithm which is referred henceforth

as 𝐶SCMA. It is worth noting that for an increase on 𝑑 𝑓 the distribution of y approaches a

multivariate Gaussian, due to the central limit theorem.

Furthermore, K𝑥 ∈ C𝐾𝐽×𝐾𝐽 is the covariance matrix of x and is given by

K𝑥 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝐸 (x

1
x𝐻

1
) 𝐸 (x

1
x𝐻

2
) · · · 𝐸 (x

1
x𝐻

𝐽 )
...

...
. . .

...

𝐸 (x𝐽x𝐻
1
) 𝐸 (x𝐽x𝐻

2
) · · · 𝐸 (x𝐽x𝐻

𝐽 )

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (2.4)

where, each 𝐸 (x𝑖x𝐻
𝑗 ) is given by

𝐸 (x𝑖x𝐻
𝑗 ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝐸

(
𝑥

1,𝑖𝑥
∗
1, 𝑗

)
𝐸

(
𝑥

1,𝑖𝑥
∗
2, 𝑗

)
· · · 𝐸

(
𝑥

1,𝑖𝑥
∗
𝐾, 𝑗

)
...

...
. . .

...

𝐸
(
𝑥𝐾,𝑖𝑥

∗
1, 𝑗

)
𝐸

(
𝑥𝐾,𝑖𝑥

∗
2, 𝑗

)
· · · 𝐸

(
𝑥𝐾,𝑖𝑥

∗
𝐾, 𝑗

)
⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (2.5)
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As concluded in (Li et al., 2016), if each nonzero coordinate of s is drawn from centrally

symmetric constellations, the cross correlation between the multidimensional symbols from

different users is equal to zero, hence, 𝐸 (x𝑖x𝐻
𝑗 ) is equal to a 𝐾 × 𝐾 zero matrix for any 𝑖 ≠ 𝑗 .

Thus, (2.4) is diagonal. For a more generic derivation, not relying on the central symmetry of

the constellation the reader may refer to (Le, Ferrante, Quek & Di Benedetto, 2018; Zaidel,

Shental & Shitz, 2018; Shental, Zaidel & Shitz, 2017).

As H 𝑗 is diagonal for all values of 𝑗 , we have

HK𝑥H𝐻 =
𝐽∑

𝑗=1

H 𝑗 𝐸
(
x 𝑗x𝐻

𝑗

)
H𝐻

𝑗

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐽∑
𝑗=1

ℎ1, 𝑗 𝐸
(
𝑥1, 𝑗 𝑥

∗
1, 𝑗

)
ℎ∗

1, 𝑗 · · · 0

...
. . .

...

0 · · ·
𝐽∑

𝑗=1
ℎ𝐾, 𝑗 𝐸

(
𝑥𝐾, 𝑗 𝑥

∗
𝐾, 𝑗

)
ℎ∗𝐾, 𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.6)

It is worth noting that such codebook satisfies the design principles established in (Taherzadeh

et al., 2014). With that being said, the SCMA sum-rate in (2.3) can be simplified as shown below

𝐶SCMA = ln det

(
I𝐾 + 1

𝜎2
𝑛

HK𝑥H𝐻

)
= ln det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 +

∑
𝑗∈J

|ℎ1, 𝑗 |2𝐸 (𝑥2
1, 𝑗 )

𝜎2
𝑛

· · · 0

...
. . .

...

0 · · · 1 +
∑
𝑗∈J

|ℎ𝐾, 𝑗 |2𝐸 (𝑥2
𝐾, 𝑗 )

𝜎2
𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

∑
𝑘∈K

ln
����1 +

∑
𝑗∈J

|ℎ𝑘, 𝑗 |2𝐸 (𝑥2
𝑘, 𝑗 )

𝜎2
𝑛

���� =
∑
𝑘∈K

ln
����1 +

∑
𝑗∈J

|ℎ𝑘, 𝑗 |2 𝑓𝑘, 𝑗 𝑝𝑘, 𝑗

𝜎2
𝑛

���� . (2.7)

Furthermore, by assuming a decoding order starting from user 𝐽 to user 1 and using the logarithm

identity log𝑏 (𝑎 + 𝑐) = log𝑏 (𝑎) + log𝑏 (1 + 𝑐
𝑎 ), it is possible to obtain the achievable rate of user



42

𝑗 on resource 𝑘 , 𝐶𝑘, 𝑗 , as

ln
����1 +

∑
𝑗∈J

|ℎ𝑘, 𝑗 |2 𝑓𝑘, 𝑗 𝑝𝑘, 𝑗

𝜎2
𝑛

���� = ln
����

𝜎2
𝑛 + ∑

𝑗∈J
|ℎ𝑘, 𝑗 |2 𝑓𝑘, 𝑗 𝑝𝑘, 𝑗

𝜎2
𝑛

����
= ln

(
𝜎2

𝑛 + |ℎ𝑘,1 |2 𝑓𝑘,1𝑝𝑘,1

𝜎2
𝑛

)
+ ln

(
𝜎2

𝑛 + |ℎ𝑘,1 |2 𝑓𝑘,1𝑝𝑘,1 + |ℎ𝑘,2 |2 𝑓𝑘,2𝑝𝑘,2

𝜎2
𝑛 + |ℎ𝑘,1 |2 𝑓𝑘,1𝑝𝑘,1

)
+ · · ·

+ ln

������
𝜎2

𝑛 +
𝐽−1∑
𝑖=1

|ℎ𝑘,𝑖 |2 𝑓𝑘,𝑖 𝑝𝑘,𝑖 + |ℎ𝑘,𝐽 |2 𝑓𝑘,𝐽 𝑝𝑘,𝐽

𝜎2
𝑛 +

𝐽−1∑
𝑖=1

|ℎ𝑘,𝑖 |2 𝑓𝑘,𝑖 𝑝𝑘,𝑖

������
=

∑
𝑗∈J

ln

������
1 + |ℎ𝑘, 𝑗 |2 𝑓𝑘, 𝑗 𝑝𝑘, 𝑗

𝜎2
𝑛 +

𝑗−1∑
𝑖=1

|ℎ𝑘,𝑖 |2 𝑓𝑘,𝑖 𝑝𝑘,𝑖

������
=

∑
𝑗∈J

𝐶𝑘, 𝑗 . (2.8)

Therefore, the achievable rate of each user, 𝐶𝑗 , is given by

𝐶𝑗 =
∑
𝑘∈K

𝐶𝑘, 𝑗 =
∑
𝑘∈K

ln

������
1 + |ℎ𝑘, 𝑗 |2 𝑓𝑘, 𝑗 𝑝𝑘, 𝑗

𝜎2
𝑛 +

𝑗−1∑
𝑖=1

|ℎ𝑘,𝑖 |2 𝑓𝑘,𝑖 𝑝𝑘,𝑖

������
. (2.9)

In the next section, we formulate the joint subcarrier and power allocation problems and present

our proposed method to solve them.

2.4 Joint Subcarrier and Power Allocation

We formulate and propose two joint subcarrier and power allocation algorithms to solve two

optimization problems: maximizing the sum-rate (PMax-SR) and maximizing the minimum rate
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of users (PMax-Min). The former can be formulated as

PMax-SR :

max
P,F

𝐶SCMA =
∑
𝑘∈K

ln
����1 +

∑
𝑗∈J

|ℎ𝑘, 𝑗 |2 𝑓𝑘, 𝑗 𝑝𝑘, 𝑗

𝜎2
𝑛

���� (2.10)

s.t.
∑
𝑘∈K

𝑓𝑘, 𝑗 ≤ 𝑁 ∀ 𝑗 ∈ J (2.11)∑
𝑗∈J

𝑓𝑘, 𝑗 ≤ 𝑑 𝑓 ∀ 𝑘 ∈ K (2.12)∑
𝑘∈K

𝑓𝑘, 𝑗 𝑝𝑘, 𝑗 ≤ 𝑃
( 𝑗)
max ∀ 𝑗 ∈ J (2.13)

𝑓𝑘, 𝑗 ∈ {0, 1} ∀ 𝑘 ∈ K and ∀ 𝑗 ∈ J , (2.14)

where P ∈ R𝐾×𝐽 is the matrix of allocated power, (2.10) is the sum-rate, and (2.11) is the

constraint on the number of subcarriers allocated per user. The constraint on the number of users

per subcarrier is given by (2.12), while (2.13) is the constraint on the maximum transmitting

power available per user. Finally, (2.14) is a binary constraint on the values of 𝑓𝑘, 𝑗 .

Furthermore, the problem PMax-Min is formulated as

PMax-Min :

max
P,F

min
𝑗∈J

∑
𝑘∈K

ln

������
1 + |ℎ𝑘, 𝑗 |2 𝑓𝑘, 𝑗 𝑝𝑘, 𝑗

𝜎2
𝑛 +

𝑗−1∑
𝑖=1

|ℎ𝑘,𝑖 |2 𝑓𝑘,𝑖 𝑝𝑘,𝑖

������
(2.15)

s.t. (2.11), (2.12), (2.13), (2.14),

where (2.15) is the max-min utility function of the rate per user. The objective function

of this problem is non-concave and, similarly to PMax-SR, also has integer constraints on F.

Consequently, we can prove the following statement

Theorem 1. Both the PMax-SR and the PMax-Min problems are NP-hard.

Proof. See Appendix I, Section 1. �
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In order to solve both these problems, we relax the integer constraint on matrix F, given

in equation (2.14), to a continuous one. Afterwards, we apply the block successive lower

bound maximization (BSLM), which is the maximization variant of the approach proposed

in (Razaviyayn et al., 2013), which converges to a local minimum of the relaxed problem

(Razaviyayn et al., 2013).

For the sake of clarity, we list the conditions for the convergence of the BSLM algorithm. First

consider the problem below

max
x

𝑓 (x)
s.t. x ∈ X,

where 𝑓 : R𝑛 → R is a non-concave and possibly non-smooth function. Let X be the cartesian

product of 𝑚 closed convex sets: X = X1 × · · · × X𝑚, with X𝑖 ⊆ R𝑛𝑖 and
∑
𝑖
𝑛𝑖 = 𝑛. Furthermore

the optimization variable x ∈ R𝑛 can be decomposed into 𝑚 vectors x = (x1, · · · , x𝑚), such that

x𝑖 ∈ X𝑖. At iteration 𝑡 of the BSLM algorithm, the blocks of optimization variables are updated

cyclically, where for each block the following problem is solved

max
x𝑖

𝑓 (x𝑖 , x(𝑡−1))
s.t. x𝑖 ∈ X𝑖 ,

where 𝑖 = 𝑡 mod 𝑚, and x(𝑡−1) is the previous value of x. The convergence of the BLSM

algorithm is guaranteed if the following conditions hold for 𝑓 (x𝑖 , x(𝑡−1)):

𝑓 (x𝑖 , x) = 𝑓 (x), ∀x ∈ X, ∀ 𝑖 (2.16)

𝑓 (x𝑖 , y) ≤ 𝑓 (y1, · · · , y𝑖−1, x𝑖 , y𝑖+1, · · · , y𝑚),
∀x𝑖 ∈ X𝑖 , ∀y ∈ X, ∀ 𝑖 (2.17)

∇ 𝑓 (x𝑖 , x) = ∇ 𝑓 (x) (2.18)

𝑓 (x𝑖 , y) is continuous in (x𝑖 , y), ∀ 𝑖 (2.19)
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In the rest of this section, we propose lower bound convex approximations to the objective

functions of both PMax-SR and PMax-Min satisfying conditions (2.16)-(2.19), and finalize by

providing a description of the block update algorithm that converges to locally optimal solutions.

2.4.1 Solving PMax-SR

To solve this problem, we first relax the integer constraint in (2.14), and add a penalty term to

the objective function, such that, non-integer solutions to F are penalized. The PMax-SR becomes

P′
Max-SR :

max
P,F

∑
𝑘∈K

ln
����1 +

∑
𝑗∈J

|ℎ𝑘, 𝑗 |2 𝑓𝑘, 𝑗 𝑝𝑘, 𝑗 )

𝜎2
𝑛

���� + 𝛾 (F) (2.20)

s.t. 0 ≤ 𝑓𝑘, 𝑗 ≤ 1 ∀ 𝑘 ∈ K and ∀ 𝑗 ∈ J (2.21)

(2.11), (2.12), (2.13) (2.22)

where 𝛾 (F) = 𝜆
∑

𝑘∈K

∑
𝑗∈J

(
𝑓 2
𝑘, 𝑗 − 𝑓𝑘, 𝑗

)
is the penalty function 2. Notice that 𝛾 (F) < 0 for all

non-integer solutions and 𝛾 (F) = 0 for integer ones. This gives incentive for the algorithm to

obtain solutions that minimize 𝛾 (F), hence leading to integer solutions of F.

There are two issues that make P′
Max-SR a hard problem to solve:

• The presence of multi-linear terms of the form 𝑓𝑘, 𝑗 𝑝𝑘, 𝑗 in (2.20) and (2.13).

• Even if F and P are updated cyclically, the objective function in (2.20) is non-concave, due

to the addition of 𝛾 (F), which is convex.

2 By selecting moderately high values for 𝜆 (around 20), integer solutions are obtained. As a matter of

fact, higher values for 𝜆 results in faster convergence to an integer solution, however, it renders the

optimization solver iterations more unstable as it contributes to the ill-conditioning of the problem. On

the other hand, smaller 𝜆 leads to more conservative updates of F at each BSLM step, resulting in

slower convergence, but better optimizers.
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Now we present two Lemmas that are instrumental to the algorithm that finds a locally optimal

solution to P′
Max-SR in polynomial time.

Lemma 1. If F and P are updated cyclically in P′
Max-SR, the feasible set of the problem solved in

each update step is convex.

Proof. All constraints in P′
Max-SR are linear functions of F and P, with the exception of constraint

(2.13) which involves a multi-linear term. However, if F and P are updated cyclically, only one

of the matrices is updated while the other is kept constant and the multi-linear terms in (2.13)

become linear in the variable being updated. Therefore, the feasible sets are convex. �

Lemma 2. Let the function

∑
𝑘∈K

ln
����1 +

∑
𝑗∈J

|ℎ𝑘, 𝑗 |2 𝑓𝑘, 𝑗 𝑝𝑘, 𝑗

𝜎2
𝑛

���� +
𝛾 (F′) + tr

[
∇𝛾 (F′)𝑇 (F − F′)

]
, (2.23)

where ∇𝛾 (F′) ∈ R𝐾×𝐽 is a matrix such that

[∇𝛾 (F′)]𝑘, 𝑗 =
𝜕𝛾 (F)
𝜕 𝑓𝑘, 𝑗

����
F=F′

, (2.24)

be an approximation to (2.20) in the neighborhood of F′ for fixed P. Notice that (2.23) is a lower

bound concave approximation to (2.20) satisfying conditions (2.16)-(2.19).

Proof. Firstly, notice that 𝛾 (F′) + tr
[∇𝛾 (F′)𝑇 (F − F′)] is the first order linear approximation

of 𝛾 (F) in the neighborhood of F′. So (2.16), (2.18), and (2.19) are satisfied. Furthermore, as

𝛾 (F) is a convex function, we have

𝛾(F) ≥ 𝛾 (F′) + tr
[
∇𝛾 (F′)𝑇 (F − F′)

]
.

As the linear approximation is globally less than 𝛾 (F), we have that (2.23) is a lower bound of

(2.10). Thus, (2.16) is also satisfied. �
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With Lemmas 1 and 2 in hand, we can derive the convergence of the relaxed problem P′
Max-SR

to a local optimum, as stated in the Theorem below.

Theorem 2. By updating F and P cyclically with the solutions to P(F)
Max-SR and P(P)

Max-SR presented

below, we can obtain a locally optimal solution to the relaxed problem P′
Max-SR.

P(P)
Max-SR : max

P
(2.10) s.t. (2.13),

P(F)
Max-SR : max

F
(2.23) s.t. (2.11), (2.12), (2.13), (2.21),

where F′ = F(𝑡−1) , i.e the previous value of F.

Proof. From Lemma 1, the feasible set of both P(F)
Max-SR and P(P)

Max-SR are convex. Moreover,

from Lemma 2, we have that (2.23) is a concave lower bound approximation to (2.20) satisfying

the conditions in (2.16)-(2.19). Therefore, from the result shown in Theorem 2 in(Razaviyayn

et al., 2013), the solution obtained by iteratively updating F and P cyclically is a local optimum

of P′
Max-SR. �

As problems P(F)
Max-SR and P(P)

Max-SR are concave maximizations over a convex set and are readily

solvable. Algorithm 2.1 shows the pseudocode of the Max-SR algorithm, using P(F)
Max-SR and

P(P)
Max-SR as subroutines.
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Algorithm 2.1 Maximization of sum-rate

Variable Definition :
1. F(𝑡) is the subcarrier allocation matrix at the 𝑡-th iteration.

2. P(𝑡) is the power allocation matrix at the 𝑡-th iteration.

Initialization :
1. Set the initial values for the power allocation matrix P(0) randomly.

2. Set the initial values for the subcarrier allocation matrix F(0) .
3. Set the convergence tolerance for the subcarrier allocation 𝜖𝐹 .

4. Set the convergence tolerance for the power allocation 𝜖𝑃.

5. 𝑡 ← 0

Output :
1. Optimized power allocation P∗.
2. Optimized subcarrier allocation F∗.

1 while
��F(𝑡) − F(𝑡−1)�� > 𝜖𝐹 and

��P(𝑡) − P(𝑡−1)�� > 𝜖𝑃 do
2 𝑡 ← 𝑡 + 1;

3 F(t) ← arg P(F)
Max-SR

(
F(𝑡−1) , P(𝑡−1)

)
; (see Theorem 2)

4 P(t) ← arg P(P)
Max-SR

(
F(𝑡−1) , P(𝑡−1)

)
; (see Theorem 2)

5 end while
6 P∗ ← P(𝑡);
7 F∗ ← F(𝑡);

2.4.2 Solving PMax-Min

Before solving the problem, notice that its objective function in (2.15) can be rewritten as

min
𝑗∈J

∑
𝑘∈K

ln

������
1 + |ℎ𝑘, 𝑗 |2 𝑓𝑘, 𝑗 𝑝𝑘, 𝑗

𝜎2
𝑛 +

𝑗−1∑
𝑖=1

|ℎ𝑘,𝑖 |2 𝑓𝑘,𝑖 𝑝𝑘,𝑖

������
= min

𝑗∈J

[∑
𝑘∈K

ln

(
𝜎2

𝑛 +
𝑗∑

𝑖=1

|ℎ𝑘,𝑖 |2 𝑓𝑘,𝑖 𝑝𝑘,𝑖

)
−

ln

(
𝜎2

𝑛 +
𝑗−1∑
𝑖=1

|ℎ𝑘,𝑖 |2 𝑓𝑘,𝑖 𝑝𝑘,𝑖

)]
. (2.25)
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Both expressions inside the minimum function, ln

(
𝜎2

𝑛 +
𝑗∑

𝑖=1
|ℎ𝑘,𝑖 |2 𝑓𝑘,𝑖 𝑝𝑘,𝑖

)
and ln

(
𝜎2

𝑛 +
𝑗−1∑
𝑖=1

|ℎ𝑘,𝑖 |2 𝑓𝑘,𝑖 𝑝𝑘,𝑖

)
are concave functions, which implies that their difference is non-concave. The

summation of non-concave functions is also non-concave, and, by function composition rules

(Boyd & Vandenberghe, 2004), the minimum of a non-concave function is non-concave as well.

Similarly to PMax-SR, the first step in solving PMax-Min is relaxing the integer constraint on the

entries of F and adding the same penalty function to its objective, leading to problem P′
Max-Min,

given below

P′
Max-Min :

max
P,F

min
𝑗∈J

[∑
𝑘∈K

ln

(
𝜎2

𝑛 +
𝑗∑

𝑖=1

|ℎ𝑘,𝑖 |2 𝑓𝑘,𝑖 𝑝𝑘,𝑖

)
−

ln

(
𝜎2

𝑛 +
𝑗−1∑
𝑖=1

|ℎ𝑘,𝑖 |2 𝑓𝑘,𝑖 𝑝𝑘,𝑖

)]
+ 𝛾 (F) (2.26)

s.t. (2.11), (2.12), (2.13), (2.21).

After the relaxation, we have the non-concave term from (2.25) and the convex penalty function

in the objective. The challenges involved in solving P′
Max-Min are

• Just as in P′
Max-SR, the presence of multi-linear terms of the form 𝑓𝑘, 𝑗 𝑝𝑘, 𝑗 in (2.26) and

(2.13).

• Even if F and P are updated cyclically, the objective function in (2.20) is non-concave.

To address these issues, we follow the procedure used to solve P′
Max-SR, with a few extra steps.

Firstly, notice that the feasible sets of P′
Max-SR and P′

Max-Min are the same, and therefore Lemma

1 also holds. We introduce a concave lower bound to (2.26) in the Lemma below.
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Lemma 3. Let 𝜃 𝑗 (F) =
∑

𝑘∈K
ln

(
𝜎2

𝑛 +
𝑗−1∑
𝑖=1

|ℎ𝑘,𝑖 |2 𝑓𝑘,𝑖 𝑝𝑘,𝑖

)
. The function

min
𝑗∈J

[∑
𝑘∈K

ln

(
𝜎2

𝑛 +
𝑗∑

𝑖=1

|ℎ𝑘,𝑖 |2 𝑓𝑘,𝑖 𝑝𝑘,𝑖

)
−

𝜃 𝑗 (F′) − tr
(
∇𝜃 𝑗 (F′)𝑇 (F − F′)

)]
+

𝛾 (F′) + tr
[
∇𝛾 (F′)𝑇 (F − F′)

]
, (2.27)

where ∇𝜃 𝑗 (F′) ∈ R𝐾×𝐽 is a matrix such that

[∇𝜃 𝑗 (F′)]
𝑘,𝑛

=
𝜕𝜃 𝑗 (F)
𝜕 𝑓𝑘,𝑛

����
F=F′

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
|ℎ𝑘,𝑛 |2 𝑝𝑘,𝑛

𝜎2
𝑛+

𝑗−1∑
𝑖=1

|ℎ𝑘,𝑖 |2 𝑓 ′
𝑘,𝑖

𝑝𝑘,𝑖

, ∀ 𝑛 < 𝑗

0 , otherwise

,

is a lower bound concave approximation of (2.26) for fixed P in the neighborhood of F′ which

satisfies conditions (2.16)-(2.19).

Proof. Firstly, as 𝜃 𝑗 (F) is a concave function we have that

𝜃 𝑗 (F) ≤ 𝜃 𝑗 (F′) − tr
(
∇𝜃 𝑗 (F′)𝑇 (F − F′)

)
Therefore, the argument of the minimum function in (2.27) is less than the argument of the

minimum function in (2.26), which implies that (2.17) holds. Furthermore, (2.27) is obtained

by approximating the non concave terms in (2.26) by their first order linear approximation in

the neighborhood of F′ and (2.27) is continuous, and hence (2.16), (2.18), and (2.19) also hold.

Finally, (2.27) consists of the minimum of the summation over a concave function plus an affine
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term. So,

∑
𝑘∈K

ln

(
𝜎2

𝑛 +
𝑗∑

𝑖=1

|ℎ𝑘,𝑖 |2 𝑓𝑘,𝑖 𝑝𝑘,𝑖

)
−

𝜃 𝑗 (F′) − tr
(
∇𝜃 𝑗 (F′)𝑇 (F − F′)

)
,

is concave. By composition rules (Boyd & Vandenberghe, 2004), the minimum of concave

functions is also concave, which proves that (2.27) is concave, and coimpletes the proof. �

Lemma 4. Let 𝜃 𝑗 (P) =
∑

𝑘∈K
ln

(
𝜎2

𝑛 +
𝑗−1∑
𝑖=1

|ℎ𝑘,𝑖 |2 𝑓𝑘,𝑖 𝑝𝑘,𝑖

)
. The function

min
𝑗∈J

[∑
𝑘∈K

ln

(
𝜎2

𝑛 +
𝑗∑

𝑖=1

|ℎ𝑘,𝑖 |2 𝑓𝑘,𝑖 𝑝𝑘,𝑖

)
−

𝜃 𝑗 (P′) − tr
(
∇𝜃 𝑗 (P′)𝑇 (P − P′)

)]
+

𝛾 (P′) + tr
[
∇𝛾 (P′)𝑇 (P − P′)

]
, (2.28)

where ∇𝜃 𝑗 (P′) ∈ R𝐾×𝐽 is a matrix such that

[∇𝜃 𝑗 (P′)]
𝑘,𝑛

=
𝜕𝜃 𝑗 (P)
𝜕𝑝𝑘,𝑛

����
P=P′

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
|ℎ𝑘,𝑛 |2 𝑓𝑘,𝑛

𝜎2
𝑛+

𝑗−1∑
𝑖=1

|ℎ𝑘,𝑖 |2 𝑓 ′
𝑘,𝑖

𝑝𝑘,𝑖

, ∀ 𝑛 < 𝑗

0 , otherwise

,

is a lower bound concave approximation of (2.26) for fixed F in the neighborhood of P′ which

satisfies conditions (2.16)-(2.19).

