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RÉSUMÉ 

 
Avec la croissance soutenue de l’énergie éolienne sur les marchés énergétiques, les 

opérateurs des réseaux électriques ont de plus en plus de défis à relever en matière 

d’équilibrage de réseau, le tout afin de minimiser les coûts associés à la gestion des autres 

sources énergétiques.  Le vent étant une source énergétique variable, la prévision de la 

puissance éolienne est donc l’une des solutions qui permettra à ce type d’énergie de devenir 

viable du point de vue économique, tant sur les marchés régulés que dans les marchés 

ouverts.  Dorénavant, il semble qu’il y ait un besoin urgent pour des modèles permettant de 

prédire de manière fiable la puissance éolienne à court-terme (0 – 48 h); ceci, afin de 

maintenir l’intégration de l’énergie éolienne dans le portefeuille énergétique des différentes 

juridictions.  

 

En fonction des besoins de l’industrie éolienne, « Environnement Canada » effectue, depuis 

trois ans, des prévisions météorologiques expérimentales dans l’est canadien à l’aide d’un 

modèle de prévisions numériques à aire limitée (GEM-LAM 2.5 km).  La région couverte 

englobe la péninsule gaspésienne ainsi qu’une partie des provinces maritimes.  Cette région 

couvre plusieurs sites éoliens tels que North Cape.  Ce site est situé à l’Ile du Prince Édouard 

où le Wind Energy Institute of Canada opère un centre d’essais éolien.  Une analyse 

préliminaire des prévisions et une inspection minutieuse de ce site ont permis de démontrer 

que, bien que la résolution du modèle soit déjà relativement haute, elle manque tout de même 

de raffinement afin de bien représenter les phénomènes météorologiques pour ce site côtier à 

topographie complexe.  Pour cette raison, un module géophysique de traitement statistique 

des sorties (Geophysic Model Output Statistic (GMOS)) a été développé et appliqué afin de 

permettre une optimisation de l’utilisation du modèle de prévision météorologique à des fins 

de prévision de la puissance éolienne à court-terme.  GMOS diffère des MOS couramment 

utilisés dans les centres météorologiques par les aspects suivants : 1) il prend en compte les 

paramètres géophysiques régionaux (hauteur topographique, rugosité de surface, etc.) ainsi 
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que la direction du vent; 2) il peut être directement appliqué pour corriger les sorties de 

différents modèles numériques sans entraînement, bien qu’un entraînement soit bénéfique. 

 

Ce module statistique a été entrainé et testé pour le site de North Cape, où il a réduit l’erreur 

quadratique des prévisions de 25 à 30 %.  Cette amélioration significative est observable 

pour tous les horizons temporels ainsi que pour la majorité des conditions météorologiques.  

De plus, la signature topographique de l’erreur de prévision a été éliminée suite à 

l’application du GMOS.  D’ailleurs, le modèle de prévision numérique combiné au GMOS 

offre une prévision supérieure à celle de la persistance dès un horizon de 2 h.  Ce gain n’était 

observable qu’à partir d’un horizon de 4 h sans l’utilisation du GMOS.  Enfin, une validation 

effectuée pour un site établi à Bouctouche (Nouveau Brunswick), présentant des 

améliorations similaires des prévisions de vent de surface, a permis de démontrer 

l’applicabilité générale de la méthode.  

 

Cette étude, présentant un module statistique permettant l’optimisation de l’utilisation des 

prévisions météorologiques à haute résolution, a aussi contribué au développement d’une 

méthodologie afin de mieux comprendre les erreurs de prévisions reliées aux différentes 

conditions météorologiques.  Cet outil d’analyse a permis d’évaluer la contribution d’erreur 

de phase et d’amplitude pour des conditions atmosphériques normales ainsi que pour divers 

évènements météorologiques à caractère dynamique tels que les variations subites de vitesse 

du vent,  le passage de dépressions etc.  Une compréhension accrue des erreurs de prévisions 

ainsi que l’acquisition de prévisions éoliennes plus précises permettront d’augmenter la 

valeur économique de l’énergie éolienne sur le marché. 

 

 

Mots- Clés : énergie éolienne, prévision de puissance, prévisions numériques, couche limite 

atmosphérique, vent de surface, sites complexes, statistiques de sortie, analyse d’erreur 
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ABSTRACT 

 
With the sustained growth of wind energy installed capacity for electricity generation, 

electricity system operators have increasing challenges balancing the electricity grid, notably 

in regards to minimizing the cost of other energy sources dispatch.  Due to the variability of 

wind, wind power generation forecasting is an important issue for the economic viability of 

wind energy, whether in regulated or open markets.  Therefore, there is a pressing need for 

robust short-term (up to 48 hours) surface wind forecast models, and eventually wind power 

forecast models, in order to sustain the integration of wind energy in electricity portfolios of 

jurisdictions.   

 

Computed for the needs of the wind energy industry, three years of experimental 

meteorological forecasts in Eastern Canada are available from Environment Canada 

Numerical Weather Prediction (NWP) model configured on a limited-area (GEM-LAM 2.5 

km) for wind power predictions.  These data include forecasts for the region of North Cape 

(Prince Edward Island) where the Wind Energy Institute of Canada runs a test site for wind 

turbines.  Although the model spatial resolution is already relatively high (2.5 km), 

preliminary statistical analysis and site inspection revealed that the model does not have 

sufficient grid spacing refinement to properly represent the meteorological phenomena on 

this complex coastal site.  For this reason, a Geophysic Model Output Statistic (GMOS) 

module has been developed and applied to optimize the use of the short-term NWP.  GMOS 

differs from other MOS that are widely used by meteorological centers in the following 

aspects: 1) it takes into accounts the surrounding geophysical parameters such as surface 

roughness, terrain height, etc. along with the wind direction; 2) GMOS can be directly 

applied for model output correction without any training although a training of the GMOS 

will further improve the results.  
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This statistical module was trained and tested over the North Cape site and it basically 

improves the predictions RMSE by 25 – 30 % for all time horizons and almost all 

meteorological conditions.  Also, the topographic signature of the forecast error due to 

insufficient grid refinement is eliminated and the NWP combined with the GMOS now 

outperforms the persistence model after a 2 h horizon, instead of 4 h without the GMOS.  

Ultimately, in order to generalize the results, this methodology has been validated by an 

independent test case performed on a site located in Bouctouche (New Brunswick).  Similar 

improvements on the GEM-LAM 2.5km forecasts were observed thus, showing the general 

applicability of the GMOS. 

 

Although the current study presents an optimization of the use of short-term NWP for wind 

power forecasts using a statistical module, it also contributes to the development of a 

methodology and an analysis tool to assess and understand the NWP uncertainties on the 

amplitude and the phase of the surface wind forecast errors for different meteorological 

situations.  A better knowledge of the wind speed and wind power forecast uncertainties, 

along with more accurate short-term wind forecast models, will increase the economic value 

of wind energy on the market. 

 

 

Keywords: wind energy, wind power forecast, numerical weather prediction, atmospheric 

boundary layer, surface wind, complex sites, model output statistics, uncertainty analysis 

 



 

TABLE OF CONTENT 
 

Page 

INTRODUCTION .....................................................................................................................1 

CHAPTER 1  LITERATURE REVIEW ................................................................................4 
1.1 Numerical wind power prediction models .....................................................................4 
1.2 Model output statistics ...................................................................................................5 
1.3 Reference models ...........................................................................................................5 
1.4 Performance evaluation of models .................................................................................6 
1.5 Benefit of ensemble forecasts ........................................................................................8 
1.6 Challenges to overcome .................................................................................................9 

CHAPTER 2  MEASUREMENT DATA .............................................................................11 
2.1 Data quality analysis ....................................................................................................14 
2.2 Anemometer selection .................................................................................................25 
2.3 Atmospheric measurement uncertainty ........................................................................28 
2.4 Wind characteristics .....................................................................................................33 

CHAPTER 3  VERTICAL INTERPOLATION OF THE FORECASTS ............................39 
3.1 Power Law profiles ......................................................................................................39 
3.2 Linear profiles ..............................................................................................................40 
3.3 Logarithmic profiles.....................................................................................................40 
3.4 Comparison of the different vertical interpolations .....................................................42 

CHAPTER 4  NUMERICAL WEATHER PREDICTION MODEL ...................................50 
4.1 Model outputs ..............................................................................................................50 
4.2 Stability parameter computation ..................................................................................51 
4.3 Preliminary analysis .....................................................................................................53 

CHAPTER 5  GEOPHYSIC MODEL OUTPUT STATISTICS ..........................................57 
5.1 Reference interpolation method ...................................................................................57 
5.2 Geo-referenced weighting module ...............................................................................59 
5.3 Linear regressions ........................................................................................................64 
5.4 Artificial Neural Networks ..........................................................................................67 
5.5 Model verification ........................................................................................................70 
5.6 Comparison of the different GMOS ............................................................................73 

CHAPTER 6  STATISTICAL ANALYSIS AND NWP MODEL VALIDATION .............81 
6.1 Assessment of the phase and amplitude error contributions ........................................81 
6.2 Validation of the error assessment methodology .........................................................83 
6.3 Assessment of the forecast errors for complex sites (NWP with GMOS) ...................87 

CONCLUSION ........................................................................................................................94 



IX 

ANNEX I  DATA RECOVERY RATE AT THE BOUCTOUCHE SITE ........................98 

ANNEX II  ANEMOMETER RELIABILITY AT THE BOUCTOUCHE SITE ...............99 

ANNEX III  CHARACTERISTICS OF THE WIND AT THE BOUCTOUCHE SITE ....100 

ANNEX IV  VERTICAL INTERPOLATION AT THE BOUCTOUCHE SITE ..............105 

ANNEX V  COMPARISON OF THE GMOS AT THE BOUCTOUCHE SITE .............107 

ANNEX VI  NWP MODEL VALIDATION AT THE BOUCTOUCHE SITE .................112 

REFERENCES ......................................................................................................................116 
 

 



 

LIST OF TABLES 
 

Page 
 

Table 2.1  Sensor descriptions and positioning on the North Cape anemometer tower ......12 

Table 2.2  Sensor descriptions and positioning on the Bouctouche anemometer tower .....13 

Table 2.3  Sensor range test criteria for the eastern Canadian climate ................................16 

Table 2.4  Sensor relational test criteria for the eastern Canadian climate ..........................16 

Table 2.5  Sensor trend test criteria for the eastern Canadian climate.................................17 

Table 2.6  Data recovery rates for every month of the sample year (North Cape) ..............24 

Table 2.7  Surface roughness computed from the mean wind speed at different heights  
(North Cape) .......................................................................................................26 

Table 2.8  Surface roughness computed from the mean wind speed at different heights 
(Bouctouche) ......................................................................................................27 

Table 3.1  Mean annual wind speed and power forecast difference between linear and 
non-neutral logarithmic vertical wind profiles ...................................................49 

Table 4.1  Description of the GEM-LAM output parameters .............................................51 

Table 4.2  Description of the GEM-LAM output vertical levels .........................................51 

Table 5.1  Improvement of different mathematical interpolation methods (bilinear and  
bicubic) compared to the closest point method (North Cape) ............................58 

Table 5.2  Improvement of different mathematical interpolation methods (bilinear and  
bicubic) compared to the closest point method (Bouctouche) ...........................58 

Table 5.3  Improvement of different simple geo-referenced weighting schemes  
compared to the closest forecast point ................................................................63 

Table 5.4  Improvement of the different regression methods ..............................................74 

Table 6.1  Results of the test cases on systematic, amplitude and phase errors ..................86 

 



 

LIST OF FIGURES 

 
Page 

 
Figure 2.1  North Cape site location (PEI, Canada). .............................................................11 

Figure 2.2  Bouctouche site location (NB, Canada)..............................................................12 

Figure 2.3  Quality control flow diagram. ............................................................................14 

Figure 2.4  Time series of a suspect icing event: a) air temperature, b) barometric  
pressure, c) average wind speed, d) maximum wind speed, e) average wind 
direction and f) STD of the wind direction. ........................................................19 

Figure 2.5  Time series of suspect wind gusts: a) air temperature, b) barometric  
pressure, c) average wind speed, d) maximum wind speed, e) average wind 
direction and f) STD of the wind direction. ........................................................20 

Figure 2.6  Time series of a suspect vertical wind profile: average wind speed...................21 

Figure 2.7  Time series of a suspect event: a) barometric pressure and b) temperature. ......21 

Figure 2.8  Logarithmic vertical wind speed profiles plotted from the mean wind speed  
at two different heights. ......................................................................................26 

Figure 2.9  Vertical wind speed profiles over forest canopy. ...............................................28 

Figure 2.10  Instantaneous wind speed (1 Hz) autocorrelationfunction in relation with the  
time lag. ..............................................................................................................32 

Figure 2.11  Annual and seasonal wind frequency roses at the North Cape site: a) annual,  
b) winter, c) spring, d) summer and e) fall. ........................................................34 

Figure 2.12  Annual and seasonal average wind speed roses at the North Cape site:  
a) annual, b) winter, c) spring, d) summer and e) fall. .......................................35 

Figure 2.13  Annual and seasonal wind energy roses at the North Cape site: a) annual,  
b) winter, c) spring, d) summer and e) fall. ........................................................36 

Figure 2.14  Annual and seasonal Weibull distributions of the wind speed at the North  
Cape site: a) annual, b) winter, c) spring, d) summer and e) fall. ......................37 

Figure 2.15  Annual and seasonal average wind speed diurnal cycles at the North Cape  
site. ......................................................................................................................38 
 



XII 

Figure 3.1  Vertical wind profiles under stable atmospheric conditions at the closest  
NWP point to the measurement mast (North Cape): a) Power Law profiles  
from Justus (1978), b) from Counihan (1975), c) linear profile, d) neutral  
and e) non-neutral logarithmic profiles. .............................................................44 

Figure 3.2  Vertical wind profiles under unstable/neutral atmospheric conditions at the  
closest NWP point to the measurement mast (North Cape): a) Power Law 
profiles from Justus (1978), b) from Counihan (1975), c) linear profile,  
d) neutral and e) non-neutral logarithmic profiles. .............................................45 

Figure 3.3  Vertical wind profiles under stable atmospheric conditions at the closest 
computation point with geographical characteristics similar to the site  
(North Cape): a) Power Law profiles from Justus (1978), b) from Counihan 
(1975), c) linear profile, d) neutral and e) non-neutral logarithmic profiles. .....46 

Figure 3.4  Vertical wind profiles under unstable/neutral atmospheric conditions at the  
closest computation NWP point with geographical characteristics similar to  
the site (North Cape): a) Power Law profiles from Justus (1978), b) from 
Counihan (1975), c) linear profile, d) neutral and e) non-neutral logarithmic 
profiles. ...............................................................................................................47 

Figure 3.5  Comparison of non-neutral logarithmic and linear profiles at the North Cape  
site. ......................................................................................................................48 

Figure 4.1  Photos of North Cape and the cliffs surrounding the wind test site. ..................54 

Figure 4.2  Plan of North Cape wind test site with part of the GEM-LAM horizontal  
grid. .....................................................................................................................55 

Figure 4.3  Annual wind speed forecast RMSE rose for the North Cape site  
(closest forecast point). .......................................................................................56 

Figure 5.1  Representation of the geographical parameters. .................................................59 

Figure 5.2  Representation of the multilayer ANN architecture. ..........................................68 

Figure 5.3  ANN forecast RMS error for different parameters: a) number of nods,  
b) learning rate and c) cross validation and momentum rate. .............................71 

Figure 5.4  Evolution of the performance of the a) D-MP linear and b) D-MP ANN. .........72 

Figure 5.5  Measured annual wind frequency rose. ..............................................................72 

Figure 5.6  Scatter plot of the measured and the forecasted wind speed  
(northern direction sector). .................................................................................75 



XIII 

Figure 5.7  Wind speed forecast RMS error for different time series at the North Cape  
site: a) local time and b) forecast horizon (up to 48 h). ......................................77 

Figure 5.8  Wind speed forecast RMS error for different meteorological parameters at  
the North Cape site: a) wind speed, b) atmospheric stability (bulk  
Richardson number), c) atmospheric pressure and d) air temperature. ..............78 

Figure 5.9  Wind speed forecast RMS error rose of each regression method at the North  
Cape site: a) closest point, b) geo-referenced weighting, c) simple linear 
regression, d) D-MP linear regression and e) D-MP ANN. ...............................79 

Figure 5.10  Improvement rose of each regression module compared to the closest point  
at the North Cape site: a) geo-referenced weighting, b) simple linear  
regression, c) D-MP linear regression and d) D-MP ANN. ...............................80 

Figure 6.1  Simple test cases on a) systematic, b) amplitude and c) phase errors. ...............84 

Figure 6.2  Legend for the NWP uncertainty assessment on amplitude and phase errors. ...86 

Figure 6.3  a) Variation of the wind speed forecast error as a function of the time  
window duration and b) autocorrelation function of the forecasted wind  
speed. ..................................................................................................................87 

Figure 6.4  Wind speed forecast errors for different time series at the North Cape site:  
a) local time and b) forecast horizon (up to 48 h)...............................................90 

Figure 6.5  Wind speed forecast errors for different meteorological conditions at the  
North Cape site: a) wind speed, b) atmospheric stability (bulk Richardson 
number), c) atmospheric pressure and d) air temperature. .................................91 

Figure 6.6  Wind speed forecast error roses at the North Cape site: a) RMSE, b) phase  
error, c) amplitude error and d) systematic errors. .............................................92 

Figure 6.7  Wind speed forecast errors for dynamic meteorological events at the North  
Cape site: a) pressure variations, b) temperature variations, c) wind speed 
variations and d) wind direction variations. .......................................................93 

 



 

ABBREVIATIONS AND ACRONYMS 
 

AGL Above ground level 

ANN Artificial neural networks  

AST Atlantic standard time  

AVG Average  

AWS Associated Weather Services 

CFD Computational fluid dynamics 

DISP Dispersion 

E East  

MP Multi-point 

D-MP Directional multi-point 

ENE East North East  

ESE East South East  

GEM Global environment multiscale model  

GMOS Geophysic model output statistic  

GMT Greenwich mean time 

IEC International Electrotechnical Commission  

IREQ Hydro-Quebec’s Research Institute 

LAM  Limited area model  

LMS Least mean square  

MAE Mean absolute error  

MAX Maximum  

MIN Minimum  

MLP Multilayer perceptron  

MOS Model output statistics  

N  North  



XV 

NB New Brunswick  

NE North East  

NN Nearest neighbour 

NNE North North East  

NNW North North West  

NSERC Natural Sciences and Engineering Research Council of Canada  

NW North West  

NWP  Numerical weather prediction  

PEI Prince Edward Island  

RMSE Root mean squared error  

S South  

SDBias Difference between standard deviations 

SE South East  

SSE South South East  

SSW South South West  

STD Standard deviation  

SW South West  

USA United States of America 

W West 

WEICan  Wind Energy Institute of Canada 

WESNet Wind Energy Strategic Network  

WNW West North West 

WSW West South West  

 



 

INTRODUCTION 

 

Due to the global warming and to the many consequences of energy generation, industries 

and governments are promoting and developing power generation from renewable sources 

such as wind power.  This type of energy has reduced impacts on the environment compared 

to more conventional power plants like nuclear, oil, natural gas and coal.  As a matter of fact, 

in some European countries, up to 21 % of the energy generation comes from wind power 

(e.g. Portugal 9 %, Spain 12 % and Denmark 21 % (Global Wind Energy Council, 2008)) 

and this type of clean energy is also increasingly being adapted and used in North America.   

