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Adaptation de réseaux de neurones profonds siamois pour la reconnaisance de visage
dans des vidéo

Hugo LEMOINE ST-ANDRE

RÉSUMÉ

La reconnaissance faciale pour des images statiques de visage a été très explorée et généralement

avec succès, mais des images vidéo de visages capturés dans des environnements non contraints

pose des défis plus difficiles puisque les images souffrent plus de variation de pose, de flou,

d’illumination, de basse résolution et de basse qualité. Dans cette thèse, nous adressons

la reconnaissance faciale pour des applications vidéo. Premièrement, nous explorons la re-

identification faciale pour des applications vidéos en essayant de comparer des paires de visages

pour identifier une personne dans une base de données en utilisant un réseau Siamois profond.

Après, nous explorons la description vidéo en essayant de capturer la distribution des identités

d’un film en utilisant un réseau Siamois avec une technique de catégorisation. Pour adresser ce

problème, d’autres recherches utilisent une quantité large de données annotées pour entraîner

leurs modèles, ce qui est problématique puisque l’annotation est couteuse en temps et ressources.

L’objectif est d’adapter un réseau Siamois profond entrainé avec des bases de données publiques

composées d’images statiques de visage à un domaine vidéo non contraint d’une manière non

supervisée, ce qui enlèverait la nécessité d’annoter manuellement. À cette fin, nous utilisons

triplet-loss pour apprendre et adapter une représentation faciale discriminante d’une manière

pratique pour des applications réelles.

Des recherches récentes en vidéo surveillance utilisent de l’adaptation supervisé pour réduire

l’écart entre les images statiques et vidéos. D’autres recherches utilisent de l’adaptation de

domaine faiblement-supervisé ou non supervisé, mais peu utilisent des réseaux Siamois profonds.

Ceux-ci requièrent que le domaine ciblé soit un problème avec un nombre de classes prédéterminé

ou d’avoir une grande quantité de données non annotées ce qui n’est pas pratique. Dans cette

thèse, nous introduisons l’apprentissage par duo de triplet qui est une variante de l’apprentissage

par triplet. Nous utilisons simultanément des triplets du domaine source et vidéo pour adapter

les représentations robustes d’image statiques à une source vidéo nouvellement installée en

utilisant peu de données non annotées. La méthodologie est validée avec la base de donnée

COX-S2V où nous obtenons un gain en précision de classification de 3% à 7%.

En ce qui concerne la description vidéo, nous utilisons des réseaux Siamois profonds avec

l’information de tracklet pour grouper les visages de même identité. Avec un tel outil, il serait

possible de décrire des visages de n’importe quel vidéo automatiquement. À cette fin, nous

adaptons un CNN robuste de visage statique à un film en utilisant les visages non annotés

de ce même film. En utilisant l’information spatio-temporelle de la vidéo, il est possible

de produire des pairs de visage pour l’apprentissage par triplet. Avec cela, nous essayons

l’apprentissage auto-supervisé avec un réseau Siamois profond, utilisant le premier épisode de

la série télévisée The Big Bang Theory, pour apprendre des caractéristiques robustes des visages

présents dans le film. Nous démontrons que l’apprentissage auto-supervisé peut améliorer le
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score de regroupement (mesure V) de 15%. De plus, avec un nombre suffisant de données, les

trackets peuvent être utilisés comme représentation simple pour faire du regroupement plus

rapidement et précisément.

Mots-clés: reconnaissance faciale, apprentissage profond, réseau Siamois, vidéo surveillance,

vidéo description.



Adaptation of Deep Siamese Neural Networks for Video Face Recognition

Hugo LEMOINE ST-ANDRE

ABSTRACT
Face recognition for static face images has been well explored and is generally very successful,

but video face images taken in unconstrained environments pose more difficult challenges as the

image samples suffer from more issues such as pose variation, blur, illumination variation, lower

resolution and lower quality. This thesis, addresses face recognition for video-based applications.

First, we explore face re-identification for video surveillance applications, attempting pairwise

face matching to identify a person in a database using a deep Siamese network. Next, we

explore video description, attempting to capture the distribution of the identity samples from a

movie using the same Siamese network with clustering techniques. To address this problem,

other researchers have labeled a large amount of data in order to enhance their model, which

is problematic as it is time- and resource-intensive. The objective is to a adapt deep Siamese

network trained on public datasets of static face images to the unconstrained video domain in

an unsupervised manner, removing the need to label data manually. To this end, we use triplet

loss to learn and adapt discriminative face features in a practical manner for real-world video

applications.

Recent work in video surveillance has used supervised adaptation to close the domain gap between

static images and videos. Other researchers have used weakly-supervised or unsupervised

domain adaptation, but there are very few works based on a deep Siamese network. These require

the target domain to be either a closed-set problem or have a very large amount of unlabeled

data, both of which impractical. In this thesis, we introduce an unsupervised domain adaptation

named Dual-Triplet learning which is a variant of triplet learning. It simultaneously uses triplets

from source and target domains to adapt robust static representation to newly installed video

sources using only a few unlabeled samples. The methodology is validated with the COX-S2V

dataset whith which we are able to get 3% to 7% gain in classification accuracy.

In regards to video description, we intend to use a deep Siamese network with tracklet information

to group face samples of the same identity. With such a tool, it will be possible to describe

faces on any video automatically. To this end, robust static face CNN backbones are adapted

to a movie using unlabeled data from the movie itself. By using spatio-temporal information

(tracklets) of video samples, it is possible to produce positive and negative pairs for triplet loss

training. With this, we attempt self-supervised learning with a deep Siamese network, using the

first episode of the television series The Big Bang Theory, to learn robust and discriminative

features of face samples from the movie. We show that self-supervised learning can enhance

the clustering V measure by 15%. We also show that with a sufficient number of samples, the

tracklets can be used as a single representation to perform faster and more accurate clustering.

Keywords: face recognition, deep learning, Siamese network, video surveillance, video

description
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INTRODUCTION

One of the most well known applications in pattern recognition is facial recognition. Face

recognition has become very popular because of its potential to identify human faces discretely

and effectively. It can be applied, for example, in video surveillance, biometric identification,

and in video description. Currently, state-of-the-art face recognition techniques are based on

deep learning architectures.

The pattern recognition domain took a huge leap forward in 2012 with the successful application

of a convolutional neural network (CNN), as reported by the first CNN AlexNet (Krizhevsky,

Sutskever & Hinton, 2012). A CNN is a deep learning architecture specifically designed to learn

patterns from image data. It usually consists of millions of parameters that are adjusted through

gradient descent (SGD).

However, even with the arrival of deep CNN, facial recognition remains a challenge. To

perform facial recognition successfully, many factors must be considered such as illumination,

occlusion, blur and pose (Jain & Li, 2011). Also, we must consider that in the case of facial

recognition, the problem is an open-set classification problem for which there are an indefinite

number of identities alias classes. Using representation learning with Siamese networks allow

CNN to operate on open-set problems by learning discriminative features of faces (Bengio,

Courville & Vincent, 2013).

Face can be captured in a frontal high-quality picture of a still subject or from a video where the

subject is moving. Subjects captured from video suffer from the effects of blur and pose variations.

Therfore, we can formulate three cases of comparison: still-to-still (S2S), still-to-video (S2V),

and video-to-video (V2V). Still-to-still works by using a high-quality still region of interest

(ROI) as a reference. This is the easiest method, because the ROI is captured in a controlled

environment and the image is of adequate quality. With still-to-video, the reference ROIs are

taken from still images and the testing ROIs are taken from a video stream. Here, the difference
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in capture conditions can pose a challenge. Finally, video-to-video occurs when a video-captured

ROI is compared to a video-captured reference.

For the kind of video surveillance that seeks to retrieve a subject, the facial-recognition system

operates in a S2V application. The researched subjects are registered with high quality still

images. Then, a surveillance camera can capture subjects to compare them with the registered

subjects. The system will notify the user if there is a match between the subjects.

Problem statement

In this thesis, we will address two challenges of using facial recognition for video surveillance

and video description applications. In regards to video surveillance, we attempt to identify

subjects in video samples from a database of still face images. In regards to video description,

we will attempt automatic regrouping of identities from videos for name-tagging purposes.

A face recognition system has three main modules. It must perform face segmentation (or

detection), face representation, and similarity comparison. The segmentation process has been

studied by many groups (Hsu, 2002) (Yang, Luo, Loy & Tang, 2016) (Jain & Learned-Miller,

2010). CNN-based face detection systems have had great success using tracking algorithms to

capture faces in various scenes and to produce trajectories. These techniques have become so

efficient, they can capture faces with various poses and from images of different quality and

illumination. These variations pose a key problem for similarity comparison as it must be able

to produce discriminative representation from challenging ROI.

The face representations are trained using a massive database that is typically made up of images

of known individuals taken from the internet. However, these annotated images may not have

the same camera-capturing conditions. Having annotated samples from a scene, it would be

possible to enhance the representation for better performance with that specific scene using



3

supervised domain adaptation. This would close the domain gap between the source data and the

camera-captured conditions, but comes at the price of greater resource and time requirements.

For autonomous video description, regrouping the face representations of a single character

can be difficult. As face segmentation is very robust, it captures the face of an individual in

various conditions. In this particular case, the pose of the individual is a critical element. Two

trajectories of the same character with different poses can create two distinctive groups in the

feature space.

Challenges

The challenges for facial recognition that I will address in this manuscript are as follows:

- The domain shift between static and video face images: State-of-the-art face representa-

tions are deep learning models that require many annotated samples to produce discriminative

representations of identities. As face segmentation becomes more powerful, we include more

small image samples or samples with more variations in pose and occlusion. It is then more

challenging for the feature extractor to produce those representations as it must learn these

new complexities. Generally, the video domain in which we perform facial recognition does

not have annotated samples. As manually annotating samples is time and resource-intensive,

the challenge is to find a way to perform domain adaption in a unsupervised or self-supervised

manner using only a few unlabeled samples.

- Face clustering: In movies or TV episodes, face segmentation can capture many identities in

various conditions. Regrouping those faces in the feature space is difficult because the pose,

illumination and image quality cannot produce distinctive clusters. Also, it is possible to

have heavily imbalanced data, making it difficult for a deep learning method with a clustering

algorithm to differentiate clearly between an identity with few occurrences and an identity

with many occurrences.
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Research Objectives and Contributions

The research objective is to develop deep learning models based on CNN for facial recognition.

Specifically, the objectives are to perform facial recognition for video surveillance with a

Siamese network; to propose a simple methodology for unsupervised or self-supervised domain

adaptation for video surveillance and video description.

The contributions are as follows:

- In chapter 3, we explain the representation learning process of our base face representation and

we apply unsupervised domain adaptation (UDA) for video surveillance on COX-S2V dataset.

Our UDA is based on our proposed dual-triplet metric learning and mutual supervised sample

mining. This work was presented in (Ekladious, Lemoine, Granger, Kamali & Moudache,

2020).

- In chapter 4, we use self-supervised DA to perform video description of the first episode of

the television series The Big Bang Theory. This is achieved by exploiting the spatio-temporal

information from face trajectories called tracklets.



