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Vers des modèles fiables de reconnaissance de sons basés sur des données:
développement d’algorithmes d’attaque et de défense

Mohammad ESMAEILPOUR

RÉSUMÉ

La classification des sons environnementaux (CSE) et la reconnaissance automatique de la parole

(RAP) ont toujours suscité un intérêt croissant de la part de l’industrie et du monde universitaire

en raison de leur vaste gamme d’applications pratiques dans la vie réelle. Par exemple, les réseaux

de capteurs multimédias, les systèmes de surveillance et les applications d’assistance vocale

intégrées dans nos smartphones utilisent principalement les modèles CSE et RAP. Compte tenu

des progrès significatifs réalisés au cours des dernières décennies, la précision de reconnaissance

des classificateurs de pointe introduits dans ces domaines a atteint de manière compétitive le

niveau de compréhension humain. Cependant, ces modèles de l’état de l’art basés sur des

données sont extrêmement vulnérables aux signaux adverses qui sont soigneusement conçus pour

tromper les classificateurs vers des sorties incorrectes. Techniquement, un signal contradictoire

comporte une légère perturbation qui peut être obtenue par une formulation d’optimisation, et il

force le modèle de reconnaissance à prédire des sorties incorrectes prédéfinies par un adversaire.

Cela pose un problème de sécurité majeur puisque les signaux adverses ne sont pas non plus

détectables par des évaluations subjectives. De plus, ces signaux malveillants sont transférables

de manière bĳective à des représentations 1D (c’est-à-dire le coefficient cepstral de fréquence

Mel - MFCC) et 2D (spectrogrammes 2D) telles que les transformées de Fourier à court terme

et les transformées en ondelettes discrètes. Étant donné que la majorité des modèles avancés de

CSE et de RAP sont formés sur des représentations, de tels spectrogrammes adverses peuvent

effectivement diminuer la précision de reconnaissance de ces modèles. Malheureusement, il

existe très peu de recherches sur la défense des classificateurs contre une variété d’attaques

adverses ciblées et non ciblées. De plus, ces approches ne sont peut-être pas assez fiables pour

protéger les modèles contre les attaques de type boîte blanche et boîte noire.

Comme il n’existe pas de définition standard de la fiabilité d’un algorithme de défense adversariale,

nous définissons nos propres implications de la fiabilité et imposons trois conditions principales.

Premièrement, un algorithme de défense fiable doit éviter toute opération de filtrage susceptible

d’obscurcir les informations du gradient ou de briser la matrice jacobienne. Deuxièmement,

il devrait faire un compromis raisonnable entre la précision de reconnaissance, la robustesse

contre les attaques adverses (taux de tromperie) et la complexité de calcul de l’algorithme afin

de fonctionner en temps réel. Troisièmement, il doit être conçu pour produire un classificateur

intrinsèquement fort afin de maximiser le coût de l’attaque (par exemple, le nombre total de

calculs de gradient requis) pour l’adversaire. De plus, le respect de chacune de ces conditions

ne doit pas entrer en conflit avec une autre. Dans cette thèse, nous développons des algorithmes

de défense et d’attaque fiables pour les systèmes CSE et RAP avancés de bout en bout et au

niveau des représentations, organisés en quatre chapitres et cinq annexes.
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Notre première contribution est le développement d’un classificateur CSE principalement en

ce qui concerne les conditions de fiabilité de notre troisième défense. Plus précisément, nous

concevons un classificateur basé sur un ensemble dans la partie frontale, car il est plus robuste

contre les attaques adverses. En outre, nous exploitons un réseau antagoniste génératif (RAG)

avec des architectures optimisées pour les réseaux générateur et discriminateur en arrière-plan

pour l’augmentation du spectrogramme. Nous démontrons que ce cadre de classification surpasse

d’autres architectures conventionnelles (par exemple, les machines à vecteurs de support) et

celles basées sur l’apprentissage profond sur des ensembles de données CSE de référence.

En deuxième lieu, nous développons une approche robuste pour sécuriser les modèles CSE

contre un large éventail d’attaques adverses de type boîte blanche et boîte noire. Cet algorithme

respecte toutes les conditions de fiabilité de la défense susmentionnées et il réalise un compromis

très raisonnable entre la précision de reconnaissance et le taux de tromperie des attaques. En

outre, nous étudions le rapport de transférabilité des attaques adverses entre les classificateurs

classiques et ceux basés sur les réseaux neuronaux. En fonction de ces résultats, nous avons

reconfiguré notre configuration dorsale pour combler l’écart entre la robustesse contre les

attaques et les performances du classificateur frontal. Par exemple, nous avons utilisé un

filtrage Highboost, une opération de réduction de la dimensionnalité, diverses visualisations

de spectrogrammes logarithmiques et un codeur automatique de débruitage convolutif. Les

expériences que nous avons menées sur quatre ensembles de données difficiles corroborent les

performances supérieures de notre approche de défense par rapport aux autres algorithmes.

Notre troisième contribution est la caractérisation expérimentale de la relation inverse entre

la précision de reconnaissance et la robustesse du classificateur de la victime contre les

attaques adverses ciblées et non ciblées. De plus, nous identifions quelques paramètres du

spectrogramme qui contribuent à maximiser le coût de l’attaque pour l’adversaire. Ceci est tout à

fait conforme à notre troisième condition de fiabilité qui oblige à développer un classificateur de

reconnaissance intrinsèquement fort. Ces paramètres doivent être appliqués avant la production

du spectrogramme, de sorte qu’ils n’affectent pas négativement la distribution de la matrice

jacobienne, que ce soit pendant l’entraînement ou l’exécution.

Comme quatrième contribution, nous développons une approche de défense haut de gamme

pour les systèmes RAP de bout en bout, en particulier les modèles de transcription de la parole-

en-texte. Cet algorithme est basé sur la synthèse d’un nouveau signal en utilisant la distance

d’accord ajustée et il répond entièrement à nos conditions de fiabilité de défense prédéfinies.

Nous utilisons un RAG multi-discriminateur avec de nouvelles architectures convolutionnelles

avec résidu pour les réseaux générateur et discriminateur. Ensuite, nous entraînons ce modèle

génératif dans l’espace de Sobolev car il est étroitement lié aux séries de coefficients de Fourier

comme le MFCC. En outre, nous proposons une nouvelle technique de contrainte pour le réseau

générateur afin d’améliorer sa stabilité et sa généralisation pendant l’entraînement et l’exécution

en temps réel, respectivement. Nous avons mené nos expériences contre des attaques adverses

de type boîte blanche et boîte noire qui ont été évaluées sur les systèmes de transcription avancés

DeepSpeech, Kaldi et Lingvo. Ces expériences indiquent que l’algorithme de défense proposé
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surpasse les autres approches en termes de taux d’erreur sur les mots et de précision au niveau

des phrases.

Le reste de nos contributions qui ont été publiées dans les conférences et letters du journals

phares du traitement du signal sont organisées en annexes. Elles comprennent quatre algorithmes

de défense et un algorithme d’attaque contradictoire développés pour les systèmes CSE et RAP.

Notre principale motivation pour le développement d’un algorithme d’attaque adversarielle est

l’introduction d’une attaque rapide et robuste à exploiter dans le cadre de la défense, comme

l’entraînement contradictoire.

Mots-clés: classification des sons environnementaux, reconnaissance de la parole, transcription

de la parole-en-texte, attaque adversariale, défense adversariale, spectrogrammes, décomposition

de Schur généralisée, distance d’accord, sous-espace adversatif, réseau antagoniste génératif.
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ABSTRACT

Environmental sound classification (ESC) and automatic speech recognition (ASR) have always

attracted increasing interest from industry and academia due to their extensive range of practical

applications in real-life. For instance, multimedia sensor networks, surveillance systems, and

voice assistance applications embedded into our smartphones unanimously employ ESC and

ASR models. Regarding the significant progress made over the last few decades, the recognition

accuracy of the cutting-edge classifiers introduced in these domains has competitively reached to

human-level of understanding. However, these state-of-the-art data-driven models are intensely

vulnerable against adversarial signals, which are carefully crafted to fool the classifiers toward any

incorrect output phrases. Technically, an adversarial signal carries a slight perturbation achievable

through an optimization formulation, and it forces the recognition model to predict incorrect

outputs as predefined by an adversary. This poses a major security concern since adversarial

signals are not detectable by subjective evaluations either. Moreover, these malicious signals are

bĳectively transferable to both 1D (i.e., Mel-frequency cepstral coefficient - MFCC) and 2D

representations (2D spectrograms) such as short-time Fourier and discrete wavelet transforms.

Since the majority of the advanced ESC and ASR models are trained on representations, hence

such adversarial spectrograms can effectively debase the recognition accuracy of these models.

Unfortunately, there is a limited number of investigations on defending classifiers against various

targeted and non-targeted adversarial attacks. Additionally, these approaches might not be

reliable enough to secure models against strong white and black-box attacks.

Since there is no standard definition for the reliability of an adversarial defense algorithm, we

define our implications from reliability and impose three main conditions. Firstly, a reliable

defense algorithm should avoid any filtration operations resulting in obfuscating gradient

information or shattering the Jacobian matrix. Secondly, it should make a reasonable trade-

off among recognition accuracy, robustness against adversarial attack (fooling rate), and the

algorithm’s computational complexity to work in real-time. Thirdly, it should be designed to

yield an inherently strong classifier to maximize the cost of attack (e.g., the total number of

required gradient computations) for the adversary. Moreover, complying with each of these

conditions should not conflict with another. This thesis develops reliable defense and attack

algorithms for the advanced end-to-end and representation-level ESC and ASR systems organized

into four chapters and five appendices.

Our first contribution is developing an ESC classifier mainly in regard to our third defense

reliability conditions. More specifically, we design an ensemble-based classifier in the front-

end since it is more robust against adversarial attacks. Furthermore, we exploit a generative

adversarial network (GAN) with optimized architectures for both the generator and discriminator

networks in the back-end for spectrogram augmentation purposes. We demonstrate that this
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classification framework outperforms other conventional (e.g., support vector machines) and

deep learning-based architectures on benchmarking ESC datasets.

As a second contribution, we develop a robust approach for securing ESC models from a wide

range of white and black-box adversarial attacks. This algorithm complies with all the defense

reliability conditions mentioned above, and it makes a reasonable trade-off between recognition

accuracy and attack fooling rate. Moreover, we study the adversarial transferability ratio between

conventional and neural network-based classifiers. According to these findings, we reconfigured

our back-end configuration to fill the gap between robustness against attacks and the performance

of the front-end classifier. For instance, we employed highboost filtering, dimensionality

reduction operation, various logarithmic spectrogram visualizations, and convolutional denoising

autoencoder. Our conducted experiments on four challenging datasets corroborate the superior

performance of our defense approach compared to other algorithms.

Our third contribution is experimentally characterizing the inverse relation between the recogni-

tion accuracy and robustness of the victim classifier against targeted and non-targeted adversarial

attacks. Additionally, we identified a few spectrogram settings that maximize the adversary’s

cost of attack. This is completely in line with our third reliability condition which obliges us

to develop an inherently strong recognition classifier. These settings should be applied before

spectrogram production; therefore they do not negatively affect the Jacobian matrix’s distribution

either during training or runtime.

As a fourth contribution, we develop an upscale defense approach for end-to-end ASR systems,

particularly speech-to-text transcription models. This algorithm is based on synthesizing a

new signal using the adjusted chordal distance, and it entirely meets our predefined defense

reliability conditions. We employ a multi-discriminator GAN with novel residual-convolutional

architectures for the generator and discriminator networks. Then, we train this generative

model in the Sobolev space since it is closely related to coefficients of Fourier series, such

as Mel-frequency cepstral coefficients (MFCC). Furthermore, we propose a new constraining

technique for the generator network to improve its stability and generalizability during training

and real-time execution, respectively. Finally, we run our experiments against white and black-box

adversarial attacks benchmarked on the advanced DeepSpeech, Kaldi, and Lingvo transcription

systems. These experiments indicate that our proposed defense algorithm outperforms other

approaches both in terms of word error rate and sentence-level accuracy.

The rest of our contributions published in the flagship signal processing conference and journal

letters are organized into appendices. They include four defense and one adversarial attack

algorithm developed for both ESC and ASR systems. Our main motivation for developing an

adversarial attack algorithm is introducing a fast and robust attack for exploiting in the reliable

defense frameworks such as adversarially training.
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over 10 experiments with different ŷ𝑖. Types of the attacks (targeted or

non-targeted) are represented by T and NT, respectively. Additionally,

the EOT-based algorithms are check-marked. Herein, 𝑛𝑜𝑡𝑎 stands

for the total rounds of robustness against consecutive over-the-

air playbacks using static positions for the pairs of speaker and

microphone. Outperforming results are shown in bold. . . . . . . . . . . . . . . . . . . . . .240



LIST OF FIGURES

Page

Figure 0.1 Overview of the thesis chapters. Journal and conference publications

are shown in blue and green boxes, respectively. Additionally,

solid arrows indicate the flow of dependency among chapters and

appendices (i.e., the source should be read before the associated

target). Likewise, the suggested readings which contribute to better

understanding the concepts of the chapters and appendices are

shown in dotted arrows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 1.1 General taxonomy of signal representation for ESC and ASR . . . . . . . . . . . . . . 20

Figure 1.2 General taxonomy of adversarial defense for ESC and ASR systems . . . . . . . 40

Figure 2.1 (a): Illustration of the original Cycle-Consistent GAN (CCGAN)

for image-to-image translation where the cycle consistency imposes

𝐺𝑆𝑇 (𝑆𝐹𝑎𝑘𝑒) ≈ 𝑇 and 𝐺𝑇𝑆 (𝑇𝐹𝑎𝑘𝑒) ≈ 𝑆. (b): The proposed Weighted

Cycle-Consistent GAN (WCCGAN) inspired by Zhu et al. (Zhu,

Liu, Qin & Li, 2017b). Generators in our framework are 𝐹𝑆𝑇 and

𝐹𝑇𝑆 equivalent to 𝐺𝑆𝑇 and 𝐺𝑇𝑆, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 2.2 Generator architectures for DWT spectrograms: left: 𝐹𝑆→𝑇 , and

right: 𝐹𝑇→𝑆. Values inside of parentheses indicate the number of

filters, height, and width of the spectrogram, respectively. . . . . . . . . . . . . . . . . . . 58

Figure 2.3 Network architecture for 𝐷𝑇 and 𝐷𝑆 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 2.4 Generated spectrograms using the WCCGAN for randomly drawn

sources (𝑆) and targets (𝑇). The 𝑆s and 𝑇s shown in the top four

rows indicate intra-class image-to-image translation. Specifically,

UrbanSound8k (𝑆 = 𝑇 : sea waves), ESC-10 (𝑆 = 𝑇 : person sneeze),

ESC-50 (𝑆 = 𝑇 : pouring water), and DCASE-2017 (𝑆 = 𝑇 : office).

Sources and targets for inter-class translation are shown in the five

bottom rows as in UrbanSound8k (𝑆: sea waves, 𝑇 : rain), ESC-10

(𝑆: person sneeze, 𝑇 : helicopter), ESC-50 (𝑆: wind, 𝑇 : pouring

water), and DCASE-2017 (𝑆: cafe, 𝑇 : office). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 2.5 Box-plots of the approaches from Table 2.5 in a 5-fold cross

validation setup for ESC-10, ESC-50, UrbanSound8k and DCASE-

2017 datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 3.1 Visualization for Eq. 3.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



XXIV

Figure 3.2 Overview of spectrogram generation and preprocessing. From

a single audio waveform, three spectrogram representations are

generated and processed through several blocks with the aim of

enhancing the 2D representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Figure 3.3 Overview of the proposed classification approach. Values in the

first block indicate sizes of square zones (blocks) from 16×16 to

128×128. Stride values in the second block correspond to the zone

sizes in the first block. For instance, a 96×96 block has stride 2,

and so on. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Figure 3.4 Spectrogram examples: (a) original; (b) black-blue-green (BBG);

(c) purple-gold (PG); (d) white-black (WB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Figure 3.5 Dimension reduction effect: (a) linear magnitude representation;

(b) reconstruction of (a) after reduction in half; (c) logarithmic

magnitude representation; (d) reconstruction of (c) after reduction

in half. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 3.6 Architecture of our CDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Figure 3.7 Example of a grid sliding over a spectrogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100

Figure 3.8 Model Comparison over the representations of Table 3.3 . . . . . . . . . . . . . . . . . . . 107

Figure 4.1 Effect of 𝑁MFCC on the front-end classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130

Figure 4.2 Normalization effect on the front-end classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Figure 4.3 Effect of Cepstral filtering on the front-end classifier . . . . . . . . . . . . . . . . . . . . . . .132

Figure 4.4 Effect of scales for 𝑁FFT on the front-end classifier . . . . . . . . . . . . . . . . . . . . . . . . .133

Figure 4.5 The effect of DWT frame length on the front-end classifier . . . . . . . . . . . . . . . .136

Figure 4.6 Crafted adversarial spectrograms for the three audio representations.

The original audio sample has been randomly selected from the

class of dog bark (𝑙 = 1). Examples shown in columns two to seven

are associated with the six adversarial attacks for the original input

sample. Required perturbation (𝛿) and the target labels (𝑙′) are

shown under each spectrogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136

Figure 4.7 Average transferability ratio of adversarial examples among

ConvNets. Higher ratios are shown in boldface. . . . . . . . . . . . . . . . . . . . . . . . . . . . .138



XXV

Figure 5.1 An overview of the proposed defense GAN approach. The 1D speech

signal (�𝑥𝑖) is converted to a STFT spectrogram (x𝑖). Moreover,

𝛾 [·] denotes the chordal distance adjustment required for making

x𝑖 in the same subspace of the synthesized spectrogram 𝐺 (z𝑖)
(z𝑖 ∈ R𝑑𝑧 is the latent random variable). The output speech signal

(�̂𝑥𝑖) is reconstructed using the i-STFT operation and the Griffin-

Lim phase approximation approach (Masuyama, Yatabe, Koizumi,

Oikawa & Harada, 2019). Additionally, rank(x𝑖) refers to the input

spectrogram’s rank according to its eigenvalues computed in the

Schur decomposition domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149

Figure 5.2 Overview of the proposed spectrogram subspace projection using

the chordal distance adjustment and a complementary regularization

term. The subsampling process is implemented with the distribution

N(0.5, 0.5𝐼) (ratio of 0.5) for avoiding ill-conditioned pencils

(Van Loan & Golub, 1983), and a dotted line shows the internal

loop. Upon producing a candidate set of 𝑍� vectors from the

given inputs, we select that z𝑖 which minimizes the adjusted chordal

distance between the synthesized spectrogram 𝐺 (z𝑖) and the input

spectrogram x𝑖. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Figure 5.3 Overview of the proposed GAN architecture (one generator and five

discriminators 𝐷𝑖,𝜃 for ∀𝑖 = 1 : 5) for spectrogram synthesis. Fully

connected (FC), convolution (Conv.), dilated convolution (D-Conv.),

transposed convolution (T-Conv.), and residual (Res.) layers are

followed by weight normalization. The top and bottom parts of the

layers refer to the input and output filters’ dimensions, respectively.

Moreover, 𝜈𝑖 for ∀𝑖 = 1 : 5 denotes the logits of the discriminator. . . . . . . . . 157

Figure 5.4 Monitoring the average learned modes (per batch size of 2×512)

by our GAN model during training on SPSTFT with different IPMs

indicates potential collapse over the total number of iterations . . . . . . . . . . . . .164

Figure 2.1 Crafted adversarial examples for the ResNet-56 using the six

optimization-based attack algorithms. The first column of the figure

denotes the original representations for the randomly selected sample

from the class of ’children playing’ in the UrbanSound8K dataset.

Other columns are associated with the attack algorithms namely,

BIM-a, BIM-b, JSMA, DeepFool, CWA, and PIA, respectively.

Adversarial Perturbation values have been written at the bottom of

each adversarial spectrogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196

Figure 3.1 Overview of the proposed end-to-end defense-GAN approach. The

1D signal converted to a 2D-DWT spectrogram is denoted as x𝑖 and



XXVI

the prior 𝑝𝑧 for z𝑖 ∈ R𝑑𝑧 is N(0, 0.4𝐼). Additionally 𝛾 [·] is the

chordal distance adjustment in the generalized Schur decomposition

domain (Esmaeilpour, Cardinal & Koerich, 2020b) and x̂𝑖 represents

the synthesized spectrogram from the generator. 1D signal is

reconstructed using inverse DWT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208

Figure 3.2 𝑘 steps minimization for the chordal distance adjustment between

𝐺 (z𝑖) and x𝑖. Similar to the predefined prior for z𝑖, the random

perturbation is also a function distributed over N(0, 0.4𝐼). The

inner loop is shown in dotted line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Figure 4.1 Overview of the proposed safe vector optimization procedure. 𝐺1

(main) and 𝐺2 are generators while 𝐷1 and 𝐷2 are discriminators.

Herein, x𝑖 stands for the input spectrogram, z1,𝑖 ∈ 𝑝𝑧,1 ∼ N(0, 𝐼),
and z2,𝑖 ∈ 𝑝𝑧,2 ∼ N(0, 0.4𝐼). Additionally, z𝑐

1,𝑖 and z∗𝑖 indicate the

candidate latent variable and the optimized safe vector, respectively. . . . . .225



LIST OF ALGORITHMS

Page

Algorithm 1.1 A typical pseudocode for adversarial attack in the end-to-end

framework (taken from Carlini & Wagner (2018)). Herein, L(·)
is the same as 𝐿 (·). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Algorithm 1.2 Another typical pseudocode for adversarial attack in the end-to-

end framework (taken from Yakura & Sakuma (2018)) . . . . . . . . . . . . . . . . . 37

Algorithm 1.3 A typical pseudocode for adversarial attack in the representation-

level framework (taken from Goodfellow, Shlens & Szegedy

(2015)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Algorithm 5.1 𝛾 [·] computation. We refer to Appendix I for more details (taken

from Esmaeilpour et al. (2020b)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148

Algorithms mentioned in the appendices, namely Algorithm I-1 and V-1, are not indexed herein.





LIST OF ABBREVIATIONS

A-GAN Autoencoder generative adversarial network

ASR Automatic speech recognition

BBG Black-blue-green representation

BIM Basic Iterative Method

BU Bayesian uncertainty

CC-DGAN Class-conditional defense generative adversarial network

CDA Convolutional denoising autoencoder

CD-GAN cyclic defense generative adversarial network

CIMP Cramér integral probability metric

CIR Channel impulse response

CNN Convolutional neural network, a.k.a. ConvNet

CRP Cross recurrence plot

CTC Connectionist temporal classification

CWA Carlini and Wagner attack, a.k.a. C&W

DA Data augmentation

DCT Discrete cosine transform

DNN Deep neural network

DWT Discrete wavelet transform

EA Evasion attack



XXX

EOT Expectation over transformation

ESC Environmental sound classification

ENH Enhanced spectrogram

FGSM Fast gradient sign method

GAA Genetic algorithm attack

GAN Generative adversarial network

GMM Gaussian mixture model

HMM Hidden Markov model

IPM Integral probability metric

JSMA Jacobian-based Saliency Map Attack

KD Kernel density

LBFGS Limited-Memory Broyden-Fletcher-Goldfarb-Shanno Szegedy

LFA Label Flipping attack

LID Local intrinsic dimensionality

LIVIA Le Laboratoire d’imagerie, de vision et d’intelligence artificielle

LLR Log-likelihood ratio

LSTM Long short-term memory

MFCC Mel-frequency cepstral coefficient

PESQ Perceptual evaluation of speech quality

PG Purple-gold representation



XXXI

RBF Radial basis function

RF Random forest

RIR Room impulse response

RNN Recurrent neural network

SIFT Scale-invariant feature transform

SKM Spherical K-means

SLA Sentence-level accuracy

SM Surrogate model

STFT Short-time Fourier transform

STOI Short-term objective intelligibility

SURF Speeded-up robust feature

SVD Singular value decomposition

SVM Support vector machines

SNR Signal to noise ratio

QZ The generalized Schur decomposition, a.k.a. QZ decomposition

WCCGAN Weighted cycle-consistent Generative adversarial network

WER Word error rate

WB White-black representation





LIST OF SYMBOLS AND UNITS OF MEASUREMENTS

𝑎(𝑡) Continuous signal

𝛼 Scalar value

𝑏 Bias term

𝜖 Optimization threshold

𝜁 Audible threshold

𝑟𝑖 (·) Distance between a spectrogram and its nearest neighbors

𝛿 Adversarial perturbation

𝜔 Frequency component

𝑠 Scale of transformation

𝜏 Room filter set

𝐺 (·) Generator network

z𝑖 Random input vector for the generator

z∗𝑖 Optimized safe vector for the generator

𝐷 (·) Discriminator network

𝐺𝑆→𝑇 Generator for mapping source to target

𝐺𝑇→𝑆 Generator for mapping target to source

L𝐺𝐴𝑁 Loss function for the generative adversarial network

L𝑡𝑜𝑡𝑎𝑙 Total loss function in a cyclic setup

L𝑐𝑡𝑐 Connectionist temporal classification loss



XXXIV

𝑙 (·) Loudness metric, a.k.a. distortion condition

ℓ𝑛𝑒𝑡 (·) Cross entropy loss

ℓ𝑚 Loss function for masking threshold

E(·) Statistical expectation

𝑝𝑟 (·) Probability distribution of real samples

𝑝𝑔 (·) Probability distribution of the generator network

det(·) Determinant operation

𝐻 (·) Hann window function

�𝑥org Original signal

�𝑥adv Adversarial signal

�𝑥𝑐 Candidate adversarial signal

xorg Original spectrogram

xadv Adversarial spectrogram

y Ground-truth phrase
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INTRODUCTION

Environmental sound classification (ESC) and automatic speech recognition (ASR, i.e., speech-

to-text transcription) have always been closely related and active research areas among the signal

processing communities. Technically, they have been in development for over half a century and

this is presumably due to their vast applications in real-life. For instance, towards analyzing the

surrounding scene either for surveillance (Valenzise, Gerosa, Tagliasacchi, Antonacci & Sarti,

2007; Radhakrishnan, Divakaran & Smaragdis, 2005; Cristani, Bicego & Murino, 2004) or

multimedia sensor networks (Steele, Krĳnders & Guastavino, 2013), there is a constant need

to recognize environmental sounds. Moreover, ESC models play an important role in smart

acoustic sensor network development (Mydlarz, Salamon & Bello, 2017), IoT-based services

(Shah, Tariq & Lee, 2019), smart city safety (Ciaburro & Iannace, 2020; Shah, Tariq & Lee,

2018), and context-aware computing (Chandrakala, Venkatraman, Shreyas & Jayalakshmi, 2021;

Chu, Narayanan & Kuo, 2009a; Toffa & Mignotte, 2020).

Likewise, there are numerous applications for ASR systems. In particular, nowadays almost all

the smartphones are equipped with standard voice command applications (e.g., Siri, Cortana,

Bixby, etc.), which rely on at least a built-in ASR model. Moreover, these models have been

recently embedded into devices, which should work under considerable amount of surrounding

noises in adverse scenarios (in the presence of environmental sounds). Such devices include but

are not limited to home appliances (e.g., smart TVs) and driver’s voice assist system in vehicles,

which are often involved in noisy environments. ASR systems should efficiently process human

or machine-produced speech signals and are designed to enhance user experience. Therefore,

the performance of these recognition models significantly matters since they should work in

real-time under any scenarios.

Over the past decades, huge improvements have been achieved for both ESC and ASR, especially

after the proliferation of deep learning algorithms. Taking only the last decade into account, we



2

notice a large volume of publications on developing data-driven classifiers, which have gradually

reached to the current state of competitiveness to the human level of understanding (Boddapati,

Petef, Rasmusson & Lundberg, 2017; Mozilla-DeepSpeech, 2017).

According to the literature, there are two categories of papers in developing data-driven models

for ESC and ASR:

1. end-to-end;

2. representation-level (a.k.a. spectrogram and frequency-level feature vectors).

In the first category, often raw 1D audio signals are used for training classification models

(Thomae & Dominik, 2016; Tokozume & Harada, 2017; Huang & Leanos, 2018). This

usually imposes computational overhead on the learning algorithms since 1D signals have high

dimensionality. On the other hand, algorithms that fit in the second category utilize one of

the following standard representations1 for training, namely Mel-Frequency cepstral coefficient

(MFCC) (Dave, 2013), short-time Fourier transform (STFT) (Benesty, Chen & Habets, 2011),

and discrete wavelet transform (DWT) (Tan, Lang, Schroder, Spray & Dermody, 1994). Since

the two latter representations yield the power spectrum of the given input signal, they are often

called 2D spectrograms. In the big picture, most of the published works on both ESC and ASR

fit in the spectrogram-level category. This is because the devised algorithms require much

fewer training parameters than the end-to-end counterpart. Furthermore, the highest recognition

accuracy have been often reported for algorithms trained on spectrograms or MFCCs (Povey,

Ghoshal, Boulianne, Burget, Glembek, Goel, Hannemann, Motlicek, Qian, Schwarz et al.,

2011; Mozilla-DeepSpeech, 2017; Piczak, 2015a; Shen, Nguyen, Wu, Chen, Chen, Jia, Kannan,

Sainath, Cao, Chiu et al., 2019).

1 We are aware that there are many standard representations for audio and speech signals. However,

according to the literature, MFCC, STFT, and DWT are the most popular representations.
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During the last few years, the major focus has been designing new architectures such as variants

of convolution (Sainath, Mohamed, Kingsbury & Ramabhadran, 2013; Chan, Park, Lee, Zhang,

Le & Norouzi, 2021), attention (Bahdanau, Chorowski, Serdyuk, Brakel & Bengio, 2016; Luo,

Zhang, Lei & Xie, 2021), and recurrent configurations (Graves, Mohamed & Hinton, 2013;

Lee, Kang, Cheon, Kim & Kim, 2021) to improve accuracy and generalizability of the ESC

and ASR models. However, it has been demonstrated that these advanced algorithms might

undergo extreme vulnerability against carefully crafted adversarial signals both in 1D and 2D

spectrogram domains (Carlini & Wagner, 2018; Huang, Lin, Lee & Lee, 2021).

In terms of distribution and acoustic characteristics, an adversarial signal is very similar to

the original samples. However it is optimized to fool the model to predict incorrect phrase(s).

Unfortunately, those crafted signals are capable enough to debase the performance of all the

data-driven models from conventional, namely Kaldi2 (Povey et al., 2011), to modern such as

DeepSpeech3 (Mozilla-DeepSpeech, 2017) and advanced ESC classifiers. Motivated by this

concern, we decided to conduct our research towards addressing the threat of adversarial attacks.

Problem Statement

Nowadays, many companies provide online services to their customers through automated

assistant machines, which are able to process human languages and hold conversation fluently4.

The security protocol of these machines is based on recognizing customer’s voice which is

known as the Voice-ID technology (Keane, 2010; Kaur, Sandhu, Gera, Kaur & Gera, 2020).

For commands such as applying for a new credit card, deactivating a debit card, and ordering a

mobile SIM-card, customers can directly communicate with automated machines. This saves

time, energy, and human resource. On the other hand, this technology has led to varieties

2 Kaldi uses hidden Markov models (HMMs).

3 DeepSpeech uses a sequence of long short-term memory (LSTM) units.

4 Such as Desjardins bank, Fido (Rogers) communication corporation in Canada and AT&T telecom-

munication company in USA.
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of motivations for hackers to take advantage of this online service. In fact, they can attack

the Voice-ID systems (using adversarial signals) to run after stealing private and personal

information of the customers and pursuing extortion. Unfortunately, this can be very harmful

both for companies and their customers.

The major focus of this thesis is developing approaches for defending state-of-the-art ESC and

ASR models against varieties of white and black-box5, as well as targeted and non-targeted6

adversarial attacks. This is a key step concerning the development of accurate data-driven signal

classifiers for many relevant applications. Our ultimate goal in the current work is effectively

moving toward the development of reliable defense algorithms. Unfortunately, to the best of our

knowledge, there is neither consensus nor standard definition for defense’s reliability. However,

our implication from reliability includes at least one of the following conditions7:

1. Avoiding Gradient Obfuscation: obfuscating gradients (intentionally blocking the normal

flow of gradients during training Athalye, Carlini & Wagner (2018b)) has been a common

issue with almost all the introduced adversarial defense algorithms thus far. Athalye

et al. (2018b) have initially characterized this issue which is also known as shattering

the Jacobian matrix distribution. They have demonstrated that defense algorithms based

on filtering8 the input samples aiming at removing the potential adversarial perturbation,

unanimously provide false senses of security against all types of attacks. Moreover, a simple

approximation of the model’s post-activation function (Tan & Motani, 2020)9 reduces the

performance of such defense algorithms to almost zero. Thus, one of our main conditions

5 In a white-box attack, the adversary has access to the victim model, architecture, dataset, training

hyperparameters, etc., while there are no such accesses in the black-box scenario.

6 When the attack algorithm is optimized toward a specific incorrect output, it is called targeted. Attack

algorithms that implement optimization formulations toward any incorrect outputs other than the

ground-truth are considered non-targeted.

7 Note that complying with each of these conditions should not violate another.

8 Direct pre/post-processing operations on the input samples.

9 This is known as backward-pass differentiable approximation method (Athalye et al., 2018b).
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in developing an adversarial defense approach is avoiding any variation of direct filtration

so that at least to some extent, circumvent gradient obfuscation. We believe that complying

with this condition yields to a correct sense of security.

2. Making Reasonable Trade-offs Among Model Accuracy, Attack Success Rate, and Computa-

tional Cost: according to Athalye et al. (2018b), there are two groups of reliable defense

approaches that also relatively (partially) meet the first condition:

a. adversarially training-based: these algorithms augment the original training dataset

with adversarial signals in order to force the classifier to learn distributions of the

crafted signals (Goodfellow et al., 2015). This is a solid defense strategy, however it

has two destructive side-effects:

– it negatively affects the recognition accuracy of the model,

– it imposes too much computational overhead on the training procedure since

crafting an adversarial signal requires solving a costly optimization problem10.

b. synthesis-based: these approaches synthesize a new signal for every given test sample

using a generative model, particularly the generative adversarial network (GAN)

(Samangouei, Kabkab & Chellappa, 2018b). These defense algorithms do not directly

filter input signals, and in fact, they find a safe vector for the GAN to craft a signal

similar to the original samples. However, not only these defense approaches often

suffer from instability11 and mode collapse12 issues during GAN training, but also

finding the safe vector is usually computationally expensive.

These two approaches are able to make a trade-off between maximizing the recognition

accuracy of the algorithm, minimizing the success rate (fooling rate) of the attacks, and

10 For instance, this might take on average 48 seconds for a six-seconds-length speech signal with the

sampling rate of 8 kHz on a NVIDIA GTX-1080-Ti-11 GB memory.

11 Such as exploding weight vectors for either generator or discriminator especially at larger iterations.

Generating oversmoothed samples is a common consequence of instability during training. We refer to

Chapter 2 for more information.

12 Losing sample variations and memorizing a limited number of modes.
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managing the computational complexity towards finding the aforementioned safe vector. A

reliable defense approach should make this trade-off as optimal as possible so that it works

in real-time.

3. Building Stronger Models: although it has been proven that adversarial examples exist

for all data-driven models on any scales (Papernot, 2018), it is possible to reconfigure the

architecture of the classifiers to:

a. relatively reduce the fooling rate of the attacks,

b. or at least maximize the cost of the attack for the adversary.

Moreover, it is feasible to implement some basic settings during data preparation to limit

the performance of the attack optimization procedure. For instance, we can find an optimal

sampling rate in converting a signal into a spectrogram in order to increase the cost of the

attack. Compared to the first and second conditions mentioned above, building a stronger

model is very subjective and it might require many try-and-error operations. However,

unlike those two conditions, it does not add any computational overhead during training.

This thesis explores possible approaches that somehow contribute to developing algorithms for

defending the cutting-edge ESC and ASR models subject to at least one of the three conditions

mentioned above.

1. Better Recognition Algorithm: focusing on devising a reliable adversarial defense approach,

does not diminish the importance of developing algorithms with higher recognition accu-

racies. More specifically, toward designing a defense approach that meets the conditions

mentioned above (especially the first and the third), we need to balance the recognition

accuracy of the classifier carefully. For instance, this is possible through developing new

data augmentation schemes and/or more complex algorithm architectures.
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2. Faster and more Robust Adversarial Attack13: this explicitly contributes to reducing the

computational complexity of the defense algorithm in adversarially training frameworks.

Additionally, it helps to understand the functionality of adversarial attacks and the victim

models in greater detail.

Research Objectives and Contributions

The main objective of this thesis is to develop approaches for defending data-driven ESC and

ASR models against varieties of adversarial attacks with both 1D and 2D representation domains.

Although we oblige all the approaches to comply with at least one of the reliability conditions

discussed in the previous subsection14, developing a fully reliable defense algorithm is still

an open problem. The most significant advantage of imposing those conditions is to avoid

introducing defense algorithms that provide false senses of security against strong adversarial

attacks.

We first study a large collection of classifiers proposed for ESC from conventional (e.g., spherical

k-means) to advanced deep learning-based classifiers. Upon conducting this investigation we

discuss that providing a more comprehensive sample distribution outweighs designing complex

architectures for the classifier.

Then, we propose an augmentation technique based on a high-level feature transformation using

a cycle-consistent GAN. This technique considerably improves the recognition accuracy of the

benchmarking classifiers, in addition to our proposed novel architecture. However, training

the GAN in this framework might not result in a stable model. Regarding this concern, in our

second step, we develop another classification algorithm to make a better trade-off between

high recognition accuracy and low attack success rate. Moreover, we replace a costly high-

13 Robust in terms of preserving the optimized adversarial perturbation after consecutive playbacks over

the air. We discuss this aspect in Appendix V.

14 In the problem statement section.
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level augmentation algorithm with a low-level transformation and spectrogram reconstruction

operations to enhance both the quality and quantity of the signals.

Third, towards developing stronger classifiers, we extend the latter work to study the relation

between fooling rate of the attack algorithm and signal representation15. We demonstrate that it is

possible to achieve a more reliable model without implementing any spectrogram reconstruction

operation. Nevertheless, this approach fits well for ESC models, which have been trained on

2D representations. For covering 1D signals, in our fourth step, we introduce a novel defense

approach against adversarial attacks developed for end-to-end ASR systems.

Since this thesis is manuscript-based, each chapter presents a different journal publication about

developing defense algorithms against a comprehensive list of cutting-edge adversarial attacks.

Overall, there are nine major contributions in this work which led to four journals and five

conference publications16. These contributions are listed below:

1. Introducing an unsupervised ESC algorithm using random forests (RF). We show that

training this algorithm on benchmarking datasets augmented with a cycle-consistent GAN

outperforms a few advanced deep learning classifiers (e.g., GoogLeNet and AlexNet).

This GAN employs a sequence of residual-convolutional architectures separately for the

generator and discriminator networks to provide a wider range of distinguishable features to

the front-end classifier. Our focus in this paper is improving the recognition accuracy of

the classifier over a baseline and state-of-the-art models. Our underlying motivation17 for

selecting RF rather than other data-driven configurations was its higher resiliency against

targeted adversarial attacks, specifically relative to deep learning architectures.

This publication had a significant role in getting us into the right direction towards

securing ESC and ASR classifiers against adversarial signals. Furthermore, our conducted

15 In fact, this study investigates the effect of spectrogram production settings on the model robustness.

16 Excluding two additional papers which are already published without peer-review, i.e. on arXiv.org.

17 Inspired by Papernot (2018).
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experiments on this ensemble-based algorithm led us to properly define the reliability

conditions as stated in the previous subsection18.

Related publication:

a. Esmaeilpour, M., Cardinal, P., and Koerich, A. L. (2019). "Unsupervised feature learn-

ing for environmental sound classification using weighted cycle-consistent generative

adversarial network." Elsevier Applied Soft Computing, 86, 105912.

2. Our second contribution is proposing an adversarial defense algorithm respecting all of our

predefined reliability conditions. We demonstrate that this approach makes a reasonable

trade-off between model accuracy and robustness against a wide range of adversarial attacks.

Finally, in order to better analyze the performance of our defense approach using a supervised

classification algorithm, we cross-examine its robustness against two attack groups:

a. algorithms which have been primarily developed for attacking conventional classifiers

(e.g., support vector machines - SVM),

b. algorithms designed for attacking deep-leaning-based architectures (e.g., variants of

convolutional neural networks - CNN).

Although these two groups are fundamentally different, they both implement optimization-

based procedures to fool the advanced data-driven recognition models toward any incorrect

phrases. As a part of our experiments during the development of this defense approach, we

also investigate adversarial signal transferability among conventional and deep learning-

based ESC models. Furthermore, for comparing the robustness of our proposed supervised

classification algorithm with other models, we measure their adversarial resiliency score

using the local intrinsic dimensionality (LID) metric (Ma, Li, Wang, Erfani, Wĳewickrema,

Schoenebeck, Song, Houle & Bailey, 2018). Finally, inspired by LID, we develop another

criterion for detecting adversarial signals using a subspace measurement technique.

18 Inside the problem statement subsection.
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Related publications:

– Esmaeilpour, M., Cardinal, P., and Koerich, A. L. (2019). "A robust approach for securing

audio classification against adversarial attacks." IEEE Transactions on Information

Forensics and Security (TIFS), 15, 2147-2159.

– Esmaeilpour, M., Cardinal, P., and Koerich, A. L. (2020). "Detection of adversarial

attacks and characterization of adversarial subspace." In IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP-2020), pp. 3097-3101.

3. Our third contribution is characterizing the relation between signal representation (i.e.,

MFCC, STFT, and DWT) and the model’s recognition accuracy as well as the fooling rate

of the attacks. This publication primarily concerns our third reliability condition, which

obliges us to develop an attack-resilient19 classifier from the base instead of devising a

separate defense algorithm on top of the achieved recognition model. We identify primary

spectrogram settings upon carrying out extensive experiments, which considerably affect

the cost of attack (the number of required gradient computations) for the adversary averaged

over the allocated budgets. Thus, from a statistical point of view, this algorithm might not

constitute an upscale defense approach. However, it finds a way to maximize the cost of

attack for the adversary.

In connection with our second contribution (Esmaeilpour, Cardinal & Koerich, 2020), we

also show that the MFCC representation has a relatively lower adversarial transferability

ratio among advanced deep learning architectures. Therefore, this defense approach also

meets the first reliability condition, which aims to avoid gradient obfuscation. In order to

investigate the satisfaction of the second reliability condition, we benchmark this algorithm

into the adversarially training framework. This framework helps to measure the robustness

of this defense approach subject to making a balance between recognition accuracy and the

total number of required gradient computations.

19 At least partially resilient.
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Related publications:

a. Esmaeilpour, M., Cardinal, P., and Koerich, A. L. (2020). "From sound representation

to model robustness." Currently under review at Elsevier Applied Acoustics Journal.

b. Sallo, R. A., Esmaeilpour, M., and Cardinal, P. (2020-2021). "Adversarially Training

for Audio Classifiers." In 25th International Conference on Pattern Recognition (ICPR),

(pp. 9569-9576). IEEE.

4. Our fourth contribution is developing a novel algorithm for defending ASR systems, from

conventional speech-to-text models (e.g., Kaldi) to modern LSTM-based neural network

architectures (e.g., DeepSpeech) against varieties of adversarial attacks. This defense

algorithm complies with our predefined reliability conditions, specifically the first two

items. Our main concentration in this publication is defending end-to-end systems against

adversarial attacks for safe real-time transcription. However, all the findings and experiments

are bĳectively generalizable to spectrogram-based classifiers.

Our proposed algorithm is based on implementing a multi-discriminator GAN defined in

the restricted Sobolev space (Brezis, 2010). Since this defense approach’s performance is

deeply dependent on the generalizability of the GAN, we also propose a new regularization

technique for stable training. In fact, this technique is an extension of our previous

publication about adversarial detection (Esmaeilpour et al., 2020b). Moreover, we introduce

simple yet effective architectures for both the generator and discriminator networks towards

smoothly training the GAN.

One of our potential concerns about this defense approach is occurring mode collapse (Mao,

Li, Xie, Lau, Wang & Smolley, 2018) during training the GAN at later iterations. This

might pose a security issue on the robustness of this algorithm. In response to this concern,

we develop two additional defense approaches:

a. introducing a novel configuration for the GAN based on the class-conditional generative

model (Mirza & Osindero, 2014),
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b. proposing a cyclic GAN including two generator networks for regularizing the joint

learning curve.

Since these two algorithms are synthesis-based, they meet the reliability conditions men-

tioned above for adversarial defense. However, they might be computationally expensive

especially for very long20 and multi-speaker speech signals. This motivated us to pursue

our research toward developing a fast adversarial attack and using the crafted signals for

adversarially training the ASR algorithm. Toward this end, we introduce a novel attack

algorithm using the Cramér integral probability metric (CIPM) (Bellemare, Danihelka,

Dabney, Mohamed, Lakshminarayanan, Hoyer & Munos, 2017). However in this thesis, we

neither discuss nor analyze the implementation of adversarially training for our CIPM-based

attack.

Related publications:

– Esmaeilpour, M., Cardinal, P., and Koerich, A. L. (2021). "Multi-Discriminator Sobolev

Defense-GAN Against Adversarial Attacks for End-to-End Speech Systems." Currently

under review at IEEE Transactions on Information Forensics and Security (TIFS)

Journal.

– Esmaeilpour, M., Cardinal, P., and Koerich, A. L. (2021). "Class-Conditional Defense

GAN Against End-to-End Speech Attacks." In IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP-2021), pp. 2565-2569.

– M. Esmaeilpour, P. Cardinal and A. L. Koerich, "Cyclic Defense GAN Against Speech

Adversarial Attacks," in IEEE Signal Processing Letters, vol. 28, pp. 1769-1773, 2021,

doi: 10.1109/LSP.2021.3106239.

– Esmaeilpour, M., Cardinal, P., and Koerich, A. L. (2021). "Towards Robust Speech-to-

Text Adversarial Attack". Currently under review at IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP-2022).

20 On average, above 140 seconds per sequence.
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Organization of the Thesis

This is a manuscript-based thesis. Thus every chapter corresponds to a journal paper. Fur-

thermore, papers that have been published in conference venues are organized into appendices.

Figure 0.1 depicts the organization of this thesis through a flowchart. As shown, journal and

conference publications are illustrated by blue and green boxes, respectively. Solid and dotted

arrows outline the type of relation among chapters and appendices. A solid arrow specifies that

a source publication should be read before its associated target publication to better understand

the discussed concepts and algorithms. Similarly, a dotted arrow designates a suggested reading

among chapters and appendices.

This thesis starts with an overview of the state-of-the-art ESC and ASR models designed

for real-time transcriptions (Chapter 1). We briefly review the properties of these models

and characterize the threat of adversarial attacks for them. Moreover, we summarize all the

introduced approaches for defending these models (both end-to-end and representation-level)

against varieties of adversarial attacks.

Chapter 2 presents an unsupervised feature learning approach for ESC using a weighted cycle-

consistent GAN. In this chapter, we review all the cutting-edge algorithms developed for ESC

and introduce our classification approach focusing on two major aspects:

1. high-level data augmentation for improving recognition accuracy of the classifiers. We

develop a novel residual-convolutional GAN architecture for such an aim and demonstrate

its superior performance over low-level augmentation techniques;

2. designing an unsupervised ensemble-based front-end classifier to increase the chance of

resiliency against targeted and non-targeted adversarial attacks. Although we do not directly

discuss adversarial defense techniques in this chapter, the proposed classifier meets our

predefined reliability conditions.
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Introduc on

Chapter 2: Unsupervised Feature Learning for
Environmental Sound Classifica on Using

Weighted Cycle-Consistent Genera ve
Adversarial Network

Literature Review

Chapter 3: A robust approach for securing 
audio classifica on against adversarial a acks

Chapter 4: From sound representa on 
to model robustness

Chapter 5: Mul -Discriminator Sobolev Defense-
GAN Against Adversarial A acks for End-to-End

Speech Systems

Appendix 1: Detec on of adversarial a acks 
and characteriza on of adversarial subspace

Appendix 2: Adversarially Training for Audio
Classifiers

Appendix 3: Class-Condi onal Defense GAN
Against End-to-End Speech A acks

Appendix 4: Cyclic Defense GAN Against Speech
Adversarial A acks

Appendix 5: Towards Robust Speech-to-Text
Adversarial A ack

Conclusion

Figure 0.1 Overview of the thesis chapters. Journal and conference

publications are shown in blue and green boxes, respectively.

Additionally, solid arrows indicate the flow of dependency among

chapters and appendices (i.e., the source should be read before the

associated target). Likewise, the suggested readings which contribute to

better understanding the concepts of the chapters and appendices are

shown in dotted arrows.

Chapter 3 presents a robust approach for securing ESC models against white and black-box

adversarial attacks. We argue that it is possible to make a reasonable trade-off between the victim
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model’s recognition accuracy and fooling rate. More specifically, we improve this trade-off

by proposing a new classification algorithm and few signal augmentation techniques: color

compensation for spectrograms, highboost filtering, dimensionality reduction and convolutional

denoising autoencoders. Additionally, we investigate the transferability of adversarial signals

bĳectively from attacks that have been developed against conventional and deep learning-based

architectures.

Chapter 4 presents a summary of our extensive experiments on identifying the relation between

spectrogram production settings (e.g., sampling rate, frame length, feature normalization, etc.)

and the model’s fooling rate against adversarial attacks. These experiments have been conducted

for addressing the third item of our predefined defense reliability conditions, which obliges us to

design more robust recognition algorithms. The front-end classifier in this chapter is a 16-layers

residual-based CNN without running any costly high-level data augmentation procedures. The

motivation behind using this classifier is its superior performance compared to other CNN

architectures both in terms of higher recognition accuracy and a relatively lower number of

required training parameters.

In Chapter 5, we introduce a novel adversarial defense approach according to our predefined

reliability conditions for end-to-end ASR systems. This algorithm is based on synthesizing a

new speech signal for every given test input. The main constraint during this synthesis procedure

is crafting a naturally-sounding signal relative to the available original recordings. Toward this

end, we develop a multi-discriminator GAN implemented in the restricted Sobolev space. Our

primary motivation for choosing this space is its strong correlation with the Fourier transform

coefficients such as matrices of MFCC and STFT spectrograms. We experimentally prove that

our proposed defense approach outperforms other algorithms both in terms of attack success

rate and preserving the quality of the signals.
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Appendix I characterizes the possibility of statistically measuring the distance between ad-

versarial and original signal subspaces using the chordal distance metric computed in the

Schur decomposition domain (Van Loan & Golub, 1983). This metric achieves a small value

between signals which lie in the same subspace and a large value for samples in dissimilar

subspaces. Using this metric, we experimentally prove that adversarial signals are conveniently

distinguishable from original and noisy samples. As shown in Figure 0.1, this paper is an

essential prerequisite for correctly understanding the defense approach proposed in Chapter 5.

Appendix II investigates the effect of adversarially training ESC models to address our second

defense reliability condition. We conduct our experiments on a wide range of complex classifiers

including modern deep learning blocks such as inception, attention, convolution, and residual.

We show that adversarially training considerably reduces the performance of the classifier.

However, it improves its robustness against six types of targeted and non-targeted adversarial

signals by constraining the attack algorithm over the maximum required adversarial perturbation

to a specific threshold.

Appendix III proposes a novel defense algorithm for defending both conventional and modern

end-to-end ASR systems. This approach is also based on synthesizing a signal seamless to

any given test speech recording. Moreover, it does not obfuscate gradient information21. Thus

it provides a correct sense of security for these transcription systems. The major difference

between this algorithm and the defense approach proposed in Chapter Chapter 5 is two-fold:

1. it introduces a class-conditional configuration with multiple embeddings instead of Sobolev-

GAN,

2. it implements simpler architectures for both the generator and discriminator networks.

21 This refers to some operations which manipulate the gradient vectors and consequently provide false

sense of security. More information can be found in (Athalye et al., 2018b).
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However, this algorithm partially degrades the quality of the signals during the synthesis

procedure. We address this concern as the following.

In Appendix IV, we introduce our third synthesis-based defense approach for end-to-end

transcription systems. Although herein we do not discuss the generalization of this algorithm

to the representation-level, our initial implementation corroborates its usefulness for models

trained on spectrograms. The generative model used in this approach is the standard least-square

GAN (Hong, Hwang, Yoo & Yoon, 2019), but with a new architecture. Therefore, reading

Appendix I is an essential prerequisite for understanding this defense approach.

Appendix V introduces a novel adversarial attack algorithm primarily for ASR systems. The

major motivation for developing this attack is three-fold:

1. proposing an algorithm for attacking super-complex speech-to-text models to work in

real-time22,

2. since crafting adversarial signals is computationally expensive, developing a fast attack

might improve the adversarially training procedure,

3. enhancing the resiliency of adversarial signals after playbacks over the air.

Summary

In this chapter, we explained the subject of this thesis and defined three reliability conditions for

securing ESC and ASR models against varieties of adversarial attacks. Moreover, we mentioned

our objectives and listed our contributions that have been published in journal and conference

venues. In the next chapter, we provide a comprehensive literature review on defense algorithms

developed for securing both ESC and ASR models against adversarial attacks.

22 At least partially.





CHAPTER 1

LITERATURE REVIEW

This chapter provides a detailed survey and comprehensive analysis of the state-of-the-art

adversarial defense algorithms developed for securing both end-to-end and representation-level

ESC and ASR systems. We start this chapter by concisely explaining signal representation

procedures that have become standard signal processing techniques over the last few decades.

Then, we briefly review the history of data-driven classification for audio and speech recordings.

Following this analysis, we characterize the existence of adversarial attacks for these models.

Finally, we provide the taxonomy of adversarial defense approaches with a brief discussion over

the imposed challenges.

1.1 Signal Representation

In this section, we explain three standard signal representation techniques, which have been

essentially developed for extracting more informative features from a 1D audio or speech

recording. In a big picture, there are three main motivations for developing signal representation:

(Pickett, 1999; Gold, Morgan & Ellis, 2011):

1. Acquisition devices such as standard microphones continuously record signals with consid-

erable overlap over time to capture a smooth signal. This operation contributes to audiotape

a high-quality signal somewhat without noticeable artifacts. However, it increases the

dimensionality of the signal;

2. As stated above, raw 1D signals have high dimensionality and training a data-driven classifier

on them often requires training more parameters. Generally, a signal’s dimensionality is

highly dependent on its sampling rate, duration, and number of channels. For instance, a one-

second-length signal with the minimum sampling rate of 8kHz distributed over two channels

contains 16k data-points. Obviously, generating a low-dimensionality representation for

such a signal improves the computational complexity of the learning algorithm considerably;
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Figure 1.1 General taxonomy of signal representation for ESC and ASR

3. Environmental noises, including microphone-speaker reverberation, room impulse response,

and echo, have always been among the damaging side-effects of digital recording (Sterne,

2015). Converting a recorded signal into a frequency representation substantially reduces

such side effects.

Generally, there are two main transformations for generating signal representation (spectrograms),

namely Fourier and wavelet. Figure 1.1 shows the general taxonomy of representations according

to their associated transformations. In the following subsections, we briefly explain the theories

behind each of these mainstream spectrograms.

1.1.1 Short-Time Fourier Transform: STFT

For a given single or multichannel continuous signal 𝑎(𝑡), which is distributed over time (𝑡), we

compute its STFT representation as (Pickett, 1999):

STFT
{
𝑎(𝑡)

}
(𝜏, 𝜔) =

∫ ∞

−∞
𝑎(𝑡)𝑤(𝑡 − 𝜏)𝑒− 𝑗𝜔𝑡𝑑𝑡 (1.1)

where 𝑤(·) is a Hann window function for smoothing purposes. Additionally, 𝜔 and 𝜏 are

frequency and time axes, respectively. This transform is fully generalizable to discrete-time

domain with any number of channels, as well.
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Assume a discrete signal 𝑎[𝑛] distributed over 𝑛 equidistance digital components (discrete time)

is given. The STFT representation for this signal can be computed as (Pickett, 1999):

STFT
{
𝑎[𝑛]

}
[𝑚, 𝜔] =

∞∑
𝑛=−∞

𝑎[𝑛]𝑤 [𝑛 − 𝑚]𝑒− 𝑗𝜔𝑛 (1.2)

where 𝑚 
 𝑛 and 𝜔 is a discrete frequency coefficient. For capturing more local features from

𝑎[𝑛], it is conventionally recommended to divide it into overlapping sub-signals and compute

Fourier transform on every resulting chunk (Pickett, 1999). This results in achieving an array of

complex coefficients for the entire signal. Computing the power spectrum of this array yields a

2D STFT spectrogram as follows.

SpSTFT

{
𝑎[𝑛]

}
[𝑚, 𝜔] =

����� ∞∑
𝑛=−∞

𝑎[𝑛]𝑤 [𝑛 − 𝑚]𝑒− 𝑗𝜔𝑛

�����2 (1.3)

This representation plots the frequency distribution of the given signal over discrete-time and

compared to both original signal 𝑎(𝑡) and 𝑎[𝑛], it has much lower dimensions. Nevertheless,

this transform is a lossy operation and we might lose some information during the transformation

(Pickett, 1999).

1.1.2 Mel-Frequency Cepstral Coefficient: MFCC

This transform is a condensed variation of the STFT with a few additional postprocessing

operations including nonlinear transformation and orthogonal normalization (Pickett, 1999).

After STFT production, we multiply every column of the achieved spectrogram with a number

of predefined Mel-filter banks (power estimates for amplitudes distributed over discretized

frequency components). This operation yields complex vectors with correlated distributions.

For enhancing the resolution and quality of the resulting vectors, it is recommended to run a

logarithmic filtration procedure (Pickett, 1999). The last step is mapping these filtered vectors

into another 1D representation using the discrete cosine transform (DCT). The motivation behind

employing DCT is decorrelating vectors with similarities above a predefined threshold and
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consequently reducing dimension of the input signals (Pickett, 1999; Han, Chan, Choy & Pun,

2006; Zhu & Alwan, 2001).

During the last few decades, this representation has been widely used for audio and speech

enhancement and more importantly, for classification purposes. The majority of ASR models

use MFCC representation such as Kaldi and the cutting-edge DeepSpeech systems. Furthermore,

this 1D spectrogram has been well established as a fairly standard representation for conventional

generative models employing Markov chain and Gaussian mixture models (Shi, Ahmad,

He & Chang, 2018; Maurya, Kumar & Agarwal, 2018).