 

One of the major concerns of integrating wind energy into electricity grids is the variability 

of the wind, and therefore, the power.  With the sustained growth of wind energy installed 

capacity for electricity generation, electrical system operators need large amounts of spinning 

reserves from other energy sources to compensate for the fluctuations from the wind power, 

thus greatly affecting the cost of energy production.  They also have increasing challenges 

optimizing the energy sources dispatch and minimizing the electrical network balancing 

costs.  Therefore, wind power generation forecasting is an important issue for the economic 

efficiency of wind energy.  More robust short-term (up to 48 hours) wind power forecasts 

will contribute to optimize the scheduling of conventional power plants and optimize the 

value of wind energy within the market in order to sustain the integration of wind energy in 

electricity portfolios of jurisdictions.   

 

Three years of experimental meteorological forecasts in eastern Canada are available from 

Environment Canada Global Environment Multiscale Numerical Weather Prediction (NWP) 

model configured on a limited-area uniform 2.5 km horizontal grid spacing (GEM-LAM 2.5 

km) for wind power predictions.  These data also include forecasts for the region of North 

Cape on Prince Edward Island (PEI, Canada) where the Wind Energy Institute of Canada 

(WEICan) runs a test site for wind turbines and the PEI Energy Corporation operates a 10 

MW wind farm.  WEICan records wind speed at six different heights as well as wind 

direction, temperature and barometric pressure at single heights from a 60m mast, while the 
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PEI Energy Corporation records the total power production, the wind speed and the wind 

direction of each turbine at the same site.  The forecasts, the power production and the 

atmospheric measurements use the same data format and the same time intervals (hourly 

averages), which facilitates model evaluation.  With these two partners, it is thus possible to 

correlate model uncertainties to site characteristics or meteorological events and finally, to 

improve the forecast method itself.   

 

The first chapter of this thesis gives a brief introduction of the state of the art on short-term 

wind forecasting and uncertainties, while an analysis of the database quality is performed in 

Chapter 2.  Since data from different sources are available, a simple methodology is used to 

identify outliers.  Data from both forecast and measured series associated to outlying data are 

removed in order to prevent errors due to outliers.  Also, since vertical heat fluxes and 

temperature stratification have an impact on the vertical wind profile (see Chapter 1), low 

level thermal stability values derived from forecast outputs are integrated in the vertical 

interpolation of the wind speed to the anemometer height in order to improve the accuracy of 

this interpolation (Chapter 3).  

 

In order to improve the Numerical Weather Predictions (NWP), a preliminary analysis over 

the North Cape site is conducted to define the parameters that shall be used to implement a 

Geophysic Model Output Statistics (GMOS) module (Chapter 4).  The main objective of this 

research work is to improve short-term wind forecasting model by developing and applying 

different types of statistical modules (linear regressions, Artificial Neural Networks (ANN), 

etc.) to predict more precisely the wind speed as a function of the site characteristics and 

meteorological parameters (Chapter 5).  Statistical techniques have been preferred over 

physical micro-scale models as they are computationally inexpensive (see Chapter 1).  

Calibration of the GMOS is done using one year of data and then, the evaluation phase takes 

place over the remaining period.  Note that, in order to generalize the results, a validation of 

the complete methodology is also performed using a similar meteorological tower owned by 

Université de Moncton which is located in Bouctouche (New Brunswick (NB), Canada).   
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Throughout this work, in order to express the forecast error characteristics, many statistical 

criteria and error indicators are computed while figures and graphs are produced to illustrate 

the different results.  Mainly, the mean absolute error (MAE) evaluates the error directly in 

terms of wind speed prediction; the root mean squared error (RMSE) evaluates the error in 

terms of wind speed prediction and verifies the error distribution; the bias evaluates the 

systematic error.  Note that the standard deviation (STD), being a component of the RMSE, 

can also be used to verify the error distribution, but as the RMSE will be decomposed in 

Chapter 6 to represent different characteristics of the forecast errors, this criteria is preferred 

over the STD.  In all cases, these criteria are normalized with the site annual mean wind 

speed to maintain the results independent from the site itself.  Furthermore, to compare 

different models, an improvement indicator is also used.  The final section of this thesis 

(Chapter 6) presents the analysis of the short-term wind forecasts uncertainties.  This 

expanded work is done using amplitude and phase error description as well as exploratory 

analyses to detail the uncertainty characteristics and different error tendencies or evolution in 

time.  This analysis is used as a dynamic approach to evaluate the contribution of 

meteorological events to forecast errors; meteorological situations related to high uncertainty 

of short-term wind predictions can then be identified.   

 

The objective of the current study is to optimize the use of short-term NWP for complex sites 

by applying statistical methods.  The conclusions of this assessment contribute to the 

development of the forecast model with Environment Canada by applying the GMOS 

developed and notably by identifying meteorological events with high uncertainties by means 

of the evaluation protocol being developed.  Ultimately, a better knowledge of these 

uncertainties and better wind forecasts will increase the economic value of wind energy in 

the market. 



 

CHAPTER 1 

 

LITERATURE REVIEW 

1.1 Numerical wind power prediction models 

Landberg et al. (2003) and Giebel et al. (2003) provide complete reviews of wind power 

prediction models.  They show that most short-term wind power forecast models use the 

available regional NWP as input parameters, usually geostrophic wind speed and direction.  

Generally, those NWP models have a coarse spatial resolution ranging from 5 to 25 km.  

Therefore, the first step in wind power predictions is to estimate the wind resources at the 

exact wind farm location (wind speed and direction).  This downscaling operation is 

generally done using a physical Limited Area Model (LAM) with higher resolution (meso-

scale or micro-scale) and employing the global NWP as initial lateral boundary conditions.  

Also, high resolution topography and surface roughness measurements are used to 

characterize the site.   

 

Then the wind speed at the site is generally scaled down to the turbine rotor height by 

applying a logarithmic vertical profile for neutral atmospheric stability.  Landberg (1998) 

shows that it is also possible to correlate the geostrophic wind with the surface wind by using 

a simple relation, assuming the geostrophic drag law as a linear function.  Considering 

different surface roughness, along with the geostrophic wind speed and direction, he points 

out that it is possible to predict surface wind speed directly from the geostrophic wind under 

neutral atmosphere.  He also demonstrates that the variation in the wind direction with height 

(Ekman spiral) is one of the most difficult parameter to predict and cannot be simplified into 

a simple relation.  Nonetheless, wind speed can be predicted using simple methods with a 

relatively good accuracy (in comparison with micro-scale models).  Finally, correlations are 

generally developed using the turbine power curves to convert the surface wind to electrical 

power.  The wind power forecast models can also take into account the wind farm layout to 

integrate the wake effect of a turbine on the aerodynamics of the whole wind farm into the 

final wind power forecast. 
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1.2 Model output statistics 

Most wind power prediction models use Model Output Statistics (MOS) to correct biases and 

the general amplitude errors (auto-regressive statistical models, ANN, etc.).  When used off-

line, MOS are calibrated using historical wind farm data in order to search for the optimal 

statistical parameters.  If the power production data are available online, MOS can be 

calibrated in real time.  Therefore, online data offer many advantages.  Tuning off-line MOS 

needs considerable efforts compared to self calibrating MOS; online MOS adapts themselves 

to annual and seasonal variations, farm layout and data quality.  Also, Kariniotakis et al 

(2004) show that Kalman filtering techniques clearly improve NWP systematic errors for 

linear (e.g. temperature) and non-linear parameters (e.g. wind speed).  Since statistical 

techniques are computationally inexpensive, they conclude that it is worthwhile using them.  

With a proper MOS, systematic errors remain low.  Thus, there remain two types of random 

errors still occurring in wind power forecast: amplitude and phase errors.  The amplitude 

error misjudges the intensity of a meteorological event and the phase error misplaces the 

event in time.  Therefore, since the wind power forecast is affected by both the intensity and 

occurrence of the wind, work is needed to assess the uncertainties of models on the amplitude 

and the phase errors of wind speed forecasts. 

 

1.3 Reference models 

When comparing different NWP models to obtain their performance evaluation, it is 

interesting to first define a reference model using only simple physical considerations 

(Madsen et al., 2004).  Ten years ago, persistence models, where the future wind is assumed 

to be the same as the last measured wind speed, along with climatology predictions, using the 

annual mean wind speed, were used as reference models.  These basic models were used for 

their simplicity and because persistence is excellent for short-term forecasts up to 3 - 6 hours 

(Landberg and Watson, 1994; Liu, 2009).  This is explained by the fact that the atmospheric 

motion is driven by pressures systems which changes much more slowly than wind 

turbulence, since the time scale of pressures systems is in the order of days. 
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More recently, Nielsen et al. (1998, p. 29) defined a new reference model because they found 

that “it is not reasonable to use the persistence model when the forecast length is more than a 

few hours.”  Thus, they merged both the persistence and the climatology prediction models.  

To get the new reference model, they linearly combine the old reference models for each 

forecast horizon.  This new model performs better than both individual models for all time 

horizons.  Since then, this new reference model is used to compare the different NWP models 

being analyzed for different time horizons.  Note that the new reference model has to be 

calibrated with measured time series to determine the statistical parameters using the 

autocorrelation of the wind speed from measured time series (Madsen et al., 2004).  

Therefore, it is important to split the database and clearly define the calibration data (as for 

any learning model) and the test data for the error analysis.  Then the performance evaluation 

of the model has to be done with the test data. 

 

1.4 Performance evaluation of models 

Before carrying out the performance evaluation with different criteria, it is important to 

verify the quality of the data.  One can perform a visual check of the data to ensure that there 

are no outliers within the data (e.g., zero wind speed due to icing of an anemometer) or, if 

data are available from different measurements, they can be compared directly to identify the 

outliers.  Kariniotakis et al. (2004) also points out that it is necessary to use common data 

(NWP, power production and atmospheric measurements) and common data format for 

proper model comparison.  Then, in the standardized protocol for performance evaluation of 

prediction models (Madsen et al., 2004), a guideline is presented to properly use statistical 

criteria to determine the power prediction uncertainties.  It is recommended using many 

statistical criteria, to express different error characteristics.   

 

In order to evaluate the errors directly in terms of amplitude, it is recommended to use the 

MAE, while the STD is used to evaluate the error distribution to get the confidence interval 

based on the Gaussian distribution.  Note that larger absolute errors have larger effects on the 

RMSE than on the MAE.  Therefore, when used along with the MAE, the RMSE can be used 
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to obtain details on the error distribution.  The bias can still be computed to verify the 

systematic error, since there is no perfect MOS.  In all cases, it is important to normalize 

these criteria with the installed power capacity of the wind farm or the mean wind speed.  

This operation makes the results independent from the wind farm or the site itself.  When the 

objective is to compare prediction models, it is recommended to use the improvement 

criterion, also referred to as “skill” score.  This criterion is defined as the difference between 

the error of the reference model ( ) and the analyzed model error ( ), normalized 

with the reference model error ( ). 

 

     ∞, 1   (1.1) 

 

The improvement can be computed for each of the criteria presented above.  An 

improvement score of zero means that the model performs as well as the reference model.  

Conversely, a perfect model would get a score of one; while a negative score means that the 

reference model performs better than the analyzed model.   

 

Madsen et al. (2004) also recommend the use of exploratory analyses to detail the uncertainty 

analysis.  A histogram plot or a cumulative squared error graph can help to illustrate different 

error tendencies or evolution in time.  These analyses can point out a time period that needs 

further investigations (due to changes in the NWP).  Kariniotakis et al. (2004) use the 

forecast with errors lower than 10% to visually compare the analyzed models in a graph.  

They also use the minimum and maximum values of the errors as exploratory analyses to 

characterize the model uncertainties.  The general results of the performance evaluations 

need to be expressed for a precise time horizon (generally 6 or 12 h), for some time periods 

(seasonal) or for meteorological events. 
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1.5 Benefit of ensemble forecasts 

It is well known that the accuracy of the NWP models is a major concern in wind power 

predictions.  Doubling the spatial and temporal resolution of the NWP models would increase 

the computational time by a factor of at least eight.  But the exact same computational time 

could be used to run an ensemble of eight members (combining different NWP models) in 

order to obtain a better forecast.  A solution to this problem is to use NWP ensembles to 

significantly reduce the RMSE.  It is shown that a combination of an ensemble of predictions 

outperforms the individual NWP members (Lange et al., 2006) and ensemble forecasts can 

also give the confidence level of the predictions.  Such combination is done by statistically 

weighting the NWP for different weather classes.  Ensemble forecast can be achieved either 

by using different NWP models, by using different parameterization of the same model or by 

varying the input data (Nielsen et al. 2004 and Nielsen et al. 2007a).   

 

Nielsen et al. (2007a) point out that the operational robustness (reliability or accuracy) of a 

model is highly increased by using data from different sources.  Nielsen et al. (2004) also 

achieve ensemble forecasts using different parameterization of the same model or by using 

perturbed initial conditions.  Statistical methods combining the NWP and the new reference 

model is another way to get sophisticated bias correction (e.g. Wind Power Prediction Tool 

model).  Based on a combination of the different forecast properties (variance, kurtosis, 

skewness, etc.) and the weather conditions, with low linear correlation between the different 

members, ensemble forecast almost guarantee improvements of the model (Nielsen et al., 

2007b).  In this work, it is also recommended to realize ensemble forecast using only few 

good uncorrelated forecasts, rather than a multitude of correlated forecasts.  The statistical 

weighting and bias correction of the ensemble forecast can be computed using error, variance 

or meteorological characteristics criteria.  Like MOS, ensemble forecast models tend to give 

better results (lower MAE and higher correlation) with regular recalibration or online auto-

calibration (Nielsen et al., 2007b).   
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1.6 Challenges to overcome 

In most wind farm applications, the end users (wind farm managers, transmission system 

operators, energy service suppliers and traders) are not the ones who run the NWP models; 

rather, they only use the predictions.  The end users experience directly the consequences of 

the forecast errors, such as the variation in the price of energy on the market, supply 

contracts, operating costs and security concerns.  Therefore, it is important to provide an 

appropriate estimate of the forecast error. 

 

Many studies show that it is difficult to forecast sudden and pronounced changes in the 

weather produced by meteorological events such as the passage of a meso-scale front.  For 

instances, Lange and Heinemann (2003) show that forecast errors are highly related to the 

local meteorological events.  Days with typical meteorological conditions can be classified 

using synoptic meteorology (historical data including pressure as well as wind speed and 

direction).  They use one average error value per day to compare the different groups and 

they find a profound difference within different weather situations.  Dynamic events, like low 

pressure systems, produce much higher forecast uncertainties than quasi static ones, such as 

high pressure systems.  Cutler et al. (2007) have similar conclusions about wind power ramps 

(high phase and amplitude errors). 

 

Kariniotakis et al. (2004) point out an important diurnal variations of the MAE for some 

European NWP models, indicating that there is still a lot of work to do to integrate surface 

heat fluxes (Landberg and Watson, 1994) and temperature stratification (Lange and 

Heinemann, 2003) in these models.  These phenomena related to atmospheric stability are 

still quite difficult to predict.  Similarly, Kariniotakis et al. (2004) observe that model 

uncertainties are directly related to the terrain complexity.  In another study, Nielsen et al. 

(2007a) show that using planetary boundary layer stability measures derived from 

meteorological forecasts improves the forecast for complex sites.  These results suggest 

including some physical parameters (atmospheric stability or terrain characteristics) in MOS 

to get more accurate predictions, especially for sudden meteorological events.   
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Subsequently, according to the needs of electrical systems operators, the objective of the 

present study is to develop a GMOS which integrates terrain and wind characteristics to 

improve the wind forecast of a NWP model, particularly in complex terrain.  Also, it is 

intended to integrate stability as derived from meteorological forecast in the vertical 

interpolation of the wind speed forecast.  The purpose of these assessments is to contribute to 

the development of the forecast model used at Environment Canada by applying such 

techniques and notably by identifying meteorological events with high uncertainties by 

means of an evaluation protocol.  Finally, phase, amplitude and systematic errors 

decomposition intend to help defining NWP research priorities in improving wind energy 

forecasting.   