Proof. See the proof of Lemma 3. �

With the results from Lemmas 1, 3 and 4 we can establish the convergence to a local optimum

of an algorithm to solve P′
Max-Min.
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Theorem 3. By updating F and P cyclically with the solutions to P(F)
Max-Min and P(P)

Max-Min

presented below, we can obtain a locally optimal solution to the relaxed problem P′
Max-Min.

P(P)
Max-Min : max

P
(2.28) s.t. (2.13),

where P′ is the value of P after the previous update.

P(F)
Max-Min : max

F
(2.27) s.t. (2.11), (2.12), (2.13), (2.21),

where F′ is the value of F after the previous update.

Proof. From Lemma 1, the domains of P(F)
Max-SR and P(P)

Max-SR are convex. Also, from Lemmas 3

and 4, we have that (2.27) and (2.28) are concave lower bound approximations to (2.20) satisfying

the conditions in (2.16)-(2.19). Therefore, from the result in (Razaviyayn et al., 2013), the

solution obtained by iteratively updating F and P cyclically is a local optimum of P′
Max-SR. �

The complete algorithm to solve the Min-Max problem, PMax-Min, is described in Algorithm

2.2. The algorithm uses P(F)
Max-SR and P(P)

Max-SR as subroutines.

2.5 Numerical Results

In this section the performance of the algorithms proposed in Section 2.4 is presented. Addition-

ally, we compare our results with the three algorithms proposed in (Dabiri & Saeedi, 2018): the

fixed user order (FUO), opportunistic allocation (OA) and proportional fair (PF) algorithms. In

these three algorithms, the users are sorted according to a different criteria, and the resources

are allocated sequentially by picking the best available resource for the user in the sorted order.

The FUO algorithm performs the allocation in a random order, while the OA algorithm sorts

the users according to their overall channel qualities, prior to the channel allocation. The PF

algorithm takes into account the 𝐿 past channel qualities when sorting the allocation order in

order to improve fairness. In our evaluation we consider 𝐿 = 10 and 𝛼 = 0.9.
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Algorithm 2.2 Fairness Maximization

Variable Definition :
1. F(𝑡) is the subcarrier allocation matrix at the 𝑡-th iteration.

2. P(𝑡) is the power allocation matrix at the 𝑡-th iteration.

Initialization :
1. Set the initial values for the power allocation matrix P(0) randomly.

2. Set the initial values for the subcarrier allocation matrix F(0) randomly.

3. Set the convergence tolerance for the subcarrier allocation 𝜖𝐹 .

4. Set the convergence tolerance for the power allocation 𝜖𝑃.

5. 𝑡 ← 0

Output :
1. Optimized power allocation P∗.
2. Optimized subcarrier allocation F∗.

1 while
��F(𝑡) − F(𝑡−1)�� > 𝜖𝐹 and

��P(𝑡) − P(𝑡−1)�� > 𝜖𝑃 do
2 𝑡 ← 𝑡 + 1;

3 F(t) ← arg P(F)
Max-Min

(
F(𝑡−1) , P(𝑡−1)

)
; (see Theorem 3)

4 P(t) ← arg P(P)
Max-Min

(
F(𝑡−1) , P(𝑡−1)

)
; (see Theorem 3)

5 end while
6 P∗ ← P(𝑡);
7 F∗ ← F(𝑡);

We consider a scenario where one BS is serving 6 users over 4 subcarriers, with 𝑁 = 2 and

𝑑 𝑓 = 3, in a circular cell of radius 𝑅 = 300 m and the users are uniformly distributed inside

the cell. It is worth mentioning that an increase in 𝑁 would result in higher diversity, as each

user would transmit its signal on more subcarriers. However, as the value of 𝑑 𝑓 is tied to 𝑁

(i.e. 𝑑 𝑓 =
(𝐾−1
𝑁−1

)
), 𝑑 𝑓 would also increase, resulting in an exponential increase in the decoding

complexity. We consider a path loss exponent 𝛼 = 4. We consider a noise power density

of −174 dBm/Hz and a bandwidth of 180 kHz. Also, we consider a normalized slow fading

Rayleigh channel, such that the channel remains constant for the duration of each transmitted

symbol. Furthermore, we simulate the algorithms’ performance for a maximum transmit power

per user varying between 3 dBm and 10 dBm. We evaluate the performances according to two

metrics: the sum-rate and the Jain’s fairness index (Lan, Kao, Chiang & Sabharwal, 2010).

The former, is a measure of the overall achievable throughput of the network and the latter is a
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measure of the fairness of the resource allocation between the users based on their individual

achievable throughputs. Let c ∈ R𝐽 be a vector, such that, its 𝑖-th coordinate, 𝑐𝑖, corresponds to

the throughput of the 𝑖-th user. The Jain’s fairness index for a given rate vector, c = [𝑐1, · · · , 𝑟𝐽]𝑇 ,

is

𝐽 (c) =

(
𝐽∑

𝑗=1
𝑐 𝑗

)2

𝐽
𝐽∑

𝑗=1
𝑐2

𝑗

. (2.29)

This index varies from 1
𝐽 , meaning no fairness, to 1, meaning perfect fairness. Furthermore, we

consider a normalized Rayleigh fading channel, and the performances are averaged over several

channel realizations.

To implement the proposed algorithms, we used the convex optimization modeling language

CVXPY (Diamond & Boyd, 2016; Agrawal, Verschueren, Diamond & Boyd, 2018), with the

open-source ECOS solver (Domahidi, Chu & Boyd, 2013), due to its support of exponential

cones (Serrano, 2015). The comparison of the sum-rate of the five algorithms is shown in Figure

2.3. The sum-rate of the Max-SR algorithm outperforms the Max-Min, FUO, OA, and PF

algorithms for the whole range of transmitted power evaluated. The three algorithms proposed

in (Dabiri & Saeedi, 2018) present similar performances with the proportional fairness being

slightly worse than the other two. Finally, the Max-Min algorithm is greatly outperformed by

the other ones. This result is expected since the Max-Min gives up on maximizing the sum-rate

in favor of improving the fairness.

Figure 2.4 shows the Jain’s fairness index achieved by each algorithm. The Max-Min algorithm

greatly outperforms the alternatives for the whole range of transmitted powers. It is worth

noting that the Jain’s fairness index is bottlenecked by the rate of the user with the worst channel.

Therefore, an increase in the maximum transmit power results in a higher throughput for the

worst user, consequently, increasing the overall fairness. Furthermore, with increasing maximum

transmit power, the fairness of the Max-Min algorithm approaches one. The other algorithms
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Figure 2.3 Sum-rate comparison for 𝐽 = 6, 𝐾 = 4, 𝑑 𝑓 = 3 and 𝑁 = 2

achieve similar fairness performance, with the PF algorithm achieving slightly better fairness

than the others.

In order to evaluate the link level performance of the Max-SR and Max-Min allocation, another

simulation, evaluating the BER of both allocation algorithms, is presented. In the simulation,

each user transmits a multidimensional symbol with 𝑀 = 4 using a quadrature amplitude

modulation (QAM) mother constellation (Nikopour & Baligh, 2013). We assume that the users’

channel gains are ordered, such that, ‖H1‖𝐹 ≤ ‖H2‖𝐹 ≤ · · · ≤ ‖H𝐽 ‖𝐹 , i.e., the first user has the

worst channel gain, while the last user has the best one. Figure 2.5, shows a comparison between

the BER of the 6 users using Max-SR and Max-Min allocation. As expected, with Max-SR

allocation, the error probabilities are small, but there is a large gap between the best and the

worst user. On the other hand, Max-Min allocation results in overall larger error probabilities
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Figure 2.4 Jain’s fairness index comparison for 𝐽 = 6, 𝐾 = 4, 𝑑 𝑓 = 3 and 𝑁 = 2

when compared to the Max-SR, but the performance gap between users with different channel

quality is smaller.

2.5.1 Performance with Outdated CSI

In this section, we investigate the effect on the performance of the algorithms, under an outdated

CSI regime. In the results shown so far, we considered that for every new channel realization the

users would send a pilot sequence to the BS, who would run the optimization routine and send

the allocations back to the users. This approach requires a large overhead as it requires pilots

and allocations to be sent constantly between the users and the BS. Hence, we consider a system

where the pilots are sent periodically with period 𝑇 , and the users reuse the same allocation

during the period, as illustrated in Figure 2.6.
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Figure 2.5 BER comparison for 𝐽 = 6, 𝐾 = 4, 𝑑 𝑓 = 3 and 𝑁 = 2

Figure 2.6 Resource allocation procedure

In this experiment, we model the temporal relationship between two successive channel

realizations as an i.i.d first-order Gauss-Markov process (Patzold, 2012), for each 𝑘 ∈ K and
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𝑗 ∈ J , given by

ℎ(𝑛+1)
𝑘, 𝑗 = 𝜌ℎ(𝑛+1)

𝑘, 𝑗 + 𝑤𝑘, 𝑗 , (2.30)

where ℎ(𝑛)
𝑘, 𝑗 ∼ CN(0, 1) and 𝑤 (𝑡)

𝑘, 𝑗 ∼ CN(0, 1 − 𝜌2) is the innovation component. Moreover The

correlation between successive fading components is given by

𝜌 = 𝐽0 (2𝜋 𝑓max𝑇𝑠) , (2.31)

where 𝑓max is the maximum Doppler frequency, 𝑇𝑠 is the time between channel updates, and 𝐽0 is

the Bessel function. Figure 2.7 shows the performance deterioration for 𝑇 ∈ [1, 50], 𝑃max = 10

dBm, 𝑇𝑆 = 0.01 s, and four values of 𝑓max resulting in 𝜌2 ∈ {0.95, 0.62, 0.22, 0.01}.

Tables 2.1 and 2.2 summarizes the effects of outdated CSI in the performance of Max-SR and

Max-Min algorithms respectively. From the table results we conclude that the Max-SR algorithm

is more robust to outdated CSI as for the worst case (𝑇 = 50 and 𝜌2 = 0.01), it still achieves

85% of the sum-rate with 𝑇 = 1, while the Max-Min only achieves 75% of the original fairness.

Moreover, as in the proposed model the same allocation is reused for subsequent transmissions,

and the less correlated the current CSI is with the one used to obtain the allocation (i.e. longer

periods between updates), the more it resembles a random allocation, resulting in a performance

decrease. For instance, the Max-Min algorithm maximizes the fairness of the system, hence,

its fairness index decreases with longer periods. On the other hand, we observe in Figure 2.7

that its sum-rate increases with longer periods, thus, we conclude that the Max-Min algorithm

increases fairness at the expense of the sum-rate. The same does not happen in the Max-SR

algorithm as the fairness remains roughly the same under the effect of outdated CSI.

2.5.2 Convergence Analysis and Algorithm Complexity

In this section, the convergence rate of the proposed algorithms and their complexity is

investigated.
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Figure 2.7 Performance of the Max-SR (solid line) and

Max-Min (dashed line) allocations for 𝑇 ∈ [1, 50] and

different values of 𝑓max

Table 2.1 Performance Deterioration with Outdated

CSI (Max-SR)

Fairness Sum-Rate
𝜌2 = 0.95 102.38% 98.81%

𝜌2 = 0.62 96.45% 87.88%

𝜌2 = 0.22 96.47% 85.85%

𝜌2 = 0.01 94.11% 85.89%

The stopping criteria for the procedure is based on the difference between successive updates of

the optimization variables F and P. When this difference falls below a threshold, 𝜖𝐹 and 𝜖𝑃,
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Table 2.2 Performance Deterioration with Outdated

CSI (Max-Min)

Fairness Sum-Rate
𝜌2 = 0.95 83.58% 119.73%

𝜌2 = 0.62 77.22% 114.51%

𝜌2 = 0.22 76.66% 112.38%

𝜌2 = 0.01 74.99% 115.34%

respectively, the algorithm has converged. In order to illustrate the convergence, Algorithms 2.1

and 2.2 are simulated with 𝑃
( 𝑗)
max = 10 dBm ∀ 𝑗 ∈ J , with the same channel gains and users

location, but with three randomly chosen initial conditions (F(0) , P(0)).

Figure 2.8 shows the convergence of Algorithm 2.1. Each iteration in Figure 2.8 consists of a

full cycle of updates.

In Figure 2.9, the convergence of Algorithm 2.2 is shown. The algorithm converges in five steps

or less for all three initial conditions. Furthermore,

Algorithm 2.1 consistently converges to a higher sum-rate than Algorithm 2.2, while Algorithm

2.2 converges to a higher fairness index as expected.

2.5.2.1 Algorithm Complexity

Each update of the Max-SR algorithm involves solving a convex optimization problem, namely

P(F)
Max-SR for the subcarrier allocation update and P(P)

Max-SR for the power allocation update.

We consider that both update steps are solved using a primal-dual interior point algorithm

(Nocedal & Wright, 2006) with a logarithmic barrier function.

Definition 2.1 (𝜖-optimal solution). Let

max
x

𝑓 (x) s.t. x ∈ X,
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Figure 2.8 Convergence of the PMax-SR, with maximum transmit power of 10 dBm,

algorithm for three different initial conditions

where 𝑓 (x) is a concave function and X is a convex set be an optimization problem such that

x∗ is the unique maximizer to the problem. The vector x′ ∈ X is an 𝜖-optimal solution to the

problem if

𝑓 (x∗) − 𝑓 (x′) ≤ 𝜖 . (2.32)

As derived in (Nesterov, Y. and Nemirovskii, A., 1994), the number of steps required to obtain

an 𝜖-optimal solution to a convex optimization problem using the interior point algorithm

with logarithmic barrier function is O
(√

𝑛 log2

(
1
𝜖

))
, where 𝑛 is the number of inequality

constraints. The problems solved in the update steps P(F)
Max-SR and P(P)

Max-SR have 2𝐽 +𝐾 +𝐾𝐽 and

𝐽 inequality constraints, respectively. Therefore, the complexity of each subcarrier allocation

update is O
(√

2𝐽 + 𝐾 + 𝐾𝐽 log2

(
1
𝜖

))
and the complexity of each power allocation update is

O
(√

𝐽 log2

(
1
𝜖

))
. In order to establish the total number of iterations required for the convergence
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Figure 2.9 Convergence of the PMax-Min algorithm, with maximum transmit

power of 10 dBm, for three different initial conditions

of the algorithm, we use the result from Theorem 3.1 in (Hong, Wang, Razaviyayn & Luo, 2017).

Let

max
x

𝑓 (x) s.t. x ∈ X,

where 𝑓 (x) might be non-concave and non-smooth, be a generic non-convex optimization

problem, and x∗ ∈ X∗, where X∗ is the set of the problem’s stationary points. Then, the

optimality gap after the 𝑡-th cyclic update of the BLSM algorithm is given by

Δ𝑡 = 𝑓 (x∗) − 𝑓
(
x(𝑡)

)
≤ 𝑐

𝑡
, (2.33)

where 𝑐 is a constant. Therefore, to obtain an 𝜖-optimal solution, O
(

1
𝜖

)
update steps are

necessary. The same results apply to the Max-Min algorithm as the same number of constraints
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Table 2.3 Complexity of the Max-SR and Max-Min

algorithms

Procedure Number of Steps
Subcarrier Allocation Update O

(√
2𝐽 + 𝐾 + 𝐾𝐽 log2

(
1
𝜖

))
Power Allocation Update O

(√
𝐽 log2

(
1
𝜖

))
Total Number of Updates O

(
1
𝜖

)

are involved to solve the power allocation and subcarrier allocation update problems. Both

algorithms complexity are summarized on Table 2.3.

2.6 Conclusions

In this paper, two joint channel and power allocation algorithms are proposed: the Max-SR and

the Max-Min algorithms. The former aims for sum-rate maximization, while the latter aims for

maximizing fairness. The BSUM framework is employed to obtain algorithms converging to

locally optimal points of the relaxed problems. We compare the performance of the Max-SR

and the Max-Min algorithms with the ones proposed in (Dabiri & Saeedi, 2018). The results

show that the Max-SR algorithm has better performance on the sum-rate sense, while the

Max-Min has better performance on the fairness sense. Moreover, a numerical analysis of the

convergence of the algorithms is presented. Finally, we derive the worst-case time complexity of

both algorithms.

The results show that the Max-SR consistently achieve a better sum-rate, while the Max-Min

achieves better fairness.

Furthermore, there is a tradeoff between the fairness and the sum-rate. For future works, we

intend to investigate new algorithms that can achieve a compromise between sum-rate and

fairness.
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3.1 Abstract

Massive Machine Type Communication (mMTC) is one of the three new applications of fifth-

generation (5G) networks. Users in mMTC applications have different patterns of transmission

and requirements than traditional LTE applications; they are massively deployed and transmit

small packets of data sporadically. Grant-based access scheme is inefficient to satisfy the mMTC

requirements; therefore, grant-free contention-based access (CBA) is appointed as a promising

solution to this problem. In this paper, we analyze the performance of contention-based sparse

code multiple access (SCMA) concerning the probability of success of transmission and the

area spectral efficiency. We derive closed-form expressions for both performance metrics and

validate them with numerical simulations. Furthermore, we compare the results with an OFDMA

contention-based approach.

3.2 Introduction

The time-line of communication systems is marked heavily by challenging requirements followed

by innovative solutions. Every generation of communication systems takes birth in a pool of more

stringent performance requirements and use cases than their predecessor. Similarly, the idea of

fifth generation (5G) of cellular networks blossomed with the promise of covering new use cases

which are not present in LTE networks. The standardization committee for 5G networks identified

three new applications, namely enhanced Mobile Broadband (eMBB), massive Machine Type
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Communications (mMTC), and Ultra-Reliable Low Latency Communications (URLLC), for the

next generation of wireless networks (3GPP, 2017b).

In mMTC applications, the network consists of a dense deployment of user equipment (UE)

with low-power and low-cost devices, which transmit small packets sporadically; therefore, we

need a random multiple access scheme that is suited for sporadic transmissions of small packets,

enables massive connectivity and avoids retransmission, in order to save energy. Radio access

in LTE networks follows a grant-based approach with two stages (Hasan, Hossain & Niyato,

2013): the contention-based random access procedure, where the UE transmits a request in a

shared channel, and the contention-free stage, where the base station (BS) allocates a dedicated

channel to the UE upon successful completion of the first stage. This grant-based approach is

inefficient in the mMTC scenario as it incurs in overhead and additional delay, which become

more significant when the UE transmits small payloads sporadically.

Grant-free contention-based access (CBA), where the UE transmits its payload directly into the

random access shared channel, eliminates the overhead and reduces the delay incurred in the

grant-based procedure, is proposed as an alternative in (Zhou, Nikaein, Knopp & Bonnet, 2012).

However, as the payload is transmitted in the shared channel, a downside of this approach is that

collisions might occur resulting in retransmissions. In order to mitigate this issue, the work in

(Singh et al., 2018) proposes multiple transmissions of the same packet to reduce collisions and

achieve the target reliability within a latency window.

In (Au et al., 2014), the authors propose a grant-free CBA scheme employing sparse code multiple

access (SCMA) (Nikopour & Baligh, 2013). SCMA allows for an overload in the network

allowing more connections with the same number of resources. They present a simulation

comparing the packet drop rate and the number of supported users for a given outage requirement

of a contention-based SCMA network with a contention-based orthogonal frequency division

multiple access (OFDMA). The results show that SCMA enables a three-fold increase of the

number of supported users in comparison to OFDMA.
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3.2.1 Related Work

Most of the research efforts in SCMA has been dedicated to the design of SCMA codebooks

(Taherzadeh et al., 2014), and link-level performance metrics, such as the bit-error rate (BER)

and symbol-error rate (SER) performance of SCMA (Yu, Fan, Lei & Mathiopoulos, 2017; Cai,

Fan & Mathiopoulos, 2017; Lim, Kim & Park, 2017). In (Yang, Lei, Ding, Fan & Karagiannidis,

2017), the sum-rate performance of SCMA in a single hexagonal cell with randomly deployed

users is investigated. More recently, authors in (Liu et al., 2017) and (Liu, Sheng, Liu, Wang & Li,

2018) proposed scalable stochastic geometric models to analyze the performance of SCMA in

large networks. In (Liu et al., 2017) a comparison between a hybrid device-to-device (D2D)

network, employing OFDMA and SCMA is proposed. In (Liu et al., 2018), bounds on the area

spectral efficiency (ASE) and the transmission success probability of a large SCMA network are

investigated.

3.2.2 Contributions

Our main contribution in this paper, is the modeling and analysis of contention-based SCMA

access in a large network. We obtain closed-form expressions for the probability of success and

the ASE. To the best of our knowledge, this is the first work where these performance metrics are

obtained in closed-form for a large contention-based SCMA network. Additionally, we compare

contention-based SCMA’s performance with its OFDMA counterpart.

This paper is organized as follows. In Section 3.3, the system model and its assumptions are

presented. In Section 3.4, expressions for the probability of success and ASE for contention-

based SCMA and OFDMA are derived. Section 3.5 shows a numerical simulation of the

performance metrics, where we compare numerical and analytical results. Finally, in Section

3.6, the conclusions are summarized.
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3.3 System Model

In LTE networks, the physical random access channel (PRACH) is used to establish a connection

between an eNodeB and a user. This procedure involves an exchange of four messages (Laya,

Alonso & Alonso-Zarate, 2014) (PRACH preamble, random access response, connection request,

and contention resolution) before the user can transmit its payload. This setup is extremely

inefficient for the transmission of small packets of data and users with tight delay constraints. In

grant-free CBA, the data payload is transmitted together with the PRACH preamble, reducing

the data exchange overhead, and potentially reducing access latency. However, this scheme faces

challenges when serving a massive number of users. As the number of orthogonal network

resources is finite, the likelihood of collisions increases with the number of users served. A

promising solution to address the scaling issues of grant-free CBA is to employ SCMA (Au

et al., 2014). In this section, we develop analytical models to characterize and compare the

performances of OFDMA-based and SCMA-based grant-free CBA.

3.3.1 Network Geometry

We consider a contention-based access network, consisting of randomly deployed BSs and UEs.

We model the location of the BSs using a two-dimensional homogeneous Poisson point process

(HPPP) Φ𝐵 = {𝐵1, 𝐵2, · · · } ⊂ R2, with intensity 𝜆𝐵. Similarly, the locations of the UEs are

modeled by another HPPP Φ𝑈 = {𝑈1, 𝑈2, · · · } ⊂ R2, with intensity 𝜆𝑈 . We assume that each

UE is transmitting data to its closest BS and at each time-slot each UE transmits with probability

𝜁 . The distance between 𝑈𝑖 and 𝐵𝑗 is denoted by 𝑟𝑖, 𝑗 , and the distance to the closest BS to 𝑈𝑖 is

given by 𝑟𝑖 = min 𝑟𝑖, 𝑗 ∀ 𝐵𝑗 ∈ Φ𝐵. The distribution of 𝑟𝑖 is given as follows (Haenggi, 2013)

𝑓𝑟𝑖 (𝑟) = 2𝜆𝐵𝜋𝑟𝑒−𝜆𝐵𝜋𝑟2

. (3.1)

Without loss of generality, we evaluate the performance of a typical link between a typical UE

𝑈0 and its closest BS 𝐵0. Due to Slivnyak’s theorem (Baddeley, Bárány & Schneider, 2007), the

performance of the network can be generalized by the performance of a typical link. Fig. 3.1
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shows a realization of the point process following this model with 𝜆𝑈 = 10−3, 𝜆𝐵 = 10−4. The

lines connect the UE to its serving BS.

Figure 3.1 Realization of the position of BSs and UEs in a

200 m radius with 𝜆𝑈 = 10−3, 𝜆𝐵𝑆 = 10−4. The lines connect

the UE to its serving BS

3.3.2 Channel Model

The channel gain between 𝑈𝑖 and 𝐵𝑗 is given by 𝑔𝑖, 𝑗 =
��ℎ𝑖, 𝑗

��2
𝑙 (𝑟𝑖, 𝑗 ), where ℎ𝑖, 𝑗 is the small

scale fading coefficient, ‖𝑥‖ denotes the absolute value of 𝑥, and 𝑙 (·) is the path loss gain. We

assume that each ℎ𝑖, 𝑗 is an independent identically distributed (i.i.d) complex normal random

variable with mean zero and unit variance so
��ℎ𝑖, 𝑗

��2 ∼ exp(1). Moreover, we assume a singular

path loss model, such that 𝑙 (𝑟𝑖, 𝑗 ) = 𝑟−𝛼
𝑖, 𝑗 , where 𝛼 is the path loss exponent. We assume that

the network is interference limited, i.e. the noise power is negligible in comparison to the

interference (Haenggi, 2013).
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3.3.3 Multiple Access

Since our aim is to show the advantages of contention-based SCMA, we compare its performance

with an equivalent contention-based OFDMA scheme. From this point on, the subscript/super-

script 𝑂 is used to denote quantities related to the OFDMA method, while 𝑆 is used to denote

quantities related to the SCMA scheme.

In the grant-free contention-based OFDMA network, we assume that there are 𝐿 orthogonal

preambles and 𝐾 orthogonal subcarriers available for the transmission. At each transmission

slot, an UE has new data to transmit with probability 𝜁 . When an UE is transmitting, it randomly

selects one preamble and one orthogonal subcarrier to transmit its message with power 𝑃.

