

A Proposed Framework for the Analysis of the Performance
of Newly Proposed Metaheuristics

by

Remi EHOUNOU

THESIS PRESENTED TO ÉCOLE DE TECHNOLOGIE SUPERIEURE IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF MASTERS WITH THESIS IN SOFTWARE ENGINEERING
M. Sc. A.

MONTRÉAL, MARCH 21, 2022

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

 Rémi Ehounou, 2022

This Creative Commons licence allows readers to download this work and share it with others
as long as the author is credited. The content of this work can’t be modified in any way or used
commercially

BOARD OF EXAMINERS (THESIS M.SC.A.)

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Professor Alain April, Thesis Supervisor
Deepartment of Software Engineering and IT at École de technologie supérieure

Professor Ali Ouni, President of the Jury
Département of Software Engineering and IT at École de technologie supérieure

Professor François Coallier, Member of the jury
Département of Software Engineering and IT at École de technologie supérieure

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

MARCH 15, 2022

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

ACKNOWLEDGMENT

Foremost, I would like to thank my research director, the professor Alain April for giving me

the opportunity of making the transition from a master’s in aerospace engineering into

Software engineering with Thesis.

I would also like to thank Mr. Iannick Gagnon, my senior scientist for his assistance and

insights throughout the process of this research. His advice and comments played a key role in

the successful execution of this research.

Last but not least, I would like to thank my family especially my parents for their support and

encouragement through this process. Their unrelenting support allowed me to remain focused

on my task.

Cadriciel d’analyse de la performance des propositions de nouvelles métaheuristiques

Rémi Ehounou

RÉSUMÉ

L’évaluation des métaheuristiques joue un rôle important dans le développement de nouveaux
algorithmes pour les problèmes d’optimisation. Cependant, plusieurs études dans le domaine
critiquent le manque de rigueur méthodologique dans plusieurs études de cas.
L’implémentation de cadres d’analyse améliorés est proposée comme une réponse adéquate à
ce problème.

Cette recherche étudie la faisabilité de ce principe en implémentant les recommandations de
bonnes pratiques méthodologiques comme l’intégration d’analyses statistiques comme des
études de régression entre la classification d’un problème et la performance des
métaheuristiques à le résoudre. L’importance d’utiliser des études contrôlées est reconnue
comme étant nécessaire pour assurer que les résultats soient fiables et répétables.

Des méthodes de classification des problèmes de test en catégories basées sur des
caractéristiques calculées de la librairie FLACCO (Feature-Based Landscape Analysis of
Continuous and Constrained Optimization) native au langage R sont présentées. La sélection
des paramètres d’évaluation, des instances de problèmes de test et des méthodes statistiques
est aussi traité. Un cadriciel nommé Metaheuristics Design and Analysis Framework (MDAF),
fut augmenté et testé avec une étude de cas présenté à la fin de ce mémoire.

Il en ressort que l’évaluation de la performance d’algorithmes d’optimisation permet de
déterminer des paramètres efficaces pour les études d’optimisation sur des fonctions
spécifiques.

Mots-clés : métaheuristiques, optimisation mathématique, optimisation stochastique, cadre
d’analyse

A Proposed Framework for the Analysis of the Performance of Newly Proposed
Metaheuristics

Rémi Ehounou

ABSTRACT

Metaheuristics benchmarking plays a key role in developing new algorithms for optimization
problems. However, a number of published studies criticize the lack of reliable and repeatable
experimentation in the analysis of many newly proposed metaheuristics. The enhancement of
an analysis framework is studied and implemented as an adequate response to this issue.

This research presents a framework for the design and analysis of the performance of newly
proposed metaheuristic algorithms named Metaheuristics Design and Analysis Framework
(MDAF). The importance of well-constructed and controlled studies is recognized as a
necessary step for the benchmarking results to be reliable and repeatable.

Methods such as the classification of problem instances into categories based on a
representation calculated from the FLACCO (Feature-Based Landscape Analysis of
Continuous and Constrained Optimization) library are discussed. The selection of
benchmarking parameters, problem instances, and statistical methods are also presented.

It is observed from the analyses that the implementation of valid experimental methods is an
effective strategy for Benchmarking the performance of optimization algorithms.

Keywords: metaheuristics, mathematical optimization, stochastic optimization, analytical
framework

TABLE OF CONTENTS

 Page

INTRODUCTION ... 3
0.1. Problem Definition ... 6
0.2. Contribution .. 7
0.3. Research Objective ... 8
0.4. Future Work .. 9

CHAPTER 1 LITERATURE REVIEW .. 10
1.1. Choice of a Programming Paradigm ... 20
1.2. Conclusion .. 21

CHAPTER 2 RESEARCH PLANNING ... 23
2.1. Phase I — Definition .. 25
2.2. Phase II – Planning ... 25
2.3. Phase III – Operation .. 26
2.4. Phase IV — Interpretation .. 27
2.5. Conclusion .. 28

CHAPTER 3 DESIGN OF THE FRAMEWORK ... 29
3.1. Requirements tracking .. 38
3.2. Conclusion .. 39

CHAPTER 4 EXPLORATORY LANDSCAPE ANALYSIS ... 41
4.1. Conclusion .. 44

CHAPTER 5 IMPLEMENTATION OF THE METAHEURISTICS DESIGN AND
ANALYSIS FRAMEWORK ... 45

5.1. Default Test Functions .. 48
5.2. PyPI Packaging ... 50
5.3. Experimental Planning .. 50
5.4. Automated Testing .. 51
5.5. Efficient computation ... 53
5.6. Conclusion .. 54

CHAPTER 6 CASE STUDY: BENCHMARKING THE PARTICLE SWARM
ALGORITHM WITH DIFFERENT PARAMETERS TO DETERMINE THE
EFFICIENT VALUES ... 55

6.1. Methodology ... 55

ii

6.2. Results ... 56
6.3. Discussion ... 69
6.4. Test Case Conclusion ... 75

CONCLUSION AND PERSPECTIVES .. 76

APPENDIX I. SIMULATED ANNEALING PSEUDO CODE .. 78

APPENDIX II. PACKAGE META DATA .. 79

APPENDIX III. MDAF CODE .. 80

APPENDIX IV. SAMPLE STRUCTURE OF PREPROGRAMMED TEST FUNCTIONS 94

APPENDIX V. AUTOMATED TESTS ALGORITHMS .. 95

APPENDIX VI. FLACCO Features Data ... 98

APPENDIX VII. PSO PERFORMANCE DATA .. 103

APPENDIX VIII. CASE STUDY CODE .. 118

APPENDIX IX. PSO ALGORITHM ... 121

APPENDIX X. PACKAGE INIT FILE .. 126

LIST OF REFRENCES .. 127

LIST OF TABLES
 Page

Table 1.1. Existing Metaheuristic Frameworks organized by capabilities 11

Table 2.1 Phase I – Definition of the Research ... 25

Table 2.2 Phase II - Planning Stage of the Research ... 26

Table 2.3 Phase III - Planning stage of the framework design and test 27

Table 2.4 Phase IV - Interpretation and results of the research ... 28

Table-A VI-1 The gcm Feature Set Values ... 98

Table-A VII-1 c1 Parameter Values Used for the Case Study .. 103

Table-A VII-2 c2 Parameter Values Used for the Case Study .. 105

Table-A VII-3 Average Number of calls Required to Optimize the Leon Test
Function using PSO for each c1 and c2 Parameter variations 106

Table-A VII-4 Standard Errors for the Average Numbers of calls Statistics
Required to Optimize the Leon Test Function using PSO for each c1 and c2
Parameter variations .. 107

Table-A VII-5 Average Number of calls Required to Optimize the Price2 Test
Function using PSO for each c1 and c2 Parameter variations 108

Table-A VII-6 Standard Errors for the Average Numbers of calls Statistics
Required to Optimize the Price2 Test Function using PSO for each c1 and c2
Parameter variations .. 109

Table-A VII-7 Average Number of calls Required to Optimize the Brown Test
Function using PSO for each c1 and c2 Parameter variations 110

Table-A VII-8 Standard Errors for the Average Numbers of calls Statistics
Required to Optimize the Brown Test Function using PSO for each c1 and c2
Parameter variations .. 111

II

Table-A VII-9 Average Number of calls Required to Optimize the Ackley2 Test
Function using PSO for each c1 and c2 Parameter variations 112

Table-A VII-10 Standard Errors for the Average Numbers of calls Statistics
Required to Optimize the Ackley2 Test Function using PSO for each c1 and
c2 Parameter variations .. 113

Table-A VII-11 Average Number of calls Required to Optimize the Styblinski-
Tang Test Function using PSO for each c1 and c2 Parameter variations 114

Table-A VII-12 Standard Errors for the Average Numbers of calls Statistics
Required to Optimize the Styblinski-Tang Test Function using PSO for each
c1 and c2 Parameter variations .. 115

Table-A VII-13 Average Number of calls Required to Optimize the Step Test
Function using PSO for each c1 and c2 Parameter variations 116

Table-A VII-14 Standard Errors for the Average Numbers of calls Statistics
Required to Optimize the Step Test Function using PSO for each c1 and c2
Parameter variations... 117

LIST OF FIGURES

 Page

Figure 0.1 - Sample Objective Function Topology .. 4

Figure 0.2 Structure of the Proposed Framework ... 9

Figure 1.1 - Multimodal test function example: Six-Hump Camel Back 17

Figure 1.2 - Unimodal test function example: Trid ... 17

Figure 1.3 - Example of large basin in Rosenbrock’s function ... 18

Figure 1.4 - Example of the Topology of a Benchmarking Test Function 19

Figure 2.1 - Work Breakdown Structure of this Research Activity ... 24

Figure 3.1 - A Diagram of the "4+1" View Model .. 30

Figure 3.2 - Legend of the Components in the Flowchart ... 30

Figure 3.3 - Main Logical View of the FrameWork .. 32

Figure 3.4 - The Preprocessing Module ... 34

Figure 3.5 - The Postprocessing Module ... 35

Figure 3.6 - The Experiment Running Process .. 36

Figure 3.7 - The Algorithm Module .. 37

Figure 3.8 - The Technical Debt Landscape .. 38

Figure 4.1 - 3D Barrier Tree Visualization by FLACCO .. 42

Figure 4.2 - Cell Mapping Visualization by FLACCO .. 43

Figure 4.3 - Information Content Plot by FLACCO .. 43

Figure 5.1 - Test Function Visualization produced by MDAF .. 47

ii

Figure 5.2 - Radar Plot of Bukin2 and Bukin6 test functions' ela_meta feature set
by MDAF ... 48