1.1.3 Discrete Wavelet Transform: DWT

In terms of functionality, the DWT is almost the same as STFT. However, the latter is simpler

since it uses more straightforward basis functions23. Discussion on the advantage of either of

these two transformations over another is out of the scope of this thesis. However, we mention

a few of their differences (Chui, 1993; Pickett, 1999; Jensen & la Cour-Harbo, 2001; Young,

2012; Addison, 2017):

1. the STFT only provides a spectrum of frequency distributions (from low to high), but DWT

provides a similar spectrum with the localization of frequency components,

2. basis functions in DWT (a.k.a. mother functions) are not limited to the perpendicular sin(·)
and cos(·), and they include a variety of complex mathematical relations,

3. correlation of frequency components in DWT is usually greater than STFT. This sometimes

interprets as an advantage and is often considered as a disadvantage. In fact, the correct

interpretation is relative to the application.

23 The functions used for bĳectively converting 𝑎[𝑛] to frequency representation. For instance, the basis

functions used for the STFT and its variants are sin(·) and cos(·).
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Mathematically, the DWT maps the continuous signal 𝑎(𝑡) into time and scale (frequency)

coefficients through convolving it with a predefined basis function (Chui, 1993):

DWT
{
𝑎(𝑡)

}
=

1√
|𝑠 |

∫ ∞

−∞
𝑎(𝑡)𝜓

(
𝑡−𝜏
𝑠

)
𝑑𝑡 (1.4)

where 𝑠 and 𝜏 denote the scale and time variations, respectively. Additionally, 𝜓 is the mother

function (the core basis function as defined in Eq. 1.5). There are a variety of mother functions

for different applications and to the best of our knowledge, there is no analytical way to find the

most optimal function. However, the complex Morlet has always been among common mother

functions especially for ESC and ASR applications (Stephane, 1999). The formal definition for

this function is as follows (Stephane, 1999):

𝜓(𝑡) = 1√
2𝜋

𝑒− 𝑗𝜔𝑡𝑒−𝑡
2/2 (1.5)

where the scale of 𝑡2 is subjective and it can be changed during convolution with 𝑎(𝑡). Eq. 1.4

can be straightforwardly generalized to discrete signals such as 𝑎[𝑛] without any additional

computational overhead (see Eq. 1.6).

DWT
{
𝑎[𝑘, 𝑛]

}
=

∞∑
𝑛=−∞

𝑎[𝑛]𝜓 [𝑛, 𝑘] (1.6)

where 𝑛 and 𝑘 are integer values for the discrete mother function. The power spectrum for this

transformed signal is a 2D array:

SpDWT

{
𝑎[𝑛]

}
=
���DWT

{
𝑎[𝑘, 𝑛]

}���2 (1.7)

where it yields a 2D spectrogram for any given audio or speech signal. In the following

sections, we review the state-of-the-art machine learning algorithms designed for dealing with

representation-level and 1D signals.
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1.2 Environmental Sound Classification: ESC

Regarding the vast applications of ESC for real-life challenges, especially for scene understanding

(Kim, Sundaram, Georgiou & Narayanan, 2009; Brust, Sickert, Simon, Rodner & Denzler,

2015), numerous algorithms have been introduced thus far. In general, we can organize the

proposed approaches into different categories as the following.

1.2.1 Shallow Vs. Deep Learning-Based Classifiers

Conventional classifiers refer to all the non-deep neural network-based data-driven algorithms,

which usually use hand-crafted features (derivable from 1D signals such as MFCC or spectro-

grams) for training and evaluation purposes, such as SVM (Wang, Wang, He & Hsu, 2006;

Valero & Alías, 2012a,b; Umapathy, Krishnan & Rao, 2007), nearest neighbour (da Silva,

W Happi, Braeken & Touhafi, 2019; Tsalera, Papadakis & Samarakou, 2020), random forest

(Piczak, 2015b; Homsi, Medina, Hernandez, Quintero, Perpiñan, Quintana & Warrick, 2016),

hidden Markov model (Vacher, Serignat & Chaillol, 2007; Su, Yang, Lu & Wang, 2011; Ling-li,

2011), adaptive boosting (Chiu, Gestner & Anderson, 2011), bootstrap aggregation (Alsouda,

Pllana & Kurti, 2019), cascading (Foggia, Saggese, Strisciuglio & Vento, 2014), classification

tree (Breiman, Friedman, Olshen & Stone, 1984), learning vector quantization (Tang, Liu, Chen,

Zhou & Ding, 2007; Syafria, Buono & Silalahi, 2014), extreme learning machine (Ahmad,

Agrawal, Joshi, Taran, Bajaj, Demir & Sengur, 2020), etc. These algorithms, especially SVM-

based approaches, have been very popular before the proliferation of deep learning configurations.

The major challenge in all the abovementioned algorithms is handcrafting a comprehensive set

of features from either 1D signals or the associated spectrograms (Hu, Xu & Wu, 2007).

During the last decade, with the remarkable progress in both software and particularly hardware

developments, data-driven classifiers have been mostly focused and redirected towards deep

learning architectures. These architectures bypass the challenging part of feature extraction in a

conventional classification framework, and they relatively provide a wider learning subspace.

To name a few of these algorithms, we can mention variants of convolution (Zhang, Zou & Shi,
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2017; Salamon & Bello, 2017; Sailor, Agrawal & Patil, 2017; Su, Zhang, Wang & Madani,

2019; Zhang, Zou & Wang, 2018a; Park & Yoo, 2020; Chen, Guo, Liang, Wang & Qian, 2019;

Mushtaq & Su, 2020; Park & Yoo, 2020; Lu, Ma, Liu & Qin, 2021), recurrent (Guzhov, Raue,

Hees & Dengel, 2021; Palanisamy, Singhania & Yao, 2020; Nasiri & Hu, 2021), attention (Zhang,

Xu, Zhang, Qiao & Cao, 2019b; Sharma, Granmo & Goodwin, 2019; Miyazaki, Komatsu,

Hayashi, Watanabe, Toda & Takeda, 2020), and LSTM architectures (Rahman, Rahman,

Hossain, Hossain, Akhond & Hossain, 2021; Constantinou, Michaelides, Alexopoulos, Pieri,

Neophytou, Kyriakides, Abdi, Reodica & Hayes, 2021; Chandrakala et al., 2021). Compared to

conventional algorithms, deep learning-based classifiers often yield a more accurate (mainly in

terms of generalizability) model at the cost of requiring much more training parameters (Zhang,

Quan & Ren, 2016).

In addition to the categories mentioned earlier, some hybrid ESC algorithms use the combination

of conventional and deep learning architectures (Agrawal, Sailor, Soni & Patil, 2017; Demir,

Turkoglu, Aslan & Sengur, 2020; Akbal, 2020). In most of these algorithms, the employed neural

network replaces the traditional feature extraction techniques to provide more discriminative

feature vectors to the front-end conventional classifier. There are many debates on developing

hybrid algorithms. However, we do not discuss them in this thesis. Instead, we mention a few of

our own experiences upon conducting exploratory experiments on hybrid algorithms:

1. they usually cannot outperform dense CNNs and the associated variants (e.g., residual-

convolutional networks),

2. they often require fewer training parameters compared to fully deep learning-based classifiers,

3. they unanimously make a better trade-off between model’s recognition accuracy and the

adversarial attack robustness24.

1.2.2 End-to-end Vs. Representation-Level Learning

The end-to-end classification framework includes all the algorithms which do not use any types

of representations for training, neither 1D nor 2D spectrograms. In terms of cardinality, the

24 We refer to Chapter 2 and 3 of this thesis.
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total number of representation-level classifiers is much more than end-to-end counterparts.

Furthermore, the highest recognition accuracy has often been reported for algorithms trained

on spectrograms (Boddapati et al., 2017). However, this does not diminish the importance of

developing end-to-end ESC models since:

1. unlike all the representation-level algorithms, the end-to-end classifiers use the entire

information of the signal25,

2. developing an adversarial signal is much more costly than developing an adversarial

spectrogram. Technically, this does not constitute a defense policy. However, it makes the

attack more costly for the adversary.

EnvNet (Tokozume & Harada, 2017) and EnvNet-V2 (Tokozume, Ushiku & Harada, 2018)

are among the latest ESC models which introduce a new perspective in end-to-end learning.

More specifically, they employ the between-class learning policy for effective training. This

policy contributes to maximizing intra-class similarity and minimizing over the inter-class

correlation. Another novel end-to-end algorithm has been introduced in line with this approach,

which implements a multiresolution CNN (Zhu, Xu, Wang, Zhang, Li & Peng, 2018b). All

these 1D algorithms have been successfully evaluated on standard benchmarking environmental

sound datasets such as ESC-10, ESC-50 (Piczak, 2015b), and UrbanSound8K (Salamon,

Jacoby & Bello, 2014a).

The majority of the latest recognition algorithms which fit in the representation-level category

are based on dense CNNs such as variants of Piczak-CNN (Piczak, 2015a; Salamon & Bello,

2017; Agrawal et al., 2017; Tak, Agrawal & Patil, 2017). All these networks employ different

architectures and they have been designed to improve both the performance and the model’s

generalizability. VGG-like architectures are also among popular configurations for ESC (Zhang

et al., 2019b; Zhang, Xu, Cao & Zhang, 2018b). This is presumably due to the popularity of VGG

networks in the computer vision domain (Simonyan & Zisserman, 2015). All these algorithms

have also been experimented on challenging datasets and they have demonstrated recognition

25 Converting a signal into a spectrogram is considered a lossy operation. Thus, representation-level

algorithms might not have access to the entire information of the designated signals.
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accuracies competitive to the human level of understanding (Wang, Zou, Chong & Wang, 2019;

Boddapati et al., 2017).

1.2.3 Semi-supervised Vs. Supervised Learning

In general, we can also categorize all the introduced ESC algorithms into semi-supervised and

supervised groups since unsupervised approaches take up a small portion of the data-driven

recognition models. We acknowledge the existence of many debates in this regard. However, we

do not cover them herein since they are out of the scope of this thesis.

Supervised algorithms are fairly straightforward and we have mentioned the majority of them in

Sections 1.2.1 and 1.2.2. Therefore, herein we briefly review some cutting-edge semi-supervised

algorithms.

For bridging the gap between the scarcity of labeled data and the optimal amount of training

signals in the context of ESC, many approaches have been introduced during the last decade

(Han, Coutinho, Ruan, Li, Schuller, Yu & Zhu, 2016; Zhang & Schuller, 2012; Serizel,

Turpault, Eghbal-Zadeh & Shah, 2018; Bodini, 2019). These algorithms have been proposed to

developing high-resolution models with a limited number of training signals, such as the ESC-10

dataset (Piczak, 2015b), which contains only 2k five-second-length environmental sounds.

Competitive to these approaches, an echo state networks-based semi-supervised algorithm has

been proposed to tackle small datasets’ training issues (Scardapane & Uncini, 2017). Moreover,

semi-supervised classifiers have been extensively exploited for audio tagging and event detection

(Chu, Narayanan & Kuo, 2009b; Akiyama & Sato, 2019; Cances & Pellegrini, 2021; Lin, Wang,

Liu & Qian, 2020).

In the next section, we review the state-of-the-art algorithms developed for ASR applications,

particularly for real-time speech-to-text transcription.
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1.3 Automatic Speech Recognition - ASR: Speech-to-Text Transcription

Over the last decades, impressive progress has been made in developing automatic speech-to-text

transcription systems. Nowadays, these advanced systems are among the inevitable services of

all the smart devices, from personal digital assistances (e.g., cellphones, iPad, etc.) to voice

command devices in modern vehicles, especially autonomous cars. In this section, we only

review such state-of-the-art systems, which have been:

1. designed to work in adverse scenarios efficiently26,

2. benchmarked for developing adversarial attack and defense algorithms.

Therefore, other aspects of ASR systems such as speaker identification, linguistic modeling,

language identification, speech coding, acoustic-phonetic simulations, multimodal processing,

emotion recognition, etc. do not fit this thesis’s context. In the following, we briefly study three

main benchmarking speech-to-text systems.

1.3.1 Kaldi

This is one of the popular speech-to-text transcription systems which has been properly maintained

over the last few years. This system has been gradually adapted to develop the deep learning

algorithms initiated by Povey et al. (2011). Kaldi contains four major processing layers as

follows27.

1.3.1.1 Extracting Acoustic Features

The first layer extracts features from the given speech signals since Kaldi is a representation-level

ASR model. The main representation scheme used in this speech-to-text system is MFCC.

However, it also uses the perceptual linear prediction (PLP) feature extraction technique (Hönig,

Stemmer, Hacker & Brugnara, 2005). PLP is a variant of STFT that employs loudness adjustment

26 With the existence of surrounding noises and environmental sounds.

27 We are aware that Kaldi includes additional processing layers; however we have intentionally excluded

them so as to avoid presenting unnecessary complicated concepts.
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and recursive cepstrum computation procedures (Childers, Skinner & Kemerait, 1977) to achieve

more comprehensive signal descriptors28.

1.3.1.2 Training Monophone and Triphone Models

This acoustic model does not contain any explicit contextual information about phonetics (neither

the preceding nor the subsequent phonetics). Phonetic refers to any distinction of the given

speech signal, and in fact, every signal contains a chronological series of analytical phonetics29.

The training procedure can be implemented with the hidden Markov model (HMM), Gaussian

mixture model (GMM), or deep neural network (DNN). All these generative models yield a

vector of embeddings associated with every monophone30. The earlier versions of Kaldi used to

work with HMM plus GMM embeddings, and recently they have been augmented (replaced)

with DNNs.

1.3.1.3 Aligning Signals with the Achieved Acoustic Models

This layer (a.k.a. Viterbi training) is for tuning the achieved embeddings with the ground-truth

references (Franzini, Lee & Waibel, 1990; Spitkovsky, Alshawi, Jurafsky & Manning, 2010).

The motivation behind taking this step is that all the obtained parameters upon training the

aforementioned acoustic modelings may not necessarily represent an accurate sample distribution.

Therefore, it is recommended to cycle through the layers of acoustic modeling and alignment

iteratively.

Viterbi training is an important process in Kaldi’s speech-to-text transcription, especially for

utterances including multispeaker signals (Yoma & Villar, 2002). This realignment procedure

28 Feature vector(s).

29 We refer to Rabiner (1989) for more explanations about phonetics (a.k.a. phone or embedding)

modeling.

30 Monophone is a single phonetic element, and triphone denotes a phoneme variants with the presence

of left and right phonemes.
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directly contributes to correctly tuning the front-end classifier, as well (Arik, Diamos, Gibiansky,

Miller, Peng, Ping, Raiman & Zhou, 2017).

1.3.1.4 Linear Discriminant Analysis: LDA

This layer prepares the HMM states using LDA and maximum likelihood linear transform

(Leggetter & Woodland, 1995; Gales, 1998) for the front-end classifier. Moreover, these two

operations reduce the feature space for yielding a unique transformation for every speaker. The

last step is adaptive training (Anastasakos, McDonough, Schwartz & Makhoul, 1996) to map

embeddings into tokens31.

In this subsection, we briefly reviewed the Kaldi speech-to-text system, which uses a combination

of HMM, GMM, and DNN configurations. Recently, it has been demonstrated that fully DNN-

based transcription models can outperform conventional systems without Kaldi’s time-consuming

preprocessing operations (Mozilla-DeepSpeech, 2017). We review two of such systems in the

following subsections.

1.3.2 DeepSpeech

This speech-to-text transcription system is based on the advanced recurrent neural network (RNN)

and similar to Kaldi, it is also categorized into the representation-level speech recognition model.

The type of spectrogram used in this RNN-based system is MFCC, and since there are many

variants for DeepSpeech (Hannun, Case, Casper, Catanzaro, Diamos, Elsen, Prenger, Satheesh,

Sengupta, Coates et al., 2014), herein, we only focus on Mozilla’s standard implementation

(Mozilla-DeepSpeech, 2017).

Mozilla’s DeepSpeech exploits sequences of stacked LSTMs with five layers of hidden units.

The last layer of this architecture is bidirectional (Huang, Xu & Yu, 2015), followed by forward

and backward recurrence modules before the softmax operation. This configuration contributes

31 Characters without duplication. Herein, additional postprocessing operations are excluded for clarity

purposes.
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to having a larger memory capacity distributed over time and it also better captures local

distributions of the MFCC representation. Moreover, this system employs the standard jittering

regularization scheme (Krizhevsky, Sutskever & Hinton, 2012) for convenient sequence-to-

sequence translations. As a result, DeepSpeech has been efficiently implemented and fully

supports parallel computation for real-time transcription. The main advantages of DeepSpeech

over Kaldi is twofold:

1. unlike Kaldi, it does not incorporate any costly preprocessing, acoustic modeling, and the

iterative embedding tuning procedures,

2. the maintenance and development of DeepSpeech are very straightforward since it is fully

implemented in Python. The main core of the standard Kaldi API32 is written in C++ which

may not conveniently cope with some python packages developed for adversarial attacks

(e.g., Foolbox(Rauber, Brendel & Bethge, 2017) and Cleverhans (Papernot, Faghri, Carlini,

Goodfellow, Feinman, Kurakin, Xie, Sharma, Brown, Roy et al., 2016b)).

The dataset used for training the DeepSpeech is Mozilla common voice33 (MCV, 2019), including

more than 1000 hours of short and long utterances with various dialects, accents, genders,

language, and ages. This comprehensive dataset has also been used for transfer learning and

the model’s fine-tuning purposes among RNN-based architectures (Ardila, Branson, Davis,

Henretty, Kohler, Meyer, Morais, Saunders, Tyers & Weber, 2019; Winata, Cahyawĳaya, Lin,

Liu, Xu & Fung, 2020). Moreover, variants of these recurrent networks with practical APIs have

been generalized to other large datasets. In the following, we briefly review one of such strong

APIs developed for another huge benchmarking speech dataset.

1.3.3 Lingvo

This speech-to-text API is also a fully deep learning-based transcription system and similar

to DeepSpeech, it does not incorporate any costly acoustic modeling procedures (Sutskever,

Vinyals & Le, 2014). However, the architecture of this RNN-based system is relatively complex

32 Application programming interface.

33 https://voice.mozilla.org/en/datasets
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since it uses stacked LSTM layers with attention configurations (Bahdanau, Cho & Bengio,

2015). Lingvo is inspired by Chan, Jaitly, Le & Vinyals (2016) in developing a recognition

framework based on the listen, attend, and spell model. This framework launches a dense

architecture for sequence-to-sequence modeling using consecutive layers of attention blocks.

Lingvo is also a representation-level transcription system and it primarily uses MFCC for training.

However, it adapts well with other representations such as STFT and DWT. This system feeds

the achieved MFCC vectors into an encoder which implements a sequence of convolution and

recurrent layers. Then, it exploits an LSTM-based decoder to map features into the tokens

(characters).

The dataset used for training the Lingvo is LibriSpeech (Panayotov, Chen, Povey & Khudanpur,

2015) which includes a large collection of speech signals with various durations, number

of channels, speakers, and environmental settings. There are also smaller variations for

this dataset which have also been recognized as standard benchmarking subsets for speech

recognition (Zen, Dang, Clark, Zhang, Weiss, Jia, Chen & Wu, 2019). The major concern

with LibriSpeech and its variants is that they do not include a comprehensive list of multi-

language utterances. Recently, French-speaking utterances have been augmented with the latest

release of LibriSpeech, nevertheless transfer learning is still required for model tuning purposes

(Kocabiyikoglu, Besacier & Kraif, 2018).

In Sections 1.2 and 1.3 we briefly explained categories of algorithms that have been developed

for ESC and ASR. In the following section, we characterize the existence of adversarial signals

for these recognition models.

1.4 Characterizing Adversarial Attacks for ESC and ASR Systems

There is no consensus on the initial characterization of adversarial attacks for the data-driven

recognition models. However, there have been many publications in this regard since decades

ago (Takahata, Imai & Tsuji, 1992; Mustafa, Khan, Hayat, Goecke, Shen, Shao et al., 1995;

Xiao, Xiao & Eckert, 2012). This field of research reemerged after the recent development
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of deep neural networks with the comprehensive discussion provided by Szegedy, Zaremba,

Sutskever, Bruna, Erhan, Goodfellow & Fergus (2014). Over the last few years, a large volume

of publications has been made and they have seriously challenged the recognition performance

of the state-of-the-art classifiers. These attacks have been designed for both end-to-end and

representation-level ESC and ASR recognition systems.

Typically, an adversarial attack is an optimization formulation toward crafting inputs for the

classification model according to two constraints:

1. they should be seamless to the original samples,

2. they have to redirect the victim model to predict incorrect output(s).

The optimization procedure iteratively finds an optimal perturbation for every original signal

subject to fool the model toward wrong predictions. In the following subsections, we explain

some properties of adversarial attacks developed against ESC and ASR systems.

1.4.1 Attack Properties

In a big picture, we can describe an adversarial attack algorithm according to its characteristics

such as perceptibility of the perturbation, accessibility to the victim model, specificity of the

predictions, and metrics for measuring the magnitude of the perturbation. We explain these

properties as follows.

1.4.1.1 Adversarial Perceptibility

Generally, there are two types of perceptions for adversarial signals (Akhtar & Mian, 2018).

In the first type, adversarial signals are perceivable by humans34 (positive). However, the

trained model cannot predict the correct output (negative). This type is commonly known as

a false-negative adversarial example (Akhtar & Mian, 2018). In the second category (a.k.a.

false-positive), the adversarial signal is neither perceivable by humans nor the recognition model.

34 Either visually through observing weird patterns in the spectrogram or hearing strange noises upon

playing the signal.
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This thesis focuses on the latter type since it is more closely related to the real-life threats of

adversarial attacks.

1.4.1.2 Model Accessibility

For cases where the adversary has access to the transcription model, architecture of the classifier,

training dataset, tuning hyperparameters, etc., the developed attack is considered as a white-box

algorithm (Athalye & Carlini, 2018; Gil, Chai, Gorodissky & Berant, 2019). The opposite

scenario of this case constitutes a black-box attack (Ilyas, Engstrom, Athalye & Lin, 2018; Jiang,

Ma, Chen, Bailey & Jiang, 2019).

Regarding cardinality, the total number of available publications on the white-box adversarial

attack is relatively more than the black-box counterpart. This presumably has two incentives

(Cheng, Dong, Pang, Su & Zhu, 2019):

1. developing a black-box adversarial attack is extremely more challenging than a white-box

algorithm. Since in the black-box scenario the recognition model is not accessible, the

adversary should:

a. carefully approximate the weight vectors in order to yield a surrogate model (SM)

to retrieve the decision boundary of the victim classifier (Uesato, O’donoghue,

Kohli & Oord, 2018; Tang, Ma, Chen, Guo, Wang, Zeng & Zhan, 2020),

b. reformulate the attack procedure toward the achieved SM.

Both these two steps are challenging and impose considerable computational overhead to

the entire adversarial optimization procedure.

2. The white-box attack development is mostly in regard to understanding the functionality of

the data-driven models and their pitfalls. However, investigations on the black-box attacks

address the complicated real-life applications (Goodfellow et al., 2015).

In this thesis, we cover both white and black-box adversarial attacks developed against ESC and

ASR models.
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1.4.1.3 Output Specificity

The optimization formulation of the adversarial attack can be subject to a predefined output

phrase (targeted) or towards any incorrect phrases other than the ground-truth (non-targeted).

Technically, the computational cost35 for the targeted attack is relatively greater than non-targeted

(Poursaeed, Katsman, Gao & Belongie, 2018). However, targeted attacks are more in line with

the real-life challenges.

1.4.1.4 Perturbation Measurement

Regarding the constraints mentioned in Section 1.4 about developing an adversarial attack,

the crafted adversarial signal (or its representation) should be very similar to its associated

ground-truth. Thus, for properly measuring this similarity, we need to employ an accurate metric

as follows.

1. Similarity metrics for 1D signals: variants of dB-scale logarithmic similarity metric

(Carlini & Wagner, 2018).

2. Similarity metrics for 2D representations: standard Lebesgue norms such as 𝑙0, 𝑙2, 𝑙∞

(Szegedy et al., 2014; Papernot, McDaniel, Jha, Fredrikson, Celik & Swami, 2016d;

Carlini & Wagner, 2017b).

It has been demonstrated that the attack success rate is partially dependent on the choice of

the similarity metrics mentioned above (Szegedy et al., 2014). Hence, for effective adversarial

attacking, an optimal metric should balance signal quality and attack fooling rate.

The following section provides general formulations for developing adversarial attacks against

data-driven audio and speech recognition models.

35 Mostly in terms of gradient computation (Masure, Dumas & Prouff, 2019) and the total number of

required callback to the reference signal. For more details see Section 4.4.3.



36

1.4.2 Adversarial Attacks in Practice

Herein, we explain the formulation of adversarial attacks for both end-to-end and representation-

level ESC and ASR systems.

1.4.2.1 Attacks for End-to-End Transcription Systems

In general, an end-to-end adversarial attack runs an optimization algorithm for
〈�𝑥orig, ŷ𝑖

〉
where

�𝑥orig stands for the original signal, and ŷ𝑖 denotes the associated predefined target phrase

(Carlini & Wagner, 2018):

min
𝛿
‖𝛿‖𝐹 +

∑
𝑖

𝑐𝑖𝐿𝑖 (�𝑥adv, ŷ𝑖) s.t. 𝑙dB(�𝑥adv) < 𝜖 (1.8)

and:

𝑙dB(�𝑥adv) = 𝑙dB(𝛿) − 𝑙dB(�𝑥orig) | �𝑥orig, �𝑥adv ∈ R (1.9)

where �𝑥adv = �𝑥orig + 𝛿. Additionally, 𝛿 indicates the adversarial perturbation achievable through

this iterative optimization formulation. Moreover, 𝑐𝑖 is the hyperparameter for scaling the loss

function 𝐿𝑖 (·) regarding the length of the ground truth phrase y𝑖 (y𝑖 ≠ ŷ𝑖). Furthermore, 𝑙dB(·)
computes the relative loudness of the signal in the logarithmic dB-scale, and 𝜖 is the audible

threshold defined by the adversary.

Two typical pseudocodes (inspired from (Goodfellow et al., 2015) and (Yakura & Sakuma,

2018)) for attacking end-to-end transcription systems are shown in Algorithm 1.1 and 1.2.

There are several variants for this algorithm, and Eq. 1.8, where they often employ different

loss functions, loudness metrics, adaptive scaling, etc. It has been shown that all these attack

algorithms can debase the performance of the data-driven recognition models to almost zero

(Carlini & Wagner, 2018).
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Algorithm 1.1 A typical pseudocode for adversarial attack in the end-to-end framework (taken

from Carlini & Wagner (2018)). Herein, L(·) is the same as 𝐿 (·).
1 Algorithm: Adversarial attack against end-to-end transcription systems.

Input: �𝑥org, y, ŷ
Output: �𝑥adv

2 �𝑥𝑐 ← �𝑥org; /* candidate adversarial signal */
3 while ŷ = y do
4 𝛿 ← min𝛿 ‖𝛿‖2 +

∑
𝑖 𝑐𝑖L𝑖 (�𝑥𝑐, ŷ𝑖)

5 �𝑥𝑐 ← �𝑥𝑐 + 𝛿

6 end while
7 �𝑥adv ← �𝑥𝑐; /* crafted adversarial signal */

Algorithm 1.2 Another typical pseudocode for adversarial attack in the end-to-end framework

(taken from Yakura & Sakuma (2018))

1 Algorithm: Adversarial attack against end-to-end transcription systems.

Input: �𝑥org, y, ŷ
Output: �𝑥adv

2 �𝑥𝑐 ← �𝑥org; /* candidate adversarial signal */
3 while ŷ = y do
4 𝛿 ← min𝛿 ‖𝛿‖2 +

∑
𝑖 𝑐𝑖L𝑖 (�𝑥𝑐, ŷ𝑖)

5 while 𝛿 > 𝜄ℎ𝑡 do
6 Project 𝛿 using some transformations.

7 end while
8 �𝑥𝑐 ← �𝑥𝑐 + 𝛿

9 end while
; /* 𝜄ℎ𝑡: hearing threshold. */

10 �𝑥adv ← �𝑥𝑐; /* crafted adversarial signal */

1.4.2.2 Attacks for Representation-Level Transcription Models

Developing an adversarial attack for a representation-level audio and speech recognition model

is almost the same as in the computer vision domain. For instance, it can be formulated as an

optimization problem toward achieving a very small perturbation 𝛿, as stated by Szegedy et al.
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Algorithm 1.3 A typical pseudocode for adversarial attack in the representation-level framework

(taken from Goodfellow et al. (2015))

1 Algorithm: Adversarial attack against representation-level recognition systems.

Input: xorg, y, ŷ
Output: xadv

2 x𝑐 ← xorg; /* candidate adversarial signal */
3 while ŷ = y do
4 x𝑐 ← x𝑐 + 𝛿∇x𝐽 (x𝑐, ŷ𝑖)
5 end while
6 xadv ← x𝑐; /* crafted adversarial signal */

(2014):

min
𝛿

𝑓 ∗(xorg + 𝛿︸��︷︷��︸
xadv

) ≠ 𝑓 ∗(xorg) (1.10)

where xorg and 𝑓 ∗ denote the original spectrogram and the post-activation function of the victim

classifier, respectively. Although interpreting a signal representation is very difficult for human

eyes, still 𝛿 should not be perceivable.

Algorithm 1.3 (Goodfellow et al., 2015) illustrates a typical pseudocode for attacking the

recognition models trained on spectrograms. There are many variants for this algorithm and also

Eq. 1.10, which incorporates different optimization policies such as (Goodfellow et al., 2015):

xadv ← xorg + 𝛿
∇xorg

𝐽 (xorg, ŷ𝑖)��∇xorg
𝐽 (xorg, ŷ𝑖)

�� (1.11)

where xadv and 𝐽 (·) denote the adversarial spectrogram and the Jacobian matrix containing the

gradient vectors of the victim model, respectively. In this thesis, we cover such attack variants,

which have been benchmarked for signal representations.

Almost all the recognition algorithms mentioned in Sections 1.2 and 1.3 use a type of signal

representation (e.g., MFCC). This obliges us to explain how an adversarial spectrogram can

negatively affect the performance of such systems.
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Assume we have an ESC or ASR system that employs a front-end classifier trained on legitimate

spectrograms. We show how crafted adversarial spectrograms can pose security concerns for

these systems:

1. White-box scenario: the adversary has full access to the entire system details, including

dataset, classifier architecture, potential tuning parameters, required hyperparameters,

and the complete weight vectors. Therefore, the adversary can easily feed adversarial

spectrograms to the model and fool it toward any target phrase or label.

2. Black-box scenario: the adversary does not have access to the system details mentioned

above. In fact, the adversary can only input a 1D signal to the system and receive a predicted

label or phrase. In this scenario, the adversary can reconstruct an audio signal from an

adversarial spectrogram (with or without a surrogate model) and feed it to the system.

Since the model is trained on spectrograms, the system first converts the input audio into a

spectrogram, which also recovers the adversarial perturbation (this reconstruction does not

impose technical difficulty since spectrogram and 1D signal are dual36). This spectrogram

can also fool the victim model towards any wrong phrases defined by the adversary (Koerich,

Esmailpour, Abdoli, Britto & Koerich, 2020).

In this section, we briefly reviewed the characterization of adversarial attacks for end-to-end

and representation-level recognition models. The following section explains a taxonomy of the

proposed approaches for defending ESC and ASR models against such adversarial attacks.

1.5 Adversarial Defenses for ESC and ASR Systems

As illustrated in Figure 1.2, there are generally two categories of approaches for securing

ESC and ASR models against a variety of adversarial attacks (Akhtar & Mian, 2018; Zhang,

Zhang & Zhang, 2019a; Mustafa, Khan, Hayat, Goecke, Shen & Shao, 2019; Hu, Shang, Qin,

Li, Wang & Wang, 2019a; Yuan, He, Zhu & Li, 2019; Cohen, Sapiro & Giryes, 2020):

1. Proactive: this category includes all the approaches in which the defense policy is a part

of the classifier development. In other words, proactive defense algorithms do not employ

36 There are plenty of straightforward approaches for reconstructing one from another.



40

Adversarial Defense

Proactive

Reactive

Adversarially Training

Compression

Feature Synthesis

Signal Synthesis

Figure 1.2 General taxonomy of adversarial defense for ESC and ASR systems

any postprocessing37 operations for bypassing (in particular, fading the perturbation in the

signal or the spectrogram) the potential adversarial perturbation. In fact, the recognition

algorithm should implement some built-in strategies to yield a reliable model. One popular

example of such proactive defenses is adversarially training38 (Ganin, Ustinova, Ajakan,

Germain, Larochelle, Laviolette, Marchand & Lempitsky, 2016; Tramèr, Kurakin, Papernot,

Goodfellow, Boneh & McDaniel, 2017; Sun, Yeh, Hwang, Ostendorf & Xie, 2018).

2. Reactive: refers to the group of algorithms that incorporate an auxiliary model or a

postprocessing module for potentially removing the adversarial perturbation. Synthesis-

based defense algorithms39 are among the popular reactive defense approaches since they

do not obfuscate gradient information (Lee, Han & Lee, 2017; Samangouei et al., 2018b;

Bao, Liang & Wang, 2018; Athalye et al., 2018b). We explain subcategories of reactive

defenses in the following.

37 Possibly preprocessing, as well.

38 We succinctly explained this technique in the previous chapter. We also refer to Appendix II for more

details.

39 Additional explanations are available in Chapter 5 and Appendix III.
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1.5.1 Reactive Adversarial Defense

Developing a proactive defense algorithm is fairly more challenging than a reactive approach.

This is mainly due to integrating the defense policy into the classifier development procedure

according to the definition of the proactive defense framework. This framework contributes

to making a reasonable trade-off between recognition accuracy and model robustness. To the

best of our knowledge, there is no investigation on proactive defense approaches in the context

of ESC and ASR, and all the proposed defense algorithms fit in the reactive category40. This

category includes three major subcategories as follows.

1.5.1.1 Compression

It has been shown that employing low-level transformation operations, to some extent, by-

passes the adversarial perturbation on the signal (or the associated spectrogram). These

operations include but are not limited to MPEG-layer-3 and multi-rate compressions (Pryadi,

Gandi & Kanalebe, 2008; Ireland, Knuepffer & McBride, 2015; Das, Shanbhogue, Chen, Chen,

Kounavis & Chau, 2018). However, according to our conducted experiments, these techniques

might not be able to detect strong adversarial signals that have been carefully tuned during

optimization.

1.5.1.2 Feature Synthesis

Synthesizing a feature vector similar to the representation of the given speech signal using

an autoencoder-based GAN is another subcategory for the reactive defense approaches (Latif,

Rana & Qadir, 2018). In fact, these generative models craft a new set of MFCC vectors for every

given speech signal aiming at fading the potential adversarial perturbation during the synthesis

(reconstruction) procedure. The major comment with the algorithms that fit in this defense

subcategory is that they may not constitute reliable defense approaches since they transform the

40 We introduce a proactive defense approach in Appendix II.
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feature vectors using an autoencoder. Unfortunately, autoencoding exploits a filtration operation

directly on the signal and it often results in gradient obfuscation41 (Athalye et al., 2018b).

1.5.1.3 Signal Synthesis

Generally, there are two subcategories for signal synthesis-based defense algorithms as the

following:

1. Explicit synthesis: this subcategory is similar to the feature synthesis-based defense

approaches since they run some filtration operations directly on the signal, however without

an autoencoder (Song, Shu, Kushman & Ermon, 2018; Li, Zhang, Jia, Xu, Zhang, Wang,

Ma & Gao, 2020a). According to Athalye et al. (2018b), these defenses might also give

false senses of security against adversarial attacks.

2. Implicit synthesis: includes all the algorithms that do not run any filtration operation directly

on the given input signal. In fact, they iteratively find a safe vector for the generative model

to synthesize a signal (or its associated spectrogram) very similar to the given input speech

(Samangouei et al., 2018b). This group of algorithms meets all the defense reliability

conditions discussed in the previous chapter.

Our focus in this thesis is on developing defense algorithms which fit in the latter subcategory.

In the next section, we discuss some major challenges for developing reliable adversarial defense

approaches for real-life applications.

1.5.2 Challenges

Although considerable progress has been made in adversarial defense over the last few years,

there is still no fully functional approach for securing ESC and ASR systems against adversarial

attacks. This poses a major security concern and obliges us to address the potential challenges

and develop possible resolutions for such a situation. In the following, we briefly mention a few

of those challenges.

41 We refer to the previous chapter concerning the definition of the reliable defense approach.
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1. To the best of our knowledge, there is no investigation on making a trade-off between

recognition accuracy and robustness of the recognition model against adversarial attacks.

This could have arisen from the inverse relation between them42. Therefore, we need to

design better classification architectures and employ some signal transformation techniques

to fill the gap between recognition accuracy and model robustness.

2. Developing an adversarial attack for audio and speech signals is computationally expensive.

This is presumably because common attack optimization formulations do not necessarily

yield a universal adversarial perturbation (Carlini & Wagner, 2018). Considering the

high dimensionality of an input signal, perturbations should be optimized per frame (e.g.,

every 50 ms) and this adds considerable computational overhead to the attack formulation.

Consequently, this makes the adversarially training procedure almost impossible for datasets

including long-duration signals.

3. It has been demonstrated that playing an adversarial signal over the air might fade out the

adversarial perturbation (Carlini & Wagner, 2018; Yakura & Sakuma, 2018). Hence, toward

developing a fast attack algorithm for adversarially training purposes, its robustness over

consecutive playbacks should be considered. Unfortunately, this aspect has been totally

neglected in almost all the proposed attack and defense approaches.

4. According to our initial experiments, unfortunately, all the adversarial defense categories

mentioned in Section 1.5 negatively affect the quality of the signals. Therefore, a reliable

defense algorithm should keep a balance between recognition accuracy and model robustness

and avoid degrading the quality of the input signals.

5. GAN is the standard generative model often used in reactive defense algorithms, and

unfortunately, all of them, at different levels, suffer from instability and mode collapse

issues (Brock, Donahue & Simonyan, 2019). Training a stable generative model improves

the accuracy of the synthesis-based defense approaches. Thus, we need to devise a more

functional regularization technique to enforce its generalizability.

42 We address this relation in chapter 4.
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In the following chapters, we address all the challenges mentioned above and propose approaches

to tackle them properly.

1.6 Summary

In this chapter, we reviewed some important concepts about ESC and ASR systems. We

firstly, explained three common representation techniques for reducing dimensionality and

enhancing the quality of the signals, namely MFCC, STFT, and DWT. As stated, these spectral

representations have become standard representations for the entire signal processing domains

since decades ago. Secondly, we briefly reviewed the state-of-the-art algorithms developed for

environmental sound classification, followed by a concise analysis of speech-to-text transcription

systems. Following this, we characterized the existence of adversarial signals both in raw 1D and

2D representation levels. Finally, we explained the general taxonomy of adversarial defenses and

highlighted some common challenges toward developing a reliable algorithm against a variety

of attacks.
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Abstract

In this paper we propose a novel environmental sound classification approach incorporating

unsupervised feature learning via the spherical 𝐾-Means++ algorithm and a new architecture for

high-level data augmentation. The audio signal is transformed into a 2D representation using

a discrete wavelet transform (DWT). The DWT spectrograms are then augmented by a novel

architecture for a cycle-consistent generative adversarial network. This high-level augmentation

bootstraps generated spectrograms in both intra- and inter-class manners by translating structural

features from sample to sample. A codebook is built by coding the DWT spectrograms with

the speeded-up robust feature detector and the 𝐾-Means++ algorithm. The Random forest is

the final learning algorithm which learns the environmental sound classification task from the

code vectors. Experimental results in four benchmarking environmental sound datasets (ESC-

10, ESC-50, UrbanSound8k, and DCASE-2017) have shown that the proposed classification

approach outperforms most of the state-of-the-art classifiers, including convolutional neural

networks such as AlexNet and GoogLeNet, improving the classification rate between 3.51% and

14.34%, depending on the dataset.
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2.1 Introduction

Environmental sound classification has attracted the interest of several researchers in machine

learning because of its vast applications (Chu et al., 2009a; Radhakrishnan et al., 2005; Xu, Xu,

Duan, Jin & Luo, 2008). However, this is a challenging problem due to the complex nature of

environmental sounds in terms of dimensionality, different mechanisms of sound production,

overlapping of different sources, and lack of high-level structures usually observed in speech

and in many types of musical sounds (Salamon & Bello, 2015b). This complex nature masked

by natural acoustic noises (Noda, Mori, Ishibashi & Itomi, 1987) can make the classification of

specific sounds very challenging. This challenge becomes more difficult when audio classes do

not have similar sound production mechanisms such as "car horn" and "car engine idling" in

open scenes like streets or parks (Chu et al., 2009a; Ellis & Lee, 2004; Chaudhuri & Raj, 2013).

In the literature, the classification of environmental sounds has been addressed using both

standalone and ensemble classification setups incorporating conventional classifiers and deep

neural networks where the input signal can be represented by an audio waveform (1D) or

converted to a mid-level representation (2D) such as a spectrogram (Salamon & Bello, 2015b;

Aytar, Vondrick & Torralba, 2016; Dai, Dai, Qu, Li & Das, 2017; Mun, Park, Han & Ko, 2017;

Piczak, 2015a; Salamon & Bello, 2017; Tokozume & Harada, 2017). The audio signal may

also be represented by handcrafted features in the spectral or the cepstral domains mainly via

frequency transformations which are lossy operations. Zero-crossing rate (Lu, Zhang & Jiang,

2002), spectral flux and centroid (Tzanetakis & Cook, 2002), chroma vector (Ellis, 2007), Mel

frequency cepstral coefficients (MFCCs) (Logan et al., 2000), short-time Fourier transform

(STFT) (Smith et al., 2011), cross recurrent plot (CRP) (Serra, Serra & Andrzejak, 2009), and

discrete wavelet transform (DWT) (Van Fleet, 2011) are among the most well-known handcrafted

features for audio classification (Papakostas, Spyrou, Giannakopoulos, Siantikos, Sgouropoulos,

Mylonas & Makedon, 2017). These handcrafted features not only reduce the dimensionality

of the audio signal but may also reduce some types of noise and help to extract time-varying

descriptors which provide a better discrimination. The approaches that use these features have

shown relatively better performance than the approaches that use 1D signals directly in both
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classification and clustering tasks, mainly when employing conventional classifiers such as

support vector machines (SVMs) (Gerek & Ece, 2008).

MFCC is a common and reliable informative representation format for analyzing audio and for this

reason, most of the proposed classification approaches in this domain rely on it (Radhakrishnan

et al., 2005; Cai, Lu, Hanjalic, Zhang & Cai, 2006; Ganchev, Fakotakis & Kokkinakis, 2005;

Heittola, Mesaros, Eronen & Virtanen, 2013). MFCCs are handcrafted features based on

the human auditory system, which can make a reasonable balance between handling the

complex nature of real-life sounds and providing informative feature vectors for classification

purposes. In addition to traditional classifiers such as Gaussian mixture models (Godino-Llorente,

Gomez-Vilda & Blanco-Velasco, 2006), hidden Markov models (Gales & Young, 1992) and

𝐾-nearest neighbor (Eronen, Peltonen, Tuomi, Klapuri, Fagerlund, Sorsa, Lorho & Huopaniemi,

2006), convolutional neural networks (ConvNets) (Deng, Hinton & Kingsbury, 2013) have

been evaluated on MFCC feature vectors and achieved better results than the 1D audio signal.

However, MFCCs have shown to be very sensitive to background noise and this might affect the

performance of classifiers for noisy environmental sounds (Cotton & Ellis, 2011).

With the recent advances in deep learning, many strong classifiers such as ConvNets have been

introduced, which are designed to learn directly both from 1D and 2D data. ConvNets are

quite similar to dense deep neural network (DNN) where the main difference is the inclusion

of convolution layer(s) to deal with raw data. The main advantage of these networks is their

ability to learn directly from raw data rather than handcrafted features. ConvNets have been

used with audio waveforms with several convolution layers incorporating different 1D signal

augmentation methods (Salamon & Bello, 2017). Experimental results have shown competitive

accuracy compared to unsupervised sound classifiers (Salamon & Bello, 2015b), ConvNets

on MFCCs (Piczak, 2015b), and even better performance (Palaz, Doss & Collobert, 2015)

depending on the dataset. ConvNets have also been evaluated with a combination of 1D and

MFCC feature vectors which resulted in low classification error (Tokozume & Harada, 2017).

This shows the importance of the representation space in extracting discriminating features.
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Audio signals are high dimensional, which means that more than a thousand real values need to

be used to represent a short audio signal. Due to this fact, it is preferred to train classifiers on 2D

audio representations over audio waveforms. However, ConvNets have shown great classification

performances in 1D signal format (Salamon & Bello, 2017; Abdoli, Cardinal & Koerich,

2019), so far, they could not outperform AlexNet and GoogLeNet on STFT, DWT, and CRP

spectrograms (Weiping, Jiantao, Xiaotao, Xiangtao & Shaohu, 2017). The majority of recent

papers in audio classification especially environmental sounds are on 2D representations mainly

for DNNs such as the networks introduced in (Deng et al., 2013). STFT, DWT, and CRP are

the main approaches for producing spectrograms and they can also be combined to augment

the amount of data and to extract more informative 2D representations for training ConvNets

(Boddapati et al., 2017). It has been shown that STFT and DWT have more competence for

extracting temporal and structural content for ConvNets (Wyse, 2017). For some common

environmental datasets, GoogLeNet and AlexNet have achieved the highest recognition accuracy

with quite high confidence.

However, one of the main bottlenecks for using ConvNets in environmental sound classification is

the amount of data required to train such networks properly due to the high number of parameters

to adjust. The two main approaches that have been used to circumvent this problem are: (i)

fine-tuning ConvNets pre-trained on other domains/datasets; (ii) generating artificial samples

by data augmentation. Both 1D and 2D data augmentation approaches (Weiping et al., 2017;

Salamon & Bello, 2015a) have been proposed for improving classification performance which

proves the importance of providing better input rather than implementing highly complex and

costly networks (Mun et al., 2017). There are several algorithms for augmenting a dataset both

in terms of enhancing samples’ visual quality and quantity. Augmentation in 2D representations

like spectrograms is mostly being implemented with low-level transformations (Cireşan, Meier,

Masci, Gambardella & Schmidhuber, 2011) including translation, shearing, rotation, scaling,

aspect ratio, flipping, etc., which in general may not improve the performance of conventional or

deep learning classifiers. The linear nature of these affine transformations may not cause a high

impact on the classifier decision boundaries (Zhu et al., 2018c). It is worth mentioning that even
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these low-level data augmentations have been sometimes contributed significantly in training

ConvNets and reducing overfitting.

Elastic deformation (Simard, Steinkraus & Platt, 2003) is another type of low-level augmentation

which has been used in spectrograms. The elastic deformation implements a similarity trans-

formation which interpolates between highly correlated spectrogram sub-manifolds. However,

when the resolution of the spectrogram is small, and it does not have much active areas43

(super uniform areas in pixel-wise level), this augmentation may not work well especially

for deep learning models. Extracting covariant patches and color space channel intensity

alteration (Krizhevsky et al., 2012) as well as other types of pixel-level augmentation scheme

has been utilized in many spectrogram classification tasks. In addition to the linear nature of

low-level augmentation, they cannot enhance data distribution which is usually determined by

high-level features. Some methodologies have been proposed for circumventing this problem

such as learning multivariate normal distribution for each class with respect to their mean mani-

folds (Hauberg, Freifeld, Larsen, Fisher & Hansen, 2016). Implementation of this augmentation

in the real world, especially for long audio sequences of high dimension is not optimal. One

potential solution could be multivariate distribution learning in representation space (Dixit,

Kwitt, Niethammer & Vasconcelos, 2017) with respect to the structural components (Wang,

Bovik, Sheikh & Simoncelli, 2004) of a spectrogram.

In this paper, we propose a novel architecture for data augmentation which translates one

spectrogram to another using a generative model named Weighted Cycle-Consistent Generative

Adversarial Network (WCCGAN), as well as a novel approach for environmental sound

classification based on unsupervised feature learning. The proposed approach has four main

steps: (i) audio dimension conversion and preprocessing (from 1D to 2D); (ii) data augmentation

using the proposed WCCGAN; (iii) extracting feature vectors from the augmented dataset via

speeded-up robust feature detector (SURF) algorithm and learning a codebook of representative

codewords; and (iv) training a random forest algorithm on code vectors. The experimental

results have shown that our approach outperforms cutting-edge classifiers such as AlexNet and

43 Areas with uniform distribution and low intensities.
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GoogLeNet in four benchmarking environmental sound datasets: ESC-10 (Piczak, 2015b),

ESC-50 (Piczak, 2015b), UrbanSound8k (Salamon et al., 2014a) and DCASE-2017 (Mesaros,

Heittola, Diment, Elizalde, Shah, Vincent, Raj & Virtanen, 2017). Besides that the experimental

results have also shown the remarkable performance of the proposed data augmentation approach

for both the unsupervised feature learning and supervised approaches.

The organization of this paper is as follows. In Section 2.2 we discuss the transformation of

audio waveforms (1D) into spectrograms (2D), as well as the preprocessing steps preceding

and succeeding such a transformation for data augmentation purposes. Section 2.3 presents the

WCCGAN for high-level spectrogram augmentation. In Section 2.4, we explain our feature

learning methodology using SURF descriptors and the spherical 𝐾-Means++ algorithm, and

also the classification approach based on random forests. Section 2.5 provides details about the

architecture of the proposed WCCGAN and the experiments carried out in four benchmarking

datasets. In Section 2.6 we compare the importance of pitch-shifting as one of the basic data

augmentation approaches over all other algorithms presented in (Salamon & Bello, 2017). We

show that implementing all types of data augmentations does not necessarily produce informative

features favorable to the proposed classifier. We also compare the performance of the proposed

WCCGAN with the cycle-consistent GAN proposed by Zhu et al. (Zhu et al., 2018c) to emphasize

the importance of adapting generative model architectures according to the application. The

conclusions and future work are presented in the last section.

2.2 Preprocessing and Spectrogram Generation

In this section we present the preprocessing steps to artificially expand the size of an audio

dataset (i.e., augmentation) by creating modified versions of the audio clips and the strategy

used to convert such audio clips into spectrograms.
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2.2.1 1D Data Augmentation

Given the relatively small size of the environmental sound datasets, one of the recommended

steps before transforming an audio waveform to a 2D representation is to boost the amount,

distribution, and cardinality of the samples of each class in the datasets. Data augmentation can

be carried out by applying some filters on an audio signal such as pitch shifting, time stretching,

compressing dynamic range, and background noise removal (Salamon & Bello, 2017). These

operations can be individually applied to an audio sample to produce slightly modified versions

of it and increase the number of samples. Finally, these crafted samples are added to the original

dataset. Since these augmentation filters increase the number of samples of the dataset, they

may have potential to affect the performance of data-driven classifiers.

It has been shown (Boddapati et al., 2017) that the pitch-shifting filter alone can highly boost the

quality of audio recordings when compared with applying all above-mentioned augmentation

filters as proposed in (Salamon & Bello, 2017). After conducting several exploratory experiments,

we have found out that for most of the environmental sound datasets applying all 1D data

augmentation filters do not necessarily produce good audio samples in terms of producing samples

with low inter-class and high intra-class similarity. In Section 2.6 we show some experimental

results that support this claim. Therefore, we only use the pitch-shifting augmentation as its

constructive effects have been shown in (Salamon & Bello, 2017) for both supervised and

unsupervised feature learning. For such an aim, we use static pitch shifting scales (McFee,

Humphrey & Bello, 2015a). This boosts the number of samples in the dataset with respect to

the number of applied scales.

2.2.2 Spectrogram Generation

STFT, DWT, and CRP are the main approaches for producing spectrograms for an audio

signal. ConvNets have shown strong capability in learning from these spectrograms either

standalone (Weiping et al., 2017) or pooled together (Boddapati et al., 2017). The DWT

representation is more stable to time warping deformations and it can better characterize time
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varying structures compared to other representations such as STFT (Mallat, 2012). The STFT

transformation is somewhat similar to DWT in terms of producing low and high frequency

components encoded as spectrograms. Considering a discrete-time signal 𝑥 [𝑛], its DWT

transformation is given by:

DWT(𝑥 [𝑛]) = (𝑥 [𝑛] ⊗ 𝑔[𝑛]) =
∞∑

𝑘=−∞
𝑥 [𝑘]𝑔[𝑛 − 𝑘] (2.1)

where ⊗ denotes the convolution of 𝑥 [𝑛] and 𝑔[·] (mother function which produces other signals

which can be either low or high pass filter sets). This operation can be applied to at most the

minimum length of 𝑥 [𝑛]. The 2D representation of this signal can be computed by:

SDWT{𝑥 [𝑛]} ≡ |DWT(𝑥 [𝑛]) |2 (2.2)

where 𝑆𝐷𝑊𝑇 denotes the spectrogram of the signal 𝑥 [𝑛].

We generate DWT spectrograms using our modified version of the sound explorer C++

script (Hanov, 2008) for the original audio signals as well as the pitch-shifted audio sam-

ples to handle audio clips with any length (time duration).

2.2.3 Spectrogram Enhancement

Each generated spectrogram is a 2D array of intensity values which can be noisy when its

associated audio signal is affected by environmental noise(s). In this case, adjusting the

distribution of the intensity values can help to extract/learn more informative features (Segura,

Benítez, Torre & Rubio, 2002). For improving the color space and the dynamic color contrast

of the intensity values (as part of data augmentation pipeline (Park, Chan, Zhang, Chiu, Zoph,

Cubuk & Le, 2019)), we apply a histogram equalization filter (Gonzalez & Woods, 2002).

Considering each pixel intensity of the generated spectrogram 𝑆 as 𝑆(𝑖, 𝑗), then the enhanced

spectrogram (𝑆ℎ𝑒𝑞) is defined in Equation 2.3.
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𝑆ℎ𝑒𝑞 (𝑖, 𝑗) =
⌊
(𝑠 − 1)

𝑆(𝑖, 𝑗)∑
𝑖=0

𝑝𝑖

⌋
(2.3)

where 𝑠 is the supremum of 8-bit precision and 𝑝𝑖 denotes the ratio of pixels with intensity 𝑖 over

the total number of pixels. This filter expands the intensity range of a given spectrogram in a

balanced distribution. In the next section we explain how to structurally augment the generated

spectrograms towards more informative samples.

2.3 Weighted Cycle-Consistent Generative Adversarial Network (WCCGAN)

The approach proposed for augmenting generated spectrograms is based on the Cycle-Consistent

Generative Adversarial Network (CCGAN) which maps one spectrogram to another spectrogram.

The efficiency of this 2D-to-2D translation has been proven in the literature for image-to-image

translation problems (Isola, Zhu, Zhou & Efros, 2017; Zhu, Park, Isola & Efros, 2017a). The

proposed GAN architecture is inspired by Zhu et al. (Zhu et al., 2017b) with two main differences:

(i) it incorporates two identity mapping functions for avoiding the oversmoothing of generated

spectrograms, which affects the performance of the discriminator towards a wrong label other

than the pre-defined target label; (ii) it employs different architectures for both generator and

discriminator.

The proposed augmentation pipeline is implemented only in 2D space since mapping 1D-to-1D

audio signals for augmentation purposes is very challenging due to the high dimensionality of

audio signals. Our perspective in data augmentation is directed towards increasing inter- and

intra-class structural contents over low-level pixel augmentations. This can help classifiers to

reach a finer decision boundary among data sub-manifolds with minimum overlap. A more

accurate way to impose structural contents on data augmentation is by using GAN since we

can consistently control the mapping process from one image to another by adding an extra

constraint to its loss function(s).
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Figure 2.1 (a): Illustration of the original Cycle-Consistent GAN (CCGAN) for

image-to-image translation where the cycle consistency imposes 𝐺𝑆𝑇 (𝑆𝐹𝑎𝑘𝑒) ≈ 𝑇 and

𝐺𝑇𝑆 (𝑇𝐹𝑎𝑘𝑒) ≈ 𝑆. (b): The proposed Weighted Cycle-Consistent GAN (WCCGAN) inspired

by Zhu et al. (Zhu et al., 2017b). Generators in our framework are 𝐹𝑆𝑇 and 𝐹𝑇𝑆 equivalent

to 𝐺𝑆𝑇 and 𝐺𝑇𝑆, respectively.

The original architecture of the CCGAN (Zhu et al., 2017b) is shown in Figure 2.1(a) and

it consists of two networks, one generator (𝐺) and one discriminator (𝐷) that capture data

distribution and estimate the probability that a sample comes from the training data rather than

𝐺, respectively. 𝐺 in a standard GAN generates fake data from latent variables with respect

to the distribution of real training data, whereas in CCGAN (Zhu et al., 2017a) it bĳectively

translates an input sample from a source 𝑆 to a target 𝑇 . In other words, this type of GAN has

two generators and two discriminators which are trained independently.

In this paper we focus on both paired (when 𝑆 is similar to 𝑇 ; or equivalently intra-class

translation) and unpaired (when 𝑆 and 𝑇 are somewhat similar to each other, or equivalently

inter-class translation) CCGAN. For the latter, we propose a pipeline for properly selecting

source and target spectrograms with respect to the confusion matrix of the classifier. This

high-level augmentation transfers structural components from the source spectrogram 𝑆 to the
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target spectrogram 𝑇 . If the CCGAN is trained carefully, it can produce spectrogram samples

that may help improve the performance of a classifier trained with such samples.

Producing realistic (natural-looking) spectrograms is not one of our priorities since any sort of

spectrogram does not have much meaning for human eyes. Interestingly, spectrograms generated

using our generator network may not produce samples similar to a given source, but discriminator

shows reasonable sensitivity to it (matches the target label). Some examples of the generated

samples are depicted in Figure 2.4. Forcing generators to produce very similar samples will

result in divergences in the cycle consistency optimization. This condition for CCGANs mostly

applies for augmenting datasets to which the human eyes perceive some structure like MNIST

and ImageNet datasets.

In Figure 2.1(a), 𝐺𝑆𝑇 and 𝐺𝑇𝑆 stand for generators translating samples from 𝑆 → 𝑇 and 𝑇 → 𝑆,

respectively. 𝐷𝑇 and 𝐷𝑆 denote the modules for discriminating real samples from generated

fake samples from 𝐺𝑆𝑇 and 𝐺𝑇𝑆. This can be achieved by optimizing the following criterion:

𝐺𝑆→𝑇 = arg min
𝐺𝑆→𝑇

max
𝐷𝑇

L𝐺𝐴𝑁 (𝐺𝑆→𝑇 , 𝐷𝑇 ) (2.4)

where the loss function L𝐺𝐴𝑁 is defined in Equation 2.5.

