
Learning Framework for eCPM Prediction in Online

Advertisement

by

Marwa Tageldien Thabet ABDALLAH

THESIS PRESENTED TO ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
IN PARTIAL FULFILLMENT OF A MASTER’S DEGREE

WITH THESIS IN ELECTRICAL ENGINEERING
M.A.Sc.

MONTREAL, FEBRUARY 11, 2022

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

Marwa Tageldien Thabet Abdallah, 2022

This Creative Commons license allows readers to download this work and share it with others as long as the

author is credited. The content of this work cannot be modified in any way or used commercially.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mr. Pascal Giard, Thesis supervisor

Department of Electrical Engineering, École de Technologie Supérieure

Mr. Jean-Marc Lina, President of the board of examiners

Department of Electrical Engineering, École de Technologie Supérieure

Mr. Georges Kaddoum, Member of the jury

Department of Electrical Engineering, École de Technologie Supérieure

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

ON "FEBRUARY 1ST, 2022"

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

FOREWORD

My master’s project was a great journey that was full of several challenges. This project takes 30

credits out of my 45 master’s credits at École de technologie supérieure. All of this wonderful

time was under the supervision of my great supervisor professor Pascal Giard. He makes

these hard times easier than expected. On the other hand, another great support to completing

this project came from the Industrial Partner since this thesis is part of the Industrial Partner

application. They supported us with useful information that helped us in trying to maximize the

revenues of the web publishers.

ACKNOWLEDGEMENTS

I would like to thank my master’s supervisor professor Pascal Giard that he gave me the chance

to be one of his team members. He is always supporting me and all the team members in

everything he could possibly do, whether at our work or our lives. Without his support, I would

not have been able to move forward with my master’s thesis.

I also would like to thank the Industrial Partner for making me one of their project team members

during my master’s. I would like to thank them for their support and help with the knowledge

and the information that they have to complete our work. Without their efforts, we would not

have been able to accomplish many things in this project. Deepest thanks to my lab-mates for

their support and the great time that we spend together.

All thanks, and love, to my dear husband. Without his constant support, I would not have been

able to move on in my career and in my life. Thanks to my lovely husband, my son, and my

family for the great support.

Cadre d’apprentissage pour la prédiction de l’eCPM dans la publicité en ligne

Marwa Tageldien Thabet ABDALLAH

RÉSUMÉ

De nos jours, la publicité en ligne devient l’outil le plus populaire pour acheter et vendre tous les

produits. Surtout après l’apparition de COVID-19, la publicité en ligne est devenue un grand

défi pour tous les annonceurs et éditeurs de sites Web afin d’augmenter leurs revenus. Tous les

annonceurs web cherchent à acheter des emplacements publicitaires vides à bas prix. En même

temps, tous les éditeurs de sites Web cherchent à vendre leurs espaces publicitaires et à obtenir

des revenus élevés. La vente des espaces publicitaires des éditeurs se fait en temps réel sur une

plateforme de Real-Time Bidding (RTB). Il n’y a donc pas de prix spécifique pour la vente des

espaces publicitaires des éditeurs. Le prix de l’espace publicitaire est spécifié en fonction de la

demande du marché à un moment donné. Les éditeurs souhaitent connaître le prix optimal de

l’espace publicitaire qui leur permettra d’obtenir les meilleurs revenus. Dans ce mémoire, nous

essayons d’aider les éditeurs à augmenter leurs revenus en essayant de prévoir le prix moyen

des espaces publicitaires. Nous essayons de prévoir le Effective Cost per Mille (eCPM) moyen

autour d’une certaine date pour les 7, 14 et 30 prochains jours à partir d’aujourd’hui en nous

basant sur l’historique du eCPM. Nous avons utilisé différents modèles pour tenter d’atteindre

cet objectif. Dans cette thèse, nous avons utilisé les modèles K-Nearest Neighbors (KNN), Multi

Layer Perceptron (MLP), et Long Short-Term Memory (LSTM) sur quatre jeux de données

différents en essayant d’atteindre la meilleure précision du modèle.

Mots-clés: Publicité en ligne, enchères en temps réel, eCPM, KNN, MLP, LSTM

Learning Framework for eCPM Prediction in Online Advertisement

Marwa Tageldien Thabet ABDALLAH

ABSTRACT

Nowadays, online advertising becomes the most popular tool for buying and selling all products.

Especially after the appearance of COVID-19, online advertising has become a big challenge for

all web advertisers and web publishers to increase their revenues. All web advertisers seek to buy

empty ad slots at low prices. At the same time, all web publishers seek to sell their ads spaces

and achieve high revenues. Selling publishers ad space happens in real-time through Real-Time

Bidding (RTB) platform. So, there is no specific price for selling publisher’s ads spaces. The

ad space price is specified based on the market demand at a time. The publishers wish if they

can know the optimal ad space price that achieves the highest revenue. In this thesis, we are

trying to help publishers to increase their revenues by trying to predict the average Effective

Cost per Mille (eCPM) price for ads spaces. We are trying to forecast the average eCPM around

certain date for the next 7, 14, and 30 days from today based on the eCPM history. We used

different models trying to achieve this goal. In this thesis, we used K-Nearest Neighbors (KNN),

Multi Layer Perceptron (MLP), and Long Short-Term Memory (LSTM) models on four different

datasets trying to reach the best model accuracy.

Keywords: Online advertisement, real-time bidding, eCPM, KNN, MLP, LSTM

TABLE OF CONTENTS

Page

INTRODUCTION .1

CHAPTER 1 BACKGROUND . 3

1.1 Online Advertisement . 3

1.1.1 Real Time Bidding (RTB) . 3

1.1.2 Reserve Price . 5

1.1.3 Online Auctions . 6

1.1.4 CPM VS. eCPM . 7

1.2 Long Short-Term Memory (LSTM) . 7

1.3 Multi-Layer Perceptron (MLP) . 9

1.4 K-Nearest Neighbour (KNN) . 10

CHAPTER 2 RELATED WORK . 11

2.1 Time Series Forecasting . 11

2.2 Floor Price Optimization in Online Advertisement . 14

2.3 Relevancy to Our Project . 18

CHAPTER 3 METHODOLOGY . 19

3.1 Data Preparation . 19

3.1.1 Splitting the Datasets . 21

3.1.2 Model Input Size . 21

3.2 Predicting Average eCPM . 21

3.2.1 Framework for Average eCPM Prediction . 22

CHAPTER 4 MODELS COMPARISONS . 25

4.1 Vanilla Model . 25

4.2 Stacked Model . 26

4.3 Hyperbolic Tangent Activation Function (Tanh) . 26

4.4 Rectified Linear Activation Function (ReLU) . 27

4.5 Evaluation Metrics . 27

4.5.1 Mean Square Error (MSE) . 28

4.5.2 Normalized Mean Square Error (NMSE) . 28

4.5.3 Percentage Error . 29

4.6 Adam Optimization Algorithm . 29

4.7 Activation Function Selection . 30

4.8 Model Type Selection . 31

4.9 Model Architecture Selection . 31

CHAPTER 5 RESULTS . 35

5.1 Results of Activation Function Selection . 35

XIV

5.1.1 Results of Experiment 1.1 . 35

5.1.2 Results of Experiment 1.2 . 37

5.2 Results of Model Type Selection . 38

5.2.1 Results of Experiment 2.1 . 38

5.2.2 Results of Experiment 2.2 . 39

5.3 Results of Architecture Selection . 40

5.3.1 Results of Experiment 3.1 . 41

5.3.1.1 Results of Experiment 3.1 on 300 × 250 dataset 41

5.3.1.2 Results of Experiment 3.1 on 300 × 600 dataset 44

5.3.1.3 Results of Experiment 3.1 on 970 × 250 dataset 47

5.3.1.4 Results of Experiment 3.1 on 728 × 90 dataset 50

5.3.2 Results of Experiment 3.2 . 54

5.3.3 Results of Experiment 3.3 . 57

5.4 The Final Models architecture . 58

5.4.1 Predictive Model (Vanilla-LSTM Model) . 59

5.4.1.1 Results of Vanilla-LSTM model on 300 × 250 dataset 60

5.4.1.2 Results of Vanilla-LSTM model on 300 × 600 dataset 60

5.4.1.3 Results of Vanilla-LSTM model on 728 × 90 dataset 61

5.4.2 Predictive Model (MLP Model) . 61

5.4.2.1 Results of Vanilla-MLP model on 970 × 250 dataset 62

5.5 Discussion . 63

CONCLUSION AND RECOMMENDATIONS . 69

BIBLIOGRAPHY . 70

LIST OF TABLES

Page

Table 3.1 Six Features Used to Aggregate the Four Datasets . 19

Table 4.1 Conclusion of all Experiments . 33

Table 5.1 Conclusion for the MSE, NMSE, and Percentage-Error values for all

datasets with vanilla-LSTM and vanilla-MLP models with t values

equal 7, 14, and 30 . 54

LIST OF FIGURES

Page

Figure 1.1 The business process of RTB ad delivery . 4

Figure 1.2 The relation between the floor price and the revenue . 5

Figure 1.3 First-price Auction vs. Second-price Auction . 6

Figure 1.4 LSTM Cell . 8

Figure 1.5 MLP Architecture . 9

Figure 3.1 The four datasets with four different ad sizes . 20

Figure 3.2 Three steps in splitting the dataset . 22

Figure 4.1 Vanilla Model . 25

Figure 4.2 Stacked Model . 26

Figure 4.3 Tanh Activation Function . 27

Figure 4.4 ReLU Activation Function . 28

Figure 5.1 Activation Function Selection using MLP Model with 𝑡 = 7 on

300 × 250 Dataset . 36

Figure 5.2 Activation Function Selection using LSTM Model with 𝑡 = 7 on

300 × 250 Dataset . 37

Figure 5.3 Model Type Selection using MLP Model with 𝑡 = 7 on 300 × 250

Dataset . 39

Figure 5.4 Model Type Selection using LSTM Model with 𝑡 = 7 on 300 × 250

Dataset . 40

Figure 5.5 LSTM vs. MLP with 𝑡 = 7 on 300 × 250 Dataset . 42

Figure 5.6 LSTM vs. MLP with 𝑡 = 14 on 300 × 250 Dataset . 43

Figure 5.7 LSTM vs. MLP with 𝑡 = 30 on 300 × 250 Dataset . 44

Figure 5.8 LSTM vs. MLP with 𝑡 = 7 on 300 × 600 Dataset . 45

Figure 5.9 LSTM vs. MLP with 𝑡 = 14 on 300 × 600 Dataset . 46

XVIII

Figure 5.10 LSTM vs. MLP with 𝑡 = 30 on 300 × 600 Dataset . 47

Figure 5.11 LSTM vs. MLP with 𝑡 = 7 on 970 × 250 Dataset . 48

Figure 5.12 LSTM vs. MLP with 𝑡 = 14 on 970 × 250 Dataset . 49

Figure 5.13 LSTM vs. MLP with 𝑡 = 30 on 970 × 250 Dataset . 50

Figure 5.14 LSTM vs. MLP with 𝑡 = 7 on 728 × 90 Dataset . 51

Figure 5.15 LSTM vs. MLP with 𝑡 = 14 on 728 × 90 Dataset . 52

Figure 5.16 LSTM vs. MLP with 𝑡 = 30 on 728 × 90 Dataset . 53

Figure 5.17 LSTM Vs. KNN with 𝑡 = 7 and 𝐾 = 12 on 300 × 250 Dataset 56

Figure 5.18 LSTM Vs. KNN with 𝑡 = 7 and 𝐾 = 25 on 300 × 600 Dataset 57

Figure 5.19 LSTM Vs. KNN with 𝑡 = 7 and 𝐾 = 12 on 728 × 90 Dataset 58

Figure 5.20 MLP Vs. KNN with 𝑡 = 7 and 𝐾 = 12 on 970 × 250 Dataset 59

Figure 5.21 Vanilla-LSTM model with 𝑡 = 7 on 300 × 250 Dataset . 60

Figure 5.22 Vanilla-LSTM model with 𝑡 = 14 on 300 × 250 Dataset . 61

Figure 5.23 Vanilla-LSTM model with 𝑡 = 30 on 300 × 250 Dataset . 62

Figure 5.24 Vanilla-LSTM model with 𝑡 = 7 on 300 × 600 Dataset . 64

Figure 5.25 Vanilla-LSTM model with 𝑡 = 14 on 300 × 600 Dataset . 64

Figure 5.26 Vanilla-LSTM model with 𝑡 = 30 on 300 × 600 Dataset . 65

Figure 5.27 Vanilla-LSTM model with 𝑡 = 7 on 728 × 90 Dataset . 65

Figure 5.28 Vanilla-LSTM model with 𝑡 = 14 on 728 × 90 Dataset . 66

Figure 5.29 Vanilla-LSTM model with 𝑡 = 30 on 728 × 90 Dataset . 66

Figure 5.30 Vanilla-MLP model with 𝑡 = 7 on 970 × 250 Dataset . 67

Figure 5.31 Vanilla-MLP model with 𝑡 = 14 on 970 × 250 Dataset . 67

Figure 5.32 Vanilla-MLP model with 𝑡 = 30 on 970 × 250 Dataset . 68

LIST OF ABBREVIATIONS

AdaGrad Gradient Descent Adaptive Gradient Algorithm.

