
Resource Provisioning for Inter-Domain IoT Services in

Edge-Cloud SDN-based Networks

by

Duong Tuan NGUYEN

MANUSCRIPT-BASED THESIS PRESENTED TO ÉCOLE DE

TECHNOLOGIE SUPÉRIEURE

IN PARTIAL FULFILLMENT FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Ph.D.

MONTREAL, FEBRUARY 3, 2022

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

UNIVERSITÉ DU QUÉBEC

Duong Tuan NGUYEN, 2022

This Creative Commons license allows readers to download this work and share it with others as long as the

author is credited. The content of this work cannot be modified in any way or used commercially.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mr. Mohamed Cheriet, Thesis supervisor

Department of Systems Engineering, École de Technologie Superieure

Mr. Kim-Khoa Nguyen, Thesis Co-Supervisor

Department of Electrical Engineering, École de Technologie Superieure

Mr. Lameiras Koerich Alessandro, Chair, Board of Examiners

Department of Software Engineering and IT, École de Technologie Superieure

Mr. Mohamed Faten Zhani, Member of the Jury

Department of Software Engineering and IT, École de Technologie Superieure

Mr. Roch Glitho, External Examiner

Institute of Information Systems Engineering, Concordia University

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

ON

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

FOREWORD

This dissertation is submitted for the degree of Doctor of Philosophy at the University of Quebec,

Ecole de Technologie Superieure (ETS). The research described herein was conducted under

the supervision of Professor Mohamed Cheriet in the Department of Systems Engineering and

Professor Kim-Khoa Nguyen in the Department of Electical Engineering, during the period

from January 2016 to December 2021.

This work is to the best of my knowledge original, except where acknowledgements and references

are made to previous work. Neither this, nor any substantially similar dissertation has been or is

being submitted for any other degree, diploma or other qualification at any other university

Part of this work has been presented in the following publications:

1. D. T. Nguyen, K. K. Nguyen, S. Khazri and M. Cheriet, "Real-time optimized NFV architec-

ture for internetworking WebRTC and IMS," 2016 17th International Telecommunications

Network Strategy and Planning Symposium (Networks), Montreal, QC, Canada, 2016, pp.

81-88, doi: 10.1109/NETWKS.2016.7751157.

2. D. T. Nguyen, K. K. Nguyen and M. Cheriet, "Optimized IoT service orchestration," 2017

IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Commu-

nications (PIMRC), Montreal, QC, Canada, 2017, pp. 1-6, doi: 10.1109/PIMRC.2017.8292756.

3. D. T. Nguyen, K. K. Nguyen and M. Cheriet, "NFV-Based Architecture for the Interworking

Between WebRTC and IMS," in IEEE Transactions on Network and Service Management,

vol. 15, no. 4, pp. 1363-1377, Dec. 2018, doi: 10.1109/TNSM.2018.2876697.

4. D. T. Nguyen, C. Pham, K. K. Nguyen and M. Cheriet, "Virtual Network Function

Placement in IoT Network," 2019 15th International Wireless Communications & Mo-

bile Computing Conference (IWCMC), Tangier, Morocco, 2019, pp. 1166-1171, doi:

10.1109/IWCMC.2019.8766491.

5. D. T. Nguyen, C. Pham, K. K. Nguyen and M. Cheriet, "Placement and Chaining for Run-

Time IoT Service Deployment in Edge-Cloud," in IEEE Transactions on Network and Service

Management, vol. 17, no. 1, pp. 459-472, March 2020, doi: 10.1109/TNSM.2019.2948137.

VI

6. D. T. Nguyen, C. Pham, K. K. Nguyen and M. Cheriet, "SACO: A Service Chain Aware

SDN Controller-Switch Mapping Framework," 2019 15th International Conference on

Network and Service Management (CNSM), Halifax, NS, Canada, 2019, pp. 1-8, doi:

10.23919/CNSM46954.2019.9012747.

7. D. T. Nguyen, C. Pham, K. K. Nguyen and M. Cheriet, "Jointly Optimized Resource

Allocation for SDN Control and Forwarding Planes in Edge-Cloud SDN-based Networks,"

submitted to IEEE Internet of Things Journal (December, 2021).

ACKNOWLEDGEMENTS

I would like to thank all the people who are continuously supporting me with their valuable

encouragements. I would never have been able to continue my work with same energy and

motivation without the guidance of my professors and committee members, help from friends,

and support from my parents and my family.

I would like to express my deepest gratitude to my supervisor Professor Mohamed CHERIET, for

his excellent guidance, endless caring, patience, and providing me with an excellent atmosphere

for doing research.

I am extremely grateful to Professor Kim Khoa NGUYEN, who let me experience the research

exercise in the field with nice and practical discussions beyond the textbooks, patiently corrected

my writing and drove my work path.

I would like to thank "Synchromedia lab" team members, who as good friends, were always

willing to help and give their best suggestions. My work would not have been possible without

their helps.

Special thanks to my parents Son Nguyen and Thuc Duong, my brother Nguyen Nguyen, and

my entire family. They were always supporting me and encouraging me with their best wishes.

Last but not least, I would like to extend extra special thanks to my wife Kha Tran and my son

An Justin for their patience and their sacrifices. They were always there cheering me up and

stood by me through the good times and bad.

Duong Tuan NGUYEN

Provisionnement des ressources pour les services IdO inter-domaines dans les réseaux
infonuagique-périphérique programmable

Duong Tuan NGUYEN

RÉSUMÉ

L’Internet des objets (IdO) se caractérisant par un grand nombre des objets connectés et une

multitude d’applications intelligentes a été introduit pour améliorer la qualité de la vie humaine.

L’hétérogénéité des technologies de contrôle et de communication des objets, la charge de

travail fluctuante et l’exigence de faible latence des applications IdO imposent une grande

pression sur les ressources de réseau que les solutions traditionnelles ne sont pas capable de

gérer alors qu’il reste encore des obstacles pour les nouveaux paradigmes de gestion tels que

SDN/NFV. En particulier, les contrôleurs SDN font face à des défis d’insuffisance des ressources

pour prendre de décision de transfert pour plusieurs requêtes provenant simultanément des

équipements de communication SDN servant des services IdO. De l’autre côté, dans l’architecture

infonuagique-périphérique, il est important de définir une stratégie pour optimiser l’allocation

des ressources virtuelles requises soit sur l’infonuagique à distance pour les tâches de calcul

intensif, soit à proximité des utilisateurs finaux sur des équipements locaux pour réduire la

latence de bout-en-bout. Dans la littérature, aucun des travaux antérieurs n’a pris en compte

le problème con-joint du placement et du chaînage des ressources virtuelles pour les réseaux

SDN d’infonuagique-périphérique. Ainsi, l’objectif de cette thèse est de concevoir une stratégie

efficace pour le placement et le chaînage des ressources de calcul de réseau en même temps sur

les plans de contrôle et de transfert SDN. Nous présentons un modèle de latence de bout-en-bout

pour les services d’interfonctionnement déployés sur plusieurs domaines différents, tels que

IMS et WebRTC, qui minimise le coût total de l’utilisation des ressources et des opérations de

service tout en répondant aux exigences de QdS et QdE ainsi qu’en maintenant la stabilité du

système en fonction des demandes dynamiques.

Afin d’atteindre cet objectif, trois problèmes clés doivent être étudiés dans notre cadre de travail

comme les suivants: i) comment optimiser le placement et le chaînage des ressources VNF dans

le réseau infonuagique-périphérique? ii) comment modéliser et mettre en œuvre une solution

optimisée de placement et de chaînage des ressources dans un réseau hétérogène avec un grand

nombre de nœuds opéré par SDN? iii) comment améliorer la QoS en termes de latence du service

de bout-en-bout pour les services d’interfonctionnement multi-domaines selon la disponibilité

des ressources physiques?

Pour le premier problème, nous modélisons le placement et le chaînage des VNF en tenant en

compte le trafic agrégé des appareils IdO, la latence de bout-en-bout des chaînes de services, et

les liens entre l’infonuagique, les passerelles IdO, et les nuages péréphériques. Pour résoudre

le problème d’optimisation non-convexe formulé, nous concevons une solution basée sur

l’approximation de Markov qui adopte des techniques multistart et batching (MBMAP) pour

résoudre le problème d’optimisation combinatoire. Notre solution est exécutée de manière

distribuée et par conséquent accélère le taux de convergence.

X

Pour résoudre le deuxième problème, nous présentons un modèle d’allocation de ressources pour

les plans de contrôle et de transfert SDN et le formulons comme un problème d’optimisation

conjointe. Nous adoptons le cadre d’optimisation des files d’attente de Lyapunov pour transformer

ce problème d’optimisation à long terme en une série de problèmes en temps réel et utilisons la

méthode de remontée de gradient exponentielle sur les problèmes transformés pour trouver une

solution quasi-optimale. De plus, une architecture d’implémentation pour l’orchestration de

contrôleurs de ressources hétérogènes est également conçue.

Enfin, pour résoudre le troisième problème, nous présentons une architecture d’interfonctionnement

basée sur NFV permettant l’orchestration multi-domaines, e.g., les domaines IMS et WebRTC,

et définissons les échanges de messages requis pour le chaînage de services. Notre modèle de

latence du service de bout-en-bout représente l’objectif d’allocation des ressources en temps

réel. Un algorithme en temps réel basé sur le cadre d’approximation de Markov est conçu

pour allouer des ressources VNF avec un coût optimal et minimiser l’impact de la violation de

QoS pendant la période de mise à l’échelle. Les résultats expérimentaux montrent que notre

algorithme répond efficacement aux demandes de service fluctuantes avec un coût de service

réduit de 19% tout en respectant la QdS.

Mots-clés: service IdO, SDN/NFV, calcul périphérique, placement et chaînage VNF, placement

du contrôleur SDN, approximation de Markov, optimisation de la file d’attente Lyapunov, IMS,

WebRTC

Resource Provisioning for Inter-Domain IoT Services in Edge-Cloud SDN-based
Networks

Duong Tuan NGUYEN

ABSTRACT

The introduction of IoT networks with a large number of devices and diversity of smart IoT

applications aims to improve the quality of human life. The heterogeneity of control and

communication technologies from device to device, the fluctuating workload and low latency

requirements of IoT applications pose a great pressure onto core network resource that traditional

networks’ solutions are insufficient to handle while there are still obstacles that must be overcome

before novel paradigms like SDN/NFV, edge-cloud computing paradigm can advance to be

widely deployed. In particular, SDN controllers will face resource scalable challenges to deal

with numerous queries from SDN forwarding elements for appropriate forwarding actions for

traffic flows of IoT services that they encounter. On the other hand, in edge-cloud architecture,

it is important to define a strategy to optimally allocate the virtual resources either at remote

clouds for computation-intensive tasks or close to end-users at edge cloud on equipment within

their premises to reduce E2E service latency. No prior work has taken into account the problem

of virtual resource placement and chaining for edge-cloud SDN-based networks. Thus, the goal

of this dissertation is to design efficient computing and networking resource placement and

chaining strategy over both SDN control and forwarding planes. We present an E2E latency

model for interworking services deployed over multiple domains that minimizes the total cost

of resource usage and service operations while meeting QoS and QoE requirements as well as

maintaining the system’s queue stability given dynamic service demand.

In order to meet this goal, three key problems are to be addressed in our framework and are

summarized as follows: i) how to optimize VNF resource placement and chaining in edge-cloud

networks? ii) how to model and optimize resource placement and chaining solution in a

heterogeneous network with a large number of nodes operated by SDN? iii) how to improve the

QoS in terms of E2E service latency for multi-domain interworking services according to the

availability of physical resources?

Our first contribution is to model the VNF placement and chaining problem regarding aggregated

input traffic from IoT devices. The E2E latency of service chains, the links connecting clouds,

IoT gateways, and edges. To solve the formulated non-convex optimization problem, we

design a Markov approximation-based solution that adopts multistart and batching techniques

(MBMAP) to solve the combinatorial optimization problem. Our solution runs distributedly and

consequently accelerates convergent rate.

To address the second problem, we present a comprehensive model of resource allocation for both

SDN controlling and forwarding planes and formulate it as a joint optimization problem. We

adopt the Lyapunov queueing optimization framework to transform this long-term optimization

problem into a series of real-time problems and employ the exponentiated gradient ascent method

XII

on the transformed problems to find a near-optimal solution. In addition, an implementation

architecture for the orchestration of heterogeneous resource controllers is also designed.

Finally, to address the third problem, we present an NFV-based interworking architecture

enabling multi-domain orchestration, i.e. IMS and WebRTC domains, and provide the message

exchanges required for service chains. Our E2E service latency model represents the real-time

resource allocation objective. A real-time algorithm based on the Markov approximation

framework is designed to allocate VNF resources with optimal cost and minimize impact from

QoS violation during scaling periods. Experimental results reveal that our algorithm effectively

responds to fluctuating service demands with a service cost reduced by 19% with respect to QoS

requirements.

Keywords: IoT service, SDN/NFV, edge computing, VNF placement and chaining, SDN

controller placement, Markov approximation, Lyapunov queueing optimization, IMS, WebRTC

TABLE OF CONTENTS

Page

INTRODUCTION .1

0.1 Research Motivation and Challenges . 2

0.1.1 Challenges for VNF Placement in Edge-Cloud Networks 3

0.1.2 Challenges in Resource Allocation for Controlling and Forwarding

Planes in SDN Networks . 4

0.1.3 Challenges with Multi-domain Interworking IoT Service 5

0.1.4 Research Motivation . 6

0.2 Problem Statement and Research Questions . 8

0.2.1 Problem Statement . 8

0.2.2 Research Questions . 8

0.2.2.1 Research Question RQ-1 . 8

0.2.2.2 Research Question RQ-2 . 9

0.2.2.3 Research Question RQ-3 . 9

0.3 Outline of the thesis . 10

CHAPTER 1 LITERATURE REVIEW .. 11

1.1 IoT Service and Resource Management . 11

1.1.1 Resource Orchestration for Multi-Domain NFV-based Network 11

1.1.2 E2E Service Chain Latency Model . 13

1.1.3 IMS ↔ WebRTC Use Case: Resource Allocation of NFV-based

System . 14

1.1.4 Discussion . 15

1.2 VNF Resource Allocation for IoT Services . 16

1.2.1 VNF Placement . 16

1.2.2 VNF Routing . 18

1.2.3 VNF Jointly Placement and Routing . 20

1.2.4 Discussion . 21

1.3 Network Resource Allocation for SDN-based IoT Network . 22

1.3.1 Internet of Things (IoT) Service Orchestration . 22

1.3.2 Virtual Network Function (VNF) & Software Defined Network

(SDN) Controller Placement . 23

1.3.3 Discuss . 24

1.4 General Discussion . 25

CHAPTER 2 OBJECTIVES AND GENERAL METHODOLOGY . 27

2.1 Research Hypothesis . 27

2.2 Main Objective . 27

2.2.1 Specific Objectives . 28

2.2.2 Specific Objective SO-1 . 28

2.2.3 Specific Objective SO-2 . 28

XIV

2.2.4 Specific Objective SO-3 . 29

2.3 General Methodology . 29

2.3.1 Methodology M1: IoT Network Topology Aware VNF Placement 29

2.3.2 Methodology M2: Optimizing Resource Placement for SDN

Controllers and Forwarding Nodes . 30

2.3.3 Methodology M3: E2E service latency modeling over the time for

multi-domain interworking IoT services . 30

CHAPTER 3 PLACEMENT AND CHAINING FOR RUN-TIME IOT SERVICE

DEPLOYMENT IN EDGE-CLOUD . 33

3.1 Introduction . 34

3.2 Related Work . 36

3.3 System Architecture . 38

3.3.1 System Description . 38

3.3.2 Overall Architecture . 39

3.3.3 Illustrative Use Case . 41

3.4 System Modeling & Problem Formulation . 42

3.4.1 Resource Constraint . 45

3.4.2 System stability . 46

3.4.3 Service Latency Constraint . 48

3.4.4 System Cost . 49

3.4.5 Problem Formulation . 49

3.5 IoT Topology-Aware VNF Placemenet . 50

3.5.1 Batching Markov Approximation Framework . 50

3.5.1.1 Log-sum-exp Approximation . 50

3.5.1.2 Markov Chain Construction Procedure . 51

3.5.1.3 Multistart and Batching Based Markov Approximation

Placement Framework . 52

3.5.2 Node Ranking-based Placement Heuristic . 56

3.5.3 Discussion . 57

3.6 Performance evaluation . 59

3.6.1 Simulation Analysis . 60

3.6.1.1 Simulation Settings . 60

3.6.2 Simulation Results . 62

3.6.2.1 Convergence . 62

3.6.2.2 System Cost . 62

3.6.2.3 Service Latency . 65

3.6.3 Experimental Analysis . 67

3.6.3.1 Testbed Settings . 67

3.6.3.2 Experimental Results . 68

3.7 Conclusion . 70

XV

CHAPTER 4 JOINTLY OPTIMIZED RESOURCE ALLOCATION FOR SDN

CONTROL AND FORWARDING PLANES IN EDGE-CLOUD

SDN-BASED NETWORKS . 71

4.1 Introduction . 72

4.2 Related Work . 74

4.2.1 VNF Resource Placement . 74

4.2.2 SDN Controller Placement . 75

4.3 System Model and Problem Formulation . 75

4.3.1 Network System Model . 75

4.3.2 Queueing and System Stability Model . 79

4.3.3 Problem Objective and Formulation . 80

4.4 Algorithm Design and Analysis . 81

4.4.1 Lyapunov Optimization Framework . 82

4.4.2 Exponential Gradient Ascent Method . 86

4.4.2.1 Problem Relaxation . 86

4.4.2.2 Exponentiated Gradient Algorithm . 87

4.4.3 Prototype of SCVP Solution . 89

4.5 Performance Evaluation . 90

4.5.1 Simulation Settings . 91

4.5.2 Simulation Results . 92

4.5.2.1 Convergence . 93

4.5.2.2 System Cost . 93

4.5.2.3 Service Quality . 95

4.5.2.4 System Capacity . 97

4.5.3 Experimental Evaluation .100

4.5.3.1 Experimental Setup .100

4.5.3.2 Experimental Results . 101

4.6 Conclusion .103

CHAPTER 5 NFV-BASED ARCHITECTURE FOR THE INTERWORKING

BETWEEN WEBRTC AND IMS .105

5.1 Introduction .106

5.2 Related Work .108

5.2.1 Multi-Domain Service Chain: Architecture & Modeling108

5.2.2 IMS: WebRTC Interworking and Virtualization Architecture110

5.3 NFV-Based Interworking Architecture . 111

5.3.1 Overview of Core Components . 111

5.3.2 WebRTC ↔ IMS Interworking Network Function Virtualization

(NFV)-based Service .113

5.3.3 Session Setup Procedures .115

5.3.3.1 Registration Procedure .115

5.3.3.2 WebRTC ↔ IMS Calling Setup Procedure .116

5.3.4 Discussion .118

XVI

5.4 System Model and Problem Description .118

5.4.1 System Resource Model .119

5.4.2 Service Latency Model . 121

5.4.3 Cost Model .126

5.5 Real-time Inter-Domain Resource Allocation .128

5.5.1 Greedy Resource Allocation Mechanism .129

5.5.2 Markov-Approximation Resource Allocation Mechanism130

5.5.3 Discussion .132

5.5.3.1 Deployment of Algorithm .132

5.5.3.2 Time Window to Update Parameters .132

5.5.3.3 RIDRA Convergence Speed and Optimality Gap133

5.6 Performance Evaluation .133

5.6.1 Simulation Analysis .134

5.6.1.1 Simulation Setting .134

5.6.1.2 Simulation Results .136

5.6.2 Experimental Analysis .139

5.6.2.1 Testbed Configuration .139

5.6.2.2 Experimental Results .140

5.7 Discussion and Future Work .142

CHAPTER 6 SUMMARY AND DISCUSSION .145

6.1 IoT Network Topology Aware VNF Placement .145

6.2 Optimizing SDN Controller Placement for Efficient VNF Traffic Routing146

6.3 E2E service latency modeling over the time for multi-domain interworking

IoT services . 147

CONCLUSION AND RECOMMENDATIONS .149

7.1 General Conclusion .149

7.1.1 Major contributions . 151

BIBLIOGRAPHY .153

LIST OF TABLES

Page

Table 1.1 Related works on interworking IoT service chain optimization problem

in edge-cloud SDN-based networks . 26

Table 3.1 Notation List . 43

Table 3.2 Simulation parameters . 60

Table 3.3 VNF Resource Configuration . 67

Table 4.1 Notation List . 77

Table 4.2 Simulation parameters . 91

Table 4.3 VNF Resource Configuration .100

Table 5.1 Related works on service chain optimization problem .109

Table 5.2 Notation List .120

Table 5.3 Parameters of VM templates used in the simulation process134

Table 5.4 Parameters used for the proposed optimization approach .135

LIST OF FIGURES

Page

Figure 0.1 Resource placement and chaining for Multi-domain IoT Service

Chain . 3

Figure 2.1 Outline diagram of the thesis . 32

Figure 3.1 Multi-cloud service function chain for IoT applications . 38

Figure 3.2 Implementation architecture . 40

Figure 3.3 An illustrative IoT service chain with multiple end-points 41

Figure 3.4 Details of bandwidth required by a VNF . 44

Figure 3.5 Arrival rate at VNF in details . 46

Figure 3.6 Evaluation of convergence of proposed algorithms . 61

Figure 3.7 Cost component comparison with different cost weight factors 63

Figure 3.8 Cost comparison with different level of IoT density . 64

Figure 3.9 Distribution of system cost by service rates . 64

Figure 3.10 Distribution of service latency by service rates . 65

Figure 3.11 Evaluation of total system cost . 65

Figure 3.12 Surveillance session setup latency . 66

Figure 3.13 Evaluation of link utilization . 67

Figure 3.14 Evaluation of resource utilization over clouds . 68

Figure 4.1 Edge-cloud SDN-enabled network system with a set of switches,

edge/cloud with physical resource, and colored VNFs . 76

Figure 4.2 Overview of SCVP solution . 90

Figure 4.3 Convergence of algorithm with different network settings 93

Figure 4.4 Evaluation of total system cost . 94

Figure 4.5 Service chain latency and flow setup latency distribution . 95

XX

Figure 4.6 Evaluation of link utilization . 96

Figure 4.7 Comparing total at different service request rates . 97

Figure 4.8 Average queue length over time . 98

Figure 4.9 Experimental system Setup . 98

Figure 4.10 Measured throughput across network with different algorithms 99

Figure 4.11 CPU utilization of blade servers . 99

Figure 4.12 E2E delay for different service chain classes .100

Figure 5.1 NFV-based interworking architecture between IMS and WebRTC

with reference architecture from Dräxler et al. (2018) .112

Figure 5.2 NWII Realization for WebRTC ↔ IMS Interworking Service113

Figure 5.3 Functional components of the WRIG .114

Figure 5.4 Message flows of WebRTC ↔ IMS Registration procedure115

Figure 5.5 Message flows of WebRTC → IMS Calling procedure . 117

Figure 5.6 Sessions over allocation periods .125

Figure 5.7 Message incoming rates at VNFs given initial request rate135

Figure 5.8 Comparison of system cost and latency between two approaches136

Figure 5.9 Comparison of system resource between two approaches 137

Figure 5.10 Request processing delay for login and calling sessions at each VNFs139

Figure 5.11 Service cost optimized by RIDRA . 141

Figure 5.12 CPU usage comparison with two approaches during the peak time 141

LIST OF ALGORITHMS

Page

Algorithm 3.1 Solution state reduction procedure - SpaceReduce . 53

Algorithm 3.2 Efficient computation support procedures - CostDiff . 53

Algorithm 3.3 Batching transition placement algorithm - BTrans . 55

Algorithm 3.4 Placement Procedure at Master Controller - MasterCtrl 56

Algorithm 3.5 Placement Procedure at Master Controller - Slave Controller 57

Algorithm 3.6 Node ranking-based placement algorithm - NRPlacement 58

Algorithm 4.1 System Stability Relax Algorithm . 84

Algorithm 4.2 Exponentiated Gradient-based Algorithm for SCVP Problem 87

Algorithm 5.1 Real-time inter-domain resource allocation .129

Algorithm 5.2 Greedy resource allocator .130

Algorithm 5.3 Markov Approximation-based resource allocator . 131

LIST OF ABBREVIATIONS

IMS IP Multimedia Subsystem

QoS Quality of Service

RMARA Markov Approximation-based Resource Allocation

WebRTC Web Real-Time Communication

NFV Network Function Virtualization

SDN Software Defined Network

SLA Service Level Agreement

WSF Web Server Function

WRIG WebRTC ↔ IMS Interworking Gateway

NFVI NFV Infrastructure

NFVIaaS NFV Infrastructure (NFVI)-as-a-Service

VNF Virtual Network Function

ICE Iteractive Connectivity Establishment

VM Virtual Machine

E2E End-to-End

E2ESO End-to-End Service Orchestrator

SP service provider

SP service providers

mSF micro-Service Function

XXIV

IoT Internet of Things

M2M Machine-to-Machine

VNFP VNF optimal placement and routing problem

VNE virtual network embedding

IP Integer Programming

ILP Integer Linear Programming

MILP Mixed integer linear programming

QoE Quality of Experience

CSCF Call Session Control Function

HSS Home Subscriber Server

DPI Deep Packet Inspection

STUN Session Traversal Utilities for NAT

TURN Traversal Using Relays around NAT

EGA Exponentiated Gradient Algorithm

MGA Mirror Gradient Algorithm

DC Data center

EDC Edge Data Center

CDC Core Data Center

INTRODUCTION

Recent advent of next-generation wireless communication technologies (i.e., 5G and beyond)

has witnessed the emergence of the Internet of Things (IoT) in terms of not only the number of

deployed IoT devices but also the type of devices embedded with high-data-rate sensors (e.g.,

wearable devices, smartphones, vehicles). This new class of endpoints promises the potential

of innovative services that are to promote quality of the human life and thus have high social

and business impact like smart healthcare systems, virtual realities applications, connected and

autonomous vehicles. These applications are common in experiencing workload fluctuations

over time, and involving computing-intensive processing tasks across multiple domains for the

potentially enormous amount of data generated by IoT objects. They are also time-sensitive in

the sense that some require establishing a connection in a certain time (e.g., mission-critical

services), some need guaranteed latency in milliseconds, some depend on bounded packet delay

variations, and some must process and transport different types of data in milliseconds, seconds,

or minutes. As a matter of the fact, the IoT paradigm has fostered the development of resource

provisioning solutions to deliver a variety of IoT-based services.

For network infrastructure operators, a very large number of heterogeneous devices with a

plethora of data traffic over multiple domains and real-time requirements of smart IoT services

have placed a great pressures onto core network’s resource. Due to the complexity of network

control protocols and the lack of elastic resource scaling, traditional network technologies often

struggle to handle this new demand. To this end, SDN/NFV comes as an interesting solution with

several inherent capabilities such as network control programmability, scalability, on-demand

resource allocation as well as facilitating service provisioning. SDN shifts the complex control

logic to the centralized controller and provides an ability to control the heterogeneous IoT

devices in a uniform manner. The separation of the control plane from the physical devices

helps to quickly bring into effect instant changes of network conditions, which are indeed the key

characteristics of IoT deployments. On the other hand, NFV leverages virtualization technology

2

to transform legacy hardware-based, dedicated middleboxes into single modules of software

programmed to perform a particular VNF. To this end, NFV allows network functions to be

modularized, managed independently and therefore facilitates the deployment of VNFs on

general purpose servers as well as dynamically migrating VNFs from one place to any place of

the network. In the context of IoT services, virtualized resource for service functions or SDN

controllers/switches can be placed on demand and close to IoT terminals so as to reduce data

communication delay, bandwidth demands on network links to remote data centers, especially

support the mobility and multi-domain distributed applications. Having said that, SDN/NFV

is the envisioned framework to meet the requirements of IoT services in an efficient, scalable,

seamless and cost-effective manner.

0.1 Research Motivation and Challenges

Despite the benefits an IoT system has gained from SDN/NFV principles, there are still obstacles

that must be overcome before SDN/NFV can advance to be widely deployed. In this section,

we discuss the challenges faced by the adoption of SDN/NFV into IoT networks from resource

provisioning perspective as well as the motivation for this thesis.

In this thesis, we consider an interworking system between IMS and WebRTC service domain

with the adoption of SDN paradigm and NFV technology as shown in Fig. 0.1. IoT service

requests from end-users are realized via traffic flows from IoT devices that are aggregated by

IoT gateways, i.e. as IMS User Equipments (UEs) and dispatched to corresponding endpoints,

i.e. as WebRTC IMS Clients (WICs) depending on IoT applications. In the SDN networks,

IoT traffic flows are routed through multiple domains thanks to forwarding rules managed by

SDN controllers and are processed by corresponding service functions. Such the functions are

performed by VNF instances whose resources are placed on physical nodes according to VNF

controllers. Note that it can happen for more than one VNF instance to reside at the same node

as well as multiple nodes hosting instances of the same VNF.

3

VNF 1
VNF 3

VNF 4
VNF 5

Node 1 Node 2

Node 3

Node 4
Node 5

Physical plane

Multi-Domain Virtual Plane

embedding

IoT apps

IoT Gateway
(IMS UE)

IoT sensors &
mobile devices

VNVVNFF 111 VNF 6VNF 0

VNF 2

VNVNVNV FF 4444

VNF

Instance

Virtual Gateway/Sensor

Control planeSCSCVCSCSCVC SCSCSCSCSCSC

placing

VNVNVNFF 333

routing

VNF 5
VNF 6

IMS WebRTC

Node

VNF/SDN
controller

IoT Gateway
(WIC)

Figure 0.1 Resource placement and chaining for Multi-domain IoT Service Chain

0.1.1 Challenges for VNF Placement in Edge-Cloud Networks

Edge computing paradigm and NFV technologies enhance the QoS of users by moving computing

resources into mobile access networks within the proximity of IoT nodes. The adoption of

NFV can reduce the usage cost of network functions by moving the implementations of network

functions from hardware to software that run in Virtual Machines (VMs). Furthermore, for

SDN-based IoT networks, device virtualization plays an important role to provide a unified

control mechanism for all heterogeneous IoT endpoints.

Along with the advantages, edge computing and virtualization technology introduce new

challenges for a manageable and flexible resource allocation regarding the fluctuating service

demand that may lead to over- or under-provisioning problems. In the over-provisioning problem,

the allocated fog resources for certain IoT services are more than the actual demands of the IoT

user to use computing resources. This issue results in high cost and low resource utilization if

4

the fog resources are idle or have light workloads. On the other hand, in the under-provisioning

case, the allocated fog resources for particular IoT services are unable to service the actual IoT

user demand for computing resources may cause delay violations, which result in the loss of IoT

users. Therefore, it is crucial to dynamically place the appropriate number of VNFs needed to

serve the submitted IoT workload while satisfying the QoS requirements.

Given the presence of service function chains and their complicated interaction, it is challenging

to determine the right amount of VNFs’ resources for processing the IoT services during its

serving time. Scaling any service needs to take into account other chained services. Without

a coordinated allocation strategy, one service could be overloaded by traffic of other services

in the same chain and as a result, adversely affect entire QoS of the service chain. Note that

the large number of available service functions involved in constructing IoT applications is also

another factor that increases the optimization problem’s size.

0.1.2 Challenges in Resource Allocation for Controlling and Forwarding Planes in
SDN Networks

SDN-based technologies have major impact on IoT regarding the heterogeneity of IoT devices,

the workload fluctuation over time and multi-domain distributed service components. At edge

networks, SDN provides its operator with a global view of IoT network. As a result, it helps to

not only obtain IoT service information thanks to the ability to control the heterogeneous devices

in a uniform manner but also enforce appropriate forwarding rules to manage the network more

efficiently. The network programmability plays an important role in supporting IoT service

requirements since it allows resource at access networks to be dynamically allocated to ensure

load balancing of the traffic as well as efficiently handles application-specific routing requests at

core networks.

5

Given the importance of the controllers in obtaining these SDN advantages, the scalability at

the control plane is apparently one of the initial concerns and has been actually considered by

extensive literature. In edge IoT architectures, placing many controller instances in proximity to

the edge nodes rather than solely at the remote cloud can solve the performance bottleneck of

the remote controller and guarantee a timely manner for a diverse set of IoT services’ requests

with different requirements. This is not a trivial task given many metrics such as the presence of

resource-constrained edge nodes, the workload at control plane, the overhead of inter-controllers

control messages, all of which would turn SDN into a nightmare if not properly considered in

controller placement.

In fact, a number of related efforts have been devoted to tackling the SDN scaling concerns

from different angles of view: i) at data plane by delegating some decision making work

to the forwarding devices Ros & Ruiz (2014), or improving more powerful processors to

perform forwarding tasks Mogul & Congdon (2012), ii) at controller side with high performance

controllers Voellmy, Wang, Yang, Ford & Hudak (2013b) with various well-known techniques,

e.g. buffering, pipelining and parallelism. In general, most of the strategies try to address

scalability issues of SDN by obtaining an optimal mapping between controllers and forwarding

switches given service demand and available resource allocated at each plane.

0.1.3 Challenges with Multi-domain Interworking IoT Service

From the perspective of telecom service providers (SPs), a growing application of virtualization

technology and SDN paradigm has been witnessed in many prior proposals, i.e. virtual IMS

Carella et al. (2014), provided its important role in telecom core networks. However, it is a

non-trivial task for the SPs to operate IoT services on top of telecom systems like IMS with

regards the interacting complexity of its own entities, i.e., call session control function (vCSCF),

home subscriber servers (vHSS). Note that integrating third-party services, i.e. Web Real-Time

Communication (WebRTC) Holmberg, Hakansson & Eriksson (2015) from other domains into

6

an existing platform is a typical business practice for telcos to gain revenue. This increases the

inherent system complexity with additional VNFs and creates new constraints to the optimization

problem of provisioning resources, in terms of a variety of VNFs resource configurations (or

templates) and inter- or intra-domain network latency. It also requires a well-defined exchanging

mechanism of message flows among VNFs so that the workload at each VNF can be obtained

for optimal resource allocation.

Having said that, a poorly designed resource allocation scheme is unable to efficiently handle

services across multiple interworking NFV-based systems, i.e. IP Multimedia Subsystem (IMS),

WebRTC. These services are characterized by not only a very large number of subscribers

from each domain, but also have low E2E service latency requirements and likely experience

fluctuating demand over time windows. Consequently, failing in providing services means

not leveraging the benefits provided by novel technologies and network paradigms and breaks

the original commitment to employ services like WebRTC, which was intended to help telco

operators expand the number of potential endpoints for multimedia sessions Nguyen, Nguyen,

Khazri & Cheriet (2016).

0.1.4 Research Motivation

In order to meet the IoT services’ requirements, all the aforementioned challenges need to be

jointly tackled together. In other words, it is important to have a solution of resource allocation

with minimum costs given the requirement of low service delay, fluctuating service demand

and the deployment of edge clouds from different operators. Having said that, the entire system

cost in terms of the amount of allocated network/computing resource, and any cost incurred

during the period of operating service, i.e. QoS violation fine, migration, need to be modeled as

an objective function. E2E service latency needs to be determined to ensure that the resource

allocation does not cause significant QoE degradation - a key success factor for enabling smart

environment vision. In addition, the connectivity between SDN controllers and switches as

7

well as the placement of virtual network functions on edge clouds should be considered in the

cost optimization problem. By doing so, not only the system scalability requiremnt can be

fulfilled but also the system’s queue stability - a critical metric for SDN controllers due to their

vital role, could be ensured. Although many studies have been conducted toward a solution

for each concern, namely E2E latency (cite), SDN controllers - switches mapping (cite), and

VNF placement (cite), a few works investigate how to address all of them together in a holistic

solution.

From the implementation perspective, the communication interfaces between global service

orchestrator and resource controllers, i.e. network controllers, cloud platform controllers and

device controllers need to be determined. A functional architecture should be designed to provide

the implementation details of how the global orchestrator collects data from the controllers as

well as performs necessary requests to allocate resource.

As a summary, the optimal resource allocation for multi-domain IoT services in Edge-Cloud

SDN-based networks can be obtained by:

• leveraging the global knowledge of network topology to define the most efficient placement

for virtual functions on either edge clouds close to end-users or remote clouds with powerful

computing resource.

• efficiently mapping SDN controlling and forwarding planes, or controllers and switches, in

other words, to maximize resource utilization at control plane while ensuring the stability of

the entire system using queueing theory.

• modeling E2E service latency for different forms of service function chains that are deployed

over multiple domains, to avoid significant QoE degradation.

• designing communication interfaces between service orchestrator and resource controllers,

via which the optimization problem can be implemented and deployed.

8

0.2 Problem Statement and Research Questions

0.2.1 Problem Statement

The research problem addressed in this thesis is stated as follows: how to achieve an optimal

resource allocation strategy for multi-domain interworking IoT services in edge-cloud SDN-

based networks while ensuring the QoE and system’s queue stability given the dynamic service

demand and network topology in terms of link capacity and the availability of physical resource?

0.2.2 Research Questions

In order to address the above problem statement and drive our work methodology that will be

discussed in Section 2, we further detail the problem statement into four research questions (RQ)

as follows:

0.2.2.1 Research Question RQ-1

RQ-1: How to optimize VNF resource placement and chaining for run-time IoT service

deployment provided the topology of edge-cloud networks?

It is challenging to provide cloud based IoT services with minimal resource usage cost. To obtain

this goal, it requires an optimal strategy to place and chain VNFs in an edge-cloud network

regarding delay sensitive and fluctuating service demand of IoT applications as well as the

constantly changing network topology. For the former aspect, previous VNE approaches have

mainly focused on the communication between VNFs at data center Li, Hong, Xue & j. Pei

(2018a) in modeling service latency. However, modeling End-to-End service delay in VNF

placement problem requires considering not only the connection between clouds where VNFs are

allocated but also between clouds and underlying IoT networks where sensors and IoT gateways

are deployed. Although many studies discuss the problem specific to IoT service chains, a few

9

works investigate the impact of VNFs’ input data from IoT devices. In detail, the common

solution is to assume continuous bandwidth demand which might be over-provisioned for sparse

traffic aggregated at IoT gateways and can be improved by precisely estimating the service

demand at each VNF instance. This is challenging given the complicated interaction of relevant

IoT terminals and IoT gateways with VNFs at clouds, i.e. from VNFs to IoT gateway to collect

sensing data, or in the reverse direction to activate certain device’s functions. Mathematically,

the presence of such IoT devices introduces additional elements which increase the inherent

system complexity and thus create new constraints to VNE problem.

0.2.2.2 Research Question RQ-2

RQ-2: How to jointly optimize VNF resource placement for both SDN control and forwarding

planes?

It is not trivial to address RQ-1 in the context of SDN network given the fact that the optimization

problem of resource placement for both SDN control and forwarding planes is NP-hard. In

addition, jointly including nodes from two planes might result in a complicated model due to

the heterogeneity of network traffic and communication protocols employed at each plane. It is

therefore important to have a careful design of the entire system model so that even a sub-optimal

solution can be obtained in an acceptable time with a greedy heuristic method. Note that in order

to adopt the proposed solution, it is necessary to orchestrate the operations of SDN controllers

and resource controllers, i.e. to manage the exchanged messages, to synchronize the controller

which is another challenge to answer RQ-1.

0.2.2.3 Research Question RQ-3

RQ-3: How to improve the QoS in terms of E2E service latency for multi-domain interworking

services given the availability of physical resource?

10

In order to address RQ3, it requires to extend the model of E2E service latency, used in RQ1 and

RQ2 if any, to large-scale services with components provisioned by multiple service providers.

This is a challenging task due to i) the interacting complexity of service function components

that are implemented as VNFs deployed across multiple domains ii) heterogeneous VNFs that

require a well-defined messaging mechanism to obtain precise workload for an optimal resource

allocation iii) the increasing complexity to the models in RQ1 and RQ2, that make it difficult to

obtain the ultimate objective, i.e. QoS improvement.

0.3 Outline of the thesis

This introductory chapter defines some key concepts of the thesis, explains the general context

and presents the problem statement. Chapter 1 reviews the prior work related to the scope

of the research problems. In Chapter 2 the general methodology to address the various

research questions of the problem and the objectives of the thesis are mentioned. The resulting

thesis diagram for optimizing resource placement and chaining with respect to the QoS/QoE

requirements is then described. Then, the three next chapters present the three articles published

in response to the specific research questions. The three articles are outlined as follows:

• Chapter 3: NFV-based Architecture for the Interworking between WebRTC and IMS

• Chapter 4: Placement and Chaining for Run-time IoT Service Deployment in Edge-Cloud

• Chapter 5: Multi-Tiered Resource Placement in Edge-Cloud SDN-based Networks for IoT

Services

Chapter 6 provides a critical discussion of some concepts of the thesis that highlights the

strengths and weaknesses of the proposed methods. Finally, the general conclusion summarizes

the work presented in this thesis and provides future horizons.

CHAPTER 1

LITERATURE REVIEW

This chapter presents a review of the state-of-the-art methods related to the resource allocation

optimization problem for multi-domain IoT services in Edge-Cloud SDN-based networks. This

chapter is divided into three sections that are in line with the challenges discussed in the

introduction and faced by network infrastructure operators to obtain an efficient strategy to

provision resource.

1.1 IoT Service and Resource Management

Integrating WebRTC into IMS domain enables the expansion of communication service to

any endpoint with a WebRTC compliant Web browser GSM (2016). Such the multi-domain

integration facilitates the deployment IoT solutions for both service providers and network

infrastructure operators. The discussion is addressing various parts of IoT service and network

resource management. In detail, E2E service latency needs to be modeled for the purpose of

fulfilling real-time requirements of IoT applications. Regarding the fact that an IoT-related

scenario typically involves service functions from different network domains, i.e. edge clouds,

it is necessary to explore the state-of-the-art of adopting virtualization technology in a multi-

domain system where IoT service chains are implemented. IMS � WebRTC is investigated as a

specific use case of multi-domain multi-provider IoT applicatiosn.

1.1.1 Resource Orchestration for Multi-Domain NFV-based Network

In the multi-domain network environment with multiple infrastructure operators, resources are

typically allocated in a heterogeneous manner in terms of the virtual computing, storage, and

network resources, and the non-virtualized resources. Pham & Chu (2019) takes the competition

among the operators into account while tackling the optimal resource orchestration problem from

game theory perspective. They analyze a game on an NFV platform where an NSP can reserve

resources for optimizing the utility in an individual manner. Also focusing on the presence of

12

multiple domains with radio resource virtualization, Liu & Han (2019) present a VirtualEdge

system that enables the dynamic creation of virtual nodes (vNodes) on top of a physical cellular

edge computing nodes to serve the traffic and workloads of a network slice. VirtualEdge

introduces a realizable multidomain resource orchestration and virtualization that provides

isolation among network slices. The authors design a new learning-assisted algorithm that allows

the resource orchestrator to optimize the utilization of physical resources without knowing the

utility functions of individual vNodes. Uniyal et al. (2020) present a hierarchical architecture

(5GUKEx) to enable E2E orchestration with minimum overhead in complexity and performance

while also allowing operators to maintain full control of their infrastructure. 5GUKEx allows

operators to use their existing MANO systems for the single domain orchestration and build a

multi-domain API based on standardized models exposed by service catalogs to coordinate the

end-to-end service orchestration and interconnection. Aiming to accurately discover resource to

perform data-intensive analytics, Xiang et al. (2019) propose a unified resource orchestration

framework Unicorn for multi-domain and geo-distributed applications. However, its capability of

discovering resources in IoT network to support the scenarios in which IoT devices are involved

is not discussed.

One of the most discussed concepts for designing NFV-based 5G network is network slicing

which enables a single physical network to be sliced into multiple virtual networks according

to specific services and business goals Chatras, Tsang Kwong & Bihannic (2017). Given

the benefits of network slicing to the operators, i.e. increasing service flexibility, enhancing

network resource efficiency, it raises new challenges of resource management and orchestration,

especially for multi-domain networks. Boubendir et al. (2018) introduce a Proof-of-Concept

demonstrating the federation and orchestration of access and edge resources by a network

operator to create and deploy customized network slices dynamically over a cross-domain

network. Rosa, Santos & Rothenberg (2015) discussed three cases of multi-domain, distributed

NFV, i.e. management and orchestration, bandwidth negotiation, and reliability. Regarding the

problems of NFV orchestration and network slicing, a NFV-based architecture and its realization

on the LTE network are proposed in Katsalis, Nikaein & Edmonds (2016). The authors in Li,

13

Zhou, Feng, Li & Xu (2018b) describe a horizontal-based multi-domain orchestration framework

in SDN/NFV-enabled satellite and terrestrial networks. They model the service chain placement

regarding the resource in terms of CPU and memory, which might be inconsistent with situations

in which the SPs deploy their service on NFV infrastructure. Another effort of 5G Operating

System (OS) towards 5G communications aiming to abstract away the complexities of underlying

5G infrastructure for an efficient and flexible service orchestration is discussed in Dräxler et al.

(2018).