L𝐺𝐴𝑁 (𝐺𝑆→𝑇 , 𝐷𝑇 ) = E𝑡∼𝑝𝑡𝑎𝑟𝑔𝑒𝑡 (𝑡)
[
log 𝐷𝑇 (𝑡)

] +E𝑠∼𝑝𝑠𝑜𝑢𝑟𝑐𝑒 (𝑠)
[
log(1 − 𝐷𝑇 (𝑡) (𝐺𝑆→𝑇 (𝑠)))

]
(2.5)

where 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 (𝑡) and 𝑝𝑠𝑜𝑢𝑟𝑐𝑒(𝑠) denote the sample distributions in the target 𝑇 and source 𝑆,

respectively. The common problem with this definition of loss function is gradient vanishing

which makes training and convergence almost impossible (Arjovsky, Chintala & Bottou, 2017).

To circumvent this problem, in the proposed WCCGAN architecture depicted in Figure 2.1(b),

we use a least-square loss function for GAN (𝐿𝑆𝐺𝐴𝑁) as proposed in (Mao, Li, Xie, Lau,

Wang & Smolley, 2017) for different domains 𝑆 and 𝑇 as given in Equations 2.6 and 2.7:

L𝐿𝑆𝐺𝐴𝑁 (𝐹𝑆→𝑇 , 𝐷𝑇 ) = E𝑡∼𝑝𝑡𝑎𝑟𝑔𝑒𝑡 (𝑡)
[(𝐷𝑇 (𝑡) − 1)2] +E𝑠∼𝑝𝑠𝑜𝑢𝑟𝑐𝑒 (𝑠)

[
𝐷𝑇 (𝑡) (𝐹𝑆→𝑇 (𝑠))2

]
(2.6)
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L𝐿𝑆𝐺𝐴𝑁 (𝐹𝑇→𝑆, 𝐷𝑆) = E𝑠∼𝑝𝑡𝑎𝑟𝑔𝑒𝑡 (𝑠)
[(𝐷𝑆(𝑡) − 1)2] +E𝑡∼𝑝𝑠𝑜𝑢𝑟𝑐𝑒 (𝑡)

[
𝐷𝑆(𝑠) (𝐹𝑇→𝑆(𝑡))2

]
(2.7)

Though these loss functions minimize the approximated Jensen-Shannon divergence between two

distributions of legitimate and generated data (Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-

Farley, Ozair, Courville & Bengio, 2014), they oversmooth the spectrograms. Oversmoothing

affects the performance of the discriminator towards a wrong label other than the pre-defined

target label. For rectifying this problem, we bypass the inputs to the discriminator. Hence, we

add the two modules ( 𝑓1 and 𝑓2) as depicted in Figure 2.1(b), which act as weighted bypasses

(identity mapping) to the discriminators. The definitions of these two modules are provided in

Equations 2.8 and 2.9.

𝑓1 = 𝑐1 � 𝑆 + 𝜇 � 𝐹𝑆𝑇 (2.8)

𝑓2 = 𝑐2 � 𝑇 + 𝜎 � 𝐹𝑇𝑆 (2.9)

where dimensions of the generators and the input/target are bilinearly interpolated to match each

other. The � denotes the element-wise multiplication. The values of the constants 𝑐1 and 𝑐2,

and the variables 𝜇 and 𝜎 are obtained empirically upon several experiments. Basically, 𝑓1 and

𝑓2 bypass connections have two main advantages in the proposed high-level augmentation setup.

First, the low-to-high compensations because the regular CCGAN (Figure 2.1(a)) translates a

randomly picked distribution from a low-dimension (e.g., pixel-level noisy sample) to a higher

dimension which is a realistic image. Assuming that the dimension of the random drawn

distribution is not very large, and no optimization overhead is involved (in the case of an optimal

generator (Hoang, Nguyen, Le & Phung, 2018)), then potentially the following cycle-consistency

criterion can yield a realistic fake sample:

L𝑐𝑦𝑐𝑙𝑒 (𝐺𝑆→𝑇 , 𝐺𝑇→𝑆) = E𝑠∼𝑝𝑠𝑜𝑢𝑟𝑐𝑒 (𝑠) [‖𝐺𝑇→𝑆 (𝐺𝑆→𝑇 (𝑠) − 𝑠)‖1]+
E𝑡∼𝑝𝑡𝑎𝑟𝑔𝑒𝑡 (𝑡) [‖𝐺𝑆→𝑇 (𝐺𝑇→𝑆 (𝑡) − 𝑡)‖1]

(2.10)

where ‖·‖1 is the 𝐿1 norm. This might converge to a saddle point (where the minimax

game in GAN is over) when the Kullback-Leibler divergence KL(𝑝𝑠𝑜𝑢𝑟𝑐𝑒(𝑠) , 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 (𝑡)) ≈
KL(𝑝𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑝𝑠𝑜𝑢𝑟𝑐𝑒). In other words, the similarity between the source and the target distribution
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should be high. When the similarity between samples is not high enough especially when they

have been drawn from different classes, Equation 2.10 can no longer result in realistic fake

images. 𝑓𝑖 bypasses can overcome this problem by providing more information from a given

legitimate input.

The second advantage of embedding 𝑓1 and 𝑓2 into the proposed WCCGAN is the ability of

sharpening features that may have been oversmoothed during translation (especially in the

discriminator domain). Finally, the total loss criterion which is optimized in our augmentation

scenario is given in Equation 2.11:

L𝑡𝑜𝑡𝑎𝑙 (𝐹𝑆→𝑇 , 𝐹𝑇→𝑆, 𝐷𝑆, 𝐷𝑇 ) = L𝐿𝑆𝐺𝐴𝑁 (𝐹𝑆→𝑇 , 𝐷𝑇 )+
L𝐿𝑆𝐺𝐴𝑁 (𝐹𝑇→𝑆, 𝐷𝑆) + 𝛼L𝑐𝑦𝑐𝑙𝑒 (𝐹𝑆→𝑇 , 𝐹𝑇→𝑆)

(2.11)

where 𝛼 is a scaling parameter for balancing the cycle whose value is also set manually upon

experiments.

2.3.1 ConvNet Architecture for the Weighted Cycle-Consistent GAN

Assuming that we generate DWT spectrograms of 768×384 pixels, for high-level augmentation

using the WCCGAN, we propose the architectures illustrated in Figure 2.2 for the generators

(𝐹𝑆→𝑇 , 𝐹𝑇→𝑆). We started with a complex ConvNet model based on the AlexNet architecture

for all four networks (generators and discriminators) of Figure 2.1(b), and we simplified this

network by removing some layers which resulted in a simpler ConvNet architecture with

30% fewer parameters than AlexNet. Furthermore, when the architectures of discriminators

and generators are similar, the cycle-consistency loss function follows a smooth and convex

descending track. Therefore, we proposed two equivalent discriminators for both source-to-target

and target-to-source mappings. The residual network shown in Figure 2.2 may have from three

to seven residual blocks (He, Zhang, Ren & Sun, 2016), depending on the dataset. Each residual

block contains two convolution layers and one bypassing residual connection. In all the layers

depicted in Figure 2.2 the convolution layers have receptive field of 3×3 and stride 1×1. Also,

the sizes of the generated outputs in the residual blocks are bilinearly interpolated to match each
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Figure 2.2 Generator architectures for DWT spectrograms: left: 𝐹𝑆→𝑇 , and right: 𝐹𝑇→𝑆.

Values inside of parentheses indicate the number of filters, height, and width of the

spectrogram, respectively.

other. These architectures are not general and they need to be adapted depending on the type of

problem and dataset. For discriminator functions 𝐷𝑇 and 𝐷𝑆 we use a single architecture as

depicted in Figure 2.3. In the proposed architecture we also have receptive field of 3×3 and

strides 1×1 and 2×2 for the first and second convolution layers, respectively. There is no generic

way for determining an optimal structure for these two networks and we have basically relied on

our initial experiments on the UrbanSound8k dataset. Changing the structures of these networks

might affect the performance of image-to-image translation and it probably needs additional

modifications/tuning of the hyperparameters. Therefore, we used the same architecture for the

other datasets, but we have optimized the hyperparameters. Even if such an architecture is not

customized to the other datasets, we have achieved good results as we show in Section 2.5.
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Figure 2.3 Network architecture for 𝐷𝑇 and 𝐷𝑆

2.4 Unsupervised Feature Learning and Classification

The proposed approach for classifying DWT spectrograms is based on an unsupervised feature

learning approach. The motivation behind proposing a shallow approach instead of a deep

architecture as a front-end classifier is twofold. First, it has been shown that advanced deep neural

networks such as AlexNet, GoogLeNet and other recent architectures are highly vulnerable

to adversarial attacks as they can predict wrong labels with high confidence (Esmaeilpour

et al., 2020; Szegedy et al., 2014). Secondly, conventional classifiers such as SVMs and RFs,

which learn from handcrafted features are considerably more robust against such adversarial

attacks than deep learning models (Esmaeilpour et al., 2020). Taking advantage of these two

facts, we propose a conventional data-driven model as front-end classifier and use a generative

model based on a deep architecture as a back-end classifier for data augmentation purposes

only. Therefore, the deep architecture helps the front-end classifier to learn more discriminant
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boundaries. In this section, we present how to extract features from spectrograms and learn a

codebook of representative codewords.

2.4.1 Feature Encoding

For extracting feature from the spectrograms, the speeded up robust feature (SURF (Bay,

Tuytelaars & Van Gool, 2006)) is implemented, which is the modified version of the scale

invariant feature transform (SIFT) (Lowe, 1999) by fast approximation of a Hessian matrix

(for encoding principal curvatures at each point of interest) and producing integral images

from spectrograms. Upon several experiments, SURF visual words from DWT provide us with

better feature vectors compared to MFCC visual words which have been studied for music and

environmental sound classification (Salamon & Bello, 2015b; Vaizman, McFee & Lanckriet,

2014). In Section 2.5 we provide some additional result in extracting SURF features from

MFCC.

Each integral image represents the summation of the spectrogram pixels of a rectangular region

with different sizes to produce local features. Using the box filter (for Gaussian approximation),

SURF approximates the location and scale of each point of interest by using the determinant of

the weighted Hessian matrix as the following.

𝐻 (p, 𝜎) ≈
⎡⎢⎢⎢⎢⎣
𝐿̂𝑥𝑥 (𝑝, 𝜎) 𝐿̂𝑥𝑦 (𝑝, 𝜎)
𝐿̂𝑥𝑦 (𝑝, 𝜎) 𝐿̂𝑦𝑦 (𝑝, 𝜎)

⎤⎥⎥⎥⎥⎦ (2.12)

det(𝐻 (p, 𝜎)) = 𝐿̂𝑥𝑥 (𝑝, 𝜎) 𝐿̂𝑦𝑦 (𝑝, 𝜎) − [0.9( 𝐿̂𝑥𝑦 (𝑝, 𝜎))]2 (2.13)

where 𝐿̂ ·· (𝑝, 𝜎) is the convolution of the second derivative of Gaussian with the spectrogram

𝑆(𝑥, 𝑦) at point 𝑥, and 𝜎 is the Gaussian scale (scale at which the point has been detected). After

locating the interest points in space and scale, the SURF descriptor can be generated.

Assuming once again that we generate DWT spectrograms of 768×384 pixels, we divide each

spectrogram into 16 sub-regions (4×4 grids of size 4×4) and compute Haar wavelet responses

for obtaining orientation of interest points. In each sub-region, we compute a four-element
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descriptor vector as given by Equation 2.14:

descriptor𝑠𝑢𝑏𝑟𝑒𝑔𝑖𝑜𝑛 =
[∑

𝑑𝑥,
∑

𝑑𝑦,
∑ |𝑑𝑥 | ,∑ |𝑑𝑦 |

]
(2.14)

The length of the regional feature descriptor is 16×4 which is represented by a 64-dimensional

vector. These values are determined empirically on the UrbanSound8k dataset and they do not

change during the implementation or across datasets. The majority of the settings for feature

extraction are the default parameters of the OpenCV Library. For detecting interest points, a blob

detector based on the Hessian matrix is implemented. Different Hessian threshold values have

been evaluated, ranging from 250 to 1 000 on 15% of randomly selected samples of the dataset

with four trials and 400 was set as a fair average threshold with respect to the performance of

our classifier. Roughly, about 900 keypoints have been detected in each spectrogram. We have

employed a non-maximum suppression strategy with a threshold of 0.6 to rectify the problem

of detecting too many features. We skipped subregions in which SURF could not detect any

feature. More details are presented in Section 2.5.

High resolution spectrograms to some extent can help SURF to extract more meaningful features

but does not necessarily increase the performance in classification. Our main emphasis in

this paper is the high-level augmentation which basically maps one sample to another aiming

at increasing intra-class similarity and inter-class dissimilarity, regardless of the quality of

the spectrogram. Resizing resolution of spectrograms, which perhaps changes the size of

sub-regions, slightly affects the quality of the extracted features. For spectrograms of higher

resolution (for instance 1152×576), we suggest increasing the dimension of feature vectors to 128

as our initial experiments have shown its positive impact on the final classification performance.

In the next step, we learn a codebook of representative codewords (a.k.a visual words) from

such feature vectors.
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2.4.2 Organizing Visual Words into a Codebook Using Spherical K-Means++

The number of feature vectors extracted from the spectrograms is tremendously high and this

negatively affects classifier’s performance. Therefore, representing these vectors with respect to

their similarities into centers and organizing them into a codebook can considerably improve the

classification process.

We use the 𝐾-Means++ algorithm (Arthur & Vassilvitskii, 2007) as an unsupervised feature

learning for organizing codewords. This clustering algorithm is adapted from the traditional

𝐾-Means algorithm where 𝐾 denotes the number of potential seeds (centroids). This value

is usually larger than the dimensionality of the audio data. The main advantage of the 𝐾-

Means++ algorithm over the traditional 𝐾-Means algorithm is that it uses a weighted probability

distribution over the data point (feature vector in our case) sub-manifold(s) with probability

proportional to its squared distance to its neighbors. This is very useful in our case since

feature vectors are not extracted from solid images. Similar to the traditional 𝐾-Means, the

𝐾-Means++ algorithm has a super polynomial structure and it might result in null seeds

for similar data points (Dhillon & Modha, 2001). One possible solution provided for 𝐾-

Means is adding an extra optimization constraint by binding seeds to have a unit 𝐿2 norm

which forces the centroid to roll over a unique sphere. This algorithm is called spherical

𝐾-Means (Coates & Ng, 2012). By taking advantage of this extra constraint and embedding it

into the 𝐾-Means++ clustering algorithm, spherical 𝐾-Means++ (Endo & Miyamoto, 2015)

turns out. The performance of standard spherical 𝐾-Means is studied for specific forms of

environmental sound datasets with quite small cardinality (Stowell & Plumbley, 2014). It

has been proven that this clustering algorithm produces competitive results with cutting-edge

clustering and other advanced supervised classifiers (Dieleman & Schrauwen, 2013). Adding a

spherical constraint in the distance objective function of 𝐾-Means usually results in improving

the consistency in producing centroids.

Considering the feature vectors of an input spectrogram represented as a 𝑋𝑚,𝑛 matrix where

𝑚 and 𝑛 denote the number of feature vectors and their dimensionality in the form of 1×n,
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respectively (1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛). In Equation 2.15 we define 𝑧𝑖 for storing the assigned

value (mean of centroids) of our 𝐾 clusters which forms the matrix 𝑍 . Finally, our codebook is

defined as 𝑉 ∈ R𝑛×𝐾 .

𝑧𝑖𝑗 :=

⎧⎪⎪⎨⎪⎪⎩
𝑉 𝑗𝑥𝑖� if 𝑗 = arg max

𝑙

���𝑉𝑙𝑥𝑖�
���
𝑗 ,𝑖

and 𝑝(𝑥) ∼ N (0, 𝑑2(𝑥𝑖))
0 otherwise

(2.15)

where 𝑥𝑖 is a row from 𝑋 and 𝑐 is a constant value for weighting the square distance of each

𝑥𝑖 to its nearest center. Specifically, 𝑑 and 𝑝 denote the distance between two feature vectors

and their joint probability distribution, respectively, and � indicates matrix transposition. More

details about the basics of the spherical 𝐾-Means algorithm is provided in (Coates & Ng, 2012).

Finally, the two operations of Equation 2.16 update the centroids and normalize them by the 𝐿2

norm, respectively. The centroids can be randomly normalized following a normal distribution.

The codebook matrix 𝑉 contains 𝐾 organized clusters that we use to encode the training data

and train a classifier.

𝑉 := 𝑋𝑍� +𝑉, 𝑉 𝑗 :=
𝑉 𝑗

‖𝑉 𝑗 ‖2

∀ 𝑗 (2.16)

2.4.3 Classification

For classifying the code vectors encoded against the codebook, we have considered the most

performing conventional approaches, namely SVM with different kernels (linear, polynomial,

radial basis functions) and random forest (RF). We decided to use a RF as our front-end classifier

based on the recognition accuracy. We use the random forest (RF) algorithm (Breiman, 2001)

with a different number of trees. This algorithm is an estimator which fits some decision trees on

different sub-samples of given code vectors via averaging. We train this algorithm with different

sizes of trees (estimators) with respect to the dimensions of the generated code vectors. For

splitting a random tree node, the Gini impurity criterion is used as follows:

𝐺 =
𝑛∑

𝑖=1

𝑝𝑖 (1 − 𝑝𝑖) (2.17)
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where 𝑛 denotes the number of classes in the target variable and 𝑝𝑖 is the ratio of picking a

random sample from class 𝑖. The maximum depth of trees varies from 16 to 64 with respect

to the type of codebook. Specifically, for code vectors associated with long audio recordings,

we use deeper trees. The minimum number of samples required to split an internal node is

set to 0.02×𝑚 where 𝑚 stands for the number of samples per class. This classifier has shown

great potential for classifying code vectors (Salamon, Jacoby & Bello, 2014b). Upon our

initial experiments, we have noticed that spherical binding of code vectors for the 𝐾-Means++

outperforms the standard one.

2.5 Experimental Results

We assess the performance of the proposed approach in four environmental sound datasets:

UrbanSound8k, ESC-10, ESC-50, and DCASE-2017. The first dataset includes 8 732 audio

samples of up to four seconds in duration distributed in 10 classes: air conditioner (AI), car

horn (CA), children playing (CH), dog bark (DO), drilling (DR), engine idling (EN), gunshot

(GU), jackhammer (JA), siren (SI), and street music (SM). The ESC-50 includes 2 000 samples

of 5-second duration distributed in 50 classes including major groups of animals, natural sound

clips and water sounds, human non-speech sounds, domestic sounds, and exterior noises. The

ESC-10 is a subset of ESC-50 which includes 400 excerpts arranged in 10 classes: dog bark,

rain, sea waves, baby cry, clock tick, person sneeze, helicopter, chainsaw, rooster, fire crackling.

Finally, DCASE-2017 consists of 4 680 10-second audio samples from 15 classes: bus, cafe,

car, city center, forest path, grocery store, home, lakeside beach, library, metro station, office

(multiple persons), residential area, train, tram, and urban park. Though the cardinality of

samples per class in UrbanSound8k is not balanced, such a dataset contains the most challenging

environmental sounds in real life compared to the other three datasets in terms of including

different sound production mechanisms.

For low-level data augmentation, there is no automatic approach for tuning the pitch-shifting

hyperparameter (𝑡) and this depends on the type of audio signal, as mentioned in Section

2.1. Therefore, we have carried out a grid search starting by 𝑡 ∈ {0.6, 0.75, 0.9, 1.1, 1.25, 1.4}
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as suggested in (Boddapati et al., 2017) and we have found that more than 25% signal

compression (𝑡 < 0.75) does not increase the F1 score of our approach. This makes sense

because pitch-shifting with 𝑡 < 1 is a lossy operation and it might increase the chance of

losing pivotal frequency components. Overall, for pitch-shifting with 𝑡 < 1 we kept only

the two most influential values (0.75 and 0.9). For pitch-shifting with 𝑡 > 1 we started with

1.1 and gradually increase it by 0.05 displacement to the margin of 65% signal stretching

compared to the original signal. Stretching signals with 𝑡 > 1.65 did not result in a positive

effect on the performance of the front-end classifier. We speeded up all audio samples with

𝑡 ∈ {1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.55, 1.6, 1.65} and ranked them with respect

to the F1 score measured for the front-end classifier. We finally kept 𝑡 ∈ {1.15, 1.5} for stretching

the audio signal as the rest did not show any considerable improvement. Therefore, using static

pitch shifting scales of 0.75, 0.9, 1.15, and 1.5, we ended up with an augmented dataset of 43 660,

10 000, 2 000 and 23 400 samples for UrbanSound8k, ESC-50, ESC-10 and DCASE-2017

datasets, respectively.

For each audio sample in the augmented datasets, we generate the DWT spectrograms by setting

the sampling frequency of 8 kHz for ESC-10 and UrbanSound8k datasets, and 16 kHz to

ESC-50 and DCASE-2017 datasets. Besides, we also set the frame length to 50 ms for ESC-10

and UrbanSound8k, 30 ms for ESC-50, and 40 ms for DCASE-2017 with a fixed overlapping

size of 50% (Boddapati et al., 2017). Therefore, each audio samples is now represented by

a DWT spectrogram of 768×384 pixels. Empirically, this resolution provides a fair trade-off

between information content (in terms of feature vectors) and dimensionality. Each spectrogram

undergoes the enhancement step and next we apply the high-level data augmentation using the

proposed WCCGAN.

The proposed WCCGAN employs the ConvNets presented in Figure 2.2, which have normalized

convolution layers by applying the instance normalization (Ulyanov, Vedaldi & Lempitsky,

2016) technique followed by the leaky ReLU activation function with slope 0.3. We used the

Glorot weight normalization algorithm for improving learning. For discriminator functions 𝐷𝑇

and 𝐷𝑆 we use a single architecture as depicted in Figure 2.3. In the proposed architecture
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Table 2.1 The total number of epochs

# of Training Epochs

Dataset 𝐹𝑆→𝑇 𝐹𝑇→𝑆 𝐷𝑆 𝐷𝑇

ESC-10 123 107 104 91

ESC-50 136 118 109 116

UrbanSound8k 112 106 97 45

DCASE-2017 213 143 90 102

we set the receptive field to 3×3 and strides are set to 1×1 and 2×2 for the first and second

convolution layers, respectively. In this case, we used the ReLU activation function and batch

normalization (Gulrajani, Ahmed, Arjovsky, Dumoulin & Courville, 2017). These four networks

are trained in four parallel GPUs GTX580 based on an implementation proposed in (Krizhevsky

et al., 2012). We applied an early stopping policy for training these networks and the total

number of epochs for training each network is shown in Table 2.1.

The tentative values for 𝑐1, 𝑐2, 𝜇, 𝜎, and 𝛼 in Equations 2.8, 2.9, and 2.11 for each dataset are

shown in Table 2.2. There is no deterministic approach to adjust such hyperparameters of the

WCCGAN. Moreover, there is no guarantee that such hyperparameters are properly set, as they

result from exploratory experiments where we empirically modified them up to see a good track

in sample generation and detection. In all experiments the main criterion was achieving the

best epoch before overtraining generators and discriminators using early stopping. We have

changed the hyperparameters almost randomly to get the best epoch. Since 𝐹𝑆→𝑇 is stronger

than 𝐹𝑇→𝑆 due to the residual blocks, we intentionally increase the weight of the latter generator

for all the datasets. This is the main reason for having higher values for 𝜎 compared to 𝜇 in all

experiments. Hyperparameters 𝑐1 and 𝑐2 are weights for source and target samples respectively.

Hence, except for the DCASE-2107 dataset, we tried to keep the summation of these weights

close to one to ensure good balance. The hyperparameter 𝛼 keeps the cycle consistency and we

noticed that it should not exceed 0.45 for the proposed setup as higher values do not lead to

convergence of the generators. Table 2.2 shows the hyperparameter values found by a basic and

non-optimal local random search that attempts to find the models that produce the best F1 score
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Table 2.2 Hyperparameters for Eq. 2.8, 2.9, and 2.11

Hyperparameter Values (averaged over five folds)

Dataset 𝑐1 𝑐2 𝜇 𝜎 𝛼

ESC-10 0.49 0.67 0.02 0.76 0.23

ESC-50 0.39 0.68 0.12 0.58 0.19

UrbanSound8k 0.62 0.36 0.14 0.57 0.03

DCASE-2017 0.03 0.21 0.18 0.43 0.31

in terms of a minimum number of epochs. Once the best hyperparameters have been found, we

applied perturbations of ±2%, ±5%, and ±10% to assess the sensitivity of the WCCGAN in

respect to these hyperparameters. The F1 score of the discriminator networks has been computed

for each perturbation applied on the hyperparameters of Table 2.2 which resulted in a noticeable

performance drop, ranging from 2.4% to 12.6%, depending on the dataset and hyperparameter.

As expected, these hyperparameters have a great influence in the performance of the WCCGAN

because they are tuned upon a local search to allow the WCCGAN to produce spectrograms

with low inter-class and high intra-class similarity. Among all these hyperparameters, 𝛼 is the

most sensitive one as it controls the consistency. In other words, this hyperparameter leverages

the cycle-consistency loss between generators and acts to some extent as a regularizer for the

generators.

In order to produce more structural spectrograms from source 𝑆 to target 𝑇 and make the loss

functions converge, we need to have an idea of the inter-class relation between samples. For such

an aim, we randomly pick samples to train a RF algorithm on spectrograms without high-level

data augmentation featuring different number of trees from 500 to 3 000. Table 2.3 shows the

confusion matrices for the RF trained with the UrbanSound8k dataset without high-level data

augmentation. The values in Table 2.3 can also be interpreted as similarity among classes. For

instance, class "EN" has high similarity with class "AI" because the classifier has misclassified

samples from the class "AI" as class "EN" in 14% of the cases. Therefore, we set the source and

target classes in Figure 2.1 to 𝑆="AI" and 𝑇="EN", respectively. We use the same procedure

for all classes. In addition to intra-class image-to-image translation, we augment the DWT
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Table 2.3 Confusion matrix of the proposed classification

approach without high-level augmentation on the UrbanSound8k

dataset. Values in bold indicate the best recognition accuracy in a

5-fold cross validation setup.

AI CA CH DO DR EN GU JA SI SM

AI 0.68 0.00 0.02 0.01 0.05 0.14 0.01 0.04 0.02 0.03

CA 0.00 0.77 0.02 0.02 0.00 0.00 0.00 0.05 0.07 0.07

CH 0.07 0.05 0.31 0.09 0.04 0.03 0.02 0.04 0.15 0.20

DO 0.06 0.04 0.03 0.68 0.04 0.02 0.03 0.00 0.05 0.05

DR 0.02 0.04 0.02 0.02 0.74 0.01 0.01 0.10 0.04 0.00

EN 0.04 0.00 0.03 0.02 0.01 0.78 0.02 0.06 0.01 0.03

GU 0.00 0.02 0.00 0.03 0.00 0.00 0.95 0.00 0.00 0.00

JA 0.01 0.01 0.00 0.00 0.05 0.03 0.00 0.90 0.00 0.00

SI 0.03 0.06 0.03 0.02 0.02 0.01 0.03 0.01 0.78 0.01

SM 0.03 0.08 0.06 0.09 0.08 0.08 0.01 0.04 0.06 0.47

Table 2.4 Confusion matrix of the proposed classification

approach with WCCGAN augmentation on the UrbanSound8k

dataset. Values in bold indicate the best recognition accuracy in a

5-fold cross validation setup.

AI CA CH DO DR EN GU JA SI SM

AI 0.89 0.01 0.00 0.02 0.01 0.04 0.00 0.01 0.02 0.00

CA 0.01 0.92 0.00 0.01 0.02 0.00 0.01 0.01 0.00 0.02

CH 0.00 0.01 0.91 0.03 0.00 0.01 0.00 0.00 0.01 0.03

DO 0.00 0.00 0.01 0.96 0.01 0.00 0.00 0.00 0.01 0.01

DR 0.00 0.01 0.00 0.02 0.95 0.01 0.00 0.01 0.00 0.00

EN 0.01 0.00 0.00 0.01 0.00 0.96 0.01 0.00 0.00 0.01

GU 0.01 0.00 0.00 0.00 0.01 0.00 0.97 0.01 0.00 0.00

JA 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00

SI 0.00 0.01 0.03 0.00 0.01 0.00 0.00 0.00 0.95 0.00

SM 0.00 0.01 0.02 0.01 0.00 0.00 0.01 0.00 0.00 0.95

spectrograms in inter-class manner as well. We randomly select 50% of samples within a class

as the source and the remaining 50% as the target classes. Overall, we increase the size of the

datasets with extra 1 500, 2 000, 5 000 and 4 500 samples for ESC-10, ESC-50, UrbanSound8k

and DCASE-2017, respectively. Some visual examples of the generated spectrograms using the

WCCGAN are shown in Figure 2.4. This figure shows the high capability of the WCCGAN for

producing structurally similar spectrograms even when the source and target are not similar to

each to the human eye perspective.
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Source (S) Generated SamplesTarget (T)

Figure 2.4 Generated spectrograms using the WCCGAN for randomly drawn sources (𝑆)

and targets (𝑇). The 𝑆s and 𝑇s shown in the top four rows indicate intra-class

image-to-image translation. Specifically, UrbanSound8k (𝑆 = 𝑇 : sea waves), ESC-10

(𝑆 = 𝑇 : person sneeze), ESC-50 (𝑆 = 𝑇 : pouring water), and DCASE-2017 (𝑆 = 𝑇 : office).

Sources and targets for inter-class translation are shown in the five bottom rows as in

UrbanSound8k (𝑆: sea waves, 𝑇 : rain), ESC-10 (𝑆: person sneeze, 𝑇 : helicopter), ESC-50

(𝑆: wind, 𝑇 : pouring water), and DCASE-2017 (𝑆: cafe, 𝑇 : office).

After finishing both inter- and intra-class data augmentation processes, we train again the

RFs on the augmented dataset, considering different number of trees. The best number of

trees for ESC-10, ESC-50, UrbanSound8k, and DCASE-2017 were obtained at 2 000, 1 864,
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2 500, and 2 496, respectively with minimum AUC metrics (one-vs-all). Table 2.4 shows the

performance of the learned trees on the UrbanSound8k dataset augmented with the proposed

WCCGAN. The results are highly improved compared to the trees trained on codebooks learned

without high-level data augmentation (Tables 2.3). This shows the importance of high-level data

augmentation for extracting more discriminating features.

Table 2.5 compares the performance of the proposed classification approach to the state-of-the-art

pre-trained classifiers (AlexNet and GoogLeNet) on environmental sound datasets following

the transfer learning and fine-tuning strategies explained in (Kumar, Khadkevich & Fügen,

2018). It is worth mentioning that these two pre-trained networks have been fine-tuned on

the 2D aggregation (pooling) of STFT, MFCC, and CRP. As Table 2.5 shows, our approach

outperforms both deep learning models on all environmental sound datasets. One clear outcome

of Table 2.5 is that the GAN theory could help us not only to build robust classifiers, but also

to highlight another traditional classifier’s performance. Furthermore, for a better comparison

of the performances, the box-plots of these classifiers are shown in Figure 2.5. With respect

to these box-plots for all the four benchmarking datasets, the proposed approach using the

WCCGAN architecture for high-level data augmentation achieved the highest maximum, mean,

minimum, and median accuracy. These plots also confirm that the proposed approach together

with WCCGAN outperforms AlexNet and GoogLeNet since it provides the highest statistical

measures except for the ESC-50 dataset; and there are no outliers. In order to investigate the

statistical significance of the recognition performances reported in Table 2.5, we used Friedman’s

test which is the non-parametric version of the one-way ANOVA with some limited repeated

measures (Hogg & Ledolter, 1987). Upon 19 runs (degrees of freedom), we could reach the

𝑝-value of 0.05 on average, which shows the high performance of the proposed approach.

Even if the current state-of-the-art is based on pre-trained ConvNets fine-tuned on the 2D

aggregation of STFT, MFCC, and CRP, for a fair comparison as well as to evaluate the potential of

the proposed WCCGAN to generate DWT spectrograms that may also improve the performance

of other classification approaches, we have evaluated the performance of GoogLeNet and AlexNet

on the DWT spectrograms augmented by the proposed WCCGAN. We fine-tuned these two
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Table 2.5 Comparing the mean accuracy of the proposed

approach with and without high-level augmentation (DA) with

GoogLeNet and AlexNet. Comparison has been made in a 5-fold

cross validation setup. The best results are shown in bold faces.

Mean Accuracy

Benchmarking Dataset Proposed Approach

GoogLeNet AlexNet Without DA With DA

ESC-10 0.83 0.83 0.72 0.87
ESC-50 0.71 0.64 0.55 0.77

UrbanSound8k 0.91 0.90 0.73 0.94
DCASE-2017 0.64 0.62 0.66 0.76

Figure 2.5 Box-plots of the approaches from Table 2.5 in a 5-fold cross validation setup

for ESC-10, ESC-50, UrbanSound8k and DCASE-2017 datasets

ConvNets with the four augmented datasets and the results are shown in Table 2.6. The results

show the importance of high-level data augmentation for environmental sound classification

since the performance of these two ConvNets is also improved. With respect to the values

reported in Table 2.6, GoogLeNet trained on the augmented DWT spectrogram outperforms the
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Table 2.6 Recognition accuracy of two ConvNets on the

augmented DWT spectrograms of four benchmarking datasets.

Value in bold indicates a better performance than those reported in

Table 2.5. The 5-fold cross validation setup is applied. The mean

confidence refers to the probabilities computed by the softmax layer.

Mean Accuracy (avg. AUC score) Mean Confidence

Benchmarking Dataset GoogLeNet AlexNet (%)

ESC-10 0.86 0.85 78.26

ESC-50 0.78 0.75 80.52

UrbanSound8k 0.93 0.93 91.02

DCASE-2017 0.73 0.74 81.37

Table 2.7 Average ranking (𝑟) considering the best mean accuracy

for the four datasets (Brazdil & Soares, 2000)

Approach 𝑟 (averaged) Overall Rank (according to 𝑟)

Proposed Approach (with DA) 1.25 1

Proposed Approach (without DA) 5.00 6

GoogLeNet (with DA) 1.50 2

GoogLeNet 4.50 4

AlexNet (with DA) 2.50 3

AlexNet 4.75 5

proposed classification method on the ESC-50 dataset. Moreover, the performance of these two

ConvNets is very close to our classification scheme.

Table 2.7 summarizes the comparison between all approaches with and without the proposed

data augmentation through an average ranking (Brazdil & Soares, 2000) according to the

measured mean accuracy. The proposed approach with data augmentation has the best rank

among all approaches, followed by the GoogLeNet and AlexNet with data augmentation,

GoogLeNet, AlexNet, and the proposed approach without data augmentation. The most

impressive improvement due to the proposed data augmentation is observed for the proposed

approach which moves from the last (6th) to the top spot (1st).
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Table 2.8 Comparison of 1D data augmentations approaches in terms of

recognition accuracy for the proposed classification scenario in a 5-fold

cross validation setup. Note that after these 1D data augmentations, we

have also augmented the DWT representations with WCCGAN.

Mean Accuracy

Dataset All 1D Augmentation (low-level augmentation) Pitch-shifting

ESC-10 0.79 0.87

ESC-50 0.75 0.77

UrbanSound8k 0.92 0.94

DCASE-2017 0.69 0.76

2.6 Discussion

We have shown the potential of the proposed WCCGAN for high-level data augmentation

in improving the performance of two different supervised approaches (ConvNets and RFs).

Since the proposed WCCGAN also considers inter-class and intra-class aspects to generate new

samples, it allows generating more discriminating features as it improves recognition accuracy of

all classifiers. Implementing low-level 1D data augmentation approaches proposed by Salamon et

al. (Salamon & Bello, 2017) do not noticeably help to learn more informative features. Table 2.8

compares the results of several low-level 1D data augmentation approaches and a single low-level

1D data augmentation approach. For instance, we augmented the environmental datasets using

all 1D augmentation approaches defined in (Salamon & Bello, 2017): time-stretching with scale

of 0.81, 0.93, 1.07, and 1.23; pitch-shifting with factors of 0.75, 0.9, 1.15, and 1.5 (the same

parameters defined in Section 2.5); dynamic range compression using three parameterizations

from the Dolby E standard and one from the Icecast radio streaming server; and background

noise using acoustic scenes of street-workers, street traffic, street-people, and park. Table 2.8

shows that employing all types of low-level data augmentation do not necessarily improve the

performance of the classifier.

We have also compared the performance of the proposed WCCGAN with the CCGAN proposed

by Zhu et al. (Zhu et al., 2018c) on the DWT spectrograms. The input size of the generator

and discriminator networks in the CCGAN is 48×48 which is considerably smaller than our
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Table 2.9 Recognition accuracy of the proposed approach with

different cycle-GAN augmentation architectures on DWT spectrograms.

The 5-fold cross validation setup is applied and the bold values indicate

the best performance.

Mean Accuracy

Benchmarking Dataset CCGAN (Zhu et al., 2018c) WCCGAN (the proposed)

(48×48) (768×384) (768×384)

ESC-10 0.74 0.75 0.87
ESC-50 0.67 0.70 0.77

UrbanSound8k 0.80 0.80 0.94
DCASE-2017 0.67 0.71 0.76

Table 2.10 Recognition accuracy of the ConvNet (Zhu et al., 2018c)

with different cycle-GAN augmentation architectures on DWT

spectrograms. The 5-fold cross validation setup is applied and the bold

values indicate the best performance.

Mean Accuracy

benchmarking Dataset CCGAN (Zhu et al., 2018c) WCCGAN (The proposed)

(48×48) (768×384) (48×48) (768×384)

ESC-10 0.40 0.41 0.59 0.67
ESC-50 0.41 0.44 0.51 0.59

UrbanSound8k 0.38 0.41 0.59 0.64
DCASE-2017 0.39 0.42 0.50 0.52

spectrogram dimensions of 768×384. For a fair comparison, we have adapted the input

dimensions of the networks to the size of our generated spectrograms as well as we have squeezed

the DWT spectrograms to 48×48 to fit them to the networks. The results of these experiments are

summarized in Tables 2.9 and 2.10. Table 2.9 shows that the proposed WCCGAN outperforms

the architecture introduced in (Zhu et al., 2018c) considering our front-end RF classifier for both

input dimensions. Table 2.10 shows that the proposed approach also outperforms the CCGAN

when we use the ConvNet proposed by Zhu et al. (Zhu et al., 2018c) as a front-end classifier.

These results show the advantage of the proposed WCCGAN and front-end classification

compared to the classification pipeline proposed in (Zhu et al., 2018c) for spectrograms.
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Table 2.11 Mean accuracy of different environmental sound classification approaches in

UrbanSound8k (US8K), ESC-10, ESC-50 and DCASE-2017 datasets with and without data

augmentation (DA). Values are rounded in two-digit floating point precision.

Mean Accuracy

Approach US8K ESC-10 ESC-50 DCASE-2017

Proposed Approach (DA) 0.94 0.87 0.77 0.76
MC-Net + LMC-Net (Su et al., 2019) 0.95 0.72 0.74 0.74

GooLeNet and AlexNet (Boddapati et al., 2017) 0.93 0.86 0.73 NA

SoundNet (Aytar et al., 2016) 0.79 0.92 0.74 NA

SB-ConvNets (DA) (Salamon & Bello, 2017) 0.79 0.77 0.54 0.45

MoE (Ye, Kobayashi & Murakawa, 2017) 0.77 NA NA NA

SKM (DA) (Salamon & Bello, 2015b) 0.76 0.74 0.56 0.43

SKM (Salamon & Bello, 2015b) 0.74 0.71 0.52 0.36

Proposed Approach 0.73 0.71 0.55 0.66

PiczakConvNets (Piczak, 2015a) 0.73 0.80 0.65 0.52

SB-ConvNets (Salamon & Bello, 2017) 0.73 0.72 0.49 0.41

MultiTemp (Zhu, Xu, Wang, Zhang, Li & Peng, 2018a) 0.72 0.74 0.71 0.73

VGG (Pons & Serra, 2019) 0.70 NA NA NA

NA: Not Available.

Finally, Table 2.11 shows the mean classification accuracy of the proposed approach with and

without data augmentation as well as the results obtained by other state-of-the-art classifiers

described in the literature. The proposed approach achieved the highest mean accuracy for

ESC-50 and DCASE-2017 and its performance is just 0.01 lower than the approach based on the

decision-level fusion of two parallel ConvNets (MC-Net + LMC-Net) for the UrbanSound8k

dataset. However, the best performance for the ESC-10 dataset is achieved by the Soundnet (Aytar

et al., 2016) which learns a multimodal representation from a very-large dataset of unlabeled

videos which is further used with an SVM. Besides, the proposed approach outperforms most of

the approaches trained on handcrafted features or trained on both 1D signal and spectrograms.

2.7 Conclusion

In this paper we have shown how to structurally augment imbalanced environmental sound

datasets in a high-level fashion using the proposed WCCGAN. The proposed data augmentation
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framework applies identity mapping to discriminator networks, which using the least-squared

optimization criterion solves the gradient vanishing problem and produces flawless spectrograms.

The importance of the high-level augmentation is more tangible for spectrograms because

compared to regular computer vision datasets (e.g., ImageNet (Deng, Dong, Socher, Li, Li & Fei-

Fei, 2009)), spectrograms do not have solid objects sensitive to low-level transformations.

Moreover, the total number of samples in environmental sound datasets are limited and image-to-

image translation using the WCCGAN can effectively increase the size and improve the quality

of the datasets. The proposed high-level data augmentation approach is also able to produce

consistent samples that keep structural significance which is much more meaningful compared

to other approaches such as simple image transformations or even conventional GANs. Such

approaches do not allow control of the generated samples, especially regarding their structural

consistency. The experimental results have shown that the WCCGAN outperforms the regular

GAN since we do not have much control over consistency of the source and target inputs.

Overall, high-level data augmentation using GANs translates structural components from sample

to sample where low-level augmentation algorithms cannot. Furthermore, the experimental

results have also shown that the WCCGAN can even improve the performance of ConvNets for

the environmental sound classification task. Unfortunately, the proposed architecture for the

cycle-consistent GAN does not properly work in an end-to-end 1D setup. In fact, it is really

costly to train and find hyperparameters for an end-to-end WCCGAN as audio waveforms have

a much higher dimensionality compared to spectrograms. In spite of the high dependence

of the proposed architecture on the dataset, we believe that the proposed WCCGAN can also

be adapted to other datasets with some customization in the architecture of generators and

discriminators and an appropriate hyperparameter tuning. The burden of hyperparameter tuning

may be reduced by using a black-box optimization such as the Ortho-MAD2S (Mello, de Matos,

Stemmer, Britto Jr. & Koerich, 2019).

Our classification approach is a promising step towards building reliable classifiers for complex

environmental sound datasets. We learn a codebook with visual words extracted by SURF

detectors from augmented spectrograms organized in a unit distance to each other in a setup
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imposed by the 𝐾-Means++ algorithm. Unsupervised feature learning has shown great

competence in classifying 2D representations of the environmental sound datasets. The RF

classifier with 2 000 trees trained on code vectors outperformed the two ConvNets in four

benchmarking datasets (ESC-10, ESC-50, UrbanSound8k, and DCASE-2017). Furthermore,

besides outperforming deep models, the unsupervised feature learning approach together with

the proposed architecture for the WCCGAN compares favorably with most of the current

approaches for environmental sound classification. Another aspect is the reliability of the

proposed approach against adversarial attacks. It is out of the scope of this paper to discuss

this aspect, but it has been shown that ConvNets such as AlexNet and GoogLeNet are more

vulnerable against carefully crafted adversarial examples compared to classifiers trained with

SURF feature vectors (Esmaeilpour et al., 2020).

For the future work, in addition to improving the Spherical 𝐾-Means++ algorithm for environ-

mental sound classification, we would like to measure the performance of other unsupervised

algorithms on the augmented DWT datasets to understand the strength of these classifiers.

Besides that we are also interested in evaluating Wasserstein GAN (Arjovsky et al., 2017) for

image-to-image translation since it suffers less from oversmoothing effects. This might improve

further the performance of the proposed classification approach. Finally, we would like to extend

this work for structured datasets such as music datasets and evaluate the performance of the

proposed data augmentation and classification approaches.
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Abstract

Adversarial audio attacks can be considered as a small perturbation unperceptive to human ears

that is intentionally added to an audio signal and causes a machine learning model to make

mistakes. This poses a security concern about the safety of machine learning models since

the adversarial attacks can fool such models toward the wrong predictions. In this paper we

first review some strong adversarial attacks that may affect both audio signals and their 2D

representations and evaluate the resiliency of deep learning models and support vector machines

(SVM) trained on 2D audio representations such as short time Fourier transform, discrete wavelet

transform (DWT) and cross recurrent plot against several state-of-the-art adversarial attacks.

Next, we propose a novel approach based on pre-processed DWT representation of audio signals

and SVM to secure audio systems against adversarial attacks. The proposed architecture has

several preprocessing modules for generating and enhancing spectrograms including dimension

reduction and smoothing. We extract features from small patches of the spectrograms using the

speeded up robust feature (SURF) algorithm which are further used to transform into cluster

distance distribution using the K-Means++ algorithm. Finally, SURF-generated vectors are

encoded by this codebook and the resulting codewords are used for training a SVM. All these

steps yield to a novel approach for audio classification that provides a good trade-off between

accuracy and resilience. Experimental results on three environmental sound datasets show the
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competitive performance of the proposed approach compared to the deep neural networks both

in terms of accuracy and robustness against strong adversarial attacks.

3.1 Introduction

Adversarial attacks pose security issues since they can be unrecognizable to human eyes or human

ears while they can easily fool any trained machine learning model with very high confidence.

As these machine learning models are becoming more present in many devices and applications,

there exists an urgent need for improving their robustness against adversarial attacks. Basically,

an adversarial attack algorithm formulates an optimization problem such as finding the smallest

possible perturbation to be added to a given legitimate input (image, audio, spectrogram, etc.)

aiming at a machine learning model to predict a wrong label. This perturbation should be as

small as possible to be imperceptible to human visual or auditory system. Adversarial attacks

have been attracting the attention of many researchers, mainly in the domain of computer vision

(Kurakin, Goodfellow & Bengio, 2016; Sabour, Cao, Faghri & Fleet, 2015; Xie, Wang, Zhang,

Zhou, Xie & Yuille, 2017). However, adversarial attacks may also pose a serious threat to voice

assistant devices, speech and speaker recognition as well as other audio-related applications. In

spite of that few studies have addressed adversarial attacks for audio signals (Carlini & Wagner,

2018). One of the possible reasons is the considerable optimization overhead of adversarial

algorithms when applied to audio signals due to their high dimensionality. In the big picture,

adversarial examples of audio signals can be crafted during sound production or post production

by changing their amplitude or frequency into the ranges where humans cannot perceive. This

is difficult and needs to be treated carefully because there is no guarantee of producing a true

adversarial example and the output could be just a noisy example. In the case of post-production

of adversarial examples, the adversary can either solve an optimization problem (costly) or

develop an adversarial filter in order to apply some perturbations to a legitimate audio before

passing it through a machine learning model. In both cases, the victim model could be fooled

toward the bad wishes of the adversary and make the system misbehave.
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In this paper, we investigate the threat of adversarial attacks on environmental audio sounds

due to the diversity that we may find, ranging from baby crying to engines, horns to dog

barking or people chatting with numerical text-free labels. Adversarial attacks are quite useful

for other relevant domains of speech recognition and music classification and they may be

generalizable to speech-to-text applications, though the latter is not discussed in this paper.

Environmental sound classification has been a challenging problem in machine learning research

(Salamon & Bello, 2015b). Both shallow and deep neural networks (DNNs) have shown

competitive performances on benchmarking datasets such as ESC-10 (Piczak, 2015b), ESC-50

(Piczak, 2015b), and UrbanSound8K (Salamon et al., 2014a). Besides the supervised models,

there are some unsupervised models such as spherical K-means for sound representation learning

(Salamon & Bello, 2015b,a). Both supervised and unsupervised models have mainly been

trained either on audio waveforms (1D) or on 2D representation such as spectrograms. In both

cases, convolutional neural networks (CNNs) have shown better performances compared to

other classifiers. For instance, the CNN proposed by Salamon and Bello (Salamon & Bello,

2017) outperforms their prior approach based on unsupervised feature learning and random

forest (Salamon & Bello, 2015b) on the UrbanSound8K dataset. Also, for ESC-10 and ESC-50

datasets, a 1D CNN with eight convolution layers (SoundNet) (Aytar et al., 2016) outperforms

random forest (Piczak, 2015b), SVM using Mel-Frequency Cepstral Coefficients (MFCCs)

(Piczak, 2015b), and convolutional autoencoders (Aytar et al., 2016). In addition to these

CNNs, other DNN architectures such as AlexNet and GoogLeNet, which have shown remarkable

performances on image classification tasks (e.g. ImageNet dataset) have also been used for

environmental sound classification. Interestingly, these two CNNs trained on spectrograms have

been achieving the highest recognition performance for the three aforementioned datasets as

reported by Boddapati et al. (Boddapati et al., 2017).

One of the open problems in audio classification seemingly is no longer improving recognition

accuracy but improving their strengths against some carefully crafted adversarial examples.

Therefore, the proposed approach for environmental sound classification is based on two findings:

(i) deep learning models, particularly AlexNet and GoogLeNet, outperform conventional
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classifiers trained on handcrafted features such as SVM; (ii) SVM in general is more robust

against adversarial attacks, potentially because it learns from low-dimensional feature vectors

that might reduce the chance of being affected by adversarial perturbations compared to deep

models which learn from raw data. Following these facts, in this paper we propose an SVM-based

approach that provides a good trade-off between the recognition accuracy and the robustness

against adversarial attacks while achieving recognition accuracy comparable to deep models.

Since there is no standard metric for evaluating the quality of such a trade-off, we also introduce

a distance metric based on the error rate versus the fooling rate.

Our contribution in this paper is threefold: (i) we present common adversarial attacks for audio

and we show how they can affect the security of audio applications; (ii) we characterize the

vulnerability of state-of-the-art models based on 2D representations to adversarial attacks and

the transferability of these attacks between different models; (iii) we propose a novel approach

for environmental sound classification that in addition to being robust against several adversarial

attacks without incorporating any reactive or proactive defense process, also provides a high

recognition accuracy, which is competitive with the state-of-the-art.

This paper is organized as follows. Section 3.2 introduces general adversarial attacks and

describes the most important ones. In this section we also present the adversarial attacks that

may affect audio applications based on 2D audio representations and discuss adversarial attacks

that may affect audio waveforms. Section 3.3 presents the main 2D representations for audio

signals. Section 3.4 presents the proposed approach that aims to achieve both good classification

accuracy and robustness to adversarial attacks. In Section 3.5 we characterize the vulnerability

of some state-of-the-art models in the problem of environmental sound classification, measure

the resiliency of the proposed approach versus CNNs and review the adversarial example

transferability among these models. The conclusions and perspectives of future work are

presented in the last section.
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3.2 Adversarial Attacks

Adversarial attacks can be considered as carefully crafted perturbations that when intentionally

added to a legitimate example, lead machine learning models to misbehave (Weng, Zhang, Chen,

Yi, Su, Gao, Hsieh & Daniel, 2018). Considering x as a legitimate example, then an adversarial

example x′ can be crafted in such a way that:

x ≈ x′, 𝑓 ∗(x) ≠ 𝑓 ∗(x′) (3.1)

where 𝑓 ∗ is the post-activation function. Supposing that x represents an image or an audio

signal, the differences between x and x′ should not be perceived by the human visual or auditory

systems.

There are several algorithms for generating x′, mainly when x is an image. The adversarial

attacks can be categorized into different groups. For instance, if the adversary has access to the

model architecture, parameters, training dataset, etc., it is categorized as a white-box attack,

otherwise it is called black-box. Also, adversarial attacks can have other taxonomy such as

targeted, where the adversarial perturbation is crafted having in mind a specific target label,

and non-targeted, where the adversarial perturbation is crafted to induce a machine learning

model to predict any incorrect label. Due to the importance of studying adversarial threats for

data-driven machine learning models, many attack algorithms have been proposed and they

have shown a great success in fooling advanced models. However, the main challenge of almost

all attack algorithms is their computational complexity, which makes adversarial training very

time-consuming.

One of the first proposed attacks is the Fast Gradient Sign Method (FGSM) (Goodfellow et al.,

2015), which still remains one of the most effective attacks. FGSM was originally built to

attack CNNs but it can also be a serious threat for non-deep architectures. FGSM generates an

adversarial example x′ by:

x′ = x + 𝜖 · sign(∇x𝐽 (w, x, 𝑦)) (3.2)
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where x and 𝑦 are the legitimate input and its true label respectively, 𝜖 is a constant value which

can be determined by an optimization scheme, and 𝐽 is the cost function for the model parameter

w obtained after completing the training process. FGSM is a white-box attack which means

that the model parameter w should be accessible to fetch its gradient information and generate

the adversarial example x′. In other words, by providing the trained model and the training

dataset, FGSM can generate adversarial examples x′ using Eq. 3.2, which have unrecognizable

differences to the legitimate input x and x′ can perhaps make the model w to predict a wrong

label 𝑦′ ≠ 𝑦 with high confidence.

The iterative version of the FGSM attack is known as Basic Iterative Method (BIM) (Kurakin

et al., 2016) and its attack frequency (i.e., the number of iterations in running an attack) is higher

than one. In fact, BIM’s optimization procedure can stop after generating the first adversarial

example (BIM-a) or continue up to a pre-defined number of iterations (BIM-b). These two

attacks are actually the improved version of FGSM which increases the attack rate, at the cost of

higher computational complexity.

Carlini and Wagner (Carlini & Wagner, 2017b) have proposed an optimization-based attack

known as CWA, which uses the similarity metric 𝑑𝑖 defined in Eq. 3.3.

𝑑𝑖 =
��x𝑖 − x′𝑖

�� (3.3)

where 𝑖 is the sample index. CWA attempts to minimize 𝑑𝑖 as:

min
𝑐
‖𝑑𝑖‖ + 𝑐 × 𝑔(x + 𝑑𝑖) s.t. x + 𝑑𝑖 ∈ [0, 1]𝑛 (3.4)

where 𝑐 > 0 is a suitably chosen constant, 𝑔(𝑑) ≥ 0 ⇐⇒ 𝑓 (𝑑) = 𝑦′; and 𝑦′ is the wrong label

for x. The intuition behind Eq. 3.4 is similar to the dropout variational inference introduced

by Li et al. (Li & Gal, 2017). This attack is very similar to the FGSM attack with two main

differences: (i) it changes the input x𝑖 using the tanh function; (ii) it uses a difference between

logits (the vector of non-normalized predictions that a model generates) instead of optimizing

a cost function for regular cross-entropy. CWA is one of the strongest iterative and targeted
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adversarial attacks and it can be very effective in fooling CNNs, though costly as it might need

too many callbacks Carlini & Wagner (2017b) to x.

The adversarial attacks presented so far are designed for DNNs. Since the approach proposed in

this paper is based on SVMs, we also present two adversarial attacks designed to attack SVM

models: Evasion attack (EA) and Label Flipping attack (LFA). EA (Biggio, Corona, Maiorca,

Nelson, Šrndić, Laskov, Giacinto & Roli, 2013) and LFA (Xiao et al., 2012). The main difference

between these two attacks is that LFA contaminates the training data by flipping the true labels

of the samples, while EA manipulates the sample distribution aiming to change the true labels.

In both cases, the decision boundary of the model is shifted toward maximum loss for the test

set. The general intuition behind EA is to map an input x over a support vector(s) by simply

flipping its label. This flipping can be toward the trained weight direction(s) of the SVM as

given by Eq. 3.5.

x′ = x − 𝜖 � w𝑖

‖w𝑖‖ (3.5)

where x′ is the crafted adversarial example, w𝑖 is the weight vector discriminating support

vectors, and 𝜖 is a small constant value. The intuition behind these two attacks is the geometrical

definition of support vectors as given by Eq. 3.6.

min w s.t. 𝑦𝑖 (w�x𝑖 − 𝑏) ≥ 1 𝑖 = 1, . . . , 𝑛 (3.6)

where w is a vector normal to the hyperplane (w�x − 𝑏 = 0), 𝑏 is a bias term, and 𝑦 = {+1,−1}
is the label. The position of the support vectors can be depicted as shown in Fig. 3.1.

In other words, the SVM model will be fooled by moving a datapoint perpendicularly toward

the opposite direction of its weight vector. This attack is generalizable to soft margin SVM by

simply optimizing the value of 𝜖 in Eq. 3.7.

1

𝑛

𝑛∑
𝑖=1

max(1 − 𝑦𝑖 (w�x − 𝑏), 0) + 𝜖 ‖w‖2 (3.7)
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Figure 3.1 Visualization for Eq. 3.10

As long as the optimization of 𝜖 is perpendicularly directed toward the w𝑖, the SVM model

cannot distinguish an adversarial from legitimate examples. This data contamination in EA can

be implemented by taking advantage of gradient information and local search for achieving the

best data perturbation with a specific budget as introduced by Biggio et al. (Biggio et al., 2013).

The gradient information can be exploited for different kernels. For an RBF kernel with variance

𝜎2, we have 𝐾 (x, x𝑖) = exp(−0.5 · 𝜎−2 ‖x − x𝑖‖2), and its gradient can be computed by Eq. 3.8.

∇𝐾 (x, x𝑖) = −𝜎−2 exp(−0.5 · 𝜎−2 ‖x − x𝑖‖2) (x − x𝑖) (3.8)

Similarly, for a polynomial kernel of degree 𝑝, denoted as 𝐾 (x, x𝑖)=(〈x, x𝑖〉 + 𝑐)𝑝, its gradient

can be computed by Eq. 3.9.