ANN Artificial Neural Network.

AR Autoregressive Model.

ARIMA Autoregressive Integrated Moving Average.

ARMA Autoregressive Moving Average Model.

CNN Convolutional Neural Networks.

CPM Cost Per Mille.

DBSCAN Density-Based Spatial Clustering of Applications with Noise.

DFFNN Deep Feed Forward Neural Networks.

DMP Data Management Platform.

DSP Demand-Side Platform.

eCPM Effective Cost per Mille.

GRU Gated Recurrent Unit.

KNN K-Nearest Neighbors.

LOF Local Outlier Factor.

LSTM Long Short-Term Memory.

MA Moving Average Model.

MLP Multi Layer Perceptron.

XX

MSE Mean Square Error.

Multivariate ARIMA Multivariate Autoregressive Integrated Moving Average.

NMSE Normalized Mean Square Error.

PSO Particle Swarm Optimization.

PSO-ETC-RAP PSO based explore-then-commit algorithm with risk-aware pricing.

ReLU Rectified Linear Activation Function.

Resnet Residual Neural Network.

RF Random Forests.

RMSProp Root Mean Square Propagation.

RNN Recurrent Neural Network.

RNNs Recurrent Neural Networks.

RTB Real-Time Bidding.

SSP Supply-Side Platform.

STSC Subsequence Time-Series Clustering.

SVM Support Vector Machines.

Tanh Hyperbolic Tangent Activation Function.

TS-PF-RAP Thompson sampling with particle filter and risk-aware pricing.

TS-PF-TB Thompson sampling with particle filter and only modeling the top bid.

VAR Vector Auto-Regression.

INTRODUCTION

Online advertising become the most popular way of trading recently. From people side, buying

products online becomes easier and faster. From web advertisers and web publishers, online

trading becomes more challenging to increase their revenues. Web advertisers are the owners of

the products. They want to show their products on an empty ad slot on the website. While the

web publishers are the owners of the websites. They want to sell their empty ad slots to web

advertisers. Both of them, advertisers and publishers, are want to increase their revenues.

There are two ways to sell publishers’ inventories: direct process and programmatic process. In

the direct process, publishers deal directly with advertisers. They discuss all the ad proprieties

and set a suitable price for the ad inventory. In the programmatic process, publishers and

advertisers do not communicate directly. Advertisers and Publishers use platforms to facilitate

the buying and selling process. Advertisers and publishers communicate using Demand-Side

Platform (DSP) and Supply-Side Platform (SSP) platforms respectively through the Ad Platform.

The Ad Platform facilitates the communication between them. The buying and selling process

happens through the RTB platform. RTB is a protocol that facilitates the buying ad selling

process between advertisers and publishers. In this process, the publishers specify the reserve

price, the suitable price for the ad inventory. Then, the advertisers make bids for the empty ad

inventory and the winner advertiser is selected through holding an auction.

The advertisers set a price to buy the empty ad inventory and the winner advertiser pays this

price for every thousand impressions. This price is called Cost Per Mille (CPM). The advertisers

use CPM to estimate the cost of their campaigns. For publishers, they use the eCPM to calculate

the effective revenue for every thousand impressions. So, the publishers seek to forecast the

future average eCPM based on the past average eCPM to increase their revenues.

In this thesis, our main concern is the publisher’s goals. So, in this thesis, we are seeking to

predict the average eCPM around certain date for the next 7, 14, and 30 days based on the history

2

of the eCPM time-series. To achieve this goal, we used different models, machine learning and

neural network models, trying to reach the best model accuracy. The models that we used are:

KNN, MLP, and LSTM models. We compared the results after testing the LSTM and the MLP

models on the four datasets and selected the suitable one that achieved the minimum error. Then

we compared the selected model with the KNN model. After all the comparisons and analysis

we concluded that the LSTM model is the best model on 300 × 250, 300 × 600, and 728 × 90

datasets. The MLP is the best model on the 970 × 250 dataset.

This thesis consists of five chapters. We will discuss the content of the thesis as follows: We

discuss the background of the online advertising process and the background of each model

that we used in chapter 1. Also, we added some of the prior-work that related to our work in

chapter 2. While in chapter 3, we explain the methodology that we used to achieve our goal.

All the experiments are described in chapter 4. Finally, the experiments results are shown and

analyzed in chapter 5.

CHAPTER 1

BACKGROUND

1.1 Online Advertisement

Nowadays, the number of internet users around the world increases rapidly (Ha, 2008). Conse-

quently, especially under COVID-19 restrictions, online trading gains more popularity among

all people. All publishers in online advertisement seek to sell their inventories at high prices

to increase their revenues. On the other hand, the advertisers seek to buy the inventories of

publishers with the lowest price. The publisher is the owner of the website, and the advertiser is

the owner of the product that wants to advertise it using the empty publisher ad slot.

For the publishers, there are two selling processes: direct process and programmatic process. In

the direct process, the publishers sell their inventories by themselves. They deal directly with

advertisers. In the programmatic process, the publishers search for a partner or a platform to

offer their inventories to an Ad Platform. The Ad Platform is a place where the advertiser can

transact on the publisher’s inventory. It is a platform that connects SSP with DSP. SSP is a

platform that manages the empty ad slot inventory offered to advertisers, it is on the publisher

side. While DSP is a platform that manages the buyers that want to bid for the inventory, it is on

the advertiser side.

One of the widely used mechanisms to buy the inventories of publishers is the RTB mechanism.

In the following subsection, we will provide an overview of RTB.

1.1.1 Real Time Bidding (RTB)

RTB is a protocol that facilitates the communication between the publisher, through the SSP,

and the advertiser, through the DSP, using the Ad Platform. It is a process where buyers or

bidders can make a bid for an empty ad slot.

4

As shown in Figure 1.1, once a user visits the website that has an empty ad slot, the Data

Management Platform (DMP) can identify the interests and characteristics of this user through

the cookie. Then, the publisher sends a request to the Ad Platform via SSP indicating that an

impression can potentially be displayed in this particular ad slot. At the same time, the Ad

Platform sends the user information to the eligible DSPs. These DSPs ask DMP and know

the user interests then start the auction. The advertisers that are connected to DSPs send bids

requests to the Ad Platform indicating that they are willing to bid for this impression. Then the

RTB decides which advertiser can participate in the auction based on the reserve price and the

money that the winner advertiser will pay based on the auction type as will be discussed in the

coming subsections. This process is called RTB process.

Webpages of
Publisher

SSP Ad Platform

DMP

DSP1

DSP2

DSP3

Advertiser 1

Advertiser 2

Advertiser 3

Internet User
17

7 2

2

4

3

4

4

5

6

6

Cookie

Figure 1.1 The business process of RTB ad delivery

Adapted from Yuan et al. (2014b)

The duration of the RTB process, from opening the website by the user till declare the winner

advertiser, takes from 10 to 100 milliseconds (Yuan et al., 2014b).

5

1.1.2 Reserve Price

The reserve price or the floor price is the minimum price that publishers will accept from

bidders to buy their inventories (Hayes, 2021). If the bids of the bidders were higher or equal to

the reserve price, they will participate in the auction, otherwise, these bidders will be discarded

(Rosenkranz & Schmitz, 2007). So, the reserve price should be balanced, not being very low

since this will reduce the revenues of publishers and not being very high which prevent many

advertisers from participating in the auction. Consequently, this will decrease the publisher’s

revenues.

As shown in figure 1.2, increasing the floor price until a certain point will achieve high revenues

but if the floor price increased more than this certain point the revenues will be decreased. So,

all publishers need to optimize their floor price to maximize their revenues.

Figure 1.2 The relation between the floor price and the revenue

Taken from steldSSP Company (2021)

6

1.1.3 Online Auctions

Online auctions are the auctions that held to sell publishers’ inventories (the empty ad stots) to

advertisers. There are two types of online auctions first-price auction and second-price auction.

• First-price auction: in this auction the advertiser with the highest bid will win the auction.

In this case, the winner advertiser will pay exactly what he bid.

As shown in Figure 1.3 on the left side, advertiser C bids the highest price so, he wins the

auction and pays exactly what he bid. In this case, advertiser C will pay 4$ for the inventory.

• Second-price auction: in this auction the winner advertiser, the advertiser with the highest

bid, will pay the second highest bid not what he bid. The winner advertiser will pay (the

second highest bid + 0.01) (INMOBI, 2021, October 15).

As shown in Figure 1.3 in the right side, Advertiser C bids the highest price 4$, so he wins

this auction. nevertheless, in this case Advertiser C will pay (the second highest bid + 0.01)

which is Advertiser B bid + 0.01. So, advertiser C will pay (3$ + 0.01) = 3.01$ for the

inventory.

Figure 1.3 First-price Auction vs. Second-price Auction

Taken from ROXOT (2021)

7

1.1.4 CPM VS. eCPM

CPM is the price the advertisers pay for every thousand impressions of a certain ad.

Equation 1.1 is the equation of computing CPM:

𝐶𝑃𝑀 =
𝐶𝑜𝑠𝑡𝑜 𝑓 𝑡ℎ𝑒𝐶𝑎𝑚𝑝𝑎𝑖𝑔𝑛

𝑁𝑢𝑚𝑏𝑒𝑟𝑜 𝑓 𝑇𝑜𝑡𝑎𝑙𝐼𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠
× 1000 (1.1)

For example, if the advertiser budget for a campaign is 50$ and the advertiser ad generates

10,000 impression, then the advertiser will pay 5$ for the 1000 impression ((50 / 10,000) ×

1000 = 5$).

eCPM is used by publishers to determine the revenue achieved from a thousand impressions of

an ad campaign.

Equation 1.2 is the equation of computing eCPM:

𝑒𝐶𝑃𝑀 =
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠

𝑁𝑢𝑚𝑏𝑒𝑟𝑜 𝑓 𝑇𝑜𝑡𝑎𝑙𝐼𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
× 1000 (1.2)

For example, if an ad campaign generated 100$ revenue after receiving 10,000 impressions, the

eCPM would be 10$ ((100 / 10,000) × 1000 = 10$). This means that the publisher can earn

10$ per 1000 impressions.

In this work, we are going to predict the average eCPM around certain date.

1.2 Long Short-Term Memory (LSTM)

LSTM is a Recurrent Neural Network (RNN) architecture that used in the field of deep learning.

It is introduced in 1997 (Hochreiter & Schmidhuber, 1997). LSTM is designed to solve the

problems that exist in RNN architecture since RNN was suffering from short-term dependencies

and vanishing gradient problem (Phi, 2021). LSTM is capable of learns long-term dependencies

8

between samples (Greff, Srivastava, Koutník, Steunebrink & Schmidhuber, 2016). It is has gates

that control the information flow.

Sigmoid

X +

X

X

Cell State

Forget Gate Input Gate Output Gate

Ct-1

Ht-1 Ht

Ct

Xt

Sigmoid SigmoidTanh

Tanh

Figure 1.4 LSTM Cell

As shown in Figure 1.4, the common LSTM unit consists of a cell state and three gates (input

gate, output gate, and forget gate).

• Cell state is like a memory because is it transfer the relevant information through the

processing sequence. The relevant information is decided by the three gates.

• Forget gate decides what is the relevant information to keep from the previous steps. It

contains the information from the previous hidden state (𝐻𝑡−1) and the current input (𝑋𝑡).

• Input gate decides the relevant information that will be added from the current step (𝐻𝑡−1

and 𝑋𝑡) then updates the cell state.

• Output gate determines the next hidden state. The output from the output gate is the new

hidden state (𝐻𝑡) that will be passed to the next time step.

In our work, we will use the vanilla-LSTM model. This model predicts the future average

eCPM information based on the history of the past eCPM information. Based on the dimensions

of the input data, we can classify the vanilla-LSTM model into univariate and multivariate

9

vanilla-LSTM models. Based on the datasets that we have in our work, we have only one feature.

So, we will employ a univariate vanilla-LSTM model as will be explained explicitly in the

coming chapters.

