
 

Attention mechanism in neural network for early diagnosis in 
newborns using cry signals 

 
 
 

by 
 

Anisan GUNARATHINAM 
 
 
 
 

THESIS PRESENTED TO ÉCOLE DE TECHNOLOGIE SUPÉRIEURE 
IN PARTIAL FULFILLMENT FOR A MASTER’S DEGREE 

WITH THESIS IN ELECTRICAL ENGINEERING 
M. Sc. A 

 
 
 
 

MONTREAL, 9th OF NOVEMBER 2021 
 
 
 
 
 

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE 
UNIVERSITÉ DU QUÉBEC 

 
 
 

 
 

  Anisan Gunarathinam, 2021 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
This Creative Commons license means that it is permitted to distribute, print or save on another medium part 

or all of this work provided the author is acknowledged, that these uses are made for non-commercial purposes 

and that the content of the work has not been modified. 

 

 



 

BOARD OF EXAMINERS 
 

THIS MASTER’S THESIS HAS BEEN EVALUATED 
 

BY THE FOLLOWING BOARD OF EXAMINERS: 
 
 
 
 
 
 
M. Chakib Tadj, Thesis Supervisor 
Department of Electrical Engineering, École de technologie supérieure 
 
 
M. Tony Wong, President of the jury 
Department of Electrical Engineering, École de technologie supérieure 
 
 
M. Christian Gargour, Member of the jury 
Department of Electrical Engineering, École de technologie supérieure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS THESIS WAS PRESENTED AND DEFENDED 
 

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC 
 

OCTOBER 21st 2021 
 

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE 





 

ACKNOWLEDGMENTS 
 

I want to thank everyone who contributed to this project and overcome all the obstacles I 

encountered while working on this master’s thesis.  

 

My special thanks go to my master’s thesis supervisor, Mr. Chakib Tadj, to guide me and help 

me make the right decisions at the right moment. I could not have completed this thesis without 

him and his expertise. 

 

I am grateful to everyone who worked on this project before me and helped develop a database 

that is filtered from all silence and annotated. This project would have taken longer to realize 

without it, since it made me focus my time on the neural network part for classification. 

 

Thank you to the open-source Python community for all the inspiration and code that made my 

development easier.  

 

My greatest thanks go to the nurses who take the time to record newborn's cries and fill their 

data with the help of experts. I do not think we give enough credits for them, but a neural 

network is nothing without its data and people who use their time and patience to annotate the 

data for an efficient supervised neural network. 

 

Last but not least, I would like to thank my parents for their support during these years and for 

helping me achieve my desired level of education. 

 

 



 

 



 

Attention mechanism in neural network for early diagnosis in newborns using cry 
signals 

 
Anisan GUNARATHINAM 

 
ABSTRACT 

 
Humans use their voice to communicate, and it is often driven by instinct. On a larger scale, 
this same instinct can be applied to a newborn infant who tries to express itself, with obviously, 
his cry. According to past studies made on this subject, there is a strong correlation between 
an infant's cry and psychological condition and pathology that affects the latter. This study 
focuses on finding a correlation and identifying the newborn's condition using a neural 
network. This tool would help experts identify something that they could have potentially 
ignored and better diagnose a newborn according to the disease affecting it before it is too late. 
Whether it is in a developed country or a developing country, this solution requires no 
expensive diagnosis material. 
 
Our study uses an Attention mechanism neural network that has known success in speech 
recognition and text translation in the last two years. The Attention layer learns to focus on 
different aspects of the input. The Transformer uses Encoder-Decoder architecture to 
summarize the entire input before outputting the results, which are strongly linked with each 
input sequence. The idea is to eliminate the dependency in the fixed-length input conducted in 
the previous studies. The Attention mechanism enhanced LSTM (Long short-term memory) is 
a recurrent neural network that inherits the self-attention layer from the Transformer. 
 
Only the expirations sessions are extracted for each cry sample to generate the matrix of Mel-
frequency cepstral coefficients (MFCC). These features are then fed into the neural network. 
Using the data at our disposition, we train the network and test it with new data to compare the 
performance with the classical LSTM default variant. 
 
Several previous studies use the same dataset, so the results are compared to the same criteria 
to evaluate the performance of this variant for our purpose. The features and parameters are 
optimized with both variants to obtain a global view of the Attention mechanism for early 
diagnosis in newborns and conclude if this path can be taken or not. 
 
 
Keywords: diagnosis in newborns, pathology classification, newborn cries, recurrent neural 
network, Transformer, Attention enhanced LSTM, Long-Short Term Memory, Multilayer 
Perceptron, Mel-frequency Cepstral Coefficient 
 
 





 

Mécanisme d’Attention dans le réseau de neurones pour le diagnostic précoce chez les 
nouveau-nés en utilisant les signaux de cri 

 
Anisan GUNARATHINAM 

 
RÉSUMÉ 

 
Les humains utilisent leur voix pour communiquer, et elle est souvent motivée par l'instinct. À 
plus grande échelle, ce même instinct peut s'appliquer à un nouveau-né qui tente de s'exprimer, 
avec évidemment, son cri. Selon des études antérieures réalisés sur ce sujet, il existe une forte 
corrélation entre le cri d'un nourrisson et l'état psychologique et la pathologie qui affecte ce 
dernier. Cette étude se concentre sur la recherche d'une corrélation et l'identification de l'état 
du nouveau-né à l'aide d'un réseau de neurones. Cet outil aiderait les experts à identifier 
quelque chose qu'ils auraient pu potentiellement ignorer et à mieux diagnostiquer un nouveau-
né en fonction de la maladie qui l'affecte et ce, avant qu’il ne soit trop tard. Que ce soit dans 
un pays développé ou un pays en développement, cette solution ne nécessite aucun matériel de 
diagnostic coûteux. 
 
Dans cette étude, nous utilisons le mécanisme d’Attention dans un réseau neuronal qui a connu 
un succès au cours des deux dernières années dans la reconnaissance vocale et la traduction de 
texte. La couche d’attention permet au réseau de se concentrer sur différents aspects de l’entrée. 
Le Transformer utilise l'architecture Encodeur-Decodeur pour résumer l'intégralité de l'entrée 
avant de sortir les résultats, qui sont fortement liés à chaque séquence d'entrée. L'idée est 
d'éliminer la dépendance de l'entrée de longueur fixe menée dans les études précédentes. Le 
mécanisme d'attention amélioré LSTM (Long short-term memory) est un réseau neuronal 
récurrent qui hérite la couche du Self-Attention du Transformer. 
 
Pour chaque échantillon de cri, seules les sessions d'expiration sont extraites pour générer la 
matrice des coefficients cepstraux à fréquence Mel (MFCC). Ces paramètres sont ensuite 
alimentés dans le réseau neuronal. En utilisant les données à notre disposition, nous formons 
le réseau et le testons avec de nouvelles données pour comparer les performances avec la 
variante classique par défaut du LSTM. 
 
Plusieurs études précédentes utilisent le même ensemble de données, donc les résultats sont 
comparés aux mêmes critères pour évaluer les performances de cette variante. Les 
fonctionnalités et les paramètres sont optimisés avec les deux variantes pour obtenir une vue 
globale du mécanisme Attention pour le diagnostic précoce chez le nouveau-né et conclure si 
cette voie peut être empruntée ou non. 
 
 
Mots-clés : diagnostic chez le nouveau-né, classification de pathologie, cris de nouveau-né, 
réseau neuronal récurrent, LSTM avec attention, Long-Short Term Memory, Perceptron 
Multicouche, coefficient cépstral de fréquence de Mel 
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INTRODUCTION 
 
Context of the Research 
 
Every creature on this planet has a way of communicating with others. Some use a very 

complex language to deliver their thoughts and emotions like humans, while others use basic 

sounds that contains all the necessary information to make them understandable. While for 

some, those are hidden information, they can be interpreted as a sentence with a whole meaning 

for others. It is only a matter of time and recognition before a pattern can be found within this 

information and be used to understand them. Baby cries are an excellent example of this 

statement. According to recent studies (Bğnicğ, Cucu, Buzo, Burileanu, & Burileanu, 2016), 

we believe there is a strong correlation between an infant's cry and its reason. Although this 

research does not focus on the infant's needs (hunger, pain, discomfort, diaper wet, etc.), 

another classification can be beneficial at a larger scale, one that can prevent infant death 

worldwide. 

 

According to the World Health Organisation, there were 2.4 million newborn deaths in 2019, 

and most of them occurred during their first 28 days. Figure 0.1 shows that the numbers are 

concentrated on the first few days of birth. In fact, 47% of infant deaths happen on the first day 

the child opens his eyes, while 75% happen after a week. 

 

 

Figure 0.1 Newborn date ratio evolution by days 
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Among the reasons for death, failure to offer good healthcare during the first 28 days is the 

leading cause. A wrong diagnosis of the infant's psychological and physical state or an absence 

in detecting its pathology on time might lead to inadequate treatment and eventually cause its 

death. Also, the lack of expensive and accurate equipment is not helping the cause (World 

Health Organization, 2020). Figure 0.2 demonstrates that the highest infant mortality rate is 

located in developing countries such as India and countries in the African continent. These 

data can be obtained publicly through the World Health Organization website. As mentioned 

earlier, these countries do not have the materials to efficiently diagnose a disease affecting the 

child during its early days. 

 

 

 

Figure 0.2 Infant mortality rate per 1000 newborns per country  
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Statement of the research problem 
 
Since the vast majority of infant deaths occur in developing countries, it wouldn’t make sense 

to implement a solution that requires expensive technology and equipment because these 

countries wouldn’t afford them anyway. The idea behind this research is to come up with a 

product that can be affordable, accurate and does not require any special equipment to diagnose 

the newborn’s health condition. We use something already present and produced by the baby 

naturally; its cry. 

 

The infant's cry is its way of expressing itself when facing discomforts such as hunger or pain. 

There are also other types, such as pleasure cries. Moreover, the acoustic properties of the cries 

give away more information than anticipated (Zeifman & St James-Roberts, 2017). In fact, 

features such as the fundamental frequency and the duration can determine the type of 

pathology affecting the child. Studies show that certain conditions like Down’s syndrome, 

brain damage and hyperbilirubinemia can be diagnosed using only features present in the 

infant's cry (Zeifman & St James-Roberts, 2017). Autism can also be detected using this 

method, according to recent studies. 

 

Few questions are raised from the thought: 

1. What about other common and uncommon pathologies?  

2. Is there also a pattern in the acoustic properties that can be used for early diagnosis? 

3. How accurately can we tell if a baby has a particular pathology or not? 

4. Could the experts use this method to support their hypothesis? 

 

In this work, we combine acoustic properties with a fast-evolving technology that is taking 

over the course of the development in the field of automation and computers, the artificial 

intelligence, also known as the neural network. We focus on two types, the Transformer 

network and the Attention enhanced LSTM (Long-Short Term Memory). Both had great 

success in the history, Transformer being the latest one using an Encoder-Decoder architecture. 
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Objective and methodology 
 
The main objective of this research is to offer a binary classification among four diseases to 

detect them in the early stage of the infant’s birth and hopefully treat them better for a higher 

probability of survivability. By limiting the research to four conditions only, we focus on 

comparing neural network performance in this specific field of study rather than detecting as 

many health conditions as possible. We want to observe if we can get a reasonable accuracy 

so that the system may be used worldwide with a stable confidence level. By comparing the 

network’s performance, we might be able to determine if it could be worth taking this path for 

further studies or not. 

 

The initial problem that is studied is: Can the state-of-art Transformer network, known to have 

great success in natural language processing (NLP), outperform the classical LSTM, which is 

a recurrent neural network (RNN)? 

 
This project is not an entirely new study. In fact, several studies were performed on this case 

by other authors worldwide and from École de Technologie Supérieure (ETS). Among them, 

we have identified few studies that helped us refine the problematic: 

1. Using acoustic features such as gliding fundamental frequency over the expiration and 

irregularity in the resonance frequency (Kheddache & Tadj, 2019). 

2. Study of rhythm and melody pattern in infants with a pathological condition (Salehian 

Matikolaie & Tadj, 2020). 

3. Qualitative study of the cry’s spectrogram (Kheddache, 2014). 

4. Implementation of the Gaussian Mixture Models (GMMs) (Farsaie Alaie, 2015). 

5. Neural networks to classify the infant’s condition, such as LSTM (Chang & Li, 2016), 

CNN (Lavner, Cohen, Ruinskiy, & Ijzerman, 2016), (Anders, Hlawitschka, & Fuchs, 

2020), Masked Conditional Neural Network (MCLNN) (Medhat, Chesmore, & Robinson, 

2020) and Transformer network (Vaswani et al., 2017). 

6. Using statistical learning methods, like the SVM (Support-vector machine) (Salehian 

Matikolaie & Tadj, 2020). 
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To deliver this research, the following diagram in figure 0.3 describes the methodology that 

has been used. Data preprocessing is a big part of the research. There were already the 

necessary codes in Matlab and other software for features extraction from the audio files. Still, 

our focus was to make a system that is 100% dependant on the same programming language 

and processing architecture. This way, all the steps from A to Z could be done on the same 

equipment, like the Raspberry Pi, without an external resource. The main steps of this 

equipment would be: 

1. Record the audio data for a few seconds. 

2. Filter the unnecessary background noises and silences. 

3. Extract the features that will be learned by the neural network. 

4. According to the expiration sessions, classify the infant’s pathology and refine the accuracy 

with more expirations coming in from the child. 

5. Use the recorded data and an expert’s point of view to train the neural network and reduce 

its errors. 

 

 

Figure 0.3 Flowchart of the methodology is this research 
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Organization of the thesis 
 

The following thesis is organized in this manner: 

 

Chapter 1 is a review of state of art in the field of signal processing and classification of audio 

sounds. We describe the contribution of other authors to this problematic and which problems 

that they have solved so far. Our goal is to make a path that has not been explored yet. With 

the help of the obtained results, we determine if this path can be followed for further 

development.  

 

Chapter 2 is a detailed description of the essential theories to understand the foundations of 

this research. The chapter explains the features that are extracted, a summary of the algorithms 

used for data extraction, the mathematics behind the studied neural networks and the 

parameters of the network training process. 

 

Chapter 3 contains all the information on the experimentation that was done in this thesis. The 

database details and the chosen data for this study are mentioned, as well as the pre-treatment 

work done in order to feed the extracted features to the classifier model. Also, the methods 

used to describe the comparison of the networks are marked out. 

 

Chapter 4 presents the final results obtained throughout this research. The neural networks are 

compared based on their performance, and furthermore, the results are discussed in detail. The 

hypothesis of the thesis is, therefore, be affirmed or refuted. 

 

The final part is the conclusion and the recommendations for future research that might interest 

other authors in pursuing this path. 

 

 
 
 



 

 
 
 

PATHOLOGY CLASSIFICATION BASED ON INFANT CRY 

Analysis and pattern detection on specific pathology based on the infant's cry is not a recent 

field of interest. In fact, studies starting from the 1970s observed the spectrum effects of infant 

cries having a particular disease. For example, Lind, Vuorenkoski, Rosberg, Partanen, and 

Wasz-Höckert (1970) analyzed the spectrographic of 30 infants cry with Down Syndrome and 

120 normal infants to conclude that infants with the disease present higher stuttering, a longer 

cry duration, a lower pitch, and a lower pitch flat melody. 