∇𝐾 (x, x𝑖) = 𝑝(〈x, x𝑖〉 + 𝑐)𝑝−1x𝑖 (3.9)

Therefore, the adversarial example x′ can be computed by:

x′ = x − 𝜂∇ 𝑓 (x) (3.10)
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where 𝜂 is a small scalar (step size) and 𝑓 denotes the learned filters in the hypothesis space 𝐻

for 𝐾 (x, x𝑖)=Φ(x)�Φ(x𝑖) and Φ is a mapping function from input to the feature space. Unlike

EA, LFA does not generate an adversarial example via distorting the legitimate samples, but

it contaminates the labels of such samples. This should result in maximum loss in the test set

while it is expected to be minimum for the training set. The LFA attack can be implemented by

solving the following optimization problem:

min
𝑞,w,𝜖 ,𝑏

𝛾
2𝑛∑
𝑖=1

𝑞𝑖 (𝜖𝑖 − 𝜉𝑖) + 1

2
‖w‖2 (3.11)

subject to:

𝑦𝑖 (w�x𝑖 + 𝑏) ≥ 1 − 𝜖𝑖 𝜖𝑖 ≥ 0, 𝑖 = 1, · · · , 2𝑛 (3.12)

having the budget of:
2𝑛∑

𝑖=𝑛+1

𝑐𝑖𝑞𝑖 ≤ 𝐶 (3.13)

where 𝛾 is a fixed positive parameter for quantifying the trade off, 𝑞𝑖∈{0, 1} is an indicator

variable for controlling over the legitimate (𝑞=0) and contaminated example (𝑞=1), and 𝑐𝑖 and 𝐶

denote the flipping cost of each example and the total flipping cost, respectively, from adversary’s

point of view. The hinge loss function (L), defined in Eq. 3.14

L(𝑦, 𝑓 (x)) := max(0, 1 − 𝑦 𝑓𝐷 (x)) (3.14)

This loss function has been also used for 𝜖𝑖 on the contaminated dataset of 𝐷′ as:

𝜖𝑖 := max(0, 1 − 𝑦𝑖 𝑓𝐷 ′ (x𝑖)) (3.15)

where 𝐷′ is the contaminated dataset which also includes the original dataset 𝐷. Similarly, 𝜉𝑖

refers to the hinge loss of the classifier 𝑓𝐷 :

𝑓𝐷 (x) := w�x + 𝑏, w :=
𝑛∑

𝑖=1

𝛼𝑖Φ(x𝑖). (3.16)
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Herein, 𝑏 is the bias term and 𝛼 denotes the Mercer kernel coefficient of the SVM.

3.2.1 Transferability of Adversarial Attacks

One of the main characteristics of adversarial attacks described so far is that they are non-targeted

toward a specific label as they maximize the probability of any label other than the true one. This

is very tricky since it opens up the opportunity of adversarial transferability to other data-driven

models. This means that adversarial examples maintain their effectiveness against models

different from those targeted by the attack. For instance, the FGSM attack, which targets CNNs,

could completely fool a maxout network trained on the MNIST dataset (Goodfellow et al., 2015).

Goodfellow et al. (Goodfellow et al., 2015) have shown that the linear behavior of FGSM can be

transferred to other classifiers including SVMs even with radial basis kernel function. This was

a breakpoint of studying adversarial transferability for all classifiers, from logistic regression

(simple) to very-deep CNNs (complex). Recently, Sabour et al. (Sabour et al., 2015) have

shown the great effectiveness of FGSM on fooling other deep architectures with and without

convolution layers.

A lot of effort has been made on improving transferability of adversarial attacks. From expanding

input patterns (data-wise) (Xie, Zhang, Wang, Zhou, Ren & Yuille, 2018) to developing

ensemble models that produce more misleading adversarial examples (model-wise) (Liu, Chen,

Liu & Song, 2016). Therefore, this is a real threat since adversarial attacks can be transferred

among almost all models, e.g. from CNN to SVM, logistic regression and decision trees

(Papernot, McDaniel & Goodfellow, 2016c). Besides that models trained for speech-to-text

translation have also been successfully fooled by crafted adversarial examples (Carlini & Wagner,

2018). Empirically, machine learning models designed for audio applications, based on either

1D or 2D representation are very vulnerable against adversarial attacks and the current defense

schemes, such as those proposed by Das et al. (Das et al., 2018), do not work appropriately.
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3.2.2 Adversarial Attacks for Audio Signals

Adversarial attacks have been mainly studied in the domain of computer vision to perturb

images. It has been shown that 2D CNNs are quite vulnerable against white-box and black-box

optimization-based attacks (Goodfellow et al., 2015). However, these optimization-based

attacks are usually very costly, and they require too many callbacks to each legitimate example,

pixel-by-pixel. Generalizing these optimization-based attacks to audio signals (1D) is not

straightforward since the audio signal is usually high-dimensional data, even considering a single

audio channel. For instance, five seconds of mid-quality audio corresponds to an array of 110,250

points. Therefore, computing a similarity measure such as the ℓ2-norm between legitimate and

crafted examples as a part of an adversarial optimization criterion is very challenging compared

to 2D arrays.

Alzantot et al. (Alzantot, Balaji & Srivastava, 2018) and Du et al. (Du, Ji, Li, Gu, Wang & Beyah,

2019) have proposed speech-to-text adversarial attacks where the optimization process is replaced

with heuristic algorithms like genetic algorithms (Alzantot et al., 2018) or particle swarm

optimization (Du et al., 2019) to mitigate the considerable cost of the optimization process.

Basically, these greedy and evolutionary algorithms introduce random noise to a legitimate

example which in turn increases the chance of having a dissimilarity between legitimate and

crafted adversarial examples. However, this also paves the way for an easy detection of

adversarial examples by simple algorithms. On the other hand, in the most effective adversarial

attacks for images (e.g. FGSM, BIM, CWA, etc.), adversarial perturbations are generated by

an optimization process that has two key constraints: (i) induce a machine learning model to

produce a wrong label; (ii) have a visual similarity between legitimate and adversarial examples.

It is difficult to satisfy these constraints for adversarial audio because it is very challenging and

time-consuming optimizing for these two constraints considering the high dimensionality of

audio signals. Moreover, in contrast with images, audio signals are not convolved in rows and

columns and this also makes very difficult solving the optimization problem for adversarial

audio perturbations. These difficulties constitute enough ground for introducing evolutionary
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algorithms to randomly search for possible adversarial perturbations which basically can only

respect the first key constraint. The main side effect of this approach is producing adversarial

examples that stay close to the manifold of legitimate samples that can be easily detected by a

tuned classifier or by a simple adversarial detector such as downsampling or upsampling. In

this case, adversarial examples crafted by greedy algorithms lie in the submanifolds close to the

legitimate samples, which is basically the same manifolds where noisy samples lie in.

Some adversarial attacks explicitly add noise to the audio signals mainly by manipulating

the frequency components (Roy, Hassanieh & Roy Choudhury, 2017; Song & Mittal, 2017).

Backdoor attack (Roy et al., 2017) is based on adding non-linearity to an audio signal in frequency

ranges inaudible to the human auditory system (over 20 kHz). This non-linearity can be captured

by microphones but does not show recognizable effects on human ends. Taking advantage of this

type of attack, perturbations can be computed in frequency domain and then applied to an audio

signal, which can fool a machine learning model. Backdoor attack lacks in defining a general

optimization formulation for computing adversarial frequency perturbations (the shadow signal)

(Roy et al., 2017). In other words, there is no analytical way for computing the perturbation. The

potential perturbation value may change depending on the audio signal and therefore it makes

the computation of proper shadow signals very cumbersome and time-consuming. Moreover,

audio frequency manipulation, even if unrecognizable by humans, can be easily detected if the

perturbed audio signal is converted to a 2D representation. For instance, adversarial examples

generated by the Backdoor attack can be easily detected by a simple post-processing module

which analyzes their spectrograms. An ideal case for an adversarial audio example is to be

unrecognizable in both 1D and 2D representations. Similarly, DolphinAttack (Song & Mittal,

2017) implements phase domain manipulations to change the sample label toward other than the

legitimate one that is unrecognizable by the human auditory system.

The detectability of the adversarial examples generated by Backdoor and DolphinAttack

algorithms can be assessed by computing the local intrinsic dimensionality score (LID) (Ma

et al., 2018) for their 2D representations. For such an aim, three groups of inputs should be

defined: normal, noisy and adversarial where the latter is generated by both Backdoor and
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DolphinAttack algorithms. Next, each sample can be divided into mini-batches and the LID score

can be computed for each mini-batch of these three groups with respect to their corresponding

legitimate examples, by Eq. 3.17:

LID(x) = −
(
1

𝑘

𝑘∑
𝑖=1

log
𝑟𝑖 (x)
𝑟𝑘 (x)

)−1

(3.17)

where x ∈ �𝑛×𝑚 is a 2D array, 𝑟𝑖 (x) refers to the distance between x and their nearest neighbors,

𝑟𝑘 (x) denotes the maximum of the neighbor distances, and 𝑘 is the number of neighbouring

samples. The LID scores of noisy and normal samples should be appended into negative class;

and the LID scores of adversarial samples should be assigned to the positive class. Finally, a

logistic regression can be trained on these two classes. The experiments carried out on 2D

representations of audio signals in Section 3.5.1 show that the adversarial examples generated

by Backdoor and DolphinAttack can change the true label, although they cannot be categorized

as adversarial attacks because of two main reasons: (i) the adversarial examples lie in the

subspace of legitimate and random noisy signals when they basically should lie into different

sub-regions; (ii) since there is not an analytical or an optimization-based approach for computing

small adversarial perturbations for high-dimensional audio, the values of such perturbations are

actually generated manually or by greedy algorithms and therefore, this highly increases the

chance of detecting the adversarial signal even by a simple defense model.

As it has been discussed so far, there are many open problems in crafting adversarial perturbations

to raw audio signals and there is no reliable adversarial attack to 1D signals. This could also

be interpreted as a good point if we disregard the fact that audio can be converted to a 2D

representation (spectrogram) where strong adversarial attacks developed for images (e.g. FGSM,

BIM, etc.) are quite applicable for 2D audio representations. This is a critical issue and poses

a security concern for machine learning models for audio, either shallow (e.g. SVM) or deep

learning models (e.g. CNNs). However, addressing the transferability of adversarial examples

from 1D audio signals to 2D audio representations (or vice versa) is out of the scope of this

paper. In fact, one of our goals in this paper is to assess the resiliency of machine learning
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models based on different types of 2D audio representations to some strong adversarial attacks

aiming to better understand their vulnerabilities.

3.3 2D Audio Representation

The vulnerability of machine learning models such as CNNs and long short-term memory

networks on audio waveforms has been studied by Carlini and Wagner (Carlini & Wagner,

2018). They have shown the weaknesses of these models against FGSM-like adversarial attacks.

However, the state-of-the-art for several audio tasks, such as music genre classification (Liu,

Feng, Liu, Wang & Liu, 2019; Costa, Oliveira, Koerich, Gouyon & Martins, 2012), speaker

identification (Sengupta, Yasmin & Ghosal, 2019), environmental sound classification (Sengupta

et al., 2019), etc. are based on 2D representation. This aroused our interest to evaluate the

robustness of models based on 2D representations against adversarial attacks. To the best of our

knowledge, the resiliency of 2D CNNs such as AlexNet and GoogLeNet, which have achieved

the highest performances on environmental sound datasets, against adversarial attacks has not

been studied in 2D representation spaces. To such an aim, we use Fourier and wavelet transforms

to convert raw audio signals into 2D representations. The first transformation is used to produce

short-time frequency spectrograms for training AlexNet and GoogLeNet (Boddapati et al., 2017).

We also use wavelet transform for producing more informative spectrograms, which after some

pre-processing steps are used in the proposed approach to train an SVM classifier. A brief

description of these two types of spectrogram is presented as follows.

Considering a discrete-time audio signal 𝑎[𝑛], where 𝑛 = 0, 1, . . . , 𝑁 − 1 denotes the number of

samples and its decomposed signal 𝑆 using Fourier (time-frequency) transform using
{
𝑔𝜏,𝜚

}
𝜏,𝜚

atoms, as:

𝑆[𝜏, 𝜚] = 〈
𝑎, 𝑔𝜏,𝜚

〉
=

𝑁−1∑
𝑛=0

𝑎[𝑛]𝑔∗𝜏,𝜚 [𝑛] (3.18)

where the operator ∗ denotes the complex conjugate, and 𝜏, 𝜚 are time and frequency localization

indices, respectively. This representation is widely used in sound and speech processing (Yu,

Mallat & Bacry, 2008; Mallat, 2008). Given a Hanning window 𝐻 [𝑛] of size 𝜗 which is shifted
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by a step 𝑢 ≤ 𝜗, then
{
𝑔𝜏,𝜚

}
𝜏,𝜚

in the latter equation can be defined as (Yu & Slotine, 2008):

𝑔𝜏,𝜚 [𝑛] = 𝐻 [𝑛 − 𝜏𝑢] exp

(
𝑗2𝜋𝜚𝑛

𝜗

)
(3.19)

where 0 ≤ 𝜏 ≤ 𝑁/𝑢 and 0 ≤ 𝜚 ≤ 𝜗 denote bindings of time and frequency (scale) indices

respectively. Finally, the Fourier spectrogram is represented as:

spSTFT [𝜏, 𝜚] = log |𝑆[𝜏, 𝜚] | (3.20)

The final appearance of a spectrogram depends on the parameters 𝜏 and 𝜚. Similar to this

transform is the continuous wavelet transform (𝐶𝑊𝑇) as denoted in Eq. 3.21:

𝐶𝑊𝑇 (�, 𝑧; 𝑎(𝑡), 𝜓(𝑡)) = 1√
�

∫ +∞

−∞
𝑎(𝑡)𝜓( 𝑡 − 𝑧

�
)𝑑𝑡 (3.21)

where 𝜓(𝑡) denotes the mother wavelet and �, 𝑧, and 𝑡 stand for scale, translation and time,

respectively. The discretized representation of 𝐶𝑊𝑇 is given by Eq. 3.22, and it is determined

on a grid of � scales and 𝑛 discrete time with dilation parameter 𝜌.

𝐷𝑊𝑇 (�, 𝑛) = 2�/2
𝑛−1∑
𝜌=0

𝑎(𝜌)𝜓(2�, 𝜌 − 𝑛) (3.22)

For 𝜓, we use Morlet function where � is set to 0.8431:

𝜓(𝑡) = 𝑒−(�
2𝑡2)/2 cos( 𝑗𝜋𝑡) (3.23)

Finally, the wavelet spectrogram can be obtained as:

spDWT [�, 𝑧] = |𝐷𝑊𝑇 (�, 𝑧) |2 (3.24)

In summary, for an audio signal 𝑎[𝑛], there will be two different 2D representations: spSTFT

and spDWT. Moreover, for the latter spectrogram we use three scales for the magnitude, which

provide different visualization schemes: linear, logarithmic, and logarithmic real. Linear scale
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highlights high-frequency magnitudes which represent high variation areas in the spectrogram.

Logarithm scale highlights low-frequency information which expands distance of magnitudes in

different scales. Finally, logarithm real scale highlights the energy of the signal which is related

to the signal’s mean.

3.4 A Robust Approach for 2D Audio Representation and Classification

In general, the current approaches for audio classification are able to achieve high accuracy but

they are vulnerable to adversarial attacks, which means that they can be easily fooled by adversarial

examples. Therefore, our aim is to design a novel approach for audio classification that provides

a good trade-off between classification accuracy and low vulnerability to some of the most

threatening adversarial attacks. The proposed approach for environmental sound classification

has three main parts: spectrogram preprocessing, feature extraction, and classification. Fig. 3.2

presents an overview of the proposed preprocessing approach which, given an audio signal

produces three spectrogram representations as output. The audio signal undergoes through color

compensation, highboost filtering, dimensionality reduction, and smoothing and at the end, we

have three enhanced spectrograms. Next, speeded up robust features (SURF) are extracted from

zoning blocks that slide over the spectrograms as shown in Fig. 3.3. The geometrical distance of

feature vectors is maximized by a K-means++ algorithm and finally a multiclass SVM trained

on such features makes the prediction.

3.4.1 Spectrogram Preprocessing

The goal of the spectrogram preprocessing is threefold: (i) improve the accuracy of the front-end

classifier; (ii) improve the robustness of the trained model against adversarial attacks; (iii)

artificially increase the number of samples of the dataset. It starts by color compensation of

the spectrogram spDWT by mapping each spectrogram to three different color spaces: black-

blue-green (BBG), purple-gold (PG), and white-black (WB) as shown in Fig. 3.4. Empirically,

color compensation boosts and improves the final classification performance because it affects

frequency coefficient values (i.e., pixel intensity in the spectrogram), though keeping their
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Figure 3.2 Overview of spectrogram generation and preprocessing. From a single audio

waveform, three spectrogram representations are generated and processed through several

blocks with the aim of enhancing the 2D representation.

Figure 3.3 Overview of the proposed classification approach. Values in the first block

indicate sizes of square zones (blocks) from 16×16 to 128×128. Stride values in the second

block correspond to the zone sizes in the first block. For instance, a 96×96 block has stride

2, and so on.

distributions. The second preprocessing operation is highboost filtering (Gonzalez, 2016), which

enhances color compensated spectrograms focusing on their high-frequency elements while

maintaining low-frequency components. The output of the filter is denoted as spENH which is

given by Eq. 3.25.

spENH = (𝐹𝑎𝑝 + 𝑐𝐹ℎ 𝑓 ) × spDWT (3.25)

where 𝐹ℎ 𝑓 represents a high-pass filter (5×5 Laplacian operator) which is multiplied by a

constant value 𝑐 which acts as a scaling factor, and 𝐹𝑎𝑝 denotes an all-pass filter.

The three spectrogram representations and color compensations increase in nine times the

number of samples into the datasets in addition to the pitch-shifting augmentation that is

also applied, but on the 1D signal prior to the spectrogram representation. Pitch-shifting

increases by eight times the number of samples. Therefore, to alleviate the computational
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a) b) c) d)

Figure 3.4 Spectrogram examples: (a) original; (b) black-blue-green (BBG); (c)

purple-gold (PG); (d) white-black (WB)

complexity both in computing and storage, we reduce the dimensionality of the spectrograms.

Though, there are many algorithms for such an aim, we use singular value decomposition (SVD)

because of its pivotal properties in reducing the dimensionality of 2D data without changing the

perceived visual appearance, if the reduction rank is chosen appropriately. Somewhat similar

to the Fourier transform, SVD can describe a 2D matrix by basis functions in such a way that

linear combination of these functions can reconstruct the original spectrogram (Esmaeilpour,

Mansouri & Mahmoudi-Aznaveh, 2013). Basis functions in Fourier transform are sine and

cosine, but SVD produces individual basis matrices for each given input. For an enhanced

spectrogram spENH, SVD decomposes it as:

spENH =
𝑚′∑
𝑖=1

𝐺𝑖𝑈𝑖𝑉
�
𝑖 (3.26)

where 𝐺, 𝑈, and 𝑉 are derived matrices from decomposing spENH into singular value, hanger,

and aligner matrices, respectively. Also 𝑚′ is the minimum dimension of the spectrogram either

in width or height. The matrix 𝐺 is a diagonal and its elements are in descending order which

indicates the importance of hanger and aligner column vectors. The basis functions associated

with spENH are the product of 𝑈𝑖 and 𝑉�
𝑖 weighted by 𝐺𝑖. This allows us to reconstruct spENH

by its most important components, from low to high frequency components. By setting the

𝑚′ in Eq. 3.26 to 𝑚′/𝑛′ where 𝑛′>1, we can make a balance between dimensionality reduction

and quality of reconstruction. This operation actually acts as principal component analysis

(Wall, Rechtsteiner & Rocha, 2003). Empirically, the magnitudes of 𝐺 will be less than the
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a) b) c) d)

Figure 3.5 Dimension reduction effect: (a) linear magnitude representation; (b)

reconstruction of (a) after reduction in half; (c) logarithmic magnitude representation; (d)

reconstruction of (c) after reduction in half.

pixel precision (1/255 for an 8-bit representation) at indices around 𝑛′=2 and therefore they can

be pruned without any visual impact on the spectrograms. Though this dimension reduction

resizes spectrogram dimension to half, the quality of the reconstructed image is quite good,

and differences are imperceptible to the human visual system (see Fig. 3.5). The outputs of

the dimensionality reduction block in Fig. 3.2 are linear, logarithmic, and logarithmic real

spectrograms visualized in three color spaces (BBG, PG, and WB) which are all reduced to half

of their original dimension.

Though highboost filtering enhances high frequency components in spectrograms and therefore

it leads to a better feature extraction, it may also boost noise, especially for the PG and

WB color compensated representations. This problem can be minimized to some extent

by the dimensionality reduction by SVD, but it is still necessary to improve the quality of

the final compensated representations of spectrograms. For addressing this issue, highboost

filtered spectrograms are smoothed using a denoising autoencoder with three convolution

layers (Goodfellow, Bengio, Courville & Bengio, 2016). The main advantage of convolutional

denoising autoencoder (CDA) over traditional smoothing algorithms is its flexibility in data

adaptation and fine reconstruction. Besides, another important reason for using the CDA is to

make spectrograms more robust against small adversarial perturbations which machine learning

models are very sensitive to. The architecture of the proposed CDA depicted in Fig. 3.6 is

data-dependent and it considers spectrograms of dimension 1167×765 as input. The architecture
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Figure 3.6 Architecture of our CDA

of the encoder shown in Fig. 3.6 has three convolutional layers with 5×5 receptive fields, stride

1, Relu activation function, dropout of 0.5, and two max pooling layers. For corrupting the

input data, we used the spectrograms derived from SVD as well as the technique introduced by

Vincent et al. (Vincent, Larochelle, Bengio & Manzagol, 2008).

Finally, after all these preprocessing steps, the enhanced spectrograms are ready to undergo to

feature extraction and classification, as described in the following subsection. Besides that the

enhanced spectrograms can also be used with pre-trained CNN architectures such as AlexNet or

GoogLeNet, as described in Section 3.5.
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3.4.2 Feature Extraction and Classification

The proposed approach includes five steps for feature extraction and classification as depicted in

Fig. 3.3. The main idea is to extract features from a static sized moving aperture (a.k.a. grid

shifting block) which spans a spectrogram with a dynamic stride within a block with dynamic

size. Next, we maximize the geometrical distance among feature vectors of different classes

and finally we train an SVM classifier on such an organized feature space. Since the proposed

approach aims to achieving both classification accuracy and robustness against adversarial

attacks, we have evaluated several handcrafted features and representation learning methods

to finally come up with SURF instead of CNN features. Empirically, such a feature encoding

outperforms DNN features (with/without convolution layers) both in terms of classification

accuracy and robustness against adversarial attacks. Our main hypothesis relies on the nature of

these features which are projected gradients compared to features generated by DNNs, which

generally lead to high classification accuracy but empirically, they have a negative effect on the

robustness of the trained model, which becomes quite vulnerable to adversarial attacks.

The first step is zoning, which divides a given spectrogram into zones that may vary from 16×16

to 128×128 pixels. Empirically, a zone size of 16×16 is small enough for capturing subtle pixel

density changes and a zone size of 128×128 is preferable for regions with less high frequency

components. Then, a sliding grid of size 8×8 will span through them. The stride of the sliding

grid varies from five to one according to the zone size, with larger strides on larger zones. This

scheme supports the idea of a detailed scanning of spectrograms aiming at extracting more

discriminant features. Different values have been evaluated for the stride size and finally it

ranges from one to five (see Fig. 3.7).

Different features could be extracted from each 8×8 grid. We also evaluated scale invariant

feature transform (SIFT) as a feature extractor (Lowe, 1999) but decided to use SURF (Bay

et al., 2006) because it is much faster than SIFT in runtime, even if it provides fewer feature

vectors compared to SIFT. We applied SURF on sliding grids within each zone as shown in

Fig. 3.3, and at the end, each spectrogram zone is represented by a 64-dimensional feature
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Figure 3.7 Example of a grid sliding over a spectrogram

vector. For increasing the inter-class geometrical distance among extracted feature vectors, the

K-means++ algorithm (Arthur & Vassilvitskii, 2007) is used to cluster feature vectors into an

organized distribution with respect to their geometrical linear distance. Once centroids are found

by the clustering algorithm all feature vectors will be mapped into a distance space according to

their centroids. We refer readers to (Coates & Ng, 2012) for further details. Finally, we train a

multiclass SVM classifier with polynomial kernel on the transformed feature vectors. We have

also evaluated the SVM with radial basis function (RBF) kernel which could not improve the

accuracy. In the following section we evaluate the proposed approach on three datasets and

compare the results with other state-of-the-art approaches.

3.5 Experimental Results

We have carried out several experiments on three benchmarking datasets with the aim of: (i)

evaluating the detectability of the current adversarial attacks for 2D audio representations; (ii)

assessing the performance of the proposed approach on the enhanced spectrograms and compare

it with deep architectures (AlexNet and GoogLeNet) that have been used for audio classification;

(iii) evaluating the resiliency of the proposed approach and the two deep architectures against
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several types of adversarial attacks; (iv) characterizing the transferability of the adversarial audio

attacks across two different classification paradigms, CNNs and SVMs.

The UrbanSound8K dataset has 8,732 audio samples of up to four seconds of 10 classes (air

conditioner, car horn, children playing, dog bark, drilling, engine idling, gun shot, jackhammer,

siren, and street music). The ESC-50 dataset includes 2,000 5-second samples of 50 classes

including major groups of animals, natural sound capes & water sounds, human non-speech

sounds, domestic sounds, and exterior noises. The ESC-10 dataset is a subset of ESC-50 which

includes 400 recordings of 10 classes (dog bark, rain, sea waves, baby cry, clock tick, person

sneeze, helicopter, chainsaw, rooster, and fire crackling).

3.5.1 Detectability of Adversarial Audio Attacks

The definition of an adversarial attack relies on whether the attack is easily identified or not.

We have carried out some experiments to evaluate two of the most powerful adversarial attacks

on audio: Backdoor and the DolphinAttack. For such an aim, we generated short-time Fourier

transform (STFT), DWT, and cross recurrence plot (CRP) spectrograms for the audio samples

of the UrbanSound8K dataset and computed the LID score considering different values of 𝑘 as

shown in Eq. 3.17. Basically, the LID score should be able to discriminate between negative and

positive classes which means returning higher values. In other words, small values of the LID

score denote an indistinguishable difference between positive and negative classes which can in

turn be interpreted as positive classes may not be considered as adversarial. Table 3.1 shows

that the differences between LID scores of positive and negative classes are quite small and it

also shows the very low accuracy of the logistic regression classifier trained on these classes. As

Table 3.1 shows, legitimate, noisy, and adversarial examples lie in the same subspace and in fact

they lie in the same manifolds because they have very similar LID scores. In other words, the

adversarial examples generated by both Backdoor and DolphinAttack are almost equivalent to

examples corrupted by random noise, which basically does not seem to satisfy the definition of

adversarial examples. Moreover, the performance of the logistic regression is quite low and
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Table 3.1 LID score for different representations of UrbanSound8K

samples. Mean difference is generated for two classes of negative

(legitimate and random noisy) and positive (adversarial by Backdoor

and DolphinAttack).

2D Representation type 𝑘
Mean Difference Classification

of LID Scores Accuracy (AUC score %)

DWT

50 0.082 11.23

75 0.071 10.04

100 0.036 10.01

125 0.032 09.46

STFT

50 0.076 13.05

75 0.074 12.94

100 0.066 12.92

125 0.061 11.87

CRP

50 0.089 15.01

75 0.084 14.56

100 0.079 14.32

125 0.078 13.77

shows poor discrimination between negative and positive classes which should be higher than

60%.

3.5.2 Accuracy and Resilience of CNNs and SVMs

Deep neural networks require a large amount of data for training. For increasing the size of

datasets aiming at extracting more information from them, we augmented the number of samples

by stretching (speeding up) and shrinking (slowing down) recordings in time (pitch shifting)

using MUDA library (McFee et al., 2015a). This is a common approach in sound processing

which affects favourably the classifier’s performance (Salamon & Bello, 2017). The scale values

that were applied for pitch-shifting are: 0.5, 0.75, 0.9, 1.1, 1.25, 1.5, and 1.75. This operation

increases the size of each dataset in eight times.

For generating the spectrogram spSTFT, we used the approach suggested by Boddapati et

al. (Boddapati et al., 2017) by setting sampling frequency to 8 kHz, 16 kHz, and 8 kHz for

ESC-10, ESC-50, and UrbanSound8K datasets, respectively. Also, the frame length was set to

50 ms (ESC-10), 30 ms (ESC-50), and 50 ms (UrbanSound8K) with a fixed overlapping of 50%.
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Table 3.2 Scale operators (𝑐) for color compensation

Benchmarking Dataset Color Compensation 𝑐 (average)

ESC-10

BBG 0.57

PG 0.74

WB 0.46

ESC-50

BBG 0.81

PG 0.79

WB 0.58

UrbS8K

BBG 0.72

PG 0.85

WB 0.67

These values have been found after conducting exploratory experiments on these datasets. For

generating the spectrogram spDWT, we used 256 frequency bins with a Morlet mother function as

proposed by Cowling and Sitte (Cowling & Sitte, 2003) and linear, logarithmic, and logarithmic

real magnitude scales for enhancing high, low and medium frequencies, respectively. The scale

operators 𝑐 as described in Eq. 3.25, are shown in Table 3.2. The SVM uses a quadratic kernel

with the cost parameter ‖𝑐‖ ≤ 0.1 and the kernel parameter ‖𝛾‖ < 0.003. Besides the quadratic

kernel, we also evaluated a linear SVM, which is referred simply as SVM in several tables in

this section. We have used the scikit-learn (Pedregosa, Varoquaux, Gramfort, Michel, Thirion,

Grisel, Blondel, Prettenhofer, Weiss, Dubourg et al., 2011b) package for implementing SVMs.

In the first experiment, we trained AlexNet and GoogLeNet with the same setup proposed by

Boddapati et al. (Boddapati et al., 2017) which leads to the highest classification performance

reported in the literature for 2D representations. These two deep convolutional neural net-

works were trained on a linear pooling of STFT (spSTFT), MFCC (spMFCC), and CRP (spCRP)

spectrograms, as:

spPOOL = clip
(
spSTFT + spMFCC + spCRP, [0, 1]

)
(3.27)

where spPOOL denotes the resulting pooled spectrogram which values outside the range [0,1] are

clipped to the value at the boundary of the range. These spectrograms are computed for the three

environmental sound datasets (ESC-10, ESC-50, and UrbanSound8K) after the augmentation

procedure. In addition to training our classifier on the pooled representation, referred to as
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Table 3.3 Mean classification accuracy (5-fold CV) of four classifiers on two

representation spaces: POOL and DWT. The best performances are shown in bold.

Benchmarking Dataset 2D Representation type
Mean Accuracy (%)

GoogLeNet AlexNet SVM Proposed

ESC-10
POOL 83.19 82.54 64.23 78.31

DWT 83.21 82.90 70.45 79.10

ESC-50
POOL 71.36 64.09 52.37 60.10

DWT 71.20 66.41 55.09 60.41

UrbS8K
POOL 91.08 90.06 72.03 86.15

DWT 86.85 90.10 72.89 86.39

POOL, we also trained it on the enhanced 2D representation space as shown in Fig. 3.2, referred

to as DWT. These two representations are also evaluated for AlexNet and GoogLeNet. In

other words, we evaluate the performance of AlexNet and GoogLeNet on the spectrograms

obtained from our data preprocessing approach. These two experiments are executed using

5-fold cross validation with a ratio of 0.2 for testing. We used four parallel GPUs GTX580

based on an implementation based on (Krizhevsky et al., 2012). We stopped training after 83

epochs using early stopping for AlexNet and GoogLeNet. The results achieved by these two

classifiers are reported in Table 3.3. As Table 3.3 shows, AlexNet and GoogLeNet have achieved

the best performances for both representation spaces, although the proposed approach presents

competitive results. The differences between the best deep model and the proposed approach

range from 4.32% for UrbanSound8K to 11.02% for ESC-50. We also repeated this experiment

with 10-fold cross validation as suggested in (Salamon & Bello, 2017), but the results were very

close to those reported in Table 3.3.

However, a high accuracy does not translate to a high robustness against adversarial attacks. In

Table 3.4, we assess the robustness of the classifiers of Table 3.3 against several adversarial

attacks as well as the transferability of such adversarial attacks across different models. For such

an aim we have developed the FGSM, BIM-a, BIM-b, and CWA adversarial attacks (deep model

attacks) for AlexNet and GoogLeNet and the EA and regular Evasion attacks (SVM attacks) for

SVM classifiers. The total number of adversarial examples crafted using each attack for different

datasets is equivalent to the number of samples in the legitimate dataset. In other words, for
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each legitimate sample, one adversarial example is crafted by each adversarial attack algorithm.

Since FGSM and CWA are targeted, adversarial examples of these two attacks are crafted toward

a random wrong label. This not only makes our evaluations fair against non-targeted attacks,

but also reduces the cost of crafting adversarial examples of datasets with more than 10 classes,

which is the case of the ESC-50 dataset that has 50 classes. Then, these crafted examples are fed

to both deep learning and SVM models to compute the ratio of successful fooling over the total

number of adversarial examples (fooling rate) in a black-box scenario.

Table 3.4 also shows the transferability of adversarial attacks crafted to attack deep models

to attack SVM models and vice-versa. A high adversarial transferability rate represents a

serious threat for data-driven classifiers. In other words, a reliable classifier should not only be

robust against adversarial attacks designed to fool its own type of model, but it should also be

reasonably resistant against attacks designed to attack other types of model. Table 3.4 shows the

results achieved on both experiments. The mean fooling rate, which measures the success rate

of adversarial examples in fooling the machine learning models in terms of the percentage of

adversarial samples misclassified by the models is computed for comparing the performance of

CNNs and SVMs against the six adversarial attacks. Table 3.4 shows that both for both CNNs

and SVMs are quite vulnerable to the adversarial attacks designed to attack its own model, with

fooling rates higher than 90%. However, the proposed approach not only is quite robust, but also

has the lowest fooling rate against adversarial attacks (EA and LFA) designed for such a model,

with fooling rates between 58.15% and 71.64%. Table 3.4 also reveals that there is a higher

chance of fooling SVM models by deep attacks compared to fooling AlexNet and GoogLeNet

by adversarial examples crafted by EA or LFA. Additionally, AlexNet is more robust against

SVM-based adversarial attacks compared to GoogLeNet, though its mean accuracy is a little

lower than GoogLeNet.

Table 3.5 shows average rankings of our evaluation metrics of recognition accuracy and fooling

rate with respect to the statistics provided in Table 3.4. Regarding this table, the smaller the 𝑟 is,

the better are the accuracy and the fooling rates. Although the proposed approach appears in third

place in the mean accuracy rank, it is the first one in resiliency against the six types of adversarial
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Table 3.4 Mean fooling rate (5-fold CV) of two CNNs and two SVMs

against six strong adversarial attacks. The best performances are shown

in bold (lowest values).

Dataset Adversarial Mean Fooling Rate (%)

(Representation) Attack GoogLeNet AlexNet SVM Proposed

ESC-10

(POOL)

FGSM 95.23 94.04 60.78 43.12
BIM-a 94.07 90.13 61.68 48.60
BIM-b 94.26 91.30 62.46 46.03
CWA 95.89 93.66 94.01 51.77
LFA 51.23 63.01 94.43 60.47

EA 43.79 44.12 94.14 58.34

ESC-10

(DWT)

FGSM 94.30 93.36 64.05 50.02
BIM-a 92.15 92.87 59.57 51.13
BIM-b 93.58 92.33 57.92 43.07
CWA 95.36 94.89 64.35 53.18
LFA 57.36 56.35 95.58 71.64

EA 49.66 48.00 92.89 61.78

ESC-50

(POOL)

FGSM 96.78 95.61 69.22 51.99
BIM-a 95.01 96.08 67.17 50.20
BIM-b 94.77 95.17 69.71 50.03
CWA 96.02 97.14 72.10 53.04
LFA 62.12 66.35 95.27 60.25
EA 55.47 52.01 95.94 59.03

ESC-50

(DWT)

FGSM 96.30 95.80 66.16 50.01
BIM-a 93.36 94.05 69.02 49.36
BIM-b 91.25 92.53 67.11 45.92
CWA 95.73 94.11 70.09 49.31
LFA 60.08 58.01 92.21 62.84

EA 51.37 49.61 90.36 58.15

UrbS8K

(POOL)

FGSM 94.68 93.22 60.50 45.17
BIM-a 94.65 95.32 58.22 42.36
BIM-b 90.22 91.24 53.39 42.16
CWA 92.08 93.62 60.17 60.25

LFA 55.01 78.36 96.14 65.35

EA 44.02 41.07 95.16 62.30

UrbS8K

(DWT)

FGSM 94.14 93.02 57.31 48.33
BIM-a 92.43 93.21 62.01 51.07
BIM-b 94.01 93.61 63.32 53.03
CWA 95.27 93.84 62.14 50.48
LFA 54.33 55.03 92.06 63.52

EA 47.01 45.50 91.02 59.01

attacks. Therefore, this indicates a good trade-off between accuracy and resiliency. This is also

shown in Fig. 3.8, where the proposed approach is the one closest to the origin (zero error rate
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Table 3.5 Average ranking considering the mean accuracy and

the fooling rate for all models, datasets and adversarial attacks

Classification Approach
Mean Accuracy Fooling Rate

𝑟 Sorted Rank 𝑟 Sorted Rank

GoogLeNet 1.17 1 2.97 4

AlexNet 1.83 2 2.78 3

SVM 4.00 4 2.67 2

Proposed 3.00 3 1.61 1

Figure 3.8 Model Comparison over the representations of Table 3.3

and zero fooling rate) according to the Euclidean distance (𝑑 = 58.91). Fig. 3.8 also shows

that while the mean error rate of the proposed approach is 6.07% higher than GoogLeNet, the

proposed approach is 26.96% more robust to adversarial attacks than GoogLeNet. Furthermore,

the mean error rate of the proposed approach is 10.57% lower than the SVM and it is also
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Table 3.6 The average effect of removing each module from Fig. 3.2 on the mean accuracy

and robustness of the proposed model against deep and SVM adversarial attacks. Positive

(+) and negative (−) effects are shown by their signs.

Module

Mean Robustness Against (%)

Accuracy (%) SVM Adversarial Attacks Deep Adversarial Attacks

Spectrogram Visualization −16.47 −4.07 −3.14

Color Compensation −7.36 −0.36 +2.64

Highboost Filtering −9.52 −0.75 −1.96

SVD −8.21 −6.18 −4.17

CDA −7.94 −9.18 −6.33

20.98% more robust to adversarial attacks. Notwithstanding the good trade-off achieved by the

proposed approach, there is still a large room for improvements.

3.5.3 Analysis of the Proposed Approach

The proposed approach provides the best trade-off between accuracy and resilience to adversarial

attacks than deep models and SVM according to the proposed metric shown in Fig. 3.8. For

understanding the reason(s) of such a best trade-off, we dig into the preprocessing (Fig. 3.2) of the

proposed approach. We safely remove each module (or submodule) from the preprocessing part

and measure its positive or negative contribution to the mean accuracy and robustness against

the six types of adversarial attacks. Table 3.6 reveals that the proposed approach takes advantage

of both CDA and SVD compression. The most straightforward impact of these two operations

is in affecting (smoothing) high frequency components where subtle changes of adversarial

examples probably lie on. It has been proved that autoencoders can clean adversarial examples

and therefore defend the targeted trained models from the adversarial attacks (Nayebi & Ganguli,

2017; Meng & Chen, 2017). Moreover, for measuring the effect of the first two modules

of Fig. 3.3 on final classification performance, we carried out some additional experiments

including removing them and changing block size and grid shifting stride on a 5-fold cross

validation. In Table 3.7, we only report some of the highest mean accuracy with respect to

zoning size and grid shifting stride.
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Table 3.7 The effect of selected zoning size and shifting grid

length on the overall recognition accuracy of the proposed approach

on DWT representation of the UrbanSound8K dataset

Zoning static Size Sliding Grid Stride (ordered) Mean Accuracy (%)

[16, 32, 64, 96, 128] [1, 2, 3, 4, 5] 79.33
[16, 32, 64, 96, 128] [2, 2, 2, 2, 2] 77.29

[8, 16, 32, 64, 128] [1, 2, 3, 4, 5] 76.18

[16, 32, 64, 96, 128] [4, 3, 3, 3, 4] 74.22

[32, 64, 128] [3, 2, 1] 73.91

[64, 96, 128] [3, 2, 1] 72.63

None None 70.92

3.6 Conclusion

In this paper, we discussed the serious threat that adversarial attacks may pose to machine learning

models trained either on 1D or 2D audio representations. While there is no reliable adversarial

attack on raw audio signals, there is a bĳective relation between 1D signals and spectrograms

which opens the avenue for adversarial transferability between these two representation spaces

and that poses a real security concern. Besides that considering that the majority of state-

of-the-art approaches for audio classification rely on 2D representations, most of them based

on CNNs originally designed for image classification tasks, we showed that CNNs trained on

spectrograms of environmental sound signals achieve state-of-the-art performance in terms of

accuracy. However, these CNNs are not reliable at all, as they can be easily fooled by adversarial

examples, with fooling rates higher than 90%.

Therefore, we proposed a novel approach for environmental sound classification based on 2D

representations that provides a good tradeoff between accuracy and resiliency to the most

powerful adversarial attacks designed to fool both deep neural models and SVMs. The proposed

approach was compared to AlexNet, GoogLeNet, and a linear SVM classifier on three publicly

available datasets. The highest mean recognition rates were achieved by GoogLeNet (81.15%),

AlexNet (79.15%), the proposed approach (75.08%), and the linear SVM (64.51%), respectively.

However, in addition to the competitive accuracy, the proposed approach outperforms by far all

three mentioned classifiers in terms of robustness against adversarial attacks since the mean
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fooling rates for these four models are 95.15%, 94.36%, 50.56%, and 66.74% considering deep

attacks and 52.62%, 54.79%, 61.89%, and 93.77% considering SVM attacks. However, as shown

in Fig. 3.8, there is still a large room for improvements. As a future study, we are interested in

employing reactive adversarial detection algorithms (e.g., LID detector) as a postprocessing

operation aiming at increasing the robustness of the proposed approach.

We are also inclined to explore the resiliency of our classification scheme for raw audio signals

rather than spectrograms against audio attacks and measure its capability against audio played

back over the air. To this end, we may need to remove/add some preprocessing steps which

have shown positive impacts on the robustness of the proposed approach against adversarial

attacks (e.g. CDA); and consequently, simplify our approach which requires several steps of

processing. Another important aspect that deserves further studies is the adversarial example

transferability bĳectively from 1D audio signal to 2D spectrograms and vice versa. In other

words, we would like to explore the possibility of crafting adversarial audio examples for a model

trained on 1D signals and transfer such an attack to the 2D representation to be able to fool a 2D

model trained on spectrograms, and also the other way around. Since many audio classification

approaches implement different types (ensemble) of data-driven models (both 1D and 2D)

aiming at improving their prediction confidence, hence if a crafted adversarial example can fool

both 1D and 2D models, it may constitute a true threat to several sound recognition/processing

systems and devices (e.g. voice id devices).
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Abstract

This paper investigates the impact of different standard environmental sound representations

(spectrograms) on the recognition performance and adversarial attack robustness of a victim

residual convolutional neural network. Averaged over various experiments on three compre-

hensive environmental sound datasets, we found the ResNet-18 model outperforms other deep

learning architectures such as GoogLeNet, AlexNet, and variants of residual and recurrent

configurations both in terms of classification accuracy and the number of training parame-

ters. Therefore, we opted for this advanced model as our front-end classifier for subsequent

investigations. Herein, we measure the impact of different settings required for generating

more informative Mel-frequency cepstral coefficient (MFCC), short-time Fourier transform

(STFT), and discrete wavelet transform (DWT) representations on our front-end model. This

measurement involves comparing the classification performance over the adversarial robustness.

We demonstrate an inverse relationship between recognition accuracy and model robustness

against six benchmarking attack algorithms on the balance of average budgets allocated by the

adversary and the attack cost. Moreover, our experimental results show that while the ResNet-18

model trained on DWT spectrograms achieves the highest recognition accuracy, attacking this

model is relatively more costly for the adversary than other 2D representations.
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4.1 Introduction

Developing reliable sound recognition algorithms for real-life applications has always been

a significant challenge for the signal processing community (Marchegiani & Posner, 2017;

Salamon, MacConnell, Cartwright, Li & Bello, 2017; Radhakrishnan et al., 2005). For analyzing

the surrounding scene either for surveillance (Valenzise et al., 2007) or multimedia sensor

networks (Steele et al., 2013), there is a constant need to understand environmental events.

Raised by these concerns, several unsupervised (Salamon & Bello, 2015b) and supervised

(Salamon & Bello, 2017) algorithms have been devised for classifying environmental sounds.

During the last decades, there has been increasing attention toward developing automatic

environmental sound classifiers. Presumably, this is due to its vast applications in smart

acoustic sensor network development (Mydlarz et al., 2017), surveillance scene monitoring

(Radhakrishnan et al., 2005; Cristani et al., 2004), IoT-based noise reduction (Shah et al., 2019),

smart city safety (Ciaburro & Iannace, 2020; Shah et al., 2018), and context-aware computing

(Chandrakala et al., 2021; Chu et al., 2009a; Toffa & Mignotte, 2020). Towards developing

reliable classification algorithms for such tasks, the impact of adversarial attacks on the deep

learning (DL) classifiers trained on environmental sounds should be investigated. In other words,

developing reliable environmental sound classifiers requires the study of adversarial attacks

in greater detail to account for the impact of such attacks on different sound representations.

This is our main motivation for setting the framework of this paper to environmental sounds

encompassing a broad spectrum of urban sounds.

With the proliferation of DL algorithms during the last decade for image-related tasks, many

publications on 2D audio representations (spectrograms) have been released. The DL architec-

tures primarily developed for computer vision applications have been well adapted for sound

recognition tasks with recognition accuracy competitive to human understanding. However, such

algorithms require large amounts of training data. In response, many low-level data augmentation

approaches have been introduced to allow an appropriate training of DL models and improve their

performance on sound-related tasks (Salamon & Bello, 2017). These approaches apply directly

to audio waveforms affecting low-level sampled data points of the audio signal, which may
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not necessarily improve the performance of the front-end classification models (Esmaeilpour,

Cardinal & Koerich, 2020a). High-level data augmentation approaches have been developed

to tackle this problem, which are particularly useful for 2D audio representations (Kaneko,

Takaki, Kameoka & Yamagishi, 2017; Mathur, Isopoussu, Kawsar, Berthouze & Lane, 2019).

Experimental results on a variety of environmental sound datasets attest considerable positive

impact of high-level data augmentation on overall performance of DL classifiers (e.g., AlexNet

(Krizhevsky et al., 2012), GoogLeNet (Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan,

Vanhoucke & Rabinovich, 2015), etc.) (Esmaeilpour et al., 2020a).

Unfortunately, recent studies have demonstrated the vulnerability of these convolutional neural

networks (ConvNets) trained on 2D representations of audio signals against adversarial attacks

(Esmaeilpour et al., 2020). They have shown that crafted adversarial examples are transferable

among dense ConvNets and support vector machines (SVM). That poses potential harm for sound

recognition systems, especially when the highest recognition accuracy has been reported on 2D

representations over raw 1D audio signals (Boddapati et al., 2017). This threat negatively affects

the reliability of DL models designed for applications based on sound classification, particularly

IoT-related tasks in an environmental setting (Zamil, Samarah, Rawashdeh, Karime & Hossain,

2019).

Toward proposing reliable classifiers, there have been some debates and case studies on the

link between intrusion of adversarial examples and loss functions for some victim classifiers

(Carlini & Wagner, 2017b). It has been shown that the integration of more convex loss functions

in the victim model (or in the surrogate counterpart) might increase the chance of crafting more

potent adversarial examples (Carlini & Wagner, 2017b). However, it might also depend on some

other key factors such as the properties of the classifier, input sample distribution, adversarial

setups, etc. To study other potential links, we evaluate the robustness and the transferability of

some state-of-the-art ConvNets against adversarial attacks trained on different 2D environmental

sound representations. Our primary front-end ConvNet is ResNet-18 architecture because of its

superior recognition performance compared to other ConvNet architectures. We discuss this in
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Section 4.4.2 and briefly report our findings on different dense architectures such as GoogLeNet

and AlexNet in Section 4.5.

The main novelty in this paper is investigating classifier response to different representations

both in terms of recognition accuracy and robustness against adversarial attacks. This helps to

yield more reliable classifiers without running any costly adversarial defense algorithm. More

specifically, we make the following contributions:

1. we show that models achieve higher recognition accuracy on the DWT representation

compared to STFT and MFCC averaged over different spectrogram settings for three

comprehensive environmental sound datasets;

2. we identify major spectrogram settings which considerably affect the cost of attack (the

number of required gradient computations) averaged over budgets;

3. we characterize the existence of an inverse relation between recognition accuracy and

robustness of the victim models against six strong targeted and non-targeted benchmarking

adversarial attacks. On average, models with higher recognition accuracies undergo higher

fooling rates;

4. we demonstrate that compared to DWT and STFT, the MFCC has a relatively lower

adversarial transferability ratio among three advanced DL architectures.

The rest of the paper is organized as follows. In Section 4.2, we briefly review some strong

adversarial attacks for 2D audio representations. Then, explanations on different 2D audio

representations that have been used in the experiments are summarized in Section 4.3. Next,

experimental results and associated discussions are presented in Section 4.4. Finally, the

conclusions and perspectives of future work are presented in the last section.

4.2 Adversarial Attacks

Assuming we have a sound recognition system that employs a classifier trained on legitimate

spectrograms. In the following, we explain how crafted adversarial spectrograms can pose

security concerns for this system.
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1. White-box scenario: The adversary has full access to the entire system details, including audio

dataset, classifier architecture, potential tuning parameters, required hyperparameters, and

complete weight vectors. Therefore, the adversary can easily feed adversarial spectrograms

to the model and fool it toward any incorrect target label.

2. Black-box scenario: The adversary does not have access to the system mentioned above

details. Thus, the adversary can only input a 1D signal to the system and receive a predicted

label. In this scenario, the adversary can reconstruct an audio signal from an adversarial

spectrogram (with or without a surrogate model) and feed it to the system. Since the model

is trained on spectrograms, the system first converts the input audio into a spectrogram

that embeds the adversarial perturbation. This reconstruction does not pose a technical

difficulty since spectrogram and 1D signal are dual, and there are plenty of straightforward

approaches for reconstructing one from another. However, this spectrogram can also fool

the model toward any wrong label defined by the adversary (see a relevant study by Koerich

et al. (2020)).

4.2.1 Adversarial Attack For Environmental Sound Classifiers

In practice, adversarial attacks exist both for 1D signals (Li, Wu, Liu, Chen & Yuan, 2020b)

and their associated 2D representations (Esmaeilpour et al., 2020). This paper focuses on

the latter since from decades ago, spectrograms (generated from MFCC, STFT, DWT) have

been standard representations for different audio and speech processing tasks, particularly

classification. Besides, spectrogram and 1D signal are duals (bĳectively convertible), and the

highest recognition accuracy on the benchmarking environmental sound datasets have been

reported for models trained on the 2D representations (Boddapati et al., 2017). Finally, since

spectrograms are RGB matrices similar to natural images and the adversarial attacks developed

in the computer vision domain are applicable on spectrograms.
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Technically, an adversarial attack can be formulated as an optimization problem toward achieving

a minimal perturbation parameter 𝛿 as stated in Eq. 4.1 (Szegedy et al., 2014).

min
𝛿

𝑓 ∗(x + 𝛿) ≠ 𝑓 ∗(x) (4.1)

where x and 𝑓 ∗ denote a legitimate random spectrogram and the post-activation function of the

victim classifier, respectively. The optimal value for 𝛿 should be as small as possible to not

being perceivable by humans, although distinguishing the applied perturbation on 2D audio

representations such as spectrograms is complicated. Many attack algorithms that satisfy such

an imperceptibility constraint have been proposed in white and black-box scenarios. In this

paper, we briefly go over six strong targeted and non-targeted adversarial attacks, which are

well adapted to sound recognition models trained on 2D audio representations (Esmaeilpour

et al., 2020). We use the average fooling rate of these attacks, a standard metric for assessing the

robustness of victim ConvNets trained on different 2D audio representations.

4.2.2 Limited-Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)

Szegedy et al. (Szegedy et al., 2014) argue that the viability of fooling deep neural networks with

fake examples is due to their extremely low probability because such examples are rarely seen in

a given dataset. That could be understood as the pitfall of deep networks in low generalizability

to unseen but very similar samples. However, they propose an optimization algorithm to mislead

finely trained DL models, based on Eq. 4.2:

min
x′

𝑐 ‖𝛿‖2 + 𝐽w(x′, 𝑙′) (4.2)

where 𝑐 is a positive scaling factor achievable by the line search strategy, x′ denotes the associated

crafted adversarial example, 𝑙′ refers to its target label, and 𝐽w denotes the loss function for

updating weights (w). There are various choices for this function, such as cross-entropy loss or

any other surrogate function. The solution to this optimization problem is quite costly, and it

has been proposed to use the L-BFGS optimizer, subject to 0 ≤ x′ ≤ 𝑀 where 𝑀 refers to the
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maximum possible intensity in a spectrogram. This attack is the baseline for the adversarial

algorithms that are subsequently presented.

4.2.3 Fast Gradient Sign Method (FGSM)

Goodfellow et al. (Goodfellow et al., 2015) explain the existence of adversarial examples with

linear nature of deep neural networks, even those with super-dense hidden layers. Toward this

claim, they proposed a fast optimization algorithm based on Eq. 4.3:

x′ ← x + 𝛿 · sign(∇x𝐽 (x, 𝑙)) (4.3)

where 𝛿 is a small constant for controlling the applied perturbation to the legitimate sample x.

Different choices of ℓ𝑝 norms can be integrated into the FGSM attack, and the adversary should

make a trade-off between high similarities and a large enough perturbation to be able to fool a

model. The formulation of Eq. 4.3 for ℓ2 norm is shown in Eq. 4.4.

x′ ← x + 𝛿
∇x𝐽 (x, 𝑙)
‖∇x𝐽 (x, 𝑙)‖ (4.4)

where for satisfying the constraint x′ ∈ [0, 𝑀], the resulting adversarial spectrogram should be

clipped or truncated. This white-box adversarial attack is targeted toward a pre-defined wrong

label by the adversary in a one-shot scenario.

4.2.4 Basic Iterative Method (BIM)

This non-targeted adversarial attack (Kurakin et al., 2016) is, in fact, the iterative version of the

FGSM optimization algorithm, which crafts and positions potential adversarial examples ideally

outside of legitimate subspaces via optimizing Eq. 4.5 for 𝛿:

x′𝑛+1 ← clipx,𝛿

{
x′𝑛 + 𝛿 · sign(∇x𝐽 (x𝑛, 𝑙))

}
(4.5)
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where clip is a function for keeping generated examples within the range [x− 𝛿, x+ 𝛿] as defined

in Eq. 4.6.

min
{
𝑀, x + 𝛿, max{0, x − 𝛿, x′}

}
(4.6)

where 𝑀=255 for 8-bit RGB visualization of spectrograms.

There are two implementations for this optimization algorithm either by optimizing up to reach

the first adversarial example (BIM-a) or continuing optimizing to a predefined number of

iterations (BIM-b). The latter usually generates stronger adversarial examples, though it is more

costly since it usually requires more callbacks. Both BIM attacks are iterative and white-box

algorithms minimizing Eq. 4.5 for optimal perturbation 𝛿 measured by ℓ∞ norm.

4.2.5 Jacobian-based Saliency Map Attack (JSMA)

Similar to the FGSM attack, this algorithm also uses gradient information for perturbing the input

taking advantage of a greedy approach (Papernot et al., 2016d). This attack is targeted toward a

pre-defined wrong label (𝑙′). In fact, it optimizes for arg min𝛿x ‖𝛿x‖ subject to 𝑓 ∗(x + 𝛿x) = 𝑙′

(optimizing with ℓ0). There are three steps in developing JSMA adversarial examples. First,

computing the derivative of the victim model as Eq. 4.7.

∇ 𝑓 (x) = 𝜕 𝑓 𝑗 (x)
𝜕𝑥𝑖

(4.7)

where 𝑥𝑖 denotes pixels intensities. Second, a saliency map should be computed to detect

the least effective pixel values for perturbation according to the desired outputs of the model.

Specifically, the saliency map for pixels in cases where 𝜕 𝑓𝑙 (x)/𝜕x𝑖 < 0 or
∑

𝑗≠𝑙 𝜕 𝑓 𝑗 (x)/𝜕x𝑖 > 0

should be set to zero since there are detectable variations, otherwise:

𝑆𝑚𝑎𝑝 (x, 𝑙′) [𝑖] = 𝜕 𝑓𝑙 (x)
𝜕x𝑖

������∑𝑗≠𝑙 ′

𝜕 𝑓 𝑗 (x)
𝜕x𝑖

������ (4.8)
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where 𝑆𝑚𝑎𝑝 denotes the saliency map for every given spectrogram x𝑖 and target label 𝑙′𝑖 . The last

step of the JSMA is applying the perturbation on the original input according to the achieved

map.

4.2.6 Carlini and Wagner Attack (CWA)

This is an iterative and white-box adversarial algorithm (Carlini & Wagner, 2017b), which can

use three types of distance metrics: ℓ0, ℓ∞, and ℓ2 norms. This paper focuses on the latter

distance measure making the algorithm very strong even against the distillation network. The

optimization problem in this attack is given by Eq. 4.9.

min
𝛿
‖x′ − x‖2

2 + 𝑐 𝑓 (x′) (4.9)

where 𝑐 is a constant value as explained in Eq. 4.2. Assuming the target class is 𝑙′ and 𝐺 (x′)𝑖
denotes the logits of the trained model 𝑓 before softmax activation corresponding to the 𝑖-th

class, then:

𝑓 (x′) = max

{
max
𝑖≠𝑙 ′

{𝐺 (x′)𝑖} − 𝐺 (x′)𝑙 ′,−𝜅

}
(4.10)

where 𝜅 is a tunable confidence parameter for increasing misclassification confidence toward

label 𝑙′, the actual adversarial example is given by Eq. 4.11.

x′ = 1

2
[tanh(arctanh(x) + 𝛿) + 1] (4.11)

where the tanh activation function is used in replacement of box-constraint optimization. For

non-targeted attacks, Eq. 4.10 should be updated as:

𝑓 (x′) = max

{
𝐺 (x′)𝑙 −max

𝑖≠𝑙
{𝐺 (x′)𝑖} ,−𝜅

}
(4.12)
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4.2.7 DeepFool Adversarial Attack

Moosavi-Dezfooli et al. (Moosavi-Dezfooli, Fawzi & Frossard, 2016) proposed a white-box

algorithm for finding the most optimal perturbation for redirecting the position of a legitimate

sample toward a pre-defined target label using linear approximation. The optimization problem

for achieving optimal 𝛿 is given by Eq. 4.13.

arg min ‖𝛿‖2 s.t. sign( 𝑓 (x′)) ≠ sign( 𝑓 (x)) (4.13)

where 𝛿 = − 𝑓 (x)w/‖w‖2
2 and w is the weight vector. DeepFool can also be modified to a

non-targeted attack optimizing for hyperplanes of the victim model. In this paper, we implement

targeted DeepFool attack and averaged over available labels measuring over ℓ2 and ℓ∞. In

practice, this scenario is not only faster but also more destructive than BIMs.

In the next section, we provide a brief overview of common 2D representations of audio signals

using time-frequency transformations. Finally, we carry out our adversarial experiments on the

transformed audio signals (spectrograms).