1.3 Multi-Layer Perceptron (MLP)

MLP is a field of Artificial Neural Network (ANN) that used in solving several problems

such as pattern recognition and classification (Noriega, 2005). It is designed to approximate

any continuous function and trying to solve the non-linear separable problems. As shown in

Figure 1.5, MLP architecture consists of one input layer, at least one or more hidden layers, and

one output layer. Each layer consists of number of interconnected neurons or nodes. These nodes

are connected by weights and output signals. The neurons are trained using the backpropagation

algorithm (Rumelhart, Hinton & Williams, 1985) since it is the most straightforward algorithm

that is used to train the MLP.

Figure 1.5 MLP Architecture

Taken from Karim (2021)

In addition, MLP is a fully connected architecture since each node is connected to all nodes

in the next and previous layer (Gardner & Dorling, 1998). Also, MLP is a feedforward ANN

10

because the data flow in a forward direction from the input layer to the hidden layers and finally

to the output layer (no feedback connections).

1.4 K-Nearest Neighbour (KNN)

KNN is a supervised machine learning algorithm that is used to solve classification and

regression problems (Kramer, 2013). This algorithm is based on the idea of similarity. It works

on finding the distances between a query and all the data points in the dataset. There are several

methods for calculating the distance between data points. The most popular method is the

Euclidean Distance (1.3). This method finds the distance between two different data points in

a multidimensional space where p and q are two data points in euclidean n-space (n) and (𝑞𝑖, 𝑝𝑖)

are the euclidean vectors.

𝑑 (𝑝, 𝑞) =

√√
𝑛∑
𝑖=1

(𝑞𝑖 − 𝑝𝑖)2 (1.3)

Selecting the number of the nearest Neighbors to the data point is based on the K value. For

example, if the K value equals 5, it will look for 5 nearest Neighbors to that data point. we can

choose the suitable value of K by running the model several times and choose the K value that

helps the model achieves the least error.

Some of the KNN algorithm advantages are:

• It is a simple algorithm and easy to implement.

• There is no need to build a complicated model and tune several parameters.

• It works well on non-linear problems.

• It is a versatile algorithm since it is used to solve several problems such as classification,

regression, and search problems.

One of the disadvantages of KNN is it requires storing all the training data. If we have a high

number of examples or predictors, this requires high storage.

CHAPTER 2

RELATED WORK

In this chapter, we are going to discuss different prior works that help us achieve our goal. Our

main problem has two phases. The first phase (phase 1) is predicting the average eCPM around

certain date and the second phase (phase 2) is optimizing the reserve price (the floor price).

To solve phase 1, we shall understand the problem to solve it successfully. The goal is predicting

the average eCPM around certain date for the next one week, two weeks, and one month based

on the data history that we have. The problem that we face is a time series forecasting problem.

So, we will go deeper in the prior work that discusses different time series forecasting problems

that used different types of models to achieve their goal as will be explained in section 2.1.

For the second phase, online advertisement has two sides: advertiser side and publisher side.

Our main concern is the publisher side, the owner of the website. The publishers are trying

to improve their revenues by optimizing the reserve price. Since the reserve price must be

balanced because if the reserve price was high, this might led to fewer revenues as explained in

subsection 1.1.2. For this reason, we will discuss different literature works that help in increasing

the publisher revenues by optimizing the reserve price in section 2.2.

2.1 Time Series Forecasting

Time series forecasting becomes a hot topic and very thorough field of research that appears

in recent years (Shelatkar, Tondale, Yadav & Ahir, 2020). Time series is a set of observations

for data points that are taken sequentially at time (Box, Jenkins, Reinsel & Ljung, 2015). It is

used in several fields like statistics, signal processing, weather forecasting, science, engineering

domains, etc. Forecasting in time series is very important in many applications such as business,

stock market, etc. It provides the companies and organizations with useful information that is

necessary for making important decisions based on the prediction. So, a lot of research is done

in this field to help organizations make the right decision.

12

In (Torres, Hadjout, Sebaa, Martínez-Álvarez & Troncoso, 2021), the researchers discussed the

time series forecasting problem in detail. They explained the mathematical fundamentals of

the time series. They discussed the characteristics of the three time series components (Trend,

Seasonality, and Residuals). In (Torres et al., 2021), the authors explained the most common

deep learning architectures that are used with the time series problems. They explained deeply:

Deep Feed Forward Neural Networks (DFFNN), Recurrent Neural Networks (RNNs), and

Convolutional Neural Networks (CNN). Besides, they showed the different applications that

used these deep learning architectures.

Also, in (Mahalakshmi, Sridevi & Rajaram, 2016), the authors discussed in detail the various

techniques that are applied for forecasting different types of time series datasets. They discussed

four forecasting techniques: traditional forecasting techniques, stochastic forecasting techniques,

soft computing based forecasting techniques, and fuzzy based forecasting techniques with

the models that should be used in the forecasting. Additionally, they explained the various

performance evaluation parameters used for evaluating the predictions of models.

After the previous discussions we can say that time series forecasting methods can be divided

into two main categories: traditional statistical methods and methods based on machine learning

models (Elsworth & Güttel, 2020). There are several of traditional statistical methods such as

Autoregressive Moving Average Model (ARMA), Autoregressive Model (AR), Moving Average

Model (MA), Autoregressive Integrated Moving Average (ARIMA), Multivariate Autoregressive

Integrated Moving Average (Multivariate ARIMA), and Vector Auto-Regression (VAR). For

machine learning methods, there are Support Vector Machines (SVM), Random Forests (RF),

KNN, etc. For deep learning methods, there are CNN, LSTM, MLP, etc.

The most popular method in the traditional techniques is ARIMA because it upwards of the other

traditional methods in precision, achieves better accuracy in predicting the next lags in time

series forecasting, and fits well with time series forecasting problems and seasonal adaptation

(Siami-Namini, Tavakoli & Namin, 2018), (Piccolo, 1990). The common method in deep learning

methods is LSTM method since it is the most famous method that used in time series forecasting

13

(Brownlee, 2021b), (Gers, Schmidhuber & Cummins, 2000), (Schmidhuber, Hochreiter et al.,

1997), (Schmidhuber, 2015). Therefore, we can say that ARIMA and LSTM models are the most

popular techniques in the traditional and deep learning techniques respectively. Nevertheless,

which method of these two methods is the suitable one that achieves the best model accuracy in

time series prediction?

To answer the previous question, the researchers made several experiments and researches on

different datasets to decide which method is the best in time series prediction. In (Siami-Namini

et al., 2018) and (Siami-Namini & Namin, 2018), the researchers made comparison between

ARIMA and LSTM models in time series forecasting. They extracted the historical monthly

financial time series data from Yahoo finance Website. After running various experiments, the

authors concluded that LSTM outperforms ARIMA. Since LSTM model improved the prediction

by 85% on average compared with ARIMA model.

While in (Yamak, Yujian & Gadosey, 2019), ARIMA model outperforms LSTM model. Since

the authors compared between ARIMA, LSTM, and Gated Recurrent Unit (GRU) models in

making a time series forecasting. The authors run the experiments using Bitcoin’s price dataset.

The results shown that ARIMA outperfroms LSTM and GRU and GRU outperforms LSTM.

From the previous discussions, we can not say that ARIMA surpasses LSTM or LSTM surpasses

ARIMA in all problems because each problem has it is own criterion. Choosing the suitable

model is based on the problem description and the behaviour of the dataset that is used to solve

the problem.

Several datasets involve differences and exceptions in the data behaviours. This strange behaviour

is called Anomaly detection or outlier detection. Anomaly detection in time series data becomes

a hot research topic for a long time (Salvador & Chan, 2005).

In recent years, there is a lot of research that used machine learning models trying to detect

the anomalies on time series. As the researchers made comparisons between ARIMA and

LSTM models in anomalies detection, other researchers try to improve these techniques using

14

deep neural networks. So, in (Braei & Wagner, 2020), the authors compared the evaluation of

statistical, machine learning and deep learning methods in anomaly detection on time series.

They studied 20 univariate anomaly detection methods from the three categories. In the statistical

approach they used regressive models like: AR, MA, ARMA, ARIMA, etc. For machine

learning approach, they used anomalies detection methods like: Subsequence Time-Series

Clustering (STSC), Density-Based Spatial Clustering of Applications with Noise (DBSCAN),

Local Outlier Factor (LOF), Residual Neural Network (Resnet), etc. For deep neural network

they selected the most popular methods like: MLP, CNN, Resnet, LSTM, etc.

After all experiments, the results showed that the statistical approaches can achieve better accuracy

than the other two approaches in detecting point and collective anomalies with less computational

time. While the deep learning approaches can work better than the statistical approaches with a

univariate dataset with contextual anomalies, they still require higher computation time than the

statistical approaches.

We will describe the relevancy of the reviewed work with our work in section 2.3.

2.2 Floor Price Optimization in Online Advertisement

Reserve-price optimization is the main challenge for publishers to increase their revenues from

online Advertisement (Feng, Lahaie, Schneider & Ye, 2020). It is difficult to optimize the

reserve price because there are billions of auctions taking place every day in large Ad Platforms.

The challenge for the reserve price optimizer is to reach a compromise between being simple to

execute in a few milliseconds and at the same time being complex enough to take the merits of

auction level data.

In (Austin, Seljan, Monello & Tzeng, 2016), the authors presented the first online, scalable,

real-time reserve-price optimizer for RTB. This optimizer sets a reserve price dynamically and

provides a scale to billions of auctions every day. They applied an online learning approach

and maximized a custom cost function to optimize the reserve price. Furthermore, the authors

performed their work in two ways. The first way is online for all publishers that use reserve price

15

optimization on their Ad Platform. The second way is offline on a small group of publishers.

The results show that using this proposed price-optimizer achieves an increase of 34.4% in

revenues.

Another important issue to solve the reserve price problem is understanding the bidder behavior

in RTB auctions. The researchers in (Yuan, Wang, Chen, Mason & Seljan, 2014a) presented an

empirical study for the bidders’ behavior in RTB auction and their impact on setting the reserve

price. The researchers wanted to improve the reserve price based on the analysis of real-world

data and online experiments on a production platform.

𝛼(𝑡 + 1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1 − 𝜀𝑡𝜆ℎ)𝛼(𝑡), 𝛼(𝑡) > 𝑏1(𝑡)

(1 + 𝜀𝑡𝜆𝑒)𝛼(𝑡), 𝑏1(𝑡) ≥ 𝛼(𝑡) ≥ 𝑏2(𝑡)

(1 + 𝜀𝑡𝜆𝑡)𝛼(𝑡), 𝑏2(𝑡) > 𝛼(𝑡)

(2.1)

The researchers proposed a game-theory-based algorithm called the OneShot algorithm. The

algorithm is depicted in (2.1). We can summarize the algorithm as follows: if the winning bid

is higher than the reserve price, the reserve price will increase slowly otherwise the reserve

price will decrease drastically. From (2.1), we can see that the authors introduced parameters (

𝛼, 𝜖, 𝜆) to control the magnitude of the change under different situations. 𝜖 is a decay factor

with respect to time, allowing the reserve price to converge if needed such that 𝜖 ∈ (0, 1] and

𝜆ℎ, 𝜆𝑒, 𝜆𝑙 ∈ [0,1]. Here 𝜆ℎ controls the decreasing ratio when the reserve price is too high; 𝜆𝑒

controls the continued exploration when the reserve price is successful, and 𝜆𝑙 controls the

increasing ratio when the reserve price is too low. Also, note that 𝛼(t) is the reserve price at time

t. From the experimental results the authors found that the good values for these parameters

are: 𝜖 = 1.0, 𝜆ℎ = 0.3, 𝜆𝑒 = 0.01 and 𝜆𝑙 = 0.02. The results obtained show that the OneShot

algorithm outperformed the state-of-the-art algorithms significantly in most cases.

On the other hand, as discussed previously in subsection 1.1.3, there are two types of auctions:

first-price auction and second-price auction. In the second-price auction, the publishers of the

16

online advertising put their reserve price for their inventories. All bids that are equal to or higher

than the reserve price can participate in the auction otherwise, the bids will be discarded.

Accordingly, as discussed in subsection 1.1.2, the reserve price is an important key for increasing

or decreasing the publisher revenues. The publisher must use a specific mechanism that

specifies the reserve price accurately to increase their revenues. In (Rhuggenaath, Akcay,

Zhang & Kaymak, 2019a), the authors proposed a method for learning optimal reserve prices

in the second-price auction. Their experiments were done on limited information where the

values of the bids are not revealed and no historical information about the values of the bids is

available. Their proposed method is based on the principle of Thompson sampling combined

with a particle filter to approximate and sample from the posterior distribution. Thompson

sampling (DeepAI, 2021) is a heuristic learning algorithm that chooses an action that maximizes

the expected reward for a randomly assigned belief.

The authors proposed two models: Thompson sampling with particle filter and only modeling

the top bid (TS-PF-TB) and Thompson sampling with particle filter and risk-aware pricing

(TS-PF-RAP). TS-PF-TB is the initial model based only on top bids. While TS-PF-RAP is the

extended model that improves the performance of the initial model by exploiting the setting of

the second-price auction. These two methods are based on optimization techniques.