1.1.2 E2E Service Chain Latency Model

One key factor to the success of orchestrating service besides an efficient strategy of resource

allocation is the low latency service function chaining. Regarding service latency modeling

and optimization, an increasing number of models are being proposed to optimize service

chain function orchestration. Sun et al. (2020) build a mathematical model of the service

chain deployment problem and propose a BFS-based algorithm called SFCDO, that optimizes

resource consumption and end-to-end delay of the deployment path. SFCDO takes care of the

health of network nodes with an optimal selection strategy for the node with the lowest current

load rate, distributes the load evenly on all nodes, and achieves load balancing. Close to our

approach from system view, that is to consider the bi-directional communication between edges

and core cloud, Santos, Wauters, Volckaert & De Turck (2020) introduce an SFC controller to

optimize the placement of service chains in Fog environments, specifically tailored for smart city

use cases. The controller is implemented as an extension to the scheduling features available

in container orchestration platform, enabling the allocation of container-based SFCs while

optimizing resource provisioning and reducing the E2E latency. Regarding various execution

sequences of service functions, Mouradian et al. (2019) also aim to seek an efficient placement

strategy to map the service components onto the infrastructure nodes including the mobility of

fog nodes, a phenomenon that may happen in real systems. The authors use the random waypoint

mobility model for fog nodes to calculate the expected makespan and application execution cost.

14

To minimize the weighted function of the makespan and cost, an ILP formulation is presented

and can be solved to find sub-optimal placements using Tabu Search-based algorithm.

Using Markov approximation method, Wang, Lan, Zhang, Hu & Chen (2015) demonstrate how

the combinatorial problem of optimizing the dynamic function composition for network service

chains can be addressed in a distributed manner. Bhamare et al. (2017) discuss optimization

model to reduce the overall End-to-End (E2E) latency by reducing the inter-cloud traffic w.r.t

multiple VNF instances across multiple clouds. In the study by Gupta et al. (2018), different

deployment strategies for service chaining are explored in a so-called Network-enabled Cloud

and develop a model for chaining VNFs with minimal resource consumption while fulfilling

service requirements. Another work of Sun, Li, Liao & Chang (2018) also tackles the resource

allocation problem of orchestrating service chains by adopting full mesh aggregation method.

Similarly, Riera et al. (2016) and Zhang, Wang, Kim, Palacharla & Ikeuchi (2016) respectively

employ a dynamic approach and a vertex-centric distributed algorithm to address the issue of

optimally allocating networking and IT resources for VNF hosting.

1.1.3 IMS ↔ WebRTC Use Case: Resource Allocation of NFV-based System

Conventional interworking architecture between WebRTC and IMS has motivated existing

works. In Amirante, Castaldi, Miniero & Romano (2014), a modular-based gateway architecture

Janus is designed as a bridge between legacy IMS protocols and WebRTC. Similarly, an IMS

integrated WebRTC prototype is used in Cruz & Barraca (2015) to evaluate the performance in

terms of call throughput and mouth-to-ear delay. Reference 3GPP (2018) is another effort of

3GPP to re-architecture the IMS platform to enable access by WebRTC-based clients. From

the architectural perspective, what makes our work distinguish from 3GPP (2018) is that we

consider the use case in which both WebRTC and the interworking SP are third-party services

on top of the IMS system. The realization of the proposed architecture as well as the message

flows are therefore done without any change to the functionalities of conventional IMS entities.

While a lot of progress has been made to address the heterogeneous characteristic between two

domains, these works do not take into account the adoption of NFV paradigm which allows

15

VNFs to be deployed on different shared physical and virtual resources in order to guarantee

scalability and performance requirements. Such the NFV adoption sets our work apart from

other related works.

With the widely used IMS platform, adapting the NFV architecture ETSI ISG on Network

Functions Virtualization (2013) to an IMS-based system has been investigated in many studies.

One of the methods presented in Carella et al. (2014) is to deploy service components as

corresponding virtual units. The approach is preferable due to its compatibility with IMS or

WebRTC specification and the simple implementation to leverage the advantage of NFV. In

Lu, Pan, Lei, Liao & Jin (2013), the authors propose an algorithm to address the problem

of dynamic resource allocation. However, they only consider resource aspects in terms of

CPU and memory and do not clarify how well their algorithm can handle changes in service

demand. Duan et al. Duan, Wu, Le, Liu & Peng (2017) propose an NFV management system to

deploy IMS-related service chains based on predicted workload and per-instance processing

capacity. Another auto-scaling scheme (VLB-CAC) at the VNF level for optimal allocation

of IMS server’ resources to admitted calls is introduced in Montazerolghaem, Yaghmaee,

Leon-Garcia, Naghibzadeh & Tashtarian (2016). VLB-CAC is responsible for finding the

optimal call acceptance rate for each SIP server by solving an optimization problem that prevents

overload. Despite being designed based on the NFV architecture proposed by ETSI ETSI ISG

on Network Functions Virtualization (2013), it is challenging to efficiently employ these works

to the WebRTC ↔ IMS interworking service without respecting the requirement of deploying

multi-domain and multi-provider services. Inspired by the use cases presented in ETSI ETSI ISG

on Network Functions Virtualization (2018), a distributed NFV-based architecture facilitating

the deployment of such the services is proposed.

1.1.4 Discussion

Significant efforts have been actually devoted to the investigation of an NFV-based architecture

for multi-domain service orchestration Dräxler et al. (2018); Katsalis et al. (2016); Rosa et al.

(2015); Li et al. (2018b); ETSI ISG on Network Functions Virtualization (2013). While

16

the proposed solutions, in general, enable the deployment of service chains in cross-domain

infrastructure, they are not detailed enough to completely model the interworking scenarios

between services from different domains. Specifically, there is no explicit explanation of how

an interworking service provider communicates with others to set up cross-domain service

chains. The abstraction of domain resource is also described in a generic way and consequently

makes it hard to apply into a specific situation, i.e. model the performance of WebRTC ↔ IMS

interworking system.

In general, our work features requirements that are not taken into account in previous studies.

We focus on the elasticity of resource allocation in response to service demand changes and

propose a real-time Markov approximation-based algorithm that minimizes total service cost

concerning delay and resource constraints. Moreover, for service across multiple NFV-based

systems like IMS and WebRTC and their components with different requirements, both the

heterogeneous VNF configurations and a distributed algorithm should be considered.

1.2 VNF Resource Allocation for IoT Services

In this section, we review the different VNF resource allocation approaches proposed in the most

recent and relevant works, and how the VNF placement and routing problem can be applied

where fog and cloud resources for IoT services are available.

1.2.1 VNF Placement

One of the important decisions that resource orchestrators have to make when adopting

virtualization technology is to find the optimal placement of VNFs on underlying physical

resources. With a great attention of research community, this problem has been tackled from

different aspects. For instance, it is formulated in different models, i.e. ILP Xu et al. (2018);

Qi, Shen & Wang (2019), Binary ILP Liu, Li, Zhang, Su & Jin (2017); Liu, Pei, Hong & Li

(2019), mixed ILP Hawilo, Jammal & Shami (2019); Tang, Zhou & Chen (2019), or mixed

integer quadratically constraints programming Mehraghdam, Keller & Karl (2014), etc., which

17

are NP-hard in general. Hence it is challenging to obtain the optimal solution in polynomial time,

especially in large-scale network settings. From the view of optimization target, the objective

can be to minimize the physical machines on which VNFs are allocated Zhou et al. (2017); Li,

Hong, Xue & Pei (2019), the total resource consumption Tang et al. (2019) or the total service

delay Agarwal, Malandrino, Chiasserini & De (2019) etc. In this section, we review different

VNF placement approaches proposed in the literature and how the problem is applied given the

availability of heterogeneous resources in multi-domain environment.

Regarding cloud and edge computing enabled networks, Li et al. (2019) studied the VNF

placement problem with the objective of minimizing used physical machines and the resource

consumptions in nodes and links. The authors make a complete formulation of the problem

mathematically, which is modeled as an ILP, and propose an efficient polynomial time heuristic

to solve for an optimal placement of VNFs as the problem scale is large. Taleb, Bagaa & Ksentini

(2015) propose the solutions for the problem of VNF embedding for virtual 5G network

infrastructure while dealing with the mobility features and service usage behavioral patterns

of mobile users. The solutions address two conflicting objectives, which are the insurance of

Quality of Experience (QoE) via the placement of VNFs of data anchor gateways closer to

end-users and the avoidance of the relocation of mobility anchor gateways via placing their

corresponding VNFs far enough from users.

Apart from user mobility and E2E latency, the constantly changing network dynamics as a

well-known characteristic of IoT network is addressed by Cziva, Anagnostopoulos & Pezaros

(2018). A mechanism to dynamically re-schedule the optimal placement based on temporal

network-wide latency fluctuations using optimal stopping theory is explained to achieve latency-

optimal allocation of VNFs in next-generation Edge networks. Another IoT service specific is

the presence of micro-data centers, known as edge cloud, whose locations significantly affect the

requirement of ultra-short latency and have been investigated in Laghrissi, Taleb, Bagaa & Flinck

(2017). The work also introduced an advanced predictive VNF placement strategy, which is

an enhancement of the classic predictive VNF placement algorithm. A more sophisticated

18

VNF placement strategy is proposed to improve the performance of network slice planner tool

considering other factors such as incidents, signal disturbance and dysfunction of equipments.

The study in Gong, Jiang, Wang & Zhu (2016) addresses the virtual network embedding (VNE)

problem regarding the constraints related to the location of substrate nodes. In order to achieve

the integrated node and link mapping, the authors discuss compatibility graph-based algorithms

in which each node represents a candidate substrate path for a virtual link, and each link indicates

the compatible relation between its two endpoints. Cao, Yang & Zhu (2018) adopts network

topology information including node location to solve the problem. To deal with the issue of

inefficient resource utilization of substrate network in the long run, the proposed algorithm

adopts a novel node-ranking approach to rank all substrate and virtual nodes before embedding

each given VN. In general, all of these prior works mainly focus on VNF location optimization

for services between end-user and corresponding VNFs, not service function chain.

Another work for placing service chains across multiple clouds in Gupta et al. (2017) adopts

machine learning technique for a predictive model combined with random cloud selections.

Tackling the issue of deploying network services across multiple Points of Presence (PoPs),

the framework in Riera et al. (2016) optimize various metrics, i.e. cost of placing VNFs to

PoPs, overall delay, and total resource link usage. Bhamare et al. (2017) propose an analytical

model for the placement of service function chains in multi-cloud environments. They consider

inter-cloud traffic w.r.t the fact that inter-cloud links are more likely to be congested and more

expensive compared to the links within a single datacenter. Further, comprehensive surveys

on VNF chain placement are available for interested readers Bhamare, Jain, Samaka & Erbad

(2016); Herrera & Botero (2016); Laghrissi & Taleb (2019); Chen, Yin, Wang, Shi & Yao

(2020).

1.2.2 VNF Routing

Given that the VNFs are already placed in the network, some studies have concentrated on

finding a path going through the required VNFs so as to satisfy constraints on delay, capacity, etc.

19

For example, Yang, Li, Trajanovski & Fu (2020) formally defines the traffic routing problem in

stochastic NFV networks in which VNFs are assumed to be placed in a pre-defined order as SFC.

Unlike most existing work in which network resources are considered to be deterministic, the

authors deal with stochastic network factors caused by, e.g., inaccurate data, expired exchanged

information, insufficient estimation of the network. A tunable heuristic algorithm is proposed to

find the multi-constraint path for each adjacent VNF pair. The work by Gao & Rouskas (2020) is

another effort addressing the routing problem of service chain in an online scenario. Particularly,

in this work, service requests are unknown in advance in the sense that they might arrive at

arbitrary moments and must be placed onto the network without prior knowledge of future

requests. The major objective is to route the service chain and jointly minimize the maximum

network congestion as well as the number of hops from the source to the destination.

In Ye, Zhuang, Li & Rao (2019), an analytical model to evaluate E2E packet delay for multiple

traffic flows traversing a common embedded VNF chain is presented. The authors establish a

tandem queueing model to describe packets of each flow passing through an NFV node and its

outgoing link. In this work, the tradeoff between high performance and fair resource allocation

for each traffic flow is maximized by employing an allocation strategy among traffic flows

sharing resources at each NFV node. Note that as resources can only be placed onto servers

located in networked data centers, the traffic of service function chains has significant impact

on network load balancing. To mitigate this problem, resources should be placed within a

smaller domain of the network to avoid the so-called distance-to-data center problem Carpio,

Dhahri & Jukan (2017). This motivated the authors to study the problem of replicating various

service components, and especially how they can be chained to load balance the network.

Recently, the graph layering method has proven the efficiency in finding a path through service

function chains implemented as VNFs and has been adopted in many studies Van Bemten, Guck,

Vizarreta, Machuca & Kellerer (2018); Sallam, Gupta, Li & Ji (2018); Ghaznavi, Shahriar,

Kamali, Ahmed & Boutaba (2017); Dwaraki & Wolf (2016); Sen, Choudhuri & Basu (2020).

The idea is to consider the network as a graph and replicate it into different layers in which only

corresponding VNFs for service function chains are inter-connected. The service requests can be

20

optimally routed through every layer from the top to the bottom. For instance, Sen et al. (2020)

propose a dynamic programming based algorithm for optimally mapping service chains to

physical network nodes based on the layered graph regarding the presence of network structural

dependency, e.g. the dependency of successful communication on a node. Van Bemten et al.

(2018) presents a fast and close to an optimal algorithm for finding the constrained shortest

path vising an ordered set of specified network nodes via the layered graph. By constructing a

layered graph with a small size, the pruning algorithm proposed by Sallam et al. (2018) enables

to minimize the computational complexity to solve the SFC-constrained shortest path problem.

Other works also relying on layered graph technique include Ghaznavi et al. (2017) with a

local search heuristic to find the path between two layers with the objective of minimizing the

network resource cost, Dwaraki & Wolf (2016) that uses conventional shortest-path algorithms

e.g., Dijkstra to calculate the path between the source and destination nodes.

1.2.3 VNF Jointly Placement and Routing

Regarding the limitation of solving VNF placement and routing separately, some studies have

extended the problem to take the routing into account with the VNF placement decision Kuo,

Liou, Lin & Tsai (2016); Bari et al. (2016); Tajiki, Salsano, Chiaraviglio, Shojafar & Akbari

(2019); Farkiani, Bakhshi & MirHassani (2019); Sun et al. (2019); Jang, Suh, Pack & Dán

(2017). In particular, three primary phases are i) to place the VNFs on physical nodes, ii)

provision them to service requests from users, and then iii) route the traffic through these VNFs

in the order defined via service function chains. Any decision can be made with regard to the

constraints of capacity together with latency requirements, optimizing physical machines as

well as energy consumption. For instance, in Kuo et al. (2016) study the joint VNF placement

and path selection problem considering the relation between the link and server usage. The

authors explain how the proper link and resource allocated for each VNF in the service chain, i.e.

either via additional server or available resources of existing servers, are adapted according to

network conditions and service requirements. They then propose a chain deployment algorithm

to follow the guidance of the link and server usage. Another work in Allybokus, Perrot, Leguay,

21

Maggi & Gourdin formulate the problem as an ILP that allows one to find the best feasible

paths and virtual function placement for a set of services with respect to a total cost including

the routing and VNF operation cost. The authors take into account the (total or partial) order

constraints for Service Function Chains of each service and other constraints such as end-to-end

latency, anti-affinity rules between network functions on the same physical node and resource

limitations in terms of network and processing capacities. In addition to optimizing the VNF

placement and routing, the authors in Tajiki et al. (2019) present a novel resource allocation

architecture that enables energy-aware SFC for SDN-based networks regarding also constraints

on delay, link utilization, server utilization. A similar study presented in Varasteh, Madiwalar,

Van Bemten, Kellerer & Mas-Machuca (2021) formulates the power-aware and delay constrained

joint VNF placement and routing (PD-VPR) problem as ILP. The authors propose an online

heuristic framework in which the centrality-based ranking method is adopted for the placement

sub-problem and the Lagrange Relaxation based Aggregated Cost algorithm is used for the

routing sub-problem.

1.2.4 Discussion

In general, the VNF placement and routing problem has been investigated by a large body

of work with different objectives, such as minimizing total deploying cost, total E2E delay,

network resource usage as well as routing costs or maximizing reliability. Even though all the

aforementioned studies are applicable to any applications, including IoT services, it requires

adapting the model to align with the underlying IoT network as well as the service real-time and

user experience requirements. Some efforts Taleb et al. (2015); Laghrissi et al. (2017); Gong

et al. (2016); Cao et al. (2018); Li et al. (2019) have been actually conducted to address the

problem under IoT context. Closest to our work is MaxZ Agarwal, Malandrino, Chiasserini & De

(2018) that proposes a model accounting for services involved in 5G networks such as IoT,

Machine-to-Machine (M2M) applications. Adopting a queueing model for VNFs, the authors

deal with traffic not only between VNFs but also from outside the system, which might be

applied for the case of IoT devices. However, MaxZ neglects IoT nodes, in terms of their

22

resource capacity and connection delay, and this, as confirmed by our numerical results, can

yield sub-optimal performance. In this work, we consider three system features, i.e. distributed

clouds, multiple VNF instances, connections between clouds and underlying IoT networks,

which are not taken into account in prior works.

1.3 Network Resource Allocation for SDN-based IoT Network

In this section, we first provide an overview of the state-of-the-art solutions relevant to context-

aware IoT service orchestration architecture, VNF and SDN controller placement. Then we

specify the need for employing contextual information in service orchestration as well as in

allocating network and computing resource.

1.3.1 IoT Service Orchestration

According to Sousa, Perez, Rosa, Santos & Rothenberg (2019), service orchestration is the

ability to coordinate resources and services in multiple administrative domains that cover various

technology domains. In IoT context, a high-level service is typically decoupled into more

granular service components or functions from different layers, i.e. operational layer, resource

layer. IoT service orchestration is a process that enables the automation of coordinating such

service components during the execution phase. Many aspects of service orchestration have

been addressed in prior studies. In de Brito et al. (2017), the architecture that enables service

orchestration for Fog infrastructure has been proposed. Cerroni et al. in Cerroni et al. (2017)

proposed a reference architecture that allows various domains (i.e. IoT, SDN, NFV) to be

managed and facilitate service orchestration with the help of a virtual network function manager

and NFV orchestrator. Reference Gochhayat et al. (2019) presents a lightweight context-aware

IoT service architecture that supports IoT push-based service in an efficient manner by modeling

end-users in terms of their contextual and profile information. Also focusing on user tasks

to counter the heterogeneity of IoT domains, an adaptive service composition framework is

introduced in Urbieta, González-Beltrán, Mokhtar, Hossain & Capra (2017).

23

Close to our approach from the architectural view is the work in Fichera, Gharbaoui, Castoldi,

Martini & Manzalini (2017). With respect to the effective and reliable provisioning of 5G

services, the authors presented a 5G architecture that handles such a flexible environment of

virtual resources like 5G to orchestrate in a generalized way. Nevertheless, similar to other

works that mainly focus on a context-aware IoT orchestration architecture, Fichera et al. (2017)

does not explain how contextual aspects can be orchestrated as a service with those offered from

network controllers and cloud platform. In addition, the dynamic nature of IoT applications is

not elaborated in Fichera et al. (2017).

1.3.2 VNF & SDN Controller Placement

VNF placement problem along with contextual information has been studied in a large number

of published papers. In Taleb et al. (2015), the authors deal with service usage behavioral

patterns of mobile users in obtaining an optimal scheme of allocating VNFs resource. Cziva

et al. (2018) takes into account the dynamic nature of IoT network apart from user mobility and

presents a dynamic scheduler of placing VNFs on a distributed edge infrastructure. It is typically

assumed that service components are implemented as VNFs. The joint VNF placement and path

selection problem is thus investigated in Kuo et al. (2016) from the service chain perspective

regarding the relation between link and server usage. In Bhamare et al. (2017), analytical models

for service function placement are adopted in multi-cloud environments.

Similar efforts have been explored in finding an optimal placement scheme for SDN controllers.

The work Dixit, Hao, Mukherjee, Lakshman & Kompella (2013) presents an architecture that

allows optimally placing switches under the management of elastic distributed SDN controllers.

The authors in Wang, Liu & Xu (2017) present a dynamic scheme to assign switches to controllers

with a goal to balance the controller load while keeping the control traffic overhead low. Switch

migration schemes are proposed to minimize the migration cost Xu et al. (2019) or to reduce

flow setup time Ye, Cheng & Luo (2017).

24

However, all the aforementioned studies are limited to the sequential execution of service

functions. In this work, we leverage contextual knowledge to solve joint placement optimization.

We profile various aspects of contextual information and demonstrate how the contextual profiles

can be adopted with other information provided by resource controllers in the system model

to maximize user experience while achieving an optimal placement scheme for VNFs and

SDN controllers. Another factor that distinguishes our work from the rest is that it accounts

for different ways in which service functions are linked. Given the inherently complicated

relation between IoT service components, we believe that our solution can pave the way toward

accelerating the progress of deploying IoT services in the industry.

1.3.3 Discuss

Extensive research work has been devoted proposing an IoT service orchestration architecture

considering different contextual aspects. For IoT devices, it is about network access, user

mobility or locations whereas for service, it is about Quality of Service (QoS) requirements,

cost, and for network, topology, bandwidth, communication latency Gochhayat et al. (2019);

Urbieta et al. (2017); Fichera et al. (2017) matter. Especially, user mobility is involved as a

strategy for orchestrating service functions, placing VNF and/or SDN controllers to maximize

user experience while optimizing resource availability Song, Lee, Cho, Lim & Chung (2019);

Harutyunyan, Shahriar, Boutaba & Riggio (2019); Gharbaoui et al. (2018). However, in order to

orchestrate heterogeneous service functions to deliver an E2E IoT service in an arbitrary smart

environment and during the operational phase with confidence, it needs to consider context

awareness, VNF resource provisioning, SDN controller altogether. These concerns have not been

fully done in any of the prior works to the best of our knowledge. Obtaining a jointly optimal

result from such consideration is challenging for two reasons, i.e., the complicated interaction

between relevant systems, i.e., cloud platform, network controllers, and the introduction of

additional constraints as well as variables to the optimization problem. While the former calls

for a careful mechanism to manage the message exchange and to synchronize systems’ states,

25

the latter exponentially increases the complexity of the resource allocation problem and thus

makes it even more difficult to solve efficiently.

1.4 General Discussion

As part of any service orchestration platform, improving E2E service latency has always been

a key feature to enhance the QoE from the perspective of end-users. However, prior works

are no longer appropriate for future smart community applications regarding the real-time

service requirement and the heterogeneous IoT network. With a target to reduce E2E latency

for interworking services deployed across multiple domains, traditional approaches focused on

provisioning resource to enable the deployment of service chains in cross-domain infrastructure

without providing the details of modeling the interworking scenarios between service components

in different domains. The proposed solutions have not leveraged the distributed system to enable

parallel computing and thus improving the performance of solving optimization problems of

resource allocation.

On the other hand, many studies have been proposed to obtain an optimal strategy of virtual

resource placement in SDN networks. However, with the consideration only on a “single-layer”

optimization goal, i.e. either VNF placement and routing problem or SDN controller placement,

these solutions reveal the inefficiency when being adopted for IoT-enabled networks where

both cloud and edge resource are available. The growing adoption of virtualization enables

finer-grained resource allocation capabilities and as a result challenges the attainment of an

optimal solution of allocating resource with the respect to low service latency requirements. It

is truly important to take into account the problem of resource placement jointly from service

components implemented as VNF and SDN controllers whereas ensuring the entire system’s

queue stability as a counter for dynamic service demand from IoT services.

Table 5.1 summarizes some works on the service chain placement problem.

26

Table 1.1 Related works on interworking IoT service chain optimization problem in

edge-cloud SDN-based networks

Reference

IoT Service and Resource Management

Multi-

domain
E2E latency

Dynamic

Optimal

Distributed

Algorithm

Pham & Chu (2019); Liu & Han (2019);

Uniyal et al. (2020); Xiang et al. (2019)

Yes No Yes No

Sun et al. (2020); Santos et al. (2020);

Mouradian et al. (2019); Montazerol-

ghaem et al. (2016)

No Yes Yes No

Bhamare et al. (2017); Gupta et al. (2018);

Sun et al. (2018)

Yes No No Yes

Our work Yes Yes Yes Yes

Reference

VNF Placement for IoT Services

Topology

Awareness

Distributed

Clouds

VNF

Placement

VNF

Chaining

Li et al. (2019); Xu et al. (2018); Qi et al.
(2019); Cziva et al. (2018); Laghrissi et al.
(2017)

No Yes Yes No

Gong et al. (2016); Cao et al. (2018); Gupta

et al. (2017); Riera et al. (2016)

Yes Yes Yes No

Yang et al. (2020); Gao & Rouskas (2020);

Sen et al. (2020); Van Bemten et al. (2018);

Sallam et al. (2018)

No Yes No Yes

Ye et al. (2019); Varasteh et al. (2021);

Farkiani et al. (2019); Tajiki et al. (2019)

No No Yes Yes

Our work Yes Yes Yes Yes

Reference

SDN-based IoT Network

Controller

↔Switch

VNF

Placement

System

Stability
-

Dixit et al. (2013); Wang et al. (2017); Xu

et al. (2019); Ye et al. (2017)

Yes No No -

Taleb et al. (2015); Cziva et al. (2018);

Kuo et al. (2016); Bhamare et al. (2017)

No Yes No -

Our work Yes Yes Yes -

CHAPTER 2

OBJECTIVES AND GENERAL METHODOLOGY

This chapter explains in details the objectives of the thesis with respect to the aforementioned

research problem and research questions as well as the limitation of prior works. Then the

general methodology in three phases to obtain the objectives will be described. The relationship

between the phases is visualized to facilitate the reading of this thesis.

2.1 Research Hypothesis

The research hypothesis (RH) of this framework is defined as follows:

RH: By jointly optimizing the VNF resource placement and chaining over SDN controlling

and forwarding planes, and by taking into account interworking services deployed across

multiple domains with the dynamic service demand from IoT devices, we improve entire system

performance with stability, enhance QoS, QoE and minimize the total cost of allocating cloud

computing and network resource.

2.2 Main Objective

The main objective (MO) of this work is defined as follows:

MO: Achieve an efficient computing and networking resource placement and chaining strategy

over both SDN controlling and forwarding planes, and a model of E2E service latency for

interworking services deployed over multiple domains that minimize the total cost of resource

usage and service operations while meeting QoS and QoE requirements as well as maintaining

system’s queue stability given dynamic service demand.

28

2.2.1 Specific Objectives

The main objective (MO) can be further divided into three specific objectives SO-1, SO-2 and

SO-3 that respectively address the above research questions RQ-1, RQ-2 and RQ-3:

2.2.2 Specific Objective SO-1

SO-1: Enabling the deployment of IoT services across network topologies including multiple

edges and clouds with minimal E2E service latency.

In order to deploy an optimal VNF resource placement strategy to IoT edge-cloud networks

for large-scale IoT applications, it is necessary to investigate the impact of VNFs’ input data

from IoT devices. Thus we adopt an IoT network topology-aware approach aiming to achieve an

efficient VNF placement and chaining strategy in IoT networks.

2.2.3 Specific Objective SO-2

SO-2: Optimizing resource allocation for an elastic SDN control plane and a scalable SDN

forwarding plane given dynamic service demand from IoT networks.

In order to reduce total resource cost for SDN/NFV-based networks to provide IoT delay-sensitive

services with fluctuate service demand, we need to efficiently not only allocate resource for SDN

controllers mapping to forwarding network functions but also place computing functions onto

physical hosts and chain them. As a matter of fact, the fast growth in connected IoT devices

and the ever-increasing number of services have led to an incredibly huge amount of traffic to

SDN networks. Under dynamic traffic demand, not only do nodes in forwarding plane face huge

scalability challenges but also SDN controllers at control plane have to process a large number

of flow setup messages. In other words, we need a strategy to assign switches to controllers.

And due to the vital role of SDN controllers in terms of the impact on traffic of both forwarding

and computing nodes, such the strategy should take into account the stability of the entire system

from queueing perspective.

29

2.2.4 Specific Objective SO-3

SO-3: Accommodating QoS requirement in terms of E2E service latency for multi-domain

interworking service chains.

Today, many large-scale IoT applications are composed of different components which need

to interwork across multiple domains. In order to effectively employ the resource allocation

model obtained in SO-1 and SO-2, it is important to model E2E service latency of such IoT

applications. Having said that, our objective is to ensure the QoS requirements of multi-domain

interworking IoT services.

2.3 General Methodology

We propose three consecutive methodologies M1, M2 and M3 to respectively address the

requirements of the research questions RQ1, RQ2 and RQ3 (discussed in Section 0.2.2) as well as

the specific objective SO1, SO2 and SO3 (discussed in Section 2.2.1). The three methodologies

are defined as follows:

2.3.1 Methodology M1: IoT Network Topology Aware VNF Placement

The methodology M1 addresses the research question RQ1 and the specific objective SO1. In this

methodology, the VNF placement and chaining problem model is extended to IoT applications

that involve multiple IoT terminals. We introduce an orchestration system that enables to collect

resource profile relevant to VNF placement and network traffic sent by IoT devices via IoT

gateways as input data for IoT services. We leverage contextual IoT network topology to improve

the E2E service latency model and the performance of resource allocation algorithm. The

methodology M2 is summarized as follows:

• Design an implementation system that enables to deploy the optimization solution for service

chains across multiple edges and cloud.

• Model the VNF placement and chaining problem regarding service chains and aggregated

input traffic from IoT devices

30

• Design an IoT network topology-aware VNF placement algorithm in a distributed manner.

2.3.2 Methodology M2: Optimizing Resource Placement for SDN Controllers and
Forwarding Nodes

The methodology M2 addresses the research question RQ2 and the specific objective SO2. In

this methodology, we provide detail of the functional components of a resource orchestrator.

Compared to existing resource allocation solutions, we take a step further on the consideration

of both control and forwarding planes in SDN networks. Based on that, a joint optimization

problem of SDN controller placement and VNF service chaining is considered, along with the

guarantee of system’s stability by adopting Lyapunov optimization framework. The methodology

M2 is summarized as follows:

• Design a functional diagram for the orchestration of heterogeneous resource controllers

• Define a comprehensive model of resource placement and chaining problem for both SDN

control and forwarding planes

• Adopting Lyapunov queueing framework to real-time optimization problem while ensuring

entire system’s queue stability

• Solving the transformed optimization problem using Exponential Gradient Ascent in coun-

tering the exponential growth of network size.

2.3.3 Methodology M3: E2E service latency modeling over the time for
multi-domain interworking IoT services

The methodology M3 addresses the research question RQ3 and the specific objective SO3. In

this methodology, we design a cloud-native interworking system between IMS and WebRTC

domain. We then determine service chains with detailed message flows for common use cases,

i.e. session setup and calling. The whole system with the 2 use cases is deployed as a testbed

to assess the proposed real-time algorithm of optimizing resource allocation regarding E2E

service latency over the time and potential QoS violation penalties. The methodology M3 is

summarized as follows:

31

• Design a NFV-based interworking architecture enabling multi-domain orchestration of

service providers, i.e. IMS and WebRTC domains.

• Detail message flows between VNFs implementing interworking service components and

model E2E service latency over the time with various resource provisioning strategies.

• Experimental analyze the proposed solution with an interworking IMS � WebRTC testbed.

A summary diagram of the thesis is presented in Fig. 2.1.

32

How to jointly optimize VNF
resource placement for both
SDN control and forwarding
planes?

Research Question RQ-2

Optimizing resource allocation for an elastic SDN control plane and a scalable SDN forwarding
plane given dynamic service demand from IoT networks.

Research Objective SO-2

Optimizing resource allocation for an elastic SDN control plane and a scalable SDN forwarding
plane given dynamic service demand from IoT networks.

Research Objective SO-2

Heterogeneous resource controller orchestration
Optimal resource allocation at multiple tiers, i.e. controller, data forwarding, VNFs and last-mile devices
Ensure E2E service latency for multi-domain applications
Maintain system stability providing the dynamic service demand

Efficient resource provisioning for IoT services in edge-cloud SDN-based networks

Heterogeneous resource controller orchestration
Optimal resource allocation at multiple tiers, i.e. controller, data forwarding, VNFs and last-mile devices
Ensure E2E service latency for multi-domain applications
Maintain system stability providing the dynamic service demand

Efficient resource provisioning for IoT services in edge-cloud SDN-based networks

Accommodating QoS requirement in terms of E2E service latency for multi-domain
interworking service chains.

Research Objective SO-3

Accommodating QoS requirement in terms of E2E service latency for multi-domain
interworking service chains.

Research Objective SO-3

- Design an NFV-based interworking architecture enabling multi-domain orchestration of
service providers, i.e. IMS and WebRTC domains.
- Detail message flows between VNFs implementing interworking service components and
model E2E service latency over the time with various resource provisioning strategies.
- Experimental analyze the proposed solution with an interworking IMS – WebRTC testbed.
Output: Chapter 5 – NFV-based Architecture for the Interworking between WebRTC and IMS.

Methodology M3

- Design an implementation system that enables to deploy the optimization solution for service
chains across multiple edges and cloud.
- Model the VNF placement and chaining problem regarding aggregated IoT traffic
- Design an IoT network topology-aware VNF placement algorithm in a distributed manner.
Output: Chapter 3 - VNF Placement and Routing in Edge-Cloud SDN-based Network

Methodology M1

- Design an orchestration system for SDN controllers and VNF resource controllers
- Model SDN controller placement regarding OpenFlow switches’ locations in SDN networks
- Adopt Lyapunov framework for real-time optimization problem regarding system stability
- Apply Exponential Gradient Ascent algorithm regarding exponential growth of network size.
Output: Chapter 4 – Jointly Optimized Resource Allocation for Both SDN Control and
Forwarding Planes Supporting IoT Services (submitted)

Methodology M2

How to optimize VNF
resource placement in edge-
cloud networks?

Research Question RQ-1

Resource provisioning for dynamic service demand without
considering system stability
Lack of an E2E latency model for service chains over multiple
domains

Heterogeneous resource controller
Separately optimize VNF placement and SDN controller
placement problems
Placing and routing traffic through VNF regardless input IoT traffic

Traditional resource placement solutions

Resource provisioning for dynamic service demand without
considering system stability
Lack of an E2E latency model for service chains over multiple
domains

Heterogeneous resource controller
Separately optimize VNF placement and SDN controller
placement problems
Placing and routing traffic through VNF regardless input IoT traffic

Traditional resource placement solutions

Enabling the deployment of IoT services across network topologies including multiple edges
and clouds with minimal E2E service latency.

Research Objective SO-1
Enabling the deployment of IoT services across network topologies including multiple edges
and clouds with minimal E2E service latency.

Research Objective SO-1

How to improve the QoS in
terms of E2E service latency
for multi-domain
interworking services given
the availability of physical
resource?

Research Question RQ-3

How to improve the QoS in
terms of E2E service latency
for multi-domain
interworking services given
the availability of physical
resource?

Research Question RQ-3

Figure 2.1 Outline diagram of the thesis

CHAPTER 3

PLACEMENT AND CHAINING FOR RUN-TIME IOT SERVICE DEPLOYMENT IN
EDGE-CLOUD

Duong Tuan Nguyen1 , Kim Khoa Nguyen1 , Mohamed Cheriet1

1 Department of Automation Production, École de Technologie Supérieure,

1100 Notre-Dame West, Montreal, Quebec, Canada H3C 1K3

Article published in IEEE Transactions on Network and Service Management, March 2020

Abstract

This paper investigates an efficient placement and chaining of Virtual Network Functions (VNFs)

to provide cloud based IoT services with minimal resource usage cost. We take into account

bandwidth capacity and link delay of network connection between clouds where VNFs are

allocated and underlying IoT networks where sensors and IoT gateways are deployed. Regarding

the constantly changing network dynamics, input traffic of service components is considered at

the lower granularity level of messages based on the communication between each VNF and

corresponding sensors via IoT gateways. From the algorithm perspective, the specific topology of

multiple edge clouds is leveraged to improve the solution. In this paper, we present an NFV-based

high-level architecture for a system that enables the deployment of IoT services across multiple

edges and clouds. We formulate the VNF placement problem using a non-convex Integer

Programming model. Taking into account different IoT topologies, we devise two algorithms

for small- and large-scale networks to find the near optimal solution: i) a customized Markov

approximation with two techniques, i.e. multi-start and batching, and a node ranking-based

heuristic. Simulation and experimental results show that the proposed solution improves the

cost up to 21% compared to state-of-the-art schemes.

Keywords: VNF Placement, Service Function Chain, IoT Services, Edge/Cloud Computing,

QoS.

34

3.1 Introduction

With a dramatic growth in the volume of network traffic over the last decade, NFV ETSI ISG on

Network Functions Virtualization (2013) has been considered as a promising solution whereby

network services are provisioned in software-based network functions or elements, i.e. bridges,

routers. Thanks to virtualization technology, heterogeneous virtual networks can coexist in the

same physical (or substrate) network and share the resources efficiently. This paper focuses on

a class of IoT services which are typically composed and deployed at run-time to respond to

user’s need in a specific context Miorandi, Sicari, Pellegrini & Chlamtac (2012). Adopting NFV

paradigm allows high flexibility to adapt to the change of service demand, which is critical in

the success of IoT application delivery with regard to service performance and reliability.

Along with NFV advantages is a key challenge related to the optimal allocation of resources of a

substrate network to virtual network requests, or VNE. Despite being intensively investigated in

literature Cziva et al. (2018); Li et al. (2018a), deploying such VNE solutions in an arbitrary IoT

environment with confidence is still challenging regarding delay sensitivity of IoT services and

the constantly changing network dynamics. For the former aspect, previous VNE approaches

has mainly focused on the communication between VNFs at data center Li et al. (2018a) in

modeling service latency. In IoT context, modeling E2E service delay for VNF placement

problem requires to consider not only VNF-VNF connection but also between VNF and IoT

sensors via IoT gateways which has not been considered in prior work. This is challenging

given the complicate interaction of relevant IoT sensors and IoT gateways with VNFs at clouds,

i.e. from IoT devices to the VNFs that need to collect sensing data, or in reverse direction

to activate certain device’s functions. Mathematically, the presence of such the IoT devices

introduces additional elements which increase the inherent system complexity and thus creates

new constraints to VNE problem.

Regarding the dynamic nature of network traffic, the bandwidth resource Agarwal et al. (2018)

should be considered in the VNF placement and chaining problem. Unlike previous studies

that addressed this issue by assuming continuous bandwidth demand which is not completely

35

appropriate for IoT devices Zheng, Tsiopoulos & Friderikos (2018); Dieye et al. (2018); Mechtri,

Ghribi & Zeghlache (2016b); Ghaznavi et al. (2017), we go a step further in this paper by

investigating the impact of VNFs’ input traffic at the lower granularity level of discrete messages

via connections between IoT networks and clouds. In addition, we argue that placing VNFs

based on resources allocated statically in advance might be not optimal in reality. For practical

techniques such as statistical multiplexing of service requests to benefit system resource usage

Habibi, Fazli & Movaghar (2019) which are appropriate for IoT applications, network resource

should be taken into account at a higher dynamic level, i.e discrete messages, rather than in a

static manner as in existing approaches Cziva et al. (2018).

The paper contribution is three-fold. First, we design a system that enables the deployment of IoT

applications in form of service chains across multiple edges and clouds. Second, we propose a

model for the optimization problem of VNF placement and chaining with aggregated traffic from

IoT gateways and formulate it as a non-convex Integer Programming (IP) problem. The novelty

of our model lies in the consideration of input traffic of VNF and the presence of IoT devices, i.e

sensors, gateways in IoT services. Particularly, we model the latency for service chains while

taking into account the specifications of connection between clouds where VNFs are deployed

and IoT gateways, such as the distance to IoT devices and the connectivity to multiple edges

and clouds. Third, regarding the NP-hardness of proposed problem, we introduce a Markov

approximation based framework that adopts multistart and batching techniques (MBMAP) to

solve the combinatorial network problem. The framework exploits underlying IoT infrastructure

to perform algorithms in a distributed manner and consequently accelerate convergent rate which

has been known as a limitation of Markov-based algorithms due to the large space of states. We

also present another heuristic (NRP) that employs the concept of node rank in placing VNFs.

The heuristic aims for large-scale networks and is considered as a baseline to demonstrate the

advantage of MBMAP given a large number of possible states. Our source code is available

online1 for other researchers to use and modify. Simulations and experiments’ results show the

effectiveness of the proposed MBMAP over prior works that do not consider the IoT network.

1 https://github.com/hoangtuansu/smal

36

The rest of this paper is organized as follows. Section 3.2 reviews prior works. System modeling

and the formulation of the optimization problem are explained in section III. Then Markov-based

approximation algorithm MBMAP and node-ranking heuristic NRP are described in section IV.

Section V presents performance evaluation of the proposed methods with simulation and testbed

settings. Finally, conclusions are drawn.

3.2 Related Work

With the rapid growth of virtualization technology, a large number of recent publications have

studied VNF optimal resource provisioning and service chain routing. The VNE has been

investigated in the literature from various aspects, such as system models Zheng et al. (2018);

Dieye et al. (2018), objectives Cziva et al. (2018); Li et al. (2018a) and solutions Dieye et al.

(2018); Mechtri et al. (2016b). In this section, we summarize the main results on VNE for IoT

services and explain how our work is distinguished from the others.

In Taleb et al. (2015), the authors propose the solutions for the problem of VNF embedding for

virtual 5G network infrastructure while dealing with the mobility features and service usage

behavioral patterns of mobile users. The solutions address two conflicting objectives, which are

the insurance of QoE via the placement of VNFs of data anchor gateways closer to end users

and the avoidance of the relocation of mobility anchor gateways via placing their corresponding

VNFs far enough from users. Apart from user mobility, the constantly changing network

dynamics as a well-known characteristic of IoT network is addressed in Cziva et al. (2018).

Another IoT service specific is the presence of micro-data centers, known as edge cloud, whose

locations significantly affect the requirement of ultra-short latency and has been investigated in

Laghrissi et al. (2017). The study in Gong et al. (2016) address the VNE problem regarding the

constraints related to the location of substrate nodes. Cao et al. (2018) adopts network topology

information including node location to conduct a node-ranking approach to solve the problem.

In general, all of these prior works mainly focus on VNF location optimization for services

between end-user and corresponding VNFs, not service function chain.

37

Focusing on the relation between link and server usage, the authors in Kuo et al. (2016) investigate

the joint VNF placement and path selection problem. While the approach can be generalized to

include the underlying IoT network, it requires an effort to adapt the model for distributed clouds

as well as the formulation of constraints on service chain latency in the IoT context. A similar

approach in Allybokus et al. considered partial orders and anti-affinity rules which states that

two VNFs cannot handle the same service chain on the same node

In Bhamare et al. (2017), the authors propose an analytical model for the placement of service

function chains in multi-cloud environments. However, they only consider inter-cloud traffic

w.r.t the fact that inter-cloud links are more likely to be congested and more expensive compared

against the links within a single datacenter. Another work for placing service chains across

multiple clouds in Gupta et al. (2017) adopts machine learning technique for a predictive model

combining with random cloud selections. Tackling the issue of deploying network services

across multiple Points of Presence (PoPs), the framework in Riera et al. (2016) provides an

optimization model on various metrics, i.e. cost of assigning VNFs to PoPs, overall delay, and

overall resource link usage.

Closer to our work is MaxZ Agarwal et al. (2018) that proposes a model accounting for services

involved in 5G networks such as IoT, M2M applications. Adopting a queueing model for VNFs,

the authors deal with traffic not only between VNFs but also from outside the system, which

might be applied for the case of IoT devices. However, MaxZ neglects IoT nodes, in terms of

their resource capacity and connection delay, and this, as confirmed by our numerical results,

can yield sub-optimal performance.

In this work, we consider three system features, i.e. distributed clouds, multiple VNF instances,

connections between clouds and underlying IoT networks, which are not taken into account in

prior works.

38

Core cloud
infrastructure

1

2

Edge
clouds

3

Sensor
networknneett
Sensor
network

5 7 11

10
9

6

4 8

Sensor VNFSensorS VNFIoT GatewayI

Figure 3.1 Multi-cloud service function chain for IoT applications

3.3 System Architecture

In this section, we describe the system that performs service function chaining on multiple clouds

for IoT applications. The overall architecture as a reference for implementing and deploying

proposed solution with an illustrative IoT-based use case is explained.

3.3.1 System Description

Fig. 3.1 depicts a system composed of multiple clouds where VNFs are deployed to implement

service functions. Each VNF can be replicated on different places depending on the number of

licenses that the provider has purchased Luizelli, Bays, Buriol, Barcellos & Gaspary (2015). A

VNF can process network traffic from other VNFs or sensor devices (or nodes) scattered in a

sensor field via IoT gateways. While a sensor may have multiple interfaces, i.e. Bluetooth, WiFi,

LTE, due to its constrained resource, only one interface is activated at a given time and connects

to one gateway within its coverage. Each node either collects data (i.e. temperature, noise) or

39

performs a certain function (i.e. sprinkle, smart light). Toward sensor side, the VNF either

receives and processes data from that sensor or sends a control message to activate its function.

The IoT gateways aggregate data from connected sensors and communicate with VNFs through

the network link between the gateways and the clouds. A gateway might have various interfaces

(i.e., wireline, cellular, LoRA) and thus connects to several clouds at the same time through the

Internet. A user request for a service will be served by a chain of service functions performed by

VNFs which interact with the IoT gateways to retrieve the input data or trigger the commands

from or towards the sensor. In this work, we consider a common IoT case in which service

functions are executed in sequential or branching manners Halpern & Pignataro (2015).