4.3 2D Audio Representations

Representing audio signals using time-frequency plots is a standard operation in audio and

speech processing representing such signals in a compact and informative way. Fourier transform

and wavelet transform are the most commonly used approaches for mapping an audio signal

into frequency-magnitude representations. In this section, we briefly review some of the most

common approaches.
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4.3.1 Short-Time Fourier Transform (STFT)

For a given continuous signal 𝑎(𝑡) which is distributed over time, its STFT using a Hann window

function 𝑤(𝜏) can be computed using Eq. 4.14.

STFT
{
𝑎(𝑡)

}
(𝜏, 𝜔) =

∫ ∞

−∞
𝑎(𝑡)𝑤(𝑡 − 𝜏)𝑒− 𝑗𝜔𝑡𝑑𝑡 (4.14)

where 𝜏 and 𝜔 are time and frequency axes, respectively. This transform is quite generalizable

to discrete-time domain for a discrete signal 𝑎[𝑛] as:

STFT
{
𝑎[𝑛]

}
[𝑚, 𝜔] =

∞∑
𝑛=−∞

𝑎[𝑛]𝑤 [𝑛 − 𝑚]𝑒− 𝑗𝜔𝑛 (4.15)

where 𝑚 
 𝑛 and 𝜔 is a continuous frequency coefficient. In other words, for generating the

STFT of a discrete signal, we need to divide it into overlapping shorter length sub-signals

and compute Fourier transform on them, which results in an array of complex coefficients.

Calculating the square of the magnitude of this array yields a spectrogram representation as

shown in Eq. 4.16.

SpSTFT

{
𝑎[𝑛]

}
[𝑚, 𝜔] =

����� ∞∑
𝑛=−∞

𝑎[𝑛]𝑤 [𝑛 − 𝑚]𝑒− 𝑗𝜔𝑛

�����2 (4.16)

This 2D representation shows frequency distribution over discrete-time, and compared to the

original signal 𝑎[𝑛], it has a lower dimensionality, although it is a lossy operation.

4.3.2 Mel-Frequency Cepstral Coefficients (MFCC)

This transform is a variation of the STFT with some additional postprocessing operations,

including non-linear transformation. For every column of the achieved spectrogram, we compute

its dot product with several Mel filter banks (power estimates of amplitudes distributed over

frequency). For increasing the resolution of the resulting vector, logarithmic filtering should be

applied, and finally, it will be mapped to another representation using discrete cosine transform.
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This representation has been widely used for sound enhancement and classification. Furthermore,

it has been well studied as a standard approach for conventional generative models incorporating

Markov chain and Gaussian mixture modes (Shi et al., 2018; Maurya et al., 2018).

4.3.3 Discrete Wavelet Transform (DWT)

Wavelet transform maps the continuous signal 𝑎(𝑡) into time and scale (frequency) coefficients

similar to STFT using Eq. 4.17.

DWT
{
𝑎(𝑡)

}
=

1√
|𝑠 |

∫ ∞

−∞
𝑎(𝑡)𝜓

(
𝑡−𝜏
𝑠

)
𝑑𝑡 (4.17)

where 𝑠 and 𝜏 denote scale and time variations, respectively, and 𝜓 is the core transformation

function known as mother function (see Eq. 4.18). There are a variety of mother functions for

different applications, such as the complex Morlet, which is given by Eq. 4.18:

𝜓(𝑡) = 1√
2𝜋

𝑒− 𝑗𝜔𝑡𝑒−𝑡
2/2 (4.18)

Discrete-time formulation for this transform is shown in Eq. 4.19.

DWT
{
𝑎[𝑘, 𝑛]

}
=

∞∑
𝑛=−∞

𝑎[𝑛]𝜓 [𝑛, 𝑘] (4.19)

where 𝑛 and 𝑘 are integer values for the continuous mother function of ℎ. Spectral representation

for this transformed signal is a 2D array which is computed by Eq. 4.20:

SpDWT

{
𝑎[𝑛]

}
=
���DWT

{
𝑎[𝑘, 𝑛]

}���2 (4.20)

In the next section, we explain our experiments on three benchmarking sound datasets. We

firstly generate separate spectrogram sets with the three representations mentioned above using

different configurations. Second, we train a ResNet on these datasets and run adversarial attack

algorithms against them. Finally, we measure both the fooling rate and the cost of attacks.
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We demonstrate that for different spectrogram configurations, these metrics are meaningfully

different.

4.4 Experiments

We use three environmental sound datasets in all our experiments: UrbanSound8k (Salamon

et al., 2014a), ESC-50 (Piczak, 2015b), and ESC-10 (Piczak, 2015b). The first dataset includes

8732 four-second length audio samples distributed in 10 classes: engine idling, car horn,

children playing, drilling, air conditioner, jackhammer, dog bark, siren, gunshot, and street

music. ESC-50 is a comprehensive dataset with 50 different classes and overall 2000 five-second

audio recordings of natural acoustic sounds. A subset of this dataset is ESC-10 which has been

released with ten classes and 400 recordings.

For increasing both the quality and the number of samples of these datasets, we apply a pitch-

shifting augmentation approach with scales 0.75, 0.9, 1.15, and 1.5 as proposed in (Esmaeilpour

et al., 2020a), which positively affect classification accuracy. This data augmentation operation

generates four extra audio samples for every original audio sample, and eventually, it increases

the size of the original dataset by the factor of four. We discuss the usefulness of this 1D data

augmentation approach in Section 4.5. In the following subsection, we explain the details of

generating 2D representations for audio signals. Toward this aim, we use the open-source Librosa

signal processing python library (McFee, Raffel, Liang, Ellis, McVicar, Battenberg & Nieto,

2015b) and our upgraded version of the wavelet toolbox (Hanov, 2008).

4.4.1 Generating Spectrograms

For every dataset including augmented signals, we separately generate independent sets of

2D representations, namely MFCC, STFT, and DWT. We aim to investigate which audio

representation yields a better trade-off between recognition accuracy and robustness for a victim

model against various strong adversarial attacks.
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4.4.1.1 MFCC Production Settings

There are four major settings in generating MFCC representation using Librosa. The default

value for sampling rate is 22.05 kHz. Since there is no optimal approach for determining the best

sampling rate, we generate the most informative spectrogram. We run extensive experiments

using sampling rates from 8 to 24 kHz. The second tunable hyperparameter is the number of

MFCCs (𝑁MFCC), which we examine different values for it: 13, 20, and 40 per frame with a hop

length of 1024. Normalization of discrete cosine transform (type 2 or 3) using orthonormal

DCT basis for MFCC production is the third setting. By default, this hyperparameter is set to

true in almost all the libraries, including Librosa. However, we measure the performance of the

front-end classifier trained to MFCC representation without normalization. The last argument

is about the number of cepstral filtering (𝐶𝐹) (Juang, Rabiner & Wilpon, 1987) to be applied

on MFCC features. The sinusoidal 𝐶𝐹 reduces involvement of higher-order coefficients and

improve recognition performance (Paliwal, 1999) (see Eq. 4.21).

M [𝑛, :] ← M [𝑛, :] ×
(
1 + sin

(
𝜋(𝑛 + 1)

𝐶𝐹

))
𝐶𝐹

2
(4.21)

where M stands for MFCC array with size [𝑛, :]. We investigate the effect of 𝐶𝐹 on the overall

performance of classification models.

4.4.1.2 STFT Production Settings

For producing STFT representations, we use default configurations for general hyperparameters

as outlined in the Librosa manual. We use 2048, 1024, and 512 with associated sampling rates

for assigning the length of the windowed signal. We also use variable window sizes: 2048

(default value), 1024, and 512 (very small window) associated with a default hop size of 512.

We investigate the potential effects of these configurations for the resiliency of the victim models

against adversarial attacks.
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4.4.1.3 DWT Production Settings

For generating DWT representations, we modified the sound explorer software (Hanov, 2008)

to support Haar and Mexican Hat wavelet mother functions in addition to complex Morlet.

Sampling frequency for DWT spectrograms has been set up to 8 kHz and 16 kHz with a constant

frame length of 50 ms. Moreover, by convention, the overlapping threshold is set to 50%. Our

experiments measure the impacts of these DWT configurations visualized in logarithmic scale

(for higher resolution) on both recognition accuracy and robustness against adversarial attacks.

In the following subsection, we discuss possible choices for the classification models to be

separately trained on the spectrogram representations and setups mentioned above. Finally,

we select our final front-end classifier from a diverse domain of traditional handcrafted-based

feature learning algorithms to state-of-the-art DL architectures.

4.4.2 Classification Model

For the choice of classification algorithms, we initially included both conventional classifiers

such as linear and Gaussian SVM (Esmaeilpour et al., 2020), random forest (Esmaeilpour et al.,

2020a), and some deep learning architectures. Specifically, we selected pre-trained GoogLeNet

(because of its inception mechanism), AlexNet (for taking advantage of its fully convolutional

configuration), and ResNet (utilizing a mixture of residual and convolutional blocks) (He et al.,

2016) models tuned for our three benchmarking datasets. We preserved the architectures of

these ConvNets except for the first layer and the last layer for mapping logits into class labels

(softmax layer). Since spectrograms may have different dimensions according to their length

and transformation schemes, we bilinearly interpolate them to fit 128×128 for all the ConvNets.

Performance comparison of the SVMs, GoogLeNet, and AlexNet mentioned above against a few

adversarial attacks have already been studied mainly for DWT representations of environmental

sound datasets in (Esmaeilpour et al., 2020). However, their experiments have been conducted on

standard spectrograms without validating the potential impacts of different settings in producing

different representations. In this paper, we carry out extensive experiments using: (i) three
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common 2D representations for audio signals, namely MFCC (represented in 2D matrix format,

not the common vector visualization), STFT, and DWT; (ii) more and stronger targeted and

non-targeted algorithms for adversarial attacks; (iii) fair comparison on fooling rates of victim

models taking their cost of attacks averaged over the allocated budgets into account.

We primarily select a ConvNet as our front-end classifier for the sake of simplicity and

interpretability of results. We present concise results for other classification models in Section 4.5.

We selected ResNet architectures for such an aim because such a ConvNet is currently the

best-performing classifier for several tasks (Hershey, Chaudhuri, Ellis, Gemmeke, Jansen,

Moore, Plakal, Platt, Saurous, Seybold et al., 2017). Our implementations corroborate that

on average, these ConvNet architectures outperform all the algorithms mentioned above (both

SVMs and other DL approaches) trained on spectrograms. Among the possible architectures

for ResNet (ResNet-18, ResNet-34, and ResNet-56), we selected ResNet-18 according to its

highest recognition performance and relatively low number of parameters compared to others.

Recalling that we investigate the potential effects of spectrogram configurations on the classifier,

which has a very competitive recognition accuracy compared to others and requires fewer

training parameters. Thus herein, we specifically focus on the ResNet-18 network, and all our

investigations will consider this victim architecture.

For every configuration to produce the 2D representations, we generate an individual set of

spectrograms and train an independent ResNet-18 classifier on each dataset. We use a 5-fold

cross-validation setup on 70% of the overall dataset volume (training plus development). To

avoid overtraining, we implemented the early stopping technique in training and finally reported

mean recognition accuracy on the test sets (30% remaining).

4.4.3 Adversarial Attacks

In this section, we provide details for attacking the models trained on 2D audio representations.

We examine their robustness against six strong adversarial attacks by reporting obtained average

fooling rates using the area under the ROC curve (AUC) as a performance metric.
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Model robustness refers to the average recognition accuracy of the victim classifier evaluated

on the adversarial examples (spectrograms in our case) (Ma et al., 2018). In other words,

it measures the ratio of correctly classified adversarial spectrograms over the total number

of crafted examples using the AUC metric. It is worth mentioning that there is an inverse

relationship between the model robustness and attack fooling rate. More specifically, the latter

measures the ratio of misclassified adversarial spectrograms over the total number of crafted

examples (see (Ma et al., 2018) for more details).

To the best of our knowledge, all the adversarial attack algorithms are optimization-based

procedures toward achieving the minimum possible perturbation. These procedures should

generate spectrograms very similar to the ground-truth using a specific similarity metric. This

metric is often one of the statistical norms such as 𝑙0, 𝑙2, 𝑙∞, etc. (Goodfellow et al., 2015).

Thus, attack algorithms should minimize over the designated similarity metric in an iterative

pipeline. The total number of times (in each batch) which this pipeline should be executed until

achieving a valid (in terms of being far enough from the decision boundary of the victim model

(Papernot, 2018)) adversarial spectrogram is called gradient computation or callback to the

ground-truth. This process imposes considerable computational overhead to the entire attack

optimization procedure and limits the adversary’s strength in runtime. Therefore, increasing the

number of required gradient computations is a potential way to decrease the fooling rate of the

victim model and potentially resist attacks.

Thus far, it has been demonstrated that the fooling rate of a classifier is dependent on the

properties of the attack algorithm, the allocated budget in runtime, and the characteristics of the

victim model (Papernot, 2018). For instance, some attack algorithms (e.g., CWA) can get closer

to the decision boundary of the victim classifier and consequently find a smaller adversarial

perturbation. This results in more effectively attacking the recognition model and increases the

fooling rate. Furthermore, since changing the settings of the spectrograms modifies the decision

boundary of the audio classifiers, it will most likely affect the fooling rate of the victim model.
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4.4.3.1 Settings for Attack Algorithms

In FGSM and BIMs attacks, possible ranges for 𝛿 have been defined from 0.001 to any possible

supremum under different confidence intervals (≥ 65%). For the implementation of the DeepFool

attack, we use the open-source Foolbox package (Rauber et al., 2017) with iterations from 100

to 1000 (10 different scales with a step of 100). In the implementation of the JSMA attack,

the number of iterations has been set to (𝑚𝑖𝛾)/𝑛𝑖 where 𝑚𝑖 and 𝑛𝑖 denote the total number of

pixels and scaling factor within [0, 200] (with displacement a of 40), respectively. Also 𝛾 is

the maximum allowed distortion (ideally < 1.5/255) within the maximum number of iterations.

Budget allocated to CWA is within {1, 3, 7, 9} for search steps in 𝑐 within {25, 100, 1k, 2k, 5k}
iterations in each search step using early stopping. For targeted attacks (i.e., FGSM, JSMA, and

CWA) we randomly select targeted wrong labels for running adversarial optimization algorithms.

We executed these attack algorithms on two NVIDIA GTX-1080-Ti with 4 × 11 GB of memory

except for the DeepFool attack, which was executed on 64-bit Intel Core-i7-7700 (3.6 GHz)

CPU with 64 GB memory. For attacks on the smallest dataset (ESC-10), we used batches of 200

samples. For larger datasets (ESC-50 and UrbanSound8k), we used 25 batches of 100 samples.

4.4.3.2 Adversarial Attacks for MFCC Representations

We firstly investigate the potential effect of different sampling rates in MFCC production on

the performance of the trained models. To this end, sampling rates have been selected from

reasonably low (8 kHz) to moderately high (24 kHz) ranges, including the default frequency

value (22.05 kHz) defined in Librosa. Therefore, we trained four ResNet-18 models per

dataset associated with four sampling rates. The results summarized in Table 4.1 show that the

recognition performance of the classifiers is, to some extent, dependent on the sampling rates.

For example, for ESC-10 and UrbanSound8k datasets, the sampling rate of 8 kHz improves

recognition accuracy, while 16 kHz works better for ESC-50. These results might imply that a

low sampling rate filters out high-frequency components and negatively affects the learning of

discriminative features from the spectrograms.
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Table 4.1 Performance comparison of models trained on MFCC representations with

different sampling rates averaged over experiments and budgets. Relatively better

performances are in boldface.

Benchmarking Dataset
Sampling Recog. AUC Score, Number of Gradients for Adversarial Attacks

Rate (kHz) Acc. (%) FGSM DeepFool BIM-a BIM-b JSMA CWA

ESC-10

8 73.23 0.9822, 1 0.9473, 074 0.9710, 065 0.9801, 110 0.9308, 096 0.9912, 1346

16 72.15 0.9456, 1 0.9607, 046 0.9334, 059 0.9375, 197 0.9144, 151 0.9616, 1435

22.05 72.06 0.9467, 1 0.9518, 129 0.9309, 088 0.9379, 186 0.9145, 213 0.9405, 1471

24 70.13 0.9471, 1 0.9341, 078 0.9298, 115 0.9327, 171 0.9233, 091 0.9302, 1149

ESC-50

8 69.89 0.9517, 1 0.9023, 061 0.9612, 084 0.9703, 193 0.9288, 118 0.9598, 2418

16 70.21 0.9849, 1 0.9912, 248 0.9871, 209 0.9903, 160 0.9508, 251 0.9672, 2639

22.05 69.97 0.9534, 1 0.9386, 331 0.9430, 423 0.9581, 288 0.9233, 219 0.9434, 2318

24 67.25 0.9433, 1 0.9214, 208 0.9307, 159 0.9415, 216 0.9187, 417 0.9652, 2744

US8k

8 71.25 0.9905, 1 0.9895, 326 0.9411, 317 0.9950, 223 0.9623, 398 0.9708, 2791

16 70.81 0.9508, 1 0.9215, 631 0.9346, 519 0.9389, 817 0.9447, 442 0.9449, 3805

22.05 69.57 0.9457, 1 0.9151, 269 0.9449, 184 0.9256, 513 0.9370, 416 0.9456, 3015

24 69.33 0.9440, 1 0.9221, 318 0.9236, 299 0.9120, 862 0.9242, 343 0.9371, 2816

We attack these models using those six adversarial algorithms mentioned above and measure

their fooling rates averaged over different budgets as explained in Section 4.4.3. From the

results shown in Table 4.1, we notice an inverse relationship between recognition accuracy and

robustness of these models, on average. For instance, ResNet-18 trained on MFCC representation

of the ESC-10 dataset sampled at 8 kHz reaches the highest recognition accuracy. Still, this

model is less robust against five out of six adversarial attacks, averaged over the allocated

budgets. We present two hypotheses on this issue. Firstly, adversarial attacks are essentially

optimization-based problems, and their final results are dependent on the hyperparameters

defined by the adversary. Confidence intervals, number of callbacks to the original spectrogram,

number of iterations in optimization formulation, line search for the optimal coefficient are

among those, to name a few. The fooling rate of a victim model is dependent on tuning these

hyperparameters. Our second hypothesis is on the statistical perspective of training a neural

network. A model with higher recognition accuracy has probably learned a better decision

boundary via maximizing the intra-class similarity and inter-class dissimilarity. Attacking this

model provides a broader search area for the adversary to find pinholes of the model, especially

when the decision boundaries among classes lie in the vicinity of each other. Table 4.1 also

compares the average number of gradients for batch execution required by every attack algorithm.

Regarding statistics of this table, CWA is the costliest adversarial attack for spectrograms with

different sampling rates.
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Figure 4.1 Effect of 𝑁MFCC on the front-end classifier

The default value for the number of MFCCs (𝑁MFCC) is 20 as defined in Librosa. However, we

encompass values from a minimum number of 13 to a maximum of 40 in generating MFCC

representation; although increasing 𝑁MFCC>20 introduces redundancy in frequency coefficient

representation. Our experimental results corroborate the negative effect of a low 𝑁MFCC in

the performance of the classifiers. More specifically, recognition performance of the trained

models on spectrograms with 𝑁MFCC = 13 is 14% less than models trained on spectrograms

with 𝑁MFCC≥20, on average. Our experimental results on attacking victim models trained on

spectrograms with low 𝑁MFCC unveils their extreme vulnerabilities. However, in terms of the

attack cost, these models need fewer callbacks for gradient computations for yielding AUC>90%

(see Figure 4.1). That could be due to the nature of the adversarial attacks, which are formulated

as optimization problems, regardless of the performance of the victim models.

Using orthonormal discrete cosine transform basis function is a standard approach in crafting

MFCC representation. Our experiments produced two separate subsets of spectrograms with and

without normalization to measure its potential effect on recognition accuracy and the fooling rate
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Figure 4.2 Normalization effect on the front-end classifier

(see Figure 4.2). Disabling this normalization scheme causes a drop of 7% in the recognition

accuracy and a drop of 8.5% in the attack cost, on average.

For the choice of the cepstral filtering, we covered values in the range
[
0, (𝑑 × 𝑁MFCC)

]
where

maximum 𝑑 is 2.5 with hop size of 0.5 in the production of spectrograms. Values above the

supremum of this interval generate higher-order coefficients in linear-like weighting distributions

which considerably reduce recognition accuracy on average to about 48%. Optimal values for 𝑑

are 0, 0.5, and 0.3 for ESC-10, ESC-50, and UrbanSound8k, respectively (see Figure 4.3).

4.4.3.3 Adversarial Attacks for STFT Representations

There is a significant similarity in producing MFCC and STFT spectrograms, mainly in terms of

transformation and frequency modulation. Therefore, we omit experimental results relevant to

measuring the impacts of sampling rates on the robustness of victim classifiers. Nevertheless,

fooling rates of ResNet-18 models on STFT representations are similar to MFCC representations.
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Figure 4.3 Effect of Cepstral filtering on the front-end classifier

Such rates support the inverse relationship between the recognition accuracy and the robustness

against attacks mentioned above.

Table 4.2 summarizes adversarial experiments conducted on STFT representations with the same

aforementioned setup described in Section 4.4.3. This table illustrates the impact of the number

of FFTs (𝑁FFT) both on the recognition accuracy and on the robustness of victim models against

adversarial attacks averaged over all the different adversarial setups. For ESC-10 and ESC-50

datasets, 𝑁FFT=1024 results in learning better decision boundaries for the classifiers, although it

increases fooling rates of the victim models. In the production of STFT spectrograms, each

frame of a given audio signal is spanned by a window that covers the frame. The maximum

length of this window can be equivalent to the number of 𝑁FFT. Since small window lengths

improve the temporal resolution of the final STFT representation, we evaluate the performance of

the models on small window lengths in the range
[(

0.25×𝑁FFT

)
, 𝑁FFT

]
with hop size of 𝑁FFT/4.

As shown in Figure 4.4, the evaluation on ESC-50 and UrbanSound8k datasets uncovers that

models trained on STFT representations with window length of 0.5×𝑁FFT outperform others.
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Figure 4.4 Effect of scales for 𝑁FFT on the front-end classifier

Table 4.2 Performance comparison of models trained on STFT representations with

different 𝑁FFT averaged over experiments and budgets. Relatively better performances are

in boldface.

Benchmarking Dataset
Number Recog. AUC Score, Number of Gradients for Adversarial Attacks

of FFTs Acc. (%) FGSM DeepFool BIM-a BIM-b JSMA CWA

ESC-10

512 82.41 0.9768, 1 0.9430, 089 0.9576, 109 0.9717, 134 0.9662, 141 0.9846, 1415

1 024 85.17 0.9823, 1 0.9701, 129 0.9715, 091 0.9792, 183 0.9531, 209 0.9905, 2008

2 048 80.56 0.9651, 1 0.9544, 092 0.9407, 163 0.9529, 279 0.9588, 341 0.8731, 1730

ESC-50

512 82.44 0.9786, 1 0.9542, 082 0.9583, 109 0.9665, 244 0.9614, 128 0.9618, 1995

1 024 84.49 0.9881, 1 0.9512, 331 0.9871, 267 0.9798, 179 0.9702, 361 0.9896, 2353

2 048 83.12 0.9567, 1 0.9631, 145 0.9765, 211 0.9606, 567 0.9738, 399 0.9729, 2412

US8k

512 90.58 0.9761, 1 0.9414, 583 0.9513, 442 0.9682, 421 0.9402, 345 0.9539, 2569

1 024 91.74 0.9827, 1 0.9752, 322 0.9340, 471 0.9687, 719 0.9515, 502 0.9654, 3271

2 048 92.23 0.9895, 1 0.9764, 643 0.9407, 602 0.9630, 408 0.9623, 655 0.9673, 3342

On the ESC-10 dataset, a window length of 𝑁FFT resulted in better performance in terms of

recognition accuracy.

Comparing the recognition accuracy of Tables 4.1 and 4.2 shows that STFT provides better

discriminative features for the ResNet-18 classifier since such a model achieved lower recognition

accuracy on MFCC representations. Additionally, while the AUC scores across the six attacks
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Table 4.3 Performance comparison of models trained on DWT representations with

different sampling rates averaged over different budgets. Relatively better performances are

in boldface.

Benchmarking Dataset
Sampling

Rate (kHz)

Recog.

Acc. (%)

AUC Score, Number of Gradients for Adversarial Attacks

FGSM DeepFool BIM-a BIM-b JSMA CWA

ESC-10
8 85.67 0.9456, 1 0.9310, 429 0.9307, 612 0.9411, 744 0.9324, 781 0.9483, 4205

16 82.04 0.9068, 1 0.9192, 672 0.9437, 490 0.9347, 513 0.9018, 801 0.9216, 4439

ESC-50
8 80.34 0.9462, 1 0.9335, 367 0.9161, 452 0.9314, 809 0.9168, 298 0.9233, 3981

16 85.97 0.9376, 1 0.9256, 409 0.9314, 628 0.9419, 701 0.9173, 561 0.9236, 4575

US8k
8 94.70 0.9401, 1 0.9279, 761 0.9315, 841 0.9511, 738 0.9207, 691 0.9320, 4684

16 91.83 0.9321, 1 0.9274, 533 0.9125, 719 0.9408, 941 0.9139, 774 0.9430, 4879

are not so different, ranging from 0.93 to 0.99, the number of gradients required for models

trained on STFT spectrograms is considerably higher than MFCC representation. In summary,

STFT spectrograms provide better accuracy and a little hard to attack, even if they can be fooled

with high success by all six adversarial attacks.

4.4.3.4 Adversarial Attacks for DWT representations

There is no algorithmic approach for obtaining the optimal mother function to generate DWT

spectrograms. Therefore, from simple Haar to complex Morlet, we have employed several

functions to investigate the potential impacts on recognition accuracy and the adversarial

robustness of the victim models. We exploited an analytical approach, recasting multiple

experiments. Table 4.4 shows that although the complex Morlet mother function outperforms

other mother functions in terms of recognition accuracy. However, it shows more vulnerability

against adversarial examples, averaged over six attack algorithms with different budgets.

Table 4.3 compares the recognition accuracy of models trained on DWT representations with

complex Morlet mother function. We have evaluated these models on DWT spectrograms with

sampling rates of 8 kHz and 16 kHz. For ESC-50, a sampling rate of 8 kHz shows better

performance for the classifiers, comparing their recognition accuracy. There are three findings

in these tables. Firstly, averaged over all the allocated budgets for the attacks, models trained on

DWT representations demonstrate slightly higher robustness against adversarial attacks than

MFCC and STFT spectrograms. Secondly, the highest recognition accuracy has been achieved
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Table 4.4 Comparison of mother functions on the

performance of the models. Outperforming values are

shown in bold face.

benchmarking Dataset
Mother

Function

Average Recognition

Accuracy (%)

Average

AUC Score

ESC-10

Haar 82.14 95.14

Mexican Hat 84.51 94.19

Complex Morlet 85.67 95.61

ESC-50

Haar 83.08 92.16

Mexican Hat 84.33 93.40

Complex Morlet 85.97 95.38

UrbanSound8k

Haar 91.22 96.16

Mexican Hat 93.48 95.63

Complex Morlet 95.17 96.09

for classifiers trained on DWT representations. Thirdly, the trade-off between recognition

accuracy and adversarial robustness of the victim models are noticeable for different sampling

rates. Moreover, the cost of the attack (number of gradient computations) for models trained on

DWT is considerably higher than the other two representations.

We assumed a frame length of 50 ms with 50% overlapping to convolve the input signal with

mother functions in all these experiments. We have also carried out experiments on studying the

potential effect of frame length on the performance of the models. They showed that short frame

lengths (e.g., 30 ms) drop the recognition performance of the models for the three benchmark

datasets. Additionally, long frames such as 50 ms introduce a high redundancy in frequency

plots, which results in dropping the recognition accuracy (see Figure 4.5). Figure 4.6 visually

compares crafted adversarial examples for the three representations. Although they are visually

very similar to their legitimate counterparts, they confidently drive the classifier toward wrong

predictions. That showcases the active threat of adversarial attacks for the sound recognition

models.

4.5 Discussion

In this section, we provide additional discussion regarding our results. We briefly discuss some

secondary aspects of our experiments that could be relevant for future studies.
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Figure 4.5 The effect of DWT frame length on the front-end classifier

Original Attacked Spectrograms

Spectrograms FGSM DeepFool BIM-a BIM-b JSMA CWA

MFCC ‖δ‖2 = 0.51, l′ = 2 ‖δ‖2 = 0.67, l′ = 3 ‖δ‖2 = 0.71, l′ = 4 ‖δ‖2 = 0.93, l′ = 5 ‖δ‖0 = 1.18, l′ = 6 ‖δ‖2 = 1.47, l′ = 7

STFT ‖δ‖2 = 0.82, l′ = 2 ‖δ‖2 = 1.39, l′ = 3 ‖δ‖2 = 0.64, l′ = 4 ‖δ‖2 = 1.24, l′ = 5 ‖δ‖0 = 1.31, l′ = 6 ‖δ‖2 = 1.73, l′ = 7

DWT ‖δ‖2 = 1.13, l′ = 2 ‖δ‖2 = 1.36, l′ = 3 ‖δ‖2 = 1.96, l′ = 4 ‖δ‖2 = 1.49, l′ = 5 ‖δ‖0 = 2.03, l′ = 6 ‖δ‖2 = 2.38, l′ = 7

Figure 4.6 Crafted adversarial spectrograms for the three audio representations. The

original audio sample has been randomly selected from the class of dog bark (𝑙 = 1).

Examples shown in columns two to seven are associated with the six adversarial attacks for

the original input sample. Required perturbation (𝛿) and the target labels (𝑙′) are shown

under each spectrogram.
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4.5.1 Deep Learning Architectures

We measured recognition accuracy and the total number of training parameters for all candidates

for selecting the front-end classifier. We explored DL architectures without residual blocks

(AlexNet) and with inception blocks (GoogLeNet) to choose victim classifiers. Our experiments

unveiled that these dense networks do not outperform ResNet-18 in terms of recognition accuracy.

Although the average recognition accuracy of ResNet-18 and GoogLeNet are competitive on

spectrograms, the latter has 1.41× more training parameters. On average, the recognition

performance of AlexNet is 8% lower than ResNet-18, even if it has 61% fewer parameters.

Furthermore, the recognition performance of other ResNet models such as ResNet-34 and

ResNet-56 are very competitive to ResNet-18, but the latter requires 50% fewer parameters. In

comparing the robustness of these models against adversarial attacks, they all can reach fooling

rates higher than 95%. Taking the allocated budgets into account, the ResNet-18 is the costliest

network in terms of the number of required gradient computations for the adversary, followed by

GoogLeNet and AlexNet.

4.5.2 Data Augmentation

For improving the performance of the classifiers, we augmented the original datasets only at

waveform level (1D) using time-stretching filter except for DWT representations which we

additionally scaled the spectrograms by a logarithmic function. Removing 1D data augmentation

negatively affects recognition accuracy of the models with drop ratios of about 0.056%, 0.036%,

and 0.029% for MFCC, STFT, and DWT spectrograms, respectively. For measuring the

robustness of these models against adversarial examples, we executed attack algorithms on

random batches of size 100 among the entire datasets. The experimental results have shown that

for reaching the fooling rates as close as the values reported in Tables 4.1 to 4.3, less gradient

computation is required mainly for JSMA and CWA attacks.
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Figure 4.7 Average transferability ratio of adversarial examples among ConvNets. Higher

ratios are shown in boldface.

MFCC STFT DWT
Dataset Models

ResNet18 GoogLeNet AlexNet ResNet18 GoogLeNet AlexNet ResNet18 GoogLeNet AlexNet

ResNet18 1 0.672 0.568 1 0.713 0.641 1 0.761 0.774
GoogLeNet 0.693 1 0.480 0.637 1 0.519 0.646 1 0.684ESC-10

AlexNet 0.491 0.521 1 0.540 0.562 1 0.633 0.701 1

ResNet18 1 0.644 0.519 1 0.661 0.609 1 0.755 0.732

GoogLeNet 0.630 1 0.531 0.578 1 0.569 0.507 1 0.676ESC-50

AlexNet 0.523 0.536 1 0.551 0.601 1 0.614 0.699 1

ResNet18 1 0.627 0.677 1 0.611 0.710 1 0.714 0.713

GoogLeNet 0.634 1 0.503 0.563 1 0.699 0.723 1 0.707US8k

AlexNet 0.577 0.583 1 0.703 0.735 1 0.705 0.678 1

4.5.3 Adversarial on Raw Audio

Optimizing Eq. 4.1 even for a short 1D audio signal sampled at a low rate is very costly, and they

are not transferable while being played over the air (Carlini & Wagner, 2018). Toward addressing

this interesting open problem, we trained several end-to-end ConvNets on randomly selected

batches of environmental sound datasets. Upon running both targeted and non-targeted attacks

against ConvNets, we could reduce the performance of victim classifiers by 30% on average.

Interestingly, multiplying the adversarial examples by a small random scalar restored the audio

waveforms’ correct label. In other words, whereas adversarial spectrograms, 1D adversarial

audio waveforms are not resilient against any additional perturbation.

4.5.4 Adversarial Transferability

The transferability of adversarial examples is not only dependent on the classifier but also on

audio representations. We investigated this aspect on deep neural networks trained on different

spectrograms. Table 4.7 reports the transferability ratios averaged over budgets with batch

sizes of 100. Crafted adversarial examples for victim models are less transferable in MFCC

representations, while DWT spectrograms have higher transferring rates on average. On the

other hand, examples generated in the STFT domain are more transferable compared to MFCC.

That may be due to the higher order of information in STFT spectrograms.
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Unlike other research works (Esmaeilpour et al., 2020) that have evaluated adversarial transfer-

ability among different classifiers to identify the most reliable model considering a black-box

attack scenario, we have carried out the transferability experiment to identify the most reliable 2D

representation. Therefore, we characterize the impact of 2D representation on the transferability

of attacks among different models. In other words, we have demonstrated that classifiers trained

on MFCC representations have a lower adversarial transferability ratio than models trained on

STFT and DWT.

4.5.5 Selection of Benchmarking Adversarial Attacks

All the attack algorithms evaluated in this paper are comprehensive and still top-notch approaches

in generating adversarial examples. They are standard benchmarking approaches in developing

defense algorithms since they have a unique objective and technique in finding the most fitting

adversarial perturbation. See a relevant discussion in (Jang, Zhao, Hong & Lee, 2019; Hu, Yu,

Guo, Chao & Weinberger, 2019b).

4.6 Conclusion

In this paper, we have demonstrated the inverse relationship between recognition accuracy

and robustness of ResNet-18 trained on 2D representations of environmental audio signals

averaged over the allocated budgets by the adversary. This relation is generalizable to other DL

architectures, and this is a common behavior for models trained on spectrograms. Additionally,

we showed that our front-end classifier could reach the highest recognition accuracy when

trained on DWT representation. Furthermore, attacking this model is, on average, more costly

for the adversary compared to models trained on MFCC and STFT representations. That proves

the superiority of DWT representation for environmental sound recognition.

Moreover, we have examined the transferability of crafted adversarial examples among AlexNet,

GoogLeNet, and ResNet-18 for the three spectrogram representations. According to our results,

MFCC representation achieved the lowest transferability ratio, averaged over six different
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adversarial attacks. In our future studies, we are decided to investigate this property for networks

trained on speech datasets.
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Abstract

This paper introduces a defense approach against end-to-end adversarial attacks developed for

cutting-edge speech-to-text systems. The proposed defense algorithm has four major steps.

First, we represent speech signals with 2D spectrograms using the short-time Fourier transform.

Second, we iteratively find a safe vector using a spectrogram subspace projection operation. This

operation minimizes the chordal distance adjustment between spectrograms with an additional

regularization term. Third, we synthesize a spectrogram with such a safe vector using a novel

GAN architecture trained with Sobolev integral probability metric. To improve the model’s

performance in terms of stability and the total number of learned modes, we impose an additional

constraint on the generator network. Finally, we reconstruct the signal from the synthesized

spectrogram and the Griffin-Lim phase approximation technique. We evaluate the proposed

defense approach against six strong white and black-box adversarial attacks benchmarked on

DeepSpeech, Kaldi, and Lingvo models. Our experimental results show that our algorithm

outperforms other state-of-the-art defense algorithms both in terms of accuracy and signal

quality.44

44 The supplementary materials including speech signals are available at:

https://github.com/EsmaeilpourMohammad/MultiDiscriminator-SDGAN.git.
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5.1 Introduction

There is a large volume of publications on applying deep learning algorithms for audio and

speech classification (i.e., transcription), which report high recognition accuracy (Wang, Zou,

Chong & Wang, 2020; Shen et al., 2019; Mozilla-DeepSpeech, 2017). During the last decade,

the primary focus has been designing new architectures, for instance, variants of convolution

(Sainath et al., 2013), recurrent (Graves et al., 2013), and attention configurations (Bahdanau

et al., 2016) to improve classification accuracy and model generalizability. However, it has been

proven that these advanced models might undergo extreme vulnerability against carefully crafted

adversarial signals both in 1D and 2D representation (spectrogram - mainly for audio) domains

(Carlini & Wagner, 2018; Esmaeilpour et al., 2020).

The major focus of this paper is in response to this vulnerability issue. We have developed an

adversarial defense approach against varieties of end-to-end speech-to-text attack algorithms.

Toward this end, we firstly review the state-of-the-art of adversarial attacks in Section 5.2. We

also provide details about the background of the defense approaches in Section 5.3. Section 5.4

introduces the proposed adversarial defense algorithm followed by comprehensive experimental

results in Section 5.5. In summary, we make the following contributions in this paper:

1. introducing a novel adversarial defense approach based on a multi-discriminator generative

adversarial network (GAN) in the restricted Sobolev space (Brezis, 2010);

2. establishing simple yet effective architectures for both the generator and discriminator

networks;

3. developing an adjusted chordal distance with a complementary regularization term toward

achieving a safe input vector for the generator model;

4. characterizing a constraining technique for improving the stability of our generative model

in adverse environmental scenarios;

5. experimentally proving the effectiveness of the proposed defense approach for white and

black-box as well as targeted and non-targeted attack scenarios.
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5.2 Background: Adversarial Attack

An adversarial signal �𝑥𝑎𝑑𝑣 carries inaudible perturbation 𝛿, and it can fool the victim classifier (the

transcription model) toward any target phrase ŷ defined by the adversary (Carlini & Wagner, 2018).

The actual value of 𝛿 is dependent on the length of ŷ (the number of characters - tokens) and the

characteristics of the original carrier signal �𝑥𝑜𝑟𝑔 (�𝑥𝑎𝑑𝑣 = �𝑥𝑜𝑟𝑔 + 𝛿) (Carlini & Wagner, 2018; Qin

et al., 2019). For measuring the loudness (distortion) of this perturbation relative to the carrier

signal, a logarithmic-scale metric has been proposed by Carlini and Wagner (Carlini & Wagner,

2018):

𝑙dB(�𝑥𝑎𝑑𝑣) = 𝑙dB(𝛿) − 𝑙dB(�𝑥𝑜𝑟𝑔) (5.1)

where 𝑙 (·) denotes the loudness of the original 1D signal �𝑥𝑜𝑟𝑔 ∈ R𝑛×𝑚 in dB, and 𝑛 and 𝑚

denote the length and number of channels, respectively. For 𝑙dB(�𝑥𝑎𝑑𝑣) < 𝜖 where 𝜖 is a small

threshold, �𝑥𝑎𝑑𝑣 sounds almost seamless to �𝑥𝑜𝑟𝑔 according to the C&W attack for the speech-to-text

model (Carlini & Wagner, 2018):

min |𝛿 |22 +
∑
𝑖

𝑐𝑖 .L𝑖 (�𝑥𝑜𝑟𝑔,𝑖 + 𝛿𝑖, 𝜋𝑖) s.t. 𝑙dB(�𝑥𝑎𝑑𝑣) < 𝜖 (5.2)

where 𝑐𝑖 is a scaling coefficient for the connectionist temporal classification loss function L(·)
(Graves, Fernández, Gomez & Schmidhuber, 2006). Additionally, 𝜋𝑖 denotes string tokens

without duplication, which should reduce to the character alignments ŷ𝑖 (ŷ𝑖 ≠ y𝑖, where the latter

refers to the ground truth character alignment) (Carlini & Wagner, 2018). The C&W attack

has been primarily developed for the speech-to-text DeepSpeech model (Mozilla-DeepSpeech,

2017), and the experiments have shown a complete collapse of this model against adversarial

signals crafted through Eq. 5.2 (Carlini & Wagner, 2018).

The C&W attack splits the input signal into 50 frames per second, and it eventually yields a

universal perturbation for the entire chunks in �𝑥𝑜𝑟𝑔. This operation reduces the computational

complexity of the attack algorithm compared to optimizing fine-grained 𝛿𝑖 for every chunk.

However, it might negatively affect the robustness of �𝑥𝑎𝑑𝑣 in a real-world environment. In other

words, playing these speech chunks over the air and recording them by another microphone,
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involving environmental reverberating and signal echo, might easily remove the adversarial effect

(𝛿) (Schönherr, Eisenhofer, Zeiler, Holz & Kolossa, 2020). Several algorithms crafting more

resilient adversarial signals in natural environments have been proposed in response to this issue.

These algorithms are based on psychoacoustic loss function (Szurley & Kolter, 2019), feature

vector analysis (Abdullah, Garcia, Peeters, Traynor, Butler & Wilson, 2019), and employing a

set of filters (band-pass, impulse response, and white Gaussian noise) (Yakura & Sakuma, 2018).

However, these approaches have been evaluated within static environments with predefined room

setups, which might reduce these algorithms’ generalizability in more challenging scenarios

(Schönherr et al., 2020). Inspired by Athalye, Engstrom, Ilyas & Kwok (2018a), which introduces

the expectation over transformation (EOT) in the attack optimization formulation for regularizing

the cost function (similar to Eq. 5.2), many other EOT variants have been proposed for the speech

domain (Qin et al., 2019; Schönherr et al., 2020; Chen, Shangguan, Li & Jamieson, 2020).

These regularizations help to craft more robust adversarial signals for non-static environments,

which fit in both white and black-box attack scenarios.

The EOT proposed by Qin et al. (Qin et al., 2019) is based on an acoustic room simulator, which

generates artificial utterances and environmental reverberations. This algorithm is known as

Robust Attack and encodes the EOT regularization into the loss function of a speech-to-text

model as (Qin et al., 2019):

ℓ(�𝑥𝑜𝑟𝑔,𝑖, 𝛿𝑖, y𝑖) = E𝑡∼𝜏

[
ℓ𝑛𝑒𝑡 (y𝑖 , ŷ𝑖) + 𝛼ℓ𝑚 (�𝑥𝑜𝑟𝑔,𝑖, 𝛿𝑖)

]
(5.3)

where 𝛼 is a static scaling factor, ℓ𝑛𝑒𝑡 (·) denotes the cross entropy loss and ℓ𝑚 (·) indicates the

loss function for masking threshold (𝜖). In fact, ℓ𝑚 (·) constrains over the normalized power

spectral density function of �𝑥𝑜𝑟𝑔 and contributes to the imperceptibility of the adversarial signal

(Qin et al., 2019). Additionally, 𝜏 refers to the transformation set including room reverberation

settings. This attack has been tested on the Lingvo speech-to-text system (Shen et al., 2019) and

it has achieved a very high fooling rate on this advanced system.
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The Imperio attack proposes another variant of EOT, which implements simulated room impulse

response (RIR) filters, taking advantage of a simple deep neural network (DNN) architecture

(Schönherr et al., 2020). Additionally, this attack embeds psychoacoustic thresholding for

reducing adversarial distortion similar to Qin et al. (Qin et al., 2019) (see Eq. 5.4 in (Schönherr

et al., 2020)).

�𝑥𝑎𝑑𝑣 = arg max
�𝑥𝑖
Eℎ∼𝐻dim

[
𝑃(ŷ𝑖 | �𝑥𝑖,ℎ)

]
(5.4)

where ℎ ∈ 𝐻dim denotes a RIR filter and dim indicates the dimension of the filter set. The

Imperio is an iterative algorithm and minimizes the adversarial perturbation 𝛿 via approximating

the ∇�𝑥𝑜𝑟𝑔 = 𝜕ℓ𝑛𝑒𝑡 (y, ŷ)/𝜕 𝑓 ∗(�𝑥𝑜𝑟𝑔) where 𝑓 ∗(·) denotes the post activation function. In each

iteration and according to the distribution of 𝐻dim, an adversarial candidate �𝑥𝑎𝑑𝑣 = �𝑥𝑖 + 𝜅∇�𝑥𝑖 with

the learning rate 𝜅 should satisfy ŷ𝑖 ≠ y𝑖. This procedure continues until a predefined audible

threshold 𝜖 has been reached. This attack was evaluated on the Kaldi speech-to-text system

(Povey et al., 2011), which employs both DNN and hidden Markov model (HMM) configurations

for real-time speech transcription. It has been shown that under various environmental settings,

including lecture, meeting, and office rooms, the Imperio attack has considerably turned down

the transcription performance of the Kaldi system (Schönherr et al., 2020).

The EOT regularization in the Metamorph adversarial attack (Chen et al., 2020) is similar to the

RIR filtration of the Imperio algorithm with one major difference: it implements channel impulse

response (CIR) to characterize potential over the air distortions on 𝛿. This attack algorithm

employs 𝑀 pairs of microphone-speaker transmission in different distances (similar to 𝐻dim) to

encompass a wide range of reverberations in yielding minimal perturbation:

arg min
𝛿

𝛼𝑡𝑙dB(�𝑥𝑎𝑑𝑣) + 1

𝑀
L(�𝑥𝑜𝑟𝑔 + 𝛿𝑖, 𝜋𝑖) (5.5)

where 𝛼𝑡 denotes a trade-off scalar between the fooling rate of the model and the signal quality.

Similar to the C&W attack, the Metamorph attack was evaluated on the DeepSpeech model.

The experiments showed an attack success rate of around 90% and low Mel-cepstral distortion

for this white-box algorithm (Chen et al., 2020).
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Since integrating the EOT regularization into the adversarial optimization problem requires

access to the victim model’s cost function, it cannot be directly incorporated in the black-box

attacks. For addressing this issue, a surrogate technique has been proposed, called the over-

the-line approach. This technique provides multiple varieties of the adversarial signals to the

victim model before playbacks over the air (Abdullah et al., 2019). This operation helps the

adversary to capture the environmental scene distribution without directly simulating it through

reverberation filters. However, the performance of this approach is directly dependent on the

comprehensiveness of the over-the-line adversarial signals. More straightforward yet effective

black-box adversarial attacks, which do not incorporate EOT regularization with to some extent

better performance on the DeepSpeech system, are the genetic algorithm attack (GAA) (Taori,

Kamsetty, Chu & Vemuri, 2019) and multi-objective optimization attack (MOOA) (Khare,

Aralikatte & Mani, 2019). These algorithms were tested for targeted and non-targeted attacks

and achieved high fooling rates.

While all the aforementioned adversarial attacks pose major security concerns against cutting-

edge speech-to-text models, namely DeepSpeech, Kaldi, and Lingvo, there are few investigations

on defense algorithms. The following section reviews the state-of-the-art defense approaches

developed for counteracting white and black-box adversarial attacks.

5.3 Background: Adversarial Defense

Developing defense approaches against robust adversarial attack algorithms can be very

challenging due to several reasons. Firstly, standard speech signals have high dimensionality

(e.g., 8 kHz), and even running effective compression techniques (Das et al., 2018) for

potentially discarding adversarial perturbations can be time-consuming in real-time speech-to-

text transcription. Secondly, speech signals often have various channels for quality enhancement

purposes (Peinado & Segura, 2006). Thus an adversary can optimize 𝛿 for such channel(s), which

human auditory systems are less sensitive to them and more effectively fool the victim model

(Virag, 1999). Thirdly, speech signals usually carry environmental and microphone-speaker

noises, which makes distinguishing a noisy signal from an adversarial one very difficult, even
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after band-pass filtering (Hu & Loizou, 2007). In the following, we briefly review a couple of

multiscale approaches that have been able to tackle these challenges to some extent.

Inspired by Das, Shanbhogue, Chen, Hohman, Chen, Kounavis & Chau (2017), a compression-

based approach has been introduced for removing the potential adversarial perturbation from

the speech signals (Das et al., 2018). This algorithm implements both adaptive multi-rate and

MPEG audio layer-3 encoding for such an aim. Reported results showed the effectiveness of

this approach in adverse scenarios for short-length signals (Das et al., 2018). Furthermore, for

sophisticated adversarial signals, which have been precisely optimized through running the

Robust Attack (Qin et al., 2019), this defense scheme failed to remove adversarial perturbations

(Esmaeilpour, Cardinal & Koerich, 2021a).

An autoencoder-based defense GAN (A-GAN) (Latif et al., 2018) is structurally similar to the

compression approach mentioned above. Instead of low-level signal filtering, it implements

high-level feature transformation. The intuition behind this approach is transforming the signal

into a similar recording with lower environmental noises using an autoencoder. The proposed

autoencoder implements a complex architecture for reconstructing feature vectors so as to remove

potential adversarial perturbation 𝛿. Extensive experiments of A-GAN on DeepSpeech and

Lingvo systems have been reported by Esmaeilpour et al. (Esmaeilpour et al., 2021a).

Since it has been proven that adversarial subspace is distinct from original and noisy signals

(Esmaeilpour et al., 2020b), a defense GAN based on this fact has been developed by Esmaeilpour

et al. (Esmaeilpour et al., 2021a). Unlike the compression approach and A-GAN approaches, this

defense algorithm employs neither low nor high-level transformations for discarding adversarial

perturbations directly in the signal. Instead, it uses a class-conditional GAN for computing a

refined latent variable z𝑖 for the generator network via:

∇z𝑖 ‖𝛾 [𝐺 (z𝑖), x𝑖] ‖2
2 (5.6)

where z𝑖 ∈ R𝑑𝑧 with dimension 𝑑𝑧 is the random variable from 𝑝𝑧 ∼ N(0, 0.4𝐼) and 𝐺 (·)
with distribution 𝑝𝑔 denotes the generator network. Additionally, 𝛾 [·] is the chordal distant



148

Algorithm 5.1 𝛾 [·] computation. We refer to Appendix I for more details (taken from

Esmaeilpour et al. (2020b)).

1 Algorithm: Computing vector of 𝛾 [·]
Input: 𝐶𝑙𝑒𝑔: Class of legitimate samples

Output: 𝛾 [·]
2 Λ𝑙𝑒𝑔 = [] , Λ𝑎𝑑𝑣 = []; /* legitimate and adversarial lists */
3 for all 𝐵𝑙𝑒𝑔 ∈ 𝐶𝑙𝑒𝑔; /* 𝐵𝑙𝑒𝑔: legitimate batch */
4 do
5 𝐵𝑎𝑑𝑣 := adversarial attack on 𝐵𝑙𝑒𝑔; /* 𝐵𝑎𝑑𝑣: adversarial batch */

6
−→
𝜆 𝑙𝑒𝑔 = eigen

[
qz

(
𝐵𝑙𝑒𝑔

[
𝑖
]
, 𝐵𝑙𝑒𝑔

[
𝑗
] ) ]

; /* qz decomposition, 𝑖 ≠ 𝑗 */

7
−→
𝜆 𝑎𝑑𝑣 = eigen

[
qz

(
𝐵𝑎𝑑𝑣

[
𝑖
]
, 𝐵𝑎𝑑𝑣

[
𝑗
] ) ]

; /* 𝑖 ≠ 𝑗 */

8 Λ𝑙𝑒𝑔.append
(−→
𝜆 𝑙𝑒𝑔

)
, Λ𝑎𝑑𝑣 .append

(−→
𝜆 𝑎𝑑𝑣

)
9 end for

10 𝛾 [·] = DIF(Λ𝑙𝑒𝑔,Λ𝑎𝑑𝑣); /* 𝛾 [·] denotes difference. */

adjustment function between the input spectrogram x𝑖 and 𝐺 (z𝑖) (see Algorithm 5.1 which is

driven from Algorithm I-1). Eq. 5.6 is iterative and finds the optimal latent variable z∗𝑖 , which

not only forces 𝐺 (z∗𝑖 ) to lie in the original signal subspace, but also generates a spectrogram

very similar to x𝑖.

The effectiveness of this class-conditional defense GAN (CC-DGAN) has been evaluated against

the C&W attack, the Robust Attack, and the GAA for both DeepSpeech and Lingvo systems

(Esmaeilpour et al., 2021a). However, it might fail for long-length signals (above six seconds)

due to the generator network’s instability in around 10k iterations. For addressing this issue, we

propose two techniques: (i) introducing a multi-discriminator GAN to provide more informative

gradients to the generator network; (ii) implementing such a GAN in the restricted Sobolev space

(Brezis, 2010) and training the generator network according to the Sobolev function class with a

bounded dominant measure. Since a special case of this restricted space is proportional to the

2D Fourier transform representation (spectrogram) (Brezis, 2010), we can train our generative

model in a much lower dimensionality compared to 1D speech signals. In the following section,

we explain these steps as part of the proposed defense scheme.
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Figure 5.1 An overview of the proposed defense GAN approach. The 1D speech signal

(�𝑥𝑖) is converted to a STFT spectrogram (x𝑖). Moreover, 𝛾 [·] denotes the chordal distance

adjustment required for making x𝑖 in the same subspace of the synthesized spectrogram

𝐺 (z𝑖) (z𝑖 ∈ R𝑑𝑧 is the latent random variable). The output speech signal (�̂𝑥𝑖) is

reconstructed using the i-STFT operation and the Griffin-Lim phase approximation

approach (Masuyama et al., 2019). Additionally, rank(x𝑖) refers to the input spectrogram’s

rank according to its eigenvalues computed in the Schur decomposition domain.

5.4 Proposed Adversarial Defense Method: Sobolev Defense GAN (Sobolev-DGAN)

The proposed adversarial defense approach against speech attacks has four steps, as depicted

in Fig. 5.1: (a) signal representation (conversion from 1D vector to 2D matrix) using short-

time Fourier transform (STFT) (Griffin & Lim, 1984); (b) chordal distance adjustment with a

complementary regularization term for projecting the given input spectrogram onto the original

subspace (the process shown in the green color); (c) spectrogram synthesis using a Sobolev

GAN and an optimal safe vector z∗𝑖 (yellow block in Fig. 5.1); (d) inverse STFT (i-STFT) for

reconstructing the speech signal.

5.4.1 Spectrogram: 2D Representation of 1D Speech Signal

There are several standard transformations in the audio and speech processing domains for

representing a signal into a 2D spectrogram, such as continuous or discrete wavelet transform,

Mel-frequency cepstral coefficients, and STFT. All these transformations have some advantages

over each other, and they have been widely used for unsupervised, weakly supervised, and

supervised learning tasks. Moreover, the highest recognition accuracies have been often reported

for the models trained on these representations over 1D signals (Mozilla-DeepSpeech, 2017;

Chorowski, Weiss, Bengio & van den Oord, 2019). This is presumably due to the lower

dimensionality of spectrograms and the inherent ability of these transformations in extracting

more distinctive learning features compared to 1D signals (Deng & O’Shaughnessy, 2018).
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This paper uses the STFT to generate spectrograms from the given speech signals since it

is more closely related to the Sobolev integral probability metric (IPM) (Mroueh, Li, Sercu,

Raj & Cheng, 2018), which we employ to train our generator network. This metric correlates

well with the Fourier coefficients encoded in the STFT spectrograms and likely helps extract

more distinctive features. The theoretical approach for crafting an STFT spectrogram is as

follows.

For a given discrete signal 𝑎[𝑛] with length 𝑛 (sampled from a 1D speech signal �𝑥 in the time

domain), we can define the Fourier transform using a Hann function 𝐴[·] as (Griffin & Lim,

1984):

STFT
{
𝑎[𝑛]

}
[𝑘, 𝜔] =

∞∑
𝑛=−∞

𝑎[𝑛]𝐴[𝑛 − 𝑘]𝑒− 𝑗𝜔𝑛 (5.7)

where 𝑘 is the shifting scale (𝑘 
 𝑛) and 𝜔 indicates the frequency coefficients. For capturing

more features from 𝑎[𝑛], this operation applies on the overlapping signal chunks (i.e., 50 ms)

according to a predefined sampling rate (e.g., 16 kHz). For generating the spectrogram, we need

to compute the power spectrum of Eq. 5.7 as:

SPSTFT

{
𝑎[𝑛]

}
[𝑘, 𝜔] =

����� ∞∑
𝑛=−∞

𝑎[𝑛]𝐴[𝑛 − 𝑘]𝑒− 𝑗𝜔𝑛

�����2 (5.8)

where it generates a 2D matrix for a given speech signal �𝑥𝑖. In the next subsection, we explain

the second step of the proposed defense approach, which finds a refined z∗𝑖 from the combination

of a random z𝑖 ∈ R𝑑𝑧 and the original input spectrogram (x𝑖).

5.4.2 Chordal Distance Adjustment for Spectrogram Projection

In a big picture, there are two categories in developing defense approaches against adversarial

attacks:

1. running low or high-level transformations for filtering the input signal aiming at discarding

potential adversarial perturbation (as discussed in Section 5.3)
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Subsampling
times

Figure 5.2 Overview of the proposed spectrogram subspace projection using the chordal

distance adjustment and a complementary regularization term. The subsampling process is

implemented with the distribution N(0.5, 0.5𝐼) (ratio of 0.5) for avoiding ill-conditioned

pencils (Van Loan & Golub, 1983), and a dotted line shows the internal loop. Upon

producing a candidate set of 𝑍� vectors from the given inputs, we select that z𝑖 which

minimizes the adjusted chordal distance between the synthesized spectrogram 𝐺 (z𝑖) and

the input spectrogram x𝑖.

2. synthesizing a very similar signal to a given input vector without running any filtration

operation (Esmaeilpour et al., 2021a; Samangouei, Kabkab & Chellappa, 2018a).

While most of the introduced algorithms fall into the first category, they are often less reliable

since they obfuscate gradient vectors (Athalye et al., 2018b). However, developing a synthesis-

based defense algorithm is more challenging since it requires two key steps — a projection of

the input space and a stable generative model. Since the proposed defense approach fits the

second category, therefore we introduce novel techniques for these steps.

The main goal in this step is finding a safe z∗𝑖 ∈ R𝑑𝑧 for the generator network according to two

main conditions: 𝐺 (z∗𝑖 ) should lie in the subspace of the original signal distribution represented

by 𝑝𝑟 (approximated by 𝑝𝑔); the synthesized spectrogram 𝐺 (z∗𝑖 ) should be very similar to the

spectrogram of the given 1D speech signal (x𝑖) using the ℓ2 distance metric. Toward this end, for

every input spectrogram x𝑖, we solve an optimization problem searching all possible z𝑖 ∈ R𝑑𝑧 to

find the z∗𝑖 that meets the conditions above. Fig. 5.2 shows an overview of this operation.