The authors used real-life data from ad auction markets. They used the publicly available iPinYou

dataset, which contains information from the perspective of 9 advertisers on a DSP.

The authors used 4 performance metrics to evaluate the performance of the methods. The 4

performance metrics are: cumulative average return, success rate, revenue rate, and revenue rate

given success. The cumulative average return is the main metric to determine the profitability of

a strategy. The success rate measures how often reserve prices are set too high. While revenue

rate measures the rate at which the top bid is extracted. Lastly, the revenue rate given success

measures the rate at which revenue is extracted given that a sale is successful.

17

The authors compared the algorithm performance with two MAB algorithms (UCB algorithm

and EXP3 algorithm). The results showed that TS-PF-RAP generally outperforms the other

methods and UCB outperforms EXP3. The TS-PF-RAP achieved better performance compared

with UCB because TS-PF-RAP can track changes in the top bid better than UCB. It is better

in selecting reserve prices that are closer to the top bid when the gap between the top bid and

second bid is large.

While in (Rhuggenaath, Akcay, Zhang & Kaymak, 2019b), the authors proposed a method

for learning the optimal reserve price in limited information for the second online auction.

This method considered the gap between the winning bid and the second highest bid to take

better decisions for the reserve prices. The method is based on a method from computational

intelligence called Particle Swarm Optimization (PSO). The proposed method is called PSO

based explore-then-commit algorithm with risk-aware pricing (PSO-ETC-RAP).

The PSO-ETC-RAP is suitable for non-stationary environment. This method exploits the

dynamic movements of particles in PSO to learn an estimate of the top bid. This estimate is

combined with an estimate of the second bid to set a reserve price.

The PSO-ETC-RAP has 4 steps: the first and second steps are exploration phases, the third step

is a commit phase, and the fourth step is a test phase.

In the first and second steps (exploration phases), the authors estimate the value of the second

highest bid then they estimate a reference value for the winning bid. In the third step (commit

phase), the publisher uses the estimated values for the winning bid and the second highest bid to

determine a reserve price. The publisher has to use this reserve price for a fixed amount of time.

In the fourth step (test phase), a test is done to see if they should start another commit phase or

go back and start with another exploration phase.

The authors used real-life data from ad auction markets. They used iPinYou dataset. The authors

run the experiments on the PSO-ETC-RAP method (the proposed algorithm), TS-PF-TB, UCB,

and EXP3 (other public methods).

18

The results in (Rhuggenaath et al., 2019b) showed that the PSO-ETC-RAP achieves higher

performance than the other methods. Since PSO-ETC-RAP was able to track the changes in the

top bid better than the other methods. Also, it was better than others in selecting the reserve

prices that are closer to the top bid when the gap between the top bid and the second bid is large.

2.3 Relevancy to Our Project

In this section, we highlight the connection between the reviewed work and our work.

In this work, we will focus on phase 1: predicting average eCPM. Since our problem is a time

series forecasting problem, we will use some of the machine learning models discussed in

section 2.1.

For phase 2, we discussed different techniques that can be used as a starting point in solving

phase 2 in the future but in this work we will focus only on solving phase 1.

CHAPTER 3

METHODOLOGY

In chapter 1, we discussed the process that happens between the advertisers and publishers in

online advertising. We explained different terms in the online advertisement field such as the

reserve price, the Ad Platform, and the RTB. We explained the process that happens via the RTB.

Also, we explained the main concept of LSTM, MLP, and KNN models and the main idea of

our work in chapter 1. Whereas we discussed the literature that related to our work in chapter 2.

In this chapter, we will discuss how we prepared the different datasets that we have to be suitable

before feeding them to the LSTM and MLP models that were explained in chapter 1. Also, we

will explain in detail the technique that we used to predict the average eCPM around certain date.

3.1 Data Preparation

In this work we used four datasets with four different ad sizes for one publisher. The four datasets

are collected by our Industrial Partner Ad Platform. These datasets have a large number of

features. This high dimensionality of features may lead to the well-known problem of curse of

dimensionality (Wojtowytsch & Weinan, 2020). According to the business needs, we collected

theses datasets based on six features as shown in table 3.1.

Table 3.1 Six Features Used to Aggregate the Four Datasets

Features Description
Report-Date We work on data from 01-11-2018 to 26-04-2021.

Ad Size There are a lot of ad sizes, in this work we focus on four ad sizes (300 × 250, 300 × 600, 970 × 250, and 728 × 90).

Ad Type There are two main ad types (header-bidding and Ad Platform). In this work we focus on header-bidding ad type.

Revenue Raw Is the total revenue on report date by ad size and ad type.

Impression Raw Is the total impression on report date by ad size and ad type.

Daily eCPM Is the out of dividing the total revenue raw and total impression raw (total revenue raw / total impression raw).

In the four datasets, we ordered the data by Report-Date feature from November 2018 to April

2021. Thereafter, we removed the Report-Date feature. This reduces the data from a multivariate

to a univariate dataset since the input to the model will be the daily eCPM only. Therefore, we

20

Figure 3.1 The four datasets with four different ad sizes

build a univariate model to be trained on this data. Because the univariate data are less prone to

the curse-of-dimensionality problem (Köppen, 2000), this reduction can help in building a faster

and more efficient predictive models.

Figure 3.1 shows the pattern of the four used datasets with different ad sizes from 01/11/2018

to 26/04/2021. This figure shows the raw data (the daily eCPM) for each dataset before any

preprocessing. For respecting the confidentiality of our business partner, the y-axis (eCPM)

represents the daily eCPM as low, medium, high, and very high ranges instead of the real eCPM

values. As shown in Figure 3.1, the four datasets have some peaks and the data pattern has many

variations especially in the period from 09/2020 to 04/2021. These variations will make our

mission more exciting and challenging because training the models will be on the past eCPM

values while the prediction will be on the future values.

21

3.1.1 Splitting the Datasets

As discussed earlier in section 3.1, the problem has been reduced to a univariate forecasting

problem. Since our data constitutes a measurements for the eCPM over some time interval,

this data is considered a time-series. Time series is defined as "a sequential set of data points,

measured typically over successive times. It is mathematically defined as a set of vectors

𝑥(𝑡), 𝑡 = 0, 1, 2, . . . where 𝑡 represents the time elapsed" (Adhikari & Agrawal, 2013). We

divide the dataset into a set of N sequential values which representing the model input and the

associated average eCPM that represents the model output as show in Figure 3.2. In Figure 3.2,

the first row shows the first step in which we take the first seven elements as input and the

subsequent seven elements are used to compute the target (t) (e.g., the average eCPM for the

next seven days). Then move one slot, leave index 1, and take the seven elements that starting

from index 2 as the input size and the subsequent seven elements used to calculate the target (t).

After that move another one slot and start from index 3 to take the next seven input size values

and so on till the end of the dataset. Each of these input/output pairs is called sample.

3.1.2 Model Input Size

In time-series, deciding the history that the model should see to predict the next value (named

time steps or lags) is a crucial factor in the model performance. In our experiments, we used

different values for the time step corresponding to one week, two weeks, and one month. Taking

one week as a time step means that the input to the model is seven values representing the eCPM

for the past seven days. For two weeks and one month, the model receives 14 and 30 values,

respectively, as input. In all cases, the model output will be the average eCPM over a window

around certain date. The width of the this window may be 7, 14, or 30 days.

3.2 Predicting Average eCPM

This section introduces the general framework for predicting the average eCPM for the next

window-width(𝑊) days given the past input-size(𝑁) business days as input. Then we show three

22

Figure 3.2 Three steps in splitting the dataset

concrete cases we used in this work, namely predicting the average eCPM for 7, 14, and 30 days

given the past seven days. In terms of the coding, we can use any window-width (W) value for

predicting the average eCPM. However, we used these values, (7, 14, and 30), because they are

recommended by the Industrial Partner.

3.2.1 Framework for Average eCPM Prediction

Average eCPM prediction is the process of predicting the average of the next 𝑊 days given the

eCPM values for the past 𝑁 days.

Toward this objective, we split our dataset to a set of sequences such that:

𝐷 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑆, 𝑦𝑆)} where 𝑆 is the total number of obtained sequences.

Each sequence consists of a pair of values, (𝑥𝑖, 𝑦𝑖). In this case, 𝑥𝑖 is an N-dimensional vector

representing the average eCPM for a set of consecutive 𝑁 days. While 𝑦𝑖 represents the value of

23

the average eCPM for the next 𝑊 days. The value of 𝑦𝑖 represents the target to be predicted by

certain model (i.e, label).

The model in our case should be capable of capturing the temporal dependencies between the

input sequence and the associated label. Long short-term memory (LSTM) models may raise

as a powerful candidate model for solving this problem since it can make prediction on the

time series data that may have delay of unknown period between the important events in time

series (Shu, Zhang, Sun & Tang, 2020). However, according to (Gers, Eck & Schmidhuber,

2002), LSTM is designed to capture very long temporal dependencies between input values.

The problem under consideration may does not maintain this very far temporal dependencies.

Rather, the value to be predicted is more related to the eCPM values of the most recent 𝑁 days.

To verify the learning capabilities of different models in solving our problem, we build two

neural network models. An LSTM architecture and an MLP architecture. We will compare these

two models and select the suitable one that achieves the best model accuracy. The comparison

between these two model done by running different experiments. After that, we will compare

the selected model with a machine learning model, namely KNN model, to select the best model

with the highest accuracy for each dataset.

The experiments were done using different model depths and different activation functions. For

selecting the model depth and the activation function, the experiments done on one dataset

(300 × 250 dataset) with target (t) = 7. The experiments were done on the 300 × 250 dataset

because it is the most popular ad banner size used across the web (Match2One, 2021). Also,

we used (t) = 7 to make the results more accurate since we expect that the model will achieve

better accuracy with the short temporal dependencies than the long temporal dependencies.

For selecting the model architecture, the experiments done on the four datasets (300 × 250,

300 × 600, 970 × 250, and 728 × 90) with (t) values equals 7, 14, and 30.

In the next chapter, we will explicitly discuss: the used datasets, different model depths, activation

functions, and comparative experiments carried out to select the suitable model that achieves the

best accuracy.

CHAPTER 4

MODELS COMPARISONS

In this chapter, we will explain the different types of models that we used. We will describe the

activation functions used in the experiments. Also, we will explain all the experiments that we

run with all the different hyper-parameters that we used.

We run the experiments on the four datasets (300 × 250, 300 × 600, 970 × 250, and 728 × 90).

The four datasets contain 870 data points after splitting. We used 480, 120, and 270 data points

for training, validation, and testing respectively. Since the standard splitting is 80%, 20%, this

will make the test set 170 data points which we saw as small size. Thence, I added 100 points to

the test set so it became 270 data points. In terms of model depth, we tried two different depths

namely vanilla and stacked models.

4.1 Vanilla Model

The vanilla model is a simple model that contains one hidden layer. As shown in Figure 4.1, the

model has two layers the input layer and the output layer.

Figure 4.1 Vanilla Model

26

4.2 Stacked Model

The stacked model has at least two hidden layers. As shown in Figure 4.2, there is one input

layer, several hidden layers (the number of hidden layers is much greater than 2), and one output

layer.

Figure 4.2 Stacked Model

On the other hand, to achieve the best eCPM prediction, we used different activation functions

trying to choose the best function that helps the model achieve the best accuracy. We run the

experiments using two activation functions (Tanh and ReLU).

4.3 Hyperbolic Tangent Activation Function (Tanh)

Hyperbolic Tangent Activation Function (Tanh) is the most used function with the time series

problems.

Equation 4.1, shows the Tanh equation that used in machine learning (Sharma, 2021).

𝑇𝑎𝑛ℎ =
2

1 + 𝑒−2𝑥
− 1 (4.1)

As shown in Figure 4.3, Tanh function takes real values as input and its outputs range from -1 to

1.

27

Figure 4.3 Tanh Activation Function

Taken from Schraudolph (2021)

4.4 Rectified Linear Activation Function (ReLU)

Rectified Linear Activation Function (ReLU) becomes the default activation function for many

types of neural networks (Brownlee, 2020). As shown in Figure 4.4, the output will take the

input value directly if it is positive, otherwise, it will output zero. So, it is become easier in

model training and often achieves better performance.

We can see the ReLU activation function equation in (4.2).

𝑅𝑒𝐿𝑈 (𝑋) = 𝑀𝑎𝑥(0, 𝑋) (4.2)

4.5 Evaluation Metrics

In this section we will discuss the three evaluation metrics that we used in the experiments.

