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Prédiction des données de vent en temps réel pour la surveillance et l’alerte de sécurité
au chantier, basée sur l’Internet des objets

Siamak RAJABI

RÉSUMÉ
Les appareils portables intelligents sont de plus en plus utilisés en raison de leur potentiel à

fournir un environnement de travail plus sûr pour les travailleurs de la construction. Plusieurs

études ont été menées afin d’examiner l’application de ces dispositifs pour améliorer la sécurité

sur les chantiers de construction en termes d’interactions entre l’homme et le lieu de travail, ainsi

que de surveillance et d’évaluation des risques. Parmi les dangers qui affectent la sécurité des

travailleurs au chantier, les chutes constituent la principale cause de blessures et de décès. Plus

de la moitié des chutes sont causées par des facteurs environnementaux tels que la neige, la glace,

le froid extrême et les vents violents. De plus, en raison du changement climatique continu, la

fréquence et l’intensité de ces facteurs environnementaux a augmenté ces dernières années. Les

vents à grande vitesse sont l’une des conditions météorologiques les plus impactantes sur les

chantiers de construction et l’une des principales causes d’incidents et d’accidents.

Traditionnellement, pour surveiller la vitesse des vents forts sur le site de construction, on utilise

des services météorologiques en ligne ou, dans certains cas, la station météorologique située sur

le site de construction. Cependant, les méthodes traditionnelles de surveillance du vent ne sont

pas adéquates et précises. Premièrement parce que la vitesse réelle du vent varie à différents

endroits du site de construction en raison de la forme physique du site et ne correspond pas à la

vitesse du vent indiquée sur les sites Web. Deuxièmement à cause du manque de suivi en temps

réel des données sur le vent.

Dans cette recherche, une nouvelle solution est proposée pour prédire la vitesse et la direction

du vent en temps réel basée sur des capteurs IoT montés sur le casque des travailleurs et un

algorithme d’apprentissage automatique supervisé. La solution proposée vise la réduction des

risques existants liés au vent sur les chantiers de construction. Les principaux composants de

cette solution sont un casque de protection équipé de capteurs à thermorésistance et un composant

logiciel qui prédit la vitesse et la direction du vent à l’aide d’un algorithme d’apprentissage

automatique et génère des alertes. Pour fournir l’ensemble des données nécessaires à la prédiction

du vent pendant le développement du prototype, une soufflerie équipée d’un anémomètre, et une

plateforme rotative permettant d’obtenir différentes expositions au vent ont été utilisées. Les

données recueillies sont utilisées pour construire un modèle de régression pour l’algorithme

d’apprentissage automatique supervisé proposé. L’exactitude et la précision de l’algorithme de

prédiction sont comparées aux données recueillies par l’anémomètre de référence. Les résultats

suggèrent que la vitesse et la direction du vent peuvent être prédites avec une grande précision

en temps réel par la solution proposée.

Mots-clés: sécurité de la construction, vitesse du vent, appareils mobiles et portables,

équipement de protection individuelle, IoT





IoT-based real-time wind data prediction for safety monitoring and alerting on
construction sites

Siamak RAJABI

ABSTRACT

Smart wearable devices are being increasingly used due to their potential to provide a safer

working environment for construction workers. Hence, various studies have been conducted

to investigate the application of smart wearables to increase the safety of construction sites in

terms of human-workplace interactions, as well as monitoring and risk assessment.

Among several hazards affecting workers’ safety at work, falling from a height causes the

most number of injuries and fatalities. Additionally, more than half of the falls are caused by

environmental factors such as snow, ice, extreme cold, and powerful winds. Furthermore, due

to continuous climate change, the frequency and intensity of these environmental factors have

increased in recent years. High-speed winds are one of the most impactful weather conditions

on construction sites and one of the main reasons for incidents and accidents.

Traditionally, to monitor high wind speed at the construction site, specific online weather service

sites, or in some cases, the weather station located at the construction site are used. However,

the traditional wind monitoring methods are not adequate and accurate. The first reason is the

fact that real wind speed varies on different locations of the construction site due to the physical

shape of the site and does not correspond to the reported wind speed on the websites. The

second reason is the lack of real-time monitoring of wind data.

In this research, a novel solution to predict real-time wind speed and direction based on IoT

sensors mounted on workers’ hardhats and a supervised machine learning algorithm is proposed.

The proposed solution corresponds to reducing the existing wind-related risks at construction

sites. The main components of the solution are a hardhat equipped with hot-wire sensors

and software component that predicts the wind speed and direction using a machine learning

algorithm and provides alerts. To create a dataset for wind prediction, a wind tunnel equipped

with an anemometer, a rotational platform to provide various wind exposures are used. The

gathered data is used to build a regression models for the proposed supervised machine learning

algorithm. The accuracy and precision of the prediction algorithm are compared to the data

collected by the reference anemometer. The results suggest that the wind’s speed and direction

can be predicted with high accuracy in real-time by the proposed solution.

Keywords: construction safety, wind speed, wearables, personal protective equipment, Objets

connectés - IoT
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INTRODUCTION

Problem Statement

Potential hazards for workers of the construction industry cause high rates of accidents and

fatalities, which make it one of the most hazardous industries in the world (Sanni-Anibire,

Mahmoud, Hassanain & Salami, 2020). Extensive studies have been conducted to explore the

safety of construction in the relation between humans and the work environment, as well as

monitoring and risk assessment. Due to the importance of safety in the construction industry,

which is classified as a high-risk work environment, an increasing number of studies aimed

at developing smart Personal Protective Equipment (PPE) to protect workers and to prevent

fatalities and accidents.

In response to various challenges of construction industry, various forefront technologies have

been applied to aim to manage data in construction environment (Li et al., 2017). Falling from

dangerous heights and runovers of equipment that might result in critical injuries or death are

the main identified risks in construction environments (Kanan, Elhassan & Bensalem, 2018).

International reports state that workplace accidents lead to about 48,000 annual death, of which

24.2 percent belong to construction sites (Mehata, Shankar, Karthikeyan, Nandhinee & Hedwig,

2019). Researchers have drawn a conclusion from extracted data that 42 percent of fatalities

involve falls, which ranked second in the main causes of accidental death all in the world (Mehata

et al., 2019). In this regard, the nature of the task being done at the time of the fall incidents

was examined, and the results show that roof falls are unquestionably the most common

type of accident. Additionally, more than half of the falls are caused by environmental

factors (Huang & Hinze, 2003).

Furthermore, snow, ice, extreme cold, powerful winds, hurricanes, typhoons, tornadoes, torren-

tial rain, and flooding have all increased in frequency and severity as a result of ongoing climate
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change in recent years (Dalton et al.). Schuldt, Nicholson, Adams & Delorit (2021) conducts

a systematic literature review of 3,207 articles. These articles were published between 1972

and October 2020. They found that high-speed winds were one of the most impactfull weather

conditions on construction sites and one of the main reasons for incidents and accidents. More-

over, the management of safety conditions is hard at the time of high-speed winds. Figure 0.1

demonstrate the effects of adverse weather on the performance of workers, materials, equipment,

and logistics while the impact of wind is 14.2% according to this study.

Figure 0.1 Weather factors by construction impact areas

Taken from Schuldt et al. (2021)

The Internet of Things (IoT) allows data of many devices and technologies such as sensors,

modules to be transferred in real-time for monitoring purposes. By utilizing IoT, data, such as

workers’ vitals, and workers’ positions at the site can be analyzed in real-time. It allows detecting

safety hazards, making early decisions, and preventing health problems. IoT transceives data
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that can provide a supervised safety action based on the workers’ health and state in construction

sites and real-time feedback.

Research Questions

The main purpose of this research is to improve workers’ safety in adverse weather conditions,

particularly in high winds. The following research questions were developed to address the

above-mentioned safety problems related to wind safety in the construction industry:

1. How to accurately measure the wind parameters (i.e., speed and direction) for each worker

and in real-time using IoT technology?

2. How a wind detection system can be integrated in mandatory safety equipment of construction

workers?

In this study, in order to answer the questions, a systematic literature review (SLR) is conducted.

Regarding the first question, a solution is proposed in which IoT devices and wireless sensor

network (WSN) are used to monitor wind speed and direction. To respond to the second

question, also a SLR is performed to identify the state-of-the-art in wearable devices and

personal protective equipment related to construction safety with the focus on solutions for

identifying wind speed and direction. The proposed solution uses a supervised machine learning

algorithm that predicts wind parameters using sensors attached to personal protective equipment.

Research Objectives

This research is a part of a larger project which aims to reduce accidents and incidents by

providing alerts to workers when exposed to high wind speed. The main objective of this

research is to propose and implement a solution to identify the wind speed and direction for each

individual worker in real-time using a collection of sensors attached to their personal protective

equipment. The research has the following sub-objectives:
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1. To propose a method to utilize IoT sensor attached to personal protective equipment for

measuring wind speed and direction.

2. To design, implement and test a prototype hardware and software application.

3. To design and implement machine learning models to use the data gathered from sensors

for predicting wind speed and direction.

4. To design and implement a data collection station used to create a dataset to be used for

training and validation of the machine learning models.

Research Contributions

Numerous publications have investigated various aspects of construction safety. However, there

are few research projects in which smart wearable devices are used to improve safety regarding

high wind speed on construction sites. Hence, the research contributes to the body of knowledge

by introducing a new method and a developed prototype to monitor wind-related data.

Thesis Organization

The current dissertation is structured as follows: Chapter 1 reports on a Systematic Literature

Review (SLR) combining bibliometric and qualitative analysis. It examines the state-of-the-art

in smart protective equipment and how it can be used for construction automation, and more

specifically, for construction safety. Additionally, it investigates the types of sensors and

other equipment that can detect wind speed and direction. Chapter 2 elaborated the research

methodology and he proposed solution of this research. In Chapter 3 the hardware setup, the

data gathering process and the process of training and validation for the Machine Learning (ML)

models are explained. In the last part of this Chapter, challenges and limitations of the study are

discussed. Finally summary, conclusion and, potential for future work is reported in Conclusion

and Recommendations.



CHAPTER 1

LITERATURE REVIEW

To ensure a thorough exploration of the research domain, we conducted a systematic literature

review. Safety in construction sites, smart wearables, personal protective equipment (PPE),

internet of things (IoT), sensors, wireless sensor network (WSN), and machine learning were

the main concepts studied, and they will be defined in Section 1.1. In order to systematically

analyze and visualize the trends in smart PPE for construction safety, especially those which

can detect wind speed and direction, we conducted a combined scientometric and qualitative

analysis. A large dataset of smart PPE applications and wearables in construction were

investigated, then using qualitative analysis, those related to construction safety improvement

via the implementation of IoT were explored (presented in Section 1.2).

1.1 Definition of The Main Concepts

In each industry, work safety has become a top priority. As a result, workplaces such as surface

and underground mining, power plants, factories, and construction sites are exploring new

technologies and ideas. One of these new technologies is sensor-equipped wearable devices,

such as smartphones and smartwatches. They are becoming more popular as their sensors can

be used to monitor environmental hazards, location, movement, heart rate, and more. It is

possible to improve the level of safety in any workplace by integrating these wearable devices and

Personal Protective Equipment (PPE)) (Adjiski, Despodov, Mirakovski & Serafimovski, 2019).

Since each wearable device can have one or more sensors to collect data from its environment,

combining these features with the Internet of Things (IoT) could result in another concept known

as a wireless sensor network (WSN). Wearable technologies that can communicate with their

environment and provide wireless monitoring using IoT have the potential to increase work

performance and minimize error (Rooney, Bauer & Scotton, 2006)).



6

1. Construction Safety: In the last four decades, the construction industry’s safety has vastly

improved. Between 1973 and 2004, the number of fatalities dropped from 71 to 11.6 per

100,000 people, while the rate of injuries dropped from 8,520 to 4,478 per 100,000 people

(Figure 1.1) (Navon & Kolton, 2006). Increasing the usage of new methods to prevent

injuries has contributed to this improvement (Esmaeili & Hallowell, 2012). The ability to

complete construction tasks, also known as task feasibility, is directly affected by weather

events. In fact, adverse weather conditions have the biggest influence on the timeline of

construction sites. These events can have a negative impact on worker safety, potentially

resulting in legal consequences (Schuldt et al., 2021), and adverse weather is one of the

main issues related to the safety of construction sites.

Figure 1.1 Construction fatality and disability rates between

1952 and 2004

Taken from Esmaeili & Hallowell (2012)

2. Construction Site Wind Safety Regulations: Regarding wind-related safety issues, some

tasks should be considered by default. For example, we should check the temporary

structures to see if they are secure and safe. On the other hand, some conditions should be

checked in real-time. For instance, winds in excess of 6 m/s can blow dust, debris, and other

foreign particles into the eyes. Another example, when the winds in excess of 8 m/s can
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affect the balance. Therefore, workers should never work on scaffolding, roofs, or other

elevations when the wind is >8m/s.1

According to the Occupational Safety and Health Administration (OSHA), ’high wind’

normally means winds exceeding 17.8 m/s ("such velocity that could blow an employee

from an elevated location"), or 13.3 m/s if the work involves material handling ("could

cause an employee or equipment handling material to lose control of the material").2

3. Smart wearables, and Personal Protective Equipment (PPE): Information about work-

ers and their environment can be extracted using Smart Personal Protective Equipment

(PPE) and wearable technologies and its use can result in a significant reduction in the

rate of accidents and occupational illness. Various sectors, such as construction, mining,

and electricity, have begun to invest in improving worker safety by implementing new

technologies or "smart technologies" in the workplace. These technologies can be used to

supervise and protect people within a work environment, establishing a PPE ecosystem that

protects employees’ health and safety (Márquez-Sánchez, Campero-Jurado, Herrera-Santos,

Rodríguez & Corchado, 2021).