 

CHAPTER 2 

 

MEASUREMENT DATA 

At the North Cape site, the WEICan records wind speed at six different heights as well as 

wind direction, temperature and barometric pressure using a mast located at 47.054082 N, 

63.99865 W (see Figure 2.1).  Except for the atmospheric pressure, the exact same data is 

gathered at the Bouctouche tower located at 46.472217 N, 64.73915 W (see Figure 2.2).  

These 60 m towers have respectively a 0.3 m (triangular lattice tower) and 0.152 m (tubular 

tower) width.  Figures 2.1 - 2.2 present the location of both sites: the cross represents the 

anemometer tower while the grid represents a subset of the Environment Canada GEM-LAM 

horizontal grid for wind predictions.  Tables 2.1 - 2.2 present the different sensor types and 

their configuration on both towers. 

 

 

 

Figure 2.1 North Cape site location (PEI, Canada). 
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Figure 2.2 Bouctouche site location (NB, Canada). 

 

Table 2.1 Sensor descriptions and positioning on the North Cape anemometer tower 

 

# Sensor model Height (m) Boom length (m) Orientation (°)

N1 NRG Type 40 Maximum Anemometer 9.83 0.89 295 

N2 NRG Type 40 Maximum Anemometer 16.95 0.97 295 

N3 NRG Type 40 Maximum Anemometer 26.96 1.02 295 

N4 NRG Type 40 Maximum Anemometer 39.79 1.06 295 

N5 Barometric Pressure Sensor 61205V 41.50 - - 

N6 NRG 200 Series Wind Vane 48.82 0.83 55 

N7 Campbell Scientific Temperature 

Probe-107/108 

49.22 - - 

N8 NRG Type 40 Maximum Anemometer 49.70 1.32 295 

N9 NRG Type 40 Maximum Anemometer 58.37 1.44 295 

 

Note that the atmospheric measurements (10 minute averages and STD from 1Hz data), 

along with the forecasts, use the same data format and the same time intervals which allows 

proper model evaluation.  It is important to note that the first year of the measurement data is 
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used to train the different statistical modules that are implemented for both sites (Chapter 5).  

Then, for the evaluation phase (Chapter 6), it is suggested to use at least eight month of data 

(one complete year is recommended) in order to produce results that are representative of the 

model behaviour in an actual wind power plant, which operates all year around.  This 

recommendation is based on the fact that model evaluation over shorter period than eight 

months shows non representative results: insufficient evaluation data put emphasis on a 

certain season, which is not desirable when assessing the evaluation of the general 

performance of a model.  Yet, two complete years of data (May 2007 to April 2009) are 

available for the North Cape site, but only 22 month of data (July 2008 to April 2010) are 

available for the Bouctouche site.  Therefore, the first year of both time series is used for the 

training phase and the remaining period is set as the validation database.  

 

Table 2.2 Sensor descriptions and positioning on the Bouctouche anemometer tower 

 

# Sensor model Height (m) Boom length (m) Orientation (°)

B1 NRG Type 40 Maximum Anemometer 10.0 1.5 315 

B2 Campbell Scientific Temperature Probe 

107/108 

3.0 - - 

B3 NRG Type 40 Maximum Anemometer 30.0 1.5 315 

B4 NRG Type 40 Maximum Anemometer 40.0 1.5 315 

B5 NRG Type 40 Maximum Anemometer 50.0 1.5 315 

B6 NRG 200 Series Wind Vane 58.0 1.5 345 

B7 NRG Type 40 Maximum Anemometer 60.0 1.5 315 

B8 NRG Type 40 Maximum Anemometer 60.2 1.5 135 

 

With the training and validation databases set for both sites, it is now possible to perform the 

data quality analysis.  Since measurements from different sensors are available, a simple 

methodology is used in section 2.1 to identify outliers.  Then, in section 2.2, an analysis is 

performed to select the appropriate anemometers that have to be used to test and validate the 

NWP model.  In Tables 2.1 - 2.2, it is possible to note that every sensor is mounted no closer 
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than 1.5 times the tower width to avoid high flow distortion due to the mast (Kaimal, 1994) 

which is analyzed in detail in section 2.3.  Thus, a complete analysis of the measurements 

uncertainty is conducted to verify that the database is suited for the NWP model evaluation.  

Finally, section 2.4 presents the wind characteristics on the sites. 

 

2.1 Data quality analysis 

Before processing the data and assessing any model validation, it is essential to analyse the 

quality of the data sets.  Following the data validation methodology proposed by the 

Associate Weather Services (AWS) Scientific (1997), a computer based routine is coded to 

automatically identify suspect values.  Then a case-by-case verification is done to ensure that 

only erroneous values are removed from the database, permitting a high data recovery rate.  

The validation procedure, illustrated in Figure 2.3, is grouped in three different categories: 

data sequence checks, measured parameter checks and data treatment.  The data sequence 

check is done to ensure that the records are complete.  Verifying the number of records for 

each parameter compared to the time series allows to find missing sequential values.  In fact, 

for the North Cape site, some icing events and some electrical failure are already indicated in 

the files by WEICan and hourly data are removed.  This first check indicates the total number 

of record available for the analysis among the raw data. 

 

 

 

Figure 2.3 Quality control flow diagram. 
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Subsequently, it is possible to verify the records of each measured parameters.  Since a single 

criterion is unlikely to detect every problematic situation, three different types of test are 

used to identify outliers.  A range test is used to ensure that all collected data are logged into 

physical value ranges: there should not be any negative values (except for the temperature); 

usual sensor calibration gives an offset value of 0 or 0.035 m/s for zero wind speed; 

measured values should not exceed a reasonable range of values, such as 30 m/s average 

speed and 40 m/s maximum gust speed for example.   

 

On the other hand, since data are available from different sensors, a relational test is also 

performed to compare the output of the anemometers located on the same tower.  This 

relational test allows verifying that the sensors represent an appropriate vertical profile of the 

wind.  Note that the North Cape site is surrounded on the East, North and West sides by a 

coastal cliff which has an average height of 13 m (see Chapter 3).  Gasset et al. (2005) have 

shown that such a cliff affect the wind speed near the ground up to a distance of ten times the 

cliff’s height.  Even though the tower is further than 130 m away from the cliffs, sensors #1N 

and #2N have not been used in this study because the turbulent kinetic energy of the flow 

still appears to be influenced by the cliff in this area up to twice the cliff’s height above 

ground level (AGL) (Gasset et al., 2005).  Similarly, the Bouctouche site is surrounded by a 

forest canopy; therefore, for the same reasons, the 10 m anemometer on Bouctouche mast 

(#1B) is not used.   

 

The last check, the trend check, verifies if the temporal variation of a measured parameter 

exceeds the usual physical behaviour due to the inertia of the atmospheric system.  The 

validation criteria proposed by AWS Scientific (1997) for sites located in the United States of 

America (USA) are not used in this study due to differences in climate regime between USA 

and Canada.  Instead, “normal fluctuation” ranges are determined according to the eastern 

Canadian climate, which is consistent with the measurements.  The validation criteria that are 

used for the Canadian sites are listed in Tables 2.3 - 2.5.  Note that a violation of one of these 

criteria flags the data as suspect.  Afterward, all identified events are verified case-by-case to 

ensure that only erroneous values are removed from the database.   
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Table 2.3 Sensor range test criteria for the eastern Canadian climate 

 

Parameter type Sample parameter (10 min) Validation criteria 

Wind speed Average 0.035 < AVG < 30 m/s 

Standard deviation 0 < STD < 4 m/s 

STD  = 0   only if   AVG = 0.035 m/s

Maximum & minimum gust 0.035 < MIN or MAX < 40 m/s 

Barometric pressure Average 96 < AVG < 104 kPa 

Wind direction Average 0 ≤ AVG < 360 ° 

Standard deviation 0 < STD  < 90 ° 

STD  = 0   only if   AVG < 5 m/s 

Temperature Average -25 < AVG < 35 °C 

 

Table 2.4 Sensor relational test criteria for the eastern Canadian climate 

 

Parameter type Sample parameter (10 min) Validation criteria

Average wind speed 30 m / 40 m difference ≤ 2 m/s 

30 m / 50 m difference ≤ 2.5 m/s 

30 m / 60 m difference ≤ 3 m/s 

40 m / 50 m difference ≤ 2 m/s 

40 m / 60 m difference ≤ 2.5 m/s 

50 m / 60 m difference ≤ 2 m/s 

Maximum wind gust speed 30 m / 40 m difference ≤ 5 m/s 

30 m / 50 m difference ≤ 5 m/s 

30 m / 60 m difference ≤ 5 m/s 

40 m / 50 m difference ≤ 5 m/s 

40 m / 60 m difference ≤ 5 m/s 

50 m / 60 m difference ≤ 5 m/s 
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Table 2.5 Sensor trend test criteria for the eastern Canadian climate 

 

Parameter type Sample parameter (10 min) Validation criteria 

Average wind speed Mean variation ≤ 10 m/s  within 1 h 

Average temperature Mean variation ≤ 7 °C  within 1 h 

Sign change ≤ 2  within 3 h 

Only if daily AVG < 3°C

Average barometric pressure Mean variation ≤ 1.5 kPa  within 3 h 

 

Once the validation methodology is applied, the case by case verification show that the 

measured parameter checks point to suspicious data (Figures 2.4 – 2.7).  Figure 2.4 shows an 

event (North Cape, February 27th, 2008) where wind data is removed from the database due 

to the icing of the anemometers.  Looking at the temperature profile which is slightly under 

the freezing point and looking at the wind vane that has a constant direction with no variation 

(STD equal to zero); it is very likely that there was effectively an icing event.  All parameters 

show regular fluctuations within the day but the wind speed and direction are not valid from 

10:00 AM; the wind speed has been removed from the database and the wind vane was iced 

in the North-East direction.  Since the wind speed was over 10 m/s before the icing event, the 

icing of the anemometer causes an artificial decreasing trend in the wind speed which is 

detected by the validation methodology.  Also, the method identifies high variations of the 

wind speed caused by malfunctioning sensors or created artificially by missing data.  In 

almost all cases, the verification of the data associated with suspicious wind ramps (identified 

by the method) showed an abnormal behaviour of the sensors.  Overall, only one normal 

wind increase is pointed out as suspect data: this event is therefore reincorporated in the 

database and all erroneous data (e.g. the event showed in Figure 2.4) are removed.   

 

Furthermore, applying the same data validation methodology, another type of suspect data 

where some maximum wind speeds are recorded to a peaking value over 1 000 m/s is being 

pointed out repeatedly.  Because of these abnormal wind gusts, the STD of the wind speed 

also reaches an extremely large value.  The mean wind speed is also found to be abnormally 
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large.  The mean wind speed and STD, as well as the average wind direction and STD, for 

one irregular event can be observed in Figure 2.5.  Monitoring the graphs of Figure 2.5, one 

can see that the identified time series (North Cape, June 25th, 2007) contain three aberrant 

data which do not represent properly the physical behaviour of the wind speed between 13:00 

and 18:00.  It can also be observed that there is a high wind direction STD as the wind 

direction changes suddenly and repeatedly during this event.  This might show a dynamic 

meteorological event occurring that day, but there is no low pressure system that could 

explain such large change in wind speed.  The temperature is above zero which confirms that 

there is no icing event.  The 60 m anemometer records extremely high wind gust which are 

abnormal.  This implies that there is an electrical issue with the sensor: the electrical output 

does not always match the input wind speed.  Again, these observations show that the 

methodology used to remove data from malfunctioning anemometers is proper and those 

outlying data are removed from the database. 

 

This verification also shows that the computer based methodology is able to point out 

irregular behaviour of the atmospheric boundary layer wind profile.  Figure 2.6 shows an 

event (North Cape, June 4th, 2007) where the measured wind speeds are not following a 

regular vertical profile: greater wind speed at higher measurement locations should be 

observed.  It is important to note that, because of the turbulent nature of the wind, it is 

possible to observe short moments (up to few hours) where the wind does not follow this 

profile, but this phenomenon should not be observed for long time period.  For a period 

longer than 6 h during that day (from 15:00 to 22:00), the averaged wind speeds are 

following a non physical profile (i.e. lower wind speeds measured by the 60 m anemometer) 

due to a malfunctioning anemometer.  Consequently, all situations of irregular vertical profile 

of the wind speed found by the methodology are removed to assure data quality.   

 

Finally, some other erroneous data are found to be suspect.  Figure 2.7 shows an event (North 

Cape, June 6th, 2007) where the pressure and temperature sensors are malfunctioning 

between 14:00 and 15:00.  Normally, temperature and pressure are parameters that have a 
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Figure 2.4 Time series of a suspect icing event: a) air temperature, 
b) barometric pressure, c) average wind speed, d) maximum wind speed, 

e) average wind direction and f) STD of the wind direction. 
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Figure 2.5 Time series of suspect wind gusts: a) air temperature, 
b) barometric pressure, c) average wind speed, d) maximum wind speed, 

e) average wind direction and f) STD of the wind direction. 
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high inertia and change slowly in time: these variables shall not fluctuate suddenly nor shall 

they venture out of certain physical limits.  During this event, the pressure sensor suddenly 

drops down to 10 kPa as the temperature sensor measures -90°C while all other sensors seem 

to function properly.  Such fluctuations are not physically possible and many events  

(~ 12/year) similar to this particular one are identified within the database.  This method 

allows removing those erroneous data. 

 

 

 

Figure 2.6 Time series of a suspect vertical 
wind profile: average wind speed. 

 

 

 

Figure 2.7 Time series of a suspect event: a) barometric pressure and b) temperature. 
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Ultimately, the main parameters (temperature, pressure, wind speed and direction) are plotted 

over the complete time series.  This final visual check done on the entire time series of each 

parameter allows to quickly validate that all evident erroneous data are found by the 

methodology.  The complete verification shows that the method has been able to identify 

many types of erroneous values.  Only few normal events are recognized as suspect data, but 

with the case-by-case verification, they have been kept in the database.  These verifications 

induce a high data recovery rate while minimizing the risk of keeping erroneous values.  Two 

complete hours of data is removed for every event (one before and one after) to ensure that 

the sensors are fully functional due to the inertia of some events, like icing.   

 

Moreover, as mentioned earlier, locating the anemometer on a boom at least 1.5 times longer 

than the tower width generally protects the instruments from the disturbed flow due to the 

tower, but it does not keep the sensors away from tower shadowing.  In fact, the tower shades 

the sensor and reduces the downwind wind speed significantly (Hunter et al., 1999).  This 

effect mainly covers a downwind angle of 30° on both sides of the tower for a total angle of 

60° where the data should be excluded (Kaimal, 1994).  For the same positioning, a wind 

vane suffers a maximum deflection of 5° due to tower shadowing (Kaimal, 1994), but since 

the wind directions are binned into 16 sectors of 22.5° each, such deflection does not affect 

much the binned value of the wind direction.  Subsequently, records when the anemometers 

are located downwind to the tower are removed from the database (i.e. E, ESE and SE 

directions for the North Cape site and ESE, SE and SSE directions for the Bouctouche site).   

 

Furthermore, as the NWP model is set for output at hourly time steps representing the 

instantaneous average wind speed, the last 10 min measurements of each hour is used to 

describe the average wind speed at the same time stamp (see section 2.3 for a description of 

temporal averages).  Subsequently, for a single outlying datum within the measurement 

database, data from both the forecast and the measured series associated to the same time 

period are removed in order to compare identical databases.  Note that before using any 

onsite measurements, it is essential to offset the forecast time series since the predictions are 

done using the Greenwich Mean Time (GMT) zone while the measurements are acquired on 



23 

the Atlantic Standard Time format (AST = GMT-4).  Finally, according to the following 

equations, the data recovery rate is calculated using the total possible records, with the 

number of available records and available forecast records included in the database as well as 

the number of invalid records and the number of shadowed records that are removed: 

 

      100  (2.1) 

 

      100  (2.2) 

 

       (2.3) 

 

     1   100  (2.4) 

 

        100  (2.5) 

 

        100  (2.6) 

 

Table 2.6 presents monthly and annual results for each of the parameters that are previously 

computed using two years of data from North Cape.  The results for Bouctouche site are 

quite similar and they are shown in the annexes (see Annex I: Table A.I.1).  These tables 

show that many measurement data are not available during the cold season (January to 

March), mainly due to icing of the instruments.  Also, it is possible to observe that the data 

validation methodology removed many data from the database from December to March also 

due to the high occurrence icing events.  In addition, this methodology removed a significant 

number of data during the months of May, June and July because the North Cape 60 m 

anemometer did experience electrical problems as mentioned earlier (i.e. high measured gust 

speeds).  Data have also been removed downwind of the tower to avoid measurements 
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suffering from shadowing and the number of data removed depends on the wind frequency 

for the given wind direction of each month.  As the instruments are purposely installed on the 

most frequent upwind direction, the number of downwind data removed is relatively low.  On 

the other hand, the available forecast ratio does not rely on any environmental variables; it 

depends on the computational capability to run the model.  Since it is an experimental 

forecast for the wind energy sector, Environment Canada operational forecast always 

prevails.  Therefore, these forecasts have been executed on a dedicated cluster located at 

Hydro-Quebec’s Research Institute (IREQ) and this is the reason why the available forecast 

ratio is 100% (not in real time).  Finally, the total data recovery rate related to the present 

study is 78.84%.  This amount of data is sufficient for the purpose of validating a forecast 

model.   