3.3.2 Overall Architecture

From the aforementioned system, we design an implementation architecture that takes into

account not only the presence of multiple clouds but also the service management for micro-

services as service functions, and underlying IoT network as shown in Fig. 3.2.

At each edge, Optimization Agent (OpAg) and VNF Allocator (VAl) are two main components

of Edge Orchestrator (EdOr). Specific components and functionalities of EdOr are similar to

MANO reference architecture that can be found in ETSI ISG on Network Functions Virtualization

(2013). The role of OpAg is to expose both resource and service function’s information of the

edge to the Global Optimizer (GlOp) at Core Orchestrator (CoOr) which is in turn deployed at

Core Cloud. Placement scheme returned by OpAg is used by VAl component to perform cloud’s

resource allocation.

The Network Controller is responsible for controlling network resources and establishing

connectivity between VNFs that implement service functions. It maintains a list of IoT network

topologies including gateways and sensors, from which providing necessary information, i.e.

data rate, latency, as input of OpAg.

40

Sensor
Network

Edge
Cloud

Cloud
Resource

Network
Controller
Network

Controller

Gateway SensorSensor

BSS/OSS

Core OrchestratorCore Orchestrator

Global
Optimizer

Service chain
Manager

Core Orchestrator

Global
Optimizer

Service chain
Manager

Edge Orchestrator
Opti.
Agent

VNF
Allocator

Micro-service
catalog

IoT network
topology

Communicating ContainingCommunicating ContainingCommunicating Containing

Figure 3.2 Implementation architecture

At Core Cloud, Service Chain Manager component of the CoOr retrieves information from

BSS/OSS system to construct a catalog of IoT applications. Similarly to the EdOr, the CoOr’s

catalog is served as the input of GlOp and might be related to multiple edge clouds.

41

Door lockerDoor lockerDoor locker

Web Server

DDDDoooooooorrrr lllloooocccckkkkkeeeerrrrDDDDoooooooorrrr llloooocccckkkkeeeerrrrDoor lockerrDoor lockerr

MotionMotionMMMMMoooottttiiioooonnnnMMMMMoooottttiiioooonnnnMotioniiiiiii

CameraCamera

DDDDD

CCCCCaaaammmmCCCCCaaaammmmmmmmeeeeerrrraaaammmeeeeerrrraaaaCamera

Dispatcher

1.a 1.b

2.a
3.b

3.a

2.b

4.a

5.a

Motion
Analyzer

Video
Processor

Decision
Maker

Mobile
Proxy

VNFVVNNFF

4.b

5.b

Local IoT Network Remote Edge/Core Cloud

Endpoint VNF↔Endpoint VNF↔ VNF VNF↔VNF VNF↔

sensor

sensor

Figure 3.3 An illustrative IoT service chain with multiple end-points

3.3.3 Illustrative Use Case

An illustrative example of the service chain that is formed in accordance with a security

surveillance scenario as shown in Fig. 3.3. In this use case, a motion sensor (MS) is the initial

source, a camera sensor (CS) provides supporting data to improve the decision making process,

and destination nodes include Door Locker, a laptop representing surveillance service provider,

and a mobile phone as a user. Service functions, e.g. Motion Analyzer, Video Processor

(VP), Decision Maker (DM), Dispatcher (DP), Web Server (WS) and Mobile Proxy (MP), are

implemented as VNFs running on edge-cloud. Upon detecting a motion (step 1a & 1b), Motion

Analyzer (MA) checks whether or not it is a suspicious move, i.e., not via the main door. If it is

42

the case, the MA will inform VP to trigger the camera sensor to perform at a higher resolution

(step 2). Using face recognition, DM decides whether or not it is an intrusion if the person

is not identified as a home user. DP receives decision result from DM and send an activation

message to Door Locker (step 3) as well as notifies other two endpoints (step 4 & 5) which are

also behind IoT gateways. Note that the DP can be configured to forward the message to more

than one endpoints at step 4 & 5.

In this use case, placing service functions or VNFs with only consideration of data center’s

resource does not guarantee the performance of IoT services. IoT traffic in terms of sets of

discrete messages, if ignored, may result in a sub-optimal placing solution as confirmed by

our simulation and experimental results. Moreover, the communication delay between local

IoT networks and remote edge/core clouds also plays an important role in E2E service latency,

which is critical in many scenarios, e.g., security surveillance.

3.4 System Modeling & Problem Formulation

We model the system described in Fig. 3.1 as a directed graph G = {𝑁 ∪ 𝐺, 𝐸} where 𝑁 ∪ 𝐺

and 𝐸 are the sets of nodes and links respectively. To facilitate the model, both edge and core

cloud are referred to the set of 𝑁 clouds and 𝐺 is the set of IoT gateways. A link (𝑞, 𝑞′) ∈ 𝐸

connecting two entities either clouds or gateways or both represents a logical communication link

between them. Φ𝐵
𝑞,𝑞′ and 𝑙𝑞,𝑞′ denote the capacity and delay of edge (𝑞, 𝑞′), respectively. While

Φ𝐵
𝑔,𝑛 is estimated based on the communication technology of gateway’s network attachment

point, Φ𝐵
𝑛,𝑛′ is usually determined by the contract between network infrastructure providers. We

use 𝑚𝑐𝑜𝑚
𝑛 and 𝑚𝑛𝑒𝑡

𝑞,𝑞′ to define the cost of one computing resource unit at 𝑛 ∈ 𝑁 and one network

bandwidth unit over the link (𝑞, 𝑞′), respectively. The mathematics notations are summarized in

Table 5.2.

We collect the set 𝑉 of VNFs hosted at the clouds. For any VNF 𝑣 ∈ 𝑉 , let 𝜅𝑣 denote the

number of 𝑣’s replications (or instances), 𝑣𝑖 where 𝑖 = 1, . . . 𝜅𝑣 is the 𝑖-th replication of 𝑣, 𝑏𝑜𝑢𝑡
𝑣

the required bandwidth for an IoT gateway to send 𝑣’s aggregated messages to other VNFs,

43

Table 3.1 Notation List

General Inputs
𝑁,𝐺,𝑉, 𝐶 Set of clouds, IoT gateways, VNFs and chains

𝑉𝑔 Set of VNFs associated with gateway 𝑔

𝛼𝑔,𝑛 Indicator of the association between 𝑔 and 𝑛

𝜅𝑣 Number of VNF 𝑣’s replications

𝜆𝑐, 𝜆
𝑠𝑒𝑛
𝑣 , 𝜆𝑣𝑖 Arrival rate of service chain 𝑐’s request, data from sensor to

VNF 𝑣 and network traffic at VNF instance 𝑣𝑖

𝜏𝑣 1 if 𝑣 is an IoT-based VNF, 0 otherwise

𝛽𝑐
𝑢,𝑣 1 if 𝑢 links to 𝑣 in service chain 𝑐, 0 otherwise

Service Latency
Φ𝐿

𝑐 Maximum tolerated delay of service chain 𝑐

𝐿𝑐𝑡𝑙
𝑐,𝑣𝑖 Transmission delay between instance 𝑣𝑖 and sensor

𝐿𝑐𝑜𝑚
𝑢,𝑣 Transmission delay between two VNFs 𝑢 and 𝑣

𝐿𝑐 Total delay of service chain 𝑐

Γ𝑣𝑖 (Γ𝑔) Processing (aggregation) delay of instance 𝑣𝑖 (gateway 𝑔)

System Resource
𝑏𝑜𝑢𝑡
𝑣 Output network bandwidth of VNF 𝑣

𝑏𝑠𝑒𝑛
𝑣 Network bandwidth between VNF 𝑣 and sensor

Φ𝐵 Link capacity between any two nodes

𝐵𝑞,𝑞′ Network bandwidth between two nodes 𝑞, 𝑞′

𝑟𝑛 Compute resource for 𝑛 to process a bandwidth unit

𝑅𝑛 Compute resource allocated at cloud 𝑛

System Cost
𝑚𝑐𝑜𝑚

𝑛 Cost per compute resource unit at cloud 𝑛

𝑚𝑛𝑒𝑡
𝑘,𝑞 Cost per bandwidth unit of the link between nodes 𝑘 , 𝑞

𝑀𝑛𝑒𝑡 (𝑀𝑐𝑜𝑚) Network (compute) resource cost of the whole system

𝑀𝑠𝑦𝑠 Total system cost

Decision Variables
𝑥𝑛𝑣𝑖 1 if VNF instance 𝑣𝑖 is at cloud 𝑛, 0 otherwise

𝑦𝑐𝑣𝑖 1 if service chain 𝑐 uses VNF instance 𝑣𝑖, 0 otherwise

44

GW

2
4

bout
2bout
2bbbbbbbbbbououououttttouououtttt
22222222bout
2

1

3 bsen
4

bout
1bout
1

bout
3bout
3

Figure 3.4 Details of bandwidth required by a VNF

and 𝜏𝑣 ∈ {0, 1} indicates whether 𝑣 is an IoT-based VNF (𝜏𝑣 = 1) or not (𝜏𝑣 = 0). The

implementation of VNFs is realized via virtual machines which are typically shifted in different

templates (or configurations) in terms of CPU, memory, storage, and so on, depending on the

cloud they are provisioned. Having said that, we use 𝑟𝑛 to denote units of resource allocated for

a VNF instance at the cloud 𝑛 to process a bandwidth unit.

Given a gateway 𝑔 ∈ 𝐺, a VNF 𝑣 is associated with the gateway 𝑔 if it is an IoT-based and 𝑔 has

a connection to its corresponding sensor. A set of such the VNFs is presented after 𝑔, i.e. 𝑉𝑔.

Additionally, it is assumed that the sensor of the IoT-based VNF 𝑣’s sensor generates sensing

data at the rate 𝜆𝑠𝑒𝑛
𝑣 which requires 𝑏𝑠𝑒𝑛

𝑣 units of bandwidth. For the sensors controlled by VNFs

rather than generating sensing data, 𝜆𝑠𝑒𝑛
𝑣 and 𝑏𝑠𝑒𝑛

𝑣 are set to 0.

Given 𝐶 as the set of independently and identically distributed (i.i.d) service chains, each

𝑐 ∈ 𝐶 is characterized by 𝜆𝑐 the initial service rate, 𝑜(𝑐) the source VNF, 𝑑 (𝑐) the destination

VNFs, Φ𝐿
𝑐 the maximum tolerated delay and �𝑉𝑐 the directed tree composed of related VNFs.

Any VNF can be shared by different service chains. One use case for such the shared VNF’s

instance is that the firewall function can be employed to filter traffic of multiple chains. For

45

the sake of simplifying the latency model of a service chain, the notation �𝑉𝑐�𝑣 is used to

present the sub-sequence (or a path) from the first VNF in 𝑐 to 𝑣. From Fig. 3.3, 𝑜(𝑐) is

the VNF MA while 𝑑 (𝑐) is the set {𝐷𝑃,𝑊𝑆, 𝑀𝑃}. An example of �𝑉𝑐�𝑣 with 𝑣 as VNF-WS

is {𝑀𝐴 → 𝑉𝑃 → 𝐷𝑀 → 𝐷𝑃 → 𝑊𝑆} or {𝑀𝐴 → 𝑉𝑃 → 𝐷𝑀 → 𝐷𝑃 → 𝑀𝑃} with 𝑣

as VNF-MP. Considering any two VNFs 𝑣 and 𝑣′, the notation 𝛽𝑐
𝑣,𝑣′ ∈ {0, 1} with 𝛽𝑐

𝑣,𝑣′ = 0

if 𝑣 ≡ 𝑣′ indicates whether or not they are linked together regardless their instances and and∑
𝑣′∈𝑉𝑐

𝛽𝑐
𝑣,𝑣′ = 1,∀𝑣 ∈ 𝑉𝑐.

The output of our model is the optimal solution of the VNF placement problem for the given set of

inputs and is represented by decision binary variables x = {𝑥𝑛𝑣𝑖 }
𝑛∈𝑁
𝑣∈𝑉,1≤𝑖≤𝜅𝑣

and y = {𝑦𝑐𝑣𝑖 }
𝑐∈𝐶
𝑣∈𝑉,1≤𝑖≤𝜅𝑣

.

Precisely, 𝑥𝑛𝑣𝑖 = 1 if 𝑣𝑖 is allocated at 𝑛 and 0 otherwise whereas 𝑦𝑐𝑣𝑖 ∈ {0, 1} indicates the

assignment of the replica 𝑣𝑖 to requested service chain 𝑐.

3.4.1 Resource Constraint

The bandwidth required for the communication channel between the VNFs at the same cloud

and associated with the same gateway 𝑔 should not exceed the link capacity between 𝑔 and 𝑛.

Hence, with x𝑛
𝑣 =

∑
1≤𝑖≤𝜅𝑣 𝑥

𝑛
𝑣𝑖 , we get

𝐵𝑔,𝑛 (x) =
∑
𝑣∈𝑉𝑔

𝑏𝑠𝑒𝑛
𝑣 x𝑛

𝑣 ≤ Φ𝐵
𝑔,𝑛 (3.1)

Similarly, the total amount of bandwidth that any two consecutive VNFs in any service chain,

that connects 𝑛′ to 𝑛 must be lower than Φ𝐵
𝑛′,𝑛. This value 𝐵𝑛′,𝑛 (x) is computed based on the

data that a VNF instance generates towards its connected VNF of the same chain. Since each

chain only has one pair of any two VNFs 𝑣′, 𝑣, the value of 𝐵𝑛′,𝑛 (x) is obtained in terms of x𝑛′

𝑣′

and x𝑛
𝑣 , that is

𝐵𝑛′,𝑛 (x) =
∑
𝑐∈𝐶

∑
𝑣′,𝑣∈𝑉

𝛽𝑐
𝑣,𝑣′𝑏

𝑜𝑢𝑡
𝑣 x𝑛′

𝑣′x𝑛
𝑣 ≤ Φ𝐵

𝑛′,𝑛 (3.2)

46

GW

B1

A2
C1

A1

A B C

sen
A
sen
A

sen
A
sen
AC1C1C1

C1C1C1

B1B1B1B1BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB1111111111111111111111111111B1

B1B1B1B1BB1111111111111111111111111111111111B1

sen
A
sen
A

Figure 3.5 Arrival rate at VNF in details

For a VNF instance, there are two input data sources from its precedent connected VNFs of

service chains, and the sensors in case of an IoT-based VNF as shown in Fig. 3.4. The bandwidth

for an instance of 𝑣, i.e. 𝐵𝑣, is

𝐵𝑣 =
∑
𝑐∈𝐶

∑
𝑣′∈𝑉

𝛽𝑐
𝑣′,𝑣𝑏

𝑜𝑢𝑡
𝑣 + 𝜏𝑣𝑏

𝑠𝑒𝑛
𝑣 (3.3)

The total amount of resource 𝑅𝑛 (x), ∀𝑛 ∈ 𝑁 needed to deploy a VNF for the cloud 𝑛 considering

resource availability Φ𝑅
𝑛 is computed as

𝑅𝑛 (x) =
∑
𝑣∈𝑉

x𝑛
𝑣𝑟𝑛𝐵𝑣 ≤ Φ𝑅

𝑛 (3.4)

3.4.2 System stability

We model a VNF replica as a 𝑀/𝑀/1 queueing system with 𝜇𝑛
𝑣 the service processing capacity

and 𝜆𝑣𝑖 the arrival rate. Similar to the bandwidth, 𝜆𝑣𝑖 is also attributed to the traffic from two

sources: precedent VNFs of 𝑣𝑖 in all the chains of 𝐶, and its sensor through the gateway with

47

𝜏𝑣 = 1 and hence

𝜆𝑣𝑖 (y) =
∑
𝑐∈𝐶

∑
𝑣′∈𝑉

∑
1≤ 𝑗≤𝜅𝑣 ′

𝛽𝑐
𝑣′,𝑣𝜆𝑣′𝑗

𝑦𝑐𝑣′𝑗
𝑦𝑐𝑣𝑖 + 𝜏𝑣𝜆

𝑠𝑒𝑛
𝑣 (3.5)

As there is only one precedent VNF of 𝑣 in 𝑐, the Equ. (3.5) can be written in terms of 𝜆𝑐 as

follows

𝜆𝑣𝑖 (y) =
∑
𝑐∈𝐶

(
𝜆𝑐𝑦

𝑐
𝑣𝑖 +

∑
𝑣′∈ �𝑉𝑐�𝑣 ′

𝜏𝑣′𝜆
𝑠𝑒𝑛
𝑣′

)
(3.6)

Note that although the sensors are typically configured to periodically sense ambient conditions,

the sensing periods are different from a sensor to others. Thus, it can be assumed that the data

generated by sensors follows the Poisson process. In other words, the arrival of traffic to the

IoT gateway can be considered as a Poisson process. It is reasonable to model the gateway as

a 𝑀/𝑀/1 queueing system, with 𝜇𝑔 the service processing rate together with 𝜆𝑔. From Fig.

3.5,the gateway receives data from 𝑣’s sensor if 𝜆𝑠𝑒𝑛
𝑣 > 0 and from its associated IoT-based

VNFs if 𝜆𝑠𝑒𝑛
𝑣 = 0. Note that the IoT gateway’s presence does not change the value of 𝜆𝑠𝑒𝑛

𝑣 as

arrival rate of a 𝑀/𝑀/1 system is equal to departure rate. This yields

𝜆𝑔 (x, y) =
∑

(𝑛,𝑔)∈𝐸
𝑣∈𝑉𝑔

∑
1≤𝑖≤𝜅𝑣

𝑥𝑛𝑣𝑖 (𝜆
𝑠𝑒𝑛
𝑣 + 𝜆𝑣𝑖 (y)) (3.7)

To guarantee a VNF instance is not overloaded, the average time between two successive

messages must be greater than the mean processing time by any server of 𝑣 to a message. In

other words, we require the stability condition for the system to be stable, that is

𝜆𝑣𝑖 (y) <
∑
𝑛∈𝑁

𝑥𝑛𝑣𝑖𝜇
𝑛
𝑣𝑖 (3.8)

𝜆𝑔 (x, y) < 𝜇𝑔 (3.9)

48

3.4.3 Service Latency Constraint

In order to formulate the latency of a service function chain, it needs to retrieve the formulation

for the processing time at each VNF instance 𝑣𝑖, i.e. Γ𝑣𝑖 and the aggregation time at 𝑔, i.e. Γ𝑔.

From (3.5) and (3.7), we have

Γ𝑔 (x, y) =
(
𝜇𝑔 − 𝜆𝑔

)−1

,∀𝑔 ∈ 𝐺 (3.10)

Γ𝑣𝑖 (x) =
(∑
𝑛∈𝑁

𝑥𝑛𝑣𝑖𝜇
𝑛
𝑣 − 𝜆𝑣𝑖 (y)

)−1

,∀𝑣 ∈ 𝑉 (3.11)

Assuming that all the VNFs in the same cloud are incurred the same delay of communicating

with external entities and the delay between a gateway and a sensor is negligible to be ignored.

The delay of a 𝑐’s control message from a IoT-based VNF instance 𝑣𝑖, if exists, to its sensor

through 𝑔 is

𝐿𝑐𝑡𝑙
𝑐,𝑣𝑖 (x, y) =

∑
(𝑔,𝑛)∈𝐸
𝑣∈𝑉𝑔

𝜏𝑣𝑥
𝑛
𝑣𝑖 (Γ𝑔 + 𝑙𝑔,𝑛) (3.12)

Next, given two VNFs 𝑣 and 𝑣′, the following is the formulation of the inter-network delay

between their hosting clouds

𝐿𝑐𝑜𝑚
𝑣,𝑣′ (x) =

∑
(𝑛,𝑛′)∈𝐸

x𝑛
𝑣x𝑛′

𝑣′ 𝑙𝑛,𝑛′,∀𝑣, 𝑣
′ ∈ 𝑉 (3.13)

Given a source and multiple destinations, the total delay for a service chain is the maximum

delay for transmitting a message to all the destination nodes which must not be greater than the

maximum tolerated latency Φ𝐿
𝑐 . As a result

𝐿𝑐 = max
𝑣∈𝑑 (𝑐)

∑
𝑢∈ �𝑉𝑐�𝑣

∑
1≤𝑖≤𝜅𝑢

(∑
𝑤∈ �𝑉𝑐�𝑣

𝑦𝑐𝑢𝑖 𝛽
𝑐
𝑢,𝑤𝐿

𝑐𝑜𝑚
𝑢,𝑤 + 𝑦𝑐𝑢𝑖Γ𝑢𝑖

)
+

∑
1≤ 𝑗≤𝜅𝑣

𝑦𝑐𝑣 𝑗
𝐿𝑐𝑡𝑙
𝑐,𝑣 𝑗

≤ Φ𝐿
𝑐 ,∀𝑐 ∈ 𝐶

49

In Equ. (4.6), 𝐿𝑐 is composed of the transmission latency between every pair of VNFs, i.e. the

first term inside the brackets, the time for each VNF to process the message, i.e. the second term

at the next line, as well as the time for the last node to activate its corresponding sensor, i.e. the

last term.

3.4.4 System Cost

In this paper, we also consider total system cost which is the weighted sum of the cost of allocated

network bandwidth (𝑀𝑛𝑒𝑡) and that of computing resource (𝑀𝑐𝑜𝑚), that is

𝑀𝑠𝑦𝑠 = 𝜔𝑀𝑛𝑒𝑡 + (1 − 𝜔)𝑀𝑐𝑜𝑚 = 𝜔
∑

(𝑞,𝑞′)∈𝐸

𝐵𝑞,𝑞′𝑚
𝑛𝑒𝑡
𝑞,𝑞′ + (1 − 𝜔)

∑
𝑛∈𝑁

𝑅𝑛𝑚
𝑐𝑜𝑚
𝑛 (3.14)

3.4.5 Problem Formulation

Let 𝛼𝑔,𝑛 ∈ {0, 1} represent the connection between 𝑔 and 𝑛. Based on above analysis, IoT VNF

placement problem is formulated as the following constrained optimization, i.e. by 𝑖, 𝑗 indicate

the instances’ indices of VNFs 𝑣 and 𝑢, respectively:

minimize
x,y

𝑀𝑠𝑦𝑠 = 𝜔𝑀𝑛𝑒𝑡 + (1 − 𝜔)𝑀𝑐𝑜𝑚 (3.15)

subject to (4.2), (4.4), (4.3), (4.14), (3.9), (4.6)

(∀𝑣 ∈ 𝑉𝑔, 1 ≤ 𝑖 ≤ 𝜅𝑣) : 𝑥𝑛𝑣𝑖 ≤ 𝛼𝑔,𝑛 (3.16)

(∀𝑣 ∈ 𝑉𝑔, 1 ≤ 𝑖 ≤ 𝜅𝑣) :∑
𝑛∈𝑁

𝑥𝑛𝑣𝑖 ≤ 𝑚𝑖𝑛(𝜅𝑣,
∑
𝑚∈𝑁

𝛼𝑔,𝑚) (3.17)

(∀𝑐 ∈ 𝐶, 𝑢 ∈ 𝑉𝑐) :
∑

1≤ 𝑗≤𝜅𝑢

𝑦𝑐𝑢 𝑗
= 1 (3.18)

(∀(𝑢, 𝑣) ∈ 𝑉, 1 ≤ 𝑖 ≤ 𝜅𝑣, 1 ≤ 𝑗 ≤ 𝜅𝑢) :

𝑥𝑛𝑣𝑖 ∈ {0, 1}, 𝑦
𝑐
𝑢 𝑗
∈ {0, 1} (3.19)

50

Our objective is to find a placement scheme to minimize the total cost incurred in the system. Equ.

(4.13) implies that a cloud does not provision the instance of a VNF if the gateway connecting

to that instance is not associated with that VNF. In this case, both 𝑥𝑛𝑣𝑖 and 𝛼𝑔,𝑛 are set to zero. If

the gateway is associated with 𝑛, 𝛼𝑔,𝑛 is set to 1 and 𝑥𝑛𝑣𝑖 can be a free variable. Moreover, the

number of deployed VNF instances must not exceed the number of connections between its

associated gateways and the clouds as specified by constraint (3.17). Equ. (4.10) stipulates a

VNF cannot be involved more than one time by a service chain and so do its instances.

3.5 IoT Topology-Aware VNF Placemenet

The problem (5.19) is NP-hard and it is difficult to obtain an exact solution in the polynomial

time. Hence, a Markov-based approximation (MA) framework Chen, Liew, Shao & Kai (2013)

is adopted to find a near-optimal solution within an acceptable period of time. In this section,

we present multistart and batching techniques that are implemented regarding IoT topology. We

explain how these techniques are incorporated with MA framework, a.k.a MBMAP, to address

slow convergence drawback.

3.5.1 Batching Markov Approximation Framework

3.5.1.1 Log-sum-exp Approximation

Let 𝑓 = {x, y} indicate a specific VNFs placing scheme and F be the set of feasible configuration

defined by constraints of problem (5.19). A change of any VNF instance either allocated at a

cloud or a service chain will lead to another configuration or new state in the context of Markov

chain. Let 𝑀
𝑠𝑦𝑠
𝑓 denote system cost under a configuration 𝑓 . The problem (5.19) is re-written as

follows:

minimize
p≥0

∑
𝑓 ∈F

𝑝 𝑓 𝑀
𝑠𝑦𝑠
𝑓 (3.20)

s.t.
∑
𝑓 ∈F

𝑝 𝑓 = 1 (3.21)

51

where 𝑝 𝑓 is the probability of choosing configuration 𝑓 . Adopting log-sum-exponential

approximation approach in Chen et al. (2013), the problem (3.20) is approximated as

minimize
p≥0

∑
𝑓 ∈F

𝑝 𝑓 𝑀
𝑠𝑦𝑠
𝑓 +

1

𝛿

∑
𝑓 ∈F

𝑝 𝑓 𝑙𝑜𝑔(𝑝 𝑓) (3.22)

subject to
∑
𝑓 ∈F

𝑝 𝑓 = 1 (3.23)

where 𝛿 is a positive constant and a gap upper-bound by 1
𝛿 𝑙𝑜𝑔 |F |.

By solving the Karush-Kuhn-Tucker (KKT) conditions of the problem (3.22), we obtain the

optimal and close-form probability solution, that is

𝑝∗(M𝑠𝑦𝑠
𝑓) =

𝑒𝑥𝑝(−𝛿𝑀
𝑠𝑦𝑠
𝑓)∑

𝑓 ′∈F 𝑒𝑥𝑝(−𝛿𝑀
𝑠𝑦𝑠
𝑓 ′)

,∀ 𝑓 ∈ F (3.24)

Obviously, the more optimal a configuration is chosen for the whole system, the closer the

system cost is to the optimal value with the aforementioned gap. However, in order to compute

𝑝∗𝑓 for each configuration, it requires to take into account the whole feasible configuration space

to compute (3.24), i.e. the sum at the denominator, which is inefficient due to the large solution

space F . Instead, a Markov chain is constructed in a way that the stationary distribution of each

state is 𝑝∗𝑓 . While the existence of such the chain has been already proven in Chen et al. (2013),

the states and the transition mechanism respecting to a transition probability need to be defined.

3.5.1.2 Markov Chain Construction Procedure

Let two configurations 𝑓 , 𝑓 ′ in F represent two states of the time-reversible ergodic Markov

chain with the stationary probability 𝑝∗(M𝑠𝑦𝑠
𝑓). The transition probability between 𝑓 and 𝑓 ′,

which are 𝑡(𝑓→ 𝑓 ′) and symmetrically defined 𝑡(𝑓 ′→ 𝑓) , must satisfy following balanced equation:

𝑝∗(M𝑠𝑦𝑠
𝑓)𝑡(𝑓→ 𝑓 ′) = 𝑝∗(M𝑠𝑦𝑠

𝑓 ′)𝑡(𝑓 ′→ 𝑓) (3.25)

52

There are many values of 𝑡(𝑓→ 𝑓 ′) and 𝑡(𝑓 ′→ 𝑓) in Equ. (3.25). We choose the following option

with 𝑡(𝑓→ 𝑓 ′) defined symmetrically, which is:

𝑡(𝑓→ 𝑓 ′) = 𝜌 𝑒𝑥𝑝
(1

2
𝛿(𝑀

𝑠𝑦𝑠
𝑓 − 𝑀

𝑠𝑦𝑠
𝑓 ′)

)
(3.26)

where 𝜌 is a conditional non-negative constant. Intuitively, this can be understood that if a

transition results in a lower system cost, i.e. 𝑀
𝑠𝑦𝑠
𝑓 > 𝑀

𝑠𝑦𝑠
𝑓 ′ , the value of 𝑡(𝑓→ 𝑓 ′) increases and

makes the occurrence of 𝑓 ′ more likely. A basic procedure to construct a Markov chain toward

the stationary distribution is thus given as :

• Step 1: Initialize a feasible configure 𝑓0, in terms of placing VNFs instances onto clouds, i.e.

x0 and assigning them to service chains, i.e. y0. Compute the system cost 𝑀
𝑠𝑦𝑠
𝑓0

.

• Step 2: From 𝑓 , generate a new VNF placement scheme, in terms of x′ and y′ for a new

configuration 𝑓 ′ with a corresponding cost 𝑀
𝑠𝑦𝑠
𝑓 ′ .

• Step 3: Compute the transition probability based on Equ. (3.26) and set the best configuration

to either the current one 𝑓 or the newly generated one 𝑓 ′.

• Step 4: Go back Step 2 until stopping criteria is met.

3.5.1.3 Multistart and Batching Based Markov Approximation Placement Framework

Our MBMAP framework is designed following several observations. First, an inherent limitation

of the Markov method is the slow convergence rate due to the large space of states. In the worst

case, an algorithm might go through 𝑂 (2
∑

𝑣∈𝑉 𝜅𝑣 (|𝐶 |+|𝑁 |)) states to retrieve the optimal placing

scheme of the problem (5.19). In practice, there is typically a stopping criteria to achieve a

near-optimal solution within an acceptable time. Therefore, we argue that the more space’s

size and the number of computation steps are reduced, the “nearer” optimal a solution could

be found. For space’s size, it can be done by eliminating or fixing variables that do not satisfy

constraints. Procedure SPACEREDUCE in Algorithm 3.1 is an example of assigning constant

values to a subset of variables. It can be intuitively understood that a VNF instance should not

be placed on a cloud that does not connect to the gateway associated with that VNF. By doing

so, we ignore states with invalid placements and thus enhance algorithm’s performance.

53

Algorithm 3.1 Solution state reduction procedure - SpaceReduce

1 Set instances’ number less than that of clouds

2 for 𝑣 ∈ 𝑉, 𝑛 ∈ 𝑁 do
3 Set 𝑔 as the gateway associated with 𝑣
4 if 𝑔 connects to 𝑛 then
5 𝑥𝑛𝑣𝑖 ← 0,∀1 ≤ 𝑖 ≤ 𝜅𝑣
6 end if
7 end for

Algorithm 3.2 Efficient computation support procedures - CostDiff

1 Input: Current configuration 𝑓 , previous configuration 𝑓 ′, newly replaced VNFs 𝑉 ′,
cost difference Δ

2 Output: Cost difference under 2 configurations
3 Set Δ ← 0

4 for 𝑣’s instance 𝑣𝑖 ∈ 𝑉 ′ do
5 Set 𝑔 as the gateway associated with 𝑣
6 Let 𝑛, 𝑛′ be clouds connecting to 𝑣𝑖 under 𝑓 , 𝑓 ′

7 Δ ← Δ + (𝑚𝑛𝑒𝑡
𝑛′,𝑔 − 𝑚𝑛𝑒𝑡

𝑛,𝑔) (𝑏
𝑠𝑒𝑛
𝑣 + 𝑏𝑜𝑢𝑡

𝑣)

8 Δ ← Δ + 𝐵𝑣 (𝑚
𝑐𝑜𝑚
𝑛′ 𝑟𝑛′ − 𝑚𝑐𝑜𝑚

𝑛 𝑟𝑛)

9 end for

Similarly, procedure COSTDIFF illustrates an efficient method to compute cost difference

term of transition probability in Equ. (3.26). The idea is to compute the cost associated with

each transition and to have it added to the original cost of the current state to obtain the value

associated with the newly formed state rather than manually calculating the cost of each state.

Note that the loop at line 4 of COSTDIFF can be avoided by performing lines 6-8 upon changing

the placement to any VNF instance.

Second, it may take time for a Markov approximation basic procedure to retrieve the feasible

configuration at the beginning (Step 1) as well as from another (Step 2). To tackle this issue, we

design a batching transition placement heuristic based on the observation that a VNF instance

should be placed in a cloud which not only has the most amount of available resources but also is

close to that VNF’s associated gateway. In other words, the preference on a cloud 𝑛 ∈ 𝑁 varies

54

for different VNFs considering that cloud’s residual resource and the delay with a corresponding

IoT gateway. Given 𝑣-associated gateway 𝑔, we define P(𝑣, 𝑛) as the preferential function on 𝑛

of 𝑣 as

P(𝑣, 𝑛) = 𝑙𝑔,𝑛Φ
𝑅
𝑛Φ

𝐵
𝑔,𝑛

∑
𝑛′∈𝐻

Φ𝐵
𝑛,𝑛′ (3.27)

Our strategy is illustrated in Algorithm 3.3 with 𝑓 = 𝑁𝑈𝐿𝐿 to indicate the case of creating

initial state and 𝑓 ≠ 𝑁𝑈𝐿𝐿 for the generation of new states from the current one. If it is the first

case, all the VNFs in 𝑉 ′ ≡ 𝑉 will be placed in its most preferential network with 𝑛𝐼 = 1. The

randomness of the transition is guaranteed by line 5 where only one VNF 𝑣 is randomly selected

and a random number of most preferential networks (line 9-11) are used to place 𝑣 whenever

the procedure BTRANS is invoked. Each placement of the selected VNF on a chosen cloud,

which is not done in the current configuration, is considered as a new state (line 13). Note that

in the Markov framework, the procedure BTRANS should be repeatedly performed until all the

constraints of the problem (5.19) are satisfied.

Third, the Markov approximation method can be accelerated by leveraging the presence of

multiple edge clouds in IoT network to deploy a distributed implementation which can be done

via several approaches. The most common one is based on partitioning the problem such that the

partitions could be run in parallel and then merged. However, this approach is not generalized

for the placement problem which may involve different parameters or constraints depending

on the applications. Instead, we have controllers at clouds explore the entire solution space

in parallel and periodically compare the results. Our basic idea is to extend the basic Markov

search strategy using a multi-start and batching approach (MBMAP), instead of performing

with only one initial state. The details are provided in Algorithm 3.4 with two procedures,

MASTERCTRL for a master controller (MC) and SLAVECTRL for slave ones (SC). At the

beginning of MASTERCTRL, the MC generates a list of feasible states (line 4) and assign them

as initially starting states to each idle slave controller (line 5-6). After that, the MC moves to

a listening state and waits for data from the SCs at line 8 until receiving a certain number of

55

Algorithm 3.3 Batching transition placement algorithm - BTrans

1 Input: Network topology G, service requests 𝐶, set of VNFs 𝑉 , current configuration 𝑓
2 Output: Set of new states F ′

3 Set F ′ ← ∅, 𝑉 ′ ← 𝑉, 𝑛𝐼 ← 1

4 if 𝑓 ≠ 𝑁𝑈𝐿𝐿 then
5 Select a random VNF 𝑣 ∈ 𝑉 and set 𝑉 ′ ← {𝑣}
6 end if
7 for 𝑣 ∈ 𝑉 ′ do
8 if 𝑉 ′ has more than one VNF then
9 Set 𝑛𝐼 ← 𝑟𝑎𝑛𝑑

(
0, 𝑚𝑖𝑛(𝜅𝑣,

∑
𝑛∈𝑁 𝛼𝑔,𝑛)

)
10 end if
11 Let 𝑁′ be the 𝑛𝐼 most preferential clouds of 𝑣 using Equ. (3.27)

12 for 𝑛 ∈ 𝑁′ and 𝑣 not placed on 𝑛 do
13 Create a new state from 𝑓 with the placement of 𝑣 on 𝑛 and add it to F ′

14 end for
15 end for
16 return F ′

states. The loop exists if all the SCs complete their tasks (line 9). A set of states which have cost

difference less than a threshold Δ are then randomly re-assigned to idle controllers (line 14-15).

The lowest cost state 𝑓𝑚𝑖𝑛 is also used to generate a batch of new states to assign in case there

are still idle SCs. Note that all the potentially “good” states, i.e. 𝑓𝑚𝑖𝑛 are tracked by the MC

(line 13) and only the one with the lowest cost will be returned at the end of the procedure (line

21). This makes sure that the output is always the best one among those generated by the SCs.

For the SCs in the procedure SLAVECTRL, upon receiving a state 𝑓 from the MC, a batch of

states will be created and sorted in cost descending order (line 3). By doing this, we ensure

that the SC preferably takes the state with lower cost into account first to perform the transition.

There are two cases occurred at the SC’s side. If the transition from 𝑓 to 𝑓 ′ does not happen,

then 𝑓 ′ will be reported to the MC (line 6) for the tracking purpose. If the transition does not

lead to any significant cost improvement after several times, then the SC will restart its operation

with a new state by going back to the listening state (line 1).

56

Algorithm 3.4 Placement Procedure at Master Controller - MasterCtrl

1 Input: State distance threshold Δ
2 Output: State with minimum cost
3 𝑆 ← ∅

4 Generate a batch of |𝑁 | feasible states using procedure BTRANS with 𝑓 = 𝑁𝑈𝐿𝐿
5 for newly generated state 𝑓 do
6 Assign 𝑓 to an idle controller

7 end for
8 while listening slave controllers do
9 if all controllers complete then

10 break
11 end if
12 Let 𝑆′, 𝑓𝑚𝑖𝑛 be the set of received states, the state with the lowest cost, respectively

13 𝑆 ← 𝑆 ∪ { 𝑓𝑚𝑖𝑛}

14 for 𝑓 ∈ 𝑆′ and 𝑑𝑖𝑠𝑡 (𝑓𝑚𝑖𝑛, 𝑓) ≤ Δ do
15 Assign 𝑓 to a randomly idle controller

16 end for
17 if there are still idle controllers then
18 Invoke BTRANS to generate new states from 𝑓𝑚𝑖𝑛 and assign to idle controllers

19 end if
20 end while
21 return the minimum cost state in 𝑆

3.5.2 Node Ranking-based Placement Heuristic

In order to evaluate MBMAP performance, a node ranking-based placement heuristic (NRP) is

proposed. The NRP is developed as a deterministic algorithm based on the BTRAN procedure.

In particular, we define the VNF ranking function R(𝑣) based on the number of VNFs that have

connections to 𝑣 regardless the service chain as follow:

R(𝑣) =
1

𝜅𝑣

∑
𝑐∈𝐶

∑
𝑢∈𝑉

(𝛽𝑐
𝑢,𝑣 + 𝛽𝑐

𝑣,𝑢) (3.28)

The usage of R(𝑣) allows the placement process to prioritize VNFs which are more important

in terms of the popularity among service chains and the number of instances. NRP procedure is

described in Algorithm 3.6 which starts by constructing an ordered VNF list by R using Equ.

57

Algorithm 3.5 Placement Procedure at Master Controller - Slave Controller

1 while listening master controller do
2 Set received state as current state 𝑓
3 Generate a batch of states from 𝑓 and sort them in cost descending order

4 for 𝑓 ′ of the batch do
5 if 𝑓 not transit to 𝑓 ′ then
6 Send 𝑓 ′ to the master controller

7 end if
8 else if small cost improvement then
9 Send 𝑓 ′ to the master controller and go back line (1)

10 end if
11 else
12 Go back line (3)

13 end if
14 end for
15 end while

(3.28). Each VNF 𝑣 is placed one by one (line 3) onto preferable clouds as long as that cloud

has enough bandwidth, i.e. Φ𝑅
𝑛 > 𝑟𝑛𝐵𝑣, Φ𝐵

𝑔,𝑛 > 𝑏𝑠𝑒𝑛
𝑣 , Φ𝐵

𝑛,𝑛′ > 𝑏𝑜𝑢𝑡
𝑣 as realized by the condition

at line 5. The preference P(𝑣, 𝑛) is updated (line 6) after placing a certain VNF. If none of

the preferable clouds has enough resource to host the VNF, the algorithm continues with other

clouds (line 9) as an effort to deploy VNFs. After iterating through all the VNFs, the ranking

values of unplaced VNFs, if any, are increased by a pre-defined amount (line 3.5.3). As a result,

such the unplaced VNFs will be more likely placed on suitable clouds. The feasible solution

of the problem (5.19) with its cost is stored at line 15, and the one with the lowest cost will be

returned upon meeting the stopping criteria (line 23).

3.5.3 Discussion

In general, NRP is simpler to implement than MBMAP as it mainly relies on ranking functions

and sorting procedure. The complexity of each iteration in NRP (line 2-11) is contributed by

sorting VNFs at line 2, i.e. 𝑂 (|𝐶 | |𝑉 |𝑙𝑜𝑔(|𝑉 |)), the loop at line 3, i.e. 𝑂 (|𝑁 |
∑

𝑣∈𝑉 𝜅𝑣). In the

worst case, the condition at line 9 is always reached and the complexity of the loop at line 5 is

58

Algorithm 3.6 Node ranking-based placement algorithm - NRPlacement

1 𝑉 ′ ← ∅

2 Sort VNFs of 𝑉 in R(𝑉)-descending order

3 for 𝑣 ∈ sorted 𝑉 do
4 Set 𝑛𝐼 ← 𝑚𝑖𝑛(𝜅𝑣,

∑
𝑛∈𝑁 𝛼𝑔,𝑛) and let 𝑁′ be the 𝑛𝐼 most preferential clouds of 𝑣

using Equ. (3.27)

5 for 𝑛 ∈ 𝑁′, 𝑛 has enough resource do
6 Place 𝑣 on 𝑛 and update P(𝑣, 𝑁) with 𝑛’s residual resource

7 end for
8 if 𝑣 is not placed yet then
9 𝑁′ ← {𝑁\𝑁′}

10 Go back line 9 if 𝑁′ is empty

11 𝑉 ′ ← 𝑉 ′ ∪ {𝑣}

12 end if
13 end for
14 while stopping criteria is not met do
15 if constraints are satisfied then
16 Store current scheme with its cost

17 end if
18 for 𝑣 ∈ 𝑉 ′ do
19 Increase R(𝑣) by a pre-defined parameter

20 end for
21 Go back line 2

22 end while
23 return scheme with lowest cost stored at line 16

𝑂 (|𝑁 |). Note that the advantage of NRP lies in its fast convergence speed with the much lower

number of feasible states. Its limitation is to easily get stuck in local optimum due to greedily

place VNFs until all the constraints are satisfied. A trigger at line in Alg. 3.6 is not enough to

make a significant “jump” regarding the ranking difference between nodes.

From the implementation perspective, several options can be considered for MBMAP, i.e.

MC/SC selection, batch’s size. In Alg. 3.4, the MC’s operations include, i) to keep track of

states generated from the SCs and assign them to other idle SCs and ii) to generate new states

only if there are not enough states to assign. The more states a SC generates, i.e. the more

processing resource the SC requires, the less possibility the MC invokes BTRANS procedure.

59

In other words, the larger batch of states the BTRANS procedure generates, the less resource

the MC requires to manipulate states, the more powerful the SCs are and consequently more

resource in total is allocated for controllers since the number of SCs is typically higher than that

of MCs. However, regarding the convergence speed, a large batch’s size enables MBMAP to

explore more candidate solutions and thus faster at discovering the optimal solution. Similarly,

there is also a trade-off in setting the number of controllers between the allocated resource and

the purpose of driving the algorithm into new regions of the solution space. One way to deal

with the parameter is to start with several controllers to encourage the exploration of solutions

near a local optimum and add more to push the search out of that local region based on some

stopping criteria.

In the worst case, MBMAP might go through the entire space of up to |E | = 𝑂 (2
∑

𝑣∈𝑉 𝜅𝑣 (|𝐶 |+|𝑁 |))

states. Every BTRANS invocation requires 𝑂 (1) step to transit between two states and

𝑂 (|𝐶 | |𝑁 |2 |𝑉 |2) steps to validate the new state. As a Markov-based approach, MBMAP is

approximated by an entropy term 1
𝛿

∑
𝑒∈E 𝑝𝑒𝑙𝑜𝑔(𝑝𝑒). The gap is therefore computed as 1

𝛿 𝑙𝑜𝑔 |E |,

or 𝑂 (|𝑉 |𝑙𝑜𝑔𝑀)/𝛿. As pointed out in Chen et al. (2013), besides the batch’s size and the number

of controllers, 𝛿 is another parameter that can be adjusted as a trade-off between the requirement

of fast convergence as well as small optimality gap and the system performance.

3.6 Performance evaluation

This section presents the performance analysis of proposed model. We assess the applicability

of our VNF placement solution by comparing it with other solutions that do not consider IoT

network characteristics, i.e. the term 𝑙𝑔,𝑛 is ignored in the Equ. 3.27, or the multistart and

batching techniques, are not adopted in MBMAP.