Such equipment must be adjusted to the needs of the employees, providing protection

without inhibiting their ability to perform their tasks normally. There are several types of

smart PPE technologies that can be used to monitor various types of industrial environment

data (Márquez-Sánchez et al., 2021). In this literature review, we will search for personal

protective equipment, wearable devices, or sensors that can detect wind speed and direction

for the construction sites and other industries.

4. Internet of Things (IoT), Sensors: The Internet of Things (IoT) is a new technological

paradigm that envisions a worldwide network of interconnected equipment, devices, and

gadgets. Also known as the Internet of Everything or the Industrial Internet, the Internet

1 https://wilkinssafety.co.uk/2018/01/ working-safely-high-winds

2 https://www.osha.gov/laws-regs/regulations/standardnumber/1926/1926.968
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of Things is widely recognized as one of the most crucial areas of future technology. It is

sparking significant interest from a variety of industries (Lee & Lee, 2015), and in the future,

many of the items surrounding us will be connected in some way under the IoT (Gubbi,

Buyya, Marusic & Palaniswami, 2013).

When devices can interact without any limitation in location and combine with vendor-

managed inventory systems, user support systems, business intelligence tools, and business

analytics, the true value of the IoT may be completely realized. Radio Frequency Identifi-

cation (RFID), Wireless Sensor Networks (WSN), middleware, cloud computing, and IoT

application software are five techniques that are frequently adopted for the implementation

of successful IoT-based products and services (Lee & Lee, 2015).

The trend towards global information and communication networks is already observable,

with the increasing availability of WiFi and 4G-LTE wireless Internet access. The arrival of

the Internet has resulted in extraordinary levels of communication amongst humans.The

integration of objects to create a smart environment will be the next revolution (Gubbi et al.,

2013). "SENSOR is an entity capable of sensing the state of some underlying systems

and transmitting information about that state to some higher-level entity" (Hellerstein,

Hong & Madden, 2003; Rooney et al., 2006). Sensors are vital components of smart and

wearable technologies incorporated in PPE. In addition, they are one of the most crucial

elements of the IoT (Makris, Skoutas & Skianis, 2012; Adjiski et al., 2019).

5. Wireless sensor network (WSN): A WSN is a set of sensor nodes that work together to

sense and manage an environment. These nodes are small, low-power devices, connected

via wireless links and able to communicate with each other. The main elements of a typical

WSN architecture are (1) sensor nodes, (2) gateway, and (3) observer (Figure 1.2) (Kocaku-

lak & Butun, 2017).
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Figure 1.2 The architecture of a typical WSN

Taken from Kocakulak & Butun (2017)

6. Machine Learning (ML): Machine Learning (ML) is an effective method to extract

information from large volumes of data. Machine-learning applications span from machine

perception and text interpretation to health care, genomics, and self-driving automobiles.

Much machine learning literature has focused on improving the accuracy and efficiency of

training and inference algorithms (Polyzotis, Zinkevich, Roy, Breck & Whang, 2019). It is

important to monitor the quality of the data used for machine learning because data errors

can have a negative impact on the quality of the created model. On the other hand, data

validation is neither a new challenge nor is it unique to machine learning, so we can use ideas

from other domains (Figure 1.3) (Polyzotis et al., 2019). One way to validate a machine

learning model is cross-validation. In the machine learning field, cross-validation is the

de facto standard for model validation (Keevers, 2019). There are several cross-validation

methods, including Leave One Out, Stratified Cross-Validation, and K-Folds. For most

applications, k-fold cross-validation is the conventional ML validation approach (Schnaubelt,

2019).
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Figure 1.3 Estimating the performance of a specific model

Taken from Keevers (2019)

1.2 Methodology of The Literature Review

This study conducts a Systematic Literature Review (SLR) consisting of the following steps:

identification, evaluation, and interpretation of a field of research and that can be reproduced

with the same protocol by other researchers (Kitchenham, 2004). A combination of science

mapping and qualitative analysis was utilized to provide a comprehensive overview of the

status in the field. Science mapping aims to visualize the structural and dynamic aspects of

a research domain. The steps of science mapping are data retrieval, preprocessing, network

extraction, normalization, mapping, analysis, and visualization, and it helps the researcher

draw conclusions based on collected results. Different approaches, including Co-word analysis,

co-citation analysis, and journal bibliographic coupling, are used in science mapping (Cobo,

López-Herrera, Herrera-Viedma & Herrera, 2011). Science mapping can indicate the potentials
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of a specific field. One of the objectives of the current literature review is to study the potential

of a real-time wind speed and direction detection system for construction site safety.

1.2.1 Bibliometric Analysis

This study aims to present a holistic overview of wind measurement methods and smart PPE

applications in construction safety to meet the goal and explore the concepts in depth.

1.2.2 Keywords

The following keywords present the query used to retrieve the most relevant publications in

online databases, and Figure 1.4 provides a visual illustration of the query:

• Importance of wind measurement in construction sites: (construction*) AND (Wind*

OR airflow) AND (IoT OR internet of things OR sensor* OR WNS OR wireless network*)

AND (Safety).

• Integration of IoT and PPE for safety: (IoT OR internet of things OR sensor* OR WNS

OR wireless network*) AND (safety) AND (hardhat OR hardhat OR PPE OR personal

protective equipment OR wearable*).

• Integration of PPE and wind sensors: (wind OR airflow) AND (IoT OR internet of things

OR sensor* OR WNS OR wireless network*) AND (hardhat OR hardhat OR PPE OR

personal protective equipment OR wearable*).

• Closest to our work: (construction*) AND (Wind* OR airflow) AND (IoT OR internet

of things OR sensor* OR WNS OR wireless network*) AND (Safety) AND (hardhat OR

hardhat PPE OR personal protective equipment OR wearable*).

Figure 1.4 Search results (each keyword)
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1.2.3 Identification

Once the keywords were identified, online databases were queried to retrieve the most relevant

papers. The targeted databases were Engineering Village, IEEE, Web of Science, Scopus,

Dimensions, and PubMed. Some 9,157 records were identified and are illustrated in Figure 1.5.

Figure 1.5 Identification steps

1.2.4 Screening and Eligibility

Screening and eligibility include two main steps: duplicate identification and inclusion. The

former identifies and subsequently removes the duplicate articles from the database, while

the latter only brings the most pertinent point of the study into consideration. As mentioned,

the search related to this query returned 9,157 results on which a preliminary screening was

performed based on duplicate papers, bibliographic database analysis, and title and abstract.

Based on the duplication criterion, 5,315 papers were removed. Based on bibliographic database

analysis, which included co-occurrence, co-authorship, and coupling, 3,001 papers were excluded.

Some 654 papers were eliminated after screening based on title and abstract. Finally, after the

full-text analysis to select the most appropriate papers, 116 papers were excluded (Figure 1.6).
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Figure 1.6 Screening and eligibility steps diagram

Furthermore, forward and backward snowballing added 5 more papers to the selected sample.

After the entire screening process, which is illustrated in Figure 1.7, some 76 papers were

retained as the final sample for the systematic review synthesis.

Figure 1.7 Systematic review synthesis
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1.3 Findings

1.3.1 Keywords Co-occurrence Analysis

A publication’s main focus of research, fundamental content, the scope of study, and bounds of a

specific domain are indicated by keywords (Su & Lee, 2010). A visual representation of the

keywords illustrates the relationships between the studied field’s various subdomains. Due to

the significance of these relationships, a keywords co-occurrence analysis was done. VOSviewer

visualizes bibliometric networks using a distance-based approach (Van Eck & Waltman, 2014).

Further data analysis of the files exported from VOSviewer was conducted using Gephi,

which merges similar areas of study (i.e., IoT, WSN, safety management, and RFID). Various

representations of the results are depicted in the following figures. Figure 1.8 illustrates the

keyword network results by VOSviewer, which includes 25 nodes. Two more representations of

the results in terms of density and publication date are illustrated in Figure 1.9 and Figure 1.10.

Apart from the Construction site and Safety, which are the focal fields of study of this literature

review, “wearable sensors”, “wind”, “wireless sensor network” and “machine learning” attract

the attention of researchers. Figure 1.11 illustrates the network of topics relating to wearable

sensors keywords.

1.3.2 Direct Citation

As discussed before, a bibliometric network consists of nodes and edges. The nodes can represent

publications, journals, researchers, or keywords, whereas the edges indicate relations between

pairs of nodes. Citation relations, keyword co-occurrence relations, and co-authorship relations

are the most commonly studied types of relations (Van Eck & Waltman, 2014). While discussing

citation relations, it might be distinct by direct citation relations, co-citation relations, and

bibliographic coupling relations. Direct citations offer a more direct indication of the relatedness

of publications in comparison with co-citation and bibliographic coupling. Figure 1.12 illustrates

the citation and Figure 1.13 illustrates the density of authors in the field of study.
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Figure 1.8 Keyword network graph

Figure 1.9 Keyword network graph (density)
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Figure 1.10 Keywords network graph (date)

Figure 1.11 Wearable sensors keywords network

As discussed, a bibliometric network consists of nodes and edges. The nodes can represent

publications, journals, researchers, or keywords, whereas the edges indicate relations between

pairs of nodes. Citation relations, keyword co-occurrence relations, and co-authorship relations
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are the most studied types of relations (Van Eck & Waltman, 2014). As for citation relations,

they can be distinguished according to direct citation, co-citation, and bibliographic coupling.

Direct citations offer a more direct indication of the relatedness of publications in comparison

with co-citation and bibliographic coupling. Figure 1.12 illustrates the citation relations and

Figure 1.13 illustrates the density of authors in the field of study.

Figure 1.12 Citation of authors

1.3.3 Bibliographic Coupling

The overlap in the reference lists of publications is presented by bibliographic coupling. The

larger the number of references two publications have in common, the stronger the bibliographic

coupling relation between the publications. Although bibliographic coupling was introduced

earlier than co-citation, it initially received less attention in the literature on visualizing

bibliometric networks. However, in more recent years, the popularity of bibliographic coupling

increased considerably (Van Eck & Waltman, 2014). Figure 1.14 illustrates bibliographic

coupling in terms of source with their timeline, which presents the date of publication. As

illustrated, the most common journal in the field of study is “Sensors”.
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Figure 1.13 Citation of authors (density)

Figure 1.14 Bibliographic Coupling

1.3.4 Qualitative Analysis

In Section 1.2.1 the integration of construction safety, wind detection, and PPE was investigated

using a biblio-metric analysis. Then, the most relevant publications were chosen using

a systematic literature review, to better examine the achievements pertaining to this topic.
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These articles are categorized into three parts to clearly distinguish the various subdomains:

(Construction Safety and Wind), (Construction Safety and PPE), and (PPE and Wind).

1.3.4.1 Construction Safety and Wind

This part of the literature looks at the importance of construction safety, worker safety, and the

effects of wind. In fact, we reviewed articles to see how weather conditions, specifically wind

characteristics, delay construction projects. We assumed that by covering this topic, we might

find the importance of wind detection for both construction projects and labor in this industry.

Weather conditions affect the progress of construction projects around the world. The three most

important weather elements that slow down construction progress are extreme temperature, high

wind, and precipitation. Any effort to increase the speed of construction and reduce the rate of

accidents and incidents by improving planning, organizing work, and decreasing the negative

impact of weather on construction projects needs to consider these climate conditions (Schuldt

et al., 2021).

Temperature, wind, humidity, and precipitation are the most researched weather parameterss (Bud-

hathoki & Zander, 2019; Ghani, Tariq, Javed, Nisar & Tahir, 2020; Acharya, Boggess & Zhang,

2018; Moohialdin, Lamari, Miska & Trigunarsyah, 2019). These meteorological elements

have different effects on labor, materials, and machinery. Temperature variations often affect

the length of time that laborers can work outdoors, as well as limit the equipment that can be

used if situations become dangerous. Winds could have an impact on materials and workers.

Unconstructed materials and debris could be blown around and endanger people. In addition,

strong winds can put machinery performance at risk (Schuldt et al., 2021).

The risk to labor safety is the principal cause of increased productivity delays. Labor accidents

are more likely serious when wind speeds are high (Larsson & Rudberg, 2019). For example,

due to the high risk of falls, workers are forbidden from doing construction jobs on scaffolding

during strong winds. Furthermore, painting in high winds might cause paint to fall on laborers

below (Ballesteros-Pérez, Smith, Lloyd-Papworth & Cooke, 2018). As mentioned, high wind
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speeds also affect equipment. For example, based on a study between 2000 and 2010, more than

1,100 accidents involved cranes that led to nearly 800 fatalities3.

Larsson & Rudberg (2019) described the impacts of wind on carrying capabilities and discovered

that wind speeds higher than 14 m/s could cause machinery work stops in construction sites.

In another study, Shahin, AbouRizk, Mohamed & Fernando (2014) found that crane activity

should stop if wind speeds exceed 50 km/h.