Different UEs interfere with each other if they select the same preamble and the same subcarrier

in the same time slot. Therefore, the set of interfering UEs is obtained by thinning the original

point process Φ𝑈 , leading to Φ̃𝑂
𝑈 with intensity (Haenggi, 2013)

𝜆̃𝑂
𝑈 =

1

𝐿

1

𝐾
𝜁𝜆𝑈. (3.2)

Furthermore, the received signal at 𝐵0 is the sum between the desired signal coming from 𝑈0 and

the interfering signals from users transmitting with the same preamble and subcarrier. Therefore,

𝑦𝑂
𝐵0

=
√

𝑃𝑟−𝛼
0

ℎ0,0𝑥0 +
∑

𝑈𝑖∈Φ̃𝑂𝐵

√
𝑃𝑟−𝛼

𝑖,0 ℎ𝑖,0𝑥𝑖, (3.3)

where 𝑥𝑖 is the symbol transmitted by user 𝑖 and 𝐸 [|𝑥𝑖 |2] = 1, and its respective signal-to-

interference ratio (SIR) is given by

SIR𝑂 =
𝑃

��ℎ0,0

��2
𝑟−𝛼

0∑
𝑈𝑖∈Φ̃𝑂𝑈

𝑃
��ℎ𝑖,0

��2
𝑟−𝛼

𝑖,0

. (3.4)

On the other hand, in the SCMA transmission, 𝐽 data layers are multiplexed into 𝐾 subcarriers.

Each layer has a codebook containing 𝑀 codewords of size 𝐾, such that each coordinate of a
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codeword is mapped into a subcarrier. The SCMA encoder maps a stream of log2(𝑀) bits into

one of the 𝑀 codewords from its codebook. Each 𝐾 dimensional codeword has 𝑁 non-zero

coordinates, such that 𝑁 � 𝐾 (Nikopour & Baligh, 2013). In this work, we assume that each

user is scheduled to transmit its information in one layer. Figure 3.2 illustrates a possible

mapping between 𝐽 layers into 𝐾 subcarriers, such that each layer is mapped to two subcarriers.

The number of data layers 𝐽 is equal to the number of ways to group 𝑁 subcarriers out of 𝐾,

thus, 𝐽 =
(𝐾
𝑁

)
. Moreover, the optimal decoding of SCMA multidimensional symbols can be

achieved with a maximum a priori (MAP) decoder.In this paper, we consider an ideal MAP joint

detector, such that codewords from different codebooks are orthogonal (Liu et al., 2017, 2018),

hence, users transmitting on different layers do not interfere with each other.

In the SCMA scenario, two users interfere if they transmit on the same time-slot using the same

preamble, and data layer. Similarly to the OFDMA scenario, we can obtain the point process of

interferers by thinning the original user point process Φ𝑈 and obtaining Φ̃𝑆
𝑈 with intensity

𝜆̃𝑆
𝑈 =

1

𝐿

1

𝐽
𝜁𝜆𝑈. (3.5)

Additionally, the received signal at 𝐵0 is given by

𝑦𝑆
𝐵0

=
𝑁∑

𝑛=1

√
𝑃

𝑁
𝑟−𝛼

0
ℎ𝑛

0,0𝑥0 +
∑

𝑈𝑖∈Φ̃𝑆𝑈

𝑁∑
𝑛=1

√
𝑃

𝑁
𝑟−𝛼

𝑖,0 ℎ𝑛
𝑖,0𝑥𝑖, (3.6)

where we assume the power is split equally between the 𝑁 subcarriers and ℎ𝑛
𝑖, 𝑗 is the small scale

fading coefficient between UE 𝑖 and BS 𝑗 on subcarrier 𝑛. Hence, the SIR employing SCMA

access is given by

SIR𝑆 =

𝑁∑
𝑛=1

𝑃
𝑁

���ℎ𝑛
0,0

���2

𝑟−𝛼
0∑

𝑈𝑖∈Φ̃𝑆𝑈

𝑁∑
𝑛=1

𝑃
𝑁

���ℎ𝑛
𝑖,0

���2

𝑟−𝛼
𝑖,0

. (3.7)
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Figure 3.2 Example of a mapping

between SCMA layers (empty circles) and

subcarriers (filled squares), with

parameters 𝐽 = 6, 𝐾 = 4 and 𝑁 = 2

3.4 Analytical Results

The probability of successfully transmitting a symbol (i.e. the SIR at the receiver is large

enough to recover the original information) and the ASE (i.e. the upper-bound on the number

of bits that can be transmitted over a time-frequency block in an area of the network) are

important metrics to evaluate the performance of a network. Having analytical expressions for

this quantities is of great help when designing and planning a network. In this section, we obtain

analytical expressions for the probability of success in the transmission of a symbol employing

contention-based OFDMA (i.e. 𝑝𝑂) and SCMA (i.e. 𝑝𝑆) multiple access. In both scenarios a

transmission is successfully decoded if the SIR is higher than a threshold 𝜏, therefore

𝑝𝑖 = P {SIR𝑖 ≥ 𝜏} ∀ 𝑖 ∈ {𝑂, 𝑆}. (3.8)

Furthermore, we also analyze the ASE in both scenarios, which is given by

ASE𝑖 = 𝜆𝑈 𝑝𝑖 log2(1 + 𝜏) ∀ 𝑖 ∈ {𝑂, 𝑆}. (3.9)
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3.4.1 OFDMA Performance Analysis

As the ASE depends on the success probability, we start by obtaining an expression for 𝑝𝑂 .

Theorem 4. The probability of successfully transmitting an OFDMA symbol is given by

P {SIR𝑂 ≥ 𝜏} = 𝛼𝜆𝐵

2𝜆̃𝑂
𝑈𝜏

2
𝛼Γ(1 − 2/𝛼)Γ(2/𝛼) + 𝛼𝜆𝐵

. (3.10)

Proof. First, let 𝐼𝑂 be the sum of the signals interfering with user 𝑈0 at BS 𝐵0. Then, 𝐼𝑂 is

written as

𝐼𝑂 =
∑

𝑈𝑖∈Φ̃𝑂𝐵

𝑃
��ℎ𝑖,0

��2
𝑟−𝛼

𝑖,0 .

We proceed the derivation by obtaining the probability of success given 𝑟0 and 𝐼𝑂 as follows

P {SIR𝑂 ≥ 𝜏 |𝑟0, 𝐼𝑂} = P

{
𝑃

��ℎ0,0

��2
𝑟−𝛼

0

𝐼𝑂
≥ 𝜏

}
= P

{��ℎ0,0

��2 ≥ 𝜏𝑟𝛼
0

𝐼𝑂

𝑃

}
(𝑎)
= exp

(
−𝜏𝐼𝑂𝑟𝛼

0

𝑃

)
, (3.11)

where (a) comes form the fact that
��ℎ0,0

��2
is exponentially distributed, as mentioned in Section

3.3.2. Let 𝐸𝑥 [·] be the expected value over a random variable 𝑥. Now, to obtain P {SIR𝑂 ≥ 𝜏 |𝑟0}
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we average (3.11) over 𝐼𝑂 as shown below

E𝐼𝑂

[
exp

(
−𝜏𝐼𝑂𝑟𝛼

0

𝑃

)]

= EΦ̃𝑂𝑈

⎡⎢⎢⎢⎢⎢⎢⎢⎣
E‖ℎ𝑖,0‖2

⎡⎢⎢⎢⎢⎢⎢⎢⎣
exp

������
−

𝜏𝑟𝛼
0

∑
𝑈𝑖∈Φ̃𝑂𝑈

𝑃
��ℎ𝑖,0

��2
𝑟−𝛼

𝑖,0

𝑃

������
⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎥⎥⎥⎦

= EΦ̃𝑂𝑈

⎡⎢⎢⎢⎢⎣
∏

𝑈𝑖∈Φ̃𝑂𝑈

E‖ℎ𝑖,0‖2

[
exp

(
−𝜏𝑟𝛼

0

��ℎ𝑖,0

��2
𝑟−𝛼

𝑖,0

)]⎤⎥⎥⎥⎥⎦
(𝑏)
= EΦ̃𝑂𝑈

⎡⎢⎢⎢⎢⎣
∏

𝑈𝑖∈Φ̃𝑂𝑈

1

1 + 𝜏𝑟𝛼
0
𝑟−𝛼

𝑖,0

⎤⎥⎥⎥⎥⎦
(𝑐)
= exp

���−2𝜋𝜆̃𝑂
𝑈

∫ ∞

0

(
1 − 1

1 + 𝜏𝑟𝛼
0
𝑟−𝛼

𝑖,0

)
𝑟𝑖,0d𝑟𝑖,0

���
(𝑑)
= exp

(
−2𝜆̃𝑂

𝑈𝜏
2
𝛼Γ(1 − 2/𝛼)Γ(2/𝛼)

𝛼
𝑟2

0

)
, (3.12)

where (b) comes from the Laplace transform of
��ℎ𝑖,0

��2
evaluated at 𝜏𝑟𝛼

0
𝑟−𝛼

𝑖,0 , while (c) is obtained

as the probability generating functional of a HPPP (Haenggi, 2013), and, (d) is obtained by

solving the integral (see (Gradshteyn & Ryzhik, 2007)). Finally, by averaging (3.12) over 𝑟0 we

obtain

𝑝𝑂 =

∫
exp

(
−2𝜆̃𝑂

𝑈𝜏
2
𝛼Γ(1 − 2/𝛼)Γ(2/𝛼)

𝛼
𝑟2

0 − 𝜆𝐵𝜋𝑟2
0

)
× 2𝜋𝜆𝐵𝑟0𝑑𝑟0. (3.13)

The solution to the integral in (3.13) is (3.10), concluding the proof. �
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Next, by substituting (3.10) into (3.9), the ASE for the OFDMA network is obtained as follows

ASE𝑂 =
𝛼 𝜆𝐵

𝜆̃𝑖𝑈

2𝜏
2
𝛼Γ(1 − 2/𝛼)Γ(2/𝛼) + 𝛼 𝜆𝐵

𝜆̃𝑖𝑈

log2(1 + 𝜏). (3.14)

3.4.2 SCMA Performance Analysis

Similarly to Section 3.4.1, we start by deriving the probability of success in a contention-based

SCMA network. Firstly, we consider the case where each codeword has 𝑁 non-zero coordinates,

for which we derive a non closed-form result.

Theorem 5. The probability of successfully transmitting a SCMA symbol is given by

𝑝𝑆 =

∫ ∞

0

𝑒−𝜌𝑟2
0

(
1 +

𝑁−1∑
𝑖=1

1

𝑖!

𝑖∑
𝑙=1

𝜃𝑖
𝑙𝑟

2𝑙
0

)
2𝜋𝜆𝐵𝑟0𝑒−𝜆𝐵𝜋𝑟2

0 𝑑𝑟0,

(3.15)

where

𝜌 =
𝜆̃𝑆

𝑈

Γ(𝑁) 𝜋𝜏2/𝛼Γ(1 − 2/𝛼)Γ(𝑁 + 2/𝛼), (3.16)

and

𝜃𝑖
𝑙 =

(
2𝜆̃𝑆

𝑈𝜋𝜏2/𝛼Γ(𝑁 + 2/𝛼)
Γ(𝑁)𝛼

) 𝑙 ∑
𝑀∈M(𝑖)

𝑙

C𝑀

𝑙!

𝑙∏
𝑗=1

Γ(𝑚 𝑗 − 2/𝛼), (3.17)

where M𝑖
𝑙 ⊆ N𝑙 is the set of all vectors such that its elements

��𝑚 𝑗

��
1
= 𝑖, and,

C𝑀 =
𝑖!

𝑙∏
𝑗=1

𝑚 𝑗 !

.
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Proof. We follow a similar procedure used to prove Theorem 4. First, let 𝐼𝑆 be the sum of

signals interfering with user 𝑈0 at BS 𝐵0. Then, 𝐼𝑆 is given by

𝐼𝑆 =
∑

𝑈𝑖∈Φ̃𝑆𝑈

𝑁∑
𝑛=1

𝑃

𝑁

���ℎ𝑛
𝑖,0

���2

𝑟−𝛼
𝑖,0 . (3.18)

The probability of success given 𝑟0 and 𝐼𝑆 is given by

P {SIR𝑆 ≥ 𝜏 |𝑟0, 𝐼𝑆} = P
{

𝑁∑
𝑛=1

���ℎ𝑛
0,0

���2

≥ 𝜏𝑟−𝛼
0

𝐼𝑆

𝑃/𝑁

}
. (3.19)

As defined in Section 3.3.2, each
���ℎ𝑛

0,0

���2

is an i.i.d exponential random variable with scale

parameter equal to one. Therefore, we have that
𝑁∑

𝑛=1

���ℎ𝑛
0,0

���2

∼ Γ(𝑁, 1) follows a Gamma

distribution. Using the sum representation of the upper incomplete Gamma function we have

that the complementary cumulative distribution function (CCDF) in (3.19) is given by

P

{
𝑁∑

𝑛=1

���ℎ𝑛
0,0

���2

≥ 𝜏𝑟𝛼
0

𝐼𝑆

𝑃/𝑁

����� 𝑟0, 𝐼𝑆

}
=

𝑁−1∑
𝑖=0

[
𝜏𝑟𝛼

0

] 𝑖

𝑖!
𝐼𝑆 exp

(
−𝜏𝑟𝛼

0 𝑟−𝛼
𝑖,0

)
. (3.20)

Using Theorem 2 in (Schilcher et al., 2016), the average of (3.20) over 𝐼𝑆 is given as follows

P {𝑆𝐼𝑅𝑆 ≥ 𝜏 |𝑟0}

= exp

(
−2𝜋𝜆̃𝑆

𝑈

∫ ∞

0

[
1 −

(
1 + 𝜏𝑟𝛼

0 𝑟−𝛼
𝑖,0

)𝑁
]

𝑑𝑟𝑖,0

)
×

⎡⎢⎢⎢⎢⎢⎣1 +
𝑁−1∑
𝑖=0

1

𝑖!

𝑖∑
𝑙=1

∑
𝑀∈M(𝑖)

𝑙

C𝑀

𝑙!

𝑙∏
𝑗=1

𝜆̃𝑆
𝑈

Γ(𝑁 + 𝑚 𝑗 )
Γ(𝑁)

×
����2𝜋

∫ ∞

0

(
𝜏𝑟𝛼

0
𝑟−𝛼

𝑖,0

)𝑚 𝑗(
1 + 𝜏𝑟𝛼

0
𝑟−𝛼

𝑖,0

)𝑁+𝑚 𝑗
𝑑𝑟𝑖,0

����
⎤⎥⎥⎥⎥⎥⎦ (3.21)
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Now let 𝜌 be

𝜌 =
∫ ∞

0

[
1 −

(
1 + 𝜏𝑟𝛼

0 𝑟−𝛼
𝑖,0

)𝑁
]

𝑑𝑟𝑖,0, (3.22)

and, 𝜃𝑖
𝑙 be

𝜃𝑖
𝑙 = 2𝜋

∫ ∞

0

(
𝜏𝑟𝛼

0
𝑟−𝛼

𝑖,0

)𝑚 𝑗(
1 + 𝜏𝑟𝛼

0
𝑟−𝛼

𝑖,0

)𝑁+𝑚 𝑗
𝑑𝑟𝑖,0

×
∑

𝑀∈M(𝑖)
𝑙

C𝑀

𝑙!

𝑙∏
𝑗=1

𝜆̃𝑆
𝑈

Γ(𝑁 + 𝑚 𝑗 )
Γ(𝑁) . (3.23)

Hence, (3.21) can be rewritten as

P {𝑆𝐼𝑅𝑆 ≥ 𝜏 |𝑟0} = 𝑒−2𝜋𝜆̃𝑆𝑈𝜌

(
1 +

𝑁−1∑
𝑖=0

1

𝑖!

𝑖∑
𝑙=1

𝜃𝑖
𝑙

)
(3.24)

The solutions to the integrals in (3.22) and (3.23) are given by (3.16) and (3.17), respectively.

By averaging (3.24) over 𝑟0 we obtain (3.15), thus, concluding the proof. �

The expression for 𝑝𝑆 obtained in (3.15) is given in terms of an expectation over the distance

from 𝑈0 to its closes BS. If we fix the number of sucarriers per layer to 𝑁 = 2 it is possible to

obtain a closed-form expression for 𝑝𝑆 as shown below.

Corollary 1. The probability of successful SCMA transmission with 𝑁 = 2 is

𝑝𝑆 = P {SIR𝑆 ≥ 𝜏} = 𝜋𝜆𝐵
(
𝜃1

1
𝜋𝜆𝐵 + 𝜌

)
(𝜋𝜆𝐵 + 𝜌)2

(3.25)

Proof. If we fix 𝑁 = 2, then (3.15) is equal to

P {𝑆𝐼𝑅𝑆 ≥ 𝜏} =
∫ ∞

0

𝑒−𝜌𝑟2
0 (1 + 𝜃1

1𝑟2
0)2𝜋𝜆𝐵𝑟0𝑒−𝜆𝐵𝜋𝑟2

0 𝑑𝑟0.

By solving the integration above we obtain (3.25), therefore, concluding the proof. �
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Table 3.1 Simulation’s parameters

Parameter Value
𝜆𝐵 10−4 m

𝜆𝑈 [10−3, 10−1] m

𝐿 8 preambles

𝐾 16 subcarriers

𝑁 2 subcarriers per user

𝜁 0.7
𝛼 4

𝑃 1 W

Then, the ASE for SCMA transmission with 𝑁 = 2 is given by

ASE𝑆 = 𝜆̃𝑆
𝑈

𝜋𝜆𝐵
(
𝜃1

1
𝜋𝜆𝐵 + 𝜌

)
(𝜋𝜆𝐵 + 𝜌)2

log2(1 + 𝜏). (3.26)

3.5 Numerical Simulation

In order to validate the results from Section 3.4, we evaluate the probability of success and

the ASE of the OFDMA and the SCMA methods, through a Monte Carlo simulation. The

simulation’s parameters are shown in Table 3.1.

To make a fair comparison, the same number of subcarriers is available for transmission and

each user transmits with the same power in both scenarios. At each realization the user’s and

the BS’s point process are generated inside a circle with 1 Km radius. Afterwards, the user

process is thinned according to (3.2) and (3.5) for the OFDMA and for the SCMA networks,

respectively. Finally, the SIR of each user at its closest BS is evaluated, according to the system

model in Section 3.3, and the transmission is considered successful if its SIR is greater than 𝜏.

As shown in Fig. 3.3 the probability of a successful transmission employing SCMA multiple

access is greater than using OFDMA for the whole investigated range of the user process intensity.

Additionally, it decays slower with the increase in the user intensity. As SCMA always has an
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Figure 3.3 Comparison between the probability of success for an

OFDMA and a SCMA network

overloading factor greater than 1, we have that 𝐽 is always greater than 𝐾. Therefore, if we

compare (3.2) and (3.5), the intensity of the interferer process for SCMA access will always be

smaller than OFDMA’s (i.e. 𝜆̃𝑆
𝑈 < 𝜆̃𝑂

𝑈). Due to its higher probability of succes, we conclude

that the contention-based SCMA network requires less retransmissions of lost packets, which

result in power savings, as each transmission is more likely to be successful in comparison to

OFDMA. Furthermore, the probability of success in SCMA transmission decays slower, with the

increase of user density, than its OFDMA counterpart. Consequently, as the ASE is proportional

to the probability of success, SCMA’s ASE grows with the user intensity for the whole range

investigated in this work, while the ASE of OFDMA saturates, as shown in Fig. 3.4. Hence, the

ASE performance of the SCMA network scales better with an increase of the user density, which

makes it a promising alternative to orthogonal access in grant-free contention-based mMTC

networks.
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Figure 3.4 Comparison between the ASE for OFDMA and SCMA

contention-based networks

3.6 Conclusion

CBA is a promising alternative to enable 5G mMTC networks, where power-limited UEs transmit

small packets sporadically, as it can reduce the latency, eliminate the overhead incurred in

requesting a dedicated channel, and provides massive connectivity by allowing multiple users

to share the same resources. In this paper, we analyze two different CBA approaches, the first

employing OFDMA while the second employs SCMA. The probability of success and the ASE

of both approaches are analyzed, and closed-form expressions are derived. From the results,

contention-based SCMA shows a higher probability of success and ASE than its OFDMA

counterpart. Moreover, SCMA’s probability of success decreases slowly with the increase in

the density of UEs in comparison with OFDMA. Also, OFDMA’s ASE saturates after a small

increase in the UE density, while SCMA’s ASE keeps growing. Therefore, it is possible to
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conclude that SCMA is a key-enabler for mMTC applications as its performance scales better

for high user densities.





CHAPTER 4

RELIABILITY AND USER-PLANE LATENCY ANALYSIS OF MMWAVE MASSIVE
MIMO FOR GRANT-FREE URLLC APPLICATIONS

Joao V.C. Evangelista1 , Georges Kaddoum1

1 Department of Electrical Engineering, École de Technologie Supérieure,

1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3

Article submited to the IEEE Transactions on Communications, July, 2021.

4.1 Abstract

5G cellular networks are designed to support a new range of applications not supported

by previous standards. Among these, ultra-reliable low-latency communication (URLLC)

applications are arguably the most challenging. URLLC service requires the user equipment

(UE) to be able to transmit its data under strict latency constraints with high reliability. To

address these requirements, new technologies, such as mini-slots, semi-persistent scheduling and

grant-free access were introduced in 5G standards. In this work, we formulate a spatiotemporal

mathematical model to evaluate the user-plane latency and reliability performance of millimetre

wave (mmWave) massive multiple-input multiple-output (MIMO) URLLC with reactive and

𝐾-repetition hybrid automatic repeat request (HARQ) protocols. We derive closed-form

approximate expressions for the latent access failure probability and validate them using

numerical simulations. The results show that, under certain conditions, mmWave massive

MIMO can reduce the failure probability by a factor of 32. Moreover, we identify that beyond a

certain number of antennas there is no significant improvement in reliability. Finally, we conclude

that mmWave massive MIMO alone is not enough to provide the performance guarantees required

by the most stringent URLLC applications.
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4.2 Introduction

The 3rd generation partnership project (3GPP) has identified three distinct use cases for 5G new

radio (NR) and beyond cellular networks based on their different connectivity requirements:

enhanced mobile broadband (eMBB) massive machine-type communication (mMTC) and ultra

reliable low-latency communication (URLLC) (ITU, 2015). Since the inception of the idea of

5G NR, it has been argued that its main revolution is a change of paradigm from a smartphone-

centric network to a network capable of satisfying the requirements of diverse services, such

as machine-to-machine and vehicle-to-vehicle communications (Bjornson, Larsson & Lozano,

2021). The URLLC scenario targets applications that require high reliability and low latency,

such as augmented reality (AR) virtual reality (VR) vehicle-to-everything (V2X) critical internet

of things (cIoT) industrial automation and healthcare. According to the use cases defined in

(3GPP, 2020), the main key performance indicator (KPI) to be satisfied in URLLC applications

is the latent access failure probability, which incorporates the reliability and latency requirements

needed in such applications. The requirements for URLLC applications vary from 1 − 10−5

transmission reliability to transmit 32 bytes of data with a user-plane latency of less than 1 ms to

a 1 − 10−5 reliability to transmit 300 bytes with a user-plane latency of between 3 and 10 ms,

depending on the application (3GPP, 2020).

Long term evolution (LTE) and prior networks were not designed with such constraints in

mind. Scheduling in long-term evolution (LTE) follows a grant-based approach, where the

user equipment (UE) must request resources in a 4-step random access (RA) procedure before

transmitting data (Vilgelm et al., 2018). In the best-case scenario, it takes at least 10 ms for a

UE to start transmitting its payload.

Therefore, new mechanisms were introduced into the 5G NR specification to support the latency

requirements of URLLC applications. Firstly, a flexible numerology was proposed, introducing

the concept of a mini-slot that last as little as 0.125 ms (3GPP, 2018b), in contrast to the 1 ms

minimum slot duration on LTE, enabling fine-grained scheduling of network resources (Zaidi

et al., 2018). Secondly, the introduction of semi-persistent scheduling (SPS) of grants (3GPP,
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2018a; Karadag, Gul, Sadi & Coleri Ergen, 2019), where some of the network’s resource blocks

are periodically reserved for URLLC applications, thereby avoiding the grant request procedure.

Despite the efforts, not all URLLC applications have a periodic traffic pattern and are therefore

unable to benefit greatly from SPS. Additionally, some services require low latency and reliable

transmission to transmit small sporadic packets. With that in mind, both the standards committee

(3GPP, 2017a) and researchers have put a lot of effort to investigate grant-free transmission,

where the UE transmit their payload directly in the RA channel. This culminated with the

introduction of the 2-step RA procedure introduced in Release 16 (3GPP, 2017a). The 2-step

RA procedure follows a grant-free approach, where instead of waiting for a dedicated channel

to be assigned by the network, it transmits its data directly into the RA channel and waits for

feedback from the network (Kim et al., 2021).