60

Table 3.2 Simulation parameters

Parameter Value
Number of VNFs 70

Number of clouds 8

Number of IoT gateways 15

VNF instances (𝜅𝑣) (4, 8)

Service arrival rate 𝜆𝑐 (𝑚𝑠−1) (0.1, 0.9)

Service rate 𝜇𝑛
𝑣𝑖 , 𝜇𝑔 (𝑚𝑠−1) (0.1, 0.3)

Sensor data rate 𝜆𝑠𝑒𝑛
𝑣 (𝑚𝑠−1) (0.5, 1.0)

Bandwidth 𝑏𝑜𝑢𝑡
𝑣 & 𝑏𝑠𝑒𝑛

𝑣 (Mbps) (1.5, 2.5) & (0.3, 0.7)

Link latency 𝑙𝑛𝑔 & 𝑙𝑛
′

𝑛 (ms) (1.4, 0.02) & (1, 0.02)

3.6.1 Simulation Analysis

3.6.1.1 Simulation Settings

We build the simulation with 100 VNFs that are placed onto a fully meshed network topology of

8 clouds and 15 IoT gateways. A VNF can be replicated from 4 to 8 instances. Each gateway

is configured to connect to a cloud with a probability 0.8 and is uniformly assigned to handle

several sensors of 40 IoT-enabled VNFs. The simulation is performed on service chains with 6

VNFs as illustrated in section 3.3.3. Each chain consists of a single source node and from 1 to 6

destination nodes. Maximum tolerable service latency is set to 45ms.

From the deployment perspective, input data in terms of traffic rates from sensors is periodically

generated at the rate 𝜆𝑠𝑒𝑛
𝑣 while service requests arrives according to a Poisson distribution with

mean 𝜆𝑐. The NRP algorithm is deployed at only one cloud and its output is applied to other

clouds. For MBMAP algorithm, the connections between MCs and SCs are pre-established

and maintained during the performance of the algorithm. From such input data, a MC script

implements Alg. 3.1 to initialize a state composing of adjacency matrices that represent

the placement of VNFs onto clouds and the assignment of VNFs instances to service chains

61

0 2 4 6 8 10

#iterations 103

3.5

4

4.5

5

5.5

6

T
ot

al
 c

os
t (

W
)

103

NRP
MAP
MBMAP (2 controllers)
MBMAP (5 controllers)
MBMAP (8 controllers)

Figure 3.6 Evaluation of convergence of proposed algorithms

according to Alg. 3.4. It also calculates a batch of states by using BTRANS procedure and

send them to SCs whenever there are idle SCs. A script at the SC performs a basic procedure

combining with a batching technique and sends back to the MC the state with the lowest cost

using Alg. 3.5.

To evaluate the effect of the IoT network on VNF placement decision making, we define

an IoT density as the ratio between the number of IoT-based VNFs and the total number of

VNFs. We consider two density levels, i.e. low, and high with the ratios 0.1, 0.7 respectively.

Simulation parameters are summarized in Table 5.4. The value of 𝑟𝑛 ranges between 2 and 4.

System cost is considered from the aspect of power consumption (Watt). According to Nonde,

Elgorashi & Elmirgahni (2016), the power consumption by a router port supporting 1Gbps

connection speed is about 21.25W and 11.25W to run a CPU per hour. For the purpose of

comparison, normalized unit costs of computing resource and bandwidth are set to 1W and 2W

respectively.

62

3.6.2 Simulation Results

We next present our simulation results on our proposed MBMAP framework and NRP from

three aspects, namely convergence time, system cost and resource utilization. The simulation is

performed through time slots during which the controllers receive different service demands and

makes a decision of placing VNFs. It is assumed that during each slot, system configuration

parameters, e.g. network topology, physical/virtual node settings, etc., remains unchanged. The

algorithm is assumed to converge during this slot and the deployment of VNFs is performed in

the remaining time of the slot.

3.6.2.1 Convergence

We investigate the convergence of the proposed algorithms including MBMAP with different

numbers of controllers, NRP and basic MAP. Fig. 3.6 shows that NRP converges very fast and

returns the solution after several iterations. This is due to NRP mainly depends on ranking

functions to retrieve an optimal placement. In contrast, it takes more time for Markov-based

approaches, i.e. MBMAP and MAP, to converge toward an optimal result, especially with a large

space of states. Unlike MAP, MBMAP leverages the presence of multiple controllers at each

IoT edge clouds to implement the multistart and batching technique. It not only allows MBMAP

to explore more potential states but also prevents MBMAP to get trapped forever at a locally

optimal solution. As a result, our proposed mechanism can converge faster than MAP within

500 iterations and approximate the optimal solution as the number of controllers increases.

3.6.2.2 System Cost

In Fig. 3.7, we run all the algorithms on 100 service chains by varying 𝜔 from 0.1 to 0.9

to see how cost components, i.e. 𝑀𝑛𝑒𝑡 , 𝑀𝑐𝑜𝑚 are affected. The results show that NRP and

baseline have more impact on the computation cost and as a result, the improvement of the

network cost is very limited even when emphasizing the importance of the network traffic cost

(i.e. 𝜔 = 0.1). This is due to NRP and the baseline relies on the function P which is attributed

63

0.1 0.3 0.5 0.7 0.9

Cost weight factor

0

1.5

3

4.5
T

ot
al

 c
os

t (
W

)
103

Baseline
MAP

NRP
MBMAP

a) Computation resource cost

0.1 0.3 0.5 0.7 0.9

Cost weight factor

0

1.5

3

4.5

T
ot

al
 c

os
t (

W
)

103

Baseline
MAP

NRP
MBMAP

b) Network traffic cost

Figure 3.7 Cost component comparison with different cost weight factors

more by the computation resource than the network resource. MBMAP and MAP jointly control

the computation cost and the network traffic cost in a more dynamic way and therefore obtain

the lower total cost in all considered cost importance. From Fig. 3.7, the approaches obtains

the balance between computing and bandwidth cost at various 𝜔, i.e. 0.3, 0.32, 0.33 and 0.35

for the baseline, MAP, NRP and MBMAP respectively. Regarding the difference between cost

components, these 𝜔’s values can be seen as Pareto optimal solutions. However, for the purpose

of simplicity, we set 𝜔 to the average value 0.33 so that the cost difference incurred by different

approaches is not significant to avoid extreme cases.

We next evaluate the total cost incurred by using placement approaches given different parameters,

i.e. the number of service chains or service arrival rate 𝜆𝑐, IoT density levels and cost’s weight

factor 𝜔. In Fig. 3.8, the MAP approach adopts the standard Markov-approximation framework

as described in section 3.5.1.2 and the baseline is a ranking-based heuristic like NRP but excludes

the delay parameter 𝑙𝑔,𝑛 from Equ. (3.27). We can observe that such the exclusion induces a

significant gap in system cost between the baseline and the other strategies, especially when more

VNFs related to IoT devices present in the system. Three remaining algorithms are comparable

to each other, i.e. 10 - 30 service chains with a negligible cost difference. However, at a high

load of more than 40 service chains, MBMAP steps out of the others with a reduction of 13.8%

on the total cost. To analyze this difference between the algorithms, we investigate the CDF

64

20 40 60 80 100

#service chains

0

1.5

3

4.5

6

T
ot

al
 c

os
t (

W
)

103

Baseline
MAP

NRP
MBMAP

a) Low-density environment

20 40 60 80 100

#service chains

0

1.5

3

4.5

6

T
ot

al
 c

os
t (

W
)

103

Baseline
MAP

NRP
MBMAP

b) High-density environment

Figure 3.8 Cost comparison with different level of IoT density

3 4.5 6 7.5 9

Total cost (W) 103

0

0.2

0.4

0.6

0.8

1

C
D

F

Baseline
MAP
NRP
MBMAP

Figure 3.9 Distribution of system cost by service rates

of system cost across different service demands. Fig. 3.9 shows that MBMAP overlaps with

MAP, which indicates how close these approaches are. From the perspective of Markov chain, it

guarantees that the combination of multistart and batching techniques into the original Markov

approximation framework does not break Markov property when constructing Markov chain.

On the other hand, NRP results in a better cost than the baseline and this matches with the results

of component costs in Fig. 3.7.

65

20 40 60 80 100
Latency (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F
Baseline
MAP
NRP
MBMAP

Threshold
(45ms)

Figure 3.10 Distribution of service latency by service rates

0.1 0.3 0.5 0.7 0.9

Event occurrence rate (s-1)

0.8

1.2

1.6

2

2.4

2.8

T
ot

al
 c

os
t(

W
)

103

Baseline
NRP
MBMAP

Figure 3.11 Evaluation of total system cost

3.6.2.3 Service Latency

We perform the analysis under the high-density condition because it is close to the practical

environment in which some VNFs are IoT-based entities and some are not. This setting is

66

0.1 0.3 0.5 0.7 0.9

Event occurrence rate (s-1)

40

80

120

160

200

240

La
te

nc
y

(m
s)

Baseline NRP
lMBMAP hMBMAP

Figure 3.12 Surveillance session setup latency

used in the rest of the paper, except where the differentiation is required. To understand the

performance of proposed algorithms on Quality of Service (QoS), we plot the CDF of service

latency across different service arrival rate and the number of service chains. As can be seen in

Fig. 3.10, MBMAP and MAP result in better latency than NRP and the baseline. More than

90% service requests are served by MBMAP with latency less than the threshold. For other

algorithms, this value is 78% with MAP, 53% with NRP, and 29% with the baseline. Notice

that the number of IoT end-points does not have a significant impact on service latency as the

difference of service latency between a 1-target chain and a 6-targets chain is small. This is

because the latency is computed as the maximum value among those between source nodes and

all the destination nodes. In contrast, the length of service chains affects not only service latency

but also demonstrates the improvement of the proposed algorithms. With “longer” service

chains, there are likely more instances of each VNF that need to be allocated and therefore

resulting to more feasible options of placement (for variables 𝑥𝑛𝑣𝑖) and assignment (for variables

𝑥𝑐𝑣𝑖) instances to a chain even with the same length. Simple heuristics like NRP or the baseline

do not leverage this fact to improve their result whereas methods like MBMAP and MAP exploit

the introduction of new feasible solutions to obtain a more optimal placement scheme.

67

1 2 3 4 5 6 7 8

Cloud

1
2
3
4
5
6
7
8

C
lo

ud

0.05

0.1

0.15

0.2

a) Baseline

1 2 3 4 5 6 7 8

Cloud

1
2
3
4
5
6
7
8

C
lo

ud

0.05

0.1

0.15

0.2

0.25

b) NRP

1 2 3 4 5 6 7 8

Cloud

1
2
3
4
5
6
7
8

C
lo

ud

0.05

0.1

0.15

0.2

0.25

c) MBMAP

Figure 3.13 Evaluation of link utilization

3.6.3 Experimental Analysis

3.6.3.1 Testbed Settings

The experimental analysis is conducted on the basis of communication sessions between IoT

endpoints as shown in Fig. 3.3. The set 𝑁 is composed of 8 clouds that are realized by 8 blade

servers each of which has 24 physical CPUs and 96GB of memory. VNFs are implemented via

Virtual Machines (VMs) configured with different settings depending on the requirements of

corresponding service functions, i.e. between 2 ∼ 4 virtual CPU (vCPU) and 4 ∼ 16 GB virtual

memory (vMem) as detailed in Table 4.3. This configuration for heavy tasks is reasonable and

has been used in several related works, i.e. Wang, Pan & Esposito (2017a).

Table 3.3 VNF Resource Configuration

Service functions (vCPU, vMem, #instances)
Motion Analyzer (2, 8, 4)

Video Processor (4, 16, 3)

Decision Maker (2, 4, 4)

Dispatcher (2, 4, 1)

Web Server (4, 8, 2)

Mobile Proxy (2, 8, 5)

68

1 2 3 4 5 6 7 8
Cloud

0

20

40

60

80

100
U

til
iz

at
io

n
(%

)
Baseline NRP MBMAP

clouds not required
by MBMAP

Figure 3.14 Evaluation of resource utilization over clouds

The number of VMs is limited to not cause over 85% CPU usage in order to guarantee the

system performance. According to the testbed scenario, the set 𝑉 is composed of one standalone

VNF, i.e. Decision Maker, and five IoT-enabled VNFs. Each VNF has from 1 to 6 instances.

Eight controllers in MBMAP are deployed along with VMs for VNFs on all the blade servers.

Toward IoT side, 6 OpenWRT-based Access Points (APs) are set up as IoT gateways that handle

traffic from 3 sensors, 2 laptops and 3 mobile phones. A script is deployed at the AP to

control the transmission of sensor data towards corresponding VNFs. Without affecting the

final result, a script is programmed to send data at specific time to represent the occurrence of

an intrusion which causes a significant difference of recorded data between two consecutive

moments. Network bandwidth between gateways and clouds are pre-configured by APs while

the delay is managed by scripts at blade servers.

3.6.3.2 Experimental Results

To show the advantage of our proposed method, we measure the total latency of surveillance

service. The event occurrence rate varies from 0.1 to 0.9 according to Poisson distribution

during 10 time slots to represent service demand on the network. To show how the convergence

69

of the algorithms affect the overall QoS, we perform the experiments under two conditions, i.e.

high and low rate change of occurrence rate, with the duration of time slots 1 and 10 minutes

respectively. Accordingly, a proxy is deployed to hold packets from the source node until the

placement scheme is obtained by the algorithm. Fig. 3.11 shows that while MBMAP and NRP

obtain scheme at a lower cost, i.e. 11 ∼ 21% the baseline. However, in Fig. 3.12, MBMAP

causes a long delay for sessions occurred at the beginning of each slot. In the case of 1-minute

slots (hMBMAP), the extremely long sessions represented as outliers significantly affect the

latency median and make this value higher a bit than that of 10-minute slots (lMBMAP).

Especially, at the event rate 0.9𝑠−1, lMBMAP results in a higher variation of sessions’ delays and

more skewed data than other approaches as well as hMBMAP. In addition, at both of time slot’s

durations, with the execution time approximating 0 due to the small size of input data, NRP and

the baseline barely induce any overhead to the hypervisors and therefore the performance of

deployed VMs as the MBMAP’s controllers do. Note that the MAP algorithm does not appear in

Fig. 3.12 because its performance is comparable to MBMAP regarding the small-scale testbed.

Regarding resource utilization, Fig. 3.13 represents the link utilization between all pairs of

clouds and Fig. 3.14 illustrate how computing resource is distributed across the clouds (or

blade servers). By using the baseline Fig. 3.13a, VNFs are placed onto all the 8 clouds and

thus entails the utilization of network bandwidth at every link connecting them. In Fig. 3.13b,

the communication traffic barely go through the links between clouds 7, 8 with clouds 5,6. In

contrast, as shown in Fig. 3.13c, most of the network usage is concentrated at some clouds for

MBMAP. Unlike prior approaches that try to place VNFs on the same place as much as possible,

our algorithm places them in accordance with the impact of the IoT gateways. Correspondingly,

computation resource is over-provisioned by the baseline since all the clouds are active but

operating with less than 80% allocated resource. For NRP, even though the resource is used

more efficiently with more than 85% of resource utilized at clouds 1, 2, and 4, there is a large

bias in the amount of virtual resource between them and the other clouds. For example, the 6𝑡ℎ

cloud needs only 31% CPU usage whereas the 7𝑡ℎ, 8𝑡ℎ asks for 12% and 9%. On the other hand,

70

MBMAP requires only 5 clouds with a more efficient mechanism of provisioning in such a way

that blade servers are fully used with the CPU utilization close to 93%.

3.7 Conclusion

This paper studies the VNF optimal placement problem in NFV-based edge cloud systems

taking IoT network topology into consideration. We consider IoT service chains composed

of multiple VNFs that are geographically deployed onto edge clouds close to IoT endpoints.

The VNFs communicate not only with each other but also with IoT gateways that typically

aggregate data from IoT sensor network as contextual information into discrete messages and

forward them toward VNFs at the server side. We define an analytical model of system cost in

terms of computation resource and network bandwidth with regard to service latency and the

availability of each resource at edge clouds. We then formulate the problem of minimizing the

total system cost with respect to constraints on available resource and QoS requirements. To

obtain an optimal placement solution, two algorithms for small and large-scale network settings

are proposed respectively, namely a Markov-based approximation approach that leverages the

presence of multiple edge cloud to adopt multistart and batching techniques, and a node ranking

heuristic.

We implement these two algorithms and validate their performance via simulation and testbed.

The testbed is configured according to an IoT-base surveillance use case. The results show that

with the consideration of IoT network topology in making VNF placement decision can save on

system cost up to 21% depending on the size of the network.

In future, we will take into account the mobility of IoT devices that requires to update the

proposed model to reflect the dynamic connection between VNF and IoT gateways. The online

placement algorithm in this situation is needed to handle highly dynamic IoT network change.

CHAPTER 4

JOINTLY OPTIMIZED RESOURCE ALLOCATION FOR SDN CONTROL AND
FORWARDING PLANES IN EDGE-CLOUD SDN-BASED NETWORKS

Duong Tuan Nguyen1 , Chuan Pham1 , Kim Khoa Nguyen1 , Mohamed Cheriet1

1 Department of Automation Production, École de Technologie Supérieure,

1100 Notre-Dame West, Montreal, Quebec, Canada H3C 1K3

Article submitted for publication, December 2021.

Abstract

The emergence of Software-Defined Networking (SDN) paradigm and Network Function

Virtualization (NFV) technology enables the implementation of novel edge-cloud SDN-based

network infrastructure and accelerates the deployment of services with real-time requirements.

However, it is challenging to achieve a jointly optimal resource placement on both SDN controller

and forwarding planes in edge-cloud SDN-based networks. In this paper, we jointly address

two issues, that are SDN controller-switch assignment and Virtual Network Function (VNF)

placement. We propose a model and formulate the joint optimization problem of dynamically

provisioning resource for SDN controllers and VNFs. To cope with fluctuate service demand,

it is vital to maintain the stability of the entire system composed of controllers, forwarding

elements, i.e. switches, and physical machines where VNFs are hosted. We thus apply the

Lyapunov optimization framework to transform a long-term optimization problem into a series of

real-time problems and employ the exponentiated gradient ascent method to find a near-optimal

solution. Based on simulation and experiments, the results obtained show that our approach

improves the system cost up to 11 ∼ 40% depending on service demand and network size.

Keywords: Resource allocation, VNF placement, SDN controller-switch assignment, IoT

service, Lyapunov optimization, Exponentiated gradient ascent.

72

4.1 Introduction

Emerging distributed cloud architecture, such as fog/edge computing enables to shift a significant

amount of computing functionality toward the edge of the network, close to end-users. Being

made up for the shortcomings of centralized cloud computing model, this paradigm is a key

enabler for the deployment of both computation-intensive and delay-sensitive IoT applications,

such as real-time communication services or video surveillance Chen, Li, Deng, Li & Yu

(2019). Edge computing allows requests from end-users’ equipment to be processed by placing

responsible application modules or service functions in proximity and consequently reducing

the pressure on network bandwidth utilization with the lowest latency. Specifically, with the

collaboration of edge and cloud networks, service requests can be elastically executed at either

core cloud or edge server depending on their characteristics, i.e. complex/simple computing,

high/low latency requirement Pan & McElhannon (2018).

In fact, resource management remains challenging in edge-cloud network regarding to a diverse

set of IoT services with dynamic service demand and the increasing real-time requirements

Fang & Ma (2021). Thanks to novel softwarization technologies such as SDN, NFV, this task

is facilitated in the sense that network functions are programmable and centralized at control

entities. Hence, resources required by IoT services can be easily and quickly configured and

deployed. However, determining how the resource is allocated optimally in real-time is a

non-trivial task. Not only virtual network functions (VNF) serving service requests need to

be dynamically placed on physical servers at either edge or core cloud, a.k.a VNF placement

problem (VPP) Liu, Guo, Liu & Yang (2021), but also it requires to efficiently map SDN

controllers to switches that forward traffics between VNF in order to reduce flow setup latency,

a.k.a SDN controller-switch assignment problem (SCSA) Guo, Zhang, Feng, Wu & Lan (2020).

To the best of our knowledge, while both VPP and SCSA have been well researched, jointly

solving them to obtain a holistic resource allocation strategy at control and forwarding planes

has been not addressed in any of prior works. It turns out to be a very difficult problem regarding

the complicated interaction between relevant systems, i.e., network controllers, cloud platform,

73

container orchestrator to handle multiple service function chains and the increasing size of the

optimization problem with additional variables as well as constraints. As a result, it is harder to

solve in a real-time manner with the dynamic service demand while ensuring the stability at

control plane.

The paper’s contribution is two-fold. First, we propose a model for the joint optimization problem

of allocating resource for both SDN controller and VNFs placement (SCVP) and formulate our

objective as an Integer Programming (IP) problem. Apart from jointly solving SCSA and VPP,

we go a step further than prior works by taking real-time requirement into account which is a

common characteristic of IoT smart services. The model considers not only dynamic service

demand and its impact on E2E service latency but also the delay induced by the communication

from the switch that handling VNFs’ traffic to its SDN controller, i.e. setup flow delay. Second,

to address dynamic service demand while maintaining the entire system stability, we apply

Lyapunov optimization framework Neely (2010) to transform this original problem into a series

of real-time problems without a priori knowledge. We then employ an Exponential Gradient

Ascent method on transformed problems, whose performance in countering the exponential

growth of network size has been assessed by Vigneri, Paschos & Mertikopoulos (2019). Via

simulation and experiments, the results show that our proposed system outperforms previous

approaches regarding the presence of heterogeneous applications composed as service function

chains with dynamic service demands.

The remainder of the paper is organized as follows. After reviewing related work in Section II,

we introduce the model and the formulation of SCVP problem in Section IV. Section V explains

the proposed algorithm and section VI provides a performance evaluation of our methods with

simulation settings. Finally, conclusions are drawn.

74

4.2 Related Work

In this section, we provide an overview of the state-of-the-art solutions relevant to VNF and

SDN controller placement in edge-cloud SDN-based network with respect to real-time service

requirements.

4.2.1 VNF Resource Placement

VNF placement problem (VPP) has been studied in many published papers. Closest to our

network system model, edge-cloud SDN-enabled network system, is the work on dynamically

placing VNFs and routing service chain’s traffic in Liu et al. (2021). The authors target the

problem with the aim of achieving network load balance, reducing delay, packet loss and jitter

in the network. A multi-stage graph-based heuristic algorithm is proposed without however

considering the impact of the mapping between SDN controller and switch on flow setup latency.

Regarding the deployment of extreme low-latency services for Internet-of-Things (IoT) appli-

cations, Xu et al. Xu et al. (2020) present a QoS-aware solution for VPP in multi-tier mobile

edge networks. Varasteh et al. Varasteh et al. (2021) take into account the power consumption

and resource constraints of physical machines and forwarding switches in the power-aware and

propose a fast heuristic framework to solve VPP in an online manner. constrained joint VPP. In

Poularakis, Llorca, Tulino, Taylor & Tassiulas (2020), service placement and request routing

and mobile edge-cloud network is studied with consideration to multidimensional resource

requirements, i.e. storage, computation, communication constraints. In Taleb et al. (2015), the

authors deal with service usage behavioral patterns of mobile users in obtaining an optimal

scheme of allocating VNFs resource. Cziva et al. (2018) takes into account the dynamic nature

of IoT networks apart from user mobility and presents a dynamic scheduler of placing VNFs on a

distributed edge infrastructure. It is typically assumed that service components are implemented

as VNFs. The joint VNF placement and path selection problem is thus investigated in Kuo

et al. (2016) from the service chain perspective regarding the relation between link and server

75

usage. In Bhamare et al. (2017), analytical models for service function placement are adopted in

multi-cloud environments.

4.2.2 SDN Controller Placement

Similar efforts have been explored in finding an optimal placement scheme for SDN controllers.

In Guo et al. (2020), Guo et al. introduce a heuristic solution for SCSA that optimizes the

controller resource demand. Unlike existing works that calculate the assignment mainly based

on the number of flow path setup requests generated from the switches, the authors analyze the

diversity of the resource demand for flow path setup requests. The decision is made based on

the fact that resource demand at control plane can be reduced if the switches on the path can be

assigned to fewer controllers.

The work Dixit et al. (2013) presents an architecture that allows optimally placing switches

under the management of elastic distributed SDN controllers. The authors in Wang et al. (2017)

present a dynamic scheme to assign switches to controllers to balance the controller load while

keeping the control traffic overhead low. Switch migration schemes are proposed to minimize

the migration cost Xu et al. (2019) or to reduce flow setup time Ye et al. (2017).

However, all the studies are specificially to target either VPP or SCSA. In this work, we jointly

solve both in a real-time manner. We take into account the fluctuation of service demand from a

set of service function chains while maintaining the stability at control plane which is the vital

part in SDN networks.

4.3 System Model and Problem Formulation

4.3.1 Network System Model

In this work, we study an SDN-based edge-cloud network that consists of one core cloud and

a set of edge nodes as shown in Fig. 4.1. Without loss of generality, we suppose that both

edge and core clouds operate as a single server with co-located physical resources. VNFs are

76

Core cloud

SDN controllers

SW1 SW2 SW3

SW4

Edge node 1 Edge node 2

Forwarding plane
Control plane

Figure 4.1 Edge-cloud SDN-enabled network system with a set of switches, edge/cloud

with physical resource, and colored VNFs

differentiated by their colors and deployed onto the physical servers. The rest are switch nodes

under the control of SDN controllers.

Let 𝑁ℎ, 𝑁𝑠, 𝑉 denote the set of physical server hosts, the set of forwarding nodes (or switches)

and the set of VNFs respectively. A set 𝑃 of SDN controllers are placed across multiple sites

to control VNFs’ traffic forwarding by connected switches. The notation 𝑙 is used to define

the transmission delay between any two nodes, that is, 𝑙ℎ,ℎ′ for physical hosts ℎ, ℎ′ ∈ 𝑁ℎ, 𝑙𝑠,𝑠′

for switches 𝑠, 𝑠′ ∈ 𝑁𝑠, and 𝑙𝑠,𝑝 for switch 𝑠 and controller 𝑝, if mapped. Similarly, 𝐵ℎ,ℎ′,

𝐵𝑠,𝑠′ represent the bandwidth capacity allocated for the path between ℎ, ℎ′ and between 𝑠, 𝑠′

respectively.

Decision variables: For our ultimate goal, we define three main decision variables, namely i)

𝑥𝑣,ℎ ∈ {0, 1} indicates if VNF 𝑣 is placed on the host ℎ, ii) 𝑦𝑠,𝑝 ∈ {0, 1} indicates if the switch 𝑠

is mapped to the controller 𝑝. Assuming that a switch is controlled by only one controller at a

77

Table 4.1 Notation List

General Inputs
𝑁ℎ, 𝑁𝑠 Set of physical server hosts and switches

𝑉, 𝑃 Set of VNFs and SDN controllers

𝐹 Set of service request flows

𝑘𝑣 Number of VNF 𝑣’s instances

𝜆 𝑓 Arrival rate of service flow 𝑓 ’s request

𝑎
𝑓
𝑣 , 𝑎

𝑓
𝑣,𝑣′ Indicator of the presence of VNF 𝑣 and two consecutive VNFs

𝑣, 𝑣′ in flow 𝑓

𝜆𝑝, 𝜇𝑝 Arrival rate and processing rate of packets at 𝑝

Service Latency
𝐿 𝑓 , 𝐿

𝑠𝑒𝑡
𝑓 Threshold of latency and setup delay for flow 𝑓

𝐵ℎ,ℎ′ Configured capacity for the path between ℎ, ℎ′

𝑙 Transmission delay between any two nodes

𝑏ℎ,ℎ′ Bandwidth used by two hosts ℎ and ℎ′

System Resource
& Queue
𝑟𝑣 Physical resource required to operate VNF 𝑣

𝑅ℎ Physical resource pre-configured for host ℎ

𝑄𝑝 (𝑡) Number of packets in 𝑝’s queue at time 𝑡

System Cost
Cℎ Cost per compute resource unit at host ℎ

Cℎ,ℎ′ Cost per bandwidth unit of the link between ℎ, ℎ′

𝐶𝑝 Cost to deploy a controller 𝑝

C Total system cost

Decision Variables
𝑥𝑣,ℎ 1 if VNF 𝑣 is deployed at host ℎ, 0 otherwise

𝑦𝑠,𝑝 1 if switch 𝑠 is assigned to controller 𝑝, 0 otherwise

time.

∑
𝑝∈𝑃

𝑦𝑠,𝑝 = 1,∀𝑠 ∈ 𝑁𝑠 (4.1)

78

Resource constraints: For each VNF 𝑣 ∈ 𝑉 , there might be many 𝑣’s instances deployed over

multiple physical hosts according to the license purchased. Let 𝑘𝑣 denote the maximum number

of the 𝑣’s instances.

∑
ℎ∈𝑁ℎ

𝑥𝑣,ℎ ≤ 𝑘𝑣,∀𝑣 ∈ 𝑉 (4.2)

The system is assumed to serve a set of service request flows 𝐹 where each flow 𝑓 ∈ 𝐹 is

represented as a chain of VNFs with service request arrival rate 𝜆 𝑓 . We use 𝑎
𝑓
𝑣 ∈ {0, 1} and

𝑎
𝑓
𝑣,𝑣′ ∈ {0, 1} to indicate that 𝑓 ’s traffic goes through 𝑣 and 𝑣, 𝑣′ are two consecutive VNFs of

the flow 𝑓 , respectively. For any ℎ, ℎ′ ∈ 𝑁ℎ,

𝑏ℎ,ℎ′ =
∑
𝑓 ∈𝐹

∑
𝑣,𝑣′∈𝑉

𝑥𝑣,ℎ𝑥𝑣′,ℎ′𝑎
𝑓
𝑣,𝑣′𝑏𝑣,𝑣′ ≤ 𝐵ℎ,ℎ′ (4.3)

In order for 𝑣’s to process one request, it requires 𝑟𝑣 units of resource (e.g. total available CPU

frequency in GHz) whereas in order to transmit data, 𝑣 needs 𝑏𝑣,𝑣′ units of network bandwidth

(e.g. total available bandwidth in Gbps) to exchange data with another VNF 𝑣′. A VNF 𝑣 can be

only placed on a host ℎ ∈ 𝑁ℎ if it requires resource less than the amount of resource configured

for ℎ, i.e. 𝑅ℎ, and the bandwidth less than bandwidth capacity from ℎ to any other hosts. For

any ℎ ∈ 𝐻, we have

𝑟ℎ =
∑
𝑓 ∈𝐹

∑
𝑣∈𝑉

𝑥𝑣,ℎ𝑎
𝑓
𝑣 𝜆 𝑓 𝑟𝑣 ≤ 𝑅ℎ. (4.4)

Similarly, a controller can control only a subset of switches according to its resource capacity

defined by 𝑅𝑝 and the units of resource required to handle each switch 𝑟𝑐𝑡𝑟𝑙𝑠 . This restriction is

formulated as follows:

𝑟𝑝 =
∑
𝑠∈𝑁𝑠

𝑦𝑠,𝑝𝑟
𝑐𝑡𝑟𝑙
𝑠 ≤ 𝑅𝑝. (4.5)

79

Service latency: Each flow 𝑓 has its own requirement of latency 𝐿 𝑓 . Therefore, the total delay

for a flow to traverse from source node to destination node of a service chain should not exceed

𝑙 𝑓 . In other words, ∀ 𝑓 ∈ 𝐹:

𝑙 𝑓 =
∑

𝑣,𝑣′∈𝑉

∑
ℎ,ℎ′∈𝑁ℎ

𝑥𝑣,ℎ𝑥𝑣′,ℎ′𝑎
𝑓
𝑣,𝑣′𝑙ℎ,ℎ′ ≤ 𝐿 𝑓 . (4.6)

We also consider flow setup delay 𝐿𝑠𝑒𝑡
𝑓 due to its significant impact on IoT networks, especially

safety-critical systems Kumar et al. (2017). In fact, this value is obtained by summing up the flow

latency as the left term in constraint 4.6 and the latency for controllers to process PACKET-IN

message. For any 𝑓 ∈ 𝐹, we have:

∑
𝑣∈𝑉

∑
ℎ∈𝑁ℎ

∑
𝑝∈𝑃

∑
𝑠∈𝑁𝑠

𝑥𝑣,ℎ𝑦𝑠,𝑝 𝐴
𝑓 ,𝑣
ℎ,𝑠 𝑙𝑠,𝑝 + 𝑙 𝑓 ≤ 𝐿𝑠𝑒𝑡

𝑓 . (4.7)

where 𝐴
𝑓 ,𝑣
ℎ,𝑠 = 𝑎

𝑓
𝑣 𝑎ℎ,𝑠.

4.3.2 Queueing and System Stability Model

Due to the key value of controllers in an SDN network, we take system stability as the important

consideration when solving SDN controller-switch mapping problem. Having said that, it

assumes that each SDN controller maintains a queueing system to receive and process flow traffic

from mapped switches over time slots 𝑡 = 0, 1, . . . , 𝑇 . Let 𝚯(𝑡) = (𝑄𝑝 (𝑡), 𝑝 ∈ 𝑃) be the queue

backlog vector of the whole control plane, where 𝑄𝑝 (𝑡) is the number of blocked flow traffic

packets in 𝑝’s queue at the beginning of time slot 𝑡. Given the queue lengths of all controllers

are all 0 at time slot 0, i.e., 𝑄𝑝 (𝑡) = 0,∀𝑝 ∈ 𝑃, the value of 𝑄𝑝 (𝑡) evolves over time as follows2:

𝑄 (𝑡+1)
𝑝 =

[
𝑄 (𝑡)

ℎ + 𝜆(𝑡)𝑝 − 𝜇(𝑡)𝑝
]+

(4.8)

2 Throughout this paper, we denote [𝑧]+ as max{𝑧, 0}.

80

where 𝜆(𝑡)𝑝 and 𝜇(𝑡)𝑝 are the arrival rate and the processing rate of packets at controller 𝑝. In this

paper, the processing rates 𝜇𝑝 are known at every time slot whereas 𝜆(𝑡)𝑝 at every SDN controller

is determined based on the rate of the flow traffic going through VNFs as follows:

𝜆(𝑡)𝑝 =
∑
𝑓 ∈𝐹

1
𝑧
𝑓
𝑝 ≥1

Δ 𝑓
𝜆(𝑡)𝑓 ,∀𝑝 ∈ 𝑃 (4.9)

where 𝑧
𝑓
𝑝 =

∑
𝐴

𝑓 ,𝑣
ℎ,𝑠 𝑥𝑣,ℎ𝑦𝑠,𝑝 is the sum for all 𝑣 ∈ 𝑉 , ℎ ∈ 𝑁ℎ, 𝑠 ∈ 𝑁𝑠, 1

𝑧
𝑓
𝑝 ≥1

is the indicator

function, and Δ 𝑓 is the expiration time configured for forwarding rules installed at switches.

In a system where network nodes are highly related in that they might forward traffic of the

same service chain, queue blocking delay adversely impacts the entire service chain’s delay.

A constraint is therefore imposed on the queue backlog to make sure an acceptable delay.

According to Neely (2010), it can be achieved as long as the queueing system is stable, or in

other words, its long-run averages hold the following condition:

lim
𝑇→∞

1

𝑇

𝑇−1∑
𝑡=0

∑
𝑝∈𝑃

𝐸{𝑄 (𝑡)
𝑝 } < ∞ (4.10)

4.3.3 Problem Objective and Formulation

The objective of SDN Controllers and VNFs Placement (SCVP) problem is to minimize the

total cost incurred by i) the allocation of computing resource at physical hosts for VNFs, ii) the

deployment of SDN controllers at different sites, and ii) the reservation of network bandwidth

of any links to carry traffic flow. In practice, the cost to perform these tasks can be modeled

according to the energy consumption of each allocated unit of resource as follows:

• Cℎ: cost to allocate one unit of resource at host ℎ

• Cℎ,ℎ′: cost to allocate one unit of network bandwidth resource for the path between ℎ and ℎ′.

• C𝑝: cost to deploy an SDN controller 𝑝.

81

Our goal is to design an optimization engine that takes network topology and service chains’

requirements as input and decides which controller handles which switches, and which switch

forward traffic from VNFs deployed on the server connects to the switch to minimize the total

cost as the weighted sum of three components, with 𝛼 + 𝛽 + 𝛾 = 1, 𝛼 > 0, 𝛽 > 0, 𝛾 > 0:

C =
∑

ℎ,ℎ′∈𝑁ℎ

(𝛼Cℎ𝑟ℎ + 𝛽Cℎ,ℎ′𝑏ℎ,ℎ′) + 𝛾
∑
𝑝∈𝑃

∑
𝑠∈𝑁𝑠

C𝑝𝑦𝑠,𝑝 (4.11)

The SCVP problem is formulated as follows:

minimize
x,y

C (4.12)

subject to (4.1) − (4.7), (4.10)

𝑥𝑣,ℎ ∈ {0, 1},∀𝑣 ∈ 𝑉, ℎ ∈ 𝑁ℎ (4.13)

𝑦𝑠,𝑝 ∈ {0, 1},∀𝑠 ∈ 𝑁𝑠, 𝑝 ∈ 𝑃 (4.14)

4.4 Algorithm Design and Analysis

In this section, we develop an algorithm to solve the problem (5.19). First, we notice that the

constraint (4.10) requires a priori knowledge of system status. Unfortunately, it might be not only

impractical to keep tracking network system or services demand in a realistic environment during

every time slot from the beginning but also difficult to rapidly retrieve historical information to

address the optimization problem. In response, we adopt Lyapunov optimization framework to

transform the original problem into the one that can be solved in each time slot. Second, it is

required to orchestrate resource from an exponentially large number of nodes. As such, any

algorithm should be dimension-free, i.e., its execution time must be independent or at least nearly

independent on the size of the network. Inspired by the result from Vigneri et al. (2019), we

employ a scalable and efficient approach based on gradient exponentiation called Exponentiated

Gradient Algorithm (EGA).

82

4.4.1 Lyapunov Optimization Framework

To satisfy the constraint (4.10), the queue 𝚯(𝑡) must be mean rate stable as stated by Neely (2010).

We therefore define the Lyapunov function and a so-called one-step conditional Lyapunov drift

at time slot 𝑡 as follows:

𝐿 (𝚯(𝑡)) =
1

2

∑
𝑝∈𝑃

𝑄𝑝 (𝑡)
2 (4.15)

Δ (𝚯(𝑡)) = 𝐸
[
𝐿
(
𝚯(𝑡 + 1)

)
− 𝐿

(
𝚯(𝑡)

)
|𝚯(𝑡)

]
(4.16)

Intuitively, Δ (𝚯(𝑡)) is the difference of queue length between two consecutive slots. Therefore,

the closer an algorithm pushes this value towards its bound, the more stable the system queue is.

We have the following theorem to determine such the bound.

Theorem 1. For any queue backlog 𝚯(𝑡) under any placement scheme, Δ (𝚯(𝑡)) is upper

bounded by

Δ (𝚯(𝑡)) ≤
1

2
𝐸
[∑
𝑝∈𝑃

(
𝜆𝑝 (𝑡)

2 + 𝜇𝑝 (𝑡)
2
)
|𝚯(𝑡)

]
+

∑
𝑝∈𝑃

𝑄𝑝 (𝑡)𝜆𝑝 (𝑡) − 𝐸
[∑
𝑝∈𝑃

𝑄𝑝 (𝑡)𝜇𝑝 (𝑡) |𝚯(𝑡)
]

(4.17)

Proof. Using the definition of 𝐿 (𝚯(𝑡)) from section 4.3.2 and substituting (4.15) into (4.16)

yield:

𝐿(𝚯(𝑡 + 1)) − 𝐿(𝚯(𝑡)) =
1

2

∑
𝑝∈𝑃

(
𝑄𝑝 (𝑡 + 1)2 −𝑄𝑝 (𝑡)

2
)

=
1

2

∑
𝑝∈𝑃

[
(𝑚𝑎𝑥 [𝑄𝑝 (𝑡) − 𝜇𝑝 (𝑡), 0] + 𝜆𝑝 (𝑡))

2 −𝑄𝑝 (𝑡)
2
]

≤
∑
𝑝∈𝑃

[𝜆𝑝 (𝑡)
2 + 𝜇𝑝 (𝑡)

2

2
+𝑄𝑝 (𝑡)

(
𝜆𝑝 (𝑡) − 𝜇𝑝 (𝑡)

)]
(4.18)

83

Taking the expectation of two sides in (4.18), we have

Δ (𝚯(𝑡)) ≤ 𝐵 + 𝐸
[∑
𝑝∈𝑃

𝑄𝑝 (𝑡)
(
𝜆𝑝 (𝑡) − 𝜇𝑝 (𝑡)

)
|𝚯(𝑡)

]

= 𝐵 + 𝐸
[∑
𝑝∈𝑃

𝑄𝑝 (𝑡)𝜆𝑝 (𝑡) |𝚯(𝑡)
]
−
∑
𝑝∈𝑃

𝑄𝑝 (𝑡)𝜇𝑝 (𝑡) (4.19)

where 𝐵 = 𝐸
[∑

𝑝∈𝑃

[𝜆𝑝 (𝑡)
2+𝜇𝑝 (𝑡)

2

2
|𝚯(𝑡)

]
and the fact that service requests’ arrivals are indepen-

dent and identically distributed over time slots and hence independent of current queue backlogs,

or 𝐸
[
𝜇𝑝 (𝑡) |Θ(𝑡)

]
= 𝐸

[
𝜇𝑝 (𝑡)

]
= 𝜇𝑝.

However, while minimizing a bound on Δ (𝚯(𝑡)) would stabilize the system and satisfy constraint

(4.2), it may result in a high cost C(𝑡) . Instead, by incorporating queue stability into system cost,

we introduce a Lyapunov drift-plus-penalty function as follows

Δ (𝚯(𝑡)) +𝑉𝐸 [C(𝑡) |𝚯(𝑡)] (4.20)

where 𝑉 > 0 is a control parameter to determine how much cost minimization is emphasized.

Our goal is to not only obtain a small 𝐸 [C(𝑡) |𝚯(𝑡)] so as to not incur a large system cost, but

also achieve a small Δ (𝚯(𝑡)) to lower the congestion of service requests given highly fluctuated

IoT service demand. Then from Theorem 1, the objective function of problem (5.19) can be

re-formulated in combining with constraint (4.10). The problem is re-stated as: every slot 𝑡,

given the current queue states 𝚯(𝑡), x(𝑡) , y(𝑡) must satisfy constraints (4.1)-(4.7), (4.13), (4.14)

and

minimize
x,y

C(x(𝑡) , y(𝑡)) = 𝑉C(𝑡) +
∑
𝑝∈𝑃

𝑄𝑝 (𝑡)𝜆𝑝 (𝑡) (4.21)

Based on Lyapunov optimization framework, we design algorithm 4.1 in terms of steps to

solve the approximation of problem (5.19). At each slot, upon obtaining the solution of the

optimization problem (4.21), the queue backlog of each relevant system nodes is updated. The

84

Algorithm 4.1 System Stability Relax Algorithm

1 𝑄𝑛 (0) ← 0,∀𝑛 ∈ 𝑁
2 At each slot 𝑡, collect nodes’ queue backlog 𝑄𝑛 (𝑡), processing rate 𝜇𝑛 (𝑡) and service

request 𝜆𝑛 (𝑡)
3 Solve the problem (4.21) to obtain x(𝑡) , y(𝑡)
4 Update the queue backlog according to (4.8)

5 𝑡 ← 𝑡 + 1

average total cost returned by Alg. 4.1 is near-optimal in the sense that the closeness between it

and C𝑜𝑝𝑡 the optimal value of the original problem (5.19) is guaranteed by following theorem:

Theorem 2. For any 𝑉 > 0 and 𝜀 ≤ 0, we have

lim sup
𝑇→∞

1

𝑇

𝑇−1∑
𝑡=0

𝐸 [C(𝑡)] ≤ C𝑜𝑝𝑡 +
𝐵

𝑉
(4.22)

lim sup
𝑇→∞

1

𝑇

𝑇−1∑
𝑡=0

∑
𝑝∈𝑃

𝐸 [𝑄𝑝 (𝑡)] ≤
𝐵 +𝑉C𝑜𝑝𝑡

𝜀
(4.23)

Proof. To prove this theorem, we use a result that has been proven by the theorem 4.5 in Neely

(2010), which states that there exists a stationary optimal control policy that achieves C𝑜𝑝𝑡 and

such that 𝐸
[
𝜆𝑝 (𝑡)

]
≤ 𝐸

[
𝜇𝑝 (𝑡)

]
− 𝜀, ∀𝑛 ∈ 𝑃.