CHAPTER 1

RELATED WORKS

1.1 Introduction

In this chapter, we will review the literature of deep neural network techniques for face recognition

tasks. First, we will review convolutional neural networks (CNNs) and their components which

represent the state-of-the-art techniques to solve pattern recognition problems. Then, we will

summarize the application of CNNs in the face recognition field. Finally, we will review some

techniques to perform domain adaption for face recognition successfully across different video

domains in an unsupervised manner.

1.2 Deep Learning Models

1.2.1 Convolutional Neural Networks

Since the success of a convolutional neural network (CNN) in 2012 with AlexNet (Krizhevsky

et al., 2012) in the ImageNet competition, deep learning techniques have become widely used

for solving computer vision problems. CNNs have become deeper and deeper to achieve better

accuracy in image classification. Some of the most popular CNN architectures were the AlexNet,

VGG network (Parkhi, Vedaldi & Zisserman, 2015), Inception (Szegedy, Liu, Jia, Sermanet,

Reed, Anguelov, Erhan, Vanhoucke & Rabinovich, 2015) and ResNet (He, Zhang, Ren & Sun,

2016). These were achieved due to the availability of greater computational resources.

A CNN is a deep learning architecture that uses images as input to produce discriminative

features learned from a large dataset. These features can then be used for classification or

regression tasks. CNN architectures are used for image recognition due to their capacity to

maintain spatial information across the network.
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In this section, we will cover the basics of CNN operations and review some popular architectures

and their characteristics.

Components

The general components of the CNNs reviewed in this section are the convolution layer, the

activation function, pooling, and the fully connected layer. Figure 1.1 shows how these

components are assembled together to form the network.

Figure 1.1 Example of convolutional neural network (CNN).

Convolution Layer. The convolution layer is made up of learned kernels that are passed over

the feature map or the input image. Each convolution layers features multiple kernels that learn

different small patterns. The kernel is a 2D matrix of numbers of n by n size, and the number of

kernels can vary, going as high as 4,096 per convolution layer for certain CNN architectures. The

convolution process entails multiplying each n by n section of the image by each kernel. Given

an output feature map of the size w x h with c kernels, it gives a feature map with shape image w

x h x c. To gradually reduce the size of the feature map, one could use pooling techniques.

Activation Function. At the end of the convolution operation, we apply an activation function.

The activation function allows the introduction of non-linearity into the CNN. Indeed, pattern

recognition problems are generally nonlinear, while the operations used in CNNs such as

addition and multiplication are linear. Without introduced non-linearity, all of the layers would

be summarized into a simple linear function. The ReLU activation function is generally used

because it works well and is fast to compute. For binary classification, we use a sigmoid function

where the output value is between 0 and 1, which reflects confidence probability.
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Figure 1.2 Example of convolution.

Pooling. In a CNN architecture, pooling operations reduce the size of a feature map. This

reduction concentrates the features and makes the classification process easier, as the space

becomes less complex. However, reducing the space with pooling leads to information loss.

Generally, architectures use max pooling or average pooling, which reduce sections of the feature

map with the maximum value or average value, respectively, within that section.

Fully Connected Layer. Fully connected layers are the classic neural networks in which all

neurons in one layer connect to all neurons of the next layer. They are known to be inefficient

when performing visual tasks, compared to convolution networks. Usually, they are placed at

the end of a CNN network to perform classification or regression tasks. Their objective in a

CNN is to flatten the results of pooling or convolution, to produce labels.

Architectures

We review some popular CNN architectures that are used in state-of-the-art techniques. These

include AlexNet, VGG, ResNet and Inception architectures.

AlexNet. The AlexNet deep neural network was the first CNN to achieved state-of-the-art results

in the ImageNet LSVRC-2012 competition (Krizhevsky et al., 2012). The availability of greater



8

computational resources provided the opportunity to train such an ambitious network. The

network parameters calculation was split among multiple GPUs to train more quickly.

VGG. The VGG neural network is one successor of the well-known AlexNet (Parkhi et al.,

2015). Compared to other networks of the time, the VGG focused more on the CNN depth.

There are two variants of depth, consisting of 16 and 19 convolution layers, followed by 3 fully

connected layers.

The success of the VGG network comes from the use of small 3x3 receptive fields with a stride

of 1, compared to AlexNet with 11x11 receptive fields and a stride of 4. Stacking multiple

convolution layers of 3x3 filter can give the same coverage as convolution with larger filters,

but with less parameters. This allowed to make the network deeper since each layer have less

parameters to train.

ResNet. As researchers sought to improve CNN performance by increasing the number of layers,

they encountered the problem of the vanishing gradient. As the gradient is back-propagated

from one layer to another, it tends to gradually become infinitely smaller. As the network goes

deeper it may be harder to train leading to decreased performance.

The author thus proposed the ResNet architecture, which tackled the problem of the vanishing

gradient by introducing residual blocks (He et al., 2016). The residual block provides an easier

way for the back-propagated gradient to flow through the whole network. It accomplishes this by

learning the residual F(x). The residual block is shown in Figure 1.3.

There are multiple possible configurations of the ResNet architecture. One can choose a network

depth of 18, 34, 50 or 101. The authors tried greater depths but these did not provide high gains

in performance compared to ResNet-101 and in some cases it gave worse results.

Loss functions

Here, we will review two common loss functions for classification: the cross-entropy and Hinge

loss functions.
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Figure 1.3 ResNet residual block (He et al., 2016).

Cross-entropy loss function. The cross-entropy, or log loss function, is the measure of the

performance of a classification prediction for which the value is between 0 and 1. This loss

function is known to give a much higher loss value when the prediction score is different from

the actual label and to give a lower loss value when the prediction is close to the actual label. A

log loss value of 0 indicates a perfect prediction. The cross-entropy loss for multi-classification

is calculated as follows:

Lcross−entropy = −

M∑
c=1

yo,clog
(
po,c

)
(1.1)

where M is the number of classes, y a binary indicator of 1 or 0 for if the label c is the true label

of the observation o and p is the prediction score of the label c for the observation o.

Hinge loss function. The Hinge loss function is most frequently used with support vector

machines, but is also used to train classifiers. Essentially, it is a simple linear function; the more

the prediction value differs from the objective, the greater the loss value will be, linearly. If the

prediction value meets the objective, the value will be 0. The equation is as follows:

Lhinge =
∑
j�yi

max (0,1 − yi · si) (1.2)
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where y is the label value -1 or 1, j is the image prediction, and s is the raw score of the image i.

1.2.2 Siamese Networks

In this section, we firstly describe the general architecture of a Siamese network. Then, we

describe some loss function to train object representation for this architecture.

Architectures

Deep Siamese neural networks, are neural networks that can produce discriminative representation

from an input for pairwise matching based on a distance metric. As the two images pass through

the same neural network, their feature vectors can be compared in order to measure the similarity

between those two images, as shown at Figure 1.4. Siamese networks are used, for example,

for handwritten checks and face recognition tasks. The main advantage of using a Siamese

network is to be able to classify an unlimited number of identities since the network is not using

a classification layer. We can say that the Siamese architecture resembles to a one-shot classifier

since we can retrieve an identity never seen during the training with only one reference sample

from that identity.

For a Siamese network to perform, it requires a neural network able to produce discriminative

spatial features for the specific objects to be matched. There are many methods to train a neural

network to achieve this objective with metric learning such as contrastive loss and triplet loss.

Generally, a Siamese network is used to retrieve the identity of one or multiple objects across a set

of input images. The images are processed by the neural network and the resulting representation

vectors are stored in a database ready to be compared to newly arrived representation vectors.
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Figure 1.4 Siamese neural network.

Loss Functions for Metric Learning

In this subsection, we will review some loss functions that learn discriminant representations.

Contrastive loss, triplet loss and Center loss were commonly use as Euclidean distance-based

loss functions.

Contrastive Loss. Contrastive loss was first introduced in (Hadsell, Chopra & LeCun, 2006).

It requires an ensemble of positive data pairs (same class) and negative pairs (different class).

The contrastive loss is defined as follows:

Lcontrastive = yi j max
(�� f (xi) − f

(
xj
)��2

− ε+
)
+ (1− yi j)max

(
ε− −

�� f (xi) − f
(
xj
)��2

)
(1.3)
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The term yi j is equal to 1 if the image pair is positive and is equal to 0 if the image pair is

negative. The terms xi and xj are the image representations that come in pairs. The ε+ and ε−

terms control the margin of the positive pairs and negative pairs, respectively.

Triplet Loss. To enhance the performance of our face recognition algorithm, we attempt to

refine the face feature extractor so that it can produce discriminative face representations for

our specific cases. It is necessary to refine the model as we experiment, so that the base model

does not provide optimal performance in domains other than the source domain. Our feature

extractor is trained using a very large publicly available dataset VGGface2 (Q. Cao, Shen, Xie,

Parkhi & Zisserman, 2018) that permits us to achieve good generalization of face characteristics.

The training methodology is triplet loss where the model attempts to learn a margin between

classes.

Triplet loss is a metric learning technique that learns a margin between inter-classes (Schroff,

Kalenichenko & Philbin, 2015b). It learns discriminative embedding where the similarity can

be measured with the distances between them. In the Euclidean space, the triplet loss is defined

as follows:

Ltriplet = max
(
‖ f (a) − f (p)‖2 − ‖ f (a) − f (n)‖2 + α,0

)
(1.4)

Here, a is an anchor, p is a positive sample to the anchor, n is a negative sample to the anchor and

f is the feature extractor. Once the loss function approaches to zero, the positive samples should

be near to each other in the Euclidean space and the negative samples should be separated by the

defined margin α.

The cost function to minimize is then expressed by the following equation where M is the number

of trainable triplets in the training set:

M∑
i=1

Ltriplet (ai, pi,ni) (1.5)
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Selection of the triplets is crucial to ensuring fast and good training. Generating easy triplets

will result in slower convergence. Thus, we want triplets that do not meet the condition in

Equation 1.5. There are three types of triplets:

Easy triplets: the triplets loss function is 0, because d(a, p) + α < d(a,n)

Semi-hard triplets: the negative sample is not closer to the anchor than the positive, but it is

within the margin. d(a, p) < d(a,n) < d(a, p) + α

Hard triplets: the triplets negative sample is closer to the anchor than the positive. d(a,n) <

d(a, p)

Figure 1.5 Triplet difficulty distribution.

To generate these triplets, we can use offline or online mining. Offline mining consists of

generating all the embedding before each instance (epoch or step, for example). Then the

hard and semi-hard triplets are kept for training. As the paper FaceNet (Schroff et al., 2015b)

describes, this methodology is not efficient, so they introduce online mining. The main idea is

to generate the triplets at each mini-batch. There are two strategies for online mining which are
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batch all and batch hard. In the batch all strategy, every valid triplet is selected and the loss

is the average of the hard and semi-hard triplets. In the batch hard strategy, only the farthest

positive and the nearest negative are selected from each sample/anchor. The generated triplets

will be the hardest in the batch.

