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Apprentissage de représentations basé sur des considérations pratiques pour l’analyse
d’images de documents

Sherif ABUELWAFA

RÉSUMÉ

Cette thèse met en place des approches d’apprentissage fiables de représentations d’images

de documents qui peuvent relever les défis pratiques du monde réel auxquels est actuellement

confronté le domaine de l’analyse d’images de documents. En particulier, deux défis sont relevés:

effectuer une analyse efficace sur des ensembles de données à grande échelle et s’adapter à la

rareté des données d’apprentissage étiquetées. Les approches proposées visent à améliorer les

performances des processus d’analyse d’images de documents lorsqu’elles sont appliquées à des

cas d’usages réels. À cette fin, nous abordons les défis pratiques dans deux tâches principales

pour l’analyse d’images de documents, la classification et la segmentation sémantique.

Les approches actuelles de représentation de documents se concentrent généralement sur des

cas d’usages basés sur l’hypothèse irréaliste selon laquelle toute représentation de documents

peut être généralisée lorsqu’elle est appliquée sur des ensembles à grande échelle de données

de documents. Par conséquent, nous proposons d’abord une approche de représentation de

documents pour la tâche de classification de documents qui peut bien se généraliser pour de

tels ensembles de données à grande échelle. Le processus de classification dans cette tâche est

basé sur l’existence d’un objet visuel local distinctif (par exemple, une note de bas de page)

dans l’image du document, ce qui est très pertinent pour divers cas d’usage dans le domaine de

l’analyse d’image de document. L’approche proposée est appliquée à des ensembles de données

qui contiennent plus de 32 millions d’images de documents et montre une performance fiable et

constante dans divers ensembles de données en utilisant moins de 0,07 % des échantillons de

l’ensemble de données pour l’entrainement.

De nombreuses approches récentes d’apprentissage de représentations sont basées sur l’apprentiss-

age supervisé des caractéristiques, ce qui nécessite pour l’entrainement une grande quantité

d’images de documents étiquetées pour obtenir des performances fiables. Cependant, dans les

cas d’usages réels, la quantité disponible de données étiquetées est très limitée et rare, tandis

qu’une grande quantité de données non étiquetées est souvent abondante. Nous proposons donc,

pour la tâche de classification des documents, une approche d’apprentissage de représentations

de documents capable d’apprendre des caractéristiques uniquement à partir de données non éti-

quetées, et sans aucune dépendance à des caractéristiques conçues manuellement. Contrairement

à notre travail précédent ci-dessus, le processus de classification dans ce travail est basé sur le

contexte global de l’image du document. Notre approche utilise des données non étiquetées pour

apprendre une représentation qui est utilisée ultérieurement pour la classification de documents,

soit avec peu de données étiquetées, soit sans données étiquetées. L’efficacité de l’approche

proposée et l’amélioration des performances qui en découle sont démontrées par les résultats

expérimentaux obtenus.
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En considérant chaque document précédemment classifié, nous proposons enfin une approche

d’apprentissage de représentations de documents pour la tâche de segmentation sémantique

du document afin d’obtenir une interprétation supplémentaire du contenu de ce document et

de le préparer pour d’autres tâches d’analyse. Cette approche est capable d’apprendre des

caractéristiques à partir de données non étiquetées sans nécessiter de données annotées, de

techniques heuristiques dépendantes des ensembles de données ou d’informations textuelles. En

outre, il s’attaque au défi bien connu des similitudes inter-classes élevées entre les différentes

classes sémantiques. Des expériences sur divers ensembles de données publiques démontrent

l’efficacité de l’approche que nous proposons en produisant de meilleurs résultats que les

approches précédentes.

Mots-clés: analyse de documents, apprentissage de représentations d’images de documents,

classification de documents, segmentation sémantique de documents.



Representation Learning for Document Image Analysis with Practical Considerations

Sherif ABUELWAFA

ABSTRACT

This thesis sets up reliable document image representation learning approaches that can stand

up to the practical real-world challenges currently facing the document image analysis field.

Particularly, two challenges are tackled, performing efficient analysis on large-scale datasets and

adapting to the scarcity of labeled training data. The proposed approaches aim to improve the

performance of the document image analysis processes when applied to real-world use-cases.

For this purpose, we address the practical challenges in two main tasks of document image

analysis, classification and semantic segmentation.

Current document representation approaches usually focus on use-cases with an unrealistic

assumption that any document representation can well generalize when applied on large-scale

document datasets. Therefore, we first propose a document representation approach for the

task of document classification that can generalize well for such large-scale datasets. The

classification process in this task is based on the existence of a distinctive visual local object

(e.g., footnote) within the document image, which is of high relevance to various use-cases in the

document image analysis field. The proposed approach is applied to datasets that contain more

than 32 million document images and show a consistent reliable performance across various

datasets using less than 0.07% of the dataset’s samples for training.

Many recent representation learning approaches are based on supervised feature learning, which

requires a large amount of annotated training document images to obtain reliable performance.

Meanwhile, in real-world use-cases, the available amount of labeled data is very limited and

scarce, while a large amount of unlabeled data is often abundant. We, therefore, propose

a document representation learning approach for the task of document classification, which

is capable of learning features solely from unlabeled data, and without any dependence on

hand-crafted features. Unlike our earlier work above, the classification process in this work is

based on the global context of the document image. Our approach utilizes unlabeled data to

learn a representation that is used later for document classification either with few labeled data

or with no labeled data. The efficiency of the proposed approach and its associated performance

boost is demonstrated with the obtained experimental results.

Considering each previously classified document, we finally propose a document representation

learning approach for the task of document semantic segmentation to obtain an additional

interpretation of that document’s content and prepare it for further analysis tasks. This approach

is capable of learning features from unlabeled data without requiring annotated data, dataset-

dependant heuristics techniques, or textual information. In addition, it tackles the common

challenge of having high inter-class similarities between different semantic classes. Experiments

on various public datasets demonstrate the effectiveness of our proposed approach by yielding

better results than earlier approaches.
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Keywords: document analysis, document image representation learning, document classifica-

tion, document semantic segmentation.
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INTRODUCTION

Many organizations and institutions around the globe (governments, libraries, companies)

currently store millions of valuable documents that need to be well-preserved and easily accessed.

Towards these goals, the digitization process has become an increasingly adopted procedure

to create digital archives, in which millions of paper-based documents are transformed into

document images. This process serves in guaranteeing a preserved digital content that is easily

accessible for both experts and the public. In its digitized form, a document image is processed

as a digital image; nevertheless, it still inherits the full characteristics of a paper-based document

(e.g., layout, textual and graphical characteristics).

To fully take advantage of the obtained document images collections, many processes are needed

to well-organize, analyze and interpret such collections in their new digital form. The field

of document image analysis works on achieving this. Specifically, it automatically analyzes a

document image based on both its overall global structure and its local textual and graphical

elements to extract useful information (Baird, Bunke & Yamamoto, 2012; Nagy, 2000; Nagy,

Seth & Viswanathan, 1992). Generally, the process of analyzing a document image is composed

of various underlying stages such as document classification, segmentation, text recognition, etc.

Each of these stages can rely on visual features, textual data or a combination of both of them to

perform its process.

This thesis focuses on analyzing the document images using their visual features solely, and

without any dependence on their textual data. In fact, this research aims to study two stages of

document images analysis, initially a stage on the abstraction level, then an in-depth stage. In

particular, in the first stage, an abstract comprehension of each document image’s type (class) is

performed. This can be achieved by either classifying the documents based on the availability

of a specific local feature (e.g., footnote) or classifying the documents based on their global

context (e.g., email, advertisement, tax form). Then, in a later stage, each document’s elements
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are decomposed into different semantic units. This is accomplished through semantically

segmenting the content of each previously classified document into various informative regions

of interest (e.g., text, table, figure). In fact, this stage is crucial for achieving more efficient and

reliable document analysis. For instance, further characters recognition process can be applied

to the obtained text regions using Optical Character Recognition (OCR).

The two studied document image analysis stages are investigated keeping in mind the practical

challenges and faced real-world constraints. In fact, part of this research work has been

deployed in two joint projects, ”Digging into Data” 1 and ”The Visibility of Knowledge” 2, in

collaboration with humanities researchers at McGill University (Canada), Stanford University,

and University of Virginia (USA). In particular, efficient computational analysis algorithms

for large-scale historical collections are developed to analyze document images and surface

underlying connections better. This has required efficient cooperative efforts between historical

documents experts who identify the requirement and study the results, and computer science

experts who design and develop relevant algorithms that can analyze the document image on the

pixel level. Such collaboration has led to identifying the practical challenges facing the document

image analysis field when interfacing with real-world constraints. Specifically, performing

efficient analysis on large-scale datasets and the lack of annotated training samples are the two

main constraints studied in this work.

Performing these many stages of document analysis in a manual setting is a very challenging

procedure that is extremely expensive in terms of time and human resources. Therefore, many

research works have addressed automating the analysis process with the help of different

computer vision and machine learning-based algorithms. Specifically, considering the enormous

increase in the machine learning algorithms efficiency and reliability in the past decade, we plan

1 https://txtlab.org/2014/01/digging-into-data-global-currents/

2 https://txtlab.org/2016/09/the-visibility-of-knowledge/



3

in this thesis to map the recent advances in the theoretical machine learning community and

bridge it to address the practical challenges of the document image analysis community.

In general, for any machine learning algorithm to be efficient, a proper representation has to

be obtained. One of the essential steps to do so is to find the best local features to be captured

from a document image. Those features should be able to get the most out of the input data by

disentangling the data’s fundamental descriptive elements. This is used to provide an efficient

and robust representation that can reflect the real statistics of the document image and boost the

performance for the different analysis stages (e.g., classification, segmentation).

In the context of document analysis, a document image representation is mainly about obtaining

an intermediate representation that provides an abstraction layer, which goes beyond the image

pixels level, to solve later analysis tasks. For this representation to be efficient, it has to lead to

small intraclass variations, large interclass separation using a simple decision rule. Achieving

this intermediate representation can be achieved through either hand-crafted features (e.g., SIFT,

SURF) or learned features. Generally, hand-crafted features need to be designed and adapted to

the specific problem and domain to be addressed. In contrast, in feature learning, as features are

learned from data, there is no need for domain-specific experts. Together with the very high

accuracy attained by feature learning-based approaches, this advantage has attracted a lot of

attention in the document analysis field.

0.1 Motivation and problem statement

Representation learning has proven to be an essential part of recent performing approaches in the

field of document image analysis in general and document image classification and segmentation

in particular. Yet, most of the current approaches are often based on two assumptions: i) that

the trained model can generalize well when deployed on a large-scale collection of document

images (i.e., the training set is a tiny portion of the dataset, where the test set is thousands
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of times bigger than the training set.), ii) that the labeled training samples are available and

easily accessible and obtained. Those assumptions might be reasonable and satisfactory for

research scenarios but not efficient and effective for practical, real-world applications. This

led to this thesis’s main question, what are efficient document representation learning

approaches that do not sacrifice performance yet are capable of obtaining representations

that can handle processing large-scale datasets, provide reliable generalization during the

deployment phase and utilize much less labeled data or only unlabeled data during the

training process?

Despite the recent advances in document image analysis, many challenges are still yet to be

solved. The nature of these challenges can be grouped into two categories. Practical challenges

that relate to the real-world practical problems that currently face researchers. And technical

challenges that relate more to the unique nature of document images.

0.1.1 Practical challenges

Large-scale dataset: A lot of large-scale digitization operations have a compelling need for

scalable document image representations that can be reliable and efficient. Meanwhile, the design

of current document representations approaches is often limited to a specific research-oriented

data scale that is very small, in practice, comparing to the actual requirements of real-world

applications. Therefore, performing large-scale analysis on real-world datasets containing

millions of document images is an extremely difficult task that has very few precedent works.

Limited availability of labeled training data: Labeling data is an expensive process in terms

of both time and labor. Yet, most of the current state-of-the-art approaches in document image

analysis are based on supervised learning. In these learning approaches, large amounts of labeled

data (i.e., thousands or tens of thousands of document images) need to be manually labeled

to train the learning algorithms and obtain efficient performance. Generally, more labeled
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training samples lead to better performance. While obtaining more labeled data is possible in

some research scenarios, it poses a serious challenge for practical, real-world applications. In

fact, manually annotating data is an expensive, time-consuming process since hiring experts to

provide the correct labels is a costly process that takes so much time. Therefore, it is preferred

to consider having less dependence on this process whenever possible or even avoid it entirely.

0.1.2 Technical challenges

High intraclass variability

In document images, the intraclass variability is so high for many classes. For instance, due

to the wide variations in writing styles, fonts, and scales in a collection of manuscripts, it is

challenging to learn representations that can well classify hand-written memos or semantically

segment classes like paragraph, header, or section. Examples of such variations for the header

class are shown in Fig. 0.1. In addition, document images incorporate high variability in the

layout types for the same class, ranging from very simple ones (e.g., printed forms) to very

complex ones (e.g., historical document images).

Low interclass variability

Many classes for document images have very similar visual characteristics, making it hard to

learn representations that can well discriminate between those classes. For instance, considering

semantic segmentation, semantic classes like paragraph, list, caption, and section are all text-

based. For instance, the visual characteristics that can differentiate a paragraph from a list or a

caption from a section are very subtle.
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Figure 0.1 Document images with high intraclass variability of the ’header’ semantic

class (with red contours). Taken from the DSSE-200 dataset (Yang et al., 2017)

0.2 Research questions

To address the discussed problem statement, we detail three specific research questions (RQ)

in this section. Our research papers (Chapter 3-6) will offer detailed answers to these three

questions.

0.2.1 Research Question (RQ1)

1. What are the practical, real-world challenges currently faced by humanities researchers

when working on analyzing document image collections?

2. What kind of document image representations that can generalize well to large scale dataset

(e.g., 32 million document images) using less than 0.07% of the dataset samples for training?

3. How to effectively capture specific visual features that relate to a distinctive local visual

object within the document image (e.g., a footnote) and classify the document based on it?
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0.2.2 Research Question (RQ2)

1. What is an efficient document representation learning approach that is capable of learning

features from unlabeled data and improves the document image classification performance

in both supervised and unsupervised settings without the need for any extra labeled data?

2. How to effectively capture the global context of the document image considering all its local

visual features?

0.2.3 Research Question (RQ3)

1. What is an efficient document representation learning approach that is capable of learning

features to semantically segment a document image using only unlabeled data during the

training process?

2. How to effectively segment documents with semantic classes that contain many discontinu-

ities and white spaces and have high inter-class similarities between them?

0.3 Contributions

Past research has introduced several document image representations for the analysis tasks.

As discussed in previous sections, these representations are not optimized to provide reliable

performance in the light of practical, real-world challenges. The search for more effective

document analysis representations is still an active field of research. Therefore, the purpose of

this thesis is to study and introduce reliable and viable document image representations

that can stand up to the practical, real-world challenges of document image analysis. This

will be achieved by investigating, designing, and developing novel document representation

learning approaches that consider both practical and technical challenges to improve a spectrum

of analysis tasks that range from classification to semantic segmentation. The focus of our

research is on three interdependent aspects.
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First, this research will focus on well-defining the practical, real-world challenges that currently

face the document image analysis field in the context of an active area of research in the humanities

discipline. In addition, it will study the effectiveness of utilizing recent representation learning

advances in tackling the observed challenges. In this research, the document image classification

task will be performed, where the existence of a distinctive visual local characteristic (e.g.,

footnote) within a document image will be used for the classification process. The main observed

challenge is dealing with analyzing document images on a large scale (i.e., analyzing more

than 32 million documents) with very limited availability of labeled training data. In light of

the observed challenge, the contribution will be made by proposing a document classification

approach that can generalize well for such large-scale datasets. This is to be performed while

studying various representations based on a broad spectrum of features, ranging from fully

hand-designed to hybrid and fully learned features. The results will show the efficiency of

our proposed approach in classifying large-scale documents with reliable performance and

consistency across different collections using less than 0.07% of the dataset samples for training.

Secondly, this research will focus on the problem of classifying document images considering

the practical challenge of having limited -or no- labeled training data. In this research, all

the local features inherited within a document image will help in capturing its global context,

which will be used for the classification process. The contribution will be made by proposing a

representation learning approach capable of consistently boosting the classification performance

using unlabeled data to acquire knowledge that is used later to classify the documents either

with few labeled data (supervised fine-tuning) or with no labeled data (clustering). It will be

shown in the experimental results that our proposed approach leads to a performance boost in

both cases of supervised and unsupervised classification.

Finally, this research will focus on the problem of semantically segmenting each previously

classified document considering both the practical challenge of unavailability of labeled training
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data during the training process and the high inter-class similarities between the different

semantic classes. The contribution will be made by introducing an unsupervised end-to-end

approach for semantically segmenting a document image without any dependence on labeled

data, dataset-dependant heuristics techniques, or textual information. Experimental results will

demonstrate the effectiveness of our proposed approach over state-of-the-art approaches.

0.4 Structure of the thesis

This thesis focuses on representation learning for document image analysis topics, its practical

challenges, and proposed solutions that can tackle such challenges.

- Chapter 1 provides a literature review on the common state-of-the-art features and rep-

resentations to perform document image analysis. Moreover, it elaborates on the current

literature’s limitations and challenges. Additional literature review regarding the journal

publications is provided in chapters 3 to 5.

- Chapter 2 presents the general methodology of our work and defines the objectives of this

thesis, which consider the state-of-the-art challenges.

- Chapters 3 to 5 demonstrate our journal publications, including the proposed methods

and obtained results in this thesis. In chapter 3, the practical, real-world challenges that

currently face the document image analysis field are emphasized. Afterward, a document

classification approach that generalizes well for large-scale datasets is proposed. In chapter

4, a representation learning approach that boosts the documents classification performance

using solely unlabeled data is introduced. In chapter 5, an end-to-end representation

learning approach that semantically segments document images using solely unlabeled data

is proposed.



10

- Chapter 6 includes the general discussion, which elaborates on the strengths and weaknesses

of the proposed approaches.

- Finally, Conclusion and Future Works summarizes the work achieved in this thesis and

offers some recommendations for future works.



CHAPTER 1

LITERATURE REVIEW

This chapter reviews the relevant literature related to features and representations commonly used

in document image representation learning approaches. We first discuss the general description

of document image features and their common extraction techniques. Then, we review the

state-of-the-art approaches for feature learning on document image analysis with a particular

focus on recent unsupervised feature learning approaches and their limitations.

1.1 Feature extraction

One of the essential steps to analyze a document image is to efficiently map the intensity values

of its pixels into a relevant analysis decision. This objective can be achieved by obtaining the best

features to be captured from the raw input document image; a step that helps provide efficient

and robust document representation that can reflect the actual statistics of the document image

and helps put a steady foundation for further analysis steps (e.g., classifying the document image

or semantically segmenting it).

Formally, since the input raw document image 𝑥 is usually insufficient in providing expressive

information to later analysis stages, features have been introduced to obtain an intermediate

representation between the raw input data and the targeted analysis step. In that case, a new

document representation 𝜙 ∈ R𝐾 (with 𝐾 features) is obtained directly from the n-dimensional

raw input 𝑥 ∈ R𝑛 through a feature function Φ():

𝜙 = Φ(𝑥) (1.1)

Those 𝐾 features are considered to provide a better high-level representation 𝜙 of the document

image in a way that conveys the document image’s leading properties and facilitates the

subsequent document analysis tasks. In fact, the most crucial part of any analysis task is to
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determine the features to be utilized, where obtaining the appropriate features can make the

learning process more efficient.

Most of the traditional approaches for document analysis; such as (Chen, He, Sun & Naoi,

2012) and (Kumar, Ye & Doermann, 2014), depend on carefully hand-designed features (e.g.,

SIFT (Lowe, 1999), Shape Contexts (SC) (Belongie, Malik & Puzicha, 2002), SURF (Bay,

Tuytelaars & Van Gool, 2006) and HOG (Dalal & Triggs, 2005)). Although some of these

approaches can perform unsupervised document analysis processes, the utilized features are

still heavily engineered by experts based on large amounts of prior knowledge regarding the

used data and desired application, which is a very complex process. For instance, some

approaches considered the direction of clustering the document images based on their structure.

Specifically, for each document image, (Saund, 2011) acquired horizontal and vertical line

segments using line detection. Then, to obtain pairwise similarities between different document

images, global histograms for the obtained segments are calculated then compared. Afterward, a

similarities-based iterative greedy approach is used to perform the document clustering process.

This approach is well crafted to work with document forms with a specific structure and can not

easily generalize well to different types of document images. Additionally, (Kumar & Doermann,

2013) introduced the horizontal-vertical partitioning-random forest (HVP-RF) model, which is

a Bag of Visual Words (BoVW) approach. Both models are based on complex pipelines that

depend heavily on traditional hand-crafted features, which are labor-intensive, time-consuming,

and cannot generalize well to new problems.

Due to the difficulties related to engineering hand-designed features, algorithms that can utilize

data to automatically learn efficient features were needed, an objective that opened the door

to feature learning (Bengio, Courville & Vincent, 2013). Such feature learning algorithms

are taking advantage of the increasing amount of available data (i.e., whether it is labeled or

unlabeled data) to develop document representations that can precisely express the fundamental

characteristics of document images. More details regarding the concept of feature learning and

the current commonly used approaches are discussed in the next section.
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1.2 Feature learning

Generally, the main objective of feature learning is to utilize a set of labeled/unlabeled data to

learn a representation 𝜙. This objective can be achieved by parameterizing 𝜙 with Θ parameters,

𝜙 = Φ(𝑥;Θ) (1.2)

The Θ parameters can be perceived as a process to obtain some prior knowledge about the data.

In such a case, the feature learning algorithm works on tuning the parameters Θ to guarantee a

representation 𝜙 that makes the essential characteristics of raw input data more observable.

To train feature learning algorithms, either labeled (supervised learning) or unlabeled (unsu-

pervised learning) data can be utilized. Very limited literature work is addressing learning

document image features and representation using only unlabeled data. Nevertheless, there has

been enormous work on supervised feature learning, where labeled data are essential for the

training process.

1.2.1 Supervised feature learning

Most of the feature learning approaches in the literature are based on learning parameters Θ from

labeled input data. For instance, (Afzal, Capobianco, Malik, Marinai, Breuel, Dengel & Liwicki,

2015; Afzal, Kölsch, Ahmed & Liwicki, 2017; Harley, Ufkes & Derpanis, 2015b) are all utilizing

a huge amount of labeled data to perform reliable feature learning.

The goal of a supervised feature learning task is to use a set of given labeled training data

(𝑥 (𝑖) , 𝑦 (𝑖)), 𝑖 = 1, . . . , 𝑚 in learning an expressive representation that can lead to a further

accurate prediction (e.g., classification, segmentation) on a new input data during the inference

process.