 

Table 2.6 Data recovery rates for every month of the sample year (North Cape) 

 

Month Available 
Records 
Ratio (%) 

Valid 
Records 
Ratio (%) 

Shadow 
Free 
Records 
Ratio (%) 

Available 
Forecast 
Ratio (%) 

Data 
Recovery 
Rate (%) 

January 95.36 88.23 95.37 100.0 80.24 

February 95.61 80.20 89.61 100.0 68.71 

March 89.52 84.98 92.23 100.0 70.16 

April 97.50 87.39 88.92 100.0 75.76 

May 99.80 87.47 86.14 100.0 75.20 

June 99.86 91.31 78.83 100.0 71.88 

July 99.80 91.72 92.07 100.0 84.28 

August 100.0 95.90 83.18 100.0 79.77 

September 100.0 94.44 92.13 100.0 87.01 

October 98.92 94.02 93.35 100.0 86.82 

November 100.0 94.51 86.99 100.0 82.21 

December 100.0 92.20 91.11 100.0 84.00 

Annual 98.03 90.20 89.16 100.0 78.84 
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2.2 Anemometer selection 

As a measurement mast presents many anemometers, one of them is selected to be compared 

with the NWP model outputs for model validation.  This is the reason why four different 

logarithmic vertical wind profiles are plotted and the surface roughness is computed for the 

entire time series of the mean wind speed.  The wind profiles are shown in Figure 2.8 and 

Tables 2.7 - 2.8 details the computed surface roughness.  Similar wind profiles are found for 

the Bouctouche site in the annexes (see Annex II: Figure A.II.1).  All parameters are 

computed from a neutral logarithmic equation comparing the wind speed at two different 

heights to interpolate the average wind speed to another location using equations 2.7 - 2.10.  

Note that the surface roughness describes the height where the wind speed is zero.  This 

length is generally used in meteorology to define the ground surface and the obstacles on site.  

It is possible to compute the surface roughness (z ) and the surface friction velocity (u ) 

using wind speeds at two different heights: 

 

   /    (2.7) 

 

  /     (2.8) 

 

    (2.9) 

 

  
 /  //  (2.10) 

 

Where: U z  is the interpolated wind speed [m/s] at height z [m]; 

- U  and U  are the measured wind speed [m/s] at heights z  and z , respectively [m]; 

- k is the Von Karman similarity constant (0.4 [-]); 

- u  is a friction velocity scale from kinematic surface stress based on wind shear [m/s]. 
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Figure 2.8 Logarithmic vertical wind speed profiles plotted 
from the mean wind speed at two different heights. 

 

Table 2.7 Surface roughness computed from the 
mean wind speed at different heights (North Cape) 

 

Anemometer height Surface roughness on site ( ) 

49.70 m & 58.37 m 0.7033 m 

39.79 m & 49.70 m 0.1362 m 

26.96 m & 39.79 m 0.3335 m 

26.96 m & 49.70 m 0.2552 m 

26.96 m & 58.37 m 0.3180 m 

39.79 m & 58.37 m 0.3002 m 
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Table 2.8 Surface roughness computed from the 
mean wind speed at different heights (Bouctouche) 

 

Anemometer height Surface roughness on site ( ) 

50 m & 60 m 1.9453 m 

40 m & 50 m 4.2256 m 

30 m & 40 m 3.4345 m 

30 m & 50 m 3.7352 m 

30 m & 60 m 3.3252 m 

40 m & 60 m 3.2239 m 

 

Subsequently, the comparison between the different logarithmic profiles derived from the 

annual average wind speed of each anemometer on the same tower (Figure 2.8) shows that 

the 50 m anemometer operates very close to all calculated profiles for the measurement 

period at both sites.  Also, looking at Table 2.7, one can notice that the only set of 

anemometers giving a representative surface roughness for North Cape site is using the 30 m 

and the 50 m (i.e. surface roughness for a fallow field with many small wind turbines and 

few small buildings shall be slightly higher than 0.25 m (Manwell et al., 2002)).  However, 

when assessing a wind power monitoring program, it is important to use the highest sensor as 

possible to be relatively close to current standard turbine hub heights.  The quality control of 

the data shows that the 60 m anemometer often reads maximum wind gust speeds that are not 

physically possible.  Therefore, the second option would be to choose the 50m anemometer 

which is working as predicted by the different logarithmic profiles and which gives a surface 

roughness value representative of the site characteristics.  In addition, the two first NWP 

output levels are given for different pressure levels and are located relatively close to 45 m 

and 120 m above ground.  These are sufficient reasons to choose the 50m sensor which is 

very close to the first level of the forecast model, while being very close to the wind vane, the 

temperature probe and the barometric pressure sensor that are also located between 40 and 50 

m high.  For these reasons, the sensor #8N (NRG Type 40 Maximum Anemometer, 49.7 m) 

is chosen to details the wind characteristics for the North Cape site. 
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The same methodology applied to the anemometers mounted on the Bouctouche mast lead to 

choose the sensor #5B (NRG Type 40 Maximum Anemometer, 50 m high) for the validation 

of the Environment Canada NWP model.  It is also interesting to note that, looking at Table 

2.8, the roughness length computed for the Bouctouche site is approximately 3.5 m.  Such 

roughness length is generally associated to urban areas with very large buildings, which is 

not the case here.  This site is actually surrounded by a forest canopy which has a roughness 

length of about 1.5 m (Manwell et al., 2002) as used in the inputs of the NWP model.  Stull 

(1988) explains that a dense forest canopy could act like a displaced surface of height “d” 

(see Figure 2.9), which is not considered in the NWP model.  Therefore, one shall expect that 

the wind speed forecast error is higher for the Bouctouche site than the North Cape site. 

 

 

 

Figure 2.9 Vertical wind speed profiles over forest canopy. 
(adapted from Stull, 1988, p. 381) 

 

2.3 Atmospheric measurement uncertainty 

Now that the anemometers have been chosen and that all erroneous values have been 

removed from the database, the measurement uncertainties can be computed in order to 

verify that the measurement dataset is well suited to evaluate the model.  It is known that cup 

anemometer precision is of the order of 3 % (AWS Scientific, 1997), but it is also important 

to compute the wind speed deficit due to the flow distortion around the anemometer tower 

(excluding shading area) and the precision of the averaging technique.   
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First, the flow distortion in the surrounding area of the tower can be computed using the 

geometrical and conception parameters of the triangular lattice tower (IEC, 1998): 

 

  100% 1 0,062 0,076   0,082  (2.11) 

 

  2,1  1  (2.12) 

 

Where: U  is the wind speed deficit [%]; 

- CT is the drag coefficient [-]; 

- t is the solidity of the tower (0.1 <  t < 0.3); 

- R is the distance to the mast centre [m]; 

- L is the mast leg distance (0.6025 [m]). 

 

The distance to the mast center (R) can then be expressed as a function of the mast leg 

distance (L) and the boom length (BN  C 1.32 m) for a triangular lattice mast: 

 

  tan 30°  (2.13) 

 

As the anemometer tower solidity is not known, the highest recommended value is used in 

order to be conservative.  Then, for the Bouctouche tubular mast, the wind speed deficit is 

computed as a function of distance (d 1.5 m) from the centre of a tubular mast and mast 

diameter (d 0.152 m).  The relation is given in the IEC standard (1998) from a two 

dimensional Navier-Stokes analysis.  Subsequently, the average centreline wind speed 

distortion is approximately 1.3 % for the North Cape tower and 0.1 % for the Bouctouche 

tower.  

 

Afterwards, when characterizing experimentally a turbulent flow, the averaging technique 

precision shall be computed since measurements are usually averaged over many realizations 
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under similar conditions (i.e. ensemble averaging).  In the atmospheric boundary layer, due 

to the stochastic behaviour of the turbulent flow, it is almost impossible to observe identical 

events and to perform ensemble averaging.  Then, when describing the properties of the 

atmospheric air flow, data are averaged over time.  Time averages are performed considering 

that they are equivalent to ensemble averages.  This assumption is called the ergodic 

hypothesis (Lumley and Panofsky, 1964).   

 

The atmosphere is also assumed to be statistically stationary during the averaging period 

(Tennekes and Lumley, 1972).  Van Der Hoven (1957) shows that there is a gap between 

convection driven boundary layer scales (shorter than 0.001 Hz ~ 16.67 min) and synoptic 

scales (greater than 0.0001 Hz ~ 2.78 h) where the spectral intensity is negligible.  

Consequently, the atmosphere fluctuations can be assumed to be stationary for averaging 

period shorter than the convection driven scales (i.e. 10 min averages).  Thus, considering 

that high frequency component of the wind, as turbulent wind gusts, have no significant 

contribution (zero average) in the mean meteorological phenomena.  Conversely, when 

computing time averages, it is important to average over a sufficiently long sampling time 

(Panofsky and Dutton, 1983): this allows to properly describe the mean wind speed and 

limiting the statistical influence of the autocorrelation of the turbulence.  Since the surface 

wind speed measurements are used for the NWP model validation, it is therefore important to 

estimate the error due to finite integration time.   

 

When performing time averages, a common approach used in meteorology to express any 

parameter is to decompose each and every variable into a mean part and a perturbation part 

(Taylor’s hypothesis).  In equation 2.14, the perturbation or turbulent part (U ) superimposed 

on the average part (U) represents the instantaneous value (U) (Stull, 1988).  These 

fluctuations are computed in the NWP model but are not commonly used as model outputs.  

For this reason, no distinction is made between mean or instantaneous parts after the present 

section since this study is only based on mean variable outputs.  Therefore, in the rest of the 

document, for notational simplicity, this bar representing the average part of a variable will 

not be specified anymore.   
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   (2.14) 

 

Assuming a statistical stationary flow, the wind speed variance (σU ) becomes stable 

(Kaimal, 1994) for long averaging time periods (i.e. larger than the interval over which the 

turbulence remains correlated and dependent of itself).  The turbulence autocorrelation 

interval is also called the integral time scale (τU) and is defined as the integral of the 

autocorrelation function of the wind speed (RU) over time (ε): 

 

     (2.15) 

 

     (2.16) 

 

Figure 2.10 presents the relation between the autocorrelation function and the time lag for the 

anemometer previously selected for the North Cape site (49.7 m).  The curve shows the 

average relation for approximately a four month period (mid August to late November 2009) 

at North Cape.  In this figure, one can see that the wind speed gusts autocorrelation becomes 

negligible as the time lag increases.  Computing the integral of the wind speed 

autocorrelation function at the wind test site with the 50 m anemometer (equation 2.15 – 

2.16), the average integral time scale is 15.9 sec for the four month period at North Cape.  

Note that, since it is impossible to integrate the autocorrelation function to infinity using real 

data, the integral is computed over time up to the point where the autocorrelation functions 

reaches zero.   

 

Considering that the wind energy industry and most meteorological assessments use 10 min 

averaging time period (T), the variance of the wind speed becomes stable since T τU.  

Subsequently, Tennekes and Lumley (1972) derive an equation to express the quadratic error 

due to finite integration time (E) as a function of the integral time scale (τU), the averaging 

period (T) and the variance of the wind speed in the averaging ensemble (σU ) as follow: 
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Figure 2.10 Instantaneous wind speed (1 Hz) 
autocorrelation function in relation with the time lag. 

 

  
     (2.17) 

 

Finally, assuming ergodicity of the atmospheric flow to perform time averages, the computed 

error level for the mean wind speed is approximately 2.6 %.  Therefore, when performing the 

quadratic sum of the measurement uncertainties (measurement error ~ 3 %, flow distortion ~ 

0.1 to 1.3 % and averaging technique precision ~ 2.6 %), the total measurement error level is 

approximately 4 % for both the triangular lattice tower at North Cape and the tubular mast at 

Bouctouche.  Note that this value is in relation with the average measurement uncertainty 

performed using the North Cape specific anemometer for four month of measurements at 1 

Hz sampling rate; it still gives a good evaluation of the order of magnitude of the 

measurement errors.  From the preliminary analysis done in Chapter 4, the annual MAE and 

RMSE of the NWP model are 28.01 % and 36.77 % respectively.  When compared to the 

error of the NWP model, the measurement error is an order of magnitude lower.  Then, it is 

concluded that the data from the anemometer towers are well suited for the evaluation of the 

NWP model. 
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2.4 Wind characteristics 

Once the measurement uncertainty has been evaluated, it is then important to evaluate the 

wind characteristics on the test sites that are considered in the present study.  To do this 

evaluation, it is possible to plot different essential parameters for annual and seasonal time 

series.  The wind frequency, the average wind speed and the wind energy ratio are calculated 

for each direction and the Weibull distributions are computed.  Because of confidentiality 

agreements, all wind speeds are normalized using the annual average wind speed and the 

Weibull parameters are not given.  The wind frequency roses, average wind speed roses, 

wind energy roses and Weibull distributions for annual and seasonal time series at the North 

Cape site can be observed in Figures 2.11 - 2.14, respectively.  Figure 2.15 shows the annual 

and seasonal average diurnal cycle of the wind speed at North Cape. The wind characteristics 

at Bouctouche site appears to be quite similar to those observed at the North Cape site; these 

results are shown in the annexes (see Annex III: Figures A.III.1 – A.III.5).   

 

Looking at Figure 2.11, one can see that the prevailing wind direction is from the western 

direction all year except during the spring season.  Effectively, during that season, winds 

come from the western side as well as from the northern side.  During the fall season, the 

wind is still often from the West, but its distribution is a little more spread out than the 

annual distribution.  Then, Figures 2.12 - 2.13 show that the strongest winds are from the 

western side (i.e. from SW to NNW).  These sites also get strong northern winds during 

winter and summer, while it gets strong winds from the SSE during the summer.  Figure 2.14 

shows that the wind is stronger in the winter and in the fall seasons.  The summer season is 

characterized by very low wind speeds.  Figure 2.15 confirms that the average wind speed is 

lower in summer and that it is higher in fall and winter.  This figure also shows that there is 

generally a diurnal cycle of the wind speed reaching its minimum in late afternoon.   

 

Once the data quality and the wind characteristics are assessed, it is possible to work on the 

development of a standard protocol to evaluate short-term wind prediction models, to 

correlate its uncertainties to meteorological events and finally, to improve the model itself. 
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Figure 2.11 Annual and seasonal wind frequency roses at the North Cape site: 
a) annual, b) winter, c) spring, d) summer and e) fall. 
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Figure 2.12 Annual and seasonal average wind speed roses at the North Cape site: 
a) annual, b) winter, c) spring, d) summer and e) fall. 
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Figure 2.13 Annual and seasonal wind energy roses at the North Cape site: 
a) annual, b) winter, c) spring, d) summer and e) fall. 
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Figure 2.14 Annual and seasonal Weibull distributions of the wind speed at the 
North Cape site: a) annual, b) winter, c) spring, d) summer and e) fall. 
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Figure 2.15 Annual and seasonal average wind 
speed diurnal cycles at the North Cape site. 

 

 



 

CHAPTER 3 

 

VERTICAL INTERPOLATION OF THE FORECASTS 

As mentioned earlier in section 2.2, the first forecast output levels follow pressure levels 

(hybrids levels).  They are approximately located at 45 m and 135 m AGL and the 

anemometers that are used to validate the forecasting model are located at 50 m AGL.  As the 

forecast output heights vary in time (± 10 %), a vertical interpolation module has to be 

implemented in order to evaluate the wind speed at the appropriate height.  Interpolation 

modules using different techniques are employed and compared to verify which algorithm is 

the most suitable for wind forecast applications.  Power law profiles, logarithmic profiles for 

neutral and non-neutral atmospheres are tested in this section. 

 

3.1 Power Law profiles 

The Power Law is a simple profile representing the wind speed at a certain height (z).  The 

wind speed is calculated using the wind speed (Ur) at a reference height (zr):   

 

    (3.1) 

 

The exponent  can be computed using the wind speed at the reference height (Justus, 1978): 

 

  
, ,  ,    (3.2) 

 

It can also be computed as a function of the surface roughness (Counihan, 1975): 

 

  0,096  0,016 0,24  (3.3) 
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3.2 Linear profiles 

Vertical wind speed profiles can also be computed with a linear regression where the wind 

speed is interpolated using wind speed observations (U z ) at two different heights (z ): 

 

    (3.4) 

 

3.3 Logarithmic profiles 

Logarithmic profile schemes use surface momentum, sensible heat and latent heat fluxes to 

describes the kinematic surface stress based on wind shear (friction velocity: u ) and to 

compute the atmospheric stability in the surface layer (Stull, 1988).  As a matter of fact, the 

momentum and heat fluxes are computed in the NWP model for each type of surfaces: water, 

frozen water, ground and snow covered ground.  They are then aggregated into single fluxes 

(used as lower boundary conditions for the vertical diffusion) which are available as model 

outputs.  In the present project, only fluxes related to the ground are relevant, but are not 

available in this database.  Therefore, attempts using the aggregated fluxes to compute the 

logarithmic wind profiles have been done, but the wind profiles totally diverged from 

expected values.  Subsequently, logarithmic wind profiles are computed using measured or 

forecasted wind speed at a reference height.  Logarithmic wind speed profile for neutral flow 

is the scheme that is usually used in wind energy assessments, it is then tested for the vertical 

interpolation: 

 

   /   (3.5) 

 

Where: U z  is the interpolated wind speed [m/s] at height z [m]; 

- u  is a friction velocity scale from kinematic surface stress based on wind shear [m/s]; 

- k is the Von Karman similarity constant (0.4 [-]); 

- z  is the forecast model surface roughness input [m]. 
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Then, the friction velocity is computed using the wind speed (Ur) at a reference height (zr): 

 

  
 /    (3.6) 

 

Where: u  is a friction velocity scale from kinematic surface stress based on wind shear [m/s]; 

- U  is the forecasted wind speed [m/s] at the output level height AGL z  [m]. 

- k is the Von Karman similarity constant (0.4 [-]); 

- z  is the forecast model surface roughness input [m]. 