28

Figure 4.4 ReLU Activation Function

Taken from Zhang et al. (2021)

4.5.1 Mean Square Error (MSE)

The first evaluation metrics is Mean Square Error (MSE). The MSE is the summation of the

square distance between the actual value (𝑦𝑖) and the predicted value (�̂�𝑖) as shown in (4.3).

L(𝑦, �̂�) =
1

𝑁

𝑁∑
𝑖=1

(𝑦𝑖 − �̂�𝑖)
2 (4.3)

We not only used the MSE function in model training as a loss function but also, we used it for

models comparisons after the training.

This Loss function is used in all the experiments.

4.5.2 Normalized Mean Square Error (NMSE)

The Normalized Mean Square Error (NMSE) is the second evaluation metrics that we used to

give us an overview of the models performance over the different dataset.

29

The NMSE is the summation of the square distance between the actual value (𝑦𝑖) and the predicted

value (�̂�𝑖), the MSE value, divided by the square of the actual value (𝑦𝑖) as shown in (4.4).

L(𝑦, �̂�) =
1

𝑁

𝑁∑
𝑖=1

(𝑦𝑖 − �̂�𝑖)
2

(𝑦𝑖)
2

(4.4)

4.5.3 Percentage Error

The percentage error is the third evaluation metric that we used to define the accuracy of the

different machine learning algorithms that we used on different datasets. It is a way to analyze

how successful an experiment was.

As show in (4.5), the percentage error is the difference between the absolute error of the actual

value (𝑦𝑖) and the predicted value (�̂�𝑖) divided by the actual value (𝑦𝑖). The absolute error value

is a decimal value so, it multiplies by 100% to find the percentage error.

L(𝑦, �̂�) =
|𝑦𝑖 − �̂�𝑖 |

𝑦𝑖
× 100 (4.5)

4.6 Adam Optimization Algorithm

Adam algorithm is an optimization algorithm introduced by Diederik Kingma and Jimmy Ba

in (Kingma & Ba, 2014). It is an extension to the well-established stochastic gradient descent

algorithm which is widely used in machine learning applications. It’s main task is to find the

model parameters corresponding to the best possible fit between predicted and actual outputs

(Stojiljković, 2021). The name of Adam optimization algorithm is derived from adaptive moment

estimation since it uses the estimations of the first and second moments of the gradient to adapt

the learning rate for each weight of the neural network.

30

We can summarize the main reasons for selecting Adam optimizer in our experiments as follows:

• Straightforward method to implement.

• Requires little memory space.

• Works well with large data and/or parameters.

• Robust and well-suited method to the wide range of non-convex optimization problems in

the field machine learning (Kingma & Ba, 2014).

• Combines the advantages of two other extensions of stochastic gradient decent algorithm, Gra-

dient Descent Adaptive Gradient Algorithm (AdaGrad) and Root Mean Square Propagation

(RMSProp) (Brownlee, 2021a).

In the following sections, we will discuss the different experiments that were done to select the

suitable activation function, model depth, and model architecture that achieve our goal.

4.7 Activation Function Selection

Experiment 1.1:

• Objective: Verify which activation function (Tanh or ReLU) helps the MLP model to achieve

the best accuracy.

• Description: In this experiment we used vanilla-MLP model. We used Adam optimizer

and MSE loss function. The model trained using input layer with 50 nodes and output layer

with one node with number of epochs equal 300. In this experiment we used two different

activation functions Tanh and ReLU. This experiment done on 300×250 dataset with target(t)

value equal 7. The target is the average eCPM around certain date.

Experiment 1.2:

• Objective: Verify which activation function (Tanh or ReLU) helps the LSTM model to

achieve the best accuracy.

• Description: we used vanilla-LSTM model with 50 nodes in the input layer, one node in the

output layer, Adam optimizer, and MSE loss function with number of epochs equal 300. This

31

experiment done two times with two different activation functions (Tanh and ReLU). We run

this experiment using 300 × 250 dataset with target(t) equal 7.

4.8 Model Type Selection

Experiment 2.1:

• Objective: Verify which MLP model (Vanilla or Stacked) will improve the model accuracy.

• Description: we run two models (Vanilla-MLP model and Stacked-MLP model) on the

300 × 250 dataset. We trained the Vanilla-MLP model with 50 nodes in the input layer and

one node in the output layer.

On the other hand, we trained the Stacked-MLP model with 150 nodes in the input layer, 50

nodes in the hidden layer, and one node in the output layer. In these two experiments we

used Adam optimizer, MSE loss function, ReLU activation function, and target(t) equals 7.

We trained the two models with numbers of epochs equal 300.

Experiment 2.2:

• Objective: Verify which LSTM model (Vanilla-LSTM model or Stacked-LSTM model) will

improve the model accuracy.

• Description: We run two experiments with two different models. The first model is the

vanilla-LSTM model with 50 nodes in the input layer and one node in the output layer.

The second model is the Stacked-LSTM model with 150, 50, and one nodes in the input layer,

the hidden layer, and the output layer, respectively. These two experiments were trained

using MSE Loss function, Adam Optimizer, Tanh activation function, and target(t) equals 7.

These experiments were done on 300 × 250 dataset with numbers of epochs equal 300.

4.9 Model Architecture Selection

Experiment 3.1:

• Objective: Verify the learning power of Vanilla-LSTM versus Vanilla-MLP in average

eCPM prediction around certain date.

32

• Description: We used Vanilla-LSTM model and Vanilla-MLP model in Experiment 3.1.

For Vanilla-LSTM model, we used two-layers architecture with 50 nodes in the input layer

and one node in the output layer. Each layer has Tanh activation function. We used MSE loss

function for training the model. We trained the model for 300 epochs with Adam optimizer.

On the other hand, the Vanilla-MLP model consists of two-layers. We set 50 and one

nodes for the input and output layers respectively. At each layer, ReLU activation function

is employed. We trained the model for 300 epochs using Adam optimizer and MSE loss

function. The experiments done on the four dataset (300 × 250, 300 × 600, 970 × 250, and

728 × 90) with target(t) equal 7, 14, and 30.

Experiment 3.2:

• Objective: Verify the learning power of machine learning models using the KNN algorithm

versus the neural network models using the Vanilla-LSTM model on average eCPM prediction

around certain date.

• Description: In this experiment we trained Vanilla-LSTM and KNN models trying to achieve

the best model accuracy. For KNN model we used MSE as a loss function. We tried different

values of K in range 200 values trying to choose the more accurate value of K that helps the

model achieves the best accuracy. In this experiment, we used K with values equal 12, 25,

and 12 for 300 × 250, 300 × 600, and 728 × 90 datasets respectively. Since the KNN model

got the least error using these K values.

On the other hand, we used Vanilla-LSTM model with 50 and one nodes for the input

and output layers respectively. For training Vanilla-LSTM model we used Tanh activation

function, MSE loss function and Adam optimizer. The model is trained using 300 epochs.

This experiment done on 3 dataset (300× 250, 300× 600, and 728× 90) with target (t) equals

7.

Experiment 3.3:

• Objective: Verify the learning power of machine learning models, using KNN algorithm,

versus the neural network models, using Vanilla-MLP model, on average eCPM prediction

around certain date.

33

• Description: For the machine learning model (KNN), we used K equals 12 for 970 × 250

dataset since the model achieved the least error using K equals 12. We used MSE as a loss

function for training the KNN model.

For training the neural network model (vanilla-MLP), we used two layers with 50 nodes in

the input layer and one node in the output layer. We used Tanh activation function, MSE

loss function and Adam optimizer. The vanilla-MLP model is trained using 300 epochs on

970 × 250 dataset with target (t) equal 7.

Finally, we summarize all the experiments in Table 4.1

Table 4.1 Conclusion of all Experiments

Experiment Type Experiment Objective

Activation Function Selection
1.1

Verify which activation function (Tanh or ReLU) helps

the MLP model to achieve the best accuracy.

1.2
Verify which activation function (Tanh or ReLU) helps

the LSTM model to achieve the best accuracy.

Model Type Selection
2.1

Verify which MLP model (Vanilla or Stacked) will

improve the model accuracy.

2.2
Verify which LSTM model (Vanilla or Stacked) will

improve the model accuracy.

Architecture Selection

3.1
Verify the learning power of Vanilla-LSTM versus

Vanilla-MLP in eCPM prediction.

3.2

Verify the learning power of machine learning models

using KNN algorithm versus the neural network models

using Vanilla-LSTM model on average eCPM prediction

around certain date.

3.3

Verify the learning power of machine learning models,

using KNN algorithm, versus the neural network models,

using Vanilla-MLP model, on average eCPM prediction

around certain date.

In the next chapter, we will display and analyze the results of all experiments. We will explain

the suitable model for each used dataset.

CHAPTER 5

RESULTS

In the previous chapters, we explained the background of this work and the main problem that

we try to solve. We discussed the literature work that related to our work and the methodology

that we used to achieve our goal. Also, we described the experiments that we did to achieve the

best results.

In this chapter, we discuss the results for the different experiments described in chapter 4. In all

experiments figures, the x-axis represents the Date and the y-axis represents the average eCPM

values range. The orange and blue curves represent the prediction curves and the black curve

represents the target curve.

5.1 Results of Activation Function Selection

There are many activation functions that can be used to build a machine learning model. In

our experiments, we used two different activation functions that are suitable for our problem as

explained previously in section 4.3 and section 4.4.

5.1.1 Results of Experiment 1.1

In this subsection, we show the result of Experiment 1.1 that we explained explicitly in

section 4.7 trying to choose the best activation function that helps the MLP model achieves the

most accurate results.

For the figure in experiment 1.1, the black curve represents the target curve, the blue curve

represents the Vanilla-MLP prediction curve using Tanh activation function, and the red curve

represents the Vanilla-MLP prediction curve using ReLU activation function.

As shown in Figure 5.1, there is no significant difference between the two prediction curves

except in the period between 12/2020 and 01/2021. The vanilla_MLP curve using ReLU, the red

36

curve, can predict the average eCPM better than the vanilla_MLP using Tanh, the blue curve.

The model with the Tanh activation function can not predict the average eCPM well in the

period between 12/2020 and 01/2021. As shown in the figure, in this period some of the output

values are in the high range while vanilla_MLP model using Tanh predicts it as low values in the

low range. While vanilla_MLP curve using ReLU can predict these high values sometimes as

medium values or nearby the high values.

Figure 5.1 Activation Function Selection using MLP Model with 𝑡 = 7 on 300 × 250

Dataset

So, we can say that MLP model can achieve the best results using the ReLU activation function

with 300 × 250 dataset. Accordingly, we assumed that ReLU activation function will help the

MLP model achieves the best accuracy with the three other datasets.

37

5.1.2 Results of Experiment 1.2

As explained in section 4.7, the main objective of experiment 1.2 is verifying which activation

function is the most suitable one to be used with the LSTM model.

Figure 5.2 shows the two prediction curves using LSTM model with ReLU and Tanh activation

functions. As shown in Figure 5.2, we can see that the prediction curve using Tanh, the blue

curve, can predict the output (the average eCPM) better than the prediction curve using ReLU,

the red curve. Since the red curve has some peaks especially in the period between 11/2020 and

01/2021.

Figure 5.2 Activation Function Selection using LSTM Model with 𝑡 = 7 on 300 × 250

Dataset

38

From this result we can conclude that, the LSTM model can achieves more accurate results

using Tanh activation function than using ReLU activation function with 300 × 250 dataset.

Accordingly, we assumed that Tanh activation function will help the LSTM model achieves the

best accuracy with the three other datasets.

5.2 Results of Model Type Selection

To get the best model accuracy with the least error we should run different experiments using

different types of models. The goal of these experiments is to choose the suitable type of model

that achieves the best accuracy. As explained previously in section 4.8, we run experiments with

two different types of models, vanilla and stacked models, then we choose the type of model that

reaches the highest accuracy.

We start the experiments with MLP model followed by the experiment with LSTM model.

5.2.1 Results of Experiment 2.1

In this subsection we discuss the results of running two experiments using two different types of

models, vanilla and stacked, using MLP model as discussed in section 4.8.

As shown in Figure 5.3, the vanilla_MLP prediction curve, the red curve, is very close to the

values of the target curve, the black curve. The stacked_MLP prediction curve, the blue curve,

has some peaks especially in the period between 11/2020 to 01/2021. The stacked_MLP model

predicts the average eCPM values that exist in the high range as very high values.

Based on the previous comparison and discussion between the two model types, we can choose

the vanilla-MLP model for average eCPM prediction since it can predict the average eCPM

better than the stacked-MLP model.

39

Figure 5.3 Model Type Selection using MLP Model with 𝑡 = 7 on 300 × 250 Dataset

5.2.2 Results of Experiment 2.2

The main objective of Experiment 2.2 as explained in section 4.8 is verifying which model type,

vanilla or stacked, is the suitable one that achieves the best model accuracy using LSTM model.