Generally, acquiring more labeled data leads to better performance, Most of the recent break-

throughs in document feature learning approaches are actually due to the availability of a
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large amount of labeled training data. And since obtaining enough labeled data to perform

supervised feature learning is often a challenging and expensive task due to the required time

and labor for labeling, while a vast amount of unlabeled data is available and easily accessible;

the unsupervised feature learning approaches are considered the optimal methods that can best

achieve the objective of this research study. As a result, the rest of this chapter will mainly focus

on unsupervised feature learning literature for document image analysis.

1.2.2 Unsupervised feature learning

In unsupervised feature learning approaches, only unlabeled training data 𝑥 is utilized in learning

features and their associated parameters Θ, which inherently embrace some characteristics of 𝑥.

These approaches learn to express and represent the fundamental visual patterns of the dataset

using unlabeled data and then utilize such patterns in having a high-level representation of the

input document image to be used later for subsequent document analysis processes.

We will focus mainly on discussing contemporary literature approaches, including recent

advances in deep learning, considering the relevance of these works to the research interests

of this thesis. These approaches can be categorized into five groups, clustering-based, direct

mapping (autoencoder), probabilistic, manifold learning, and self-supervised learning.

1.2.2.1 Clustering-based

In clustering-based approaches, a standard clustering algorithm, such as k-means (Jain, 2010), is

used to find the centroids {𝜇1, ..., 𝜇𝐾} of the cluster sets 𝐶 = {𝑐𝑘 , 𝑘 = 1, ..., 𝐾} by minimizing

the Euclidean distance between each obtained training sample, 𝑥, and the nearest centroid, 𝜇𝑘 ,

overall the 𝐾 clusters. This is to be achieved through optimizing the following objective function

𝐽 (𝐶) till a convergence is obtained:

𝐽 (𝐶) =
𝐾∑
𝑘=1

∑
𝑥∈𝑐𝑘

‖ 𝑥 − 𝜇𝑘 ‖2. (1.3)
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In (Dhillon & Modha, 2001), a spherical k-means algorithm has been introduced. A similar

loss is utilized; however, cosine similarity is utilized instead of the Euclidean distance. These

k-means clustering algorithms are exploited in providing a simple easy-to-implement training

method for many unsupervised feature learning approaches. For instance, various ’bag of

features’ models (Csurka, Dance, Fan, Willamowski & Bray, 2004; Lazebnik, Schmid & Ponce,

2006) have utilized k-means with subsets of patches from the training set to construct a visual

vocabulary. Additionally, a k-means dictionary learning approach (Coates & Ng, 2012) has been

introduced, where a dictionary of filters can be generated.

1.2.2.2 Manifold learning

Manifold learning approaches are utilized whenever the data points are concentrated throughout a

manifold (Roweis & Saul, 2000). These approaches learn to obtain a non-linear low-dimensional

representation from the input data. For instance, in (Cheriet, Moghaddam, Arabnejad & Zhong,

2013), two manifold learning techniques have been exploited to learn representations for

document image shape-based recognition.

Generally, most of these approaches depend on the calculation of the nearest neighbors to

construct a neighborhood graph, which is a critical limitation. Specifically, when dealing with a

large number of training samples, the needed calculations to obtain the neighborhood graph

scale quadratically. In addition, training samples with high density throughout the manifold are

needed to obtain reliable representations, which is challenging considering manifolds with high

dimensions.

1.2.2.3 Probabilistic

At the probabilistic approaches, all the network variables are either visible or latent. The

training process is performed by maximizing the latent variables’ likelihood given the visible

variables. Various probabilistic approaches have been introduced in the literature. Most of

these approaches are based mainly on the famous Restricted Boltzmann Machine (RBM) model
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(Hinton, Sejnowski et al., 1986), which exploits a bipartite graph between hidden ℎ 𝑗 and visible

𝑣𝑖 variables for the training process. Precisely, the basic block consists of two layers that are

associated with a set of weights and biases, figure 1.1, in which the latent variables work on

acquiring the dependencies between the visible variables. In fact, the variables of the same layer

cannot be connected; therefore, it is called ’restricted’.

Figure 1.1 A Restricted Boltzmann Machine (RBM) model. Taken from Lopes et al.

(2015, p. 158)

In (Hinton, Osindero & Teh, 2006), a Deep Belief Network (DBN) approach has been introduced

to reveal the true potential of RBM. It is based on adding up many RBMs together, where the

network’s bottom layers are expected to detect simple low-level features from the input image. In

contrast, higher layers shall unveil more complex abstraction that well-imply the actual remarks

of the input image (Le Roux & Bengio, 2008). A layer-wise greedy learning algorithm is utilized

for training this approach, where the inputs of a higher layer are the activations of the layer

below it. As shown in figure 1.2, an RBM is being trained once per time, where its weights are

being frozen once the training process is finished; then, another hidden layer is stacked into that

network, and a new RBM training starts on that level.
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Figure 1.2 A layer-wise greedy learning process of a Deep Belief Network (DBN)

with 3 hidden layers. Taken from Le Roux et al. (2008, p. 7)

Although the DBN approach is capable of acquiring many complex features through a diverse

range of fields, it still suffers from scalability issues when being scaled up to full-size images

with high dimensions. Therefore, a convolutional Deep Belief Network (CDBN) approach

has been introduced (Lee, Grosse, Ranganath & Ng, 2009). It is a modified version of the

DBN approach that incorporates the convolutional network’s locality properties, weight tying,

and pooling. Such addition has helped this generative model to be translation-invariant and

applicable on large-size images. Nevertheless, these probabilistic approaches have not been

common in recent literature. This is due to their inefficiency in learning reliable features, where

intractability is common whenever multiple layers are utilized (Noroozi & Favaro, 2016).

1.2.2.4 Direct mapping (Autoencoder)

The direct mapping approach is mainly based on autoencoders (Bourlard & Kamp, 1988;

Hinton & Zemel, 1994). An autoencoder consists of two sequential parts, an encoder that

performs a parametric feature learning process using unlabeled data and a decoder that maps back

the learned features to the input. Specifically, the autoencoder is a neural network consisting of

one or more hidden layers with the objective of minimizing the error between the original input
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and its reconstruction produced by the network. This process leads to learning a low-dimensional

representation of the input document image.

Many variants of the autoencoder have been utilized in the literature for the document image

analysis task (Chen, Seuret, Liwicki, Hennebert & Ingold, 2015; Chen, Seuret, Liwicki,

Hennebert, Liu & Ingold, 2016b; Wei, Seuret, Liwicki, Ingold & Fu, 2017). Most of these

approaches offer better efficient features when dealing with multiple layers architecture, unlike

probabilistic approaches (Noroozi & Favaro, 2016). Yet, they do not provide end-to-end, fully

unsupervised document analysis solutions. Specifically, after learning the representation, labeled

data are still required to train the analysis process (e.g., classification, segmentation, etc.).

1.2.2.5 Self-supervised learning

Self-supervised learning approaches work to obtain an automatic supervisory signal from the

available unlabeled training data, commonly by utilizing its underlying structure and its observed

characteristics to predict hidden unobserved properties. It equips the training data with a free

automatic labeling process, where the manual annotation step is unnecessary.

Many techniques have been introduced in the literature to achieve this objective. For instance, the

relative positions between various image patches are utilized in (Doersch, Gupta & Efros, 2015;

Noroozi & Favaro, 2016). While, in (Dosovitskiy, Fischer, Springenberg, Riedmiller & Brox,

2016), the model is trained using surrogate classes obtained by augmenting seed images. On the

same line, image rotations are predicted in (Gidaris, Singh & Komodakis, 2018). Moreover, color

histograms are predicted in (Larsson, Maire & Shakhnarovich, 2016). Finally, in (Hjelm, Fedorov,

Lavoie-Marchildon, Grewal, Bachman, Trischler & Bengio, 2018; Ji, Henriques & Vedaldi,

2019), mutual information maximization is exploited. Further discussion is conducted in

section 4.2.2.

Regardless of its efficiency and promising performance with natural-images, self-supervised

learning approaches are not common in document image analysis’ literature.
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GENERAL METHODOLOGY

In this chapter, we demonstrate the general methodology of this thesis. The focus of this thesis

is on introducing efficient representation learning approaches that can be utilized in practical,

real-world use-cases of the document image analysis field. These approaches shall handle two

main challenges, first the large amounts of data, and second the scarcity of annotated training

samples. The demonstration of that will be on two document analysis tasks, classification, and

semantic segmentation. First, considering the limitation and practical challenges of the current

literature, three research objectives are defined to be addressed in this thesis. Afterward, the

general approach of this thesis is explained.

2.1 Research objectives

The main objective of this thesis is to introduce reliable document image representations that

can stand up to the practical, real-world challenges of the document image analysis field. This

main objective will be achieved with three specific objectives related to document classification

and semantic segmentation tasks.

2.1.1 Objective 1: to study the practical, real-world challenges of the document image
analysis field and propose a reliable document representation approach that can
generalize well to large-scale datasets.

Current document representation approaches ignore the practical, real-world challenges of the

document image analysis field and focus on use-cases with an unrealistic assumption that any

trained model can well generalize when applied to large-scale documents collection. Therefore,

our first objective is to propose a reliable document representation approach for document

classification, an essential document image analysis task. This approach can generalize well to

large-scale datasets (i.e., more than 32 million documents) while considering the very limited

availability of the annotated samples available during the training process (i.e., less than 0.07%
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of the total number of document images). In addition, a comprehensive study of various

document representations is proposed. These representations are based on a broad spectrum

of features that range from fully hand-designed features to hybrid and fully learned features.

The proposed approach is designed and developed as the result of a close collaboration with

the humanities researchers, who identify the requirements and analyze the findings. Chapter

3 will describe this collaboration in more details. This approach provides the first study that

reflects the practical challenges that face the document image analysis field when interfacing

with real-world constraints.

2.1.2 Objective 2: to build a reliable document representation approach that can learn
features from unlabeled data for document image classification.

Many recent representation learning approaches for document image analysis are based on

supervised feature learning. These approaches require a large amount of annotated training

document images to obtain a reliable performance, which is practically a challenge. In real-world

use-cases, the available amount of labeled data is limited and scarce, while a large amount of

unlabeled data is often abundant. Our second objective is to propose a representation learning

approach that is based on unsupervised feature learning. The focus here is still on the document

image classification task, where the classification is based on the global context of the document

image. The proposed approach to use only unlabeled data to learn a pre-trained model, which is

used later to boost the performance of the document image classification in the cases of i) the

unavailability of any labeled data and ii) the availability of limited labeled data. More details

about the proposed approach will be presented in Chapter 4. It provides the first approach to

perform an unsupervised document image classification using a representation that does not

depend on any hand-crafted features or labeled data; instead, it is entirely based on feature

learning using unlabeled data.
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2.1.3 Objective 3: to construct a reliable document representation approach that can
learn features from unlabeled data for document image semantic segmentation.

Each previously classified document image in Objective 2 can be semantically segmented to

interpret that document’s content further and prepare it for additional analysis tasks. Recent

representation learning approaches for document image semantic segmentation are mainly

supervised learning-based approaches. In these approaches, a large amount of labeled document

images are needed for the training process, which is a practical challenge, as previously discussed

in Objective 2. In fact, performing unsupervised document image semantic segmentation is a

difficult task considering the high inter-class similarities between the semantic classes and the

discontinuities and white spaces that most of them contain. Our third objective is to propose an

unsupervised end-to-end approach for semantically segmenting a document image (pixel-wise)

in a totally unsupervised manner. The proposed approach and its detailed experiments are

demonstrated in Chapter 5. It provides the first approach to perform an unsupervised document

image semantic segmentation using solely unlabeled data without depending on any textual

information or dataset-dependant heuristics techniques.

2.2 General methodology

New document representation approaches have been introduced and developed in this thesis

for better obtaining relevant features that can stand against the various practical and technical

challenges that currently face document image analysis tasks. These approaches are associated

with the objectives previously mentioned, and they can be split into three main themes:

document representations for large-scale datasets, document representations for document image

classification using datasets with limited to no availability of labeled training data, and document

representations for document image semantic segmentation using datasets with no availability

of labeled training data.
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2.2.1 Document representations for large-scale dataset

The first objective proposes a reliable document representation approach that can generalize

well to a large-scale dataset (32 million document images). This approach is to be applied

to the document image classification task. The classification is based on the existence of a

distinctive visual local characteristic (e.g., footnote) within a document image. In this approach,

four models are investigated. Those models range from a conventional model based only on

hand-designed features to a fully feature learning-based model. The first model is a ’rule-based’

one, which is based on fully hand-designed features. It captures visual features related to some

predefined rules based on the expert’s prior knowledge of the footnote characteristics, such as its

font size, spacing, and location on the page. The produced feature vector is then used for the

classification process using a support vector machine (SVM) classifier. The second model is

’layout-based’, which is a hybrid model that combines both hand-designed and learned features.

This model weighs more heavily on the hand-designed features, where it depends mainly on

understanding the text lines layout of the document. Similar to the previous rule-based model,

it is based on the hypothesis that the footnote has some distinctive visual characteristics with

respect to its size and position on the page. Initially, the obtained measures of each text line

are captured by a Discrete Cosine Transform (DCT) as a signal to produce a hand-designed

feature vector. Afterward, this feature vector is used as an input to an autoencoder to learn a

representation -feature learning-based- used for the classification process. Although the third

model is called ’CNN-based’, it is still another hybrid model that combines both hand-designed

and learned features with more weighting on the learned features. Initially, each document image

is represented using the two top text lines and the three bottom ones. Then, a vertical projection

of each of these text lines is used to create a histogram. Afterward, a concatenated version of

the text lines’ vertical histograms forms a hand-designed feature vector used as an input to a

one-dimensional Convolutional Neural Network (CNN). In this network, a representation of

the document image is learned, and the classification process is performed. The fourth model

is based on a CNN architecture and relies on ’transfer learning’. Specifically, the obtained

document representation is fully based on learned features without dependence on hand-designed
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features. The model consists of two stages, pre-training and fine-tuning. First, an AlexNet is

trained on a publicly available large dataset of natural images. The resulting learned parameters

(e.g., network weights) are used to initialize the network in the second stage. In this stage, the

initialized network is fine-tuned with samples of ECCO dataset to learn document representations

that can lead to reliable classification performance. The final classification approach is based

on an ensemble of the above four methods (i.e., established upon the majority voting system),

where the experimental results show the efficiency of that approach in classifying large-scale

(i.e., around 32 million) documents with a reliable performance (Chapter 3).

2.2.2 Document representations for document image classification using datasets with
limited to no availability of labeled training data

The second objective proposes a reliable document representation approach to learn features from

unlabeled data for document image classification. Unlike the first objective, the classification

process in this objective is based on the overall global structure of the document image. The

proposed approach is initially based on an unsupervised pre-training step. A convolutional

neural network (CNN) is trained on an auxiliary task. Every training example is associated

with a different label (exemplar) and expanded to multiple images through a data augmentation

technique. Specifically, a set of randomly chosen combinations of pre-defined transformations

are applied to each unlabeled training sample in the original training set to obtain a set of

surrogate classes. Afterward, the learned pre-trained model, obtained in a fully unsupervised

way, is utilized in both unsupervised and supervised document image classification tasks. First,

when there is no accessibility to any annotated data -unsupervised classification task-, the

learned pre-trained model is used to extract features and obtain representations for the unlabeled

training data. These representations are to be clustered for obtaining various cluster centroids.

During inference, each test sample is associated with the best-learned cluster centroid. And for

evaluation, we consider the labeled data to associate each group of test samples to an actual class.

Finally, when a limited amount of annotated data is available -supervised classification task-,

the pre-trained model is used mainly for initialization. Then, this model is fine-tuned using the

provided small annotated data and utilized for classification. The results show how consistently



24

efficient our approach is in boosting the classification performance at two different settings: i) as

an unsupervised feature extractor to represent document images for an unsupervised classification

task (i.e., clustering); and ii) in the initialization of the parameters of a supervised classification

task trained with a small amount of annotated data (Chapter 4).

2.2.3 Document representations for document image semantic segmentation using datasets
with no availability of labeled training data

The third objective proposes a reliable document representation approach that can learn features

from unlabeled data for document image semantic segmentation. The proposed approach has

two main stages, data pre-processing and training. It focuses on overcoming the challenges

related to the unique properties of the document image and its semantic classes. Initially, at

stage one, three steps of pre-processing are applied to each unlabeled input document image. In

the first step, the distance transform (DT) is obtained for that document image, which is then

concatenated with the existing RGB channels to achieve a combined representation space that

utilizes distance transform and RGB information as an input to our network. Specifically, this

concatenation step results in learning a novel representation that can acquire information about

the spatial white spaces -horizontal and vertical- between the text lines without any labeled data.

This leads to overcoming the challenge of having plenty of spatial discontinuities and white

spaces in the semantic classes of document images. In addition, the learned representation is

efficient in dealing with the low inter-class variability, which is a common challenge with many

document images’ semantic classes. In the second step, patches of the document images are

obtained before pairing them in the third step to be used as an input to the upcoming training

stage. In stage two, the training process is performed utilizing a network based on dilated

convolutional layers. Moreover, during that process, the obtained distance transform of each

image is used to automatically identify the background regions, which helps reduce the bias in

the training set without the need for any labeled data. The obtained results show the efficiency

of our proposed approach in performing unsupervised semantic segmentation by yielding better

results than baseline approaches on various public datasets (Chapter 5).
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3.1 Introduction

In “An Answer to the Question: What is Enlightenment?”, the eighteenth-century German

philosopher Immanuel Kant responded to a big question buried in a little footnote. But you

wouldn’t know it, because contemporary editions of Kant’s famous essay no longer reproduce

the parenthetical directive that Kant’s original essay printed right under the essay’s title in the

December issue of the Berlinische Monatsschrift in 1784: “S. Decemb. 1783. S. 516.” (See

December 1783, p. 516). And, in fact, page 516 in the December volume of the Berlinische

Monatsschrift 1783 has a footnote: “What is Enlightenment? This question is nearly as important

as: what is truth? And should certainly be answered before one starts to enlighten! But I have

yet to find it answered anywhere.”

Kant’s attempt to define enlightenment, then, was a reply to a specific question. The footnote to

which Kant’s essay refers was published in an essay written by the Berlin pastor Johann Friedrich

Zöllner, who had published several sermons in the Berlinische Monatsschrift. Zöllner’s essay,

“Is it wise to no longer sanction marriage through religion?”, discussed whether it would be

“enlightened” to no longer require clergy to officiate weddings (Pasanek & Wellmon, 2018).

Kant’s essay was addressed to a larger philosophical question, but also a particular question

posed on a particular page in a particular periodical by a particular contemporary. And yet
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we tend to read Kant’s essay, and, thus, the Enlightenment, apart from these relationships and

particular moments of printed address and response.

Footnotes like the one on the bottom of page 516 in Zöllner’s essay are visible traces of these

mediated relationships, markers of conversations, references, connections, and the sociability

of knowledge. They are also visible markers of legitimacy and authority. They demonstrate

familiarity, identity, and knowledge. As Anthony Grafton writes with respect to the eighteenth-

century origins of the footnote within the nascent discipline of history: "The footnote is bound

up in modern life with the ideology and the technical practices of a profession." (Grafton, 1997)

It is an element of the history of disciplinarity and scientific credibility.

The footnote is also one of several visual typographic practices that have shaped modern

knowledge. Our effort to understand better the footnote’s place within the eighteenth century is

part of a larger, on-going project that seeks to understand a range of visual practices of scientific

notation in the past: whether it be footnotes that communicate authority and the relationality

of sources; tables that bring together disparate forms of information into geometric relations;

diagrams that provide abstract representations of intellectual procedures or natural phenomena;

or illustrations that provide mimetic representations of objects in the world. In each of these

cases, authors, editors, and publishers used a graphic process to convey information and make

truth claims, often in a way that sought to reduce complexity. And contemporary scholars

continue to use these processes in order to communicate well and more efficiently with one

another. Instead of reproducing the entirety of another text, we cite it. Instead of reproducing

all of the underlying data of a process, we transform it into a table of relations. Diagrams

abstract more detailed processes into more formal essence. Even illustrations have an indexical

relationship to the larger real-world phenomena they are meant to represent.

As we explain in greater detail elsewhere, our larger project is about bringing together the

intersecting strands of research from the fields of book history, the history of science, and

document image analysis to better understand the analytical unit called "the page image" and its

role in the history of scientific knowledge. Our aim us to take seriously the page image in a
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double sense: first, as an image of a page, that is, to see the digitized page first and foremost as

an image rather than a flawed mediation of text; and second to see the page itself as an image,

as a visual unit rather than a primarily textual one. What have been the ways that the graphic

practices of pages have underpinned the epistemic claims of scientific knowledge?

In this essay, we recount our process of using machine learning and classification algorithms

to detect footnotes within the Eighteenth-Century Collections Online dataset (ECCO). ECCO

represents one of the most complete digitized collections of a national publishing context within

a specific historical period, consisting of over 100,000 volumes and 32 million pages published

in Britain between 1700 and 1800. It has become a staple of research in the history of ideas, not

just in Britain but for scholars of the Enlightenment more generally. We see the enrichment of

collections like ECCO as a primary research goal for furthering historical understanding.

We discuss here the samples of training data that were collected and manually annotated, the

different types of page-features that were used in the detection process, and the estimated

accuracy of our predictions. The net result is metadata on the presence of footnotes within

approximately thirty-two million pages of historical documents, which we share along with

metadata regarding the initial training data used so that others can work with the same data. As

we detail in Table 3.1, overall we are able to recall pages with footnotes with 67.8% accuracy and

of those we achieve a precision of 96%. This suggests that there are a considerable number of

footnotes we may be missing but that when we do detect them we do so with a very high degree

of confidence. In addition to these summary statistics, we also provide users with an estimated

percentage of footnoted pages per document, a table of all page IDs that have predicted footnotes

on them, and finally the estimated probability of a footnote being present for all pages in ECCO.

We see this as a first step in fully annotating ECCO according to our four visual categories of

footnotes, tables, diagrams, and illustrations.

We want to emphasize from the outset just how challenging this process has been. "At first

glance, all footnotes look very much alike,” writes Grafton, “[but] even a brief exercise in

comparison reveals a staggering range of divergent practices." As we quickly learned, discerning
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what constitutes a footnote in the eighteenth-century is by no means a straightforward process.

Training machines to identify such visual ambiguity is even more difficult. One of the issues

that will need further reflection are the trade-offs between the gains of acquiring knowledge at

larger scale and the challenges introduced by a fundamental uncertainty surrounding historical

evidence.

Overall, we see this project contributing to a larger effort of enriching digitized collections of

historical documents with more information about the documents (what is traditionally called

"metadata" or data about data). We see this particular effort as contributing to knowledge about

the visual qualities of page images, with a specific attention to what we are calling the history

of "scientific notation." One of the major obstacles for historical understanding is the minimal

amount of knowledge we have about individual documents within large document collections.