Figure 5.3 - Bukin6 Visualization .. 49

Figure 5.4 - Brown Function Visualization ... 50

Figure 5.5 - Snapshot of the Automated Tests Results in VS Code .. 52

Figure 5.6 - Automated Python Doctest Results .. 53

Figure 5.7 - Optimally Loaded Central Processing Unit (CPU) .. 54

Figure 6.1 - Result of the Visualize2D function for the Step Test Function 57

Figure 6.2 - Result of the Visualize2D function for the Price2 Test Function 57

Figure 6.3 - Result of the Visualize2D function for the Leon Test Function 58

Figure 6.4 - Result of the Visualize2D function for the Brown Test Function 58

Figure 6.5 - Result of the Visualize2D function for the Ackley2 Test Function 59

Figure 6.6 - Result of the Visualize2D function for the Styblinski-Tang Test
Function ... 60

Figure 6.7 - Result of the plotfuncs Function for gcm features ... 61

Figure 6.8 - Average Number of Function Calls for Solving the Leon Test
Function vs c1 and c2 Parameter Values ... 63

Figure 6.9 - Standard Errors for the Number of Function Calls for Solving the
Leon Test Function vs c1 and c2 Parameter Values .. 63

Figure 6.10 - Average Number of Function Calls for Solving the Price2 Test
Function vs c1 and c2 Parameter Values ... 64

Figure 6.11 - Standard Errors for the Number of Function Calls for Solving the
Price2 Test Function vs c1 and c2 Parameter Values .. 64

Figure 6.12 - Average Number of Function Calls for Solving the Brown Test
Function vs c1 and c2 Parameter Values ... 65

Figure 6.13 - Standard Errors for the Number of Function Calls for Solving the
Brown Test Function vs c1 and c2 Parameter Values ... 65

iii

Figure 6.14 - Average Number of Function Calls for Solving the Ackley2 Test
Function vs c1 and c2 Parameter Values ... 66

Figure 6.15 - Standard Errors for the Number of Function Calls for Solving the
Ackley2 Test Function vs c1 and c2 Parameter Values ... 66

Figure 6.16 - Average Number of Function Calls for Solving the Styblinski-Tang
Test Function vs c1 and c2 Parameter Values ... 67

Figure 6.17 - Standard Errors for the Number of Function Calls for Solving the
Styblinski-Tang Test Function vs c1 and c2 Parameter Values 67

Figure 6.18 - Average Number of Function Calls for Solving the Step Test
Function vs c1 and c2 Parameter Values ... 68

Figure 6.19 - Standard Errors for the Number of Function Calls for Solving the
Step Test Function vs c1 and c2 Parameter Values ... 68

Figure 6.20 - PSO Average Number of Function Calls Heatmap for Sub Region of
Interest for the Ackley2 Test Function .. 72

Figure 6.21 - Standard Error Heatmap for the Above Average Values of the
Performance of PSO on Ackley2 ... 72

Figure 6.22 - Comparison of the Representation and Performance of the Ackley2
and Step Test Functions ... 74

LIST OF ABBREVIATIONS AND ACRONYMS

ELA Exploratory Landscape Analysis

EP Experiment Plan

FBP Flow Based Programming

FLACCO Feature-Based Landscape Analysis of Continuous and Constrained

Optimization

MDAF Metaheuristics Design and Analysis Framework

MOF Metaheuristics Optimization Framework

NaN Not a Number

NFLT No Free Lunch Theorem

OOP Object Oriented Programming

PSO Particle Swarm Optimization

SA Simulated Annealing

LIST OF ALGORITHMS
Page

Algorithm 5.1. PyTest Command .. 52

Algorithm-A I-1 Simulated Annealing Pseudo Code………………………………………..78

Algorithm-A II-1 Package Meta Data for MDAF .. 79

Algorithm-A III-1 MDAF Algorithm Implementation ... 80

Algorithm-A IV-1 The Bukin2 Test Function Implementation .. 94

Algorithm-A V-1 The Unittest Automated Testing Script ... 95

Algorithm-A VIII-1 Case Study Python Script used with MDAF to Generate the
Results .. 118

Algorithm-A IX-1 The PSO Algorithm .. 121

Algorithm-A X-1 MDAF Package Init File .. 126

INTRODUCTION

Several disciplines like computer science, engineering and economics require optimization

problems to be solved. To accomplish this, different mathematical techniques and tools have

been proposed. This research is interested in a special kind of optimization algorithm family

called metaheuristics. More specifically, it is concerned with the evaluation and benchmarking

of new metaheuristics proposals for various types of problems.

The field of metaheuristics optimization has been applied to a wide range of real-world

problems with success. Such problems are often too complex to solve manually and/or too

resource intensive for common methods such as those of linear programming (Sala & Müller,

2020). According to (Sörensen & Glover, 2013), metaheuristics define a high-level algorithmic

framework that provides strategies to implement low-level heuristic optimization algorithms

(Sörensen & Glover, 2013). Heuristics, from heuriskein in Greek which means “to find”, are

algorithms that are designed using problem-specific information to find a good solution with

relative ease (Bianchi et al., 2009). Therefore, metaheuristics can be seen as an abstract

framework for heuristics. Metaheuristics research has grown into an established discipline, and

it now contains a vast body of knowledge that can be applied to almost every field that involves

optimization.

Constrained optimization problems are concerned with the maximization or minimization of

objective functions whose input variables are constrained usually for system identification

reasons. These constraints generally represent characteristics of the real-world problems being

modeled and help ensure that the solutions found make physical sense. Objective functions

model one or more variables of the studied systems that we wish to control. Constraints can

also be applied on the runtime, although this type of constraint is considered to be of a different

kind than that of the constraints on the objective function variables since they are problem

4

independent. Figure 0.1 shows a sample objective function topology. A typical goal is to find

the position of the global minimum of the function. This can be accomplished by using the

well-known gradient descent algorithm (Curry, 1944), but the prevalence of local minima

almost guarantees that it will find a suboptimal solution unless the starting point is at or near

the global optimum. It is therefore necessary to use a different approach, such as the use of

stochastic parameters, to let the optimization escape from these regions (Luke, 2013).

Optimization problems can also be categorized in different ways which determine the type of

metaheuristics that will be most effective for solving it. One such distinction is made between

separable and non-separable objective functions. The former is considered easier to solve due

to the simple linear relationship between the components (Brownlee, 2007).

Figure 0.1 - Sample Objective Function Topology (Diego Andrés
Alvarez Marín, 2010)

A canonical metaheuristic algorithm called Simulated Annealing (SA) follows a process

similar to the annealing process in materials engineering (Luke, 2013). This mimicking of

nature is quite common with recently developed metaheuristic algorithms since many natural

processes tend to have optimizing properties (Bianchi et al., 2009). As the name indicates, this

algorithm optimizes objective functions by modeling the physical process by which particles

inside a material rearrange themselves to achieve thermal equilibrium. The version outlined by

Luke is based on the principle of local search heuristics which explores the problem space by

5

comparing the best obtained value of the objective function to that of a neighbor. It then selects

the new point if it is better than the current one, or randomly selecting a new point depending

on the temperature parameter: the higher the temperature parameter the more random changes

are (Bianchi et al., 2009). A control parameter which effectively represents the temperature of

the annealing process determines how much randomness is included in the optimization

process. This principle is presented in APPENDIX I, which outlines the simulated annealing

process in pseudo code. The temperature parameter 𝑇 is used in the calculation of the

probability factor 𝑝. The calculated value is then compared to a randomly generated number

to decide if it accepts the new position or not. It is this mechanism that makes SA a stochastic

algorithm. It is also this mechanism that allows SA to sometimes move to non-improving

positions. The so-called temperature of the algorithm is typically set to a high value (eg.

T=1000) at the beginning of the process and then decreased gradually as time goes by (Luke,

2013). When the temperature is reduced to a small enough value, SA becomes a purely greedy

algorithm which is an algorithm that consistently follows the locally optimal choice at each

iteration. The stochastic component is useful at the start of the process to help reduce the

chances of the algorithm getting trapped in a local extreme value.

As the field keeps advancing, algorithms are continuously being proposed so a systematic

evaluation method is needed. To solve this issue, test problems are also being created to

benchmark new metaheuristics to determine what types of problems they are good at solving.

Benchmarking is defined as the determination of a metaheuristic’s performance when applied

to a specific type of problem using a combination of theoretical and empirical approaches (Sala

& Müller, 2020). In the context of this research, a framework is developed to evaluate

metaheuristics on standard test problems to determine their performance. For example, the

Cross-Entropy Toolbox proposed in (Zdravko Botev et al., 2004) contains a diverse set of test

functions for both constrained and unconstrained optimization that can be used to evaluate the

performance of metaheuristics. This is discussed in more detail in Section 0. In addition to the

test functions, principles and theories have been developed to address the challenges involved

in benchmarking metaheuristic algorithms. For instance, the No Free Lunch Theorem (NFLT)

6

stipulates that no single algorithm is appropriate for all possible types of problems (Koppen et

al., 2001) (Brownlee, 2007) (Sala & Müller, 2020).

0.1. Problem Definition
The field of metaheuristics is criticized for the lack of rigor in the current evaluation methods

of newly proposed algorithms. The following points outline the main issues reported in the

literature concerning current practices (Eiben & Jelasity, 2002):

• Ad hoc selection of test functions: New Algorithm proposals are often tested on a set

of functions without the justification of a solid experimental design, which prevents a

full understanding of their performance in different contexts;

• Overgeneralization of obtained results: The results of benchmark tests published for

new algorithm proposals are often generalized beyond the specific functions on which

they have been tested. Better definition and classification of the problems into

categories is needed to improve generalizability;

• Poor reproducibility: Since the source code associated with the algorithm proposal is

often not made available to the public, it is difficult or practically impossible to

replicate/validate the claims and reported results;

• Lack of clearly stated objectives: Proposed algorithm Results/claims are sometimes

interpreted without being related to the experimental objectives and expectations.