 

This method can be helpful, but as more diseases are identified, some of the main features are 

also observed on several different pathologies. For example, longer cry duration can be 

associated with numerous pathologies, making it impossible to classify the cries efficiently. 

Instead of using manual classification from experts based on these patterns, researchers started 

using different classifiers with a multitude of features on datasets since the year 2000. 

 

Training experts to recognize different pathologies is time-consuming and resource-consuming 

compared to what machines can do nowadays. Mukhopadhyay et al. (2013) conducted a study 

where they trained a group of people to recognize cries in a database. The accuracy of the 

human ear is only 33.09% compared to 80.56% obtained from a machine on the same database. 

 

In this chapter, we discuss the previous research that has been conducted in the field of infant’s 

cry pathology classification using classifiers and their contribution. 

 

1.1 Steps of infant cry classification 

In every single research on this topic and several others, we find five main steps for effectively 

classifying an infant cry. Each of those steps is crucial and highly impacts the final performance 

of the classifier. Presented in this section are the data acquisition, the pre-processing, the 

features extraction, the feature selection and the classification. 
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1.1.1 Data acquisition 

As required by any classification or regression system, the first step is to acquire valuable data 

to train the machine. In our case, the data is the recordings of the infant's cry gathered by 

medical staff. Furthermore, an expert like a nurse or a doctor would have to label the data by 

filling at least the “reason of cry” or “known pathology” field for each recording. In the case 

of unsupervised learning, labels are not required. 

 

1.1.1.1 Challenges of data acquisition 

The main challenge in our study is that there is a minimal number of samples and databases 

available to the public, and it is not easy to acquire them from other researchers (Jeyaraman et 

al., 2018). Classifiers require an extensive database to be able to be trained efficiently. Healthy 

infant samples are the most common, while infant cries with specific pathology are very rare 

to find. Also, the medical information of an infant is sensitive and cannot be obtained easily. 

There are several procedures to be done by the medical team and the parents. 

 

Another challenge is the environment in which the data is recorded. The hospital has many 

random noises and interferences, which, added to the cry sounds, confuse the classifier, and 

falsify the prediction. Ferretti, Severini, Principi, Cenci, and Squartini (2018) experiment 

concluded that synthetic samples produce better accuracy than real-time samples using a 

convolutional neural network (CNN). Synthetic data means purposely adding random noises 

on top of clean recordings to simulate a noisy environment. 

 

1.1.1.2 Databases 

Databases can be found online or from authors studying this case. Manikanta, Soman, and 

Manikandan (2019) used an online database in their study of different classifiers like the multi-

class support vector machines (MC-SVM) and the one-dimensional convolutional neural 

network (1D-CNN). They obtained a performance of 98% and above. However, the online 
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database is limited in samples, and they are not always well labelled and accurate (Chunyan Ji, 

Mudiyanselage, Gao, & Pan, 2021). 

 

One famous database is the Baby Chillanto database (Reyes-Galaviz, Tirado, & Reyes-Garcia, 

2004), from the National Institute of Astrophysics and Optical Electronics in Mexico. 

However, there are only five types of cry signal in their database: asphyxia, deaf, hungry, 

normal and pain. One-second segments are automatically extracted in their database. 

 

Chunyan Ji et al. (2021) reviewed many databases used by authors working on this issue. 

 

1.1.1.3 Data augmentation 

In our field mainly, the number of samples is minimal. Few reasons include that it requires 

time and dedication to record the cries and label them correctly. One technique is data 

augmentation, which consists of increasing the data size by adding more samples that are 

almost copies of existing samples. Using this method, slight variations of a sample with the 

same class are produced, causing the model to be more robust to noise.  

 

Felipe et al. (2019) used several techniques to increase the number of samples. They used 

features from spectrograms and features from the audio signal directly to train their SVM 

classifier that determines if an infant suffers from pain or not. They modified some factors like 

noise and tonality variation for each feature category to create a more extensive dataset. 

However, these methods did not increase the accuracy. 

  

1.1.2 Pre-processing 

The second step is the pre-processing of the data. This part is essential to optimize the 

performance of the classifier. In the previous section, we discussed the noisy environment 

where the cries are recorded. Once the data has been gathered, it is impossible to go back and 

reduce the amount of noise. There are a few techniques to clean the data from unuseful sounds 

and feed the machine only with the most valuable data for classification. 
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1.1.2.1 Noise filtering 

Filtering the signal with a high-pass filter helps to remove the low frequencies noise in the 

recording since an infant’s cry starts at around 250 Hz – 300 Hz (Jam & Sadjedi, 2009). The 

fundamental frequency ranges from 250 Hz to 600 Hz, while the resonant frequencies are 

typically around 1100 Hz and 3300 Hz (Lavner et al., 2016). 

 

With a sampling frequency of 44100Hz, up to 22050 Hz frequencies can be detected, but most 

of the range does not contain valuable data since there is no information beyond 4000 Hz or 

even 6000 Hz. Authors often use 4kHz as their maximum frequency for features extraction. 

 

Ferretti et al. (2018) used a system of 8 circular microphones to reduce the noise using a filter-

and-sum beamformer and focus on the source of the noise. To reduce the residual diffuse noise 

in the pre-treatment phase, they used an Optimally Modified Log-Spectral Amplitude 

Estimator (OMLSA) as a filter. 

 

1.1.2.2 Noise and silence removal 

More profound treatment is to remove the silence and noise frames from the sound. Abou-

Abbas, Alaei, and Tadj (2015) separated the segments of the recordings and manually labelled 

them. Segments containing noises, silences or a mix of cry and noise are identified correctly. 

Only the sections that are labelled as “expirations” and “inspirations” are considered in future 

research (Salehian Matikolaie & Tadj, 2020).  However, this process is very time-consuming 

as it either requires a sophisticated system or manually separating and labelling the segments. 

 

Affendi and Yusoff (2019) worked on an anomalous sound event detection (SED) system that 

can trigger an action when the convolutional recurrent neural network (CRNN) with LSTM 

detects a specific sound. They obtained a performance of 93.1%. This neural network can 

eliminate the silences and other noise during the recording phase directly. However, this 

system has not been tested on expirations that only last a few seconds and occur several times 

during a crying session. 
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1.1.3 Features extraction 

Features extraction allows the collection of the discriminative features in the recordings. These 

features are then fed into the classifier for decision-making. Directly feeding the samples of 

the recordings results in a deplorable network as the samples alone contain no discriminative 

information that the machine can focus on. There are two main categories of audio features: 

the time domain and the frequency domain (Chunyan Ji et al., 2021). 

 

1.1.3.1 Time-domain features 

Features extracted from the time domain samples are easier to extract since few calculations 

are needed to obtain them. A few examples include zero-crossing rate (ZCR), amplitude-based 

features, energy-based features and rhythm-based features. While these features can offer 

acceptable performance in the field, they are not discriminative enough to accurately classify 

the sound when recorded in a natural environment containing noises (Chunyan Ji et al., 2021). 

It is the reason they are rarely used alone. 

 

1.1.3.2 Frequency domain features 

The frequency-domain gathers the most valuable information in a sound signal. Researchers 

use this domain along with the variation of the frequencies over time to construct a whole new 

set of features. The most common is the Mel Frequency Cepstral Coefficients (MFCC), like 

the one Liu, Li, and Kuo (2018) used to classify the reasons for an infant’s cry. They tested the 

linear predictive cepstral coefficients (LPCC) and the Bark Frequency Cepstral Coefficients 

(BFCC) to compare the performance. They concluded that BFCC offers a higher performance. 

 

Although the MFCC features yield the best overall performance, combining other frequency 

domain features to increase the results is possible. Salehian Matikolaie and Tadj (2020) 

combined MFCC, tilt and rhythm features to classify infant pathology in expiration and 

inspiration sessions. They obtained an increase of more than 3% in terms of accuracy. 
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Kheddache and Tadj (2019) used several features in the frequency domain to classify infants' 

cries by pathology. Their main idea captures the rapid increase or decrease of the fundamental 

frequency. Harmonics of the fundamental frequency and the resonant frequencies, as well as 

the dysregulation, are used. Compared to MFCC alone, with an accuracy of 60% on full-term 

infants, they obtained 67% with all these features combined for binary classification. Multi 

classes (five) obtains an accuracy of 82% compared to 72% with MFCC alone. 

 

1.1.3.3 Possible audio features 

Many other features can be used for classification. Figure 1.1 lists feature based on their 

category, obtained from (Chunyan Ji et al., 2021). 

 

 

Figure 1.1 Example of audio features that may be used for classification 
Taken from (Chunyan Ji et al., 2021) 
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1.1.4 Feature selection 

This step is ignored sometimes, but it is precious as it can significantly reduce the training time 

and use less processing power (Jeyaraman et al., 2018). According to this author, the Principal 

Component Analysis (PCA) technique provides an improved performance. It reduces the 

number of features that are fed to the classifier by using an algorithm. However, PCA 

calculation requires computational power and time to calculate the most important features that 

are fed to the classifier network. The main goal of this phase is to reduce dimensionality by 

finding the discriminants and a correlation in the features. 

 

Yoshifumi, Kentarou, and Tomomasa (2011) proposed an iterative forward selection method 

(IFSM) inspired by the cross-validation method. By ranking all the discriminants using the 

discriminant power score (DPS), they concluded that using high ranking scores offers a better 

performance from the machine learning system. Also, IFSM offers a relatively big difference 

in accuracy compared to its default non-iterative variant. 

 

Zabidi, Mansor, Lee, Yassin, and Sahak (2011) used a multilayer perceptron (MLP) to classify 

infant's cries between healthy and infants with asphyxia. They observed that a Binary Particle 

Swarm Optimization (BPSO) technique, which selects the most valuable MFCC for the 

artificial neural network, successfully increased the accuracy of the classifier. 

 

Wahid, Saad, and M. (2016) tested five different feature selection methods to reduce the 

number of inputs on their extracted MFCC and LPCC for infant cry classification. They have 

obtained their best performance with an accuracy of 93.43% using the Correlation-Based 

Feature Selection (CFS) and the Radial Basis Function Network (RBFN). These techniques 

were used on MFCC, delta MFCC and delta-delta MFCC. 

 

As we can observe in the research mentioned above and several others, feature selection filters 

the irrelevant information from the extracted features and reduces the computational time and 

power and increases the machine’s overall performance. 
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1.1.5 Classification 

After the most crucial features have been extracted, the last step is to send them into the 

classifier. If the previous steps can potentially increase the machine's performance, this step 

doubles the weight since it is crucial to choose one classifier adapted to the type of data we are 

working with. There are two main types of classifiers used in machine learning: traditional 

machine learning classifiers and neural network models. 

 

1.1.5.1 Tradition machine learning classifiers 

Support Vector Machine (SVM) is one of the most famous learning algorithms for data 

classification and regression analysis. It learns a possible boundary using a kernel equation 

from the received data in classification. SVM can support binary classification or multiclass 

(Badreldine, Elbeheiry, Haroon, ElShehaby, & Marzook, 2018). This classifier works well 

with high dimensionality data and does not require a massive amount of processing power. 

Chang, Hsiao, and Chen (2015) extracted four features out of fifteen and classified three kinds 

of cries using an incremental SVM. This technique consists of adding more and more data with 

each step to the training network. They obtained a remarkable increase of 18% accuracy 

compared to the original SVM. 

 

K-Nearest Neighbor (KNN) is another method consisting of associating each sample to the 

closest neighbour class. The neighbour is updated as more data comes in. The value of k 

determines the number of neighbours from which to choose (Chunyan Ji et al., 2021).  

 

Gaussian Mixture Model (GMM) is composed of several Gaussian distributions, also known 

as a normal distribution, representing each cluster (Farsaie Alaie, 2015). Each sample in the 

dataset belongs to a distribution. The mean vector and the variance matrix for each distribution 

are learned using the Expectation-Maximization (EM) technique. Sharma, Gupta, and Gupta 

(2019) demonstrated that GMM produced the best results compared to K-means clustering and 

hierarchical clustering. The overlapping is also kept minimal, even though the GMM model 

does not offer the optimal performance with a limited amount of data. 
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A fuzzy classifier is a similar concept which regroups fuzzy data for classification. Fuzzy data 

must be calculated first using probabilistic samples using the extracted features. Rosales-Pérez 

et al. (2015) used the Genetic Selection of a Fuzzy Model (GSFM) algorithm on MFCC to 

identify pathological cry. They have concluded that their optimized GSFM significantly 

improves the accuracy.  

 

The classifiers can work well on supervised and unsupervised networks. Supervised training 

requires labels on the data, while unsupervised training learns to regroup similar data together 

and create classes depending on the similarity of the incoming inputs. The clustering methods 

such as K-means, GMM and fuzzy classifier are mainly used during unsupervised training. 

 

1.1.5.2 Neural network models 

Feed Forward Neural Network (FFNN) used alone serves mainly as a reference model in 

nowadays applications (Dewi, Prasasti, & Irawan, 2019). MLP model is a type of FFNN, and 

it usually scores less than state-of-art neural networks in almost every field. Variants were used 

by Saraswathy, Hariharan, Yaacob, and Khairunizam (2012) like the Probabilistic Neural 

Network (PNN), General Regression Neural Network (GRNN) and the Time-Delay Neural 

Network (TDNN). They obtained an accuracy of above 97% to classify asphyxia pathology. 

However, the FFNN had a second chance with the state-of-art Transformer model, the one we 

are studying in this research. It is placed above the Attention layer and contains most of the 

network’s parameters. 

 

Convolutional Neural Network (CNN) network is mainly used in computer vision for images 

analysis. Since images are 2-dimensional, this network utilizes matrix convolutions followed 

by a pooling layer to reduce the size of the data. Images or sequential images constituting a 

video can quickly grow large in space and computational requirements. Manikanta et al. (2019) 

succeeded in using a one-dimensional CNN (1D-CNN) to detect a baby cry sound in an indoor 

environment, including air-conditioners, fan, speech, and music sounds. Their network 

performed better than the SVM and FFNN networks. 
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Recurrent Neural Network (RNN) is best used with sequential data since the internal states of 

the cells preserve the information in the previous inputs of the sequence. They are primarily 

used for time series applications such as market prediction, speech recognition and natural 

language processing (NLP). Maghfira, Basaruddin, and Krisnadhi (2020) used a combination 

of CNN and RNN on the Dunstan Baby Language dataset. The CNN learns discriminative 

features in the spectrogram obtained using a Short Time Fourier Transform (STFT), which is 

then flattened to be fed in an RNN to gather the temporal information in the extracted values. 

Figure 1.2, which is obtained from their work, presents the model that they used in their work. 

They have obtained an accuracy of 94.97% using binary cross-entropy for two classes. 

 

 

Figure 1.2 CNN-RNN model  
Taken from Nadia Maghfira et al. (2020) 

 

Fuzzy Neural Network is another type using fuzzy logic. Molaeezadeh, Salarian, and Moradi 

(2012) used a type-2 fuzzy pattern matching for classifying hunger and pain cries from healthy 

full-term infants. Using MFCC as features, they obtained a higher accuracy than SVM and 

Logistic Regression (LR) classifiers. 

 

Overall, models using neural network obtains better performance than traditional machine 

learning classifiers, as shown by many types of research in this section compared to the SVM 

classifier. The latter compensates for its weak performance by its simplicity and the required 

amount of processing power. SVM, K-means clustering and GMM machine classifiers offer a 

lower training time, search time and classification time (Chunyan Ji et al., 2021). If the 

hardware allows and the number of training data is adequate, choosing a neural network as the 

classifier is the best option while keeping the SVM a reference for comparing the performance. 
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1.2 Identity of the infants 

Several factors influence the results on pathological classification, such as the age of the infant, 

the gestational age, race, body mass index, etc. The performance can significantly vary if the 

chosen population is not carefully filtered first. 