We might think of this as a second-wave of digital history: the first – which is still on-going

– involves the act of digitization itself. This effort is about making physical copies, which

are geographically limited in their accessibility, more widely accessible to a broader reading

public. The second wave, to which we see our work contributing, can be seen as the attempt

to provide more knowledge about the composition of the collections to facilitate large-scale

study of cultural history. ECCO metadata currently consists of features like publication date,

author, title, publisher, and in some cases subject headings. There is much more that we can do

to annotate collections. But to do so at large-scale requires developing algorithmic procedures

for expertly labeling documents, which in turn necessitates greater collaboration between the

humanities and the sciences.

However, it is important not to mistake these labels for what computer scientists call "ground

truth." All knowledge is situated. This project represents the coordinated efforts of a team

of 14 researchers split between the humanities and computer science, including both students

and faculty, ranging in levels from BA to Masters to PhD to Professor. It entailed a lengthy

collaboration to create mutual understanding and shared goals as well as a clear understanding

of the cultural object of study (in this case historical practices of footnotes). The training data

assembled thus represents the understanding and prior knowledge of the humanities cohort,
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while the detection algorithms represent the understanding and prior knowledge of the computer

science cohort. Any machine learning process inevitably encodes, explicitly and implicitly, these

biases into its outputs and are thus not value free. While this may seem less controversial with a

more straightforward visual object like footnotes, it is important that we continue to foreground

the human learning behind machine learning. We now proceed to describe the process we used

to annotate thirty-two million pages of ECCO.

3.2 What is a footnote? (Training Data)

We began our research by defining a footnote and then identifying positive and negative examples

within ECCO. For our purposes we defined a footnote as: Footnotes need to be distinct, marked

text at the bottom (foot) of the page that are referenced in the main part of the text.

Each of these components is important: footnotes have a distinct location; they are marked (i.e.

have a distinct marker); and refer directly to a location within the main body of the text through

a matching mark (Fig. 3.1). Such a definition rules out side-notations (Fig. 3.2) or unmarked

commentary that may be located at the bottom of the page (Fig. 3.3). Footnotes require some

rule-based distinction of being "off-set". Despite these clarifications, we encountered numerous

examples of pages that looked deceptively like footnotes (Fig. 3.4, Fig. 3.5). Because footnote

marks are both highly varied in the eighteenth century and also highly indistinct as images (what

is the difference between a poorly printed asterisk and an ink blot from the reproduction process?)

(Fig. 3.6), the footnote mark, as we quickly learned, is only weakly significant in discriminating

between footnotes and commentary. For this reason, we encountered a serious limitation in our

analysis that is important to signal at the outset: given the heterogeneity of footnote markers

as well as their printed ambiguity (footnotes can be designated by numerous different shapes

which are very hard to distinguish from other marks or blemishes on the reproduced page), our

analysis does not indicate where in the body of the text the footnote is anchored. In other words,

we cannot provide analysis of the footnoted word, but only an estimation of the presence of the

footnote itself at the bottom of the page. Further research would be needed to reliably capture

the location of the footnote mark as indicated in Figure 3.1.
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Figure 3.1 Example of a footnote. From Reflections on

ancient and modern history (1742)

Based on the above definition and limitations, and with extensive discussions between students

and faculty responsible for collecting training data, we manually annotated 21,939 page images

for training (6,028 pages with footnotes and 15,911 pages without), and another 5,520 pages

for testing (522 with and 4,998 without). All pages were randomly generated from ECCO I

and II and then reviewed by a single student. Ambiguous cases were reviewed by the project

investigators. As we will demonstrate, our models do not appear to show biases towards different

historical timeframes within the overall dataset or between ECCO I and II, which are collected

separately by Gale.

3.3 Detecting Footnotes at Large Scale (Machine Learning)

After collecting our positive and negative examples of footnoted pages, we then set out to design

features and learning algorithms that could best predict the presence of footnotes on a page. We
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Figure 3.2 Example of side

notation. From Reports of cases

argued and determined in the

Courts of Common Pleas (1802)

Figure 3.3 Example of

commentary at the bottom of the

page. From New observations on

Italy and its inhabitants (1769)

chose to use four models which we describe here. The performance of the models is reported in

Table 3.1. The designed models cover a range of machine learning approaches, beginning with

a conventional model based only on hand-designed features and moving to a learning-based

model that utilizes deep learning.

Our first approach is a "rule-based" model that tries to capture three overarching visual features

related to the differential line-size and line-spacing of pages (thus "rule-based"). Our hypotheses

for this model are that footnotes will: have a smaller font size than the main text; be located at

the bottom of the page; and be indicated by significant spacing between the footnote and the

main text. The advantage of this kind of approach is that the creation of custom features can

target our prior knowledge of the problem (i.e. what is a footnote) and increase precision. The

drawback is that the delimitation of features may not be able to capture the broader diversity

of footnote behaviors in our data and thus may lower recall. This can be compensated for

by more learning-based approaches where features are not pre-defined but learned from the



32

Figure 3.4 Example of footnote-like text

in an early newspaper (1702)

Figure 3.5 Example of footnote-like

text. From Letters between Col.

Robert Hammond (1764)

training examples. However, as we show in Table 3.1, we see how overall in our results we do

achieve higher precision (finding true positives) and lower recall (producing false negatives, i.e.

overlooking footnotes).

In order to estimate font size (hypothesis 1), we use two methods drawn from the field of

document image analysis: the bounding box method (BBox) and the horizontal projection

method (Proj) (Fig. 3.7) (Dos Santos, Clemente, Ren & Cavalcanti, 2009; Likforman-Sulem,

Zahour & Taconet, 2007). Bounding boxes are determined for each line by finding the rectangles

containing the connected components. A connected component is defined as the continuous

connection of black pixels. In theory, a connected component should correspond to individual

letters, but given the imperfect reproductions of pages along with typographic irregularities

introduced in historical printing practices, errors can be introduced (Fig. 3.8). These bounding
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Figure 3.6 Examples of degraded or hard to capture footnote-marks. Part of the seventh

epistle of the First book of Horace (1713) (left) and A sermon by Joseph Lord Bishop of

Bristol (1739) (right)

boxes are then used to estimate the lower case letters’ font sizes by finding the distance between

the lower and the upper base-lines, as shown in Fig. 3.7(a). For the horizontal projection method,

the horizontal intensity for each line is calculated (i.e., the pixels in the horizontal direction

are summed such that there will be fewer pixels at the upper and lower levels of the line where

extenders and descenders are located (capital letters or d’s or y’s for example)). As demonstrated

in Fig. 3.7(b), the font size of a textline is estimated by calculating the distance of the inner

intersected line between the derived projection and a threshold line of a value equal to 0.55.

According to our initial hypothesis, we expect that any line with a footnote would correspond to

a decrease in font size when compared to the previous line. Although this would be an ideal

case, such a decrease could be attributable to something other than the presence of a footnote,

such as the presence of a title, figure, or tables, etc. We therefore define additional rules in order
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Figure 3.7 The estimated font size of (a) the bounding box based method and (b) the

horizontal projection based method

Figure 3.8 We can see in this example

of the word "slender" from Hogarth’s

Analysis of Beauty a connected

component that spans more than one

letter due to the typeface used and the

potential for bleeding between letters.

Each red box represents a connected

component

to improve the accuracy of our footnote detection. We convert these rules into specific features

described in Appendix A (Zhalehpour, Piper, Wellmon & Cheriet, 2017).

In order to identify the footnote location (our second assumption), we define a series of further

rules based on the page layout for each method (BBox and Proj). The relative position of the
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estimated footnote line to all other lines on the document image is then used as a basis of further

features. The third and final technique determines the spaces between the lines and uses them as

a feature. More specifically, the textline below the large white space closest to the bottom of the

page is considered to be a footnote candidate. The location of a possible footnote is compared to

the locations estimated in the first two methods in order to partially form the final feature vector

of the image. We illustrate how the three primary features of line height, line spacing, and page

location perform with respect to two sample pages, one with a footnote, one without (Fig. 3.9).

Using these three primary features we develop a total of 72 features related to rule-based qualities

of the page (18 BBox + 24 Proj + 30 Location and space as described in Appendix A) which are

then fed into a support vector machine (SVM) classifier to detect pages with footnotes.

Our second model is a "layout-based" model that combines hand-designed and learned features,

although it weighs the former more heavily. This and the next model might be considered to be

hybrid models that combine custom features defined by expert knowledge and learned features

defined by the machine’s exposure to the training data. The layout approach primarily depends

on understanding the layout of textlines on a page (Fig. 3.10). Once again, it rests on the

hypothesis that footnotes will exhibit distinctive visual behavior with respect to their size and

position on the page. Similar to the rule-based approach, we develop 22 custom measures for

each textline based on the variables shown in Fig. 3.10 (see Appendix B for a full description of

all features). Because the number of textlines varies between document images, it is necessary

to extract features with a fixed length for all of the images. In order to do this, we use Discrete

Cosine Transform (DCT) (Lam, 2004), where we consider the concatenation of each textline’s

22 measures as a signal. This signal exhibits a repetitive behavior and thus contains frequency

information such that DCT can be used to capture this information. Specifically, since most of

the signal’s energy (i.e., information) is concentrated in lower frequencies, and assuming that

document images have at least 5 textlines, we kept only the first 300 coefficients of the DCT

transform for each image.
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Figure 3.9 Examples of two document pages, with footnote (a) and without footnote

(b), and their related results after applying the BBox-based method (b, f), the

projection-based method (c, h) and estimating the lines spacing (d, i)

The final step of the “layout-based” model is classification. We use a combination of an

Autoencoder overlaid with a softmax layer (Baldi, 2012). The Autoencoder creates lower

dimensional representation of the provided input data in its hidden layer and then reconstructs
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this data at its output layer. This representation is then fed to a softmax layer with the labels of

the document images to learn the model for classifying new samples.

Figure 3.10 A bounding box of a textline with features X, w, Y,

h, and d defined as relative positions on the page

Given the recent advances in the field of deep learning, particularly with architectures such

as Convolutional Neural Networks (CNN), we used two CNN-based models for our final two

approaches (Goodfellow, Bengio, Courville & Bengio, 2016). We also used two different

techniques in an effort to compensate for the limited amount of labeled data available to us,

because CNNs generally require large amounts of data during the training process in order to

perform efficiently.

In the third approach, "CNN-based," the model is based primarily on learning the document

image’s features throughout the various layers of the neural network. But the model also depends

on hand-designed features in order to overcome the limited amount of labeled data. Based on

our hypothesis that the footnote’s text and the main body’s text differ in both style and font,

each document image is represented using the two top textlines and the three bottom ones. (We

use a projection-based segmentation method described above to detect those textlines.) Each

of these textlines is represented, more precisely, as a vertical histogram (Fig. 3.11). As in the

previous examples, the performance of this model will be hindered by the reliance on layout

assumptions that may not always apply to our object of study. In order to capture changes in font

size, here we use vertical projections of the lines, meaning the bars of the histogram represent

vertical slices of the red-bounded lines. The lower height of the histogram bars represents a
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lower average line-height. A concatenated version of the vertical histograms of these textlines is

then used as an input to a 1-dimensional CNN (i.e., a 5000x1 histogram) (Mhiri, Abuelwafa,

Desrosiers & Cheriet, 2017).

Figure 3.11 A representation of a document page (a) with its related vertical

histograms (b)

Our fourth and final approach is based on transfer learning and CNN ("Transfer Learning")

(Bengio et al., 2013). According to this approach, the model automatically learns the features

without using any hand-designed features. Transfer learning can be particularly useful given

the scarcity of labeled training data in our case. The model consists of two supervised learning

stages, a pre-training stage and a fine-tuning stage. In the first stage (pre-training), an AlexNet

is trained on a large dataset of natural images and the resultant learned parameters (e.g.,

network’s weights) are saved. In the second stage (fine-tuning), instead of initializing the CNN’s

parameters randomly, the model uses learned parameters from stage one. Then, we use the

ECCO dataset to train the model to classify document images with footnotes. The novelty of
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this approach is important to emphasize – footnotes are being learned first by learning features

of "images" more generally and then being trained on page images more specifically. To prepare

the data, we perform two pre-processing steps on the raw document images––resizing and

normalization––before using them as inputs to our model. Each document image is re-sized to

227x227, and its pixel values are normalized to be in the range [0 1] (Fig. 3.12). Unlike the first

three approaches, this model does not require any textline segmentation process; therefore, it

avoids the segmentation errors that may result from it.

Figure 3.12 In this example, pages are binarized and then

reduced in size to 227x227 pixels (or 51,529 dimensions)

rendering them illegible, but ideally capturing the unique visual

signature of footnotes
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These then were the four models we developed to detect footnotes. As a final step, we use an

ensemble detection method that combines all four classifiers. Applying this ensemble method

on the test set of ECCO, we achieve 96.2% precision and 67.87% recall in our footnote detection

results (Table 3.1).

Table 3.1 The individual performance of each detection

approach, in addition to the final approach performance

Approaches Precision (%) Recall (%) F1 score
Rule-based 68.24 60.8 0.643

Layout-based 60.8 69.4 0.6482

CNN-based 90.35 48.37 0.63

Transfer learning-based 74.31 41.49 0.5325

The final detection approach 96.2 67.87 0.7959

Applying our detection methods on the full ECCO dataset, we discovered 1,319,000 footnoted

images from approximately 26,000,000 document image in ECCO I and 239,754 footnoted

images from approximately 6,000,000 document image in ECCO II. We therefore estimate

that roughly 4.9% of all pages in the eighteenth contained footnotes. The figures below (Figs.

3.13-3.15) provide more detailed results, including the number of document images with detected

footnotes over time (publication years) as well as document images with detected footnotes

according to subject classifications in both ECCO I and II. We expect in a separate piece to

explore this data in more detail. We share the underlying metadata of footnote annotation to

allow others to do the same.

We also provide detailed information in Tables 3.2 and 3.3 that demonstrate the consistency of

our final model’s performance across different time periods and subjects in both ECCO I and

II. As we show, the values of the average footnote probability per page are stable (i.e., around

0.68) regardless of the year or subject of the examined document image. These tables give us

confidence that our predicted levels of footnotes are not dependent on either document type or

the year of publication. All of our derived data has been shared as supplementary data to this

article.
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Table 3.2 The average probability of footnote by years and subjects (where images are

detected as footnote) at ECCO I

Year
(bins)

GenRef HistAnd
Geo

Law LitAnd
Lang1

LitAnd
Lang2

MedSci
Tech

Reland
Phil

SSAnd
FineArt

Total

1695 0.57 0.64 0.62
1700 0.64 0.66 0.64 0.66 0.66 0.68 0.68 0.66 0.67
1705 0.68 0.67 0.69 0.68 0.64 0.69 0.69 0.66 0.68
1710 0.66 0.66 0.69 0.67 0.66 0.67 0.68 0.67 0.68
1715 0.68 0.67 0.68 0.67 0.68 0.68 0.68 0.68 0.68
1720 0.68 0.67 0.68 0.66 0.68 0.68 0.69 0.67 0.68
1725 0.66 0.67 0.67 0.68 0.67 0.69 0.69 0.68 0.68
1730 0.68 0.66 0.67 0.68 0.67 0.69 0.69 0.67 0.68
1735 0.67 0.67 0.66 0.67 0.67 0.68 0.69 0.67 0.68
1740 0.68 0.67 0.65 0.67 0.67 0.70 0.69 0.68 0.68
1745 0.66 0.67 0.67 0.68 0.68 0.69 0.69 0.68 0.68
1750 0.67 0.67 0.67 0.67 0.67 0.68 0.69 0.68 0.68
1755 0.67 0.68 0.68 0.68 0.68 0.68 0.69 0.68 0.68
1760 0.65 0.68 0.70 0.68 0.67 0.69 0.69 0.67 0.68
1765 0.67 0.69 0.67 0.67 0.69 0.69 0.69 0.68 0.68
1770 0.67 0.68 0.68 0.68 0.68 0.69 0.69 0.68 0.68
1775 0.66 0.68 0.68 0.68 0.68 0.72 0.68 0.68 0.68
1780 0.67 0.68 0.68 0.68 0.68 0.69 0.69 0.68 0.68
1785 0.70 0.68 0.68 0.68 0.67 0.68 0.69 0.68 0.68
1790 0.68 0.69 0.68 0.67 0.67 0.69 0.69 0.68 0.68
1795 0.66 0.68 0.69 0.67 0.67 0.68 0.69 0.68 0.68
1800 0.67 0.68 0.66 0.67 0.68 0.68 0.69 0.68 0.68
1805 0.66 0.71 0.70
Total 0.67 0.68 0.68 0.68 0.68 0.69 0.69 0.68 0.68

3.4 Appendix A - The Rule-based Footnote Detection Approach Features

The final utilized feature vector at the rule-based footnote detection approach contains 72 features,

which is the combination of the features extracted at the following three techniques.

3.4.1 The Bounding Box (BBox) based Method

At this method, 18 features are being utilized based on some initial assumptions; for instance,

the assumption that the font size of any footnote line is at least 0.55 smaller than the font size of

the main text. More assumptions are considered and demonstrated in details in table 3.4.
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Table 3.3 The average probability of footnote by years and subjects at ECCO II

Year
(bins)

GenRef HistAnd
Geo

Law LitAnd
Lang

MedSci
Tech

Reland
Phil

SSAnd
FineArt

Total

1700 0.64 0.55 0.64 0.63 0.66 0.64 0.65
1705 0.65 0.66 0.65 0.69 0.67 0.66 0.66
1710 0.59 0.66 0.68 0.67 0.68 0.67 0.64 0.67
1715 0.64 0.68 0.68 0.67 0.66 0.67 0.66
1720 0.57 0.65 0.57 0.66 0.66 0.67 0.66 0.67
1725 0.56 0.68 0.64 0.65 0.69 0.68 0.67 0.68
1730 0.65 0.67 0.66 0.67 0.66 0.67 0.66
1735 0.65 0.66 0.65 0.67 0.66 0.66 0.66
1740 0.61 0.66 0.62 0.65 0.66 0.67 0.66 0.66
1745 0.61 0.68 0.66 0.65 0.66 0.67 0.66 0.67
1750 0.72 0.67 0.66 0.66 0.68 0.68 0.66 0.67
1755 0.66 0.69 0.65 0.67 0.67 0.67 0.66
1760 0.67 0.66 0.63 0.67 0.67 0.66 0.67 0.67
1765 0.63 0.68 0.63 0.66 0.68 0.68 0.66 0.67
1770 0.67 0.69 0.66 0.66 0.67 0.67 0.68 0.68
1775 0.62 0.67 0.67 0.65 0.68 0.67 0.67 0.67
1780 0.63 0.66 0.64 0.65 0.68 0.67 0.67 0.66
1785 0.63 0.68 0.65 0.66 0.68 0.67 0.67 0.68
1790 0.64 0.67 0.68 0.66 0.67 0.67 0.67 0.67
1795 0.64 0.66 0.66 0.66 0.67 0.67 0.67 0.67
1800 0.66 0.69 0.67 0.66 0.69 0.67 0.67 0.68
Total 0.65 0.67 0.67 0.66 0.67 0.67 0.67 0.67

3.4.2 The Horizontal Projection (Proj) based Method

At this method, 24 features are being utilized. Table 3.5 demonstrates the extracted features in

more details.

3.4.3 Location and Space based Features

Table 3.6 demonstrates the 30 extracted features in more details.
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Figure 3.13 Distribution of document images (all and footnoted) in ECCO I by year

using Gale’s eight subject classes

3.5 Appendix B - The Layout-based Footnote Detection Approach Measures

A detailed description of the used measures at the layout-based footnote detection method is

demonstrated at table 3.7.
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Figure 3.14 Distribution of document images (all and footnoted) in ECCO II by year using

Gale’s eight subject classes
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Figure 3.15 The percentage (%) of the detected footnote document images to the total

document images at both ECCO I and ECCO II
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Table 3.4 The Bounding Box (BBox) based method

assumptions

Feature Condition
1 1 if there is no drop more than 0.55

2 1 if there are 1+ drops of more than 0.55

3 1 if the last two lines’ heights are less than 0.1

4 1 if the last line’s height is less than 0.1

5 1 if the last two lines’ heights are less than 0.1 and there is a footnote

6 1 if the line before last line’s height is less than 0.1

7 1 if the footnote is not in the 4th line

8 1 if there are 2+ drops more than 0.55

9 1 if the footnote is not in the 4th, 5th and 6th lines

10 1 if there are 2+ drops less than 0.55 or the footnote is not in the 4th, 5th and 6th lines

11 1 if there is a drop greater than 0.15

12 1 if footnote line is in the 6th line or later

13 1 if the height of the footnote line is 0.55 greater than the line before the last line

14 1 if there is a drop of greater than 0.35 between the lines before and after the footnote

line

15 1 if there is a line except the last line selected as the footnote line and there is a drop of

greater than 0.35 between the lines before and after it

16 1 if there is a difference less than 0.17 between the lines before and after the footnote

line

17 1 if there is a line except the last line selected as the footnote line and there is a

difference less than 0.17 between the lines before and after it

18 1 if it the page has more than 3 lines
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Table 3.5 The horizontal projection (Proj) based method

extracted features

Feature Condition
1 1 if there are more than 3 lines in the page

2 1 if there is no possible footnote

3 1 if there is more than one possible footnote (drops with the amount of 0.55 or more)

4 1 if the footnote line is in the first 3 lines or there are more than 3 possible footnotes

5 1 if there are more than 3 possible footnotes or there are lines shorter than 0.13 but not

footnote lines

6 1 if the footnote line is in the first 3 lines or there are lines shorter than 0.13 but not

footnote lines

7 1 if the footnote line is in the first 3 lines

8 1 if there are more than 3 possible footnotes

9 1 if there are lines shorter than 0.13 but not footnote lines

10 1 if the footnote line is in the first 3 lines, there are 3+ possible footnotes or there are

lines shorter than 0.13, but not footnote lines

11 1 if the last line or the line before it has a height less than 0.1

12 1 if the last line or the line before it has height less than 0.1 and there is a footnote

13 1 if the last line has a height less than 0.1

14 1 if the line before the last line has a height less than 0.1

15 1 if there still exists a footnote line

16 1 if the height of the last line is less than 0.4

17 1 if the last line has a height less than 0.1 and there exist a footnote line

18 1 if the line before the last line has a height less than 0.1 and there exist a footnote line

19 1 if the height of the last line is less than 0.4 and there is a footnote line and the last

line or the line before has a height less than 0.1

20 1 if the greatest height drop is equal or greater than 0.4 and there is at least a 0.25 drop

between the line before and after footnote

21 1 if there is at least a 0.25 drop between the line before and after the footnote and the

footnote line’s height is less than 0.4

22 1 if the greatest height drop is equal or greater than 0.4 and the height of the last line is

less than 0.4

23 1 if the height of the last line is less than 0.4 and the greatest height drop is equal

or greater than 0.4 and there is at least a 0.25 drop between the line before and after

footnote

24 1 if the height of the footnote line is 0.4 below the highest height of all the other lines

except the first 3 and last lines
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Table 3.6 Location and space based features