The common practice of what esteemed Operations Research professor John Hooker called

‘competitive testing’, in which algorithms are directly compared to each other by their direct

runtime performance metrics (e.g., convergence time), is highly discouraged (Hooker, 1995).

He describes them as non-scientific, citing two undesirable consequences when using this

algorithm comparison technique, and proposes better methods for comparing algorithms. In

fact, directly comparing the performance numbers of metaheuristics has led to a focus on speed

which distracts researchers in the field from building well-designed and controlled

experiments. The author also adds that machine speed and implementation-specific details of

the various metaheuristics (e.g., programming language and style, architecture, etc.) have too

7

much of an impact on the runtime of algorithms for direct comparison to be scientifically

meaningful.

Another issue in metaheuristics benchmarking is the classification of problems into classes as

well as the selection of problem instances for testing. For the selection of problem instances, it

is preferable to perform the study on as many classes of problems as possible to acquire a

general understanding of the algorithm. When it comes to the classification of test problem

instances, the structural properties as well as the methods of generation of the problems (i.e.

real world model or artificially constructed test functions) are proposed as possible taxonomic

criteria (Brownlee, 2007).

Finally, the optimizing tendency of a genetic algorithm is a characteristic that complex systems

share. Therefore, carefully tuning such algorithms is an important preliminary step to testing

and special attention also needs to be paid to the selection of performance metrics (Brownlee,

2007). These recommendations must be included in future benchmark frameworks to ensure

their effectiveness at comparing metaheuristics.

In short, the benchmarking of metaheuristics requires careful consideration. In addition,

recommendations for conducting this process exist in the literature such as the use of controlled

experiments, the classification of problem instances into categories and the tuning of

algorithms before benchmarking.

0.2. Contribution

This research is part of a larger research project on the design and analysis of metaheuristics.

It aims to implement and automate some of the recommendations from (Gagnon, 2020) about

the necessity of benchmarking new metaheuristics proposals. Recommendations from the

literature which are described in Chapter0 will also be implemented in this research. Figure 0.2

shows a structure for the project where the elements in green are the components being

addressed by this research. This research proposes a framework for testing metaheuristics with

modules for statistical analysis as well as data preprocessing to identify the characteristics of

each experiment to be run through the framework. For example, the preprocessing module can

8

be used to set up a new study to benchmark a newly developed metaheuristic’s performance

on a specific family of problems. The framework will then be able run the tests before

performing a statistical analysis. A post processing stage is also included for exporting the

results data and performing some basic analysis. This framework will be implemented in the

Python 3 programming language and deployed as a PyPI package. PyPI is the official

repository of the Python programming language packages.

0.3. Research Objective

The main objective of this research is to propose an analytical framework that could help

researchers increase the quality of their research. In order to experiment with a solution

proposal, an initial version of a prototype software of the framework for metaheuristics

performance benchmarking will be designed and implemented based on some of the

recommendations made in (Gagnon, April & Abran, 2020). This experimental framework

prototype could serve as a tool to perform more rigorous statistical analyses of newly proposed

metaheuristic algorithms in the future. Before a software prototype can be designed and coded,

Figure 0.2 shows a high-level view of the architecture of the proposed framework. The green

boxes represent the components that will be addressed in this research. Note that an important

characteristic of the framework’s proposed software architecture is the ability for parallel

computing which is described in more details in section 5.5 to improve performance. The

following secondary objectives will also be addressed:

• A modular architecture to make it easy to change the algorithms being tested;

• The framework must be available on PyPI;

• The presence of functionality to address some of the literature recommendations:

modular architecture for test instances and algorithms, implementation of parametric

statistical methods, implementation of more precise runtime calculation technics to

determine the computing loads demanded by the algorithms.

This research, therefore, proposes to automate the benchmarking process of new

metaheuristics.

9

Figure 0.2 Structure of the Proposed Framework

0.4. Future Work
At the last step of this research, results will be assessed, and potential improvements will be

identified. One improvement that can already be identified aims to adapt the proposed

framework to include the possibility of performing meta-analysis by consolidating the results

of multiple independent studies completed with the framework. These will not be addressed

by the current research activities.

CHAPTER 1

LITERATURE REVIEW

This Chapter addresses the state of the art in benchmarking the performance of metaheuristics.

An in-depth survey of the literature shows that this is still an unsolved problem in many ways.

For example, there are no standardized sets of methods to accomplish this task (Jamil & Yang,

2013) (Brownlee, 2007). This has evidently motivated attempts to compile various test

functions to facilitate the evaluation of newly proposed algorithms. It is relevant to highlight

the difference between metaheuristic optimization frameworks (MOFs) and benchmarking

frameworks. MOFs like the Opt4J (Lukasiewycz et al., 2011) (Opt4J, 2020) and EasyLocal++

(Di Gaspero & Schaerf, 2002) are used to design metaheuristics while benchmarking

frameworks are used to test and compare the performance of existing metaheuristics.

OptiBench by the company CIRG@UP, is an example of a benchmarking framework that is

similar to what this research aims to accomplish (Peer et al., 2003). It comprises a library of

standard problem instances and popular metaheuristics, an engine for data science, and a

centralized results repository. Other frameworks similar to Opt4J include the following

11

Table 1.1. Existing Metaheuristic Frameworks organized by capabilities (Sean Luke et al.,
2020) (Lukasiewycz et al., 2011) (MOEA Framework, a Java Library for Multiobjective

Evolutionary Algorithms, n.d.)

Frameworks MOF Test Function Library

jMetal Yes Yes

EvA2 Yes Yes

Watchmaker framework Yes Yes

ECJ27 Yes Yes

JCLEC Yes No

MOEA framework Yes Yes

Paradiseo Yes No

It is recommended that benchmarking methods be more extensive than just the test functions

provided with the MOF as is discussed in the paragraphs below. This research is focused on

benchmarking frameworks and will be integrated with algorithms either generated by a MOF

or taken from the literature like the simulated annealing algorithm (Gagnon et al., 2020).

Metaheuristics are used in almost all the domains of engineering (Gandomi & Yang, 2011) as

well as in computer science and mathematics (Mendes et al., 2009) (Web of Science Core

Collections, 2020). According to Web of Science, there were 681 publications with

“metaheuristics” in their title in the past 5 years, and there is a growing number of citations

each year, totaling 1509 citations since 2016 (Citation Report, 2020). Therefore, this field is

growing and affects other disciplines, making it important that the algorithms being proposed

are well understood to ensure their appropriate use and value. One of the most popular

techniques to validate a new algorithm is to test it using common multi-modal mathematical

functions whose global min/maxima are known and to compare the results (e.g., number of

objective function evaluations, first hitting times, etc.) with those of other algorithms that

already exist (Hooker, 1995).This validation method is criticized by (Hooker, 1995) and

(Brownlee, 2007) for lacking rigor and for being too simplistic considering the complexity of

the algorithms being evaluated. A more mathematically rigorous validation approach is

suggested in which the new algorithms are evaluated on a series of benchmark problems and

12

the results are analyzed with statistical methods to better address their stochastic nature as well

as ensuring their complexities (Brownlee, 2007) (Jamil & Yang, 2013). These test results may

then carefully be extrapolated to other classes of problems based on how representative the

sample problems used for the benchmark were (Sala & Müller, 2020). The authors also

advocate for the substitution of real-life optimization problems with “computationally

affordable representative benchmark problems” citing the No Free Lunch Theorem (NFLT) as

a justification. This theorem is discussed in the following paragraphs. Possible problem

instances are divided into classes based on their characteristics and the theory is that heuristic

algorithms will have a similar performance when applied to problems of the same class. The

following equation is a general mathematical description of typical optimization problems.

This will be useful in standardizing the test problems in the framework as objects.

 𝐺𝑖𝑣𝑒𝑛 𝑓:𝑅 → 𝑅 𝑓𝑖𝑛𝑑 𝑥 𝜖 𝑅 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝑓 𝑥 ≤ 𝑓 𝑥 ,𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝜖 𝑅
 (1)

Where 𝑓(𝑥) represents an objective function to be minimized or maximized depending on the

specific problem being modeled.

The NFLT stipulates that all optimization algorithms have similar average performance when

tested over all possible types of objective functions (Brownlee, 2007), which implies that the

search for a single general-purpose algorithm is not a viable endeavor. More importantly, this

theorem implies that the observed behavior of an algorithm on a specific problem class requires

careful analysis when attempting to extrapolate to other problem classes. Therefore,

optimization algorithms need to be matched to the specific problem classes they are suited for.

This encourages the use of domain specific knowledge in optimization algorithms as a good

practice since its ability to be applied to all possible optimization problems is not a meaningful

characteristic of a heuristic. Even in the case of metaheuristic algorithms like particle swarm

optimization (PSO) (Russell Eberhart et al., 2001), the use of domain-specific knowledge is

recommended since they are designed for specific problem classes (Brownlee, 2007) (Jamil &

Yang, 2013). Caution is advised when interpreting the NFLT since many do not apply it

correctly due to the misunderstanding of its implications (Russell Eberhart et al., 2001). The

theorem does not argue against the generalization of metaheuristics since most algorithms can

13

solve a wide range of problems, like machine learning algorithms (Moon et al., 2019) (Lu et

al., 2020) (Zhang et al., 2020). However, it does warn that the performance of metaheuristics

cannot be optimal for all types of problems.

The challenges involved in getting meaningful and publishable results must be discussed. They

are divided into the following three main categories as per (Brownlee, 2007):

1. Parameter selection;

2. Problem instance selection;

3. Selection of statistical methods for the analysis and interpretation of results.

The selection of algorithmic parameters is a challenge because of their non-linear correlation

with the performance of the algorithm. Many approaches are proposed for this issue such as

self-adaptive parameters in which the parameters of the algorithm are encoded as binary

strings, meta-algorithms which optimize the parameters of the algorithm in question, and

sensitivity analysis which determines the sensitivity of the algorithm to changes in each

parameter (Brownlee, 2007). Empirical selection by trial and error is also recommended as a

good starting point, although deficiencies in this approach have been highlighted in (Francois

& Lavergne, 2001). For example, they stipulate that seeking general rules for parametrization

will lead to a lack of convergence and/or low efficiency. Many approaches are presented to

address the selection of parameters: the Calibration and Relevance Estimation approach

proposed in (Nannen, 2006) (Eiben & Jelasity, 2002); the steepest decent approach by (Coy et

al., 2001); and the design of experiments (DOE) approach applied to metaheuristics research

as in (Bartz, 2003). Finally, the use of Monte Carlo methods along with other statistical

methods is presented for the intelligent sampling of the parameter space in (Birattari, 2002).