By looking at the relationship between wind speed and related construction occurrences and

fatalities, the level of destruction and effects of buildings when exposed to high wind speeds

was studied by Gholitabar & Griffis (2019). To detect possible patterns in wind-related claims

and building incidents, as well as to identify geospatial risk, data were analyzed. The authors

gathered data in two different aspects: (1) all construction-reported accidents and incidents, (2)

data from weather stations over five years, and from their analysis, they proposed a method to

detect the level of risk during high-speed winds (Gholitabar & Griffis, 2019).

The data they collected was categorized into three parts: Percentage of reports per category

relating to windy conditions, the number of complaints per day on regular days and windy days,

and geographical mapping of the city’s complaints and a relationship between local wind levels

and the number of reports for each urban neighborhood. From their analysis, they found that the

most common complaints involved items that were dropping or at risk of dropping. Damaged or

cracked surfaces, as well as signs of risk of toppling, were the other most common categories of

issues, which were likewise related to wind speed (Gholitabar & Griffis, 2019).

Furthermore, the statistics showed that the number of reports each day during windy conditions

was higher than on normal days. The frequency of construction incidents or accidents also

appears to be influenced by wind speed (the greater the wind speed, the higher the number of

incidents or accidents). As shown in Figure 1.15, they divided the reports of accidents and

incidents for windy and non-windy days into four categories: wind speeds less than 20 mph

(considered as normal, non-windy day); wind speeds of 20 - 25 mph (considered as windy);

3 https://www.windcrane.com/blog/construction/ tower-cranes-wind-speed-lifting-guidance
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Figure 1.15 For each type of wind speed, the regularity or

number of reports of accidents or incidents per day

Taken from Gholitabar & Griffis (2019)

wind speeds of 25 - 30 mph and wind speeds higher than 30 mph. Based on their findings, the

percentage of accidents and incidents on days with a wind speed higher than 25 mph is greater

than on normal days or days with a wind speed less than 25 mph (Gholitabar & Griffis, 2019).

In another report (Dalton et al.), various damages to the construction sites were linked to weather

conditions. Different types of weather conditions and their effects on sites were explained, but

we focused solely on the wind. Strong winds can affect the sites in different ways, such as wind

entering a structure’s shell, roof lifting, flying material, etc. At the same time, different projects

and sites might be affected by strong winds, for example, buildings, factories, warehouses,

hydraulic structures, bridges, etc. It is important to note that based on their findings, damage

caused by strong winds could depend on other wind characteristics, such as the duration of
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the wind change and the wind’s direction. Nevertheless, there are steps that could be taken to

decrease and prevent damage caused by strong winds.

Similarly, strong winds can affect the safety of workers. While there were fewer studies on the

effects of wind on workers, it can be argued that wind could cause various types of injuries, by

pulling items from the worker’s hands or projecting construction material through the air onto

workers, such as large flying barriers or small items that could cause eye injuries .4

In either case, when it comes to the sites or workers, many incidents and accidents could be

prevented by taking appropriate and prompt action. For example, work duties that become

risky in windy situations should be suspended or eliminated entirely, worksite layout should be

planned according to the direction of the wind, such as placing vehicles and equipment opposite

from where the worker exits, wearing safety equipment such as glasses, be completely aware of

site conditions or special items that are more important and protect them from the effects of

strong winds, and securing all unstable sheet surfaces and other loose objects (Dalton et al.).

1.3.4.2 Construction Safety and PPE

In this Section, we reviewed personal protective equipment (PPE), in particular hardhats. Based

on the literature, studies on the improvement of safety through the addition of sensors to

a smart hardhat could be categorized into four topics: self-localization, human biometrics,

proper-wearing management, and gas detection.

Abderrahim, Garcia, Diez & Balaguer (2005) designed a system to record and analyze the data

of workers and equipment locations. It could prevent workers from entering dangerous zones

and prevent hazardous accidents (Figure1.16). The data from both the PPE and workers (data

from a GPS affixed to the hardhat) were transmitted by RF to a center. It was also possible

to use a camera attached to the hardhat to capture the environment when the worker was in a

dangerous zone. If the worker was in danger, it could be announced by voice communication.

4 https://www.safetytalkideas.com/safetytalks/high-wind-dangers-construction/
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Figure 1.16 Flow of information and protection design parts

Taken from Abderrahim et al. (2005)

Fyffe, Langenderfer & Johns (2016) designed a prototype to transmit vital data by mobile to the

administration. Information such as worker’s body temperature, heart pulse, worker ID, time,

and impact force was sent via a “Global System for Mobile Communication (GSM)”. Workers

could be notified by a LED alarm if their biometric data exceeded a set threshold.

To provide a safer work environment, Alvarez, Casinillo, Goich & Soares (2017) implemented

a system to notify workers by illuminating a series of LEDs on the hardhat. This enabled

communication between workers and the administration, monitoring of the worker’s location,

and speech recognition to record notes. Also, the system could take a photo of the site and shine

a light to improve the workers’ vision. In addition, they used WiFi and a mobile application to

provide access to documents, contact lists, etc.

To improve workers’ safety in an industrial site, Kim, Wang, Min & Lee (2018) attached a

three-axis accelerometer sensor to a hardhat. As a result, they could detect if the hardhat was

worn correctly, incorrectly, or was not worn with an accuracy of 97%. Figure 1.17 illustrates this:

the sensor data is sent to the smartphone via a Bluetooth low-energy module, the smartphone

sends this data to the database, and if a worker is not wearing a hardhat or is wearing it incorrectly,

an alarm message is sent to the head of safety, for example.
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Figure 1.17 The three-axis accelerometer safety hardhat

sensor system transmits data

Taken from Kim et al. (2018)

Mehata et al. (2019) developed smart wearable devices to monitor the health and safety of

workers. The main functionalities of the developed systems were fall detection of workers,

lifesaving notifications, and monitoring workers’ vitals such as heart rate and temperature with

sensitivity to abnormalities. Decreasing the number of deaths in construction sites by providing

a safer worksite was the primary goal of this system. The system included wearable devices such

as a smart band and hardhat equipped with sensors and electronic components and a cellphone

that connected the two components via GSM. While the workers wore the device, they could be

monitored in real-time, and any abnormal signals were sent to their supervisor, who could then

take prompt appropriate actions if necessary.

The system’s three evaluation criteria were comfortability, portability, and reliability. As a

health monitoring module, it observed the physical markers of workers such as heart pulse and

body temperature. These data were stored continuously in a cloud database. The heartbeat

components consisted of a sensor with a pair of LED and LDR, a microcontroller to measure

the workers’ heart pulse, and a temperature sensor. The safety monitoring module could detect

if workers fell or slipped via the accelerometer sensors in the smart hardhat. The accelerometer

sensors investigated the acceleration, threshold value and, tri-axial position of the object and

helped identify possible incidents.

As illustrated in Figure 1.18, the system was developed in five stages. First, sensors were

embedded and activated in the devices; then, components were connected through a sim card.
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Figure 1.18 Proposed working algorithm

Taken from Mehata et al. (2019)

The readings of workers were monitored, and if any abnormality or alert was raised, supervisors

were notified. The fall detection algorithm explored and predicted a possible fall based on the

accelerometer sensor measurements in comparison with normal values. In a fall detection case,

a sudden change to the accelerometer is triggered by exceeding a certain value, which prompts a

fall detection notification to the supervisor.

Wu, Rüdiger, Redouté & Yuce (2018) presented a wearable sensor node named WE-Safe, based

on LoRa, which is a low-power wide-area network (LPWAN) technology. The sensors monitored

levels of carbon monoxide, carbon dioxide, ultra-violet rays, and other general environmental

parameters. Data was sent to the cloud using a low-power sensor node connected to a gateway.
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The wearable node was programmed to monitor environmental data continuously, that is, every

minute, to detect any abnormal or harmful levels of these gases.

Arcayena Jr, Ballarta, Claros & Pangantihon Jr (2019) implemented a prototype hardhat equipped

with sensors to monitor workers’ biometrics and detect their location (Figure 1.19). The biometric

sensor, GPS, accelerometer, and emergency button were connected to a microcontroller. The

prototype also included software to collect and analyze data to facilitate further safety actions.

Regarding the results, the accuracy of vital signs detection was more than 95%. Also, positioning

and identification detection were 100%.

Figure 1.19 (a) Top view, (b) Bottom view,

(c) Front view, (d) Inside view

Taken from Arcayena Jr et al. (2019)

Huang et al. (2019) implemented a hardhat prototype that included a GPS to detect location,

sensors to detect gas leakage, a camera for real-time video and audio connection, a temper-

ature sensor to monitor environment, and a speech recognition application to ease communication.
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Altamura, Inchingolo, Mevoli & Boccadoro (2019) proposed a platform named SAFE (Fig-

ure 1.21), that integrated a smart object to create a secure shelter that seamlessly monitored

worker biometrics in relation to environmental conditions such as dangerous gas and flame

and leveraging the potential of IoT using wireless communication technologies. Figure 1.20

illustrates the platform’s distributed and crowd-sourced design. It could notify both workers and

administration using signaling devices to ensure proper actions in critical situations.

Figure 1.20 High-level description of the SAFE ecosystem

Taken from Altamura et al. (2019)

Figure 1.21 Six different components of

SAFE prototype

Taken from Altamura et al. (2019)
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The system included sensing capabilities such as an MQ-2 sensor, which is a sensitive quick flame

detector able to reveal smoke in the air and flammable gases such as propane, hydrogen, alcohol,

methane, and liquefied petroleum gas. The concentration of the gas within a predetermined range

could be indicated by the detector. To monitor human physical measures of body temperature

and heartbeat, an analog TMP sensor and PulseSensor were used.

The design was based on rapid prototyping techniques and used basic inexpensive modules

and sensors. The sensors included a gas detector, temperature sensor, and heartbeat monitor

that connected to the main MCU, an ATmega328P (Arduino Nano). The microcontroller

could operate with low voltage. The working steps included a sensing section and a sense

and communication interface. The microcontroller would gather data from sensors, make a

17-element data package and send it to the ESP8266 WiFi module. The proposed system had

been prototyped in different implementation phases using a polyethylene safety hardhat as

internal support for non-sensorial components, namely the battery pack, external slots for the

gas sensor, communication buttons, power switch, a slot for the LCD, mobile support to place

the temperature sensor, and the pulse sensor behind the ears (Altamura et al., 2019).

A perspiration-measuring hardhat was developed by (Kosuda et al., 2019). They attached four

temperature and humidity sensors and calculated the amount of perspiration using the hardhat.

The two sensors were attached to the two airflow entrances of the hardhat, and another two

sensors and a fan were attached to the airflow output. They used WiFi to collect data. In their

experiments, they found that it is possible to measure the amount of perspiration of the whole

body only via this hardhat.

Dogbe et al. (2020) used shape-shifting technology to design a hardhat that protected workers’

hearing from the loud noise that could damage the auditory system. As soon as the hardhat’s

sensor detected loud noise (exceeding a safe threshold), the microcontroller activated two servo

motor-powered earmuffs to cover the ears.



29

Adjiski et al. (2019) attached sensors to the hardhat and safety glasses, provided communication

with mobile phones and smartwatches, and the safety of workers improved (Figure 1.22). To do

this, they attached specific sensors to the PPE clothes and, using an energy-efficient Bluetooth

module, connected them to the smartwatches and smartphones. Regarding the architecting

of the prototype, sensors collected data, and then this data was sent to the mobile phones by

Bluetooth. The data was sent to the center as soon as there was a WiFi connection. By using

this data, it was possible to provide different applications, such as a historical record of the site

or controlling and predicting the risk of accidents and incidents on the site.

Figure 1.22 Overall prototype system

Taken from Adjiski et al. (2019)

Aliyev, Zhou, Hevesi, Hirsch & Lukowicz (2020) prototyped a hardhat with two purposes,

worker’s health and site monitoring. One of its main advantages was the flexibility of its hardware.

The system had 10 different sensors with haptic feedback, and all hardware communication was

achieved via Bluetooth. Furthermore, by developing a mobile application, it was possible to

use the gathered data for future actions. The prototype could record worker motion activity,

detect whether workers wore the hardhat correctly, monitor health signals such as temperature

and pulse, notify workers by LED arrays in front of the workers’ eyes, and use haptic feedback

for more reliable notifications. To notify about the site the environment, certain sensors could
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detect parameters such as air pressure or gas resistance, etc. Also, this prototype could detect

the object and obstacles around workers, and some sensors could detect UV exposure. Another

function was a flashlight to see or read in the dark.

Figure 1.23 Overall prototype

Taken from Aliyev et al. (2020)

1.3.4.3 PPE and Wind

This Section qualitatively explores the potential of integrating wind detection and PPE, focusing

particularly on hardhats. Wearable wind sensors and anemometers will be examined regarding

the size of sensors and whether it is possible to attach them to PPE. It is important to note that

we could not find any mention in the literature as to wind detection and PPE. For this Section,

we decided to limit our research to studies that focus on small wind sensors or any type of small

anemometers.

The development of a two-dimensional hot-air speed sensor based on micro-electromechanical

technology was presented in (Zhou, 2019). The sensor operated in continuous power status and

measured wind speed and direction using the thermal temperature differential approach. When

the wind passed through the heater, the nearest section of the heater to the wind had a higher



31

rate of temperature drop than the further section of the heater. Thus, wind speed and direction

detection could be achieved by calculating the variation in temperature.