Center Loss. The center loss objective is to learn a center for each class (Wen, Zhang, Li & Qiao,

2016). It brings the sample representations near to each other by penalizing the distance between

them and their corresponding centers. This loss function is good at reducing intra-variance. The

center loss is defined as follows:

Lcenter =
1

2

M∑
i=1

��xi − cji

��2

2
(1.6)

The term xi represents the representation of M total representations of the ji class with i

representing the depth of the representation. cji is the center of the class ji.

1.3 Face Recognition

The face recognition domain can be divided into multiple tasks. In this section, we review face

detection, face tracking and face matching. Face detection techniques are required to capture the

region of interest and to feed this region into the identification process.

1.3.1 Detection

The first efficient face detection technique was the Viola-Jones (Viola & Jones, 2001). This

technique has the advantage of being computationally fast, but lacks in robustness when used

in an unconstrained environment. Some of the state-of-the-art deep learning detectors are the

Faster RCNN (Ren, He, Girshick & Sun, 2015), the Single Shot Multibox Detector (SSD) (Liu,

Anguelov, Erhan, Szegedy, Reed, Fu & Berg, 2016) and the You Only Look Once (YOLO)

(Redmon, Divvala, Girshick & Farhadi, 2016).
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Popular single-shot detectors are the YOLO and the SSD. These architectures are also based

on any CNN feature extractor (FE) architecture but they add a bounding box layer generator to

the end of the FE. These methodologies require less computational resources, but give lower

detection results. The MTCNN (Zhang, Luo, Loy & Tang, 2016) architecture directly addresses

the problem of face detection. This is a strategy based on a cascaded architecture of three

specialized deep convolutional networks. This methodology obtain key points from the faces

such as the eyes, nose, and mouth. In this way, it is possible to train a face recognition model

based on specific parts of the faces or to align it.

Faster RCNN

Based on its predecessors RCNN and Fast RCNN, Faster RCNN operates with a region proposal

network (RPN) which is based on a CNN backbone. The RPN can be based on any CNN

architecture. To produce regions, they add a small network onto the last feature map of the CNN

that takes an n × n input. This small window slides over the feature map and flattens the feature

map into a vector. This vector is then passed to two fully connected networks. One network is

for the box regression proposal and the other network is for classification. For each window,

they set a number of k anchors of different fixed sizes which make an output of 2 ∗ k for object

or not object prediction and 4 ∗ k for bounding box regression.

A classifier is then passed over all of the proposed regions to produce a prediction score for each

box. This architecture gets competitive performances on general object detection datasets, but

this process can be rather slow compared to a single-shot object detection algorithm.

1.3.2 Matching

Casual object recognition models have a fixed number of classification outputs when trained

using softmax cross entropy loss. However, in the case of face recognition, we may need to learn

a variable number of subjects. To resolve this problem, Google introduced FaceNet (Schroff

et al., 2015b), a face recognition model trained using triplet loss. This model learns metric
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representations of faces, where each representation can be compared to the others to measure

the similarity.

Currently, there is a lot of research on face representation based on still face images that is very

successful. This research generally uses deep CNNs and Siamese Architecture. Unfortunately,

these methodologies are not as reliable when used with video-based face images. Thus,

other researchers have proposed more complex methodologies and architectures to enhance

the performance, but this has come at the cost of increased computational complexity and

operational time, which can cause problems for real world applications. The sate-of-the art

methodologies require information that is not available during operation or can only be obtained

at a high price. It is not practical to implement those solutions in real world applications or to

calibrate existing methods for use on newly installed video source such as cameras.

In (Ding & Tao, 2018), the authors used a complex ensemble structure that is not optimized for

real-time operation. Also, it required two expensive details: facial landmarks which may fail

due to occlusion and a lot of annotated images from the target domain for calibration. (Parchami,

Bashbaghi & Granger, 2017b) proposed Haar-like features, and (Parchami, Bashbaghi & Granger,

2017a) proposed a more efficient network structure. However, both again required a large amount

of annotated images with synthetic generation of video face samples from the target domain.

Again, in (Wen, Chen, Cai & He, 2018), labeled data from the target is necessary for calibration.

One way to perform calibration automatically without labeled data from the target domain is to

employ self-supervised learning. To do this, some use the spatio-temporal information (tracklets)

given by a tracking algorithm performed on a video feed (Sharma, Tapaswi, Sarfraz & Stiefelha-

gen, 2019) (Wu, Lyu, Hu & Ji, 2013) (Cinbis, Verbeek & Schmid, 2011). In (Sharma et al.,

2019), this provided reasonable performance gain for large video files (a TV series episode) but

did not perform well when there was not much unlabeled data available. It is important to note

that these methods make the following assumption to label their face samples as either the same

or different: samples within the same tracklet are the same and samples from two co-occurring

tracklets are different. In the vast majority of cases, this hypothesis should be true.
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1.4 Unsupervised Domain Adaptation

There has been a lot of work to try to bring face representations of the same identity as close

as possible in the feature space while trying to move representations from different identities

as far apart from each other as possible. Recent work has triplet loss and Siamese networks

with few-shot learning and with few data (Hoffer & Ailon, 2015) (Laradji & Babanezhad, 2018).

Training a robust face feature vector requires a large amount of data, which may not be available.

This is why some have attempted to use Unsupervised Domain Adaptation (UDA) methodologies

to adapt already existing robust models to new applications.

The UDA methods are more appealing and accessible, since they allow to transfer the knowledge

across the domains without the need of labels from the target domain. From a global perspective,

there are two directions of UDA based on adversarial learning (Goodfellow, Pouget-Abadie,

Mirza, Xu, Warde-Farley, Ozair, Courville & Bengio, 2014); feature-level adaptation and

pixel-level adaptation. For feature-level adaptation, it attempts to map the source and target

domain in a same feature space to then use a classifier trained on that space that can work

for both domains. For pixel-level adaptation, it transforms the images of the target domain to

reassemble the images from the source domain, where a CNN trained on the source domain can

classify images from the target domain.

Already, UDA for metric learning is being explored (Laradji & Babanezhad, 2018), (Sohn,

Shang, Yu & Chandraker, 2019). The research M-ADDA (Laradji & Babanezhad, 2018) use

adversarial learning (Ganin & Lempitsky, 2014) with simultaneous magnet loss to reduce the

gap between domains while keeping the class center aligned. However, this methodology can

only be applied on close-set problems where the classes are the same between the source set and

the target set. In (Sohn et al., 2019), the authors operate on open-set problems by introducing

separation loss, which separates the source and target representations.

To perform UDA between a source and target domain, the authors of the methodology M-ADDA

(Laradji & Babanezhad, 2018) propose a metric-based domain adaptation in two steps. Firstly,

with the source dataset, they train a model with triplet loss to regroup the representations of the
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same identity together and to separate the representations from different identities. This produces

a powerful source model that is used for the next step. Secondly, they simultaneously attempt to

confuse the representations from the source and target dataset with adversarial learning and to

regroup the identities representations from the target dataset with magnet loss. To confuse the

source and target representations, they use a discriminator that tries to distinguish representations

from the source or target dataset while training the target model to produce representations

that look like the source. At some point, they train the target model with magnet loss that pull

representations from the same identities to their centers, limiting this part of the training to a

limited number of identities. It is possible to only use the adversarial approach or the magnet

loss training to perform UDA, but the authors noted that the UDA works best with both methods.

In their research, they only experiment domain adaptation between the dataset MNIST and

USPS, two written digits datasets with numbers from zero to nine. Applying this methodology

for more complex problem like FR could give uncertain results.

The authors of (Sohn et al., 2019) directly attempt UDA on face recognition problems. More

specifically, they try to close the domain gap between still and video captured faces. They

mention that their methodology requires a lot of unlabeled video images and labeled still images

to work. Like the method describe above, they firstly trained a powerful source model with a

source dataset made of, in their case, of annotated still images. To perform UDA, they do data

augmentation with image transformation and adversarial learning. They apply transformations

to the source images to make them like as if they were from a video and attempt to make the

source model to reproduce the same representation as if there were no transformations. They

note that it is not always possible to know all the variation factors between the two domains

and use adversarial learning to address this. Again, like the method describe above, they use a

discriminator to distinguish the images coming from the source and target dataset to attempt

to align the two domains in the representation space. But, their discriminator is also able to

discount the contribution of extremely noisy images to help with the training. They experiment

on YouTube Faces and IJB-A datasets and achieve state-of-the-art accuracy.



CHAPTER 2

EXPERIMENTAL METHODOLOGY

In this chapter, we will survey the face recognition datasets and the evaluation measures used in

this thesis. Some datasets are used for training and others are used for evaluation, in order to

compare our results to the literature. The evaluation metrics have been chosen based on those

used in previous research.

2.1 Datasets

In this section, we will review and describe the datasets used in our experiments. We used

VGGface2 to train our base FE and LFW to benchmark it. To experiment with domain adaptation,

we used COX-S2V and the TV series The Big Bang Theory.

2.1.1 VGGface2

For the training of the base feature extractor, we used VGGface2 dataset (Q. Cao et al., 2018)

which is a face recognition dataset. It is a large dataset composed of 9131 subjects annotated in

3.31M still images. This dataset is not known to have many identities, but to have many samples

per identity, which is good for metric learning that requires many samples of the same identity.

Figure 2.1 shows some examples of the image samples.

To facilitate recognition, we applied some pre-processing steps before the experiment. First, we

removed unnecessary image background by applying MTCNN to each image to isolate the face.

Then, each face is resized to an image of 160 x 160 pixels and saved as a JPEG file.

2.1.2 LFW

The validation of the base FE is performed on the LFW dataset (Wen et al., 2018), a large dataset

composed of 1680 annotated subjects with more than 13 000 still images. Like the training set,
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Figure 2.1 VGGface2 samples

we apply MTCNN to every image of the validation set to extract the faces and then resize them

to 160x160 pixels. This dataset is widely used for benchmarking.

2.1.3 COX-S2V

Our methodology is evaluated using the COX S2V dataset (Huang, Shan, Wang, Lao, Kuer-

ban & Chen, 2015). For each of the 1,000 subjects, there is one high quality still image and four

video sequences captured by three cameras, making 4000 video samples in total. The videos

capture conditions are as follows: the subject must walk an S-shaped parkour path (Figure 2.2)

while being filmed by three different cameras, which produces four video sequences from four

points of view as shown in Figure 2.4.
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Figure 2.2 COX-S2V capture path (Huang et al., 2015).

Figure 2.3 COX-S2V still sample.
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a) CAM1/video4 b) CAM2/video3

c) CAM3/video2 d) CAM3/video1

Figure 2.4 COX-S2V video samples.
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Following the evaluation protocol of the COX dataset paper (Huang et al., 2015), the dataset is

split with 700 identities used for evaluation and 300 identities used for training and validation.

This allows direct comparison of our results to those of existing techniques like VGG-Face,

TBE-CNN, HaarNet, and CCM-CNN. The COX dataset is usually used to evaluate the ability of

a face recognition application, known to work on existing cameras, to work on a newly installed

camera.

2.1.4 The Big Bang Theory TV series

To attempt video description for faces using our methodology, we used the first episode of

the TV series The Big Bang Theory Season 1 which has been tested by other research. For

comparison, we use the annotations from CVPR 2012 (Tapaswi, Bäuml & Stiefelhagen, 2012).