In addition to the selection of algorithmic parameters, a rigorous procedure for experimentation

is important to ensure that the collected results will be statistically relevant. The following

methods are proposed in (Brownlee, 2007):

14

1. Define the goals of the experiment;

2. Select measures of performance and factors to explore;

3. Design and execute the experiment;

4. Analyze the data and draw conclusions;

5. Report the experimental results.

The author also reminds the reader about the usual guidelines for scientific experimentation in

general. He proposes that all important factors capable of influencing the results such as

computer code and the runtime environment have to be reported, that the measures be taken

precisely, that the results be compared with those of other methods, that all parameters be

specified, and the importance of the use of statistical experiment design (Brownlee, 2007). He

reminds the reader of these scientific principles because they are often lacking in the field of

meta-heuristic benchmarking. Key issues emphasized in the algorithm benchmarking literature

can be identified as the duplication of efforts by the various groups working in the field due to

ineffective written communication, insufficient testing, occasional failure to test using state-

of-the-art techniques, poor choices of parameters, conflicting results, and sometimes invalid

statistical inference (Brownlee, 2007) (Peer et al., 2003).

The issues outlined above are important to the field and addressing them is the subject of this

research. For example, as explained in (Brownlee, 2007), other similar fields of study, such as

data science, have already passed the step of establishing standardized benchmarking methods

and procedures. These methods and procedures act as standards for the field, increasing the

trustworthiness of the results produced. This enables more effective collaboration between

researchers and with industry. Scientifically, the establishment of standard benchmarking and

testing methods is crucial as it is at the core of the scientific method itself. Standardizing

metaheuristic performance benchmarking methods will make the results more reliable and

easier to reproduce, thus eliminating the risks of duplicated efforts and providing robust

grounds on which the field can build upon.

The next theme concerns the selection of the problem instances and classes that are used to

perform the benchmarking tests. Many of these have been created by various actors in the

15

industry (Brownlee, 2007; Jamil & Yang, 2013). Examples of such problem instances are

found in the GLOBAL library which is part of the cross-entropy toolbox (Zdravko Botev et

al., 2004). This MATLAB toolbox is a collection of test problems with relevant data that can

be of use to a researcher looking to benchmark a new heuristic. However, this collection of

resources is challenging to implement into a study because it misses the statistical rigor alluded

to in (Brownlee, 2007). This is also the case for most of the other resources available. All the

components exist but there is a need to put them into a concise whole. Other resources for

finding problem instances include GAMS World, which is a library of functions and test

problems (GLOBAL World - GLOBALLib, n.d.). It was made to bridge the gap between

academia and industry by providing a platform as well as resources to perform metaheuristic

studies more easily. The “Cuter” testing environment was developed at the Polytechnique

Montréal (Dominique Orban, 2002). It has now been superseded by a newer version named

“CUTEst” which is an acronym for Constrained and Unconstrained Testing Environment with

Safe Threads. This environment focuses on having a wide range of test functions numbering

approximately 1150 in total (Gould et al., 2015). It is a mature software and is optimized to be

able to run the tests efficiently. It could therefore play a role in this research for the testing

phase of each analysis. It is important to note that this environment does not mention any

experimental framework with statistical analysis which this research aims to address. The

global optimization test problems' collection by (Abdel-Rahman Hedar, n.d.) is a collection of

test problems divided in constrained and unconstrained groups. This collection is much less

advanced than the “CUTEst” environment, but it is more versatile with the problems being

formulated in mathematical form as well as MATLAB code compared to those of “CUTEst”

which are only programmed in MATLAB. The collection of continuous global optimization

test problems (The COCONUT Benchmark, n.d.) is a set of libraries containing test functions

as well as some tools for performing basic analysis like calculating the standard unit time of

an algorithm. The libraries of COCONUT use the AMPL modeling language, which is not

ideal for this research since it plans to contribute to the Python library and should model its

algorithms and functions using Python. Opt4J is a metaheuristics optimization framework that

includes the following benchmark problem collections (Lukasiewycz et al., 2011) (Opt4J,

2020) :

16

- Knapsack;

- Zitzler–Deb–Thiele (ZDT) (Lim et al., 2015);

- Deb, Thiele, Laumanns and Zitzler (DTLZ) (Meneghini et al., 2020);

- WFG (Meneghini et al., 2020).

It is written in Java and its test functions can be used for this research. ECJ is also written in

Java and contains benchmark test functions like Opt4J despite being focused on the algorithm

design aspect of generating new metaheuristics (Scott & Luke, 2019; Sean Luke et al., 2020).

It is mainly used for evolutionary algorithms. The examples given above are well known, but

other such sets of test functions exist which are not necessarily well documented or recognized

(Andrei, 2008; Auger & Hansen, 2005; GEATbx - Genetic and Evolutionary Algorithms

Toolbox in Matlab - Main Page, n.d.; Kaj Madsen - Head of Department•DTU Informatics,

n.d.; Mishra, 2006). For this research, these test functions will be useful as building blocks of

the framework being implemented.

Despite the widespread use of benchmark functions, their simple use without a rigorous

experiment design with statistical analysis is discouraged because they do not produce

reproducible results due to the stochastic nature of the algorithms being tested (Brownlee,

2007). Brownlee advocates instead for more statistical analysis of the algorithm being tested

on multiple test problems in a controlled setting, and a well-documented procedure is also

advised to ensure the rigor of the experiment.

As proposed in (Jamil & Yang, 2013), benchmark functions can be classified in the following

terms (Jamil & Yang, 2013):

• Modality: the number of peaks and valleys in the topology of the test function. This

is relevant because the ambiguous peaks tend to trap the algorithm toward a local

minimum (see Figure 3 and Figure 4).

17

Figure 1.1 - Multimodal test function example: Six-Hump Camel
Back (Li et al., 2013)

Figure 1.2 - Unimodal test function example: Trid (A. Hedar’s, n.d.)

• Basins: They are defined as a steep decline surrounding a large area. They can hamper

the optimization process if the algorithm falls into a basin that leads to a local minimum.

The following figure shows a graphical representation of a basin.

18

Figure 1.3 - Example of large basin in Rosenbrock’s function

• Valleys: Like geographical valleys, they can slow down the process when the algorithm

gets to the bottom of the valley because this type of region usually does not provide

local information that leads to the global solution. Figure 1.4 shows two valleys running

parallel to the coordinate axes.

19

Figure 1.4 - Example of the Topology of a Benchmarking Test

Function (Tsang, 2018)

• Separability: A measure of how difficult the test function is to solve. Separable

functions are more linear than less separable ones. Equation 2.1 expresses the

requirement for a function to be considered separable where 𝑥 represents one of the

components of the vector �̅�. Separable functions can, therefore, be optimized with

respect to each of the input components separately while keeping the others constant.

This greatly reduces the difficulty.

 ∂f(�̅�)∂x = 𝑔(𝑥)ℎ(�̅�)
(2)

• Dimensionality: The number of components of the input vector of the objective

function. The difficulty of a problem generally scales with its dimensionality (Jamil

and Yang, 2013).

20

1.1. Choice of a Programming Paradigm
To implement the framework, a programming paradigm must be selected. This section

discusses object-oriented programming (OOP) and the flow-based programming (FBP)

paradigms and their applicability to this research. They both have their strengths and

weaknesses which make them more appropriate for modeling some programs compared to

others.

OOP is a scheme in which the program is modeled as a collection of object types to be

instantiated and which interact with one another via message passing (Grady Booch et al.,

2007). Message passing happens when an object is passed as an argument to another object’s

methods or when an object’s method directly accesses the attributes of another object for which

it has access rights. This approach to programming offers the convenience of organizing the

components of the solution into well-defined classes that can be interchanged or modified

easily. For example, (Brownlee, 2007) proposed the creation of algorithm and problem classes

to represent the components of an optimization scheme (Grady Booch et al., 2007). This makes

the framework very modular, enabling the swapping of algorithms and test functions with

relative ease when performing experiments. A drawback of OOP is the issue with

encapsulation (Gamma et al., 1995). Encapsulation defines the accessibility of object data to

the various methods of the program. A common approach is to set all the attributes of a specific

class as private and creating getter as well as setter methods to access the needed ones. The

problem is that this approach is not always followed correctly, and alternative encapsulation

schemes are often poorly supported by even the most powerful object-oriented languages like

C++ (Gamma et al., 1995). For this reason, an OOP architecture can be rendered unnecessarily

complex if the design of the program is not carefully considered.

FBP is a scheme which is centered around the flow of information inside the program. In fact,

this scheme organizes processes in chains with data going through them one after the other

performing computation units (Grady Booch et al., 2007). This often requires the use of parallel

computing (Grady Booch et al., 2007), which improves the performance of large programs

compared to non-parallel computation programs by utilizing all the processing units available

compared to single thread programs. Another advantage of this approach is that the computing

21

units can be interchanged readily to improve the program or try alternative units. Weaknesses

of this programming scheme is the complexity of timing the various parallel processes involved

in the program so that they communicate effectively. In fact, errors in these types of programs

are not easy to detect and would allow the program to keep running before failing under the

right conditions. A famous example of this is the reset issue of the pathfinder Mars rover

(Durkin, 1997) (Bertrand Meyer, 1997). This means that special attention needs to be paid

when correcting programs based on the FBP paradigm to make sure that no errors have been

made in their implementation.

1.2. Conclusion

This chapter presented a review of the prior articles in the field of metaheuristic benchmarking.

Common challenges in getting meaningful and publishable results are outlined and include

issues of parameter selection, problem instance selection, and shortcomings in the application

of solid statistical methods. The existing techniques and recommendations in the literature to

improve the quality of the results obtained from metaheuristic benchmarking studies were then

addressed. Some of these recommendations are to pay attention to the experiment design to

make sure that it follows the guidelines of scientific control studies, that the test problems be

divided into classes with similar characteristics, and that the goals of benchmarking

experiments as well as the metrics to be measured be carefully considered. It is also

recommended to report all factors capable of influencing the results of the experiment, like the

runtime environment and the computer code. Possible programming paradigms for the

implementation of the testing framework have also been presented: object-oriented and flow-

oriented programming.