 

Non neutral logarithmic profiles considering the atmospheric stability use a similar 

formulation adding a dimensionless wind shear parameter.  The dimensionless wind shear 

(φ z/L ) is generally a function of the height (z) and the Monin Obukhov length (L) 

(Businger et al., 1971; Delage, 1988; Delage and Girard, 1992; Mailhot, 1992; Delage, 

1997).  In our case, the Monin Obukhov length representing the atmospheric stability is 

computed in GEM-LAM, but is not stored in the database and it is not possible to properly 

compute it from the aggregated surface fluxes.  Consequently, the dimensionless wind shear 

is considered constant in height and is approximated using a second wind speed observation 

at a reference height (wind speed forecast at the second level).  Flow stability measures ( ) 

derived from forecast outputs are therefore integrated in the vertical interpolation (equations 

3.7 – 3.9) to improve the NWP for complex sites such as North Cape since local since winds 

are affected on a local scale by thermal properties (Liu, 2009; Nielsen et al. 2007a). 

 

     (3.7) 

 

  /    (3.8) 

 

      (3.9) 
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Where: φ is the stability function [-]; 

- z  is the forecast model surface roughness input [m]; 

- u  is a friction velocity scale from kinematic surface stress based on wind shear [m/s]; 

- k is the Von Karman similarity constant (0.4 [-]); 

- U is the forecasted wind speed [m/s] at the output level height AGL z [m]. 

 

3.4 Comparison of the different vertical interpolations 

In order to verify which vertical interpolation scheme respects the most the physics of the 

flow, the interpolated wind speeds have been compared to measurements and the model 

output for two different computation points: the closest NWP point to the measurement mast 

(distance = 445 m; surface roughness = 0.001 m; ground ratio = 0 %), and the closest 

computation point that has geophysical characteristics (surface roughness and ground ratio) 

similar to the site (distance = 7 868 m; surface roughness = 0.3162 m; ground ratio = 100 %).  

Results for unstable / neutral and for stable atmospheric conditions are shown in Figures 3.1 - 

3.4.  Analysing Figures 3.1.a - 3.4.a, one can see that the Power Law from Justus (1978) do 

perform generally well, but the curvature is too pronounced for stable atmosphere as it is not 

enough pronounced for unstable/neutral atmospheric conditions.  The exact same observation 

can be made for Counihan’s Power Law profile (1975) in Figures 3.1.b - 3.4.b and for the 

neutral logarithmic profile in Figures 3.1.d - 3.4.d.  These two last vertical profiles have very 

similar behaviours since they are both computed using the measured wind speed at the same 

reference height and the same surface roughness.  As a result, these three methods do not 

properly represent the vertical wind profile for all meteorological conditions.  Neither of 

them matches properly the behaviour of the flow since the profiles are forced to zero at the 

surface roughness height, independently of the atmospheric stability.  As these three methods 

don’t respect the physics of the flow and as they are not properly interpolating the wind 

speed for all atmospheric stability conditions, they are not used to interpolate the NWP 

outputs. 
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Furthermore, analysing Figures 3.1.c - 3.4.c, one can see that linear profiles are really not 

suited for vertical interpolation of the wind speed in the surface layer since the measured 

wind speed show a non-linear behaviour.  Therefore, as the linear profile does not properly 

represent the surface wind speed profile, it is not used to interpolate the NWP outputs. 

 

Conversely, the non-neutral logarithmic wind profile considers the atmospheric stability by 

computing the wind speed using the forecasts at the two first output levels.  Therefore, when 

looking at Figures 3.1.e - 3.4.e, one can observe that the interpolated wind speed fits almost 

perfectly the measurements for unstable / neutral and stable atmospheric conditions.  As this 

profile is computed from two forecasted wind speeds, it respects the dynamic behaviour of 

the meteorological system under different stability conditions.  The results being similar for 

the Bouctouche site (see Annex IV: Figures A.IV.1 – A.IV.2), it is possible to state that the 

non-neutral logarithmic vertical wind profile performs better than the other profiles.   

 

As a matter of fact, in the case where the NWP model would systematically over or under-

predict the wind speed, non proper interpolation scheme like a linear profile could eventually 

give better results than other models when compared at a single height; this could explain the 

use of such profiles in the wind industry.  However, when computing the integral of the wind 

speed over the area swept by a wind turbine to calculate the wind power, the results would 

not be coherent with the reality (see Table 3.1) since the wind turbines sweep a large area 

ranging from approximately 20 m to 150 m high  (depending on the type of turbine).  

Therefore, it is important to choose judiciously the interpolation scheme to be used and to 

evaluate the order of magnitude of the interpolation error.  As noted in the previous 

paragraphs, the non-neutral logarithmic vertical wind profile appears to be properly suited for 

vertical interpolation of the wind speed for wind power assessments.  It is therefore used to 

interpolate the wind speed forecasts in the present study.  Then, the difference between the 

best and the worst interpolation methods (non-neutral logarithmic vs linear profiles) is 

evaluated to approximate the order of magnitude of the forecast error that can be attributed to 

the vertical interpolation.  Figure 3.5 shows the annual average vertical wind profiles and 

Table 3.1 shows the annual wind speed and power difference between those two profiles. 
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Figure 3.1 Vertical wind profiles under stable atmospheric conditions at the closest 
NWP point to the measurement mast (North Cape): a) Power Law profiles from Justus 

(1978), b) from Counihan (1975), c) linear profile, d) neutral and e) non-neutral 
logarithmic profiles. 
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Figure 3.2 Vertical wind profiles under unstable/neutral atmospheric conditions at 
the closest NWP point to the measurement mast (North Cape): a) Power Law profiles 

from Justus (1978), b) from Counihan (1975), c) linear profile, d) neutral and 
e) non-neutral logarithmic profiles. 
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Figure 3.3 Vertical wind profiles under stable atmospheric conditions at the closest 
computation point with geographical characteristics similar to the site (North Cape): 
a) Power Law profiles from Justus (1978), b) from Counihan (1975), c) linear profile, 

d) neutral and e) non-neutral logarithmic profiles. 
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Figure 3.4 Vertical wind profiles under unstable/neutral atmospheric conditions at the 
closest computation NWP point with geographical characteristics similar to the site 
(North Cape): a) Power Law profiles from Justus (1978), b) from Counihan (1975), 

c) linear profile, d) neutral and e) non-neutral logarithmic profiles. 
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Looking at the measured wind speeds at different heights in Figure 3.5, one can observe that 

there is effectively a significant difference between the interpolated wind speeds from both 

methods.  Then, the results presented in Table 3.1 show the interpolation differences in terms 

of wind speed and power for the two types of turbines already installed at North Cape: Vestas 

V47 and V90.  Thus, it gives the order of magnitude of the error caused by the vertical 

interpolation of the wind speed.  This table shows that the vertical interpolation difference is 

0.35 % at the hub height of a V47 turbine (50 m AGL) and it becomes larger when getting 

away from the NWP forecast output heights (~ 45 and 135 m AGL).  This difference is 

approximately 1.38 % at the hub height of a V90 turbine (90 m AGL).  This table also shows 

that the difference is significantly higher (~ 3.16 %) when computing the power forecast of 

the Vestas V90 turbine.  Thus, these results indicate that the vertical interpolation uncertainty 

has a significant impact on the forecasted power of a wind turbine (integrating the wind 

power density over the swept area).  For these several reasons, the best vertical wind profile 

(non-neutral logarithmic) is ultimately implemented to interpolate the NWP outputs at the 

anemometer heights for the statistical analysis in this work. 

 

 

 

Figure 3.5 Comparison of non-neutral logarithmic 
and linear profiles at the North Cape site. 
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Table 3.1 Mean annual wind speed and power forecast difference between linear and 
non-neutral logarithmic vertical wind profiles 

 

Turbine type Difference between linear and non-neutral logarithmic  

vertical wind profiles for mean annual atmospheric conditions 

Vestas V47 Wind speed at hub height (50 m) 0.35 % 

Wind power for a Vestas V47 swept area (26 to 74 m) 0.29 % 

Vestas V90 Wind speed at hub height (90 m) 1.38 % 

Wind power for a Vestas V90 swept area (45 to 135 m) 3.16 % 

 

 



 

CHAPTER 4 

 

NUMERICAL WEATHER PREDICTION MODEL 

Short-term wind power forecast models are usually based on NWP models like GEM-LAM 

(Landberg et al., 2003 and Giebel et al., 2003).  This NWP model applies fluid mechanics 

governing equations to describe the various dynamical processes taking place in the 

atmosphere using finite-difference method (Côté et al., 1998), i.e. the conservation equations 

(mass, energy, momentum and moisture) as well as the equation of state for perfect gases.  

As these dynamic equations are not solvable analytically, numerical algorithms are 

developed and physical parameterizations are used to close these equations.  The idea of 

physical parameterization is to use the model variables to represent the mean effect of the 

sub-grid scale phenomena in the Earth’s surface, the atmospheric boundary layer as well as 

the processes related to condensation, radiation, etc.  For example, the turbulent kinetic 

energy (TKE) is calculated with a simplified approach where the TKE evolution is a function 

of the source-sink term, the viscous dissipation and redistribution term.  Applying this 

simplified method significantly reduce the computation time and costs.  A complete 

description of the physics library used in GEM-LAM is available from Environment Canada 

(Mailhot et al., 1998).  One of the goals of this work is to describe and assess the forecast 

uncertainty related to the physics of the NWP models (see Chapters 5 - 6).  Other error 

sources, such as measurements and interpolation, are detailed in the previous chapter.  

 

4.1 Model outputs 

Before getting any further, it is important to take a look at the variables available from 

Environment Canada NWP model.  As mentioned earlier many physical and dynamical 

output variables are computed; but as the calculation domain and output files are large, only 

the most important parameters are stored for this experimental forecast assessment.  Table 

4.1 provides details of the main variables used in the present study and Table 4.2 describes 

the GEM-LAM output vertical levels.  For accuracy and working simplicity, all variables are 

converted into the international units system (see Table 4.1).  Also, since level heights are 
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expressed in meters above sea level, a conversion is done to make sure that all level heights 

are measured in meters AGL (see Table 4.2). 

 

Table 4.1 Description of the GEM-LAM output parameters 

 

Variables Units Working units Unit conversion Level 

Hydrostatic pressure mb Pa 1mb = 100Pa = 0.1kPa Level 1 & 2

Wind speed Knot m/s 1Knot = 0.514791m/s Level 1 & 2

Wind direction Deg. Deg. - Level 1 & 2

Height dam m 1 dam = 10m Level 1 & 2

Temperature °C K °C + 273.1 = K Level 1 & 2

Specific humidity - - - Level 1 & 2

Latitude  Deg. Deg. - - 

Longitude Deg. Deg. - - 

Topographic height m m - - 

Topographic mask - - - - 

Surface roughness m m - - 

 

Table 4.2 Description of the GEM-LAM output vertical levels 

 

Levels Height definition Conversion Working height

1 Height above sea level H’1 = H1 - Topographic height H’1 [m AGL] 

2 Height above sea level H’2 = H2 - Topographic height H’2 [m AGL] 

 

4.2 Stability parameter computation 

An important parameter that is not included in the model outputs is the atmospheric stability 

parameter called the Richardson Number (Mailhot et al., 1998).  This dimensionless number 

expresses the ratio between the buoyant forces and other mechanical forces producing 

turbulence.  The turbulence can be generated by both buoyancy and wind shear.  Then, the 
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Richardson Number can be either positive or negative depending on the vertical temperature 

gradient: negative if the buoyancy forces tend to generate turbulence through heat convection 

(unstable flow); positive if the buoyancy forces tend to suppress the turbulent motion 

generated by the wind shear (stable flow).  Subsequently, a situation where there are no 

buoyancy forces (i.e. no vertical temperature gradient) is called a neutral flow.  Generally, 

one can observe unstable flows during the day since the sun is warming up the ground which 

generates buoyant convection and, on the opposite, during night time, the ground loses heat 

through radiation and the air cools down close to the surface, thus generating statically stable 

buoyant forces.   

 

As local temperature and wind speed gradients are quite difficult to measure with 

rawinsonde, meteorologists tend to replace local gradients by a series of discrete measures in 

the atmosphere.  Using measurements from discrete heights tend to approximate the local 

gradients ( ).  Using relatively close measuring points, it is then possible to compute 

the Richardson Number with discrete data.  This approximated non dimensional ratio is then 

called the Bulk Richardson Number (Rb) and this approximation is applied to compute the 

forecasted atmospheric stability (Rb): 

 

  
      (4.1) 

 

Where: g is the gravitational acceleration (9.81 [m/s2]); 

- U is the wind speed [m/s] at a specific height z [m]; 

- θV is the virtual potential temperature [K]; 

- θV is the mean virtual potential temperature between two discrete points [K]. 

 

The virtual potential temperature θV refers to the temperature that would have a parcel of 

moist air that brought adiabatically up to the reference pressure level (see equations 4.2 – 

4.3) (Stull, 1988).  Meteorologists tend to use the potential virtual temperature (θV) instead of 
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the temperature, since θV allows to compare parcels of moist air at different heights as it 

conserves the mass and thermodynamic properties of the fluid.   

 

   / ,   (4.2) 

 

   1 0,61   (4.3) 

 

Where: P  is the reference pressure level (100 000 [Pa]); 

- P is the measured pressure [Pa]; 

- θV is the virtual potential temperature [K]; 

- θ is the potential temperature [K]; 

- T is the average temperature measured [K]; 

- r is the specific humidity contained in the atmosphere (mixing ratio) [kgvapor/kgdry air]. 

 

Since the atmospheric stability measure is a characteristic of the surface boundary layer 

(wind speed, temperature and humidity gradients are larger near the surface), the parameters 

from the first two levels are used for this calculation (equations 4.1 – 4.3).  The Bulk 

Richardson Number is finally computed for each grid point at each time step.  Then, it is 

used in the subsequent statistical analysis where prediction uncertainties are compared to 

different parameters to detail the forecast errors under certain meteorological conditions. 

 

4.3 Preliminary analysis 

Canadian global and regional models cover a large physical area and, due to computational 

constraints, their grid spacing remains relatively large (30 and 15 km) compared to the size of 

a wind turbine.  However, the local topography highly influences the wind characteristics on 

a site and the predictions errors (Kariniotakis et al., 2004).  This is why limited area models 

(LAM), such as GEM-LAM (Environment Canada), are developed for meso-scale and local 

scale applications.  In our study, this model is applied to specific domains, the Gaspésie 

region, where several wind farms are currently in operation.  This model has a horizontal 



54 

resolution of 2.5 km and each computational point represents the average meteorological 

situation within an area of 2.5 km x 2.5 km.  While GEM-LAM has a relatively fine spatial 

resolution, it is not yet capable to represent sharp topographic details such as a cliff or a 

coastal interface.  Indeed, the model considers topographic changes between the computation 

points as steady topographic slopes.  Therefore, cliffs are not modeled and coastal interfaces 

are only represented as surface ratios of ground within the 2.5 km x 2.5 km area.   

 

Figures 4.1 - 4.2 show the complexity of the topography in North Cape (PEI).  In Figure 4.2, 

the cross represents the anemometer tower while the grid represents a subset of the 

Environment Canada GEM-LAM horizontal grid for wind predictions.  Looking at Figures 

4.1 - 4.2, one can see that the WEICan wind test site is located on a complex terrain, 

considering that North Cape is surrounded (East, North and West) by a coastal cliff of 

approximately 13 m in height.  Even though there is a computational grid point very near to 

the measurement mast (445 m), the model can’t perceive that there is a sharp coastal cliff 

right in the middle of its domain.  It only models the site as a slope over 2.5 km with a 1.1882 

m average height and a 0 % ground covering proportion within that grid cell.  These 

parameters are not representative of the site.  Moreover, the surface roughness associated 

with the sea surface, as considered by the model, is approximately 0.001 m while the site is 

located on a fallow field with many small wind turbines and few small buildings and shall 

have a surface roughness around 0.25 m as defined previously.   

 

 

 

Figure 4.1 Photos of North Cape and the cliffs surrounding the wind test site. 
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Figure 4.2 Plan of North Cape wind test site 
with part of the GEM-LAM horizontal grid. 

 

Figure 4.3 presents the result of a statistical analysis showing a clear topographic signature in 

the prediction uncertainty for different wind directions at the North Cape site.  Note that wind 

data from E, ESE and SE directions are removed from the database due to shadowing effect 

(see Chapter 2).  Also, all results are normalized using the highest value of each graph due to 

confidentiality agreements. 

 

When looking at Figure 4.3, it is clear that the wind forecast error is higher for the southern 

winds coming from the island since the air flow is exposed to sudden changes in surface 

properties (topography, surface roughness, thermal properties due to presence of land as well 

as wake effects) which is difficult to solve (Liu, 2009).  Indeed, this topographic signature, 

also noted by Liu (2009), is due to the fact that the model computation point used (closest 

point) does not have the proper physical description (surface roughness and topography) to 

describe the analysed site.  The model considers the position of that point to be in the Gulf of 

Saint-Lawrence, rather than on land, and thus, over-estimates the wind that is actually over a 

complex terrain and on land.   
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Figure 4.3 Annual wind speed forecast RMSE rose 
for the North Cape site (closest forecast point). 

 

Based on this analysis and on the site inspection, it is evident that the model does not have 

sufficient grid spacing refinement to properly represent the meteorological phenomena on the 

coastal site.  It is well known that the grid spacing influences the accuracy of the NWP 

models for complex sites, which remains a continuing concern in wind power predictions 

since NWP models do not solve geophysical features smaller than the grid size.  Doubling 

the spatial and temporal resolution of the NWP models would increase the running time by a 

factor of at least eight, which is not computationally possible if a short term wind power 

forecast is needed.  Also, in the present case, there is a shore line discontinuity in the surface 

roughness and no realistic mesh refinement could solve that condition.  For these several 

reasons, a GMOS taking into account the site geography and the meteorological situation is 

developed in order to properly represent the site geography and the meteorological behaviour 

while being computationally inexpensive. 