These consist of bounding boxes that fit the characters’ faces at each frame of the video. Each

bounding box is associated with a label. For our experiment, we extract the region-of-interest

defined by the bounding boxes and take the labels as ground truth for evaluation.

There are seven annotated characters that appear during the episode. The characters that appear

most often are Sheldon, Leonard and Penny. The characters Howard, Raj and Kurt do not appear

as often and have less samples. In the case of Kurt, he only appears in the title presentation.

The CVPR 2012 annotations lastly annotated other characters as unknown which include the

secretary at the beginning of the episode and children near the end. The imbalance in character

samples makes the challenge harder to group identities.

2.2 Performance Measures

In this section, we will review two types of evaluation metrics, which are the classification

metrics and clustering metrics. The classification metrics are used in Chapter 3 to evaluate the

model prediction for sample pairs as being the same or not the same. The clustering metrics are

used in Chapter 4 to evaluate the quality of the predicted identity groups.
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2.2.1 Classification Measures

The performance evaluation metric of a Siamese network can be similarly evaluated as a binary

classifier where the prediction is the same or not the same. When comparing representations in

order to measure the similarity, they are classified as the same if the similarity is over a certain

threshold. A high similarity threshold will give high confidence for same label, but will augment

the risk of labeling positive pairs as not the same if the samples have different capture conditions

that make their representations more different from each other. A low similarity threshold should

label more of these hard positive pairs as the same, but at the cost of labeling more negative

pairs as the same.

It is important for these metrics to balance negative pairs and positive pairs. The evaluation

pairs are generated once and saved to a file which will be used for the evaluation of all the

experiments, giving a fair comparison between the experimentations.

Accuracy

The accuracy is the proportion of correctly labeled predictions on the total number of predictions.

On a binary and balanced evaluation set, an accuracy of 50% means that the predictions are

random, while 100% means that the predictions are perfect.

The terms of the calculation of accuracy are as follows:

- TP: True Positive are positive pairs labeled as the same.

- TN: True Negative are negative pairs labeled as not the same.

- FP: False Positive are negative pairs labeled as the same

- FN: False Negative are positive pairs labeled as not the same.

The accuracy is calculated as:
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Acc =
TP + T N

TP + T N + FP + FN
(2.1)

The equation terms are calculated with a distance threshold optimized on the validation set to

maximize accuracy. In the case of LFW, the evaluation set is divided into 10 equal subsets and

the distance threshold is the mean of the optimization results on each of these subsets.

Validation Rate

In this thesis, the validation rate (VAL) is defined by the FaceNet research to which we will

compare our results. The validation rate is the True Acceptance rate (TA) but at a distance

threshold defined by a fixed False Acceptance Rate (FAR). All same identities pairs are defined

by ρsame and all pairs of different identities are defined by ρdi f f The terms are defined below.

V AL(d) =
|T A(d)|
|ρsame |

, F AR(d) =
|F A(d)|
|ρdi f f |

(2.2)

We compute the validation rate at FAR=0.001. The distance threshold is calculated with the

FAR equation and then the validation rate is calculated with that threshold. This metric allows

us to better compare our results with those of the LFW dataset as the accuracy score of the

state-of-the-art techniques are all near 99.9%.

2.2.2 Clustering Measures

Here, we will review some clustering metrics used in this work. Some of these metrics have

been chosen for their ability to represent accurately the clustering quality in order to compare

our methodologies with other research. We will review silhouette score, Weighted Purity and

V-measure.
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Silhouette Score

The silhouette score (Rousseeuw, 1987) does not require the ground truth to be calculated. It

measures the similarity between a data point and its own cluster in comparison to other clusters.

To compute the silhouette score, we first calculate the mean distance a(i) between a data point i

and all the other data points j within the same clusters. That value represents the goodness of its

assignment to its cluster.

a(i) =
1

|Ci | − 1

∑
j∈Ci,i� j

d(i, j) (2.3)

Then, we find the minimum mean distance to all points in the other clusters. It can be viewed as

the mean dissimilarity to the closest other cluster.

b(i) = min
k�i

1

|Ck |

∑
j∈Ck

d(i, j) (2.4)

Finally, the silhouette score is defined as follows:

s(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 − a(i)/b(i)) if a(i) < b(i)

0 if a(i) = b(i)

b(i)/a(i) − 1 if a(i) > b(i)

(2.5)

A score near 1 signifies that the data corresponds to its own cluster while being far from other

clusters, while a score near -1 signifies that the clusters are mixed and hardly separable.

Weighted Purity

The weighted purity (Tapaswi, Parkhi, Rahtu, Sommerlade, Stiefelhagen & Zisserman, 2014) is

calculated by summing all of the clusters and dividing them by the total number of samples N.
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The weighted purity is express in equation 2.2.2 where c is a cluster in the set of C clusters and k

is a class in the sets of K classes.

purity =
1

N

∑
kεK

max
cεC

|k ∩ c | (2.6)

This metric has a few drawbacks. It does not penalize the score when there are many clusters or

when small clusters are misclassified (imbalanced data). It is a good metric for evaluating the

homogeneity of the predictions, but it does not evaluate the compactness.

V-Measure

The V-Measure (Rosenberg & Hirschberg, 2007) is a conditional entropy-based external cluster

evaluation measure. It considers the homogeneity and completeness of the clustering. To achieve

homogeneity, each predicted class must be present in only one cluster. The homogeneity is

expressed as follows:

h =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if H(C |K) = 0

1 −
H(C |K)

H(C)
else

(2.7)

Where

H(C |K) = −

|K |∑
k=1

|C |∑
c=1

ack

N
log

ack∑|C |

c=1
ack

(2.8)

H(C) = −

|C |∑
c=1

∑|K |

k=1
ack

n
log

∑|K |

k=1
ack

n
(2.9)
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To achieve completeness, all representation of a single identity must be classified into a single

cluster. It is symmetric to the homogeneity. The completeness is expressed as follows:

c =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if H(K |C) = 0

1 −
H(K |C)
H(K)

else

(2.10)

Where

H(K |C) = −

|C |∑
c=1

|K |∑
k=1

ack

N
log

ack∑|K |

k=1
ack

(2.11)

H(K) = −

|K |∑
k=1

∑|C |

c=1
ack

n
log

∑|C |

c=1
ack

n
(2.12)

Finally, the V-measure is expressed as follows where β permits more weight to be given to the

homogeneity score or to the compactness score.

Vβ =
(1 + β) ∗ h ∗ c
(β ∗ h) + c

(2.13)

2.2.3 Complexity

To compare the complexity of our method with others, we simply note the number of parameters

and operations use in the methodology. We use these measures because they are independent of the

hardware used. In this thesis, we base our experimentation on one CNN architecture the Resnet50.

This CNN is used as a face feature extractor to produce face representations. The Resnet50

typically has around 23 millions parameters and has an inference time of less than 3 ms on an

Nvidia Titan XP if used with a batch size greater than 1 (Bianco, Cadene, Celona & Napoletano,

2018). This architecture is heavier than other more lightweight, architectures such as mobilenet,
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which have an inference time of less than 1 ms. However, it is not as complex as, for example,

the Resnet-152, which takes two to three times more time to achieve the same performance with

only slightly greater accuracy.





CHAPTER 3

FACE RECOGNITION WITH SIAMESE NETWORKS FOR VIDEO
SURVEILLANCE

3.1 Introduction

Generating and calibrating discriminant representations of face images is crucial for new

capturing devices and new capture environments. This is especially true for face recognition

with video surveillance. The representation learning methodologies for still face images is

well-developed as there are many large datasets of still images available. It allows human-level

performance, like the current face recognition (FR) systems (Schroff, Kalenichenko & Philbin,

2015a) .

Face representation captured from video is harder to discriminate for two main reasons. First,

the face is captured in an unconstrained manner that can lead to major variability in facial

appearance, pose, illumination, scale, expression, etc. Second, there are significantly fewer

video-based datasets available, compared to still-image datasets. There are not enough samples

to learn reliable deep face representations. For example, the YouTube face dataset (Wolf,

Hassner & Maoz, 2011) contains 3.4K videos with 1.5K different subjects while the still-image

VGG face2 dataset contains 3.3M faces of 9K subjects (Q. Cao et al., 2018).

One way to tackle this challenge is to reduce the variability of video-based images to a level

similar to that of still images. Doing so will enhance the performance of the powerful still-image

face representations on video face samples. For example, some use the autoencoder deep neural

network to learn discriminant face representations with wich to produce high-quality images

(frontal, well-illuminated, less blurred faces with neutral expressions) from video-based images

(Parchami, Bashbaghi, Granger & Sayed, 2017c). This method requires a lot of data from the

target domain and is not practical for the calibration of newly installed video sources.
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Another way to approach the problem of learning face representation for video is to create video

samples from still samples by adding effects similar to the video capturing conditions. Then,

these samples can be used to train new face representations for the specific video application. For

example, applying artificial blur to the still training data should compensate for the real world

video application. A training dataset composed of still and blurred face samples can encourage

a CNN to produce face representations insensitive to blur (Ding & Tao, 2018). Also, some

have proposed recreating the face samples from specific capture variations (pose, illumination,

etc.) to make them similar to samples captured under the conditions of the operational domain

(Mokhayeri, Granger & Bilodeaun, 2019) (Hong, Im, Ryu & Yang, 2017). These methodologies

are very complex and are not efficient for the calibration of new video capturing devices, and

they also may not be capable of covering the complete range of capturing conditions.

Currently, face representation learning for video is addressed using domain adaptation (DA)

methodologies. These attempt to adapt representation trained with high quality face images

(source data) to a different environment and capturing conditions such as video samples (target

data). With labeled data from the target domain, some methodologies perform a supervised

fine-tune of the source model (Wen et al., 2018), but obtaining these labeled samples is not

practical. More efficient methods of enhancing the video representations use Unsupervised

Domain Adaptation (UDA), which adapts the source model using unlabeled data from the target

domain (Wen et al., 2018) (Luo, Hu, Deng & Shen, 2018) (Ganin & Lempitsky, 2014). However,

these methods are not designed for open-set problem where the number of classes is unknown.

A Siamese network is able to address this problem by measuring the similarity between face

representations.

Recently, works on UDA for deep metric learning were put forward (Laradji & Babanezhad,

2018)(Sohn et al., 2019), but these methodologies are designed for closed and small-set challenges

like handwritten digit recognition (Laradji & Babanezhad, 2018), or use multiple techniques

for more difficult problems making the implementation inefficient for other applications such

as automatic calibration for video surveillance (Sohn, Liu, Zhong, Yu, Yang & Chandraker,

2017)(Hong et al., 2017).
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For this specific case of UDA where the adapted model is distance metric based rather than

a feature based model, we believe that the loss function should be optimized in the distance

space rather than the feature space. By doing so, we try to differentiate distances that are

within class (positive pair) or between class (negative pair). Also, this metrics works with

close-set and open-set problems, since it work with pairwise distances like some existing methods

(Laradji & Babanezhad, 2018)(Sohn et al., 2019). We use this concept to design our proposed

method.