CHAPTER 2

RESEARCH PLANNING

This second Chapter of the thesis presents an overview of the proposed research using the

Basili framework (Basili et al., 1986) (Bourque & Côté, 1991). This software engineering

research planning framework is particularly relevant at this stage of the research because it

enables a clear definition of the research subject as well as the activities that are necessary for

its realization. It sets clear expectations for the activities and the objectives that will be included

or excluded from the research as well as a list of activities.

The research question will be addressed by designing, implementing, and testing a Python

framework for metaheuristics benchmarking. The work is divided into four phases that

encapsulate the activities and evolution of the research project. Figure 2.1 shows a work

breakdown structure for the research. It follows the structure of Basili’s framework to provide

a full view of the activities.

24

Figure 2.1 - Work Breakdown Structure of this Research Activity

25

2.1. Phase I — Definition
This first phase presents the definition and the audience for which the research is being

conducted. The motivation, subject, objectives and users of the proposed framework are

identified in the table below, as recommended in Basili’s framework (Basili et al., 1986).

Table 2.1 Phase I – Definition of the Research

Motivation Subject Objectives Users

• Address the criticisms

of the current
benchmarking
paradigm in
metaheuristics
research. with respect
to benchmarking.

• The evaluation of the

current
methodological
paradigm for
metaheuristics
benchmarking.

• Propose an

analytical
framework that
helps researchers
increase the
quality of their
work.

• Students and researchers

involved or interested in
mathematical
optimization;

• Professionals involved in

projects that include or
would benefit from
mathematical
optimization.

2.2. Phase II – Planning
This second phase of the research will focus on a literature review of the field of metaheuristic

benchmarking to describe the state of the art relating to analytical frameworks that validate the

claims of a proposed metaheuristic. The deliverables are:

1. Compilation and classification of currently existing metaheuristic test functions as well

as frameworks;

2. Compilation and organization of tools and procedures for quantitative analysis of

metaheuristics (i.e., the analytical framework);

3. Comparison between practices in the literature and the proposed framework.

26

Table 2.2 Phase II - Planning Stage of the Research

Milestones Inputs Deliverables

• Literature review;

• Analytical framework.

• Research articles, books, etc.

• Classification of existing

benchmarking resources;

• Introduction and Chapter 1
of the thesis;

2.3. Phase III – Operation
This third phase describes what will be accomplished by implementing the proposed

framework, organizing the test functions within its structure, running the experiment following

the analytical frameworks gathered in the previous phase, and performing a comparative

analysis between the proposed framework and the observed practices from the literature.

The proposed framework will have elements of both object oriented and flow programming.

A visual representation of its structure is shown in Figure 0.2. The metaheuristics definition

step is outside the scope of this research. For testing a specific algorithm, the framework comes

in the form of a Python software in which relevant problem instances are selected at the

preprocessing stage. The algorithm is then run on the selected problem at the testing stage

during which the results are collected and stored for analysis and post-processing.

27

Table 2.3 Phase III - Planning stage of the framework design and test

Preparation Execution Analysis

• Pilot study using standard

algorithms;

• Design of experiments:
Classification, and selection of
problem instances

• Collection and classification of
metaheuristics test functions;

• Use of the framework to

benchmark a representative set of
proposed algorithms

• Collection of experimental data
issued from the application of the
framework;

• Analysis of the gathered

experimental data with tools
and procedures taken from the
framework;

• Chapters 2 and 3 of the thesis.

2.4. Phase IV — Interpretation

This last phase of the research plan describes the research steps where the results of the

experimentation of the new framework proposal are assessed and interpreted. It allows for

reviewing the initial research objectives, organizing and discussing the results, and identifying

future research opportunities. Conclusions about the utility and usability of the proposed

framework are also presented.

28

Table 2.4 Phase IV - Interpretation and results of the research

Interpretation context Extrapolation of results Future works

• Analysis of algorithms based

on mathematical
simplifications and statistical
analysis of performance
distributions on benchmark
functions;

• Analysis of originality based
on patent law principles.

• Generalization of results based on

comparative studies;

• Future metaheuristics can be
compared with previous results
using the framework to assess
originality of contribution.

• Application of framework

on some of the
metaheuristics that were not
selected in this work;

• Quantitative analysis of the
trade-off between
exploration and exploitation;

• Automation of experimental

design procedures for
metaheuristics;

This section briefly returned on the initial goals of the proposed research. The overall planning

proposed, based on Victor Basili’s software engineering research method, helps in providing

a well laid out project structure.

2.5. Conclusion
This chapter presented a work breakdown of this research following the framework of Basili.

All the relevant activities have been outlined and organised in four phases: definition, Planning,

Operation, and Interpretation. It was established that the objective of the project is to propose

an analytical framework that helps researchers increase the quality of their work. Deliverables

for the Planning stage like a literature review have been identified as well as the critical factors

for the correct execution of the Operation and Interpretation stages.

CHAPTER 3

DESIGN OF THE FRAMEWORK

The proposed framework’s requirements were specified using diagrams similar to the unified

modelling language (UML). A set of logical diagrams are presented in the subsequent figures

and have been conceived to serve as the requirement specifications for this project. Visual

representations have been preferred to producing a written requirements document in the form

of the system requirement specification format (SRS document). In addition, UML is widely

used in the software engineering discipline and is conducive to better requirement engineering

as there is less ambiguity between the parties and it allows for an easier requirements tracking

processes (Borges & Mota, 2007). More specifically, the 4+1 views model introduced by

(Kruchten, 1995) will be used. It is composed of four views dedicated to the functionalities of

the software:

1. A use case view: This view outlines the workflows of the software as well as the

resources involved

2. The process view defines the interactions between the various execution threads as well

as tasks and how they are synchronized.

3. The logical view describes the processes of the algorithm as well as the data structures

involved. Descriptions of the objects are also included

4. The realisation view organizes the components of the software in the development

environment.

5. A view dedicated to the deployment and production environment of the software is also

included in the model.

30

Figure 3.1 - A Diagram of the "4+1" View Model (Kruchten, 1995)

The following figures outline the design that was produced for this research on the

framework for the analysis of the performance of proposed metaheuristics.

Figure 3.2 - Legend of the Components in the Flowchart

31

This diagram shows the convention used in the design of the various flowcharts. This

convention was used instead of the formal UML shapes for reasons of keeping the toolchain

used for the design process as streamlined as possible. In fact, the use of the formal UML

shapes would have required the introduction of a new software as well as the modification

of the development workflow. The solution that was finally chosen focuses on

implementing the UML format despite the use of a custom convention for the elements.

32

Figure 3.3 - Main Logical View of the Framework

33

The flowchart above displays the main logical view of the framework to specify its

requirements. The most important aspects to notice are the need for an algorithm module

and the preprocessing module. The importance of these two elements was realised while

producing the diagram which reinforces the importance of producing a good architecture.

These two modules are specified in more details in the following figures. Another point to

note is the fact that the actual runs of the proposed algorithm on the various test problems

will be executed simultaneously in batches using parallel computing. The framework is

therefore using a hybrid between the object oriented and flow-based programming

paradigms. Example objects are the algorithm module as well as the test problems. They

indicate the object-oriented nature of the framework. The flow-oriented nature of the

program can be observed by looking closely at the flow by which the experiments are run.

All the parallel processes can be modelled as sets of operations that perform calculations

on data structures containing the attributes of each experiment. These attributes are:

1. The metaheuristic object being tested;

2. The tests to apply for the specific run;

3. The results obtained after the run;

4. The performance data collected about the specific run.

To accomplish this, multiple processes and threads will be accessing the experiment data

structure quasi simultaneously. Semaphores (which can essentially be understood as system

level variables) can be used to synchronize these activities.

34

Figure 3.4 - The Preprocessing Module

The preprocessing module plays an important role in the framework as it sets up the

environment required for the experiments to be run correctly and parses the inputs given

by the user. For this reason, its development involves the user more than the other modules

and the design decisions taken at this level will determine the design of the rest of the

framework.

35

Figure 3.5 - The Postprocessing Module

The post processing module, like the preprocessing module is important because it

communicates directly with the user.

36

Figure 3.6 - The Experiment Running Process

The diagram above showcases the experiment batch running process for one experiment.

As displayed in the main flowchart, all the runs will be performed in different threads to

leverage the power of parallel computing and reduce the execution time of the whole

process. The various threads will be synchronized, and the data will be stored in custom

data structures containing all the required information as specified above.

The Algorithm module below (Figure 3.7) specifies the contents and format of the

algorithm object that the user has to provide as argument to the framework when calling it.

37

Figure 3.7 - The Algorithm Module

This architecture is a hybrid between the flow oriented and object-oriented paradigms. This

is to leverage the advantages of both paradigms as outlined in section 1.1.

Beyond the architecture of the program itself, the lifecycle used by the development team

is also an important consideration. In the case of this research, an agile lifecycle was

preferred since the requirements were not all completely defined from the start and the

ability to refine the architecture based on the results of the various experiments in the

testing phase is important.

Therefore, the life cycle chosen was Kanban because it fulfills the agile requirement and

provides the required flexibility for a research project. It also makes it possible to reassess

the priorities of the various tasks and functionalities being treated to make sure that the

stages of the project are fulfilled correctly.

The importance of a well-designed and documented architecture is emphasized in this

project as it makes the software more accessible to future contributions and facilitates

collaboration. It is also associated with reduced development cost in industry as well as

improved quality and reliability. In fact, it is much easier to avoid breaking a program when

its architecture is known compared to trying to modify an obscure software. an added

benefit of well-designed and documented architectures is therefore the reduction of the

38

maintenance cost associated with it. For example, less time is invested fixing unattended

consequences of code changes. The following paragraph expands on this by discussing the

notion of technical debt.

In their paper entitled, “Technical Debt: from Metaphor to Theory and Practice”, Philippe

et al. explain the impact that skipping the good practices of software development can have

on the product (2012). The following figure outlines the technical debt landscape as defined

in the paper and organized by how “visible” they are. The visibility characteristics relates

to how readily detectable they are by usual identification tools like static code analysers.