 

1.2.1 Age and gestational age 

Jeyaraman et al. (2018), Affendi and Yusoff (2019), Kheddache and Tadj (2019), Salehian 

Matikolaie and Tadj (2020) mention that pathological detection in infant cries works best with 

infants under 2 months old. From this age, the vocal cords evolve and alter the main features 

used to classify. In our research, we focus on the same objectives. However, some research 

does not limit to very young babies. Anders et al. (2020) studied infants as old as 9 months. 

They use a CNN network to classify the type of sound produced by the infant, such as crying, 

fussing, babbling, laughing and vegetative vocalizations. 

 

Salehian Matikolaie and Tadj (2020) use the data of only children with a gestational age of 

over 37.2 weeks. Their work uses the same database as we are using in this research. Preterm 

infants do not have the same traits in the recordings as full terms. Mixing the two types can 

create confusion for the neural network classifier as it tries to find a pattern and similarities 

with cries belonging to the same pathology.  

 

1.2.2 Gender 

The gender of the infant has a recognizable impact on the characteristics of the data. In fact, 

the fundamental frequency of a male and a female is different even though they have the same 

pathology (Jeyaraman et al., 2018). The range of the frequencies in which the cry is situated 

varies greatly. Furthermore, the melody of the sound, characterized by the frequencies 

composing the studied sound, are features that modify the nature of the input data. The author’s 

responsibility is to gather an equal amount of data from both genders for all the pathologies to 

avoid classification problems. 
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1.2.3 Body mass index 

The body mass index does not have as much impact as gender or gestational age. However, 

the weight and height of the infant modify the structure of the vocal tracts producing the cry 

(Jeyaraman et al., 2018). To this date, there is no research focusing on evaluating the 

performance of a higher and lower body mass index infant’s pathology or cause classification. 

We believe it is due to the requirements being too strict on the few available databases for this 

problematic. 

 

1.2.4 Other factors 

According to Jeyaraman et al. (2018) review, other factors' influence on the classification 

problem is negligible, such as the birth of the child and its race. The difference is not significant 

enough to modify the accuracy of the machine classification. 

 

There are hardware differences that might alter the results, such as the microphone recording 

quality and the amount of environmental noise, as discussed in section 1.1.2. The sampling 

rate and the resolution are other factors to be considered during the data-gathering phase. 

 

1.3 Applications of infant cry classifications 

Our research focuses on pathological classification, but there are other applications for which 

the cry of the infant can be used. In this section, three main applications are described: 

pathology classification, cry reason classification and cry sound detection. 

 

1.3.1 Pathological classification 

Among several pathologies studied in infants such as respiratory distress syndrome, 

hyperbilirubinemia, sepsis, down syndrome and hypothyroidism, asphyxia is a famous one 

among the authors. The Baby Chillanto dataset is mainly used for this classification in recent 

years. Here are some of the research done using different other databases: 
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• Rosales-Pérez et al. (2015) studied the asphyxia pathology using a fuzzy model classifier.  

• Farsaie Alaie, Abou-Abbas, and Tadj (2016) studied several health conditions such as heart 

problems, neurological disorders, respiratory diseases, blood abnormalities, etc. 

• Moharir, Sachin, Nagaraj, Samiksha, and Rao (2017) used GoogleNet and AlexNet 

classifiers and obtained a performance of 94%. 

• C. Ji, Xiao, Basodi, and Pan (2019) managed to obtain an accuracy of 96.74% on the Baby 

Chillanto dataset using a Feed-Forward Neural Network (FFNN). 

 

1.3.2 Cry reason classification 

Many research focuses on the reason for the cry since there is a higher number of healthier 

children’s data. The challenge, however, is the lack of certitude in the labelling. In a hospital 

environment, nurses and experts can discover the pathology of the infant with the proper 

diagnostic at any time and even modify the labelling later on in the dataset. It is not usually the 

case for the cry reason since there is a place for many interpretations. There is no valid method 

other than experimental to determine the reason why the baby was crying, hence biasing the 

initial database itself. The main challenge is that there is a lack of standard public datasets, and 

the accuracy is still low nowadays (Chunyan Ji et al., 2021). Some of the research in the past 

decades are: 

• Yamamoto, Yoshitomi, Tabuse, Kushida, and Asada (2013) used a self-recorded database 

to classify discomfort, hunger and sleep. They used a 32-dimensional FFT and reduced the 

dimensionality using PCA. Using the nearest neighbour algorithm, an accuracy of 62.1% 

was obtained. 

• Bano and RaviKumar (2015) worked on a self-recorded database using the K-nearest 

neighbour (KNN) algorithm to classify discomfort, sleep, burp need, discomfort and 

hungry cries. Considering the self-recorded database, they obtained 86% accuracy. 

• Chang and Li (2016) classified hunger, pain and sleep in the National Taiwan University 

database using the CNN model to obtain an accuracy of 78.5%. 
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• Liu et al. (2018) categorized drawing attention cry, diaper change cry and hungry cry. They 

used the nearest neighbour approach and neural network. Their best accuracy using several 

features such as MFCC and LPCC is 76.4%. 

• Felipe et al. (2019) used the iCOPEaudio database to predict if an infant is experiencing 

pain or not (binary classification). They used the spectrogram as features and the SVM 

classifier to obtain an accuracy of 71.68%. 

• Maghfira et al. (2020) worked on the Dunstan Baby Database using the spectrogram of the 

sound and CNN-RNN network to classify pain, hunger, discomfort, burp need and belly 

pain. They obtained a performance of 94.97%. 

 

On average, we observe that the accuracy for cry reason classification is lower compared to 

pathology classification. 

 

1.3.3 Cry detection 

Cry detection is the most straightforward application among the ones mentioned in this 

research. It is a binary classification aiming to detect an infant's cry sound in an environment 

containing several other noises. This type of application can be closer to a product used by 

parents to monitor their baby's activity instead of doing a 24h surveillance. In general, the 

researchers obtain very high performance for cry detection in the following papers: 

• Lavner et al. (2016) demonstrated that using a CNN classifier yields higher performance 

than a low-complexity logistic regression classifier in detecting baby cry among domestics 

sounds such as parents talking and door opening. For babies ranging from 0 to 6 months, 

they obtained an accuracy of 95%. 

• Ferretti et al. (2018) compare real and synthetic data for detecting infant cry in a noisy 

environment. Several noises such as hospital machines “beeping” and speech were tested. 

Synthetic data obtained a performance of 92.92% with a CNN classifier. 

• Gu, Shen, and Xu (2018) used a different approach to classify infant cry sound. They 

extract linear prediction coefficient (LPC) directly from a digital signal processor (DSP) in 
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real-time. By applying the dynamic time warping (DTW) algorithm, they obtained an 

accuracy as high as 97.1%. 

• Manikanta et al. (2019) classified self-recorded audio in homes to work on samples 

containing a mix of sounds during the infant`s crying phase, such as the fan or air 

conditioner. An accuracy of 86% was obtained. 

• Affendi and Yusoff (2019) used CNN, RNN and LSTM networks to detect sound 

anomalies. They did not target infant cry specifically, but their system can be adapted to 

learn a sound type among others with an accuracy of around 93%. 

 

Even if the complexity of this application is lower, the accuracy must compensate. If taking 

the example of a real-world application, it is crucial that the system must detect the infant's cry 

and alert the parents as soon as possible. If the device fails to do so many times, its trust will 

be lost, and therefore it has no real utility. However, in a domestic application, even if the 

system doesn’t detect a cry on the first expiration session, chances are it will recognize with 

two or three expiration samples. 

 

In summary, to efficiently classify infant pathology, the five main steps are: 

1. Data acquisition: Gather the raw data from the source. 

2. Pre-processing: Filter out the non-essential information. 

3. Features extraction: Extract the most valuable deterministic factors in the data. 

4. Feature selection: Reduce dimensionality and choose the best features that are fed into the 

classifier. 

5. Classification: Use a traditional classifier such as the SVM or a neural network to train and 

classify the different cries successfully. 

  

 

 

 

 

 





 

 
 
 

DEFINITION OF THE CONCEPTS 

In this chapter, we define all the necessary concepts and theories that are essential in 

understanding the process of neural network classification. Starting from the pre-treatment, we 

characterize the features, Mels-frequency cepstrum (MFCC), followed by the neural network 

with all its facades, including the training process and hyperparameters optimization. 

 

2.1 Pre-treatment on the database 

2.1.1 Stereo to Mono 

There is a high probability that a recorded file is encoded as stereo, meaning that the sound is 

optimized to be heard on the left and right speakers or headphones. The idea behind this is to 

add a more natural experience and spatial localization of the sound to the user. However, for 

signal processing, we do not need that duplicated information. It only occupies more space on 

the storage device without bringing new information.  

 

The stereo to mono conversion process can be done either on the hardware side or the software 

side. On the hardware side, it implies regrouping both channels using a resistor. It is, however, 

easier on the software side as it does not require physical components. The following formula 

succeeds in converting to mono using the average of both channels: 

 

 𝑀𝑜𝑛𝑜 𝑖 𝐿𝑒𝑓𝑡 𝑖 𝑅𝑖𝑔ℎ𝑡 𝑖2   𝑓𝑜𝑟 𝑖 1, 2, 3, …𝑁 
(2.1) 

 

In this equation, N corresponds to the number of samples in the recording, Left and Right are 

the left and right channel data, respectively.  
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2.1.2 Audio normalization 

Sometimes, a recording’s global energy might be very high, for example, if the microphone is 

too close to the sound source. The opposite effect can also be observed. The idea behind 

normalization is to adjust the sound level of the entire recording so that the energy of all 

recordings is similar. As adaptable as the neural network might be, helping it with 

normalization can improve its performance (Geller, 2019). 

 

In this research, we used the method called standardization, in which the data is centred around 

the mean value with a unit standard deviation. It follows this equation: 

 

   𝑋 = 𝑋 − 𝜇𝜎  (2.2) 

𝜇 is the mean of the samples in the recording and 𝜎 is the standard deviation. 

 

The second method, which we call normalization, uses this equation: 

   𝑋 = 𝑋 − 𝑋𝑋 − 𝑋  (2.3) 

𝑋  and 𝑋  are the maximum and minimum values of the samples, respectively.  

 

While the normalization rearranges the values between 0 and 1, standardization shifts the 

values between the standard deviation of the data while maintaining a mean value around 0. In 

standardization, the values can be negative, just like the audio samples. There is no clear winner 

between those two methods for audio classification (Bhandari, 2020), even though 

standardization is said to work better on data that follows a Gaussian distribution. 

Experimenting with these two methods can declare the winner for a specific task. 

 

Figure 2.1 shows the effect of both these methods on a dataset that has an uneven energy level. 
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Figure 2.1 Normalization vs Standardization on four audio samples 
Taken from Bhandari (2020) 

 

2.2 Mel-frequency cepstrum coefficients (MFCC) 

2.2.1 Coefficients 

In the field of speech recognition, the Mel-frequency cepstrum coefficients (MFCC) are widely 

known to offer state-of-art performances when used as one of the features of a classification 

or translation work (Chauhan & Desai, 2014). From a higher number of data extracted in the 

frequency domain from the time domain, there is a possibility of reducing 512 samples to only 

13 coefficients for a timeframe without losing critical information in the audio file. We 

accomplish this by focusing on the lower frequencies and extracting the human ear perceived 

spectrum from the frequency domain. The benefits are observed better when working with a 

classifier network, whose training time can be exponentially reduced when using coefficients 

instead of the entire spectrum as features. 
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2.2.2 Time domain, frequency domain and time-frequency domain 

Time-domain: Raw audio signals are encoded in the time domain. There is a sample every 

few micro seconds depending on the sampling frequency rate, and a voltage represents the 

amplitude at every moment. There is not much information that can be observed in this domain. 

A little noise can greatly alternate the shape of the signal (Jeyaraman et al., 2018). 

 

Frequency domain: With a Fast Fourier Transform (FFT), the signal can be converted in the 

frequency domain. It contains a lot more information, and a human can visualize it. On a frame 

of samples, we get to know the energy of each frequency present in the signal. It is also easier 

to detect anomalies in the signal and filter them efficiently. 

 

However, since this domain is like a “screenshot” of a few samples (for example, 1024 

samples), there is a loss of information from the neighbouring samples. On the other hand, if 

the FFT is performed on the whole signal, which may contain thousands of samples, we obtain 

every single frequency on the audio. This is not helping since we do not know when these 

frequencies appeared in the audio. There is no temporal localization of the sound. As an 

instance, a noise of 1 kHz might be present on the end of an audio file, which is not essential 

for the study, but we will find a magnitude of that frequency in the analysis. 

 

Time-frequency domain: By combining both domains, we create a complementary domain 

that inherits both advantages and drops the disadvantages. This domain is the one nowadays 

researchers use to handle audio sounds and speech recognition (Affendi & Yusoff, 2019). The 

idea is to perform an FFT on slices of the audio signal and combine all the results in a 2-

dimensional array, with or without overlapping the samples. The obtained array is called a 

spectrogram and can be interpreted as an image. This domain contains much more information 

about the signal and the varying fundamental frequencies throughout the time. A study uses 

this gliding effect as a feature for the neural network (Kheddache & Tadj, 2019). 
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2.2.3 Mel scale 

Psychophysical studies show that human perception of different frequencies in the sound 

doesn’t follow a linear scale like it should (O'Shaughnessy, 1987). In fact, it follows a 

subjective and experimental scale called the Mel scale (Morgan, 2002). 

 

Human ears are more efficient at working and discriminating lower frequencies than higher 

ones. The Mel scale emphasizes the lower bands by giving more resolution to that area 

compared to high frequencies.   

 

Several studies have been conducted to determine the exact proportions of the scale. Still, since 

it is subjective, only experimental constants were able to define the pitch that we actually hear. 

The perceived frequency can be obtained using the following equation: 

 

   𝑓 = 2595 𝑙𝑜𝑔 (1 + 𝑓700) 
(2.4) 

𝑓  is the perceived pitch frequency in Mels unit and 𝑓 is the real frequency of the sound. 

 

2.2.4 Filter banks 

A series of triangular filter banks are applied on the Mel scale in order to focus on the most 

critical frequency band to the human ear. The result of the combination shows a vague 

approximation of the perceived spectrum. As mentioned above, a higher resolution in the lower 

frequency is needed.  

 

The filter bank has an equidistant peak in frequencies below 1000 Hz, and each subsequent 

filter has its peak at 1.1 times the bandwidth of the previous filter (Sangeetha, Hariprasad, & 

Subhiksha, 2021). This factor gives an exponential variation of the focus in the higher 

frequencies compared to the lower frequencies, more precisely under 1 kHz. Figure 2.2 shows 

the exponential spacing between the peaks of the triangular bank filters from 0 Hz to 4000 Hz. 



28 

 

Figure 2.2 Triangular filter banks used with the Mel scale 
Taken from Sangeetha et al. (2021, chapter 8) 

 

2.2.5 MFCC calculation 

The following steps, illustrated in figure 2.5, show the extraction process of the MFCC from 

an audio file containing voice or sound (Muda, Begam, & Elamvazuthi, 2010). 