Moreover, massive multiple input multiple output (MIMO) is a fundamental part of 5G NR (Lu,

Li, Swindlehurst, Ashikhmin & Zhang, 2014; Larsson, Edfors, Tufvesson & Marzetta, 2014;

Björnson, Hoydis & Sanguinetti, 2018). It provides performance gains by improving diversity

against fading and, along with advanced signal processing techniques, can provide directivity to

transmission/reception, mitigating interference between spatially uncorrelated UE (Marzetta,

Larsson, Yang & Ngo, 2016). The performance enhancements provided by MIMO are essential

to ensure the reliability and the low latency required by URLLC applications. In conjunction with

massive MIMO comes millimeter wave (mmWave) transmission. Due to its small wavelength,

mmWave antennas can be packed into massive arrays, making it a key enabler of massive MIMO

systems which attracted a significant interest on the topic (Rappaport et al., 2013; Rangan,

Rappaport & Erkip, 2014; Andrews et al., 2017; Sattar, Evangelista, Kaddoum & Batani, 2017,

2019a,b). However, mmWave propagation comes with its own challenges due to the severe

propagation loss experienced by electromagnetic signals in this frequency range.

In this paper, we develop a spatiotemporal analytical model to evaluate the performance of

mmWave massive MIMO communication systems for URLLC applications. We use tools from

stochastic geometry and probability theory to evaluate and compare system performance metrics
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by deriving closed-form approximate expressions for its latent access failure probability under

different hybrid automatic repeat request (HARQ) protocols.

4.2.1 Related Work

In (Gao & Dai, 2019), the authors propose a queueing model to compare the throughput

performance of packet-based (grant-free) and connection-based (grant-based) random access.

They conclude that packet-based systems with sensing can achieve greater throughput than

connection-based one for small packet transmissions. In (Liu, Deng, Zhou, Elkashlan & Nal-

lanathan, 2021; Evangelista, Sattar, Kaddoum, Selim & Sarraf, 2021), the optimization of

grant-free access networks is investigated. The former considers the dynamic optimization of

HARQ and scheduling parameters with non-orthogonal multiple access (NOMA) while the

former considers the distributed link adaptation problem. Both papers formulate the respective

optimization tasks as multiagent reinforcement learning (MARL) problems. The probability

of success and the area spectral efficiency of a grant-free sparse code multiple access (SCMA)

system is evaluated in (Lai, Lei, Deng, Wen & Chen, 2021; Evangelista, Sattar & Kaddoum,

2019a), in an mMTC context, using stochastic geometry. However, none of the works consider

the temporal aspects of the system, which are crucial to analyze the latency and reliability of

URLLC service. In (Ding, Qu, Jiang & Jiang, 2019), the probability of success of grant-free

RA with massive MIMO in the sub-6 GHz band is investigated, and analytical expressions are

derived for conjugate and zero-forcing beamforming. Despite its contribution, the authors do not

evaluate the system’s temporal behavior, which is fundamental to characterize URLLC service’s

performance. Moreover, due to its distinct propagation characteristics, this model is unsuitable

for mmWave frequency bands.

The authors in (Gharbieh et al., 2018) evaluate the scalability of scheduled uplink (grant-based)

and random access (grant-free) transmissions in massive internet of things (IoT) networks,

although they frame the problem through a revolutionary spatiotemporal framework, fusing

stochastic geometry and queueing theory. They conclude that grant-free transmission offers

lower latency, however, it does not scale well to a massive number of devices. In our work, we
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show that using massive MIMO base station (BS) is a viable solution to address the scalability

issues of grant-free transmission without sacrificing its latency, rendering it particularly suitable

for URLLC applications. In (Jiang, Deng, Kang & Nallanathan, 2018a), the authors use a

similar spatiotemporal model to characterize the performance of different RA schemes with

respect to the probability of a successful preamble transmission in a grant-based massive IoT

system. They conclude that a backoff scheme performs close to optimally in diverse traffic

conditions. In (Jacobsen et al., 2017), the authors perform system-level simulations of a

grant-free URLLC network under different HARQ configurations, and compare it to a baseline

grant-based system. They conclude that grant-free systems provide significantly lower latency

at the 1 − 10−5 reliability level. The same scenario is evaluated in (Liu et al., 2020), however,

the authors characterize system performance analytically, using a stochastic geometry-based

spatiotemporal model. This paper identifies the suitability of each HARQ scheme for different

network loads and received power levels.

Stochastic geometry has become the de facto tool for analyzing large networks (Lu, Salehi,

Haenggi, Hossain et al., 2021; Hmamouche, Benjillali, Saoudi, Yanikomeroglu & Renzo, 2021;

Jiang, Deng, Nallanathan, Kang & Quek, 2018b), and has been successfully used to investigate

the performance of MIMO systems for a while now (Tanbourgi, Dhillon & Jondral, 2015; Nguyen,

Jeong, Quek, Tay & Shin, 2013; Adhikary, Dhillon & Caire, 2015; Lee, Morales-Jimenez,

Lozano & Heath, 2014). In (Afify, ElSawy, Al-Naffouri & Alouini, 2016), a unified stochastic

geometric mathematical model for MIMO cellular networks with retransmission is proposed. In

(Ding, Fan & Poor, 2017), a stochastic geometry-based analytical model for the performance of

downlink mmWave NOMA systems is developed. The authors propose two random beamforming

methods that are able to reduce system overhead while providing performance gains for BS with

a large number of antennas.

We seek to answer the following main questions that are to the best of our knowledge missing

from the current literature:
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• How do we formulate a tractable spatiotemporal model to investigate the reliability and

latency of URLLC applications powered by BS equipped with massive antenna arrays

operating on mmWave frequencies?

• What closed-form analytical expressions can we derive for the latent access failure probability

in this scenario?

• What are the performance gains obtained from increasing the number of antennas at the BS,

and what are the limitations?

4.2.2 Contributions

This paper makes three major contributions:

• We formulate a mathematical model to evaluate the performance of mmWave massive

MIMO on uplink grant-free URLLC networks with HARQ. This model uses stochastic

geometry to capture the spatial configuration of the UE and the BS, a mmWave channel

model, and probability theory to obtain the temporal characteristics necessary to evaluate the

performance of URLLC applications.

• We derive closed-form approximate expressions for the latent access failure probability using

reactive and 𝐾-repetition HARQ schemes. To the best of our knowledge, no previous works

has presented closed-form analytic expressions for this key performance measure of URLLC

applications in a mmWave massive MIMO communication system.

• We analyze the system performance for an extensive range of scenarios, identifying the

gains and limitations provided by using the mmWave spectrum together with a massive

number of antennas at the BS, and identify the scenarios that benefit the most from these two

technologies.

4.2.3 Notation and Organization

Italic Roman and Greek letters denote deterministic and random variables, while bold letters

denote deterministic and random vectors. The capital Greek letter Φ denotes a point process

and 𝑥 ∈ Φ represents a point belonging to said process. The notation Φ(𝐴), where 𝐴 ∈ R𝑑 , is
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the counting process associated with Φ (Haenggi, 2012). Notice that we overload the meaning

of Φ so that it can signify a point process, a counting measure or a set depending on the context.(𝑛
𝑘

)
= 𝑛!

𝑘!(𝑛−𝑘)! is the binomial coefficient of 𝑛 choose 𝑘 .

The uniform, complex normal and binomial distributions are represented by 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(𝑎, 𝑏),
CN(𝜇, 𝜎2) and 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑝), respectively. The vector x𝐻 is the Hermitian transpose of vector

x. The function P(·) denotes the probability of the event within parentheses. The notation 1 {·}
denotes the indicator function, which is equal to one whenever the event within curly braces is

true and zero otherwise.

This work is divided into five sections and an appendix. In Section 4.2, we introduce the

contents of the manuscript and contextualize within the relevant literature. In Section 4.3,

we present a mathematical model to characterize the performance of the grant-free mmWave

massive MIMO system in URLLC applications. In Section 4.4, we derive the latent access

failure probability of the proposed system using reactive and 𝐾-repetition HARQ protocols. In

Section 4.5, we show the results of the system simulation. We use these results to validate the

analytical derivations, investigate the system’s performance for an extensive range of parameters

and finish it by interpreting the results in the context of URLLC applications. In Section 4.6,

we summarize our findings and present our conclusions. Finally, in the appendix, we show the

detailed proofs of the lemmas and theorems required by the derivations in the paper.

4.3 System Model

In most cellular applications, uplink transmissions use a dedicated resource (frequency, time or

a MIMO spatial layer) previously assigned by the network to transmit their data payload. Thus,

when an UE receives new data, it must send a request for the network to schedule a resource.

With dedicated resources, each UE can utilize the wireless channel to its full capacity, thus

maintaining good quality of service (QoS) TIn 5G NR networks, the schedule request consists

of four steps, illustrated in Figure 4.1:
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Figure 4.1 Comparison of the transmission

procedure in grant-free and grant-based systems

• The UE randomly selects one of the available preambles and transmits it on the physical

random access channel (PRACH)

• The BS transmits a random access request (RAR) acknowledging receipt of the preamble

and time-alignment commands.

• The UE and BS exchange contention resolution messages (messages 3 and 4) that are used to

identify possible collisions arising from two different devices transmitting the same preamble.

• If the grant request is successful, the UE transmits its payload on the physical uplink shared

channel (PUSCH).

This grant-based scheme is efficient for applications that need to use the channel multiple times

to transmit large amounts of data (e.g., video streaming) or data that’s being continuously

generated (e.g., voice). However, in some URLLC applications, UE sporadically generate data

that need to be transmitted reliably and with low latency, such as cIoT and sensors for industrial

automation. In such scenarios, the time spent on the schedule request renders grant-based

schemes inefficient. A more suitable alternative is to transmit the data directly on the PRACH

and thereby avoidall the overhead involved in requesting a grant, as illustrated in Fig. 4.1.

Nonetheless, with grant-free transmission comes the possibility of collisions whenever two

UE randomly select the same preambles. Therefore, HARQ is used to ensure the reliability



91

and robustness of grant-free transmission. HARQ consists of using feedback information from

the BS so the UE can retransmit packets that were not successfully received. Despite this,

it can be quite challenging to scale grant-free networks because wireless resources are finite

and expensive. To this end, massive MIMO and beamforming can be applied to reduce the

interference of spatially uncorrelated UE and thereby increasing the reliability of the system.

In this section, we discuss the spatial model of the network, the mmWave channel model, the BS

receiver beamforming procedure and the different HARQ schemes used.

4.3.1 Physical Layer Model

Stochastic geometry and the theory of random point processes has proven to be able to accurately

model the spatial distribution of modern cellular network deployments (Lu & Di Renzo, 2015).

Therefore, we consider a cell of radius 𝑅 consisting of a BS, equipped with 𝐾 antennas, located at

the origin. We model the spatial location of the single-antenna UE according to a homogeneous

Poisson point process (HPPP) (Haenggi, 2012), denoted by Φ𝑈 with intensity 𝜆𝑈 . Furthermore,

the distance between the 𝑖-th UE, 𝑥𝑖 ∈ Φ𝑈 , and the BS is given by ‖𝑥𝑖‖. Both the distance

from the UE to the BS and its normalized angle from the BS are uniformly distributed random

variables (Haenggi, 2012), ‖𝑥𝑖‖ ∼ 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(0, 𝑅) and 𝜃𝑖 ∼ 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(−1, 1), respectively.

Due to path loss attenuation, the signal received from UE located further from the BS is

“drowned” by the signal from closer users transmitting with the same power, also known as the

near-far problem. Uplink power control is fundamental to deal with this issue. We consider

that the UE utilize path loss inversion power control (ElSawy & Hossain, 2014), with received

power threshold 𝜌, where each user controls its transmit power such that the average received

power at its associated BS is 𝜌, by selecting their transmit powers as 𝑝𝑖 = 𝜌 ‖𝑥𝑖‖𝛼, where 𝛼 is

the path loss exponent. We assume that there are 𝑁𝑆 subcarriers reserved for grant-free URLLC

transmissions and 𝑁𝑃 orthogonal preambles. Thus, at each transmission time interval (TTI) the

active UE select a subcarrier and preamble randomly from the 𝑁𝑆 available subcarriers and 𝑁𝑃

available preambles. Moreover, we assume that at 𝑡 = 0, one packet arrives to the transmitting
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queue of each UE. Therefore, the HPPP of active users Φ𝐴 on a specific subcarrier is obtained

by thinning Φ𝑈 (Haenggi, 2012) and its effective intensity at 𝑡 = 0 is given by

𝜆𝐴 =
𝜆𝑈

𝑁𝑆
. (4.1)

Massive MIMO technology and mmWave frequencies are intrinsically connected. Even though

one does not imply the other, they complement each other really well. The former requires large

antenna arrays, and the size of such arrays is proportional to the targeted wavelength. Moreover,

mmWave antennas must be really small to operate in such large frequencies, therefore, a larger

number of them are necessary to gather enough energy. In this work, we consider that the BS is

equipped with a massive uniform linear array (ULA) containing 𝐾 � 1 antennas operating at

mmWave frequencies, while the UE possess a single antenna. The channel vector between user 𝑖

and the BS is given by

h𝑖 =
√

𝐾

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝑔𝑖,0a(𝜃0

𝑖 )√
‖𝑥𝑖‖𝛼𝐿𝑂𝑆︸�������︷︷�������︸

LOS component

+

𝐽∑
𝑗=1

𝑔𝑖, 𝑗a(𝜃 𝑗
𝑖 )√

‖𝑥𝑖‖𝛼𝑁𝐿𝑂𝑆︸���������︷︷���������︸
NLOS components

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.2)

where 𝑔𝑖, 𝑗 ∼ CN(0, 1) is the complex gain on the 𝑗-th path and 𝜃
𝑗
𝑖 is the normalized direction of

the 𝑗-th path. We assume that the complex gains of different paths are independent. 𝛼𝐿𝑂𝑆 and

𝛼𝑁𝐿𝑂𝑆 denote the path loss exponent of the line-of-sight (LOS) and non-line-of-sight (NLOS)

paths, respectively. The vector

a(𝜃) = 1√
𝐾

[
1 𝑒− 𝑗𝜋𝜃 . . . 𝑒− 𝑗𝜋(𝐾−1)𝜃

]𝑇
(4.3)

denotes the phase of the signal received by each antenna. Due to high penetration losses suffered

by mmWave signals, the LOS path has a dominant effect on channel gain, being 20 dB larger than

the NLOS in some cases (Ding et al., 2017; Lee et al., 2014). Hence, we can safely approximate
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h𝑖 as

h𝑖 ≈
√

𝐾
𝑔𝑖a(𝜃𝑖)√
‖𝑥𝑖‖𝛼

(4.4)

for mathematical tractability. Additionally, to avoid cluttering the notation, we drop the subscripts

denoting different paths and distinguishing LOS and NLOS variables.

Due to the dominant effect of the LOS link, the channel model also needs to consider a blockage

model to determine the probability that the LOS path between the UE the BS is obstructed. To

model the effects of blockage, we adopt the model proposed in (Thornburg et al., 2016). This

model is obtained by assuming that the obstructing building and structures form an HPPP with

random width, length and orientation. So, let 𝐿𝑂𝑆 be the set of LOS UE; then, the probability

that user 𝑥𝑖 has a LOS link is given by

P (𝑥𝑖 ∈ 𝐿𝑂𝑆) = exp (−𝛽 ‖𝑥𝑖‖) , (4.5)

where 𝛽 is directly proportional to the density, and the average width and length of obstructing

structures. This model nicely captures the exponentially vanishing probability of having a LOS

link the further you move away from the BS, and can be easily fitted to real urban scenarios.

Signal Model

At each TTI, the active users transmit an information signal 𝑠𝑖 such that |𝑠𝑖 | = 1. Therefore, the

vector of the signal received at the BS is given by

y =
∑

𝑥𝑖∈Φ𝐴

1 {𝑥𝑖 ∈ 𝐿𝑂𝑆} √𝜌h𝑖 𝑠𝑖 + n, (4.6)

where n ∼ CN (0, 𝜎2I) is a circularly symmetric complex Gaussian random variable representing

additive white Gaussian noise (AWGN) To successfully recover the data transmitted by a given

user, the BS must be able to accurately estimate its channel response.

Definition 4.1 (Preamble Collision). Preamble collision event, denoted by 𝐶, happens when

two or more devices transmit the same preamble on the same subcarrier.
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We assume that the BS is able to perfectly estimate the UE channel response h𝑖 whenever there is

no preamble collision. Then, the BS performs conjugate beamforming to separate the intended

user’s signal from those of the other interfering UE by multiplying the received signal by the

Hermitian transpose of the intended user channel response. Therefore the recovered signal of

the intended user, the 𝑗-th user, is

𝑦 𝑗 = 1
{
𝑥 𝑗 ∈ 𝐿𝑂𝑆

}
1
{
𝐶̄
} √

𝜌h𝐻
𝑗 h 𝑗 𝑠 𝑗 +∑

𝑥𝑖∈Φ𝐴\{𝑥 𝑗}
1 {𝑥𝑖 ∈ 𝐿𝑂𝑆} √𝜌h𝐻

𝑗 h𝑖 𝑠𝑖 + 𝑛̃ 𝑗 , (4.7)

where 𝐶̄ is the event when user 𝑗 does not experience preamble collision and 𝑛̃ 𝑗 ∼ CN (
0, 𝜎2

)
is a linear combination of the noise vector, which is a Gaussian distributed random variable.

Therefore, the signal-to-interference-plus-noise-ratio (SINR) experienced by user 𝑗 is given by

SINR =
1
{
𝑥 𝑗 ∈ 𝐿𝑂𝑆 ∩ 𝐶̄

}
𝜌
���h𝐻

𝑗 h 𝑗

���2∑
𝑥𝑖∈Φ𝐴\{𝑥 𝑗}

1 {𝑥𝑖 ∈ 𝐿𝑂𝑆} 𝜌
���h𝐻

𝑗 h𝑖

���2 + 𝜎2

=
1
{
𝑇 𝑋𝑗

}
𝜌
��𝑔 𝑗

��2 ���a (
𝜃 𝑗

)𝐻 a (𝜃𝑖)
���2

𝐼 + 𝜎2
, (4.8)

where 𝑇 𝑋𝑗 = {𝑥 𝑗 ∈ 𝐿𝑂𝑆 ∩ 𝐶̄} is the probability that user 𝑗 has a LOS link and does not

suffer from preamble collision, and 𝐼 =
∑

𝑥𝑖∈Φ𝐴\{𝑥 𝑗}
1 {𝑥𝑖 ∈ 𝐿𝑂𝑆} 𝜌 |𝑔𝑖 |2

���a (
𝜃 𝑗

)𝐻 a (𝜃𝑖)
���2 is the

interference from the other UE. Moreover, the beamforming gain,
���a (

𝜃 𝑗
)𝐻 a (𝜃𝑖)

���2, can be

expressed as (Lee, Sung & Seo, 2015)

���a (
𝜃 𝑗

)𝐻 a (𝜃𝑖)
���2 = 𝐹𝐾

(𝜋

2

(
𝜃𝑖 − 𝜃 𝑗

) )
=

1

𝐾

�����sin
(

𝐾𝜋
2

(
𝜃𝑖 − 𝜃 𝑗

) )
sin

(
𝜋
2

(
𝜃𝑖 − 𝜃 𝑗

) ) �����2 , (4.9)

where 𝐹𝐾 (𝑥) is the Fejer kernel (Marsden, Hoffman et al., 1993), with 𝐹𝐾 (0) = 𝐾. A useful



95

Figure 4.2 Fejer kernel value for normalized angles of arrival varying

from −0.05 to 0.05

property of the Fejer kernel is that (Marsden et al., 1993)

lim
𝐾→∞

∫
𝛿≤|𝑥 |≤𝜋

𝐹𝐾 (𝑥)𝑑𝑥 = 0, (4.10)

meaning that for an asymptotically large value of 𝐾 , the interference for the signals not aligned

with beam angle 𝜃 𝑗 goes to zero. Fig. 4.2 illustrates this property by plotting the Fejer kernel for

increasing values of 𝐾 .

4.3.2 HARQ Schemes

HARQ protocols determine how transmitters and receivers exchange information about successful

packet reception, by transmitting an acknowledgement (ACK) signal, and how UE retransmit

in the event of failure, which is signaled by the transmission of a negative acknowledgement

(NACK) signal. They are especially important to ensure reliability in grant-free transmission.
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The HARQ protocol used also impacts the overall latency of the system. Hence, in this paper, we

investigate the performance of the massive MIMO URLLC network under two distinct HARQ

protocols.

With respect to transmissions latency, the HARQ protocols investigated have a few aspects in

common. First, the UE spends 𝑇𝐴 TTI to process a newly arrived packet. As soon as the packet is

processed, it spends 𝑇𝑇 𝑋 TTI transmitting it. Upon receipt of the packet, the BS spends 𝑇𝐷𝑃 TTI

to process it and 𝑇𝐹 TTI to send feedback and for it to reach the UE. Once the UE receives the

feedback signal, it takes 𝑇𝑈𝑃 TTI to process it. We consider that the transmit and feedback time

already take into account the propagation delay between the transmitter and receiver. Without

loss of generality, we assume that 𝑇𝐴 = 𝑇𝑇 𝑋 = 𝑇𝐷𝑃 = 𝑇𝑈𝑃 = 1 TTI. Another concept shared

between different HARQ protocols is the round-trip time (RTT) which consists of the time it

takes from the start of a transmission by the UE to the end of processing of the feedback signal,

either ACK or NACK, the UE received from the BS.

4.3.2.1 Reactive Scheme

The reactive HARQ protocol is the more straight-forward one of the two considered in this paper.

The UE attempts to transmit one packet and waits for feedback from the BS. Once the feedback

is processed, it either attempts to retransmit the same packet if it got a NACK signal or sits idle

until a new packet arrives. This protocol is illustrated in Fig. 4.3, which shows the processing

times and signal exchange between the UE and the BS. Under the assumptions considered in

this paper, the reactive RTT 𝑇𝑟𝑒𝑎𝑐
𝑅𝑇𝑇 is given by

𝑇𝑟𝑒𝑎𝑐
𝑅𝑇𝑇 = 4 TTIs. (4.11)

From (4.11), the user-plane latency of the 𝑚-th HARQ round-trip is

𝑇𝑟𝑒𝑎𝑐 (𝑚) = 𝑇𝐴 + 4𝑚 TTIs. (4.12)
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Figure 4.3 An illustration of a couple of

reactive HARQ protocol round trips

4.3.2.2 𝐾-Repetition Scheme

To increase the reliability and robustness of each transmission attempt, the 𝐾-repetition HARQ

protocol repeats the same packet 𝐾𝑟𝑒𝑝 times on each attempt. Therefore, the only way a

transmission attempt fails is if each of the 𝐾𝑟𝑒𝑝 transmissions fail, which translates into an

increased reliability of the overall system. However, feedback on the transmission attempt is sent

only after the last repetition is processed by the BS. So, there is a tradeoff between enhancing

the reliability of each transmission and increasing the latency of a transmition attempt. Fig.

4.4 shows two 𝐾-repetition round-trip transmissions, where the first transmission fails and the

second is successful. The RTT of the 𝐾-repetition HARQ protocol is

𝑇
𝐾𝑟𝑒𝑝
𝑅𝑇𝑇 = 𝐾𝑟𝑒𝑝 + 3 TTIs. (4.13)
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Figure 4.4 An illustration of a couple of

𝐾-repetition HARQ protocol round trips

Therefore, the total latency of 𝑚 𝐾-repetition transmissions is given by

𝑇𝐾𝑟𝑒𝑝 (𝑚) = 𝑇𝐴 + 𝑚𝑇
𝐾𝑟𝑒𝑝
𝑅𝑇𝑇 = 1 + 𝑚(𝐾𝑟𝑒𝑝 + 3) TTIs. (4.14)
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4.4 System Analysis

The main requirement of URLLC applications is to reliably keep the user-plane latency below

an application-dependent latency constraint. We begin this section by unambiguously defining

what we mean by reliably and user-plane latency.

Definition 4.2 (User-Plane Latency). User-plane latency is the time spent between the arrival of

a packet to the UE’s queue and the successful processing of an ACK signal received from the BS.

Definition 4.3 (Latent Access Failure Probability Requirement). Latent access failure probability

P𝐹 (𝑇 ≤ 𝜏), where 𝑇 is the user-plane latency and 𝜏 is the latency constraint, is the probability

that the UE data cannot be successfully decoded.

Therefore, the QoS requirement of URLLC applications can be stated as

P𝐹 (𝑇 ≤ 𝜏) ≤ 𝜖, (4.15)

where 𝜏 is the latency constraint and 𝜖 is the minimum reliability, and both are application-

dependent. Thus, to satisfy the QoS requirement, the probability that an UE cannot transmit

its data before 𝜏 must be bounded by 𝜖 . Typically, 𝜏 varies between 1 and 10 ms and 𝜖 varies

between 10−5 and 10−6 depending on the URLLC application.

Let 𝑀 be the maximum number of retransmissions under the latency constraint 𝜏. Moreover,

notice that some of the UE will transmit successfully earlier than others, and if the UE’s

transmission queue stays idle, the interference levels in distinct retransmissions are different.