A glass was utilized with this sensor with low thermal conductivity to improve the sensor’s

performance by providing good thermal isolation. Regarding the fabrication, two thin pieces,

titanium, and platinum were consigned to the glass.

An ANSYS simulation test was conducted with wind speeds between 2 and 10 m/s, and wind

orientation 45 degrees; they found that by increasing the wind speed, the temperature of the chip

decreased, and the accuracy of the chip was higher. During the prototype test through the wind

tunnel, they found that their simulation result was correct when the wind speed was between

2.5 and 10 m/s for all orientations, and the error of the wind’s direct detection was less than 8

degrees. Furthermore, the sensor had low energy efficiency but excellent sensitivity and a quick

response time. One of the advantages of this thermo-differential sensor was that it could detect

the direction of the wind and had a higher rate of sensitivity when the airflow was low. However,

it did not work well in the high-speed wind.

To test the anemometer, they used a wind tunnel; when the wind speed changed from 0 to

10 m/s, the accuracy of the anemometer was the same as the simulation test results. However, at

10 m/s, the detection accuracy decreased as the temperature of the environment decreased. It is

important to note that the sensor output voltage alternated between sine and cosine when the

wind changed from constant and inconstant.

The development and testing of a low-cost micro-machined wind sensor with thermopiles based

on the calorimetric principle were produced by (Zhu, Chen, Gu, Qin & Huang, 2014) on a

two-dimensional ceramic substrate. The sensor prototype had two sides (Figure 1.24): one side

to be exposed directly to the wind, and the other side was a nickel heater and nickel/aluminum

thermopile on a ceramic piece.
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Figure 1.24 The design of sensor: a) process of bonding,

b) complete package in shell

Taken from Zhu et al. (2014)

The entire procedure was straightforward, and just three covers were required. This technology

had a low manufacturing cost and reduced the variations produced by the chip-packaging process

without the need for an additional packaging plate. Two different tests were run to improve

the quality of the prototypes by simulation and analyzing the accuracy of the sensor by testing

it in the wind tunnel. Unlike other thermosensitive thermal wind sensors directly produced

on ceramic boards, this sensor used thermopiles as the sensing element to reduce the sensor’s

offset output caused by process error. Furthermore, in the simulation process, by analyzing the

difference in temperature at various points on the substrate, a method was proposed to test the

impact of "chip size, heater length, and heating power" on the effectiveness of the wind sensor,

making it possible to optimize the cost of prototyping. Regarding the wind tunnel test, they

found that the sensor could measure wind speed around 30 m/s and detect all 360 degrees of the

wind direction. It is important to note that after a 2000-fold amplification, the output offset of

the sensor was less than 0.1 mV in 300 K.
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In Rehman, Mohandes & Alhems (2018) the effect of wind speed and its characteristics was

studied for 8 months. They used a Lidar anemometer to measure parameters such as “wind

speed, Weibull shape and scale parameters, wind power density; frequency, wind turbulence;

wind shear exponent; a correlation between wind speeds at adjacent heights, the wind energy”.

To gather related data, they used Laser Doppler (LiDAR) anemometry methods, which are more

efficient because of various advantages, namely, this method and sensor did not have a high

installation cost, there is no need for individual component measurement, nor is there a risk of

measurement drift, small or no licensing requirements, no aircraft obstruction, less vulnerable to

lightning, and the sensor was not impacted by frosting.

Cheng, Chang, Fu & Liu (2019) designed another type of anemometer that detected both wind

speed and direction (see Figure 1.25). It consisted of two fiber Bragg gratings, a stainless-steel

bar, and a plastic ball. The two fiber Bragg gratings (FBGs) were attached to the length of the

stainless-steel rod with a 90-degree position separation.

As to its design, when the stainless steel received the wind, this triggered the FBGs, making it

possible to detect the wind speed and direction by the different wavelength shifts. This prototype

has two advantages: first, low production cost. Second, it could be used in different conditions

and environments as the sensor works with two FBGs. From the results of the experiment, the

anemometer’s wind speed accuracy was 0.49 m/s, and its responsivity was 0.02 nm/(m/s) with

an error of 2.5%. Regarding the wind direction, the error of detection was about 0.70%.

1.3.4.4 Detection of Wind Speed and Direction

In this Section, we review the literature that presents studies closest to the objectives of the

present research. In the first paper, the authors (Widyantara, Rivai & Purwanto, 2019) prototype

a system to detect gas leakage using a mobile robot. The anemometer they used to detect the

direction of the wind is "wind sensor Rev P5". The second work (Li, Zhao & Zhu, 2018) detected

wind speed and direction by attaching a “thermal flow vector sensor” to the wristband. In that

study, the sensors used to detect the wind speed and direction are different from those used in
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Figure 1.25 The design of the fiber anemometer

Taken from Cheng et al. (2019)

the previously-mentioned work, but they detected the same parameters of wind characteristics.

We will now examine these two articles, explain the similarities and differences, and evaluate

their relevance considering the objectives of our work.

Widyantara et al. (2019) designed a sensor system to detect the direction of the wind considering

a positive temperature coefficient thermistor. The study utilized a thermal anemometer-based

wind speed produced by Modern Device. The robot could detect the direction of the wind and

track the odor plume might increase to 80% the efficacy of detection.

Thus, this prototype could be used for several applications and on different devices, for example,

an odor tracking robot, gas leakage finder robot (Zhang, Li & Wang, 2012; Lu, 2013), or robots
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for tracking the source of the odor. The authors used three anemometers positioned at 120-degree

angles measuring different directions (Figure 1.26). As a result, the 12 directions of wind were

detected. This method can be applied in the context of our research, even if the objectives of this

study are different from ours.

Figure 1.26 Wind sensor a) schema of design,

b) the mechanical design

Taken from Widyantara et al. (2019)

To determine the accuracy and characteristics of this anemometer, they ran an experiment in a

small wind tunnel with a speed range of 0.22 to 3.1 m/s. Furthermore, they repeated the test

at three different speeds and rotated the anemometers 30 degrees. The accuracy of the wind

detection was 91.6%. To predict the wind direction, they applied a Multi-Layer Perceptron

(MLP) neural network algorithm as it can solve not only linear problems but also multi-layer

problems. These authors also ran an experiment in the open air to assess the accuracy of wind

source detection when the anemometer is attached to a mobile robot. The accuracy of wind

direction was between 75 and 87.5%.

A prototyped wearable anemometer was developed and designed by Li et al. (2018). The system

had a “thermal flow vector sensor” to measure wind direction and speed. In our work, we used

a sensor using an omnidirectional thermal anemometer. To make the thermal sensor, three

circular Pt hot-film sensors equally spaced inside a circle were manufactured on a polyimide base.
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It is important to note that two commercial triaxial micro accelerometers and triaxial micro

magnetometers were used to assess wind orientation detection. The anemometer (Figure 1.27)

had various components: a thermal flow vector sensor, a commercial micro accelerometer and

magnetometer, a lithium battery, and a Bluetooth module.

Figure 1.27 Anemometer design a) Hardware setup,

b) The anemometer, c) Practical diagram

Taken from Li et al. (2018)

As illustrated in Figure 1.28, to keep the thermal heat transfer constant and concentrically

balanced, three-round components were arranged in a circular pattern. To measure stream

temperature variations, the temperature sensor system was split into three discrete areas. Three

thermometer sensors measured temperature fluctuations in the hot zone when they received

wind, and this data was used to detect the wind speed ratio.
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By obtaining the heating power of the three hot-films working in fixed temperature variation

cycles, the flow sensor measured the speed and related angle. In addition, the ratio of the wind

alerted the "wind absolute orientation in the geographic coordinate system."

Figure 1.28 Design of the custom micro thermal

flow vector sensor

Taken from Li et al. (2018)

As for data gathering, see Figure 1.29, the ADC converter could collect the data of the thermal

flow sensor. The circuit connects the accelerometer and magnetometer to the microcontroller.

All gathered data using a microcontroller was sent to the PC or smartphone via Bluetooth. The

transmission rate was 50 frames per second. Under a wind speed of 0-20 m/s, the anemometer’s

power consumption was less than 500 mW. The anemometer could operate for a maximum of 4

hours using a 600 mAh lithium battery. Figure 1.30 presents the overall hardware and software

prototype. This system shows wind direction, speed, and ratio.

Regarding the accuracy of wind speed detection, the root mean square (rms) error of the wind

speed measurement were less than 0.2 m/s between 0 and 19 m/s, the rms errors of wind relative

angle was less than 3 degrees, and absolute orientation was less than 4 degrees. Mostly this
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Figure 1.29 Data Diagram

Taken from Li et al. (2018)

anemometer is used to detect human motion and posture by calculating the received speed of

human body motion while this anemometer is worn on the human arm.

1.4 Synthesis

This study inquires into the domain of smart PPE and wearable applications related to the

effect of wind in construction to address the existing limitations. Literature from various areas

such as safety on construction site, health monitoring, worker’s fall detection, monitoring risk,

and environmental conditions has been studied. Accordingly, existing limitations in safety,
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Figure 1.30 Design of overall platform

and mobile application

Taken from Li et al. (2018)

technology insufficiency, and human error detection have been identified. More research is

needed in this regard, and new approaches need to be developed.

Our overall project aims to utilize wearable sensors and IoT to detect wind speed and direction

in construction sites, to propose potential improvements for workers’ safety. Researchers have

developed various smart PPEs or wearables using, for instance, a hardhat, gloves, and glasses.

Nevertheless, studies indicated that traditional approaches are incapable of answering the needs

for safety-related measures on construction sites completely. The root of the problem is that the

current methods used to detect wind speeds and direction are often error-prone, fail to cover the

entire construction site, or cannot transmit the information for potential danger in real-time.

We performed a Systematic Literature Review (SLR) to thoroughly review all the literature

pertaining to wind, PPE, and construction safety. The 76 articles retained were investigated

using scientometric analysis. A qualitative analysis was conducted to understand the methods for
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wind speed and direction detection using smart PPE or wearables for the construction industry,

to extract the challenges, the gaps, and the limitations of the current solutions. This study aims

to address them via implementing IoT-based wearable wind sensors.

Our literature and best practices review focused on three subcategories: First, determine the

effect of wind on construction and workers’ safety; secondly, identify how personal protective

equipment (PPE) is employed and improved to boost the safety of workers and decrease the

different types of accidents and incidents. Third, how wind detectors are being implemented on

PPE.

From these three categories, we conclude that while there were many studies on the effects

of weather on construction sites, few studies focused specifically on the effect of wind on this

industry (in terms of safety). Our review revealed that few studies research the effect of wind in

relation to accidents and incidents for workers in construction sites. Most papers focused on

the damage of strong winds on structures, materials, and equipment. We also found that based

on the previous studies (Jung, Park, Lee & Kim, 2016), the wind speed measured at ground

level might be completely different from that at the higher floors of construction sites. This

is why in this study, we decided to detect the wind characteristics for each worker. Thus, our

prototype could measure the wind speed and direction in all the various site locations as the

sensors detecting the wind characteristics would be attached to their hardhat. Although there are

different studies on the effects of wind on construction projects, few focus on the impact of wind

on workers (Schuldt et al., 2021). There is a knowledge gap regarding the effect of wind and

portable wind detectors.

From the second category, we found that most of the detection prototypes were attached to the

hardhat and focused on adding technologies to make it smarter to improve the safety of laborers.

In brief, the improvements provided by these prototypes were mostly related to human biometric

signals, localization of workers on construction sites, management of proper hardhat wearing,

detection of gas, improving workers’ visibility by adding lights, obstacle detection, and the

ability to declare an emergency either by the workers or site management. It is important to
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note that most of the studies focused on adding technology to the hardhat to improve the safety

of workers with their prototypes. To the best of our knowledge, there does not appear to be a

study on attaching a wind sensor to a hardhat or to any other type of PPE, which shows there is a

knowledge gap on this topic and the need for future work.

From the third category, we reviewed the possible sensors that can be used to detect wind

characteristics. There are various types of sensors. However, the thermal anemometer is the

only sensor that can attach to a hardhat and, since we intend to use this type of wearable device

for our final prototype, We plan to consider this anemometer for our proposed solution.

Finally, we focused on the two articles that were presented developments having some common

characteristics with the objectives of our work. One of these studies used the same anemometer

that we decided to add to our prototype, and from their study, we found that this anemometer

could detect wind speed and direction. However, they used their prototype to improve gas

detection and attached the anemometers to a mobile robot, which is different from our purpose.

The second article designed a wristband that detects wind characteristics. We assume that

attaching a wind sensor to a hardhat may be more effective because all workers must use a

hardhat in construction sites. Moreover, the wristband might be covered by sleeves or another

object, and as a result, the detection of wind direction and speed might be hindered.

In conclusion, we did not find any research or studies that implement a wearable wind sensor

system to detect wind characteristics for safety issues. The objective of our work is to enable the

detection of wind speed and direction in different locations of the construction site in real-time.

This will help solve the problem of wind readings at ground level differing from those at the

upper floors of a structure by collecting and modeling data received from each hardhat.





CHAPTER 2

RESEARCH METHODOLOGY AND PROPOSED SOLUTION

The main objective of this study is to improve workers’ safety by proposing a new method to

predict wind speed to avoid wind-related safety issues in construction sites. The main objective

is divided into four sub-objectives as follows (as explained in Chapter 1):

1. To propose an IoT-based hardware solution to collect environmental information to be used

for detecting wind speed and direction on the construction sites.