 

1. Pre-emphasis: This filter emphasizes high frequencies. Microphones are not efficient at 

high frequencies and create a low energy distorted signal. A pre-emphasis filter with the 

following equation can help soften this phenomenon: 
 
   𝑦(𝑛) = 𝑥(𝑛) − 0.95 𝑥(𝑛 − 1) (2.5) 

y is the output while x is the discrete input. A 0.95 coefficient is used here. 

 

2.  Framing: Segmenting the audio samples into smaller batches. This step is essential to 

obtain the spectrogram of the audio signal. Standard frames range from 20 to 40 msec, with 

256 samples depending on the sampling frequency (Muda et al., 2010). 
 

3. Windowing: Adding a window function that is not rectangular smoothens the edges of the 

audio signal and adds more weight to the middle of the frame (Kelly & Gobl, 2011). Since 

we cut the audio in constant length frames in the previous step, we have discontinuities that 

significantly affect the results of a Fourier transform since the edges don’t start and end 

with the value of 0. A typical window function used in the speech recognition area is the 
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Hamming window, which is obtained with the following equation (Muda et al., 2010) and 

represented in figure 2.3 right below: 
 

   𝑤(𝑛) = 0.54 − 0.46 𝑐𝑜𝑠 2𝜋𝑛𝑁 − 1  | 0 ≤ 𝑛 ≤ 𝑁 − 1 (2.6) 

w is the window function; n is the sample and N the total number of samples in each 

frame. 

 

 

Figure 2.3 Function of a Hamming window (obtained with the Scipy library) 
  

The hamming window function is then multiplied with every sample in the frames. We can 

observe that the middle sample keeps its full amplitude while the ones on the edges lose most 

of their energy. On the other side, the Hann window has a window where the edges amplitude 

value is 0. However, the hamming window generally yields better results in speech processing 

(Kelly & Gobl, 2011).  
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4. Fast Fourier Transform: The Fourier transform algorithm converts data from the time 

domain to data in the frequency domain. Since the data is digital, the Discrete Fourier 

Transform (DFT) is applied to do so using the following equation: 
 

   𝑥[𝑘] = 𝑥[𝑛]𝑒  
(2.7) 

Where x is the data array of time-domain samples, N is the total number of samples. 

 

However, the computation power requirement for this formula is O(N2), which could 

result in a very long processing time, exponentially growing with the number of 

samples. A faster algorithm has been discovered that exploits the full potential of 

computer architecture, the Fast Fourier Transform (FFT). Using the FFT, the 

computation requirement is now reduced to O(N log2 N) (Maklin, 2019).  

 

To compare, it would take the DFT 31.2 years to compute the Fourier Transform with 

a sample size of N=109 with 1ns per operation, while it would only take 30 seconds 

using the FFT with the same criteria. Figure 2.4 illustrates the required time to compute 

the Fourier Transform with both algorithms. 

 

One disadvantage of the FFT is that it requires a number of samples that is an exact 

power of 2. The exponent determines the number of steps in the Fourier algorithm.  

 

One solution to respect the criteria is to cut the number of samples accordingly during 

the framing step (step #2). For example, instead of having 1000 samples per frame, we 

would have 210 = 1024 samples. Another solution is to pad the data with zeros, but this 

method removes some accuracy in the transformation as those are not the actual values. 
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Figure 2.4 Estimated computational time for the DFT (in red) and the FFT (in blue) based on 
the number of samples N in the data 

 

5. Mel scale and filter bank: Apply the triangular filter bank on the FFT data to obtain the 

equivalent of the Mel frequency in the Mel spectrum, based on sections 2.2.3 and 2.2.4. 
 

6. Discrete Cosine Transform: By calculating the discrete cosine transform on the Mel 

spectrum, we obtain what we call the Mel Frequency Cepstrum Coefficient (MFCC). These 

coefficients, also called acoustic vectors or cepstral features (Muda et al., 2010), are the 

features that are fed into a classifier. 
 

A common choice for the number of coefficients is 13, with 1 coefficient representing the 

energy of the frame and 12 coefficients representing the velocity features. The number 

might look weak compared to the amount of information that was initially present in the 

database, but these features summarize pretty well the quantity of data in the recording 

(Chauhan & Desai, 2014). We may call it quality over quantities. 

 

Figure 2.5 illustrates the main steps of the extraction of the MFCC from the recording 

samples. 
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Figure 2.5 Bloc diagram of the MFCC extraction process 
 

2.3 Neural network 

In this section, we focus on learning the basics of neural networks, more precisely on the two 

models that are studied in this research: Long-short term memory (LSTM) and the Transformer 

architecture. The LSTM network is a variant of the recurrent neural network (RNN), hence 

why its understanding is essential to comprehend the variant and what problem the latter 

solves. The multilayer perceptron (MLP) is also studied for comparison purposes only. All the 

aspects around the model training and optimization are covered in the sections below. 

 

2.3.1 Multi-Layer Perceptron (MLP) 

A multilayer perceptron is one of the most common neural networks that has been deployed 

for all kinds of tasks. The perceptron's predecessor had issues dealing with data that is not 

linearly separable, like the XOR gate (Ahire, 2020). By adding more layers, it was possible to 

create a non-linear equation that could solve complex problems.  

 

2.3.1.1 MLP layers 

The MLP has three types of layers (Rožanc & Mernik, 2021), illustrated in figure 2.6: 

 

1. Input layer: The data is inputted directly to this layer. There is no equation or any 

calculations as the raw features are inputted into this layer. 
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2. Hidden layer: Contains one (perceptron) or more layers (MLP) that are the body of the 

architecture. An arbitrary number of neurons on each layer is connected to every neuron in 

the next or previous layer. Until a certain limitation, adding more layers increase the non-

linearity of a classification problem. 
 
3. Output layer: The results are obtained at the output layer. For a classification task, the 

output predicts a probability of appurtenance for each class using the softmax function, 

which we cover in the sections below. For the prediction task, the output layer gives a value 

based on the current inputs. 
 

 

Figure 2.6 Architecture of a Multilayer Perceptron (MLP) 
Taken from Rožanc& Mernik (2021) 

 
2.3.1.2 MLP Neuron 

The structure of a neuron is illustrated in figure 2.7. The output value of each neuron is the 

result of the following equation (Menzies, Kocagüneli, Minku, Peters, & Turhan, 2015): 

 

   𝑦 = 𝑓(𝑥 𝑤 + 𝑏) 
(2.8) 
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N is the number of links to that specific neuron, x is the input, w is the weight of the link, f is 

the activation function and b is an arbitrary bias. Replace x with the output of the neuron of 

the previous layer if the current neuron is in the middle layer. 

 

 

Figure 2.7 Overview of a single neuron property in the MLP 
Taken from Menzies et al. (2015) 

 

2.3.1.3 MLP Activation function 

Each neuron in the hidden layer consists of a mathematical function, which is called the 

activation function. Choosing the proper activation function is crucial to the network's 

performance as it improves significantly (Apicella, Donnarumma, Isgrò, & Prevete, 2021). 

 

Activation functions ensure that the output value of each neuron is contained within a specific 

range. This way, we limit the summation result from the equation getting bigger and bigger 

until it is outside the range of computer capabilities. This problem is called the vanishing 

gradient (Menzies et al., 2015), which is explained in the sections below. 

 

According to Apicella et al. (2021) review, networks using rectified-based activation functions 

offer improved performance in several studies, such as Glorot, Bordes, and Bengio (2011). 

ReLU activation is quicker to compute and is better at fighting the vanishing gradient problem 

(Bengio, Simard, & Frasconi, 1994). The following figures (figure 2.8 and figure 2.9) show 

examples of classical and rectifier-based activation functions, respectively. 
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Figure 2.8 Examples of classic activation functions 
Taken from Apicella et al. (2021) 

 

 

Figure 2.9 Examples of rectified-based activation functions 
Taken from Apicella et al. (2021) 
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2.3.1.4 MLP Training and Loss function 

To train an MLP, a backpropagation of the error is used. The ultimate goal is to minimize the 

loss function of the network by updating the weights between neurons, also known as the 

parameters of the neural network (Keim, 2019). The formula to calculate the loss function is: 

   𝐸 = 12 (𝑡 − 𝑜 )  
(2.9) 

E is the total error, t is the target output, o is the calculated output and i is the range of all nodes. 

 

By using the gradient descent algorithm, it is possible to head towards the minimum of the 

function. Figure 2.10 shows this process with three gradient points on the function.  

 

The weights are updated in the nodes using this formula: 

   𝑤 = 𝑤 + 𝛼 𝜕𝐸𝜕𝑤 
(2.10) 

w is the weight value, 𝛼 is the learning rate (typically 0.1), E is the total error obtained from 

equation 2.9 above. 

 

 
Figure 2.10 Gradient descend algorithm to minimize the error 

Taken from Keim (2019) 
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2.3.2 Recurrent Neural Network (RNN) 

The recurrent neural network (RNN) uses a different approach which is more dynamic than 

the MLP. In fact, there is a circular connection between the neurons from different layers 

(Staudemeyer & Morris, 2019). A popular architecture is called the Elman network. The 

particularity about the RNN network is that not only the output can be extracted from each 

neuron, but also a context vector, which is a piece of information generated from the current 

input and the previous inputs. Every cell generates this information. It is what creates this 

memory effect of time in an RNN. Figure 2.11 shows the general architecture.  

 

The memory effect of the cells makes the RNN very popular in natural language processing 

(Graves, Mohamed, & Hinton, 2013) and market value forecasting. In both these areas, the 

output data of a network depends on a timed event in which the chronological order of the 

input is very important. For example, in the first field, a word in a sentence can have different 

meanings depending on where it is and which other words it is preceded by. In the second field, 

the variation of the market price in a specific order is the main feature that describes the 

financial state of the market. The MLP Network does not have this dependency on the time of 

the event and could easily confound two different data that have the same inputs at different 

positions. 

 

2.3.2.1 RNN neuron 

The structure of the RNN neuron is very simple, illustrated in figure 2.12. The current input 

and the previous context vector, also called the previous hidden state, are concatenated. It is 

then passed through an activation function, like the Tanh activation, before being outputted as 

the new hidden state to the next neuron (Phi, 2018). See section 2.3.1.3 for more details about 

the activation function of a network cell. This context vector now contains information about 

all the previous inputs in time and the current input. 
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Figure 2.11 Simple architecture of a RNN network 
Taken from Staudemeyer & Moris (2019) 

 

 

Figure 2.12 Process of each RNN neuron 
Taken from Phi (2018) 

 

2.3.2.2 RNN training 

To train an RNN, we primarily use the Backpropagation Through Time (BPTT) technique 

(Staudemeyer & Morris, 2019). The network is unfolded and trained similarly to the MLP in 

section 2.3.1.4. After the training, the network is unfolded in time. The weights values are 

optimized to obtain the minimal value using the error backpropagation within a certain time 

step, called an epoch. They are updated with the sum of its deltas over all time steps, using this 

equation: 

   𝑤 = −𝜂 𝛿𝐸 (𝑡 , 𝑡)𝛿𝑤  
(2.11) 

w is the weight, E is the error within a time delta and 𝜂 is the learning rate. 
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2.3.2.3 RNN vanishing gradient problem 

When the error signal is back-propagated, there is a chance that over many time steps, it may 

vanish or blow up (Staudemeyer & Morris, 2019). In fact, if the derivate of the equation above 

outputs a value greater than 1, with several steps, it may lead to an immense value that 

computers can’t process. If the derivate outputs a value below 1, then the value would 

exponentially decrease until it vanishes, especially if the number of time steps is greater than 

10 (Staudemeyer & Morris, 2019). This phenomenon is what we call the vanishing gradient 

problem. If that happens, the training time is abnormally long, or it might not work at all. This 

issue is what caused the development of Long-Short Term Memory cells (LSTM). 

 

2.3.3 Long-Short Term Memory (LSTM) 

Hochreiter and Schmidhuber (1997) proposed a method called Long-Short Term Memory 

(LSTM) to overcome the problem he mentioned in 1991. This new method is believed to work 

with over 1000 time steps without any problem by using what he called “Constant Error 

Carrousels” (CEC). Hence being used for a long time, the LSTM has known several variants 

over history. The most famous one remains the vanilla LSTM (Van Houdt, Mosquera, & 

Nápoles, 2020). This research focuses on this default variant as the other variants proved to be 

more performant on very specific applications and databases. Applications of the LSTM 

network in different domains include (Staudemeyer & Morris, 2019): 

1. Speech recognition. 

2. Handwriting recognition. 

3. Machine translation. 

4. Image processing. 

5. Other areas such as: protection structure prediction, music generation, network security, 

optimisation problems, etc. 
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2.3.3.1 Constant Error Carousel (CEC) 

To have a constant error flow and ensure that it doesn’t vanish, the function that multiplies the 

weight matrix must be linear, and its activation must remain constant over time. This can be 

accomplished using the identity function and setting W[u,u] = 1.0 (Staudemeyer & Morris, 

2019). It also helps build long-term dependencies and exploit long-range context (Graves et 

al., 2013). The CEC is also connected to the other units, so the weighted input and outputs 

must be considered. The exact weight is used for storing and ignoring inputs, hence creating a 

conflict. To avoid it, the CEC must be used with gates. 

 

2.3.3.2 LSTM input gate, output gate and forget gate 

LSTM cells act as a memory and contain information from the very beginning time step. The 

context is carried all the way to the end of the sequence, hence storing relevant information on 

long-term dependencies. Since the amount of information is growing over the time-steps, we 

need to filter some of them to keep the data transfer efficient from one cell to another. This is 

where the gates come in useful. As the name suggests, they learn to identify which information 

is relevant to keep or forget during training. Each cell is responsible for transmitting the most 

valued data to the next cell and filtering some of the information. Two values are updated in 

the LSTM cell: the cell state (also called the context vector) and the hidden state. The cell state, 

absent in the classical RNN, is the memory of the LSTM cell, while the hidden state is the 

amount of information kept from the current input and transferred to the next cell. Both vectors 

are transferred in the network. 

 

LSTM uses three gates: input gate, output gate, and forget gate to regulate the flow of 

information. Each of these gates uses a sigmoid activation function (Phi, 2018). 

 

Forget gate: The forget gate comes first and decides the amount of information that should be 

forgotten. The current input and the previous hidden state are passed through a sigmoid 

activation function, obtaining a result between 0 and 1. The closer we are to 0, the more 

information is forgotten at this state. 
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Input gate: This gate serves to update the cell state. The current input and the previous hidden 

state go through a sigmoid function to determine the amount of relevant information. The same 

data also goes through a Tanh activation. Both outputs are multiplied by each other, with the 

sigmoid one deciding the weight of the information that is kept from the Tanh output. The 

resulting value is the output of the input gate. 

 

The new context vector can now be calculated using the following procedure: 

1. Pointwise multiplication of the previous context vector and the output of the forget gate. 

2. Pointwise addition of the #1 output and the output of the input gate. 

3. Output of #2 is now the new context vector, or cell state, which is transferred to the next 

LSTM cell. 

 

Output gate: The output gate determines the new hidden state. This hidden state can be used 

to predict a value. The combination of the cell state and the current input is carried over to the 

next cell. 