Therefore, the latent access failure probability is a function of the fraction of active users at the

𝑚-th retransmission (A𝑚), the probability that the 𝑚-th retransmission is successful (P𝑚( and

the maximum number of retransmissions (𝑀), as given by (Liu et al., 2020)

P𝐹 (𝑇 ≤ 𝜏) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, , if 𝑀 = 0

1 −
𝑀∑

𝑚=1
A𝑚P𝑚 , if 𝑀 ≥ 1,

(4.16)
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where A𝑚 is

A𝑚 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, , if 𝑚 = 1

1 −
𝑚−1∑
𝑖=1

A𝑖P𝑖 , if 𝑚 ≥ 2.
(4.17)

Given the expressions for P𝑚, the latent access failure probability is obtained by recursively

computing (4.17) and (4.16).

In the rest of this section, we derive closed-form expressions for P𝑚 under the reactive and

𝐾-repetition HARQ protocols, denoted by P𝑟𝑒𝑎𝑐
𝑚 and P𝐾𝑟𝑒𝑝

𝑚 , respectively. To do so, we use

stochastic geometric analysis to obtain the probability of success of a randomly chosen user

𝑥0, herein the typical user. From Slivnyak’s theorem (Baccelli & Błaszczyszyn, 2009), the

performance of the typical user in an HPPP is representative of the average user’s performance.

4.4.1 Reactive HARQ

The maximum number of HARQ transmissions following the reactive HARQ protocol with the

delay constraint 𝜏 is given by

𝑀𝑟𝑒𝑎𝑐 =

⌈
𝜏 − 1

𝑇𝑟𝑒𝑎𝑐
𝑅𝑇𝑇

⌉
=

⌈
𝜏 − 1

4

⌉
. (4.18)

The first step in deriving an expression for the latent access failure probability is to obtain the

probability that the 𝑚-th reactive retransmission is successful (P𝑟𝑒𝑎𝑐
𝑚 ).

Let Φ𝐼 = {𝑥𝑖 |𝑥𝑖 ∈ Φ𝐴 \ {𝑥0} ∩ 𝑥𝑖 ∈ 𝐿𝑂𝑆𝑚} be the set of users interfering with the typical user’s

transmission on the 𝑚-th RTT. Notice that due to the exponentially decreasing probability of a

LOS link with the increase in distance, Φ𝐼 is a non-HPPP with density 𝜆𝐼 (𝑥) = 𝜆𝐴 exp (−𝛽 ‖𝑥‖).
The mean measure of Φ𝐼 , the average number of points in a given area, is obtained as

Λ (𝑏(0, 𝑟)) = 𝐸 [Φ𝐼 (𝑏(0, 𝑟))] =
∫
R2

𝜆𝐼 (𝑥)𝑑𝑥

= 2𝜋𝜆𝐴

∫ 𝑟

0

exp (−𝛽𝑟) 𝑟𝑑𝑟𝑑𝜃 =
2𝜋𝜆𝐴

𝛽2
[1 − exp (−𝛽𝑟) (1 + 𝛽𝑟)] , (4.19)
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where 𝑏(0, 𝑟) is a 2-dimensional ball with radius 𝑟 that is centered at the origin. Now, let 𝑁𝑚 be

a random variable denoting the number of users that interfere with the typical user on the 𝑚-th

retransmission. From (4.19), the probability that there are 𝑛 interferers in the cell with radius R

is derived as

P (𝑁𝑚 = 𝑛) =
[A𝑟𝑒𝑎𝑐

𝑚 Λ (𝑏(0, 𝑅))]𝑛

𝑛!
exp

(−A𝑟𝑒𝑎𝑐
𝑚 Λ (𝑏(0, 𝑅))) . (4.20)

Lemma 5. If 𝐾 � 1, the probability that the 𝑚-th reactive HARQ retransmission of the typical

user conditioned on the events that the typical user does not experience preamble collision, has

a LOS link and is affected by 𝑛 interferers can be approximated as

P
(
SINR𝑚 ≥ 𝛾

��𝐶̄, 𝑥0 ∈ 𝐿𝑂𝑆𝑚, 𝑁𝑚 = 𝑛
)

≈
𝑛∑

𝑛′=0

(
𝑛

𝑛′

) (
2

𝐾

)𝑛′ (
1 − 2

𝐾

)𝑛−𝑛′

exp

(
− 𝛾

𝜌𝐾

) ⎡⎢⎢⎢⎢⎢⎣
tanh−1

(√
𝛾

1+𝛾

)
√

𝛾 (1 + 𝛾)

⎤⎥⎥⎥⎥⎥⎦
𝑛′

, (4.21)

where 𝑛′ is the number of interferers within the primary lobe of the beam directed at the typical

user.

Proof. See Appendix II, Section 1. �

After deriving the expressions for the probability of having 𝑁𝑚 users interfere with retransmission

𝑚 in (4.20) and the conditional probability of success obtained in Lemma 5, the success probability

can be obtained as follows:

Theorem 6. The probability that the 𝑚-th reactive HARQ retransmission is successfully decoded

is

P𝑟𝑒𝑎𝑐
𝑚 =

∞∑
𝑛=0

P(𝑁𝑚 = 𝑛)P (
𝐶̄ |𝑁𝑚 = 𝑛

)
P(𝑥0 ∈ 𝐿𝑂𝑆𝑚)P(SINR𝑚 ≥ 𝛾

��𝐶̄, 𝑥0 ∈ 𝐿𝑂𝑆𝑚, 𝑁𝑚 = 𝑛 ), (4.22)
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where P(𝑁𝑚 = 𝑛) is the probability that there are 𝑛 interferers in the cell and is given by (4.20).

The probability of no preamble collision is given by

P
(
𝐶̄
�� 𝑁𝑚 = 𝑛

)
=

(
1 − 1

𝑁𝑠

)𝑛

. (4.23)

And finally, the probability that the typical user has a LOS link to the BS is

P (𝑥𝑖 ∈ 𝐿𝑂𝑆𝑚) = 1

𝑅

∫ 𝑅

0

exp (−𝛽 ‖𝑥𝑖‖) 𝑑 ‖𝑥𝑖‖ = 1

𝛽𝑅
[1 − exp (−𝛽𝑅)] . (4.24)

Proof. The proof is straight forward if the conditional probability obtained in Lemma 5 is

averaged out. �

From the results of Theorem 6, the latent access failure probability can be easily obtained by

recursively computing

P𝐹 (𝑇 ≤ 𝜏) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, , if 𝑀𝑟𝑒𝑎𝑐 = 0

1 −
𝑀𝑟𝑒𝑎𝑐∑
𝑚=1

A𝑟𝑒𝑎𝑐
𝑚 P𝑟𝑒𝑎𝑐

𝑚 , if 𝑀𝑟𝑒𝑎𝑐 ≥ 1.
(4.25)

4.4.2 𝐾-Repetition HARQ

In the 𝐾-repetition HARQ system, the RTT lasts from when the UE transmits the first repetition

until it receives the ACK/NACK feedback signal. Thus, under delay constraint 𝜏, the maximum

number of retransmissions is

𝑀𝐾𝑟𝑒𝑝 =

⌈
𝜏 − 1

𝑇
𝐾𝑟𝑒𝑝
𝑅𝑇𝑇

⌉
=

⌈
𝜏 − 1

𝐾𝑟𝑒𝑝 + 3

⌉
. (4.26)

Under the 𝐾-repetition HARQ, the same data is repeated 𝐾𝑟𝑒𝑝 times for every transmission

attempt, and after the BS receives all the repetitions, it sends either an ACK or a NACK signal

depending whether any of the repetitions sent in the transmission could be successfully decoded.
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Additionally, the UE selects a new random subcarrier and preamble for the transmission of each

distinct repetition. To obtain a closed-form expression for the latent access failure probability,

we follow the same steps as were taken for the reactive HARQ derivation.

Lemma 6. If 𝐾 � 1, the probability that the 𝑚-th 𝐾-repetition HARQ retransmission of the

typical user, conditioned on the event that the typical user does not experience preamble collision,

has a LOS link and is affected by 𝑛 interferers can be approximated as

P
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, (4.27)

where the double subscript 𝑚, 𝑙 indicates the 𝑙-th repetition of the 𝑚-th HARQ retransmission

attempt.

Proof. See Appendix II, Section 2. �

With the result from Lemma 6, the probability that the 𝑚-th retransmission attempt is successful

can be obtained by averaging (4.27) over the conditional random variables.

Theorem 7. The probability that the 𝑚-th 𝐾-repetition HARQ retransmission is successfully

decoded is given by

P𝐾𝑟𝑒𝑝
𝑚 =

∞∑
𝑛=0

P(𝑁𝑚 = 𝑛)P (
𝐶̄ |𝑁𝑚 = 𝑛

)
P(𝑥0 ∈ 𝐿𝑂𝑆)P ���

𝐾𝑟𝑒𝑝⋃
𝑙=1

SINR𝑚,𝑙 ≥ 𝛾
��𝐶̄, 𝑥0 ∈ 𝐿𝑂𝑆𝑚, 𝑁𝑚 = 𝑛

��� , (4.28)
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where the closed-form expression for P

(
𝐾𝑟𝑒𝑝⋃
𝑙=1

SINR𝑚,𝑙 ≥ 𝛾
��𝐶̄, 𝑥0 ∈ 𝐿𝑂𝑆𝑚, 𝑁𝑚 = 𝑛

)
is derived

on Lemma 6.

Given the analytical expression for the probability that the 𝑚-th 𝐾-repetition HARQ retrans-

mission is successfully received by the BS in Theorem 7 and the fact that the probability that a

randomly selected UE is active can be computed from (4.17), the latent access failure probability

is derived as

P𝐹 (𝑇 ≤ 𝜏) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, , if 𝑀𝐾𝑟𝑒𝑝 = 0

1 −
𝑀𝐾𝑟𝑒𝑝∑
𝑚=1

A𝐾𝑟𝑒𝑝
𝑚 P𝐾𝑟𝑒𝑝

𝑚 , if 𝑀𝐾𝑟𝑒𝑝 ≥ 1.
(4.29)

4.5 Numerical Results and Discussion

In this section, we report the results of Monte-Carlo simulations of the system model described

in Section 4.3. We use the simulation results to: a) validate the closed-form analytical

approximations derived in Section 4.4 b) characterize the performance of the two HARQ

protocols in the mmWave massive MIMO scenario and c) discuss the insights provided by the

analytical results.

At the beginning of each simulation instance, the users’ locations are generated according to an

HPPP inside a cell with radius 𝑅 = 0.5 km. At every TTI:

• The channel gain between the UE and the BS located at the origin is generated as an

exponential random variable with unit mean.

• All active UE are determined to have either a LOS or NLOS link according to the probability

in (4.24), with 𝛽 = 1.

• All active UE select a random subcarrier from one of the 𝑁𝑆 = 48 subcarriers available.

• All active UE select a random preamble from one of the 𝑁𝑃 = 64 preambles available.

• The BS checks all UE with LOS links on every subcarrier for preamble collision.
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• The BS computes the dot product between the signal received and the conjugate beam for all

the UE whose preambles have not collided. If the resulting SINR is greater than 𝛾 = −2 dB,

the transmission is successful, otherwise it fails.

• The BS sends an ACK feedback signal to the UE whose transmission was successful and

a NACK feedback signal to those whose transmission attempt failed. As the main goal of

this work is to characterize grant-free uplink performance, we assume that the feedback sent

through the downlink channel is error free.

• All UE move to a new location.

In accordance with 3GPP standards (3GPP, 2021a,b), we consider a TTI mini-slot having a

duration of 0.125 ms and a subcarrier spacing of 60 kHz, which is a configuration compatible

with 5G NR frequency range 2 (FR2) operation, located in the mmWave spectrum. We consider

a noise figure of −174 dBm/Hz, a path loss exponent of 𝛼 = 4 and a received power threshold of

𝜌 = −130𝑑𝐵𝑚.

Figure 4.5 CCDF of the latent access failure probability for 𝜆𝑈 = 1000 UE/km2 for the

reactive and 𝐾-repetition HARQ protocols with 𝐾𝑟𝑒𝑝 = 2, 4, 8. The plots in the figure show

the results for 𝐾 = 64, 𝐾 = 128 and 𝐾 = 256 antennas

Figs. 4.5 and 4.6 show the complementary cumulative distribution function (CCDF) of the

latent access probability for a user density of 𝜆𝑈 = 1000 UE/km2 and 𝜆𝑈 = 5000 UE/km2,

respectively. The three plots in each figure display the performance for 64, 128 and 256 antennas,

from left to right. The behavior of the performance curves, where the latent access failure
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Figure 4.6 CCDF of the latent access failure probability for 𝜆𝑈 = 5000 UE/km2 for the

reactive and 𝐾-repetition HARQ protocols with 𝐾𝑟𝑒𝑝 = 2, 4, 8. The plots in the figure show

the results for 𝐾 = 64, 𝐾 = 128 and 𝐾 = 256 antennas

probability remains constant for a period of time and then drops on the following TTI, is due to

the transmission propagation time on the uplink and the feedback, and the processing times. Fig.

4.5 depicts the performance with a moderate UE density scenario and shows that the reactive

HARQ protocol is the best option for strict delay constraints, with 𝜏 ≤ 6 TTI (0.725 ms), as there

is no time for any of the 𝐾-repetition configurations to finish their first round-trip. When the first

and second round-trips for 𝐾𝑟𝑒𝑝 = 2 are completed, it has the best performance in 6 ≤ 𝜏 ≤ 8

TTI and 11 ≤ 𝜏 ≤ 12 TTI intervals. From this point on, the best performance is dominated

by 𝐾𝑟𝑒𝑝 = 4 and 𝐾𝑟𝑒𝑝 = 8, with the best configuration being the one that has more completed

round-trips in under 𝜏 TTI. A similar trend occurs with a higher user density as shown in Fig.

4.6.

Tables 4.1 and 4.2 show the reduction in the latent access failure probability upon increasing

the number of antennas from 64 to 256. There is little improvement for a delay constraint of

1 ms in either scenario. In applications with a moderate UE density and a delay constraint of

2 ms or more, we notice an average improvement of around 2 across both HARQ protocols

investigated, while in applications with a higher user density, the failure probability is reduced

by as much as 32 times for 𝐾𝑟𝑒𝑝 = 8 repetitions and a delay constraint greater or equal to 3 ms.

Nonetheless, notice from Figs. 4.5 and 4.6 that increasing the number of antennas from 128
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Table 4.1 Latent access failure probability

reduction in increasing from 64 to 256

antennas when 𝜆𝑈 = 1000 UE/km2

HARQ 𝑇 ≤ 1 ms 𝑇 ≤ 2 ms 𝑇 ≤ 3 ms
𝐾𝑟𝑒𝑝 = 2 1.25 1.59 1.982

𝐾𝑟𝑒𝑝 = 4 1 2.18 1.98

𝐾𝑟𝑒𝑝 = 8 1 2.49 -

Reactive 1.12 1.42 1.64

Table 4.2 Latent access failure probability

reduction in increasing from 64 to 256

antennas when 𝜆𝑈 = 5000 UE/km2

HARQ 𝑇 ≤ 2 ms 𝑇 ≤ 3 ms 𝑇 ≤ 4 ms
𝐾𝑟𝑒𝑝 = 2 1.54 6.81 13.69

𝐾𝑟𝑒𝑝 = 4 3.25 17.13 -

𝐾𝑟𝑒𝑝 = 8 1.75 32.51 32.51

Reactive 1.40 2.60 6.18

to 256 does not change the latency performance significantly. Additionally, the increase in the

number of antennas has a larger impact on performance for the higher user density scenario

shown in Fig. 4.6 than for the moderate density one in Fig. 4.5. Later in this section, we discuss

why this happens and how to possibly address it.

As the approximation used to derive the results in Section 4.4 relies on 𝐾 � 1, there is a gap

between the analytical and simulation results when 𝐾 = 64 as, in this regime, the value of 𝐹𝐾 (𝑥),
and consequently the interference, outside the main lobe are no longer negligible in comparison

to the gain on the main lobe.

Figs. 4.7 and 4.8 show how system reliability, i.e., in the probability of transmission failure

under the latency constraint 𝜏, scales with an increase in user density for a latency constraint

of 𝜏 = 1 ms and 𝜏 = 3 ms, respectively. In both figures the user density ranges from 100 to

5000 UE/km2. Fig. 4.7 shows that that the combination of mmWave and massive MIMO is not

enough to satisfy the QoS requirement of URLLC applications with the stricter delay constraint
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Figure 4.7 The probability that an UE fails to transmit its packet under 𝜏 = 1 ms for an

user density ranging from 100 UE/km2. The plots show the results for 𝐾 = 64, 𝐾 = 128

and 𝐾 = 256 antennas, respectively

Figure 4.8 The probability that an UE fails to transmit its packet under 𝜏 = 3 ms for an

user density ranging from 100 UE/km2. The plots show the results for 𝐾 = 64, 𝐾 = 128

and 𝐾 = 256 antennas, respectively

(failure probability below 10−6). Also, in this latency range, the benefit from increasing the

number of BS antennas is rather small. For applications with less stringent delay constraints,

shown in Fig. 4.8, the 𝐾-repetition HARQ protocol with 𝐾𝑟𝑒𝑝 = 4 and 𝐾𝑟𝑒𝑝 = 8 is able to

support the URLLC QoS requirements. Table 4.3 depicts the highest UE density that can be

supported by each HARQ and MIMO configuration. When 𝐾𝑟𝑒𝑝 = 4, increasing the number of

BS antennas from 64 to 128 increases the supported user density by 11% and increasing the
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number from 128 to 256 increases it by only 7.5%. For 𝐾𝑟𝑒𝑝 = 8, those values are 14% and 5%,

respectively. It is worth noting that as long as the QoS constraints are satisfied, it is desirable to

use the HARQ configuration with the least number of repetitions as possible in order to save UE

power.

Table 4.3 User density supported (failure probability below

10−6) by each configuration

HARQ 𝐾 = 64 antennas 𝐾 = 128 antennas 𝐾 = 256 antennas
𝐾𝑟𝑒𝑝 = 2 - - -

𝐾𝑟𝑒𝑝 = 4 1800 UE/km2 2000 UE/km2 2150 UE/km2

𝐾𝑟𝑒𝑝 = 8 2800 UE/km2 3200 UE/km2 3350 UE/km2

Reactive - - -

Figure 4.9 The impact of the number of antennas on the latent access failure

probability. The leftmost plot shows results for delay constraint 𝜏 = 1 ms, while

the rightmost for 𝜏 = 3 ms

In Fig. 4.9, we show the impact of increasing the number of antennas on the failure probability

for a delay constraint of 𝜏 = 1 ms on the left and 𝜏 = 3 ms on the right. From this figure,

we can conclude that increasing the number of antennas beyond 100 for the configuration

under consideration (𝑅 = 0.5 km and 𝛽 = 1) has a decreasing impact on latency performance.

Moreover, the 𝐾-repetition HARQ protocol benefits more from an increased number of antennas
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than the reactive HARQ protocol does. Also, the plot on the right shows that the latency

performance of applications with a moderate latency constraint (𝜏 = 3 ms) and higher user

densities (𝜆𝑈 ≥ 3000 UE/km2) is greatly improved by changing from traditional MIMO to

massive MIMO. This is explained by the capability of producing narrower receiver beams on

systems with a higher number of antennas. Nevertheless, as of a certain point, the probability

of having a LOS link becomes the dominant bottleneck in reducing the latent access failure

probability. As the LOS link probability is unaffected by the number of antennas, another

measure must be taken to further reduce the latency. In the system model formulated in this

paper, one way to achieve this would be to increase the BS deployment density, effectively

decreasing the radius of the cells.

4.6 Conclusions

In this work, we formulated a model to analyze the latency and reliability of mmWave massive

MIMO URLLC applications using reactive and 𝐾-repetition HARQ protocols. We used stochastic

geometric spatiotemporal tools to derive closed-form approximations of the system’s latent

access failure probability. We validated the analytical results using Monte-Carlo simulations,

identifying the limitations of our analytical results. Also, we investigated how the system’s

performance is impacted by the application’s latency constraint, the density of UE served by the

system, and the number of antennas in the BS. We concluded that:

• Other than for extremely strict delay constraints (𝜏 = 0.625 ms), the 𝐾-repetition HARQ

protocol is a better choice.

• Increasing the number of BS antennas from 64 to 256 BS antennas can reduce the latent access

failure probability by a factor of 32 for the cell configuration analyzed in the manuscript.

• Massive MIMO’s interference reduction capability significantly improves the reliability of

systems with high user density and moderately improves the performance of systems with

low user density.
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• The increase in reliability from increasing the number of BS antennas beyond 100 is greatly

reduced in the configuration investigated in Section 4.5, as the probability of having a LOS

link between the UE and the BS becomes the main bottleneck.

• Under the configurations investigated in this manuscript, the system can support a UE density

as high as 3350 UE/km2 for a URLLC application with latency and reliability constraints of

3 ms and 10−6, respectively.

Overall, we can conclude that it is possible to increase the reliability of URLLC applications by

using mmWave massive MIMO, and when this technique is combined with selecting reasonable

configuration parameters, these two techniques together can improve reliability under a strict

latency constraint (𝜏 = 1 ms) and can satisfy URLLC QoS requirements under a less strict

latency constraint (𝜏 = 3 ms).
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5.1 Abstract

With the continuous growth of machine-type devices (MTDs), it is expected that massive machine-

type communication (mMTC) will be the dominant form of traffic in future wireless networks.

Applications based on this technology, have fundamentally different traffic characteristics from

human-to-human (H2H) communication, which involves a relatively small number of devices

transmitting large packets consistently. Conversely, in mMTC applications, a very large number

of MTDs transmit small packets sporadically. Therefore, conventional grant-based access

schemes commonly adopted for H2H service, are not suitable for mMTC, as they incur in a large

overhead associated with the channel request procedure. We propose three grant-free distributed

optimization architectures that are able to significantly minimize the average power consumption

of the network. The problem of physical layer (PHY) and medium access control (MAC)

optimization in grant-free random access transmission is modeled as a partially observable

stochastic game (POSG) aimed at minimizing the average transmit power under a per-device

delay constraint. The results show that the proposed architectures are able to achieve significantly

less average latency than a baseline, while spending less power. Moreover, the proposed

architectures are more robust than the baseline, as they present less variance in the performance

for different system realizations.
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5.2 Introduction

The rapid growth of the Internet of Things (IoT) autonomous vehicles, smart grids, and other

technologies propelled machine-to-machine (M2M) communications into one of the dominant

applications in cellular networks (Machina Research, 2015). Machine communication have

fundamentally different traffic patterns compared to human-to-human (H2H) ones. In H2H, a few

users consume and produce large quantities of data, whereas in M2M applications a large number

of devices generate small amounts of data with diverse quality of service (QoS) requirements

(Machina Research, 2015). Given this difference, the grant-based transmission approach adopted

by current cellular standards is inefficient in the massive machine-type communication (mMTC)

scenario (Gao & Dai, 2019).

A considerable amount of the devices using the mMTC service are battery powered, whereas in

currently deployed wireless systems, a lot of the energy consumed by communicating devices

is used for establishing and maintaining connections. As identified in (Au et al., 2014), when

transmitting small packets, the grant request procedure can result in a significant overhead.

While the semi-persistent connection, as adopted by the narrowband internet of things (NB-IoT)

standard, might reduce the signaling overhead, it can only do so efficiently in the case of periodic

traffic arrival (Hoymann et al., 2016). The specifications of 5G new radio (NR) introduced

the two-step random access procedure (in the rest of this work referred to as grant-free access)

(3GPP, 2018a), which allows the users of the network to transmit their data directly on the

random access channel (RACH) as opposed to the traditional four-step channel request approach

used in long term evolution (LTE) (in the rest of this work referred to as grant-based access).

This flexibility with regards to the random access mechanism gives us the opportunity to rethink

the design of future networks to service M2M communications.

A grant-free access mechanism can enable devices to transmit data in an arrive and-go manner

in the next available slot. Unlike the current grant-based access mechanism in the LTE uplink,

devices using grant-free transmission need not wait for a specific uplink grant from the base

station. Such a scheme is more desirable for the two broad IoT use cases in 5G, namely mMTC
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and ultra-reliable low-latency communications (URLLC), as it enables reduced transmission

latency, smaller signaling overhead due to the simplification of the scheduling procedure, and

improved energy efficiency (battery life) of the IoT devices with a reduction in signaling and

ON time. Grant-free and semi-grant-free transmission are considered for low latency IoT

transmission in (3GPP, 2017).

Notwithstanding, in grant-free access, as the transmissions are not scheduled on orthogonal

time-frequency resources, there is a high probability that different devices will randomly choose

the same resource blocks for uplink transmission, resulting in the superposition of data (collision).

The cross-layer optimization of a grant-free network requires consideration of both physical

layer (PHY) and medium access control (MAC) layer measurements while taking into account

their interaction to obtain the relevant performance metrics (e.g. the average power consumption

and delay), making it a very challenging problem. Moreover, grant-free transmission poses

new challenges in the design of PHY and MAC protocols. In this context, static policies for

adaptive modulation and coding (AMC) power control, and packet retransmission are not able

to efficiently satisfy the diverse throughput, latency, and power saving requirements of mMTC.