Feature Condition
1 1 if there is more than 10 lines in the page

2 1 if there is a space peak in the 2nd 1/4th of the page and there is more than 10 lines in

the page

3 1 if there is a space peak in the 3rd 1/4th of the page and there is more than 10 lines in

the page

4 1 if there is a space peak in the 4th 1/4th of the page and there is more than 10 lines in

the page

5 1 if there is only one peak in the page, select its location: (Peak location/ # of lines)

and there is more than 10 lines in the page

6 1 if there is more than one peak in the page, select the last one’s location: (Peak

location/ # of lines) and there is more than 10 lines in the page

7-8 1 if there is a footnote in the last 1/4th of the page: (FN location/ # of lines) and there

is more than 10 lines in the page

9-10 1 if there is a footnote in the page: (FN location/ # of lines) and there is more than 10

lines in the page

11-16 Check if feature 5 appears anywhere around feature 7(Proj) using a threshold from

±0.02 by a 0.02 step and up to ±0.14

17-22 Check if feature 6 appears anywhere around feature 8(Proj) using a threshold from

±0.02 by a 0.02 step and up to ±0.14

23-26 Check if feature 5 appears anywhere around feature 7(BBox) using a threshold from

±0.02 by a 0.02 step and up to ±0.14

27-30 Check if feature 6 appears anywhere around feature 8(BBox) using a threshold from

±0.02 by a 0.02 step and up to ±0.14
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Table 3.7 The layout-based footnote detection method

used measures

Measure Description
1 Number of objects (characters - connected components) ∈ current textline

2-3 ℎ𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒 − ℎ𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒, ℎ𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒 − ℎ𝑛𝑒𝑥𝑡 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒
4-5 𝑤𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒 − 𝑤𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒, 𝑤𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒 − 𝑤𝑛𝑒𝑥𝑡 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒

6-7 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒 − 𝑥𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒, 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒 − 𝑥𝑛𝑒𝑥𝑡 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒
8 (𝑥 + 𝑤)𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒 − (𝑥 + 𝑤)𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒
9 (𝑥 + 𝑤)𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒 − (𝑥 + 𝑤)𝑛𝑒𝑥𝑡 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒
10 (𝑦 + ℎ)𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒 − (𝑦)𝑛𝑒𝑥𝑡 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒
11 (𝑦)𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒 − (𝑦 + ℎ)𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒
12 (𝑦)𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒 − (𝑦 + ℎ) 𝑓 𝑖𝑟𝑠𝑡 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒
13 (𝑦 + ℎ)𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒 − (𝑦)𝑙𝑎𝑠𝑡 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒

14-16 𝑤𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒, ℎ𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒, 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒
17 (𝑥 + 𝑤)𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒
18 Number of foreground pixel to the number of all of pixels

19 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒18𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒 − 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒18𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒
20 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒18𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒 − 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒18𝑛𝑒𝑥𝑡 𝑡𝑒𝑥𝑡𝑙𝑖𝑛𝑒
21 Number of foreground pixels in right half of the textline to the number of

foreground pixels in left part of the textline

22 Average ratio of black and white pixels for each row of textline image
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Abstract

Many recent state-of-the-art approaches for document image classification are based on supervised

feature learning that requires a large amount of labeled training data. In real-world problem

of document image classification, the available amount of labeled data is limited and scarce

while a large amount of unlabeled data is often available at almost no cost. In this paper, we

present an approach for learning visual features for document analysis in an unsupervised way,

which improves the document image classification performance without increasing the amount

of annotated data. The proposed approach trains a neural network model on an auxiliary task

in which every training example is associated with a different label (exemplar) and expanded

to multiple images through a data augmentation technique. Thus, the learned model, which

is trained in an unsupervised way, is used to boost the document classification performance.

In fact, this learned model has proved to be consistently efficient in two different settings:

i) as an unsupervised feature extractor to represent document images for an unsupervised

classification task (i.e., clustering); and ii) in the parameters initialization of a supervised

classification task trained with a small amount of annotated data. We perform experiments

on the Tobacco-3482 dataset and demonstrate the capability of our approach to improve i) the

unsupervised classification accuracy up to 2.4%; and ii) the supervised classification accuracy

by 1.5% without any extra data or by 5% when using 3000 additional not annotated samples.

Keywords: document image classification, document analysis, document image representation.
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4.1 Introduction

Document image classification is a crucial step in the process of document analysis. Finding the

document category is essential to later analysis steps, such as text recognition and document

retrieval (Dengel & Dubiel, 1995). The current state-of-the-art approaches for document

image classification depend on either carefully hand-crafted features (Bukhari & Dengel, 2015;

Chen et al., 2012; Kumar & Doermann, 2013) or feature learning (Afzal et al., 2015,1; Das,

Roy & Bhattacharya, 2018; Harley, Ufkes & Derpanis, 2015a; Kang, Kumar, Ye, Li & Doermann,

2014). Engineering features is a complex process that requires special expertise for designing

and adapting the features to the desired domain and makes it hard to generalize to new tasks

(Abuelwafa, Mhiri, Hedjam, Zhalehpour, Piper, Wellmon & Cheriet, 2017; Goodfellow et al.,

2016). Recently, approaches that directly learn features from data have received more interest

and it is also the approach that we use. Among the feature learning approaches, methods based

on Convolutional Neural Networks (CNNs), in which features are learned by the convolutional

layers (Afzal et al., 2015,1; Das et al., 2018; Harley et al., 2015a; Kang et al., 2014), achieved

state of the art performance.

In terms of supervision, most of the successful feature learning approaches in the domain of

document image classification are based on a supervised pre-training paradigm. Using fully

supervised feature learning is often an efficient solution that provides very good results as

long as enough labeled training data can be provided. This is not often the case in document

classification, because the process of manually annotating data is slow and expensive in terms of

both, the needed time and expertise. This results in a limited amount of labeled data that can

actually be used in the feature learning process. On the other hand, a large amount of related

unlabeled data is widely available (e.g., HathiTrust digital library3 that contains millions of

digitized document images).

Thus, semi-supervised and unsupervised approaches seem to be a good solution to improve

the classification results without increasing the amount of annotated data. For instance,

3 https://www.hathitrust.org/
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unsupervised feature learning approaches at the pre-training stage (Bengio et al., 2013; Erhan,

Bengio, Courville, Manzagol, Vincent & Bengio, 2010) can provide substantial classification

improvements (LeCun, Bengio & Hinton, 2015) without additional data annotation. In these

approaches, structural and spatial-related features are learned using only unlabeled data. Then,

these learned features are used at a later fine-tuning stage, improving the supervised classification

performance.

In this paper, we propose to first learn a neural network model during a pre-training phase

on a set of data without annotation, thus in an unsupervised manner. This is performed with

an exemplar learning in which a neural network is trained to accomplish the auxiliary task of

classifying each sample in a data-augmented version of the original dataset. Then, we tackle the

problem of document image classification, in which the pre-trained model is used in two different

ways: i) in an unsupervised manner, by clustering on features extracted with the pre-trained

model ii) initializing a supervised training with the pre-trained network weights. In both cases,

the pre-trained model consistently improves the classification performance, over the baseline

approaches on the respective tasks, without the need to use any additional labeled data. Note

that for unsupervised classification, the reported results are with respect to a baseline that does

not utilize the learned featured of our pre-trained network; in addition to, other methods based

on a more complex clustering algorithm and hand-crafted features. For the supervised case, the

baseline to compare with is a trained model without our pre-trained initialization of the weights.

4.1.1 Contributions of this paper

Our paper provides the following contributions:

- We propose a unified unsupervised pre-training based framework that is simple, yet capable

of consistently boosting the performance of both unsupervised and supervised classification.

- To the best of our knowledge, our approach is the first to perform an unsupervised document

image classification using a representation that is entirely based on feature learning using
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unlabeled data, and does not depend on any hand-crafted features. In the experimental results,

we show that our approach outperforms the previous baseline approaches.

- We demonstrate and experimentally validate that by incorporating a small fraction of

unlabeled data from a related-dataset we can easily gain up to 2.4% boost in the unsupervised

classification performance and over 5% boost in the supervised classification performance.

The organization of this paper is as follows; section 5.2 provides a comprehensive review

study on the related work. In section 5.3, the proposed approach is introduced in details. The

experimental setup is presented at section 5.4 and the results with their related analysis are

discussed at section 4.5. Finally, the paper is concluded at section 6.3.

4.2 Related Work

4.2.1 Document image classification

The problem of document image classification has been tackled in the literature through

many approaches that differentiate based on i) the chosen features and ii) the utilized learning

mechanism (Chen & Blostein, 2007).

Considering the chosen features, recent approaches in the literature are either content (text) based

(Tang, He, Baggenstoss & Kay, 2016), visual appearance based or a combination of both (Noce,

Gallo, Zamberletti & Calefati, 2016). The content-based approaches are typically restricted

to documents with text and depend mainly on Optical Character Recognition (OCR) methods,

which may output text with errors that can affect the classification performance (Kumar, 2013).

To avoid this, our proposed work is based instead on the visual appearance characteristics of the

document image and does not rely on OCR.

Conventionally, visual appearance based approaches utilizes hand-crafted features (Bukhari & Den-

gel, 2015). For instance, Scale Invariant Feature Transform (SIFT) (Lowe, 2004) is exploited

by (Chen et al., 2012) and Speeded Up Robust Features (SURF) (Bay et al., 2006) is used by
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(Kumar et al., 2014). However, lately, visual appearance approaches that are based on feature

learning (Kang et al., 2014) have attracted considerable attention.

Since this work is mainly focused on the pre-training stage of the classification process, a review

on the related visual appearance based works is discussed in further detail below.

The simplest and most used pre-training approach that has been utilized extensively in recent

years is supervised pre-training, in which a big and fully labeled dataset is used to perform a

pre-training process (Goodfellow et al., 2016). For instance, (Afzal et al., 2015,1; Das et al.,

2018; Harley et al., 2015a) are all incorporating a supervised pre-training process. In this process,

annotated samples are used to train a network in a supervised manner, then that pre-trained

network’s learned parameters are used to initialize a fine-tuning network and perform the process

of document classification. Usually a huge amount of annotated data is exploited in this process;

for example, around 1 million labeled images of ImageNet (Russakovsky, Deng, Su, Krause,

Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein et al., 2015) are used in (Afzal et al., 2015;

Das et al., 2018; Harley et al., 2015a) and 320,000 labeled images of RVL-CDIP (Harley et al.,

2015a) are used in (Afzal et al., 2017). Das, et al.(Das et al., 2018) extended that approach

using an ensemble of region-based classifiers (i.e., a strategy that has been introduced by (Roy,

Das & Bhattacharya, 2016)). However, the method is still limited to a specific set of documents

(e.g., forms, memo), and cannot be applied easily to other document types because it depends

on the spatial features of the documents and requires a manual readjustment to the learning

algorithm for any new document type. Similarly, (Harley et al., 2015a) evaluated enforcing

learning region-specific features and concluded that it is not effective in case of enough training

data.

In addition to supervised classification, some related works in literature have explored classifying

the document images in an unsupervised manner, hence considered as ’unsupervised classification’

(i.e., more details about the unsupervised classification process are discussed at section 4.3.3).

For instance, (Kumar & Doermann, 2013) introduced the horizontal vertical partitioning-random

forest (HVP-RF) model, which trains a random forest classifier to learn structural patterns from



56

SURF features (Bay et al., 2006) codebook. This model has a complex pipeline that depends

heavily on traditional hand-crafted features; in contrast, our approach achieves better results using

a pipeline that is based entirely on unsupervised feature learning. Moreover, the CONFIRM

algorithm (Tensmeyer & Martinez, 2019) uses page elements such as OCR transcriptions and

rule lines to obtain collection-dependent features. Using rule lines makes this approach limited

and more specific to tables. Additionally, depending on OCR is not ideal as discussed earlier in

this section.

4.2.2 Unsupervised feature learning

Unsupervised feature learning often works on modeling the distribution of the training data

to learn the common invariant features in it. For instance, Deep Belief Networks (DBNs)

(Hinton et al., 2006) learn features by yielding the parameters that maximize the latent variables

likelihood given the observed ones. The main drawback of this technique is its inefficiency due to

the intractability of the estimation of the latent variables likelihood. On the other hand, in direct

mapping techniques, features are learned by minimizing the error between an input sample and

the reconstructed output or some variants of it (e.g., stacked denoising auto-encoders (Vincent,

Larochelle, Lajoie, Bengio & Manzagol, 2010), k-sparse auto-encoder (Makhzani & Frey, 2013)

and variational auto-encoder (Kingma & Welling, 2013)). Another interesting approach for

improving the classification accuracy of documents is to perform an unsupervised pre-training.

On the contrary to the supervised approach, the unsupervised pre-training depends only on

unlabeled data. This means fast and cheap access to the available data since the labeling process

has been bypassed. Even if very appealing, the impact of unsupervised pre-training on the

final classification performance is still limited and not performing as effective as supervised

pre-training.

A special case of unsupervised pre-training, is self-supervised pre-training. In that case, the

learning task exploits the structure of the training data, such that data annotations are already

available or come for free. In this way, normal supervised learning techniques can be used on

those pseudo-annotations. For instance, the spatial information of neighboring patches is used
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to automatically label the input data through either context prediction (Doersch et al., 2015) or

solving jigsaw puzzles (Noroozi & Favaro, 2016). Additionally, (Gidaris et al., 2018) applies

four different rotations to each unlabeled sample and trains a network to recognize the correct

one. On the same line, an exemplar-based learning with CNN is introduced by Dosovitskiy et al.

(Dosovitskiy et al., 2016). In this approach, data-augmentation is applied to each unlabeled

sample to create a set of surrogate classes and a network is trained to discriminate between them.

Due to its simplicity and closeness to the classification tasks, the Exemplar-CNN based learning

has inspired the pre-training part of our framework. However, various changes in the architecture

have been introduced for better adaptation to the problem of structural document classification.

4.3 The proposed methodology

Our proposed framework is based on an unsupervised pre-training step in which a convolutional

neural network (CNN) model is learned using only unlabeled data. This is followed by two

different document image classification approaches: an unsupervised classification on the

learned representation and a supervised classification initialized with the pre-trained model.

More insights on the different learning stages and other related steps are detailed in the following

subsections.

4.3.1 Pre-processing

As shown in table 4.1, our network is based on the AlexNet architecture (Krizhevsky,

Sutskever & Hinton, 2012). Thus, in order to match the network input size, all the uti-

lized input document images, at the stages of unsupervised pre-training and classification, are

resized to 227x227 pixel resolution. To provide an efficient processing performance, the resizing

process keeps the fundamental structural features of the document, while reducing other less

critical information for our model (e.g., the exact shape of characters and words). After resizing

the image, a binarization process is performed: the image pixels values are rounded to either 0

or 1.
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4.3.2 Unsupervised pre-training stage

The main objective of this stage is to train a CNN model using a set of unlabeled data. As shown

in Fig. 4.1, the training procedure is composed of two steps: first, the generation of augmented

data and surrogate classes; and then the actual training of the neural network to classify these

generated classes. The two steps are detailed in the following paragraphs.
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Figure 4.1 Proposed unsupervised pre-training stage

4.3.2.1 Generate augmented data and surrogate classes

Inspired by data augmentation (Wang & Perez, 2017) and similarly to (Dosovitskiy et al., 2016),

we generate a set of transformations of our original document images such that the augmented

data are still valid and realistic document representations. We consider an initial training

set X containing 𝑁 unlabeled document images. A set of randomly chosen combinations of

pre-defined transformations {𝑇1, ...𝑇𝐾} is applied to each image 𝑥𝑖 ∈ X, which produces 𝐾
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Table 4.1 The architecture of the CNN model used in our

experiments

Layer (type) Output shape Filter
input (InputLayer) 1 x 227 x 227 -

conv_1 (Conv2D) 96 x 55 x 55 11 x 11

max_pooling_1 (MaxPooling2D) 96 x 27 x 27 3 x 3

conv_2 (Conv2D) 256 x 27 x 27 5 x 5

max_pooling_2 (MaxPooling2D) 256 x 13 x 13 3 x 3

conv_3 (Conv2D) 384 x 13 x 13 3 x 3

conv_4 (Conv2D) 384 x 13 x 13 3 x 3

conv_5 (Conv2D) 256 x 13 x 13 3 x 3

max_pooling_3 (MaxPooling2D) 256 x 6 x 6 3 x 3

flatten (Flatten) 9216 -

dense_1 (Fully-connected) 4096 -

dense_2 (Fully-connected) 4096 -

dense_3 (Fully-connected) N* -
* Number of surrogate classes.

augmented versions of this image. Specifically, each augmented image 𝑇𝑘𝑥𝑖 is the result of

incrementally applying (with 50% probabilities) three basic transformations. To guarantee

robust, descriptive and generic learned features, the following basic transformations that relate to

some core characteristics of the document images have been used: rotation by angles 90 or -90

degrees, zooming-in by a uniformly sampled factor between 1 and 1.15, and horizontal flipping.

Algorithm 1 provides more details on how the augmentation process is carried out. Each

unlabeled image, 𝑥𝑖, is now considered a surrogate class 𝑆𝑥𝑖 , and its corresponding generated

transformations {𝑇1𝑥𝑖, ...𝑇𝐾𝑥𝑖} are samples of that class with a surrogate label 𝑖 ∈ 𝑁 . Fig.

4.2 shows some generated samples of a surrogate class. We will show that the numbers of

surrogate classes 𝑁 and samples per surrogate class 𝐾 have a critical impact on the classification

performance; more insights are discussed in subsection 4.5.2.1.

4.3.2.2 Train the network

An exemplar learning process is accomplished using the obtained set of 𝑁 surrogate classes and

their 𝑁 ∗ 𝐾 samples. Specifically, a neural network is trained to associate each sample 𝑇𝑘𝑥𝑖 to its
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Figure 4.2 Applying 𝑇 transformations (i.e., rotation by angles

±90°, zooming-in by a uniformly sampled factor between 1 and

1.15, and horizontal flipping) to an unlabeled document image 𝑥𝑖
from the Tobacco-3482 dataset to generate {𝑇1𝑥𝑖, ...𝑇𝐾𝑥𝑖} samples

of a surrogate class 𝑆𝑥𝑖 . The seed image 𝑥𝑖 is at the top left corner

related surrogate class 𝑆𝑥𝑖 by minimizing the augmented samples cross-entropy loss:

𝐿 (𝑋) =
𝑁∑
𝑖=1

𝐾∑
𝑘=1

𝑙 (𝑇𝑘𝑥𝑖, 𝑖),

𝑙 (𝑥, 𝑖) = −𝑙𝑜𝑔(𝑝(𝑦 = 𝑖; 𝑥)),
(4.1)

where 𝑝(𝑦 = 𝑖; 𝑥) is the probability of sample 𝑥 to belong to class 𝑖 and 𝑝(.) is the softmax

output of our network. After training, the obtained network parameters 𝜃 are considered to be

invariant to the transformations used during the augmentation process.

The used network, as reported in table 4.1, contains eight layers (i.e., five convolutional and

three fully connected layers) with around 56 million parameters. A zero padding is included

to all the convolutional layers except the last one. In addition, the last fully-connected layer is

coupled with an N-way softmax that provides an estimate of each class’s conditional probability.
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Algorithm 4.1 Generate surrogate classes: for each image 𝑥𝑖, we generate a

transformation as a random composition of rotation of 𝜃 degrees (𝑅𝜃),
zoom-in by a factor 𝑧 (𝑍𝑧) and horizontal flip (𝐹)

1 for each 𝑥𝑖 ∈ X do
2 for 𝑘 = 1 to 𝐾 do
3 𝑇𝑘 = I ⊲ I: identity transform

4 𝑟𝑜𝑡𝑎𝑡𝑒 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5)
5 if 𝑟𝑜𝑡𝑎𝑡𝑒 then
6 𝜃 ← either −90° or 90°
7 𝑇𝑘 = 𝑇𝑘 ◦ 𝑅𝜃
8 end
9 𝑧𝑜𝑜𝑚-𝑖𝑛 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5)

10 if 𝑧𝑜𝑜𝑚-𝑖𝑛 then
11 𝑧 ∼ U(1, 1.15)
12 𝑇𝑘 = 𝑇𝑘 ◦ 𝑍𝑧
13 end
14 𝑓 𝑙𝑖𝑝 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5)
15 if 𝑓 𝑙𝑖𝑝 then
16 𝑇𝑘 = 𝑇𝑘 ◦ 𝐹
17 end
18 end
19 𝑆𝑥𝑖 = {𝑇1𝑥𝑖,. . . ,𝑇𝐾𝑥𝑖}

20 end

4.3.3 Unsupervised classification stage

As illustrated in Fig. 4.3, the unsupervised classification is actually a clustering process in its

core. During training, we divide the training data into clusters and then associate each cluster

to the best class in the test data. Thus, we separate the data into 𝑀 classes in an unsupervised

manner, but then for the evaluation, we consider the labeled data to associate each group to an

actual class. This is a common way to evaluate unsupervised learning for a classification task

(Kumar & Doermann, 2013); more insights are discussed at the clustering step.
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Figure 4.3 Proposed unsupervised classification stage

4.3.3.1 Feature extraction

In the scenario of the unavailability of any annotated data, the derived pre-trained model is

used to extract features. In this case, we consider the learned neural network as a function

𝑓 : R𝐴 → R𝐸 , which maps each image 𝑥𝑖 ∈ 𝑋 from its original space R𝐴 to the representation

space R𝐸 . The choice of representation and its related feature vector length 𝐸 is studied in more

detail in subsection 4.5.1.1.
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4.3.3.2 Clustering

Each obtained representation, 𝑓 (𝑥𝑖), from the previous step is used as an input to a clustering

algorithm. Since the main focus of this work is on the representation learning part, two

off-the-shelf standard clustering algorithms, k-means (Jain, 2010) and spherical k-means

(Dhillon & Modha, 2001), are utilized. In k-means, the centriods {𝜇1, ..., 𝜇𝑀} of the cluster

sets 𝐶 = {𝑐𝑚, 𝑚 = 1, ..., 𝑀} are found through minimizing the Euclidean distance between each

obtained document image representation, 𝑓 (𝑥𝑖), and the nearest centroid, 𝜇𝑚, over all the 𝑀

clusters using the following objective function 𝐽 (𝐶):

𝐽 (𝐶) =
𝑀∑
𝑚=1

∑
𝑓 (𝑥𝑖)∈𝑐𝑚

‖ 𝑓 (𝑥𝑖) − 𝜇𝑚 ‖2. (4.2)

The spherical k-means algorithm is also based on a similar loss, but the cosine similarity is used

instead of the Euclidean distance.

Once the cluster centroids {𝜇1, ..., 𝜇𝑀} are obtained during the training process, each test sample

is then assigned to its nearest centroid in the unsupervised classification process. Afterwards,

each cluster of test samples is assigned to an actual class (i.e., from the test set true labels) in an

optimal way using the Hungarian algorithm (Kuhn, 1955). This algorithm considers a matching

matrix of the predicted cluster labels and true labels and returns the indices of the best matching

pairs.