Firstly, we capture a raw frame from the scene. The frame is fed into the face detector, which is a

deep learning model that scans the whole images for visible faces. This is a slow process as the

state-of-the-art detection technique used is computationally expensive. It generates a bounding

box for each detected face and sends it to the face tracker algorithm.

In general, tracking algorithms require low computational resources as they operate only in

regions of interest of the images. The tracker creates trajectories of the same entity over time,

feeding samples to the face recognition system.

The face recognition system is based on the Siamese net architecture. It extracts feature vectors

from the reference samples and stores them in a database. Using the same feature extractor, it

extracts features from the samples to identify and then compare to the reference features. The

feature extractor is based on the FaceNet model which is trained using triplet loss. It produces

representations where distances between two inputs correspond to the similarity between them.

This methodology permits adding a person of interest to the database without retraining a

classifier.

3.2 Face Recognition for Video Surveillance

In this section, we describe the different components of our face recognition system for video

surveillance. For face segmentation, we use FAST-DT (FAce STructured Detection and Tracking),

a methodology that combines detection and tracking techniques to produce face trajectories.

Then, the samples for these trajectories are given to a Siamese network to identify the face.
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Figure 3.1 Face recognition system for video surveillance.

3.2.1 Detection and Tracking

FAST-DT (FAce STructured Detection and Tracking) (Comaschi, Stuijk, Basten & Corporaal,

2015) produces bounding boxes around faces in video. The idea behind this structure is to offer

a subject trajectory by coupling a detector algorithm with a tracker algorithm. This permits

the gathering of more samples of the regions of interest in a given time lapse. In general, the

detector will have to input the whole frame, making it slower compared to the tracker, which

only operates around the region of interest. By running the detector only at each N frames and

the tracker at each frame, we achieve greater time performance and more samples.

The operation is as follows:

1. The face detector operates at each N frame on the raw frame. It feeds bounding boxes to the

SORT function.

2. The SORT instance compares the actual tracking with the new detection bounding box

(bbx).

a. If the detection bbx does not corresponds to one of the actual tracks, SORT initiates a

new tracker.

b. If the detection bbx correspond with one of the tracks, SORT updates that track.
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Figure 3.2 FAce STructured Detection and Tracking

c. If there is no detection bbx that corresponds with an actual track, SORT terminates

that track. However, there is an option to keep the tracking for a number frames, which

would allow to connect face trajectories if the face detector failed to capture the same

face during some frames.

3. The tracker operates at each frame giving the resulting samples from each track.

3.2.2 Pair-wise Matching

The face recognition module is able to identify a person using only a single reference in its

database. The module requires a preparation phase prior to operation to save computational time.

In the preparation, we extract the features from the target person’s database. These features are

stored in an embedded database, ready for comparison. Using the same feature extractor used in

the preparation phase, the module extracts the features from the persons of interest. The features

are then compared to each of the reference features using a similarity matcher. If the similarity

between the two feature vectors is high, identification is achieved.
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Figure 3.3 Face identification with a Siamese network.

The hyperparameters and the results of the training of the base FE are listed here. Using triplet

loss, we trained a ResNet50 architecture, which was pre-trained on the ImageNet dataset with

the VGGface2 dataset. For each epoch, 40 subjects and 5 samples per subject are randomly

fetched on which to apply the semi-hard mining strategy. Each sample is randomly flipped

horizontally. We set up a cosine annealing learning rate decay which starts at 0.01 and finishes

at 1e-6. The model was validated on the LFW dataset at each epoch.

a) Triplet total loss. b) Triplet mining.

Figure 3.4 Base FE training metrics.
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a) LFW validation accuracy during training. b) LFW distance pairs distribution.

Figure 3.5 Base FE evaluation metrics on LFW.

Table 3.1 Base FE LFW evaluation metics.

metrics ours FaceNet
accuracy 99.06% ± 0.53% 98.87% ± 0.15%

validation rate FAR=0.001 87.70% ± 3.32% 87.90% ± 1.90%

AUC 0.99915 -

3.3 Supervised Domain Adaptation of Video Face Representations

From the pre-trained feature extractor on VGGface2, we fine-tuned the model with COX S2V

dataset to improve its ability to generate discriminative representations from video samples.

To simulate our problem, we select viewpoints from COX videos as the source domain and

set another viewpoints as the target domain. The source videos represent the training set

where samples are annotated and used for supervised learning using classic triplet loss. The

target videos represent the viewpoints where we want to fine-tune the feature extractor without

annotating the samples. The samples are used for producing an adversarial loss that will shorten

the distance between target and source domains.

First, we fine-tune the FE on COX-S2V video samples from the chosen source viewpoints using

classic triplet loss. Then, we pursue the learning by adding the target triplet term produced by
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the target samples. As we do not know the target classes, the target samples are chosen randomly

within the training distribution. The following list summarizes the methodology steps:

- The FE is trained on VGGface2 using triplet loss.

- The FE is trained on 300 subjects of COX S2V using triplet loss.

- The FE is evaluated on the other 700 subjects of COX S2V.

Table 3.2 Base feature extractor on COX S2V datasets.

Model video 1 video 2 video 3 video 4
Base FE 75.80±2.41 94.05±1.14 68.57±2.06 91.97±1.50

Supervised fine-tune 96.70±1.72 98.12±0.93 95.13±1.54 97.82±0.91

3.4 Unsupervised Domain Adaptation of Video Face Representations using Dual-Triplet
Metric Learning

This section addresses the challenges of adapting face representations from video to a new video

source or environment, using only unlabeled target data so that the methodology is practical and

efficient. This chapter is from the same work of the paper Unsupervised Domain Adaptation of

Video Face Representations using Dual-Triplet Metric Learning from IJCNN 2020 (Ekladious

et al., 2020). The contributions of this work are as follows:

- we introduce a new domain adaptation framework called Dual-Triplet Metric Learning

(DTML) that allows adaptation of a metric to a target dataset using unlabeled data from the

target domain.

- we propose a mutually-supervised learning method where the source (teacher) data labels

the unlabeled target (student) data.

- we apply the proposed DTML and mutually-supervised methods to the still-to-video face

recognition application and provide a level accuracy comparable to state-of-the-art methods

for video face representation learning, but with unsupervised domain adaptation capability.
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a) video 1 b) video 2

c) video 3 d) video 4

Figure 3.6 COX-S2V distance distribution with base feature extractor.

It is important to mention that the proposed DTML with mutually-supervised learning can be

applied to different modalities, while in this paper we assess the method using the video-based

face recognition as a specific use case.

3.4.1 Dual-Triplet Metric Learning

We propose Dual-Triplet Metric Learning (DTML) as a framework for domain adaptation, as

illustrated in Figure 3.7. This framework offers an easy and efficient way to calibrate new video

sources with an existing face recognition video system such as a video surveillance network. The

methodology can be used to perform domain adaptation on existing model to a new capturing

device in an environment different than that of current operational devices.
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Figure 3.7 Dual-triplet metric learning for domain adaptation

The calibration data is composed of faces with unknown identity from a newly installed capturing

device that we will refer to as target data. The faces must be extracted from the video images

using face segmentation techniques. The capturing conditions from this new device will be

represented in these captured Regions of Interest (ROIs). The source data will be considered the

teacher during the learning process while the target data will be considered the student. The

teacher will provide the student with its initial knowledge acquired through supervised learning.

During learning, the student and teacher will share their knowledge using the labeled data from

the source and the unlabeled data from the target.

An initial face representation is learned using classic triplet loss methodology (Schroff et al.,

2015a). Then, given that a new capturing device is installed, the source representations is

enhanced for this new device with the target samples by minimizing the dual-triplet loss. In

this process, one triplet set from the source with one triplet set of target is used. To form the

target triplets, we compute the pair-wise distance of a batch of target samples using the source

model and label each target distances as being within-class or between-class. The idea is that

during learning, the source and target representations distributions become more similar. The
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hypothesis behind this is that the distance metric used for the source domain should work in the

target domain. Also, the classification of a pair of target samples as being within or between

should be as accurate as a pair of source samples.

3.4.2 Dual-Triplet Loss

The dual-triplet loss L consists of two terms: a source term Ls and a target term Lt :

L = Ls + λ.Lt . (3.1)

where λ is the parameter that balances the two objectives.

A source triplet Ls is constituted from labeled source data, using an anchor a, a positive sample

p, a negative sample n, and a margin α:

Ls = max(| | f (a) − f (p)| | − | | f (a) − f (n)| | + α,0) (3.2)

To create target triplets from unlabeled data, we compute the distance matrix of a batch of

these unlabeled samples and classify the pairwise distance as being either within-class (wc)

or between-class (bc). From a chosen anchor, the within-class representation are candidates

for positive pair and the between-class are candidates for negative pair. The target triplet is

constituted as follows where | |wc | | and | |bc | | is the within-class and between-class distance

respectively:

Lt = max(| |wc | | − | |bc | | + α,0) (3.3)

The objective of the source triplets is to offer a robust distance metric since it was learned

with labeled data from the source domain. For the target triplets, the objective is to attempt to



42

separate successfully the positive pairs from the negative pairs within the defined margin. In the

end, the pairwise distance distribution of positive and negative representations should become

similar between source and target.

Note that the proposed DTML can also work with labeled target data if available. For example,

co-occurring face trajectories can hypothetically form negative samples while face samples of

the same trajectories can be positive samples. With this information, it would be possible to form

triplets but it requires co-occurring face tracks, which are not guaranteed in every surveillance

application. This is why we introduce the mutually-supervised method that will attempt to form

triplets from unlabeled data.

3.4.3 Mutual Supervision

The proposed mutually-supervised learning method is intended to label the target samples with

knowledge from the source model. In other words, the method will attempt to form positive

pair samples (within-class) and negative pair samples (between-class) with the unlabeled target

samples.

Figure 3.8 illustrates the mutual supervision learning using the distributions of distances between

samples from same-person (within-class (WC) samples) and distances between samples from

different-persons (between-class (BC) samples). Left column (a,c) show the distance distributions

for the source data (teacher) and right column (b,d) show the distributions for the target data

(student). Upper row (a,b) show the distance distributions for the initial source representation,

while the bottom row (c,d) show the distributions where a shared target representation is learned

using the proposed dual-triplet and mutual-supervision learning.

The process of learning target representations is as follows: A batch of training samples from the

source and target data are passed through the pre-trained feature extractor. Then, we compute

the Euclidean distance matrix for the target and source representations separately. With the

pairwise distance found with the source labeled data, it is possible to find the distributions of

pairwise distances as being within-class (WC) or between-class (BC) (see Figure 3.8.a). These
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a) Source: represented by the initial source

embedding

b) Target: represented by the initial source

embedding

c) Source: represented by a shared embedding

through DTML

d) Target: represented by a shared embedding

through DTML

Figure 3.8 Illustration of the mutual supervision learning

distributions are finally used to label the target samples using two mining windows: 1) the

within-class mining window (WCmw) and 2) the between-class mining window (BCmw):

WCmw = [μwc − σwc, μwc]. (3.4)

BCmw = [μbc, μbc + σbc]. (3.5)

where μwc, σwc and μbc, σwc are the mean and standard deviation of the WC and BC pairwise

distances, respectively.
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These mining windows are computed with the objective of finding a compromise between

mining easy pairs far from the confusion area that will not give much learning enhancement,

and mining pairs within the confusion area that are at high risk of being incorrectly labeled but

that will give the highest learning enhancement. It is important to note that pairs beyond the

distance margin of the loss function will not contribute to the learning process.