Thus, from the fact that Alg. 4.1 minimizes C(𝑡) among all policies that satisfy (4.1)-(4.7),

(4.13), (4.14), that is:

Δ (𝚯(𝑡)) +𝑉𝐸 [C(𝑡) |𝚯(𝑡)] ≤ 𝐵 +𝑉𝐸 [C(𝑡) |𝚯(𝑡)]+

𝐸
[∑
𝑝∈𝑃

𝑄𝑝 (𝑡)
(
𝜆𝑝 (𝑡) − 𝜇𝑝 (𝑡)

)
|𝚯(𝑡)

]
≤

𝐵 +𝑉C𝑜𝑝𝑡 − 𝜀
∑
𝑝∈𝑃

𝐸 [𝑄𝑝 (𝑡)] (4.24)

85

From the definition of Δ (𝚯(𝑡)) in (4.16), summing both sides of the above inequality (4.24)

over all 𝑡 = 0, . . . , 𝑇 − 1 and eliminating identical terms yields:

𝑇−1∑
𝑡=0

(
Δ (𝚯(𝑡)) +𝑉

𝑇−1∑
𝑡=0

𝐸 [C(𝑡)]
)
=

𝑇−1∑
𝑡=0

(
𝐸
[
𝐿 (𝚯(𝑡 + 1)) − 𝐿 (𝚯(𝑡)))

])
+𝑉

𝑇−1∑
𝑡=0

𝐸 [C(𝑡)] =

𝐸
[
𝐿 (𝚯(𝑇))

]
− 𝐿(Θ(0)) +𝑉

𝑇−1∑
𝑡=0

𝐸 [C(𝑡)] ≤

𝑇 (𝐵 +𝑉C𝑜𝑝𝑡) − 𝜀
𝑇−1∑
𝑡=0

∑
𝑝∈𝑃

𝐸 [𝑄𝑝 (𝑡)] (4.25)

Then by dividing 𝑇 and 𝑉 on both sides of the last inequality as well as neglecting non-negative

terms leads to:

𝑇−1∑
𝑡=0

𝐸 [C(𝑡)] ≤
𝐵

𝑉
+ C𝑜𝑝𝑡 +

𝐿 (Θ(0))
𝑇

(4.26)

1

𝑇

𝑇−1∑
𝑡=0

∑
𝑝∈𝑃

𝐸 [𝑄𝑝 (𝑡)] ≤
𝐵 +𝑉C𝑜𝑝𝑡

𝜀
+

𝐿 (Θ(0))
𝜀𝑇

(4.27)

Taking the limit 𝑇 →∞ over both sides of (4.26) & (4.27) proves Theorem 2.

Remarks: 1) The bounds in (4.22) & (4.23) give some insights about the trade-off between

time-average placement cost and system queue backlog regarding the value of control parameter

𝑉 . Particularly, a large 𝑉 makes 𝐵/𝑉 in (4.22) small and so is the gap between the cost obtained

from Alg. 4.1 and the optimum. It also enlarges the upper bound of node time-averaged queue

backlog and as a result, offering high service latency due to more service requests are held by

the network. Having said that, it is necessary to choose a compromise between system cost and

network stability given constraint (4.14) on service chain completion time. 2) Unfortunately, the

86

problem (4.21) is still NP-hard and difficult to find the optimal solution in the polynomial time.

Regarding this issue, we use the approach in Vigneri et al. (2019).

4.4.2 Exponential Gradient Ascent Method

4.4.2.1 Problem Relaxation

In order to adopt gradient method, we need to reformulate the discrete optimization problem

(5.19) into the continuous optimization problem. There are two steps to perform. We first

replace 𝑥𝑣,ℎ ∈ {0, 1} and 𝑦𝑠,𝑝 ∈ {0, 1} with �𝑥𝑣,ℎ ∈ [0, 1] and �𝑦𝑠,𝑝 ∈ [0, 1], respectively. Then

product terms in the objective function and constraints are linearized by newly defined variables.

In details, we substitute 𝑥𝑣,ℎ𝑥𝑣′,ℎ′ (or actually �𝑥𝑣,ℎ �𝑥𝑣′,ℎ′) in (4.6), (4.7) with �𝑥𝑣,𝑣
′

ℎ,ℎ′ and following

constraints ∀𝑣, 𝑣′ ∈ 𝑉,∀ℎ, ℎ′ ∈ 𝑁ℎ:

�𝑥𝑣,𝑣
′

ℎ,ℎ′ ≤ min{ �𝑥𝑣,ℎ, �𝑥𝑣′,ℎ′ } (4.28)

�𝑥𝑣,𝑣
′

ℎ,ℎ′ ≥ �𝑥𝑣,ℎ + �𝑥𝑣′,ℎ′ − 1 (4.29)

The newly added constraint (4.28) guarantees that if any of �𝑥𝑣,ℎ and �𝑥𝑣′,ℎ′ is close to 0, their

product or �𝑥𝑣,𝑣
′

ℎ,ℎ′ should be also close to 0. And if both of �𝑥𝑣,ℎ and �𝑥𝑣′,ℎ′ get closer to 1, �𝑥𝑣,𝑣
′

ℎ,ℎ′ will

be close to 1 as imposed by constraint (4.29). Similarly, we define �𝑦
𝑠,𝑝
𝑣,ℎ as the substitution for the

product �𝑥𝑣,ℎ �𝑦𝑠,𝑝 and constraints as follows:

�𝑦
𝑠,𝑝
𝑣,ℎ ≤ min{ �𝑥𝑣,ℎ, �𝑦𝑠,𝑝} (4.30)

�𝑦
𝑠,𝑝
𝑣,ℎ ≥ �𝑥𝑣,ℎ + �𝑦𝑠,𝑝 − 1 (4.31)

Upon obtaining the optimal values of the continuous variables, it is necessary to decide whether

or not the placement of VNFs onto physical servers and the mapping between switches to

controllers are performed. We adopt a greedily random rounding technique in the sense that i)

87

Algorithm 4.2 Exponentiated Gradient-based Algorithm for SCVP Problem

1 Randomize a feasible z0 as an interior point of Ω
2 while gap between two consecutive iterations is still considerable do
3 for hyperplane 𝐴 defining Ω do
4 Generate two distint points z+𝐴 = P+

𝐴 (z) and z−𝐴 = P−
𝐴 (z) as defined in Moretti

(2003)

5 Set z𝐴 = (z+𝐴 + z−𝐴)/2 as the 𝐴-based midpoint

6 end for
7 Averaging all generated midpoints for next iteration

8 end while
9 while stopping criteria does not meets do

10 With P-center point from above loop, generate new value of z according to (4.34)

11 end while
12 z̄ as the average of generated z’s values

13 Return arg minz∈{z̄,z+
∀𝐴

,z−
∀𝐴
} C(z)

𝑥𝑣,ℎ and 𝑦𝑠,𝑝 are set to 1 according to the probability �𝑥𝑣,ℎ and �𝑦𝑠,𝑝 respectively, and ii) this step

is repeatedly performed until we achieve a feasible solution.

4.4.2.2 Exponentiated Gradient Algorithm

The adoption of the Exponentiated Gradient Algorithm (EGA) to solve the relaxed continuous

problem of (4.21) is motivated by the analysis in Vigneri et al. (2019) which elaborates the

dependence of Mirror Gradient Algorithm (MGA)’s convergence rate on the dimensionality

of the problem, which is D = (|𝑉 | |𝑁ℎ | + |𝑁𝑠 | |𝑃 |) in this paper. Before presenting how the

variables are updated by EGA, we introduce several following notations:

1. Ω: feasible region of the problem (4.21)

2. z = (𝑧1, 𝑧2, . . . , 𝑧D) ∈ Ω: a combined vector composed of x’ and y’s elements. Note that∑D
𝑖=1 𝑧 𝑗 ≤ |𝑉 | + |𝑁𝑠 |.

3. z𝑖: the state of the algorithm at iteration 𝑖

4. ∇C(𝑧𝑖𝑗): the subgradient of the objective function C of (5.19) at the 𝑗-th element of z𝑖.

88

As a gradient ascent-based method, the idea of EGA is to move the variable z towards the

optimal solution according to a certain updating function. Let 𝐷𝜙 (z, z𝑖) represent the Bregman

divergence between z and z𝑖 under the function 𝜙, that is

𝐷𝜙 (z, z𝑖) = 𝜙(z) − 𝜙(z𝑖) − 〈∇𝜙(z𝑖), z − z𝑖〉 (4.32)

From the perspective of MGA, the updating function for z solves the problem:

z𝑖+1 = arg min
z∈Ω

{〈𝛾∇C(𝑧𝑖), z〉 + 𝐷𝜙 (z, z𝑖)} (4.33)

Given 𝜙(z) = ∑
𝑧𝑖𝑙𝑜𝑔(𝑧𝑖), the following result obtaind from (4.33) has been proven already in

Vigneri et al. (2019):

𝑧𝑖+1
𝑗 =

𝑧𝑖𝑗 (|V| + |S|)exp(−𝛾∇C(𝑧𝑖𝑗))

|V| + |S| +
∑D

𝑗=1 𝑧
𝑖
𝑗exp(−𝛾∇C(𝑧𝑖𝑗))

(4.34)

Choosing initial candidate: Selecting a “center” point as the initial candidate as in Vigneri et al.

(2019) might not work in this paper since it could violate other constraints as linear inequalities,

i.e., (4.2)-(4.7), (4.13), (4.14). We observe that Ω is a bounded convex polytope since it is

the intersection of half-spaces and is bounded by 0 and 1. The techniques for finding a center

point of a polytope have been studied in many prior works. We decide to use the method to

approximate the center of a linear programming polytope Moretti (2003) for three reasons: i)

it provides a so-called P-Center point near the polytope’s center in few simple and easy steps

partially depending on the number of constraints, ii) it is robust to the addition of redundant

inequalities, which typically occurs in our system models, and iii) the method allows itself to be

reusable if some constraints are changed between time slots.

EGA procedure is summarized in Alg. 4.2. The first loop (step 2 - 8) is to find the center point

of Ω which is used as the initial candidate for the second one (step 9 - 11). At the first loop, two

points are generated by projecting a feasible point z onto every hyperplane. Then the average of

89

all the midpoints is chosen for the next iteration. With an initial candidate, (4.34) is applied until

the stopping criteria met. Note that, we also take into account all the generated feasible points

from the first loop. Specifically, step 13 returns z that incurs the minimum cost. In general,

the basic steps are identical to that in Vigneri et al. (2019). What distinguishes between our

work and Vigneri et al. (2019) is the procedure of initializing the candidate and leveraging the

generated points to get the optimal total cost.

According to Vigneri et al. (2019), EGA converged at a speed depending on the dimensionality

D of z and bounded by:

C𝑜𝑝𝑡 − C(z̄) ≤ 𝑙𝑜𝑔(D + 1)

𝑞𝛾
+

𝛾𝐿2

2
(4.35)

where z̄ is the output of Alg. 4.2, 𝑞 is the number of iterations, Ĉ denotes the upper bound of

∇C(𝑧 𝑗), ∀1 ≤ 𝑗 ≤ D and 𝛾 is gradient step size.

4.4.3 Prototype of SCVP Solution

With the optimization model, we next present the overview of the SCVP solution to discuss how

to integrate the optimization module to optimize resource allocation in SDN-based networks.

As the proof-of-concept, the prototype is based on interworking scenarios, i.e. session setup,

calling flows, between IMS and WebRTC from our previous work Nguyen, Nguyen & Cheriet

(2018) with the presence of various controllers and an E2E service orchestrator as shown in Fig.

4.2. Service functions together with forwarding functions are deployed as VNFs running inside

containers or standalone VMs. All the operations of placing VNF onto containers or VMs as

well as setting up the connectivity between virtual switches and SDN controllers are executed by

an End-to-End service orchestrator (E2ESO).

In detail, E2ESO interacts with underneath resource controllers via Resource Adapters (RAs).

Several options that the RA supports to exchange with controllers include i) YAML files

with Container Manager to create containers and necessary configurations, i.e. specified via

Dockerfile, ii) Heat template files with VM managers to spawn VMs and iii) JSON message

90

E2E Service Orchestrator

Optimizer

Request Mediator

SDN Controllers
(ONOS, ODL)

SDN Controllers
(ONOS, ODL)

Container
Manager

VM
Manager

Executor

Resource AdapterResource Adapter

Figure 4.2 Overview of SCVP solution

to SDN controllers. Request Mediator can transform all the messages from RAs in any form

into SCVP problem’s input data used by Optimizer. The output of Optimizer in terms of VNF

placement and SDN controller-switch mapping is consumed by Executor that decides where to

dispatch and how to deploy that placement. To achieve this purpose, the Executor also collects

status data from the controllers through the RAs (not shown in Fig. 4.2).

4.5 Performance Evaluation

In this section, we present the numerical results with various evaluation schemes to evaluate

our proposed algorithm. Specifically, we focus on quantifying the convergence result, the

objective value, the latency awareness and the acceptance rate of the system in comparison to

the state-of-the-art methods. We also assess the applicability of our solution in a large-scale

setting and experimental testbed.

91

4.5.1 Simulation Settings

Topology settings: We consider an implementation with a network system in which the ratio of

the numbers of nodes, i.e. controllers, switches, and physical servers, is 3:3:6 respectively. This

setting is adopted in several previous works, i.e. Liu et al. (2021). The link bandwidth capacity is

randomized between 1Gbps and 10Gbps and the delay ranges from 2ms to 5ms Knight, Nguyen,

Falkner, Bowden & Roughan (2011). The cost Cℎ for each unit of computing resource is set to

the electricity price of the site where the blade servers locate, which ranges from $0.7 to $1.2

EnergyHub. The bandwidth cost Cℎ,ℎ′ is simply determined based on the energy that endpoints

consume to transmit or receive every 1Gb data, which is taken randomly between $1.4 and $2.4.

Table 4.2 Simulation parameters

Parameter Value
Service arrival rate 𝜆 𝑓 (𝑚𝑠−1) (0.1, 1.0)

Service rate 𝜇𝑝 (𝑚𝑠−1) (0.1, 0.3)

Bandwidth demand 𝑏𝑣,𝑣′ (Mbps) (10, 120)

Link bandwidth 𝐵 (Gbps) (1, 10)

Link latency 𝑙 (ms) (2, 5)

Computing resource cost Cℎ (0.7,1.2)

Network bandwidth cost Cℎ,ℎ′ (1.4,2.4)

Service chain settings: We consider service chains composed of from 6 to 10 functions Nguyen

et al. (2018) each of which is implemented as a corresponding VNF with 4 instances and

bandwidth demand varies from 10 to 120Mbps. The system can serve up to 20 service flows

with request’s arrival rate varying between 0.1𝑚𝑠−1 and 1𝑚𝑠−1. Table 5.4 summaries other

simulation parameters.

Comparison Algorithm: We compare SCVP with the optimal solution obtained by CPLEX

solver with following methods:

92

• Host-fit: We prioritizes physical hosts by their residual resource capacity and place as many

of VNFs as possible to the most available server. The switches are randomly mapped to the

controllers as long as none of the constraints is violated.

• Controller-fit: The controllers are sorted by the capacity and the switches are greedily

mapped to the most available one. VNFs are then randomly deployed onto physical servers

with available resource.

• Best-fit: This method is performing the sort for both SDN controllers and physical nodes in

parallel.

• DVPRP: The method Dynamical VNF Placement and Routing Problem for SFC Request

flows proposed by Liu et al. (2021) jointly consider multiple resource constraints on nodes,

links and QoS requirements in solving VNF resource allocation. However, the dynamic

placement of SDN controllers and flow setup delay are not involved. As we have a different

system model and parameters from Liu et al. (2021), to evaluate the outcome of our work,

we only adopt their idea with the assignment of switches to SDN controllers determined via

Controller-fit approach.

• FASA: A heuristic algorithm Flow-path Aware Switch Assignment introduced in Guo et al.

(2020) is used to minimize the demand of controller resources regarding flow fluctuation

and setup time. However, other metrics like end-to-end flow latency, the stability are not

considered. The placement of VNFs is determined via Host-fit.

4.5.2 Simulation Results

To evaluate the performance of SCVP, we compare it with aforementioned methods in terms of

algorithm convergence, system cost, service latency, resource utilization and system stability

in terms of the average number of messages waiting in SDN controllers’ queues. We use the

average of the results out of 30 simulation runs as the value. We perform the simulation through

time slots and use the average of the results out of 30 runs as the value.

93

80 120 160 200 240
Network size

50

100

150

200

250
E

xe
cu

tio
n

tim
e

(s
)

SCVP CPLEX

a) Execution time

0 150 300 450 600
Iteration

2

3

4

5

S
ys

te
m

 c
os

t

103

SCVP
CPLEX
Optimal

b) Convergence with 240 nodes

Figure 4.3 Convergence of algorithm with different network settings

4.5.2.1 Convergence

We run the simulations to understand the convergence of SCVP regarding the adoption of

CPLEX solver to obtain the global optimal value. We first consider the execution time to achieve

the optimal solution with the number of network nodes ranging from 80 to 240 nodes. As can be

seen in Fig. 4.3a, with small and medium networks, i.e. less than 150 nodes, SCVP takes more

time, i.e. 12s-25s to obtain the optimal results wherein it spends about 20s to find the initial

candidate. SCVP exhibits its strength in dealing with the growth of network size, i.e. greater

than 150 nodes. In details, as shown in Fig. 4.3b, SCVP shows a good performance when it

approaches the solution sooner than the solver around 280 iterations, fewer than 345 iterations

of CPLEX.

4.5.2.2 System Cost

Fig. 4.4a shows the comparison on total system cost among the algorithms of Controller-fit,

Host-fit, Best-fit, DVPRP, FASA and ours. When the service requests come to the system at

rate 1𝑚𝑠−1, the performance of SCVP is the best, which helps reduce about 16% - 23% of

the cost comparing to DVPRP, Best-fit, Host-fit and 33%-40% to FASA or Controller-fit. In

SCVP, we obtain a dynamical placement of both VNFs and SDN controller-switch connectivity,

94

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Service rate (ms-1)

1

1.5

2

2.5

3

3.5

4

T
ot

al
 C

os
t

103

SCVP
FASA
DVPRP

Best-fit
Host-fit
Controller-fit

a) By service rate

80 160 240 320 400
Network size

1

1.5

2

2.5

3

3.5

4

T
ot

al
 C

os
t

103

SCVP
FASA
DVPRP

Best-fit
Host-fit
Controller-fit

b) By network size

10 20 30 40 50
Service chain length

2

3

4

5

6

7

8

T
ot

al
 C

os
t

103

SCVP
FASA
DVPRP

Best-fit
Host-fit
Controller-fit

c) By length of service chain

Figure 4.4 Evaluation of total system cost

consequently less resource is required to handle service requests. Since FASA and Controller-fit

cannot ensure the optimal usage of physical resources for VNFs, which outnumbers the SDN

controllers by about 9:1, their performance is worse than that of Host-fit, DVPRP. Note that there

is no clear difference between Best-fit and DVPRP. This can be explained that while Best-fit

does not obtain a VNF placement as optimal as DVPRP does, the resource required by Best-fit

for SDN controllers is much lower than that by DVPRP, as a result, makes its cost comparable to

DVPRP.

In Fig. 4.4b, we can see that the cost is not considerably fluctuated as there are more network

nodes. SCVP remains to be the most optimal with lowest cost, i.e. 11% - 36%, while other

algorithms even benefits from the increase of network size. For example, Host-fit and Best-fit can

obtain better placement solutions with a network of 500 nodes than it does with 400 nodes. This

is because there are more likely nodes to achieve a better VNF placement or controller-switch

assignment. Practically, this gives an idea of properly adopting approaches under various network

settings regarding the cost and as explained later, the convergence speed of the algorithms.

As the length of service chains increases, the system requires more resource at VNFs to process

the requests and at controllers to handle the traffic forwarding tasks. The results shown in Fig.

4.4c justify the advantage of jointly considering the resource at both control and forwarding

planes in minimizing the system cost. While there is no significant among the algorithms for

service chains composed of less than 10 VNFs, SCVP appears to be the best solution for long

95

10 30 50 70

Service latency (ms)

0

20

40

60

80

100
C

D
F

 (
%

)

SCVP
FASA
DVPRP
Best-fit
Controller-fit
Host-fit

a) Service latency

160 200 240 280

Flow setup latency (ms)

0

20

40

60

80

100

C
D

F
 (

%
)

SCVP
FASA
DVPRP
Best-fit
Controller-fit
Host-fit

b) Flow setup latency

Figure 4.5 Service chain latency and flow setup latency distribution

service chains, i.e. more than 10 VNFs. In details, it not only optimizes the resource for VNFs

but also keeps the resource for active SDN controllers low while guaranteeing service latency

and flow setup delay lower than pre-defined threshold. With more than 40 VNFs per service

chains, the total cost goes up drastically for other algorithms but best-fit and SCVP schemes

thanks to a holistic strategy of provisioning system resource. Additionally, the impact service

chain’s length on VNF resource cost is much higher than that on SDN controller resource. This

explains why the cost incurred by host-oriented methods like DVPRP and host-fit method is

in general lower than that incurred by controller-oriented methods, i.e. FASA, controller-fit,

respectively.

4.5.2.3 Service Quality

To give an insight of SCVP’s benefits to QoS, we investigate the distribution of service chain’s

latency. As shown in Fig. 5.4.2, SCVP and DVPRP optimize the resource allocated for VNFs at

physical servers, their performance is better than other algorithms with service chains delay less

than 30𝑚𝑠−1. Best-fit and Host-fit approaches enable service chain with latency up to 40𝑚𝑠−1

and 55𝑚𝑠−1, which are much better than FASA and controller-fit with the maximum delay value

at 78𝑚𝑠−1 and 85𝑚𝑠−1.

96

100 200 300 400 500 600

Number of service flows

0

20

40

60

80

100

A
cc

ep
ta

nc
e

ra
te

 (
%

)

SCVP
FASA
DVPRP
Best-fit
Controller-fit
Host-fit

a) Service acceptance rate

100 200 300 400 500 600

Number of service flows

20

30

40

50

60

70

A
cc

ep
te

d
tr

af
fic

 (
G

bp
s)

SCVP
FASA
DVPRP

Best-fit
Controller-fit
Host-fit

b) Accepted traffic throughput

Figure 4.6 Evaluation of link utilization

In Fig. 4.5b, SCVP strategy achieves the lowest flow setup delay, i.e. 230𝑚𝑠, which is between

10𝑚𝑠 and 40𝑚𝑠 lower than that of FASA, DVPRP or Greedy ones. Unlike Fig. 5.4.2 in which

SCVP and DVPRP as a host-oriented resource allocation method, are comparable in service

latency, SCVP is actually better than FASA in setting up a traffic flow. We note that both SCVP

and FASA improves the communication delay between switches and controllers, SCVP does a

step further by optimizing the route for traffic between VNFs and as a result, obtains a lower

latency than FASA in total.

Fig. 4.6a shows the average acceptance rate of various algorithms. Average acceptance rate is

understood as the service flows served by the whole system regarding the total request arrivals.

In the simulation, SCVP performs the best, which gets about 20% higher in accepting service

requests than that of Best-fit, which is in turn about 40%-65% higher than that of the others.

The outperformance of Best-fit especially over FASA or DVPRP justifies the advantage of joinly

taking into account resource at both control and VNF planes in provisioning IoT applications

as service function chains. With SCVP, apart from the presence of flow setup constraint, we

also ensure the stability of SDN controllers to reduce the chance a flow is dropped by switches.

As for host-oriented methods, i.e. DVPRP, Host-fit, or controller-oriented methods, i.e. FASA,

Controller-fit, the allocation of either physical resource for VNFs or the assignment of switches

97

SCVP FASA DVPRP Best-fit
50

100

150

200

250

N
um

be
r

of
 a

cc
ep

te
d

se
rv

ic
es

Figure 4.7 Comparing total at different service request rates

to the number of available SDN controllers is insufficient to handle as many service flows as

SCVP or Best-fit does.

In order to justify the result in Fig. 4.6a, we conduct an evaluation of algorithms based on an

additional parameter, i.e. average accepted throughput. The metric is measured as the total

bandwidth of service traffic flows that are successfully received in the network. As shown in Fig.

4.6b, SCVP enables an average amount of throughput about 8Gbps higher than that of DVPRP,

over 20Gbps higher than that of other approaches. This is aligned to what we observe in Fig.

4.6a about SCVP with the highest acceptance rate of service requests.

4.5.2.4 System Capacity

We run simulations to understand the scalability of SCVP using a stress test approach. In details,

we scale up the number of latency-sensitive services until the system meets the limitation of

resource capacity, i.e., the system drops new services because there are no available resources

that can meet all requirement constraints. The maximum number of accepted service requests is

then obtained and compared between various schemes. We simplify the output plot by excluding

Host-fit and Controller-fit methods due to their poor performance.

Fig. 4.7 shows that the scalability of SCVP is considerably higher than FASA, DVPRP and

Best-fit as it can admit 206 requests in total while those of other approaches are 165, 115 and 88

98

0 20 40 60 80 100
Time (s)

0

25

50

75

100

125

A
ve

ra
ge

 q
ue

ue
 le

ng
th

SCVP
NQ-SCVP

Figure 4.8 Average queue length over time

WebRTC podsWebRTC podsWebRTC pods vSensorWebRTC pods vSensor

Openstack
vSwitches VMsVMsP/S/I-vCSCFP/S/I-vCSCF

OrchestratorOrchestrator

ODL VM ManagerVM ManagerONOSONOSODL VM ManagerONOS

KubernetesKubernetes

WebRTC pods vSensor

Openstack
vSwitches VMsP/S/I-vCSCF

Orchestrator

ODL VM ManagerONOS

Kubernetes

WebRTC pods vSensor

Openstack
vSwitches VMsP/S/I-vCSCF

Orchestrator

ODL VM ManagerONOS

Kubernetes

Figure 4.9 Experimental system Setup

requests. The results indicate that for the same amount of available resource, the optimal VNF

placement and switch-controller assignment of SCVP is able to increase the number of deployed

applications. From network operators’ perspective, this can help to either increase the revenue

or reduce the service price for the sake of competitiveness.

99

0 20 40 60 80 100

Time (s)

0

3

6

9

12

15

18
T

hr
ou

gh
pu

t (
M

bp
s)

Forwarding links
Forwarding-control links
Device-Forwarding links

a) SCVP

0 20 40 60 80 100

Time (s)

0

3

6

9

12

15

18

T
hr

ou
gh

pu
t (

M
bp

s)

Forwarding links
Forwarding-control links
Device-Forwarding links

b) FASA

0 20 40 60 80 100

Time (s)

0

3

6

9

12

15

18

T
hr

ou
gh

pu
t (

M
bp

s)

Forwarding links
Forwarding-control links
Device-Forwarding links

c) DVPRP

Figure 4.10 Measured throughput across network with different algorithms

C1 C2 C3
Blade server

0

20

40

60

80

100

C
P

U
 U

til
iz

at
io

n
(%

) SCVP FASA
DVPRP

a) Control plane

F1 F2 F3 F4 F5 F6 F7 F8 F9
Blade server

0

20

40

60

80

100

C
P

U
 U

til
iz

at
io

n
(%

) SCVP FASA
DVPRP

b) Forwarding plane

Figure 4.11 CPU utilization of blade servers

We are also interested in measuring the average number of messages in the queue at SDN

controllers over time slots. We conduct simulations with the focus on only SCVP and non-queue

SCVP (NQ-SCVP) regarding the fact that FASA, DVPRP do not take into account controllers’

stability. Fig. 4.8 presents the time evolution of average controllers’ backlog queue length

of SCVP and NQ-SCVP. Under SCVP’s resource allocation scheme, a quite stable pattern of

backlog queue is shown with the average queue backlog slightly fluctuates within a window of

7-10 messages. NQ-SCVP shows a large fluctuation in queue length, which indicates a greater

chance for a service request to be rejected when the controllers are overloaded.

100

Table 4.3 VNF Resource Configuration

Service functions vCPU vRAM instance
P-CSCF 2 4 4

S-CSCF 2 4 3

I-SCCF 4 16 4

HSS 4 16 2

WRIG 4 8 3

WSF 2 8 3

20 30 40 50 60 70 80
Requests per second

0

15

30

45

60

E
2E

 la
te

nc
y

(m
s) SCVP FASA DVPRP

a) Login

20 30 40 50 60 70 80
Requests per second

0

15

30

45

60

E
2E

 la
te

nc
y

(m
s) SCVP FASA DVPRP

b) Calling setup

20 30 40 50 60 70 80
Requests per second

0

15

30

45

60

E
2E

 la
te

nc
y

(m
s) SCVP FASA DVPRP

c) Calling delay

Figure 4.12 E2E delay for different service chain classes

4.5.3 Experimental Evaluation

4.5.3.1 Experimental Setup

We conduct the experiment with interworking scenarios, i.e. session setup, calling flows,

between IMS and WebRTC involved as depicted in our previous work Nguyen et al. (2018).

The system is composed of 13 blade servers where 1, 3, 9 blades are considered as upper bound

of resources to host controllers, switches, and servers with respect to the ratio in simulations.

Each blade has 24 CPUs, 96Gb RAM and is equipped with programmable network interface

cards with bandwidth up to 100Gbps.

101

For controllers, we install OpenDayLight for IMS domains and ONOS for WebRTC domain, both

of which run as VMs with 2 virtual CPUs (vCPUs) and 4GB virtual RAM (vRAM) as the upper

bound 𝑅𝑝. The set 𝑃 therefore has no more than 6 controllers. Each switch is containerized and

allocated with 1 vCPU, 512Mb vRAM along with the installation of Openswitch. Within the

switch container, a script is installed in advance to help to switch the connectivity from the switch

to various controllers. Having said that, the set of switches is limited to 30 switch-featured VMs.

In order for the experiment to work, we also deploy IMS and WebRTC functions onto VMs

with the number of vCPUs between 2 and 8, and from 4Gb to 16Gb vRAM depending on the

requirement of functions. The configuration details are given in Table 4.3.

The entire system runs on Openstack VMs and Kubernetes containers/pods as shown in Fig. 4.9.

We deploy a monitoring tool to collect the status of resource via pre-installed Resource Adapter

agents at each VM/pod/containers and a logging server processing log files, of IMS as well as

WebRTC service components. Based on the monitoring and logging data, E2ESO will make a

decision of scaling up/down resource.

4.5.3.2 Experimental Results

We do not consider the greedy approach due to its poor performance and focus on the improvement

of SCVP over FASA and DVPRP which do not provide a jointly optimal resource allocation

at control and forwarding planes. Fig. 4.10 shows the measurement of the traffic throughput

on the links between physical servers over 100 time slots. The total throughput between end

devices, i.e. IMS terminals, WebRTC clients, and connected servers is identical for both SCVP,

FASA and DVPRP. In total, SCVP requires less bandwidth resource than FASA or DVPRP

do. In Fig. 4.10a and 4.10b, we see that the throughput on forwarding links mainly between

VNFs on blade servers required by SCVP is less than that by FASA while the throughput on

forwarding-controlling links is comparable between them. This is understandable since both

SCVP and FASA ensure the controllers to be efficiently mapped to switches. Comparing to

DVPRP in Fig. 4.10c, it is obvious that SCVP consumes less resource of forwarding-controlling

102

links than DVPRP does because DVPRP adopts the greedy approach to assign switches to

controllers, which is not as optimal as EGA. Note that unlike the measurement of accepted

throughput in Fig. 4.6b, in Fig. 4.10, we solely focus on the physical links between blade servers.

The traffic exchanged via virtual links, i.e. between two VMs within the same blade server is not

counted.

We then compare the CPU utilization of blade servers between three approaches. The result is

given in Fig. 4.11. For control plane, SCVP and FASA ensures to maximize the usage of each

blade server’s CPUs, i.e. more than 85% and thus spare the controller 3. DVPRP deploy the

controllers over all the controllers even though none of them runs with full capacity. Similarly,

for forwarding plane in Fig. 4.11b, only 5 blade servers are needed by SCVP. FASA mainly

optimizes the resource at control plane and thus inefficiently allocate VNFs on blade servers.

Note that in this experiment, as we equally consider weight parameters in Eq. (4.11), i.e. 𝛼,

𝛽, and 𝛾, the output is expected to intuitively obtain the deployment on as few blade servers

as possible. For the concern of resource load balancing, it can easily adapt the algorithm by

lowering the upper bound of available resource at each server.

In Fig. 4.12a and 4.12b, the delay of login and calling setup flows are considered as the delay of

setting up a session. DVPRP results in the highest latency for these two scenarios due to the

sub-optimal mapping between SDN and switches. The difference of setup flow between DVPRP

and SCVP or FASA is quite significant given the fact that it takes much longer for a message

to be processed by controllers, i.e. about 19.02𝑚𝑠 comparing to the latency for a message to

be exchanged and processed by VNFs, i.e. 2.3𝑚𝑠. Regarding E2E latency for calling session

as shown in Fig. 4.12c, SCVP achieves lowest delay and therefore provides the best quality

of real-time communication service. We notice that the variance of FASA is also higher than

those of SCVP and DVPRP. With FASA, we see that the media traffic flow goes through VNFs

scattered over various blade servers whereas most of traffic flows traverse within the same blade

servers under the placement schema of SCVP and DVPRP and thus less fluctuate than those by

FASA.

103

4.6 Conclusion

This paper presents a solution of optimally provisioning resource at both control and forwarding

planes in edge-cloud SDN-based networks. The approach is shown to be robust to the dynamic

nature and real-time requirements of IoT services.

We model the optimal placement problem of VNF resource and network connectivity between

SDN and forwarding switches. The problem is considered with a critical number of nodes from a

large-scale system where heterogeneous IoT services are hosted. To obtain an optimal placement

solution while ensuring system stability, we adopt the Lyapunov optimization framework and

implement the exponential gradient ascent method. The performance is validated via simulation

and testbed in which dynamic service demand is involved. The results show that regarding the

impact of dynamic service demand on how IoT applications are constructed, total system cost

can be saved up to 11 ∼ 40% depending on service demand and fluctuation rate.

To bring the proposed approach to industry, we plan to investigate micro-service design patterns

in future work, so that the entire system can be deployed via containers on Container as a Service

infrastructure.

CHAPTER 5

NFV-BASED ARCHITECTURE FOR THE INTERWORKING BETWEEN WEBRTC
AND IMS

Duong Tuan Nguyen1 , Kim Khoa Nguyen1 , Mohamed Cheriet1

1 Department of Automation Production, École de Technologie Supérieure,

1100 Notre-Dame West, Montreal, Quebec, Canada H3C 1K3

Article published in IEEE Transactions on Network and Service Management, December 2020

Abstract

The emerging paradigm of Network Function Virtualization (NFV) technology promises an

efficient solution for optimized service deployment in the cloud computing environment thanks

to its ability to dynamically add or remove virtual resources when there is a change in workload.

Nevertheless, telecom providers are still facing a challenging issue in efficiently adopting NFV to

deploy Web Real-Time Communication (WebRTC) service on top of IP Multimedia Subsystem

(IMS). Providing WebRTC service increases the inherent complexity of the IMS system in terms

of the number of service nodes as VNF and the way they interact, both of which play significant

roles in the problem of optimally allocating resources. This paper proposes a virtualized

interworking system between IMS and WebRTC called NFV-based interworking architecture

(NWII), and describes the mechanism for VNF to exchange messages with each other. We

present an analytic system model considering the constraints of resources, QoS, and service

costs. A real-time Markov approximation-based resource allocation algorithm (RIDRA) is then

designed allowing a provisioned resource at service nodes to be reconfigured in time to meet

performance requirements. The proposed solution is evaluated on the large scale by simulation

and on the small scale by our developed testbed. Experimental results reveal that our algorithm

effectively responds to fluctuating service demands with a service cost reduced by 19% via

efficiently allocating virtual resources while maintaining QoS requirement.

106

Keywords: Resource allocation, NFV, WebRTC, IMS, Markov approximation-based algorithm,

multi-domain service orchestration

5.1 Introduction

Nowadays to accommodate significant traffic growth, network operators are facing many

issues, from space to locate new physical servers or network equipment to increasing costs of

energy. They also need the skills to design, operate and manage such complex hardware-based

infrastructure. To deal with these issues, a novel paradigm, called NFV ETSI ISG on Network

Functions Virtualization (2013) is introduced. NFV enables network services to be provisioned

via software-based network functions and network elements, i.e., bridges, routers, sitting on

top of general-purpose servers instead of using specialized hardware. NFV also enables a

system adapting to the change of service demand. In other words, both physical infrastructure

providers and SPs benefit from NFV through reduced costs and energy consumption, improved

manageability and shortened time-to-market, which are all critical factors in the success of

service delivery as regards performance and reliability.

For telecom SPs, a growing NFV adoption has been realized via many prior proposals related to

IMS Carella et al. (2014) due to its important role in telecom core networks. IMS is designed by

Third Generation Partnership Project (3GPP) as a way to integrate with a high-quality network

of telecommunication carriers for pervasive data access to Internet services. However, optimally

scaling resources for the NFV-based IMS system is a challenging task due to the interacting

complexity of virtual IMS entities, i.e., call session control function (vCSCF), home subscriber

servers (vHSS). Moreover, typically integrating third-party services from other domains into

the IMS platform introduces additional VNFs which increases the inherent system complexity

and therefore creates new constraints to the optimization problem of provisioning resources.

In detail, a variety of VNFs resource configurations (or templates) and inter- or intra-domain

network latency all need to be taken into account. It also asks for a well-defined messaging

mechanism among VNFs so that the workload at each VNF can be obtained for optimal resource

allocation. Regarding the interoperability with WebRTC Holmberg et al. (2015) designed

107

for real-time communications in the Web environment, a poorly designed resource allocation

scheme is unable to handle two NFV-based systems of IMS and WebRTC with a very large

number of subscribers and therefore does not leverage the benefits provided by NFV technology.

Eventually, it breaks the original commitment to employ WebRTC, which was intended to help

IMS operators expand the number of potential endpoints for multimedia sessions Nguyen et al.

(2016).

In this paper, we assume that IMS system and WebRTC service are virtualized and operated by

SPs who are typically not willing to disclose detailed information about their network topology.

The interworking function is implemented as a stand-alone entity which can be deployed as a

part of IMS system or by WebRTC SP in reality. In addition, service components are assumed

to be deployed as VNFs running inside an NFV Infrastructure (NFVI)-as-a-Service (NFVIaaS)

provided by one or multiple providers. Our main focus is the problem of service chain resource

allocation regarding common sessions going through the VNFs of the entirely NFV-based

WebRTC ↔ IMS interworking system.

Recently, significant efforts have been devoted to the investigation of an NFV-based architecture

for multi-domain service orchestration ETSI ISG on Network Functions Virtualization (2013);

Rosa et al. (2015); Katsalis et al. (2016); Dräxler et al. (2018); Li et al. (2018b). While

their proposed solutions, in general, enable the deployment of service chains in cross-domain

infrastructure, they are not detailed enough to completely model the interworking scenarios

between IMS and WebRTC. Specifically, there is no explicit explanation of how an interworking

SP communicates with other SPs to setup cross-domain service chains. The abstraction of

domain resource is also described in a generic way and consequently makes it hard to model the

performance of WebRTC ↔ IMS interworking system. In this work, our main contributions are

twofold. First, we model IMS ↔ WebRTC NFV-based service chaining considering system

resource, E2E service latency, and system cost. Second, we develop a real-time inter-domain

resource allocation algorithm (RIDRA) based on the Markov approximation framework Chen

et al. (2013) which is robust in solving the combinatorial optimization problem and efficient with

the distributed implementation. In addition, we specify 5G Operating System (OS) reference

108

architecture Dräxler et al. (2018) for the specific interworking scenario between IMS and

WebRTC. The details of message exchanged between IMS and WebRTC’s VNFs for two

common service chains i.e., login and calling are also described.

The rest of this paper is organized as follows. Section II reviews prior works about VNF resource

allocation and virtualized IMS with WebRTC. Section III proposes an NFV-based WebRTC ↔

IMS interworking architecture, its realization in the interworking service and the interactions

between relevant VNFs in login, calling sessions. System modeling and the formulation of the

problem are explained in section IV. Then, the resource management system and a real-time

inter-domain resource allocation algorithm (RIDRA) are discussed in section V. Section VI

provides a performance evaluation of the proposed algorithm with both simulation settings and

experimental testbed. Finally, conclusions are drawn.

5.2 Related Work

5.2.1 Multi-Domain Service Chain: Architecture & Modeling

The topics related to service chain in multiple domains have been extensively studied in

prior works. In Boubendir et al. (2018), a Proof-of-Concept demonstrates the federation and

orchestration of access and edge resources by a network operator to create and deploy customized

network slices dynamically over a cross-domain network. In terms of architecture, Rosa et al.

Rosa et al. (2015) discussed three cases of multi-domain, distributed NFV, i.e. management

and orchestration, bandwidth negotiation, and reliability. Regarding the problems of NFV

orchestration and the network slicing, a NFV-based architecture and its realization on the LTE

network are proposed in Katsalis et al. (2016). However, none of these two studies proposed

models or algorithms for the deployment of service chain. The authors in Li et al. (2018b)

introduce a horizontal-based multi-domain orchestration framework in SDN/NFV-enabled

satellite and terrestrial networks. They model the service chain placement regarding to the

resource in terms of CPU and memory, which might be inconsistent with situations in which

the SPs deploy their service on NFV infrastructure. Another effort of 5G Operating System

109

(OS) towards 5G communications aiming to abstract away the complexities of underlying 5G

infrastructure for an efficient and flexible service orchestration is discussed in Dräxler et al.

(2018). In this work, we exploit the proposed 5G OS reference architecture and specify its

components to enable the NFV-based interworking system between IMS and WebRTC.

In terms of system modeling and optimization, an increasing number of models are being

proposed to optimally allocate resource when composing service chain. In Wang et al. (2015), a

model of dynamic function composition is presented together with a distributed algorithm using

Markov approximation method. Authors in Bhamare et al. (2017) discuss optimization model to

reduce the overall E2E latency by reducing the inter-cloud traffic w.r.t multiple VNF instances

across multiple clouds. In Gupta et al. (2018), Gupta et al. explore different deployment

strategies for service chaining in a so-called Network-enabled Cloud and develop a model

for chaining VNFs with minimal resource consumption while fulfilling service requirements.

Another work Sun et al. (2018) also tackles the resource allocation problem of orchestrating

service chains by adopting full mesh aggregation method. Similarly, the authors in Riera et al.

(2016) and Zhang et al. (2016) respectively employ a dynamic approach and a vertex-centric

distributed algorithm to address the issue of optimally allocating networking and IT resources

for VNF hosting.

Table 5.1 Related works on service chain optimization problem

Reference Static
optimal

Dynamic
optimal

Distributed
algorithm

Multi-
domain

Wang et al. (2015) Yes Yes Yes No

Bhamare et al. (2017); Gupta

et al. (2018); Sun et al. (2018)

Yes No No Yes

Riera et al. (2016) Yes Yes No Yes

Zhang et al. (2016) No No Yes Yes

This paper Yes Yes Yes Yes

Table 5.1 summarizes some works on the service chain placement problem. Our work features

all four requirements which are not taken into account in previous studies. In particular, we

110

focus on the elasticity of resource allocation in response to service demand changes and propose

a real-time Markov approximation-based algorithm that minimizes total service cost concerning

delay and resource constraints. Moreover, for service across multiple NFV-based systems like

IMS and WebRTC and their components with different requirements, both the heterogeneous

VNF configurations and a distributed algorithm should be considered.

5.2.2 IMS: WebRTC Interworking and Virtualization Architecture

Conventional interworking architecture between WebRTC and IMS has motivated existing works.

In Amirante et al. (2014), a modular-based gateway architecture Janus is designed as a bridge

between legacy IMS protocols and WebRTC. Similarly, an IMS integrated WebRTC prototype

is used in Cruz & Barraca (2015) to evaluate the performance in terms of call throughput and

mouth-to-ear delay. Reference 3GPP (2018) is another effort of 3GPP to re-architecture the

IMS platform to enable access by WebRTC-based clients. From the architectural perspective,

what makes our work distinguish from 3GPP (2018) is that we consider the use case in which

both WebRTC and the interworking SP are third-party services on top of the IMS system. The

realization of the proposed architecture as well as the message flows are therefore done without

any change to the functionalities of conventional IMS entites. While a lot of progress has

been made to address the heterogeneous characteristic between two domains, these works do

not take into account the adoption of NFV paradigm which allows VNFs to be deployed on

different shared physical and virtual resources in order to guarantee scalability and performance

requirements. Such the NFV adoption sets our work apart from other related works.

With the widely used IMS platform, adapting the NFV architecture ETSI ISG on Network

Functions Virtualization (2013) to an IMS-based system has been investigated in many studies.

One of the methods presented in Carella et al. (2014) is to deploy service components as

corresponding virtual units. The approach is preferable due to its compatibility with IMS or

WebRTC specification and the simple implementation to leverage the advantage of NFV. In Lu

et al. (2013), the authors propose an algorithm to address the problem of dynamic resource

allocation. However, they only consider resource aspects in terms of CPU and memory and

111

do not clarify how well their algorithm can handle changes in service demand. Duan et al.

Duan et al. (2017) propose an NFV management system to deploy IMS-related service chains

based on predicted workload and per-instance processing capacity. Another auto-scaling scheme

(VLB-CAC) at the VNF level for optimal allocation of IMS server’ resources to admitted calls

is introduced in Montazerolghaem et al. (2016). VLB-CAC is responsible for finding the

optimal call acceptance rate for each SIP server by solving an optimization problem that prevents

overload. Despite being designed based on the NFV architecture proposed by ETSI ETSI ISG on

Network Functions Virtualization (2013), it is challenging to efficiently employing these works

to the WebRTC ↔ IMS interworking service without respecting the requirement of deploying

multi-domain and multi-provider services. Inspired by the use cases presented in ETSI ETSI ISG

on Network Functions Virtualization (2018), a distributed NFV-based architecture facilitating

the deployment of such the services is proposed.