4.3.4 Supervised classification stage

If a limited amount of annotated data is available, the learned parameters 𝜃 of the same

network architecture of the unsupervised pre-training are used as an initialization to improve

the supervised classification performance. As illustrated in Fig. 4.4, this neural network is then

fine-tuned on the provided small annotated data with cross-entropy loss function and an M-way

softmax classification layer. Notice that M is now the real number of classes of the task.
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4.4 Experimental setup

In this section, the used datasets and the implementation details for the different experiments are

explained.

4.4.1 Datasets

During the unsupervised pre-training stage, two datasets have been utilized with our proposed

framework. In both datasets, only the document images are used. The first dataset is Tobacco-

34824 (Kumar & Doermann, 2013), which contains 3,482 document images and 10 document

classes. The second dataset is RVL-CDIP dataset5 (Harley et al., 2015a). This dataset originally

contains 400,000 document images and 16 document classes, but only a small subset of those

images (i.e., up to 5000) has been used throughout the pre-training stage. This is because more

4 https://lampsrv02.umiacs.umd.edu/projdb/project.php?id=72

5 http://scs.ryerson.ca/ aharley/rvl-cdip/
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images did not further improve the results and made the training longer, as demonstrated at

section 4.5.2.1.

At the later stage of both unsupervised and supervised classification, only the Tobacco-3482

dataset has been utilized. At the unsupervised classification stage, the document images are used

solely without their associated labels; while at the supervised classification stage, the document

images of the Tobacco-3482 dataset and their related labels have been utilized.

At the unsupervised pre-training stage and when using the Tobacco-3482 dataset, we performed

the process ten times, one for each partition using 1,000 samples of the related training set.

This is to guarantee that all the test samples, at the later classification stages, are completely

unseen and have not been used previously during pre-training. On the other hand, when using

RVL-CDIP dataset for pre-training, we performed the process only once since all the used

samples are considered unseen for the testing process.

To evaluate our document image classification approach at either the unsupervised classification

or the supervised classification stages, we follow the same evaluation protocol presented in

the literature (Afzal et al., 2017; Harley et al., 2015a; Kang et al., 2014) to guarantee fair

comparisons. Initially, the Tobacco-3482 dataset is divided into 1,000 samples for training

and the rest of the samples (2,482) for testing. Since the samples in the original dataset are

unevenly distributed between its 10 classes, we make sure that the training set contains exactly

100 samples per class. Then, the training set is divided into 800 samples for training and 200

for validation, where each class is represented with 80 images for training and 20 images for

validation. To guarantee a reliable estimation of the proposed approach performance, we report

the median classification accuracy of ten randomly-created partitions of the dataset.
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4.4.2 Implementation details

All the provided results are based on implementations carried out on an Nvidia GeForce GTX

960 GPU using Theano (Team, Al-Rfou, Alain, Almahairi, Angermueller, Bahdanau, Ballas,

Bastien, Bayer, Belikov et al., 2016) and Keras API 6.

For the pre-training stage, the Adam optimization algorithm (Kingma & Ba, 2014) has been

used to train our models with a learning rate of 1𝑒 − 4 for 120 epochs; while at the supervised

classification stage, the same algorithm has been utilized with 1𝑒 − 6 learning rate for 1100

epochs.

During the pre-training stage, the unlabeled training data has been subdivided into batches of 5

samples, where for each epoch, the run-time was around 2 seconds per batch. While during the

supervised classification stage, the run-time was around 8 seconds per epoch using 800 samples

for training and 200 samples for validation.

At the unsupervised classification stage, the number of times the clustering algorithm will be run

with randomly initialized centroids (’n_init’) and the maximum number of iterations for each

run (’max_iter’) are set to 50 and 300, respectively, in case of k-means; while they are set to 150

and 300 in case of spherical k-means. In addition, the ’linear_assignment’ function provided

by scikit-learn library (Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel,

Prettenhofer, Weiss, Dubourg et al., 2011) is used to implement the Hungarian algorithm.

4.5 Results and discussion

4.5.1 Unsupervised feature learning

In this subsection, we discuss in details the unsupervised classification performance and the

effect of the learned representation on it.

6 https://github.com/keras-team/keras
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4.5.1.1 Selection of the learned representation

To study the effect of the learned representation on the unsupervised classification performance,

various experiments have been performed using a partition of the Tobacco-3482 dataset. To

evaluate the unsupervised classification performance (i.e. clustering is well-matched with the test

set’s true labels), we follow the literature (Kumar & Doermann, 2013) in computing the purity

(Manning, Raghavan & Schütze, 2010) and the Adjusted Rand Index (ARI) (Hubert & Arabie,

1985).

Specifically, at the feature extraction stage, we study the correlation between the different

characteristics of the learned document representations and the unsupervised classification

(clustering) performance. The representation characteristics mentioned here refer to the location

of the layer to extract the features from and its associated feature vector length 𝐸 , table 4.1

provides more details about the different types of layers and their associated locations in the

neural network and related output shapes.

Table 4.2 shows the performance of different learned representations with various locations and

dimensionality that ranges from 𝐸 = 4, 096 to 𝐸 = 43, 264. Although the flatten representation

has a larger feature vector (𝐸 = 9, 216) than the dense_2 representation (𝐸 = 4, 096), the former

performs better than the latter. This is due to the fact that the flatten representation preserves

the spatial locality information of its obtained features unlike dense_2. On the other hand,

since the number of the unlabeled training samples is limited (𝑁 = 1000), and considering the

curse of dimensionality, it is understandable that both high-dimensional representations conv_5

(𝐸 = 43, 264) and flatten+dense_1 (𝐸 = 13, 312) obtain a poor performance despite preserving

full/some spatial locality information about their features.

Our best results are obtained when using the flatten representation for both clustering algorithms,

k-means and spherical k-means.
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Table 4.2 The unsupervised classification (clustering) ARI and purity when utilizing

various learned representations (i.e., on a partition of the Tobacco-3482 dataset)

Representation Feature vector length (E) k-means Spherical k-means
ARI Purity ARI Purity

conv_5 43,264 0.1387 0.4057 0.2321 0.4899

flatten + dense_1 13,312 0.2094 0.4694 0.2742 0.5254

flatten 9,216 0.2726 0.5242 0.2759 0.5294
dense_2 4,096 0.2141 0.4895 0.2194 0.5153

4.5.1.2 Unsupervised classification (Clustering) results

Table 4.3 reports the unsupervised classification results using our proposed unsupervised feature

learning (U-FL) based representations, which show an improvement in the performance compared

to the best four performing representations in the literature (Kumar & Doermann, 2013). These

codewords based representations are either global-based (G-BOW) or partitioning-based that

use either spatial-pyramid (SP) or horizontal vertical partitioning (HVP) to capture the spatial

dependencies. Afterward either Euclidean distance (E) or random forest (RF) is used to compute

similarities. For our proposed approach, we compare two configurations: ’without additional

data (w/o add. data)’ refers to using 1000 training samples (unlabeled) of Tobacco-3482 at

pre-training, while ’with additional data (w/ add. data)’ denotes utilizing 3000 unlabeled samples

from RVL-CDIP dataset. In our experiments, the best configuration seems to be k-means with

additional data although the difference with respect to the other configurations of our algorithm

is relatively small.

Compare with previous approaches, our proposed representation outperforms the HVP-RF

representation (Kumar & Doermann, 2013) by 4 points, in both ARI and purity, without the need

of any additional data (U-FL (w/o add. data) -spherical k-means-) and 5 points using additional

data (i.e., 3000 unlabeled samples from RVL-CDIP dataset) (U-FL (w/ add. data) -k-means-).
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Table 4.3 The unsupervised classification (clustering) ARI and purity

results of our learned representation and the state-of-the-art

representations

Representation ARI Purity
G-BOW-RF (Kumar & Doermann, 2013) 0.21 0.48

SP-RF (Kumar & Doermann, 2013) 0.22 0.46

HVP-E (Kumar & Doermann, 2013) 0.18 0.46

HVP-RF (Kumar & Doermann, 2013) 0.24 0.49

Proposed U-FL (w/o add. data) -k-means- 0.27 0.52

Proposed U-FL (w/ add. data) -k-means- 0.29 0.54
Proposed U-FL (w/o add. data) -spherical k-means- 0.28 0.53

Proposed U-FL (w/ add. data) -spherical k-means- 0.27 0.52

4.5.2 Unsupervised pre-training

This subsection studies the supervised classification performance and its correlation with the

pre-training parameters.

4.5.2.1 Selection of the pre-training parameters

We study the importance of the number of surrogate classes 𝑁 and the number of samples per

surrogate class 𝐾 on the supervised classification task using a partition of the Tobacco-3482

dataset for evaluation.

First, we study the correlation between the supervised classification performance and the used

number of samples per surrogate class 𝐾 . To do so, we examine the classification performance

with various 𝐾 values using the Tobacco-3482 dataset at the unsupervised pre-training stage

with 1000 surrogate classes (𝑁 = 1000). Fig. 4.5 shows that increasing the number of samples

per surrogate class 𝐾 results in an improvement in the accuracy that saturates as the number of

samples becomes larger.

Then, to examine the correlation between the supervised classification performance and the

number of used surrogate classes 𝑁 (i.e., and consequently the total number of pre-training

samples), we apply our proposed approach with various 𝑁 values. This is performed using the
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RVL-CDIP dataset with 40 samples per surrogate class (𝐾 = 40). Note that, in this experiment,

the RVL-CDIP dataset is used instead of the Tobacco-3482 (only at the unsupervised pre-training

stage), where it offers studying the performance with surrogate classes 𝑁 values that are beyond

1000 (i.e., the Tobacco-3482 dataset is limited to 1000 training samples). On the other hand, the

Tobacco-3482 is still used at the supervised classification stage.

Figure 4.5 The supervised classification accuracy, on a partition of

the Tobacco-3482 dataset, with different numbers of used

samples/surrogate class (𝐾) and fixed 1000 surrogate classes (𝑁)

Fig. 4.6 shows that the accuracy generally improves when increasing the number of used

surrogate classes 𝑁 with a clear saturation after a certain point. For instance, in the last point of

Fig. 4.6, although the number of surrogate classes 𝑁 has been increased by 2000 (i.e., 66%),

the classification performance has not improved significantly, only by 0.08%. This is expected
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Figure 4.6 The supervised classification accuracy, on a partition of

the Tobacco-3482 dataset, with different numbers of utilized surrogate

classes (𝑁) and a fixed 40 samples per surrogate class (𝐾)

since utilizing more surrogate classes can lead to considering too similar images as different

classes, which leads to harder pre-training discrimination and less effective learned parameters

(Dosovitskiy et al., 2016).

4.5.2.2 Supervised classification results

Table 4.4 demonstrates the supervised classification median and mean accuracy on the Tobacco-

3482 dataset, where the parameters initialization is with either i) no pre-training, ii) our proposed

unsupervised pre-training (U-PT) based learned parameters 𝜃 without any additional data (w/o

add. data) (i.e., based on the training data of the Tobacco-3482 dataset using 1000 surrogate
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classes 𝑁 with 100 samples/class 𝐾 (100K samples)), or iii) our proposed unsupervised pre-

training (U-PT) based learned parameters 𝜃 with additional related unlabeled data (w/ add. data)

(i.e., based on a small portion of the training data of the RVL-CDIP dataset using 3000 surrogate

classes 𝑁 with 40 samples/class 𝐾 (120K samples)). Note that the used 𝑁 and 𝐾 values are

based on a trade-off between the accuracy and the computational cost of the algorithm (i.e.,

values where the accuracy starts to saturate while the computation is still moderate).

Table 4.4 The supervised classification median and mean accuracy, on the Tobacco-3482

dataset, with different parameters initialization methods

Parameters initialization method Median accuracy (%) Mean accuracy±std (%)
No U-PT 63.38 62.74±0.017

Proposed U-PT (w/o add. data) 65.01 65.13±0.012

Proposed U-PT (w/ add. data) 68.86 68.95±0.012

The obtained results show that incorporating our proposed unsupervised pre-training (U-PT)

based learned parameters 𝜃 can efficiently and consistently lead to a boost in the supervised

classification accuracy over the performance of the method when trained from scratch. The

improvement is over 1.5% without the need of any extra data and using only an unlabeled version

of the same training data to be used at the supervised classification stage. Additionally, our

approach is capable of boosting the classification accuracy to over 5% when substituting the

previously used data with unlabeled data from a related dataset (e.g., RVL-CDIP dataset).

4.5.3 Discussion

To illustrate the performance of both unsupervised and supervised classification on the same

metric space, the accuracy of the unsupervised classification process is calculated through

efficiently utilizing the Hungarian algorithm (Kuhn, 1955) to find the optimal assignment

between each cluster of document images and its corresponding class in the ground truth (true

label).

Fig. 4.7 and table 4.5 demonstrate the impact of utilizing the learned pre-trained model on

the document image classification performance with both of its unsupervised and supervised
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settings, specifically: i) on the unsupervised classification accuracy using the model’s learned

representations ii) on the supervised classification accuracy using the model’s learned parameters

𝜃. In both cases, the results are compared to their relevant baselines.

Fig. 4.7 reports the confusion matrices of tests performed on one partition of the Tobacco-3482

dataset. We observe that incorporating our proposed unsupervised feature learning (U-FL)

based representations with the unsupervised classification leads to a better class grouping. This

is except for some classes which have low inter-class layout variations with each other (i.e.,

the high layout similarities between the classes of report, resume and scientific). Similarly, for

the supervised classification, our proposed unsupervised pre-training (U-PT) based learned

parameters 𝜃 yields better grouping results in many classes comparing to training the network

from scratch.

Table 4.5 compares the performance of our methods for supervised and unsupervised classification

and other approaches. In order to have a fair comparison, all methods are trained (either

supervised or unsupervised) on 1000 samples of the Tobacco-3482 dataset. We can separate

the methods in unsupervised (upper part of the table) and supervised (lower part of the table).

All the supervised methods outperform the unsupervised ones. This is expected as in the

unsupervised case, classes are grouped based only on clustering approaches and no labels are

used. Among the unsupervised methods, we can see that the features extracted from our network

architecture without any pre-training (No U-FL) perform quite poorly. However, when we use

the features from our pre-trained network (U-FL), the results are much better. This shows that

our unsupervised pre-training approach is very effective in learning good features. Additionally,

our methods obtain better results than(Kumar et al., 2014), which is based on a random forest

and hand-crafted features that are selected for the specific task. For the supervised classification

(lower part of table 4.5), we can see a similar pattern in which using unsupervised pre-training

(U-PT) helps to improve the performance, going from 63.38% to 68.86% for the pre-training

with 3000 images. In fact, our unsupervised pre-training (U-PT) gets closer to the performance

of a model pre-trained with over one million labelled data (ImageNet). Finally, we see that in the

case of having access to a large amount of similar labelled data (e.g., utilizing 320,000 annotated
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(a)) Unsup. classification: No

U-FL

(b)) Unsup. classification:

Proposed U-FL (w/o add.

data)

(c)) Unsup. classification:

Proposed U-FL (w/ add. data)

(d)) Supervised classification:

No U-PT

(e)) Supervised classification:

Proposed U-PT (w/o add.

data)

(f)) Supervised classification:

Proposed U-PT (w/ add. data)

Figure 4.7 Confusion matrices for different models on one partition of

the Tobacco-3482 dataset. (a) Unsupervised classification using features

from a randomly initialized network. (b) Unsupervised classification using

features from a network pre-trained on 1000 non-annotated samples. (c)

Unsupervised classification using features from a network pre-trained on

3000 non-annotated samples. (d) Supervised classification without any

pre-training. (e) Supervised classification with unsupervised pre-training

on 1000 non-annotated samples. (f) Supervised classification with

unsupervised pre-training on 3000 non-annotated samples
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document images in(Afzal et al., 2017)), results can be further boosted up to 90%. Overall, we

can see that with limited training data (1000 training samples) and without a proper pre-training

(No U-FL and No U-PT), CNN-based methods perform quite poorly. However, incorporating

our proposed unsupervised pre-training enables these methods to be trained more effectively

and leads to better results without the need of extra annotated data.

Table 4.5 Classification median accuracy (i.e., on the Tobacco-3482 dataset-ten

partitions-) for unsupervised and supervised methods with different pre-training approaches

Method Pre-training Median
accuracy (%)Unsup. Supervised

U
n
su

p
. No U-FL - - 36.76

HVP-RF (Kumar et al., 2014) - - 43.80

Proposed U-FL (w/o add. data) 1000 - 45.26

Proposed U-FL (w/ add. data) 3000 - 46.25

S
u
p
er

v
is

ed

No U-PT - - 63.38

Proposed U-PT (w/o add. data) 1000 - 65.01

Proposed U-PT (w/ add. data) 3000 - 68.86

S-PT (w/ ImageNet) - ∼ 1, 000, 0000 72.89

S-PT (w/ doc. images) (Afzal et al., 2017) - 320, 0000 90.04

4.6 Conclusion

Contrary to conventional document image classification methods that use either hand-crafted

features or supervised pre-training approaches, we propose a visual features learning approach

that is based on unsupervised pre-training. The proposed approach uses only unlabeled data to

learn a pre-trained model, which is used later for unsupervised and supervised classification.

Our approach improves the performance of the document image classification problem in the

cases of i) the unavailability of any labeled data, ii) the availability of limited labeled data and iii)

the availability of additional unlabeled data. Our experimental results corroborate the capability

of our approach to improve the accuracy of CNN-based classification methods. Although

other supervised pre-training approaches may provide more improvement in the classification

performance, our approach has a crucial advantage of not requiring any additional manually

annotated data.



76

Acknowledgment

The authors thank the NSERC of Canada (Grants no. RGPIN 2014-04649 and RGPIN

2018-04825) for their financial support.



CHAPTER 5

UNSUPERVISED LEARNING FOR DOCUMENT IMAGE SEMANTIC
SEGMENTATION

Sherif Abuelwafa1, Ehsan Arabnejad1, Marco Pedersoli1, Mohamed Cheriet1

1 Département de génie des systèmes, École de Technologie Supérieure,

1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3

Submitted to Elsevier Pattern Recognition, September 2021

Abstract

Semantic segmentation of document images is an essential, yet challenging, step in performing

document image analysis. The current state-of-the-art for this task depends mainly on supervised

learning-based approaches, in which a large amount of labeled document images are needed

for the training process. In this work, we propose an unsupervised end-to-end approach for

semantically segmenting document images without requiring labeled data, dataset-dependant

heuristics techniques or textual information. The proposed approach successfully overcomes

various challenges that relate to the unique characteristics of the document image and the nature

of its semantic classes. For instance, it learns a robust representation of the document image

thanks to our introduced representation space that combines both distance transform and RGB

information of each image. This novel representation is capable of learning discriminative

features of the document’s semantic classes, regardless of the inherent discontinuities and white

spaces in those classes and the high inter-class similarities between them. In addition, dilated

convolutional layers in a CNN-based approach are utilized to well-capture the features of both

small-sized and large-sized semantic classes. Moreover, a novel technique is introduced to

automatically identify the image’s background regions to reduce the bias in the training set

without the need for any annotations. We demonstrate that our proposed approach is efficient

in performing unsupervised semantic segmentation by yielding better results than baseline

approaches. Experiments have been performed on various public datasets to demonstrate the

robustness of our approach.
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5.1 Introduction

Document image segmentation is a core step in the document image analysis pipeline since it

provides a detailed understanding of the document image by segmenting it into various similar

logical regions (e.g., figure, text, table), which are usually involved in further processing stages

(i.e., performing Optical Character Recognition (OCR) on the obtained text regions).

On traditional document image segmentation approaches, pixels are grouped based only on

their visual appearance (i.e., appearance-based classification where the text pixels shall be

distinguished from other regions’ pixels like figures and tables). This is commonly referred to

as ’page segmentation’. On the other hand, in recent semantic segmentation approaches, the

classification of pixels is actually both visual appearance and semantic-based. Specifically, it

is based on the underlying text content and semantic, in addition to its visual characteristics.

For instance, instead of classifying all the text pixels as one region, they are classified into

sub-regions that are semantically relevant (e.g., paragraph, list, caption, etc.). In fact, the

problem of document image semantic segmentation can be perceived as a pixel classification

problem, where a label is assigned to each pixel in the document image.

Utilizing semantic segmentation-based approaches for document image analysis helps in

understanding the content and the structure of the document image by segmenting it into

homogeneous regions that are semantically alike (e.g., background, figure, table, paragraph).

Most of the recent advances in the document semantic segmentation field are based on fully

supervised learning approaches, which are profoundly dependent on the availability of a large

amount of labeled document images. And since segmenting a document image semantically

involves a pixel-wise ground truthing process, a costly annotation step is needed to prepare the

training data (Ji et al., 2019; Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár & Zitnick,

2014). This has led to a scarcity in the availability of labeled training document images.
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While using synthetic generated data, as in (Yang et al., 2017), can arguably be applied to

supervised learning techniques without the need for an expensive data annotation process, these

data do not follow the same distribution as real data, and therefore, performance is lower because

of the domain shift. Inspired by the success of unsupervised semantic segmentation in other

domains (e.g., natural images (Ji et al., 2019)), we propose performing pixel-wise semantic

segmentation for document images depending fully on unsupervised learning and without

requiring annotated data, textual information (e.g., text embedding maps) or dataset-dependant

heuristic techniques. Generally, doing so on document images is an extremely challenging

problem, and a relatively unexplored area.

In fact, many bottlenecks in performing unsupervised semantic segmentation on document

images are actually due to the fundamental properties of the document image and the nature

of its semantic classes. For instance, in a document image, each class to be segmented often

contains plenty of spatial discontinuities and white spaces. Specifically, each segmented class

(e.g., paragraph, list, table) can contain both text and lots of white pixels that shall be considered

as a part of that class, even without sharing the same characteristics with those adjacent text

pixels. This is unlike the segmented classes in a natural image (e.g., a human face, a car, a cat),

where each object to be segmented is a naturally connected pixels region and barely contains

white pixels. Moreover, many of the semantic classes in document images (e.g., paragraph,

list, caption, section) are actually all text-based and often the visual differences between them

are subtle, which makes those semantic classes ambiguous to the learned model. Additionally,

almost all the document images dataset are imbalanced at pixel level and biased in nature, where

the majority of pixels are assigned to a handful number of dominating semantic classes (e.g.,

background) that are way more represented than the other ones.

In the case of supervised learning based approaches, labeled data and textual information can

provide a great help in overcoming the document images challenges mentioned earlier. On

one hand, the labeled training data can help in training the model to learn features that can

well differentiate between semantic classes with high inter-class similarities. Additionally,

using textual data (e.g., OCR information) can help in reducing the confusion between such
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classes (Enendu, 2019). On the other hand, having information about the number of samples

per class can help in achieving a weighted loss function that can lead to an efficient learned

model. However, in unsupervised learning, neither the labeled data nor the textual information

are available; therefore, none of the above options are feasible.