2. To investigate a hardware solution integrated in mandatory safety gears (i.e hardhat).

3. To investigate a method to accurately predict wind speed and direction using data collected

from sensors using a supervised machine learning algorithm.

4. To design and implement a data collection station to create a dataset required for the machine

learning models.

Design science research (DSR) methodology is employed in this study, which is commonly used

in the field of information systems. Considering the fact that, this research intends to generate

new knowledge by designing, developing and, evaluating a prototype, DSR methodology is

considered suitable.

2.1 Design Science Research Methodology

The DSR is not a theoretical method, and it is ideal for creating artifacts to solve real-life

problems (Hevner & Chatterjee, 2010). The DSR is relevant to the vast array of artifacts.

"An artifact is an object that can be used to solve a practical problem by interacting with a

context" (Johannesson & Perjons, 2014). Designing an artifact in DSR means building and

evaluating something new. For example, an artifact could be a theoretical framework, complex

system, hardware, software, or a human-computer interface.

According to Hevner and Chatterjee (2010), there are five phases in the design science method-

ology to follow during the design, implementation, and test process, namely: the problem
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awareness, suggestion, development, evaluation, and conclusion (as shown in Figure 2.1).

Figure 2.1 Design Science Research Methodology steps

Taken from Hevner & Chatterjee (2010)

In the context of this research, the practical problem addressed is the real-time detection of

the safe/unsafe conditions in adverse weather (high-speed wind); and the proposed artifact is a

wearable device (i.e., hardhat) equipped with four hot-wire sensors and emitting safety alerts

related to dangerous wind speed and direction. The five steps of the DSR method are explained

in more details in the following points.

2.1.1 Awareness of Problem

Since the construction sites are constantly changing, the wind profile can vary according to

the shape of the site, and the wind speed and direction may vary in different locations of the

site. Furthermore, the wind profile changes in different latitudes, longitudes, or elevations. For

example, with an increase in elevation in high-rise buildings, the effect of weather conditions

could be more intense (Jung et al., 2016). Typically the weather information comes from

a reliable meteorological website or a local weather station (placed in the construction site).
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However, workers on construction sites may be exposed to the risks of high wind speeds while

the reported wind speed for the site is within the acceptable range. Therefore, there is an

inconsistency between the data obtained from a meteorological website or a local weather station

and the actual wind speed in construction sites. Moreover, wind gust ("a sudden strong increase

in the amount and speed of the wind that is blowing" 1) is one of the main safety concerns related

to the high wind speed. Therefore, to avoid the above-mentioned problem, wind speed and

direction in various locations of the construction sites should be monitored regularly. The best

solution is to measure the wind speed and direction in real-time for each worker independently,

considering their working area.

2.1.2 Proposed Solution

Regarding the choice of wearable devices to host wind sensors, some devices such as smart

wristbands, glasses, or jackets may be covered by workers’ clothing or other objects, making the

detection of wind speed and direction challenging. The best candidate is wearable gear that is

continuously exposed to the wind profile. Hence, the hardhat is chosen since each worker on a

construction site is required to wear it as part of the mandatory personal protective equipment.

The idea of using a hardhat as a smart wearable device by adding a collection of electronic

components has been successfully investigated in many research projects to correspond to

various problems. Therefore, in this research, the use of a hardhat capable of measuring wind

speed and direction for each worker is proposed. The proposed solution is elaborated in detail in

Section 2.2.

2.1.3 Prototyping

The term "prototyping" refers to the process of developing an artifact. In this research, the

prototype is a hardhat equipped with sensors and a software that can detect wind speed and

direction in real-time to increase safety measures. The primary objective of designing a hardhat

was to gather all the wind-related data using the attached sensors and send them to our software

1 https://www.oxfordlearnersdictionaries.com/definition/english/gust_1
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through a wireless connection. In addition, collecting real-time data from the hardhat and

predicting wind speed and direction using a machine learning algorithm were the main steps of

the prototyping process. Four hot-wire sensors were installed on the front, back, left, and right

sides of the hardhat to collect airflow information. Furthermore, these sensors are connected

to an Arduino board and a Bluetooth module to send and receive data wirelessly. This artifact

serves as a proof of concept, demonstrating the feasibility of the proposed solution. Details of

the prototype design and implementation is presented in Section 3.1.1.

2.1.4 Evaluation

The evaluation step aims to evaluate the designed prototype. This step offers feedback or

guidelines to the two former steps (i.e., awareness of the problem and proposed solution),

allowing for incremental and iterative advancement. The data from hardhat sensors needs to

be collected to provide the required materials for the evaluation step. Hence,the methods and

tools required for data collection and analysis were designed and implemented. Details of the

evaluation is presented in Section 3.3.3.

2.1.4.1 Data Collection Method

The designed hardhat equipped with four hot-wire sensors were placed inside the wind tunnel (a

part of our data collection station) to collect data regarding various wind speeds and directions.

As a result, the raw data from hardhat’s sensors and reference anemometer were collected to

generate the dataset. Therefore, the dataset was made of the data gathered from sensors exposed

to the wind at controlled speeds and directions.

2.1.4.2 Data Collection Tools

1. Hardhat

To create the prototype hardhat, four hot-wire sensors were used as they are lightweight and

small. Consequently, workers can comfortably wear the hardhat equipped with sensors. The

sensors are capable of capturing a wide range of wind speeds. Additionally, the sensors can
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be used as an array to detect wind speed and direction. Details about the proposed solution

is elaborated in Section 2.2.2.1.

2. Data collection station

Our data collection station included a wind tunnel, reference anemometers, and a rotational

platform. A constant wind speed is applied during each data collection step using the control

panel of the wind tunnel. A reference anemometer is placed inside the wind tunnel, allowing

to record the actual wind speed in real-time. To control the wind direction, a rotational

platform is designed and implemented which allows various angles for our hardhat inside

the wind tunnel. To place the hardhat inside the data collection station a mannequin head

is attached the developed rotational platform. Details about the data collection station is

elaborated in Section 3.1.2.

2.1.4.3 Data Analysis Method

After gathering data from the sensors and the data collection station, they are organized into two

categories. The first category was the data from the hot-wire sensors attached to the hardhat,

and the second category was the data from the reference anemometer and the rotational platform

(i.e., the data related to wind exposure direction). The goal of the prediction algorithm is to

find patterns or correlations between these two categories. Therefore, the collected data from

hardhat sensors, rotational platform, and reference anemometer were considered as an input of

the machine learning algorithm. Details of the proposed data prediction method is elaborated in

Section 3.3.

2.1.4.4 Data Analysis Tools

Machine learning is essentially the use of data rather than logic by a machine to execute

tasks (Yadav & Shukla, 2016). The goal of a machine learning algorithm is to create a model

that generalizes to out-of-sample data. Additionally, evaluation is a critical component of any
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machine learning model, which estimates how well a given model performs on out-of-sample

data (Na, 2017; Yadav & Shukla, 2016). In this research, ML.NET is used, which is a free

machine learning library for the C# and F# programming languages that also supports Python

models when used together with NimbusML (Na, 2018). Moreover, ML.NET provides the

evaluation methods to measure various metrics for the trained model. The evaluation methods

generate statistical measures depending on the machine learning task. Details of the evaluation

methods is elaborated in Section 3.3.

2.1.5 Conclusion

The primary artifact of this study was our prototyped hardhat. The hardhat was equipped with

four hot-wire sensors to detect real-time wind speed and direction. The proposed solution can

improve safety via detecting wind characteristics in real-time and based on the position of each

worker. Furthermore, the prototype’s accuracy is evaluated by testing it in a wind tunnel. Using

the IoT equipped hardhat, together with the developed data collection station, data from hardhat

sensors is gathered to enable machine learning models. Finally, to test the developed models,

various metrics related to our machine learning algorithm are used.

To conduct the first stage of our DSR, (i.e., awareness of the problem), a systematic literature

review is conducted, which focuses on the state-of-the-art, current research gaps, and limitations.

For the second stage, a solution is proposed. We concluded that the hardhat is the best option to

host measuring sensors. Finally, a prototype (i.e., artifact) is designed and developed based on our

proposed solution, which verifies the proposed solution. To complete the fourth stage, machine

learning models were designed and trained using a gathered dataset. Finally, according to the

data collection and evaluation phase, we determine that the artifact is adequately functioning.

2.2 Proposed Solution

This research proposes a solution for real-time monitoring of wind speed and direction, using

hot-wire wind sensors attached to a hardhat, and a supervised machine learning algorithm
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that predicts the actual wind speed based on the sensor’s readings. The main contributing

elements for the realization of the system are: (1) hot-wire sensors to collect airflow data, (2)

a wind tunnel and an accurate anemometers to generate wind and to record wind speed as a

reference data for the dataset creation, (3) a rotational platform (which offers an effective solution

to provide various angles for the hardware prototype to collect hot-wire sensors data), (4) a

developed software application to control sensors and the rotational platform and to collect

sensors’ data and process them, and (5) a developed regression algorithm (a supervised machine

learning algorithm) to predict the values for wind speed and direction. Figure 2.2 shows the

main elements of the proposed solution. Each hardhat send its data (i.e., the data related to four

hot-wire sensors) to the developed software wirelessly. The data collected from sensors, is used

as an input of machine learning (ML) prediction models to predict the wind speed and direction.

The machine learning models perform prediction using a gathered dataset. Finally, the software

compares the wind speed with the reference values, send alerts to the workers or security agents,

if the wind speed is beyond a set range.

Figure 2.2 Proposed solution
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2.2.1 Input Data

The main input of the proposed system is the data collected from sensors attached to the designed

hardhat. The data from the hardhat consists of the readings from four hot-wire sensors. The raw

data collected from sensors are inputs to the developed supervised ML algorithm, which allows

predicting the wind speed and direction. For the machine learning algorithm to work, a robust

data collection station is designed and implemented to collect data for creating the ML dataset.

Details of the created dataset is presented in Section 3.2.3.

2.2.2 Hardware Concept

The proposed solution generates two variables as outputs which are real-time wind speed and

direction. For that, the solution uses a wearable hardware (i.e., hardhat), which is part of

personal safety equipment, equipped with sensors, processors, and communications modules.

In this research, two sets of hardware setups need to be developed, tested, and verified: (1)

hardhat equipped with sensors and other required electronic elements (Section 2.2.2.1); (2) data

collection station (DCS) for acquiring dataset to be fed into the supervised ML algorithm. The

DCS contains a wind tunnel, rotational platform, and a reference anemometer (Section 2.2.2.2).

The limitation of the wind tunnel in generating a directional profile of wind was addressed by

the design and implementation of the rotational platform.

2.2.2.1 Hardhat

The hardhat is chosen as a host device for the sensors. The hardhat is usually at the highest point

of the body and is suitable for hosting wind sensors, as it is typically exposed to direct wind.

In our proposed solution, the hardhat is equipped with four hot-wire sensors that are installed

and arranged around it (Figure 2.3). The sensors are connected to an Arduino board, which is

connected to a Bluetooth module. After receiving data from the sensors, the Bluetooth module

sends them to the receiver, which is a computer that runs the software, wirelessly.
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Figure 2.3 (a) Placement of hot-wire sensors on the hardhat

(b) Communication between sensors and the software

2.2.2.2 Data Collection Station

Data collection station is used to provide various wind speeds and directions for the purpose

of dataset creation, testing, and evaluation of the proposed solution. To create the dataset, a

controlled environment in which all the variables were accurately measurable is used. The

data collecting station included a wind tunnel, reference anemometers, and a rotational plat-

form that hosts the hardhat. Data collection station is used to measure and record required

variables including, the current wind speed, the temperature of the test area, the wind expo-

sure direction, and the data coming from hot-wire sensors (hardhat sensors) that are placed

inside of it (Figure 2.4). The main elements of the data collection station are explained as follows:
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Figure 2.4 The data collection components

Wind Tunnel

Wind tunnel is the main element of our data collection station. It is used to prepare various

wind speeds for the data collection and testing purposes. To evaluate the developed solution,

the hardhat needs to be exposed to various wind speeds and directions and, additionally, data

collection should be performed to make a dataset to be used in our machine learning models.

The diameter of the cylindrical shape of the wind tunnel test area used in our research is 1.3m

and with a length of 1.2 m. The prototype can be easily fit inside the wind tunnel as the entrance

for the test area is 90 cm*85 cm. The wind tunnel can generate wind with speeds ranging from

3.5 to 11.5 m/s. In this research, a large wind tunnel is used, which can generate high wind

speed as most of the small wind tunnels produced airflow of less than 5.0 m/s.

Reference Anemometer

Reference anemometer is one of the main components of DCS. It measures the actual wind

speed inside the test area of the wind tunnel, which is one of the main inputs for creating the
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dataset. The amount of airflow generated by the wind tunnel is controlled by the wind tunnel

panel. The reference anemometer measures the actual airflow to help adjust the wind speed to

the desired value. On the other hand, it is common that even when a certain wind speed value is

set for the wind tunnel, the speed changes over time. Consequently, the wind speed is required

to be continually monitored to make sure that the right wind speed is maintained over time. In

our prototype implementation, a secondary wireless reference anemometer is used to be able

send data (i.e., wind speed and ambient temperature) via Bluetooth connection to the processing

software.