As shown in Figure 5.4, the two prediction curves are approximately the same. The Vanilla-LSTM

prediction curve, the blue curve, and the stacked-LSTM prediction curve, the red curve, are very

close to the target curve. This means that we can achieve a very good prediction comparable

with the average eCPM values, the target. Also, the MSE values for the Vanilla-LSTM model

and stacked-LSTM model are approximately the same. The MSE values are 2.5726 and 2.6759

for vanilla-LSTM model and stacked-LSTM model respectively. Wherefore, We selected the

40

Figure 5.4 Model Type Selection using LSTM Model with 𝑡 = 7 on 300 × 250 Dataset

Vanilla-LSTM model to run the remaining experiments to make the comparison more consistent

and fair between the LSTM and MLP models in the next experiments.

From all previous experiments, We chose vanilla-LSTM model using Tanh activation function

and vanilla-MLP model using ReLU activation function to run the next experiments that

explained in section 4.9.

5.3 Results of Architecture Selection

In this work, our main goal is to select the best model that can predict the average eCPM around

certain date with the highest accuracy. In the previous experiments, we chose the suitable

activation function and model type that provided the best accuracy.

41

In the following subsections we will show the results of vanilla-LSTM model using Tanh

activation function and vanilla-MLP model using ReLU activation function on average eCPM

prediction around certain date using the four datasets (300 × 250, 300 × 600, 970 × 250, and

728 × 90). Also, Table 5.1 conclude the vanilla-LSTM and the vanilla-MLP models error values

using MSE, NMSE, and percentage error with t values equal 7, 14, and 30.

After that, we will compare the best model that will achieve the best accuracy from the

comparison between the two neural network models with a machine learning model using the

KNN algorithm.

5.3.1 Results of Experiment 3.1

In Experiment 3.1 we will show the results of the comparison between the two neural network

models Vanilla-LSTM and Vanilla-MLP models on 300 × 250, 300 × 600, 970 × 250, and

728 × 90 datasets with different targets values as explained in Experiment 3.1 in section 4.9.

In all results in Experiment 3.1, the vanilla-LSTM prediction curve represents the blue curve with

the star marker. The vanilla-MLP prediction curve represents the red curve with the triangle-up

marker. The target represents in the black curve with the circle marker.

5.3.1.1 Results of Experiment 3.1 on 300 × 250 dataset

The first comparison between vanilla-LSTM and vanilla-MLP models on 300×250 with target(t)

equal 7 is shown in Figure 5.5. From this figure we can see that, there is a little difference

between the vanilla-LSTM curve and the vanilla-MLP curve. Whereas, vanilla-LSTM model

achieves less error than vanilla-MLP model. The MSE of vanilla-LSTM model is 2.5726 while

the MSE of vanilla-MLP model is 3.0073.

The second comparison between the two models is shown in Figure 5.6. This figure shows the

vanilla-LSTM and vanilla-MLP prediction curves with the target curve with t equal 14.

42

Figure 5.5 LSTM vs. MLP with 𝑡 = 7 on 300 × 250 Dataset

The vanilla-LSTM curve, the blue curve, and the vanilla-MLP curve, the red curve, approximately

have the same behavior in most cases except in the period between 11/2020 and 01/2021. We

can see that the vanilla-MLP curve can not predict well in some points comparable with

vanilla-LSTM around this period. Since vanilla-MLP curve predicts the output values that

nearby high average eCPM values as low values and sometimes less than the low values. Also,

the MSE of vanilla-MLP equals 2.3542, while the MSE of vanilla-LSTM equals 1.9891.

While in Figure 5.7 we can see that the two prediction curves, vanilla-LSTM and vanilla-MLP,

with target(t) equal 30 can not predict the average eCPM values well comparable with the other

curves in Figure 5.5 and Figure 5.6 with target(t) equal 7 and 14 respectively. Which means

that the prediction being less accurate when increasing the (t) value. Although, We can see the

same previous observations on Figure 5.7, since vanilla-LSTM curve can predict better than the

43

Figure 5.6 LSTM vs. MLP with 𝑡 = 14 on 300 × 250 Dataset

vanilla-MLP curve. In Figure 5.7 we can see that the vanilla-MLP prediction curve has some

low and less than low values in the period between 11/2020 and 12/2020. It, sometimes, predicts

the average eCPM values between medium and high range as a high values in the high range.

Consequently, we can say that vanilla-LSTM model is better than vanilla-MLP model in

predicting the average eCPM around certain date with target(t) equal 7, 14, and 30 on 300 × 250

dataset.

44

Figure 5.7 LSTM vs. MLP with 𝑡 = 30 on 300 × 250 Dataset

5.3.1.2 Results of Experiment 3.1 on 300 × 600 dataset

In this experiment we display three figures that show the average eCPM prediction using

vanilla-LSTM and vanilla-MLP models with target(t) values equal 7, 14, and 30 on 300 × 600

dataset.

Figure 5.8 shows two prediction curves, the blue and red curves, using vanilla-LSTM and

vanilla-MLP models and one target curve, the black curve, that shows the average eCPM ranges

around certain date with t equal 7. In Figure 5.8 we can see that the vanilla-LSTM prediction

curve can predict the average eCPM well but there is a little difference between the vanilla-LSTM

prediction curve and the target curve around the 12/2020 period. Whereas the vanilla-MLP

prediction curve has several peaks especially in the periods between 10/2020 and 01/2021 and

45

between 03/2021 and 04/2021. It predicts some of the average eCPM values that exist in the

high range as very very high values. Also, the MSE of vanilla-LSTM is 3.1656 while the MSE

of vanilla-MLP is 7.0541.

Figure 5.8 LSTM vs. MLP with 𝑡 = 7 on 300 × 600 Dataset

So, we can say that the Vanilla-LSTM model can predict the average eCPM better than the

vanilla-MLP model with less error at 300 × 600 dataset with t equals 7.

Similarly in Figure 5.9 we can see that Vanilla-LSTM model can predicts better than vanilla-MLP

model in 300 × 600 dataset with (t) equals 14. Since the vanilla-MLP prediction curve has

several peaks in many data points. For example, it predicts the values in the medium and high

range as very high values. Also, it predicts the value in the high range as a very low value after

03/2021 period. While vanilla-LSTM prediction curve can approximately reach most of the

average eCPM values.

46

Figure 5.9 LSTM vs. MLP with 𝑡 = 14 on 300 × 600 Dataset

The same problem exists in Figure 5.10. The vanilla-MLP curve has many peaks. While the

vanilla-LSTM prediction curve can predict the target better than the vanilla-MLP prediction

curve. Also, vanilla-LSTM achieves less error than vanilla-MLP as shown in Table 5.1.

From the previous observations in Experiment 3.1 on the 300 × 600 dataset, we can say that we

can achieve the best model accuracy using the vanilla-LSTM model. Also, the prediction is

being less accurate when increasing the t value. Since the predicting is more accurate with t = 7

than t = 30.

47

Figure 5.10 LSTM vs. MLP with 𝑡 = 30 on 300 × 600 Dataset

5.3.1.3 Results of Experiment 3.1 on 970 × 250 dataset

In this sub-subsection we will discuss the vanilla-LSTM and vanilla-MLP models behavior on

970 × 250 dataset with (t) values equal 7, 14, and 30. In the next experiments we will observe

differences in the behavior of the two models at the 970 × 250 dataset comparable with the

models behavior at 300 × 250 and 300 × 600 datasets.

In Figure 5.11 with (t) equals 7 on 970× 250 dataset we can see that, the vanilla-MLP model can

predict the average eCPM better than the vanilla-LSTM model. The vanilla-LSTM prediction

curve has strange behavior especially from 07/2020 till 12/2020 period. Also, at the period

before and after 01/2021. It predicts the output values that exist in the high and very high ranges

as low values. It achieves a very high error since it’s MSE value = 8.3856. On the other hand,

48

the vanilla-MLP prediction curve can predict the average eCPM values very well in most cases.

Also, the MSE of vanilla-MLP = 2.1123 which is very low comparable with the vanilla-LSTM

error value.

Figure 5.11 LSTM vs. MLP with 𝑡 = 7 on 970 × 250 Dataset

Also, we can see the same behavior in Figure 5.12 with (t) equals 14. The vanilla-MLP prediction

curve, the red curve, can predict the average eCPM better than the vanilla-LSTM prediction

curve, the blue curve. In most cases, the red curve approximately has the same target curve

pattern. The red curve can predict the average eCPM values very well. whereas the blue curve is

overfitting at many periods. Also, the MSE that achieved by the vanilla-LSTM model is higher

than the MSE that achieved by vanilla-MLP model.

The same behavior in Figure 5.13 with (t) equals 30. The vanilla-MLP model is more accurate

with 970 × 250 dataset than vanilla-LSTM model. Most of the vanilla-LSTM prediction values

49

Figure 5.12 LSTM vs. MLP with 𝑡 = 14 on 970 × 250 Dataset

are in the medium range while the most target values exist between high and very high range.

From this figure and the MSE values that exist in Table 5.1 we can conclude that, vanilla-MLP

model can predict the target better than vanilla-LSTM model.

In accordance with the previous experiments on the 970 × 250 dataset, we can conclude that the

vanilla-MLP model can achieve good model accuracy comparable with the vanilla-LSTM model.

The behavior of the 970 × 250 dataset is easier than the behavior of the previous datasets. Since

the MLP model can predict well with the simple datasets. While LSTM model can achieve good

model results comparable with the MLP model with the complex datasets since LSTM model

is more complicated than the MLP model (Weytjens, Lohmann & Kleinsteuber, 2019). Also,

the two models can predict better with the short forecasting periods than the long forecasting

50

Figure 5.13 LSTM vs. MLP with 𝑡 = 30 on 970 × 250 Dataset

periods. Since the two models forecast the average eCPM for the next 7-days and 14-days better

than forecasting the next 30-days.

5.3.1.4 Results of Experiment 3.1 on 728 × 90 dataset

In this experiment we will compare between the vanilla-LSTM and vanilla-MLP models accuracy

with t values equal 7, 14, and 30 on 728 × 90 dataset.

Figure 5.14 shows the first experiment on 728× 90 dataset with t equals 7. In Figure 5.14 we can

see that, the vanilla-LSTM model can predict the average eCPM well. Since the vanilla-LSTM

prediction curve, the blue curve, is approximately the same as the target curve, the black curve,

in most periods except around 12/2020 period. It can not predict the peaks that exist around this

51

period. On the other hand, the vanilla-MLP, the red curve, can predict the average eCPM well in

most prediction periods comparable with the target curve. Although, it can not predict well at

some prediction periods like after 10/2020 and before and after 12/2020. In the period around

12/2020, it predicts the value that exists in the very high range as a very low value (negative

value). Also, the MSE of vanilla-LSTM model = 2.4737 while the MSE of vanilla-MLP model

= 3.3251.

Figure 5.14 LSTM vs. MLP with 𝑡 = 7 on 728 × 90 Dataset

Based on the prediction curves and the MSE values we can say that, vanilla-LSTM model can

achieve better model accuracy than vanilla-MLP model on 728 × 90 dataset with t equals 7.

Figure 5.15 shows the second experiment on 728 × 90 dataset with t equals 14. In Figure 5.15

we can see that vanilla-LSTM prediction curve is better than vanilla-MLP prediction curve.

Since the vanilla-LSTM curve can predict most of the real data points explained in the target

52

curve except the period before and after 12/2020. While vanilla-MLP curve can not predict well

before 10/2020, before and after 12/2020, and at 02/2021. In the period before 12/2020, the

vanilla-MLP curve predicts a negative output value while the average eCPM values must be

positive. Also, the vanilla-MLP model achieved higher error than the vanilla-LSTM model.

Figure 5.15 LSTM vs. MLP with 𝑡 = 14 on 728 × 90 Dataset

So, we can conclude that, the vanilla-LSTM model can predict the average eCPM better than the

vanilla-MLP model on 728 × 90 dataset with t equals 14.

The third experiment on 728 × 90 dataset shown in Figure 5.16 with t equals 30. In Figure 5.16

we can see the same observations that extracted from Figure 5.14 and Figure 5.15. Since

vanilla-LSTM model can predict the average eCPM, that explained in the target curve, better

than the vanilla-MLP model. Also, vanilla-MLP predicts the average eCPM values that exist in

medium and high range as a very low output values (negative predicted values).

53

Figure 5.16 LSTM vs. MLP with 𝑡 = 30 on 728 × 90 Dataset

After the three experiments on 728 × 90 dataset with t values equal 7, 14, and 30 we can say that

the vanilla-LSTM model is more accurate than the vanilla-MLP model in predicting the average

eCPM around certain date.