In this work, we propose a novel end-to-end approach for segmenting a document image

semantically, and in an unsupervised manner, using solely unlabelled training data and without

the need to use any additional textual information or dataset-dependant heuristic procedures. To

achieve this, our approach focuses mainly on overcoming the previously discussed challenges

associated with performing an unsupervised semantic segmentation on document images. First,

we introduce a combined representation space that utilizes both distance transform in addition to

RGB information of the document image as an input to our network. This results in learning a

novel representation that can acquire information about the spatial white spaces -horizontal and

vertical- between the text lines, which leads to overcoming the white spaces issue without the

need to any labeled data. In addition, it contributes to having a better semantic segmentation

of different textual semantic classes that are visually similar. Moreover, dilated convolutional

layers are utilized for combining features from multiple spatial scales to efficiently learn features

that are related to both the small-sized and the large-sized classes. Furthermore, to encounter

the biased nature of the document images dataset, the obtained distance transform of each image

is used to automatically identify the background regions, which helps in reducing the bias in the

training set without the need for any labeled data.

In summary, our paper provides the following contributions:

- We propose an end-to-end approach for semantically segmenting a document image (pixel-

wise) in a total unsupervised manner.

- We introduce a novel representation based on a combined representation space (RGB and

distance-transform) to effectively segment the document image even with semantic classes

that contain many discontinuities and white spaces, and have high inter-class similarities

between them. In addition, dilated convolutional layers in a CNN-based approach are
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exploited for addressing the need to capture the features of both small-sized and large-sized

semantic classes.

- We propose a novel automatic technique to identify the image’s background regions for

reducing the training set bias without the need to any annotated data.

- To the best of our knowledge, this is the first work to perform an unsupervised document

image segmentation using solely unlabeled data, and without depending on any textual

information or dataset-dependant heuristics techniques. Experimental results demonstrate

that our approach outperforms the baseline approaches using publicly available datasets.

The rest of this paper is organized as follows. Section 5.2 gives a comprehensive overview of

the related work. In section 5.3, our proposed approach is presented with details. Afterwards, in

section 5.4, we evaluate our approach and discuss further analysis with demonstrated results.

Finally, section 5.5 concludes the paper.

5.2 Related Work

Many approaches for document image segmentation have been studied in the literature. These

approaches can be grouped into two groups, page segmentation and, recently, semantic

segmentation.

5.2.1 Page Segmentation

Most of the conventional page segmentation approaches are based on dividing the document

image into several patches, then carefully-tuned hand-designed features are used to train a

classifier and assign logical classes to those patches. These approaches rely often on document

layout assumptions and heuristic rules; therefore, they cannot generalize well to different

types of documents and their varying visual characteristics. For instance, image patches

with associated textural features are utilized in both (Vil’kin, Safonov & Egorova, 2013) and

(Oyedotun & Khashman, 2016). Specifically, the document image is divided into various patches,

where the texture features are extracted and used for the patches classification process. The
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classes of the obtained patches are often corrected based on the analysis of neighboring regions,

like in (Vil’kin et al., 2013). And since using image patches leads often to rough and inaccurate

segmentation boundaries, some approaches have considered the page segmentation problem as

a pixel classification task, such as (Chen, Wei, Hennebert, Ingold & Liwicki, 2014). Yet, this

approach depends mainly on hand-designed features to perform segmentation. Specifically, the

texture features combined with other color and coordinates features have been utilized.

Recent advances in feature learning have led to exploring many related approaches for docu-

ment image page segmentation. Some of these approaches are based on supervised feature

learning. For instance, in (Chen, Seuret, Hennebert & Ingold, 2017), a simple network of one

convolutional layer has been utilized to learn features from image patches. In contrast, deeper

networks, such as residual neural network (ResNet), are used in (Pondenkandath, Seuret, Ingold,

Afzal & Liwicki, 2017). Additionally, (Jobin & Jawahar, 2017) has depended on Fisher vector

encoded convolutional neural networks (FV-CNN) and fully connected convolutional neural

networks (FC-CNN) for extracting features, then an Support Vector Machines (SVM) is used for

segmentation. Besides, (Alberti, Seuret, Pondenkandath, Ingold & Liwicki, 2017b) has utilized

a Linear Discriminant Analysis (LDA) for initializing the weights of a neural network and used

that network later for segmenting a document image. Subsequently, (Wick & Puppe, 2018) and

(Barakat & El-Sana, 2018) have depended mainly on a Fully Convolutional Neural Network

(FCN) to perform document image segmentation.

On the other hand, other approaches are based on unsupervised feature learning. For instance,

(Chen et al., 2015) used a convolutional autoencoder to learn features, then for segmentation, an

SVM is used. An extension to that approach has been introduced in (Chen et al., 2016b), where

a Conditional Random Field (CRF) model is applied after learning the local features using the

stacked autoencoders. Although the above techniques have attempted performing unsupervised

feature learning on document images, they have not tackled the challenge of performing an

unsupervised segmentation. Specifically, those document segmentation approaches are not

actually fully unsupervised, since the autoencoder is only used for feature learning, and then

labeled data are needed to train a classifier in a supervised manner.
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In (Wei et al., 2017), a mixed approach that depends on both hand-designed and learned features

has been introduced. Specifically, this approach investigated selecting features that has been

already learned and fine-tuned. The work highlighted that most of the features learned by the

autoencoder are redundant and not effective for page segmentation tasks.

In (Studer, Alberti, Pondenkandath, Goktepe, Kolonko, Fischer, Liwicki & Ingold, 2019), cross-

domain transfer learning has been studied. In particular, VGG and ResNet based neural networks

have been utilized, with weights that are initialized using ImageNet pre-trained parameters, for

the task of document image segmentation. The obtained results show that cross-domain transfer

learning has little, and sometimes harmful, effect on the desired task.

5.2.2 Semantic Segmentation

Considering the advances in supervised semantic segmentation techniques (i.e., which are

mainly designed for natural images), recent works have investigated utilizing such techniques for

extracting the semantic structure of document images based on a supervised learning manner.

For instance, in (He, Cohen, Price, Kifer & Giles, 2017), a multi-scale fully convolutional neural

network (FCN) is used for the task of semantic page segmentation. In that approach, the learning

process is achieved based on supervised learning; and a conditional random field (CRF) is utilized

to improve the obtained results. In addition, in (Lee, Hayashi, Ohyama & Uchida), a combination

of a U-Net and a trainable multiplication layers (TMLs) is utilized for obtaining the co-occurrence

from features maps to gain better semantic segmentation performance. Furthermore, in (Sarkar,

Aggarwal, Jain, Gupta & Krishnamurthy, 2019), a CNN-RNN based network pipeline is

introduced to perform a hierarchical structure segmentation on high resolution ’form’ images.

Moreover, (Yang et al., 2017) utilized a multimodel fully convolutional neural networks (MFCN)

for segmenting the document images based on both appearance and semantics bases. The work

is mainly based on supervised learning and needs around 135,000 annotated document images

-synthetically generated- to train the model. On the other hand, it explored the notion of utilizing

unsupervised learning for improving the performance of the supervised task (i.e., improvements

that range from 0.6% to 2.6%). In fact, the unsupervised learning part is only complementary to



84

the supervised learning pipeline and cannot be implemented to be used in a standalone manner.

Additionally, that approach depends on both a text embedding map during the training process

and the PDF file information to perform post-processing.

As presented above, many approaches in the literature have been proposed to utilize supervised

learning to tackle the problem of document images semantic segmentation. However, performing

semantic segmentation based on unsupervised learning is relatively an unexplored area of

research. In this work, we investigate performing pixel-wise semantic segmentation for

document images through solely unsupervised learning, and without the need to any labeled

training data, dataset-dependant heuristics techniques or textual information.

5.3 The proposed methodology

Our proposed approach has two main stages, as shown in Fig. 5.1: data pre-processing and

training. The training stage roughly utilizes an adapted version of the clustering objective set by

(Ji et al., 2019); nevertheless, many major changes and contributions have been introduced to

achieve a better reliable adaptation for the document image segmentation task. In fact, these

improvements and contributions have helped in overcoming two major challenges that are related

to the unique characteristics of document images and their layout. More details are discussed

below.

Small-sized and large-sized semantic classes:

First, we have observed the need to capture both local low-level and global high-level spatial

features simultaneously during the learning process. Since document images have a unique

nature of including small-sized semantic classes (e.g., section, caption) that exist in relatively

small portions of the document image, comparing to other semantic classes (e.g., figure) that

occupy larger portions of the image, low-level spatial features are normally needed in order

to capture these small-sized classes and their related visual distinctive remarks. For instance,

columns (a) and (b) in Fig. 5.3 demonstrate the small portion that the ’section’ class -in yellow- is

occupying comparing to other semantic classes (e.g., figure -in green- or paragraph -in purple-).
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Figure 5.1 The proposed approach flowchart. The convolution process is expressed with

dashed lines

Performing a pooling process, and its associated down-sampling process, urges the need to

perform a counter up-sampling process (e.g., interpolation) to return back the the actual size of

the input image. This process leads subsequently to introducing distortions and experiencing

a loss in critical local spatial features that are essential for distinguishing between similar

small-sized semantic classes (e.g., caption and section) and segmenting them. Therefore, in

order to maintain the obtained local low-level spatial features across the different layers of

the proposed network and avoid any loss in them, our proposed network architecture does not

consider any pooling layers. More details on the effect of utilizing pooling (e.g., max-pooling)

on the learned representation and the unsupervised segmentation performance are detailed in

section 5.4.4.2.

Beside avoiding utilizing any pooling process, small-sized receptive fields are needed in order

to capture the local features of the small-sized semantic classes. To obtain these small-sized

receptive fields, convolutional filter with small sizes should be used. In fact, using these filters
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leads normally to better segmentation of the pixels related to the small-sized semantic-based

classes, alongside a sharper-edged segmentation masks. However, this introduces some extra

undesired oversegmentation in other large-sized semantic-based classes that occupy large

portions of the document image (e.g., figure, table, paragraph) since the receptive field in that

case is not large enough to be well-aware of the global correlations in the semantic-context at

the spatial-level. An issue that can be avoided by utilizing larger filter sizes to obtain larger

receptive fields. More details on the effect of utilizing different receptive field sizes on the

learned representations are detailed in section 5.4.4.3. The obtained observations have led to

a conclusion that both small and big receptive fields are needed to be considered in order to

efficiently detect both small-sized and large-sized classes. To achieve this, and inspired by

(Yu & Koltun, 2015), dilated convolutional layers are utilized. They provide a technique to

combine features from multiple spatial scales without the need to utilize other techniques (e.g.,

multi-scale pyramids) that relies often on spatial subsampling. In fact, dilated convolutional

layers offer a way to acquire both the local and the global knowledge using the same size of the

convolutional filter, which can spread out its weight values more distant in the space to learn

more about the global context. This allows having small receptive fields that grow can very large

(i.e., exponentially), while the number of parameters grow linearly. To adjust how further the

receptive field can grow, a dilation factor 𝑑 is used.

Dataset biased-nature:

Our second observation, regarding the challenges unique to the document images, is the necessity

to reduce the dataset bias. In fact, due to the nature of the textual data distribution in document

images, there are always dominating semantic classes that occupy large areas of the document,

where lots of pixels are assigned to those classes. Specifically, most of the pixels in the document

images belong to the background and only fraction of the total document’s pixels contain

foreground information and other semantic classes. This results in a persisting problem of

imbalanced and biased dataset, where some classes are much more represented than others. In

order to overcome such challenge, it is common, during the training process, to utilize loss

function with weighting factors that variate for each class based on the number of pixels which
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represent that class in the dataset (Zhang, Du, Yoshida & Yang, 2019). This helps in imposing

different importance level to each class based on its occurrence. Actually, this technique can

work well for semantic segmentation problems based on supervised learning, where the ground

truth labels for the utilized training samples and the distribution of each class are available. But

this is not the case in our proposed approach that is fully-based on unsupervised learning with

no in-advance knowledge about the dataset classes distribution. Therefore, instead of having a

weighted mutual information based loss function under unsupervised learning, we aim instead to

reduce the bias in the utilized training set in an entirely unsupervised manner. This is achieved

through the distance transform information, as explained in 5.3.2.1, to automatically create a

background mask to minimize the effect of the dominating background pixels. More details on

how to obtain the mask, and its effect on re-balancing the dataset is discussed in further details

in 5.3.3.1.

5.3.1 Network Architecture

The proposed network consists of one backbone and two output heads (i.e., a main one and an

auxiliary one). The backbone is formed by four dilated convolution blocks. For each block,

five dilated convolution layers with dilation factors 𝑑 = {1, 2, 4, 8, 16} are applied (i.e., each

with padding 𝑝 = {1, 2, 4, 8, 16}, respectively). For each dilated convolution layer, a batch

normalization (BN) (Ioffe & Szegedy, 2015) is adopted; then an activation process using rectified

linear units (ReLU) (Nair & Hinton, 2010) is applied. At the end of each dilated convolutional

block, the produced features maps of each dilation factor are concatenated to form the input of

the next block. A summarization of our proposed network architecture is provided in table 5.1,

where a convolutional kernel size of 3 × 3 is utilized across the network, except for the last

output layer. At that layer, a kernel size of 1 × 1 is utilized with no padding to perform the

softmax activation on each pixel. The main output head layer is utilized in both training and

testing processes, where it outputs 𝐶𝐺𝑇 predictions that matches the number of classes in the

ground truth. On the other hand, the auxiliary over-clustering head layer is used only during
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the training process to improve the learning process. It outputs 𝐶𝑂𝐶 predictions that refers to a

number of classes that is larger than the ground truth classes’ number (i.e., 𝐶𝑂𝐶 > 𝐶𝐺𝑇 ).

Table 5.1 The network architecture of the proposed UL model

Layer Dilation factor (d) Output shape
input -InputLayer- 4 x 600 x 600

→ d_conv2D_1_1 (w/ padding) 1 13 x 600 x 600

→ d_conv2D_1_2 (w/ padding) 2 13 x 600 x 600

→ d_conv2D_1_4 (w/ padding) 4 13 x 600 x 600

→ d_conv2D_1_8 (w/ padding) 8 13 x 600 x 600

→ d_conv2D_1_16 (w/ padding) 16 12 x 600 x 600

conv_block_1 (concat.) = 64 x 600 x 600

→ d_conv2D_2_1 (w/ padding) 1 26 x 600 x 600

→ d_conv2D_2_2 (w/ padding) 2 26 x 600 x 600

→ d_conv2D_2_4 (w/ padding) 4 26 x 600 x 600

→ d_conv2D_2_8 (w/ padding) 8 26 x 600 x 600

→ d_conv2D_2_16 (w/ padding) 16 24 x 600 x 600

conv_block_2 (concat.) = 128 x 600 x 600

→ d_conv2D_3_1 (w/ padding) 1 26 x 600 x 600

→ d_conv2D_3_2 (w/ padding) 2 26 x 600 x 600

→ d_conv2D_3_4 (w/ padding) 4 26 x 600 x 600

→ d_conv2D_3_8 (w/ padding) 8 26 x 600 x 600

→ d_conv2D_3_16 (w/ padding) 16 24 x 600 x 600

conv_block_3 (concat.) = 128 x 600 x 600

→ d_conv2D_4_1 (w/ padding) 1 26 x 600 x 600

→ d_conv2D_4_2 (w/ padding) 2 26 x 600 x 600

→ d_conv2D_4_4 (w/ padding) 4 26 x 600 x 600

→ d_conv2D_4_8 (w/ padding) 8 26 x 600 x 600

→ d_conv2D_4_16 (w/ padding) 16 24 x 600 x 600

conv_block_4 (concat.) = 128 x 600 x 600

main output head 𝐶𝐺𝑇
* x 600 x 600

auxiliary over-clustering head [at training only] 𝐶𝑂𝐶
**x 600 x 600

* Number of ground truth semantic classes.
** Number of over-clustering semantic classes.

5.3.2 Data pre-processing

For a dataset of document images X that contains 𝑁 unlabeled samples, three stages of

pre-processing are applied to each input document image 𝑥𝑖 ∈ R
3×𝐻×𝑊 .
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5.3.2.1 Stage 1: Obtaining the distance transform (DT)

In order to obtain the distance transform (DT) of 𝑥𝑖, a binarization process is performed on it first.

Specifically, a phase-based binarization algorithm (Nafchi, Moghaddam & Cheriet, 2014) is

utilized. This algorithm is based on phase-congruency and uses the phase of wavelet transform

to accurately determine the pixels of the text and the edges of its strokes. In addition, it is capable

of dealing with dark backgrounds, which is a common feature in some historical manuscripts.

Afterwards, the obtained binarized image, Fig. 5.4-b, is used to calculate the distance transform

(DT) of 𝑥𝑖, Fig. 5.4-c, based on the chessboard distance metric (Cantrell, 2000). Particularly, each

pixel in the acquired distance transform (DT), 𝑥𝑖𝑑𝑡 , represents the chessboard distance between

that pixel 𝑥𝑖𝑑𝑡 = (ℎ𝑑𝑡, 𝑣𝑑𝑡) and its nearest boundary pixel 𝑥𝑖𝑏 = (ℎ𝑏, 𝑣𝑏), where ℎ ∈ {1, . . . , 𝐻}

and 𝑣 ∈ {1, . . . ,𝑊}. Formally, the chessboard-based distance transform for each pixel 𝑥𝑖𝑑𝑡 is

calculated through,

𝑥𝑖𝑑𝑡 = 𝑚𝑎𝑥( |ℎ𝑏 − ℎ𝑑𝑡 |, |𝑣𝑏 − 𝑣𝑑𝑡 |). (5.1)

Afterwards, an upper bound condition is set, in which any pixel distance value 𝑥𝑖𝑑𝑡 above a

certain threshold 𝛽 will be set to 𝛽

𝑥𝑖𝑑𝑡 = 𝑚𝑖𝑛(𝑥𝑖𝑑𝑡 , 𝛽). (5.2)

This process results in obtaining a distance transform (DT) channel to be concatenated with the

other RGB channels to achieve an image 𝑥𝑖 ∈ R
4×𝐻×𝑊 that contains four channels R, G, B and

DT. Note that all the four channel are normalized, where all the pixels values in RGB channels

are divided by 255, and in the DT channel by 𝛽.

More details on the effect of utilizing different DT metrics and the choice of the upper bound 𝛽,

among several conditions, and their effects on the performance are discussed in more details at

subsection 5.4.4.1.
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5.3.2.2 Stage 2: Obtaining the image patches

Since the process of semantic segmentation is pixel-based, it is computationally expensive.

Therefore, the training process is to be operated on pairs of image patches, and not on whole

images. Specifically, for each image 𝑥𝑖 ∈ R
4×𝐻×𝑊 , many patches are being obtained, where

every image patch 𝑥𝑢 is centered at a pixel location 𝑢 ∈ 𝜔, where 𝜔 = {1, . . . , 𝐻}𝑥{1, . . . ,𝑊}.

5.3.2.3 Stage 3: Pairing the image patches

As discussed in details in the upcoming subsection, the training process of our proposed approach

depends mainly on a pair of two images as its input. Those image patches pairs are generated

using i) a pre-defined patch spatial shift 𝑡 (i.e., where image patches that are close together are

perceptually grouped together) and ii) a pre-defined geometric transformation 𝑔 to aid in learning

representations that are invariant to such transformation. Ideally, 𝑔 and 𝑡 shall be applied on

each individual patches 𝑥𝑢 at location 𝑢 to obtain the relevant image patch pair (𝑥𝑢, 𝑔(𝑥𝑢+𝑡)),

where 𝑔(𝑥𝑢+𝑡) is the neighbour patch at location 𝑢 + 𝑡 after applying the transformation 𝑔. But,

practically, it is way more efficient to apply 𝑔 on the entire image 𝑥, which inherently applies

𝑔 on all the image’s patches at the same time, in parallel. Specifically, 𝑔 consists of a random

scaling with a factor that ranges from 0.4 to 1.6 and a random horizontal flipping. It is applied

to each image 𝑥𝑖 ∈ X to produce a transformed version of that image 𝑔𝑥𝑖. Additionally, the used

spatial displacement t is set as follows, 𝑡 ∈ 𝑇 = {5, . . . , 10} pixels.

The above three pre-processing stages lead to image pairs (𝑥𝑖𝑢 , 𝑔(𝑥𝑖𝑢+𝑡 )), 𝑖 = {1, . . . , 𝑁} with

each 𝑥𝑖 ∈ R
4×𝐻×𝑊 . Such pairs are used as an input to the training stage. More details on

obtaining the pair of patches in practice, during the training stage, is discussed in more detail in

the upcoming subsection.
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5.3.3 Training process

5.3.3.1 Background pixels masks

In order to improve the learning during the training process, the distance transform (DT) channel

of each image in the image pair, (𝑥𝑢, 𝑔(𝑥𝑢+𝑡)), is utilized to automatically obtain a mask of the

background pixels in that image. This mask is obtained in a totally unsupervised manner and

can be applied to any document images dataset since the domination of the background pixels is

a common challenge across all datasets of document images.

In natural images, the distance transform (DT) of each pixel, obtained in Eq.(5.1), represents

how far that pixel is from the closest boundary. In document images, such boundary can be

considered as the nearest textual data. For instance, the farther the pixel from the text boundary,

the larger the distance is; similarly, the nearer, the smaller the distance is. Therefore, that distance

transform information, 0 ≤ 𝑥𝑖𝑑𝑡 ≤ 𝛽, can be useful in obtaining the likeliness of each pixel being

near or far from the text boundary; therefore, belonging to the background of the document

image.

Formally, to convert the distance transform information of 𝑥𝑖 into a an applicable pixel-level

background mask 𝑚𝑖 ∈ R
1×𝐻×𝑊 , each pixel in the mask, 𝑚𝑖𝑝 , to be calculated through,

𝑚𝑖𝑝 = 𝑒
−𝑥𝑖𝑑𝑡

𝑎 , (5.3)

where −𝑥𝑖𝑑𝑡 is the negated value of the DT of each pixel and 𝑎 is a constant factor that controls

the strictness of considering a pixel as a background or not. As a result, for each image pair

(𝑥𝑢, 𝑔(𝑥𝑢+𝑡)), a pair of corresponding background masks is generated (𝑚𝑢, 𝑔(𝑚𝑢+𝑡)). Fig. 5.2-c

shows examples of automatically obtained background masks for full images 𝑚𝑖.



92

Figure 5.2 Examples of automatically obtained background (BG) masks for full images

𝑚𝑖 using a=10. Note the major similarities between the BG pixels in (b) (i.e., the black

pixels in the GT) and the obtained BG pixels in (c) (i.e., the black pixels in 𝑚𝑖)

5.3.3.2 Objective function

Going through our proposed network, the representations (𝜙(𝑥𝑢), 𝜙(𝑔(𝑥𝑢+𝑡))) of each images pair,

(𝑥𝑢, 𝑔(𝑥𝑢+𝑡)), are obtained initially. In fact, these representations represent the predicted labels,

where 𝜙 ∈ R𝐶𝐺𝑇 ×𝐻×𝑊 . Moreover, these representations are processed with the background

masks (𝑚𝑢, 𝑔(𝑚𝑢+𝑡)) to produce an updated representations that are utilized as an input to our

mutual information (MI) based objective function. More details are discussed below.