 



 

CHAPTER 5 

 

GEOPHYSIC MODEL OUTPUT STATISTICS 

As mentioned in the previous chapter, the preliminary analysis shows that there is a need for 

a Geophysic Model Output Statistics (GMOS) to reduce the topographic signature within the 

wind speed predictions.  Therefore, many types of GMOS are developed and applied in the 

present section: geo-referenced weighting, linear regressions and ANN.  Finally, they are 

compared to a reference model developed from simple mathematical interpolation methods. 

 

5.1 Reference interpolation method 

Indeed, when using NWP models in short-term numerical wind power predictions, simple 

mathematical methods are used to interpolate the wind speed forecast from the NWP outputs.  

As the closest point (nearest neighbour) interpolation, where the value of an interpolated 

point is the value of the closest forecast point, is the most widely used method.  It is also the 

simplest scheme to implement.  Bilinear and bicubic interpolations are also used by the wind 

energy industry since they can slightly improve the interpolation without being much harder 

to implement than the closest point method:  

 

- Bilinear interpolation fits a linear surface through the forecast points from the NWP. 

This interpolation method combines the values of the four closest points, to determine 

the value of the interpolated forecast.  

 

- Bicubic interpolation fits a cubic surface using the sixteen closest forecast points.  

Thus, keeping the first order derivatives continuous, this method produces a much 

smoother surface than a bilinear interpolation.  On the other hand, bicubic 

interpolation can produce important local variations to fit the first order derivative.  

Therefore, precautions must be taken when using such method. 
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These three models are computed on a regular Cartesian grid and they are then tested for both 

sites.  Table 5.1 - 5.2 show the improvement (see Chapter 1) on the bias, MAE and RMSE of 

the bilinear and the bicubic models compared to the closest point interpolation method: 

 

Table 5.1 Improvement of different mathematical 
interpolation methods (bilinear and bicubic) compared 

to the closest point method (North Cape) 

 

Interpolation method Bias (%) MAE (%) RMSE (%) 

Bilinear 0.25 0.12 0.07 

Bicubic 0.18 0.07 0.03 

 

Table 5.2 Improvement of different mathematical 
interpolation methods (bilinear and bicubic) compared 

to the closest point method (Bouctouche) 

 

Interpolation method Bias (%) MAE (%) RMSE (%) 

Bilinear -8.06 -4.00 -3.54 

Bicubic -11.28 -5.27 -5.07 

 

When comparing the results (Table 5.1), one can conclude that, for North Cape site, the 

bilinear and the bicubic interpolation did not improve significantly the predictions compared 

to the closest point method since the measurement tower is located close to the closest 

forecast point (445 m).  Furthermore, all the surrounding forecast points have very similar 

geophysical input parameters and therefore, the computed wind speeds are very similar.  

These two considerations cause the three interpolations schemes to give very similar results.  

On the other hand, at Bouctouche site, some of the surrounding forecast points used in the 

interpolations have very different geophysical fields which cause a significant variation in the 

wind speed forecast at these points.  Therefore, the closest point have the topographic 

characteristics that correspond the most to the site characteristics and the surrounding 

forecast points are less representative of the site.  Thus, the predictions are degraded by both 
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bilinear and bicubic interpolations (Table 5.2).  Therefore, in the present study, the closest 

point scheme, which is the most widely used in the industry, is used as the reference 

interpolation method when comparing other statistical methods implemented in this section. 

 

5.2 Geo-referenced weighting module 

In order to reduce the topographic signature of the wind speed predictions, a geo-referenced 

weighting module is developed.  This geo-referenced weighting module uses forecast model 

inputs such as topography, surface roughness, distance between grid points and measurement 

site as well as wind direction forecast output to weigh the closest 49 grid points in order to 

identify the best points that properly represent the site topography for any forecasted wind 

direction..  49 grid points (17.5 x 17.5 km) are used since GEM-LAM is piloted by GEM 

Regional (15 km) and that the geostrophic winds are assumed to be constant within this area. 

 

First of all, the equations computing the weighting parameters used in this interpolation 

module are developed.  The topographic height and the surface roughness are already known 

since they are part of the NWP inputs.  Then, the computed variables are the distance 

between grid points and the measurement tower as well as the direction of every grid point in 

relation to the tower.  These parameters are computed from the Earth radius used in the NWP 

model, along with the latitude and the longitude of the grid and measurement points 

(equations 5.1 – 5.7).  Figure 5.1 shows the geographical parameters to be computed: 

 

 

 

Figure 5.1 Representation of the geographical parameters. 
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  √   (5.4) 

 

  cos   (5.5) 
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Where: RE h is the approximated Earth radius at the equator (0.637122 x 107 [m]); 

- RE  is the axial Earth radius at the site latitude [m]; 

- Lat is the latitude of the grid point considered [°N]; 

- Lon is the longitude of the grid point considered [°E]; 

- Lat  is the latitude of the WEICan measurement mast (47.054082 [°N]); 

- Lon  is the longitude of the WEICan measurement mast (296.00135 [°E]); 

- X is the relative distance along the longitude axis from the measurement point [m]; 

- Y is the relative distance along the latitude axis from the measurement point [m]; 

- Dist is the total relative distance from the measurement point [m]; 

- α is the orientation of the grid point from the measurement point (North is at 0 °); 

- β is the wind direction (β = 0 ° from North and β = 90 ° from East); 

- φ is the angle between the wind direction and the grid point orientation [0 – 180 °]. 
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Note that, as the geo-referenced weighting module is much easier to compute when using a 

Cartesian grid, the Earth surface curvature considered in the NWP model is neglected over 

the small area in this study (17.5 km x 17.5 km).  Also, in this study, the NWP model 

horizontal grid points are not equally spaced, but as mentioned earlier, for simplicity 

purposes, it is considered to be equally spaced by the average grid spacing distance (2.5018 

km).  To verify that this consideration is not biased, the STD of the grid spacing to the 

average has been computed for that area.  A STD of 2x10-3 km compared to an average value 

of 2.5018 km shows that this approximation is not causing any harm to the methodology, nor 

to the results. 

 

Before implementing a geo-referenced interpolation module with all the parameters, it is 

necessary to validate that every proposed parameters are essential to the method.  Simple 

interpolation modules are first implemented using one parameter at a time and are compared 

to the closest point interpolation method.  The base weighting factors (W) are computed 

(equation 5.8) at each computation grid point and for each interpolation parameter: angle 

between the wind direction and the grid point orientation, distance between measurement and 

forecast points, surface roughness and topography.  For all the parameters, the weighting 

factors are defined as inversely proportional to the parameter (equations 5.9 - 5.12).  As an 

example, the closest points (small distance) have higher weights than farther computation 

grid points.  In each case, the base weighting factor is normalized using the summation of 

each computation point parameter as defined previously.   

 

  ∑    (5.8) 

 

  ∑   1%   (5.9) 

 

  ∑   1% 360° (5.10) 
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  ∑   1%  (5.11) 

 

  ∑   1%  (5.12) 

 

Note that for each parameter, a lower limit (1 % of the environment characteristics) is applied 

to the value in order to avoid any division by 0: if the value is lower than the limit, it is 

forced to the limit value, thus considering every point.  Then, the wind speed forecast (U) is 

interpolated by multiplying each grid point value by its respective base weighting parameter 

(equations 5.13 - 5.16).   

 

  ∑  (5.13) 

 

  ∑  (5.14) 

 

  ∑  (5.15) 

 

  ∑  (5.16) 

 

Where: Dist is the total relative distance from the measurement point [m]; 

- φ is the absolute angle between the wind direction and the grid point orientation [°]; 

- z  is the surface roughness in the model [m]; 

- z S  is the surface roughness of the North Cape site (0.25 [m]); 

- HT  is the topographic height of each grid point [m]; 

- HT S  is topographic height at the North Cape site (10.3 [m]); 



63 

- W  is the base weighting factor for every grid point [-]; 

- U  is the vertically interpolated wind speed for every grid point [m/s]. 

 

Table 5.3 presents the improvement done by interpolating the wind speed predictions using 

the simple geo-referenced weighting modules compared to the closest point method.  Each 

value presents the improvement of a weighting method compared to the closest point.   

 

Table 5.3 Improvement of different simple geo-referenced 
weighting schemes compared to the closest forecast point 

 

Interpolation method Bias (%) MAE (%) RMSE (%) UD  4.60 1.60 1.43 Uφ 11.93 4.43 4.37 U  18.97 5.77 5.36 UHT  15.64 5.28 4.94 

 

Analysing Table 5.3, one can see that each and every base weighting parameter improves the 

wind predictions compared to the reference interpolation model (closest point).  Certainly, in 

this case, the model based on distance slightly improves the forecast since the closest grid 

point has an important weight compared to other points.  However it is expected that this 

parameter improves the interpolation when coupled with other parameters.  Thus, it is 

important to assure that the interpolation module considers the closest points.  Table 5.3 also 

shows that weighting models based on the wind direction, the surface roughness and the 

topographic height significantly improve the forecast.  Note that a weighting models based 

on the topographic mask (ground cover ratio) is also tested and compared to the weighting 

models based on the topographic height.  As they give similar results, the model based on the 

topographic height is kept since it is more convenient: it can be applied to non-coastal sites.  

Similar results are observed for the Bouctouche site (see Annex V: Table A.V.1). 
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Overall, all these individual weighting parameters are successfully implemented and they are 

compared to the closest point interpolation model.  In each and every case, the basic geo-

referenced weighting significantly improves the forecast compared to the reference method 

by reducing considerably the MAE and the RMSE.  This shows that all these variables are 

indeed necessary and they are all implemented into a complete geo-referenced interpolation 

module.  Different algorithms can be developed using diverse combining rules such as the 

weighted product rule or the weighted sum rule (Kittler et al., 1998).  These two methods can 

be applied to merge the different and independent base weighting parameters without any 

training data set (fixed combining rules).  In the present situation, as the base weighting 

parameters can have high variations in their outcomes, it is suggested to employ the product 

rule (Duin, 2002).  Furthermore, the surface roughness and the topographic height could be 

correlated.  Then it is again recommended to use the product rule for possibly correlated 

parameters (Bilmes and Kirchhoff, 2000 and Tax et al., 2000).  Equation 5.17 details the 

computation of the product rule to implement the final geo-referenced weighting module:  

 

  
∑ ∑  (5.17) 

 

Where: UG  is the interpolated wind speed and  is the forecasted wind speed [m/s].  Once 

the interpolation module is implemented, it can be compared to the reference interpolation 

models, which is the closest point (see section 5.6).   

 

5.3 Linear regressions 

Linear regressions using observed data are applied to model the relationship between the 

NWP and the wind speed measurements by fitting a linear equation.  The minimization of the 

least mean squared (LMS) error method is the most common approach for fitting these 

regression lines since it is conceptually simple and computationally straightforward, while 

performing better than the double bias correction (Liu, 2009).  It computes the best fitting 

line for the observed data by minimizing the sum of the squares of the deviations between 
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each data point and the regression line.  Equation 5.18 details the computation of a simple 

linear regression rule and the minimization of the least square error.  It is shown in the matrix 

representation of equations 5.19 - 5.22: 

 

   (5.18) 

 

    (5.19) 

 

   1  (5.20) 

 

   (5.21) 

 

   (5.22) 

 

Where: UF  is the forecast wind speed from the NWP [m/s]; 

- UM  is the measured wind speed [m/s]; 

- Matrix is the matrix containing the statistical parameters to optimize [-]; 

- UM  is the matrix containing the forecast wind speed [m/s]. 

 

As mentioned earlier, the GMOS developed and applied to the NWP shall reduce the 

directional and topographic signature of the wind speed prediction error.  Therefore, linear 

regressions can be applied to weight the different forecast points within the studied area.  As 

the geo-referenced weighting module uses geographic parameters to weigh the different grid 

points, a linear regression can be used to weigh the surrounding 49 forecasts points (Multi-

Point (MP) linear regression), since each one have different geographic characteristics.  This 

GMOS is developed following equation 5.23.  Thereafter, as the wind direction seems to be 

also an important characteristic (see Table 5.3), a linear regression using the same ensemble 

of 49 predictors can be applied for the different wind directions (Directional Multi-Point (D-

MP) linear regression). This method is detailed through equation 5.24: 
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   ∑  (5.23) 

 

   ∑  (5.24) 

 

Where: UF  is the NWP forecasted wind speed from each of the forecast points [m/s]; 

- A and B are the statistical parameters to optimize [-]; 

- UMP  is the interpolated wind speed using the MP linear regression method [m/s]; 

- UD MP φ is the interpolated wind speed for each sector of the direction rose (φ) 

using the D-MP linear regression method [m/s]. 

 

Then, the MP linear model equation (5.23) can be solved using the methodology described in 

the previous sub-section (equations 5.18 - 5.22).  However, the D-MP linear model equation 

(5.24) cannot be solved using the regular least mean square regression (derivative method) 

because data are too few in some wind directions to fit the regression line, thus, generating 

large uncertainties.  The training dataset being too small to be representative of the general 

situation, it does not fit properly all the statistical parameters of the model: the model 

“memorizes” the learning dataset, but generalizes poorly for the new data included in the test 

database.  This situation is called over-learning.  Therefore, to train the D-MP linear 

regression model, it is necessary to use back-propagation training (batch training) algorithm 

using a gradient descent technique (Hinton, 1989): 

 

1. Initialize the statistical weights (Aφ  and Bφ) to random values. 

 

2. Process all the training data to compute the gradient ( ) of the average error function.  

 

    (5.25) 
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   ∑
 (5.26) 

 

3. Update the weights (Aφ  and Bφ) by subtracting the gradient times a learning rate (lr) and 

by subtracting the previous adjustment times a momentum constant (mc).  Note that the 

momentum is used to avoid falling in local minima and it speeds up the convergence rate 

(considering the former update “∆Aφ t 1 ”) since it acts like a damper, which avoids 

oscillations during the training.  

 

  ∆ ∆ 1  (5.27) 

 

4. Repeat steps 2 & 3 until the gradient of the average error function for the training set 

becomes small enough (10-10) or if the average error function for the cross-validation set 

is not decreased for the last five consecutive iterations.  There is no restriction in terms of 

number of iterations and training time to avoid limiting the performance of the model. 

 

This learning method is also implemented in the MP linear regression module in order to 

make sure that this methodology does not produce large uncertainties.  Applied to the MP 

linear regression, the batch learning (gradient descent) and the derivative approach gave the 

exact same results.  Therefore, the batch learning methodology permits to the D-MP linear 

module to find statistical parameters minimizing the quadratic error, since the cross-

validation prevents over-learning process due to the lack of data.   

 

5.4 Artificial Neural Networks 

As the linear regression are developed to model the relationship between the NWP and the 

wind speed measurements using different architectures, similar models are developed using 

Artificial Neural Networks (ANN) to verify if non-linear regressions can perform better than 
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linear ones for the surface wind prediction problematic.  Multilayer Feed Forward ANN, also 

called Multilayer Perceptron (MLP), are complex non-linear systems inspired by the 

functioning of the biological nervous system that are constituted of many neurons highly 

interconnected by synapses. 

 

In the ANN technique, the weighted sum of the inputs (altered by weights) is fed to the 

neurons of the first layer which process the input signal using an activation function: f ∑ W z .  Then the output of each neuron (z ) are fed as new inputs to other neurons, 

constituting the next layer of the network, and so on.  The output layer of a multilayer feed 

forward ANN contains as much neurons as expected model outputs.  In the current project, 

the desired output is the regressed wind speed forecast, so there shall be only one output 

neuron.  In addition, it is possible to use different types of activation functions depending on 

the nature of the problem to solve: linear, unipolar or bipolar binary function, unipolar (log-

sigmoid) or bipolar (tan-sigmoid) continuous function, etc.  In the current work, a unipolar 

continuous function (log-sigmoid) is used since wind speed always has positive values.  

Figure 5.2 shows the architecture of the current MLP: 

 

 

 

Figure 5.2 Representation of the multilayer ANN architecture. 
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Subsequently, the network has to be trained using the batch training method as explained 

earlier: during the training phase, the connection weights are continuously modified.  Only 

when the training process is done, it is possible to test the network by processing the test 

data.  In order to compare non-linear ANN to linear regression for the wind forecast 

problematic, the same architectures are implemented and tested: an ANN processing the 

closest forecast point (simple ANN); an ANN processing an ensemble of the 49 closest 

predictions points (MP ANN) and finally, a group of ANN processing an ensemble of the 49 

predictions for each direction of the wind (D-MP ANN).  Also, as a proof of concept, a linear 

regression has been modeled using a single layer containing only one neuron with a linear 

activation function.  When evaluating the simple ANN, the results are the exact same as the 

simple linear regression outputs.  Consequently, ANN have the capability to replicate the 

linear regression done by simple LMS linear regressions.  Now, multilayer non-linear ANN 

can be implemented to test how they can solve the wind forecast for the atmospheric 

boundary layer.   

 

Before evaluating such Multilayer Feed Forward ANN, it is important to set the training 

parameters (momentum constant, learning rate and cross-validation ratio) and to fix the 

architecture of the Network (number of nods on the first and on the hidden layers).  To do so, 

many different models are trained and validated for different parameter values.  For each and 

every parameter set, 30 replications are made in order to have statistically valid results and 

the median value is kept.  Note that the average value is not used since it is much more 

influenced by outlying data than the median.  As the results of a network are not linearly 

correlated to its parameters, it is necessary to perform many iterations changing one 

parameter at a time to approach the optimal value for each parameter.  Figure 5.3 shows the 

results for the different parameters value of the last iteration done.   