Figure 3.8 - The Technical Debt Landscape as proposed by Philippe (2012)

To address this issue of technical debt, the practice of refactoring is recommended. The article

also recommends paying attention to the design phase of the development process and to use

iterative design lifecycles as they provide the opportunity to fix non ideal processes and weakly

implemented standards and protocols. The article also brings to light the fact that the use of

iterative lifecycles does not automatically improve technical debt and that there is a need to

specifically dedicate some activities for refactoring.

3.1. Requirements tracking
For tracking the requirements of the framework, multiple tools have been explored to select

the right solution that would conform to the lifecycle of the project as well as its level of

complexity. Following is a list of notable tools that have been considered:

39

1. Jira with Confluence. This tool enables the integration of the entire development

environment from the version control resources like GitHub to the task management

utilities and specification and scheduling documents. A communication functionality is

also included. (Atlassian, n.d.)

2. Forecast PM as in project management is a management solution that integrates project

management tools and integrates an artificial intelligence for process automation purposes.

It is important to note that this is a commercial software(Forecast, n.d.).

3. Visure is a very comprehensive solution that offers many features for project management

as well as requirements tracking (Hewitt, 2014). It uses a process driven approach by

pushing the users to define the processes by which the requirements are supposed to be

managed and enforces them in the workflow presented to access the requirements. It also

comes with a library of standards that can be applied to the requirements management

process. This has the benefit of simplifying the process control procedures of the users.

From the tools presented above, Jira is most interesting and accessible as it is particularly well

suited for the lifecycle used in this research namely Kanban. It will therefore be used to

integrate the tools that are already in use like Slack, Draw.io, and GitLab.

3.2. Conclusion
The 4+1 views model of Kruchten was used to model the system being proposed in this

research. It was established that a hybrid between flow based, and object-oriented

programming would be ideal for the proposed framework. The notion of technical debt was

discussed to identify the potential risks this might pose to the project. Finally, options for

requirements tracking were identified and the Kanban lifecycle was chosen for the

development of the proposed framework.

CHAPTER 4

EXPLORATORY LANDSCAPE ANALYSIS

As this research aims to streamline the benchmarking process of metaheuristics, Alternative

strategies of classifying the test functions are explored. A numerical method is selected instead

of the qualitative approaches described in the literature review above because numerical

methods lend themselves to better statistical analysis and are more repeatable. Exploratory

landscape analysis (ELA) enables the classification of test functions using numerical methods

and automation. This method has been developed to determine parameters which can reliably

predict the performance of metaheuristic algorithms on other problems with similar parameters

(Kerschke & Trautmann, 2016). In addition, the high level features discussed in the literature

review such as the basin sizes and multimodality are debated and can be evaluated differently

by different experts(Kerschke & Trautmann, 2016). Therefore, this method (ELA) will be used

as the standard test function classification method in this research.

Other benefits of using numeric landscape analysis features are the possibility of combining

the features with data from benchmarking the metaheuristics on test functions to build

predictive and selection models for matching future optimization problems with the

appropriate metaheuristics (Kerschke & Trautmann, 2016).

To automate the ELA process in this research, a software library named FLACCO (Feature-

Based Landscape Analysis of Continuous and Constrained Optimization) will be integrated

into the code of the framework. FLACCO is written in the R language while the Framework

being developed in this research is written in Python. To bridge this compatibility gap, the

Rpy2 framework is imported into the program to handle the collaboration between the two

languages. FLACCO is capable of calculating at least 16 feature sets which are basically

42

vectors containing similar features. Example of feature sets which can be computed with

FLACCO are ela_meta, ela_distr, nbc, gcm, cm_angle etc.… The FLACCO package also

comes with ready-made visualization functions to better understand the characterization of the

test functions. Example visualizations can be seen below.

Figure 4.1 - 3D Barrier Tree Visualization by FLACCO (kerschke, 2015/2021)

43

Figure 4.2 - Cell Mapping Visualization by
FLACCO (kerschke, 2015/2021)

Figure 4.3 - Information Content Plot by FLACCO
(kerschke, 2015/2021)

44

FLACCO also has the flexibility of configuring control parameters for each of its available

feature sets (Kerschke & Trautmann, 2016). This makes it possible to adapt features to the

specific landscape of the problems at hand.

4.1. Conclusion
The Integration of FLACCO into MDAF is discussed. FLACCO is a great addition to the

proposed framework as it enables a quantitative assessments of problem instances and makes

the application of NFLT a more objective process.

CHAPTER 5

IMPLEMENTATION OF THE METAHEURISTICS DESIGN AND ANALYSIS
FRAMEWORK

This research developed a software Framework for the analysis of metaheuristics. To fulfill

this objective, it includes features to automatically calculate performance metrics of

optimization algorithms and visualization functions which enable the operator to get a deeper

understanding of the results and the test function characteristics.

The program implements recommendations outlined in the first chapter of this paper like the

use of valid statistical methodology recommended by (Brownlee, 2007). For example, the

performance calculations are repeated 30 times by default with different initial conditions for

each test function and the average as well as standard error of the performance metric are kept

as the real performance characteristics. This ensures that the stochastic nature of some

algorithms is captured. The performance metrics calculated by the framework are:

• The CPU time of the calculations: this determines exactly how much time the CPU of

the computer spent specifically on tasks related to the algorithm being tested excluding

the time spent on any other applications running on the computer. This is to ensure the

repeatability of the performance results obtained independently from the load the

computer is operating under.

• Number of calls to the objective function: this metric is calculated since some

algorithms have more complex logic but require few real calculations of the objective

function (e.g., surrogate assisted algorithms) while other algorithms have simpler logic

but require frequent calls to the objective function. This metric therefore captures the

impact of how difficult the objective function is to evaluate.

46

• The Quality of achieved results: this metric measures how good the obtained results are

as some algorithms can find a solution quickly but would oscillate around the optimum

while other algorithms take more steps to find a solution of greater quality.

• The convergence rate of analyses: This metric is used because some algorithms diverge

and are not able to find the solution depending on multiple factors like the step size or

the initial conditions. Therefore, the percentage of trials which found a solution is

included as a metric.

The framework also comes with functions capable of automatically calculating a numerical

representation of all the test functions. This is accomplished by integrating the FLACCO

framework to MDAF. As explained in the previous chapter, FLACCO is written in the R

programming language and the integration with MDAF (written in Python) is accomplished

with RPy2 which is a compatibility framework between the two languages. Using FLACCO,

the ELA feature sets presented in Figure 5.1 can be calculated. A subset can be chosen among

them depending on the analysis to be conducted like in the following case study.

Figure 5.1 FLACCO Feature Sets Provided By FLACCO (Tanabe, 2021)

47

Plotting functions are also included in the framework which enable the users to visualize the

test functions as shown in Figure 5.2 below.

Figure 5.2 - Test Function Visualization produced by MDAF

Radar plots are also available to visualize the ELA representation of various test functions and

compare them to other functions. The radar plots represent each feature set which are vectors

with the elements plotted at the respective angles. Multiple functions can be automatically

plotted together. This feature can also be used to verify that a benchmarking analysis contains

a good representation or sample of all possible feature set values. Figure 5.3 shows an example

of ELA representation radar plots.

48

Figure 5.3 - Radar Plot of Bukin2 and Bukin6 test functions' ela_meta
feature set by MDAF

5.1. Default Test Functions
MDAF comes with 27 built-in test functions which can be used to benchmark new

metaheuristics. When launching an analysis, these preprogrammed test functions can be

referenced using the ‘@’ symbol in front of the function name. Preprogrammed test functions

include Bukin6, and Brown as visualized in the following figures. The functions were taken

from (Hussain et al., 2017) and (Jamil & Yang, 2013).

The user also has the flexibility of adding external test functions to its analyses. To this end,

the new test functions need to be organised following APPENDIX IV. It must accept a list as

49

input with each element of the list representing a factor of the optimization problem. For the

function to be compatible with the plotting routines inside MDAF, the function must be 3

dimensional. External libraries such as matplotlib and SciPy can be used for higher

dimensional data.

Figure 5.4 - Bukin6 Visualization(Bukin Function N. 6, n.d., p. 6)

50

Figure 5.5 - Brown Function Visualization

5.2. PyPI Packaging
The code of the framework is packaged for the PyPI repository. It can be downloaded from Git

and installed using the python preferred installer program (pip). This makes it possible to the

operator to use the framework in the python interactive shell. The package metadata as well as

Python init files can be found in APPENDIX II and APPENDIX X.

5.3. Experimental Planning
The framework has the ability to run experiment plans (EP) by calling the exp function. The

code of this function is available in APPENDIX III of this report. A list of the test functions

on which the experiments need to be run is provided by the operator as an argument.

Preprogrammed functions need to be specified as explained in the previous sections. The

operator is expected to use the plotting methods provided by the framework in the analysis

planning stage. The exp method runs the optimization algorithm 30 times by default or a user-

51

defined number of times on each test function provided. It then calculates the average and

standard deviation for all the benchmarking metrics. This makes it possible to capture the

stochastic nature of certain algorithms. In fact, as stochastic algorithms can have varying

performance on the same problem due to the impact of the random parameters like the

temperature in simulated annealing, the repeated benchmarking runs makes this phenomenon

detectable for analysis.

5.4. Automated Testing
Automated tests were designed and implemented to guide the development process of the

program. They are included in this report as they can be used to quickly validate changes to

the code. This simplifies the continuous improvement of the framework by automating

repetitive tests that need to be performed to validate the changes. APPENDIX V presents the

automated testing algorithms used for the design of MDAF. The unittest library was used

for this feature as well as doctests. The unittest library was applied to testing the

framework’s methods while doctests were used for the integrated test functions. Figure 5.6

below shows a view of the testing environment. On the left sidebar, the list of automated tests

is displayed with their status. In this particular example, all the tests were successful.

52

Figure 5.6 - Snapshot of the Automated Tests Results in VS Code

Doctests were also used in the implementation of the preprogrammed test functions. The

Doctests were executed using the following command. The results of automated testing can

be observed in the figure below.