After all the experiments that explained in Experiment 3.1, we can conclude that:

• Vanilla-LSTM model can achieves the best model accuracy on 300 × 250, 300 × 600, and

728 × 90 datasets with t values equal 7, 14, and 30.

• Vanilla-MLP model can achieves the best model accuracy on 970 × 250 dataset with t values

equal 7, 14, and 30.

• The pattern of the 970 × 250 dataset is easier than the pattern of 300 × 250, 300 × 600, and

728 × 90 datasets.

54

• Vanilla-LSTM and vanilla-MLP models can forecast the average eCPM with short periods,

with t equal 7 and 14, better than the average eCPM with long periods, with t equals 30. So,

we can say that these two models are useless with t = 30.

We concluded all the error values that the Vanilla-LSTM and Vanilla-MLP achieved with the

four datasets during forecasting the average eCPM around certain date with different t values

equal 7, 14, and 30 using MSE, NMSE, and Percentage-Error in Table 5.1. For example, from

Table 5.1, you can see horizontally the different MSE, NMSE, and Percentage-Error values that

the vanilla-LSTM and vanilla-MLP achieved with the 300 × 250 dataset with t equals 7, 14, and

30. You can see that Vanilla-LSTM achieved minimum MSE, NMSE, and Percentage-Error

values comparable with Vanilla-MLP. The highlighted numbers represent the numbers that have

minimum model error.

Table 5.1 Conclusion for the MSE, NMSE, and Percentage-Error values for all datasets

with vanilla-LSTM and vanilla-MLP models with t values equal 7, 14, and 30

Datasets Error Vanilla-LSTM
t = 7

Vanilla-MLP
t = 7

Vanilla-LSTM
t = 14

Vanilla-MLP
t = 14

Vanilla-LSTM
t = 30

Vanilla-MLP
t = 30

300 × 250

MSE
NMSE
Percentage-Error

2.5726
0.709

53.31%

3.0073

0.7173

54.82%

1.9891
0.3468
43.42%

2.3542

0.3742

44.98%

1.3963
0.2160

35.80 %

1.9091

0.3132

40.28 %

300 × 600

MSE
NMSE
Percentage-Error

3.1656
0.1483
30.67%

7.0541

0.4622

41.67%

2.5759
0.1109
27.70%

4.0606

0.2289

34.41%

2.7044
0.1202
30.81%

4.5279

0.2445

34.66%

970 × 250

MSE
NMSE
Percentage-Error

8.3856

0.2205

38.96%

2.1123
0.2021
33.58%

8.7115

0.2240

39.89%

5.8440
0.1912
32.87%

8.4554

0.2163

39.72%

4.2029
0.1707
30.28%

728 × 90

MSE
NMSE
Percentage-Error

2.4737
0.1256
27.05%

3.3251

0.2860

33.65%

2.1553
0.1028
25.42%

3.5636

0.2953

35.32%

2.0471
0.1038
26.34%

2.6487

0.1780

33.33%

5.3.2 Results of Experiment 3.2

In subsection 5.3.1 we studied the results of the LSTM and MLP models with the four datasets

that we have with different t values in predicting the average eCPM around certain date. From

the previous study we concluded that we should use the LSTM model with 300× 250, 300× 600,

and 728 × 90 datasets and the MLP model with 970 × 250 dataset.

55

In Experiment 3.2 we will study the results of LSTM model and KNN model in predicting the

average eCPM with 300 × 250, 300 × 600, and 728 × 90 datasets with t equals 7. We run this

experiment to validate our claim that these three datasets are complex and using a complicated

model, such as LSTM model, will be more efficient than using a simple model, such as KNN,

with these three datasets.

In Experiment 3.2, the blue curve with the start marker represents the vanilla-LSTM prediction

curve. The red curve with the triangle-up marker represents the KNN prediction curve. The

black curve with the circle marker represents the target curve.

Figure 5.17 shows the vanilla-LSTM and KNN prediction curves with the target curve using t

equals 7 on 300 × 250 dataset. From Figure 5.17 we can see that the vanilla-LSTM prediction

curve can reach most of the data points that exist in the target curve. Also, the KNN prediction

curve has the same target curve pattern but it can not predict the average eCPM well especially

in the period between 11/2020 and 01/2021.

After this comparison we can say that, Vanilla-LSTM model can predict the average eCPM

better that KNN model in 300 × 250 dataset with t equals 7.

Figure 5.18 shows the two prediction vanilla-LSTM and KNN curves with t equals 7 using

300 × 600 dataset. From this figure we can see that there is no big difference between the two

prediction curves in most of the prediction periods except in the period before and after 12/2020.

The KNN prediction curve can not predict well in this period. Consequently, we can say that the

vanilla-LSTM model can predict the average eCPM better than the KNN model.

Figure 5.19 shows the vanilla-LSTM model versus the KNN model with t equals 7 on 728 × 90

dataset. In this figure we can see the same previous observation that exist in Figure 5.18. Since

there is no big difference between the vanilla-LSTM prediction curve compared with the KNN

prediction curve. Both prediction curves can reach the target curve in most prediction periods

except in the period before and after 12/2020. Since the dataset has high peaks in this period.

56

Figure 5.17 LSTM Vs. KNN with 𝑡 = 7 and 𝐾 = 12 on 300 × 250 Dataset

Nevertheless, we can say that the vanilla-LSTM model is better than the KNN model since it

can reach some data points better than the KNN model.

At the end of Experiment 3.2, we can conclude that the simple models such as KNN model

can not solve our problem very well with 300 × 250, 300 × 600, and 728 × 90 datasets. Since

the pattern of these three datasets is not easy to predict. So, we should use a more complicated

model like LSTM model to achieve more accurate results.

From the previous observations on experiment 3.2, we can conclude that the vanilla-LSTM

model is the best model that we can use to predict the average eCPM around certain date to

achieves the best model accuracy.

57

Figure 5.18 LSTM Vs. KNN with 𝑡 = 7 and 𝐾 = 25 on 300 × 600 Dataset

5.3.3 Results of Experiment 3.3

In this experiment, we will discuss the result of the comparison between the vanilla-MLP and

KNN models for predicting the average eCPM that is explained in the target curve with t equal 7

on 970 × 250 dataset. We run this experiment to prove our claim that the 970 × 250 dataset is

not a complex dataset to use a complicated model such as the LSTM model. Also, it is not a

very easy dataset to use a simple model such as the KNN model.

Figure 5.20 shows the result of the comparison between the two models on 970 × 250 with t

equals 7. In Figure 5.20 we can see that, the vanilla-MLP prediction curve, the red curve, can

predict most of the target data points better than the KNN prediction curve, the blue curve. The

KNN prediction curve can not reach the target data points in most periods.

58

Figure 5.19 LSTM Vs. KNN with 𝑡 = 7 and 𝐾 = 12 on 728 × 90 Dataset

Finally, we can say that the pattern of the 970 × 250 dataset is not simple enough to use a simple

model like KNN model. Also, it is not very complicated to use a complex model like LSTM in

average eCPM forecasting. Consequently, we can conclude that the vanilla-MLP model is the

suitable model that can achieve the best model accuracy on the 970 × 250 dataset.

5.4 The Final Models architecture

In this section, we will explain the architecture of the two final used models (LSTM and MLP).

Also, we will show the results of the two models with the datasets that helped each model achieve

the best accuracy.

59

Figure 5.20 MLP Vs. KNN with 𝑡 = 7 and 𝐾 = 12 on 970 × 250 Dataset

5.4.1 Predictive Model (Vanilla-LSTM Model)

After running different experiments on the 4 datasets that we have, We selected the the vanilla-

LSTM model as the final model with 300 × 250, 300 × 600, 728 × 90 datasets with target (t)

values equal 7, 14, and 30. We built vanilla-LSTM architecture with input layer and output layer.

We used 50 and one nodes for the input and output layers respectively, as described in chapter 4.

Also, we used Tanh as an activation function, MSE as a loss function, and Adam optimizer, these

methods are described in more details in chapter 4. The model is trained using 300 epochs.

Some of the technologies that used in training the model are (Python, Pandas, TensorFlow, and

Keras).

60

5.4.1.1 Results of Vanilla-LSTM model on 300 × 250 dataset

Figure 5.21, Figure 5.22, and Figure 5.23 show the final results after using the vanilla-LSTM

model on 300 × 250 dataset. These three figures show the prediction curve, after using the

Vanilla-LSTM model, and the target curve with t values equal 7, 14, and 30 respectively. From

these three figures we can conclude that the vanilla-LSTM model can forecast the average eCPM

with t equal 7 and 14 better than t equals 30.

Figure 5.21 Vanilla-LSTM model with 𝑡 = 7 on 300 × 250 Dataset

5.4.1.2 Results of Vanilla-LSTM model on 300 × 600 dataset

Figure 5.24, Figure 5.25, and Figure 5.26 show the prediction curve, after using the Vanilla-LSTM

model, and the target curve with t values equal 7, 14, and 30 respectively on 300 × 600 dataset.

From these three figures, we can conclude that the vanilla-LSTM model can forecast the average

eCPM with t equal 7 and 14 well. While it is useless with t equals 30.

61

Figure 5.22 Vanilla-LSTM model with 𝑡 = 14 on 300 × 250 Dataset

5.4.1.3 Results of Vanilla-LSTM model on 728 × 90 dataset

Figure 5.27, Figure 5.28, and Figure 5.29 show the prediction curve, after using the Vanilla-LSTM

model, and the target curve with t values equal 7, 14, and 30 respectively on 728 × 90 dataset.

From these three figures, we can conclude that the vanilla-LSTM model can forecast the average

eCPM with t equal 7 and 14 better than t equals 30.

5.4.2 Predictive Model (MLP Model)

We trained LSTM, MLP, and KNN models on 970 × 250 dataset and the best model accuracy

is achieved using MLP model, as explained in details in chapter 4 and chapter 5. We used

vanilla-MLP model with 50 nodes in the input layer and one node in the output layer, explained

in chapter 4. We trained the model using ReLU activation function, MSE as a loss function, and

62

Figure 5.23 Vanilla-LSTM model with 𝑡 = 30 on 300 × 250 Dataset

Adam optimizer. The functions and the optimizer are explained in chapter 4. The vanilla-MLP

mode is trained with different target (t) values equal 7, 14, and 30 with number of epochs equals

300. We used technologies such as Python, Pandas, TensorFlow, and Keras in model training.

5.4.2.1 Results of Vanilla-MLP model on 970 × 250 dataset

Figure 5.30, Figure 5.31, and Figure 5.32 show the prediction curve, after using the Vanilla-MLP

model, and the target curve with t values equal 7, 14, and 30 respectively on 970 × 250 dataset.

From these three figures, we can conclude that the vanilla-MLP model can forecast the average

eCPM with t equal 7 and 14 better than t equals 30.

63

5.5 Discussion

At the end of this chapter, we can conclude that the Vanilla-LSTM model is the best model for

300 × 250, 300 × 600, and 728 × 90 datasets. While Vanilla-MLP is the best model for the

970 × 250 dataset. However, one question may raise here which is: can we conclude that these

two models are always the best for these datasets?

Since we have four datasets with different ad sizes, we can not ensure that the LSTM model or

MLP is the best one with a specific dataset all the time. This is due to the fact that the behavior

and pattern of such dataset are changing with time. The pattern of the datasets may change at

any time based on the factors surrounding it.

To keep using the best model all the time, we can employ post-deployment monitoring. We can

regularly monitor the models behavior and based on the percentage error we can trigger different

actions. For example, if the model’s percentage error does not exceeded a certain threshold, we

can continue using the same model. Otherwise, a new evaluation is required. In this case, we

can retrain the three models again, LSTM, MLP, and KNN models, and select the model with

the minimum error.

This continuous monitoring comes with some advantages and disadvantages. The main advantage

of the continuous monitoring is saving the cost of scheduling regular retraining. The main

disadvantage of continuous monitoring is the possibility of wasting possible improvements. To

clearly explain this point, assume the used model achieves 11% error which is acceptable for

the Industrial Partner (i.e., less than the specified threshold). Therefore, no retraining will be

triggered. However, maybe there is another model that could achieve 5% error if we reevaluated

the different models. In this case, there is 6% possible improvements we will not catch.