 

Looking at this figure, one can see that, as the number of nods on a layer increases, the 

results are first improved, but by a certain limit, the error starts to increase.  This is due to the 

fact that a network having a large number of nods is able to describe a much more complex 

phenomenon (higher order of non linearity).  But then, as the number of neurons increases, 
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the number of statistical parameters to set also increases and the network needs more data to 

be trained to avoid over-learning, thus explaining the “V” shape of the error at the 

convergence points (two neurons on the first layer and three nods on the hidden layer).  On 

the other hand, the error seems to increase along with the value of the learning rate, showing 

that a low learning rate (0.01) allows the network to explore, step by step, a large area within 

the possible solutions.  Conversely, the momentum rate converged to a relatively high value 

(90 %), acting like a strong damper to avoid oscillations during the training and to avoid 

falling in local minima.  Finally, the cross validation rate converged to a value of 75 %, 

showing that 75 % of the data shall be used to train the network and 25 % for the cross-

validation.  This is also Matlab’s default value (60 % training, 20 % cross-validation and 20 

% test), since a totally separate test data series is used. 

 

5.5 Model verification 

As previously seen, during model training, the cross-validation helps to avoid over-learning.  

This technique is especially crucial for the models that have small training database, such as 

the D-MP linear and D-MP ANN models.  These models are using data for the specific wind 

direction range included in a rose sector.  Therefore, they have only part of the total database 

to be trained (~ 1/16).  Subsequently, even if cross-validation is used, these models could still 

be poorly trained due to the lack of data and may suffer from over-learning.  Consequently, 

the convergence of the error for both the training and validation data shall be verified, in 

order to assure that they learned properly.  Figure 5.4 shows the evolution of the model error 

on the training and validation database.  The graphs contained in Figure 5.4 are plotted using 

the wind speed database for the northern direction sector since the database related to this 

sector has fewer data than the other directions (see Figure 5.5 for the frequency distribution 

of the wind direction).   

 

Verifying the convergence of the models error in Figure 5.4, one can observe that the training 

and the validation errors converge very closely.  This shows that both models (D-MP linear 

and D-MP ANN) seem not to be affected by any over-learning situation. 
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Figure 5.3 ANN forecast RMS error for different 
parameters: a) number of nods, b) learning rate 

and c) cross validation and momentum rate. 



72 

 

 

Figure 5.4 Evolution of the performance of the a) D-MP linear and b) D-MP ANN. 

 

 

 

Figure 5.5 Measured annual wind frequency rose. 

 

Now, as each and every model has sufficient data to be trained, the models are tested to 

verify that they do not induce outlying data.  For this purpose, two simple verifications are 

performed.  The first test case verifies that there is no coding error that could influence the 

quality of the results.  The different GMOS are trained and applied to a homogeneous 

solution (zero forecasted and measured wind speeds) and each GMOS gives zero wind speed 

outputs, as expected.  Then, the second test case applies the different GMOS to a virtual site 



73 

having the same geographical location and characteristics as the closest forecast point in 

order to verify the theoretical performance limit and therefore, the reliability of these models.  

The outputs of the GMOS are compared to the closest forecast point data and the error is 

computed for each module.  Overall, the mean annual RMSE introduced by the GMOS are 

very close to zero: the highest RMSE introduced (0.55 %) is attributed to the D-MP ANN.  

This showed that every module has a theoretical performance limit that is much higher than 

the NWP performance (36.77 %).  Hence, they are all well adapted for GMOS applications.   

 

Finally, the verification of the proposed modules done in this section shows that each GMOS 

has sufficient data to be trained without being affected by any over-learning situation, that 

there is no coding error and that the theoretical performance limit of the proposed modules 

are sufficiently high to be used along with the NWP at Environment Canada.  These different 

GMOS are then validated and compared using the test data in the next section. 

 

5.6 Comparison of the different GMOS 

As all parameters are set for every method, each interpolated NWP can now be compared.  

The improvement of the different regression methods is detailed for the North Cape site 

(PEI) and the forecast error is analysed for different time series and different meteorological 

variables.  As the same conclusions are found for Bouctouche site, the results are presented 

in Annex V (see Table A.V.2).  Table 5.4 shows the detailed performance improvement of 

the different regression methods compared to the closest point for the North Cape site: 

 

Looking at Table 5.4, one can easily conclude that all implemented GMOS improve 

significantly the NWP.  As the geo-referenced method is well suited for application where no 

historical atmospheric records are available, there is a significant improvement to use such 

past recorded data to train the GMOS (linear regressions or ANN).  In addition, both linear 

and non-linear (ANN) methodologies gain to use the surrounding forecast points (MP 

architecture).  This is due to the fact that these forecast points have different geographical 

characteristics that are taken into account indirectly when weighting each of them.  This 
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improvement is comparable to the improvement done when integrating the geographical 

characteristics into the geo-referenced approach (with no historical atmospheric records).  In 

every case, except for the D-MP architecture, the ANN has an advantage on the linear 

scheme.  However, the integration of the wind direction (D-MP architecture) in the GMOS 

improved once more the wind predictions, especially for the linear scheme (D-MP linear).  

For this architecture (D-MP), there isn’t much difference between the results of the linear and 

the ANN approaches.  Moreover, the improvements results of the MP ANN and the D-MP 

ANN are almost the same.  Therefore, it is possible to conclude that, for this particular 

correlation problem, the non-linearity in the relation between the NWP and the wind speed 

measurements have almost completely been taken into account by the geographical 

parameters and especially the wind direction.  Subsequently, there seems to be no need of 

ANN methods (non-linear) to resolve this correlation problem, since it is shown that the non-

linearity can be detailed by physical parameters which are known a priori.  Figure 5.6 

presents the scatter plot of the measured wind speed vs the forecasted wind speed for a 

selected wind direction sector (North).  This graph shows that the correlation between the 

forecasted and measured wind speed is almost linear for low wind speed in a given wind 

direction.  Therefore, as the cut-out speed of a wind turbine is generally set to 15 m/s, even if 

the ANN slightly outperforms the linear model for the D-MP architecture, the difference may 

not be perceived in terms of wind power generated.   

 

Table 5.4 Improvement of the different regression methods 

 

Interpolation method Bias (%) MAE (%) RMSE (%) 

Geo-referenced 21.16 7.76 7.75 

Simple linear regression 96.61 16.11 17.68 

MP linear regression 97.37 19.87 17.24 

D-MP linear regression 98.70 27.67 27.07 

Simple ANN 98.28 17.87 19.33 

MP ANN 96.56 25.68 25.93 

D-MP ANN 95.99 28.36 27.70 
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Figure 5.6 Scatter plot of the measured and the 
forecasted wind speed (northern direction sector). 

 

Afterwards, the results for some of the main interpolation modules are incorporated on 

common graphs for comparison purposes for the North Cape site (see Figures 5.7 - 5.10).  

Note that in every figure presented, the wind speed forecast error is normalized with the 

annual mean wind speed.  Each graph shows the performance of the closest point 

interpolation, the geo-referenced weighting module, the linear regressions modules (simple, 

MP and D-MP architecture), the MP ANN and the D-MP ANN models.  For readability 

purposes, the two other modules are not plotted in order to not overload the graphs.  

Consequently, Figure 5.7 presents the forecasted error for different time series (diurnal cycle 

and 24h forecast time horizon).  In the forecast horizon comparison, the interpolation 

modules are also compared with the new reference model (see Chapter 2) developed by 

Nielsen et al. (1998).  Figure 5.8 presents the forecasted error for different meteorological 

conditions and Figure 5.9 shows the wind speed forecast error rose of each interpolation 

method.  Similarly, Figure 5.10 shows the improvement of each interpolation method 

compared to the closest point method for each wind direction sector.  Note that the values in 

each graph are normalized with the highest value in the respective graph.  Again, because of 
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the similarity of the results, the results for the Bouctouche site are presented in the annexes 

(see Annex V: Figures A.V.1 – A.V.4).  The only difference that can be seen between the 

two sites is that, as expected, the forecast error (when compared to the new reference model) 

is greater for the Bouctouche site since the NWP model does not take into account the 

displacement of the surface height due to the density of the forest canopy (see section 2.2).   

 

Analysing Figure 5.7, one can easily conclude that all regression modules implemented 

improve the closest point NWP output.  However, the D-MP linear regression and D-MP 

ANN still perform better than all other methods for all time horizons and for the complete 

diurnal cycle.  Moreover, Figure 5.7 shows that the modules using this architecture perform 

better than the new reference model from a 2 h horizon instead of 4 h if no GMOS is applied.  

This is a significant improvement since the persistence offers exceptional forecast 

capabilities for short-term forecasts up to 3 - 6 h (Landberg and Watson, 1994; Liu, 2009).   

 

Furthermore, the D-MP GMOS improves the wind speed forecast for most of the 

meteorological conditions in Figure 5.8.  On the other hand, there are few meteorological 

events where regression modules do not improve significantly the NWP: for highly unstable 

convective atmospheric boundary layer (only for the North Cape site) and for high wind 

speeds (higher than 12 m/s).   

 

Analysing Figure 5.9 - 5.10, one can see that the general performance of the geo-referenced 

weighting module slightly reduces the topographic signature of the forecast error that is 

observed mainly for southern winds.  But, when looking further, it is evident that the linear 

regressions and the ANN modules are superior to the closest point method and the geo-

referenced weighting module for each wind direction.  Using those methods, the topographic 

signature within the error rose is significantly decreased.  Also, it is interesting to note that 

the general error and its geographic signature are almost totally eliminated when using the D-

MP modules.   
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Finally, the D-MP linear method always performs better than all other schemes implemented 

and tested, except for the D-MP ANN which had similar results.  This finding is valid for all 

time series and almost all atmospheric conditions, including critical meteorological 

conditions such as low pressure systems.  Although the GMOS has been validated using a 

second complex site, there might be some limitations on the improvement that can be 

achieved on surface wind forecast (compared to micro-scale models based on computational 

fluid dynamics (CFD)) for highly mountainous sites or for very simple sites (flat terrain or 

off-shore).  Conversely, as such statistical module integrates geophysical parameters as well 

as the forecasted wind direction, one can consider that it will still outperform regular MOS 

that does not assimilate such physical characteristics.  Also, GMOS using historical data as 

training dataset can easily integrate effects (e.g. wind turbine wake effect) that are not simple 

to integrate into CFD codes, which present another advantage using statistical methods such 

as GMOS.  Since the main goal of this regression module is to reduce the topographic 

signature of the forecast error and to improve the NWP without being computationally 

expensive, the D-MP linear approach is used as the GMOS to process the NWP outputs for 

wind power forecast.   

 

 

 

Figure 5.7 Wind speed forecast RMS error for different time series at the North Cape 
site: a) local time and b) forecast horizon (up to 48 h). 
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Figure 5.8 Wind speed forecast RMS error for different meteorological parameters at 
the North Cape site: a) wind speed, b) atmospheric stability (bulk Richardson number), 

c) atmospheric pressure and d) air temperature. 
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Figure 5.9 Wind speed forecast RMS error rose of each regression method at the North 
Cape site: a) closest point, b) geo-referenced weighting, c) simple linear regression, 

d) D-MP linear regression and e) D-MP ANN. 
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Figure 5.10 Improvement rose of each regression module compared to the closest point 
at the North Cape site: a) geo-referenced weighting, b) simple linear regression, 

c) D-MP linear regression and d) D-MP ANN. 

 

 



 

CHAPTER 6 

 

STATISTICAL ANALYSIS AND NWP MODEL VALIDATION 

As the forecast error due to the lack of horizontal resolution in the NWP model has been 

significantly reduced using a GMOS, it is now possible to assess and understand the NWP 

errors on their amplitude and phase for different meteorological situations.  Therefore, a 

methodology is presented in the first section of this chapter (section 6.1) to decompose the 

forecast error into phase and amplitude parts.  This methodology is then validated in section 

6.2 and finally, section 6.3 presents the results of this error assessment on the NWP for 

complex sites.   

 

6.1 Assessment of the phase and amplitude error contributions  

In his PhD thesis, Lange (2003) described simple algebraic expressions to decompose the 

RMSE into bias and STD from the basic definitions of the error ( ): 

 

     (6.1) 

 

     (6.2) 

     (6.3) 

 

     (6.4) 

     (6.5) 

 

    (6.6) 

  2   (6.7) 

  2   (6.8) 

  2   (6.9) 
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   (6.10) 

 

    (6.11) 

 

Then, following the notation from Hou et al. (2001), the STD is decomposed in two parts 

related to phase and amplitude of the error.  The idea here is to isolate the systematic error 

(bias) and the amplitude component of the error to find the mathematical expression 

describing the dispersion (DISP) between the forecasted and the measured wind speed (i.e. 

phase error).  The amplitude error is defined as the difference between the STD (SDBias) of 

the forecasted and measured wind speed: 

 

   (6.12) 

 

Therefore, the STD can be decomposed as: 

 

   (6.13) 

 

 

  2  (6.14) 

 

Using the cross-correlation (r), the linear dependence of two variables is described as: 

 

  ,  (6.15) 

 

 

  2 ,  (6.16) 
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 2 2  

  2 ,  (6.17) 

 

 

  2 1 ,  (6.18) 

 

  2 1 ,  (6.19) 

 

Then, the DISP can be express as the following mathematical expression (equation 6.20).  

Thus, it gives a relation between the RMSE, the systematic error (bias), the amplitude error 

(SDBias) and the phase error (DISP): 

 

  2 1 ,  (6.20) 

 

    (6.21) 

 

6.2 Validation of the error assessment methodology 

Following the definition of the amplitude error (SDBias), the mathematical expressions 

derived in section 6.1 permits to express the RMSE as a function of the systematic error 

(bias), the amplitude error (SDBias) and the phase error (DISP).  Therefore, before applying 

such mathematical decomposition to assess the NWP uncertainty, it is important to validate 

that the definition of the amplitude error is adequate, as the mathematical decomposition 

relies on that hypothesis.  To do so, this methodology is applied to three simple test cases 

using synthetic wind measurements over 24 h where the type of error is known a priory (see 

Figure 6.1):   
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Figure 6.1 Simple test cases on a) systematic, 
b) amplitude and c) phase errors. 
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- Systematic error (bias): To express the bias, the wind speed is systematically 

increased of 1 m/s (no phase or amplitude error). 

 

- Amplitude error (SDBias): To simulate an amplitude error, the wind speed is 

modified using a linear function, thus keeping the same 24 h average value (bias=0). 

 

- Phase error (DISP): To reproduce a phase error, a 1 h time lag has been introduced in 

the wind speed time series.  Therefore, there shall be no systematic nor amplitude 

errors. 

 

Then, the mathematical expressions derived in section 6.1 are applied to these three test cases 

in order to verify the validity of the methodology.  The results of this experiment are shown 

in Table 6.1.  Looking at Table 6.1, one can see that this methodology is able to describe 

properly each type of error: when a time lag is introduced, it only perceives a phase error 

(DISP); for a systematic increase of the wind speed, the mathematical decomposition 

indicates a bias; finally, for a linear scaling error keeping the same average wind speed, the 

method point out an amplitude error, which is correct.  Moreover, note that, in every case, the 

quadratic sum of the bias, the SDBias and the DISP always equals the RMSE, which respects 

equation 6.9.   

 

A second validation has been conduced to verify that the DISP parameter could effectively 

describe the phase error in a wind forecast application.  In that experiment, for each 

measured data within a one year database, the best wind speed forecast has been selected in a 

time window of fixed duration.  Therefore, one can expect that as the time window duration 

increases, the phase error is reduced accordingly.  Note that, in order to keep the graphs as 

clear as possible, the legend appearing in Figure 6.2 is used to describe the curves appearing 

in every figures of the present chapter.  Subsequently, Figure 6.3.a shows the variation of the 

wind speed forecast error as a function of the time window duration.  The time windows 

shown range from zero to twice the autocorrelation time scale (before and after the forecast 

time stamp) which is computed (Chapter 2, equation 2.15) using the autocorrelation function 
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of the wind speed shown in Figure 6.3.b.  The computed autocorrelation time scale is 

approximately 3 h. 

 

Table 6.1 Results of the test cases on 
systematic, amplitude and phase errors 

 

Test Case Criteria Error (%) 
 

Systematic error RMSE2 1.4 

Bias2 1.4 

SDBias2 0.0 

DISP2 0.0 
 

Amplitude error RMSE2 0.7 

Bias2 0.0 

SDBias2 0.7 

DISP2 0.0 
 

Phase error RMSE2 2.3 

Bias2 0.0 

SDBias2 0.0 

DISP2 2.3 

 

 

 

Figure 6.2 Legend for the NWP uncertainty 
assessment on amplitude and phase errors. 

 



87 

 

 

Figure 6.3 a) Variation of the wind speed forecast error as a function of the time 
window duration and b) autocorrelation function of the forecasted wind speed. 

 

Looking at Figure 6.3, one can see that, as expected, the phase error decreases as the time 

window duration increases and conversely, the amplitude and the systematic errors tend to 

stay more or less constant.  Thus, these two validations showed that this mathematical 

decomposition can be applied to assess the phase and amplitude errors of the NWP. 

 

6.3 Assessment of the forecast errors for complex sites (NWP with GMOS) 

As the methodology detailed in section 6.1 shows the capacity to identify phase and 

amplitude errors within the wind predictions, it is applied to the NWP outputs to detail the 

forecast errors for the North Cape and the Bouctouche sites.  The RMSE characteristics 

(phase, amplitude and systematic errors) are computed for different time series and different 

meteorological conditions in all wind directions (including dynamical events).  The results 

for the North Cape site are shown in Figures 6.4 - 6.7, while those for the Bouctouche site 

can be found in the annexes since the results are very similar for both sites (see Annex VI: 

Figures A.VI.1 – A.VI.5). 
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Looking at Figures 6.4 - 6.6, one can see that for most meteorological conditions, for all wind 

directions and all time series, the phase error is dominant compared to the bias and the 

amplitude errors.  This is partially due to the fact that the GMOS is applying a linear 

regression which mainly reduces the systematic errors related to the geophysical fields such 

as topography, land use, etc.  Moreover, the use of 49 GEM-LAM grid points, covering an 

area of 17.5 x 17.5 km, reduces the phase errors, but also reduces the forecast sharpness 

which degrades the amplitudes errors (Liu, 2009).  Nonetheless, as the RMSE improvement 

done by applying the GMOS (~ 27 %) are mainly observed in terms of bias and phase errors, 

the phase errors remain dominant on the amplitude errors with or without using GMOS.   