 

The new hidden state is calculated using the following steps: 

1. The previous hidden state and the current input go through another sigmoid function. 

2. The newly calculated cell state is passed through a Tanh function. 

3. Outputs from #1 and #2 are multiplied by each other. 

4. The result from #3 is the new hidden state for the next LSTM cell. 

 

In summary, the forget gate is to filter out the unimportant information from the past cell. The 

input gate ensures to chose only relevant information from the current input. The output gate 

calculates the new hidden state of the cell. The new hidden state contains information about all 

the previous inputs and the current input in the correct chronological order. Figure 2.13 

illustrates the process inside the LSTM cell. X is the inputs in different time steps and h is the 

hidden state. 
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Figure 2.13 The arithmetic operations inside an LSTM cell 
Taken from Github (2015) 

 

2.3.3.3 Bidirectional LSTM 

Sometimes it is crucial to consider future inputs on an input sequence (Graves et al., 2013). 

Bidirectional LSTM contains two separate hidden layers, one for data flowing from the 

beginning to the end and another one for data flowing from the end to the beginning. Those 

two hidden layers are fed forward to the same output. We obtain a better dependency of longer 

sequences using this method. However, since the operation is done back and forward, the 

training time is also doubled. In return, we exploit future data in the current timeline. 

 

2.3.3.4 LSTM variants 

Throughout history, several LSTM variants have been developed by many researchers to 

resolve a specific problem. Not many modifications have known success, but few actually 

worked pretty well for different tasks and offered state-of-art performances compared to the 

original version. Among them, there is the Peephole Connection, the Gated Recurrent Unit 

(GRU), the Multiplicative LSTM (mLSTM) and the LSTM with Attention. Although those 

variants are not used in this research, it is essential to consider their contribution to the default 

variant. The LSTM with Attention eventually led to the second type of studied neural network 

in this thesis, the Transformer model. 
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LSTM Peephole Connections: In section 2.3.3.2, we observed no connection between the 

previous state cell and the newly produced hidden cell. The gates do not consider the context 

vector of themselves. These new LSTM cells provide this connection to use the cell current 

memory in the calculations before replacing it with a new one and learning to time and count 

(Gers & Schmidhuber, 2000). Figure 2.14 shows the newly added connections. 

 

Gated Recurrent Unit: The Gated Recurrent Unit (GRU) is a simpler version of the LSTM. 

They present a simpler version for tasks such as sequence to sequence training and provide a 

faster training time than the traditional LSTM. The GRU does so by combining the input gate 

and the forget gate into a single gate (Weiss, Goldberg, & Yahav, 2018). Also, the cell state 

and the hidden state have been combined into a single vector. Due to this limitation, the GRU 

also proves to be less powerful and offers lower performance than the default LSTM variant 

(Weiss et al., 2018). It is, however, the price to pay for a quicker training speed. Figure 2.15 

illustrates the architecture of the GRU model. 

 

Multiplicative LSTM: This variant has been quite popular since it was introduced in 2016 by 

Krause et al. It has known success in natural language processing. It has proved to outperform 

Stanford Sentiment Treebank using dramatically less data (Radford, Sutskever, Józefowicz, 

Clark, & Brockman, 2017). It is a complicated variant but performs well on unsupervised 

training with minimal fine-tuning. 

 

LSTM with Attention: LSTM with Attention mechanism offers state-of-art performance in 

the sequence modelling area. It includes the Attention mechanism, same as the famous paper 

“Attention is All you Need” (Vaswani et al., 2017). Several works, including Wu et al. (2016), 

used this method to obtain state-of-the-art performance in the field of neural machine 

translation. Variants like BERT, ELMO, GPT-2 use this architecture (Exxact, 2019). 

 

As suggests its name, the Attention mechanism is the network’s ability to focus on some 

aspects of the data. For the LSTM network, the focus is on the hidden states in the LSTM cells. 



44 

Section 2.3.4.2 contains all the information about Attention in a network, as it is the core of 

the Transformer network. 

 

 

Figure 2.14 LSTM Peephole Connections. Dark purple arrows are the added connections 
compared to the classical LSTM 

Taken from Exxact (2019) 
 

 

Figure 2.15 Architecture of the Gated Recurrent Unit (GRU) 
Taken from Exxact (2019) 
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2.3.4 Transformer Network 

The Transformer model was introduced in 2016 with the paper “Attention is all you need” by 

Google research team (Vaswani et al., 2017). The core idea behind this is to have an 

architecture that is not only dependant on recurrences like the RNN or LSTM. By removing 

the dependence on sequential computation, we can achieve parallelization during the training 

phase, hence exploiting modern Graphical Processing Units (GPU) hardware power to its full 

potential and significantly reducing the training time. To achieve this, the Transformer network 

sorely relies on the Attention mechanism in its encoder-decoder architecture. 

 

Like its predecessor, the RNN, the Transformer works well on data that follows a certain 

chronological order. It has been known to offer improved performance overall on natural 

language processing (NLP) tasks such as speech recognition, language modelling, machine 

translation and question answering (Uszkoreit, 2017). The network outperforms any RNN or 

convolution models on language translation, English to German and English to French. 

 

2.3.4.1 Encoder-decoder architecture 

The Encoder-decoder is not unique to Transformer. It has been used for other tasks such as 

text simplification using LSTM cells in the layers (Wang, Chen, Amaral, & Qiang, 2016). The 

encoder takes a variable-length input vector, like texts containing a different number of words 

to translate, and output a fixed-length vector to the decoder (Cho et al., 2014). The fixed-length 

vector contains a summary of all the inputs with their corresponding position. The decoder 

receives this summary vector and uses it to output a variable-length vector, using its own output 

and all the information from the fixed-length vector. It is especially relevant to variable-length 

input and output, but a fixed-length vector can also be used if the database contains the same 

amount of words or any form of input. On the decoder part, each step's output is reinjected into 

the decoder to predict the next word or data. However, the fixed-length vector the decoder 

received at each time step stays the same. 
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2.3.4.2 Attention mechanism 

The Attention mechanism was created to replace the vanishing gradient problem in the RNN 

structure in sequence modelling (Adaloglou, 2020). When the number of time steps grows, the 

information contained in the first time steps is forgotten over time. As mentioned by 

(Adaloglou, 2020), « The core idea is that the context vector z should have access to all parts 

of the input sequence instead of just the last one ». As the name suggests, particular attention 

is given to the input sequence as the network learns where to focus on the input data. 

 

The process used in Vaswani et al. (2017) work is called the Scaled Dot-Product Attention, 

which is illustrated in figure 2.16. The following equation represents it: 

 

   𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑄𝐾𝑑 𝑉 
(2.12) 

Q, K and V are matrixes, dk is the dimension of the input vector. 

Q contains the vector representation of one word, while K (keys) and V (values) are vectors 

representing the entire input sequence. 

 

By dividing the dot products by the square root of the dimension, we ensure that if the value 

of the dimension is substantial, we don’t end up with very small gradients after the softmax 

function. On top of the dot-product, the additive attention can be beneficial, but the latter is 

slower and less space-efficient in practice (Vaswani et al., 2017).  

 

The attention mechanism adds to the learning process a method to focus on specific traits of 

the input sequence. With the help of several input data, the network learns how to recognize 

those traits and focus on them during the training session and during the classification session 

(Adaloglou, 2020). In the image processing domain, it is easier to visualize those traits. It can 

be the contour of an object, the contrast of the image, the brightness, the sharpness, the warmth, 

etc. Depending on what the mechanism learns to focus on, it can also be a specific object to 

detect on an image. Once the learning process begins, the more correlated data the network 
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receives, the more it can refine its knowledge. However, it is not always simple to determine 

those traits that the network will focus on. For instance, in natural language processing (NLP), 

it is uncertain which are the characteristics of the attention mechanism, and it greatly varies on 

the nature of the sound present in the audio file. 

 

While the network learns to focus on specific traits of the input, it is also nearly impossible to 

extract that information from the attention layer. In fact, after the training is done, one cannot 

know what traits the neural network focused on during the training, making the comprehension 

of this process more complicated. In this research, the most probable characteristics are the 

pattern present in the sound frequencies and the variation of the frequencies over time, which 

can be observed with the MFCC. 

 

One noticeable downside of the Transformer network and its Attention mechanism is the 

amount of required data in order to successfully train the classifier (Wu et al., 2016), especially 

when there are multiple heads of Attention to train, which will be covered in the next section.  

 

Two types of Attention exist, self-Attention and regular Attention (Uszkoreit, 2017). The 

Attention has access to all the other layer's data and activations. In contrast, the self-Attention 

can only access the inputs of the same layer, making it more effective when looking at the 

similarities of the words in the same input sequence. The Attention allows creating the link 

between the encoder and the decoder, since it knows the dependencies between several 

different inputs, like different sentences. Both mechanisms are helpful during the process of 

creating the neural network. In certain applications, no decoder is required if the output is 

fixed-sized and unique. In this case, only the self-Attention mechanism is used. 

 

2.3.4.3 Multi-Head Attention 

Multi-Head Attention enables the computation of the Attention mechanism multiple times in 

parallel, making higher usage of the processing unit (Vaswani et al., 2017). By doing so, each 

head can focus on a particular aspect of the input and globally pay attention to different facades 
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of the incoming data. For example, few heads can focus on longer-term dependencies while 

others on shorter-term dependencies. In the end, all the results are concatenated into the final 

output vector. 

 

Each of the following heads will learn to focus on a specific trait of the input. To determine 

the number of heads to maximize the performance is another issue because it is always 

uncertain how many different traits the network can learn to focus on. It is why in most studies, 

the number of heads is an optimized hyperparameter, no matter the nature of the input data. In 

fact, the accuracy can greatly vary if this number is poorly chosen. 

 

Figure 2.16 illustrates the main steps inside an Attention mechanism, as well as the multi-head 

architecture. 

 

 

Figure 2.16 Steps of a Scaled Dot-Product Attention (left) and the usage of multiple head 
Attention in parallel (right) 

Taken from Vaswani et al. (2017) 
 

2.3.4.4 Input Embedding 

Since the Transformer has been developed for natural language processing, the inputs are 

obviously not numbers but words. Each word in the vocabulary has a numerical value 

associated with it.  For each value, we create a vector containing initially random values called 



49 

“linguistic features”. The vector can be represented in a multidimensional space. In the original 

work from Vaswani et al. (2017), the author uses an embedding vector of 512 dimensions. As 

the model goes through the learning phase, these values are updated. Two words with similar 

linguistic features tend to get closer and closer in the multidimensional space as different 

inputs, sentences perhaps, are fed into the network. 

 

2.3.4.5 Positional Embeddings 

In the LSTM architecture, the order of the inputs is kept since it is processed sequentially. On 

the Transformer model, the treatment is parallel. The positional information of the data is now 

lost. It is problematic since the order in which a word appears in a sentence can completely 

modify the context of the idea that is being expressed. To resolve this issue, a positional 

encoding is required to keep that crucial piece of information. 

The author uses sine and cosine functions of different frequencies into a matrix with the same 

dimension as the input embedding layer and sums those matrices to form the new input for the 

model. This method works because each value in the encoding is unique for each time step. 

Also, the distance between two time-steps is consistent for variable-length input. The 

positional encoding values are obtained using the following equation: 

 

   𝑃𝐸(𝑝𝑜𝑠, 2𝑖) = 𝑠𝑖𝑛 𝑝𝑜𝑠10000  

  𝑃𝐸(𝑝𝑜𝑠, 2𝑖 + 1) = 𝑐𝑜𝑠 𝑝𝑜𝑠10000  

(2.13) 

pos represents the position of the embedding, i is the dimension and dim represents the length 

of the input embedding. 

 

The following figure 2.17 represents an example of the different values of the resulting 

positional embedding containing 128 dimensions for the embedded input and a maximum 

length of 50 words. Each value is set to be unique on both axes. 
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Figure 2.17 Resulting positional embedding using sine and cosine function 
 

2.3.4.6 Transformer model architecture 

By combining all the parts in the previous sections, we obtain the global Transformer model, 

which consists of layers of encoders and decoders. Although it is an arbitrary number, Vaswani 

et al. (2017) decided to go with 6 identical layers for each. 

 

Both the encoder and the decoder contains very similar blocs. The decoder receives the same 

type of information as the encoder. In applications where the output is fixed length, the decoder 

is completely removed. 

 

In the encoder, we have: 

1. Multi-Head Attention layer: Several heads focus on different input facades and give 

special attention to different features in the data. 
2. Feedforward network: A fully connected network that contains most of the trainable 

parameters of the Transformer. See section 2.3.1 for more information. 
3. Add and Normalization layer: Residual connection for both previous layers followed by 

a normalization layer. 
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In the decoder, we have: 

1. Masked Multi-Head Attention layer: The same algorithm as the Attention mechanism. 

Since the Transformer network is supposed to work in parallelization, the decoder layer 

can see the entire expected output. For example, in language translation, the first word that 

is outputted from the network should not see the subsequent words and bias the result 

during the training phase. For this reason, when the first word is being predicted, the entire 

output is masked. When the second word is outputted, only the first output is not masked, 

and when the third word is outputted, only the first and second output is not masked, and 

so on. Now the training is more natural as the model is learning the new language. 
2. Multi-Head Attention layer: The query and key (Q and K from Scaled Dot-Product 

Attention equation) of this layer comes from the last encoder layer and it contains the 

summary of the entire input sequence. The value (V) is extracted from the masked layer. 
3. Feedforward network. 
4. Add and Normalization layer. 
 

Finally, the decoder predicts the word using a linear layer, which serves as a classifier and has 

the length of the number of possible classes. In the field of language translation, it would be 

the number of words in the vocabulary. The output is then passed through a softmax layer, 

calculating the probability for each class. Ideally, the highest probability class would be the 

final output of the network. Figure 2.18 shows the architecture of the Transformer model that 

has been described in the previous sections. It is also the model that was used in the research, 

with a few adjustments. 
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Figure 2.18 The Transformer model architecture 
Taken from Vaswani et al. (2017) 

 

2.4 General training concepts 

In the following section, concepts essential to understanding to train the neural network for 

classification efficiently are discussed. To obtain optimal performance, it is crucial to 

understand the various hyperparameter that can be manipulated and their consequences on 

factors such as the accuracy of the network and the training time. 
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2.4.1 Supervised and unsupervised training 

Supervised training means that we train the network using data that has been labelled by 

experts, while unsupervised training contains data for which we do not always know its class 

(Delua, 2021). Data annotation can be very expensive as it requires labelling all the data, 

knowing that neural networks generally require a tremendous number of samples to work 

efficiently. An unsupervised training algorithm has been developed to address this issue. 

 

Supervised methods are mainly used for classification and regression problems. Knowing the 

actual classes of the dataset helps to classify unknown new data. Unsupervised training is used 

on clustering problems, in which data with similarities are regrouped into clusters. No label is 

required since they are compared between each other and not to the desired class value at the 

network's output. 

 

2.4.2 Dropout rate 

Overfitting is a common problem with neural networks, especially with a deep network with 

many parameters. The network learns too much the training data and gets a low error value, 

but it will perform poorly on testing data, utterly new to the system. A solution is to implement 

Dropout, a technique that randomly drops cells and connections during the training. It 

regularizes the network and offers better robustness since it forces the network to work with 

less available information.  