Rotational Platform

Two variables (i.e., wind speed and direction) are needed for creating the dataset of the machine

learning models. The wind speed is controlled via a wind tunnel panel, and the accurate value

of the wind speed is provided by the reference anemometer placed inside the tunnel. As wind

tunnels generally generate airflow in a single direction, to be able to expose the hardhat to various

wind direction angles, a rotational platform, which hosts the hardhat inside the tunnel, is required

(Figure 2.5). In this study, a rotational platform is developed that provides the possibility of

rotating the hardhat to different angles inside the wind tunnel. The details of the prototype

rotational platform are provided in Section 3.1.2.1.

2.2.3 Software Architecture and Implementation

In our proposed solution, the development of a software is required with the following

requirements: (1) controlling the yaw and pitch of the rotational platform, (2) gathering data

from hardhat sensors and controllers (such as hot-wire sensors, battery status, and etc.), (3) data

collection from the reference anemometer, (4) data preparation for creating the machine learning

models, and (5) creating a machine learning models to predict wind speed and direction based

on input data from the hardhat’s sensors.
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Figure 2.5 Data collection station

2.2.3.1 Software Architecture

The microservices architecture is proposed in this study, allowing for faster deployment and

better scalability. Figure 2.6 illustrates the proposed service components and their relations.

Five micro services are proposed, implemented and developed in this study: ML.NET service

component, Converter service component, Hardhat service component, Rational platform service

component, and Anemometer service component. The details of the micro services are provided

in Section 2.2.3.2.

2.2.3.2 UML Diagrams

Figure 2.7 illustrates the UML class diagram of the proposed software to manage the system.

This software consists of five separate dependencies. The composition relates three parts of the

software, and aggregation relates the rest.
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Figure 2.6 Main software microservice architecture

Composition Dependency

1. Hardhat Service Component: There are eight attributes and four main methods in this

class. Controlling the connection status, turning on and off the sensors of the hardhat, and

requesting data from the sensors are tasks related to this class.

2. Rotational Platform Service Component: This class includes seven attributes and six

methods. It includes tasks such as checking the connection status, requesting the angular

position of the stepper and linear motors, turning on and off each motor separately, and

sending the command to set a new position for each motor individually.

3. Anemometer Service Component: This class consists of two attributes and four methods.

These methods include controlling the hardware module’s connection status, recording wind

speed and ambient temperature, and checking the battery charge status.
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Figure 2.7 UML class diagram

Aggregation Dependency

1. File and Fold Converter: This class has six attributes and three methods. This class can

convert files between different formats, prepare the machine learning model’s required

format, and arrange all folds for the cross-validation test.

2. ML.NET Model: For this class, there are ten attributes. This class can create the desired

machine learning models and prepare them to predict wind speed and direction using a file

with a defined format. This class includes three methods: first and second methods can

predict wind speed and direction, while the third method is intended to evaluate different

metrics on our machine learning models.
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2.2.3.3 Software Verification

There are three main requirements for the software: the hardware controller for data gathering, the

data converter to prepare the dataset, and the machine learning model for prediction. Therefore,

the software should provide functionalities to correspond to the requirements. Verifying the

functionalities of the software against the requirements, ensure that the developed software

serves the needs.

The first requirement is related to the data gathering process. The software has a module that

communicates to the hardware via a Bluetooth connection. The software sends and receives

data from/to the hardhat prototype and the rotational platform via this module. The Bluetooth

communication allows having access to the data of each hot-wire sensors, wirelessly. In

addition, it allows to individually turn on and off the sensors. Furthermore, the platform rotates

automatically in the transverse and vertical axis to change the wind direction exposure during

the data collection process.

The second requirement is related to the collection of data for the machine learning models. The

software gathers data from four hot-wire sensors, a reference anemometer, and transverse and

vertical axis data related to the rotational platform and convert and assemble them into a single

file.

The third requirement is the implementation of the machine learning models. After gathering all

the data into a dataset, it is used to train the machine learning models. The software is capable

to use the dataset for the supervised machine learning module and predict the wind speed and

direction.

2.2.4 System Implementation Requirements

In order to implement a prototype of the proposed system, first, the required hardware and

software needs to be designed and implemented. Second, a dataset needs to be gathered to be

used to train the ML models. Finally, the system needs to be tested and verified.
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Hardware and Software Preparation: The first hardware component is the hardhat. The

hardhat needs to be equipped with sensors, processing unit, power source, and the communication

module. Additionally, it has to be comfortable and secure to be used by the worker. The

second component is the data collection station used for the data gathering and testing purposes.

The data collection station contains a wind tunnel and reference anemometer. Additionally, to

provide various wind directions for the hardhat during the data gathering and test process, a

rotational platform for rotating the hardhat inside the wind tunnel and exposing it to the wind at

different angles is required. A software needs to be designed and implemented that controls all

the hardware components (the hardhat sensors, the rotational platform) in real-time.

Additionally, for the data collection and validation, a software is required to collect all the data

from each sensor on the hardhat and at the specific speed of the wind, ambient temperature,

and transverse and vertical axis. Details of the requirements of the software were explained in

Section 2.2.3.3.

Data Gathering and Validation: After desiging and development of the hardware and the

software, the following steps need to be taken: (1) data collection station preparation (i.e.,

preparation of hardware, software, and the tests area), (2) the preparation of data gathering plan,

(3) data gathering, and (4) data validation.

Summary

In this Section, the proposed solution together with explanation about the prototype was

discussed. The main component of the proposed solution was a hardhat equipped with four

hot-wire sensors. Additionally, details about the proposed solution for the data collection station

to create the dataset to be fed into the machine learning models is presented. Moreover, the

software architecture and its implementation requirements was elaborated in this Section.
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PROTOTYPE IMPLEMENTATION

This Section provides details about the implementation of the prototype of the proposed

system. This chapter is divided into four main sections. Section 3.1 presents a description

of hardhat components and data collection station. Section 3.2 describes data set gathering.

Section 3.3 explains how we build the machine learning models, collect metrics, and measure

the performance of the models. Finally, Section 3.4 addresses the limitation, challenges and

improvement scenarios.

3.1 Hardware Implementation

This Section provides details about the implementation of the prototype of the proposed system.

It is divided into three main sections. Section 3.1.1 presents a description of hardhat components.

Section 3.1.2 describes various parts of the data collection station. Finally, Section 3.1.3

addresses the implementation of the data collection station.

3.1.1 Hardhat

The hardhat prototype consists of the following modules: (1) hot-wire wind detection sensors,

(2) Arduino board, (3) Bluetooth module, (4) DC-to-DC converter module, (5) battery, and (6)

charger module (Figure 3.1). Details of each module are explained in the following subsections.

3.1.1.1 Hot-wire Sensor

Hot-wire sensor1 (Figure 3.2) is a module that could measure the airflow rate. There are various

types of anemometers based on their working principle. The hot-wire sensors used in this study

are commonly used in a wide range of applications such as robot navigation, and drones. In

this type of anemometer, the cooling effect is induced when air passes through the wire or
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Figure 3.1 Hardhat overview

transducer’s face of the anemometer (Chen, Zhu, Yi, Qin & Huang, 2015) and then the varying

temperature magnitudes are transformed into a voltage. In comparison to other technologies, the

thermal anemometer offers high accuracy. As a result, it’s widely employed in turbulent wind

analysis (Widyantara et al., 2019).

Four hot-wire sensors are used as an array to measure the value of airflow exposed to the hardhat

from different angles to calculate the actual wind speed and direction in the environment with

the help of a machine learning algorithm. Each of these sensors is connected to the Arduino

board separately. The data received from these sensors are analog. The Arduino board converts

the analog input to digital using analog to digital converter units.

1 https://moderndevice.com/product/wind-sensor-rev-p/
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Figure 3.2 Wind Sensor Rev.P

In order to use this type of sensor, various tests were designed and conducted to assess the

accuracy, consistency, and the influence of wind angle on the sensors. To perform the tests,

a small open-return wind tunnel (Appendix II, Figure-A II-1) was designed. Appendix II,

Table-A I-2 shows the specification of our designed wind tunnel. For the accuracy test, a

conversion equation (provided by the manufacturer) was used to convert the output voltages from

the sensor to the wind speed. In order to examine the accuracy of the sensors, the calculated

wind speed was compared with the values obtained from reference wind speed data collected

from an accurate anemometer (Appendix II, Figure-A II-2). For this purpose, the hot-wire sensor

is connected to an Arduino board to collect the data (Appendix II, Figure-A II-3). Meanwhile,

the wind speed data from the reference anemometer is collected to be compared with the output

data of the hot-wire sensor.

Several tests were performed with different wind speeds (according to the speed range of the

small wind tunnel). The duration of each test was 60 minutes. The results show that the hot-wire

sensor could measure the wind speed as accurately as our reference anemometer, while the wind

speed was between 0.1 to 5.0 m/s.

Regarding the consistency of readings, the same test was performed for a more extended period.

In this test, the readings were collected for seven hours to see the possible changes in reading

during the test. The results show that the readings from the hot-wire sensor were consistent.
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In terms of the effects of wind angle on sensors’ accuracy, four different tests were conducted.

The hot-wire sensor was placed inside the small wind tunnel with a constant value of wind

speed and a specific angle. The test was repeated four times with the same wind speed with four

different angles (Appendix II, Figure-A II-4) in four separate tests. The data was recorded with

the interval of one sample per second from hot-wire sensor for 60 minutes during each test. The

results show that the hot-wire sensor is directional, due to the change of reading while the sensor

is rotated inside the wind tunnel (Appendix II, Figure-A II-5).

3.1.1.2 Arduino Board

Arduino is an open-source platform that is widely used for various applications in the industry

and academia. The basis of Arduino coding is the C/C++ programming language. Electronic

projects can be put into operation more quickly with the help of the Arduino board.

Since multiple electronic components needed to be controlled by a main-board in our proposed

solution, the Arduino board was chosen as it is powerful and easy to use. The following

electronic components are connected to the Arduino board: (1) hot-wire wind detection sensor,

(2) Bluetooth communication module, (3) DC-to-DC converter module, and (4) charger module.

Figure 3.3 shows how the hot-wire sensors are connected to the Arduino board.

Figure 3.3 Hot-wire sensor schematic diagram
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3.1.1.3 Bluetooth Module

Bluetooth is a short-range wireless technology for exchanging data. For the developed prototype,

the HC-05 Bluetooth module is used. It is a simple Bluetooth Serial Port Protocol (SPP) module

for setting up a transparent wireless serial connection. The HC-05 Bluetooth module can

function either as a master or a slave. After connecting to the Arduino board, the Bluetooth

module can wirelessly send the received data obtained from four hot-wire sensors to the control

software.

3.1.1.4 DC-to-DC Converter Module

A DC-to-DC converter module is used to change the voltage. Since the hot-wire sensors operate

at 12 V and the nominal voltage of lithium batteries is 3.7 V, a voltage converter was required.

This DC-to-DC converter module provides the proper voltage and current for all hot-wire sensors.

3.1.1.5 Battery and Charger Module

The prototype uses a lithium battery with a nominal voltage of 3.7 V and a current of 1000 mA.

The small size and weight of this battery make it suitable to be used for the prototype. In

addition, the battery is charged with a battery charger module. This module has a micro USB

port, allowing the prototype to be charged using a phone charger cable.

3.1.1.6 Assembled Prototype - Hardhat

After completing the circuit design and assembling the modules on the designed board, all the

components are placed inside the hardhat. To do so, 3D-printed box is designed for the board

and its modules allowing everything to fit inside. The sensors are then connected to four sides

of the hardhat. Finally, the designed box is fixed inside the hardhat. Figure 3.4 (A) and (B)

show the front and back side of the designed board, (C) shows how the box is placed inside the

hardhat, and (D) is the final design.
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Figure 3.4 Prototype hardhat

3.1.2 Data Collection Station

In this Section, the hardware design and implementation of the data collection station are

described. The rotational platform is discussed in Section 3.1.2.1. The platform is used to rotate

the hardhat prototype on the transverse and vertical axis. Additionally, the general specifications

of the wind tunnel are provided in Section 3.1.2.2. Finally, Section 3.1.2.3 explains the reference

anemometer. The data gathered from the reference anemometer was one of the key items in the

dataset.

3.1.2.1 Rotational Platform

The main element of the rotating platform prototype is illustrated in (Figure 3.5). The prototype

includes an Arduino board, Bluetooth module, stepper motor and driver board, linear motor and

driver board, and high amp power supply.

This prototype has two main types of mechanical movements: the transverse axis and the vertical

axis rotation. The transverse axis is rotated by a linear motor, while a stepper motor rotates the

vertical axis. Figure 3.6 shows how the prototype rotates on each axis.
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Figure 3.5 Main components of the rotational platform

Figure 3.6 Types of motorized rotation

1. Ardoino Board

Arduino board is used to control the rotational platform. It can control the stepper and the

bidirectional driver and thus control the stepper and linear motor. Figure 3.7 shows the

hardware connection diagram.
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Figure 3.7 Rotational platform schematic diagram

2. Bluetooth Module

Since all the communications are done wirelessly, a separate Bluetooth module is used for

the rotational platform prototype. The HC-06 Bluetooth SPP module is used for establishing

a transparent wireless serial connection. This module is Bluetooth V2.0 certified and has a

data rate of 3 Mbps (Figure 3.8). The commands are sent to the Arduino board using the

Bluetooth module to control the motors.