Furthermore, due to a lack of scheduling by a central entity in such networks, a distributed

optimization approach with partial state information is a natural choice to optimize the network

performance while keeping communication overhead to a minimum. In this light, we argue

that modeling the problem as a partially observable stochastic game (POSG) and proposing a

solution within the multiagent reinforcement learning (MARL) framework is the best approach

to this problem. While the POSG model is able to elegantly capture the evolution of the wireless

environments and its interactions with the users in time, the MARL framework enables a

distributed decision-making solution, balancing short-term and long-term performance goals.

5.2.1 Related Work

Random access is an essential component of every multiuser wireless communication system,

either as a method of establishing a connection between an user and a base station (BS) (in

grant-based systems), or to transmit data (in grant-free systems). Recently, the rise in prominence
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of mMTC applications has sparked a debate around which of the competing methods should be

adopted. A large portion of the research community started advocating for the adoption of a

grant-free approach to serve mMTC applications (Liu et al., 2018; Bockelmann et al., 2016). In

(Gao & Dai, 2019) an extensive comparison of the performance of grant-free and grant-based

systems with and without subcarrier sensing against a variable packet length is presented.

The authors concluded that for shorter packet lengths (as expected in mMTC applications)

grant-free transmission with sensing results in the best throughput, making a stronger case for

grant-free mMTC systems. Moreover, in (Evangelista et al., 2019a; Liu et al., 2020), stochastic

geometric models and analytical results for grant-free non-orthogonal multiple access (NOMA)

are presented.

In (Abreu et al., 2018), the authors propose an open loop power control scheme with path loss

compensation in an uplink grant-free ultra reliable low-latency communication (URLLC) network

to minimize the outage probability. They investigate the effects of the path-loss compensation

factor and the expected received power on the network outage probability. In (Jacquelin,

Vilgelm & Kellerer, 2019), the authors introduce a model to abstract multi-packet reception in

grant-free networks. They analyze the dynamics of the network and propose a reinforcement

learning (RL) approach to determine the amount of resource blocks to allocate to grant-free

transmission in order to maximize the normalized throughput. In (Huang, Wong & Schober,

2019), the effects of pilot selection in a grant-free NOMA system are investigated, and a deep

reinforcement learning (DRL) approach is proposed, where each user, without any information

exchange, selects its pilots in order to maximize its throughput. Despite their contributions,

none of these works address the interactions between the PHY and MAC layers and how to

harness their flexibility to improve the overall network performance.

In (Mastronarde & van der Schaar, 2013), a reinforcement learning algorithm is proposed

to jointly select an AMC, and dynamic power management (DPM) in order to minimize the

transmitted power in a single-user system while satisfying a certain delay constraint. Afterwards,

in (Mastronarde, Modares, Wu & Chakareski, 2016) the work in (Mastronarde & van der

Schaar, 2013) is extended to consider a multiuser system in an IEEE 802.11 network with
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subcarrier sensing multiple access (CSMA). The authors considered three users contending

for channel access, and adopted an independent learners approach (Claus & Boutilier, 1998),

where each user optimizes its own rewards, ignoring all interactions with other users. Despite

its simplicity, the independent learners solution is known to have several issues such as Pareto-

selection, nonstationarity, stochasticity, alter-exploration and shadowed equilibria (Matignon,

Laurent & Le Fort-Piat, 2012).

Although instructive, none of these works addressed the challenges involved in the distributed

cross-layer optimization of the grant-free uplink transmission for mMTC service. Moreover,

previous works on this topic have failed to address the issues involved in the massive scale

aspect of mMTC applications, despite their contributions. In this manuscript, we propose three

distributed solutions based on MARL, ranging from a fully distributed solution to a centralized

learning with distributed inference, to minimize the average power consumption of the network

while satisfying delay constraints.

5.2.2 Contributions

Although instructive, none of these works addressed the challenges involved in the distributed

cross-layer optimization of the grant-free uplink transmission for mMTC service. In this

manuscript, we propose three distributed solutions based on MARL, ranging from a fully

distributed solution to a centralized learning with distributed inference, to minimize the average

power consumption of the network while satisfying delay constraints. The contributions of this

paper are summarized as:

• We propose a POSG to model the PHY and MAC dynamics of a grant-free mMTC network

and to formulate the cross-layer power minimization problem. This model considers the

channel and packet generation dynamics, and accommodates machine-type device (MTD)

with diverse QoS requirements and packet arrival intensities.

• We propose a fully distribute independent learners (IL) architecture, based on the proximal

policy optimization (PPO) algorithm (Schulman, Levine, Abbeel, Jordan & Moritz, 2015),

to eliminate the all the communication overhead involved in the cross-layer optimization.
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• We propose a distributed actors with centralized critic (DACC) architecture where the PPO

actor and critic are split and each agent trains its own actor while a single critic is trained by

a central entity running on an edge computing node. This architecture achieves a reduced

overhead while allowing the possibility of cooperative behavior to arise among the MTD, in

our second scheme. As the central entity is able to aggregate measurements from every user,

the critic’s loss function is calculated from a global performance measure.

• We propose centralized learning with decentralized inference (CLDI) architecture to eliminate

the exponential increase of the policy search space with more MTD. In this scheme, every

MTD uses the same policy, which is trained on an edge computing node. However, each

MTD uses the model in a distributed fashion by making decisions based on local data.

• We provide an extensive analysis of the performance of all three architectures when servicing

MTD with diverse QoS requirements and packet arrival rates. Moreover, we compare their

performance with a reactive hybrid automatic repeat request (HARQ) protocol with power

boosting as a baseline. Finally, we include a quantitative analysis of the tradeoffs involving

the performance and the overhead of the proposed architectures in scenarios with different

device deployment densities.

5.2.3 Notation

Throughout this paper, italic lowercase letters denote real and complex scalar values. Lower

case boldface letters denote vectors, while upper case boldface denote matrices. A lowercase

letter with one subscript, 𝑥𝑖, represents the 𝑖-th element of the vector x, while two subscripts 𝑥𝑖, 𝑗

is used to denote the element on the 𝑖-th row and 𝑗-th column of matrix X. The operator 𝐸 [·]
denotes the expected value of a random variable. The function P(·) represents the probability of

an event and x ∼ CN(𝝁, K), denotes that x is a circularly symmetric complex Gaussian random

vector, with mean 𝝁 and covariance matrix K. The notation 𝑥 ∼ 𝑈 (X) denotes that 𝑥 is drawn

uniformly from the set X. The indicator function takes an event as argument and is equal to one

if the event happens and zero otherwise, and is represented by 1(·). Sets R and C and are the sets

of real and complex numbers, respectively. The set B = {0, 1} represents the binary numbers. A
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calligraphic uppercase letter, such as X, denotes a set and |X| is its cardinality. Throughout the

paper several variables denote quantities related to a particular user at a given moment in time

(e.g. 𝑥𝑖,𝑡 is related to the 𝑖-th user on time slot 𝑡). To avoid cluttering the notation we drop the

subscript related to the time and use it only when indexing a variable over multiple periods of

time is necessary.

5.2.4 Organization

This paper is organized as follows: In Section 5.3 we present the system model, discussing in

details the dynamics of the environment introducing the optimization problem we aim to solve.

In Section 5.4, we present the three distributed learning architectures proposed in this work. In

Section 5.5, the performance of the three proposed architectures is evaluated and the results are

discussed. Finally, in Section 5.6, we summarize the conclusions.

5.3 System Model

In this paper, we consider the problem of designing a distributed link adaptation solution for

a grant-free access 5G network providing mMTC service. In a grant-free network, there is

no guarantee that a transmission attempt is going to be successful. Hence, the usage of a

HARQ protocol is essential to guarantee some reliability to the packet transmissions. In the

system under analysis, the MTD use a reactive HARQ protocol, where after each transmission

attempt the device receives either an acknowledgement (ACK) feedback, in case the transmission

attempt was successfully decoded, or a negative-acknowledgement (NACK) feedback, in case

the transmission attempt could not be decoded (Mahmood et al., 2019). Notice that we choose

the reactive HARQ protocol because the alternative protocols require repeating the same data on

every transmission attempt, increasing the transmission power per attempt, which goes against

our design objective of minimizing the power expenditure in the network.

We consider a network with 𝑁𝑈 MTD and 𝑁𝐵 base stations randomly located within a circular

area of radius 𝑅. The distance between the 𝑖-th device and the 𝑗-th BS is denoted by 𝑑𝑖, 𝑗 .
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Moreover, each device is associated to its closest BS. We assume there are 𝑁𝐾 orthogonal

subcarriers reserved for uplink transmission, and 𝑁𝑃 orthogonal preambles. In every transmission

time interval (TTI) the active devices randomly select one out of the 𝑁𝑃 available orthogonal

preambles, and one subcarrier out of the 𝑁𝐾 available to transmit its data on. The orthogonal

preambles are used by the network to detect user activity and estimate the MTD’ channel

response. It is worth highlighting that all the variables discussed in this section are associated

to a given TTI; However, for notation convenience, we drop the subscript 𝑡 used to denote a

specific TTI. Additionally, if 𝑥 is a variable at time 𝑡 we use a prime superscript 𝑥′ to denote the

value of the same variable at 𝑡 + 1.

All devices transmit symbols from a quadrature amplitude modulation (QAM) with order

𝛽𝑖 ∈ {1, . . . , 𝑀}, where 𝑀 is the maximum modulation order. Furthermore, before the start

of every TTI, each device has the option to turn off its radio to save power. The radio state is

represented by the variable 𝑥𝑖 ∈ {0, 1}, whenever 𝑥𝑖 = 1, the radio is on and consumes 𝑃𝑂𝑁

watts plus whatever power used for the transmission, and when 𝑥𝑖 = 0, the radio is off and spends

𝑃𝑂𝐹𝐹 watts. If the radio is on, the device attempts to transmit its data on that particular TTI,

hence, the user must select a transmission power 𝑝𝑖 ∈ P = {𝜌1, . . . , 𝜌max}. So, the received

signal at the 𝑗-th BS on the 𝑘-th subcarrier is

𝑟𝑘 =
𝑁𝑈∑
𝑖=1

𝑥𝑖𝜃𝑖,𝑘
√

𝑝𝑖ℎ𝑖, 𝑗 ,𝑘 𝑑−𝛼/2
𝑖, 𝑗 𝑢𝑖 + 𝑤𝑘, (5.1)

where 𝜃𝑖,𝑘 ∈ {0, 1} indicates whether user 𝑖 is transmitting on subcarrier 𝑘 , 𝑤𝑘 ∼ CN(0, 𝑁0) is

a circularly symmetric complex normal random variable modeling the additive white Gaussian

noise (AWGN) and 𝛼 is the path loss exponent. The variable 𝑢𝑖 is a symbol from a QAM

constellation with order 𝛽𝑖 and ‖𝑢𝑖‖2 = 1. Moreover, ℎ𝑖, 𝑗 ,𝑘 represents the small-scale fading

experienced by the 𝑖-th user’s signal to the 𝑗-th BS on the 𝑘-th subcarrier. We assume that

the channel remains constant during the TTI duration. To model the relationship between

subsequent channel realizations we consider a first-order Gauss-Markov small-scale flat fading
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model (Evangelista, Sattar, Kaddoum & Chaaban, 2019b) where

ℎ′𝑖, 𝑗 ,𝑘 = 𝜅ℎ𝑖, 𝑗 ,𝑘 + 𝑛𝑖, 𝑗 ,𝑘 , (5.2)

where the innovation 𝑛𝑖, 𝑗 ,𝑘 ∼ CN(0, 1 − 𝜅2) is a circularly symmetric complex normal random

variable. The correlation between successive fading components is given by (Patzold, 2012)

𝜅 = 𝐽0 (2𝜋 𝑓maxΔ𝑡) , (5.3)

where 𝑓max is the maximum Doppler frequency, Δ𝑡 is the duration of a single TTI and 𝐽0 is the

zero-th order Bessel function of the first kind.

In order to guarantee a harmonious access to the channel and avoid congestion, the system

under investigation employs a rate-adaptive listen before talk (LBT) mechanism with random

backoff on every subcarrier to control the congestion. This approach is well aligned with the

specifications of 5G networks operating on the unlicensed spectrum (Dahlman et al., 2018; Kim,

Yi & Bahk, 2020; Maldonado, Rosa & Pedersen, 2020; Song et al., 2019). A TTI is divided into

two phases: contention and transmission. During the contention phase, the device listens to

the channel on a specific subcarrier for a random backoff time 𝜏𝐶 < Δ𝑡 . If no other user has

started transmission during this time, the device starts its transmission for an amount of time

𝜏𝑇 𝑋 = Δ𝑡 − 𝜏𝐶 . The protocol is illustrated in Fig. 5.1, where we show a situation in which

4 devices are transmitting on the same subcarrier. The red shaded areas indicate the random

backoff time 𝜏𝐶 drawn by each user. In this figure, as device 2 drew the smallest backoff time, it

takes hold of the channel and transmits its data in the remaining time available in the time slot.

In this model, a collision occurs if two devices draw the same random backoff time.

We consider a rate-adaptive congestion control protocol, similar to the one proposed in

(Mastronarde et al., 2016), where a congestion window (CW) given by 𝐶𝑊min(𝛽𝑖) = �𝐴2𝑀−𝛽𝑖�,
where 𝐴 ∈ R is a design parameter, is assigned to the device according to its modulation order.

The backoff time of the 𝑖-th device is uniformly chosen from [0, 𝐶𝑊min(𝛽𝑖)] and is reset at the

end of the time slot.



122

Figure 5.1 Illustration of the considered LBT

procedure for 4 devices sharing the same channel.

The red shaded area represents the random backoff

listening time and the green shaded one denotes the

transmission time

Definition 5.1 (Collision). We consider that a collision occurs whenever two devices being

served by the same BS select the same preamble and the same subcarrier, and, draw the same

random backoff time 𝜏𝐶 .

If a collision occurs, the devices’ CW are set to 𝐶𝑊max = 𝐴2𝑀 . Note that the MTD attempts to

transmit

𝑧𝑖 =

⌊
𝛽𝑖𝜏

𝑇 𝑋

𝐿𝑇𝑆

⌋
(5.4)

packets in a given TTI, where 𝐿 is the packet length and 𝑇𝑆 is the symbol duration. This approach

increases the likelihood that a device that intends to transmit at higher rates obtains channel

access, avoiding the anomaly identified in (Heusse, Rousseau, Berger-Sabbatel & Duda, 2003),

where low-rate users significantly degrade the performance of the whole network.
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Furthermore, we assume that each device has a packet buffer with a capacity of 𝐿𝐵 packets. Let

𝑏𝑖 be the number of packets in the 𝑖-th device’s buffer. We assume that the number of arriving

packets follow a Poisson distribution 𝑙𝑖 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖), where 𝜆𝑖 is th mean packet arrival rate.

The number of packets departing (the goodput) the device’s buffer is denoted by 𝑔𝑖. The goodput

of the 𝑖-th MTD is a function of the device’s transmit power, its selected subcarrier, its channel

to the receiving BS, and the interference power at the receiving BS. Let the interference suffered

by the 𝑖-th MTD’s transmission on the 𝑘-th subcarrier be

𝐼𝑖,𝑘 =
𝑁𝑈∑
𝑛=1
𝑛≠𝑖

𝑥𝑛𝜃𝑛,𝑘 𝑝𝑛

��ℎ𝑛, 𝑗 ,𝑘

��2
𝑑−𝛼

𝑛, 𝑗 (5.5)

The probability that the 𝑗-th BS decodes a bit transmitted by the 𝑖-th MTD in error (denoted as

𝑃𝑒
𝑖 ) can be approximated by (Proakis, 2007)

𝑃𝑒
𝑖 ≈

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1
2
erfc

{√
𝑝𝑖‖ℎ𝑖, 𝑗 ,𝑘 ‖2

𝑑−𝛼
𝑖, 𝑗

𝐼𝑖,𝑘+𝑁0

}
if 𝛽𝑖 = 1

2erfc

{√
3 log2 (𝛽𝑖)𝑝𝑖‖ℎ𝑖, 𝑗 ,𝑘 ‖2

𝑑−𝛼
𝑖, 𝑗

2(𝛽𝑖−1) (𝐼𝑖,𝑘+𝑁0)

}
if 𝛽𝑖 > 1,

(5.6)

Given the approximate probability of decoding a bit in error given in (5.6), we obtain the

probability of losing a packet as

𝑃𝑙𝑜𝑠𝑠
𝑖 = 1 − (

1 − 𝑃𝑒
𝑖

)𝐿
. (5.7)

Moreover, the number of overflown packets, i.e. packets that arrive while the buffer is full and

must be dropped, at the 𝑖-th device’s buffer is given by

𝜉𝑖 = max(𝑏𝑖 + 𝑙𝑖 − 𝑔𝑖 − 𝐿𝐵, 0). (5.8)
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5.3.1 Problem Formulation

The main goal of this work is to derive a link adaptation algorithm to minimize the average power

consumption over time of the network under a constraint on the average delay. Notice that as

the MTD transmission attempts are not scheduled by a central network the proposed algorithm

must run on each device in a distributed fashion. Also, although the goal is to minimize the

average power consumption the algorithm has only local information to make decisions on

the link adaptation. This problem can be formulated as a POSG (Neyman & Sorin, 2003). A

POSG, models how multiple agents, with distinct and possibly adversarial goals, interact with a

stochastic changing environment in discrete time slots. At each time slot, the agents receive a

partial, and possibly noisy, observation of the environment and select an action to take in the

next slot based on this observation. Each set of actions selected by the agents incurs a cost and

the objective of the problem is to find the joint policy that minimizes the cost. In this work, we

are concerned with infinite horizon POSGs (Puterman, 2014), as the task we are optimizing

cannot be described by finite length episodes. The POSG problem is formally defined by a

tuple (U,S,A, PS , 𝑐, O), where U is the set of agents, where each MTD out of the 𝑁𝑈 total

constitutes an agent. S and A = ×𝑖∈UA𝑖 denote the state space and the joint action space of the

system, respectively, where A𝑖 is the action space of the 𝑖-th agent. The state-action transition

probability PS : S × A × S → [0, 1] gives the probability P(s′|s, a) of transitioning to a state

s′, given the current state s and the joint selected action a. The set O = {O𝑖 : O𝑖 ⊆ S ∀𝑖 ∈ U}
contains the observation space of each device, which is a subset of the complete state space.

Furthermore, 𝑐 : S × A → R is the cost function associated to the problem. The cost function

gives the cost of taking action 𝑎 while on state 𝑠.

Definition 5.2 (Policy). A policy 𝜋(𝑎 |𝑜), for 𝑎 ∈ A and 𝑜 ∈ O𝑖 is a conditional probability

distribution that gives the probability that the agent selects the action 𝑎 given that it observes

the local observation 𝑜.
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The joint policy of all the agents is denoted by 𝝅 = [𝜋1, . . . , 𝜋𝑁𝑈 ]. Notice that 𝝅 is also a

conditional probability function given by

𝜋(a|s) =
𝑁𝑈∏
𝑖=1

𝜋𝑖 (𝑎𝑖 |𝑜𝑖) (5.9)

The optimality criteria defines the optimization objective of the problem. In the case of an

infinite-horizon POSG, we want the average cost over time to be minimized. Therefore, a natural

optimality criteria for the joint policy 𝝅 is the expected discounted cost (Oliehoek & Amato,

2016), which is given by

𝐶𝜋 (s) = 𝐸𝝅

[ ∞∑
𝑡=0

𝛾𝑡𝑐(s𝑡 , a𝑡)
����� s0 = s

]
, (5.10)

where 0 < 𝛾 < 1 is the discount factor. So, the cost function takes into account the effect of the

action on the current and future TTI. The discount factor is necessary to keep the summation in

(5.10) bounded and can be interpreted as how much weight should the agent’s decision give to

future costs.

Let 𝚷 = {𝝅 |𝝅 : A ×S → [0, 1]} be the set of all possible joint policies. Then, the solution of a

POSG is defined as

𝝅∗ = arg min
𝝅∈𝚷

𝐸s∼P(s) [𝐶𝜋 (s) | s0 = s] = arg min
𝝅∈𝚷

𝐸s∼P(s),𝝅

[ ∞∑
𝑡=0

𝛾𝑡𝑐(s𝑡 , a𝑡)
����� s0 = s

]
, (5.11)

where P(s) is the probability distribution over the set of states S while following the joint policy

𝝅, and, 𝝅∗ is the policy that minimizes the expected discounted cost from the set of all possible

policies. The problem in (5.11) is known to be undecidable, meaning that given a threshold, it is

not possible to tell whether there exists a policy that has an expected discounted cost smaller

than the threshold (Madani, Hanks & Condon, 1999); However, as we show in Section 5.4,

we can reformulate the problem in (5.11) to a proxy problem, and approximate the policies 𝜋𝑖

by a parametric function approximator 𝜋w𝑖 , where w𝑖 is the set of parameters for the device’s

policy. Consequently, the set of all possible joint policies 𝚷 becomes constrained to the set of all
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possible policies that can be approximated by the parametric model. Considering a differentiable

parametric model, we can use a data-driven learning approach to optimize the parameters and

obtain high-quality sub-optimal solutions to (5.11).

The cellular system model described so far can be conveniently mapped into the POSG problem

formulation. The state of the system can be denoted by

s = (h, b, l, g) , (5.12)

where h = vec
( [

H1, . . . , HNU

] )
and H𝑖 = [

��ℎ𝑖, 𝑗 ,𝑘

��2
𝑑−𝛼

𝑖, 𝑗 ] 𝑗 ,𝑘 is a (𝑁𝐵 × 𝑁𝑆) matrix where

each entry is the channel gain between the 𝑖-th MTD and the 𝑗-th BS on the 𝑘-th subcarrier.

Additionally, b, l, and g are vectors containing the number of packets in the buffer, the number

of arriving packets and the goodput of each MTD, respectively. As the devices only have access

to their local information the observation vector is given as

o𝑖 = [vec (H𝑖) , 𝑥𝑖, 𝑏𝑖, 𝑙𝑖, 𝑔𝑖] . (5.13)

Furthermore, we map the optimization variables of the power minimization problems into the

joint action vector as

a = (𝜽 , 𝜷, p, x), (5.14)

where 𝜽 =
[
𝜽1, . . . , 𝜽𝑁𝑈

]
and 𝜽𝑖 ∈ {0, 1}𝑁𝑆 is the subcarrier selection vector of the 𝑖-th user, and,

𝑘=1∑
𝑁𝑆

𝜃𝑖,𝑘 ≤ 1. Also, 𝜷, p, x correspond to the modulation order, power and radio state selected by

each MTD, respectively.

In this work, we want to minimize the power usage subject to a latency constraint. The

POSG problem formulation is not compatible with a constrained objective. Hence, we follow

the approach in (Altman, 1999) to model contrained Markov decision processes (CMDPs)

and augment the objective function with a Lagrangian penalty (Nocedal & Wright, 2006).

Furthermore, according to Little’s theorem (El-Taha & Stidham Jr., 2012), the average number

of packets queued in the buffer is proportional to the average packet delay in queues with stable
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buffers (i.e. no overflow). Hence, we design the cost function to discourage large number of

packets in the queue, which we refer to as the holding cost, while simultaneously penalizing

dropped packets, which we refer to as the overflow cost. Therefore, in the POSG formulation,

the cost function is

𝑐(s, a) =
𝑁𝑈∑
𝑖=1

𝑥𝑖 (𝑃𝑂𝑁 + 𝑝𝑖) + (1 − 𝑥𝑖)𝑃𝑂𝐹𝐹︸��������������������������������︷︷��������������������������������︸
power cost

+𝜔𝑖

����� 𝑏𝑖︸︷︷︸
holding cost

+ 𝜇𝜉𝑖︸︷︷︸
overflow cost

����� , (5.15)

where 𝜔𝑖 is a Lagrange multiplier. Thus, if the 𝑖-th MTD has a delay constraint equal to 𝛿𝑖, then,

𝜔𝑖 ∝ max(0, [𝑏𝑖 + 𝜇𝜉𝑖] − 𝛿𝑖) is proportional to how much the delay constraint is being violated.

Moreover, 𝜇 is the overflow penalty factor. The overflow penalty factor must be chosen such that

dropping packets is sub-optimal, while encouraging devices to transmit with low-power. To

meet these requirements, we choose a value of 𝜇 such that dropping a packet costs as much as

the largest possible discounted expected cost incurred by holding a packet in the buffer, which

happens if the packet is held in the buffer forever. Therefore

𝜇 =
∞∑

𝑡=0

𝛾𝑡+1 =
𝛾

1 − 𝛾
. (5.16)

5.4 Distributed Learning Architectures

Finding the optimal police to the proposed infinite-horizon POSG problem is undecidable.

Deep neural networks (DNNs) are universal function approximators and can be trained to learn

a mapping from data efficiently through gradient descent and backpropagation (Goodfellow,

Bengio & Courville, 2016). Thus, we can use DNN to approximate the policies and use the

agents’ experience to learn policies that minimize the cost. This deep MARL has been proven to

be successful in many complex multiagent tasks (Foerster, Assael, de Freitas & Whiteson, 2016;

Foerster et al., 2017; Foerster, Farquhar, Afouras, Nardelli & Whiteson, 2018; Lowe, Wu, Tamar,

Harb & Abbeel, 2017; Omidshafiei, Pazis, Amato, How & Vian, 2017). However, many of the

problems traditionally investigated in the MARL literature can be trained on computer clusters,
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where the computing nodes are connected together through high-speed network interconnections

and can easily share information among themselves to mitigate the partial observability of

POSG (Claus & Boutilier, 1998). On the other hand, when the computing nodes (in our case

MTD and edge computing infrastructure) are connected via wireless links, sending additional

information incurs in an expensive overhead. Therefore, it is imperative to propose novel ways

to train these DNN to solve the POSG problem, while sharing as little information between the

computing nodes as possible. For this reason, we chose an actor-critic policy gradient approach

(Sutton & Barto, 2018), as we have more flexibility on distributing the training and inference by

placing the actor and the critic on different computing nodes.