 

Moreover, in almost all cases (Figures 6.4 - 6.6), the bias is negligible compared to both 

phase and amplitude errors.  Indeed, this fact can be observed for all time series (diurnal 

cycle and 0 to 48 h forecast horizon in Figure 6.4), for all wind directions (Figure 6.6) and 

for most meteorological conditions (Figure 6.5): low and high pressure systems; stable, 

neutral and unstable flow; cold or warm weather.  However, when looking at the graph 

presenting the forecast error in relation with the wind speed (Figure 6.5.a), one can see that 

the bias is only negligible for wind speeds close to 8 m/s.  This is mainly due to the fact that 

the GMOS has been trained with data having an annual mean value close to 8 m/s and, 

following the Weibull distributions (see Chapter 2: Figure 2.12), data having a wind speed 

close to that value present a high frequency of occurrence.  Consequently, when getting away 

from the median value (generally close to the mean), the frequency of occurrence decreases.  

Therefore, as the statistical module is trained by minimizing the forecast error (mainly bias 

and amplitude error) for one year of data, the bias tends to be lower for data having a higher 

probability of occurrence (i.e. close to the mean).   

 

On the same graph (Figure 6.5.a), it is also possible to observe that the normalized errors 

(RMSE, bias, SDBias and DISP) are quite higher for low wind speeds, which is normal since 

these values are normalized using the instantaneous wind speed.  Therefore, the relative 

contribution of a 1 m/s error is five times higher for a nominal wind speed of 2 m/s than for 

10 m/s.  Moreover, the high forecast error for very low wind speed can be partially explained 
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by the fact that a minimum floor number of 2 m/s is set for wind speed when computing the 

surface fluxes in GEM-LAM (momentum, latent and sensible heat fluxes).  This operation is 

mostly done to avoid decoupling of the surface and of the atmosphere in low wind and stable 

conditions, but also to mediate the impact of unrealistic surface roughness in the regional 

model which is too high.  Therefore, by setting a minimum wind speed on the ground when 

computing the surface fluxes, the vertical exchanges in the atmospheric boundary layer are 

increased, which also influence the resulting wind speed forecast by slightly increasing its 

value.  This issue has been pointed out by Environment Canada team and they are currently 

working to correct that problem in the NWP model.  Nonetheless, the forecast error for the 

database used in the current study presents that imperfection and it partially explains the high 

forecast error for low wind speed.  Nevertheless, this imperfection does not affect much the 

wind power forecast since the cut in speed of the turbines is generally higher than 2 m/s and, 

therefore, the power production is null for these low wind speeds.   

 

Moreover, when looking at the forecast error in relation with the atmospheric stability 

(Figure 6.5.b), it is possible to point out that the model does not perform as well for the 

neutral case as it does for unstable and stable cases.  Indeed, this intermediate situation, 

which generally occurs in the day-night transition, is quite hard to predict as the atmosphere 

slowly becomes stable: the thin stable layer is developed from above the ground and 

increases in height as the ground temperature cools down.  As a matter of fact, as the two 

first computation levels are approximately located at 45 and 135 m AGL, the vertical 

resolution in the NWP model cannot describe properly the development of this thin stable 

layer ranging from zero to a few hundred meters during the day-night transition (neutral 

atmospheric conditions).  The difficulty to model the development of the stable boundary 

layer also explains the increase in the forecast error at the sunset, which can be observed in 

Figure 6.4.a.  This is consistent with the conclusions of Lange (2003) and Liu (2009). 

 

Subsequently, looking at Figure 6.5.c, one can conclude that the barometric pressure 

influences the forecast precision since low pressure systems, which tend to produce 

dynamical events, are associated with larger forecast errors than high pressure ones.  Indeed, 
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when looking at Figure 6.7, it is possible to confirm that these dynamical events (rapid 

changes of the wind speed, the pressure or the temperature), generally associated with low 

pressure systems, produce a large forecast errors.  When verifying the error details, one can 

see that, during these events, the systematic and the amplitude errors increase as the phase 

error remains constantly high.  Therefore, as noted by Liu (2009), it is possible to conclude 

that the NWP model generally produces high phase errors for most time series, wind 

directions and meteorological conditions; high systematic and high amplitude errors are 

mainly observed during ramping events, which are quite hard to predict due to their 

dynamical behaviour. 

 

 

 

Figure 6.4 Wind speed forecast errors for different time series at the North Cape site: 
a) local time and b) forecast horizon (up to 48 h). 
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Figure 6.5 Wind speed forecast errors for different meteorological conditions at the 
North Cape site: a) wind speed, b) atmospheric stability (bulk Richardson number), 

c) atmospheric pressure and d) air temperature. 
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Figure 6.6 Wind speed forecast error roses at the North Cape site: a) RMSE, b) phase 
error, c) amplitude error and d) systematic errors. 
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Figure 6.7 Wind speed forecast errors for dynamic meteorological events at the North 
Cape site: a) pressure variations, b) temperature variations, c) wind speed variations 

and d) wind direction variations. 

 



 

CONCLUSION 

 

In preparation for this work, a detailed literature review allowed to understand the wind 

forecast problem for complex sites.  As there is a need for more accurate wind power forecast 

to properly integrate the wind energy in the electrical utility, the objective of this research 

work is to present a number of variables that influence the forecast errors and that can be 

implemented in a statistical module to improve the wind forecasts.  Therefore, after 

performing the data quality analysis and after assessing the errors of the atmospheric 

measurements, the wind characteristics are established for both analyzed sites (North Cape, 

PEI and Bouctouche, NB).   

 

Subsequently, the forecasted wind speeds are interpolated vertically.  To do so, several 

vertical interpolation methods are implemented and tested in order to determine which one is 

the most suitable for wind energy assessments.  It appears that simplified non-neutral 

logarithmic profile, considering the atmospheric stability to be constant with height, do 

properly represents stable, neutral and unstable air flows in the surface layer.  The selection 

of a proper vertical profile is essential since the behaviour of the atmospheric boundary layer 

over complex sites is greatly influenced by the atmospheric stability.  This assessment also 

allows to point out that, for dense forest canopies such as seen at the Bouctouche site, the 

surface roughness is greater than what is expected due to a virtual vertical displacement of 

the ground surface.  Since the NWP model does not consider such vertical displacement to 

correct the surface roughness, the vertical profile of the wind speed computed does not 

properly represent the behaviour of the flow for forested sites.  It is therefore recommended 

to consider introducing a vertical displacement in the NWP model for wind profile 

calculation in densely forested sites.  Such misrepresentation of surface properties leads to a 

systematic underestimation of the wind speed which can be easily corrected by using a MOS. 

 

This led to the conduct of a preliminarily statistical analysis of the GEM-LAM model using 

one year of meteorological data at North Cape (PEI).  This analysis shows that the wind 

forecast errors are strongly related to the wind direction and the geographical characteristics 
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of the sites.  For this reason, the NWP are downscaled to the test sites using different 

configuration of GMOS, such as: geo-referenced weighting module, linear LMS regressions 

and ANN.  In subsequent statistical analyses, the different statistical modules are analyzed 

and compared.  The GMOS using the surrounding forecast points as well as the wind 

direction (D-MP architecture) appears to be superior to all other tested modules.  However, 

the statistical analysis shows that the non-linearity in the correlation between the forecasted 

and measured wind speed could be resolved using physical parameters (site characteristics 

and wind direction).  Therefore, there appears to be no need to use sophisticated non-linear 

statistical tools such as ANN since they perform as well as the linear ones when using the D-

MP architecture for this particular problem.  It is important to note that the batch learning and 

cross validation methodologies are also helpful to train such model to prevent over-learning 

situations due to the lack of data.  GMOS differs from other MOS that are widely used by 

meteorological centers and the strengths of this innovative approach are based on the 

following aspects: 

 

- GMOS dynamically selects a different linear model depending on the forecasted wind 

direction. 

 

- It optimally exploits the physical simulations done by the NWP model for the 

surrounding forecasting points which have different geographic characteristics 

(surface roughness, terrain height, etc.).  

 

- It can be applied to any forecast model providing wind speed and direction. 

 

- It can be used without any historical data although a training phase using one year of 

data is recommended for further improvements. This characteristic is well suited for 

new sites where no data are available. 

 

Globally, the D-MP linear model shows significant improvement over all other methods: this 

GMOS improves the GEM-LAM 2.5 km forecasts RMSE at the North Cape site by 25-30%.  
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These improvements can be appreciated among all time series and almost all meteorological 

conditions.  Moreover, the present model combined with the GMOS outperformed the new 

reference model (persistence + climatology) from a 2 h horizon instead of 4 h without using 

the GMOS, which is a significant progress according to the literature.  Also, the D-MP linear 

GMOS reduces considerably the topographic signature of the forecast errors, which is the 

main objective of the present study.  This is due to the fact that this model exploits the 

physical simulations of the NWP model by using an ensemble of the surrounding forecasting 

points, having different geographic characteristics.  Therefore this statistical model is able to 

integrate the fine scale local effects in the wind predictions which were not taken into 

account by the closest forecast point due to the relatively coarse spatial resolution of the 

NWP model.  Finally, the GMOS developed for the North Cape site was applied and 

validated at another site located in Bouctouche (New Brunswick).  Similar improvements on 

the GEM-LAM 2.5km forecasts were observed, thus showing the general applicability of the 

GMOS.   

 

After applying the “optimal” GMOS, a dynamic approach is used to analyze and characterize 

the uncertainty of the short-term wind forecasts on the amplitude and phase error for different 

meteorological events.  It appears that the phase errors are dominant over the bias and 

amplitude errors for all time series, for all wind directions and for most meteorological 

conditions.  However, the amplitude errors and the bias become significant during less 

predictable dynamic events such as low pressure systems, wind ramps, rapid changes in the 

temperature or in the barometric pressure.  These statistical analyses also show a higher 

forecast uncertainty for low wind speeds due to an incorrect forcing in the NWP model for 

wind speeds lower than 2 m/s.  Also, the vertical resolution of the NWP model appears to be 

insufficiently fine in the surface layer to represent the formation of the thin stable 

atmospheric boundary layer, thus generating high forecast uncertainty at sunset (neutral 

atmospheric stability), when the atmosphere slowly turns stable from the convective unstable 

condition.  Environment Canada team is now working to correct the surface fluxes forcing at 

low wind speed and it is intended to refine the vertical resolution of the GEM-LAM.  These 

modifications should improve the NWP ability to forecast the wind speed for complex sites.  
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In future work, it would be interesting to provide probabilistic forecasts.  This could be 

achieved by using the ensemble of surrounding forecast points to examine what are the 

different scenarios possible or by running an ensemble of ANN using different replications of 

the D-MP architecture as detailed in the literature review.  This methodology could be useful 

to reduce the forecast uncertainty, but mostly to give the confidence interval of the forecast, 

which is more than valuable in energy trades.  As cited in the previous paragraph, the NWP 

would greatly benefit from phase error reduction.  Following that conclusion, it would be 

interesting to perform high resolution data assimilation for the GEM-LAM or to implement a 

Kalman filter.  Similarly, a phase correction tool could also be developed using the MP 

methodology: indeed, the surrounding forecast points could provide useful information with 

regard to the phase of the dynamical events occurring.  Also, to describe the geophysical 

parameters, it could be relevant to investigate the use of: the topographic slope instead of the 

topographic height and the surface roughness inverse logarithm instead of the roughness 

length itself.  GMOS could also be coupled to micro-scale models for further improvements.  

 

As concluding remarks, according to the needs of the wind energy industry, a GMOS has 

been developed and applied to improve the wind forecast from a NWP model, particularly in 

complex terrain.  The methodology used to assess and understand the forecast uncertainty 

and error tendencies will also greatly improve wind power forecasts as it helped identifying 

meteorological events with high forecast uncertainties.  Also, model errors being 

decomposed into phase, amplitude and systematic errors, the phase errors are found to be 

dominant compared with the two other types of errors.  This finding will help to define the 

research priority in improving wind energy forecasting.  A better knowledge of prediction 

uncertainties and a better wind forecast will increase the economic value of wind energy in 

the market by increasing wind energy confidence for energy trades and by simplifying the 

issues of energy transmission, electricity grid balancing and power generation dispatch. 

 



 

ANNEX I 
 
 

DATA RECOVERY RATE AT THE BOUCTOUCHE SITE 

Table A.I.1 Data recovery rates for every month 
of the sample year (Bouctouche) 

 

Month 

Records 

Available 

Ratio (%)

Valid 

Records 

Ratio (%)

Upwind 

Records 

Ratio (%)

Available 

Forecast 

Ratio (%) 

Data  

Recovery 

Rate (%) 

January 83.33 93.06 93.41 100.0 72.44 

February 83.48 90.64 94.20 100.0 71.28 

March 86.02 88.83 92.44 100.0 70.63 

April 95.56 92.59 86.50 100.0 76.53 

May 97.45 92.14 85.33 100.0 76.62 

June 93.89 94.67 80.16 100.0 71.25 

July 93.88 93.20 88.40 100.0 77.35 

August 94.42 94.45 89.75 100.0 80.04 

September 97.71 92.89 94.26 100.0 85.55 

October 96.44 90.94 88.97 100.0 78.03 

November 52.08 93.07 92.26 100.0 44.72 

December 90.86 92.68 89.70 100.0 75.54 

Annual 88.13 92.34 90.24 100.0 73.44 

 

 



 

ANNEX II 
 
 

ANEMOMETER RELIABILITY AT THE BOUCTOUCHE SITE 

 

 

Figure A.II.1 Logarithmic vertical wind speed profiles plotted from  
the mean wind speed at two different heights. 

 



 

ANNEX III 
 
 

CHARACTERISTICS OF THE WIND AT THE BOUCTOUCHE SITE 

 

 

Figure A.III.1 Annual and seasonal average wind speed 
diurnal cycles at the Bouctouche site. 
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Figure A.III.2 Annual and seasonal wind frequency roses at the Bouctouche site: 
a) annual, b) winter, c) spring, d) summer and e) fall. 
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Figure A.III.3 Annual and seasonal average wind speed roses at the Bouctouche site: 
a) annual, b) winter, c) spring, d) summer and e) fall. 
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Figure A.III.4 Annual and seasonal wind energy roses at the Bouctouche site: 
a) annual, b) winter, c) spring, d) summer and e) fall. 
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Figure A.III.5 Annual and seasonal Weibull distributions of the wind speed at 
the Bouctouche site: a) annual, b) winter, c) spring, d) summer and e) fall.



 

ANNEX IV 
 
 

VERTICAL INTERPOLATION AT THE BOUCTOUCHE SITE 

 

 

Figure A.IV.1 Non-neutral logarithmic wind profile under 
unstable/neutral atmospheric conditions at the closest NWP 

point to the measurement mast (Bouctouche). 
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Figure A.IV.2 Non-neutral logarithmic wind profile under  
stable atmospheric conditions at the closest NWP 

point to the measurement mast (Bouctouche). 

 



 

ANNEX V 
 
 

COMPARISON OF THE GMOS AT THE BOUCTOUCHE SITE 

Latitude of the Bouctouche measurement mast: 46.472217 °N. 
 
Longitude of the Bouctouche measurement mast: 295.2609 °E. 
 
Surface roughness of the Bouctouche site: 3.5 m. 
 
Topographic height of the Bouctouche site: 30 m. 
 

Table A.V.1 Improvement of different simple geo-referenced 
weighting schemes compared to the closest forecast point 

 

Interpolation method Bias (%) MAE (%) RMSE (%) UD  15.90 8.64 8.28 Uφ 24.40 6.03 1.73 U  29.52 14.52 13.98 UHT  51.43 21.84 20.59 

 

Table A.V.2 Improvement of the different regression methods 

 

Interpolation method Bias (%) MAE (%) RMSE (%) 

Geo-referenced 44.47 17.45 15.43 

Simple linear regression 89.93 31.24 31.15 

MP linear regression 90.93 33.77 33.86 

D-MP linear regression 90.00 35.38 34.56 

Simple ANN 89.70 31.50 31.81 

MP ANN 91.75 34.48 34.91 

D-MP ANN 92.03 36.23 35.63 
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Figure A.V.1 Wind speed forecast RMS error for different time series: a) local time 
and b) forecast horizon (up to 48 h). 
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Figure A.V.2 Wind speed forecast RMS error for different meteorological 
parameters: a) wind speed, b) atmospheric stability (bulk Richardson number) 

and c) air temperature. 
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Figure A.V.3 Wind speed forecast RMS error rose of each regression method: a) closest 
point, b) geo-referenced weighting, c) simple linear regression, d) D-MP linear 

regression and e) D-MP ANN. 
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Figure A.V.4 Improvement rose of each regression module compared to the closest 
point: a) geo-referenced weighting, b) simple linear regression, c) D-MP linear 

regression and d) D-MP ANN. 

 



 

ANNEX VI 
 
 

NWP MODEL VALIDATION AT THE BOUCTOUCHE SITE 

 

 

Figure A.VI.1 Legend for the NWP uncertainty 
assessment on amplitude and phase error. 

 

 

 

Figure A.VI.2 Wind speed forecast errors for different time series at the Bouctouche 
site: a) local time and b) forecast horizon (up to 48 h). 
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Figure A.VI.3 Wind speed forecast errors for different meteorological conditions at the 
Bouctouche site: a) wind speed, b) atmospheric stability (bulk Richardson number) and 

c) air temperature. 
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Figure A.VI.4 Wind speed forecast error roses at the Bouctouche site: a) RMSE, b) 
phase error, c) amplitude error and d) systematic errors. 
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Figure A.VI.5 Wind speed forecast errors for dynamic meteorological events at the 
Bouctouche site: a) wind speed variations and b) wind direction variations. 
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