5.3 NFV-Based Interworking Architecture

In this section, the proposed NFV-based WebRTC ↔ IMS architecture (NWII) is presented

with the details of functional core components along with their interact interface. The NWII’s

realization for the WebRTC ↔ IMS interworking service, which provides an insight of how

WebRTC and IMS’s VNFs communicate with each other is then presented. The WebRTC ↔

IMS Interworking Gateway (WRIG)’s structure and the message flows between VNFs are also

explained.

5.3.1 Overview of Core Components

The NFV-based interworking architecture (NWII) and its corresponding components of the

5G OS reference architecture Dräxler et al. (2018) are shown in Figure5.1. Similar to the 5G

OS’s Service Management (SM) component, Inter-Service Manager (ISM) converts high-level

requests of composing an interworking service from tenants into concrete actions. For instance,

it shall ask Sub-Service Managers (SSMs) for the details of IMS and WebRTC service placement

112

via the interface with Multi-Domain Orchestrator (MdO) or the topology of specific domains

via Sm-Ro.

Sm-Do

Domain Resource Orchestrator

Monitoring Service
InstancesvCSCF

IMS Service Instance

Inter-Service
Manager

Sub-Service
Manager

Sub-Service
Manager

Sub-Service
Manager

Domain
Controller

Domain
Controller

Domain
Controller

Domain OrchestratorDomain OrchestratorMulti-Domain Orchestrator

Domain Resource

Domain

Service
Management

5G OS

Service
Portal

OSS/BSS

Inter- e Service
Manager

Sub- e Service
Manager

Domain OrchestratorDomain OrchestratorDomain Orchestrator

NFV
MANO

vWSF vWRIG

WebRTC Service Instance

Interface

Component mapping

Interworking-Service Orchestrator

SO Decider SO Executor

So-Dr

Figure 5.1 NFV-based interworking architecture between IMS and WebRTC with

reference architecture from Dräxler et al. (2018)

As part of the 5G OS’s MdO, the task of policy-based entity SO Decider (SOD) of Interworking-

Service Orchestrator (ISO) is to make a decision on selecting the optimal component SPs to

compose the interworking service chain. To solve such a multi-objective optimization selection

problem, the SOD can collect analytical data about IMS or WebRTC service components from

Monitoring Service instances via the interface So-Dr. SO Executor (SOE) orchestrates selected

SPs via the interface with the Domain Resource orchestrator (DRO) which plays a role of both

Domain Orchestrators and NFV MANO of the 5G OS architecture. The interested reader is

referred to Dräxler et al. (2018) for more details of other blocks and interfaces.

113

5.3.2 WebRTC ↔ IMS Interworking NFV-based Service

WebRTC
Endpoint

vHSS vS-CSCF

vI-CSCF

vWSF vI-CSCF
vHSS

vS-CSCFvP-CSCF

IMS
Endpoint

vP-CSCF

W bRTC

Physical
resource

Virtual
resource

WebRTC-specified
VNFs

vWRIG

IMS-specified VNFs

Logical link Virtualization PlacementPhysical link

Figure 5.2 NWII Realization for WebRTC ↔ IMS Interworking Service

The NWII is realized via the WebRTC ↔ IMS interworking service as shown in Figure5.2.

The P/I/S-CSCFs and HSS are IMS VNFs which functionalities are already defined in relevant

3GPP specifications Camarillo & Garcia-Martin (2007). Inside the WebRTC domain, the

WSF handles incoming HTTP requests to provide the Web application for downloading to the

browser of WebRTC users. Note that unlike the proposed architecture in 3GPP (2018) that

requires to modify to the P-CSCF’s functionalities to integrate WebRTC-enabled features, our

approach of deploying the WRIG as a separated entity not only benefits from the elasticity of

the NFV technology but also open more chances for conventional IMS system to inter-operate

with different WebRTC SPs. Moreover, as the first entry point for the IMS endpoint, such the

enhanced version of P-CSCF or eP-CSCF may result in a waste of resource since not every

connection to the eP-CSCF is from WebRTC clients.

Service chains demonstrate traffic flows of different service sessions. For example, the login

requests from a WebRTC endpoint going through Web Server Function (WSF) which in turn

performs queries for WRIG’s status is shown by the red dash line. It happens the same with the

114

registration phase of the WebRTC endpoint or the IMS endpoint with IMS domain (the green

line) and the calling session between the WebRTC endpoint and an IMS endpoint (the blue line).

VNFs are assumed to be virtualized in heterogeneous virtual instances which are placed inside

an NFVI.

The WRIG plays two roles, i.e., a WebRTC endpoint and an IMS one, and is composed of

functional components as shown in Figure5.3. Upon receiving WebRTC messages over the

WebSocket protocol, the WebSocket component collects WebRTC information and sends it

to the WebRTC stack (WS) which is responsible for carrying out WebRTC sessions with a

WebRTC client. To setup multimedia connections between WRIG and WebRTC clients, the WS

informs the Interactive Connectivity Establishment (ICE) agent during the negotiation process

for Network Address Translation (NAT) traversal and connectivity checks. The WRIG is also

IMS compliant thanks to IMS Stack (IS), which is in charge of handling IMS SIP messages

exchanged between WRIG and IMS subscribers. WebRTC sessions and IMS sessions are

orchestrated by a so-called Session Management (SM) component. The duties of SM include

synchronizing a session from both sides to make sure that the communication is successfully

established or tears down and bilaterally interprets between WebRTC messages sent by WebRTC

users fed by the WS, and IMS/SIP messages sent by IMS users fed by the IS.

WebRTC
domain

IMS
domain

WS/WSS

IMS SIP

Session Management

ICE Agent

WebRTC
Stack

IMS SIP
Stack

WebSocket

WRIG

Figure 5.3 Functional components of the WRIG

115

WebRTC
User WSF WRIG P-CSCF I-CSCF S-CSCF HSS

1a. Login

2. Register
3a. Register 4. Register3b. Trying

5. Diameter UAR

6. Diameter UAA

7. Register
8.Diameter MAR

9.Diameter MAA
10. 401

Unauthorized11. 401
Unauthorized12a. 401

Unauthorized
13. Register

12b. Trying

15.Diameter UAR

16.Diameter UAA

17.Register

18.Diameter SAR

19.Diameter SAA

20. 200 OK

14. Register

21. 200 OK
22a. 200 OK

22b. 200 OK

23. Notify

1b. 200 OK

Figure 5.4 Message flows of WebRTC ↔ IMS Registration procedure

5.3.3 Session Setup Procedures

We briefly describe the session setup procedure in terms of message exchanges between VNFs.

In this section, we focus on the procedure when a WebRTC user registers himself with an IMS

domain and the procedure of establishing a WebRTC → IMS session. The reverse direction and

other scenarios (e.g., ICE flows) can be developed in a similar way.

5.3.3.1 Registration Procedure

For a terminal to get access to any IMS service, it must register in advance. In the interworking

case, the IMS registration procedure is performed by the WRIG as an IMS user requested by the

WSF when receiving the LOGIN message from a WebRTC user (WU). The whole procedure

116

is depicted in Figure5.4. At step 1a, the LOGIN message is processed by the WSF to check

whether or not the WU is authorized to communicate with IMS subscribers. If yes, the WSF will

reply with a 200 OK message (step 1b) with the necessary information for the WU to contact

the WRIG. Such information might include user profiles (e.g., user identity, secret value) as

well as the WRIG’s address in case the WRIG function is servicing by many servers. The WU

directly sends the WRIG a WebRTC REGISTER message (step 2) that is then converted into an

IMS REGISTER message routed via the P-CSCF (step 3a). The WU is notified at step 3b. The

REGISTER message is then traversed from the P-CSCF to the I-CSCF (step 4). The details

of steps 5 - 22a can be found in Camarillo & Garcia-Martin (2007). At step 12a, the WRIG

is challenged to authenticate the WU with a 401 UNAUTHORIZED message and notifies the

WU about this status at step 12b. At step 22b, the registration phase is complete when the WU

gets the 200 OK message. At the same time, the WSF is informed about the WU’s status by the

WRIG (step 23).

5.3.3.2 WebRTC ↔ IMS Calling Setup Procedure

Figure5.5 illustrates message flows between involved VNFs of a calling session. We consider the

case in which the WRIG is registered as a subscriber of IMS network 1 (IN1) and initiates a call

session to another IMS user in IMS network 2 (IN2). In this scenario, offer/answer exchanges

between two WUs or two IMS users are properly aligned with each other. In particular, the

emission of an OFFER by the WU to the WRIG (step 1) results in an OFFER in the form of an

INVITE message by the WRIG as an IMS user to the P-CSCF (step 2) of the IN1. The information

about the calling session can be conveyed to the WSF for certain purposes (e.g., recording history,

charging). The receipt of the 183 Session Progress from the P-CSCF triggers a Provision Answer

(PRANSWER) to be sent back as a notification for the WebRTC caller (step 13b) to release

unnecessarily allocated resources (i.e., Iteractive Connectivity Establishment (ICE) components,

video decoders). The WU also receives a corresponding RINGING message (step 37b) when the

WRIG gets the 180 RINGING message from the P-CSCF1. The final 200 OK message from the

P-CSCF in IN1 (step 52a) leads to a corresponding ACCEPT message with eventual ANSWER

117

WebRTC
User WRIG P-CSCF S-CSCF I-CSCF S-CSCF

1. Calling
OFFER 2. Invite

3a. Invite
3c. Trying 4a. Invite

P-CSCF IMS
User

IMS Network 1 IMS Network 2

3b. 100 Trying
4b. 100 Trying

Query HSS
- Diameter LIR
- Diameter LIA

5a. Invite
6a. Invite

7a. Invite

5b. 100 Trying
6b. 100 Trying

7b. 100 Trying

8. 183 Session
Progress9. 183 Session

Progress10. 183 Session
Progress11. 183 Session

Progress12. 183 Session
Progress13a. 183 Session

Progress

14. PRACK 15. PRACK 16. PRACK 17. PRACK 18. PRACK

22. 200 OK 21. 200 OK 21. 200 OK 20. 200 OK 19. 200 OK

23. UPDATE 24. UPDATE 25. UPDATE 26. UPDATE 27. UPDATE

32. 200 OK 31. 200 OK 30. 200 OK 29. 200 OK 28. 200 OK

38. PRACK 39. PRACK 40. PRACK 41. PRACK 42. PRACK

47. 200 OK 46. 200 OK 45. 200 OK 44. 200 OK 43. 200 OK

37a. 180
Ringing

36. 180
Ringing

35. 180 Ringing 34. 180
Ringing

33. 180
Ringing

52a. 200 OK 51. 200 OK 50. 200 OK 49. 200 OK 48. 200 OK

53. ACK 54. ACK 55. ACK 56. ACK 57. ACK

37b. Ringing

52b. Accept
ANSWER

13b. Trying
PRANSWER

Figure 5.5 Message flows of WebRTC → IMS Calling procedure

information sent back to the WebRTC caller by the WRIG (step 52b). Similar to what occurs

in the registration procedure, the WSF might be informed by the WRIG after step 52b (not

explicitly shown) about the status of the calling session. All of the other messages exchanged

between the entities in IN1 and IN2 are described in Camarillo & Garcia-Martin (2007).

Note that despite the compulsory use of ICE servers in WebRTC services Holmberg et al. (2015),

these relevant VNF are excluded from the calling setup procedure. This is because service chains

that send ICE transportation information are separated from those that carry session description,

i.e., login, calling according to Uberti, Jennings & Rescorla (2017). This separation allows for a

faster ICE startup since it can start as soon as any transport information is available rather than

118

waiting for all of it. Having said that, we assume that the sessions other than login or calling is

performed out-of-band and therefore the details of flows are not taken into account in this paper.

5.3.4 Discussion

As the number of end users in either the WebRTC or the IMS domain increases, more flows

going through VNFs are created, and thus they need to be effectively managed, especially at the

WRIG that is required to synchronize sessions with IMS system as an IMS subscriber as well as

with WebRTC system as a WebRTC peer. In reality, the number of session types may be much

higher due to the deployment of other VNFs (e.g., media gateways, ICE-enabled VNF). Each

session typically involves a different number of distinguishing VNFs with various interaction

ways between them, namely, sequential, in parallel or both.

For SPs who only have general information about the resource, i.e., virtual CPU/memory/storage,

network bandwidth, it is a challenge to make a decision on optimal resource allocation to achieve

the objectives of end-to-end QoS. To exploit the internal communication between VNFs, such a

decision must bear in mind many variables, for example, message or session types, classes of

virtual instances, processing/bootstrapping time of each instance, as well as resource availability.

An allocation scheme should orchestrate VNFs in a way that none of them handles a heavy load

while the others are idle, which would adversely affect the whole system performance.

5.4 System Model and Problem Description

In this section, we present a system model regarding resources, E2E service latency and system

cost. An optimization problem is formulated to find configurations for VNFs to achieve minimal

total cost while satisfying the constraints of delay and resources. Let 𝑁 , 𝑉 denote the set of

domains and the set of VNFs involved in WebRTC ↔ IMS interworking system. We consider

various sessions as service chains in the formed of VNFs of 𝑉 which locate in one or many

domains of 𝑁 . Given a domain 𝑛 ∈ 𝑁 , there are available configurations for its VNFs, which

are different from each other by the number of allocated resources, i.e. CPU, memory, storage.

119

The configurations are also different by the domain. For example, a configuration-small (or

-large) instance in domain 𝑛 can serve 1000 users whereas a configuration-small (or -large) one

in domain 𝑛′ can afford the workload of 100 users. To overcome this issue, we denote 𝑀 as

all the VNF configurations and 𝛼𝑚,𝑛 ∈ {0, 1} as the indicator if the configuration 𝑚 is used in

𝑛. Along with the computing capacity of VNF, the transmission capacity between them (or

network bandwidth) is typically provisioned by a network entity, i.e. software-defined controller

Kreutz et al. (2015). Let 𝐵𝑚,𝑚′ and 𝜔𝑚,𝑚′ respectively denote the bandwidth and network latency

between two VNF configurations 𝑚, 𝑚′. E2E service delay is computed on the topology of the

chain. The mathematics notations defined in this section are summarized in Table 5.2 for easy

reference.

5.4.1 System Resource Model

We denote 𝑅 as the set of resources. Given 𝑚 ∈ 𝑀, 𝑟 ∈ 𝑅, let 𝑎𝑚,𝑟 , 𝑡 (𝑚), and 𝜇𝑚 respectively

denote the number of resources 𝑟 configured for configuration-𝑚 VNF, the creation time, and the

processing capacity of VNF. A VNF 𝑣 is configured according to one of available configurations

in 𝑀 . This configuration is presented as 𝑥𝑣,𝑚, which value is 1 if 𝑣 is assigned with configuration

𝑚 and 0 otherwise. We also use 𝑦𝑣,𝑛 ∈ {0, 1} to indicate whether or not 𝑣 locates in 𝑛.

Let 𝑆 denote the set of service chains. In this work, we consider 𝑆 with only login and

calling chains. For each chain 𝑠 ∈ 𝑆, there are 𝑉𝑠 ⊂ 𝑉 VNFs that are involved to construct a

corresponding service path 𝐿𝑠 whose length is 𝑙𝑠. Any message belonging to 𝑠 first arrives at the

first node of 𝐿𝑠 at the mean rate 𝜆𝑠. The message is then forwarded to next node until it reaches

𝐿𝑠’s last node. For the connection between a pair of VNFs 𝑢 and 𝑣 of 𝑉𝑠, after being served by

VNF 𝑢, messages are then transmitted to VNF 𝑣 successfully with the probability 𝑝𝑢𝑣 ≤ 1 or

not for network connectivity reasons. If the message transmission fails, the VNF will restart the

transmission process.

We define 𝜆𝑢𝑣,𝑠 as the message rate of 𝑠 transmitted from 𝑢 to 𝑣; 𝜆𝑣,𝑠 as the total rate at 𝑣. The

occurrence of service chains is assumed to be independent and any VNF can be shared between

120

Table 5.2 Notation List

General Inputs
𝑁 , 𝑉 Set of domains and set of VNFs in all the domains

𝑆, 𝑀, 𝑅 Set of service chains, VNF configurations and resource

𝑉𝑠 Involved VNFs of service chain 𝑠

𝐿𝑠 Ordered list of VNFs in 𝑉𝑠 with the length 𝑙𝑠

𝜆𝑣 Overall message incoming rate at VNF 𝑣

𝛽 Upper bound of traffic intensity for any VNF

𝛼𝑚,𝑛 1 if the configuration 𝑚 is used in 𝑛, 0 otherwise

Service Latency
𝜇𝑚 Processing capacity of configuration-𝑚 VNF

𝑑𝑣 Delay time of a message at VNF 𝑣

𝜔𝑚,𝑚′ Transmission time between two configurations 𝑚, 𝑚′

𝑑𝑢𝑣 Time to transmit a message from VNF 𝑢 to VNF 𝑣

𝐷𝑠 Latency of session 𝑠

𝜎𝑠 Maximum delay of service chain 𝑠

System Resource
𝑎𝑚,𝑟 Number of resource 𝑟 for configuration-𝑚 VNF

𝑔𝑛,𝑟 Upper bound of resource 𝑟 in domain 𝑛

𝐵𝑚,𝑚′ Network bandwidth between two configurations 𝑚, 𝑚′

𝐴𝑛,𝑟 Number of resource 𝑟 allocated for domain 𝑛

System Cost
𝑐𝑛𝑟 Cost for allocating resource 𝑟 in domain 𝑛

𝑐𝑏 Cost of using network bandwidth

𝑈𝑉 Cost for operating the whole system every time unit

𝐶𝑉 Total system cost

𝑓 (𝑠) Fine function of violating chain 𝑠’s SLA

Variables
𝑥𝑣,𝑚 1 if configuration 𝑚 VNF 𝑣 is used, 0 otherwise

𝑦𝑣,𝑛 1 if VNF 𝑣 locates in domain 𝑛, 0 otherwise

121

the chains. The formulation of the overall incoming rate is retrieved 𝜆𝑣 as follows:

𝜆𝑣 =
∑
𝑠∈𝑆

𝜆𝑣,𝑠 =
∑
𝑠∈𝑆

∑
𝑢∈𝑉𝑠

𝜆𝑢𝑣,𝑠 (5.1)

The total number of resources 𝑟 allocated for the system in domain 𝑛 denoted as 𝐴𝑒
𝑛,𝑟 must not

exceed the available resource 𝑟 in 𝑛 and is given by:

𝐴𝑛,𝑟 =
∑
𝑠∈𝑆

∑
𝑣∈𝑉𝑠

∑
𝑚∈𝑀

𝑎𝑚,𝑟𝑥𝑣,𝑚𝑦𝑣,𝑛 ≤ 𝑔𝑛,𝑟 (5.2)

5.4.2 Service Latency Model

In order to model latency 𝐷𝑠 of a service chain 𝑠, we consider transmission delay between

endpoints with the corresponding VNFs or between VNFs 𝑑𝑢𝑣 and processing delay at each

VNF 𝑑𝑣. Regarding the connectivity between endpoints and servers, we only take into account

the transmission delays of the wireless link because that of the wired link is negligible due to

high available bandwidth and low bit error rates. The average delay 𝑑𝑛 between an endpoint and

its server denoted is calculated according to Munir & Gordon-Ross (2010) as:

𝑑𝑛 = (𝐾 − 1)𝜏 +
𝑑 𝑓 𝑟𝑚

(1 − 𝑞𝑁𝑇𝐶𝑃
𝑛) (1 − 2𝑞𝑛)

+
1 − 𝑞𝑛

1 − 𝑞𝑁𝑇𝐶𝑃
𝑛

𝑑 𝑓 𝑟𝑚

[
𝑞𝑁𝑇𝐶𝑃
𝑛

1 − 𝑞𝑛
−

2𝑁𝑇𝐶𝑃+1𝑞𝑁𝑇𝐶𝑃
𝑛

1 − 2𝑞𝑛

]
(5.3)

where 𝐾 is the number of frames per packet, 𝜏 is the inter-frame time, 𝑑 𝑓 𝑟𝑚 is the end-to-end

frame propagation, 𝑞𝑛 indicates the packet loss rate of domain 𝑛 and 𝑁𝑇𝐶𝑃 denotes the maximum

TCP transmissions in case of packet loss.

122

Each VNF is assumed as a M/M/1 queue model, and hence the time to process a message 𝑑𝑣 is

obtained according to Gautam (2012), which is:

𝑑𝑣 =
1∑

𝑚∈𝑀 𝑥𝑣,𝑚𝜇𝑚 − 𝜆𝑣
(5.4)

The transmission time 𝑑𝑢𝑣 is given by:

𝑑𝑢𝑣 =
∑
𝑚∈𝑀

∑
𝑚′∈𝑀

𝑥𝑢,𝑚𝑥𝑣,𝑚′𝜔𝑚,𝑚′ (5.5)

To guarantee VNF 𝑣 is not overloaded, the average time between two successive messages must

be greater than the mean processing time by any server of 𝑣 to a message. In other words, we

require the traffic intensity 𝜌𝑣 at 𝑣 as the rate between the arrival rate at each server and its

corresponding service (or processing) time, and this must satisfy the stability condition Gautam

(2012) as follows:

𝜌𝑣 =
∑
𝑠∈𝑆

𝜆𝑣,𝑠

𝑑𝑣
=

𝜆𝑣

𝑑𝑣
< 𝛽 (5.6)

where 𝛽 ∈ (0, 1] is the stability bound of VNFs.

Next, we adopt 𝐷𝑠,𝑘 with 𝑘 ≤ 𝑙𝑠 to indicate the time that a message traverses from the first

VNF, i.e., 𝐿1
𝑠 , to the 𝑘𝑡ℎ node, i.e., 𝐿𝑘

𝑠 . For the sake of obtaining 𝐷𝑠 in terms of 𝑑𝑣 , 𝑑𝑢𝑣 , and the

probability 𝑝𝑢𝑣 , we use a recursive computation based on the pre-computed value of 𝐷𝑠,𝑙𝑠−1. In

detail, with 𝑢, 𝑣 as the last two VNFs of 𝐿𝑠, the expected value of 𝐷𝑠 or 𝐸 [𝐷𝑠,𝑙𝑠] is calculated

as the sum of the processing time for a message by the first (𝑙𝑠 − 1) nodes, the transmission time

𝑑𝑢𝑣 and the processing time 𝑑𝑣, or:

𝐸 [𝐷𝑠,𝑙𝑠] = 𝐸 [𝐷𝑠,𝑙𝑠−1] + 𝐸 [𝑑𝑢𝑣] + 𝐸 [𝑑𝑣] = 𝐸 [𝐷𝑠,𝑙𝑠−1] +
(
𝑝𝑢𝑣𝑑𝑢𝑣 + 2(1 − 𝑝𝑢𝑣)𝑑𝑢𝑣

)
+ 𝑑𝑣

= 𝐸 [𝐷𝑠,𝑙𝑠−1] + (2 − 𝑝𝑢𝑣)𝑑𝑢𝑣 + 𝑑𝑣

(5.7)

123

Let 𝛿𝑠 denote the maximum delay of 𝑠. Solving (5.7) in terms of 𝑑𝑣, 𝑑𝑢𝑣, and 𝑝𝑢𝑣 yields the

session latency with the constraint as:

𝐷𝑠 =
∑
𝑞∈𝑉𝑠

𝑑𝑞 +
∑

𝑢,𝑢∗∈𝐿𝑠

(
(2 − 𝑝𝑢𝑢∗)𝑑𝑢𝑢∗

)
+ 𝑑∗𝑠𝑦𝑠 ≤ 𝛿𝑠 (5.8)

where 𝑑∗𝑠𝑦𝑠 represents the transmission delay between the WebRTC or IMS endpoint and the

system which might be the first VNF, i.e., 𝐿1
𝑠 or the last one, i.e., 𝐿𝑙𝑠−1

𝑠 depending on how the

session is constructed. The notation 𝑢∗ is defined as the next VNFs of 𝑢 in 𝐿𝑠. Note that 𝑑∗𝑠𝑦𝑠 is

computed as the sum of 𝑑𝑛 from (5.3) if endpoints involve during a session more than one time.

Regarding the change of workload, the number of resources allocated for the system may vary at

a period of time during which the workload is constant. We use the superscript notation (𝑖) for

relevant parameters to indicate the index of the scheme defined as that period. (𝑖 − 1) and (𝑖 + 1)

are understood as the previous and next schemes of the 𝑖𝑡ℎ scheme. We assume that system

performance is not affected during the period of reallocating resources and that the message will

benefit immediately from the newly allocated resource when the process is completed. Due to

bootstrapping duration 𝑡 (𝑚), a session can be conducted in three ways under different schemes

as illustrated in Figure5.6: i) the session has already started before the allocation decision is

made, and concludes when the system resource is under the next scheme; ii) the session starts

after the allocation moment and lasts to the next scheme, and iii) the session is conducted with

the next scheme.

Figure5.6 illustrates different cases in which a session can be performed regarding two consecutive

schemes. The decision of adapting resources allocated by the current scheme to the new scheme

is made at the time 𝑡𝑎𝑙𝑙𝑜𝑐, and the process concludes at 𝑡0 = 𝑡𝑎𝑙𝑙𝑜𝑐 + 𝑡 (𝑖)𝑉 . The session starts at

𝑡𝑠𝑒𝑠, where 𝑡𝑠𝑒𝑠 resides in any of three consecutive intervals (−∞, 𝑡𝑎𝑙𝑙𝑜𝑐], (𝑡𝑎𝑙𝑙𝑜𝑐, 𝑡0) and [𝑡0, +∞).

The value of 𝑡 (𝑖)𝑉 is the amount of time for the whole system to move completely to the new

resource and is retrieved as:

𝑡 (𝑖)𝑉 = max
𝑣∈𝑉

(∑
𝑚∈𝑀

𝑥 (𝑖)𝑣,𝑚𝑡 (𝑚)
)

(5.9)

124

Essentially, the last two cases (ii) and (iii), are considered as one case in the sense that the chain

𝑠 starts performing within the first 𝑡 (𝑖)𝑉 − 𝑡𝑠𝑒𝑠 + 𝑡𝑎𝑙𝑙𝑜𝑐 units of time and lasts until the system moves

to the new scheme.

There is a possibility that a session can last for multiple schemes. For simplicity of analysis, we

assume that the lifespan of a session is limited within two schemes. Regarding the delay, we use

𝐷 (𝑖)
𝑠,ℎ→𝑘 apart from 𝐷 (𝑖)

𝑠,𝑘 to define the delay from node 𝐿ℎ
𝑠 to node 𝐿𝑘

𝑠 of the service path. With

ℎ = 1, 𝐷 (𝑖)
𝑠,1→𝑘 can be implicitly understood as 𝐷 (𝑖)

𝑠,𝑘 . Given 𝑡𝑎𝑙𝑙𝑜𝑐, 𝑡𝑠𝑒𝑠, 𝑡
(𝑖)
𝑉 , 𝑛(𝑖−1)

𝑣,∀𝑣∈𝑉 and 𝑛(𝑖)𝑣,∀𝑣∈𝑉 ,

we can acquire the value of ℎ and 𝑘 = ℎ + 1 such that 𝑘 ≤ 𝑙𝑠 as well as:

𝐷 (𝑖−1)
𝑠,ℎ ≤ 𝑡 (𝑖)𝑉 − 𝑡𝑠𝑒𝑠 + 𝑡𝑎𝑙𝑙𝑜𝑐 ≤ 𝐷 (𝑖)

𝑠,𝑘 (5.10)

Intuitively, 𝑘 is the index of the VNF of path 𝐿𝑠, from which its subsequent messages begin to

be processed by the resource allocated. Using the same notations ℎ and 𝑘 defined above, the

calculation of 𝐷 (𝑖)
𝑠 in (5.8) is generalized for the session across multi-schemes as follows:

𝐷𝑒
𝑠 = 𝐸 [𝐷 (𝑖−1)

𝑠,ℎ] + 𝐸 [𝐷 (𝑖)
𝑠,𝑘→𝑙𝑠

] + 𝐸 [𝑑𝐿ℎ
𝑠 𝐿

𝑘
𝑠
] =

∑
𝑝∈F1

𝑑 (𝑖−1)
𝑝 +

∑
𝑞∈F2

𝑑 (𝑖)𝑞 +
∑

𝑢,𝑢∗∈F1

(2 − 𝑝𝑢𝑢∗)𝑑
(𝑖−1)
𝑢𝑢∗ +

∑
𝑣,𝑣∗∈F2

(2 − 𝑝𝑣𝑣∗)𝑑
(𝑖)
𝑣𝑣∗ (5.11)

where F1, F2 are the set of the first ℎ and the remaining (𝑙𝑠 − ℎ) elements of 𝐿𝑠. Note

that equation (5.11) still holds in special cases when a session lasts for a single scheme,

either starting by 𝑡𝑎𝑙𝑙𝑜𝑐 and finishing by 𝑡0 or starting after 𝑡0, as shown in Figure5.6c. In

the former case where 𝑡𝑠𝑒𝑠 + 𝐷 (𝑖+1)
𝑠 ≤ 𝑡0, from (5.10), we have ℎ = 𝑙𝑠 and 𝑘 does not exist;

consequently 𝐸 [𝐷 (𝑖)
𝑠,𝑘→𝑙𝑠

] = 𝐸 [𝑑𝐿ℎ
𝑠 𝐿

𝑘
𝑠
] = 0. In the latter, where ℎ = 0, 𝑘 = 1, we have

𝐸 [𝐷 (𝑖+1)
𝑠,ℎ] = 𝐸 [𝑑𝐿ℎ

𝑠 𝐿
𝑘
𝑠
] = 0.

125

type-s
session

Scheme (i)Scheme (i-1)

a) Service occurs before reallocation period

Scheme (i-1) Scheme (i)

type-s
session

b) Service occurs during re-allocation period

type-s
session

Scheme (i-1) Scheme (i)

c) Service occurs after reallocation period

Figure 5.6 Sessions over allocation periods

126

5.4.3 Cost Model

The total system cost is essentially contributed by three components: the computing cost of VNF

configurations 𝐶𝑐𝑜𝑚, the cost of network bandwidth 𝐶𝑛𝑒𝑡 and the penalty caused by QoS violation

𝐶𝑠𝑙𝑎. Let 𝑐𝑛𝑟 and 𝑐𝑏 be the cost of allocating resource 𝑟 in 𝑛 and network bandwidth respectively

at a unit of time. Then 𝐶𝑐𝑜𝑚 and 𝐶𝑛𝑒𝑡 are calculated based on the resource configured for VNFs

and the allocated bandwidth between any two consecutive VNFs and the last one is computed

by considering the overloaded VNFs which have insufficient resource and therefore overloaded

during the period the system is moving to next scheme. 𝐶𝑐𝑜𝑚 and 𝐶𝑛𝑒𝑡 are computed as:

𝐶𝑐𝑜𝑚 = max
𝑠∈𝑆

𝐷𝑠

∑
𝑛∈𝑁

∑
𝑟∈𝑅

𝐴𝑛,𝑟𝑐
𝑛
𝑟 (5.12)

𝐶𝑛𝑒𝑡 = max
𝑠∈𝑆

𝐷𝑠

∑
𝑢,𝑣∈𝑉

∑
𝑚,𝑚′∈𝑀

𝐵𝑚,𝑚′𝑥𝑢,𝑚𝑥𝑣,𝑚′𝑐𝑏 (5.13)

To model the penalty cost, we first denote 𝑓 (𝑠) as the fine function for every unit of time of SLA

violation in terms of type-𝑠 session delay. During the scale-up event, any session taking place

within 𝑡𝑎𝑙𝑙𝑜𝑐 and 𝑡0 will tolerate a longer latency than expected with a new allocation scheme. We

introduce the notation Δ (𝑖)
𝑠 to represent the difference in delay for a message of a type-𝑠 session

to traverse from node 𝐿1
𝑠 to node 𝐿ℎ

𝑠 under two consecutive schemes where ℎ is computed by

equation (5.10), that is, Δ (𝑖)
𝑠 = 𝐸 [𝐷 (𝑖)

𝑠,ℎ] − 𝐸 [𝐷 (𝑖−1)
𝑠,ℎ].

Since the value of ℎ varies depending upon when a session starts, i.e., 𝑡𝑠𝑒𝑠, we take into account

the expected value Δ (𝑖)
𝑠 . To facilitate the calculation of 𝐸 [Δ (𝑖)

𝑠], we assume that 𝑡𝑠𝑒𝑠 ≥ 𝑡𝑎𝑙𝑙𝑜𝑐. In

practice, this can be understood to mean that any session that begins by the time 𝑡𝑎𝑙𝑙𝑜𝑐 will be

processed by its current scheme until it is completed. 𝐸 [Δ (𝑖)
𝑠] can be retrieved from the expected

value of ℎ in equation (5.10), such that:

𝐸 [Δ (𝑖)
𝑠] = 𝐸

[
𝐸 [𝐷 (𝑖)

𝑠,ℎ] − 𝐸 [𝐷 (𝑖−1)
𝑠,ℎ]

]
= 𝐸 [𝐷 (𝑖)

𝑠,𝐸 [ℎ]
] − 𝐸 [𝐷 (𝑖−1)

𝑠,𝐸 [ℎ]
] (5.14)

127

where 𝐸 [ℎ] satisfies the following condition:

𝐷 (𝑖−1)

𝑠,𝐸 [ℎ]
≤ 𝐸 [𝑡 (𝑖)𝑉 − 𝑡𝑠𝑒𝑠 + 𝑡𝑎𝑙𝑙𝑜𝑐]

= 𝑡 (𝑖)𝑉 − 𝐸 [𝑡𝑠𝑒𝑠] + 𝑡𝑎𝑙𝑙𝑜𝑐 =
𝑡 (𝑖)𝑉

2
≤ 𝐷 (𝑖)

𝑠,𝐸 [𝑘]
(5.15)

In order to obtain the total fine for a session, we retrieve the expected number of sessions of the

same type occurring during the scaling-up period 𝑛̂(𝑖−1)
𝑠 as 𝑛̂(𝑖−1)

𝑠 = 𝑡 (𝑖)𝑉 𝜆𝑠. Using the equations

(5.14), we can derive the following average cost caused by SLA violation 𝑈 (𝑖)
𝑣𝑙𝑡 in terms of 𝑓 (𝑠),

Δ (𝑖)
𝑠 and 𝑛̂(𝑖)𝑠 as:

𝐸 [𝑈 (𝑖)
𝑣𝑙𝑡 (𝑠)] = 𝐸 [Δ (𝑖)

𝑠 𝑛̂(𝑖−1)
𝑠 𝑓 (𝑠)] = 𝐸 [Δ (𝑖)

𝑠]𝑛̂
(𝑖−1)
𝑠 𝑓 (𝑠) (5.16)

Note that the delay is not affected when scaling down; this results in Δ (𝑖)
𝑠 ≈ 0 and consequently

𝑈 (𝑖)
𝑣𝑙𝑡 (𝑠) ≈ 0. Thus, equation (5.16) can be used for both scale-up or scale-down cases.

Our goal is to find a scheme for allocating resources so as to minimize the total cost for deploying

the whole system 𝐶𝑉 while satisfying the constraints of service delay and the availability of

resources. The value of 𝐶𝑉 can be calculated in regard to the number of type-𝑠 sessions 𝑛̄(𝑖)𝑠 for

all 𝑠 ∈ 𝑆 as:

𝐶𝑉 = 𝐶𝑐𝑜𝑚 + 𝐶𝑛𝑒𝑡 +
∑
𝑠∈𝑆

𝑛̄𝑠𝐸 [𝑈𝑣𝑙𝑡 (𝑠)] (5.17)

However, instead of directly discovering the value of 𝑛̄(𝑖)𝑠 by employing the same method for

𝑛̂(𝑖−1)
𝑠 , which requires knowledge about the period of the unknown 𝑖𝑡ℎ scheme, we normalize 𝐶𝑉

with 𝑤𝑠 = 𝑛̄𝑠/
∑

𝑠∈𝑆 𝑛̄𝑠, which could be interpreted as the frequency of 𝑠 and estimated with a

sampling method based on historical statistical data, as follows:

𝐶𝑉 = 𝐶𝑐𝑜𝑚 + 𝐶𝑛𝑒𝑡 +
∑
𝑠∈𝑆

𝑤𝑠𝐶𝑉𝑠 (𝑠) (5.18)

128

We formulate the resource allocation cost minimization problem as follows:

minimize
x,y

𝐶𝑉 (5.19)

subject to (5.2), (5.6), (5.8)∑
𝑛∈𝑁

𝑦𝑣,𝑛 = 1,∀𝑣 ∈ 𝑉 (5.20)

∑
𝑛∈𝑁

𝑦𝑣,𝑛𝛼𝑚,𝑛 = 𝑥𝑣,𝑚,∀𝑣 ∈ 𝑉, 𝑚 ∈ 𝑀 (5.21)

∑
𝑚∈𝑀

𝑥𝑣,𝑚 = 1,∀𝑣 ∈ 𝑉 (5.22)

𝑥𝑣,𝑚 ∈ {0, 1},∀𝑣 ∈ 𝑉, 𝑚 ∈ 𝑀 (5.23)

𝑦𝑣,𝑛 ∈ {0, 1},∀𝑣 ∈ 𝑉, 𝑛 ∈ 𝑁 (5.24)

Constraint (19) and (5.20) ensure that a VNF is assigned with one configuration at a domain.

Constraint (5.21) indicates that the configuration of a VNF must be available at the domain

where that VNF locates.

5.5 Real-time Inter-Domain Resource Allocation

In this section, we describe the real-time resource allocation mechanism RIDRA regarding the

presence of multiple domains. The optimal scheme is retrieved via either greedy approach or

Markov approximation method. Having said that, our algorithm can be divided into two parts:

i) adopting a batch learning approach on received messages to predict the moment when the

workload changes and the allocation decision is made and ii) determining the new scheme by

solving (5.19). By learning over groups rather than with each message, the overhead caused by

continuously solving the optimization problem can be avoided. We use vectors 𝚲 to represent

the system workload in terms of the arrival rate at each VNF as 𝚲 = 〈𝜆1, 𝜆2, . . . , 𝜆 |𝑉 |〉.

129

Algorithm 5.1 Real-time inter-domain resource allocation

1 Input: Knowledge base KB, a batch of messages B and its size sz
2 Output: Resource allocation schema 𝑒
3 B ← {};

4 while receiving a message 𝜔 do
5 B ← B ∪ {𝜔}
6 if size(B) < z then
7 continue
8 end if
9 Λ← learning(KB, B)

10 𝐵 ← {}

11 update(KB)

12 if RIDRA’s constraints are violated then
13 𝑒 ← ResAllocator()
14 end if
15 end while

In Algorithm 5.1, messages are received in a batch B (step 5) until the batch is full (steps 6-7).

At step 9, the knowledge base built from historical data is leveraged together with the collected

data in the batch to anticipate incoming arrival rates at VNFs. The KB is updated with new

data at step 11. If the change of 𝚲 causes a violation of constraints (step 12), the algorithm

for solving (5.19) will be re-executed (step 13). The procedure 𝑅𝑒𝑠𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑜𝑟 can be either

𝐺𝑟𝑒𝑒𝑑𝑦𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑜𝑟 or 𝑀𝐴𝑅𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑜𝑟.

5.5.1 Greedy Resource Allocation Mechanism

In Algorithm 5.2, the resource allocated for all the VNFs are performed in a step by step manner.

The next procedure (step 3, 5, 11) returns the configuration that requires a minimum number of

resource to the current one. The VNFs are preferably configured by the next option available in

the same domain as illustrated at step 4 & step 8. If the resource for that VNF exceeds its limit,

the VNF will be moved to another domain of the next configuration (step 11-11).

130

Algorithm 5.2 Greedy resource allocator

1 for 𝑣 in 𝑉 do
2 Set 𝑚 as the current configuration of 𝑣
3 𝑚′ ← next(𝑚)
4 while 𝑑𝑜𝑚(𝑚′)! = 𝑑𝑜𝑚(𝑚) and 𝑚′! = 𝑁𝑈𝐿 do
5 𝑚′ ← next(𝑚′)

6 end while
7 if 𝑚′! = 𝑁𝑈𝐿 then
8 〈𝑥𝑣,𝑚, 𝑥𝑣,𝑚′〉 ← 〈0, 1〉
9 end if

10 else
11 𝑚′ ← next(𝑚) 〈𝑥𝑣,𝑚, 𝑦𝑣,𝑑𝑜𝑚(𝑚)〉 ← 〈0, 0〉 〈𝑥𝑣,𝑚′, 𝑦𝑣,𝑑𝑜𝑚(𝑚′)〉 ← 〈1, 1〉
12 end if
13 end for

5.5.2 Markov-Approximation Resource Allocation Mechanism

Let E denote the set of all feasible schemes that satisfy all the constraints in RIDRA. Each

scheme is represented as a 3-dimensional matrix M𝑉𝑥𝑀𝑥𝑁 . Adapting the idea in Chen et al.

(2013), we consider that each scheme is a state in the Markov chain and is selected with a

probability 𝑝𝑒. At any time, the best scheme will have the highest probability and the transition

rate 𝑞 between two candidate schemes (𝑖), (𝑖 + 1) is defined as

T ((𝑖) → (𝑖 + 1)) =
1

1 + 𝑒𝑥𝑝
[
− 𝜃 (𝐶 (𝑖)

𝑉 − 𝐶 (𝑖+1)
𝑉)

]
T ((𝑖 + 1) → (𝑖)) =

1

1 + 𝑒𝑥𝑝
[
− 𝜃 (𝐶 (𝑖+1)

𝑉 − 𝐶 (𝑖)
𝑉)

] (5.25)

where 𝜃 is constant according to Chen et al. (2013). The transition rate is calculated according to

𝐶 (𝑖)
𝑉 and𝐶 (𝑖+1)

𝑉 . If𝐶 (𝑖)
𝑉 < 𝐶 (𝑖+1)

𝑉 , then the system stays with scheme (𝑖) due toT ((𝑖+1) → (𝑖)) ≈ 1

and vice versa. If 𝐶 (𝑖)
𝑉 = 𝐶 (𝑖+1)

𝑉 , then the system equally selects (𝑖) or (𝑖 + 1).

The procedure MARAllocator starts with a very basic scheme by deploying VNFs at the domain

with the configuration asking for the lowest resource (step 3-9). The next candidate (𝑖 + 1) is

generated from (𝑖) by randomly selecting a VNF 𝑖 and assigning a random configuration at a

131

Algorithm 5.3 Markov Approximation-based resource allocator

1 Input: maximum count (stopping criteria) MC
2 Output: Resource allocation schema
3 Update constraint (5.6) with predicted 𝜆∀𝑣∈𝑉
4 if 𝑥𝑣,𝑚 & 𝑦𝑣,𝑛 is not set then
5 Set 𝑣 at domain with smallest configuration

6 end if
7 else
8 〈𝑥 (𝑖)𝑣,𝑚, 𝑦

(𝑖)
𝑣,𝑛〉 ← 〈𝑥𝑣,𝑚, 𝑦𝑣,𝑛〉

9 end if
10 𝑐𝑜𝑢𝑛𝑡 ← 0

11 while 𝑐𝑜𝑢𝑛𝑡 < 𝑀𝐶 do
12 M(𝑖+1) ← 𝑐𝑜𝑝𝑦(M(𝑖))

13 {𝑖, 𝑗} ← {𝑟𝑎𝑛𝑑 (1, |𝑉 |), 𝑟𝑎𝑛𝑑 (1, |𝑀 |}

14 M(𝑖+1) [𝑖, :, :] ← 0

15 M(𝑖+1) [𝑖, 𝑗 , 𝑑𝑜𝑚(𝑗)] ← 1

16 if 𝑟𝑎𝑛𝑑 (0, 1) > T ((𝑖) → (𝑖 + 1)) then
17 continue;

18 end if
19 if 𝐶 (𝑖)

𝑉 > 𝐶 (𝑖+1)
𝑉 then

20 M(𝑖) ← 𝑐𝑜𝑝𝑦(M(𝑖+1))

21 end if
22 else if 𝐶 (𝑖)

𝑉 ≤ 𝐶 (𝑖+1)
𝑉 then

23 𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1

24 end if
25 end while

corresponding domain 𝑑𝑜𝑚(𝑗) (step 13-15). This new scheme is chosen according to transition

probability (step 16) and the cost difference between the current scheme and the newly generated

scheme (19). The procedure repeats until the stopping criteria are met when there is no longer

any significant cost improvement (step 22).

132

5.5.3 Discussion

5.5.3.1 Deployment of Algorithm

Regarding the architecture in Figure5.1, the ISO receives the workload information in terms

of the arrival rate at each VNF which is reported by the DRO at each domain. The resource

allocator is deployed at either the ISO or the DRO depending on which approach is used. The

GreedyAllocator is executed at the ISO to make the decision of allocating resource and have the

descriptors of service chains at each domain updated or re-configured accordingly. Unlike the

GreedyAllocator, the MARAllocator is mainly performed by the DRO components at involved

domains. The ISO only keeps the list of sub-optimal schemes. The DROs consults the ISO

whenever it generates a candidate state and keeps doing that until a new state is obtained. A

scheme that is verified to be suboptimal is then informed to the ISO to update the list. By doing

so, the DRO can benefit from the results from the others and as a result, reduce the execution

time to find the optimal solution.