With these defined window computed from the labeled source samples, the target pair distances

are defined as within or between class (see Figure 3.8.b). In the beginning of this process, the

source and target pairwise distance distributions may not be aligned as a consequence of the

domain shift. There is a possibility that the domain shift is so severe that the mined samples are

not accurate enough. These chosen samples from the target domain are randomly chosen within

these windows to form the target triplets. With this, the dual triplet is formed by combining it

with triplets from the source.

The described process is applied for each training epoch from which a batch of a samples is

captured. After some time, the within and between class distributions should become aligned

between the source and target pairwise distances and are separated by the same margin. Once

this is achieved, it will be possible to use the feature extractor to produce discriminant features

for both domains.

Figure 3.8 (c and d) show the alignment between the source and target distributions after DTML

with our mutually-supervised training. The better the alignment, the more likely it is that the

source distribution will correctly label the target pairwise distances as being within or between

classes. It is in the vision of this methodology to compensate for the inaccuracies of the target

triplets caused by the imperfection of our pseudo-labeling technique with the perfect source

triplets since they are labeled.

3.4.4 Experimental Methodology

Our proposed DTML framework may be applied to many problems. In this contribution, we

apply the methodology to a still-to-video (S2V) face recognition application. In this application,
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Cam3 → Cam1 Cam1 → Cam3 Cam3 → Cam2

AUC Acc % AUC Acc % AUC Acc %

VGG-Face (Q. Cao et al., 2018) - 69.6 - 68.1 - 76.0

Source model: without DA 0.98 95.0 0.90 81.7 0.94 87.2

Proposed UDA: DTML-A 0.99 97.7 0.95 88.7 0.97 91.0

Upper-bound:(Supervised DA) 0.99 98.0 0.98 93.3 0.99 95.3

TBE-CNN (Ding & Tao, 2018) - 87.8 - 88.2 - 95.7

CCM-CNN (Parchami et al., 2017a) - 87.8 - 88.6 - 92.1

HaarNet (Parchami et al., 2017b) - 87.9 - 89.3 - 97.0

Table 3.3 Results on the COX Face Recognition dataset using the proposed DTML

method with mutual-Supervision.

video surveillance cameras capture scenes that contain people. Then, the face ROIs are captured

from the images using face detection/tracking. These ROIs are compared to high quality frontal

still face images from a database in order to find the identity of the captured person (if in the

database).

For the COX dataset, this experiment follows the experimental protocol in (Huang et al., 2015)

to compare the results with the state-of-the-art techniques. The experimental protocol is as

follows: from the 1000 subjects, 300 are used for training while the other 700 subjects are used

for evaluation. To simulate a newly-installed camera, 200 of the training subjects are used to

train the initial source model while the other 100 subjects are from the newly installed target

camera. This split simulates a real operation case where the new camera will be calibrated using

identities other than those used to train the model initially. Also, this split simulates an open-set

case where the identities for the evaluation phase were not seen during training and calibration.

For all experiments, we start with our model trained with triplet loss on VGG-face2 dataset (Q.

Cao et al., 2018). This model is the starting point for fine-tuning and calibration, but also serves

as the lower-bound of our experiments. This lower-bound represents the case if no calibration at

all is performed on the model.
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Our proposed UDA methodology is tested by using the training set from the source camera

and the calibration set from the target camera to constitute the dual-triplet. Then, the DTML

methodology is applied to enhance the model performance on the specific target camera.

To test the impact of the dual-triplet loss terms, three scenarios are implemented:

1. Ls: where only data from the source camera are used and only the source triplet is used to

tune the network. This scenario simulates the case where we do not use calibration data and

only improve the source representation.

2. Lt: where only data from the target camera are used and only the target triplet is used to

tune the network. This scenario simulates the case where we only rely on calibration data to

adapt the source model for the new camera.

3. Ls + Lt: where data from both the source and calibrated cameras are used for adaptation,

which is the DTML proposed method.

The experiments are performed with a batch size of 100 source samples plus 100 target samples.

In each source batch, we select 5 subjects and 20 samples per subject, which gives 20 × 20 × 5

possible positive pairs and 20 × 80 × 5 possible negative pairs. For the target batch, the

mutual-supervision method is employed to acquire an equivalent number of positive and negative

pairs. Once the sample batches are formed, the DTML runs for 40 epochs. The performance

is evaluated with rank 1 accuracy and the Area Under ROC Curves (AUC). The parameter λ

(see 3.1) is used to weigh the target triplet term in the dual-triplet loss function, but extensive

experimentation has shown that λ = 1 give the best results.

3.4.5 Experimental Results and Discussion

The face recognition results for the dataset COS-S2V are shown in Table 3.3. They clearly shows

that only performing supervised fine tuning with the base feature extractor on samples images

from the same network enhance the performance. Already with this step, the domain shift gap
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Figure 3.9 AUC performance on COX dataset camera 1 to camera 3

Figure 3.10 AUC performance on COX dataset camera 3 to camera 2

is reduced. This is expected, as the camera set-up for COX-S2V share many environmental

similarities between each others.

Our proposed DTML algorithm with mutual-supervision gives a significant improvement of an

approximately 5% increase for AUC to help reduce the domain shift. The DTML methodology

could perform reliable unsupervised domain adaptation (UDA) and give performances near the

upper bound of this experiment.

The proposed method gives similar result in some cases (Cam3 → Cam2) to state-of-the-art

methods but performs less well in other cases (Cam1 → Cam3). It is worth noting that these
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a) Before domain adaptation b) After domain adaptation.

Figure 3.11 COX dataset: TSNE representation for the first ten people in the testing set

techniques are less practical for two reasons. Some are less efficient because of the use of

complex ensembles of CNNs or expensive generation of synthetic video face samples. Also,

some of these methods require information to perform calibration, such as facial landmarks, that

is not necessarily available in video surveillance. For comparison, our DTML methodology

uses a classic CNN architecture set-up for metric learning. It does not require synthetic samples

or any manual labeling.

To illustrate the effect of our dual-triplet loss function, we show the accuracy per training step in

Figure 3.9 and 3.10. In both cases, using only the source term Ls does not significantly help the

target camera to learn representations for the target camera. Also, as shown in Figure 3.10, using

only the target term Lt may lead to decreases in performance as the training step continues due

to overfitting. Having the whole dual-triplet ensure an increase in performance during training

time. In Figure 3.9, we see that using both triplets gives the best performance in the long term.

Note also that, the target term Lt would not achieve this performance without the initial help of

the source fine-tuning at the beginning of the experiment. Indeed, that step helps reduce the

domain gap and makes it easier to perform the pseudo-labeling.

To support our claims, Figure 3.11 shows TSNE projections of the impact of our proposed

UDA method. Figure 3.11.a shows the projection of ten subjects in the evaluation set of the

COX-S2V camera 2 viewpoint as if camera 2 was newly added to a surveillance network. These

representations were generated using our feature extractor and fine-tuned using the source images
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from the camera 3 viewpoint. The projections show that it is harder to classify subjects using

only source representations. Figure 3.11.b shows again the projections of those ten subjects but

with their representations fine-tuned with our proposed UDA method. Visually, there appears to

be better discrimination between the representations of the different identities.

The proposed method was specifically designed to solve transfer problems where the domain

shift between the source and target domains is small enough for the mutually-supervised

training method. If the source and target embedding are not well-enough aligned, our mining

approach will not be able to label correctly enough target pairs to be efficient. In this case, the

mutually-supervised learning will not work properly. That being said, the method works with a

moderate domain shift.

Methods No. parameters No. operations

Ours (Resnet50) 23M 3.8B

TBE-CNN (Ding & Tao, 2018) 46.4M 12.8B

HaarNet (Parchami et al., 2017b) 13.1M 3.5B

CCM-CNN (Parchami et al., 2017a) 2.4M 33.3M

Table 3.4 Comparison of model complexity for video surveillance.

Finally, the proposed method is intended to use with existing feature extractor architecture. The

above experiment was made with an architecture ResNet50 which can be computationally heavy

for real time applications. Table 3.4.5 show a comparison of the existing methods with the

chosen architecture. It possible to try our methodology on less complex CNN architecture to

achieve faster inference time, but it is important to note that CNN are for now computationally

expensive for real-time applications. TBE-CNN (Ding & Tao, 2018) is a custom architecture of

trunk and branch convolution layer that make it very computationally heavy. HaarNet (Parchami

et al., 2017b) use an ensemble of deep CNN also organise in trunk and branch architecture, but

the CNNs as less parameters. CCM-CNN (Parchami et al., 2017a) use a much more lightweight

CNN architecture with cross correlation matching to achieve comparable results.
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3.5 Conclusion

The triplet loss methodology give near state-of-the-art accuracy for the LFW evaluation set.

We have successfully reproduced the results from the original paper on Facenet and have a

ready-to-use face feature extractor for our Siamese network.

A feature extractor trained on public dataset do not work at best for video surveillance application.

Indeed, video surveillance application are harder to solve. We see that there are a lot of potential

improvement by fine-tuning the feature extractor on samples coming from the camera itself. It

cannot be considered as a final solution since creating annotated samples for every surveillance

that we require to install is very time expensive. Knowing there are huge improvement to gain

with our current feature extractor architecture, we may explore non intrusive techniques that will

help gain this improvement.

We propose a general method for domain adaptation of deep-distance metrics. The method is

designed to resolve domain shift problems between the source and target domains. The source

domain must have enough high-quality labeled samples to train a robust feature extractor, and

the target domain can provide a small amount of unlabeled samples. Our method introduces

dual-triplet loss and mutual-supervision learning. Dual triplets are the sum of triplets from the

source and triplets from the target, which reduces model corruption after the domain adaptation

process due to of the lack of target samples. The mutual-supervision process allows the formation

of triplets from the unlabeled target samples using the knowledge of the source model. The

method is used for a face recognition still-to-video application to provide unsupervised domain

adaptation. Our method achieves results comparable to state-of-the-art and more complex

methods, that are impractical because of the limitations of the camera use-case.



CHAPTER 4

A SIAMESE NETWORK FOR VIDEO DESCRIPTION

4.1 Introduction

Video description allows blind and visually impaired people to enjoy movies, TV series, and

other video media. Manually performing description is tedious and time intensive. Movies

and TV series generally come with video description for this audience, but as the internet is

filled with more and more video content, cheaper video description becomes highly sought after.

To this end, we seek to develop automatic video description that will allow people with visual

problem to access video content.

Recently, some researchers have attempted to label data automatically by leveraging temporal

and contextual information that can be obtained in videos like tracklets (Sharma et al., 2019)

(Wu et al., 2013) (Cinbis et al., 2011). It is important to note that these methods require an

abundance of unlabeled data and the existence of co-occurring tracklets.