Inspired by Xingjun et al. (Ma et al., 2018), which proved that adversarial examples lie in

distinct subspaces from original and noisy input samples, the chordal distance metric has been

introduced for measuring interspaces among spectrogram manifolds (Esmaeilpour et al., 2020b).

This metric, defined in the Schur decomposition domain for the triplet of original, noisy, and
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adversarial spectrograms, can be written as (Van Loan & Golub, 1983):

chord(𝜆[𝐺 (z𝑖)], 𝜆[x𝑖]) ≤ 𝜖√[(
ΦH𝐺 (z𝑖)Γ

)
+
(
ΦHx𝑖Γ

)]2
(5.9)

where 𝜖 ≤ 20dB is the maximum audible perturbation threshold, which can be defined (or

optimized) by the adversary, 𝜆[·] denotes the eigenvalue vector function class obtained with

Schur decomposition. Γ, Φ, and ΦH (conjugate transpose of Φ) are random unit 2-norm

operators, which satisfy (Van Loan & Golub, 1983):

x𝑖Γ = 𝜆[x𝑖]𝐺 (z𝑖)Γ and ΦHx𝑖 = 𝜆[𝐺 (z𝑖)]ΦH𝐺 (z𝑖) (5.10)

For simplicity, we assume that these operators are static for all samples. Although this

assumption simplifies the computation, it might result in ill-conditioned cases where an

adjustment 𝛾 [·] is needed (chord(·) + 𝛾 [·]) (Van Loan & Golub, 1983). It has been shown

that this adjustment is relatively large for adversarial spectrograms compared to original and

noisy samples (Esmaeilpour et al., 2020b). Therefore, iteratively minimizing over 𝛾 [·] for

chord(𝜆[𝐺 (z𝑖)], 𝜆[x𝑖]) considerably increases the chance of finding the safe z∗𝑖 that satisfies the

conditions mentioned above (Esmaeilpour et al., 2021a, 2020b).

Since 𝜆[·], defined in the Schur decomposition domain, is sorted (descending) and it is inductive

(coefficient of both 𝜆[𝐺 (z𝑖)] and 𝜆[x𝑖] have upper bound (Brezis, 2010)), according to the Zorn

lemma (Brezis, 2010) there exists a relative maximal coefficient for both 𝐺 (z𝑖) and x𝑖 in the

Hahn–Banach analytic form. Thus, we define:

𝛾 [𝜆[𝐺 (z 𝑗 )], 𝜆[x 𝑗 ]]︸�������������������︷︷�������������������︸
𝛾∗ [·]

≤ 𝛾 [𝜆[𝐺 (z𝑖)], 𝜆[x𝑖]] for 𝑗 
 𝑖 (5.11)

where 𝑗 should be chosen according to the properties of the spectrograms. However, we

empirically set 𝑗 � max(𝑖) · 0.25 to make a reasonable trade-off between spectrogram quality

and computational complexity (75% improvement). On the other hand, this operation might
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constitute ill-conditioned pencils (a pencil is a manifold in the closed-form of 𝜓𝐺 (z𝑖) − x𝑖

where 𝜓 ∝ 𝑝𝑔 (Van Loan & Golub, 1983)) by discarding (𝑖 − 𝑗) eigenvectors. To tackle this

challenge, we add a complementary regularization term to the spectrogram subspace projection

formulation:

∇z𝑖 ‖𝛾∗ [𝐺 (z𝑖), x𝑖] ‖2
𝐹 + ∇z𝑖 ‖span(𝐺 (z𝑖) − x𝑖)‖1︸�������������������������︷︷�������������������������︸

regularization

(5.12)

where span(·) computes a linearly independent manifold in the Schur decomposition domain

from the difference between the input and synthesized spectrograms (Van Loan & Golub,

1983). The intuition behind this regularization term is tying 𝐺 (z𝑖) as close as possible to x𝑖 and

counteracting with the potential ill-conditioned pencils imposed from 𝛾∗[·]. Ill-conditioned

cases often happen when 𝛾∗[·] is minimized, but 𝐺 (z𝑖) and x𝑖 are not similar.

Upon solving this optimization problem (Eq. 5.12), we achieve a candidate set 𝑍� =
{
z�,𝑖

}
among all the possible z𝑖 ∈ R𝑑𝑧 . Finally, we find the most optimal vector from 𝑍� via solving

for:

z∗𝑖 := arg min
z𝑖∈𝑍�

‖𝛾∗ [𝐺 (z𝑖), x𝑖] ‖𝐹 (5.13)

where z∗𝑖 is presumably refined to provide a safe input vector for the generator model. We do not

directly filter the spectrograms to remove adversarial perturbation 𝛿. We find a reliable vector

for a generative model to synthesize a similar spectrogram. However, the performance of all

these operations is highly dependent on the generalizability and stability of the GAN model.

5.4.3 Spectrogram Synthesis Using a Sobolev-GAN

The generative model proposed for synthesizing spectrograms is based on the vanilla GAN

(Goodfellow et al., 2014) but with an integral probability metric defined in the Sobolev space

(Brezis, 2010; Mroueh et al., 2018). Since a specific case of such a space correlates with the

Fourier transform, we use this measure for training our GAN on STFT spectrograms. Moreover,

we introduce novel architectures for both generator and discriminator networks. For improving
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the generalizability and the stability of the entire model, we propose imposing a constraint on

the restricted Sobolev space and incorporating multiple discriminator networks.

The task of a generator network in a GAN configuration is minimizing the discrepancies

between the synthesized (𝑝𝑔) and real/original (𝑝𝑟) sample distributions based on a specific

measure (Goodfellow et al., 2014). The choice of such a measure is quite important since it

contributes to the generalizability of the entire model (both generator and discriminator networks)

(Arjovsky & Bottou, 2017). During the last years, many improvements have been made in

designing comprehensive distance measures on top of the 𝜑-divergence (Goodfellow et al.,

2014) such as Wasserstein (Arjovsky & Bottou, 2017), Stein (Feng, Wang & Liu, 2017), Cramér

(Bellemare et al., 2017), maximum mean discrepancy (MMD) (Dziugaite, Roy & Ghahramani,

2015; Li, Chang, Cheng, Yang & Póczos, 2017), and 𝜇-Fisher IPM (Mroueh & Sercu, 2017).

The function which measures this discrepancy is called critic, and it can be formulated (in the

closed-form) as (Müller, 1997):

sup
𝑓 ∈F

[
E𝐺 (x𝑖)∼𝑝𝑔 𝑓 (𝐺 (x𝑖)) − Ex𝑜𝑟𝑔∼𝑝𝑟 𝑓 (x𝑜𝑟𝑔)

]
(5.14)

where F refers to the function class, which is independent of 𝑝𝑔 and 𝑝𝑟 (Sriperumbudur,

Fukumizu, Gretton, Schölkopf, Lanckriet et al., 2012). For improving the GAN stability during

training, restriction often applies to the critic function following the characteristics of F such as

Lipschitz continuity (‖ 𝑓 ‖Lip ≤ 1) in Wasserstein-GAN (Arjovsky & Bottou, 2017) and kernel

Hilbert unit ball (‖ 𝑓 ‖Hil ≤ 1) in MMD-GAN (Li et al., 2017). Moreover, these restrictions

should be in line with the properties of the training sample modality. They might result in a

weak or unstable generative model, especially for sequence generation (e.g., text and speech)

(Mroueh et al., 2018).

The similarity measure used for training our GAN is the Sobolev IPM, adapted for sequence-

to-sequence generation (Mroueh et al., 2018) such as chunks of speech signals. Formally,

the function class in the Sobolev space with the zero boundary condition and the dominant
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probability density function 𝜇(·) has the following definition (Brezis, 2010; Mroueh et al., 2018):

F =
{X → R𝑑𝑧 | | X → 𝐿𝑝𝑠 (R𝑑𝑧 ), 𝑓 ∈ 𝑊𝑘𝑠 ,𝑝𝑠 (X, 𝜇),Ex∼𝜇 ‖∇x 𝑓 (x)‖2 ≤ 1

}
(5.15)

where 𝜇 ∼ P(𝑝𝑟 , 𝑝𝑔), 𝑘𝑠, 𝑝𝑠 ∈ N. Additionally, X ∈ R𝑑𝑧 is a compact open subset, 𝐿 (·) indicates

the Lebesgue norm for 1 ≤ 𝑝𝑠 ≤ ∞, 𝑘𝑠 denotes the order of the critic function, and P is the

probability density function. The special case of the function class F is for 𝑝𝑠 = 2 where it

forms a Hilbert space H 𝑘𝑠 = 𝑊𝑘𝑠 ,2 in connection with Fourier transform as follows (Brezis,

2010):

H 𝑘𝑠 (·) �
∑

𝛼𝑠

�� 𝑓 (𝑥)��2 < ∞, 𝑓 ∈ 𝐿2(·) (5.16)

where 𝛼𝑠 is a scalar, and 𝑓 (𝑥) refers to the Fourier series for 𝑓 (·). Since a spectrogram is also a

set of Fourier coefficients, 𝑊𝑘𝑠 ,2 provides a meaningful domain for capturing local distributions

of SPSTFT. We also assume 𝑘𝑠 = 1 and simplify the underlying Sobolev space as (Mroueh et al.,

2018):

𝑊1,2(X, 𝜇) =
{
𝑓 : X → R𝑑𝑧 ,

∫
X
‖∇x 𝑓 (x)‖2 𝜇(x)𝑑x < ∞

}
(5.17)

where this restricted Sobolev space also constraints the critic function 𝑓 into a unit ball

Ex∼𝜇 ‖∇x 𝑓 (x)‖2 ≤ 1. There are numerous possible choices for defining the dominant measure

𝜇(·) according to this restricted space’s properties. However, we initialize it to 𝜇(·) =

0.5 · (𝑝𝑟 + 𝑝𝑔) which is the optimal case in training a GAN (Mroueh et al., 2018). Based on these

explanations and using Eq. 5.14, we can formulate the Sobolev GAN as (Mroueh et al., 2018):

min
𝐺 𝜃𝑔

⎡⎢⎢⎢⎢⎣ sup
𝑓𝜗 , 1

𝑁

∑𝑁
𝑖=1‖∇x 𝑓𝜗 (x̃)‖2≤1

⎤⎥⎥⎥⎥⎦ E( 𝑓𝜗, 𝐺𝜃𝑔) =
1

𝑁

(
𝑁∑
𝑖=1

𝑓𝜗 (𝐺 (z𝑖)) −
𝑁∑
𝑖=1

𝑓𝜗 (x𝑖)
)
, 𝜗 ≥ 2 (5.18)

where the critic function 𝑓𝜗 follows the imposed constraint in Eq. 5.17, and 𝜗 is the degree

of the critic function. Additionally, 𝑁 refers to the total number of training samples, and 𝜃𝑔

denotes the weight vectors of the generator network. Moreover, for supporting the continuity

and smoothness of 𝑓𝜗, especially for higher-order 𝜗, it is recommended to define (Gulrajani
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et al., 2017):

x̃𝑖 = 𝛼𝜗
(
𝑢x𝑟,𝑖 + (1 − 𝑢)𝐺 (z𝑖)

)
(5.19)

where 𝑢 ∼ U[0, 1] and 𝛼𝜗 is an empirical hyperparameter (we initialize it to 𝛼𝜗 = 0.9). This

change of variable implicitly interpolates between 𝑝𝑟 and 𝑝𝑔 to enhance generator model stability

(Gulrajani et al., 2017). However, this enhancement is also dependent on the configurations of

both the generator network in optimizing for Eq. 5.18 and the discriminator network, which

provides gradient vectors to 𝐺𝜃𝑔 .

Our proposed architecture for the generator network employs convolution and residual blocks

due to their representation power in capturing continuous density functions of the input space

(Radford, Metz & Chintala, 2016; Brock et al., 2019) such as spectrograms (see Fig. 5.3). The

generator network contains a fully connected 1D vector layer equivalent to the total dimension

of the spectrogram (128×128), followed by batch normalization (BN) and the rectified linear

unit activation function (ReLU). This network’s first hidden layers are two convolution blocks

with the receptive field and stride of 5×5×1. The second hidden layer contains three consecutive

residual blocks where each of them has a dilated convolution operation with aggregation.

Inspired by Kumar et al. (Kumar, Kumar, de Boissiere, Gestin, Teoh, Sotelo, de Brébisson,

Bengio & Courville, 2019), the filter sizes of these blocks are identical. Finally, this network’s

output layer is a transposed convolution (Mao et al., 2018), which yields an RGB spectrogram.

Since the discriminator network provides gradients to the generator and has a crucial role in the

entire model’s stability (Miyato, Kataoka, Koyama & Yoshida, 2018), we empirically embedded

five discriminators with identical architectures. However, we unloaded these networks from

residual and long short-term memory (LSTM) blocks to avoid unnecessary complications. The

filter sizes in these networks are different, and they escalate by a factor of two so as to encompass

a broader range of spectrum distribution. Unlike the generator network, all the convolution

layers in the discriminators deploy leaky ReLU (LReLU), as discussed in (Zhang et al., 2017).
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FC Loss
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Figure 5.3 Overview of the proposed GAN architecture (one generator and five

discriminators 𝐷𝑖,𝜃 for ∀𝑖 = 1 : 5) for spectrogram synthesis. Fully connected (FC),

convolution (Conv.), dilated convolution (D-Conv.), transposed convolution (T-Conv.), and

residual (Res.) layers are followed by weight normalization. The top and bottom parts of

the layers refer to the input and output filters’ dimensions, respectively. Moreover, 𝜈𝑖 for

∀𝑖 = 1 : 5 denotes the logits of the discriminator.

The general formulation for training these GANs is:

min
𝐺

max
𝐷𝑖

Ex∼𝑝𝑟 [log 𝐷𝑖 (x)] + Ez∼𝑝𝑧 [log (1 − 𝐷𝑖 (𝐺 (z)))] (5.20)

where ∀𝑖 = 1 : 5 and 𝑝z ∼ N(0, 𝐼). The loss function of these networks is similar to the hinge

objective function introduced in (Miyato et al., 2018). However, according to the Sobolev IPM:

L𝑆 (𝜗, 𝜃𝑔, 𝜃𝑑, 𝜚𝑠) = E( 𝑓𝜗, 𝐺) + 𝜚𝑠 (1 −Ω𝑠 ( 𝑓𝜗, 𝐺))−𝜌

2
(Ω𝑠 ( 𝑓𝜗, 𝐺) − 1)2 (5.21)

and in this definition, Ω𝑠 (·) in the restricted Sobolev space 𝑊1,2(X, 𝜇) is differentiable and

regarding Eq. 5.18, it is defined as (Mroueh et al., 2018):

1

2𝑁

(
𝑁∑
𝑖=1

‖∇x 𝑓𝜗 (x𝑖)‖2 +
𝑁∑
𝑖=1

‖∇x 𝑓𝜗 (𝐺 (z𝑖))‖2

)
(5.22)
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Moreover, 𝜚𝑠, 𝜃𝑑 , and 𝜌 > 0 denote the Lagrange multiplier, the weight vectors of each

discriminator network, and the penalty weight for providing higher smoothness in training,

respectively (Mroueh & Sercu, 2017). One potential side effect of training the generator with

multiple discriminators is the difficulty of making a trade-off between sample variety and quality.

For tackling this challenge, we use orthogonal regularization (OR) for all the discriminator

networks using a simple linear similarity measure (Brock, Lim, Ritchie & Weston, 2017):

𝑅𝜛 = 𝜛
��𝜃�𝑑 𝜃𝑑 � (1 − 𝐼)

��2

𝐹
(5.23)

where empirically 𝜛 ∈ (10−5, 10−4] is a small tuning coefficient, and 1 indicates a matrix

with constant values of one (Brock et al., 2019). This regularization forces the discriminator

network to reduce dissimilarity among filters to learn more distinctive features. However, this

might negatively affect the generator performance in capturing all the possible modes from

the spectrogram, cause instability in a higher number of iterations, and generate oversmoothed

samples (Esmaeilpour, Cardinal & Koerich, 2020c). In response to this issue, we propose a new

constraint for the critic function 𝑓𝜗 as the following.

Proposition: There is an achievable upperbound (supremum) for the continuous (and partially

differentiable) critic function 𝑓𝜗 (·) in the restricted Sobolev space 𝑊1,2(X, 𝜇) with:

𝐿𝜂 (X) = {
𝑓𝜗 : X → R, | 𝑓𝜗 |𝜂 ∈ 𝐿1(X)} (5.24)

where ‖ 𝑓 ‖𝐿1 = ‖ 𝑓 ‖1 and 1 ≤ 𝜂 ≤ ∞. This reduces the space definition in Eq. 5.17 to∫
X ‖∇x 𝑓 (x)‖2 𝜇(x)𝑑x ≤ 𝑐Υ where 𝑐Υ is a positive static scalar.

Proof: According to the rigid constraintEx∼𝜇 ‖∇x 𝑓 (x)‖2 ≤ 1 imposed on𝑊1,2(X, 𝜇) in Eq. 5.17,

it always supports ‖∇x 𝑓 (x)‖2 ∈ 𝐿𝜂 (the Lebesgue norm). If we bind 𝜇(x) ∈ 𝐿𝜂′ where 𝜂′

denotes the conjugate exponent of 𝜂 (1/𝜂 + 1/𝜂′ = 1), then using the Hölder’s inequality (Brezis,
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2010), we can write: ∫
X
‖∇x 𝑓 (x)‖2 𝜇(x)𝑑x ≤ ‖∇x 𝑓 (x)‖2

𝜂 ‖𝜇(x)‖𝜂′︸��������������������︷︷��������������������︸
𝑐Υ<<∞

� (5.25)

where 𝑐Υ is dependent on the cumulative distribution of 𝜇(x). This constraint forces the

generator network to discard local sample distributions which lie far from the optimal generator

distribution (
⌈
𝑝𝑟 + 𝑝𝑔

⌉ /2). It also implicitly helps the discriminator network avoid shattering

gradients vectors since the learning space is bound to 𝑐Υ.

For synthesizing a spectrogram similar to the given x𝑖, the generator network maps the safe

vector z∗𝑖 onto x̂𝑖 and then tunes the generated spectrogram with the x𝑖’s rank (Van Loan & Golub,

1983) in the Schur decomposition domain. Even if this tuning is optional, it improves the quality

of x̂𝑖 and reduces the potential dissimilarity between 𝐺 (z∗𝑖 ) and x𝑖.

The last step of the proposed adversarial defense approach is transforming the synthesized

spectrograms into the time domain using the inverse STFT operation. This step is necessary

only for end-to-end speech-to-text victim models upon adversary’s discern.

Reconstructing an audio or speech signal from a spectrogram requires the associated phase

vectors from the transformation function (e.g., STFT). There are two main approaches for such

an aim: using original phase vectors and approximating phase vectors. Obviously, in the first

approach, the reconstructed signals’ quality will be very similar to the original counterparts since

they share the same timing. However, original phase vectors might not always be accessible,

contrary to the second signal reconstruction approach. On the other hand, approximated phase

vectors usually add audible noise to the reconstructed signal and degrade its quality. Therefore

we opted for the second approach since accessing the original phase vectors might be prohibitive

in some senses. Specifically, we use the recognized Griffin-Lim algorithm for the i-STFT

procedure (Masuyama et al., 2019). Since this may raise concerns about the quality of the

reconstructed signals, we measure their peculiarity with some metrics.
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5.5 Experimental Results

In this section, we analyze the proposed defense scheme’s performance from two points of view:

the defense algorithm’s success rate by measuring the word error rate and sentence-level accuracy

scores, and the quality of the signals from the synthesized spectrograms and the approximated

phase vectors. The latter also includes comparing signals after filtration by various defense

algorithms. This shows the impact of defense algorithms on speech signals.

Our benchmarking victim models are DeepSpeech, Kaldi, and Lingvo, which employ both the

conventional and cutting-edge learning blocks, such as HMM, convolutional, recurrent, LSTM,

and residual configurations. These models are trained on Mozilla common voice (MCV) (MCV,

2019) and LibriSpeech (Panayotov et al., 2015) comprehensive datasets, including numerous

utterances. Moreover, they contain above 1,000 hours of recordings organized in short (≤ 6 sec)

and long (> 6 sec) voice clips.

In all our experiments, we use a combination of strong white and black-box end-to-end adversarial

attacks, as discussed in Section 5.2. For every adversarial signal, regardless of EOT type, we

assign ten targeted incorrect different phrases, including silence (Carlini & Wagner, 2018), and

five non-targeted incorrect random phrases with different lengths to more effectively challenge

defense approaches. Meanwhile, we take identical assumptions for those algorithms that require

environmental settings such as CIR and RIR filter sets for fairness in comparison. Following a

common practice in adversarial studies (Carlini & Wagner, 2018; Qin et al., 2019; Taori et al.,

2019), we also craft adversarial signals for a group of randomly selected portions (with shuffling)

of the datasets mentioned above. More specifically, we randomly choose 25k English-speaking

samples from both MCV and LibriSpeech with an almost equal number of genders (male and

female), accent (e.g., United States, England, etc.), and age (the majority between 19 to 39

regarding the dataset limitation). We assign almost 60% of these samples for training, tuning,

and validating our generative model. Hence, the remaining portion will be used for developing

adversarial signals using six attack algorithms.
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Since we train our GAN on the spectrograms, we firstly convert speech signals into SPSTFT

with a sampling rate of 22.05 kHz. Additionally, we set the total number of Mel-frequency

coefficients to 20 per frame with an overlapping ratio of 0.5 and the hop length of 512. The

Hann window length is initialized to 2048 with reflect padding.

We discard checkpoints with unstable learning curves during training and opt to early stop

when any signs of instability become present (Brock et al., 2019). For all the architectures

(the generator and five discriminators) we use the Adam optimizer with a static learning rate

of 2 · 10−5 and hyperparameters 𝛽1 = 0 and 𝛽2 = 0.9. We empirically set the required number

of steps for the generator network over the discriminators to two with a decay ratio of 0.99 on

four NVIDIA GTX-1080-Ti and two 64-bit Intel Core-i7-7700 (3.6 GHz) with 8×11GB and

2×64GB memory, respectively.

For evaluating the performance of the proposed defense algorithm against adversarial attacks,

we also use the word error rate (WER) and sentence level accuracy (SLA) (Qin et al., 2019).

The first metric measures the summation of total phrase insertion, substitution, and deletion over

the ground-truth phrases (y𝑖). The second metric measures the ratio of correctly transcripted

phrases over the total number of test speech signals. To avoid bias in our analysis, we repeat

each experiment 10 times and report the average WER and SLA for each defense algorithm.

Table 5.1 summarizes the achieved results.

Table 5.1 shows that for most cases, the proposed defense approach (Sobolev-DGAN∗) and

its variant without employing the constraining proposition (Sobolev-DGAN) introduced in

Section 5.4.3 outperform other defense algorithms against six strong end-to-end speech attacks.

Averaged over all the conducted experiments on the three victim speech-to-text models, Sobolev-

DGANs have similar performance on white (C&W, Metamorph, Imperio, and Robust Attack)

and black-box (GAA and MOOA) attack algorithms. That indicates the independence of our

defense algorithm to the adversarial attack scenarios. Moreover, the total number of required

iterations (�) toward achieving the safe input vector z∗𝑖 for the C&W attack and the Robust

Attacks is relatively more than others. That could be interpreted as the higher power of these
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Table 5.1 Comparison of the defense algorithms against strong white and black-box

adversarial attacks for the DeepSpeech, Kaldi, and Lingvo victim speech-to-text models.

Unlike WER and LLR, higher values for the SLA, PESQ, segSNR, and STOI metrics are

better. The difference between Sobolev-DGAN∗ and Sobolev-DGAN is the latter does not

incorporate the constraint proposition (Eq. 5.25) mentioned in Section 5.4.3.

Outperforming results are shown in boldface.

Model Attack Defense Average � WER (%) SLA (%) PESQ segSNR STOI LLR

DeepSpeech

C&W

Compression − 19.14 ± 2.36 49.26 ± 2.67 1.64 09.31 0.85 0.44

A-GAN − 26.32 ± 3.03 36.21 ± 0.12 1.15 06.95 0.87 0.41

CC-DGAN − 14.52 ± 1.16 61.23 ± 1.02 2.01 12.56 0.89 0.38

Sobolev-DGAN 163 07.61 ± 0.47 76.15 ± 2.18 2.36 18.73 0.91 0.31

Sobolev-DGAN∗ 159 04.21 ± 1.39 79.24 ± 1.17 2.71 19.91 0.95 0.30

Metamorph

Compression − 21.54 ± 2.17 51.57 ± 1.91 1.55 10.34 0.76 0.48

A-GAN − 19.81 ± 3.72 58.39 ± 0.49 1.59 10.86 0.83 0.32

CC-DGAN − 11.89 ± 1.23 71.94 ± 1.56 1.96 11.08 0.85 0.35

Sobolev-DGAN 039 09.37 ± 1.12 75.19 ± 2.18 2.17 14.76 0.88 0.34

Sobolev-DGAN∗ 027 06.79 ± 0.19 80.34 ± 3.67 2.45 16.01 0.93 0.31

GAA

Compression − 27.41 ± 3.61 43.71 ± 1.32 2.14 14.37 0.87 0.39

A-GAN − 29.49 ± 5.26 40.88 ± 5.37 1.66 12.53 0.88 0.37

CC-DGAN − 14.98 ± 3.56 69.46 ± 2.37 2.03 13.52 0.90 0.34

Sobolev-DGAN 101 09.68 ± 2.73 73.98 ± 0.77 2.39 16.02 0.93 0.29
Sobolev-DGAN∗ 097 05.01 ± 0.11 72.88 ± 4.28 2.38 18.91 0.94 0.30

MOOA

Compression − 17.06 ± 0.19 55.16 ± 3.86 1.87 19.42 0.92 0.38
A-GAN − 18.74 ± 43.21 53.07 ± 3.06 1.85 14.63 0.87 0.41

CC-DGAN − 15.69 ± 1.97 61.11 ± 2.99 1.99 17.81 0.89 0.39

Sobolev-DGAN 051 12.25 ± 2.84 68.84 ± 1.56 2.46 19.35 0.90 0.36

Sobolev-DGAN∗ 049 04.23 ± 2.32 79.36 ± 2.16 2.30 18.06 0.91 0.39

Kaldi Imperio

Compression − 16.29 ± 5.17 56.42 ± 6.11 2.42 15.79 0.83 0.32
A-GAN − 17.76 ± 0.16 54.28 ± 1.90 1.23 09.76 0.74 0.48

CC-DGAN − 10.19 ± 2.93 69.62 ± 2.63 1.84 16.53 0.78 0.45

Sobolev-DGAN 093 06.78 ± 0.91 75.33 ± 2.97 1.96 13.98 0.81 0.41

Sobolev-DGAN∗ 047 03.29 ± 1.14 82.37 ± 3.62 2.35 16.52 0.89 0.35

Lingvo Robust Attack

Compression − 21.56 ± 4.15 55.11 ± 3.05 2.06 15.08 0.74 0.33

A-GAN − 17.90 ± 4.21 59.98 ± 1.38 2.17 14.43 0.72 0.34

CC-DGAN − 14.46 ± 0.35 64.16 ± 2.14 1.71 11.09 0.79 0.28

Sobolev-DGAN 114 11.99 ± 2.76 69.33 ± 0.81 1.92 12.25 0.76 0.34

Sobolev-DGAN∗ 136 05.86 ± 1.64 83.46 ± 2.27 1.96 17.07 0.81 0.22

attacks in yielding more destructive adversarial signals since they demand an additional cost

for our defense algorithm to find the input vector. However, any discussion on the resiliency of

adversarial attacks and their potentials in optimizing upscale examples is beyond this paper’s

scope.

Furthermore, Table 5.1 also proves the effectiveness of the proposed constraining technique for

the critic function 𝑓𝜗 as discussed in Section 5.4.3. Except for the GAA, Sobolev-DGAN∗ has

shown higher SLA than the Sobolev-DGAN on all the victim speech-to-text models.

For evaluating the potential negative impact of running defense algorithms on the crafted

adversarial signals, we use four objective speech quality metrics: perceptual evaluation of
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speech quality (PESQ) (Rix, Beerends, Hollier & Hekstra, 2001), segmental signal to noise ratio

(segSNR) (Baby & Verhulst, 2019), short-term objective intelligibility (STOI) (Taal, Hendriks,

Heusdens & Jensen, 2011), and log-likelihood ratio (LLR) (Baby & Verhulst, 2019). The

first metric is based on cognitive modeling, and the input filter set aligns with identifying

noisy intervals (high-level quality analysis). The second metric is the enhanced version of the

conventional signal-to-noise ratio in audible logarithmic scale for chunks of speech signals

(low-level quality analysis). The third metric evaluates the ratio of band-pass local noise

perceptibility to the entire signal chunks. Unfortunately, these metrics are not normalized in

a scaled interval. However, there is a direct relationship between their magnitudes and signal

quality. The fourth metric is associated with a logarithmic noise ratio relative to the ground-truth

scaled between [0, 1]. Therefore, high-quality signals have lower LLR. As shown in Table 5.1,

for the most cases, averaged over ten times experiment repetitions, both the Sobolev-DGAN∗

and Sobolev-DGAN outperform others in keeping the quality of the signals after running the

defense filtration.

In Section 5.4.3, we mentioned that 𝑊𝑘𝑠 ,2 provides a meaningful (and comprehensive) domain

for capturing local distributions of spectrograms. To investigate this claim, Fig. 5.4 shows the

relation between the Sobolev IPM and extracted local and global probability distributions from

spectrograms compared to others. Toward this end, inspired by Mao et al. (Mao et al., 2018),

we compare the mode collapse issue between the GANs trained with various IPMs as mentioned

in Section 5.4.3. We have used an identical architecture for all generative models (generator and

discriminators depicted in Fig. 5.3) for fairness in comparison. Additionally, we have used the

same settings for these networks.

Fig. 5.4 shows that the average number of learned modes has an increasing behavior of up to

20k iterations for MMD and 𝜇-Fisher IPMs. For Wasserstein and Cramér IPMs, this behavior

reaches around 26k iterations. Among these, the Sobolev IPM keeps its incremental behavior

up to 30k iteration with considerable bias (along the 𝑦-axis). That demonstrates the higher

performance of 𝑓𝜗 in capturing the local distribution of spectrograms in the restricted Sobolev

space compared to other IPM. However, it does not immune our generative model against the
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Figure 5.4 Monitoring the average learned modes (per

batch size of 2×512) by our GAN model during training on

SPSTFT with different IPMs indicates potential collapse over

the total number of iterations

mode collapse issue. As depicted in Fig. 5.4, our GAN gradually starts losing sample modes

after 31k iterations. For tackling this issue, we used OR, spectral normalization (Miyato et al.,

2018), and early stopped at checkpoints before the collapse.

Since there is a direct relationship between stability and generalizability of the GAN and our

proposed defense algorithm, even a partially unstable generator network might result in absolute

divergence in the chordal distance adjustment operation. In other words, if the GAN model is not

comprehensive enough in terms of the number of learned modes, the process shown in Fig. 5.2

might never converge. This poses more concerns for long signals with too much environmental

noise45. Additionally, for multi-speaker speech signals, our proposed Sobolev-DGANs not

only might not be able to learn enough modes but also might recover adversarial perturbation

after the i-STFT procedure. We believe that employing more constraining conditions on both

45 Including reverberation and echo.
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the generator and discriminators may improve model stability. Moreover, conditioning the

discriminator networks aligned with time-distributed filter sets can provide more distinctive

features for the discriminator network to resolve the multi-speaker issue. We are determined to

address these issues in future work.

5.6 Conclusion

In this paper, we proposed a novel approach for defending speech-to-text models against end-

to-end adversarial attacks. Our approach is based on reconstructing signals from synthesized

spectrograms and approximated phase vectors. For spectrogram synthesis, we use a multi-

discriminator GAN defined in the restricted Sobolev space. Our GAN generator network

requires a safe input vector achievable through an iterative spectrogram subspace projection

operation using the adjusted chordal distance. To improve our implemented generative model’s

performance, we impose a constraint for the critic function that learns discrepancies between

real and synthesized sample distributions.

We evaluated our defense approach against six strong white and black-box adversarial attacks

on advanced DeepSpeech, Kaldi, and Lingvo victim models. The proposed defense approach,

averaged over the total number of experiments, outperformed other algorithms according to

WER and SLA metrics. Furthermore, we used four objective quality metrics for measuring

the impact of running defense algorithms on speech signals. For the majority of the cases, our

defense approach demonstrated higher signal quality compared to other algorithms.





CONCLUSION AND RECOMMENDATIONS

There are numerous real-life applications for environmental sound classification and automatic

speech transcription. For instance, context-aware computing systems use sound recognition

algorithms for scene understanding. Likewise, voice command (including voice assistance

systems such as Siri in Apple products) applications embedded into smartphones, modern TVs,

autonomous vehicles, etc., employ built-in speech recognition models. All these systems are

data-driven, and their performance is highly dependent on the power of their classification

architectures in correctly capturing sample distributions and the volume of the training dataset.

Over the last decade and particularly after the growth of deep learning algorithms, many strong

unsupervised, semi-supervised, and supervised architectures have been introduced both for

classification and data augmentation purposes. Nowadays, the recognition accuracy of the

state-of-the-art data-driven ESC and ASR models is competitive to human-level of understanding.

However, it has been proven that such advanced recognition systems are extremely vulnerable

against several white and black-box adversarial attacks. This poses a major security concern

against data-driven models and negatively affects their prediction accuracy. During the last few

years, many defense algorithms have been introduced. Nevertheless, there is still no reliable

approach for securing ESC and ASR models against strong adversarial attacks.

Unfortunately, there is no consensus on the definition of a reliable defense algorithm. Hence

we explained our implications from reliability in the first chapter. As stated, a reliable defense

approach should meet at least one of our reliability conditions to avoid offering a false sense of

security against adversarial attacks.

1. It should prevent gradient obfuscation or the shattering of the Jacobian matrix;

2. It should make a reasonable trade-off among recognition accuracy, adversarial attack

robustness, and computational complexity of the algorithm to work in real-time;

3. The classifier architecture should be designed to reflect a strong configuration that maximizes

the cost of attack for the adversary;
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4. Complying with each of these conditions should not conflict with another.

To the best of our knowledge, most of the defense approaches we reviewed in this thesis, at least

partially, violate our reliability conditions, which motivated us to pursue our research toward

developing reliable defense algorithms for ESC and ASR systems.

In Chapter 2, we proposed an ensemble-based classification architecture for ESC. This architecture

employs a GAN in its back-end for augmenting DWT spectrograms and a random forest algorithm

in its front-end for classification. This configuration helps to make a trade-off between recognition

accuracy and model robustness against adversarial attacks in compliance with our defense

reliability conditions. Our evaluations on four benchmark datasets, namely ESC-10, ESC-50,

UrbanSound8K, and DCASE-2017, corroborated the superior performance of our classification

approach over conventional and deep learning-based classifiers.

In Chapter 3, we developed a novel approach for securing ESC models from a large collection

of targeted and non-targeted adversarial attacks. We argued that conventional classifiers

such as SVMs are often more robust against adversarial attacks. On the other hand, they

cannot usually outperform dense CNNs (in terms of model generalizability and prediction

accuracy for non-adversarial signals). Therefore, to make an appropriate trade-off between

attack robustness and prediction performance, we exploited the nonlinear SVM in the front-end

and employed a CNN-based autoencoder in the back-end of our classification framework.

Furthermore, we implemented logarithmic visualization, color compensation, highboost filtering,

and dimensionality reduction operations in the back-end before the autoencoding block to expand

the learning space for the front-end classifier. However, we do not run any of these operations

directly on the test signal in runtime so as to meet all of our predefined defense reliability

conditions. As it has been experimentally proven, our proposed algorithm outperforms other

approaches both in terms of prediction accuracy and robustness against adversarial attacks.
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In Chapter 4, we investigated the effect of spectrogram settings on victim classifier’s recognition

performance and fooling rate. More specifically, we identified major spectrogram settings

which can considerably increase the cost of attack for the adversary (averaged over the allocated

budgets). This investigation is primarily in line with our third defense reliability condition in

developing inherently strong algorithms against adversarial attacks. As part of our extensive

experiments, we experimentally proved that compared to DWT and STFT, the MFCC has a

relatively lower adversarial transferability ratio among three advanced CNN architectures.

Lastly, in Chapter 5, we developed an implicit reactive defense approach against adversarial

attacks for end-to-end transcription systems. Our proposed algorithm is synthesis-based and it

complies with all defense reliability conditions mentioned above. The generative model used for

signal synthesis is a multi-discriminator GAN conditioned in the restricted Sobolev space. We

used the Sobolev integral probability metric for training the critic function since it is closely

related to STFT-based representations. To avoid unnecessary complications, we implemented

simple yet effective architectures for both the generator and discriminator networks. Additionally,

we characterized a constraining technique for improving the stability of our GAN in adverse

environmental scenarios. We evaluated this defense approach against the strong white and

black-box adversarial attacks benchmarked over the cutting-edge speech-to-text transcription

systems, namely DeepSpeech, Kaldi, and Lingvo. Our experiments corroborate the superior

performance of our proposed defense algorithm compared to other state-of-the-art approaches.

Thus far in this thesis, we introduced four defense algorithms towards addressing the security

issues of ESC and ASR systems against a variety of targeted and non-targeted as well as white

and black-box adversarial attacks. Moreover, we mentioned the limitations of our works in every

chapter. In the following subsection, we also summarize a few of such limitations and major

challenges which determined us to tackle them in our future works.
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Future Works

The overall findings in this thesis suggest the following directions for future works in the context

of securing ESC and ASR systems:

1. Optimizing the trade-off between recognition accuracy and model’s robustness. This

thesis proposed three defense techniques mainly for making a trade-off between a model’s

recognition performance and its robustness against adversarial attacks (i.e., Chapter 2, 3,

and 4). According to our conducted experiments on the benchmarking datasets, these

algorithms can make almost a solid trade-off in this regard. However, we believe that

employing more strict regularization schemes (mainly for the front-end classifier) can better

optimize the achieved trade-offs.

2. Improving the stability of GANs for synthesis-based (1D signal and representation-level)

defense approaches. We introduced three signal synthesis-based defense algorithms in

this thesis (i.e., Chapter 5, Appendix II, and Appendix IV). Although we used different

IPMs, critic functions, learning spaces (e.g., Lebesgue, Sobolev, etc.), regularizations,

and architectures for training these GANs, we still noticed signs of instability and mode

collapse issues at larger iterations. For addressing these critical issues, we developed a novel

conditioning trick (Esmaeilpour, Sallo, St-Georges, Cardinal & Koerich, 2020d)46, however

we could only delay collapse onsets. Since achieving a more stable GAN contributes

substantially to a more solid synthesis-based defense approach, there is a constant need to

devise stricter conditioning tricks to avoid extreme mode collapse issues.

3. Preserving the quality of signals during the defense procedure. Unfortunately, both explicit

and implicit reactive defense approaches negatively affect the quality of the input signals.

This potential side-effect has been briefly mentioned in Chapter 5 and we used a few

signal quality metrics for evaluating the performance of the defense algorithms in terms

of quality preservation. Degrading the quality of the signals after filtration operation by a

46 This paper is not included in this thesis.
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defense algorithm poses a major concern since this operation might bypass the potential

adversarial perturbation, However it might also make the filtered signal uninterpretable

(impossible to transcribe) to the transcription systems. Our recommendation for tackling

this concern is to employ a psychoacoustic loss function (similar to the approach introduced

by Szurley & Kolter (2019)) for the defense algorithm.

4. Developing a faster adversarial attack algorithm. As mentioned in the first chapter, ad-

versarially training is among the reliable defense techniques since it does not obfuscate

gradient vectors. However, it requires developing a very fast adversarial attack to make

the adversarially training procedure feasible. In response to this concern, we developed a

faster attack formulation (see Appendix V), Nevertheless it might fade out the adversarial

perturbation after a few playbacks over the air. Our initial experiments show that incorpo-

rating restricted probability metrics such as MMD (Dziugaite et al., 2015) into the attack

optimization formulation might improve the resiliency of the perturbation over consecutive

playbacks.
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Abstract

Adversarial attacks have always been a serious threat for any data-driven model. In this paper,

we explore subspaces of adversarial examples in unitary vector domain, and we propose a

novel detector for defending our models trained for environmental sound classification. We

measure chordal distance between legitimate and malicious representation of sounds in unitary

space of generalized Schur decomposition and show that their manifolds lie far from each other.

Our front-end detector is a regularized logistic regression which discriminates eigenvalues

of legitimate and adversarial spectrograms. The experimental results on three benchmarking

datasets of environmental sounds represented by spectrograms reveal high detection rate of the

proposed detector for eight types of adversarial attacks and it also outperforms other detection

approaches.

2. Introduction

In the field of sound and speech processing, it is very common to use 2D representations

of audio signals for training data-driven algorithms. Such 2D representations have lower

dimensionality than audio waveforms and they easily fit advanced deep learning architectures

mainly developed for computer vision applications. Mel frequency cepstral coefficient (MFCC),

short-time Fourier transform (STFT), discrete wavelet transform (DWT) are among the most
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pervasive 2D representations which essentially visualize frequency-magnitude distribution of a

given reconstructed signal over time. Thus far, the best sound classification accuracy has been

achieved for deep learning algorithms trained on 2D representations (Boddapati et al., 2017;

Esmaeilpour et al., 2020a). However, it has been shown that despite achieving high performance,

the approaches based on 2D representations are very vulnerable against adversarial attacks

(Esmaeilpour et al., 2020; Koerich, Esmailpour, Abdoli, Jr. & Koerich, 2019). Unfortunately,

this poses a security issue because crafted adversarial examples not only mislead the target

model toward a wrong label, but are also transferable to other models such as support vector

machines (SVM) (Esmaeilpour et al., 2020).

There are some discussions about existence, origin, and behavior of adversarial examples,

notably their linear characteristics (Goodfellow et al., 2015), but there is no reliable approach

to discriminate their underlying subspace(s) compared to legitimate examples. In an effort

to characterize possible adversarial subspace detectors based on a statistical comparison

on predictions of the victim model have been introduced. Feinman et al. (Feinman, Curtin,

Shintre & Gardner, 2017) have proposed to estimate kernel density (KD) and Bayesian uncertainty

(BU) of a deep neural network (DNN) for triplets of legitimate, noisy, and adversarial examples.

All these measurements have been carried out with the assumption of approximating a DNN to

a deep Gaussian process and they result in high ratios of KD and BU for adversarial examples

compared to legitimate and noisy samples. Measuring maximum mean discrepancy and energy

distance of examples are two other statistical metrics for investigating adversarial manifolds

using divergence of model predictions for clusters of datapoints (Grosse, Manoharan, Papernot,

Backes & McDaniel, 2017). In addition to these output-level statistical measurements, logits of

adversariality have been carefully assessed in each subnetwork placed on top of some hidden

units of the victim model (Metzen, Genewein, Fischer & Bischoff, 2017) as well as measuring

instability of potential layers to perturbations (Rouhani, Samragh, Javidi & Koushanfar, 2017).

Ma et al. (Ma et al., 2018) presented a comprehensive study for characterizing adversarial

manifolds and introduced local intrinsic dimensionality (LID) score, which measures ℓ2 distance

of network prediction for a given example compared to prediction logits of its 𝑘 neighbours at
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each hidden unit. The actual detector is a logistic regression binary classifier trained on one

class made up of LID vectors of legitimate and noisy examples because they lie in a very close

subspace and another class made up of LID vectors of adversarial examples generated by strong

attacks. Experimental results on several datasets have shown the competitive performance of the

LID detector compared to KD and BU (Ma et al., 2018). Unfortunately, it has been shown that

these adversarial detectors might fail to detect strong adversarial attacks in adverse scenarios

(Carlini & Wagner, 2017a; Athalye et al., 2018b), due to the difficulty in tuning detectors or

even due to the particular characteristics of the datasets.

In this paper we show that adversarial manifolds lie far from legitimate and noisy spectrograms

for short audio signals using a unitary space-based chordal distance metric. We also provide

an algorithm to proactively detect potential malicious examples using generalized Schur

decomposition (a.k.a. QZ decomposition) (Van Loan & Golub, 1983). This paper is organized

as follows. Section 3 presents a brief explanation of unitary space of QZ and our adversarial

detection algorithm. Experimental results on DWT representation of three environmental

sound datasets are discussed in the Section 4. Conclusions and perspectives of future work are

presented in the last section.

3. Adversarial Detection

Computing norm metrics is a common approach for measuring the similarity between crafted

adversarial examples and their legitimate counterparts. In addition to basic norms such as 𝑙2 and

𝑙∞, human visual inference oriented metric has been also embedded in general optimization

problems (Rozsa, Rudd & Boult, 2016). These similarity constraints are probably the most

valuable clues in studying possible subspaces of crafted examples.

It has been shown that regardless of the category or type of adversarial attack, the generated

examples, subject to a similarity constraint, lie in a sub-Cartesian space further than the legitimate

ones (Ma et al., 2018). However, this is tricky and may not work correctly for strong attacks

(Athalye et al., 2018b). Our detailed study of the failure cases of such detectors uncovered
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imperfection of Cartesian metric space (distance-based) for exploring adversarial subspaces.

Therefore, vector spaces that may discriminate between adversarial and legitimate manifolds

can be very useful to build robust adversarial example detectors.

We investigate the mapping of input samples to the vector space of generalized Schur decompo-

sition and the use of chordal distance to identify their underlying subspaces.

3.1 Schur Decomposition and Chordal Distance

For computing generalized Schur decomposition of two spectrograms denoted as 𝑀1 and 𝑀2 in

a complex set C𝑛×𝑛 there should exist unitary matrices 𝑄 and 𝑍 such that:

𝑄𝐻𝑀1𝑍 = 𝑇, 𝑄𝐻𝑀2𝑍 = 𝑆 (A I-1)

where 𝑆 and 𝑇 are upper (quasi) triangular and 𝑄𝐻 denotes the conjugate transpose of 𝑄. The

eigenvalues (𝜆) of 𝑀1 and 𝑀2 can be approximated as:

𝜆(𝑀1, 𝑀2) = {𝑡𝑖𝑖/𝑠𝑖𝑖 : 𝑠𝑖𝑖 ≠ 0} (A I-2)

where 𝑡𝑖𝑖 and 𝑠𝑖𝑖 are diagonal elements of 𝑇 and 𝑆, respectively, and 𝜆(𝑀1, 𝑀2) = C for some

zero-valued diagonal entries of 𝑆 and 𝑇 . In other words, super-resolution similarity between two

spectrograms can be calculated as:

det(𝑀1 − 𝜆𝑀2) = det
(
𝑄𝑍𝐻

) 𝑛∏
𝑖=1

(𝑡𝑖𝑖 − 𝜆𝑠𝑖𝑖) (A I-3)

According to the Bolzano-Weierstrass theorem (Van Loan & Golub, 1983), the bounded basis

matrices
{
(𝑄𝑘, 𝑍𝑘 )

}
which are definite seris support lim𝑖→∞(𝑄𝑘𝑖 , 𝑍𝑘𝑖 ) = (𝑄, 𝑍). The unitary

subsequence of 𝑍𝑘 leads to:

𝑍𝐻
𝑘 (𝑀−1

2,𝑘𝑄𝑘 ) = 𝑆−1
𝑘 (A I-4)
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which asymptotically implies 𝑄𝐻
𝑘

(
𝑀1𝑀

−1
2

𝑄𝑘

)
equivalent to generic Schur decomposition of

𝑀1𝑀
−1
2,𝑘 for nonsingular basis matrices of

{
𝑀2,𝑘

}
.

In perturbing the spectrogram 𝑀𝑖 where 𝑀𝑖 � 𝑀𝑖 + 𝜖 increases considerably the chance of

noticeable variations in the resulting eigenvalues/eigenvectors (Van Loan & Golub, 1983).

Theoretically, we can measure it using the chordal metric where the pencil of �𝜇𝑖𝑀𝑖 − 𝑀𝑖 is the

point of interest for 𝜇𝑖 ∈
{(

𝑡𝑖𝑖, 𝑠𝑖𝑖

)
|𝑠𝑖𝑖/𝑡𝑖𝑖

}
perturbed by 𝜖 as conditioned in Eq. A I-5.

���𝑀𝑖 − 𝑀𝑖

���
2
� 𝜖𝑖 (A I-5)

where 𝜖𝑖 is a very small perturbation. The chordal distance for the vectors of eigenvalues

associated with pencil of �𝜇𝑖𝑀𝑖 − 𝑀𝑖 can be measured by Eq. A I-6 (Van Loan & Golub, 1983).

chord(𝜆𝑖, 𝜆𝑖,𝜖 ) =
��𝜆𝑖 − 𝜆𝑖,𝜖

��√
1 + 𝜆2

𝑖

√
1 + 𝜆2

𝑖,𝜖

(A I-6)

where pencils are neither necessarily bound to be normalized nor differentiable. For any

adversarial attack that perturbs a legitimate spectrogram 𝑀𝑖 by 𝜖𝑖, we compute chordal distance

as Eq. A I-6 and we compare the distances obtained to find separable manifolds for legitimate

and adversarial examples.

3.2 Adversarial Subspace

We can explore the properties of adversarial examples using chordal distance in unitary space

of eigenvectors where each spectrogram is represented by basis functions 𝑄𝑖 and 𝑍𝑖. For

any legitimate and adversarial spectrograms, the chordal distance between their associated

eigenvalues (𝜆, 𝜆𝑖,𝜖 ) must satisfy the constraint defined in Eq. A I-7 (Van Loan & Golub, 1983).

chord(𝜆𝑖, 𝜆𝑖,𝜖 ) ≤ 𝜖√[(
𝑦𝐻𝑀𝑖𝑥

)
+
(
𝑦𝐻𝑀𝑖𝑥

)]2
(A I-7)



180

where 𝑥 and 𝑦 satisfy 𝑀𝑖𝑥 = 𝜆𝑀𝑖𝑥 and 𝑦𝐻𝑀𝑖 = 𝜆𝑦𝐻𝑀𝑖 for the symmetric in the upper bound of

𝑀𝑖 and 𝑀𝑖. The extreme case for the defined pencil may happen when both 𝑠𝑖𝑖 and 𝑡𝑖𝑖 are zero.

Therefore, we can replace their division with a small random value close to their neighbours.

Not only satisfying Eq. A I-5 is required for properly computing chordal distance of eigenvalues,

but it must also be part of the optimization procedure of any adversarial attack because the

perturbation value 𝜖 should not be perceivable. For adversarial perturbations, an adjustment

of the chordal distance by a factor 𝛾 is also required (chord(𝜆𝑖, 𝜆𝑖,𝜖 ) + 𝛾𝑖). The value of such a

hyperparameter should be very small and associated to mean eigenvalue, otherwise it might cause

ill-conditioning cases. We examine the effects of different pencil perturbations on the chordal

distance and inequality of Eq. A I-7 from random noisy to carefully optimized adversarials in

Section 4.

3.3 Adversarial Discrimination

In practice, detecting adversarial examples using chordal distance for a given input requires

access to its reference spectrogram as well as to the perturbation 𝜖 . However, this is not feasible

for real life applications. To circumvent this issue, we compare eigenvalues of legitimate and

adversarial examples to draw a decision boundary between them. To this end, we train a logistic

regression on the eigenvalues of legitimate and adversarial examples as shown in Algorithm I-1.

For every spectrogram pairs randomly picked from an identical class, we compute their

eigenvalues using QZ decomposition. We assume that spectrograms have been generated for

short audio signals and they share significant similarities, especially when they are split into

smaller batches.

For a test spectrogram 𝑀, its eigenvalues generated by Schur decomposition are used as

arguments for the front-end classifier (detector) as relations of these two decompositions have

been explained in Section 3.1. Generalizing this algorithm to a multiclass problem requires

computing eigenvectors of inter-class samples sharing no significant similarity due to causing

ill-conditioned decomposition for pencils.
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Algorithm-A I-1 Discriminating adversarial examples from legitimate ones using their

associated eigenvectors

1 Algorithm-A: Discriminating adversarial signals from original representations.

Input: 𝐶𝑙𝑒𝑔: Class of legitimate samples

Output: Detector
[
schur(𝑀)] for the given test spectrogram 𝑀

2 Λ𝑙𝑒𝑔 = [] , Λ𝑎𝑑𝑣 = []; /* lists */
3 for all 𝐵𝑙𝑒𝑔 ∈ 𝐶𝑙𝑒𝑔; /* 𝐵𝑙𝑒𝑔: legitimate batch */
4 do
5 𝐵𝑎𝑑𝑣 := adversarial attack on 𝐵𝑙𝑒𝑔; /* 𝐵𝑎𝑑𝑣: adversarial batch */

6
−→
𝜆 𝑙𝑒𝑔 = eigen

[
qz

(
𝐵𝑙𝑒𝑔

[
𝑖
]
, 𝐵𝑙𝑒𝑔

[
𝑗
] ) ]

; /* 𝑖 ≠ 𝑗 */

7
−→
𝜆 𝑎𝑑𝑣 = eigen

[
qz

(
𝐵𝑎𝑑𝑣

[
𝑖
]
, 𝐵𝑎𝑑𝑣

[
𝑗
] ) ]

; /* 𝑖 ≠ 𝑗 */

8 Λ𝑙𝑒𝑔.append
(−→
𝜆 𝑙𝑒𝑔

)
, Λ𝑎𝑑𝑣 .append

(−→
𝜆 𝑎𝑑𝑣

)
9 end for

10 Detector
[
schur(𝑀)] = train a classifier on (Λ𝑙𝑒𝑔, Λ𝑎𝑑𝑣);

4. Experimental Results

We have evaluated the performance of computing chordal distance on adversarial detection and

the performance of the proposed detector in adverse scenarios on three environmental sound

datasets: ESC-10, ESC-50, and UrbanSound8k (Piczak, 2015b; Salamon et al., 2014a). The

first dataset includes 400 five-second length audio recordings of 10 classes. It is a simplified

version of ESC-50 which has 2000 samples of 50 classes. The UrbanSound8k dataset contains

8732 samples (≤ 4s) of 10 classes and it provides more diversity both in terms of quality and

quantity than the first two datasets.

We apply pitch-shifting operation as part of 1D signal augmentation as proposed in (Esmaeilpour

et al., 2020a). This low-level data augmentation increases the chance of learning more discrimi-

nant features by the classifier, especially for ESC-10 and ESC-50 compared to UrbanSound8k.

Four pitch-shifting scales (0.75, 0.9, 1.15, 1.5) are applied to each sample to add four new

samples to the legitimate sets. These hyperparameter values are the most effective for these

datasets (Esmaeilpour et al., 2020a). The wavelet mother function used for producing DWT

spectrogram representations is complex Morlet. Sampling frequency and frame length are set to
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8kHz and 50ms for ESC-10 and UrbanSound8k and 16kHz and 30ms for ESC-50 with fixed

overlapping ratio of 0.5 for all datasets (Boddapati et al., 2017). The convolution of the Morlet

function with the signal produces a complex function with considerable overlap between real

and imaginary parts. Therefore, for representing real spectrograms we use linear, logarithmic,

and logarithmic real visualizations. The first visualization scheme highlights high-frequency

magnitudes which denote high variation areas. Low-frequency information is characterized by a

logarithmic operation which expands their distances. Energy of the signal, which is associated

with the signal’s mean, is obtained by applying a logarithmic filter on the real part. Since

the frequency-magnitude of a signal distributed over time has variational dimensions, none of

the three visualizations produce square spectrograms. Hence, we bilinearly interpolate each

spectrogram to fit square size with respect to this constraint of QZ decomposition. The actual

size of the spectrograms for ESC-10 and ESC-50 is 1536×768 and 1168×864 for UrbanSound8k

because the latter has shorter audio recordings of at least one second. Final size of spectrograms

after downsampling and interpolation is 768×768. This lossy operation may remove some

pivotal frequency information and consequently it may decrease the performance of the classifier.

However, obtaining the highest recognition accuracy is not our point of interest in this paper, but

studying adversarial subspaces.

We use an SVM and a convolutional neural network (CNN) as victim classifiers, to evaluate the

detection rate of the proposed detector for a variety of adversarial attacks. In SVM configura-

tion, we use scikit-learn (Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel,

Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot & Duchesnay,

2011a) with a grid search. Linear, polynomial, and RBF kernels have been evaluated on the 2/3

of the shuffled datasets (training and development). The best recognition accuracy on the test set

was achieved with the RBF kernel with about 72.056%, 71.257%, 72.362% for ESC-10, ESC-50

and UrbanSound8k datasets, respectively. The proposed CNN has four convolutional layers with

receptive field 3×3, stride 1×1, and 128, 256, 512, and 128 filters, respectively. On top of the

last convolution layer there are two fully connected layers of sizes 256 and 128. All layers use

ReLU activation function, except the output layer for which softmax is used. Batch and weight
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Table 1.1 The mean 𝛾 values for justifying chordal distances of adversarial examples, the

corresponding mean perturbation and the recognition accuracy of victim models (CNN &

SVM) on adversarial sets

FGSM BIM-a BIM-b JSMA CWA Opt EA LFA

𝛾 7 ± 0.12 6 ± 0.03 8 ± 0.01 7 ± 0.17 11 ± 0.09 10 ± 0.27 8 ± 0.39 12 ± 0.16

ℓ2 5.637 4.015 6.371 6.187 4.426 5.067 NA NA

Accuracy (AUC score %) 3.036 6.017 4.964 3.189 6.237 8.143 15.157 17.845

NA: Not Applicable.

normalization have been applied at all convolutional layers. Such a CNN can achieve recognition

performance of 73.415%, 73.674%, and 75.376% for ESC-10, ESC-50, and UrbanSound8k

datasets respectively on the 1/3 test set.

We attack the CNN by fast gradient sign method (FGSM) (Goodfellow et al., 2015), basic

iterative methods (BIM-a and BIM-b) (Kurakin et al., 2016), Jacobian-based salience map

attack (JSMA) (Papernot et al., 2016d), optimization-based attack (Opt) (Liu et al., 2016), and

Carlini& Wagner attack (CWA) (Carlini & Wagner, 2017b). For the SVM model, we use label

flipping attack (LFA) (Xiao et al., 2012) and evasion attack (EA) (Biggio et al., 2013). Overall,

for each legitimate DWT spectrogram (𝑀𝑖), eight adversarial examples are crafted (𝑀𝑖, 𝑗 for

𝑗 = 1 . . . 8). For each pencil of 𝜇𝑖𝑀𝑖 − 𝑀𝑖, 𝑗 , we measure their chordal distances using Eq. A I-6,

then for a random unit 2-norm 𝑥 and 𝑦 matrices, we check for the inequality of Eq. A I-7 and

required 𝛾 adjustments. Similarly, we add random Gaussian noise to each 𝑀𝑖 with zero mean and

𝜎 ∈
{
0.01, 0.02, 0.04, 0.05

}
and build pencil of 𝜇𝑖𝑀𝑖 − 𝑁𝑖,𝑘 where 𝑁𝑖, 𝑗 for 𝑘 = 1 . . . 4 denote

the noisy spectrograms which also satisfy Eq. A I-5. Table A-1.1 summarizes the adjustment

of 𝛾 required for crafted adversarial examples to satisfy Eq. A I-7. For the generated noisy

examples, an adjustment of 𝛾 to 0.5 ± 0.012 is needed, which is averaged over different values

of 𝜎. Considerable displacement between chordal distance adjustments required for adversarial

and noisy spectrogram sets denote their non-identical and dissimilar subspaces.