 

This technique also helps to improve the training speed. In fact, there are fewer neuron cells in 

the network and fewer connections, meaning there are fewer computations. In Srivastava, 

Hinton, Krizhevsky, Sutskever, and Salakhutdinov (2014) work, adding Dropout to the 

network improved the performance in applications such as object classification, digit 

recognition, speech recognition, document classification and analysis of computational 

biology data. A standard Dropout is 0.2, which means that 20% of the cells count is randomly 

dropped at each training stage. Figure 2.19 illustrates the concept.  
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Figure 2.19 Standard model compared to Dropout model 
Taken from Srivastava et al. (2014) 

 

2.4.3 Epoch and batch size 

The number of epoch consists of the number of times the network goes through the entire 

training dataset in random order. The batch size is the number of samples from the dataset 

processed before the model is updated. Having a big batch size is not always good because the 

processing hardware might not have enough memory to store the calculated values. On the 

other hand, a smaller batch size creates a higher gradient fluctuation. 

 

2.4.4 Early stopping 

Another solution to avoid overfitting is to add early stopping to the network. This technique 

consists of stopping the training when it reaches a particular condition. The most common 

trigger is to stop when the loss function stops improving on the validation data and recall the 

network with the lowest loss function. The epoch number is set at a high number (ex. 300), 

and the network automatically stops when it doesn’t learn anymore. 

 

2.4.5 Hyperparameters 

Hyperparameters optimization is the key to obtain the best performance out of a neural 

network. Parameters, which are the network weights, are optimized during one training session 

that could last, for example, 300 epochs. Hyperparameters are optimized after several training 
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sessions, hence taking most of the available training duration. Identifying which 

hyperparameters influence the performance significantly takes many experiments, and it is 

hard to predict the accuracy variation. Examples of hyperparameters are: 

1. Number of layers of neurons. 

2. Number of encoders and decoders for the Transformer. 

3. Learning rate during backpropagation. 

4. Number of neurons on each layer of the network. 

5. Dropout rate. 

6. Number of heads in the Multi-Head Attention mechanism. 

7. Early dropping trigger method. 

 

2.4.6 K-fold Cross-Validation 

Luck can be part of the play when a set of training data and test data obtains abnormal high 

performance compared to what it gives in real conditions. To avoid this situation, a k-fold 

Cross-Validation technique is used (Raschka, 2018). The principal idea is that all samples in 

the dataset get a chance to be used as test data. Some variants use validation for each training 

step and separate testing data. Below are the steps for a k-fold Cross-Validation for K=5, which 

means we perform the training tasks with 5 sets of testing data: 

1. Separate the whole dataset to 4/5 training and 1/5 testing data. 

2. Perform the training and extract performance value on testing data. 

3. Reset the whole network and parameters. 

4. Separate the dataset again but using the second 1/5 as testing data. 

5. Perform the training and extract the new performance value. 

6. Execute 3 more times with different testing data each time. 

7. The final performance is the average of all 5 performances. 

 

Any abnormal performance is averaged, and the global performance value is more reliable to 

publish for other researchers to consider. Figure 2.20 illustrates the major steps of the process. 
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Figure 2.20 K-fold Cross-Validation procedure with K = 5 folds 
 

 

 

 

 

 

 

 

 

 

 



 

 
 
 

NEURAL NETWORK EXPERIMENTATION 

This chapter describes the experimentation methodology used to compare the different neural 

networks' performance accurately. Different hyperparameters are tested to minimize the error 

function and optimize the performance and training time ratio. Supervised training is used in 

this research to compare these four neural network models: 

1. Multilayer perceptron (MLP) as a reference performance. 

2. Long-Short Term Memory (LSTM). 

3. Transformer. 

4. LSTM enhanced with an Attention mechanism. 

 

Figure 3.1 illustrates the procedure that has been used in this research. All the mentioned 

models follow the same architecture and the same data for a fair comparison. 

 

 

Figure 3.1 Flowchart of the neural network experimentation from dataset extraction to the 
classification of the pathologies 
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3.1 The initial database 

The recordings used for the experiments are sourced from several hospitals in Canada and 

Lebanon and are stored in the École de Technologie Supérieure database. With the help of the 

nurses and experts, each recording is followed by helpful information such as the time and date 

of the recording, the infant’s ethnic group and sexes, the cause of the cry, the affecting disease, 

and the newborn's gestational age. 

 

Our research only uses the pathology or healthy tab followed by the gestational age. 

Protophones of preterm and full terms infants presents many spectrographic differences (Oller 

et al., 2019). We have used full terms only not to confuse the neural network. Also, there is not 

enough data to classify both types independently to compare their impact. 

 

The recordings were done using an Olympus device with two channels. The data is gathered 

with a sampling frequency of 44.1 kHz, and each sample has a resolution of 16-bits. The 

microphone was being held between 10 cm and 30 cm from the infant. We must consider that 

the recordings contain noises from the hospital environment. During the training phase, these 

noises should be either considered or discarded using a pre-treatment algorithm. 

 

Fortunately, Abou-Abbas et al. (2015) worked on this database to extract only the important 

parts of the signal by attributing labels to every segment of the audio. Figure 3.2 contains an 

example of the segmentation label file. In our research, only the expirations sessions are used 

to train the neural network, labelled “EXP”. 

 

3.1.1 Analyzed pathologies 

Among the 61 identified diseases in the database, we have conducted research with four 

diseases. There is a minimal number of samples for most of the pathologies, and it is ineffective 

to compare neural networks trained with very few samples. We have decided to go with two 

that contain many samples and two that are rare but still acceptable for neural network training. 

The following table 3.1 contains the chosen pathologies and the numbers of recordings. 
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Table 3.1 Number of recordings for each studied pathology 
 

 

 

 

 

 

 

A complete list of the diseases is presented in Annexe 1.  

 

 

Figure 3.2 Example of segmentation annotation for a single recording file 

Pathology Number of recordings Expirations 

Healthy 806 39 240 

Respiratory Distress 214 9738 

Sepsis 90 4475 

Hyperbilirubinemia 21 803 

Asphyxia 10 411 
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The model performance is also compared to the previous studies on the subject, especially 

those used in (Farsaie Alaie et al., 2016). In their studies, they don’t use specific diseases but 

categories. We have extended the case by choosing one or two pathologies in each category, 

except the cardiac problem-related pathologies, since all the classes contained very little data. 

The following figure 3.3 contains a list and a description of these categories. 

 

 

Figure 3.3 List of health conditions in the previous study 
Taken from Farsaie Alaie et al. (2016) 

 

3.1.2 Classes definition 

Our experiments follow a binary classification, which means there are only two classes per 

model. Each set of data contains healthy samples and one of the four pathologies identified in 

section 3.1.1. The last set contains healthy children and all the four pathologies combined. The 

idea is to determine if the neural network can identify the difference between a healthy infant 

and one containing a disease. 

 

Some pathologies are easily identified as the features contain a certain pattern, but some are 

very resistant to similarities hunting. We want to identify the hardest ones to either avoid 

working with them in the future or finding more meaningful features that could distinctively 

offer better performance. The following table contains the different datasets used. 
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Table 3.2 Classes of the neural network 

Set of data 1st Class 2nd Class 
#1 Respiratory Distress Healthy 
#2 Sepsis Healthy 
#3 Hyperbilirubinemia Healthy 
#4 Asphyxia Healthy 
#5 All four pathologies Healthy 

 

3.2 Pre-treatment on the data 

We worked on data entirely stored as a Numpy array. Every extraction process results in an 

array stored on the local computer, and every next step either uses an already extracted array 

or creates it from the database. Using this method saved a lot of time since any steps can be 

resumed at any moment without the need to rework the database.  

 

We chose the Numpy array because it is very memory-efficient when working with a 

multidimensional array and offers a faster speed than conventional lists in Python (University 

of Central Florida, 2021).  

 

The following steps are used to prepare the data for neural classification: 

1. WAV file stereo to mono Numpy array. 

2. Extraction of the expiration’s sessions. 

3. Normalization of every expiration in a single recording. 

4. Optimization of the storage. 

5. Creation of the label files with only full-term children for every disease. 

 

3.2.1 WAV file to Numpy 

Each recording is first converted to a Numpy array, with each value being a 16-bit integer. 

Since it contains two channels, we convert both arrays into one using a simple average function 

and rounding the value to keep it as an integer. The following formula is used: 
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   𝑑𝑎𝑡𝑎𝑀𝑜𝑛𝑜[𝑥] = 𝑖𝑛𝑡16 [ ] [ ]  for x=1,2,3…N 

N represents the number of samples, left and right are the two channels. 

 

3.2.2 Expiration’s sessions extraction 

Not all data in the database is useful to us, as some contain silence, machines noise, doors 

shutting, etc. Also, there are data with interference, like people talking in the background, 

which could eventually alter the neural network's performance. As shown in figure 3.2 above, 

every recording segment has a label that defines the present sound in that segment. We gathered 

only the expiration sessions for our work.  

 

In Salehian Matikolaie and Tadj (2020) work, the inspiration and the expirations sessions have 

been tested separately using a linear Support Vector Machine (SVM) classifier. They 

concluded that the expirations sessions always offer a higher accuracy no matter the number 

of MFCC coefficients. 

 

Using a simple time to sample number algorithm, we extracted only those specific segments 

and created a new smaller dataset containing the several expiration segments of each recording. 

The following steps only use the newly created dataset. 

 

3.2.3 Normalization of the data 

As discussed in section 2.1.2, normalization is crucial to adjust the energy level of all the 

expiration sessions so the range of the values stays within certain boundaries. It helps maintain 

a balance during the training session with values that do not explode or disappear with many 

time steps by being either too big or too small. 

 

After concatenating all the expiration sessions in a single recording, we calculate the mean and 

the standard deviation. Then, using the standardization formula below, the new values for the 

data are outputted and saved on the machine. 
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   𝑋 = 𝑋 − 𝜇𝜎  (3.1) 

X is the current data, µ is the mean value and σ is the standard deviation. 

 

3.2.4 Optimization of storage 

As the steps accumulate, we noticed we have several copies of the data stored in the computer 

and it requires a lot of storage to keep them all. To continue with this mechanism of storing all 

the sub-steps to save time and work on processed data, we need to find a way to efficiently 

compress and optimize the data while only losing a negligible amount of information. 

 

The results are stored as a floating number in the previous step with a 64-bit precision since 

there is a division in the standardization formula. By studying the largest number in the whole 

dataset, we determined that we can safely multiply each result by 213 and store the new values 

as a 16-bit integer. By using a power of 2, the calculations are faster since it requires shifting 

the bits only. We proceeded to compress the data by a factor of 4, which is a significant 

difference in the amount of storage required. For further steps, this multiplication is considered, 

and only a bitshift division by 213 is required to recover the initial value. 

 

To ensure we did not lose much information by this compression, we compared the mean and 

the standard deviation of the original 64-bit floating-point of every single recording and 

gathered statistics on the difference after doing the compression. Table 3.3 below shows that 

the difference is negligible and should not affect the integrity of the neural network 

performance. The values shown are on the scale of 213 = 8192. 

Table 3.3 Difference between compressed and uncompressed data 

Factor Minimum Maximum Average (scale of 213) 
Mean -0.010920289 0.0454747 0.000458447 

Deviation 0.000314677 0.013844347 0.000944568 
 

For a normal standardization, the average should be around 0. We can see that there is no much 

variation on compressed data from that middle point. 
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3.2.5 Label file creation with full-term infants 

In this step, the label file is processed. All the preterm infants are filtered out and the remaining 

are classified by their disease. The resulting output is a set of CSV files for every identified 

disease containing only the path to the recording file with no preterm infants. Figure 3.3 shows 

an example of what is stored on the processing computer after this step. 

 

 

Figure 3.4 Example of label files for every identified disease 
 

 

 

 

 



65 

3.3 MFCC features extraction 

The features for our neural network are extracted following the procedure in section 2.2.5 and 

summarized in figure 3.5 below. An example of the result can be found in Annexe 3. The 

following steps indicate the processing of the outputted data from the pre-treatment section to 

the coefficients using the Python library from Lyons (2013) on Github: 

1. Pre-emphasis filter with 𝐻(𝑧) = 1 − 0.97𝑧 . 

2. We separate each expiration by a frame of 1024 data, which corresponds to about 23.22ms 

of audio. Farsaie Alaie (2015) obtained their highest performance at 20ms framing. By 

using a power of 2, we ensure that no padding is required when calculating the Fast Fourier 

Transform (FFT) two steps below. 

3. Overlapping of 50%, which means every 512 data, a new framing is produced. 

4. The windowing function is the hamming window. 

5. The FFT is calculated on each frame with a size of 1024 samples. 

6. A set of 26 Mel Filter Banks is applied with frequencies ranging from 0 Hz to 4000 Hz. 

7. Discrete Cosine Transform (DCT) is used to extract the first 12 coefficients. 

8. Liftering is applied on the coefficients, with a sinusoidal window of L = 22. 

9. The first coefficient is replaced by the total energy value of the expiration session. 

 

 

Figure 3.5 MFCC features extraction process steps 
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3.4 Neural network models training 

We focused our research on four different neural networks and compared them based on the 

same criteria: accuracy and training time. The four models are: 

1. Multilayer Perceptron (MLP). 

2. Long-Short Term Memory (LSTM) cells. 

3. Transformer. 

4. Long-Short Term Memory enhanced by Attention mechanism. 

 

For each model, different hyperparameters are tested. Unfortunately, these factors vary from 

one model to another, and some of the hyperparameters are not present in every model. The 

conducted experiments observe different ones, and the consequence on accuracy and training 

time is noted for each step. 

 

The following approach was used: 

1. Train the neural network with every hyperparameter individually and observe the accuracy 

and training time impact of each. 

2. Gather the optimal hyperparameter for each category and test the overall network with the 

best hyperparameters. 

 

In the following sections, we determine which hyperparameters are tested for each model and 

build the general architecture of the neural network. 

 

3.4.1 MLP training 

The MLP network is purely used as a reference model for our system. The accuracy and 

training time helps to determine if the studied models in this research improve our problem 

hypothesis. Figure 3.6 is the architecture of the MLP network. 

 

Table 3.4 indicates the hyperparameters that were optimized during the process.  
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Table 3.4 Hyperparameters of the MLP network used in this work 

Hyperparameters Starting value Ending value Step 
Number of layers 1 10 1 
Number of neurons per layer 8 4096   
Dropout rate 0 0.5 0.05 
Learning rate 0 0.3 0.02 

 

3.4.2 LSTM training 

Bidirectional LSTM is used in our research to unlock the full potential of the LSTM network. 

It requires more training time, but more substantial dependencies between past and future 

inputs are created. Figure 3.7 is the architecture of the LSTM network that has been deployed. 

The number of neurons in the dense neural network (DNN) has also been optimised.  

 

Average pooling and Max pooling layers enable to reduce the dimensionality of the output 

after the LSTM cells. The masking layer enables to have a variable-length input. The inputs 

with zero values are considered the ending of an expiration session. 

 

Table 3.5 indicates the hyperparameters that were optimized during the process.  

Table 3.5 Hyperparameters of the LSTM network used in this work 

Hyperparameters Starting value Ending value Step 
Number of layers 1 10 1 
Number of neurons per layer 8 1024   
Dropout rate 0 0.5 0.05 
Number of neurons in the DNN 8 8192   

 

3.4.3 Transformer Training 

Our Transformer does not require a decoder since there is only one output, the predicted binary 

class. Only the encoder layer is used and outputs the result directly. Figure 3.8 shows the 

architecture of the model used in our research. Nx is the chosen number of Encoder layers in 

the model. The Linear Projection Dense layer has been used by Pham et al. (2019) in their 

2 ,   3 < 𝑛 < 12  

2 ,   3 < 𝑛 < 10  
2 ,   3 < 𝑛 < 13
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research called “Very Deep Self-Attention Networks for End-to-End Speech Recognition” and 

the results are promising.  