Mutual information is a metric on how much information is shared between two instances.

Considering that 𝜙(𝑥𝑢) = 𝜙𝑢 (𝑥), let the first instance of our mutual information formula
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𝑧 ∼ 𝜙𝑢 (𝑥𝑖) embodies the representation of each original image 𝑥𝑖 at the patch centered at the

pixel 𝑢. And in order to well-correlate 𝑧 with the correspondent representation of the transformed

version of the original image, 𝜙𝑢+𝑡 (𝑔𝑥𝑖), this version needs to be rolled-back to its original

geometric state before the transformation, where 𝑧′ = [𝑔−1𝜙(𝑔𝑥𝑖)]𝑢+𝑡 .

Meanwhile, the masks (𝑚𝑢, 𝑔(𝑚𝑢+𝑡)), obtained in Eq.(5.3), are applied to each channel of the

corresponding representations (𝜙𝑢 (𝑥), [𝑔
−1𝜙(𝑔𝑥)]𝑢+𝑡), where an element-wise multiplication is

utilized. This produces newly updated representations (Φ𝑢 (𝑥), [𝑔
−1Φ(𝑔𝑥)]𝑢+𝑡) that weight all

the masked background pixels. Specifically, since the masks (𝑚𝑢, 𝑔(𝑚𝑢+𝑡)) have high values

(close to 1) on the text pixels and the areas around the text, and low values farther from text

(i.e. background), applying the element-wise multiplication attenuates the background pixels

effect during the process of calculating the mutual information and performing the optimization

process.

Formally, inspired by (Ji et al., 2019), the objective function of our proposed approach is based

on maximizing the mutual information 𝐼 estimate between 𝑧 and 𝑧′:

max
Φ

𝐼 (𝑧, 𝑧′) = max
Φ

𝐼 (Φ𝑢 (𝑥𝑖), [𝑔
−1Φ(𝑔𝑥𝑖)]𝑢+𝑡) (5.4)

Considering that the weighted representation Φ(𝑥𝑖) can be interpreted as the label of an image

𝑥𝑖, the main goal of Eq.(5.4) is to maximize 𝐼 between every individual patch prediction Φ𝑢 (𝑥𝑖)

and the prediction of the neighbouring patch [𝑔−1Φ(𝑔𝑥𝑖)]𝑢+𝑡 to conserve what is common

between them, and neglecting any other details that are specific to only one of them. This mutual

information 𝐼 can be calculated through:

𝐼 (𝑧, 𝑧′) = 𝑃(𝑧, 𝑧′). ln 𝑃(𝑧,𝑧′)
𝑃(𝑧).𝑃(𝑧′)

(5.5)
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Besides, the joint (co-occurrence) probability 𝑃(𝑧, 𝑧′) can be calculated by:

𝑃(𝑧, 𝑧′) =
∑
𝑡∈𝑇

𝑃(𝑧, 𝑧′|𝑡).𝑃(𝑡)

= 1
𝑛|𝐺 | |𝜔 | |𝑇 |

𝑁∑
𝑖=1

∑
𝑔∈𝐺

∑
𝑡∈𝑇

∑
𝑢∈𝜔

Φ𝑢 (𝑥𝑖).[𝑔
−1Φ(𝑔𝑥𝑖)]

ᵀ
𝑢+𝑡 ,

(5.6)

which is mainly a common co-occurrence probability estimate for each paired data (𝑧, 𝑧′), in

which 𝑧 relates to 𝑧′ by a spatial displacement t. In fact, the sequential sums in the above equation

can be performed through the convolution process, where the processing of all pixels 𝑢 and their

related displacement 𝑡 (i.e., pair of patches representations) can be performed in parallel.

Generally, and thanks to the novel representations (Φ𝑢 (𝑥), [𝑔
−1Φ(𝑔𝑥)]𝑢+𝑡) with weighted

background pixels, the process of maximizing the mutual information 𝐼 in our objective function,

Eq.(5.4), leads to learning features that cope well with the document images unique characteristics.

Specifically, it encourages the network to equally learn features of various semantic classes,

while neglecting the dominating effect of the background samples in the training set space.

5.4 Experimental results and discussion

5.4.1 Datasets

In order to demonstrate the generalization capabilities of our proposed approach, two publicly

available datasets have been used. The first dataset is DSSE-200 dataset (Yang et al., 2017).

It contains 200 document images and seven semantic classes (i.e., background, table, figure,

paragraph, section, list and caption). The second dataset is DIVA-HisDB dataset (Simistira,

Seuret, Eichenberger, Garz, Liwicki & Ingold, 2016). It is composed of three medieval

manuscripts (i.e., CB55, CSG18, CSG863), which contains 150 document images that are

annotated pixel-wise (i.e., 50 images per manuscript), and four semantic classes (i.e., background,

main text body, comments and decoration figures).
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5.4.2 Evaluation

To evaluate our proposed unsupervised document image semantic segmentation approach, we

follow the same standard evaluation protocols presented in the literature (Ji et al., 2019; Long,

Shelhamer & Darrell, 2015). Specifically, our performance evaluation is based on three metrics,

per-pixel accuracy, mean intersection-over-union (𝐼𝑜𝑈) and weighted 𝐼𝑜𝑈.

For calculating the per-pixel accuracy, the following formula is used:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃 , (5.7)

where 𝑇𝑃,𝑇𝑁, 𝐹𝑁 and 𝐹𝑃 denote the per-pixel true positives, true negatives, false negatives

and false positives, respectively. Additionally, the 𝐼𝑜𝑈 for each class in the dataset is calculated

by:

𝐼𝑜𝑈 = 𝑇𝑃
𝑇𝑃+𝐹𝑃+𝐹𝑁 . (5.8)

To calculate the mean 𝐼𝑜𝑈, the average of all the 𝐼𝑜𝑈𝑠 (i.e., for all the classes) is calculated.

In fact, for the mean 𝐼𝑜𝑈 metric, a uniform distribution of the number of pixels per class is

assumed, which is not the case in the document image datasets (more details are in section 5.3).

While the actual distribution of the number of pixels per class is considered for calculating the

weighted 𝐼𝑜𝑈 metric, which makes it a more suitable metric to evaluate the performance for the

document image datasets.

For the calculation of the weighted 𝐼𝑜𝑈, the 𝐼𝑜𝑈 of each class (i.e., which is obtained in Eq.(5.8))

is weighted by the number of pixels in that class. Afterwards, the average of all the obtained

weighted 𝐼𝑜𝑈𝑠 (for all the classes) is computed.

Note that all samples of the dataset are utilized during both the training and testing processes.

During the training process, our model is trained on unlabeled samples, without the need to any

annotation. On the other hand, during the testing process, the samples and their ground-truth

annotations are utilized in the evaluation process of the model. Specifically, a linear assignment
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algorithm (i.e., the Hungarian algorithm (Kuhn, 1955)) is utilized to find the optimal mapping

between each learned cluster and a ground-truth class.

5.4.3 Implementation details

All the performed training and testing processes have been carried out on a GeForce RTX

2080 GPU, with models implemented using PyTorch 7 library. To train our models, the Adam

optimization algorithm (Kingma & Ba, 2014) has been utilized with a learning rate of 1𝑒 − 5 and

a batch size of 2 image pairs. The training time is around 10 minutes per epoch for 600 epochs.

During the training phase only, an auxiliary over-clustering output head is utilized, in addition

to the main output head, with 𝐶𝑂𝐶 that is 2-3 times larger than 𝐶𝐺𝑇 . For instance, in case of

DSSE-200 dataset, 𝐶𝑂𝐶 = 15 and 𝐶𝐺𝑇 = 7; while with DIVA-HisDB dataset, 𝐶𝑂𝐶 = 10 and

𝐶𝐺𝑇 = 4. Besides, the mask factor 𝑎 = 10 is utilized since it leads to an 𝑚𝑖𝑝 = 0 when the

pixel is far from the text (background) and 𝑚𝑖𝑝 = 1 when the pixel distance is 0 (text/image).

Moreover, an upper bound threshold 𝛽 = 15 is set.

5.4.4 Results

A detailed analysis on utilizing and tuning various parameters and their effect on obtaining

reliable results has been performed. In the following subsections, the related experiments

and their acquired observations with analysis are discussed in more details. Note that the

training process in all the following experiments have been performed from scratch, without any

pre-training and using an input size of 600 x 600. In addition, the reported results are based on

the DSSE-200 dataset.

5.4.4.1 Effect of the representation space

First, experiments have been performed to obtain the best representation space that can lead

to reliable unsupervised semantic segmentation results. Specifically, we have studied various

7 http://pytorch.org/
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representation spaces that consider either RGB -3 channels-, a distance transform (DT) -1

channel- or a combination of both RGB and distance transform (DT) -4 channels-.

The visual results shown in Fig. 5.3-c and Fig. 5.3-d demonstrate that using RGB or DT

solely can barely work for distinguishing between the background and the foreground of the

document image, but it is completely ineffective for performing unsupervised semantic document

segmentation. Specifically, the learned features from the RGB representation space or the DT

representation space are not distinctive enough to lead to a reliable separation between the

different categories of foreground (e.g., text, figure, etc.) or the different semantic classes of

text (e.g., caption, list, table and section). On the other hand, as shown in Fig. 5.3-e, combining

the distance transform (DT) with the RGB representation space (RGBDT) has led to obtaining

much better discriminative features that led to a noticeable improvement in segmenting different

semantic classes in an unsupervised manner.

Yet, as demonstrated in the DT and RGBDT results in Fig. 5.3, some extra contours are always

introduced around the main text body of the document image whenever a distance transform

is used. Checking the contours-related pixels in the distance transform channel, Fig. 5.4-c, it

is found that the distance values of those pixels are different than the distance values for the

background pixels. This has prevented the contours-related pixels from being well-perceived as

background by the learned model.

To avoid this, a condition has been introduced during the calculation of the distance transform in

an attempt to unify the distance values of both the pixels of the background and the document’s

main body extra contour. Utilizing the chessboard distance transform, Eq.(5.1), two upper bound

(UB) conditions have been investigated: a gradual condition and a strict condition. First, a

gradual upper bound condition based on the following formula has been investigated.

𝑥𝑛𝑒𝑤𝑖𝑑𝑡
= 𝑙𝑜𝑔(1 + 𝛼𝑥2

𝑖𝑑𝑡
), (5.9)
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Figure 5.3 The effect of utilizing different types of representation spaces on the

unsupervised segmentation performance

where 𝛼 is a parameter to control the upper bound value that a pixel distance value 𝑥𝑖𝑑𝑡 will

saturate at. Fig. 5.4-d demonstrates the result of utilizing this condition with 𝛼 = 1, where the

extra contour pixels are gradually getting closer to the distance values of the background pixels.

On the other hand, a strict upper bound condition can be set where any distance value 𝑥𝑖𝑑𝑡 above

a certain threshold 𝛽 will be set to 𝛽

𝑥𝑖𝑑𝑡 = 𝑚𝑖𝑛(𝑥𝑖𝑑𝑡 , 𝛽), (5.10)

Fig. 5.4-e shows that using a strict upper bound (e.g., 𝛽 = 15) condition led to a more

representative distance transform. In this case, all the pixels around the document’s main body

have the same distance value of the document’s background. Fig. 5.5-d shows the effectiveness

of utilizing the strict upper bound condition in limiting the document’s main body extra contours
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comparing to utilizing the same distance transform without any upper bound condition, Fig. 5.5-b,

or with a gradual upper bound condition, Fig. 5.5-c.

Based on the previously discussed visual qualitative results and the quantitative results presented

in Table 5.2, the combined representation space of RGB and distance transform (RGBDT) with

a strict upper bound (UB) condition has shown its reliability; therefore, it is the representation

space setting to be used for the rest of this paper.

Figure 5.4 The effect of utilizing different upper bound (UB) conditions on obtaining the

distance transform (DT) from the binarized image

Figure 5.5 The effect of utilizing different upper bound (UB) conditions on limiting the

document’s main body extra contours

5.4.4.2 Effect of max-pooling

In order to test the effect of utilizing max-pooling on the unsupervised segmentation performance,

we have conducted three experiments with identical parameters and alike network architectures
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Table 5.2 The performance in terms of

mean IoU (%) on the DSSE-200 dataset

using different input spaces

Input space Mean IoU
RGB 20.24

DT 21.13

RGBDT (No UB) 23.35

RGBDT (Gradual UB) 25.08

RGBDT (Strict UB) 26.34

except that the max-pooling layer(s) (i.e., and its corresponding interpolation process) have been

removed gradually from one experiment to another. Table 5.3 presents the network architectures

of the three experiments with their corresponding mean IoU performance.

Fig. 5.6-b and Fig. 5.6-c demonstrate the segmentation results of the network architectures that

include three max-pooling layers and one max-pooling layer, respectively. On the other hand,

Fig. 5.6-d shows the result of the network architecture that does not consider any max-pooling

layer(s).

Although the same convolutional filter size has been utilized across the three experiments, a large

difference in the visual results has been obtained. In fact, the obtained visual results, in Fig. 5.6,

emphasizes the critical role that the max-pooling layer(s) plays in learning or missing some

critical features. Specifically, although using max-pooling has led to an apparent better visual

segmentation results and higher mean IoU, it has overlooked the small-sized semantic classes

(e.g., the class ’section’ -in yellow- at Fig. 5.6-a). Meanwhile, removing the max-pooling layer(s)

has helped in capturing more low-level spatial features that aid in locating and segmenting

such small-sized semantic classes. As a drawback of avoiding the max-pooling layer(s), the

obtained representation has lost part of its sensitivity to the global semantic correlations at the

spatial-level, which led to an undesired oversegmentation in large-sized semantic classes (e.g.,

the oversegmentation in the ’figure’ class -in green- at Fig. 5.6-d). To get over this issue and

other related issues, more investigations have been conducted on utilizing various receptive field

sizes.
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Table 5.3 The performance in terms of mean IoU (%) on the

DSSE-200 dataset using network architectures with different number

of max-pooling layer(s). (64,. . . ,512) represents the number of filters

for each layer, where ’M’ is a max-pooling layer

Network architecture Mean IoU
w/ 3 max-pooling (64, ’M’, 128,’M’, 256, ’M’, 512) 24.36

w/ 1 max-pooling (64, 128,’M’, 256, 256, 512, 512) 24.74

w/o max-pooling (64, 128, 256, 256, 512, 512) 22.55

Figure 5.6 The effect of utilizing max-pooling on the unsupervised segmentation

performance

5.4.4.3 Effect of receptive field size

To demonstrate the impact of the CNN’s receptive field size on the performance of the

unsupervised segmentation task and eliminating the undesirable oversegmentation in large-sized

semantic classes, four experiments have been conducted using different convolutional filter

sizes. Specifically, the network architecture in section 5.3.1 has been utilized across all the

experiments, with an exception that a different filter size has been considered for each of these

experiments (e.g., 3x3, 5x5, 7x7, 11x11). In this network architecture, the pooling process is

avoided, four dilated convolution blocks are utilized and the selected filter size is utilized across

all the layers of the network.

Results at Fig. 5.7 demonstrate that using large filter sizes (e.g., 11x11 and 7x7) are good

for large-sized semantic classes (e.g., the ’figure’ class -in green-), but they led to missing
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small-sized semantic classes (e.g., the ’section’ class -in yellow-) and obtaining less sharp

segmented bounding boxes. In contrast, utilizing a filter size of 3x3 works well for small-sized

semantic classes (e.g., the ’section’ class -in yellow-), where sharper segmented bounding boxes

are obtained. Moreover, the undesired oversegmentation in large-sized semantic classes have

been eliminated largely (i.e., comparing to Fig. 5.6-d).

Based on the previous qualitative findings and the quantitative results in Table 5.4, a network

architecture that avoids the pooling process, considers dilated convolution blocks and utilize a

small convolutional filter size (e.g., 3x3) is considered to work efficiently and reliably with the

task of unsupervised document images semantic segmentation.

Figure 5.7 The effect of utilizing different convolutional filter sizes on the unsupervised

segmentation performance

Table 5.4 The performance in

terms of mean IoU (%) on the

DSSE-200 dataset using various

convolutional filter sizes and dilated

convolutional blocks

Filter size Mean IoU
11x11 17.51

7x7 20.66

5x5 23.90

3x3 24.74
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5.4.5 Discussion

Since performing document images semantic segmentation based on unsupervised learning is

a relatively unexplored area of research, it was challenging to obtain state-of-the-art results

that are suitable to be compared with the results of our proposed unsupervised learning (UL)

based approach; therefore, we had to establish baselines, from scratch, to fairly evaluate our

approach. Specifically, our proposed approach is compared with two baseline algorithms. First,

k-means (Lloyd, 1982), which is a simple clustering algorithm that is widely used in the literature.

Additionally, Non-negative Matrix Tri-Factorization (NMTF) (Yoo & Choi, 2010), which is

a more complex clustering algorithm that provides further representative cluster centers in

comparison with k-means. More details on how the datasets have been prepared to be fed to the

baseline algorithms; in addition to their implementations are discussed in 5.6.

Table 5.5 compares the semantic segmentation performance of our proposed approach with that

of the two baseline algorithms. The performance is reported based on four datasets and in terms

of three standard metrics; accuracy, mean IoU and weighted IoU. Results show our approach to

outperform the two baseline algorithms for all the datasets. Furthermore, our proposed approach

is compared to the vanilla IIC approach (Ji et al., 2019) on the DSSE-200 dataset. The results

demonstrate that considering the adapted objective function of (Ji et al., 2019), in the proposed

approach, alongside our introduced document-related contributions has led to more than 8%

improvement in the performance using the weighted IoU metric. In contrast, applying the

supervised learning based MFCN approach (Yang et al., 2017) on the DSSE-200 dataset can

boost the weighted IoU performance to up to 28% higher than the proposed approach, which

is expected considering the unsupervised nature of our work. Specifically, on one hand, our

proposed approach does not need any labeled samples during the training process. On the other

hand, (Yang et al., 2017) has to access a large amount of labeled training samples (i.e., around

135,000 annotated document images) to achieve such performance boost.

Discussing the baseline algorithms, we note that the way in which those algorithms and our

approach function are different. In fact, NMTF and k-means are based on information of
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Table 5.5 The performance (%) on four different datasets obtained by our

proposed approach compared to various approaches

Approach Accuracy Mean IoU Weighted IoU
k-means (DSSE) 49.6 18.9 41.2

NMTF (DSSE) 53.4 20.3 42.5

IIC (Ji et al., 2019) (DSSE) 51.5 21.6 44.1

UL (ours) (DSSE) 61.5 27.4 52.3
k-means (CB55) 42.0 18.2 36.0

NMTF (CB55) 39.6 18.4 33.2

UL (ours) (CB55) 67.8 34.6 61.3
k-means (CSG18) 38.8 16.1 33.7

NMTF (CSG18) 35.1 15.6 29.0

UL (ours) (CSG18) 63.0 27.0 57.8
k-means (CSG863) 45.1 19.8 39.5

NMTF (CSG863) 45.6 20.7 39.0

UL (ours) (CSG863) 66.4 29.2 62.3

individual pixels. While, on the other hand, our proposed approach is based on information of a

region of pixels. Specifically, k-means and NMTF use the similarity between individual pixels

to separate them into different groups. In contrast, our approach uses local regional information,

combined in different ways, for clustering and hence segmentation.

Fig. 5.8 shows three different document image samples from the DSSE dataset (Yang et al.,

2017) and their corresponding results using our proposed approach and the baseline methods.

Starting from the far left column in Fig. 5.8, the first column shows the ground truth of the

samples, where it is clear how the white pixels between the text are considered as text (i.e.,

the same goes for other regions of the foreground). In the second column, the results of the

k-means method are shown, in which the segmentation is very local and even small regions of

text (or strokes) are separated into different classes and clearly there is no separation between

different regions containing text (i.e., such as list, caption, etc.). Additionally, the third column

shows the results of the NMTF method, where the segmentation is still pixel-based and very

local. Although NMTF could use different features and their combination, but the effect is still

insignificant. Lastly, the forth column shows the results of our proposed approach, in which the
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effect of the receptive field size and dilated convolution blocks are clearly demonstrated, where

the learned representation can well-capture regional spatial information to separate different

semantic classes.

Figure 5.8 Comparing the results of k-means (b), NMTF (c) and our proposed approach

(d)

In fact, we can see that for the small ’figures’ -in green- (e.g., the top image in column

(d)), our proposed approach’s segmentation is producing uniform regions without undesired

oversegmentation for those areas, unlike k-means and NMTF. The same goes for large ’figures’

(e.g., the middle and bottom images in column (d)), except that a bit of oversegmentation

appears in regions that contains very large white pixels. Yet, the oversegmentation is way
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less outstanding, unlike k-means and NMTF (e.g., the results at the middle row) where the

oversegmentation of figures is totally visible.

In the middle row, one of the ’section’ heading regions -in yellow- is segmented clearly by our

proposed method. This demonstrates that with enough surrounding information, our approach

can capture semantic information without the need for annotations. Moreover, the ’caption’ class

-in red- is one of the rare and hard classes to be captured by an unsupervised learning approach.

This is considering that this class shares a lot of visual characteristics with the ’text’ class -in

purple-, which makes those two classes barely distinguishable, even from a human perspective

(e.g., the ’caption’ class at the third row sample).

5.5 Conclusion

We proposed an end-to-end approach for semantically segmenting document images without

the need to any labeled data, textual information or dataset-dependant heuristics techniques.

The proposed approach utilizes a combined representation space, a novel automatic dataset

re-balancing technique and dilated convolutional layers to obtain a novel learned representation

that can overcome the challenges related to the unique characteristics of the document image and

its semantic classes. Our results demonstrate that our approach is robust, where it outperforms

the baseline approaches on various public datasets. Although other supervised-learning based

approaches might provide better semantic segmentation performance, our proposed approach

fully opens up novel research verticals, in which the widely available unlabeled data can be

utilized in performing document image semantic segmentation. In future work, we will include

investigating the effect of increasing the training set size on the inference performance of our

approach. Additionally, further investigations can be performed on the generalization capacity

of the proposed approach with large datasets that contains millions of document images.
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5.6 Appendix - More details on the used baselines (k-means and NMTF)

In appendix 5.6, we provide more insights on how the datasets have been prepared to be fed to

the baselines algorithms. In addition, we summarize the baseline algorithms implementation in

order to obtain relevant results.

In order to prepare the datasets to be fed to these algorithms, all the images’ channels (i.e., RGB

and DT) are converted to a matrix with the size of 𝑒𝑖 × 𝑃, where 𝑒𝑖 is the number of pixels in the

image and 𝑃 is its dimensionality. Then, all of the corresponding matrices are concatenated into

a one matrix 𝑌 of size 𝐸 × 𝑃, where 𝐸 = {𝑒1 + 𝑒2 + . . . }.