For evaluating the performance of the Algorithm I-1 in discriminating adversarial from

legitimate examples, we use all the attacks mentioned above for crafting 𝐵𝑎𝑑𝑣. Regularized

logistic regression has been used as the front-end classifier for discriminating Λ𝑙𝑒𝑔 from Λ𝑎𝑑𝑣.

We compare the performance of the proposed detector with LID, KD, BU, and the combination
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Table 1.2 Mean class-wise comparison of the AUC (%) achieved by the adversarial

detectors for spectrograms attacked with eight adversarial attacks. The best results are

highlighted in bold.

CNN SVM

Detector FGSM BIM-a BIM-b JSMA CWA Opt EA LFA

KD 65.234 88.097 87.914 63.552 61.025 86.105 55.479 63.659

BU 39.025 80.673 55.474 80.603 58.022 69.207 57.861 67.610

KD+BU (Using both) 74.381 91.154 88.243 89.251 64.349 90.461 58.330 69.008

LID (averaged over its 𝑘 neighbours) 79.299 93.097 94.671 91.665 75.297 94.781 70.981 71.239
Proposed 84.132 96.519 95.349 94.375 89.957 93.309 75.227 71.198

KD+BU. Table A-1.2 shows that the proposed detector outperforms other detectors for the

majority of the attacks. The proposed detector can be used with MFCC and STFT representations

or even other datasets commonly used for computer vision applications. The key challenge

in this detector is its sensitivity to intra-class sample similarities, otherwise it may not satisfy

Eq. A I-7, especially for black-box multiclass discrimination. Moreover, the performance of the

front-end classifier is dependent on the volume of the training eigenvectors and their similarities.

Providing large enough short audio signals with high intra similarity considerably increases the

chance of finding a comprehensive decision boundary among dissimilar eigenvectors.

5. Conclusion

Since adversarial examples are visually very similar to the legitimate samples, differentiating their

underlying subspaces is very challenging in Cartesian metric space. In this paper we show that

the offset between subspace of legitimate spectrograms compared to their associated adversarial

examples can be measured by chordal distance defined in unitary vector space of generalized

Schur decomposition. Using this metric, we demonstrated that manifold of adversarial examples

lie far from legitimates and noisy samples which have been slightly perturbed by Gaussian noise.

In order to detect any adversarial attack when there is no access neither to reference spectrogram

nor adversarial perturbation, we proposed a detector which is a regularized logistic regression

model for discriminating eigenvalues of malicious spectrograms from legitimate ones. Experi-

mental results on three environmental sound datasets have shown that the proposed detector

outperforms other detectors for six out of eight different adversarial attacks.
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For future studies, we would like to improve chordal distance to better characterize adversarial

manifolds and also study possibility of encoding this metric directly into the adversarial detector.
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Abstract

In this paper, we investigate the potential effect of the adversarially training on the robustness of

six advanced deep neural networks against a variety of targeted and non-targeted adversarial

attacks. We firstly show that the ResNet-56 model trained on the 2D representation of the

discrete wavelet transform appended with the tonnetz chromagram outperforms other models

in terms of recognition accuracy. Then we demonstrate the positive impact of adversarially

training on this model as well as other deep architectures against six types of attack algorithms

(white and black-box) with the cost of the reduced recognition accuracy and limited adversarial

perturbation. We run our experiments on two benchmarking environmental sound datasets

and show that without any imposed limitations on the budget allocations for the adversary, the

fooling rate of the adversarially trained models can exceed 90%. In other words, adversarial

attacks exist in any scales, but they might require higher adversarial perturbations compared to

non-adversarially trained models.

2. Introduction

The existence of adversarial attacks has been characterized for data-driven audio and speech

recognition models for both waveform and representation domains (Carlini & Wagner, 2018;

Esmaeilpour et al., 2020). During the past years, many strong white and black-box adversarial
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algorithms have been introduced which they basically recast costly optimization problems against

victim classifiers. Unfortunately, these attacks effectively degrade the classification performance

of almost all data-driven models from conventional classifiers (e.g., support vector machines) to

the state-of-the-art deep neural networks (Esmaeilpour et al., 2020b). This poses an extreme

growing concern about the security and the reliability of the classifiers.

The typical approach in crafting adversarial examples is to solve an optimization problem in order

to obtain the smallest possible perturbations for the legitimate samples, undetectable by a human,

aiming at fooling the classifier. The commonly used measures to compare the altered sample

with the original one are 𝑙2 or 𝑙∞ similarity metrics. The computational complexity of this

optimization process is dependent on the dimensions of the given input samples. Consequently,

it requires considerable computational overhead for high dimensional data, even in the case of

short audio signals (Carlini & Wagner, 2018). However, regardless of the computational cost

of the attacks, this threat actively exists for any end-to-end audio and speech classifier. Since

the highest recognition accuracies have been reported on 2D representations of audio signals

(Esmaeilpour et al., 2020; Boddapati et al., 2017), the optimized attack algorithms developed

for computer vision applications such as fast gradient sign method (FGSM) (Goodfellow et al.,

2015) led to security concerns for audio classifiers (Esmaeilpour et al., 2020b).

Although some approaches have been introduced for defending victim models against adversarial

attacks, there is not yet a reliable framework achieving the required efficiency. Based on the

detailed discussion in (Athalye et al., 2018b), common defence algorithms usually obfuscate

gradient information but running stronger attack algorithms against them consistently fool

these detectors. Unfortunately, vulnerability against adversarial attacks is an open problem in

data-driven classification and though the generated fake examples look very similar to noisy

samples, they lie in dissimilar subspaces47. (Esmaeilpour et al., 2020b; Ma et al., 2018). It has

been shown that adversarial examples lie in the manifolds marginally over the decision boundary

47 Technically, a subspace is a vector space with some specific properties such as nonlinearity (Strang,

1993; Van Loan & Golub, 1983). Subspaces are definable by both Cartesian and non-Cartesian

coordinates and can represent a structure in any 𝑛-dimensional spaces (Van Loan & Golub, 1983).

More information are available in (Watkins, 2007).
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of the victim classifier, where the model lacks of generalizability (Esmaeilpour et al., 2020b).

Therefore, integrating these examples into the training set of the victim classifier could improve

the robustness. This approach, known as adversarially training (Goodfellow et al., 2015), might

be a more reasonable defense approach without shattering gradient vectors (Athalye et al.,

2018b). However, there is no guarantee for the safety of the adversarially trained classifiers

(Tramèr et al., 2017).

Although there are some discussions in the computer vision domain about the negative effect of

adversarially training on the recognition performance of the victim classifiers (Papernot et al.,

2016c), to the best of our knowledge, this potential side effect has not been yet studied for the

2D representation of audio signals. We address this issue in this paper and report our results on

two benchmarking environmental sound datasets. Specifically, our main contributions in this

paper are:

1. characterizing the adversarially training impact on six advanced deep neural network

architectures for diverse audio representations48,

2. demonstrating that deep neural networks especially those with residual blocks have higher

recognition performance on tonnetz features concatenated with DWT spectrograms compared

to STFT representations,

3. showing the adversarially trained AlexNet model outperforms ResNets with limiting the

perturbation magnitude,

4. experimentally proving that although adversarially training reduces recognition accuracy of

the victim model, it makes the attack more costly for the adversary in terms of required

perturbation.

The rest of this paper is organized as follows. In Section 3, we review some related works

about adversarial attacks developed for 2D domains. Details about signal transformation and

2D representation production are provided in Section 4 and 5, respectively. In Section 6, we

briefly introduce our selected front-end audio classifiers which are state-of-the-art deep learning

architectures. The adversarial attack procedures and budget allocation for the adversary are

48 Namely, MFCC, STFT, and DWT.
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discussed in Section 7. Accordingly, section 8 explains the adversarially training framework and

obtained results are summarized in Section 9.

3. Related Works

There is a large volume of published studies on attacking classifiers using different optimization

techniques aiming to effectively disrupt their recognition performances. In this paper, we

focus on five strong white-box targeted and non-targeted attack algorithms which have been

reported to be very destructive when used on advanced deep learning models trained on audio

representations (Esmaeilpour et al., 2020). Moreover, we also use a black-box adversarial attack,

based on the gradient approximation, against the victim classifiers .

The fast gradient sign method is a well-established baseline in targeted adversarial attack. The

computational cost of this one-shot approach at runtime is low, taking advantage of the linear

characteristics in deep neural networks. Kurakin et al. (Kurakin et al., 2016) introduced an

iterative version of FGSM, known as the basic iterative method (BIM), for running stronger

attacks against victim classifiers and is formulated at:

x′𝑛+1 = clip {x′𝑛 + 𝜁sgn (∇x𝐽 [x′𝑛, 𝑙 (x)])} (A II-1)

where the legitimate and its associated adversarial examples are represented by x and x′,

respectively. The initial state in this recursive formulation is x′0 = x in the 𝜖-neighbourhood (the

distance measured by a similarity metric such as 𝑙2) of the legitimate manifold. This is followed

by a clipping operation for keeping the adversarial perturbation within [−𝜖, 𝜖]. Moreover, 𝑙 (x)
and sgn(·) stand for the label of x and the general sign function. In Eq. A II-1, the step size

𝜁 = 1, though it is tunable according to the adversary’s wishes. Two types of optimizations can

be used with Eq. A II-1: (1) optimizing up to reach the first adversarial example (BIM-a) and (2)

continuing the optimization up to a predefined number of iterations (BIM-b). For measuring the

𝜖 , two similarity metrics are suggested: 𝑙∞ and 𝑙2. In this work, we focus on the latter.
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Gradient information of a deep neural network contains direction of intensity variation associated

with the model decision boundary. Exploiting these information vectors for finding the least

likely probability distribution is the key idea of the Jacobian-based Saliency map attack (JSMA)

(Papernot et al., 2016d). For the adversarial label 𝑙′, this iterative attack algorithm runs against

the model 𝑓 and strives to achieve 𝑙′ = arg max 𝑗 𝑓 𝑗 (x). The JSMA increases the probability of

the target label 𝑙′ while minimizing those of the other classes including the ground-truth using a

saliency map as shown in Eq. A II-2.

𝑆(x, 𝑙′) [𝑖] =
��𝐽𝑖,𝑙 ′ (x)�� 456

∑
𝑗≠𝑙 ′

𝐽𝑖, 𝑗 (x)789 (A II-2)

where 𝐽𝑖, 𝑗 denotes the forward derivative of the model for the feature 𝑖 computed as:

𝐽 𝑓 [𝑖, 𝑗] (x) =
𝜕 𝑓 𝑗 (x)
𝜕x𝑖

(A II-3)

the Jacobian vectors associated with label 𝑙′ and values of the saliency map less or greater than

zero (no variation shield), 𝑆(x, 𝑙′) [𝑖] = 0. This white-box attack algorithm searches, iteratively,

the feature index on which the perturbation will be applied in order to fool the model toward the

target label 𝑙′ using the similarity metric 𝑙0.

The perturbation required for pushing a sample over the decision boundary of the victim classifier

should be as minimal as possible. In a white box scenario, the optimization process uses local

properties of the decision boundary. It has been shown that linearizing the boundary in the

subspace of the original samples can yield to adversarial perturbation smaller than FGSM attack.

This approach, known as the DeepFool attack, is shown in Eq. A II-4 (Moosavi-Dezfooli et al.,

2016):

arg min ‖𝜖 ‖2 , 𝜖 = − 𝑓 (x)w/‖w‖2
2 (A II-4)

where the w refers to the weight function of the recognition model. Unlike other abovementioned

adversarial attacks, DeepFool is a non-targeted attack and it iterates as many times as needed for

pushing random samples to be marginally over the locally linearized decision boundary with the
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condition of maximizing the prediction likelihood toward any labels other than the ground-truth.

Though both 𝑙∞ or 𝑙2 measurement metrics can be used in the DeepFool attack, we use the latter

in accordance with BIM algorithms.

Presumably, a straightforward approach for keeping an adversarial perturbation undetectable can

be achieved by reducing its magnitude and distributing it over all input features. Additionally,

not every feature should be perturbed and their gradient vectors should not be shattered.

Following these two assumptions, Carlini and Wagner attack (CWA) has been introduced

(Carlini & Wagner, 2017b). The general framework of their proposed algorithm is based on the

following minimization problem:

min ‖x′ − x‖2
2 + 𝑐 · L(x′) (A II-5)

where the constant 𝑐 is obtainable through a binary search. Finding the most appropriate value

for this hyperparameter is very challenging since it may easily dominate the distance function

and push the sample too far away from the adversarial subspace. Although in Eq. A II-5 the

𝑙2 similarity metric for computing the adversarial perturbation 𝜖 is employed, CWA properly

generalizes for both 𝑙0 and 𝑙∞. In the configuration of this adversarial attack, the loss function L
is defined over the logits of 𝑍 for the trained model 𝑓 as shown in the following equation:

L(x′) = max

[
max
𝑖≠𝑙 ′

{𝑍 (x′)𝑖 − 𝑍 (x′)𝑙 ′,−𝜅}
]

(A II-6)

where 𝜅 controls the effectiveness and the adjacency of the adversarial examples to the decision

boundary of the model. In this regard, higher values for this parameter in conjunction with a

minimum 𝜖-neighbourhood results in adversarial examples with higher confidence.

For achieving the overall unrestricted adversarial perturbation (‖𝜖 ‖2) with small enough

magnitude, CWA solves Eq. A II-5 through the following optimization framework:

min
𝜌

����1

2
(tanh(𝜌) + 1) − x

����2

2

+ 𝑐 · L
(
1

2
tanh(𝜌) + 1

)
(A II-7)
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where 𝜌 = arctan(x + 𝛿) and the unrestricted approximate perturbation 𝛿∗ is as the following.

𝛿∗ =
1

2
(tanh(𝜌 + 1)) − x (A II-8)

This perturbation is unrestricted and it should be tuned for feature values by measuring∇ 𝑓 (x+𝛿∗).
For feature intensities with negligible gradient values, the actual adversarial perturbation truncates

to zero, and for the rest: 𝛿 ← 𝛿∗.

Attacking victim classifiers while there is an unrestricted access to the details of the attacked

models, including the training dataset, hyperparameters, architecture, and more importantly

gradient information, like all the abovementioned attack algorithms, is less challenging compared

to the black-box attack scenarios. Usually, in the latter scheme, the adversary runs gradient

estimation via querying the classifier by training a surrogate model. In this paper, the chosen

black-box attack is the natural evolution strategy (NES (Wierstra, Schaul, Peters & Schmidhuber,

2008)) which has been employed for gradient approximation in (Ilyas et al., 2018). This iterative

algorithm is known as partial information attack (PIA) and it encodes the 𝑙∞ similarity metric as

part of its targeted optimization problem. Finding the proper adversarial perturbation bound

for PIA is to some extent challenging and requires a very high number of queries to the victim

model.

Before discussing how adversarial attack and adversarially training on various deep neural

network architectures have been implemented, we firstly need to provide a brief overview on

the transformation of an audio signal into 2D representations. The next section will describe

spectrogram generation using short time Fourier transformation (STFT), discrete wavelet

transformation (DWT), and tonnetz feature extraction. We will then train our classifiers using

these representations and investigate how adversarially training impacts their robustness to

adversarial attacks.

4. Audio Transformation
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Since audio and speech signals have high dimensionality in time domain, their 2D representations

with lower dimensionalities have been widely used for training advanced classifiers originally

developed for 2D computer vision applications (Esmaeilpour et al., 2020c). In this work, we use

STFT and DWT, both with and without tonnetz features for generating 2D representations of

audio signals. This section briefly reviews the required transformations by this work.

For a discrete signal 𝑎[𝑛] distributed over time 𝑛 using the Hann window function 𝐻 [·], we can

compute the complex Fourier transformation using the following equation:

STFT
{
𝑎[𝑛]

}
[𝑚, 𝜔] =

∞∑
𝑛=−∞

𝑎[𝑛]𝐻 [𝑛 − 𝑚]𝑒− 𝑗𝜔𝑛 (A II-9)

where 𝑚 is the time scale and 𝑚 
 𝑛. Additionally, 𝜔 stands for the continuous frequency

coefficient. This transformation applies on shorter overlapping sub-signals with a predefined

sampling rate and forms the STFT spectrogram as shown in Eq. A II-10.

SPSTFT

{
𝑎[𝑛]

}
[𝑚, 𝜔] =

����� ∞∑
𝑛=−∞

𝑎[𝑛]𝑤 [𝑛 − 𝑚]𝑒− 𝑗𝜔𝑛

�����2 (A II-10)

There are several variants of the STFT transformation such as mel-scale and cepstral coefficient,

producing even lower dimensionality, that have been widely used for various speech processing

tasks (Patel & Rao, 2010; Juvela, Bollepalli, Wang, Kameoka, Airaksinen, Yamagishi & Alku,

2018). However in this work, we use the standard STFT representation for training the front-end

dense classifiers.

Generating DWT spectrogram is very similar to the Fourier transformation as they both

employ continuous and differentiable basis functions. For the wavelet transformation, several

functions have been studied and their effectiveness for audio signals have been investigated in

(Mitra & Wang, 2008; Patidar & Pachori, 2014). The general form of this transformation for a
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continuous function 𝑎(𝑡) is shown in Eq. A II-11.

DWT
{
𝑎(𝑡)

}
=

1√
|𝑠 |

∫ ∞

−∞
𝑎(𝑡)𝜓

(
𝑡−𝜏
𝑠

)
𝑑𝑡 (A II-11)

where 𝜏 and 𝑠 refer to the time variations in the transformation and the wavelet scale, respectively.

Moreover, 𝜓 stands for the basis mother functions. Common choices for this function are Haar,

Mexican Hat, and complex Morlet. The latter has been extensively used in signal processing,

mainly because of its nonlinear characteristics (Esmaeilpour et al., 2020c) (see Eq. A II-12).

𝜓(𝑡) = 1√
2𝜋

𝑒− 𝑗𝜔𝑡𝑒−𝑡
2/2 (A II-12)

The complex Morlet is continuous in its conjugate manifold. The convolution of this function

with overlapping chunks of the given audio signal results in its spectral visualization as described

in Eq. A II-13.

SPDWT

{
𝑎[𝑛]

}
=
���DWT

{
𝑎[𝑘, 𝑛]

}��� (A II-13)

where 𝑘 and 𝑛 are integer numbers associated with scales of 𝜓.

The two aforementioned transformations represent spatiotemporal modulation features of a signal

in the frequency domain, regardless of its harmonic characteristics. It has been demonstrated

that using harmonic change detection function (HCDF) provides distinctive features for the

audio signal (Harte, Sandler & Gasser, 2006). This function provides chromagram from the

constant-Q transformation (CQT) which are also known as tonnetz features. According to (Harte

et al., 2006), there are four major steps in a HCDF system. Firstly, the audio signal is converted

into logarithmic spectrum vectors using CQT. Then, pitch-class vectors are extracted from the

tonal transformation based on the quantized chromagram. In the third step, 6-dimensional

centroid vectors form a tensor from the tonal transformation. Finally, a smoothing operation

postprocesses this tensor for distance calculation.
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DWT ‖ε‖2 = 1.32 ‖ε‖2 = 1.29 ‖ε‖0 = 1.07 ‖ε‖2 = 0.49 ‖ε‖2 = 2.18 ‖ε‖∞ = 1.76

DWT | Tonnetz ‖ε‖2 = 1.93 ‖ε‖2 = 1.21 ‖ε‖0 = 1.59 ‖ε‖2 = 0.91 ‖ε‖2 = 2.69 ‖ε‖∞ = 1.35

STFT ‖ε‖2 = 2.15 ‖ε‖2 = 1.18 ‖ε‖0 = 2.28 ‖ε‖2 = 1.98 ‖ε‖2 = 1.83 ‖ε‖∞ = 2.14

STFT | Tonnetz ‖ε‖2 = 0.84 ‖ε‖2 = 1.63 ‖ε‖0 = 2.51 ‖ε‖2 = 2.65 ‖ε‖2 = 1.88 ‖ε‖∞ = 2.06

Figure 2.1 Crafted adversarial examples for the ResNet-56 using the six

optimization-based attack algorithms. The first column of the figure denotes the original

representations for the randomly selected sample from the class of ’children playing’ in the

UrbanSound8K dataset. Other columns are associated with the attack algorithms namely,

BIM-a, BIM-b, JSMA, DeepFool, CWA, and PIA, respectively. Adversarial Perturbation

values have been written at the bottom of each adversarial spectrogram.

We use HCDF system for generating spectrogram from audio signals in order to enhance

recognition performance of the classifiers. In the next section, we provide details of this process

for two benchmarking environmental sound datasets.

5. Spectrogram Production

We produce STFT representation based on the instructions provided by the open source Python

library Librosa (McFee et al., 2015b). We set the windows size and the hop length (𝑛 and 𝑚 in

Eq. A II-9) to 2048 and 512, respectively. Additionally, we initialize the number of filters to

2048 which is the standard value for the environmental sounds task (Esmaeilpour et al., 2020c).

Audio chunks associated with each window are padded in order to reduce the potential negative

effect of losing temporal dependencies. Furthermore, the frames are overlapped using a ratio of

50%.
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For generating DWT spectrograms, we use our modified version of the wavelet sound explorer

(Hanov, 2008) with the complex Morlet mother function. As proposed by (Boddapati et al.,

2017), we set the DWT sampling frequency to 16 KHz for ESC-50 and 8 KHz for UrbanSound8K

with the uniform 50% overlapping ratio. For enhancement purposes, we use the logarithmic

visualization on the generated spectrograms to better characterize high frequency areas.

For the tonnetz chromagram, we use the default settings provided by Librosa with the sampling

rate of 22.05 KHz. We resize the resulting chromagrams in such a way that the result will

comply with the aforementioned representations. Inspired from (Su et al., 2019), we append

these features to the STFT and DWT spectrograms and organize them into two additional

representations. In the next section, we provide more details about the training of the front-end

classifiers using these four spectrogram sets.

6. Classification Models

Since an adversary runs the adversarial attack against the classifier, the choice of the victim

network architecture affects the fooling rate of the model. This issue has been studied in

(Esmaeilpour et al., 2020) for the advanced GoogLeNet (Szegedy et al., 2015) and AlexNet

(Krizhevsky et al., 2012) architectures trained on DWT (with linear, logarithmic, and logarithmic

real visualizations), STFT, and their pooled spectrograms (appended without overlap). Since our

main objective is investigating the impact of adversarially training on advanced deep learning

classifiers, we additionally include ResNet-X architectures with 𝑋 ∈ {18, 34, 56} (He et al.,

2016) and VGG-16 (Simonyan & Zisserman, 2015) architectures49.

The pretrained models of these six classifiers have been used and the input and output layers have

been fine-tuned50 as described in (Esmaeilpour et al., 2020). Computational hardware used for

all experiments are two NVIDIA GTX-1080-Ti with 4 × 11 GB memory in addition to a 64-bit

Intel Core-i7-7700 (3.6 GHz) CPU with 64 GB RAM51. We carry out our experiments using the

49 Input and output layers are justified to spectrograms.

50 Without clipping weight vectors.

51 In parallel, however without overclocking.
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five-fold cross validation setup for all the spectrogram sets. As a common practice in model

performance analysis, we preserve 70% of the entire samples for training and development

followed by running the early stopping scenario. We report recognition accuracy of these models

for the remaining 30% samples.

In the next section, we provide the detailed setup for the adversarial algorithms mentioned in

section 3. We additionally discuss budget allocations required by the adversary for successfully

attacking the six finely trained victim models.

7. Adversarial Attack Setup

For effectively attacking the classifiers, the adversary should tune the hyperparameters required

by the attack algorithms such as the number of iteration, the perturbation limitation, the number

of line search within the manifold, which we express them all as the budget allocations. For

finding the optimal required budgets, we bind the fooling rates of the attack algorithms to a

predefined threshold 𝐴𝑈𝐶 > 0.9 associated with the area under curve of the attack success. In

other words, we allocate as much budget as needed for reaching the 𝐴𝑈𝐶 > 0.9 for all attacks

against the victim models. This is a critical threshold for demonstrating the extreme vulnerability

of neural networks against adversarial attacks.

In accordance to the above note, we use Foolbox (Rauber et al., 2017), the freely available

python package in support of the uniform reproducible implementations of the attack algorithms.

For the BIM-a and BIM-b algorithms, we define the 𝜖 ≥ 0.0015 with the confidence of (≥ 75%).

In the JSMA framework, we set the number of iterations to a maximum of 1000 and the scaling

factor within [0, 250] (with equivalent displacement of 50). The number of iterations in the

DeepFool attack is initialized to 100 with the supremum value in light of 600 and the static step

of 100. For the costly CWA attack, we set the search step 𝑐 ∈ {1, 3, 5, 7} within the number

of iteration {25, 100, 1k, 1.5k} associated with every 𝑐. Except for the DeepFool, which is a

non-targeted attack, we randomly select targeted wrong labels for the rest of the algorithms.



199

There are four hyperparameters required for the black-box PIA algorithm. We empirically

limit the perturbation bound to 𝜖 ≥ 0.001 followed by an iterative line search to find the most

approximately optimal variance in the NES gradient estimation. We initialize the number of

iterations to 500 with decay rate of 0.001 and the learning rate 𝜂 ∈ [0.001, 0.6].

In the framework which we attack the front-end audio classifiers, we run the algorithms on

the shuffled batches of 500 samples up to 50 batches of 100 samples randomly selected from

the clean spectrograms in every step toward spanning the entire datasets. These attacks are

performed considering the abovementioned allocated budgets once before and after adversarially

training in order to measure the robustness of the models. Section 8 provides details on how

adversarially training has been implemented.

8. Adversarially Training

The idea of adversarially training was firstly proposed in (Goodfellow et al., 2015), where authors

showed that augmenting the training dataset with the one-shot FGSM adversarial examples

improves the robustness of the victim models. As commonly known, the main advantage of

this simple approach is that it does not shatter nor obfuscate gradient information while runs a

fast non-iterative procedure. This has made the adversarially training to be a relatively reliable

defense approach. However, it may not confidently defend against stronger white-box adversarial

algorithms (Tramèr et al., 2017).

Many adversarial defense approaches have been introduced during the past years which have

been reported to outperform FGSM-based adversarially training (Papernot, McDaniel, Wu,

Jha & Swami, 2016a; Buckman, Roy, Raffel & Goodfellow, 2018; Guo, Rana, Cisse & Van

Der Maaten, 2017). However, some studies have been reported that these advanced defense

approaches shatter gradient vectors and they might easily break against strong adversarial attacks

which do not incorporate the exact gradient information such as the backward pass differentiable

approximation (Athalye et al., 2018b).
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Augmenting the clean training dataset with adversarial examples in the adversarially trained

framework is shown in Eq. A II-14 (Goodfellow et al., 2015).

𝐽′(x, 𝑙, w) = 𝛼𝐽 (x, 𝑙, w) + (1 − 𝛼)𝐽 (x′, 𝑙, w) (A II-14)

where 𝛼 is a subjective weight scalar definable by the adversary. Additionally, 𝐽 and w denote

the loss function and the derived weight vector of the victim model, respectively. Moreover

x and x′ refer to the legitimate and adversarial example associated with the genuine label 𝑙.

Adversarially training using a costly attack algorithm is very time-consuming and memory

prohibitive in practice. Therefore, we use the FGSM for augmenting the original spectrogram

datasets with the adversarial examples according to the assumption of 𝐽′(x, 𝑙, w) = 𝐽 (x′, 𝑙, w).

In the next section, we report our achieved results for the dense neural network models about the

adversarial attacks and adversarially training on four different representations, namely STFT,

DWT, STFT appended with tonnetz features, and DWT appended with tonnetz chromagrams.

9. Experimental Results

We conduct our experiments on two environmental sounds datasets: UrabanSound8K (Salamon

et al., 2014a) and ESC-50 (Piczak, 2015b). The first dataset contains 8732 short recording

arranged in 10 classes (car horn, dog bark, drilling, jackhammer, street music, siren, children

playing, air conditioner, engine idling and gun shot) with the audio length of < 4 seconds.

ESC-50 dataset contains 2K audio signals with an equal length of five seconds organized in 50

classes.

For enhancing both quality and quantity of these datasets, especially for ESC-50, we filter samples

using the pitch-shifting operation in the temporal domain as proposed in (Esmaeilpour et al.,

2020c). According to their proposed 1D filtration setup, we use the scales of {0.75, 0.9, 1.15, 1.5}.
This increases the size of the datasets by a factor of 4.
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Table 2.1 Recognition performance (%) of the audio classifiers trained on the original

spectrogram datasets (without adversarial example augmentation). Values inside of the

parenthesis indicate the recognition percentage drop after adversarially training the models

with the fooling rate 𝐴𝑈𝐶 > 0.9. Accordingly, the maximum perturbation is achieved at

‖𝜖 ‖2 ≤ 3. Outperforming accuracies are shown in bold face.

Dataset Representations GoogLeNet AlexNet ResNet-18 ResNet-34 ResNet-56 VGG-16

ESC-50

STFT 67.83, (06.89) 64.32, (10.91) 66.85, (12.13) 67.21, (14.43) 69.77, (09.29) 68.94, (08.32)
DWT 70.42, (08.42) 65.39, (11.23) 67.06, (15.71) 67.55, (18.76) 71.56, (11.09) 71.43, (16.28)

STFT | Tonnetz 70.11, (24.09) 64.21, (23.76) 67.62, (19.48) 66.75, (23.31) 70.22, (25.19) 70.18, (23.68)
DWT | Tonnetz 68.76, (19.07) 68.31, (18.53) 68.49, (24.27) 67.15, (21.56) 71.79, (18.21) 68.37, (18.73)

UrbanSound8K

STFT 88.32, (10.35) 86.07, (21.43) 88.24, (14.94) 88.61, (09.19) 88.77, (23.06) 87.93, (14.66)
DWT 90.10, (16.35) 87.51, (19.59) 88.07, (15.08) 88.38, (19.04) 90.14, (15.49) 90.11, (16.35)

STFT | Tonnetz 88.44, (25.77) 86.81, (22.05) 88.13, (17.64) 88.38, (26.42) 89.41, (20.73) 89.42, (21.38)
DWT | Tonnetz 89.32, (16.83) 87.34, (20.41) 88.76, (29.12) 89.80, (27.45) 91.36, (26.08) 89.97, (24.56)

Following the explanations provided in section 5 about the spectrogram production, the dimension

of each resulting spectrogram is 1568 × 768 for both STFT and DWT (the logarithmic scale)

representations on the two datasets. Moreover, the dimensions of the resulting chromagrams

is 1568 × 540, which will be appended to the aforementioned representations. Table A-2.1

summarizes recognition accuracies of the classifiers trained on these spectrograms. Additionally,

this table shows the effect of the adversarially training on the recognition performance of these

models.

The classifiers in Table A-2.1 have been selected for evaluation on the test sets after running

the five-fold cross-validation scenario on the randomized development portion of the training

datasets. Regarding this table, different architectures of the deep neural networks show

competitive performances. However, in the majority of the cases, the ResNet-56 outperforms

other classifiers averaged over 10 repeated experiments on the spectrograms. The highest

recognition accuracy has been achieved by the ResNet-56 architecture, trained on the appended

representation of DWT and tonnetz chromagrams for both UrbanSound8K and ESC-50 datasets.

The number of parameters in the ResNet-56 is 11.3% and 14.26% higher than its rival models

VGG-16 and ResNet-34, respectively.

Fig. A-2.1 visually compares the adversarial examples crafted against the outperforming classifier,

the ResNet-56, using the six adversarial attacks with a randomly selected audio sample and
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represented with the four spectrogram approaches described earlier. Although the generated

spectrograms are visually very similar to their legitimate counterparts, they all make the classifier

to predict wrong labels.

Table A-2.1 also shows the drop ratio of the recognition accuracies after adversarially training

the models following the procedure explained in section 8. The maximum required adversarial

perturbation for complying with the fooling rate of 𝐴𝑈𝐶 > 0.9 is achieved at ‖𝜖 ‖2 ≤ 3, averaged

over all the attacks. In attacking the adversarially trained models, the procedure outlined in

section 7 has been implemented individually for every audio classifier. According to the obtained

results, adversarially training considerably reduces the performance of all models. For the

ESC-50, the neural network trained on the appended representation of STFT and tonnetz features

(STFT | Tonnetz) has experienced the most negative impact compared to other representations.

The average drop ratio for adversarially trained models on the DWT | Tonnetz representations is

slightly more than the STFT | Tonnetz counterparts for the UrbanSound8K dataset. However, for

both datasets, these ratios for models trained on the DWT spectrogram are considerably higher

than those trained with the STFT representations.

We measure the fooling rate of adversarially trained models after attacking them using the same

six adversarial algorithms following the procedure explained in section 7 with the imposed

condition of ‖𝜖 ‖2 ≤ 3 for the adversarial perturbation. This experiment uncovers the impact of

adversarially training on the robustness of the audio classifiers (see Table A-2.2). We applied

the aforementioned condition to make this table comparable with Table A-2.1. Regarding the

results reported in Table A-2.2, adversarially training has improved the robustness of all the

classifiers, particularly AlexNet.

For investigating the overall impact of the adversarially training on the robustness of audio

classifiers, we attack the adversarially trained models using the same six attack algorithms

without the condition of ‖𝜖 ‖2 ≤ 3. Unfortunately, we could achieve the fooling rate with

𝐴𝑈𝐶 > 0.9 for all the classifiers following the attack procedure explained in section 7. However,

attacking the adversarially trained models requires larger values for the adversarial perturbation
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Table 2.2 Robustness comparison (average 𝐴𝑈𝐶%) of the adversarially trained models

attacked with the constraint ‖𝜖 ‖2 ≤ 3. Victim models with lower fooling rates are indicated

in bold.

Dataset Representations GoogLeNet AlexNet ResNet-18 ResNet-34 ResNet-56 VGG-16

ESC-50 (5-fold cross validation (avg.))

STFT 53.12 50.97 51.13 55.31 53.87 51.05

DWT 55.68 51.03 52.56 54.18 52.26 52.23

STFT | Tonnetz 56.18 50.46 53.10 55.29 54.19 52.82

DWT | Tonnetz 55.74 49.33 54.87 53.77 50.42 51.37

UrbanSound8K (5-fold cross validation (avg.))

STFT 56.09 53.24 54.08 55.91 57.30 54.35

DWT 58.98 51.92 53.59 54.40 55.86 53.66

STFT | Tonnetz 55.80 50.71 52.75 51.02 54.11 52.39

DWT | Tonnetz 58.46 52.23 55.13 56.81 55.38 55.26

Table 2.3 Comparison of 𝜖𝑟 for attacking the original and adversarially trained models

with the constraint of 𝐴𝑈𝐶 > 0.9. Higher values for 𝜖𝑟 associated with each representation

are shown in bold.

Dataset Representations GoogLeNet AlexNet ResNet-18 ResNet-34 ResNet-56 VGG-16

ESC-50 (5-fold cross validation (avg.))

STFT 1.412 1.631 1.897 2.154 2.312 2.107

DWT 1.562 1.509 1.741 1.982 1.976 2.307
STFT | Tonnetz 1.804 1.918 2.003 2.161 2.095 1.674

DWT | Tonnetz 2.014 2.336 1.788 1.903 2.609 2.230

UrbanSound8K (5-fold cross validation (avg.))

STFT 1.562 1.903 2.439 1.372 1.991 1.703

DWT 2.154 2.287 2.764 1.644 2.892 1.789

STFT | Tonnetz 2.231 2.108 1.981 2.003 1.401 2.308
DWT | Tonnetz 1.606 2.199 2.405 1.604 2.501 1.702

(‖𝜖 ‖2) compared to attacking the original models and consequently, increases the number of

callbacks to the original spectrogram with extra batch gradient computations. This might degrade

the quality of the generated spectrograms. In order to analytically compare the maximum

adversarial perturbation required for the original and the adversarially trained models, we

compute the average perturbation ratio as shown in Eq. A II-15:

𝜖𝑟 =

����𝜖𝑎𝜖𝑜
���� (A II-15)

where 𝜖𝑎 and 𝜖𝑜 denote the average adversarial perturbation required for successfully attacking

the adversarially trained and original models (both with 𝐴𝑈𝐶 > 0.9), respectively. Table A-2.3

summarizes values for 𝜖𝑟 for the victim models trained on different representations. Note that

an 𝜖𝑟 ≥ 1 indicates the positive impact of adversarially training on the robustness of the audio

classifiers via increasing the computational cost of the attack by expanding the magnitude of the
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required adversarial perturbation. With respect to the measured 𝜖𝑟 metric for all the front-end

classifiers, the ResNet-56 architecture showed better robustness against adversarial attacks in

average for 50% of the experiments. In other words, attacking this model adds additional cost

for the adversary in crafting adversarial examples with the 𝐴𝑈𝐶 > 0.9.

10. Conclusion

In this paper, we presented the impact of adversarially training as a gradient obfuscation-

free defense approach against adversarial attacks. We trained six advanced deep learning

classifiers on four different 2D representations of environmental audio signals and run five

white-box and one black-box attack algorithms against these victim models. We demonstrated

that adversarially training considerably reduces the recognition accuracy of the classifier but

improves the robustness against six types of targeted and non-targeted adversarial examples by

constraining over the maximum required adversarial perturbation to ‖𝜖 ‖2 ≤ 3. In other words,

adversarially training is not a remedy for the threat of adversarial attacks, however it escalates

the cost of attack for the adversary with demanding larger adversarial perturbations compared to

the non-adversarially trained models.
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Abstract

In this paper we propose a novel defense approach against end-to-end adversarial attacks developed

to fool advanced speech-to-text systems such as DeepSpeech and Lingvo. Unlike conventional

defense approaches, the proposed approach does not directly employ low-level transformations

such as autoencoding a given input signal aiming at removing potential adversarial perturbation.

Instead of that we find an optimal input vector for a class conditional generative adversarial

network through minimizing the relative chordal distance adjustment between a given test

input and the generator network. Then, we reconstruct the 1D signal from the synthesized

spectrogram and the original phase information derived from the given input signal. Hence,

this reconstruction does not add any extra noise to the signal and according to our experimental

results, our defense-GAN considerably outperforms conventional defense algorithms both in

terms of word error rate and sentence level recognition accuracy.

2. Introduction

The threat of adversarial attacks has been well characterized in the domains of audio and

speech recognition (Schönherr, Kohls, Zeiler, Holz & Kolossa, 2018; Esmaeilpour et al.,

2020b). Classifiers either trained on raw signals or their corresponding 2D representations (i.e.,

spectrograms) are quite vulnerable against carefully crafted adversarial examples and this poses
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a serious concern about safety and reliability of these models (Yakura & Sakuma, 2018). In a

big picture, there are two main directions in studying adversarial attacks for speech signals: (i)

generalizing strong attack algorithms developed for natural images in computer vision domain to

spectrograms, taking advantage of their lower computational complexity (Koerich et al., 2020;

Esmaeilpour et al., 2020); (ii) developing end-to-end attacks which require dealing directly with

raw input signals (Carlini & Wagner, 2018; Qin et al., 2019). In this paper, we focus on the

latter for defense purposes since it is closely related to a black-box attack scenario in real-life

applications.

Although there are different implementations for end-to-end attacks, they unanimously use

variants of the logarithmic distortion metric 𝑙 dB �𝑥 (𝛿) = 𝑙dB(𝛿) − 𝑙dB(�𝑥) (Carlini & Wagner,

2018), which measures the loudness in dB of an adversarial example �𝑥𝑎𝑑𝑣 = �𝑥𝑜𝑟𝑔 + 𝛿 over its

legitimate counterpart �𝑥𝑜𝑟𝑔 ∈ R𝑛×𝑚, where 𝑛 and 𝑚 denote the length of the signal and the

number of channels, respectively, and 𝛿 is the adversarial perturbation. Carlini and Wagner

(Carlini & Wagner, 2018) have demonstrated the effectiveness of this measure as a constraint in

their optimization formulation for attacking a speech-to-text model (C&W):

min |𝛿 |22 +
∑
𝑖

𝜗𝑖 .L𝑖 (�𝑥𝑜𝑟𝑔 + 𝛿𝑖, 𝜋𝑖) s.t. 𝑙dB �𝑥 (𝛿) < 𝜁 (A III-1)

where 𝜋𝑖 refers to a character alignment (tokens without duplication) according to the target

output phrase y𝑖 in such a way that Pr(𝜋𝑖 |y𝑖) =
∏

𝑗 y 𝑗

𝜋 𝑗 . Additionally, L𝑖 (·) denotes the

connectionist temporal classification loss (Graves et al., 2006), and 𝜗𝑖 is a scaling factor. Finding

an optimal value for 𝜁 makes (A III-1) brittle since it requires searching in an exponential space

for a phrase p𝑖, which should reduce to 𝜋𝑖 (after removing empty tokens). However, it has

been shown that such a costly optimization formulation yields adversarial audios though sound

very similar to �𝑥𝑜𝑟𝑔, make the DeepSpeech system (Hannun et al., 2014) generate any target

phrase pre-defined by the adversary (Carlini & Wagner, 2018). Since 𝛿 is not universal, slightly

perturbing �𝑥𝑎𝑑𝑣 such as playback and recording over the air might override generating such

a target phrase. In response to this issue, variants of expectation over transformation (EOT)

have been developed as part of the optimization formulation inspired by (Athalye et al., 2018a).
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Possible transformations are room impulse response, reverberation, and band-pass filters for

truncating adversarial perturbation beyond human audible range (Yakura & Sakuma, 2018).

However, this strong approach is more costly than (A III-1) and it fits well for short signals with

a few corresponding phrases (Qin et al., 2019). The improved version of EOT has been recently

introduced with a minor enhancement over the aforementioned distortion metric (Qin et al.,

2019):

10 log10 |𝜌𝛿 |2 − 10 log10

���𝜌�𝑥𝑜𝑟𝑔 ���2 (A III-2)

where 𝜌 denotes the power spectral density (PSD) function. They have also introduced a new

formulation for the loss function according to the configuration of the Lingvo speech-to-text

system (Shen et al., 2019) :

ℓ(�𝑥𝑖, 𝛿𝑖, y𝑖) = E𝑡∼𝜏

[
ℓ𝑛𝑒𝑡

(
yi

𝑜, yi
𝑡 ) + 𝛼ℓ(�𝑥𝑖, 𝛿𝑖)

]
(A III-3)

where 𝛼 is a scalar and ℓ𝑛𝑒𝑡 is the cross entropy loss which constrains over the normalized PSD

function. Moreover, yi𝑜 and yi𝑡 denote the output and target phrases, respectively. This algorithm,

which is known as robust attack, optimizes for the minimal 𝛿𝑖 over a set of 𝜏 transformations

under varieties of room configurations. Similar minimization process has been implemented

in a black-box scenario using a genetic algorithm (GA) (Taori et al., 2019). Specifically, this

GA-based attack (GAA) incorporates a momentum mutation approach as well as gradient

estimation in order to obtain optimal candidate populations associated with a predefined target

phrase.

While the fooling rate of the aforementioned adversarial attacks on DeepSpeech and Lingvo

systems is almost 100%, there are few studies on defense approaches for speech-to-text systems.

This might be due to the immaturity of the end-to-end attack algorithms since several playbacks

of the crafted adversarial signal over the air might bypass the achieved perturbations (Qin et al.,

2019). Moreover, adversarial signals usually carry audible noises, even with 𝑙dB �𝑥 (𝛿) < 0, which

makes their detection easier (Carlini & Wagner, 2018). However, reliable defense algorithms

are still on demand against strong adversarial examples with less audible noises. Although there
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Figure 3.1 Overview of the proposed end-to-end defense-GAN approach. The 1D signal

converted to a 2D-DWT spectrogram is denoted as x𝑖 and the prior 𝑝𝑧 for z𝑖 ∈ R𝑑𝑧 is

N(0, 0.4𝐼). Additionally 𝛾 [·] is the chordal distance adjustment in the generalized Schur

decomposition domain (Esmaeilpour et al., 2020b) and x̂𝑖 represents the synthesized

spectrogram from the generator. 1D signal is reconstructed using inverse DWT.

are some investigations for both proactive and reactive defense approaches (Zhang et al., 2019a;

Das et al., 2018), they are characterized in a small scale.

In this paper, we propose a new reactive adversarial defense using a class-conditional generative

adversarial network (Mirza & Osindero, 2014). We show that our proposed defense scheme can

be effective for large-scale systems such as DeepSpeech and Lingvo. The rest of the paper is

organized as follows. In Section 3 we provide a brief introduction to GANs focused on defense

strategies for speech signals. Section 4 presents our defense approach that includes three major

steps for removing potential adversarial perturbations from signals. Section 5 summarizes

and discusses the experiments carried out on Mozilla common voice (MCV) and LibriSpeech

datasets. The conclusion and perspective of future work are presented in the last section.

3. GAN for Adversarial Defense

In a typical GAN configuration organized as a two-player minimax optimization problem

(Goodfellow et al., 2014), the generator network 𝐺 (z; 𝜃𝑔) with z ∈ R𝑑𝑧 and training parameters

𝜃𝑔 learns to map from the designated distribution 𝑝𝑧 ∼ N(0, 𝐼) to 𝑝𝑔 as:

min
𝐺

max
𝐷
Ex∼𝑝𝑟 (x) [log 𝐷 (x)] + Ez∼𝑝𝑧 (z) [log (1 − 𝐷 (𝐺 (z)))] (A III-4)
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where 𝑝𝑟 is the real sample distribution and 𝐷 (x; 𝜃𝑑) denotes the discriminator network with

training parameters 𝜃𝑑 . Upon carefully training 𝐺 (z; 𝜃𝑔), it can generate seamless samples almost

without recognizable perturbations compared to x𝑖 ∼ 𝑝𝑟 . In fact, the generator semantically

learns real sample distribution and we should expect unnoticeable differences between the

generated samples and random test inputs except for adversarial examples. Based on this idea, a

reactive defense approach has been introduced by Samangouei et al. (Samangouei et al., 2018a),

which iteratively minimizes for ‖𝐺 (z) − x‖2
2. Since the 𝐿2 distance (or any other similarity

metrics such as 𝐿∞) between crafted adversarial examples and their corresponding legitimate

samples is fairly small, they extended their optimization problem subject to finding the most

optimal z𝑖. Unfortunately, this adversarial filtration defense scheme shatters gradient information

and it can be easily disrupted by running a backward pass differentiable approximation (BPDA)

attack (Athalye et al., 2018b). On the contrary, the generator network can be trained to minimize

the similarity between adversarial and legitimate samples where the discriminator iteratively

learns to span possible adversarial manifolds (Lee et al., 2017). Training such a defense-GAN

requires exploring a massive adversarial subspace since not every attack algorithm generates a

universal perturbation scale (Esmaeilpour et al., 2020b).

Autoencoder-based GAN (A-GAN) has also been investigated for defending speech emotion

recognition models using long-short term memory networks (Latif et al., 2018). This defense-

GAN configuration introduces complex architecture for transforming a feature vector into another

one aiming at bypassing potential adversarial perturbation. However, with the assumption of

stable training without oversmoothing, this model might not necessarily enhance adversarial

robustness against translation-invariant (Dong, Pang, Su & Zhu, 2019) or black-box attacks.

However, these attacks are robust against low-level feature reconstruction using encoder-decoder

blocks. In response to this issue and to the BPDA attack, we introduce a new defense-GAN

architecture in a class-conditional framework which can be effectively used to increase the

robustness of large-scale speech datasets and the state-of-the-art speech-to-text systems such as

DeepSpeech and Lingvo.

4. Proposed Defense Approach: CC-DGAN
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The proposed adversarial defense approach is made up of three steps, as shown in Fig. A-3.1: (i)

generating signal representation; (ii) minimizing the relative chordal distance adjustment for

the given input signal relative to 𝐺 (z𝑖); and (iii) signal reconstruction with the preserved phase

information. We explain all these steps in detail as follows.

4.1 2D Signal Representation

Due to the high dimensionality of audio and speech signals, adversarial training either on single

or multi-channel waveforms is very challenging and the model often undergoes complete collapse

at early iterations. Therefore, a conventional approach in speech processing is to convert a given

signal into a frequency-plot representation (spectrogram). Thus, as suggested by Esmaeilpour et

al. (Esmaeilpour et al., 2020c), we divide the input signal into smaller chunks sampled at 16 kHz

using discrete wavelet transform (DWT). Additionally, we set the frame length to 50 ms and

use the complex Morlet mother function. Moreover, for enhancing the quality of the resulting

spectrogram (x𝑖 in Fig. A-3.1), we represent its magnitude in a logarithmic scale. It has been

shown that these settings for spectrogram production outperform short-time Fourier transform

both in terms of recognition accuracy and robustness against adversarial attacks (Esmaeilpour

et al., 2020; Esmaeilpour, Cardinal & Koerich, 2020). Since the dimensions of the generated x𝑖

are not necessarily square, we bilinearly resize them to 128×128 in compliance of computing

the relative chordal distance in a non-Cartesian space.

4.2 Chordal Distance Adjustment Minimization

The chordal distance (Van Loan & Golub, 1983) is a metric that measures subspace adjacency

for two similar samples in the domain of generalized Schur decomposition (Esmaeilpour et al.,

2020b). This metric has been used for characterizing the existence of adversarial examples in

subspaces different from legitimate and noisy samples (Esmaeilpour et al., 2020b). The chordal

distance between an adversarial example 𝐺 (z𝑖) and x𝑖 is:

chord (𝜆 [𝐺 (z𝑖)] , 𝜆 [x𝑖]) = |𝜆 [𝐺 (z𝑖)] − 𝜆 [x𝑖] |√
1 + 𝜆 [𝐺 (z𝑖)]2

√
1 + 𝜆 [x𝑖]2

(A III-5)
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Random Perturbation

Figure 3.2 𝑘 steps minimization for the chordal distance adjustment between 𝐺 (z𝑖) and x𝑖.

Similar to the predefined prior for z𝑖, the random perturbation is also a function distributed

over N(0, 0.4𝐼). The inner loop is shown in dotted line.

where 𝜆[·] denotes the vector of eigenvalues for the designated spectrograms. Achieving a

valid chordal distance between two spectrograms for ensuring their subspace adjacency in

the generalized Schur decomposition enquires ‖𝐺 (z𝑖) − x𝑖‖ � 𝜉𝑖 where the threshold 𝜉𝑖 must

be small according to the computed mean eigenvalue. For samples which lie in the same

subspace, however with dissimilar spans, a minor translation is required in Eq. A III-5 to

avoid ill-conditioned cases (Van Loan & Golub, 1983). Specifically, for pencils �𝜇𝑖𝐺 (z𝑖) − x𝑖

and �𝜇𝑖 ∈ diag(𝜆 [𝐺 (z𝑖])/diag(𝜆 [x𝑖]), an adjustment 𝛾𝑖 [·] + chord(·) is needed in (A III-5),

especially for samples with very small 𝐿2 distance in Euclidean space (Esmaeilpour et al.,

2020b).

Since the 𝛾𝑖 [·] adjustment is relatively large for an adversarial example x𝑎𝑑𝑣 (Esmaeilpour

et al., 2020b), minimizing over ‖𝛾 [𝐺 (z𝑖)] , 𝛾 [x𝑎𝑑𝑣] ‖2
2 projects x𝑎𝑑𝑣 onto the legitimate sample

subspace distribution represented by 𝑝𝑔. However, we do not filter x𝑎𝑑𝑣 , neither by conventional

encoder-decoder blocks nor by low-level transformation operations. In fact, we find an optimal

z∗𝑖 ∈R𝑑𝑧 through an iterative approach, then pass it to the generator for crafting a spectrogram

very similar to the given x𝑎𝑑𝑣. This approach is depicted in Fig. A-3.2, where the number of

iterations for obtaining the optimal z∗𝑖 is denoted by 𝑘 . For avoiding possible ill-conditioned

pencils (Van Loan & Golub, 1983), we slightly perturb the candidate z𝑘,𝑖 with a random scalar

and augment it with z𝑖. Since 𝐺 (z; 𝜃𝑔) is trained to support 𝑝𝑔 ≈ 𝑝𝑟 , it considerably reduces the

chance of generating spectrograms with adversarial perturbations. Therefore, the architectural

design of both generator and discriminator has a crucial role. To this end, we propose simple yet

effective class conditional architectures for reliable training.
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4.2.1 Class-Conditional Defense GAN (CC-DGAN)

The proposed class-conditional defense GAN (CC-DGAN) is based on the vanilla GAN,

where both the generator and the discriminator receive additional information on top of the

noise vector z𝑖 (i.e., y𝑖) (Mirza & Osindero, 2014). Unlike the baseline model (A III-4),

the CC-DGAN requires class embeddings (𝑐-embeddings) mainly for the generator network:

log(1 − 𝐷 (𝐺 (z|𝑐 = y))). This modification expands the learning space of the model at the

risk of losing sample variety and mode collapse (Brock et al., 2019). However, we find that

𝑐-embeddings provide a considerable boost in computing character probability distribution at

every frame of the given signal compared to regular GANs.

The proposed generator receives z𝑖∈ R128∼N(0, 𝐼) in the first layer followed by a linear

block with dimension 50 + 128 and shared 𝑐 − embedding = 50 (Perez, Strub, de Vries,

Dumoulin & Courville, 2018) including 4 × 4 × 16 channels. There are two sequential residual

blocks on top of the linear with 16 → 4 and 4 → 1 channels. The last hidden layer is a 128× 128

non-local block with batch normalization and tanh activation function. The batch size is set 256

with orthogonal initialization (Saxe, McClelland & Ganguli, 2014). Each residual block includes

two linear (128 × 128) and three padded convolution (3 × 3 with stride 1) layers followed by

upsampling, batch normalization, and ReLU activation function. In our discriminator network,

the first layer requires RGB spectrogram x𝑖∈R128×128×3. There is only one residual block in

this network which contains two sequential 3 × 3 convolution layers with concatenation, ReLU,

skip-𝑧 (Brock et al., 2019), and average pooling. On top of the residual block, there is a

64 × 64 non-local layer with 16 channels, ReLU, MaxPooling, and a linear logit layer (→ 1).

Furthermore, we use both orthogonal regularization (Brock et al., 2017) and initialization (Saxe

et al., 2014) for the entire weight vectors.

4.3 Signal Reconstruction

This is the third step of the proposed defense approach as shown in Fig. A-3.1. We reconstruct

a given 1D signal with its own original phase information and the synthesized spectrogram
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x̂𝑖. Although synthesizing phase vectors with generative models is very challenging, there are

some approaches for building them. However, they add audible hissing and whining noises to

the signal. Signal reconstruction with original phase vectors often provides higher signal to

noise ratio and this might help to more conveniently distinguish an adversarial example from

a noisy signal (Koerich et al., 2020). The reconstruction operation only requires running an

inverse DWT with basic settings such as type of mother function, sampling rate, and frame

length. We use the same settings mentioned in Section 4.1 with additional quantization filter for

normalizing the achieved vectors. For simplicity, we assume that signals are single-channel.

5. Experiments

We have evaluated the proposed defense (CC-DGAN) against three end-to-end adversarial

attacks for both Mozilla’s implementation of DeepSpeech (Mozilla-DeepSpeech, 2017) and

Lingvo system (Shen et al., 2019). These speech-to-text models are trained on Mozilla common

voice (MCV) (MCV, 2019) and LibriSpeech (Panayotov et al., 2015) datasets, respectively. Both

these benchmarking datasets contain above 1,000 hours of voice clips with various utterances.

However, as a common practice (Carlini & Wagner, 2018; Qin et al., 2019; Taori et al., 2019)

we generate adversarial examples only for a portion of such datasets. We randomly select 11,500

and 6,000 samples from the MCV and LibriSpeech datasets for both training the CC-DGAN and

running attacks, respectively. We organize these samples with their associated transcriptions

into Subset-MCV and Subset-LS.

We run white-box (C&W) and black-box (GAA) adversarial attacks separately against the

DeepSpeech model which uses rounds of long-short term memory blocks. We have randomly

selected 1,000 samples from Subset-MCV with their original English transcriptions and we

have targeted 10 different incorrect phrases (because these two attacks do not incorporate EOT)

for effective attacking. Although these attacks directly optimize for achieving the minimum

possible perturbation for the 1D signal, the DeepSpeech model first converts the given input

into a Mel-frequency coefficient (MFC) representation. This adds more computational overhead

to the attack algorithms and prohibits crafting adversarial examples for all the recordings in
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the dataset. The MFC layer splits the given speech signal into 50 frames per second which

means the model can output up to 50 characters per second (y𝑖). Therefore, this frame length is

fairly enough for short signals with quite large transcripts. We extended these two attacks for

targeting silence equivalent to generating empty tokens (𝜖) for an additional 500 samples from

the Subset-MCV. To this end, we updated the loss function as (Carlini & Wagner, 2018):

∑
𝑖

max
𝑡∈{𝜖}

(
𝑓 (�𝑥)𝑖𝑡 −max

𝑡∉{𝜖}
𝑓 (�𝑥)𝑖

𝑡
, 0

)
, 𝑓 : X50 → [0, 1]50·|𝜋 | (A III-6)

where 50 and X denote the number of frames and input space, respectively. Moreover, 𝑡 is the

target phrase defined by the adversary in replacement of the original transcript 𝑡. Targeting 𝜖

token is easier than lexical characters and considerably reduces the computational cost. For

the Lingvo victim model using the robust attack, we also randomly select 1,000 samples from

Subset-LS with their associated transcripts targeting one incorrect phrase (because it incorporates

EOT) with the same settings as mentioned in (Taori et al., 2019). If the attack algorithm cannot

exactly converge to a pre-defined target phrase, we replace it with another sample to keep the

fooling rate at 100%.