64

Figure 5.24 Vanilla-LSTM model with 𝑡 = 7 on 300 × 600 Dataset

Figure 5.25 Vanilla-LSTM model with 𝑡 = 14 on 300 × 600 Dataset

65

Figure 5.26 Vanilla-LSTM model with 𝑡 = 30 on 300 × 600 Dataset

Figure 5.27 Vanilla-LSTM model with 𝑡 = 7 on 728 × 90 Dataset

66

Figure 5.28 Vanilla-LSTM model with 𝑡 = 14 on 728 × 90 Dataset

Figure 5.29 Vanilla-LSTM model with 𝑡 = 30 on 728 × 90 Dataset

67

Figure 5.30 Vanilla-MLP model with 𝑡 = 7 on 970 × 250 Dataset

Figure 5.31 Vanilla-MLP model with 𝑡 = 14 on 970 × 250 Dataset

68

Figure 5.32 Vanilla-MLP model with 𝑡 = 30 on 970 × 250 Dataset

CONCLUSION AND RECOMMENDATIONS

Conclusion

In this thesis, we predict the average eCPM around certain date for the next 7, 14, and 30 days

using the eCPM time series history. We experimented different machine learning models to

select the model that achieves the highest accuracy. All experiments are carried out using KNN,

MLP, and LSTM models on four different datasets. From the obtained experimental results,

we can conclude that there is no model performing better than other models for all datasets.

However, the model accuracy depends on the used dataset. After comparing all models, we can

conclude that LSTM model outperforms MLP and KNN models on 300 × 250, 300 × 600, and

728× 90 datasets. Nevertheless, MLP model outperforms KNN and LSTM models on 970× 250

dataset.

Recommendations

Through this thesis, we recommend that the suitable models for our problem are LSTM model

on 300× 250, 300× 600, and 728× 90 datasets and MLP model on 970× 250 dataset. Although

the obtained results are promising, the error margin could be further improved. The following

points could be considered for future improvements:

• Smoothing out the predictions such that the predictions are not far from the previous eCPM

value by certain margin.

• Solving the problem of negative eCPM prediction by post-processing. For example, we can

replace the negative predictions with the minimum value in the input eCPM values.

• Adding more features that may improve the models accuracy such as the weather, holidays

calendar, etc.

BIBLIOGRAPHY

Adhikari, R. & Agrawal, R. K. (2013). An introductory study on time series modeling and

forecasting. arXiv preprint arXiv:1302.6613.

Austin, D., Seljan, S., Monello, J. & Tzeng, S. (2016). Reserve price optimization at scale.

2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA),
pp. 528–536. doi: 10.1109/DSAA.2016.32.

Bishop, C. M. et al. (1995). Neural networks for pattern recognition. Oxford university press.

Box, G. E., Jenkins, G. M., Reinsel, G. C. & Ljung, G. M. (2015). Time series analysis:
forecasting and control. John Wiley & Sons.

Braei, M. & Wagner, S. (2020). Anomaly detection in univariate time-series: A survey on the

state-of-the-art. arXiv preprint arXiv:2004.00433.

Brownlee, J. (2020, August, 20). A Gentle Introduction to the Rectified Linear Unit (ReLU)

[Web Page]. Consulted at https://machinelearningmastery.com/.

Brownlee, J. (2021a, August, 5). Gentle Introduction to the Adam Optimization Algorithm

for Deep Learning [Web Page]. Consulted at https://machinelearningmastery.com/

adam-optimization-algorithm-for-deep-learning/.

Brownlee, J. (2021b, July, 20). Time Series Prediction with LSTM Recurrent Neural Networks

in Python with Keras [Web Page]. Consulted at https://machinelearningmastery.com/

time-series-prediction-lstm-recurrent-neural-networks-python-keras/.

Chatfield, C. (2000). Time-series forecasting. CRC Press. doi: 10.1201/9781420036206.

DeepAI. (2021, July, 1). Thompson Sampling [Web Page]. Consulted at https://deepai.org/

machine-learning-glossary-and-terms/thompson-sampling.

Doe, J., Doe, J. & Doe, J. (1999). Title of the chapter. In Doe, J., Doe, J. & Doe, J. (Eds.), Title
of the book (ed. 3, vol. 4, pp. 220-242). Location: Publisher.

Elsworth, S. & Güttel, S. (2020). Time series forecasting using LSTM networks: a symbolic

approach. arXiv preprint arXiv:2003.05672.

Feng, Z., Lahaie, S., Schneider, J. & Ye, J. (2020). Reserve Price Optimization for First Price

Auctions. arXiv preprint arXiv:2006.06519.

72

Garcia-Orellana, C. J., Gallardo-Caballero, R., Macias-Macias, M. & Gonzalez-Velasco, H.

(2007). SVM and Neural Networks comparison in mammographic CAD. 2007 29th
Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, pp. 3204-3207. doi: 10.1109/IEMBS.2007.4353011.

Gardner, M. W. & Dorling, S. (1998). Artificial neural networks (the multilayer perceptron)—a

review of applications in the atmospheric sciences. Atmospheric environment, 32(14-15),

2627–2636. doi: 10.1016/S1352-2310(97)00447-0.

Gers, F. A., Schmidhuber, J. & Cummins, F. (2000). Learning to forget: Continual prediction with

LSTM. Neural computation, 12(10), 2451–2471. doi: 10.1162/089976600300015015.

Gers, F. A., Eck, D. & Schmidhuber, J. (2002). Applying LSTM to time series predictable

through time-window approaches. In Neural Nets WIRN Vietri-01 (pp. 193–200). Springer.

doi: 10.1007/978-1-4471-0219-9_20.

Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R. & Schmidhuber, J. (2016). LSTM:

A search space odyssey. IEEE transactions on neural networks and learning systems,
28(10), 2222–2232. doi: 10.1109/TNNLS.2016.2582924.

Ha, L. (2008). Online advertising research in advertising journals: A review. Journal of Current
Issues & Research in Advertising, 30(1), 31–48. doi: 10.1080/10641734.2008.10505236.

Hayes, A. (2021, August, 2). Reserve Price [Web Page]. Consulted at https://www.investopedia.

com/terms/r/reserve-price.asp.

He, X., Cai, D. & Niyogi, P. (2006). Laplacian score for feature selection. Advances in neural
information processing systems, pp. 507–514.

Hochreiter, S. & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8),

1735–1780. doi: 10.1162/neco.1997.9.8.1735.

IAB. (2021, July, 2). Internet advertising revenue report [Web Page]. Consulted at https://www.iab.

com/wp-content/uploads/2020/05/FY19-IAB-Internet-Ad-Revenue-Report_Final.pdf.

INMOBI. (2021, October 15). In-App Monetization: What Is A Second Price Auction And

How Does It Works? [Web Page]. Consulted at https://www.inmobi.com/blog/2018/10/

24/what-is-a-second-price-auction-and-how-does-it-work-video.

Karim. (2021, August, 18). Deep Learning via Multilayer Perceptron Classifier [Web Page]. Con-

sulted at https://dzone.com/articles/deep-learning-via-multilayer-perceptron-classifier.

73

Kingma, D. P. & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Köppen, M. (2000). The curse of dimensionality. 5th Online World Conference on Soft
Computing in Industrial Applications (WSC5), 1, 4–8.

Kramer, O. (2013). K-Nearest Neighbors. In Kramer, O. (Ed.), Dimensionality Reduction
with Unsupervised Nearest Neighbors (pp. 13–23). Berlin, Heidelberg: Springer Berlin

Heidelberg.

Mahalakshmi, G., Sridevi, S. & Rajaram, S. (2016). A survey on forecasting of time series

data. 2016 International Conference on Computing Technologies and Intelligent Data
Engineering (ICCTIDE’16), pp. 1–8. doi: 10.1109/ICCTIDE.2016.7725358.

Match2One. (2021, October, 28). Banner Sizes: The Must-Have Banners of 2021 [Web Page].

Consulted at https://www.match2one.com/blog/standard-banner-sizes/.

Noriega, L. (2005). Multilayer perceptron tutorial. School of Computing. Staffordshire University.

Phi, M. (2021, August, 10). Towards Data Science: Illustrated Guide to LSTM’s and GRU’s:

A step by step explanation [Web Page]. Consulted at https://towardsdatascience.com/

illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21.

Piccolo, D. (1990). A distance measure for classifying ARIMA models. Journal of time series
analysis, 11(2), 153–164. doi: 10.1111/j.1467-9892.1990.tb00048.x.

Rhuggenaath, J., Akcay, A., Zhang, Y. & Kaymak, U. (2019a). Optimizing reserve prices for

publishers in online ad auctions. 2019 IEEE Conference on Computational Intelligence for
Financial Engineering & Economics (CIFEr), pp. 1–8. doi: 10.1109/CIFEr.2019.8759123.

Rhuggenaath, J., Akcay, A., Zhang, Y. & Kaymak, U. (2019b). A PSO-based algorithm for

reserve price optimization in online ad auctions. 2019 IEEE Congress on Evolutionary
Computation (CEC), pp. 2611–2619. doi: 10.1109/CEC.2019.8789915.

Rosenkranz, S. & Schmitz, P. W. (2007). Reserve prices in auctions as reference points. The
Economic Journal, 117(520), 637–653. doi: 10.1111/j.1468-0297.2007.02044.x.

ROXOT. (2021, August, 2). How to set unified price floors in GAM first-price auction [Web

Page]. Consulted at https://roxot.com/blog/price-floors-first-price-auction.

Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1985). Learning internal representations by
error propagation.

74

Salvador, S. & Chan, P. (2005). Learning states and rules for detecting anomalies in time series.

Applied Intelligence, 23(3), 241–255. doi: 10.1007/s10489-005-4610-3.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61,

85–117. doi: 10.1016/j.neunet.2014.09.003.

Schmidhuber, J., Hochreiter, S. et al. (1997). Long short-term memory. Neural Comput, 9(8),

1735–1780. doi: 10.1162/neco.1997.9.8.1735.

Schraudolph, N. (2021, May, 27). Multi-layer networks [Web Page]. Consulted at https:

//cnl.salk.edu/~schraudo/teach/NNcourse/multilayer.html.

Sharma, A. (2021, September, 18). Theory Of Everything: Understanding Activation Functions in

Neural Networks [Web Page]. Consulted at https://medium.com/the-theory-of-everything/

understanding-activation-functions-in-neural-networks-9491262884e0.

Shelatkar, T., Tondale, S., Yadav, S. & Ahir, S. (2020). Web traffic time series forecasting

using ARIMA and LSTM RNN. ITM Web of Conferences, 32, 03017. doi: 10.1051/itm-

conf/20203203017.

Shu, X., Zhang, L., Sun, Y. & Tang, J. (2020). Host-parasite: Graph LSTM-in-LSTM for

group activity recognition. IEEE transactions on neural networks and learning systems.
doi: 10.1109/TNNLS.2020.2978942.

Siami-Namini, S. & Namin, A. S. (2018). Forecasting economics and financial time series:

ARIMA vs. LSTM. arXiv preprint arXiv:1803.06386.

Siami-Namini, S., Tavakoli, N. & Namin, A. S. (2018). A comparison of ARIMA and LSTM in

forecasting time series. 2018 17th IEEE International Conference on Machine Learning
and Applications (ICMLA), pp. 1394–1401. doi: 10.1109/ICMLA.2018.00227.

steldSSP Company. (2021, August, 2). Maximize your website ad revenue with Steld steldSSP

supply side platform [Web Page]. Consulted at http://steld.com/supply-side-platform.1.

html.

Stojiljković, M. (2021, August, 5). Real Python: Stochastic Gradient Descent Algorithm [Web

Page]. Consulted at https://realpython.com/gradient-descent-algorithm-python/.

Torres, J. F., Hadjout, D., Sebaa, A., Martínez-Álvarez, F. & Troncoso, A. (2021). Deep Learning

for Time Series Forecasting: A Survey. Big Data, 9(1), 3–21. doi: 10.1089/big.2020.0159.

75

Weytjens, H., Lohmann, E. & Kleinsteuber, M. (2019). Cash flow prediction: MLP and

LSTM compared to ARIMA and Prophet. Electronic Commerce Research, 1–21.

doi: 10.1007/s10660-019-09362-7.

Wojtowytsch, S. & Weinan, E. (2020). Can shallow neural networks beat the curse of

dimensionality? A mean field training perspective. IEEE Transactions on Artificial
Intelligence, 1(2), 121–129. doi: 10.1109/TAI.2021.3051357.

Yamak, P. T., Yujian, L. & Gadosey, P. K. (2019). A comparison between arima, lstm, and gru for

time series forecasting. Proceedings of the 2019 2nd International Conference on Algo-
rithms, Computing and Artificial Intelligence, pp. 49–55. doi: 10.1145/3377713.3377722.

Yuan, S., Wang, J., Chen, B., Mason, P. & Seljan, S. (2014a). An empirical study of

reserve price optimisation in real-time bidding. Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining, pp. 1897–1906.

doi: 10.1145/2623330.2623357.

Yuan, Y., Wang, F., Li, J. & Qin, R. (2014b). A survey on real time bidding advertising.

Proceedings of 2014 IEEE International Conference on Service Operations and Logistics,
and Informatics, pp. 418–423. doi: 10.1109/SOLI.2014.6960761.

Zhang, A., Lipton, Z. C., Li, M. & Smola, A. J. (2021). MultiLayer Perceptron. Release 0.16.4.