In k-means, the goal is to find the clusters by minimizing the distances between the samples and

the cluster centers. The main parameter to be set is the number of clusters, which is set equal to

the number of classes in differnet datasets, 𝐶𝐺𝑇 .

On the other hand, Non-negative matrix factorization (NMF) (Lee & Seung, 2000) was originally

proposed for low rank approximation of matrix by decomposing it to the product of two matrices

with lower ranks. NMF can also be considered as a soft-clustering algorithm which is compared

to k-means (i.e., which assigns a sample to a specific cluster), where it assigns samples to

different clusters with coefficients that determine the degree of association. NMF is a versatile

algorithm and its objective function can be modified in different ways to obtain desired properties.

One of the variants of NMF is Non-negative matrix tri-Factorization (NMTF) (Yoo & Choi,

2010), in which the data matrix is decomposed to the product of 3 matrices 𝑌 = 𝑊𝑆𝐺𝑇 .
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NMTF shows the properties of co-clustering (i.e., clustering the rows and columns of the data

matrix simultaneously) that produce better clustering results. The objective function of NMTF

is:

min
𝑊,𝑆,𝐺

����𝑌 −𝑊𝑆𝐺𝑇
����2
𝐹
,

𝑠.𝑡. 𝑊 ≥ 0, 𝑆 ≥ 0, 𝐺 ≥ 0

𝑊𝑇𝑊 = 𝐼, 𝐺𝑇𝐺 = 𝐼,

(5.11)

where 𝑌 is a 𝐸 × 𝑃 matrix, and𝑊, 𝑆, 𝐺 are matrices of sizes 𝐸 × 𝑘 , 𝑘 × 𝑟 and 𝑃 × 𝑟 , respectively.

In fact, the two orthogonality constraints are forcing the algorithm to produce a k-means-like

results. The parameter 𝑘 is the number of the desired clusters for the rows of the data matrix 𝑌 .

Additionally, the parameter 𝑟 is the number of clusters for the columns of data matrix 𝑌 . Both 𝑘

and 𝑟 are set to the number of the desired clusters for each dataset, which is equal to the number

of classes 𝐶𝐺𝑇 . In order to convert the results of NMTF (soft-clustering) to cluster assignment,

we utilize a scheme based on applying k-means on the coefficients obtained by NMTF.



CHAPTER 6

GENERAL DISCUSSION

This thesis has addressed several problems related to document image representations for

document image analysis. The introduction and literature reviewed in Chapter 1 showed

limitations of current document representations and their relevant features in tackling several

practical and technical challenges. Specifically, the following question was investigated: what

are efficient document representation approaches capable of obtaining representations that can

handle processing large-scale datasets, provide reliable generalization during the deployment

phase, and utilize much less labeled data or only unlabeled data during the training process?

Considering these challenges and limitations, three research objectives have been established in

Chapter 2 2 and led to proposing three novel document image representation approaches that

can stand up to the practical, real-world challenges of the document image analysis field. These

approaches, their relevant contributions and evaluations are discussed in Chapter 3, Chapter

4 and Chapter 5. In the following sections, our proposed approaches and contributions are

discussed, focusing on their strength and limitations, considering the general advances they

made in the document image analysis’ state of the art.

6.1 Efficient document image representations for large scale dataset

In Chapter 3, the first objective was covered where we studied the practical, real-world challenges

of the document image analysis field and proposed a reliable document representation approach

that can generalize well to large scale datasets. For this purpose, we developed a classification

approach based on an ensemble of four methods that rely on a broad spectrum of features that

range from fully hand-designed features to hybrid and fully learned features. The methods are

rule-based, layout-based, CNN-based, and transfer learning-based.

The proposed approach is the first study that reflects the practical challenges facing the

document image analysis field when interfacing with real-world constraints. The obtained results

demonstrate the performance consistency of our proposed approach across different time periods
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and subjects within the utilized large-scale dataset (32 million document images). Despite

the capability of our proposed approach in generalizing well to such a large-scale dataset, it

still has some limitations. For instance, three methods -in the final approach ensemble- are

depending on hand-designed features. Moreover, the utilized feature learning-based methods

rely on supervised learning, where access to annotated training samples is essential. Both of

those limitations have been studied and tackled in the following two objectives of the thesis. For

the sake of completeness, our article -in Appendix I- proposes an additional document image

classification approach that depends on fully-learned features utilizing limited amount of labeled

data.

6.2 Efficient document image representation learning for classifying datasets with lim-
ited to no availability of labeled training data

The work in Chapter 4 offers three modifications over the previous contribution. First, it is fully

based on feature learning, without any dependence on hand-designed features. Second, the

proposed document representation learning approach does not require any annotated training

document images during the pre-training step. It is based on unsupervised feature learning,

where only unlabeled data is used. Finally, the performed classification process is based on

the global context of the document image, unlike the previous work in which the classification

process depends on the existence of a distinctive visual local characteristic (e.g., footnote) within

the document image.

In this contribution, we developed an unsupervised pre-training-based framework that is simple,

very effective in learning good features, and capable of consistently boosting both unsupervised

and supervised classification performance. The approach is the first to perform an unsupervised

document image classification using a representation that is entirely based on feature learning

using unlabeled data and does not depend on any hand-crafted features. Although some

other supervised pre-training approaches may provide more improvement in the classification

performance compared to our proposed unsupervised pre-training approach, our approach has a

crucial advantage of not requiring any additional manually annotated training samples. This is
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unlike such supervised learning-based approaches that require an immense amount of annotated

data (i.e., tens or hundreds of thousands) to reach such performance.

6.3 Efficient document image representation learning for semantically segmenting datasets
with no availability of labeled training data

For each previously classified document image by the proposed approach in Chapter 4, further

interpretation of that document’s content is performed through semantic segmentation. Aligning

with the previous work on avoiding utilizing any annotated document images during the training

process, the work in Chapter 5 proposed an end-to-end approach for semantically segmenting a

document image (pixel-wise) in a totally unsupervised manner.

The proposed approach is the first to conduct an unsupervised document image segmentation

process using solely unlabeled data without any dependence on any textual information or

dataset-dependant heuristics techniques. Better semantic segmentation performance might be

obtained through other supervised-learning-based approaches. Nevertheless, a large amount of

labeled training samples (i.e., hundreds of thousands) are needed to be accessed to achieve such

a performance boost.





CONCLUSION AND RECOMMENDATIONS

In this thesis, we have presented original contributions to the state of the art of document image

representation for the document image analysis field. Efficient document image representations

shall be able to deal with real-world practical challenges rather than being tuned according to

unrealistic assumptions optimized for specific research scenarios. Two main practical challenges

have been studied in this thesis, generalizing well to large-scale datasets and dealing with limited

to no availability of labeled training data.

First, document representations shall be capable of generalizing well to large-scale datasets

that contain millions of document images. The contribution of this thesis shows directions for

designing reliable document representations that consider the scale of large datasets and their

associated generalization challenge at the core of the design process. In addition, the contribution

emphasizes the efficiency of combining various representations to build a reliable tool that can

empower experts in different fields with the possibility to analyze large-scale datasets effectively.

Additionally, obtaining document image representations that can deal with limited to no

availability of labeled training data is of very high interest since, in real-world use-cases, the

access to labeled data is restricted, while unlabeled data is abundant. The contributions of this

thesis open up novel research verticals for utilizing millions of widely available unlabeled data

in performing document image analysis. Specifically, two novel approaches for document image

representation learning have been introduced in a particular sequence to highlight a proper

framework for document image analysis. At first, when no labeled training data, or very few,

are available for the document classification task, while many unlabeled data is accessible, our

framework depends on unlabeled data to obtain a reliable classification process. Then, when

each document image is classified, and no labeled training data is available, our framework

relies on unlabeled data to perform further analysis within that document image by performing

semantic segmentation.
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Summary of contributions

In this thesis, the following novel contributions have been introduced:

- A document representation approach that can generalize well for a very large-scale dataset

(32 million documents) has been introduced. This is the first study that considers the practical

challenges which face the document image analysis field when interfacing with real-world

constraints.

- An unsupervised document representation learning approach for document image classifi-

cation is proposed. This is the first approach to perform an unsupervised document image

classification using a representation that is entirely based on feature learning using unlabeled

data and does not depend on any hand-crafted features.

- An unsupervised document representation learning approach for document image semantic

segmentation is proposed. To the best of our knowledge, it is the first work to perform

an unsupervised document image segmentation using solely unlabeled data and without

depending on any textual information or dataset-dependant heuristics techniques.

Limitations and future work

Although the proposed document representation approach in Chapter 3 is capable of generalizing

well to large-scale datasets, it still has some weaknesses. In the final classification approach

ensemble, three out of the four explored methods are based on hand-designed features. Addition-

ally, the fourth feature learning-based method in the ensemble is based on supervised learning,

in which annotated training samples availability is crucial. Even though these weaknesses have

been addressed partly by exploring unsupervised document representation learning approaches

in the rest of the thesis, further investigations can still be conducted on exploring the performance

of the proposed approach when extended to semantic segmentation tasks.
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The document representation learning approaches proposed in Chapters 4 and 5 are mainly

trained in an unsupervised manner, which is critical for eliminating the need for labeled data

during the training process. The obtained learned representations have proved their efficiency

and robustness. However, the performance of the proposed approaches is still limited comparing

to other supervised-learning based approaches. Nonetheless, an immense amount of labeled

training samples are required for such a performance boost to materialize. This performance

limitation can be addressed by investigating recent semi-supervised learning techniques, where

few labeled data are utilized during the training process alongside the unlabeled data. Moreover,

further investigations can be performed on the generalization capacity of the proposed approaches

with large-scale datasets that contain millions of document images.

Generally, the obtained representations in this work have demonstrated their effectiveness

for document classification and semantic segmentation tasks, which cover only part of the

document analysis pipeline. A further possible extension of this work would be to investigate

the efficiency of the introduced concepts when transferred to additional analysis tasks, such as

word segmentation and character recognition.
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Abstract

Classifying document images is a challenging problem that is confronted by many obstacles;

specifically, the pivotal need of hand-designed features and the scarcity of labeled data. In this

paper, a new approach for classifying document images, based on the availability of footnotes in

them, is presented. Our proposed approach depends mainly on a Deep Belief Network (DBN)

that consists of two phases, unsupervised pre-training and supervised fine-tuning. The main

advantage of using this approach is its capability to automatically engineer the best features to

be extracted from a raw document image for the sake of generating an efficient representation of

it. This feature learning approach takes advantage of the vast amount of available unlabeled

data and employs it with the limited number of labeled data. The obtained results show that

the proposed approach provides an effective document images classification framework with a

highly reliable performance.

Keywords: unsupervised feature learning, hierarchical representation learning, document image

classification.
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1. Introduction

Protecting humanity’s cultural heritage is highly needed to understand our past and prepare for

the future; therefore, digitizing historical manuscripts and printed books becomes an essential

approach to guarantee a well preserved history and a widely accessible content to thousands of

researchers around the globe. A great example that shows the adaptation of this global movement

is the Eighteenth Century Collections Online (ECCO)8 that contains around 200,000 volumes

(32 million image pages) of online archive related to the eighteenth-century printed books.

In fact, introducing an efficient data-driven approach that can understand such huge amount of

widely available historical data will play a vital role in unveiling the secrets of such precious

content. Generally, understanding a historical document image involves a wide spectrum of

subprocesses and tasks that range from layout analysis and document image classification

to optical character recognition (OCR). In this work, the main focus will be on the task of

classifying document images based on the presence of footnotes in them. Considering the

valuable information that is usually contained in a footnote and the strong ties it creates with other

documents; footnotes are believed to be reflecting how ideas can be circulated and exchanged

between various manuscripts and books throughout centuries and civilizations (Grafton, 1997;

Pasanek & Wellmon, 2015). Therefore, obtaining document images with footnotes has been

raised to form the main focus of this research paper.

The performance of the document images classification process dependents highly on the used

representation of the document image, where learning how to map the intensity values of the

document images’ pixels into a relevant decision (i.e., the presence of a footnote in the image

or not) is critical. In order to obtain an expressive representation of the document image,

the best features have to be captured from it. Such features help in getting better high-level

representations of the raw data in a way that explicates the document image’s main properties

and facilitates the subsequent classification process.

8 http://find.galegroup.com/ecco/
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Most of the traditional systems for document image classification depend on carefully hand-

designed features (e.g., SIFT (Lowe, 1999), SURF (Bay et al., 2006) and HOG (Dalal & Triggs,

2005)). Those features are being engineered by experts relying on their prior knowledge

regarding the used data and the desired application, which is a very complex process. Actually,

such hand-designed features are labor-intensive, time consuming and cannot generalize well to

new problems. Due to the difficulties related to engineering hand-designed features, we focus

in this work on feature learning approaches (Bengio et al., 2013) that can take advantage of

the increasing amount of available informative data to automatically learn even better feature

representations than the hand-designed ones. Utilizing feature learning in the field of document

image classification has been adopted in some recent works, such as the work of (Kang et al.,

2014). But those works have relied heavily on using only labeled data for training their feature

learning algorithms.

In order to train feature learning algorithms either labeled (supervised learning) or unlabeled

(unsupervised learning) data can be used. Apparently, acquiring more data leads to better

performance regardless of the used learning approach (Banko & Brill, 2001), where most of

the recent breakthroughs in the results of machine learning approaches are actually due to

the availability of a large amount of training data. And since obtaining enough labeled data

to perform supervised feature learning is often a very difficult and expensive task due to the

required time and labor for labeling, while a vast amount of unlabeled data is available and

easily accessible; we are investigating in this research paper the capacity of incorporating

an unsupervised feature learning algorithm alongside a supervised one to achieve an optimal

approach for document image classification.

In the light of the previously mentioned challenges of hand-designed features and the scarcity of

labeled data, the main contribution of this paper is in proposing and evaluating a feature learning

approach for document image classification that is capable of the following; generating the best

representation of an input raw image through automatically engineer the best features using

a trainable feature extractor instead of using hand-crafted features. This is performed while
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depending mainly on the largely available unlabeled images besides the restrictedly available

labeled images.

The rest of the paper is organized as follows. The proposed approach is outlined in section 2. In

section 3, the used dataset and the obtained experimental results are reviewed alongside some

observations and related discussion. Finally, section 4 demonstrates the conclusion and the

future work.

2. The Proposed Approach

Since a footnote is the center of interest in our document classification process; and through

studying the document images that contain footnotes, we observed a compelling common feature.

We found that document images with footnotes usually contain two different font sizes between

their main text and their footnotes text, a property that turned out to be at the core of our

hypothesis.

To train a classifier to differentiate efficiently between document images with footnotes and

document images with no footnotes, we need to provide it with many positive and negative

examples of document images that contain footnotes and do not contain footnotes, respectively.

And since we have a very limited amount of labeled data with ground-truth; while, on the other

hand, unlabeled data are widely available, it will be effective to utilize an efficient approach

that can leverage such wide availability of unlabeled data. As a result of the above factors, our

document classification algorithm is based mainly on teaming up an unsupervised pre-training

phase with a supervised fine-tuning phase. In fact, this setup has proved to be very efficient in the

case of scarcity of labeled data (Glorot, Bordes & Bengio, 2011). According to (Bengio et al.,

2013; Erhan et al., 2010), exploiting the process of unsupervised pre-training in initializing a

later supervised classification process can be certainly helpful for this classification process.

Generally, our proposed document classification approach consists of 4 stages, Fig. I-1. This

approach depends at its core on a feature learning model that is based on Deep belief network

(DBN) architecture (Hinton et al., 2006; Lee, Ekanadham & Ng, 2007) and composed of two



121

main phases (unsupervised pre-training and a supervised fine-tuning). The following subsections

will provide more insights about each stage of them.

Figure-A I-1 The proposed approach pipeline

2.1 Pre-processing

Considering our observations and hypothesis, each document image is represented by a

concatenated image of its two top text-lines and two bottom text-lines, Fig. I-2. In order to

obtain these text-lines, a projection-based text-line segmentation method is used (Dos Santos
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et al., 2009). Afterward, each concatenated image is negated, normalized then resized to 45x500

for a faster performance.

Figure-A I-2 An example from ECCO dataset for a concatenated image of two top

text-lines and two bottom text-lines

2.2 Unsupervised pre-training phase

In this phase, an unlabeled pre-training dataset that contains a large amount of document images

is utilized as an input to our unsupervised feature learning algorithm, which is based on DBN

architecture. DBN is a generative model in which the dependencies between the nodes in one

layer is being statistically encoded in the layer above it by using Restricted Boltzmann machines

(RBMs). To train our model, a layer-wise greedy learning algorithm is exploited, where the

inputs of a higher layer are the calculated activations of the layer below it. Specifically, an RBM

is being trained once per time, where the obtained parameters 𝜃𝑙 are being frozen once the
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training process is finished; then, another RBM layer is stacked into that network, and a new

training process starts on that level. This process is repeated until the last layer is trained.

For each RBM layer, the following energy function 𝐸 (𝑣, ℎ) is defined to express the negative

log likelihood (cost function) of this layer (Lee et al., 2007)9:

− log 𝑃(𝑣, ℎ) = 𝐸 (𝑣, ℎ) =
1

2

∑

𝑖
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𝑖 −
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where 𝑐𝑖 is the bias of the visible node 𝑣𝑖, 𝑏 𝑗 is the bias of the hidden node ℎ 𝑗 and 𝑤𝑖 𝑗 is the

weight between 𝑣𝑖 and ℎ 𝑗 . After the training process, a set of parameters 𝜃𝑙 = (𝑤𝑖 𝑗 , 𝑏 𝑗 , 𝑐𝑖) is

being learned.

Training a DBN with 𝐿 layers results in a set of 𝐿 learned parameters 𝜃𝑙 , 𝑙 = 1, . . . , 𝐿, which

shall contain implicitly some information about the characteristics of used document images.

2.3 Supervised fine-tuning training phase

A labeled fine-tuning dataset is utilized as an input to a supervised feature learning algorithm.

This algorithm can be perceived as a simple Multi-Layer Perceptron (MLP) with the same

architecture as the utilized DBN and initialized using the set of learned parameters 𝜃𝑙 obtained at

the pre-training phase. In particular, after training our DBN at the previous stage, the parameters

of each layer 𝜃𝑙 are used in the initialization process of the same corresponding parameters at our

neural network in the current phase. A fine-tune process to the previously learned parameters 𝜃𝑙

is conducted and results in learning high-level hierarchical representations of each document

image.

2.4 Classification

A logistic regression classifier is added to our fine-tuning network, as an output layer, in order

to classify the used document images into two classes. The fine-tuning dataset is utilized

9 considering having real values at the visible nodes (input document image).
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in the classification training and testing processes using the document images’ high-level

representations obtained from the fine-tuning stage.

3. Experimental Results and Discussion

Many experiments have been conducted in order to assess our proposed approach. Besides

using f-measure as an evaluation metric, the following two steps are utilized. First, a cross-

validation technique with 10-folds has been used to evaluate the final classification performance.

Additionally, in order to investigate the effect of images’ layout complexity, we re-conducted the

experiments using a relaxed version of our dataset. In fact, the obtained results show that our

approach is notably effective in classifying images based on the presence of footnotes in them

even with images with complex layouts.

3.1 Datasets

The images used in our experiments are part of the ECCO dataset used for ”The Visibility of

Knowledge”10 project. We utilize two subgroups of this dataset within our proposed approach;

an unlabeled dataset that is utilized at the pre-training phase ; in addition, a labeled dataset is

exploited at the fine-tuning phase (i.e., this includes the processes of training, validation and

testing).

3.1.1 Pre-training dataset

An unlabeled dataset that contains 6895 document images is utilized to learn features in an

unsupervised-manner in the pre-training stage of our proposed approach.

3.1.2 Fine-tuning dataset

For fine-tuning and training our proposed approach, a labeled dataset that contains the ground-

truth of document images classes is utilized. This dataset includes 4322 labeled samples of

10 https://txtlab.org/2016/09/the-visibility-of-knowledge/
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ECCO dataset (2138 images contain footnotes and 2184 images without footnotes). In order to

study the effect of the images’ layout complexity on the results, about 1000 images with complex

structures have been removed. This has led to a relaxed version of the dataset with 2894 images.

The relaxed dataset only contains images with one column and does not contain figures, tables

or formulas. Fig. I-3 shows some examples of images with complex layouts.

Figure-A I-3 Examples of document images with complex layouts: (a) a simple page (b) a

page with formulas and figures (c) a page with two columns (d) a page with tables

3.2 Experimental Setup

In implementing our experiment, we used Python and Theano (Bergstra, Breuleux, Bastien,

Lamblin, Pascanu, Desjardins, Turian, Warde-Farley & Bengio, 2010). Our DBN network

composed of 2 layers, each layer contains 1000 hidden units. Specifically, the final architecture

can be described as 45x500 - 1000 - 1000 - 2. In this case, 2 represents the number of classes

(i.e., 0: an image with no footnote and 1: an image with a footnote). The utilized learning rates

for pre-training and fine-tuning are 0.01 and 0.05, respectively. In addition, a batch size with a

value 10 is set while considering 20 epochs for pre-training and 400 epochs for fine-tuning.

Furthermore, we used a 10-fold cross-validation setup to conduct our experiments. In each

cycle, 8 folds are assigned to training phase, 1 fold is used at the validation phase to tune the
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model’s hyper-parameters and the final fold is utilized as a test set to calculate the generalization

performance of our proposed model when applied to unseen test images.

3.3 Results

As demonstrated in Table I-1, our approach has an overall f-measure of 81.37% using the original

dataset; a value that has been increased by 4.46% after relaxing the problem. Investigating more,

we can observe a big difference between the precision and the recall values using the original

dataset; while, on the other hand, the difference between these values is so slight when it comes

to the relaxed set. This clearly indicates that the original set contains images with footnotes

that are hard to be detected; therefore, relaxing the problem and filtering out the dataset of its

complex images has noticeably contributed in improving the value of precision (around 7%).

These observations implies the critical role of images with complex structures in affecting the

classification overall performance, and raise the need to tackle them.

Table-A I-1 Experimental results using both the

fine-tuning original dataset and its relaxed version.

Values are in percent

Precision Recall F-measure
Orginal Set 78.75 84.37 81.37

Relaxed Set 85.63 86.16 85.83

4. Conclusion and Future Work

We have proposed a document image classification framework that is significantly suitable for

classification problems associated with a limited availability of labeled data. The proposed

approach aims to take advantage of the largely available unlabeled data through incorporating a

DBN-based unsupervised feature learning procedure. Our cross-validation-based experimen-

tal results demonstrated empirically that our approach can attain an efficient generalization

performance on classifying document images based on the availability of footnotes in them.

Although this framework is capable of acquiring many tangled features, it finds challenges in

dealing with document images with complex structures. The upcoming step towards a more
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efficient classification model that can tackle these challenges is to exploit more pre-training

data and investigate the criticality of the unlabeled data in reinforcing the overall classification

performance of our approach.
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