For evaluating the proposed CC-DGAN to counteract the three adversarial attacks, we firstly

train them separately on Subset-MCV and Subset-LS. In order to avoid losing sample variety

and to add bias to our generative models, we exclude those nominated samples for adversarial

attacks. For both generator and discriminator networks, we use Adam optimizer (Kingma & Ba,

2014) with 𝛽1=0, 𝛽2=0.9, and a constant learning rate 2·10−4. We also run an exploratory search

for finding the optimal number of steps required for 𝐺 (z; 𝜃𝑔) over 𝐷 (x; 𝜃𝑑). We eventually opted

to use two steps with decay rate 0.99 on two NVIDIA GTX-1080-Ti with 4×11GB memory in

addition to a 64-bit Intel Core-i7-7700 (3.6 GHz) CPU with 64GB of RAM.

As a common issue in adversarial training, the proposed CC-DGAN configuration also undergoes

collapse at about 9.3k and 6.8k iterations for Subset-MCV and Subset-LS, respectively. For

improving the stability of our models, we have employed spectral normalization (Miyato et al.,

2018) only for 𝐺 (z; 𝜃𝑔). However, it turns out oversmoothing the generated spectrogram. For
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Table 3.1 Comparison of different defense approaches against white and black-box

adversarial attacks for DeepSpeech and Lingvo victim models. Better results are shown in

bold face. In the robust attack, Δ is the offset scalar: ‖𝛿𝑖‖ < 𝜁𝑖 + Δ (Qin et al., 2019)

defined by the adversary.

Model Attack Defense Average 𝑘 Δ WER (%) SLA (%)

DeepSpeech (Subset-MCV) + 5-fold Cross Valid.

C&W

A-GAN – – 23.98 ± 2.14 49.17 ± 1.78

Compression – – 17.41 ± 3.07 56.96 ± 2.38

Proposed CC-DGAN 67 – 05.37 ± 2.66 78.15 ± 1.08

GAA

A-GAN – – 18.54 ± 5.31 53.76 ± 3.19

Compression – – 03.81 ± 1.16 70.14 ± 5.72
Proposed CC-DGAN 54 – 03.97 ± 0.44 68.35 ± 2.51

Lingvo (Subset-LS) + 5-fold Cross Valid. Robust Attack

A-GAN – 300 21.23 ± 4.79 58.90 ± 2.42

Compression – 300 19.34 ± 3.91 54.88 ± 4.52

Proposed CC-DGAN 59 400 07.26 ± 3.08 67.36 ± 1.77

rectifying this issue, we replaced long speech signals with shorter recordings, randomly drawn

from the original datasets. The final GAN models used for further evaluations are those achieved

from the checkpoints prior to potential collapse, which happens at about 10k iterations on both

subsets. The 𝑘-step optimization algorithm for achieving z∗𝑖 is depicted in Fig. A-3.2 and finding

a minimal value for it requires generalizable generative models. Regarding our experiments, for

partially unstable and somewhat oversmoothed generators, 𝑘 never converges in less than 400

iterations.

For evaluating the performance of the proposed defense approach against the three aforementioned

adversarial attacks, we use two metrics: (i) word error rate (WER), which is computed as

(𝐼+𝑆+𝐷)/𝑁×100 where 𝐼, 𝑆, 𝐷, and 𝑁 are the total number of insertions, substitutions, deletions,

and reference words, respectively (Qin et al., 2019); (ii) sentence level accuracy (SLA), computed

as 𝑛𝑐/𝑛𝑡𝑜𝑡 where 𝑛𝑐 is the number of samples which could achieve the correct transcript and 𝑛𝑐 is

the total number of test speech signals. Table A-3.1 summarizes the results of our experiments,

where both the SLA and WER are computed for the three defense algorithms. Specifically,

these two metrics measure the performance of the defenses in producing phrases which reduce

to correct transcriptions for the given adversarial signals. Note that these two metrics while

computed for the adversarial attacks, they measure fooling rates of the victim models in producing

incorrect transcriptions as defined by the adversary. For consistent evaluation and in response

to the raised concern of complete model vulnerability against end-to-end adversarial attacks

(Carlini & Wagner, 2018), we set the SLA to 100% for all defense algorithms. Since for effective
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evaluations we target 10 incorrect transcriptions for every speech signal under C&W and GAA

attacks, the reported results are averaged over 10 different runs. Table A-3.1 shows that for

the majority of the cases, the proposed CC-DGAN outperforms both simple compression and

complex autoencoder-based GAN (A-GAN) in removing potential adversarial perturbations

from speech signals and achieving lower WER and higher SLA. The only exception is for the

GAA attack, which implements approximated gradient estimation, where simple compression

achieves a slightly better performance than the proposed CC-DGAN. We noticed that for such

attack, doubling 𝑘 , reduces the WER in about 1.09% and increases the SLA in around 2.58%

compared to 𝑘=54. For better investigating this issue, we attacked both victim models with

the BPDA attack and measured the performance achieved by the proposed defense GAN. Our

investigation on the same crafted adversarial examples uncovered the effectiveness of this attack

on the CC-DGAN. More specifically, for reaching almost the same WER and SLA reported

in Table A-3.1, 𝑘 should be increased 2.37 and 3.12 times more for DeepSpeech and Lingvo

systems, respectively.

6. Conclusion

In this paper, we proposed a new defense algorithm for securing advanced DeepSpeech and

Lingvo systems against three end-to-end white-box and black-box adversarial attacks. The

proposed CC-DGAN uses simple architectures for both the generator and discriminator with few

residual blocks and a reconstructor module. This module regenerates a test input speech with the

synthesized DWT spectrogram and its original phase information for seamless reconstruction.

The experimental results on subsets of MCV and LibriSpeech datasets have shown that the

proposed defense approach considerably outperforms other defense algorithms for the majority

of the cases in terms of achieving lower WER and higher SLA. Since the performance of our

defense approach is highly dependent on the generalizability of the CC-DGAN, we are inclined

to improve its stability and increase its generalizability in our future studies.
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Abstract

This paper proposes a new defense approach for counteracting with state-of-the-art white and

black-box adversarial attack algorithms. Our approach fits in the category of implicit reactive

defense algorithms since it does not directly manipulate the potentially malicious input signals.

Instead, it reconstructs a similar signal with a synthesized spectrogram using a cyclic generative

adversarial network. This cyclic framework helps to yield a stable generative model. Finally, we

feed the reconstructed signal into the speech-to-text model for transcription. The conducted

experiments on targeted and non-targeted adversarial attacks developed for attacking DeepSpeech,

Kaldi, and Lingvo models demonstrate the proposed defense’s effectiveness in adverse scenarios.

2. Introduction

There is a relatively increasing volume of publications on developing adversarial attacks against

speech-to-text (transcription) systems in targeted and non-targeted scenarios (Carlini & Wagner,

2018; Qin et al., 2019; Chen et al., 2020; Schönherr et al., 2020; Esmaeilpour, Cardinal & Koerich,

2021b). These attack algorithms’ effectiveness has been demonstrated for the advanced

DeepSpeech (Mozilla-DeepSpeech, 2017), Kaldi (Povey et al., 2011), and Lingvo (Shen et al.,

2019) transcription systems. In general, these adversarial attacks run an optimization algorithm

for
〈�𝑥orig, ŷ𝑖

〉
where �𝑥orig stands for the original (legitimate) speech signal, and ŷ𝑖 indicates the
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associated target phrase defined by the adversary (Carlini & Wagner, 2018) (Eq. A IV-1).

min
𝛿
‖𝛿‖𝐹 +

∑
𝑖

𝑐𝑖𝐿𝑖 (�𝑥adv, ŷ𝑖) s.t. 𝑙dB(�𝑥adv) < 𝜖,

𝑙dB(�𝑥adv) = 𝑙dB(𝛿) − 𝑙dB(�𝑥orig) | �𝑥orig, �𝑥adv ∈ R
(A IV-1)

where �𝑥adv = �𝑥orig + 𝛿 and 𝛿 denotes the adversarial perturbation achievable through this iterative

optimization formulation. Moreover, 𝑐𝑖 is the hyperparameter for scaling the loss function 𝐿𝑖 (·)
regarding the length of the ground truth phrase y𝑖 (y𝑖 ≠ ŷ𝑖). Furthermore, 𝑙dB(·) computes the

relative loudness (the distortion condition) of the signal in the logarithmic dB-scale, and 𝜖 is the

audible threshold defined by the adversary. There are several variants for Eq. A IV-1 where they

often employ different loss functions, distortion conditions, and expectation over transformations

(EOT).

Carlini et al. (Carlini & Wagner, 2018) introduced the baseline variant of the aforementioned

adversarial optimization formulation (C&W attack), which incorporates the connectionist

temporal classification (CTC) loss function L𝑖 (·) = 𝐿𝑖 (·) (Graves et al., 2006). The main

optimization term in this attack is:

min |𝛿 |22 +
∑
𝑖

𝑐𝑖 .L𝑖 (�𝑥orig,𝑖 + 𝛿𝑖, 𝜋𝑖), 𝜋𝑖
𝜄(·)−→ ŷ𝑖 (A IV-2)

where 𝜋𝑖 refers to the tokens which eventually reduce to ŷ𝑖 after a greedy or a beam search phrase

decoding operation 𝜄(·) (Carlini & Wagner, 2018). This white-box attack is targeted, and it has

been successfully characterized against the DeepSpeech transcription system. However, this

algorithm is not robust against over-the-air playbacks, and it might simply bypass the optimized

adversarial perturbation 𝛿 after replaying �𝑥adv over a noisy environment (Carlini & Wagner,

2018; Yakura & Sakuma, 2018).

The second variant of Eq. A IV-1 was introduced by Yakura et al. (Yakura & Sakuma, 2018). They

proposed an EOT operation to tackle the over-the-air playback issue. This operation implements
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the room impulse response (RIR) filter set and extends Eq. A IV-1 to (Yakura & Sakuma, 2018):

min
𝛿
E𝑡∈𝜏,𝜔 [L(mfcc(�𝑥adv), ŷ𝑖) + 𝛼𝑡 ‖𝛿‖] s.t. ‖𝛿‖ < 𝜖 (A IV-3)

where 𝛼𝑡 is a scalar for adjusting the adversarial perturbation. Furthermore, 𝜏 denotes the

EOT filter set including room impulse response, and 𝜔 is the white Gaussian noise filtration

operation. Both 𝑡 and 𝜔 parameters contribute to capturing environmental distributions with

respect to enclosed room settings. Additionally, mfcc(·) refers to the standard Mel-frequency

cepstral coefficient transform (Davis & Mermelstein, 1980) for converting a signal into a 1D

frequency-level representation. This white-box attack algorithm yields an adversarial speech

signal using:

�𝑥adv ←
[�𝑥orig +Ω(𝛿)] � 𝑡 + 𝜔 (A IV-4)

where � is the convolution operator, and Ω(·) indicates the band-pass filtration operation for

limiting the perturbation between 1 and 4 kHz. Similar to the C&W attack, the Yakura attack also

uses the CTC loss function with a different distortion condition (‖𝛿‖ < 𝜖) and EOT operation.

The reported results on attacking the DeepSpeech model corroborate the higher capacity of such

an adversarial algorithm compared to C&W attack (Yakura & Sakuma, 2018).

Schönherr et al. (Schönherr et al., 2020) introduced the Imperio attack, which is the third variant

of Eq. A IV-1. They presented a more straightforward simulation procedure for implementing

the EOT operation in a noisy environment, which essentially fits in the targeted scenario within

the white-box framework. The EOT operation incorporated in the Imperio attack is adapted to

transcription models using conventional learning blocks such as a hidden Markov model in the

Kaldi system (Eq. A IV-5).

�𝑥adv = arg max
�𝑥𝑖
E𝑡∼𝜏𝑑

[
𝑃(ŷ𝑖 | �𝑥𝑖,𝑡)

]
(A IV-5)

where 𝜏𝑑 is a RIR filter set with adequately large dimension 𝑑, and 𝑃(·) denotes the logits of a

simple deep neural network (DNN) used for decoding ŷ𝑖. This attack’s distortion condition is
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‖𝛿‖ < 𝜖𝑝, where 𝜖𝑝 refers to a psychoacoustic thresholding, and the employed loss function is

the cross-entropy (ℓ𝑛𝑒𝑡 (·)) (Schönherr et al., 2020).

The fourth variant of Eq. A IV-1 is called Metamorph, and it was proposed by Chen et al. (Chen

et al., 2020). The EOT operation incorporated in this attack is based on a novel filter set using

channel impulse response (CIR) operators. CIR is fundamentally similar to the RIR but instead

of only simulating room configurations, it mainly focuses on the speaker-microphone (SM) pairs’

geometrical position (Eq. A IV-6).

min
𝛿

𝛼𝑚𝑙dB(�𝑥adv) + 1

𝑚
L(�𝑥adv, ŷ𝑖) s.t. ‖𝛿‖ < 𝜖 (A IV-6)

where 𝛼𝑚 makes a trade-off between the adversarial signal quality and the attack success rate, and

𝑚 refers to the total number of SM pairs. This attack was primarily developed for the DeepSpeech

model, and it has shown a great performance in debasing the transcription performance of such

an advanced speech-to-text system.

The fifth variant of Eq. A IV-1 was developed by Qin et al. (Qin et al., 2019). They introduced a

very reliable implementation for the EOT operation, which is called the Robust Attack. Moreover,

this white-box attack is targeted and uses both ℓ𝑛𝑒𝑡 (·) and a masking threshold loss function

ℓ𝑚 (·) as follows:

min
𝛿
E𝑡∼𝜏𝑐

[
ℓ𝑛𝑒𝑡 (y𝑖 , ŷ𝑖) + 𝑐𝑖ℓ𝑚 (�𝑥orig,𝑖 , 𝛿𝑖)

]
s.t. ‖𝛿‖ < 𝜖 (A IV-7)

where 𝜏𝑐 is the filter set defined after CIR simulations. The Robust Attack has been developed to

attack the Lingvo transcription system, and the experiments have demonstrated the capability of

this algorithm in crafting high-quality adversarial signals.

Developing a black-box variant for Eq. A IV-1 is very challenging since simulating RIR and CIR

filter sets using the common environmental settings might not be feasible. However, there are

some approximation-based attack algorithms for such an aim: the multi-objective optimization

attack (MOOA) (Khare et al., 2019) and the genetic algorithm attack (Taori et al., 2019). These
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attacks are based on achieving a surrogate model for the victim transcription system via heuristic

or greedy formulation. The behavior of the loss function can be approximated by solving for an

objective function with respect to the model’s incorrect prediction.

This paper proposes an adversarial defense for counteracting with the adversarial attack algorithms

mentioned above. In summary, this paper makes the following contributions: (i) an adversarial

defense algorithm based on a cyclic generative adversarial network; (ii) novel architectures for

the generator and discriminator networks; (iii) characterizing the effectiveness of our defense

approach against white and black-box adversarial attacks.

3. Background: Adversarial Defense

The algorithms for defending transcription systems against adversarial attacks fit the reactive

defense category to the best of our knowledge. Sallo et al. (Sallo, Esmaeilpour & Cardinal,

2021) proposed the only proactive defense by adversarial training for short signals. Generally,

the reactive defense algorithms can be categorized into explicit and implicit subcategories.

The first subcategory includes algorithms that run low or high-level filtration operations directly

on the given input speech signal to bypass (modulate) the potential adversarial perturbation.

For instance, MP3 encoding and multi-rate compression (Das et al., 2018) have been employed

for modulating adversarial signals. These defense approaches are fundamentally inspired by

Das et al. (Das et al., 2017), and one has been demonstrated the positive impact of these

low-level signal compressions on bypassing the adversarial perturbation (fading the adversarial

perturbation in the entire signal). However, a similar reactive approach with a high-level signal

modulation perspective has been proposed by Latif et al. (Latif et al., 2018). This defense

algorithm employs an autoencoder-based GAN (A-GAN) for reconstructing features of the given

speech signal. It has been proven that both these two straightforward reactive approaches might

not be able to bypass strong adversarial signals carefully crafted in enclosed environmental

scenes (Esmaeilpour et al., 2021a).
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The second subcategory of reactive defense approaches includes algorithms that instead of

low or high-level filtrations, synthesize a signal very similar to the given input speech. These

approaches are inspired by Samangouei et al. (Samangouei et al., 2018a), and they implicitly

avoid potential adversarial perturbation without directly manipulating the given speech signal.

The main advantage of defenses in this subcategory is their higher reliability in terms of

preventing gradient vector shattering or obfuscation (see a relevant discussion in (Athalye et al.,

2018b)).

During the last years, generative adversarial networks (GANs), such as multi-discriminator

Mel-GAN (Kumar et al., 2019) and class-conditional GAN (Esmaeilpour et al., 2021a), have

become reliable approaches for signal synthesis. The latter generative model has been mainly

developed for adversarial defense purposes and utilizes shared embeddings with multiple

sequential linear and residual blocks. This approach, called class-conditional defense GAN

(CC-DGAN), iteratively finds a safe input vector (z∗𝑖 ) for the generator network via:

min ‖𝛾 [𝐺 (z𝑖), x𝑖] ‖2
2 , z∗𝑖 ← arg min

z𝑖∈𝑍𝑘

‖𝛾 [𝐺 (z𝑖), x𝑖] ‖2
2 (A IV-8)

where 𝛾 [·] is an adjustment operator52 for measuring the distance between original and adversarial

signal subspaces (Esmaeilpour et al., 2020b; Van Loan & Golub, 1983). 𝐺 (·) and z𝑖 ∈ R𝑑𝑧

denote the generator network and the random latent variable with dimension 𝑑𝑧, respectively.

Moreover, x𝑖 refers to the discrete wavelet transform (DWT53) spectrogram representation

according to the settings mentioned in (Esmaeilpour et al., 2020c). Finally, running an inverse

DWT operation on 𝐺 (z∗𝑖 ) reconstructs a high-quality signal that sounds like the input signal x𝑖 54.

This defense approach has been successfully tested against the adversarial attacks mentioned in

Section 2, but with relatively lower model stability and generalizability in training the generator

network and demanding potentially NP-complete optimization procedure in Eq. A IV-8.

52 Without clipping.

53 With any wavelet mother function.

54 Relative to the ground-truth.



223

4. Cyclic Defense GAN (CD-GAN)

The novel implicit reactive adversarial defense approach that we propose is based on a cyclic

GAN, and it has three steps: converting a speech signal into a DWT spectrogram, finding

a safe vector z∗𝑖 for the cyclic generator network to synthesize a seamless spectrogram, and

reconstructing the speech signal with an inverse DWT operation.

4.1 DWT Spectrogram

Our motivation for generating DWT spectrograms rather than using 1D speech signals or using

other 2D representation is threefold: spectrograms have much lower dimensionality and fit

well with DNN architectures developed for computer vision applications; DWT most likely

outperforms short-time Fourier transform in terms of providing distinctive features for GANs

(Esmaeilpour et al., 2020c); higher stability of the GAN during training (Esmaeilpour et al.,

2021a).

Assuming that 𝑎[𝑛] is a discrete signal of length 𝑛, its DWT can be written as:

DWT[𝜚, 𝑛] = 2𝜚/2
𝑛−1∑
𝜌=0

𝑎[𝜌]𝜓 [2𝜚, 𝜌 − 𝑛] (A IV-9)

where 𝜚 and 𝜌 denote the scale and dilation hyperparameters, respectively. Moreover, 𝜓

is the wavelet mother function, which is the complex Morlet function (Young, 2012). For

obtaining the DWT spectrogram, we compute the power spectrum of this transformation as of

spDWT = |DWT[𝜚, 𝑛] |2. The following subsection explains how to find safe vectors for the main

generator to produce spectrograms seamless to spDWT.

4.2 Spectrogram Synthesis: Safe Vector Optimization

The overview of our proposed algorithm toward achieving a safe vector for the main generator

network (𝐺1) is depicted in Fig. A-4.1. As shown, there are two generators (𝐺1, 𝐺2) in a cyclic

framework in connection with two fully dependent discriminator networks (𝐷1, 𝐷2). Unlike
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some conventional cyclic GANs (e.g., (Zhu et al., 2017b)), we do not provide source and target

inputs to the generators for mapping from one sample to another. We employ 𝐺2 mainly as a

regularizer for 𝐺1 to tackle the stability and mode collapse issues. Concerning the superior

performance of the least-square GAN (LS-GAN) configuration among generative models with

symmetric divergence metrics (Hong et al., 2019), we opt for this configuration for both 𝐺1 and

𝐺2. However, we use different settings for these networks to avoid the potential oversmoothing

issue (Eq. A IV-10 (Hong et al., 2019; Mao et al., 2017)).

min
𝐺 𝑗

1

2
Ez 𝑗 ,𝑖∼𝑝𝑧, 𝑗

[(𝐷 𝑗 (𝐺 𝑗 (z 𝑗 ,𝑖)) − 𝜗1)2
]
,∀ 𝑗 ∈ {1, 2} (A IV-10)

where 𝑝𝑟 and 𝑝𝑧, 𝑗 denote the real and two independent random sample distributions, respectively.

Moreover, we initialize 𝜗1 to one and zero respectively for 𝐺1 and 𝐺2 in compliance with the

standard LS-GAN configuration (Hong et al., 2019). We empirically designed slightly different

architectures for these generators to make a reasonable trade-off between model generalizability

and stability. The main generator contains six hidden layers: a fully connected (4×4×16

channels), two stacked residuals (with 16→8 and 8→4 channels plus 512 filters), and three

consecutive convolution blocks (padded with receptive fields 5×5×1 plus 256 filters) followed by

batch normalization and ReLU activation function. The output layer is a transposed convolution

(Mao et al., 2018) with tanh, resulting in a 128×128×3 spectrogram. The second generator is

more straightforward and contains three sequential 3×3×1 convolutional layers with 128 filters,

skip-𝑧 through these layers (Brock et al., 2019), and average pooling. The output layer of 𝐺2 is a

non-local layer with a 16→4 channel and max-pooling operation. For training the discriminator

networks, we also use the standard LS-GAN configuration policy, which iteratively minimizes

for (Hong et al., 2019; Mao et al., 2017):

min
𝐷 𝑗

1

2
Ex∼𝑝𝑟

[
𝐷 𝑗 (x) − 1)2] +

Ez 𝑗 ,𝑖∼𝑝𝑧, 𝑗

[(𝐷 𝑗 (𝐺 𝑗 (z 𝑗 ,𝑖)) − 𝜗2)2
]
, ∀ 𝑗 ∈ {1, 2}

(A IV-11)
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logit

logit

Figure 4.1 Overview of the proposed safe vector optimization procedure. 𝐺1 (main) and

𝐺2 are generators while 𝐷1 and 𝐷2 are discriminators. Herein, x𝑖 stands for the input

spectrogram, z1,𝑖 ∈ 𝑝𝑧,1 ∼ N(0, 𝐼), and z2,𝑖 ∈ 𝑝𝑧,2 ∼ N(0, 0.4𝐼). Additionally, z𝑐
1,𝑖 and z∗𝑖

indicate the candidate latent variable and the optimized safe vector, respectively.

where 𝜗2 is 〈0,−1〉 for 𝐷1 and 𝐷2, respectively. For avoiding unnecessary complications and

computational overhead, we use an identical architecture for both discriminator networks. This

unique architecture requires a spectrogram with a dimension 128×128×3 in the input layer

on top of the five stacked hidden layers, namely two convolutions and three residuals. For

the convolution blocks, we train 128 filters with receptive fields 3×3×1, followed by batch

normalization and leaky ReLU activation function. On top of the residual blocks, which contain

256 filters with 4→4 and 4→1 channels, respectively, there is one non-local layer with 16

channels, max pooling, ReLU, and a linear logit layer (→1). For training our cyclic GAN, we

extend the cycle-consistency loss function introduced in (Esmaeilpour et al., 2020c) as:

L𝑐𝑦𝑐𝑙𝑖𝑐 (·) = L(𝐺1, 𝐷2) + L(𝐺2, 𝐷1) + 𝛼𝑐L(𝐺1, 𝐺2) (A IV-12)

where 0 < 𝛼𝑐 ≤ 1 is the cyclic scaling coefficient that should be empirically tuned during

training. However, for simplicity and reproducibility purposes, we set this hyperparameter to

0.9.

As shown in Fig. A-4.1, we first minimize the dissimilarity between the input and the synthesized

spectrograms (red rectangle) to achieve the candidate vector z𝑐
1,𝑖. This vector forces the main

generator to yield a spectrogram seamless to x𝑖. We later refine this vector by minimizing the

dissimilarity between the outputs of 𝐺1 and 𝐺2 (blue rectangle). Upon convergence of this

minimization procedure, we achieve the safe vector z∗𝑖 for synthesizing the final spectrogram.
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Table 4.1 Performance comparison of defense approaches against white and black-box

(MOOA) adversarial attacks. Herein, reactive explicit and implicit defense algorithms are

represented by RE and RI, respectively. Additionally, the maximum number of iterations

before complete collapse onsets are shown and modes are computed according to (Che

et al., 2017). These values are averaged over 10 experiments. Outperforming values are

shown in bold-face.

Transcription Model Attack Defense
Iteration

(×10000)

Modes

(×12.5) Type WER(%) SLA(%) STOI LLR

DeepSpeech

C&W

A-GAN 01.59 0.89 RE 29.18 ± 2.1 31.63 ± 2.1 0.84 0.41
CC-DGAN 02.67 2.55 RI 16.75 ± 3.5 60.17 ± 1.2 0.83 0.38

CD-GAN 02.91 4.52 RI 08.19 ± 1.3 71.19 ± 2.3 0.82 0.44

Yakura’s

A-GAN 01.22 0.66 RE 20.57 ± 0.6 41.36 ± 0.4 0.83 0.35

CC-DGAN 02.55 3.05 RI 15.97 ± 1.4 62.19 ± 1.2 0.91 0.32
CD-GAN 02.61 4.87 RI 11.52 ± 1.3 73.11 ± 2.5 0.89 0.34

Metamorph

A-GAN 01.04 0.71 RE 19.97 ± 1.7 56.34 ± 2.6 0.92 0.35
CC-DGAN 02.98 3.18 RI 10.26 ± 2.6 74.64 ± 2.8 0.90 0.36

CD-GAN 02.91 2.55 RI 17.42 ± 1.1 70.82 ± 2.3 0.94 0.41

MOOA

A-GAN 01.27 0.54 RE 19.67 ± 3.6 50.98 ± 3.1 0.92 0.34

CC-DGAN 02.89 3.76 RI 12.32 ± 1.2 62.71 ± 3.5 0.89 0.30
CD-GAN 02.94 4.11 RI 07.36 ± 2.1 71.11 ± 2.4 0.91 0.35

Kaldi Imperio

A-GAN 01.02 0.65 RE 19.58 ± 1.3 51.87 ± 2.1 0.94 0.37

CC-DGAN 02.63 2.97 RI 12.87 ± 2.1 62.99 ± 1.3 0.96 0.32
CD-GAN 02.75 3.63 RI 07.49 ± 1.5 71.01 ± 1.9 0.92 0.34

Lingvo Robust Attack

A-GAN 01.02 0.56 RE 18.88 ± 1.2 58.54 ± 1.6 0.95 0.30
CC-DGAN 02.95 2.77 RI 11.51 ± 2.3 62.58 ± 1.7 0.91 0.33

CD-GAN 02.96 3.29 RI 09.45 ± 1.4 70.96 ± 0.8 0.94 0.34

4.3 Signal Reconstruction

The last step of our adversarial defense approach is to reconstruct the speech signal from the

synthesized spectrogram using the optimized safe vector. Toward this end, we use the main

generator to craft 𝐺1(z∗𝑖 ) ↦→ sp∗
DWT

. This spectrogram not only is very similar to the given input

spectrogram x𝑖 but also does not carry the potential adversarial perturbation. For reconstructing

the speech signal, we run the inverse DWT operation (Meyer, 1992) on the obtained sp∗
DWT

.

5. Experiments

This section explains the conducted experiments on three cutting-edge transcription systems,

namely DeepSpeech, Kaldi, and Lingo. These speech-to-text models are trained on MCV (MCV,

2019) and LibriSpeech (Panayotov et al., 2015) datasets, which contain short (≤ 6 sec) and long

(> 6 sec) voice recordings. We randomly select 15,000 English-speaking samples separately

from these datasets, including different utterances from various ages and genders. We use
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70% of these samples for training the GANs and keep the remaining portion for developing

adversarial attacks, as discussed in Section 2. The main motivation for crafting adversarial

signals only for a part of these datasets is following a common practice in attack development

and analysis (Carlini & Wagner, 2018; Qin et al., 2019; Chen et al., 2020; Schönherr et al.,

2020; Yakura & Sakuma, 2018; Esmaeilpour et al., 2021a). Furthermore, the proposed defense

approach does not depend on the amount of the benchmarking samples.

We converted the training speech signal into spDWT using our modified version of the baseline

wavelet explorer software (Hanov, 2008) for training our cyclic GAN. We set the DWT sampling

rate to 16 kHz with a frame length of 50 ms and an overlapping ratio of 0.5. Finally, we rescale

all the spectrogram to 128×128×3, matching the input layers of the generator networks. All the

training and evaluation procedures were conducted on four NVIDIA GTX-1080-Ti and two Intel

Core-i7-7700 (3.6 GHz, Gen. 10) with 8×11GB and 2×64GB memory, respectively.

For all the attack algorithms, we make identical assumptions for the RIR, CIR, microphone-

speaker position, and room settings as discussed in Section 2. Moreover, we assign five incorrect

phrases (ŷ𝑖) to the targeted and non-targeted attacks (MOOA) randomly selected from the

corresponding datasets. Finally, we compare the performance of the defense algorithms against

these attacks using six objective metrics in three categories: two metrics for measuring the

defense success rate; two metrics for evaluating the quality of the signals after running defenses;

two metrics for assessing the generalizability and stability of the generative models. For the

first category, we implemented sentence-level accuracy (SLA) and word error rate (WER)

as discussed in (Qin et al., 2019). According to the definitions of these metrics (Qin et al.,

2019), a reliable defense approach should result in higher SLA and lower WER. For the second

category, we use log-likelihood ratio (LLR) (Baby & Verhulst, 2019) and short-term objective

intelligibility (STOI) (Taal et al., 2011), which measure the relative quality of the given signals

regarding the environmental noises. These two metrics have an inverse relationship, and for

a signal of higher quality, the LLR is lower. For the third category, we employ the maximum

number of iterations before complete collapse onset (Brock et al., 2019) and a total number of

learned modes (Miyato et al., 2018) for a batch size of 2×512. Table A-4.1 summarizes our
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achieved results averaged over ten repeating experiments. As shown in this table, for most cases,

the proposed adversarial defense approach (CD-GAN) outperforms other defense algorithms

in terms of model stability (higher number of iterations before collapse onset and modes per

batch) and defense success rate (lower WER and higher SLR). According to this table, there is a

direct relation between model stability and defense success rate. In other words, developing

more stable models most likely yields a more reliable defense approach. On the other hand,

our CD-GAN often competitively fails against other defenses in terms of the quality of the

reconstructed signals (lower STOI and higher LLR).

6. Conclusion

This paper introduced a novel adversarial defense algorithm against cutting-edge white and

black-box as well as targeted and non-targeted speech adversarial attacks. Our defense approach

is based on a cyclic GAN framework employing two generator and discriminator networks

provided with the cycle-consistency CTC loss function. These networks implement layers of

convolution and residual blocks for capturing local and global distributions of the training DWT

spectrograms for synthesizing a reliable sample. This procedure helps to reconstruct a signal

almost without adversarial perturbation. Although we have shown that our proposed CD-GAN

outperforms other algorithms both in terms of model stability and defense success rate, it might

not produce high-quality signals. In our future work, we will employ some regularizers on the

cycle-consistency loss function based on human psychoacoustic hearing thresholding to address

this issue. Moreover, we are determined to use a more comprehensive integral probability metric

for training more stable GANs associated with very long and multi-speaker speech signals.
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Abstract

This paper introduces a novel adversarial algorithm for attacking state-of-the-art speech-to-text

systems, namely DeepSpeech, Kaldi, and Lingvo. Our approach is based on developing an

extension for the conventional distortion condition of the adversarial optimization formulation

using the Cramér integral probability metric. Minimizing over this metric, which measures the

discrepancies between original and adversarial samples’ distributions, contributes to crafting

signals very close to the subspace of legitimate speech recordings. This helps to yield

more robust adversarial signals against playback over-the-air without employing neither costly

expectation over transformation operations nor static room impulse response simulations. Our

approach outperforms other targeted and non-targeted algorithms in terms of word error rate and

sentence-level-accuracy with competitive performance on the crafted adversarial signals’ quality.

Compared to seven other strong white and black-box adversarial attacks, our proposed approach

is considerably more resilient against multiple consecutive playbacks over-the-air, corroborating

its higher robustness in noisy environments.

2. Introduction

During the last years and especially after the characterization of adversarial attacks for the

computer vision applications (Szegedy et al., 2014), several investigations have been conducted

on generalizing this threat to the audio recognition and speech transcription models (Esmaeilpour
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et al., 2020b; Carlini & Wagner, 2018; Qin et al., 2019; Esmaeilpour et al., 2020). It has

been proven that adversarial signals exist for both 1D and representation (spectrogram) levels,

which can seriously debase the performance of the cutting-edge speech-to-text models such as

DeepSpeech (Mozilla-DeepSpeech, 2017), Kaldi(Povey et al., 2011), and Lingvo (Shen et al.,

2019). However, developing effective adversarial signals resilient to environmental noises and

room settings is challenging (Yakura & Sakuma, 2018; Szurley & Kolter, 2019). These settings

include the position and characteristics of both the microphone and speaker and the room’s

geometry. Under various settings, simply playing the crafted adversarial signal over-the-air and

recording it by another microphone most likely removes the obtained adversarial perturbation

(Carlini & Wagner, 2018). For addressing this issue, several expectation over transformation

(EOT) operations have been introduced (Qin et al., 2019; Schönherr et al., 2020; Chen et al.,

2020; Abdullah et al., 2019). These operations often employ room filter sets (e.g., channel

impulse response (Chen et al., 2020)) as part of the adversarial optimization procedure to avoid

bypassing the perturbation after playing over-the-air. However, developing EOT is dependent on

some static room assumptions, which might negatively affect the generalizability of the filter

sets (Schönherr et al., 2020; Esmaeilpour et al., 2021a).

In a big picture, the optimization formulation toward crafting an adversarial signal for a speech-

to-text model has two parts: (i) optimization term and (ii) the distortion condition (relative

constraint), as follows (Carlini & Wagner, 2018):

min
𝛿
‖𝛿‖𝐹 +

∑
𝑖

𝑐𝑖L𝑖 (�𝑥adv, ŷ𝑖)︸��������������������������������︷︷��������������������������������︸
optimization term

s.t. 𝑙dB(�𝑥adv)︸����︷︷����︸
distortion condition

< 𝜖 (A V-1)

where 𝛿 is the adversarial perturbation achievable through this iterative procedure for the

original input signal �𝑥org to yield the adversarial signal �𝑥adv (�𝑥adv = �𝑥org + 𝛿). Additionally,

𝑐𝑖, 𝜖 , and ŷ𝑖 are the scaling coefficient, audible threshold, and the targeted incorrect phrase

defined by the adversary, respectively. Furthermore, L(·) denotes the loss function such as

the connectionist temporal classification (CTC) loss (Graves et al., 2006; Carlini & Wagner,

2018), the psychoacoustic loss function (Szurley & Kolter, 2019), cross entropy loss (Qin et al.,
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2019), etc. In this typical formulation, the distortion condition is usually known as the loudness

metric 𝑙dB(·) computed in the logarithmic dB-scale with respect to the human hearing range

(Carlini & Wagner, 2018).

The EOT operations incorporated in the state-of-the-art adversarial attack algorithms often

involve the optimization term in Eq. A V-1 (Qin et al., 2019; Schönherr et al., 2020; Chen

et al., 2020). Herein, we discuss extending the distortion condition in this equation to avoid

implementing the costly EOT-based operations applied on the optimization term. This also helps

to craft more robust adversarial signals. Toward this end, we review some strong adversarial

attack approaches in Section 3. Then, we provide theoretical explanations on developing a

relative constraint (the distortion condition) in Section 4. Finally, we analyze the achieved results

from the conducted experiments on attacking speech-to-text models in Section 5. In summary,

we make the following contributions in this paper:

1. developing an extension for the distortion condition of an adversarial attack formulation

using the Cramér integral probability metric;

2. introducing a white-box attack framework for crafting adversarial signals more robust

against over-the-air playbacks;

3. avoiding time-consuming room impulse response simulations and costly EOT operations in

the adversarial optimization formulation (i.e., Eq. A V-1).

3. Background

In this section, we review the cutting-edge white and black-box adversarial attack algorithms

developed against speech-to-text models. More specifically, we focus on the EOT-based

attacks since they are, to some extent, capable algorithms in crafting over-the-air resilient

adversarial signals (Qin et al., 2019). However, we start with the baseline EOT-free C&W attack

(Carlini & Wagner, 2018) developed for the DeepSpeech speech-to-text system. This algorithm

is based on Eq.A V-1 and introduces a simple yet effective distortion condition for a targeted
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attack scenario as the following (Carlini & Wagner, 2018).

𝑙dB(�𝑥adv) = 𝑙dB(𝛿) − 𝑙dB(�𝑥org) (A V-2)

where 𝑙dB(·) can be scaled by factor of 20 to better fit the human audible range (Carlini & Wagner,

2018). The C&W attack uses the CTC loss function with an assumption of optimizing min𝛿 ‖𝛿‖2
2

for the string tokens 𝜋𝑖 (without duplication) which eventually should reduce to ŷ𝑖 (after greedy

or beam search decoding (Carlini & Wagner, 2018)). Although this distortion metric constraints

the C&W algorithm to craft an adversarial signal almost seamless to the original sample �𝑥org,

it does not impose a strict condition to generate an over-the-air resilient adversarial signal.

Presumably, this is due to making a reasonable trade-off between adversarial signal quality and

attaining small magnitude for the adversarial perturbation 𝛿.

The EOT operation introduced by Qin et al. (Qin et al., 2019) uses the acoustic room simulator

followed by speech reverberation filtrations for crafting resilient adversarial signals in adverse

scenarios (i.e., multiple over-the-air playbacks). This algorithm is known as the Robust Attack,

and it fits in the targeted adversarial category incorporating a variety of room settings for

improving its performance. The optimization procedure of this attack is as follows (Qin et al.,

2019).

min
𝛿
E𝑡∼𝜏

[
ℓ𝑛𝑒𝑡 (y𝑖 , ŷ𝑖) + 𝑐𝑖ℓ𝑚 (�𝑥org,𝑖 , 𝛿𝑖)

]
s.t. ‖𝛿‖ < 𝜖 (A V-3)

where 𝜏 is the EOT filter set predefined (computed according to the room setting) by the

adversary and y𝑖 ≠ ŷ𝑖 where the latter refers to the ground truth phrase associated with �𝑥org.

Moreover, ℓ𝑛𝑒𝑡 (·) and ℓ𝑚 (·) denote the cross entropy and the masking threshold loss functions,

respectively. The Robust Attack has been tested on the Lingvo speech-to-text system and it has

demonstrated a high capacity for crafting resilient over-the-air adversarial signals.

Yakura et al. (Yakura & Sakuma, 2018) introduced a similar EOT operation, which employs

band-pass filtration according to the human cut-off hearing range on top of the simulated room

impulse response (RIR) filter set. Moreover, this attack implements the white Gaussian noise
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(WGN) filtration so as to effectively simulate the environmental noises as the following.

min
𝛿
E𝑡∈𝜏,𝜔∼N(0,𝜎2) [L(mfcc(�𝑥adv), ŷ𝑖) + 𝛼𝑘 ‖𝛿‖],

�𝑥adv =
[�𝑥org +Ω(𝛿)] � 𝑡 + 𝜔 s.t. ‖𝛿‖ < 𝜖

(A V-4)

where 𝜔, mfcc, and 𝛼𝑘 denote the WGN filter drawn from the normal distribution with variance

𝜎2, the Mel-frequency cepstral coefficient transform (Davis & Mermelstein, 1980), and the

scaling hyperparameter defined by the adversary, respectively. Additionally, Ω(·) ∈ [1, 4] kHz

refers to the band-pass filtration operation and � is the convolution operator. Herein, L(·)
stands for the CTC loss function, and it has been adapted to the DeepSpeech victim model. The

reported experiments demonstrated that Yakura’s attack outperforms the C&W in a variety of

environmental scenes (Yakura & Sakuma, 2018). However, at the cost of higher computational

complexity for computing the 𝜏 filter set.

One reliable approach, which implements the RIR simulation with a relatively lower computa-

tional cost is the Imperio attack (Schönherr et al., 2020). This algorithm employs a deep neural

network (DNN) to simulate the RIR filter set and the psychoacoustic thresholding (𝑝𝑠𝑡) for

crafting over-the-air resilient adversarial signals (see Eq. A V-5 (Schönherr et al., 2020)).

�𝑥adv = arg max
�𝑥𝑖
E𝑡∼𝜏𝑑

[
𝑃(ŷ𝑖 | �𝑥𝑖,𝑡)

]
︸���������������������������︷︷���������������������������︸
�𝑥org+𝜅[𝜕ℓ𝑛𝑒𝑡 (y,ŷ)/𝜕 𝑓 ∗ (�𝑥org)]

(A V-5)

where 𝑑, 𝜅, and 𝑓 ∗(·) denote the dimension of the filter set, the learning rate and the post-

activation function of the DNN model mentioned above, respectively. The EOT operation

incorporated in the Imperio attack is dynamic and fits well for various room settings including

meeting, lecture, and office. The distortion condition in this attack is 𝛿 ≤ 𝑝𝑠𝑡 and should be

tuned for every incorrect phrase ŷ. Imperio has been tested on the Kaldi system. Such an attack

has considerably reduced this advanced speech-to-text model’s performance even after playback

over-the-air.
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Since the robustness of an adversarial signal over-the-air can also depend on the characteristics

of both speaker and microphone, the channel impulse response (CIR) filter set is developed as

part of the EOT operation in the Metamorph adversarial attack (Chen et al., 2020). The general

formulation of this attack is as the following.

min
𝛿

𝛼𝑡𝑙dB(�𝑥adv) + 1

𝑀
L(�𝑥org + 𝛿𝑖, 𝜋𝑖) s.t. ‖𝛿‖ < 𝜖 (A V-6)

where 𝛼𝑡 is the balancing coefficient between the quality of the crafted adversarial signal and the

overall success rate of the attack algorithm on the victim model. Additionally, 𝑀 indicates the

number of microphone-speaker positions in an enclosed environment. These hyperparameters

have a key role in crafting robust adversarial signals, which the adversary should precisely locate.

The effectiveness of the Metamorph adversarial attack has been proven for the DeepSpeech

system. However, at the cost of employing various CIR filer sets (Chen et al., 2020).

Developing EOT operations for the black-box adversarial attack is extremely challenging since

the adversary does not have access to the victim model and its associated settings. In response to

this limitation, an over-the-line technique has been developed to surrogate the over-the-air EOT

operations (Abdullah et al., 2019). However, this technique requires numerous experiments to

capture local and global environmental scene distributions. Regarding this concern, there are

two EOT-free black-box adversarial attacks with competitive performance to the over-the-line

approach in attacking the DeepSpeech system: (i) the genetic algorithm attack (GAA) (Taori

et al., 2019), and (ii) the multi-objective optimization attack (MOOA) (Khare et al., 2019). All

these algorithms are often used in targeted attack scenarios as discussed in (Esmaeilpour et al.,

2021a).

4. Proposed Distortion Condition & Attack

This section introduces an extension for the distortion condition of the adversarial attack

formulation (Eq. A V-1) for end-to-end speech-to-text systems in targeted and non-targeted

scenarios. This condition fits well for the optimization formulation of the white-box adversarial
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attack scenario. Our motivation for developing such a distortion condition is threefold: improving

the robustness of the adversarial speech signals after playbacks over-the-air, avoiding costly EOT

operations, and keeping the quality of the crafted adversarial signal as close as possible to the

ground truth input signals. Toward this end, we firstly introduce an integral probability metric

(IPM) to measure discrepancies between the adversarial and original signals. Then, we build

our distortion condition for adversarial attacks based on this IPM. We explain all the required

details in the following subsections.

4.1 Cramér Integral Probability Metric (Cramér-IPM)

One of the standard statistical approaches in measuring the dissimilarity between two probability

distributions regardless of the total number of their independent variables is using an IPM

(Müller, 1997; Dodge & Commenges, 2006). Formally, an IPM is a measure for approximating

the discrepancies between two (generalizable to higher orders) probability density functions

P(·) and Q(·) as (Müller, 1997; Dedecker & Merlevède, 2007):

sup
𝑓 ∈F

[
E�𝑥𝑖∼P 𝑓 (�𝑥𝑖) − E�𝑥𝑖∼Q 𝑓 (�𝑥𝑖)

]
(A V-7)

where 𝑓 (·) is called the critic function and it analytically compares the dissimilarity between

P(·) and Q(·). Moreover, F denotes the possible function class for the critic and it is completely

independent to both the abovementioned probability distributions (Sriperumbudur et al., 2012).

Mathematically, there are many choices for the function class, however we opt to Cramér (F𝐶𝑟)

due to its simplicity, differentiability, and generalizability (Székely, 2003; Bellemare et al., 2017).

The statistical definition for F𝐶𝑟 in the closed form is as (Bellemare et al., 2017; Rizzo & Székely,

2016; Cramér, 1928):

F𝐶𝑟 =
{
𝑓𝜗 : X → R,E�𝑥𝑖∼P

(
𝐷 (1) 𝑓𝜗 (�𝑥𝑖) ≤ 1

)}
(A V-8)

where 𝐷 (1) indicates the first-order derivation operator and the critic function 𝑓𝜗 is smooth with

the zero boundary condition (Székely & Rizzo, 2013). Moreover, �𝑥𝑖 ∈ R𝑛×𝑚 is an 𝑚-channel
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signal with the length 𝑛 and X is a compact subset in R. According to this definition, F𝐶𝑟

restricts the derivative of 𝑓𝜗 (·) within a unit ball to enforce its continuity for higher degrees of 𝜗

(Bellemare et al., 2017; Cramér, 1928).

Assuming the probability distribution functions for the original and adversarial signals are

represented by P(·) and Q(·). Therefore, minimizing over Eq. A V-7 using the F𝐶𝑟 reduces

dissimilarities between random pairs of �𝑥adv and �𝑥org. However, this minimization procedure’s

convergence is highly dependent on the availability of 𝑓𝜗. One possible approach for finding this

critic function could be training a neural network (mainly in the generative model frameworks

(Bellemare et al., 2017; Salimans, Zhang, Radford & Metaxas, 2018)), Nevertheless, it

imposes unnecessary complications and computational overhead to the adversarial optimization

formulation. To tackle this issue, we empirically approximate 𝑓𝜗 with the joint cumulative

distribution function (CDF (Deisenroth, Faisal & Ong, 2020)) of P(·) and Q(·) as the following.

𝑓PQ(·) �
𝑛𝑡∑
𝑖=1

P(�𝑥𝑖,org) + 𝜇·Q(�𝑥𝑐), 𝜇 ∼ U[−1, 1] (A V-9)

where �𝑥𝑐 is a candidate for the adversarial signal �𝑥adv achieved through optimizing for Eq. A V-1

and eventually �𝑥𝑐
𝜇−→ �𝑥adv. Furthermore, 𝑛𝑡 refers to the total number of original samples and 𝜇

is a uniform scaling probability prior to avoid dominating P(�𝑥𝑖,𝑜𝑟𝑔),∀𝑖 over Q(�𝑥𝑐). Using the

critic function 𝑓PQ(·) in Eq. A V-8 provides a meaningful space for measuring discrepancies

between original and adversarial distributions (see similar note in (Mroueh et al., 2018)). Thus,

minimizing over Eq. A V-7 maps �𝑥𝑐 onto the original signal manifold and yields a more robust

adversarial signal (We discuss this claim in Section 5).

4.2 Distortion Condition Using the Cramér-IPM

In this subsection, we introduce our distortion condition based on the Cramér-IPM with the

critic function 𝑓PQ(· ). In fact, we extend the relative constraint mentioned in Eq. A V-1 to:

min
𝛿, 𝑓PQ∈F𝐶𝑟

��E�𝑥𝑖∼P 𝑓PQ(�𝑥𝑖) − E�𝑥𝑐∼Q 𝑓PQ(�𝑥𝑐)
�� (A V-10)
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where 𝑙dB(�𝑥𝑐) < 𝜖 and �𝑥adv = arg min �𝑥𝑐. The intuition behind exploiting this condition is

finding the most possibly optimal signal �𝑥𝑐 which not only sounds similar to �𝑥org according to the

loudness metric 𝑙dB(·), but also lies closer to the original signal manifold. Since E�𝑥𝑖∼P 𝑓PQ(�𝑥𝑖)
incorporates the CDF of original and adversarial signals containing background and room noises,

it implicitly learns the impulse responses available in the speech dataset. This also possibly

makes bypassing 𝛿 very challenging after playbacks over-the-air.

From a statistical point-of-view, the proposed distortion condition forces an attack optimization

formulation to craft an adversarial signal marginally close to the original signals’ distribution.

This is for counteracting with adversarial defense algorithms, which measure the distance

between distribution manifolds to detect an adversarial signal (Esmaeilpour et al., 2021a).

These defense approaches are inspired by Ma et al. (Ma et al., 2018), where it proves the

subspace of adversarial signals is distinct from original and noisy samples (Esmaeilpour et al.,

2020b). In other words, it is possible to measure the distance between subspaces using metrics

defined in orthogonal decomposition forms (e.g., chordal distance in Schur decomposition

space (Esmaeilpour et al., 2020b).) Based on this finding, variants of defense algorithms have

been developed and they have shown a great performance against strong white, and black-box

adversarial attacks (Esmaeilpour et al., 2021a). Therefore, incorporating our proposed distortion

condition into the attack optimization formulation (i.e., Eq. A V-1) helps to yield a more robust

adversarial signal.

The general overview of our proposed attack algorithm is shown in Algorithm V-1. Regarding

this pseudocode, we do not employ any EOT operations in our optimization formulation since

Eq. A V-10 implicitly captures local and global distributions of the signals available in the

comprehensive speech datasets.

5. Experiments

This section discusses the performance of our proposed adversarial attack algorithm, which

employs the extended distortion condition using the Cramér-IPM. We implement Algorithm V-1
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Algorithm-A V-1 Robust adversarial attack with distortion condition using the Cramér-IPM

1 Algorithm-A: Our proposed adversarial attack algorithm against speech-to-text

transcription systems.

Input: �𝑥org, y, ŷ, 𝜖
Output: �𝑥adv

2 �𝑥𝑐 ← �𝑥org; /* initializing */
3 initialize 𝜇 ; /* latent variable */
4 while ŷ = y do
5 𝛿 ← min𝛿 ‖𝛿‖𝐹 +

∑
𝑖 𝑐𝑖L𝑖 (�𝑥𝑐, ŷ𝑖)

6 �𝑥𝑐 ← �𝑥𝑐 + 𝛿
7 while 𝑙dB(�𝑥𝑐) > 𝜖 do
8 draw a random 𝜇 ∼ U[−1, 1]
9 𝛿 ← min𝛿, 𝑓PQ

��E�𝑥𝑖∼P 𝑓PQ(�𝑥𝑖) − E�𝑥𝑐∼Q 𝑓PQ(�𝑥𝑐)
��

10 �𝑥𝑐 ← �𝑥𝑐 + 𝛿

11 end while
12 end while
13 �𝑥adv ← �𝑥𝑐; /* the adversarial signal */

to attack DeepSpeech (Mozilla’s implementation), Kaldi, and Lingvo speech-to-text models

without using neither RIR nor CIR filter sets.

Although the proposed algorithm resembles a targeted adversarial attack and requires defining an

incorrect target phrase (ŷ𝑖), it is generalizable to the non-targeted scenario with the assumption

of choosing a random phrase for ŷ𝑖 other than the ground-truth (y𝑖). Regarding the common

practice in the evaluation of adversarial attack developments that craft adversarial signals only

for a portion of the given speech datasets (Carlini & Wagner, 2018; Qin et al., 2019; Schönherr

et al., 2020; Chen et al., 2020; Esmaeilpour et al., 2021a), we also randomly select 1000 samples

from Mozilla common voice (MCV (MCV, 2019)) and LibriSpeech (Panayotov et al., 2015)

to evaluate the performance of our proposed attack. These two datasets are comprehensive

collections containing utterances from different genders, accents, and ages in short and long

speech recordings. We equally assign ten incorrect targeted and non-targeted phrases (ŷ𝑖) toward

crafting �𝑥adv, for every selected signal �𝑥org.
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Since the implementations of the benchmarking speech-to-text models are different, thus

for attacking these systems we use the CTC loss function (L(·)) for DeepSpeech, and the

cross-entropy loss with masking threshold (ℓ𝑛𝑒𝑡 (·), ℓ𝑚 (·)) for the Lingvo and Kaldi systems as

explained in (Qin et al., 2019; Schönherr et al., 2020). The rest of the settings such as defining 𝜖

and beam search decoding for output phrases (both y𝑖 and ŷ𝑖) follow the instructions explained

in (Carlini & Wagner, 2018). We make the same assumptions in all experiments for a fair

comparison to the Robust Attack, Yakura’s attack, Imperio, GAA, MOOA, and Metamorph. We

implement all the attack algorithms on two machines with four NVIDIA GTX-1080-Ti and two

64-bit Intel Core-i7-7700 (3.6 GHz, Gen. 10) processors with 8×11 GB and 2×64 GB memory,

respectively.

We compare the adversarial attack algorithms’ performance from two points of view: (i) attack

success rate and (ii) adversarial signal quality. For addressing the first view, we measure the word

error rate (WER) and sentence level accuracy (SLA) metrics as they have been characterized for

such an aim (Qin et al., 2019; Derczynski, Ritter, Clark & Bontcheva, 2013):

WER =
(𝐷 + 𝐼 + 𝑆)

𝑁
× 100

SLA =
𝑛𝑐

𝑛𝑡𝑜𝑡
× 100

(A V-11)

where the total number of deletions, insertions, substitutions, and reference phrases have been

represented by 𝐷, 𝐼, 𝑆, and 𝑁 , respectively. Moreover, 𝑛𝑐 denotes the number of adversarial

signals which they could successfully attain the same predefined phrase ŷ after passing through

the speech-to-text model. Additionally, 𝑛𝑡𝑜𝑡 indicates the total number of samples.

For addressing the second view, we use three quality metrics: segmental signal to noise ratio

(segSNR) (Baby & Verhulst, 2019), short-term objective intelligibility (STOI) (Taal et al., 2011),

and log-likelihood ratio (LLR) (Baby & Verhulst, 2019). The first two metrics compute the

absolute quality of the crafted adversarial signals relative to the available ground-truth speech

signals (�𝑥org). The main motivation behind using these two objective metrics is a realistic

measurement of adversarial signal quality since not necessarily a robust adversarial attack yields



240

Table 5.1 Performance comparison of the adversarial algorithms for attacking

speech-to-text models. Values shown for every metric are averaged over 10 experiments

with different ŷ𝑖. Types of the attacks (targeted or non-targeted) are represented by T and NT,

respectively. Additionally, the EOT-based algorithms are check-marked. Herein, 𝑛𝑜𝑡𝑎 stands

for the total rounds of robustness against consecutive over-the-air playbacks using static

positions for the pairs of speaker and microphone. Outperforming results are shown in bold.

Transcription Model Attack WER (%) SLA (%) segSNR STOI LLR Type EOT 𝑛𝑜𝑡𝑎

DeepSpeech

C&W (Carlini & Wagner, 2018) 78.94 ± 2.01 30.74 ± 3.16 21.34 0.86 0.35 T − 0

Yakura’s attack (Yakura & Sakuma, 2018) 80.28 ± 3.14 35.49 ± 0.28 19.57 0.82 0.38 T � 3

Metamorph (Chen et al., 2020) 72.48 ± 1.06 45.84 ± 4.71 17.66 0.84 0.36 T � 1

GAA (Taori et al., 2019) 65.80 ± 2.55 48.35 ± 3.38 17.02 0.79 0.31 T − 1

MOOA (Khare et al., 2019) 68.06 ± 2.71 47.01 ± 1.42 18.46 0.81 0.42 T/NT − 1

Proposed 88.19 ± 3.15 21.69 ± 3.09 18.88 0.88 0.29 T/NT − 4

Kaldi
Imperio (Schönherr et al., 2020) 69.34 ± 0.47 31.49 ± 1.36 24.71 0.91 0.28 T � 2

Proposed 83.51 ± 1.44 25.86 ± 1.94 23.16 0.93 0.27 T/NT − 3

Lingvo
Robust Attack (Qin et al., 2019) 84.37 ± 2.07 28.21 ± 2.31 19.44 0.85 0.41 T � 3

Proposed 89.73 ± 1.75 22.78 ± 2.62 21.58 0.82 0.43 T/NT − 5

a noise-free speech sample. In other words, the crafted �𝑥adv should naturally sound like �𝑥org,

which might carry environmental, echo, and hissing noises. Therefore, higher values for segSNR

and STOI metrics interpret as the closer quality of �𝑥adv to the original signals. Since these two

metrics are not necessarily bounded, comparing adversarial signals’ quality may not be tangible

enough. We use the LLR, which is scaled between zero and one, in response to this potential

concern. There is an inverse relationship between the magnitude of this metric and the quality

of the signals. In other words, for adversarial signals close to their associated �𝑥org, the LLR is

fairly low.

Table A-5.1 summarizes our achieved results. As shown in this table, our proposed attack

algorithm outperforms the other algorithms in terms of WER and SLA. However, it partially

fails against C&W, Imperio, and the Robust Attack in terms of quality of the crafted adversarial

signals. Table A-5.1 also demonstrates that the proposed attack algorithm’s robustness is higher

than others after multiple consecutive playbacks over-the-air.

6. Conclusion

This paper introduced a new adversarial algorithm for effectively attacking the cutting-edge

DeepSpeech, Kaldi, and Lingvo speech-to-text systems. Our proposed approach incorporates a
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novel extension for the relative constraint of the adversarial optimization formulation to improve

the crafted signals’ robustness after multiple playbacks over-the-air. This extension minimizes

over the Cramér-IPM between the probability distributions of the original and adversarial

signals. This minimization operation projects a candidate adversarial signal onto the original

speech recordings’ subspace to counteract with potential defense approaches that measure the

distance between subspaces. We experimentally demonstrated that the proposed white-box

attack algorithm outperforms other advanced algorithms in terms of attack success rate according

to WER and SLA metrics. Moreover, the crafted adversarial signals’ average quality via our

proposed attack is competitive to other algorithms using objective quality metrics of segSNR,

STOI, and LLR. Our approach is EOT-free, and it has shown considerably higher robustness

against consecutive playbacks over-the-air compared to other costly EOT-based adversarial

algorithms. However, we could not achieve more than four playbacks averaged over the three

victim models. We are determined to address this issue in our future works with developing

more constraints on the critic function of the Cramér function class.
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