 

Table 3.6 indicates the hyperparameters optimized during the process.  

Table 3.6 Hyperparameters of the Transformer used in this work 

Hyperparameters Starting value Ending value Step 
Number of Encoders 1 10 1 
Number of neurons per layer 8 4096   
Dropout rate 0 0.5 0.05 
Number of Attention Heads 1 12  dividers of 12 

 

3.4.4 Attention enhanced LSTM training 

The final model is a combination of the Attention properties from the Transformer model and 

the LSTM network. We do not benefit from parallelism in data processing since the LSTM 

cells force the sequential treatment of the inputs. On the other hand, the lack of positional 

encoding enhances the integrity of the original data. Comparing this model to the original 

LSTM architecture would allow acknowledging the benefits of the Attention mechanism. 

Figure 3.9 represents the general architecture of this model. 

 

Table 3.7 indicates the hyperparameters optimized during the process.  

Table 3.7 Hyperparameters of the Attention enhanced LSTM used in this work 

Hyperparameters Starting value Ending value Step 
Number of Encoders 1 10 1 
Number of neurons per layer 8 1024   
Dropout rate 0 0.51 0.03 
Number of Attention Heads 1 12  1 

 

2 ,   3 < 𝑛 < 12  

2 ,   3 < 𝑛 < 10  
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Figure 3.6 Architecture of the MLP network used in this work 
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Figure 3.7 Architecture of the LSTM network used in this work 
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Figure 3.8 Architecture of the Transformer used in this work 
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Figure 3.9 Architecture of the Attention enhanced LSTM used in this work 



73 

3.5 Training parameters 

3.5.1 K-fold cross-validation and Early stopping 

K-fold cross-validation with K=5 is implemented to confirm the accuracy value for each 

hyperparameter optimization. Only the average accuracy of the 5 folds is kept as the result. 

 

Early stopping allows to follow the loss function on validation data and stop the training once 

there is no improvement for at least 10 epoch. The maximum number of the epoch is 300. 

 

Adam optimizer is used for all our models. 

 

3.5.2 Number of samples per dataset 

Healthy infants samples are the most common in the database. To not create bias during the 

training phase, we randomly chose two times the number of samples in the pathology from the 

healthy database. We concatenated them to create the new dataset.  

 

For example, there are 39240 healthy samples and 4475 sepsis disease samples. The 

corresponding dataset contains 13425 expiration sessions (4475 from sepsis and 8950 from 

healthy). 

 

3.6 Performance evaluation 

3.6.1 Accuracy 

Binary classification is used in this research. The binary cross-entropy loss function is 

implemented on all our models. The accuracy determines the number of well-predicted classes 

relative to the number of total samples. It is a robust measure that gives an overall idea of the 

network’s performance. 
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3.6.2 Training time 

The training time is an important parameter for our research since the idea behind the 

Transformer network is to efficiently use a modern graphics processing unit (GPU) and 

parallelize the training session. LSTM network, on the other hand, is a sequential mechanism 

and cannot efficiently exploit the full potential of the hardware equipment. 

 

We compared the training time to determine if we can make a compromise between accuracy 

and training time since this factor can become crucial in the future as the number of data 

exponentially grows in the database. 

 

3.7 Tools 

From the preprocessing to the model training, Python language version 3 was used. A list of 

used libraries is present in Annexe 2. All the code has been developed under the Google 

Colaboratory platform, enabling it to run separate blocs of codes individually without affecting 

the other blocs (Garbade, 2021). The sections are also organized like a notebook.  

 

Google allows the user to run the code on their server, which comes preinstalled with several 

libraries. Our research used the local equipment since it allows a better storage and processing 

power suited for our needs. All the networks have been training using the following specs on 

hardware equipment: 

• AMD Ryzen 7 2700X Eight-Core Processor. 

• 32 GB of DDR4 memory. 

• 1 TB of M.2 NVMe SSD storage. 

• NVIDIA GeForce RTX 3080. 

 



 

 
 
 

PRESENTATION OF THE RESULTS 

This chapter presents the results we obtained for each experimentation and then a discussion 

of their meaning. We believe that the accuracy for each system is not the only important factor 

in choosing a neural network for a specific application. Sometimes a system may present a 

higher performance by 2-3% compared to another system, but the training time and required 

resources might not always justify this improved accuracy by a few points. We focused our 

research on finding each hyperparameter's impact and utilizing that information to estimate the 

optimal hyperparameters. 

 

4.1 Simulation results 

The simulation results are shown directly in this section for both tests. The first test optimizes 

the hyperparameters for each neural network, and the second test uses the optimal 

hyperparameters to obtain the best overall accuracy for all the studied pathologies. The results 

are then used to compare all the neural networks and the difficulty of identifying a particular 

disease in a newborn’s cry signal. 

  

4.1.1 Optimal performance 

We have gathered the best performances based on the most optimal hyperparameters for each 

neural network and present them below in tables 4.1 to 4.4. Three performance indicators were 

gathered to compare the networks. The sensitivity and specificity are beneficial since the 

number of samples in each class are not equal. In fact, the healthy class of each dataset contains 

about 66% of the dataset size, while the disease class only contains 33%. The performance 

indicators are the average of five values obtained with the K-fold cross-validation, making the 

comparison process more trustworthy. The performance indicators are detailed in this section 

below as well as their equation. 
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1. The accuracy: computed by the number of well-predicted classes on the total number of 

expirations sessions on the test data in each dataset. A return value between 0 and 0.50 

included indicates a healthy class. A value between 0.50 excluded and 1 indicates a class 

with the disease. 

2. The sensitivity: represented by the ratio of true positives (infant predicted as having a 

disease and actually having a disease). 

3. The specificity: represented by the ratio of true negatives (infant predicted as healthy and 

is actually healthy). 

 

The equation of the accuracy is as follows:   𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (4.1) 

 

The equation of the sensitivity is as follows:   𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (%) = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (4.2) 

 

The equation of the specificity is as follows:   𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (%) = 𝑇𝑁𝑇𝑁 + 𝐹𝑃 (4.3) 

 

1. True positives (TP) represent the number of newborn cries classified as sick by the neural 

network, which is correct. 

2. True negatives (TN) represent the number of newborn cries classified as healthy by the 

neural network, which is correct. 

3. False positives (TP) represent the number of newborn cries classified as sick by the neural 

network, which is incorrect. 

4. False negatives (FN) represent the number of newborn cries classified as healthy by the 

neural network, which is incorrect. 
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Table 4.1 Best performance obtained for the MLP network 

Dataset Accuracy Specificity Sensitivity 
RDS / Healthy 77.95% 76.07% 75.45% 
Sepsis / Healthy 82.25% 86.04% 82.12% 
Hyperbilirubinemia / Healthy 80.07% 84.29% 79.12% 
Asphyxia / Healthy 82.30% 87.10% 85.76% 
All Pathologies / Healthy 76.42% 80.31% 73.34% 

 

Table 4.2 Best performance obtained for the LSTM network 

Dataset Accuracy Specificity Sensitivity 
RDS / Healthy 85.09% 84.79% 82.86% 
Sepsis / Healthy 89.27% 87.71% 89.62% 
Hyperbilirubinemia / Healthy 89.55% 85.98% 82.44% 
Asphyxia / Healthy 92.22% 90.45% 91.37% 
All Pathologies / Healthy 83.43% 86.60% 82.83% 

 

Table 4.3 Best performance obtained for the Transformer network 

Dataset Accuracy Specificity Sensitivity 
RDS / Healthy 80.12% 78.28% 72.26% 
Sepsis / Healthy 85.30% 84.41% 80.94% 
Hyperbilirubinemia / Healthy 83.26% 81.77% 73.12% 
Asphyxia / Healthy 86.74% 84.05% 87.22% 
All Pathologies / Healthy 79.68% 80.89% 77.35% 

 

Table 4.4 Best performance obtained for the Attention LSTM network 

Dataset Accuracy Specificity Sensitivity 
RDS / Healthy 84.36% 81.70% 81.15% 
Sepsis / Healthy 88.79% 88.55% 88.92% 
Hyperbilirubinemia / Healthy 87.92% 85.12% 82.12% 
Asphyxia / Healthy 91.03% 87.13% 89.51% 
All Pathologies / Healthy 84.68% 86.98% 84.02% 
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4.1.2 Accuracy per hyperparameter 

As discussed in chapter 3, we evaluated each hyperparameter individually to observe the 

impact on training time and network accuracy. Since the models are compared to themselves, 

we did not test for each individual pathology. The difference in performance would be reflected 

in each of the dataset’s categories. 

 

This section presents the simulation for each of the neural network’s classifications for the 

respiratory distress syndrome (RDS) binary classification. The training time and accuracy are 

presented for each simulation, along with the sensitivity and specificity. 

 

Although the number of samples is uneven in all datasets, the specificity and the sensitivity 

results are correlated with the accuracy of the network. In the following section, only the 

accuracy is analyzed for this reason. 

 

4.1.2.1 MLP network 

As presented in figure 4.1, the multilayer perceptron (MLP) network does not show high 

accuracy for our application. In fact, the best accuracy is 78% for 7 layers of neurons. The 

training time relatively stays very low for this network, ranging from around 2 to 4 seconds 

depending on the complexity. Although being a very simple network, it obtains an acceptable 

performance for a meagre training time compared to the other networks. In our work, the MLP 

only serves as a reference model for comparison. 

 

The highest score hyperparameters are presented in table 4.5 below. 

Table 4.5 Best hyperparameters for MLP 

MLP Layers Neurons Dropout Learning 
7 32 0.10 0.26 

Accuracy 78.47% 76.91% 75.31% 75.44% 
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Figure 4.1 Hyperparameters simulation results for MLP 

4.1.2.2 LSTM network 

The results for the LSTM network are presented in figure 4.2. Although the training time is 

more than 10 times that of the MLP network, the accuracy is relatively higher for this network. 

The average performance is 7% higher than the best MLP combination.  

1. Training time rapidly increases for each added layer without necessarily increasing the 

accuracy of the network. 
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Figure 4.2 Hyperparameters simulation results for LSTM 
 

2. Adding neurons in the hidden layer increases the accuracy by 2%, but the training time 

also doubles for that increase. 

3. There is not much movement when varying the dropout of the network. In fact, the 

accuracy ranges from 84.15% to 85.09% (for a 0.1 dropout rate). This hyperparameter is a 

very low contribution for the network. Also, theoretically, having a higher dropout rate 

should decrease the training time since there are fewer computations with neurons being 

dropped. Still, we observe only a decrease of around 3% (from 33s to 32s). 



81 

4. Adding neurons in the dense neural network (DNN) has no significant impact on accuracy 

or training time. 

For each simulation, our highest scores are presented in table 4.6. 

Table 4.6 Best hyperparameters for LSTM 

LSTM Layers Neurons Dropout DNN 
2 256 0.25 256 

Accuracy 84.89% 85.24% 84.77% 85.18% 
 

4.1.2.3 Transformer network 

As illustrated in figure 4.3, the Transformer network do not show promising results for our 

application. The average accuracy is more than 1% higher than our reference model, but the 

training time does not justify this increase. Compared to the LSTM, the variation on the 

hyperparameters greatly impacts the performance of this architecture. 

1. Four encoders is the peak of the performance for this network. The accuracy drops beyond 

this point as there are too many parameters for the number of samples. The training time is 

linear as we suspected since each layer is an exact copy. 

2. The accuracy improves with the number of neurons in the dense layer, reaching a top 

performance of 78.72% at 512 neurons. The training time only increases by 1s every three 

power of 2. 

3. Although the training time does not change, the accuracy falls the more dropout there is. 

With 0 dropout, we have the maximum performance. 

4. Playing with the number of heads do not significantly change the accuracy. There are not 

many discriminative features to focus on. The training time increases linearly. 

 

For each simulation, our highest scores are presented in table 4.7. 

Table 4.7 Best hyperparameters for the Transformer 

TRF Encoders Neurons Dropout Heads 
4 2048 0.00 3 

Accuracy 77.14% 79.63% 77.32% 75.94% 
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Figure 4.3 Hyperparameters simulation results for Transformer 
 

4.1.2.4 Attention enhanced LSTM network 

Figure 4.4 presents the results of the simulation for Attention enhanced LSTM network. Once 

again, compared to the MLP network, the processing times are larger and the accuracy is better. 

Adding the attention mechanism increased the training time by more than 20 seconds, which 

is almost twice the initial time. This increase is not worth, because the accuracy did not 

increase. In fact, the accuracy decreased by 1% on average for all the simulations. The attention 

layer proves to be ineffective at this stage of individual hyperparameter simulation. 
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Figure 4.4 Hyperparameters simulation results for Attention enhanced LSTM 
 

1. Increasing the number of encoder layers seems to reduce the accuracy after a certain point 

while linearly increasing the training time of the network. There is no noticeable difference 

in accuracy under 5 layers of encoders. 

2. After 64 neurons in the hidden layer, the training time increases by a factor of around 25% 

each time the number of neurons doubles. However, the accuracy reaches its maximum for 

256 neurons and decreases after this value.  
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3. The dropout rate does not decrease the training time, as observed in the LSTM model. Also, 

for an unknown reason, it increases by 6 seconds between 0.45 and 0.50 dropout values. 

There is no logical equation for the accuracy, which is maximum for a dropout rate of 25%. 

4. As expected, adding Attention heads to the network proportionally increases the training 

time. The accuracy value slightly changes, only varying by 0.81% in random order. There 

is no focus point on which the machine can separate and learn discriminative features from 

the input data. 

 

For each simulation, our highest scores are presented in table 4.8. 

Table 4.8 Best hyperparameters for Attention enhanced LSTM 

ATT Layers Neurons Dropout Heads 
3 256 0.25 6 

Accuracy 83.80% 84.16% 84.19% 83.96% 
 

4.2 Observation on the results 

One of the main objective of this research is to compare the performance of the Transformer 

network and potentially use this state-of-art neural network in the language processing field to 

solve our problematic. This model uses the full potential of modern hardware to train the 

network to classify the data efficiently. There is no sequential treatment like the LSTM 

network, thus avoiding the waiting time before the previous cell outputs a value. 

 

Unfortunately, the Transformer does not show promising results compared to the classical 

LSTM. The performance for each pathology is relatively lower for the Transformer network. 

Removing the sequential neurons and entirely depending on the self-attention mechanism did 

not benefit our application like it did for several other research (Vaswani et al., 2017), 

(Uszkoreit, 2017). One advantage of the Transformer is that the training time is more than two 

times lower than the LSTM, meaning that we are benefiting from the processor parallelization 

of this model. 
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Although, compared to our reference MLP network, the Transformer offers higher accuracy 

and can replace the conventional Deep Neural Network if employed alone. It is also an 

indicator for us that this model has been deployed adequately in our simulation. 

 

However, the Attention enhanced LSTM network proved to be an improvement to the classical 

recurrent neural network variant. Adding the multi-head Attention with the Encoder-Decoder 

architecture boosted the accuracy of the network. Even if the Transformer’s model did not 

offer the results we were hoping for, some of its features could be used in our field. 

 

4.2.1 Overfitting 

Overfitting on the training data is a problem that occurs more frequently than we think. In our 

LSTM model, we observed that the training accuracy dangerously approaches 100% in a 

matter of 30 epochs, while the performance on the test data stagnates around 20% below. 