Algorithm 5.1. PyTest Command
python -m pytest --doctest-modules --doctest-continue-on-failure

The options of the command have the following meaning:

- “doctest-modules”: automatically runs the doctests in all python modules in the current

directory

- “doctest-continue-on-failure”: prevents the process from stopping when any one test

fails.

In Figure 5.7 below, the results of running the doctests for the integrated test functions of

MDAF is displayed. We can see at the bottom of the figure that all 28 tests passed successfully.

This can also be observed by the small green dot beside each test function name listed in the

figure. The percentages listed at the right of the figure show the progress of the overall testing

process. Therefore, we know that the test has completed when the last line with the Zirilli

53

test function is displayed. The 100% value on the right shows that this was the last function

being tested.

Figure 5.7 - Automated Python Doctest Results

5.5. Efficient computation
As the computations involved in benchmarking an optimization algorithm are heavy and can

be time consuming, parallel computing has been extensively employed in the implementation

of the framework to leverage the power of modern CPUs more effectively. The framework will

automatically determine the number of cores available on the machine and evenly spread the

load and maximize throughput. This is achieved using the python multiprocessing library. For

this goal, the relevant functions of the framework are designed to be picklable. Meaning that

they can be serialized by the python pickle module(Pickle — Python Object Serialization —

54

Python 3.10.1 Documentation, n.d.). Figure 5.8 showcases the task manager of the computer

running MDAF while benchmarking a PSO algorithm. Numbered 1 to 16 are the CPU cores

all showing close to 100% utilisation (annotated 1). This attribute of MDAF is dynamic and

automatically adapts to the machine on which it is running by detecting the number of cores

available and adjusting its multithreading and multiprocessing logic accordingly. Annotated 2

are the processes that have been spawned by MDAF. They all run independently from each

other and the results are collected by one of the processes playing a managerial role.

1

Figure 5.8 - Optimally Loaded Central Processing Unit (CPU)

5.6. Conclusion
The implementation of the proposed framework is discussed as well as its features and usage

recommendations. The framework can benchmark algorithms with a variety of metrics such as

the number of objective function evaluations, the CPU time of computation, the quality of

achieved results, and the convergence rate of analyses. A default set of test functions are

provided with the proposed framework containing 27 functions such as The Bukin and Ackley

test functions. Features such as the multiprocessing abilities of the framework are also

discussed.

1

2

CHAPTER 6

CASE STUDY: BENCHMARKING THE PARTICLE SWARM ALGORITHM WITH
DIFFERENT PARAMETERS TO DETERMINE THE EFFICIENT VALUES

The specific algorithm being investigated in this case study can be found in APPENDIX IX.

The algorithm will be benchmarked using the MDAF framework which implements the

recommendations outlined in the literature review. For example, special attention was used in

selecting the measures of performance as recommended by (Brownlee, 2007). This measure

will be the number of calls to the test function as this measure is independent of the machine

on which the benchmark is being computed. A maximum number of iteration parameter is set

to 10’000 because the analysis is looking for effective parameters. MDAF allows the user to

set this value to any number. Parameters that require the algorithm to perform more than

10’000 iterations before achieving a suitable solution are considered ineffective. This has the

benefit of keeping the runtime of the analysis manageable as a study can run for days if no

limits are applied.

6.1. Methodology
The following steps can be implemented to reproduce this study.

1. Select test functions from the preprogrammed library or generate python files for new

test functions that are to be included in the Analysis;

2. The “visualize2D” function in MDAF can be used at this stage to quickly visualize

the shape of a test function;

3. Create a list object in python containing the paths to all the selected test functions;

Preprogrammed library test functions should be specified with the symbol “@” before

the function name (e.g., @bukin.py);

4. Make sure to have called the install FLACCO function at least once since installing

MDAF;

56

5. Calculate the features of all the selected test functions by calling the “representfunc”

function of MDAF;

6. The plot function method of MDAF, can be used to generate a radar plot of the

selected benchmarking test functions’ FLACCO feature sets;

7. The steps 1 to 5 can be repeated until a good set of test functions is identified. This

list will be referred to as the experiment list;

8. Call the exp function from MDAF with the experiment list as argument as well as

any arguments which are supposed to be passed to the metaheuristic algorithm;

9. MDAF will then proceed to calculate the performance of the algorithm on the test

functions and return a dictionary containing all the performance data;

10. This case study utilises MDAF for parameter tuning and the additional script for this

is outlined in APPENDIX VIII.

6.2. Results
The below figures display the output of running the Visualize2D method of MDAF. The

method is used to investigate test functions while putting together the experiment list. It can

also be useful to assess newly proposed test functions.

57

Figure 6.1 - Result of the Visualize2D function for the
Step Test Function

Figure 6.2 - Result of the Visualize2D function for the
Price2 Test Function

58

Figure 6.3 - Result of the Visualize2D function for
the Leon Test Function

Figure 6.4 - Result of the Visualize2D function
for the Brown Test Function

59

Figure 6.5 - Result of the Visualize2D function for the Ackley2
Test Function

60

Figure 6.6 - Result of the Visualize2D function for the
Styblinski-Tang Test Function

The following figure displays the outputs of the plotfuncs method of the framework to

investigate the FLACCO feature set values of the test functions. This plot represents the gcm

feature set being considered in this analysis. Please note that the algorithm of the “plotfuncs”

method is available in the appendix. Each line on the plots represents a test function and for

each test function, the feature values are marked on their respective axes.

These plots can also be used to assess the distribution of the test functions across the feature

space. The actual values for all the features for all the functions will be presented in table

format in APPENDIX VI.

As explained by Kerschke and Trautmann, it is necessary to combine the feature sets to make

sure that the test functions are fully characterized as each feature set only capture a small subset

of relevant characteristics for metaheuristic algorithms(Kerschke & Trautmann, 2016).

61

Figure 6.7 - Result of the plotfuncs Function for gcm features

From the plot above, it is apparent that the selected set of test functions fills up the space of

possible values for the gcm feature set. The gcm feature set is quite extensive and could be

used on its own for a quantitative model of metaheuristic performance as it contains a large

number of features which are well distributed. The scale of some of its features (24 and 25),

however, need to be normalized as they might overly influence the model. It is also important

to note that some features are calculated by FLACCO to a value of “NaN” meaning not a

number. This special value is used to represent the result of undefined operations. All features

62

with such values need to be addressed before building a quantitative model. This can be

achieved by dropping all such features which is a standard technique. Other methods of dealing

with NaN values exist which are not addressed in this paper as they are not part of the study

being conducted.

The following data represents the results of benchmarking the PSO Algorithm using MDAF

for the following test functions: Leon, Price2, Brown, Ackley2, Styblinski-Tang, and Step. The

impact of the c1 and c2 parameters of the PSO algorithm on its effectiveness at optimizing test

functions is studied. The optimization effectiveness is measured by the number of calls from

the algorithms to the test function. This data is plotted on heatmaps with the c1 values on the

x-axis and c2 on the y-axis with the colors from violet to red showing the number of calls to

the test function.

Each test function studied in this case is evaluated 16 times for each point on the map and the

average statistic is used for mapping. The number of trials was set to 16 for practical purposes

since increasing this value resulted in exponentially longer running times. The standard error

of the average statistics is also calculated for each point and displayed on another heatmap.

The standard error statistic is calculated using the following formula:

 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 (3)

With 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 = 16, and standard deviation calculated automatically using the python

statistics library. Therefore, each test function produces two heatmaps and the same c1 and c2

values are used across all test functions. The specific c1 and c2 values used in the experiment

as well as all the performance data used for the following plots can be consulted in APPENDIX

VII.

63

Figure 6.8 - Average Number of Function Calls for Solving the
Leon Test Function vs c1 and c2 Parameter Values

Figure 6.9 - Standard Errors for the Number of Function
Calls for Solving the Leon Test Function vs c1 and c2

Parameter Values

64

Figure 6.10 - Average Number of Function Calls for Solving the
Price2 Test Function vs c1 and c2 Parameter Values

Figure 6.11 - Standard Errors for the Number of Function Calls for
Solving the Price2 Test Function vs c1 and c2 Parameter Values

65

Figure 6.12 - Average Number of Function Calls for Solving the
Brown Test Function vs c1 and c2 Parameter Values

Figure 6.13 - Standard Errors for the Number of Function Calls
for Solving the Brown Test Function vs c1 and c2 Parameter

Values

66

Figure 6.14 - Average Number of Function Calls for Solving the
Ackley2 Test Function vs c1 and c2 Parameter Values

Figure 6.15 - Standard Errors for the Number of Function Calls
for Solving the Ackley2 Test Function vs c1 and c2 Parameter

Values

67

Figure 6.16 - Average Number of Function Calls for Solving the
Styblinski-Tang Test Function vs c1 and c2 Parameter Values

Figure 6.17 - Standard Errors for the Number of Function Calls
for Solving the Styblinski-Tang Test Function vs c1 and c2

Parameter Values

68

Figure 6.18 - Average Number of Function Calls for Solving
the Step Test Function vs c1 and c2 Parameter Values

Figure 6.19 - Standard Errors for the Number of Function
Calls for Solving the Step Test Function vs c1 and c2

Parameter Values

69

6.3. Discussion
The heatmaps displayed in the results section show the performance of the PSO algorithm at

various c1 and c2 parameter values. These parameters are used to calculate the “velocity” of

each point at each iteration and c1 and c2 are respectively used as weights to determine the

importance of each point’s previous best and the historical best point of the algorithm. Please

see APPENDIX IX for the full PSO algorithm.

As explained above, the performance of the PSO algorithm is measured by the number of times

it needed to call the function being optimized for each run. This measure is taken 16 times for

each point (unique combination of c1 and c2 values) and the average is used for analysis. This

is a good way to detect the stochastic nature of some algorithms. As PSO does not highly rely

on randomness to achieve global optimization but rather utilises a population of points, the

relatively small number of deviations observed for most functions analysed makes sense. For

example, Step function’s results show that only a small subset of the possible combinations

between c1 and c2 generate high levels of deviation in the performance of the algorithm

between runs with the same parameters.