3. Stepper Motor and Stepper Driver

In the prototype, a stepper motor is used to rotate the platform on the vertical axis. This

stepper motor is connected to a driver and finally to the Arduino board. The prototype (i.e.,

mannequin head equipped with a hardhat) can be easily rotated between 0 and 359 degrees

using this stepper motor. It is equipped with a 100-to-1 gear ratio gearbox. Therefore, the

platform can be easily rotated in steps less than one degree. Additionally, the gearbox helps

the platform move more smoothly and handles more pressure while exposed to the high

wind speed inside the wind tunnel.

4. Linear Motor and Bidirectional Driver

For prototype, a high torque motor was required to be able to rotate the platform on the
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Figure 3.8 Bluetooth module and other components

transverse axis because the equipment attached to this axis was heavy (i.e., the prototyped

hardhat, mannequin head, and 3D-printed parts). The linear motor has the highest torque

compared to other types. The speed of this type of motor is not high compared to the stepper

motor, but its torque is much higher. Therefore, using this type of motor, the platform and

the devices attached to it can be easily rotated on the transverse axis. The input voltage of

this linear motor is 12 V, and its maximum ampere is 5 A. A bidirectional motor driver with

a 7 A output is used to power this linear motor.

5. Power Supply

The most important feature of a power supply is to provide a constant voltage and current.

As a result, the voltage and current specification of the power supply datasheet must be

accurate. A new generation of the power supply (i.e., XT60) is used that does not get hot

even when used for long periods of time. The utilized power source has a voltage of 12 V

and a current of 6 A. This power supply is used to power a stepper motor, a linear motor,

two motor drivers, an Arduino, and a Bluetooth module.
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6. Assembled Prototype - Rotational Platform

All of the components were assembled in the prototype. The accuracy and strength of the

joints were important as the prototype is exposed to high wind pressure (inside the wind

tunnel) in addition to its weight. After assembling all the parts ( shown in Figure 3.9),

the prototype was placed inside the wind tunnel test area. In order to place the rotational

platform and the hardhat inside the wind tunnel, a base plate is designed and 3D-printed.

Figure 3.9 Rotational platform components

3.1.2.2 Wind Tunnel

The wind tunnel is the main element of the data collection station. Therefore, the consistency of

the airflow generated by the wind tunnel is a critical factor for the data collection. The selected

wind tunnel is located at Ecole de Technology Superior (Figure 3.10). This wind tunnel is 10.5 m

long and 2.1 m in height. Its cylindrical shape test area has a diameter of 1.3 m and a length of
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1.2 m. The opening for the test area is 90 cm*85 cm, hence, the prototype could be easily placed

inside the wind tunnel. The wind tunnel can operate in the range of 3.5 to 11.5 m/s. Although

the maximum speed of the wind tunnel is 11.5 m/s, we conducted tests with the maximum speed

of 10 m/s, as the tunnel started to vibrate at the higher speed rates.

Figure 3.10 Wind tunnel

3.1.2.3 Reference Anemometer

Our reference anemometer was an SP565 thermal anemometer that can measure air velocity and

ambient temperature. This anemometer was used to record and share data in real-time. The data

resolution of this anemometer was 0.01 m/s, and the measurement range is between 0.2 m/s and

20 m/s. In addition, it could record temperatures between -20 C and 80 C.

3.1.3 Data Collection Station - Implementation

The prototype rotational platform and the hardhat were installed inside the wind tunnel after

installing and testing the components and ensuring their performance (Figure 3.11A). In addition

to the rotational platform, the data collection station also included reference anemometers

(Figure 3.11B) which are installed separately. Figure 3.11C shows the assembled prototype in
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side the wind tunnel. using this setup, the wind tunnel, reference anemometers, and main power

supply for the initial setup and test were verified. Figure 3.11D shows the final installation and

configuration of the data collection station.

Figure 3.11 Data collection station

Summary

In this section, details about the implementation of the prototype of the proposed system was

provided. It included a complete description of the hardhat components and, the description and

the implementation of the various parts of the data collection station.

3.2 Dataset Gathering

In order to the predict wind speed and direction based on the input data from hardhat sensors,

the use of a supervised machine learning algorithm is proposed. Therefore, to create our models

for machine learning, the creation of a dataset is required. The data needs to be carefully

organized and stored to implement machine learning models. Furthermore, we must ensure that

the measurements are consistent and valid during the data gathering process. Data quality is

critical since the data gathered from the data collection station are fed into the machine learning
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models. The output of the machine learning models can be affected by missing, incomplete,

inconsistent, incorrect, or duplicate data. In this research, with the help of the data collection

station, accurate data were collected. Figure 3.12 illustrate the general architecture of the data

gathering solution. Details about the implementation of the data collection station is elaborated

in Section 3.1.2.

Figure 3.12 General architecture of the data gathering solution
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3.2.1 Data Collection Setup

As explained in Section 2.2.2.2, the data collection station consists of the following hardware

items: hardhat, wind tunnel, rotational platform, and a reference anemometer. A software

application is designed and implemented to control the rotational platform and collect the

data from the hardware in real-time. Using this station, required data variables were recorded

including, current wind speed, the temperature of the wind tunnel test area, wind exposure

direction (the position of transverse and vertical axis from the rotational platform), and readings

of hardhat sensors (the data from hot-wire sensors).

Figure 3.13 Data collection architecture

Bluetooth modules are used to wirelessly transmit data between multiple components of the

data collection station. Since the Bluetooth connection is a 1:n (one-to-many relationship), we

can connect several Bluetooth devices to one Bluetooth master device for data exchange. In

our implemented system, the data collection software can connect to all other three Bluetooth

devices (reference anemometer, hardhat sensors, and rotational platform) simultaneously to

transmit and receive data.
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The developed data collector software controls the exchange of data related to multiple services

using wireless communication (Figure 3.13). The data contains service input and output

(Section 3.2.1.1 and Section 3.2.1.2) as well as data related to managing and accessing service

status. In Figure 3.14 various input and output data to the developed software is listed.

Figure 3.14 Software input/output data

3.2.1.1 Service - Input Data

The input data (Figure 3.14, label A) refers to the data provided to the system core, with a specific

interval, or only once after when a particular command is called. This data is provided from

three different sources during the data collecting step: from the hardhat (i.e., the data related to

four hot-wire sensors), from the rotational platform (i.e.,the data related to the transverse and

vertical axis positions, and the wind speed sent from the reference anemometer. These data

provide a base to make the dataset.
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3.2.1.2 Service - Output Data

The output data (Figure 3.14, label B) is used to control our hardware elements via sending a

command. Therefore, using these output data, the hardhat sensors can be turned on and off, and

the rotational platform position can be changed on the transverse and vertical axis.

3.2.1.3 General Data

General data (Figure 3.14, label C) are the required information used by the software to add the

context to the collected data. These data include the username, the test date and time, related to

each sample, etc.

3.2.2 Data Collection Strategy and Procedure

The main strategy of data collection is to measure and record data of hot-wires sensors (as

independent variables ) when manipulating dependent variables, which are wind speed and wind

direction. The goal is to create a dataset of various wind speeds and wind directions with their

associated measured values of hot-wire sensors. Hence, when a collection of four readings from

hot-wire sensors are given, the wind speed and direction can be predicted using two separate

ML models. To build the dataset, for each value of wind speed generated by the wind tunnel,

the ambient temperature and the measurement from four hot-wire sensors are collected for a

range of pitch and yaw rotation, The ambient temperature was not considered as an input in our

ML models, as it was not possible to change it during our data collection, which is one of our

limitations, explained in Section 3.4.1.

3.2.2.1 Automated Data Collection

An automated data collection system is designed and implemented. In the developed software,

variables are specified by the user. The system can automatically collect data based on these

defined variables. The start angle, finish angle, and step size related to the rotation based on the
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Figure 3.15 Rotation angles around the vertical and transverse axis

transverse and vertical axis, the number of samples per stop, and finally, the delay time to start

sampling after each movement, are the variables related to automated data collection. Figure

3.16 shows the automated data collection flowchart and the range of variables.

To run each round of test regarding our data collection, first, we ensured that the ambient

temperature was constant. Next, we fixed the wind speed of the wind tunnel, then started to rotate

the rotational platform, and for each rotation step, we collected the related data and changed the

position for the next data collection stop.

The hardhat can be rotated by 360 degrees around the vertical axis and 120 degrees around the

transverse axis using the rotational platform. As a result, we can orient the hardhat in almost all

possible positions to gather sample data from four hot-wire sensors. A sample of our dataset

is presented in Appendix I, Table-A I-1. The control software allows collecting required data

automatically. The data will be saved in comma-separated values (CSV) format to be used for

the training process of the machine learning models.

Table 3.1 shows data collection parameters used to generate the initial dataset. Each row of

this table defines a separate data collection round called test. Therefore, we defined a specific
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Figure 3.16 Data gathering flowchart

wind speed for the wind tunnel, a specific start and end angle for the transverse and vertical axis

related to the rotational platform, the angular change for the next stop, the number of samples

per stop, and the amount of latency before starting the data collection after each movement.

Table 3.1 Parameters of each data collection round (test )

Test Wind Speed
(m/s)

Transverse Axis Vertical Axis Sample Delay
(ms)From To Step From To Step

1 3.5 -40° +50° 10° 0° 359° 10° 15 1000

2 4.5 -40° +50° 10° 0° 359° 10° 15 1000

3 5.5 -40° +50° 10° 0° 359° 10° 15 1000

4 6.5 -40° +50° 10° 0° 359° 10° 15 1000

5 7.5 -40° +50° 10° 0° 359° 10° 15 1000

6 8.5 -40° +50° 10° 0° 359° 10° 15 1000

7 9.5 -40° +50° 10° 0° 359° 10° 15 1000
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3.2.3 Collected Dataset Information and Dimension

The purpose of employing the machine learning model in this study is to predict the wind

speed and direction using the provided training data. In this study, we have two separate target

variables to predict. The first target variable is the wind speed, and the second one is the wind

direction. Our dataset consists of six columns. Four of them are independent variables, and

two of them are predictors. Regarding the machine learning models, two separate models were

created for the wind speed and direction prediction based on the dataset (Figure 3.17). Moreover,

the figure shows the relationship between the independent variables and predictors. Appendix I,

Table-A I-1 also shows the sample of the dataset.

Figure 3.17 Independent variables and predictors

Moreover, to build a machine learning model and evaluate it, one of the important factors is the

number of rows related to the dataset. As a result, the algorithms for predicting and evaluating

machine learning models differ depending on the volume of data. Our dataset contains 37,000

samples which shows to be adequate for the training and validation of the models. The number

of collected samples can be calculated to using values presented in Table 3.1 as follows:

𝑇𝑜𝑡𝑎𝑙𝑆𝑎𝑚𝑝𝑙𝑒𝑠 = 𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒𝐴𝑥𝑖𝑠𝑆𝑡𝑜𝑝𝑠 ×𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝐴𝑥𝑖𝑠𝑆𝑡𝑜𝑝𝑠 × 𝑇𝑒𝑠𝑡𝑠 × 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

The data transmitted by the hardhat are saved to a separate CSV file after a complete rotation

around the vertical axis, consequently for each 360-degree rotation on the vertical axis, a
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separate file will be generated. Appendix I, Table-A I-1 also shows the sample of our dataset.

Furthermore, the data are controlled in real-time. In some cases, the data related to one or more

sensors are failed to be added, and as a result, the entire data from the four sensors in that time

frame must be ignored.

Finally, we combined the files using "FormatConverter" and "Combiner" methods, described in

Section 2.2.3.1, and prepare the files to build two different machine learning models related to

wind speed and direction prediction.

Summary

This section described the data collection setup, strategy, and procedure, as well as the dataset

and its dimensions required to create our machine learning models.

3.3 Training and Validation

To build the machine learning models, collect metrics, and measure the performance of the

models, the ML.NET is used. In Section 3.3.1, the machine learning algorithm used in this

study is discussed. The validation scenario and method are elaborated in Section 3.3.2. Finally,

in Section 3.3.3 the evaluation methods to measure various metrics for the trained models are

proposed.

3.3.1 Model Training

In this study, two separate models were developed to predicts the wind speed and the direction,

as two dependent variables (predictors)( elaborated in Section 3.2.3). The machine learning

models are trained using LightGBM (Light Gradient Boosting Machines) algorithm that explores

the relationship between one or more independent variables (i.e., the data from hardhats

sensors) to be able to measure one variable called dependent or predictor (i.e., wind speed

or direction) (Hawkins, 2004). LightGBM is a highly efficient gradient boosting decision

tree. In several machine learning tasks, Gradient Boosted Decision Trees (GBDT) provides
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state-of-the-art performance, and due to its efficiency, accuracy, and interpretability, it is a

frequently used machine learning technique. The GBDT is a sequence-trained ensemble model

of decision trees. LightGBM accelerates the training process by up to 20 times compared

to Gradient Boosting Machines while maintaining almost the same accuracy as traditional

GBDT (Ke et al., 2017).

3.3.1.1 Overfitting Issue

All sciences that use quantitative measurements rely on model fitting (Hawkins, 2004). If the

model does not generalize well from the training dataset to the test data, this problem is called

overfitting (Hawkins, 2004; Yadav & Shukla, 2016). Training should be conducted in such a

way that although the model has enough examples to train on, they do not over-fit the model.

Additionally, if there are not enough instances to train on, the model will not be adequately

trained and will produce poor results when tested (Yadav & Shukla, 2016). Cross-validation

is the most common method for overfitting. The cross-validation method used in this study is

explained in Section 3.3.2.