Face recognition for video, generally follows a specific process. First, the faces are segmented

using a face detection algorithm. For each face patch, we produce a representation with a feature

extractor . Each representation can be classified with a kNN-like classifier. We then apply this

methodology to each frame so that we have all the face representations of the video. With a

clustering algorithm, we group similar representations and give them their character name. The

whole process is shown in Figure 4.1.

As the performance of detection and tracker techniques for faces improves, the task of identifi-

cation becomes harder as the captures contain more occlusion, pose variation, and blur if the

subjects are far away. To resolve this problem, a common and expensive solution is to create

annotations with supervised learning on the identification model, which is not efficient. To

respond to this challenge, researchers have developed self-supervised learning techniques in

which the methodologies label the samples and then perform supervised learning. In this way, the
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identification model is specialised for the video on which it performs video description. However,

automatic labeling may not be perfect and can introduce labeling errors, and an insufficient

number of samples will lead to overfitting. To automatically produce training samples from

an unseen video, techniques use tracklets with the assumption that: samples within a same

tracklet come from the same person and samples coming from co-occurring tracklets come

from different people. In this way, it is possible to produce positive and negative samples from

unlabeled data.

Figure 4.1 Face recognition system for video description .

4.2 Face Recognition for Video Description

In this section, we review the principal components of our face recognition system for video

description. The components include a face segmentation technique, a face feature extractor

trained with triplet loss on VGGface2, and feature clustering techniques.

4.2.1 Segmentation

Our face segmentation methodology is based on a face detector and tracking algorithm. At

each frame, the detector captures faces with bounding box descriptors. On the first detection, it

initiates a tracker that will follow the region of interest by updating its own representation of

the region of interest. All samples captured by a tracker are packed together to form tracklets,

which guarantees that samples within a tracklet come from the same person. In a case where the
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detector do not detect a face with an existing tracker, the tracker will operate for 10 more frame.

If there are no detection during those 10 frames, the last samples captured by the tracker will be

rejected and the track will be terminated. This strategy will achieve a less fragmented track as

the strategy will compensate for some false rejections from the detector. As a face detector, we

use Multi-task Cascaded Convolutional Networks (MTCNN) (Zhang et al., 2016) as it is a very

well-known face detector that is robust and easy to use off-the-shelf. It is composed of three

CNNs in a cascade, where the first CNN operates on the whole image and the others operate on

the regions of interest given by the first one. For each, we set high detection thresholds [0.7,

0.9, 0.98] to minimize the false acceptance rate, to the detriment of the false rejection rate as

the tracker algorithm should compensate for a given trajectory. We use Kernelized Correlation

Filters (KCF) (Henriques, Caseiro, Martins & Batista, 2014) as a tracking algorithm as it is a

general purpose tracking technique and is known to be robust and efficient.

4.2.2 Feature Extractor

Our feature extractor is based on a generally used DCNN architecture that is a ResNet50. The

model is trained on the large-scale dataset VGGface2 with triplet loss, where this methodology

learns a margin between classes in the Euclidean space. The training samples are resized to

160x160 with random horizontal flip. For a given face sample, the model produces a feature

vector with a length of 128. The number of features may be small compared to that found in other

research (256, 512), leading to a very small decrease in performance. However, it allows faster

performance of clustering or projection techniques and is sufficient for our applications. The

similarity of feature vectors can be directly measured by calculating the distance between them;

small distances indicate that the samples come from the same persons and greater distances

indicate that the samples come from different people.

4.2.3 Clustering

From the extracted feature vectors and the tracking information, we seek to automatically group

classes. We will perform two types of clustering, one at the frame level and the other at the track
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level, to visualize the performance of both methods. At the frame level, each representation

is passed to the clustering algorithm. At track level, the mean representation of each tracklet

is calculated and then passed to the clustering algorithm. The clustering techniques that we

use in this experiment are Kmeans and agglomerative clustering as they are known clustering

techniques and can easily operate in the Euclidean space. The more the feature extractor is

invariant to changes in pose, the more the clustering accuracy should increase. For these

techniques, the number of clusters must be given. To determine the number of clusters, we

calculate the silhouette accuracy for each n cluster. The silhouette accuracy is a metric of the

clustering quality between -1 and 1. -1 means that the samples are overlapping, 0 means that the

samples are very close to the decision boundaries and 1 means that the clusters are perfectly

defined from each other. The number of clusters is chosen from the n clusters that give the best

clustering quality.

In this section, we review three clustering techniques: Kmeans, hierarchical agglomerative

clustering (HAC), and spectral clustering. Each one has advantages and weaknesses, and it is

necessary to understand them and to experiment them in order to determine the technique that

will best serve our interest.

Kmeans

One of the classics and simplest clustering technique is the kmeans. It aims to partition n data of

d dimensions into k clusters C. Each cluster is described by is centroids, which are the means of

the data within the cluster. The algorithm will seek to minimize the within-cluster sum-of-square

(inertia) criterion:

MSE =
n∑

i=0

min
μj∈C

(��xi − μ j
��2
)

(4.1)

The kmeans does not work well for data distributions that are not convex and isotropic. Also,

since the inertia is not a normalized metric, the Euclidean distance may become inflated with

data of very high dimensionality.
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Hierarchical Agglomerative Clustering

Hierarchical agglomerative clustering (HAC) is a metric distance-based clustering technique

that is known to be computationally expensive. It consists of repeatedly combining the two

nearest clusters until the desired number of clusters is reached. The combination is made with a

linkage criteria.

a) Samples in Euclidean space b) Hierarchical link between samples

Figure 4.2 Example of hierarchical agglomerative clustering

By default, we will use the Euclidean distance with a ward linkage criteria for the experiments.

The ward linkage criteria aims to minimize the total variance within the clusters.

4.3 Video Description with Pre-Trained CNN Backbone

We first test the ability of our feature extractor trained on a public dataset to cluster the different

identities in the first episode of the TV series Big Bang Theory (BBT). The objective is to

group the subject’s samples in an unsupervised manner. The number of clusters is determined

by computing the silhouette score for a number of possible clusters and selecting the number

that maximizes this score. To compare our result with that of other researchers, we take the
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annotations from CVPR 2013, which contain bounding boxes and identity labels. We use their

bounding boxes to capture the region of interest. From the ROI, we extract the features, apply

the clustering technique, and compute our different performance metrics with the identity label

from CVPR 2013.

The experiment is done in two parts. The first part uses only the first scene and the second part

uses the entire episode. For the second part, we examine the performance gain from computing

the average features of tracklets. Using only the first scene gave very bad results as there were

not enough samples to form an identity group easily. Thus, the results for the tracklet average

are not shown for the first scene.

4.3.1 Experiment on Small Video Segment

Before doing the experiment using the entire episode, we test our framework on the first scene.

It allows us to clearly see the identities cluster with TSNE projection and to visualize the

effectiveness of the clustering algorithms. The first scene is captured by taking the first 500

frames. With TSNE, we project all of the representations onto a 2-dimensional plan. The

grountruth labels are shown with the result of the clustering techniques and the predicted number

of clusters.

Table 4.1 Clustering results on the first 500 frames of

BBT episode 1.

Clustering technique Weighted purity V measure Silhouette score Predicted number of clusters
HAC 1 1 0.1961 2

Kmeans 0.9626 0.8061 0.1984 2

Spectral 0.9648 0.6596 - 3

Kmodes 0.9670 0.6871 0.1968 3

Affinity propagation 0.9648 0.6593 0.1950 3

For this reduced case, simple clustering techniques such as Kmeans and HAC perform best.

With this feature extractor, kernel base clustering may be efficient enough to group tracklets

and not group identities. We observe that the silhouette score for clustering techniques are
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a) Ground truth: 2 clusters b) HAC: 2 clusters

c) Affinity propagations: 3 clusters d) Kmeans: 2 clusters

e) Kmodes: 3 clusters f) Spectral: 3 clusters

Figure 4.3 TSNE projections of BBT episode 1 reduced.

approximately the same, which means that setting apart the groundtruth, the clustering quality

of each technique is approximately the same without being correct.
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The weighted purity acts as expected; it considers the homogeneity of the clustering, but does

not penalize for incorrect compactness. It is unlikely that we will use this metric to compare the

clustering fairly. On the other hand, the V measure seems to represent the clustering performance,

penalizing the score when the number of cluster is incorrect.

4.3.2 Experiment on Large Video Segment

In this part, we experiment on the entire episode 1 of BBT. We first try to cluster all of the face

samples with the current techniques which we call frame-level clustering. Then, we compute

the mean representation of each track and again perform the same clustering techniques as

track-level clustering. The objective is to cluster the 7 present identities successfully.

Frame Level Clustering

In this section, we apply the clustering techniques to all of the face representations. To visualize

the projections, we have randomly selected 500 of the 39183 captured samples with the CVPR

2013 bounding box annotations. The TSNE projection takes a lot of time when there are more

than 500 samples.

It was not possible to experiment using the Kmodes and Affinity propagation clustering techniques

as they require significant computing time.

Table 4.2 Clustering results on BBT episode 1 at frame

level.

Clustering technique Weighted purity V measure Predicted number of clusters
HAC 0.5323 0.4370 2

Kmeans 0.5314 0.4290 2

Spectral 0.5315 0.4296 2

The combination of clustering with silhouette scores to find the number of clusters automatically

does not appear to be the best solution in this case. Even with a better methodology for

determining the number of clusters, it is still a challenge to cluster each identity correctly.
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a) Ground truth: 7 clusters b) HAC: 2 clusters

c) Kmeans: 2 clusters d) Spectral: 2 clusters

Figure 4.4 Frame level TSNE projections of BBT episode 1 with predicted clustering.

Table 4.3 Clustering results on BBT episode 1 at frame

level per number of clusters.

Kmeans HAC

Number of clusters Weighted purity V measure Weighted purity V measure

2 0.5314 0.4290 0.5323 0.4370

3 0.8481 0.6872 0.8672 0.7641

4 0.8897 0.7974 0.9151 0.8653

5 0.8912 0.7451 0.9151 0.8127

6 0.9312 0.7702 0.9581 0.8403

7 0.9467 0.7505 0.9739 0.8542

8 0.9487 0.7310 0.9739 0.7992
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Figure 4.5 Frame level silouhette score per k clusters.

Track Level Clustering

In this experiment, we group the representations of a track into a single representation by

computing the mean. This gives slightly better results and is also faster to cluster.

Table 4.4 Clustering results on BBT episode 1 at track

level.

Clustering technique Weighted purity V measure Silhouette score Predicted number of clusters
HAC 0.5531 0.4799 0.2706 2

Kmeans 0.5531 0.4799 0.2710 2

Spectral 0.5531 0.4681 - 2

Kmodes 0.5531 0.4695 0.2668 2

Affinity propagation 0.9260 0.8595 0.3051 4

The track-level clusters visualization appears to be a bit more defined than frame-level visu-

alization. If we compare the V measure of the Kmeans clustering, the frame-level clustering

score is 0.4290 while the track-level clustering score is 0.4799. This is a small improvement,
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a) Ground truth: 7 clusters

b) HAC: 4 clusters c) HAC: 7 clusters

d) Kmeans: 4 clusters e) Kmeans: 7 clusters

Figure 4.6 Frame level TSNE projections of BBT episode 1 with selected number of

clusters.
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a) Ground truth: 7 clusters b) HAC: 2 clusters

c) Affinity propagations: 4 clusters d) Kmeans: 2 clusters

e) Kmodes: 2 clusters f) Spectral: 2 clusters

Figure 4.7 TSNE projection of BBT episode 1 at track level.

but it still does not cluster the characters correctly. However, the affinity propagation technique

seems to work better than the other techniques, and by forcing the number of clusters on the
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Figure 4.8 Track level silouhette score per k clusters.

basic clustering technique, we observe that we obtain better results with the Kmeans and HAC

techniques.