In this setting, we propose three different distributed learning architectures: IL, DACC and

CLDI. Fig. 5.2 illustrates the main differences between these architectures. Firstly, in the IL

architecture, each MTD has its own network for policy selection (the actor) and value estimation

(the critic). Secondly, in the DACC, the value estimator and policy selection networks are

decoupled. Each MTD has its own policy selection network and an edge agent, which we assume

is connected to every BS and has access to the state of every MTD, stores and trains a value

estimator network. At each TTI the edge node feedbacks the critic value of the current state to

all MTD through a broadcast channel. MTD use the fedback value estimate as the actor-critic’s

baseline to train their policy selection network. In the CLDI architecture, we follow a similar

approach to (Lowe et al., 2017; Foerster et al., 2018), and consider that the edge node trains

the weights (only from local observations) of a single policy network that is shared among all

agents and sends it periodically through a broadcast channel. Then, MTD are able to select their

actions only from local observations. Notice that in the DACC and CLDI architectures, the MTD

need to feedback their state information back to the BS. This can be achieved by appending

the buffer information to the transmitted packets, or by scheduling periodic state information

transmission through a collision free channel. Nevertheless, in this paper, our aim is to evaluate

the performance of the proposed architectures, and thus, we assume the state information can be

reliably transmitted to the BS. Each approach presents its own advantages and challenges, as

detailed in the rest of this section.
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Figure 5.2 The diagram illustrates the differences between the three

proposed architectures

In order to provide a fair comparison, in all of the proposed architectures, we consider an

actor-critic style PPO algorithm (Schulman, Wolski, Dhariwal, Radford & Klimov, 2005), due

to its ease of implementation, the possibility of decoupling the policy and the value estimator,

reduced sample complexity compared to trust region policy optimization (TRPO) (Schulman

et al., 2015), and first-order updates. We start this section by introducing policy gradient methods

and the PPO algorithm, and proceed to describe the three proposed architectures in detail.

5.4.1 Policy Gradient Methods

In contrast to action-value methods, such as Q-learning (Watkins & Dayan, 1992), where

the agent learns an action-value function and derives a policy from selecting the actions that

maximize its output, policy gradient methods learn a parametrized policy that selects the actions

without consulting a value function. Let w ∈ R𝑑 be the policy parameter vector, then the

parametrized policy 𝜋w(𝑎 |𝑠) = P(𝑎 |𝑠, w) denotes the probability of selecting action 𝑎, while at

state 𝑠 with policy parameter w.

In order to learn the policy parameter vector, we need to have an objective function of w to

be maximized. Consider a scalar performance function 𝐽 (w), differentiable with respect to w.

Then, the learning procedure consists in maximizing 𝐽 (w) through gradient ascent updates of
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the form (Sutton & Barto, 2018)

w′ = w + 𝜂∇w𝐽 (w), (5.17)

where 𝜂 is the learning rate, and ∇w𝐽 (w) is an estimator of the gradient of the performance

measure. A common choice of performance measure is

𝐽 (w) = 𝜋w(𝑎 |𝑠)𝐴𝜋 (𝑠, 𝑎), (5.18)

where 𝐴𝜋 (𝑠, 𝑎) = 𝑄𝜋 (𝑠, 𝑎) − 𝑉𝜋 (𝑠) is the advantage function, which gives the advantage of

taking action 𝑎 while at state 𝑠 in comparison to the state value function, which gives the value

of the average action. The state value function for policy 𝜋, 𝑉𝜋 (𝑠), is given by the expected

discounted reward of state 𝑠 while following policy 𝜋, defined as

𝑉𝜋 (𝑠) = 𝐸𝜋

[ ∞∑
𝑡=0

− 𝛾𝑡𝑐(𝑠𝑡 , 𝑎𝑡)
����� 𝑠0 = 𝑠

]
. (5.19)

Furthermore, the action-value function for policy 𝜋, 𝑄𝜋 (𝑠, 𝑎), gives the expected discounted

reward of taking action 𝑎 while in state 𝑠 and then continuing to follow policy 𝜋, which is given

as

𝑄𝜋 (𝑎, 𝑠) = 𝐸𝜋

[ ∞∑
𝑡=0

− 𝛾𝑡𝑐(𝑠𝑡 , 𝑎𝑡)
����� 𝑠0 = 𝑠, 𝑎0 = 𝑎

]
. (5.20)

Notice that both (5.19) and (5.20) can be estimated from experience. This class of algorithms are

known as actor-critic because we evaluate the difference between the actor estimate (𝑄𝜋 (𝑠, 𝑎))
and the critic estimate (𝑉𝜋 (𝑠)), as presented in (5.18).

Let E𝜋w be the set of the experience tuples collected while following policy 𝜋w, where an

experience tuple consists of the state, action, and cost. Then, the gradient of the performance

measure can be estimated by taking the average gradient over a random finite batch of experience

tuples as

∇w𝐽 (w) = 𝐸̂E𝜋w [∇w ln 𝜋w(𝑎 |𝑠)𝐴(𝑠𝑡 , 𝑎𝑡)] , (5.21)
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where 𝐸̂E𝜋w denotes the empirical average over a batch of randomly sampled experience tuples.

5.4.2 Proximal Policy Optimization

The PPO algorithm, originally proposed in (Schulman et al., 2005), consists in maximizing a

clipped surrogate objective 𝐽clip(w) instead of the original performance measure 𝐽 (w), therefore

avoiding the destructively large updates experienced in policy gradient methods without clipping

as shown in (Schulman et al., 2005). The surrogate objective is defined as

𝐽clip(w) = 𝐸̂E𝜋w [min(Γ(w)𝐴(𝑠, 𝑎), clip(Γ(w), 1 − 𝜖, 1 + 𝜖)𝐴(𝑠, 𝑎))], (5.22)

where Γ(w) = 𝜋w (𝑎 |𝑠)
𝜋wold

(𝑎 |𝑠) is the importance weight, 𝜖 is a hyperparameter that controls the clipping,

and wold are the policy weights prior to the update. Due to the term clip(Γ(w)𝐴(𝑠, 𝑎), 1−𝜖, 1+𝜖)
in (5.22), the importance weight is clipped between 1− 𝜖 and 1+ 𝜖 , minimizing the incentives for

large destabilizing updates. Furthermore, by taking the minimum of the clipped and unclipped

functions, the resulting surrogate objective is a lower bound first-order approximation of the

unclipped objective around wold.

Furthermore, the performance measure is augmented to include a value function loss term,

corresponding to the critic output, given by

𝐽VF(w) = 𝐸̂E𝜋w

⎡⎢⎢⎢⎢⎣
(
𝑉𝜋w (𝑠) −

|E|−1∑
𝑘=0

𝛾𝑘𝑟

)2⎤⎥⎥⎥⎥⎦ . (5.23)

Finally, a final term of entropy bonus 𝐻 (𝜋w) is added to encourage exploration of the state space

(Mnih et al., 2016). The final surrogate objective function to be maximized is given by

𝐽surr(w) = 𝐽clip(w) − 𝑘1𝐽VF(w) + 𝑘2𝐻 (𝜋w), (5.24)

where 𝑘1 and 𝑘2 are system hyperparameters. The PPO algorithm is summarized in Algorithm

5.1. We use two DNN, one to approximate the policy 𝜋(𝑎 |𝑠), which takes the state as an input
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Algorithm 5.1 PPO algorithm

Initialization :
1. Set learning rate 𝛼 ∈ [0, 1)
2. Set the update period 𝑇
3. Set 𝜖 , 𝑘1, 𝑘2

4. Initialize wold randomly

5. Set 𝑠 = 𝑠0 ∈ S
6. Set 𝑡 ← 0

1 loop
2 E ← Initialize with an empty array of size 𝑇 ;

3 for 𝑚 = 1...𝑇 do
4 𝑎′ ∼ 𝜋wold

(𝑎 |𝑠);
5 𝑠′ ∼ P(𝑠′|𝑠, 𝑎);
6 𝑐′ = 𝑐(𝑠, 𝑎) ;

7 E𝑚 ← (𝑠, 𝑎′, 𝑐′, 𝑠′);
8 end for
9 for 𝑛 = 1...𝑁epochs do

10 Sample minibatch Ẽ from E such that |Ẽ | < 𝑇 ;

11 ∇w𝐽 (w) ← 𝐸̂Ẽ [∇w ln 𝜋w(𝑎 |𝑠)𝐴(𝑠𝑡 , 𝑎𝑡)] ;

12 w ← wold + 𝛼∇w𝐽surr(w);
13 end for
14 wold ← w
15 end ;

and outputs a probability distribution over A and the action 𝑎 is sampled from this distribution.

This network is trained to maximize the PPO surrogate performance measure in (5.24). The

second DNN approximates 𝑉𝜋 (𝑠), and is trained to minimize the mean squared error between the

output of the network and the average value of the state observed so far. The DNN architecture

used by all of the algorithms considered in this paper is described in detail on Appendix III,

Section 2.

5.4.3 Independent Learners

In the IL architecture, each device has its own set of weights w𝑖 and is running its own learning

algorithm to update their weights without sharing information about their policies or current and
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previous states. As each device has only a local view of the state of the environment, it cannot

learn the optimal joint-policy in (5.11). Therefore, each MTD tries to find its local optimal

policy as

𝜋∗
𝑖 = arg min

𝜋𝑖∈Π𝐼𝐿𝑖
𝐸o𝑖∼P(o),𝜋𝑖

[ ∞∑
𝑡=0

𝛾𝑡𝑐𝑖 (o𝑖,𝑡 , a𝑖,𝑡)
����� o𝑖,0 = o𝑖

]
, (5.25)

where Π𝐼𝐿
𝑖 = {𝜋 |𝜋 : A𝑖 × O𝑖 → [0, 1]} is the set of all possible policies mapping the action-

observation space into a probability. Notice that the joint policy search space of the IL POSG is

𝚷𝐼𝐿 = Π𝐼𝐿
1

× Π𝐼𝐿
2

× · · · × Π𝐼𝐿
𝑁𝑢

. Additionally, the local cost function is given by

𝑐𝑖 (o𝑖 , a𝑖) = 𝑥𝑖 (𝑃𝑂𝑁 + 𝑝𝑖) + (1 − 𝑥𝑖)𝑃𝑂𝐹𝐹 + 𝜔𝑖 (𝑏𝑖 + 𝜇𝑖𝜉𝑖) . (5.26)

Consequently, the local cost functions leads to the definition of a local value function

𝑉 𝐼𝐿
𝜋𝑖 (𝑜𝑖) = 𝐸𝜋𝑖

[ ∞∑
𝑡=0

− 𝛾𝑡𝑐(𝑜𝑖,𝑡 , 𝑎𝑖,𝑡)
����� 𝑜𝑖,0 = 𝑜𝑖

]
. (5.27)

Furthermore, the policy function is approximated by a DNN 𝜋w𝑖 that is trained on its previous

experience using Algorithm 5.1. As both the policy and value DNN are trained on the same

MTD, both the actor and the critic networks share the same weights to reduce the memory

footprint, but have different output heads, the actor head outputs the probabilities of selecting

each action, while the critic head outputs critic values. The diagram in Fig. 5.3 illustrates this

architecture.

Effectively, each agent tries to solve the problem defined in (5.25) while ignoring the effects of

other agents, treating it as part of the environment. So, the problem reduces to a MDP (Puterman,

2014). The agents change their policies independently of one another, but their actions affect

the costs experienced by other agents. Therefore, the agents perceive the environment as

non-stationary (Omidshafiei et al., 2017). To the best of our knowledge, there are no known

algorithms that give theoretical guarantees of convergence and optimality in the non-stationary

MDP setting nor on the solution of the general POSG problem posed in (5.11). However, the IL
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Figure 5.3 Diagram of DNN architecture with shared

weights and split actor and critic heads

is considered to be a reasonable heuristic to find sub-optimal solutions to a POSG (Matignon

et al., 2012). As shown in Fig 5.2, the main advantage of this approach is that it does not require

any form of communications between devices nor between a device and the BS. On the other

hand, it requires every device to have its own set of weights and to run its own learning algorithm,

which can result in a high power consumption. Also, as each agent faces a non-stationary

environment, there are no guarantees of convergence to an optimal solution.

5.4.4 Distributed Actor with Central Critic

The PPO algorithm makes use of two networks: the actor, which models the agent’s policy, and

the critic, which estimates the value of a state. Originally, the algorithm proposes that both

networks can share weights to accelerate convergence and reduce memory costs (Schulman

et al., 2005); In the DACC architecture, each agent learns its own policy based on its local cost,

similar to the IL architecture, while a single critic is stored and trained on an edge computing
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node. The goal of this architecture is to mitigate the effects of the partial observation by having

a critic that has access to the data of all the agents (the whole state) to estimate the value of the

whole state s, defined in (5.19), and not only the local value based on the local observations as

done by the IL architecture. Thus, the DACC POSG problem is given by

𝜋∗
𝑖 = arg min

𝜋𝑖∈Π𝐷𝐴𝐶𝐶𝑖

𝐸o𝑖∼P(o),𝜋𝑖

[ ∞∑
𝑡=0

𝛾𝑡𝑐𝑖 (o𝑖,𝑡 , a𝑖,𝑡)
����� o𝑖,0 = o𝑖

]
, (5.28)

where Π𝐷𝐴𝐶𝐶
𝑖 = {𝜋 |𝜋 : A𝑖 × O𝑖 → [0, 1]} is the set of all possible probability distributions

over the action-ovservation space, and the joint policy search space of the DACC POSG is

𝚷𝐷𝐴𝐶𝐶 = Π𝐷𝐴𝐶𝐶
1

× Π𝐷𝐴𝐶𝐶
2

× · · · × Π𝐷𝐴𝐶𝐶
𝑁𝑢

. While the critic value is computed on local

observation data in the IL architecture, as shown in (5.27), the critic value in the DACC

architecture is computed over global state information, i.e. 𝑉𝐷𝐴𝐶𝐶
𝝅 (s) = 𝑉𝝅 (s).

Both the policy function 𝜋𝑖 and the value function estimator 𝑉𝐷𝐴𝐶𝐶
𝝅 (s) are approximated by

DNN. The policy DNN 𝜋w𝑖 is trained and stored on each device, while the value function

estimator is stored and computed on an edge computing node. Hence, in this architecture, the

surrogate objective function in (5.24) is split into two, with one to be minimized by the devices

to train the policy network, given by

𝐽surr
𝑎 (w𝑖) = 𝐽clip(w𝑖) + 𝑘2𝐻 (𝜋w𝑖 ), (5.29)

and the other to be minimized on the edge to train the value function network, given by

𝐽surr
𝑐 (wc) = 𝐽VF(wc). (5.30)

Furthermore, as illustrated in Fig. 5.2, each agent keeps its own set of weights w𝑖 for the actor

network, while the weights of the value function estimator w𝑐 are stored and updated on the edge

computing node. Additionally, both the MTD and the edge node must perform backpropagation

to update their weights. While each MTD has access to its own local information, the value
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estimator trained on the edge can leverage the data collected by all agents, and thus, the edge

agent is able to backpropagate on the global state information.

Moreover, as shown in (5.21), the critic value is necessary to compute the PPO gradient.

Therefore, this architecture requires the BS to feedback the value of each state, 𝑉𝝅 (s) given in

(5.19), after every TTI, such that the agents are able to perform backpropagation and train their

policy networks. Moreover, while the channel response can be estimated by the network from

the preambles, the buffer occupancy information 𝑏𝑖 needs to be sent by the MTD to the edge in

every TTI, thus, the edge node is able to compute the value functions and its weight’s update.

5.4.5 Centralized Learning with Distributed Inference

As the number of MTD in the network increases, the size of the policy search space for the IL

and DACC architectures increase exponentially, consequently increasing the solution space. To

address this issue, in the CLDI architecture, there is a single set of weights, and therefore a

single policy 𝜋 and a search space Π𝐶𝐿𝐷𝐼 = {𝜋 |𝜋 : A𝑖 × O𝑖 → [0, 1], 𝑖 = 1, . . . 𝑁𝑈} that does

not increase in size with the number of MTD. Both the policy and the critic are trained on the

edge and an updated set of weights is periodically broadcast to the MTD, thus reducing the

computational burden required to train a neural network on the devices. Moreover, the policy on

the edge is trained on data from all MTD leading to improved sample efficiency. Hence, instead

of solving (5.11), the CLDI architecture looks for solutions to

𝜋∗ = arg min
𝜋∈Π𝐶𝐿𝐷𝐼

𝐸s∼P(s),𝜋

[ ∞∑
𝑡=0

𝛾𝑡𝑐𝐶𝐿𝐷𝐼 (s𝑡 , a𝑡)
����� s0 = s

]
, (5.31)

where the CLDI cost function is given by

𝑐𝐶𝐿𝐷𝐼 (s, a) = 1

𝑁𝑈

𝑁𝑈∑
𝑖=1

𝑥𝑖 (𝑃𝑂𝑁 + 𝑝𝑖) + (1 − 𝑥𝑖)𝑃𝑂𝐹𝐹 + 𝜔𝑖 (𝑏𝑖 + 𝜇𝑖𝜉𝑖) , (5.32)

which is the average cost function of the MTD. It is worth highlighting that the CLDI cost is

an average of the costs of all MTD, thus, the shared policy is updated to increase the average
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performance of all MTD, as opposed to the IL and the DACC architecture where the policy of

each MTD is updated to optimize its local performance. Both the policy and value function

networks are stored and trained on the edge following Algorithm 5.1 using the cost function

defined in (5.32). The devices have a copy of the policy network, but they do not train it, they

just use it for decision-making. In this architecture, the devices must append the buffer state

information to every transmitted packet, and thus, the networks can be trained on the edge node,

where the network must send the updated weights back to the MTD periodically.

5.5 Numerical Experiments

In this section, the performance of the proposed architectures is evaluated through computer

simulations. In order to provide a frame of reference, we also simulate the performance of a

baseline employing a reactive HARQ protocol with power boosting. The details of the baseline

are described in Appendix III, Section 1. We consider that there are two BS and eight subcarriers

serving a circular area with a 300 m radius. We generate 1000 realizations of this scenario,

where at each realization we place both the BS and the MTD in a random location within the

circular area. At each realization the learning algorithms start from scratch (e.g. the weights

of the agents are randomly initialized at the beginning of each realization) and runs for 15000

TTI. Then, we compare the average performances, along with their variances, with respect to the

average delay experienced by the network, the number of dropped packets, the average power

spent, and the number of collisions.

5.5.1 Results

We compare the baseline and the architectures proposed in Section 5.4 in terms of the average

network delay, power, dropped packets, and collisions during 15000 TTI. We evaluate the

network delay through the holding cost, as the average network delay is proportional to the

number of packets held in the devices’ buffer. We consider that devices with different mean

packet arrival rates and latency constraints are being serviced by the same cellular network. For

each realization, the packet arrival rate of each MTD is uniformly sampled from {40, 60, 80}
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Table 5.1 Parameters used in the simulations

Parameter Value Parameter Value
𝑓𝑆 105 symbols/s 𝐿 100 bytes

𝑅 300 m Δ𝑡 10 ms

𝑁𝑈 {2560, 7680} users 𝛿𝑖 𝑈 ({4, 8, 12}) packets

𝑁𝐵 2 BS 𝜆𝑖 𝑈 ({40, 60, 80}) packets/s

𝑁𝑆 8 subcarriers 𝛾 0.99

𝑁𝑃 64 preambles 𝑃𝑂𝑁 320 milliwatts

𝛼 3.5 𝑃𝑂𝐹𝐹 0 milliwatts

𝐵 25 packets 𝑓max 10 Hz

T 200 TTI

Figure 5.4 Simulation results showing the holding costs and overflow costs with 2560

MTD in the simulated area for the three proposed architectures and the baseline, where

IL stands for the independent learners, DACC for distributed actor with central critic

and CLDI for central learning with decentralized inference

packets per second and the latency constraint is uniformly sampled from {4, 8, 12} queued

packets. Notice that in all the plots the 𝑥-axis shows the TTI. In the holding cost plot, the 𝑦-axis

shows the cumulative average of the number of packets in the buffer at a given TTI. The 𝑦-axis in

the overflow cost plots show the cumulative average value of 𝜁𝑖. Furthermore, the 𝑦-axis in the

power cost plots shows the cumulative average of the power spent by MTD in milliwatts. Finally,

the 𝑦-axis in the collisions’ plot shows the cumulative sum of collisions up to the given TTI.

As shown in Fig. 5.4, with 2560 users, the average holding cost between all four approaches is
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Figure 5.5 Simulation results showing the power costs and the number of collisions

with 2560 MTD in the simulated area for the three proposed architectures and the

baseline, where IL stands for the independent learners, DACC for distributed actor with

central critic and CLDI for central learning with decentralized inference

roughly the same. However, we notice that the baseline presents a significantly higher variance

than the proposed architectures. Furthermore, the average network delay is below four, which

is the smallest latency constraint in the network, within at least one standard deviation. With

respect to overflown packets, also in Fig. 5.4, on average the baseline approach drops slightly

more packets than the proposed architectures, but again with significantly more variance. With

respect to the power consumption, as shown in Fig. 5.5, the three proposed architectures spend

on average roughly 70% of the power spent by the baseline. Moreover, as mentioned in Section

5.4, the CLDI algorithm tends to converge faster as it is trained on observations from every

device in the network and has to search for a policy in a notably small policy search space. This

is confirmed by the fact that, as the simulation advances in time and the IL and DACC algorithms

train on more data, they achieve similar performance levels as CLDI, while using less power.

The performance improvement of the proposed architectures compared to the baseline is even

more significant when it comes to the number of collisions, as shown in Fig. 5.5. On average,

the reinforcement learning based solutions experience 15% of the baseline’s collisions during

the same period of time.

Moreover, in all investigated architectures, the holding cost performance, when averaged over

users with the same delay constraint, follows the same trend as when averaged over all users
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(shown in Fig. 5.4). Therefore, we can conclude that in a scenario with 2560 MTD, in average,

all the architectures satisfy the delay constraints. However, the baseline approach presents larger

performance fluctuations, as shown by the larger standard deviation in Fig. 5.4.

Figure 5.6 Simulation results showing the holding costs and overflow costs with 7680

MTD in the simulated area for the three proposed architectures and the baseline, where

IL stands for the independent learners, DACC for distributed actor with central critic

and CLDI for central learning with decentralized inference

Figure 5.7 Simulation results showing the power costs and the number of collisions

with 7680 MTD in the simulated area for the three proposed architectures and the

baseline, where IL stands for the independent learners, DACC for distributed actor with

central critic and CLDI for central learning with decentralized inference

As illustrated in Fig. 5.6, when the number of users is increased to 7680, the average holding

cost of the CLDI architecture converges to 2 packets, while the IL and DACC converge to 8
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Table 5.2 Overhead and Performance Tradeoffs for 𝑁𝑈 = 2560

Algorithm DL Overhead UL Overhead Collisions Power Cost Holding Cost
Baseline - - 1364 col. 255.54 mW 2.15 packets

IL - - 131 col. 168.68 mW 2.11 packets

DACC 1.6 kbits/s 1.6 kbits/s 122 col. 168.06 mW 2.12 packets

CLDI 20.496 kbits/s 1.6 kbits/s 174 col. 178.81 mW 2.07 packets

packets and the baseline to 12 packets. From this result, we conclude that as the number of users

increases the lack of collaboration between the MTD in the IL and DACC architectures starts

to impact the average network delay, while CLDI performance stays around the same as for

2560 users. Also in Fig. 5.6, the average overflow cost of CLDI still remains around 0, while

the IL and DACC estabilize around 0.7 and the baseline at 0.19. With regards to the average

power costs at convergence, the CLDI architecture spends 16.66% of the power spent by the

baseline, while the IL and DACC spend 52%, as seen in Fig. 5.7. The significant decrease in the

power spent by CLDI is explained by the centralized training, which makes more training data

available, since CLDI has 7680 new data points for each TTI while the other architectures have

only 1, which points to a cooperative behavior arising among the MTD. This is also reflected in

the collisions performance, where CLDI experiences around 2.25% of the baseline’s collisions

and IL and DACC experience around 14%.