5.5.3.2 Time Window to Update Parameters

In order to achieve an efficient system utilization, the time interval between two consecutive

𝚲 checks must be longer than the system transition time 𝑡 (𝑖)𝑉 . In Algorithm 5.1, this interval is

controlled by the pre-defined and static batch size 𝑧. While this approach is easy to implement,

it is challenging to determine an optimal value of 𝑧. If 𝑧 is small, 𝚲 may change before the

system completes moving to the next scheme. In contrast, a large batch size may cause the

missing of scaling the resource in the presence of highly fluctuated service requests. A possible

way to mitigate this issue is to utilize the dynamic batch size with a traffic model or context

awareness. For instance, from Cao, Chi, Hao & Xiao (2008), 𝑧 can set high when the request

rate is quite stable between 01:00 and 08:00 and low between 08:00 and 24:00 when the demand

significantly changes every hour. Determining the optimal number of messages or the length

of the lookahead interval for each batch is an interesting research challenge that is beyond the

scope of this work, and we plan to pursue it in the future.

133

Regarding the running time, Algorithm 5.1 performs continuously 𝑂 (𝑧) computations for each

message it receives. The constraints’ violations are examined through 𝑂 (|𝑉 | |𝑆 |) sessions for the

delay constraints (5.8), 𝑂 (|𝑉 | |𝑀 |) VNFs for the traffic intensity (5.6), and 𝑂 (|𝑉 | |𝑅 | |𝑆 | |𝑀 | |𝑁 |)

times for resource constraints (5.2). We also notice that the computation complexity of the

learning procedure depends on the selected method. With the 𝐴𝑅𝐼𝑀𝐴(𝑧, 𝑑, 𝑞) model used in

accordance with Calheiros, Masoumi, Ranjan & Buyya (2015), once values from the knowledge

base are available, it has complexity 𝑂 (𝑧) where 𝑧 is the batch size and also the order of the

autoregressive component. The total complexity for checking the constraints affected by the

arrival rate is 𝑂 (𝑚𝑎𝑥(𝑧2, 𝑧 |𝑉 | |𝑅 | |𝑆 | |𝑀 | |𝑁 |)).

5.5.3.3 RIDRA Convergence Speed and Optimality Gap

The performance of the RIDRA is mainly dependent on how fast the MARAllocator converges.

Although MARAllocator can find a close-optimal solution, one challenge that Markov-based

approaches typically face is low convergence speed due to the exploration of candidate solutions

on a huge feasible set. In the worst case when all the sessions require the involvement of |𝑉 |

VNFs, the size of the state space in the Markov chain is |E | = |𝑀 | |𝑉 |. One method to lessen

this obstacle is to perform the MARAllocator in parallel and distributed manner regarding the

generation of the next state. Also, as an approximation approach, the optimality gap is also

considered. The MARAllocator is approximated by an entropy term 1
𝜃

∑
𝑒∈E 𝑝𝑒𝑙𝑜𝑔(𝑝𝑒). The

gap is therefore computed as 1
𝜃 𝑙𝑜𝑔 |E |, or 𝑂 (|𝑉 |𝑙𝑜𝑔𝑀)/𝜃. As mentioned in Chen et al. (2013),

the parameter 𝜃 can be adjusted as a trade-off between the requirement of fast convergence as

well as small optimality gap and the system performance.

5.6 Performance Evaluation

This section presents simulation and experimental results to show the total cost improvement

of the proposed RIDRA during the scaling phase while satisfying the resource and delay

requirements for service chains. We deploy VNFs with different templates onto VMs with

134

corresponding templates. The system is simulated for large-scale evaluation and deployed as a

testbed in the data center for small-scale experiments to validate the algorithm.

5.6.1 Simulation Analysis

5.6.1.1 Simulation Setting

The simulation is performed with seven templates characterized by the number of virtual CPU,

the amount of virtual memory and network bandwidth. The resource settings for VM templates

are set according to those offered by Microsoft Azure IaaS provider, as shown in Table ??. To

avoid unexpected delay caused by the connection to the remote system when measuring startup

time Mao & Humphrey (2012), a local OpenStack-based cloud platform is used. Moreover, we

conduct an experiment on these local VMs for the processing delay metric due to the lack of

relevant studies. Additionally, CPU utilization of VMs is limited at 85%, (i.e., 𝛽 = 0.85) and a

SIP traffic generator is used to simulate the requests from users to the IMS system. We compute

the processing delay as the interval time of two consecutive messages in a SIP transaction.

Table 5.3 Parameters of VM templates used in the simulation process

Template vCPU vMem (GB) Startup time (s) Processing time (ms)
vi.tiny 1 1 4.3 1.2

vi.small 1 2 4.0 0.8

vi.medium 2 4 4.0 0.7

vi.large 2 8 4.0 0.7

vi.xlarge 4 8 7.0 0.4

vi.2xlarge 4 16 7.0 0.3

vi.4xlarge 8 16 12.0 0.2

The set 𝑉 is composed of nodes in three networks: WebRTC, IMS1 and IMS2. We designed our

simulation with relevant VNFs for login and calling sessions. The connection probability and

transmission delay are different between intra- and inter-domain VNFs. All parameters used for

the proposed optimization approach are listed in Table 5.4. The resource cost is normalized

as the weights in Ye et al. (2017). The return value of 𝑓 (𝑆) is calculated on the basis of how

135

long a user is willing to wait in proportion to the session delay when SLA is violated Wu,

Garg & Buyya (2012). About the delay between the endpoints and the server, the parameters in

(5.3) are configured according to Munir & Gordon-Ross (2010), in particular, 𝐾 = 1, 𝜏 = 2.5𝑚𝑠,

𝑑 𝑓 𝑟𝑚 = 0.049𝑚𝑠, 𝑁𝑇𝐶𝑃 = 3 and 𝑞 = 0.02.

Table 5.4 Parameters used for the proposed optimization approach

Parameter Value
Resource set 𝑅 {CPU, Memory}

Session set 𝑆 {login, calling}

Resource cost 𝑐𝑛 (𝑅) {N (5, 0.2), N (2, 0.2)}

Network cost 𝑐𝑏 {N (3, 0.2)}

Session fine 𝑓 (𝑆) {2.5, 5}

Connection probability 𝑝𝑢𝑣 0.80 (inter), 0.95 (intra)

Transmission latency 𝜔𝑢𝑣 N (0.7, 0.02) (intra), N (1, 0.02) (inter)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Message incoming rate (ms-1)

0

1

2

3

4

5

6

M
es

sa
ge

 ra
te

 a
t

ea
ch

 n
od

e
(m

s-1
) WRIG

P-CSCF
I-CSCF
S-CSCF
HSS

a) Login session

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Message incoming rate (ms-1)

0

1

2

3

4

5

6

M
es

sa
ge

 ra
te

 a
t

ea
ch

 n
od

e
(m

s-1
)

WRIG
P-CSCF1
S-CSCF1

P-CSCF2

I-CSCF2
S-CSCF2

HSS2

b) Calling session

Figure 5.7 Message incoming rates at VNFs given initial request rate

We simulate the interworking system as a network using the Simulink library in a MATLAB

environment. A node is characterized as a processing module in the form of multiple servers

that are homogeneous and therefore process messages at the same rate. The arrival rate of a

service chain is controlled by modifying the intergeneration time at the request generator, which

plays a role as the WebRTC client in Figs. 5.4 and 5.5. While the processing time is constant at

every node, the change of 𝜆𝑠 represents the change of request intensity or service demand. We

also adopt a simple Exponential Moving Average (EMA) model to predict 𝜆𝑠.

136

5.6.1.2 Simulation Results

Given the message arrival rate from the endpoint, it is necessary to retrieve the arrival rate at

each VNF. To obtain these values, we conduct experiments on local VMs where the VNFs are

deployed, by having the WebRTC client generate requests at different intervals and measure the

arrival rate at each VNF. To reduce the adverse impact of out-of-band traffic, these VMs are

configured with minimum resources and can be considered negligible to those of the hypervisors.

Figure5.7 demonstrates the incoming message rate at each node given 𝜆𝑠. In the long run, a VNF

exchange messages with the others as defined by its corresponding message flow. In Figure5.7a,

the WRIG node receives a message from both WSF and P-CSCF, whereas during the calling

phase (Figure5.7b), there are also other messages arriving at the WRIG from ICE-enabled

servers.

0 20 40 60 80 100
Time (sec)

0

10

20

30

40

50

Lo
gi

n
se

rv
ic

e
de

la
y

(m
s)

MARA
Greedy

 = 0.1
 = 0.3

 = 0.5
 = 0.8

a) Login session: E2E service delay

0 20 40 60 80 100
Time (sec)

0

30

60

90

120

150

C
al

lin
g

se
rv

ic
e

de
la

y
(m

s)

MARA
Greedy

 = 0.3
 = 0.1

 = 0.7

b) Calling session: E2E service delay

0 20 40 60 80 100
Time (sec)

10

15

2 0

25

 c
os

t

MARA
Greedy

c) Login session: Total system cost

0 20 40 60 80 100
Time (sec)

10

15

20

25

 c
os

t

MARA
Greedy

d) Calling session: Total system cost

Figure 5.8 Comparison of system cost and latency between two approaches

137

1

Message incoming rate (ms-1)

0

5

10

15

20

25
N

um
be

r o
f a

llo
ca

te
d

C
PU

s

MARA
Greedy

a) Login session: Total system’s vCPUs

0.1 0.3 0.7

Message incoming rate (ms-1)

0

5

10

15

20

25

N
um

be
r o

f a
llo

ca
te

d
C

PU
s

MARA
Greedy

b) Calling session: Total system’s vCPUs

Figure 5.9 Comparison of system resource between two approaches

The I-CSCF node is the most stressed node during the login phase since it communicates with

all the IMS nodes, whereas the other nodes, i.e., P-CSCF, S-CSCF, and HSS, only interact with

other two entities. Similarly, the major load of calling requests is handled by S-CSCF in IMS

network 1, and by P-CSCF, I-CSCF in IMS network 2.

On the basis of the relation between𝜆𝑠 with𝜆𝑣,𝑠∀𝑣 ∈ 𝑉 , we performed the simulation continuously

during 100 seconds to see how the resource is adapted according to the different values of 𝜆𝑠.

The workload predictor detects the change of 𝜆𝑠 several seconds before it occurs. We concentrate

on the comparison of total system cost taking into account the service latency between the

two allocation approaches: i) the proposed optimal approach with RIDRA, and ii) the greedy

approach as the baseline by which the resources are greedily allocated as long as the constraints

(5.2), (5.6), (5.8) are satisfied.

Figure5.8a-5.8d illustrate how RIDRA helps reduce the system cost while respecting the session

delay bound. Comparing to the greedy scheme, there are some situations in which RIDRA

uses fewer resources and lead to a longer delay. This may be clearly seen during the period

𝜆𝑠 = 0.1 in Figure5.8a & 5.8b. We also observe that RIDRA works better in the presence of

a high workload change. For instance, when 𝜆𝑠 changes from 0.1 to 0.5 in Figure5.8a, the

greedy approach is unable to allocate immediately enough resource, and thus the latency keeps

increasing over the upper bound. This issue does not happen with RIDRA because the optimal

138

number of the resource has been already allocated in advance. That is why there is a small

period during which the system is over-provisioned around the 50𝑡ℎ. Similarly, the advantage of

RIDRA is always illustrated in Figure5.8b when 𝜆𝑠 changes from 0.1 to 0.7.

Regarding the total system cost, RIDRA can generally save on the cost up to 19% compared to

the greedy algorithm. Under normal circumstances when the system is stable, the difference

between the two approaches is not significant. However, when the demand exceeds the capacity

of the system to some extent, the greedy approach not only degrades the service performance

with more severe SLA violations but also is more wasteful of resources and consequently results

in a much higher cost than that of RIDRA.

In order to get more insights into a system’s behavior, we investigated the total number of

vCPUs allocated for the whole interworking system between two methods. The results shown in

Figure5.9 are aligned with what is observed about the system cost in Figure5.8c & 5.8d. We

also notice the waiting time of requests at server nodes during the peak time of service demand,

i.e., between the 55𝑡ℎ and 70𝑡ℎ seconds in Figure5.8a, and between the 70𝑡ℎ and 85𝑡ℎ seconds

in Figure5.8b. As seen in Figure5.10, the service demand is equally distributed at VNFs with

optimally allocated resources, whereas the load distribution is highly biased under the greedy

scheme. Up to some extents, the greedy allocation method helps mitigate the issue of violating

delay constraint regarding the resource limit. However, it is not efficient when facing with the

burst workload because the newly added resource at some VNFs leads to the high demand at the

others which may not have sufficient resource to handle and eventually degrade the entire service

performance. In Figure5.10b, it takes a very short time for the calling requests to be processed

by the HSS of IMS network 2. This is because HSS2 is involved only one time, compared to

P/S-CSCF1, P/S-CSCF2 with 11 times, and I-CSCF2 with three times, to process calling requests

and even the VM with minimum settings is enough to handle them. Note that in Figure5.10c,

the delay is mainly caused by the bottle-neck at I-CSCF; consequently, the resources at other

nodes are over-provisioned with very low processing latency. This issue does not happen in the

calling session since there are more VNFs involved and more sharing of the load.

139

a) Login request delay with the RIDRA method b) Calling request delay with the RIDRA method

c) Login request delay of the greedy method d) Calling request delay of the greedy method

Figure 5.10 Request processing delay for login and calling sessions at each VNFs

5.6.2 Experimental Analysis

5.6.2.1 Testbed Configuration

Our testbed is configured with eight server blades each of which has 12 physical CPUs and

96GB of memory. The delay and transmission probability of the connections between VMs are

controlled via scripts. All the VMs’ CPU usages are limited to 85%. On the server side, we

installed OpenIMSCore as an IMS system. In current WebRTC-enabled browser (i.e., Chrome,

Firefox), the ICE sessions are implemented as a built-in function and automatically revoked

whenever a calling session is about to establish. The unexpected involvement of ICE entities (e.g.,

STUN, TURN) may adversely impact on the efficiency and reliability of the proposed RIDRA

algorithm. To overcome this issue, we manage to include pre-configured ICE information to the

Session Description in calling requests. We use Janus Amirante et al. (2014) as the WRIG with

140

a plugin intercepting requests from the WebRTC client and convert them to corresponding SIP

requests according to the sender information.

On the WebRTC client’s side, we deployed five laptops which operate as either IMS clients

or WebRTC clients. Since there is no existing WebRTC traffic generator, we developed an

automation testing tool for the Web applications that can be applied to most Web browsers.

The script helps open new tabs automatically, filling in the required information (e.g., URL

of the Web server, user login information, callee name, etc.) and clicking buttons (e.g., login,

call). The script could also control the request rate by changing the interval time between two

consecutive clicks on login or call buttons.

To conduct the experiment, we first launched 40 WebRTC browser instances on each laptop.

Then the auto script was performed at different intervals to represent the login request rate. The

end-to-end delay is measured at browser clients while the VNF delay is computed at VMs. For

calling testing, due to the limited number of Webcams for each WebRTC client, we could not

measure the delay of the whole session. Instead, we focused on successful Session Request

Delay metrics as explained in Malas & Morton (2011).

5.6.2.2 Experimental Results

We started the experiment with basic configuration whereby each VNF is assigned to a VM of

vi.tiny VM. All the signed-in WebRTC sessions are automatically logged out before the service

request rate increases, and similarly with the calling sessions. For the calling experiment, we

divided the laptops into two groups, playing roles of caller and callee, respectively. We conducted

20 experiments for different cases to explore how QoS is guaranteed and how efficiently allocated

VNF operate from the perspective of CPU usage during the peak time of service demand. The

results are presented in Figs. 5.11 and 5.12.

From Figure5.11, the cost difference between RIDRA and the greedy algorithm is evaluated as

the workload of each service chain corresponding to login and calling sessions increases. It can

be seen that the system cost incurred by RIDRA is always less than that when using the greedy

141

algorithm. We also see that as the rate increases, the greedy algorithm is much slower than

RIDRA in allocating enough resource and as a result causing a higher possibility of violating

SLA as well as the increase in cost.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Message arrival rate (ms-1)

0

10

20

30

40
=

AR
A co

st
- G

re
ed

y co
st Login cost difference

Calling cost difference

Figure 5.11 Service cost optimized by RIDRA

WRIG P-CSCF I-CSCF S-CSCF HSS
0

0.2

0.4

0.6

0.8

1

C
PU

 U
til

iz
at

io
n

(%
) Greedy

MARA

a) Login session

WRIG
P-CSCF 1

S-CSCF 1

P-CSCF 2
I-CSCF 2

S-CSCF 2 HSS 2

0

0.2

0.4

0.6

0.8

1

C
PU

 U
til

iz
at

io
n

(%
)

Greedy
MARA

b) Calling session

Figure 5.12 CPU usage comparison with two approaches during the peak time

In Figure5.12, during the peak period of service demand, the virtual resources are efficiently

provisioned in such a way that there is no significant difference between the VMs’ CPU usage.

Under the greedy scheme, the overhead at several VNFs (i.e., I-CSCF in a login session, or

P-CSCF and S-CSCF in a calling session) results in a decrease of service demand rate at other

VNFs; consequently, the resource allocated for such the VNFs is not efficiently used.

142

5.7 Discussion and Future Work

The virtualization paradigm is being increasingly adopted by organizations in order to deploy

their services more effectively and efficiently thanks to its elasticity of resource provisioning.

However, such an advantage comes with the challenge of obtaining an optimal resource allocation

method at VNF level in the WebRTC ↔ IMS interworking systems across multiple domains

and handled by multiple providers.

In this paper, we highlight the key components of the NFV-based interworking architecture

between WebRTC and IMS domains in terms of the architecture NWII, its realization for

WebRTC ↔ IMS scenario, and service chains between VNFs for login and calling use cases.

The architecture is designed based on 5G Operating System reference architecture with respect

to the heterogeneous requirements of different providers, domains and the adaptation to any

change of IMS or WebRTC specification.

Given the service chains through VNFs, we define an analytical model of service cost in regard

to system resources and service latency. We formulate our objective that aims to minimize

service cost given VNFs in configurations available in various domains. We present a real-time

inter-domain algorithm (RIDRA) to optimally allocate resources in order to reduce service

cost regarding QoS requirements. Furthermore, RIDRA is deployed in a distributed manner to

leverage the computation in parallel.

The proposed RIDRA has been fully implemented and tested via simulation and the testbed

for different settings. The workload relation between VNFs in terms of message rate under

ideal conditions is determined via simulation. The experimental results show that our optimal

allocation resource scheme saves on service cost up to 19% depending on the service chain and

service demand.

Despite its advantages, the limitation of RIDRA caused by MARAllocator regarding the slow

convergence and the optimality gap may result in SLA violations. While this issue is partially

mitigated by using a control parameter, it requires powerful computing capacity. In practice, the

143

RIDRA adoption is impractical when the communication between users involves more VNFs,

and the Markov state space becomes larger. This opens up a number of direction for future

investigation. First, the convergence of MARAllocator can be enhanced either via the control

parameter or combining with other approaches, e.g., game theory. Another possibility is to

implement MARAllocator in a distributed manner in systems that are typically more robust

and dynamic than those running centralized algorithms. Second, we intend to consider other

scenarios beyond login and calling such as ICE-related sessions which play a significant role in the

practical systems regarding their massive deployment due to security reasons in communication

services. Especially, considering the sequential or concurrent execution of ICE service chains

with the calling ones within a distributed NFV infrastructure, either MARAllocator needs to

be modified or effective mechanisms must be devised to meet the desideratum. Third, the

MARAllocator implementation should take into account the case in which the shared information

between domains is affected due to the involvement of policy and business concerns.

Acknowledgment

The authors thank NSERC and Ericsson for funding the project CRDPJ 469977. This research

also receives support from the Canada Research Chair, Tier 1, hold by Mohamed Cheriet.

CHAPTER 6

SUMMARY AND DISCUSSION

The general objective of this thesis has been to design a holistic resource provisioning solution

for edge-cloud SDN-based network with respect to real-time requirements of multi-domain

interworking IoT services. Our work is based on a hypothesis of improving entire system

performance with stability, enhanced QoS, QoE as well as minimizing the total system cost

given optimized allocation of VNF resource at SDN controlling and forwarding planes for

dynamic demand of interworking multi-domain services. The proposed methodology consists

of three themes, which we covered in this work: Chapter 3 introduced an orchestration system

that enables to collect resource profiles relevant to VNF placement and network traffic sent by

IoT devices via IoT gateways as input data for IoT services. We leverage the knowledge of IoT

network topology to improve the E2E service latency model and the performance of resource

allocation algorithm. Chapter 4 presented a solution for jointly optimizing resource allocation for

both SDN controlling and forwarding planes given dynamic service demand while maintaining

the entire system’s queue stability with minimal resourse usage’s cost. Finally, a real-time

algorithm of optimizing resource allocation for an edge-cloud enabled interworking network

system regarding E2E service latency over the time and potential QoS violation penalties is

proposed in Chapter 5. The scalability of our proposed algorithm is justified via experimental

results in that system resource is optimally scaled up or down according to fluctuating service

demand or network size. Each theme is the subject of a separate published journal article to

disseminate as widely as possible. Below, we highlight the strengths and weaknesses of the

proposed methods as reflected in each theme.

6.1 IoT Network Topology Aware VNF Placement

The first theme covers the issue of placing VNF in NFV-based edge cloud systems with the

aim of offering better IoT traffic processing by taking IoT network topology into consideration.

In chapter 3, we defined an analytical model of system cost in terms of computation resource

146

and network bandwidth with regard to service latency and the availability of each resource at

edge clouds. The problem of minimizing the total system cost is formulated with respect to

constraints on available resource and QoS requirements as well as two algorithms for small

and large-scale network settings are proposed based on the Markov approximation framework

and a node ranking heuristic. This method has been defined in an article published by IEEE

Transactions of Network and Service Management. We implement these two algorithms and

validate their performance via simulation and testbed. The testbed is configured according to an

IoT-based surveillance use case. The results show that the consideration of IoT network topology

in making VNF placement decision can save on system cost up to 21% depending on the size of

the network.

6.2 Optimizing SDN Controller Placement for Efficient VNF Traffic Routing

In Chapter 4, we modeled the joint optimization problem of VNF resource allocation for both

SDN controlling and forwarding planes in terms of the placement of VNFs onto physical nodes

and the mapping between SDN controllers and forwarding nodes. The problem is considered

with a large number of nodes as inputs from a large-scale system where heterogeneous IoT

services are hosted. The probabilistic change of service demands and transmission latency from

end-users to network gateways caused by user moving is taken into account. To compute an

optimal placement solution while ensuring the system’s queue stability, we adopt the Lyapunov

optimization framework and implement the exponential gradient ascent method. This method has

been submitted to IEEE Transactions of Network and Service Management. The performance is

validated by extensive experiments simulating context-aware service demand. The results show

that our proposed solution can save up to 15.5 ∼ 18.2% of the total system costs depending on

the fluctuation rate of service demand.

147

6.3 E2E service latency modeling over the time for multi-domain interworking IoT
services

In order to provide end-users in smart environments with optimal QoE, three characteristics of

IoT services need to be considered, which are low E2E service latency requirements, a service

can be composed of various service components deployed on multiple domains, and service

can be exposed to fluctuate service demand over time windows. In Chapter 5, we presented

a model to minimize the total system cost with respect to these characteristics. We discuss in

detail how service components are linked and exchange messages to construct interworking

IoT-enabled scenarios between IMS and WebRTC domains. Regarding highly fluctuating service

demand, it is necessary to have a real-time algorithm for the strategy of optimally allocating

resource every time slot. Our approach is to employ a batch learning technique on received

messages to determine when service demand changes and then make an allocation decision

by solving an optimization problem using Markov approximation method. To demonstrate the

cost improvement of the proposed solution during the scaling phase, we deploy a testbed in

the data center and compare our solution with greedy mechanism. The result reveals that our

algorithm effectively responds to fluctuating service demands with a service cost reduced by

19% via efficiently allocating virtual resources while maintaining QoS requirements. This study

has been published in IEEE Transactions of Network and Service Management.

CONCLUSION AND RECOMMENDATIONS

7.1 General Conclusion

To improve the quality of human life, IoT paradigm is bringing several new challenges that

traditional networks’ solutions are insufficient to handle. The introduction of interworking

IoT services over multiple domains and the explosion in the number of heterogeneous IoT

devices require an efficient communication control and novel service deployments considering

the adoption of SDN paradigm and NFV technology. In particular, such IoT services with low

latency requirements are usually facing an ever-increasing demand with a high traffic fluctuation.

For NFV-based edge cloud systems, it is therefore necessary to obtain a strategy of placing

resource taking into account IoT network topology to meet QoS criteria. From SDN point of

view, various SDN controllers need to be orchestrated and placed toward forwarding planes so

as to efficiently steer VNF traffic. A combination of optimizing resource allocation for both

SDN controllers and VNFs at forwarding planes with a model of multi-domain service latency

is important to enhance entire network scalability and maintain low system cost.

In this work, our first attempt was to tackle the IoT Network Topology-Aware Placement problem

for optimizing dynamic resource allocation in NFV-based edge cloud systems. We consider

IoT service chains composed of multiple VNFs that are geographically deployed onto edge

clouds close to IoT endpoints. The VNFs communicate not only with each other but also with

IoT gateways that typically aggregate data from IoT sensor network as contextual information

into discrete messages and forward them toward VNFs at the server side. Then an analytical

model of system cost in terms of computation resource and network bandwidth with regard to

service latency and the availability of each resource at edge clouds is defined. The problem of

minimizing the total system cost is formulated with respect to constraints on available resource

and QoS requirements. To obtain an optimal placement solution, two algorithms for small and

large-scale network settings are proposed respectively, namely a Markov-based approximation

150

approach that leverages the presence of multiple edge cloud to adopt multistart and batching

techniques, and a node ranking heuristic. We implement these two algorithms and validate their

performance via simulation and testbed. The testbed is configured according to an IoT-based

surveillance use case. The results show that the consideration of IoT network topology in making

VNF placement decisions can save on system cost up to 21% depending on the size of the

network.

We go a step further by extending the scope toward control plane in the context of SDN

network. Various resource controllers are orchestrated with the ultimate goal to deliver E2E

IoT service, which appears to be robust to the fluctuating demand nature of IoT services and

different execution manners of their functions. We model the optimal placement problem of

VNF resource and network connectivity between SDN and forwarding switches. The problem

is considered with a critical number of nodes from a large-scale system where heterogeneous

IoT services are hosted. The probabilistic change of service demands and transmission latency

from end-users to the core network where VNFs are deployed are also taken into account. To

obtain an optimal placement solution while ensuring the system’s queue stability, we adopt

the Lyapunov optimization framework and implement the exponential gradient ascent method.

The performance is validated via simulation and testbed in which dynamic service demand is

involved and shows the advantage of our proposal in saving total system cost up to 15.5 18.2%

depending on service demand and fluctuation rate.

Finally, we presented an NFV-based architecture for multi-domain interworking IoT services and

model E2E service latency provided with the details of message flows between service functions

of WebRTC ↔ IMS applications. In the model, we take into account the fluctuating service

demand over time slots and the cost incurred during the resource migration phase. We formulate

our objective that aims to minimize service cost given VNFs in configurations available in

various domains and design a real-time inter-domain algorithm (RIDRA) to optimally allocate

151

resources in order to reduce service cost regarding QoS requirements. The proposed RIDRA

has been fully implemented and tested via simulation and the testbed for different settings. The

workload relation between VNFs in terms of message rate under ideal conditions is determined

via simulation. The experimental results show that our optimal allocation resource scheme saves

on service cost up to 19% depending on the service chain and service demand.

In future work, we will focus on: i) improving the performance of Markov-based approximation

approach by combining with other techniques, i.e. game theory in selecting next matching

candidates so as to increase convergence time, ii) including the mobility of IoT devices, that

requires to update the proposed model to reflect dynamic connectivities between VNFs and IoT

gateways, iii) extending E2E service latency model to other interworking scenarios apart from

logging and calling scenarios as mentioned in Chapter 5, iv) deploying the proposed solution

onto container orchestration platform like Kubernetes to evaluate its applicability in practice. In

addition, we also investigate In-Network computing paradigm and explore its capabilities in

improving network system performance for IoT-enabled last-mile delivery.

7.1.1 Major contributions

The major contributions of this thesis are:

• Jointly Optimizing SDN Controller and VNF Resource Placement (SCVP): VNF resource

allocation model that considers both SDN control and forwarding planes in terms of switches

and physical machines given fluctuating service demand and the requirement of the entire

control system’s stability.

• IoT Network Topology-Aware VNF Placement Model: VNF resource allocation model that

takes into account the impact of VNFs’ input traffic at the lower granularity level of discrete

messages via connections between IoT networks and clouds.

152

• Real-time Inter-Domain Resource Allocation: A model of E2E service latency for multi-

domain interworking services and an optimal real-time method of resource allocation that is

robust in solving the combinatorial optimization problem and efficient with the distributed

implementation.

• Deploy an NFV-based interworking testbed for WebRTC ↔ IMS which is used to justify the

improvement of all the proposed algorithms.

BIBLIOGRAPHY

3GPP. (2018). IP Multimedia Subsystem (Report n◦23.228). Retrieved from: http://www.3gpp.

org/ftp/Specs/2018-09/Rel-15/23_series/23228-f30.zip.

Aazam, M. & Huh, E. (2014, Aug). Fog Computing and Smart Gateway Based Communication

for Cloud of Things. 2014 International Conference on Future Internet of Things and
Cloud, pp. 464-470. doi: 10.1109/FiCloud.2014.83.

Aazam, M., Harras, K. A. & Zeadally, S. (2019). Fog Computing for 5G Tactile Industrial

Internet of Things: QoE-Aware Resource Allocation Model. IEEE Transactions on
Industrial Informatics, 15(5), 3085-3092. doi: 10.1109/TII.2019.2902574.

Abhayawardhana, V. S. & Babbage, R. (2007, April). A Traffic Model for the IP Multimedia

Subsystem (IMS). 2007 IEEE 65th Vehicular Technology Conference - VTC2007-Spring,

pp. 783-787. doi: 10.1109/VETECS.2007.171.

Adam, O., Lee, Y. C. & Zomaya, A. Y. (2017). Stochastic Resource Provisioning for

Containerized Multi-Tier Web Services in Clouds. IEEE Transactions on Parallel and
Distributed Systems, 28(7), 2060-2073. doi: 10.1109/TPDS.2016.2639009.

Agarwal, S., Malandrino, F., Chiasserini, C. & De, S. (2018, April). Joint VNF Placement

and CPU Allocation in 5G. IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications, pp. 1943-1951. doi: 10.1109/INFOCOM.2018.8485943.

Agarwal, S., Malandrino, F., Chiasserini, C. F. & De, S. (2019). VNF Placement and Resource

Allocation for the Support of Vertical Services in 5G Networks. IEEE/ACM Transactions
on Networking, 27(1), 433-446. doi: 10.1109/TNET.2018.2890631.

Alasaad, A., Shafiee, K., Behairy, H. M. & Leung, V. C. M. (2015). Innovative Schemes for Re-

source Allocation in the Cloud for Media Streaming Applications. IEEE Transactions on
Parallel and Distributed Systems, 26(4), 1021-1033. doi: 10.1109/TPDS.2014.2316827.

Alleg, A., Ahmed, T., Mosbah, M., Riggio, R. & Boutaba, R. (2017, Nov). Delay-aware

VNF placement and chaining based on a flexible resource allocation approach. 2017
13th International Conference on Network and Service Management (CNSM), pp. 1-7.

doi: 10.23919/CNSM.2017.8255993.

Allybokus, Z., Perrot, N., Leguay, J., Maggi, L. & Gourdin, E. Virtual function placement for

service chaining with partial orders and anti-affinity rules. Networks, 71(2), 97-106.

154

Alsarhan, A., Itradat, A., Al-Dubai, A. Y., Zomaya, A. Y. & Min, G. (2018). Adaptive Resource

Allocation and Provisioning in Multi-Service Cloud Environments. IEEE Transactions
on Parallel and Distributed Systems, 29(1), 31-42. doi: 10.1109/TPDS.2017.2748578.

Amirante, A., Castaldi, T., Miniero, L. & Romano, S. P. (2014). Janus: A General Purpose We-

bRTC Gateway. Proceedings of the Conference on Principles, Systems and Applications
of IP Telecommunications (IPTComm), pp. 1–8.

Azure, M. Microsoft Azure Cloud Computing Platform & Services. Retrieved from: https:

//azure.microsoft.com.

Bach, T. e. a. (2014). Combination of IMS-based IPTV Services with WebRTC. Proc. Int.
Multi-Conf. Comput. Global Inf. Technol., Seville.

Baktir, A. C., Ozgovde, A. & Ersoy, C. (2017, May). Enabling service-centric networks for

cloudlets using SDN. 2017 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), pp. 344-352. doi: 10.23919/INM.2017.7987297.

Bari, F. et al. (2016). Orchestrating Virtualized Network Functions. IEEE Trans. Netw. Service
Manage., 13(4), 725-739. doi: 10.1109/TNSM.2016.2569020.

Bari, M. F., Chowdhury, S. R., Ahmed, R. & Boutaba, R. (2015, Nov). On orchestrating

virtual network functions. 2015 11th International Conference on Network and Service
Management (CNSM), pp. 50-56. doi: 10.1109/CNSM.2015.7367338.

Beck, M. T. & Botero, J. F. (2015, Dec). Coordinated Allocation of Service Function

Chains. 2015 IEEE Global Commun. Conf. (GLOBECOM), pp. 1-6. doi: 10.1109/GLO-

COM.2015.7417401.

Beloglazov, A. & Buyya, R. (2013). Managing Overloaded Hosts for Dynamic Consolidation of

Virtual Machines in Cloud Data Centers under Quality of Service Constraints. IEEE
Transactions on Parallel and Distributed Systems, 24(7), 1366-1379. doi: 10.1109/T-

PDS.2012.240.

Bhamare, D., Jain, R., Samaka, M. & Erbad, A. (2016). A survey on service func-

tion chaining. Journal of Network and Computer Applications, 75, 138-155.

doi: https://doi.org/10.1016/j.jnca.2016.09.001.

Bhamare, D. et al. (2017). Optimal virtual network function placement in multi-cloud

service function chaining architecture. Computer Communications, 102, 1 - 16.

doi: https://doi.org/10.1016/j.comcom.2017.02.011.

155

Bobroff, N., Kochut, A. & Beaty, K. (2007, May). Dynamic Placement of Virtual Machines for

Managing SLA Violations. 2007 10th IFIP/IEEE International Symposium on Integrated
Network Management, pp. 119-128. doi: 10.1109/INM.2007.374776.

Boubendir, A. et al. (2018, June). 5G Edge Resource Federation: Dynamic and Cross-domain

Network Slice Deployment. 2018 4th IEEE Conference on Network Softwarization and
Workshops (NetSoft), pp. 338-340. doi: 10.1109/NETSOFT.2018.8460118.

Calheiros, R. N., Masoumi, E., Ranjan, R. & Buyya, R. (2015). Workload Prediction Using

ARIMA Model and Its Impact on Cloud Applications’ QoS. IEEE Transactions on
Cloud Computing, 3(4), 449-458. doi: 10.1109/TCC.2014.2350475.

Camarillo, G. & Garcia-Martin, M.-A. (2007). The 3G IP multimedia subsystem (IMS): merging
the Internet and the cellular worlds. John Wiley & Sons.

Cao, H., Yang, L. & Zhu, H. (2018). Novel Node-Ranking Approach and Multiple Topology

Attributes-Based Embedding Algorithm for Single-Domain Virtual Network Embedding.

IEEE Internet of Things Journal, 5(1), 108-120. doi: 10.1109/JIOT.2017.2773489.

Cao, Z., Chi, C., Hao, R. & Xiao, Y. (2008, Nov). User Behavior Modeling and Traffic Analysis

of IMS Presence Servers. 2008 IEEE Global Telecommunications Conference, pp. 1-5.

doi: 10.1109/GLOCOM.2008.ECP.474.

Carella, G., Corici, M., Crosta, P., Comi, P., Bohnert, T. M., Corici, A. A., Vingarzan,

D. & Magedanz, T. (2014, June). Cloudified IP Multimedia Subsystem (IMS) for Network

Function Virtualization (NFV)-based architectures. 2014 IEEE Symposium on Computers
and Communications (ISCC), Workshops, 1-6. doi: 10.1109/ISCC.2014.6912647.

Carpio, F., Dhahri, S. & Jukan, A. (2017). VNF placement with replication for Loac balancing

in NFV networks. 2017 IEEE International Conference on Communications (ICC),
pp. 1-6. doi: 10.1109/ICC.2017.7996515.

Cerrato, I., Palesandro, A., Risso, F., Suñé, M., Vercellone, V. & Woesner, H. (2015). Toward

dynamic virtualized network services in telecom operator networks. Computer Networks,
92, 380 - 395. Software Defined Networks and Virtualization.

Cerroni, W., Buratti, C., Cerboni, S., Davoli, G., Contoli, C., Foresta, F., Callegati, F. & Verdone,

R. (2017, July). Intent-based management and orchestration of heterogeneous open-

flow/IoT SDN domains. 2017 IEEE Conference on Network Softwarization (NetSoft),
pp. 1-9. doi: 10.1109/NETSOFT.2017.8004109.

156

Chase, J. & Niyato, D. (2017). Joint Optimization of Resource Provisioning in

Cloud Computing. IEEE Transactions on Services Computing, 10(3), 396-409.

doi: 10.1109/TSC.2015.2476812.

Chatras, B., Tsang Kwong, U. S. & Bihannic, N. (2017). NFV enabling network slicing for

5G. 2017 20th Conference on Innovations in Clouds, Internet and Networks (ICIN),
pp. 219-225. doi: 10.1109/ICIN.2017.7899415.

Chayapathi, R., Hassan, S. F. & Shah, P. (2016). Network Functions Virtualization (NFV) with

a Touch of SDN.

Chen, J., Li, K., Deng, Q., Li, K. & Yu, P. S. (2019). Distributed Deep Learning Model for

Intelligent Video Surveillance Systems with Edge Computing. IEEE Transactions on
Industrial Informatics, 1-1. doi: 10.1109/TII.2019.2909473.

Chen, M., Liew, S. C., Shao, Z. & Kai, C. (2013). Markov Approximation for Com-

binatorial Network Optimization. IEEE Trans. Inf. Theory, 59(10), 6301-6327.

doi: 10.1109/TIT.2013.2268923.

Chen, W., Yin, X., Wang, Z., Shi, X. & Yao, J. (2020). Placement and Routing Optimization

Problem for Service Function Chain: State of Art and Future Opportunities. Artificial
Intelligence and Security, pp. 176–188.

Cheng, X., Su, S., Zhang, Z., Wang, H., Yang, F., Luo, Y. & Wang, J. (2011). Virtual Network

Embedding Through Topology-aware Node Ranking. SIGCOMM Comput. Commun.
Rev., 41(2), 38–47. doi: 10.1145/1971162.1971168.

Cheng, X., Su, S., Zhang, Z., Shuang, K., Yang, F., Luo, Y. & Wang, J. (2012). Virtual Network

Embedding Through Topology Awareness and Optimization. Comput. Netw., 56(6),

1797–1813. doi: 10.1016/j.comnet.2012.01.022.

Clearwater. (2014). Project Clearwater - IMS in the Cloud. Retrieved from: http://www.

projectclearwater.org/.

Cotroneo, D., Natella, R. & Rosiello, S. (2017). NFV-Throttle: An Overload Control Framework

for Network Function Virtualization. IEEE Trans. Netw. Service Manage., 14(4), 949-963.

doi: 10.1109/TNSM.2017.2752173.

Cruz, B. S. & Barraca, J. P. (2015, July). IMS centric communication supporting

WebRTC endpoints. 2015 IEEE Symp. Comput. Commun. (ISCC), pp. 732-737.

doi: 10.1109/ISCC.2015.7405601.

157

Curtis, A. R., Mogul, J. C., Tourrilhes, J., Yalagandula, P., Sharma, P. & Banerjee, S.

(2011). DevoFlow: Scaling Flow Management for High-Performance Networks.

Proceedings of the ACM SIGCOMM 2011 Conference, (SIGCOMM ’11), 254–265.

doi: 10.1145/2018436.2018466.

Cziva, R., Anagnostopoulos, C. & Pezaros, D. P. (2018, April). Dynamic, Latency-Optimal

vNF Placement at the Network Edge. IEEE INFOCOM 2018 - IEEE Conference on
Computer Communications, pp. 693-701. doi: 10.1109/INFOCOM.2018.8486021.

"DARPA". "Sample Optical Network Topology Files". Retrieved from: "http://www.monarchna.

com/topology.html".

Darzentas, J. (1984). Problem Complexity and Method Efficiency in Optimization. Journal of
the Operational Research Society, 35(5), 455-455. doi: 10.1057/jors.1984.92.

de Brito, M. S., Hoque, S., Magedanz, T., Steinke, R., Willner, A., Nehls, D., Keils, O. & Schreiner,

F. (2017, May). A service orchestration architecture for Fog-enabled infrastructures.

2017 Second International Conference on Fog and Mobile Edge Computing (FMEC),
pp. 127-132. doi: 10.1109/FMEC.2017.7946419.

Dieye, M., Ahvar, S., Sahoo, J., Ahvar, E., Glitho, R., Elbiaze, H. & Crespi, N. (2018). CPVNF:

Cost-Efficient Proactive VNF Placement and Chaining for Value-Added Services in

Content Delivery Networks. IEEE Transactions on Network and Service Management,
15(2), 774-786. doi: 10.1109/TNSM.2018.2815986.

Dixit, A., Hao, F., Mukherjee, S., Lakshman, T. & Kompella, R. (2013). Towards an

Elastic Distributed SDN Controller. SIGCOMM Comput. Commun. Rev., 43(4), 7–12.

doi: 10.1145/2534169.2491193.

Doe, J. (1999a). ACRONYM: Class name. Institution.

Doe, J. (1999b). ACRONYM: Class name [Class notes]. Retrieved from: http://www.google.ca.

Doe, J. (1999c). The title of the thesis. (Master’s thesis, School, Address).

Doe, J. (1999d). The title of the thesis. (Master’s thesis, School, Address). Retrieved from: Name

of the database. (ID number).

Doe, J. (1999e). The title of the thesis. (Master’s thesis, School, Address). Retrieved from: http:

//www.google.ca.

Doe, J. (1999f, October, 2). Web page title [Format]. Retrieved from: http://www.google.ca.

158

Doe, J. (1999g). Dataset title [Online dataset]. Retrieved from: http://www.google.ca.

Doe, J. [Nickname]. (1999h, October, 2). Web page title [Format]. Retrieved from: http:

//www.google.ca.

Doe, J. [Nickname]. (1999i, October, 2). Video title [Youtube Video]. Retrieved from: http:

//www.google.ca.

Doe, J. (1999j). Patent type n◦42. Location: organization.

Doe, J. (1999k). The title of the thesis. (Ph.D. thesis, School, Address).

Doe, J. [Unpublished raw data]. (1999l) [Short description of the contents].

Doe, J. (1999m). Software name (Version 1.0) [Software]. Location: Publisher.

Doe, J. (1999n). The title of the report (Report n◦42). Location: Publisher.

Doe, J. (1999o). Document title. Unpublished document, Institution, Location.

Doe, J. (1999p). Document title. Manuscript submitted for publication.

Doe, J. (1999q). Document title. Retrieved from: http://www.google.ca.

Doe, J., Doe, J. & Doe, J. (1999a). Title of the article. Name of the journal, 4(2), 220-242.

Doe, J., Doe, J. & Doe, J. (1999b). Title of the article. Name of the journal. In press.

Doe, J., Doe, J. & Doe, J. (1999c). Title of the book (ed. 3). Location: Publisher.

Doe, J., Doe, J. & Doe, J. (1999d). Title of the book [Version]. doi: 123-456-789.

Doe, J., Doe, J. & Doe, J. (Eds.). (1999e). Title of the book (ed. 3). Location: Publisher.

Doe, J., Doe, J. & Doe, J. (1999f). Title of the book [Version]. Retrieved from: http:

//www.google.com.

Doe, J., Doe, J. & Doe, J. (1999g). Title of the entry. In Title of the encyclopedia
(ed. 3, vol. 4, pp. 220-242). Location: Publisher.

Doe, J., Doe, J. & Doe, J. (1999h). In Doe, J., Doe, J. & Doe, J. (Eds.), Title of the book
(ed. 3, vol. 4, ch. 7, pp. 220-242). Location: Publisher.

159

Doe, J., Doe, J. & Doe, J. (1999i). Title of the chapter. In Doe, J., Doe, J. & Doe, J. (Eds.), Title
of the book (ed. 3, vol. 4, pp. 220-242). Location: Publisher.

Doe, J., Doe, J. & Doe, J. (1999j). Title of the article. In Doe, J., Doe, J. & Doe, J. (Eds.), Title
of the conference proceedings (ed. 3, vol. 4, pp. 220-242). Location: Publisher.

Doe, J., Doe, J. & Doe, J. (1999k, October). Title of the article. Communication presented

in Title of the conference proceedings, Location (pp. 220-242).

Doe, J., Doe, J. & Doe, J. (1999l). Title of the article. Title of the conference proceedings, 4(2),

220-242.