3.3.2 Validation Scenario

Identifying the model validation method is essential in developing any ML model. To evaluate a

model, it is possible to train it on the entire dataset and then evaluate it by testing how well it

performs on that same data. This results in an evaluation metric known as "training accuracy".

In this process, even if the predicted outcomes show 99% accuracy, the model can not still

be judged as a perfect model as it must be checked with the “unseen” data (Hawkins, 2004;

Yadav & Shukla, 2016). A major issue with machine learning is that it is impossible to know

how well a model performs on new data until the model is tested. Cross-validation is the most

frequent method for evaluating a model’s performance (Yadav & Shukla, 2016). In this study,

K-fold cross-validation is used to validate our ML models.
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When working with small datasets, the best option is k-fold cross-validation with a big value of k,

but this value must be less than the number of instances (Yadav & Shukla, 2016). Having a large

number of estimates is preferable to obtain reliable performance estimation or for comparison.

The number of estimates obtained in k-fold cross-validation equals k. In general, the larger value

of k provides better cross-validation accuracy (Yadav & Shukla, 2016). The benefit of k-fold

cross-validation is that all of the instances in the dataset are finally used for both training and

testing.

Since our data are recorded sequentially in the data collection step (explained in Section 3.2),

the data on the initial dataset rows are sorted based on wind speed. Hence, before running the

k-fold cross-validation process, the data must be reshuffled and re-stratified. During the data

collection process, more than 37,000 samples was collected, which created a colossal dataset,

and is adequate to train and evaluate the models.

For k-fold cross-validation method, the data is partitioned into five subsets (K=5), called folds.

Then, the algorithm was iteratively trained on k-1 folds while using the remaining fold (called

the “holdout fold”) as the test set (Figure 3.18).

Figure 3.18 Fold partitions and iterations
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Multiple training and test datasets based on the number of folds need to be created. The total

number of training and test datasets will be k*2 ,and the number of iterations will be equal to k.

A software application is developed to automate the process. It makes the folding process easier,

faster, and more accurate (Figure 3.19).

Figure 3.19 Fold divider software GUI

First, the model is trained on 80% of our dataset, and as a result, the number of rows for the

trained model became approximately 29,600. The second part is the test samples which is 20%

of our dataset. The number of test rows becomes approximately 7,400 samples.

In the k-fold cross-validation process, five separate learning experiments were conducted for

each model (wind speed and wind direction), explained in Section 3.3.1. In each iteration, one

of the five sets was selected for test data, and the remaining four sets were combined as the

training set. The models are tested using the LightGBM algorithm, and the average error rate of

five test cases is used to calculate the true error.
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3.3.3 Validation Analysis and Results

ML.NET provides evaluation methods to measure various metrics for the trained model.

3.3.3.1 Evaluation Metrics

Regarding the regression model, there are four different evaluation metrics (Na, 2019):

1. R-squared or Coefficient of determination.

2. Mean absolute error (MAE).

3. Mean Squared Error (MSE).

4. Root Mean Squared Error (RMSE) or Root Mean Square Deviation (RMSD).

A commonly used metric in the evaluation of regression model is the R-squared. The values of

the wind speed or wind direction of the test dataset are compared with the output predictions to

calculate the metrics.

To calculate the mean of each metric for wind speed and direction independently, we calculated

the metric values separately for each of the ten available models (explained in Section 3.3.2).

Table 3.2 and Table 3.3 show the metrics used to evaluate our initial models (wind speed and

direction prediction models).

3.3.3.2 Evaluation Results

Our evaluation results show that the wind speed models are more accurate than wind direction

models. The mean R-squared related to wind speed is 0.91, whereas it is 0.83 for the wind

direction. All of the models produce similar results for relevant metrics measures.
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Table 3.2 Wind speed model evaluations

# Train & Test Metrics

R-squared Absolute
loss

Squared
loss

RMS
loss

1 Test 0.906 0.362 0.241 0.491

2 Test 0.903 0.361 0.246 0.496

3 Test 0.908 0.359 0.236 0.486

4 Test 0.906 0.362 0.236 0.486

5 Test 0.911 0.358 0.228 0.478

Mean 0.9068 0.3604 0.2374 0.4874

Table 3.3 Wind direction model evaluations

# Train & Test Metrics

R-squared Absolute
loss

Squared
loss

RMS
loss

1 Test 0.827 21.954 1880.837 43.369

2 Test 0.824 22.24 1894.655 43.528

3 Test 0.828 22.489 1863.789 43.172

4 Test 0.837 21.674 1761.398 41.969

5 Test 0.836 21.641 1759.333 41.944

Mean 0.8304 21.9996 1832.0024 42.7964

Summary

In this Section, we provided details about the use of a supervised machine learning algorithm.

We described the LightGBM algorithm that was used to train the machine learning models as

well as the method for evaluating the performance of our models and evaluation metrics.

3.4 Discussion

In Section 3.4.1, the limitation of the implemented prototype is discussed. The challenges

faced in the project, including the design and implementation of the prototype is elaborated in

Section 3.4.2. Finally, in Section 3.4.3 some improvement scenarios are proposed.
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3.4.1 Limitations

The main limitation in the creation of the dataset was the lack of control over the ambient

temperature for the data collection station. Although the ambient temperature remained constant

during our data collection, we could not change the temperature to collect new data. Hence,

the dataset only includes the results of data collection when the ambient temperature of the

environment is between 24 and 25 degrees Celsius.

One of the limitations of the data collection station was the operating range of wind speed

produced by the wind tunnel, which consequently had an effect on the dataset. The prototype

hardhat could be only tested in the wind speed range between 3.5 m/s to 10.5 m/s. This limitation

affects the accuracy of the machine learning models when the actual wind exceeds this range, as

our machine learning models is trained on the data collected from this range. Therefore, the

accuracy will be increased for high wind speed if the data related to higher speed (higher than

10.5m/s) is added to the models.

Regarding the limitations of the prototype hardhat, our prototype can communicate wirelessly

within the range of 60 m. The range can be extended if the prototype sends and receives data

over the internet using other communication modules, such as Long-Term Evolution (LTE).

Moreover, the capacity of the battery used for the prototype allows only 20 minutes of operation.

To avoid this problem during the data gathering phase, the prototype was directly connected into

the power source using a USB cable.

Another limitation is related to the quality of 3D-printed parts of the rotational platform. As the

type of printed materials was Polyethylene Terephthalate Glycol (PETG), there were limitations

regarding the physical strength of the parts which limits its use within a certain amount of

wind force applied to the rotational platform. Although the platform could resist the maximum

wind speed when there was no rotation, it was probable that the 3D-printed components of the

platform would shatter if the platform was horizontally or vertically rotated.
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The proposed system has to be tested and validated in the construction site. this study showed

the results of the performance of the system using data generated by the wind tunnel and in a

controlled environment. Further field testing is required to validate the method.

3.4.2 Challenges of The Prototype Implementation

We faced many challenges when designing and implementing mechanical parts of the rotational

platform, which rotates simultaneously in two axes. Additionally, various challenges were

faced in the design and implementation of the prototype hardhat components such as Bluetooth

module, DC- to-DC converter, and an Arduino board. To overcome the challenges of connecting

all elements in a limited space, a Printed Circuit Board (PCB) is designed and created.

Regarding the life-size mannequin head, its material needed to be carefully chosen as the

rotational platform could handle a limited range of weight. So it was essential to find a

lightweight mannequin to move easily by the motors. Furthermore, the mannequin was to

be exposed to a high wind force. Consequently, finding a mannequin with the right material

properties which does not break during tests was challenging.

During the experimentation phase, several units, such as the prototype hardhat, the rotational

platform, and the reference anemometer, were sending a high rate of data to the processing

software. Hence, synchronization of all real-time data gathered from four hot-wire sensors, the

rotational platform, the reference anemometer, and ensure their quality was a challenging task.

3.4.3 Improvement Scenarios for The Prototype

The prototype software system can be improved by adding an alert functionality. The alert

system would communicate dangerous conditions to workers, security managers, and machine

operators based on a set guideline. If the detected wind speed value exceeded the reference

values, the alert system can notify related contact.
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Another improvement is related to the rotational platform. The quality of the platform material

can be improved. For example, instead of 3D-printing with PETG, elements made of aluminium

can be used.

The accuracy of the prediction module will improve if the dataset is fed with more data related

to higher wind speed as well as various ambient temperatures.



CONCLUSION AND RECOMMENDATIONS

Summary

This research proposed an innovative solution to identify wind speed and direction in real-time,

via using supervised machine learning algorithm and hot-wire sensors attached to hardhats

of construction workers. This study was conducted in three phases to develop the solution:

a comprehensive literature review, developing framework and the prototype, and verification

and testing. First, a comprehensive literature review was conducted to understand the previous

research limitations and findings. In the second phase, an innovative solution together with a

prototype was developed, and related data were collected using a data collection station. In the

third phase of this study, the collected data from the second phase were analysed to determine

the functionality, accuracy, and reliability of the proposed solution.

The main component of the proposed solution was a hardhat equipped with four hot-wire sensors.

Various experiments were performed to collect the data from the prototype hardhat sensors.

Finally, we used the data collection station to create the dataset to be fed into the machine

learning models.

This study faced several challenges, including challenges related the development of the prototype,

simulation of wind’s direction, and the validation of the collected data. These challenges were

addressed using innovative approaches, as elaborated in the previous Sections. The results

showed that the solution can predict the wind’s speed and direction in real-time using the

developed machine learning models.

Conclusions

In this research, a study was conducted on real-time monitoring and predicting of wind speed

and direction. The proposed solution responds to the research questions of this study introduced

in Chapter 1. The solution corresponds to the limitation of traditional methods that are using

the weather data from a website or a local weather station (placed in the construction site),
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which cannot measure the wind parameters in specific locations and in real-time. The proposed

solution integrated hot-wire sensors into the hardhat to respond to the problems related to the

impact of wind on the safety of construction sites. The research contributes to the scientific body

knowledge by proposing a new method to address the discussed safety issues in construction

sites.

Moreover, the results of this research can be used to improve the safety of construction sites

by reducing the risk of incidents and accidents via providing automatic alerts to workers and

security managers in a real-time. Furthermore, implementing hardhats equipped with IoT sensor

for construction safety provides opportunities for various future research projects related to

safety. The machine learning algorithm is used in this study to predict the wind speed and

direction. The results suggest that the wind’s speed and direction can be accurately predicted in

real-time using the proposed solution.

Perspectives for Future Research

The most important future work will be the validation of the method on a construction site. By

testing the developed system in the construction site, possible new challenges and improvement

scenarios can be identified.

In our hardhat setup, the hardware prototype sends and receives data to the local processing

software on a PC via Bluetooth communication. The solution can be extended to support cloud

communication for data transmission. The prototype can be connected to the internet using

communication methods, such as WiFi, through minor adjustments.

The dataset needs to be expanded by including more data related to various ambient temperatures.

For that, having a large wind tunnel placed in a temperature-controlled environment is required.
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Moreover, the developed software can be further extended to include safety alerts. Consequently,

the software will be able to deliver immediate feedbacks and alerts to the security agent for

further actions. More specifically, the software can compare wind speed and direction with the

reference values presented in safety regulations, and when the wind speed passes the specific

thresholds, it automatically sends an alert to the worker or security agent (for example, to guide

workers to wear their safety glasses or to stop working at height).





APPENDIX I

DATA GATHERING

Table-A I-1 The dataset was gathered using the wind

tunnel installation and the rotating platform

Vertical
axis

Right
sensor

Left
sensor

Back
sensor

Front
sensor

Wind
speed

180 8.36 1.32 8.5 1.01 4.5

180 8.91 1.42 8.62 1.05 4.5

180 8.91 1.22 8.37 0.94 4.5

180 8.91 1.68 8.29 0.9 4.5

180 9.09 1.37 8.37 1.11 4.5

290 4.51 20.48 2.48 10.87 6.5

290 4.74 19.83 2.32 11.08 6.5

290 4.07 20.14 2.86 11.3 6.5

290 4.18 19.51 2.39 10.65 6.5

290 4.18 20.45 2.86 11.05 6.5

280 3.87 23.23 4.86 14.05 7.5

280 3.87 23.87 4.4 14.11 7.5

280 4.07 23.73 4.29 14.09 7.5

280 4.18 24.32 4.51 14.11 7.5

280 4.18 23.92 4.5 14.15 7.5

130 4.74 11.3 13.36 21.48 8.5

130 4.29 11.51 13.36 21.82 8.5

130 4.07 11.12 13.32 21.11 8.5

130 3.97 11.87 12.41 21.48 8.5

130 4.62 11.96 13.86 21.14 8.5

Table-A I-2 Wind tunnel specification

Small Wind Tunnel ( Open Return )
Minimum speed 0.2 m/s

Maximum speed 5.0 m/s

Test section size 60 mm diameter





APPENDIX II

HOT-WIRE SENSOR TESTS

Figure-A II-1 The small wind tunnel

Figure-A II-2 Hot-wire reference anemometer
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Figure-A II-3 The block diagram of the hot-wire sensor test circuit

Figure-A II-4 Four different angles of Hot-wire sensor inside the

small wind tunnel
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Figure-A II-5 The offset between wind speed data (the data from reference

anemometer and Hot-wire sensor exposed to wind from different angles)
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