Figure 4.5 illustrated this phenomenon during our simulation tests. On the Transformer 

network, this problem seems unnoticeable. In fact, the training and testing accuracy curve is 

very close to each other during the whole machine learning process. 

 

 

Figure 4.5 Difference between train and data test accuracy for the LSTM and Transformer 
network on RDS dataset 
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Both the LSTM and the Transformer have a dropout layer to reduce overfitting, but it is 

inevitable for the LSTM to learn the training data too much. Our theory is that since the LSTM 

learns the inputs sequentially, the context vectors from the first samples are learnt quickly, and 

the network creates a pattern at the very beginning of the expiration. The gates of the LSTM 

cell might need more data in the dataset to learn to efficiently filter out the information as new 

inputs approach. This long-term dependency eventually prohibits the network from 

concentrating on the last sets of input and changing its direction in the classification of 

unknown data. 

 

The Transformer network does not have sequential data and all inputs of the expiration are 

introduced at the same time to the model. There is less chance that the model observes only 

the beginning or any part of the signal individually. It is true that the accuracy is not comparable 

to the LSTM network, but at least the predicted performance is more representative of the 

actual output from a classifying device in a real-time environment. 

 

4.2.2 Training time 

The training time of a model determines the feasibility of the project. Being able to optimize 

the hyperparameters with a k-fold validation requires a tremendous amount of time if each 

epoch consumes several minutes. For example, if one epoch takes 5 minutes to complete, and 

we have 100 epochs with a 5-fold validation, it would take approximately 42 hours to test only 

one set of hyperparameters. In a typical neural classification, there are usually more than 10 

000 combinations of hyperparameters. It is the reason why it is important to consider both 

training time and accuracy on a neural network classification. 

 

Our models are complex enough to reach a minute per epoch when the number of parameters 

is very high. Losing 0.50% accuracy to save hundreds of hours of training is beneficial for both 

the researcher and the environment. GPU consumes a decent amount of wattage power and 

heats up at temperatures around 80C.  
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4.2.3 Number of parameters 

Optimizing the accuracy necessarily means minimalizing the loss function of the neural 

network. To do so, the network parameters are modified gradually as the network learns the 

inputs (Keim, 2019). Theoretically, the more parameters there are, the more calculations and 

processing units are required. Table 4.9 shows the number of parameters for each of the studied 

neural networks in our research. 

Table 4.9 Number of trainable parameters in each neural network 

  
Neural Network 

MLP LSTM Transformer Attention LSTM 
Number of  
parameters 1 147 265 3 032 577 553 977 4 950 821 

 
 

As the LSTM model grows, the number of parameters proportionally increases. As we can 

observe, there are 6 times more parameters in the LSTM network compared to the Transformer 

network. The LSTM cell has many learnable factors for each gate. The dense layer of the 

Transformer network contains almost all optimizable parameters. Although there is a 

significant gap in the number of parameters, the training time is only about the half for the 

Transformer. Even if the training session is parallel, the computation requirements are much 

higher in this architecture (Vaswani et al., 2017). The Scaled Dot-Product Attention, as an 

instance, requires a dot-product multiplication, which can be very demanding for big matrices, 

even for the latest processing hardware. As a matter of fact, adding the Attention mechanism 

to the LSTM almost doubles the required training time. 

 

4.3 Comparison of the classifiers 

The LSTM, The Transformer and the Attention enhanced LSTM obtained an accuracy above 

the MLP network, which served as a reference model for our research. Overall, the 

Transformer architecture performs below the LSTM variant for all the datasets. The training 

time is, however, lower.  
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The hyperparameter optimization simulation showed that the performance of the LSTM does 

not vary drastically as we change the number of layers, the number of neurons, the dropout 

rate and the number of neurons in the dense layer. For the Transformer network, the accuracy 

increases by over 4% as we increase the number of neurons. This factor can also be noticed 

with the Attention layer on the LSTM model. 

 

The Transformer is an interesting path considering its success in the natural language 

processing (NLP) field (Uszkoreit, 2017), but it is not beneficial for our specific task of 

pathology classification. 

 

4.4 Comparison of the dataset accuracy 

Some diseases are more challenging to identify than others by only using the cries. We can 

observe that statement in the accuracy difference between the four studied pathologies. 

Asphyxia obtains the highest accuracy with all neural networks, followed by sepsis, 

hyperbilirubinemia and respiratory distress syndrome. 

 

Our test cannot conclude that asphyxia contains the most discriminative features to obtain that 

high accuracy, mostly because the number of data for asphyxia is very limited compared to the 

other pathologies. There is not enough data to generalize the performance. We believe that the 

highest count of samples can justify the lower performance on respiratory distress syndrome. 

In fact, there is a direct correlation between the number of available data in each dataset and 

the obtained accuracy. 

 

One important conclusion is that our study showed over 1% accuracy improvement on the 

Attention mechanism compared to the LSTM for the “All pathologies” dataset. We believe it 

is due to the high number of samples, since the Attention layer requires many data to 

distinguish the discriminative features properly. Working with large databases may show the 

full potential of the Attention mechanism used in the Transformer network. 
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4.5 Comparison with the previous study 

We have compared our study with Brault (2018), who worked on the same database and used 

a neural network for the classification. In his research, the author implemented the multilayer 

perceptron (MLP) as a reference model, the convolutional neural network (CNN) and the 

Long-Short Term Memory (LSTM). They used binary classification for seven diseases. 

Among the list of diseases, the common ones with our research are: 

• Respiratory Distress Syndrome (RDS). 

• Hyperbilirubinemia. 

• Asphyxia. 

 

Table 4.10 compares the best-obtained accuracy for both types of research for the common 

pathologies and the neural networks (MLP, CNN, LSTM and Transformer). 

Table 4.10 Comparison of our work accuracy with Brault 

Dataset 
Brault Our research 

MLP CNN LSTM MLP LSTM Transformer Attention 
RDS 75.28% 79.59% 81.36% 77.95% 85.09% 80.12% 84.36% 

Hyperbilirubinemia 82.25% 85.55% 86.62% 80.07% 89.55% 83.26% 87.92% 
Asphyxia 95.27% 97.97% 96.76% 82.30% 92.22% 86.74% 91.03% 

All Pathologies 73.44% 76.69% 80.50% 76.42% 83.43% 79.68% 84.68% 
 

There are a few differences between our research which explains the difference: 

1. F. Brault only uses one hidden layer for both networks. The number of layers is a 

hyperparameter we optimized in our research. 

2. In the LSTM model, we use a pooling layer to reduce the dimensionality of our vector. 

3. Also, in the LSTM, our model uses bidirectional LSTM cells, compared to unidirectional 

in Brault’s work. 

4. Brault uses 16 MFCC from 20 filter banks, while we use 12 MFCC from 24 filter banks. 

5. Brault only took expirations longer than 400ms with framing of 50ms. Our work uses 

expirations longer than 200ms with framing of 23.22ms. 

6. We use overlapping of 50%, while Brault did not implement overlapping. 
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4.6 Performance reproducibility hyperparameters 

Table 4.11 summarizes all the hyperparameters used in the tests to obtain the highest accuracy 

for all the studied neural networks. 

Table 4.11 Highest accuracy hyperparameters for all four neural networks 

Neural Network Hyperparameter Value 
MLP Number of layers 7 

  Number of neurons per layer 32 
  Dropout rate 0.1 
  Learning rate 0.26 

LSTM Number of layers 2 
  Number of neurons per layer 256 
  Dropout rate 0.25 
  Number of neurons in the dense layer 256 

Transformer Number of encoders 4 
  Number of neurons in the dense layer 2048 
  Dropout rate 0 

  Number of heads in the Multi-Head 
Attention 3 

Attention Number of layers 3 
  Number of neurons per layer 256 
  Dropout rate 0.25 

  Number of heads in the Multi-Head 
Attention 6 

 

The LSTM obtains the best performance in our case, while the Transformer is not too much 

behind. The training time of the latter compensates for the accuracy. However, compared to 

our reference model, the Transformer is more accurate. Adding the Attention mechanism to 

the LSTM network does not increase its performance, except for the classification of sick and 

healthy infants database. 

 



 

CONCLUSION 

 

Early diagnosis in newborns, especially in developing countries, allows reducing the infant 

mortality rate by giving a chance to sick children to be treated accordingly before the deadline. 

Our work consists of analyzing the possible neural networks that can achieve acceptable 

performance for the medical experts to trust the system along with their expertise 

presumptions. 

 

The recent Transformer network uses an Encoder-Decoded architecture and the Attention 

mechanism to focus on discriminative elements of the input data. By adding a positional 

encoding, the parallel learning algorithm can exploit the full capabilities of modern graphics 

processing units (GPU) while conserving the dependencies between the data on their rightful 

chronological, temporal or spatial order.  

 

With the help of the École de Technologie Supérieure database, regrouping children's cries 

from Canada and Lebanon hospitals, we extracted expiration sessions only from the infant’s 

cries. It was possible due to the previous work consisting of manually labelling the segments 

in each cry (Abou-Abbas et al., 2015). 

 

The features fed into the neural network are the Mel-Frequency Cepstrum Coefficients 

(MFCC). After normalizing the data and implementing a pre-emphasis filter, we have gathered 

12 coefficients out of 26 filter banks using a framing of 23.22ms and an overlap of 50% on 

frequencies ranging from 0 Hz to 4000 Hz. The first coefficient has been replaced by the total 

energy of the expiration session. 

 

We created four models of neural networks to classify using a binary setup for four pathologies. 

The Multilayer Perceptron (MLP) was purely used as a reference model for comparison. K-

fold validation with K=5 has been used to validate the performance by averaging five results 

on different samples as test data. 

 



92 

Our work compared the Transformer capabilities to the most popular variant of the recurrent 

neural network (RNN), the Long-Short Term Memory (LSTM). Unfortunately, we did not 

achieve the desired performance on the Transformer network as it is 5% lower than its 

competitor. The training time, however, is more than two times lower than the LSTM. The 

machine training parallelization is helping to lower the time compared to the sequential training 

of the LSTM. 

 

Adding the Attention mechanism to an existing LSTM network did not improve the results; it 

only took more processing power and time. Our theory is that there are not enough distinctive 

features on the input data for the Attention layer to focus on different aspects of the MFCC. 

Also, the number of samples is very limited for the neural network to adequately learn the 

features and learn to pay attention to some crucial elements. We can observe this phenomenon 

on the dataset containing all the pathologies. We had an improvement of over 1% in 

performance when classifying sick and healthy infants. We may not have gathered enough data 

for detecting a specific pathology in an infant, but our research shows that we could efficiently 

distinguish a healthy infant from one having a disease using the Attention mechanism. 

 

However, the lower results do not mean that this path should be entirely closed. In fact, the 

Transformer network is relatively new in the timeline, and the community does not fully 

understand its behaviour. It is a powerful tool for processing units when correctly implemented 

with the right set of features. In the next section, we discuss more the possible ways to test and 

increase the network's performance. 

 



 

RECOMMENDATIONS 
 
Many simulations can be done to unlock the Transformer’s potential fully: 

 

1. Apply different factors for MFCC extraction, such as a different framing window or the 

number of coefficients per frame. The number of filter banks can be varied also. 

 

2. Work on other diseases and conditions. Since the Attention mechanism tries to focus on 

distinctive elements of the input data, there might be a condition that contains enough 

factors to help the Transformer with multi-heads. 

 

3. We used time-based input embedding to integrate sequential information. There is also the 

possibility to use spatial input embedding, associating each input as a randomly initialized 

multidimensional vector, just like in language translation. The training algorithm 

automatically reduces the distance between those vectors with inputs containing 

similarities. 

 

4. Include several other time-based or frequency-based features to the neural network, such 

as the fundamental frequency, the intensity of the signal, the Bark Frequency Cepstral 

Coefficients (BFCC), Zero-crossing rate (ZCR) and the rhythm. It will also provide the 

multi-head Attention mechanism better distinguishable features. 

 

5. Combine other types of neural networks, such as the convolutional neural network (CNN), 

with the Attention layer. Perhaps it may result in a different performance. 

 

With adequate time and resources, the Transformer network can provide desirable results. Our 

field of application is very close to the domain in which this model acquired state-of-art 

performance. The newer Transformer-XL network can also be explored, which uses the 

recurrence mechanism and relative positional encoding. 

 





 

ANNEXE I 
 
 

LIST OF DISEASES IN THE DATABASE 

The following table I-1 presents all the diseases and conditions present in École de Technologie 

Supérieure Database collected from hospitals in Canada and Lebanon. 

Table-A I-1 List of diseases and conditions of infants in the database 

Samples Disease / Condition 
806 Healthy 
214 Respiratory Distress 
90 Sepsis 
58 Grunting 
35 Jaundice 
33 Fever 
23 Cyanosis 
23 Vomit 
21 Hyperbilirubinemia 
18 Retraction 
17 Tachypnea 
17 Dyspnea 
17 Broncholities 
15 Meconium Aspiration Syndrom 
14 Pneumonitis 
13 Hypoglycemia 
11 Diarrhoea 
11 Hypotonia 
10 Asphyxia 
10 Apnea 
8 Peritonitis 
7 CIV-Communication Interventriculaire 
6 Distension 
6 Aspiration 
6 Meningitis 
5 Congenital Heart Disease 
5 Cleft lip and palate 
4 Gastrochisis 
4 Thrombose 
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Table-A I-2 List of diseases and conditions of infants in the database (continuation) 

Samples Disease / Condition 
4 Shoulder Fracture 
3 Duodenal Atreasia 
3 Down Syndrom 
3 Dismorphism 
3 Spinal Bifida 
3 Kidney Failure 
3 Hypothermia 
3 Seizure 
3 Intra Uterine Growth Retardation 
3 Ankyloglossia 
3 Tetralogy of Fallot 

3 HTAP-Hypertension de l'artère 
pulmonaire 

3 Complex Cardio 
3 Convulsion 
3 Cerebral Hemorrhage 
3 Diaphragmatic Eventration 
3 Choanal Atresia 
3 Myelomeningocele 
2 Bronchopulmonary Dysplasia 
2 CIA-Communication Interauriculaire 
2 Clubfoot 
2 Polymalformation Syndrome 
1 Trisomy 
1 Potbelly 
1 Chorioamnionitis 
1 Nasal Septum Deviation 
1 Ductus Arteriosus 
1 HIV GR1 
1 Situs Inversus 
1 Intestinal Malrotation 
1 Shone's Complex 
1 Intestinal Perforation 

1580 Samples (61 diseases) 
 

 



 

ANNEXE II 
 
 

LIST OF PYTHON USED PYTHON LIBRARIES 

Many libraries helped speed up the process of our research: 
 

System: 
1. Os 

2. Random 

3. Sys 

4. Time 

 

Data manipulation: 
1. Wave 

2. CSV 

3. Numpy 

4. Pandas 

5. TQDM 

6. MFCC and logfbank from python_speech_features 

 

Classification: 
1. Shuffle from sklearn.utils 

2. Tensorflow.keras: models, layers, callbacks, backend and initializers 

3. KFold from sklearn.model_selection 

 

Visualization 
1. Librosa 

2. Pyplot from matplotlib 

 

 





 

ANNEXE III 
 
 

EXAMPLE OF MFCC SPECTROGRAM 

Figure 4-1 illustrates an example of a 2-dimensional matrix of the MFCC values extracted from 

the database. The name of the file has been removed for confidentiality reasons. 

 

 

Figure-A III-1 MFCC features spectrogram of a random expiration session 
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