Doe, J., Doe, J. & Doe, J. (1999m, October). Title of the article. Title of the magasine, 4(2),

220-242.

Doe, J., Doe, J. & Doe, J. (1999n, October). Title of the article. Title of the magasine, pp. 220.

D’Oro, S., Galluccio, L., Palazzo, S. & Schembra, G. (2017). A Game Theoretic Approach for Dis-

tributed Resource Allocation and Orchestration of Softwarized Networks. IEEE Journal
on Selected Areas in Communications, 35(3), 721-735. doi: 10.1109/JSAC.2017.2672278.

Dräxler, S., Karl, H., Kouchaksaraei, H. R., Machwe, A., Dent-Young, C., Katsalis, K. & Samda-

nis, K. (2018, June). 5G OS: Control and Orchestration of Services on Multi-Domain

Heterogeneous 5G Infrastructures. 2018 European Conference on Networks and Com-
munications (EuCNC), pp. 1-9. doi: 10.1109/EuCNC.2018.8443210.

Duan, J., Wu, C., Le, F., Liu, A. X. & Peng, Y. (2017). Dynamic Scaling of Virtualized,

Distributed Service Chains: A Case Study of IMS. IEEE Journal on Selected Areas in
Communications, 35(11), 2501-2511. doi: 10.1109/JSAC.2017.2760188.

Dwaraki, A. & Wolf, T. (2016). Adaptive Service-Chain Routing for Virtual Network Functions

in Software-Defined Networks. Proceedings of the 2016 Workshop on Hot Topics
in Middleboxes and Network Function Virtualization, (HotMIddlebox ’16), 32–37.

doi: 10.1145/2940147.2940148.

El-Hoiydi, A. (2002, April). Aloha with preamble sampling for sporadic traffic in ad

hoc wireless sensor networks. 2002 IEEE International Conference on Communi-
cations. Conference Proceedings. ICC 2002 (Cat. No.02CH37333), 5, 3418-3423 vol.5.

doi: 10.1109/ICC.2002.997465.

EnergyHub. Electricity Prices in Canada 2020. Retrieved on 2020-02-07 from: https:

//energyhub.org/electricity-prices/.

160

Eramo, V., Tosti, A. & Miucci, E. (2016). Server Resource Dimensioning and Routing of Service

Function Chain in NFV Network Architectures. JECE, 2016. doi: 10.1155/2016/7139852.

Eramo, V., Miucci, E., Ammar, M. & Lavacca, F. G. (2017). An Approach for Service Function

Chain Routing and Virtual Function Network Instance Migration in Network Function

Virtualization Architectures. IEEE/ACM Transactions on Networking, 25(4), 2008-2025.

doi: 10.1109/TNET.2017.2668470.

Erdos, P. & Rényi, A. (1960). On the evolution of random graphs. Publ. Math. Inst. Hung. Acad.
Sci, 5(1), 17–60.

et al., C. J. B. (2018). Multi-domain Network Virtualization (Report n◦draft-bernardos-nfvrg-

multidomain-04). Internet Engineering Task Force.

et al., M. G. (2015, Oct). Elastic virtual network function placement. 2015 IEEE 4th Int. Conf.
Cloud Netw. (CloudNet), pp. 255-260. doi: 10.1109/CloudNet.2015.7335318.

et al., Z. Y. (2016). Joint topology design and mapping of service function chains for efficient,

scalable, and reliable network functions virtualization. IEEE Network, 30(3), 81-87.

doi: 10.1109/MNET.2016.7474348.

ETSI ISG on Network Functions Virtualization. (2012, Oct.). Network Functions Virtualisation:

An Introduction, Benefits, Enablers, Challenges & Call for Action.

ETSI ISG on Network Functions Virtualization. (2013, Oct.). Network Functions Virtualisation:

Architectural Framework.

ETSI ISG on Network Functions Virtualization. (2016, Apr.). Network Functions Virtualisation

(NFV); Reliability; Report on Models and Features for End-to-End Reliability.

ETSI ISG on Network Functions Virtualization. (2018, Jan.). Network Functions Virtualisation

(NFV) Release 3; Management and Orchestration; Report on architecture options to

support multiple administrative domains.

Fang, J. & Ma, A. (2021). IoT Application Modules Placement and Dynamic Task Processing

in Edge-Cloud Computing. IEEE Internet of Things Journal, 8(16), 12771-12781.

doi: 10.1109/JIOT.2020.3007751.

Farkiani, B., Bakhshi, B. & MirHassani, S. A. (2019). A Fast Near-Optimal Approach for Energy-

Aware SFC Deployment. IEEE Transactions on Network and Service Management,
16(4), 1360-1373. doi: 10.1109/TNSM.2019.2944023.

161

Farooqi, N., Gutub, A. & Khozium, M. O. (2019). Smart Community Challenges : Enabling

IoT / M 2 M Technology Case Study.

Fasolo, E., Rossi, M., Widmer, J. & Zorzi, M. (2007). In-network aggregation techniques

for wireless sensor networks: a survey. IEEE Wireless Communications, 14(2), 70-87.

doi: 10.1109/MWC.2007.358967.

Fichera, S., Gharbaoui, M., Castoldi, P., Martini, B. & Manzalini, A. (2017, July). On

experimenting 5G: Testbed set-up for SDN orchestration across network cloud and

IoT domains. 2017 IEEE Conference on Network Softwarization (NetSoft), pp. 1-6.

doi: 10.1109/NETSOFT.2017.8004245.

Filali, A., Kobbane, A., Elmachkour, M. & Cherkaoui, S. (2018, May). SDN Controller Assign-

ment and Load Balancing with Minimum Quota of Processing Capacity. 2018 IEEE Inter-
national Conference on Communications (ICC), pp. 1-6. doi: 10.1109/ICC.2018.8422750.

Gao, L. & Rouskas, G. N. (2020). Congestion Minimization for Service Chain Routing

Problems With Path Length Considerations. IEEE/ACM Transactions on Networking,

28(6), 2643-2656. doi: 10.1109/TNET.2020.3017792.

Garey, M. R., Graham, R. L. & Johnson, D. S. (1977). The Complexity of Computing

Steiner Minimal Trees. SIAM Journal on Applied Mathematics, 32(4), 835–859.

Retrieved from: http://www.jstor.org/stable/2100193.

Gautam, N. (2012). Analysis of queues: methods and applications. CRC Press.

Gharbaoui, M., Contoli, C., Davoli, G., Cuffaro, G., Martini, B., Paganelli, F., Cerroni, W.,

Cappanera, P. & Castoldi, P. (2018, Nov). Demonstration of Latency-Aware and

Self-Adaptive Service Chaining in 5G/SDN/NFV infrastructures. 2018 IEEE Conference
on Network Function Virtualization and Software Defined Networks (NFV-SDN), pp. 1-2.

doi: 10.1109/NFV-SDN.2018.8725645.

Ghaznavi, M., Shahriar, N., Kamali, S., Ahmed, R. & Boutaba, R. (2017). Distributed

Service Function Chaining. IEEE Journal on Selected Areas in Communications, 35(11),

2479-2489. doi: 10.1109/JSAC.2017.2760178.

Giertzsch, F., Krüger, L. & Timm-Giel, A. (2018). Analytical Model for Performance Evaluation

of Random Wireless Sensor Networks. Proceedings of the 21st ACM International
Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
(MSWIM ’18), 235–239. doi: 10.1145/3242102.3242144.

162

Gochhayat, S. P., Kaliyar, P., Conti, M., Tiwari, P., Prasath, V., Gupta, D. & Khanna, A.

(2019). LISA: Lightweight context-aware IoT service architecture. Journal of Cleaner
Production, 212, 1345 - 1356.

Gong, L., Jiang, H., Wang, Y. & Zhu, Z. (2016). Novel Location-Constrained Virtual

Network Embedding LC-VNE Algorithms Towards Integrated Node and Link Mapping.

IEEE/ACM Trans. Netw., 24(6), 3648–3661. doi: 10.1109/TNET.2016.2533625.

Greenberg, A., Hamilton, J. R., Jain, N., Kandula, S., Kim, C., Lahiri, P., Maltz, D. A., Patel,

P. & Sengupta, S. (2009). VL2: A Scalable and Flexible Data Center Network. Proceed-
ings of the ACM SIGCOMM 2009 Conference on Data Communication, (SIGCOMM

’09), 51–62. doi: 10.1145/1592568.1592576.

GSM Association. (2016). WebRTC to complement IP Communication Services. Non-binding

White Paper.

Guo, Z., Zhang, S., Feng, W., Wu, W. & Lan, J. (2020). Exploring the role of paths for dynamic

switch assignment in software-defined networks. Future Generation Computer Systems,
107, 238-246.

Gupta, A. et al. (2018). On service-chaining strategies using Virtual Net-

work Functions in operator networks. Computer Networks, 133, 1 - 16.

doi: https://doi.org/10.1016/j.comnet.2018.01.028.

Gupta, L., Samaka, M., Jain, R., Erbad, A., Bhamare, D. & Metz, C. (2017, Jan). COLAP: A

predictive framework for service function chain placement in a multi-cloud environment.

2017 IEEE 7th Annual Computing and Communication Workshop and Conference
(CCWC), pp. 1-9. doi: 10.1109/CCWC.2017.7868377.

Habibi, M., Fazli, M. & Movaghar, A. (2019). Efficient distribution of requests in federated

cloud computing environments utilizing statistical multiplexing. Future Generation
Computer Systems, 90, 451 - 460. doi: https://doi.org/10.1016/j.future.2018.08.032.

Halpern, J. & Pignataro, C. (2015). Service Function Chaining (SFC) Architecture (Re-

port n◦7665). RFC Editor. Retrieved from: InternetRequestsforComments.

Hardes, T., Dressler, F. & Sommer, C. (2017). Simulating a city-scale community network:

From models to first improvements for Freifunk. 2017 International Conference on
Networked Systems (NetSys), pp. 1-7.

Harutyunyan, D., Shahriar, N., Boutaba, R. & Riggio, R. (2019, June). Latency-Aware Service

Function Chain Placement in 5G Mobile Networks. 2019 IEEE Conference on Network
Softwarization (NetSoft), pp. 133-141. doi: 10.1109/NETSOFT.2019.8806646.

163

Hawilo, H., Jammal, M. & Shami, A. (2019). Network Function Virtualization-Aware

Orchestrator for Service Function Chaining Placement in the Cloud. IEEE Journal on
Selected Areas in Communications, 37(3), 643-655. doi: 10.1109/JSAC.2019.2895226.

Herrera, J. G. & Botero, J. F. (2016). Resource Allocation in NFV: A Comprehensive Survey.

IEEE Trans. Netw. Service Manage., 13(3), 518-532. doi: 10.1109/TNSM.2016.2598420.

Hoang, D. B. (2015). Software Defined Networking? Shaping up for the next disruptive step?

Australian Journal of Telecommunications and the Digital Economy, 3(4).

Holmberg, C., Hakansson, S. & Eriksson, G. (2015). Web Real-Time Commu-
nication Use Cases and Requirements (Report n◦7478). RFC Editor. Re-

trieved from: InternetRequestsforComments.

Hong, Y., Huang, C. & Yan, J. (2010, April). Analysis of SIP retransmission probability

using a Markov-Modulated Poisson Process model. 2010 IEEE Network Operations and
Management Symposium - NOMS 2010, pp. 179-186. doi: 10.1109/NOMS.2010.5488458.

Huang, X., Bian, S., Shao, Z. & Xu, H. (2017, May). Dynamic switch-controller association

and control devolution for SDN systems. 2017 IEEE International Conference on
Communications (ICC), pp. 1-6. doi: 10.1109/ICC.2017.7997427.

Inayatullah, D. S., Aman, M., Rani, A., Zaheer, H. & Siddiqi, T. (2019). A New Technique

for Determining Approximate Center of a Polytope. Advances in Operations Research,

2019, 1-7. doi: 10.1155/2019/8218329.

Ito, M., Nakauchi, K., Shoji, Y., Nishinaga, N. & Kitatsuji, Y. (2014). Service-Specific Network

Virtualization to Reduce Signaling Processing Loads in EPC/IMS. IEEE Access, 2,

1076-1084. doi: 10.1109/ACCESS.2014.2359059.

Ivov, E., Rescorla, E., Uberti, J. & Saint-Andre, P. (2017). Trickle ICE: Incremental Pro-
visioning of Candidates for the Interactive Connectivity Establishment (ICE) Proto-
col (Report n◦draft-ietf-ice-trickle-15). Retrieved from: http://www.ietf.org/internet-

drafts/draft-ietf-ice-trickle-15.txt.

Jaeger, M. C., Rojec-Goldmann, G. & Muhl, G. (2004, Sept). QoS aggregation for Web

service composition using workflow patterns. Proceedings. Eighth IEEE International
Enterprise Distributed Object Computing Conference, 2004. EDOC 2004., pp. 149-159.

doi: 10.1109/EDOC.2004.1342512.

Jang, I., Suh, D., Pack, S. & Dán, G. (2017). Joint Optimization of Service Function Placement

and Flow Distribution for Service Function Chaining. IEEE Journal on Selected Areas
in Communications, 35(11), 2532-2541. doi: 10.1109/JSAC.2017.2760162.

164

Kapsalis, A., Raywad-Smith, V. J. & Smith, G. D. (1993). Solving the Graphical Steiner Tree

Problem Using Genetic Algorithms. Journal of the Operational Research Society, 44(4),

397-406.

Kar, B., Wu, E. H. K. & Lin, Y. D. (2018). Energy Cost Optimization in Dynamic Placement

of Virtualized Network Function Chains. IEEE Trans. Netw. Service Manage., 15(1),

372-386. doi: 10.1109/TNSM.2017.2782370.

Katsalis, K., Nikaein, N. & Edmonds, A. (2016, Dec). Multi-Domain Orchestration for NFV:

Challenges and Research Directions. 2016 15th International Conference on Ubiquitous
Computing and Communications and 2016 International Symposium on Cyberspace and
Security (IUCC-CSS), pp. 189-195. doi: 10.1109/IUCC-CSS.2016.034.

Knight, S., Nguyen, H. X., Falkner, N., Bowden, R. & Roughan, M. (2011). The internet

topology zoo. IEEE Journal on Selected Areas in Communications, 29(9), 1765–1775.

Kreutz, D., Ramos, F. M. V., Verissimo, P. E., Rothenberg, C. E., Azodolmolky, S. & Uhlig, S.

(2015). Software-Defined Networking: A Comprehensive Survey. Proceedings of the
IEEE, 103(1), 14-76. doi: 10.1109/JPROC.2014.2371999.

Kumar, R., Hasan, M., Padhy, S., Evchenko, K., Piramanayagam, L., Mohan, S. & Bobba,

R. B. (2017). End-to-End Network Delay Guarantees for Real-Time Systems

Using SDN. 2017 IEEE Real-Time Systems Symposium (RTSS), pp. 231-242.

doi: 10.1109/RTSS.2017.00029.

Kuo, T., Liou, B., Lin, K. C. & Tsai, M. (2016, April). Deploying chains of virtual network

functions: On the relation between link and server usage. IEEE INFOCOM 2016 - The
35th Annual IEEE International Conference on Computer Communications, pp. 1-9.

doi: 10.1109/INFOCOM.2016.7524565.

Laghrissi, A. & Taleb, T. (2019). A Survey on the Placement of Virtual Resources and

Virtual Network Functions. IEEE Communications Surveys Tutorials, 21(2), 1409-1434.

doi: 10.1109/COMST.2018.2884835.

Laghrissi, A., Taleb, T., Bagaa, M. & Flinck, H. (2017, Dec). Towards Edge Slicing:

VNF Placement Algorithms for a Dynamic amp;amp; Realistic Edge Cloud Environ-

ment. GLOBECOM 2017 - 2017 IEEE Global Communications Conference, pp. 1-6.

doi: 10.1109/GLOCOM.2017.8254653.

Li, D., Hong, P., Xue, K. & j. Pei. (2018a). Virtual Network Function Placement Considering

Resource Optimization and SFC Requests in Cloud Datacenter. IEEE Transactions on
Parallel and Distributed Systems, 29(7), 1664-1677. doi: 10.1109/TPDS.2018.2802518.

165

Li, D., Hong, P., Xue, K. & Pei, J. (2019). Virtual network function placement and resource

optimization in NFV and edge computing enabled networks. Computer Networks, 152,

12-24. doi: https://doi.org/10.1016/j.comnet.2019.01.036.

Li, G., Zhou, H., Feng, B., Li, G. & Xu, Q. (2018b). Horizontal-based orchestration for multi-

domain SFC in SDN/NFV-enabled satellite/terrestrial networks. China Communications,
15(5), 77-91. doi: 10.1109/CC.2018.8387988.

Li, X. & Qian, C. (2015, April). The virtual network function placement problem. 2015 IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 69-70.

doi: 10.1109/INFCOMW.2015.7179347.

Li, X., Lu, R., Liang, X., Shen, X., Chen, J. & Lin, X. (2011). Smart community: an internet of

things application. IEEE Communications Magazine, 49(11), 68-75.

Li, Y., Phan, L. T. X. & Loo, B. T. (2016, April). Network functions virtualization with soft

real-time guarantees. IEEE INFOCOM 2016 - The 35th Annual IEEE Int. Conf. Comput.
Commun., pp. 1-9. doi: 10.1109/INFOCOM.2016.7524563.

Liao, L., Leung, V. C. M. & Chen, M. (2015). Virtualizing IMS Core and Its Performance

Analysis. In Leung, V. C., Lai, R. X., Chen, M. & Wan, J. (Eds.), Cloud Computing: 5th
International Conference, CloudComp 2014, Guilin, China, October 19-21, 2014, Revised
Selected Papers (pp. 53–65). Cham: Springer International Publishing. doi: 10.1007/978-

3-319-16050-4_5.

Lin, T., Zhou, Z., Tornatore, M. & Mukherjee, B. (2016). Demand-Aware Net-

work Function Placement. Journal of Lightwave Technology, 34(11), 2590-2600.

doi: 10.1109/JLT.2016.2535401.

Liu, J., Zhang, Y., Zhou, Y., Zhang, D. & Liu, H. (2015). Aggressive Resource Provisioning for

Ensuring QoS in Virtualized Environments. IEEE Transactions on Cloud Computing,

3(2), 119-131. doi: 10.1109/TCC.2014.2353045.

Liu, J., Li, Y., Zhang, Y., Su, L. & Jin, D. (2017). Improve Service Chaining Performance with

Optimized Middlebox Placement. IEEE Transactions on Services Computing, 10(4),

560-573. doi: 10.1109/TSC.2015.2502252.

Liu, L., Guo, S., Liu, G. & Yang, Y. (2021). Joint Dynamical VNF Placement and SFC Routing

in NFV-Enabled SDNs. IEEE Transactions on Network and Service Management, 1-1.

doi: 10.1109/TNSM.2021.3091424.

166

Liu, Q. & Han, T. (2019). VirtualEdge: Multi-Domain Resource Orchestration and Virtualization

in Cellular Edge Computing. 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS), pp. 1051-1060. doi: 10.1109/ICDCS.2019.00108.

Liu, Y., Pei, J., Hong, P. & Li, D. (2019). Cost-Efficient Virtual Network Function Placement and

Traffic Steering. ICC 2019 - 2019 IEEE International Conference on Communications
(ICC), pp. 1-6. doi: 10.1109/ICC.2019.8762060.

Lu, F., Pan, H., Lei, X., Liao, X. & Jin, H. (2013, Dec). A Virtualization-Based Cloud

Infrastructure for IMS Core Network. 2013 IEEE 5th International Conference on Cloud
Computing Technology and Science, 1, 25-32. doi: 10.1109/CloudCom.2013.10.

Luizelli, M. C., Bays, L. R., Buriol, L. S., Barcellos, M. P. & Gaspary, L. P. (2015, May).

Piecing together the NFV provisioning puzzle: Efficient placement and chaining of

virtual network functions. 2015 IFIP/IEEE International Symposium on Integrated
Network Management (IM), pp. 98-106. doi: 10.1109/INM.2015.7140281.

Mahmud, R., Kotagiri, R. & Buyya, R. (2018). Fog Computing: A Taxonomy, Survey and Future

Directions. In Di Martino, B., Li, K.-C., Yang, L. T. & Esposito, A. (Eds.), Internet of
Everything: Algorithms, Methodologies, Technologies and Perspectives (pp. 103–130).

Singapore: Springer Singapore.

Malas, D. & Morton, A. (2011). Basic Telephony SIP End-to-End Performance Metrics
(Report n◦6076). RFC Editor. Retrieved from: InternetRequestsforComments.

Manzalini, A., Lopezz, D. R., Lonsethagen, H., Suciu, L., Bifulcozz, R., Odinixi, M., Celozzixiii,

G., Martinixv, B., Rissoy, F., Garayx, J., Foteinosk, V., Demestichasyy, P., Carullox,

G., Tambascox, M. & Carrozzoxiv, G. (2017, July). A unifying operating platform

for 5G end-to-end and multi-layer orchestration. 2017 IEEE Conference on Network
Softwarization (NetSoft), pp. 1-5. doi: 10.1109/NETSOFT.2017.8004216.

Mao, M. & Humphrey, M. (2012, June). A Performance Study on the VM Startup Time in the

Cloud. 2012 IEEE Fifth International Conference on Cloud Computing, pp. 423-430.

doi: 10.1109/CLOUD.2012.103.

Mauro, M. D. & Longo, M. (2015, July). Revealing encrypted WebRTC traffic via ma-

chine learning tools. 2015 12th International Joint Conference on e-Business and
Telecommunications (ICETE), 04, 259-266.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker,

S. & Turner, J. (2008). OpenFlow: Enabling Innovation in Campus Networks. SIGCOMM
Comput. Commun. Rev., 38(2), 69–74. doi: 10.1145/1355734.1355746.

167

Mechtri, M., Ghribi, C. & Zeghlache, D. (2016a). A Scalable Algorithm for the Placement

of Service Function Chains. IEEE Trans. Netw. Service Manage., 13(3), 533-546.

doi: 10.1109/TNSM.2016.2598068.

Mechtri, M., Ghribi, C. & Zeghlache, D. (2016b, June). VNF Placement and Chaining in

Distributed Cloud. IEEE 9th International Conference on Cloud Computing (CLOUD).
doi: 10.1109/CLOUD.2016.0057.

Mehraghdam, S., Keller, M. & Karl, H. (2014). Specifying and placing chains of virtual network

functions. 2014 IEEE 3rd International Conference on Cloud Networking (CloudNet),
pp. 7-13. doi: 10.1109/CloudNet.2014.6968961.

Miorandi, D., Sicari, S., Pellegrini, F. D. & Chlamtac, I. (2012). Internet of things: Vi-

sion, applications and research challenges. Ad Hoc Networks, 10(7), 1497 - 1516.

doi: https://doi.org/10.1016/j.adhoc.2012.02.016.

Mireslami, S., Rakai, L., Wang, M. & Far, B. H. (2015, Dec). Minimizing Deployment Cost of

Cloud-Based Web Application with Guaranteed QoS. 2015 IEEE Global Communications
Conference (GLOBECOM), pp. 1-6. doi: 10.1109/GLOCOM.2015.7417230.

Mireslami, S., Rakai, L., Far, B. H. & Wang, M. (2017). Simultaneous Cost and QoS

Optimization for Cloud Resource Allocation. IEEE Trans. Netw. Service Manage., 14(3),

676-689. doi: 10.1109/TNSM.2017.2738026.

Moens, H. & Turck, F. D. (2014, Nov). VNF-P: A model for efficient placement of virtualized

network functions. 10th Int. Conf. Netw. Service Manage. (CNSM) and Workshop,

pp. 418-423. doi: 10.1109/CNSM.2014.7014205.

Mogul, J. C. & Congdon, P. (2012). Hey, You Darned Counters! Get off My ASIC! Proceedings
of the First Workshop on Hot Topics in Software Defined Networks, (HotSDN ’12), 25–30.

doi: 10.1145/2342441.2342447.

Montazerolghaem, A., Yaghmaee, M. H., Leon-Garcia, A., Naghibzadeh, M. & Tashtar-

ian, F. (2016). A Load-Balanced Call Admission Controller for IMS Cloud Com-

puting. IEEE Transactions on Network and Service Management, 13(4), 806-822.

doi: 10.1109/TNSM.2016.2572161.

Morabito, R., Farris, I., Iera, A. & Taleb, T. (2017). Evaluating performance of containerized

IoT services for clustered devices at the network edge. IEEE Internet of Things Journal,
4(4), 1019–1030.

Moretti, A. C. (2003). A weighted projection centering method. Computational & Applied
Mathematics, 22, 19 - 36.

168

Mouradian, C., Kianpisheh, S., Abu-Lebdeh, M., Ebrahimnezhad, F., Jahromi, N. T. & Glitho,

R. H. (2019). Application Component Placement in NFV-Based Hybrid Cloud/Fog

Systems With Mobile Fog Nodes. IEEE Journal on Selected Areas in Communications,
37(5), 1130-1143. doi: 10.1109/JSAC.2019.2906790.

Munir, A. & Gordon-Ross, A. (2010). SIP-Based IMS Signaling Analysis for WiMax-3G

Interworking Architectures. IEEE Transactions on Mobile Computing, 9(5), 733-750.

doi: 10.1109/TMC.2010.16.

Neely, M. (2010). Stochastic Network Optimization with Application to Communication and
Queueing Systems. Morgan & Claypool.

Nguyen, D. T., Nguyen, K. K., Khazri, S. & Cheriet, M. (2016, Sept). Real-time optimized NFV

architecture for internetworking WebRTC and IMS. 2016 17th Int. Telecommun. Netw.
Strategy Planning Symp. (Networks), pp. 81-88. doi: 10.1109/NETWKS.2016.7751157.

Nguyen, D. T., Nguyen, K. K. & Cheriet, M. (2017, Oct). Optimized IoT service orchestration.

2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile
Radio Communications (PIMRC), pp. 1-6. doi: 10.1109/PIMRC.2017.8292756.

Nguyen, D. T., Nguyen, K. K. & Cheriet, M. (2018). NFV-based Architecture for the Interworking

between WebRTC and IMS. IEEE Transactions on Network and Service Management,
1-1. doi: 10.1109/TNSM.2018.2876697.

Nguyen, D. T., Pham, C., Nguyen, K. K. & Cheriet, M. (2019a). Placement and Chaining for

Run-time IoT Service Deployment in Edge-Cloud. IEEE Transactions on Network and
Service Management, 1-1. doi: 10.1109/TNSM.2019.2948137.

Nguyen, D. T., Pham, C., Nguyen, K. K. & Cheriet, M. (2019b, Oct). SACO: A Service

Chain Aware SDN Controller-Switch Mapping Framework. 2019 15th International
Conference on Network and Service Management (CNSM), pp. 1-8.

Njah, Y., Pham, C. & Cheriet, M. (2020). Service and Resource Aware Flow Management

Scheme for an SDN-Based Smart Digital Campus Environment. IEEE Access, 8,

119635-119653.

Nonde, L., Elgorashi, T. E. H. & Elmirgahni, J. M. H. (2016, Dec). Virtual Network Embedding

Employing Renewable Energy Sources. 2016 IEEE Global Communications Conference
(GLOBECOM), pp. 1-6. doi: 10.1109/GLOCOM.2016.7842376.

Ojo, M., Adami, D. & Giordano, S. (2016, Dec). A SDN-IoT Architecture with NFV Imple-

mentation. 2016 IEEE Globecom Workshops (GC Wkshps), pp. 1-6. doi: 10.1109/GLO-

COMW.2016.7848825.

169

Organization name. (1999). Norm title. Institution and norm number. Location: Organization

name.

Paganelli, F., Ulema, M. & Martini, B. (2014). Context-aware service composition and

delivery in NGSONs over SDN. IEEE Communications Magazine, 52(8), 97-105.

doi: 10.1109/MCOM.2014.6871676.

Pan, J. & McElhannon, J. (2018). Future Edge Cloud and Edge Computing for In-

ternet of Things Applications. IEEE Internet of Things Journal, 5(1), 439-449.

doi: 10.1109/JIOT.2017.2767608.

Pham, T. & Chu, H. (2019). Multi-Provider and Multi-Domain Resource Orchestration in

Network Functions Virtualization. IEEE Access, 7, 86920-86931. doi: 10.1109/AC-

CESS.2019.2926136.

Poularakis, K., Llorca, J., Tulino, A. M., Taylor, I. & Tassiulas, L. (2020). Service Placement

and Request Routing in MEC Networks With Storage, Computation, and Communication

Constraints. IEEE/ACM Transactions on Networking, 28(3), 1047-1060. doi: 10.1109/T-

NET.2020.2980175.

Qi, D., Shen, S. & Wang, G. (2019). Towards an efficient VNF placement

in network function virtualization. Computer Communications, 138, 81-89.

doi: https://doi.org/10.1016/j.comcom.2019.03.005.

Qin, Z., Denker, G., Giannelli, C., Bellavista, P. & Venkatasubramanian, N. (2014). A

Software Defined Networking architecture for the Internet-of-Things. 2014 IEEE
Network Operations and Management Symposium (NOMS), pp. 1-9.

Rai, V. & Mahapatra, R. N. (2005, March). Lifetime modeling of a sensor network. Design,
Automation and Test in Europe, pp. 202-203 Vol. 1. doi: 10.1109/DATE.2005.196.

Ran, Y., Yang, J., Zhang, S. & Xi, H. (2017). Dynamic IaaS Computing Resource Provisioning

Strategy with QoS Constraint. IEEE Transactions on Services Computing, 10(2), 190-202.

doi: 10.1109/TSC.2015.2464212.

Rankothge, W., Le, F., Russo, A. & Lobo, J. (2017). Optimizing Resource Allocation for

Virtualized Network Functions in a Cloud Center Using Genetic Algorithms. IEEE
Trans. Netw. Service Manage., 14(2), 343-356. doi: 10.1109/TNSM.2017.2686979.

Riera, J. F. et al. (2016, June). TeNOR: Steps towards an orchestration platform for multi-PoP

NFV deployment. 2016 IEEE NetSoft Conference and Workshops (NetSoft), pp. 243-250.

doi: 10.1109/NETSOFT.2016.7502419.

170

Ros, F. J. & Ruiz, P. M. (2014). Five Nines of Southbound Reliability in Software-Defined

Networks. Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking, (HotSDN ’14), 31–36. doi: 10.1145/2620728.2620752.

Rosa, R. V., Santos, M. A. S. & Rothenberg, C. E. (2015, March). MD2-NFV: The case for multi-

domain distributed network functions virtualization. 2015 International Conference and
Workshops on Networked Systems (NetSys), pp. 1-5. doi: 10.1109/NetSys.2015.7089059.

Roy, P., Tahsin, A., Sarker, S., Adhikary, T., Razzaque, M. A. & Hassan, M. M. (2020). User

mobility and Quality-of-Experience aware placement of Virtual Network Functions in

5G. Computer Communications, 150, 367 - 377.

Rutten, E., Marchand, N. & Simon, D. (2017). Feedback Control as MAPE-K Loop in

Autonomic Computing. Software Engineering for Self-Adaptive Systems III. Assurances,
pp. 349–373.

Sahin, S., Narayanaswamy, K. & Campos-Nanez, E. (2008, Oct). Call setup performance

improvements over mobile satellite systems using IP multimedia system. 2008 IEEE Inter-
national Workshop on Satellite and Space Communications, pp. 321-325. doi: 10.1109/I-

WSSC.2008.4656823.

Sallam, G., Gupta, G. R., Li, B. & Ji, B. (2018). Shortest Path and Maximum Flow Problems

Under Service Function Chaining Constraints. IEEE INFOCOM 2018 - IEEE Conference
on Computer Communications, pp. 2132-2140. doi: 10.1109/INFOCOM.2018.8485996.

Salman, O., Elhajj, I., Kayssi, A. & Chehab, A. (2015, Dec). Edge computing enabling

the Internet of Things. 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT),
pp. 603-608. doi: 10.1109/WF-IoT.2015.7389122.

Santos, J., Wauters, T., Volckaert, B. & De Turck, F. (2020). Towards delay-aware

container-based Service Function Chaining in Fog Computing. NOMS 2020
- 2020 IEEE/IFIP Network Operations and Management Symposium, pp. 1-9.

doi: 10.1109/NOMS47738.2020.9110376.

Sen, A., Choudhuri, S. & Basu, K. (2020). Structural Dependency Aware Service Chain

Mapping for Network Function Virtualization. 2020 16th International Confer-
ence on the Design of Reliable Communication Networks DRCN 2020, pp. 1-6.

doi: 10.1109/DRCN48652.2020.1570611214.

Sengupta, S., Garcia, J. & Masip-Bruin, X. (2019). Taxonomy and Resource Modeling in

Combined Fog-to-Cloud Systems. Proceedings of the Future Technologies Conference
(FTC) 2018, pp. 687–704.

171

Seth, S. & Singh, N. (2017). Dynamic Threshold-Based Dynamic Resource Allocation

Using Multiple VM Migration for Cloud Computing Systems. In Kaushik, S., Gupta,

D., Kharb, L. & Chahal, D. (Eds.), Information, Communication and Computing
Technology: Second International Conference, ICICCT 2017, New Delhi, India, May
13, 2017, Revised Selected Papers (pp. 106–116). Singapore: Springer Singapore.

doi: 10.1007/978-981-10-6544-6_11.

Sheoran, A., Sharma, P., Fahmy, S. & Saxena, V. (2017). Contain-ed: An NFV Micro-Service

System for Containing e2e Latency. Proceedings of the Workshop on Hot Topics in
Container Networking and Networked Systems, (HotConNet ’17).

Shi, W., Zhang, L., Wu, C., Li, Z. & Lau, F. C. M. (2016). An Online Auction Framework

for Dynamic Resource Provisioning in Cloud Computing. IEEE/ACM Transactions on
Networking, 24(4), 2060-2073. doi: 10.1109/TNET.2015.2444657.

Simarro, J. L. L., Moreno-Vozmediano, R., Montero, R. S. & Llorente, I. M. (2011, July).

Dynamic placement of virtual machines for cost optimization in multi-cloud environments.

2011 International Conference on High Performance Computing Simulation, pp. 1-7.

doi: 10.1109/HPCSim.2011.5999800.

Song, S., Lee, C., Cho, H., Lim, G. & Chung, J. (2019). Clustered Virtualized Network

Functions Resource Allocation based on Context-Aware Grouping in 5G Edge Networks.

IEEE Transactions on Mobile Computing, 1-1. doi: 10.1109/TMC.2019.2907593.

Sousa, N. F. S., Perez, D. A. L., Rosa, R. V., Santos, M. A. & Rothenberg, C. E. (2019).

Network Service Orchestration: A survey. Computer Communications, 142-143, 69 - 94.

doi: https://doi.org/10.1016/j.comcom.2019.04.008.

Sridharan, V., Gurusamy, M. & Truong-Huu, T. (2017). On Multiple Controller Mapping in

Software Defined Networks With Resilience Constraints. IEEE Communications Letters,
21(8), 1763-1766. doi: 10.1109/LCOMM.2017.2696006.

Sun, G., Li, Y., Liao, D. & Chang, V. (2018). Service Function Chain Orchestration Across

Multiple Domains: A Full Mesh Aggregation Approach. IEEE Transactions on Network
and Service Management, 15(3), 1175-1191. doi: 10.1109/TNSM.2018.2861717.

Sun, G. et al. (2020). Low-Latency and Resource-Efficient Service Function Chaining

Orchestration in Network Function Virtualization. IEEE Internet of Things Journal, 7(7),

5760-5772. doi: 10.1109/JIOT.2019.2937110.

Sun, G., Li, Y., Yu, H., Vasilakos, A. V., Du, X. & Guizani, M. (2019). Energy-efficient and traffic-

aware service function chaining orchestration in multi-domain networks. Future Genera-
tion Computer Systems, 91, 347-360. doi: https://doi.org/10.1016/j.future.2018.09.037.

172

Tai-hoon, K., Carlos, R. & Sabah, M. (2017). Smart City and IoT. Future Generation Computer
Systems, 76, 159 - 162.

Tajiki, M. M., Salsano, S., Chiaraviglio, L., Shojafar, M. & Akbari, B. (2019). Joint Energy

Efficient and QoS-Aware Path Allocation and VNF Placement for Service Function

Chaining. IEEE Transactions on Network and Service Management, 16(1), 374-388.

doi: 10.1109/TNSM.2018.2873225.

Taleb, T., Bagaa, M. & Ksentini, A. (2015, June). User mobility-aware Virtual Network Function

placement for Virtual 5G Network Infrastructure. 2015 IEEE International Conference
on Communications (ICC), pp. 3879-3884. doi: 10.1109/ICC.2015.7248929.

Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S. & Sabella, D. (2017). On Multi-Access

Edge Computing: A Survey of the Emerging 5G Network Edge Cloud Architec-

ture and Orchestration. IEEE Communications Surveys Tutorials, 19(3), 1657-1681.

doi: 10.1109/COMST.2017.2705720.

Tang, H., Zhou, D. & Chen, D. (2019). Dynamic Network Function Instance Scaling Based on

Traffic Forecasting and VNF Placement in Operator Data Centers. IEEE Transactions on
Parallel and Distributed Systems, 30(3), 530-543. doi: 10.1109/TPDS.2018.2867587.

Uberti, J., Jennings, C. & Rescorla, E. (2017). JavaScript Session Establishment Protocol
(Report n◦draft-ietf-rtcweb-jsep-24). Internet Engineering Task Force.

Uniyal, N. et al. (2020). 5GUK Exchange: Towards sustainable end-to-end multi-

domain orchestration of softwarized 5G networks. Computer Networks, 178, 107297.

doi: https://doi.org/10.1016/j.comnet.2020.107297.

Urbieta, A., González-Beltrán, A., Mokhtar, S. B., Hossain, M. A. & Capra, L. (2017). Adaptive

and context-aware service composition for IoT-based smart cities. Future Generation
Computer Systems, 76, 262 - 274.

Van Bemten, A., Guck, J. W., Vizarreta, P., Machuca, C. M. & Kellerer, W. (2018). LARAC-SN

and Mole in the Hole: Enabling Routing through Service Function Chains. 2018 4th
IEEE Conference on Network Softwarization and Workshops (NetSoft), pp. 298-302.

doi: 10.1109/NETSOFT.2018.8460128.

Varasteh, A., Madiwalar, B., Van Bemten, A., Kellerer, W. & Mas-Machuca, C. (2021). Holu:

Power-Aware and Delay-Constrained VNF Placement and Chaining. IEEE Transactions
on Network and Service Management, 1-1. doi: 10.1109/TNSM.2021.3055693.

173

Vigneri, L., Paschos, G. & Mertikopoulos, P. (2019, April). Large-Scale Network Utility

Maximization: Countering Exponential Growth with Exponentiated Gradients. IEEE
INFOCOM 2019 - IEEE Conference on Computer Communications, pp. 1630-1638.

doi: 10.1109/INFOCOM.2019.8737600.

Voellmy, A., Wang, J., Yang, Y. R., Ford, B. & Hudak, P. (2013a). Maple: Simplifying SDN

Programming Using Algorithmic Policies. Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM, (SIGCOMM ’13), 87–98. doi: 10.1145/2486001.2486030.

Voellmy, A., Wang, J., Yang, Y. R., Ford, B. & Hudak, P. (2013b). Maple: Simplifying SDN

Programming Using Algorithmic Policies. SIGCOMM Comput. Commun. Rev., 43(4),

87–98. doi: 10.1145/2534169.2486030.

Wamser, F., Lombardo, C., Vassilakis, C., Dinh-Xuan, L., Lago, P., Bruschi, R. & Tran-Gia, P.

(2018, June). Orchestration and Monitoring in Fog Computing for Personal Edge Cloud

Service Support. 2018 IEEE International Symposium on Local and Metropolitan Area
Networks (LANMAN), pp. 91-96. doi: 10.1109/LANMAN.2018.8475113.

Wang, J., Pan, J. & Esposito, F. (2017a). Elastic Urban Video Surveillance System Using Edge

Computing. Proceedings of the Workshop on Smart Internet of Things, (SmartIoT ’17),

7:1–7:6. doi: 10.1145/3132479.3132490.

Wang, L., Lu, Z., Wen, X., Knopp, R. & Gupta, R. (2016). Joint Optimization of Service

Function Chaining and Resource Allocation in Network Function Virtualization. IEEE
Access, 4, 8084-8094. doi: 10.1109/ACCESS.2016.2629278.

Wang, P., Lan, J., Zhang, X., Hu, Y. & Chen, S. (2015). Dynamic function composition for

network service chain: Model and optimization. Computer Networks, 92, 408 - 418.

doi: https://doi.org/10.1016/j.comnet.2015.07.020.

Wang, S., Urgaonkar, R., He, T., Chan, K., Zafer, M. & Leung, K. K. (2017b). Dynamic Service

Placement for Mobile Micro-Clouds with Predicted Future Costs. IEEE Transactions on
Parallel and Distributed Systems, 28(4), 1002-1016. doi: 10.1109/TPDS.2016.2604814.

Wang, T., Liu, F. & Xu, H. (2017). An Efficient Online Algorithm for Dynamic SDN Controller

Assignment in Data Center Networks. IEEE/ACM Transactions on Networking, 25(5),

2788-2801. doi: 10.1109/TNET.2017.2711641.

Wu, L., Garg, S. K. & Buyya, R. (2012). SLA-based admission control for a Software-as-a-

Service provider in Cloud computing environments. Journal of Computer and System
Sciences, 78(5), 1280 - 1299.

174

Xiang, Q. et al. (2019). Unicorn: Unified resource orchestration for multi-domain,

geo-distributed data analytics. Future Generation Computer Systems, 93, 188-197.

doi: https://doi.org/10.1016/j.future.2018.09.048.

Xiao, W., Bao, W., Zhu, X., Wang, C., Chen, L. & Yang, L. T. (2016). Dynamic Request

Redirection and Resource Provisioning for Cloud-Based Video Services under Hetero-

geneous Environment. IEEE Transactions on Parallel and Distributed Systems, 27(7),

1954-1967. doi: 10.1109/TPDS.2015.2470676.

Xu, Y., Cello, M., Wang, I., Walid, A., Wilfong, G., Wen, C. H. ., Marchese, M. & Chao,

H. J. (2019). Dynamic Switch Migration in Distributed Software-Defined Networks to

Achieve Controller Load Balance. IEEE Journal on Selected Areas in Communications,
37(3), 515-529. doi: 10.1109/JSAC.2019.2894237.

Xu, Z., Liang, W., Galis, A., Ma, Y., Xia, Q. & Xu, W. (2018). Throughput optimization for

admitting NFV-enabled requests in cloud networks. Computer Networks, 143, 15-29.

doi: https://doi.org/10.1016/j.comnet.2018.06.015.

Xu, Z., Zhang, Z., Liang, W., Xia, Q., Rana, O. & Wu, G. (2020). QoS-Aware VNF Placement

and Service Chaining for IoT Applications in Multi-Tier Mobile Edge Networks. ACM
Trans. Sen. Netw., 16(3). doi: 10.1145/3387705.

Yang, S., Li, F., Trajanovski, S. & Fu, X. (2020). Traffic routing in stochastic network function

virtualization networks. Journal of Network and Computer Applications, 169, 102765.

doi: https://doi.org/10.1016/j.jnca.2020.102765.

Ye, Q., Zhuang, W., Li, X. & Rao, J. (2019). End-to-End Delay Modeling for Embedded

VNF Chains in 5G Core Networks. IEEE Internet of Things Journal, 6(1), 692-704.

doi: 10.1109/JIOT.2018.2853708.

Ye, X., Cheng, G. & Luo, X. (2017). Maximizing SDN control resource utilization via switch

migration. Computer Networks, 126, 69 - 80.

Yu, H., Qiao, C., Anand, V., Liu, X., Di, H. & Sun, G. (2010, Dec). Survivable Virtual

Infrastructure Mapping in a Federated Computing and Networking System under Single

Regional Failures. 2010 IEEE Global Telecommunications Conference GLOBECOM
2010, pp. 1-6. doi: 10.1109/GLOCOM.2010.5683951.

Zhang, Q., Wang, X., Kim, I., Palacharla, P. & Ikeuchi, T. (2016, June). Vertex-centric computa-

tion of service function chains in multi-domain networks. 2016 IEEE NetSoft Conference
and Workshops (NetSoft), pp. 211-218. doi: 10.1109/NETSOFT.2016.7502415.

175

Zheng, D., Peng, C., Liao, X. & Cao, X. (2020). Toward Optimal Hybrid Service Function

Chain Embedding in Multiaccess Edge Computing. IEEE Internet of Things Journal,
7(7), 6035-6045. doi: 10.1109/JIOT.2019.2957961.

Zheng, G., Tsiopoulos, A. & Friderikos, V. (2018). Optimal VNF Chains Management for

Proactive Caching. IEEE Transactions on Wireless Communications, 17(10), 6735-6748.

doi: 10.1109/TWC.2018.2863685.

Zhou, A., Wang, S., Cheng, B., Zheng, Z., Yang, F., Chang, R. N., Lyu, M. R. & Buyya,

R. (2017). Cloud Service Reliability Enhancement via Virtual Machine Place-

ment Optimization. IEEE Transactions on Services Computing, 10(6), 902-913.

doi: 10.1109/TSC.2016.2519898.