Furthermore, similar to the 2560 MTD case, in all architectures investigated, all devices converge

to roughly the same average holding cost, regardless of the delay constraint. Thus, in the 7680

MTD scenario, only the CLDI architecture maintains an average holding cost below the delay

constraints for devices with 𝛿𝑖 = 4, 𝛿𝑖 = 8 and 𝛿𝑖 = 12. In the IL and DACC architectures, in

average, only devices with 𝛿𝑖 = 8 and 𝛿𝑖 = 12 satisfy their constraints. Finally, when the baseline

architecture is employed, on average, none of the MTD is able to satisfy its constraint. This

confirms that the CLDI architecture scales better than the others in densely deployed scenarios.
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Table 5.3 Overhead and Performance Tradeoffs for 𝑁𝑈 = 7680

Algorithm DL Overhead UL Overhead Collisions Power Cost Holding Cost
Baseline - - 2253 col. 297.6154 mW 12.01 packets

IL - - 322 col. 166.98 mW 8.025 packets

DACC 1.6 kbits/s 1.6 kbits/s 317 col. 166.25 mW 7.95 packets

CLDI 20.496 kbits/s 1.6 kbits/s 55 col. 87.81 mW 1.21 packets

5.5.2 Tradeoffs

In this subsection, we analyze the advantages and disadvantages of each of the proposed

architectures, and discuss possible application scenarios.

The IL architecture does not require a central edge entity to work, and therefore it cuts all the

necessary overhead associated to data transmission between MTD and BS. However, each MTD

has to perform training and inference of its DNN, which can be computationally expensive.

Moreover, as each MTD is trained in a fully distributed manner, without sharing any information,

there is no chance of cooperation arising. Both DACC and CLDI architectures require MTD

to transmit information about their number of packets currently in the buffers. On the other

hand, since part of the training for DACC, and all the training for CLDI is performed in the edge,

some of the computational burden is offloaded, thus saving power and easing the computation

requirements of MTD. In this work, we use 16 bit floating point numbers to encode the state

information, action, and network weights. Furthermore, we consider any extra data exchange that

is not the payload to be overhead. Thus, in the uplink direction, the overhead of the DACC and

CLDI architectures is given by 16
Δ𝑡

. Regarding the downlink overhead, in the DACC architecture

the network must send the critic value in every TTI, and therefore, the overhead is also 16
Δ𝑡

.

Meanwhile, in the CLDI architecture, the network must send all the weights of the DNN to the

MTD every 200 TTI. Tables 5.2 and 5.3 show the average performance of each architecture

and its respective overhead. As shown in Section 5.5.1, for a smaller user density, the IL and

DACC architectures slightly outperform CLDI. However, for a higher density of MTD, the CLDI

architecture is able to leverage data from observations collected from all MTD, and thanks to
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the centralized training, the MTD work together to use the network resources more equitably,

resulting in tremendous power savings, small average delays, and a minimal number of dropped

packets and collisions. Therefore, we conclude that for cellular networks designed to serve a

smaller number of MTD, the IL and DACC architectures, depending on whether the the devices

have enough computational power to train their DNN and how much overhead is tolerated,

are recommended. However, for cellular networks designed to support a massive number of

low-cost devices, the CLDI architecture is deemed more suitable.

5.6 Conclusions

In this paper, we proposed a system model for mMTC networks using grant-free transmission

and formulated it as an average power minimization problem subject to delay constraints. Based

on the related literature, we conclude that static access protocols are inefficient to handle the

optimization problem and proposed three reinforcement learning based architectures to solve

the optimization problem in a distributed fashion. The architectures have different degrees of

centralization and overhead . Furthermore, we simulated the three architectures and compared

their performance among against a static access policy baseline based on the reactive HARQ

protocol with power boosting. Finally, we showed that all three learnable architectures outperform

the static baseline and we proceeded to analyze the tradeoffs between the architectures.





CONCLUSION AND RECOMMENDATIONS

6.1 Conclusions

This thesis studies the modelling and optimization of multiple access technology for 5G NR

and next-generation cellular networks. We focus mainly on mMTC and URLLC applications

since they have the most distinct QoS requirements and operating characteristics compared to

previous cellular standards. Furthermore, we identify NOMA and grant-free access as the most

promising technologies to satisfy the requirements of the new services.

Chapter two formulated the joint power and subcarrier allocation optimization problems of

the sum rate and the fairness for a system utilizing SCMA. We proved that both problems are

NP-Hard, meaning that there is no polynomial-time algorithm capable of solving the problem

optimally. We propose two novel algorithms, based on successive convex approximations and the

relaxation of integer constraints, that consists of optimally solving a sequence of subproblems.

We used numerical simulations to show that this approach reaches better performance than

heuristic-based algorithms proposed in the literature. Also, as the algorithm depends on the

CSI, we analyzed the performance deterioration of both algorithms when only outdated CSI is

available. An exciting development since the publication of this paper was made in (Cheraghy,

Chen, Tang, Wu & Li, 2021), where the authors formulate a multi-objective optimization

problem aiming to optimize both the sum rate and the fairness.

Chapter three analyzed the problem of grant-free access SCMA networks dedicated to mMTC

services. We proposed an analytical model to derive closed-form expressions for the probability

of success of a transmission attempt, and the area spectral efficiency using results from the

theory of interference functionals on Poisson networks (Schilcher et al., 2016). Moreover, we

compared the performance of the aforementioned system with one using OMA for an increased

density between users and BSs. We show that in the OMA scenario, the area spectral efficiency
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saturates after a specific value of the relative density between users and BSs. On the other

hand, the area spectral efficiency increases with an increase in the relative density in the SCMA

system, thus, showing that SCMA based systems can better support mMTC services than OMA.

The work in (Lai et al., 2021) builds upon the model developed in chapter three by including the

impact of transmit power control and the limitations of the MPA receiver.

Chapter four considered the modelling of massive MIMO systems serving URLLC applications

on the mmWave bands. We formulated a model based on stochastic geometry and derived

approximate closed-form expressions for the latent access failure probability for systems

utilizing a reactive and 𝐾-repetition HARQ protocol. We validated the analytical results using

numerical simulations, and we identified the limitations of the proposed model. Additionally, we

investigated the impact of the number of BS antennas on the system’s reliability. We noticed that

all other parameters being the same, increasing the number of BS antennas above a certain point

has minimal impact on the reliability performance. We concluded that this saturation of the

performance gain is because, after a certain number of BS antennas, the probability of having a

LOS link becomes the main performance bottleneck. We also studied the maximum density of

users that could be supported for a given number of BS antennas and QoS requirements, thus

quantifying the gain obtained using massive antenna arrays. Finally, we concluded that mmWave

massive MIMO alone is not enough to satisfy the QoS requirements of the most strict URLLC

applications (user-plane latency under 1 ms and reliability greater than 1 − 10−6).

Chapter five is concerned with the distributed link adaptation problem in grant-free mMTC

applications. We proposed a model for the link adaptation problem as the average power

minimization under user-specific transmission delay constraints. We formulated the problem as

a POSG that must be solved in a distributed fashion. We proposed three algorithms based on

MARL with different degrees of centralization and compared their performance to a reactive

HARQ protocol with power-boosting. We showed that our MARL solutions could significantly
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lower power consumption and average network delay compared to the reactive HARQ baseline in

a more robust manner. Specifically, the CLDI architecture can satisfy the QoS requirements even

under high user density scenarios. Finally, we analyzed the tradeoffs between the three proposed

architectures concerning the amount of overhead required by each of them, thus concluding that

to obtain the higher performance of the CLDI architecture, one must pay the price by increasing

the system’s overhead.

6.2 Future Work

This section presents future research paths worth pursuing, drawing from the results obtained in

this thesis and the literature review presented in chapter one.

6.2.1 The Multi-Antenna NOMA Controversy

During the last decade, NOMA became one of the most active research fields within the wireless

research community, and many researchers believe it will play a vital role in 5G NR standards.

As of today, NOMA technologies have played a minor role in the standardized cellular systems,

as an optional feature of LTE Advanced (LTE-A) named multiuser superposition transmission

(MUST). The main reason for this is that NOMA requires each user to fully decode the messages

of other users (typically through SIC or other MUD techniques), which results in a multiplexing

gain erosion, and rate and spectral efficiency loss, rendering it inefficient for large numbers of

users in multi-antenna settings, as shown in (Clerckx et al., 2021). This resulted in a shift of

attention to rate splitting multiple access (RSMA). RSMA is also a NOMA technique, albeit it

has a much smaller body of literature than PD-NOMA and SCMA and seeks to bridge the gap

between space-division multiple access (SDMA) and NOMA. While in NOMA, the receiver

must fully decode the interference, the receiver treats multiple access interference as noise

in SDMA (Mao, Clerckx & Li, 2018). In RSMA, the receiver decodes part of the multiuser
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interference and treats the rest as noise. Thus it is a generalization of the NOMA and SDMA

competing paradigms.

The uplink and downlink RSMA systems’ optimization is investigated in (Yang, Chen, Saad,

Xu & Shikh-Bahaei, 2020) and (Yang, Chen, Saad & Shikh-Bahaei, 2021), respectively. The

authors in (Mao, Clerckx & Li, 2019) study the RSMA coordinated multi-point problem, while

the authors in Yu, Kim & Park (2019) evaluate RSMA’s performance for the downlink of cloud

radio access networks. Despite this growing body of literature, not much attention was given to

designing RSMA systems for the uplink in mMTC and URLLC networks and obtaining good

stochastic geometry models for these systems. Therefore, we envision the following possible

topics for future works:

• Propose stochastic geometry models of RSMA networks to enable the mathematical charac-

terization of the performance of large networks.

• Extending the work done in the third chapter of this thesis by evaluating the scalability and

area spectral efficiency gains of RSMA compared to SCMA, NOMA, and MU-MIMO in

mMTC applications.

• Formulating spatiotemporal models for RSMA systems for URLLC applications, similar to

the work developed in the fourth chapter of this thesis.

6.2.2 Grant-Free 5G NR Uplink on the Unlicensed Spectrum

The operation on the unlicensed spectrum bands is considered a key enabler of several 5G NR

applications, such as industrial internet of things, airborne communications, augmented and

virtual reality, and urban V2X communications (Lu et al., 2019). The main challenge existing

in transmitting on the unlicensed bands is the coexistence with other wireless standards. For

instance, in the 5.925 to 7.125 GHz bands, the 5G NR users must perform dynamic frequency

selection (DFS) to avoid interfering with radar signals that operate in this band. Moreover, the

5G NR unlicensed users must also employ power control to minimize the interference caused to
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other services operating on the same spectrum (Hirzallah, Krunz, Kecicioglu & Hamzeh, 2020).

In this vein, the system proposed in Chapter five can be easily extended to incorporate such

interference constraints in the distributed link adaptation problem.

6.2.3 Queueing Dynamics and HARQ Integration into Spatiotemporal Models of
Grant-Free Networks

The work developed in Chapter four and (Liu et al., 2020) consider the impact of different HARQ

protocols on the reliability and the user-plane latency of grant-free URLLC service. Both cases

consider the single-packet arrival model, where a single packet arrives at the transmitting queues

of the UEs at 𝑡 = 0. This setting is helpful to compare distinct HARQ protocols. However, it

provides limited insight into the performance of real systems due to the limited packet arrival

model considered in these works. On the other hand, the authors in (Gharbieh et al., 2018;

Gharbieh, ElSawy, Bader & Alouini, 2017; Gharbieh, ElSawy, Emara, Yang & Alouini, 2020)

consider a sophisticated discrete-time Markov chain to model a general packet arrival process

and an iterative algorithm to obtain the average buffer size, average waiting time in the queue,

and the stability regions of uplink grant-free access systems. However, they do not consider the

impact of HARQ on the performance. Therefore, there is a clear gap in the literature regarding

the performance evaluation of grant-free access systems. Integrating the complex queueing

dynamics by modelling the packet arrival dynamics and the performance metrics from (Gharbieh

et al., 2018, 2017, 2020) with the HARQ protocol’s impact on the performance would be an

interesting future work to pursue.
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1. Proof of Theorem 1

To prove that both problems are NP-hard, we show that the subcarrier assignment subproblem

can be reduced in polynomial time to the hypergraph assignment problem (HAP) which is shown

to be NP-hard in (Borndörfer & Heismann, 2015).

We start by briefly introducing the HAP. The HAP takes as input a bipartite graph G = V ∪U
such that V ∩U = ∅, a set of hyperedges E, and a cost function 𝑐 : E → R. In addition to that,

we have that |𝑒 ∩V| ≥ 1 and |𝑒 ∩U| ≥ 1 ∀ 𝑒 ∈ E.

A hyperassignment is a set H ⊆ E such that every element 𝑣 ∈ V ∪ U appears exactly

once in H . The output of the HAP is an optimal hyperassignment H∗ = min{𝑐(H)|H is an

hyperassignment of G}.

Now consider the problem PMax-SR in the HAP context, with a fixed power allocation matrix P.

Let U = {𝑆𝐶1, · · · , 𝑆𝐶𝐾} and V = {𝑈1,1 · · ·𝑈1,𝑁 , 𝑈2,1, · · ·𝑈2,𝑁 , · · ·𝑈𝐽,𝑁 } be the vertex set of

available subcarriers and allocated subcarriers, respectively. Notice that 𝑆𝐶𝑘 denotes the 𝑘-th

available subcarrier, while 𝑈𝑗,𝑖 denotes the 𝑖-th subcarrier allocated to user 𝑗 , with 1 ≤ 𝑖 ≤ 𝑁 .

In this context, a hyperassignment determines which subcarriers are allocated to each user. For

instance, a hyperedge 𝑒 = {𝑆𝐶1, 𝑈1,1, 𝑈2,2} indicates that users 1 and 2 are allocated to the first

subcarrier. As at most 𝑁 subcarriers can be allocated to each user, every hyperassignment

satisfies (2.11). Notice that the subcarrier allocation matrix F corresponds to the hyperedge

incidence matrix of the hypergraph, for instance, the hyperedge 𝑒 = {𝑆𝐶1, 𝑈1,1, 𝑈2,2} would

result in f1 =
[
1 1 0 · · · 0

]
, where f1 is the first row of F. Furthermore, consider the

hyperedge set E = {𝑒 ∈ 2U∪V | 1 < |𝑒 | ≤ 𝑑 𝑓 + 1} and let 𝐹H ∈ B𝐾×𝐽 be the incidence

matrix of a hypermatch H ⊆ E. As |𝑒 | ≤ 𝑑 𝑓 + 1 ∀ 𝑒 ∈ E constraint (2.12) is always satisfied.
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Furthermore, the cost function is given as

𝑐(H) =
∑
𝑘∈K

ln
����1 +

∑
𝑗∈J

|ℎ𝑘, 𝑗 |2 𝑓𝑘, 𝑗 𝑝𝑘, 𝑗

𝜎2
𝑛

���� .

So, solving PMax-SR with P fixed, is equivalent to solving an HAP, therefore, PMax-SR is NP-hard.

Finally, we also conclude PMax-Min is NP-hard using the same HAP formulation, but using the

cost function

𝑐(H) = min
𝑗∈J

∑
𝑘∈K

ln

������
1 + |ℎ𝑘, 𝑗 |2 𝑓𝑘, 𝑗 𝑝𝑘, 𝑗

𝜎2
𝑛 +

𝑗−1∑
𝑖=1

|ℎ𝑘,𝑖 |2 𝑓𝑘,𝑖 𝑝𝑘,𝑖

������
.
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1. Proof of Lemma 5

The probability of success in (4.21) can be expanded to

P
(
SINR𝑚 ≥ 𝛾

��𝐶̄, 𝑥0 ∈ 𝐿𝑂𝑆𝑚, 𝑁𝑚 = 𝑛
)

= P

{
|𝑔0 |2 ≥ 𝛾

𝜌𝐾

[
𝜎2 + 𝐼

] ���� 𝐶̄, 𝑥0 ∈ 𝐿𝑂𝑆𝑚, 𝑁𝑚 = 𝑛

}
= exp

(
−𝛾𝜎2

𝜌𝐾

)
L𝐼

(
𝑠 |𝐶̄, 𝑥0 ∈ 𝐿𝑂𝑆𝑚, 𝑁𝑚 = 𝑛

)
, (A II-1)

where 𝑠 = 𝛾
𝜌𝐾 , 𝐼 =

∑
𝑥𝑖∈Φ𝐼

𝜌 |𝑔𝑖 |2 𝐹𝐾
(

𝜋
2
(𝜃0 − 𝜃𝑖)

)
is the interference on the typical user’s transmis-

sion and L𝐼
(
𝑠 |𝐶̄, 𝑥0 ∈ 𝐿𝑂𝑆𝑚, 𝑁𝑚 = 𝑛

)
is the Laplace transform of the interference conditioned

on the user not experiencing preamble collision, them having a LOS path, and there being 𝑛

interferers in the cell.

The Laplace transform of the interference can be derived as

L𝐼
(
𝑠 |𝐶̄, 𝑥0 ∈ 𝐿𝑂𝑆𝑚, 𝑁𝑚 = 𝑛

)
= 𝐸𝑔𝑖 ,𝜃𝑖

{
exp

[
−𝑠

∑
𝑥𝑖∈Φ𝐼

𝜌 |𝑔𝑖 |2 𝐹𝐾

(𝜋

2
(𝜃0 − 𝜃𝑖)

)]}
=

∏
𝑥𝑖∈Φ𝐼

𝐸𝑔𝑖 ,𝜃𝑖

{
exp

[
−𝑠𝜌 |𝑔𝑖 |2 𝐹𝐾

(𝜋

2
(𝜃0 − 𝜃𝑖)

)]}
=

∏
𝑥𝑖∈Φ𝐼

𝐸𝜃𝑖

[
1

1 + 𝑠𝜌𝐹𝐾
(

𝜋
2
(𝜃0 − 𝜃𝑖)

) ] . (A II-2)

Unfortunately, obtaining a closed-form expression for the expectation in (A II-2) is not mathe-

matically tractable. Therefore, we first obtain a suitable approximation to the Fejer kernel. Due

to the Fejer kernel property in (4.10), as the number of antennas increases most of the energy is
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concentrated on the main lobe as shown in Fig. 4.2. Hence, we choose to approximate it as

𝐹𝐾 (𝑥) ≈ 𝑓𝐾 (𝑥) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
−𝐾3𝑥2

4
+ 𝐾 , if 𝑥 ∈ {− 2

𝐾 , 2
𝐾

}
0 , otherwise.

(A II-3)

The quadratic approximation in (A II-3) renders the derivation of the expectation in (A II-2)

tractable. Furthermore, it ensures that 𝑓𝐾 (𝑥) = 0 whenever 𝑥 ∉
(
− 2

𝐾 , 2
𝐾

)
, i.e., the contributions

of the signals arriving from directions outside of the main lobe to the interference is zero, and

that 𝐹𝐾 (0) = 𝑓𝐾 (0) = 𝐾 . Hence,

∏
𝑥𝑖∈Φ𝐼∩𝜃𝑖∈(− 2

𝐾 , 2
𝐾 )

𝐸𝜃𝑖

[
1

1 + 𝑠𝜌𝐹𝐾
(

𝜋
2
(𝜃0 − 𝜃𝑖)

) ]
(𝑎)
=

∏
𝑥𝑖∈Φ𝐼∩𝜃𝑖∈(− 2

𝐾 , 2
𝐾 )

tanh−1
(√

𝛾
1+𝛾

)
√

𝛾 (1 + 𝛾)

(𝑏)
=

𝑛∑
𝑛′=0

(
𝑛

𝑛′

) (
2

𝐾

)𝑛′ (
1 − 2

𝐾

)𝑛−𝑛′ ⎡⎢⎢⎢⎢⎢⎣
tanh−1

(√
𝛾

1+𝛾

)
√

𝛾 (1 + 𝛾)

⎤⎥⎥⎥⎥⎥⎦
𝑛′

, (A II-4)

where (𝑎) is obtained from
∫

1
1−𝑥2 𝑑𝑥 = tanh−1(𝑥). While step (𝑏) comes from the fact that the

interferers’ angles are uniformly distributed, given that there are 𝑛 interferers in the cell, the

number of interferers within the typical user’s main lobe direction follows a binomial distribution

with 𝑛′ ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙
(

2
𝐾

)
. Thus, the conditional success probability can be obtained by summing

the marginal distribution weighted by 𝑛′’s probability mass function (PMF) This completes the

proof.

2. Proof of Lemma 6

In order for a 𝐾-repetition HARQ transmission attempt to be successful at least one of the

repetitions must be successfully decoded. Therefore, the probability that the 𝑚-th retransmission

attempt is successful, conditioned on no preamble collisions, a LOS path and 𝑛 interferers, can
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be obtained as the complement probability that all repetitions fail

P
���

𝐾𝑟𝑒𝑝⋃
𝑙=1

SINR𝑚,𝑙 ≥ 𝛾
��𝐶̄, 𝑥0 ∈ 𝐿𝑂𝑆𝑚, 𝑁𝑚 = 𝑛

���
= 1 − P ���

𝐾𝑟𝑒𝑝⋂
𝑙=1

SINR𝑚,𝑙 < 𝛾
��𝐶̄, 𝑥0 ∈ 𝐿𝑂𝑆𝑚, 𝑁𝑚 = 𝑛

���
(𝑎)
= 1 −

𝐾𝑟𝑒𝑝∏
𝑙=1

[
1 − P (

SINR𝑚,𝑙 ≥ 𝛾
��𝐶̄, 𝑥0 ∈ 𝐿𝑂𝑆𝑚, 𝑁𝑚 = 𝑛

) ]
(𝑏)
= 1 − [

1 − P (
SINR𝑚 ≥ 𝛾

��𝐶̄, 𝑥0 ∈ 𝐿𝑂𝑆𝑚, 𝑁𝑚 = 𝑛
) ]𝐾𝑟𝑒𝑝

(𝑐)
=

𝐾𝑟𝑒𝑝∑
𝑙=1

(
𝐾𝑟𝑒𝑝

𝑙

)
(−1)𝑙+1

P
(
SINR𝑚 ≥ 𝛾

��𝐶̄, 𝑥0 ∈ 𝐿𝑂𝑆𝑚, 𝑁𝑚 = 𝑛
) 𝑙

, (A II-5)

where step (𝑎) follows from the fact that the set of interferers is different from one repetition to

the next, as a new subcarrier is randomly selected for every repetition by each UE, making the

SINRs on distinct repetitions mutually independent. Also, as the SINR of every repetition is

affected by an interferer process having the same intensity, the probability of success of each

repetition is equal, which justifies step (𝑏). Finally, step (𝑐) is obtained from the binomial

expansion of the power term. If we work from (A II-5) and follow the same steps derived in

Appendix 1, we obtain (4.27), which completes the proof.
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1. Baseline Algorithm

Figure-A III-1 Flowchart of the baseline algorithm

Firstly, each device with packets in the buffer to transmit draws a random number 𝑞 ∼ 𝑈 ( [0, 1]),
and if 𝑞 ≤ 𝑞, where 𝑞 is a congestion control threshold, the device tries to access the channel.

This is done to avoid congestion by having all devices trying to access the channel at the same

time. Furthermore, if the MTD is currently violating its delay constraints or if there was a

dropped packet in the last TTI, the device ramps up its power. Moreover, if at least one packet

was successfully transmitted on the last TTI, the MTD assumes it is facing a good channel

condition, and it then increases the transmission modulation order. Otherwise, it assumes a bad

channel and decreases it. The algorithm is described by the flowchart in Fig. III-1.

2. DNN Architecture and Parameters

One of the requirements is that the DNN must be shallow and relatively small to keep a light

memory footprint on the devices and to reduce the computational complexity of the training and

inference. We consider a GRU (Cho, van Merriënboer, Bahdanau & Bengio, 2014) connected

to a two-layer perceptron. As the observations of the MTD are temporally correlated (through
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Table-A III-1 Number of Weights in the DNN

Layer Number of Weights
GRU 3[322 + 32(4 + 𝑁𝐵𝑁𝑆) + 32]

Fully Connected Layers 2(322 + 32)
Policy Network Head 66𝑀 |P |𝑁𝑆

Value Function Network Head 64

the number of packets in the buffer, and the channel gains) we include a GRU in the input to

extract information from sequences of states. We employ GRU as it has been shown that they

have comparable performance to the more commonly used long short term memory (LSTM)

units while being more computationally efficient (Chung, Gülçehre, Cho & Bengio, 2014). In

our model, we consider a GRU with 𝑁𝐵𝑁𝑆 + 4 inputs, where 𝑁𝐵𝑁𝑆 inputs take the channel state

information, and the remaining four are the number of packets in the buffer (𝑏𝑖), the number of

arriving packets (𝑙𝑖), the goodput on the previous TTI (𝑔𝑖) and the number of overflown packets

in the previous TTI (𝜉𝑖). The GRU unit has 32 output values, while both of the linear layers have

32 inputs and 32 outputs. Finally, the actor head has 32 inputs and 2𝑀 |P |𝑁𝑆 outputs (one for

each possible action), while the critic head has 32 inputs and one output (the critic value). Table

III-1 summarize the number of weights needed for each stage of the network1. The networks

are trained using an adaptive moment estimation (ADAM) optimizer (Kingma & Ba, 2017)

with a learning rate of 7 × 10−4. At each DNN network update, the weights are trained over

4 PPO epochs with 10 minibatches per epoch. To avoid large gradient updates that make the

optimization unstable, the gradients are clipped such that ‖∇𝐽w‖ ≤ 0.5. A value loss coefficient

𝑘1 = 0.5 and an entropy loss coefficient 𝑘2 = 0.01 are used.

1 We used the values in (Dey & Salem, 2017) to compute the number of weights needed by a GRU.
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