Table 4.5 Clustering results on BBT episode 1 at track

level per number of clusters.

Kmeans HAC

Number of clusters Weighted purity V measure Weighted purity V measure

2 0.5531 0.4799 0.5531 0.4799

3 0.8778 0.8097 0.8730 0.7987

4 0.9212 0.8736 0.9309 0.8967
5 0.9292 0.8172 0.9309 0.8207

6 0.9646 0.8383 0.9678 0.8478

7 0.9727 0.8115 0.9678 0.7942

8 0.9711 0.7755 0.9678 0.7668

As observed in the frame-level experiment, we obtain greater performance when using a better

solution than silhouette score to select the number of clusters. Selecting 4 clusters gives the

best results for the Kmeans and HAC techniques for V measures of, respectively, 0.8736 and
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a) Ground truth: 7 clusters

b) HAC: 4 clusters c) HAC: 7 clusters

d) Kmeans: 4 clusters e) Kmeans: 7 clusters

Figure 4.9 Track level TSNE projections of BBT episode 1 with selected number of

clusters.
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0.8967, which is better than the affinity propagation at 0.8595. We observe that track-level

clustering works better and more quickly than frame-level clustering if there are many samples.

Using Kmeans with 4 clusters, the frame-level and track-level clustering give V measures of,

respectively, 0.7974 and 0.8736. Unfortunately, the system is still not able to clusters all of the 7

characters.

4.4 Face Clustering Experiment with Domain Adaptation Based on Tracklets

Exploiting the tracklets information can produce reliably trainable samples. A tracklet is made

of a series of regions of interest captured during consecutive frames. The tracking algorithm

attempts to retrieve from each frame approximately the same pattern as the previous frame.

We pose the hypothesis that samples within a tracklet are from the same person and samples from

co-occurring tracklets come from different people. For the BBT series, it is a fair hypothesis as

these conditions will always be true compared to other shows. Thus, samples within a tracklet

will be used to form positive pairs and samples from co-occurring tracklets will be used to obtain

negative pairs to form trainable triplets. However, this method does not work with singleton

track. For each training batch, we leverage an equal number of samples from each co-occurring

tracklets, apply the semi-hard mining strategy, and train the FE with the formed triplets.

To augment the quality of the generated representations from the TV series, we fine-tune the

model with samples from the video itself. For triplet loss to work, it is necessary to be able to

form trainable triplets. We create these triplets by taking positive pairs from samples within the

same track and by taking negative pairs from samples from co-occurring tracks.

We evaluate our methodology using only HAC as it was the technique that gave the best results

in the previous experiment. Also, we did not select the number of clusters with the silhouette

score since it did not give good results.
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Frame Level Clustering

Fine tuning the model using the tracklets improves the clustering performance. The character

representations seems to be a bit more defined by looking at the projections. Also, the V measure

is already better than that of the previous experiment with a score of 0.9014 with 5 clusters

(previously it was 0.8967 with 4 clusters). Using the silhouette score to predict the number

of clusters, we would get 4 clusters, which is a major improvement compared to the previous

experiment.

a) Ground truth: 7 clusters b) HAC: 4 clusters

c) HAC: 5 clusters d) HAC: 7 clusters

Figure 4.10 Frame level TSNE projections of BBT episode 1 with tracklets fine-tuned.
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Table 4.6 HAC results on BBT episode 1 at frame level

with tracklets fine-tuned.

Number of cluster V measure Silhouette score
2 0.5611 0.2921

3 0.8006 0.3457

4 0.8726 0.3668
5 0.9014 0.3666

6 0.8352 0.2653

7 0.8405 0.2597

8 0.7849 0.1535

Track Level Clustering

We compute the mean of each set of representations in a tracklet, to perform clustering. The

results are shown in Table 4.7. As previously mentioned, this methodology can be computed

more quickly and gives better results if there are many tracks. Compared to the frame-level

clustering, it improves the V measure at 0.9712 over 0.9014 which is a significant improvement.

Also, in this case, the silhouette score would have given the best number of clusters.

Table 4.7 HAC results on BBT episode 1 at track level

with tracklets fine-tuned.

Number of cluster V measure Silhouette score
2 0.6359 0.3604

3 0.8301 0.4477

4 0.9403 0.4704

5 0.9712 0.4722
6 0.8893 0.3379

7 0.8314 0.2223

8 0.8381 0.2229

However, we observe in Table 4.7 that we are still not able to correctly group the seven identities,

even if we force the number of clusters to the exact number of identities. The two last identities

to be grouped has very few representations and the clustering technique is splitting the big

clusters of representations rather than grouping the very small and overlapping clusters as we

see in Figure 4.4.
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a) Ground truth: 7 clusters b) HAC: 4 clusters

c) HAC: 5 clusters d) HAC: 7 clusters

Figure 4.11 Track level TSNE projections of BBT episode 1 with tracklets fine-tuned.

Table 4.8 HAC with 5 clusters confusion matrix on BBT

episode 1 at track level with tracklets fine-tuned.

Predicted Class

Ground Truth Sheldon Leonard Penny Howard Raj Kurt Unknown

Sheldon 202 0 1 0 0 0 0

Leonard 0 236 0 0 0 0 0

Penny 0 0 109 0 0 0 0

Howard 0 0 0 37 0 0 0

Raj 0 0 0 0 25 0 0

Kurt 0 0 0 0 4 0 0

Unknown 0 0 1 0 7 0 0
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In Table 4.8, we show the resulting confusion matrix for clustering our identities with five groups,

which give the highest V measure. We may achieve high clustering accuracy, but the matrix is

clearly showing that our methodology is not able to regroup identities that have few apparitions.

4.5 Conclusion

Fine-tuning the feature extractor in the self-supervised manner gives a better performance for

the clustering technique. Unfortunately, the model is not able to discriminate the characters

that appear less frequently, like the characters Kurt and Unknown. Generally, for a long video,

reducing the frame features to track features seems to give better results of clustering. The bad

frame features in a track may be smoothed by the others good face samples within the same

track.

The silhouette score methodology generally works for certain scenarios. At the frame level, the

methodology gives a number of clusters of four (Table 4.6), which was not the best possible

number of clusters to maximize the V measure. However, at the track level, the methodology

gives the best number of possible clusters. We observe that track level samples produce more

distinct clusters.

We show in Table 4.9 the performance gain of a fine-tuned model, compared to our Facenet

base model. From the base model, we can observe clear performance gains by using track level

samples rather than frame level samples within a reasonable number of clusters (below seven).

The more the number of clusters approaches the real number of separable clusters, the less gain

there is. The fine-tuned model at the frame level outperforms the base model by a margin of 8%

for five clusters, which already shows the gain obtained using our methodology. However, the

combination of fine tuning the model and using the track level gave our best V measure of 97 %

for five clusters. Even if the real number of clusters is seven, the majority of the identities have

been correctly regrouped.
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Table 4.9 HAC clustering V measure on BBT episode 1

comparison.

Base model Tracklet fine-tuned model

Number of clusters Frame level Track level Frame level Track level

2 0.4370 0.4799 0.5611 0.6359

3 0.7641 0.7987 0.8006 0.8301

4 0.8653 0.8967 0.8726 0.9403

5 0.8127 0.8207 0.9014 0.9712
6 0.8403 0.8478 0.8352 0.8893

7 0.8542 0.7942 0.8405 0.8314

8 0.7992 0.7668 0.7849 0.8381



CONCLUSION AND RECOMMENDATIONS

The face recognition field has made a lot of progress. Face segmentation techniques capture

more and more faces under difficult conditions that make the classification task more challenging

as regions-of-interest suffer more from issues such as pose variation, occlusion, and differences

in illumination. Also, in this research, we seek face recognition for video applications and, more

precisely, video surveillance and video description. Robust feature extractors are trained with

still face images that are not adapted for video applications. It makes two kind of image domains:

the still domain and video domain. In our research, we attempt to close the gap between these

two domains. Training with still images improves the performance of models as there is an

abundance of labeled data, but there are not as many video samples. Specifically, we seek

to enhance the performance of models on previously unseen video material where manually

labeling data is expensive.

In Chapter 2, we reviewed the experimental datasets and metrics used for this research. We used

Vggface2 to learn our first base face representations and LFW to compare the methodology to

the literature. For the video surveillance application, we used the COX-S2V dataset, which

contains video samples from 1000 subjects. For video description, we used the first episode of

the TV series The Big Bang Theory with the annotations from CVPR 2013.

In Chapter 3, we applied a Siamese network for video surveillance. We trained a base feature

extractor on the still face images of the VGGface2 dataset with triplet loss methodology to be

used in further experiments. With this base FE, we attempted to perform domain adaptation from

still to video with the COX-S2V dataset. We employed multiple methodologies to attempt to

close the domain gap between video and still images such as supervised learning with annotated

samples from the target domain. Doing this gave the best performance, but it is unpractical in

real-world applications as creating these annotated samples is expensive. To address this problem,

we introduced DTML with mutual supervision to automatically calibrate newly installed video
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sources without the need for annotated samples or a large amount of samples, making it very

practical for real world applications. This mythology significantly enhanced the quality of the

representations produced by the feature extractor from new domains but did not surpass classic

supervised calibration. It may not work on target video if the domain gap is too large, as the

mutual supervision method is barely able to label the target samples.

In Chapter 4, we addressed the problem of video description, for which the problem is to

regroup identities in movies or videos. The experiment was performed on the first episode of

TV series The Big Bang Theory, from which we attempted to regroup seven characters. The

feature extractor trained with a large set of still images did not perform well at regrouping the

characters as the face samples captured by the robust face detector MTCNN suffered a lot from

occlusion, changes in illumination, and expression changes. We experimented with our base

feature extractor and certain clustering techniques to regroup the identities for the whole episode.

Clustering was attempted at two levels: the frame level and the tracking level. The tracking level

clustering provided better clustering accuracy and greater speed in all cases. However, the base

feature extractor did not produce optimal results. To close again the domain gap, we attempted

to leverage the spatio-temporal information given by tracklets. We can label sample pairs as

being the same or not the same with the following hypothesis: samples within a track are from

the same identity and samples from co-occurring tracks are from different identities. With these

labels, we formed triplets and fine-tuned the feature extractor with classic triplet loss.

Future Work

Closing the gap between image domains still remains a challenge. With our work, one may

attempt to combine the mutual supervision method from Chapter 3 with the tracklets information

experimented with in Chapter 4. This combination should work for video surveillance and video

description applications where it is necessary to avoid manually labeling data.
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