From the Leon test function results, we observe that most combinations of c1 and c2 yield a

poor performance of PSO. The few effective combinations are almost randomly distributed

across the parameter space. This could be explained by the shape of the test function. As it can

be observed in Figure 6.3, the Leon test function’s shape is flat everywhere except very close

to the optimal. This makes it very difficult for PSO to optimize it and the performance of the

algorithm is therefore expected to be poor (high number of calls to the test function). This is

consistent with the observed results from MDAF, and the few parametric regions of good

performance can be explained by random chance as the initial positions of all points of the

algorithm is random.

The Price2 test function results also show a poor performance of PSO. This is also to be

expected as this function is very chaotic, and algorithm can very easy remain trapped in a local

optimal. In fact, the heatmap for this test function shows that the huge majority of combinations

70

for c1 and c2 yield poor performance by PSO with small random regions of effective values

mostly concentrated towards the lower values of c2. This means that this test function is easier

to optimize when each particle follows its path to the best solution instead of all converging

towards a historical general best point. This is explained by the chaotic nature of the test

function since PSO being less social (higher c1 values) makes it explore a wider area of

possibilities compared to more social combinations of c1 and c2 (higher values of c2).

The Brown test function is showing more significant results as a concentration of effective

parameters can be observed for lower values of the c2 parameter. This is similar to the case of

Price2. In fact, the shape of Brown (Figure 6.4), despite being very different from Price2, is

also challenging for PSO to optimize as it does not provide a good slope to follow toward the

optimal. The improvement introduced for smaller values of the c2 parameter can be explained

by the fact that it pushes the algorithm to be more exploratory as each point follows a more

independent route from the others.

Ackley2’s results are showing a meaningful trend as the combinations with c2 values below

three always produce effective performances of PSO. This indicates that the c1 parameter’s

value does not matter for this test function for values ranging from zero to ten. This can be

explained by the shape of the Ackley2 test function. As is shown in Figure 6.5, Ackley2 does

not have local minima. Therefore, low values for the c2 parameter ensure that the algorithm

follows a gradient descent towards the optimal solution as quickly as possible as the points in

the population fall down the funnel all together instead of being “distracted” by the general

historical best point. In fact, high values of the c2 parameter can cause the particles to overshoot

the optimal. To further understand what happens in the “ideal” region for the parameters c1

and c2 of PSO for this function, a specific benchmarking study was performed on Ackley2 for

c1 values ranging between 0 and 3 and c2 values going from 0 to 10. The following heatmap

was produced showing a complex region with values ranging from 400 calls to 6000. All these

points could be considered acceptable parameters for the algorithm depending on other

constraints on the design. In fact, for such small variations in the performance, other factors

might have a bigger impact on the performance of PSO on similar algorithms. MDAF can also

71

be used in this scenario to evaluate these other factors like the values of the weight parameter,

and the number of particles used by the algorithm.

72

Figure 6.20 - PSO Average Number of Function Calls Heatmap for Sub Region of Interest
for the Ackley2 Test Function

Figure 6.21 - Standard Error Heatmap for the Above Average Values of the Performance of
PSO on Ackley2

73

The Styblinski-tang test function also shows a similar behavior of being mostly influenced by

the value of the c2 parameter. In fact, it has a shape that is loosely similar to Ackley2 since

there is no local minima in this function. The effective values of c2 for this test function are

between two and four.

The step function being very similar to Ackley2, and Styblinski-Tang also outputted similar

performance data. The effective values of c2 for this function are between 0.5 and 4.

As discussed above, the c2 parameter had the most importance on the performance of PSO on

the studied functions. It was also observed that similar test functions generated similar

performance maps for the PSO algorithm. This agrees with the prediction outlined by the

NFLT. As the trends outlined are good for building rules of thumbs, it is also relevant to note

that the heatmaps showcased specific cases of c1 and c2 parameter combinations like with the

Step function. In fact, despite the fact that most optimal combinations happen with c2 below

4, some combinations like c1 at 5.2 and c2 at 7.9 yields effective performance. This can be

useful in exceptional cases.

Observing the gcm feature set computed with the integrated FLACCO module of MDAF, it is

apparent that the Step and Ackley2 test functions are very similar. In fact, the traces of both

these functions on Figure 6.7 are almost identical. It is therefore expected that PSO will have

similar performances on both functions. This is because ELA features capture the important

characteristics for predicting the performance of optimization algorithms on the function in

question. As can be observed in the results section (Figure 6.18, and Figure 6.14), the

performance of PSO is very similar for both functions. The figure below compares the feature

sets for the Step and Ackley2 test functions as well as the performance heatmaps of PSO to

solve them at various values of c1 and c2.

74

Figure 6.22 - Comparison of the Representation and Performance of the Ackley2 and
Step Test Functions

75

 The gcm feature set radar plots overlaps for both functions and the performance characteristics

of PSO for both show a similar pattern. Indeed, insights obtained from the study of the Ackley2

test function can be effectively applied to the Step function. This is in line with the NFLT

which implies that optimization algorithms have similar performances on problems of the same

category. It also shows that ELA feature sets can be an effective method of classifying

functions to be optimized. It is relevant to note the variations between both cases as the Step

function is more complex than Ackley2 and therefore has a more intricate performance heat

map than Ackley2. However, these slight differences are to be expected as these are two

different functions and a careful selection of optimal parameters from the simpler function

(Ackley2) applies very well to the more complex one (Step).

6.4. Test Case Conclusion
it appears that the most effective parameters to be used with PSO vary depending on the type

of function to be optimised despite the existence of some popular combinations of c1 and c2

which work well on a wide array of function types. This highlights the usefulness of MDAF

as it makes it possible to readily assess the performance of a proposed algorithm on various

problem types. The addition of FLACCO to the framework improves its usefulness further as

it is also possible to generate a quantitative representation of an arbitrary problem to be

optimized using exploratory landscape analysis and comparing this representation to available

test functions. A suitably similar test function can then be used to perform a meta optimization

(the optimization of the parameters of an optimization algorithm) either manually or

automatically using MDAF. This would be very useful for costly functions like multi-domain

simulations which often need to be optimized in the design process of various products. For

example, computational fluid dynamics simulations are often conducted to optimize the shape

of formula1 airfoils. The same type of studies is also conducted in aerospace for optimizing

the shape of turbo compressor blades and turbine vanes. As these simulations can be quite

costly to compute, it is important to make sure that the algorithm being used for optimization

is tuned to achieve the ideal solution with as few objective function evaluations as possible.

CONCLUSION AND PERSPECTIVES

This research explored algorithm benchmarking using quantitative analysis in an attempt to

simplify and streamline this process. A Framework (MDAF) was developed using the Python

programming language to automate the computation of the benchmarks of given algorithms.

This framework contains various features like visualization helper functions, and test function

characterization methods. For example, the framework has default 3D and radar plotting

routines that can generate standardized visualizations of any mathematical numerical function.

MDAF facilitates the implementation of the best practice guidelines outlined in the first chapter

of this paper by automating the benchmarking process and implementing reliable

benchmarking metrics like the number of objective function calls required by an algorithm to

achieve a solution. Other Benchmarking metrics are also implemented into MDAF like the

CPU time of analysis as well as the convergence rates. The CPU time is considered a reliable

metric because it measures specifically the time that was spent by the CPU on the analysis

processes only and excludes other operating system runtimes. Therefore, this metric is

repeatable regardless of other processes on the analysis computer unlike the runtime metric

which is often used. Finally, the convergence rate indicates what proportion of test runs

achieved the desired results against the number of runs which diverged.

 Following the development of the Framework, a case study was performed using MDAF to

benchmark a PSO algorithm. This case study showed that the framework was capable of

benchmarking the performance of optimization algorithms for various parameter values.

Therefore, the framework can be utilised in many types of analyses for metaheuristics like

parameter optimization.

77

This work can be extended and improved in many ways to achieve a better understanding of

any metaheuristic. For example, regression models of the performance of metaheuristics can

be implemented using an engine like TensorFlow. The inputs of such a model would be the

ELA features of a test function and the model could output a predicted performance or a

suitability score. Autoencoders can be used to eliminate non important ELA features in this

use case. Another use case would be to utilize MDAF in the design of an algorithm selection

model which would automatically determine the best algorithm to be used based on the ELA

feature representation of a test function. Such a model could find applications in any industry

which performs optimization analyses. In fact, such a model would take the guessing work

out of choosing which solvers to use for given optimization problems.

APPENDIX I.
SIMULATED ANNEALING PSEUDO CODE

Algorithm-A I-1 Simulated Annealing Pseudo Code

/*
Borrowed Code: Simulated Annealing pseudo code
The following lines have been borrowed from (Luke, 2013)
*/ 1. 𝑡 ← 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑙𝑦 𝑎 ℎ𝑖𝑔ℎ 𝑛𝑢𝑚𝑏𝑒𝑟 2. 𝑆 ← 𝑠𝑜𝑚𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 3. 𝐵𝑒𝑠𝑡 ← 𝑆 4. 𝒓𝒆𝒑𝒆𝒂𝒕 1. 𝑅 ← 𝑇𝑤𝑒𝑎𝑘(𝐶𝑜𝑝𝑦(𝑆)) 2. 𝒊𝒇 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑅) >𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑆) 𝑜𝑟 𝑖𝑓 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑐ℎ𝑜𝑠𝑒𝑛 𝑓𝑟𝑜𝑚 0 𝑡𝑜 1 < 𝑒 () () 𝑡ℎ𝑒𝑛 3. 𝑆 ← 𝑅 4. 𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑡 5. 𝒊𝒇 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑆) > 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝐵𝑒𝑠𝑡) 𝒕𝒉𝒆𝒏 1. 𝐵𝑒𝑠𝑡 ← 𝑆 5. 𝒖𝒏𝒕𝒊𝒍 𝐵𝑒𝑠𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑑𝑒𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛,𝑤𝑒 ℎ𝑎𝑣𝑒 𝑟𝑢𝑛 𝑜𝑢𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒, 𝑜𝑟 𝑡 ≤ 0

6. 𝑟𝑒𝑡𝑢𝑟𝑛 𝐵𝑒𝑠𝑡
/* End of the Borrowed Code */

APPENDIX II.

PACKAGE META DATA

Algorithm-A II-1 Package Meta Data for MDAF

Package meta data:
1. [metadata]
2. name = MDAF
3. version = 0.1
4. description =A Framework for the Analysis and Benchmarking of

Metaheuristics

5. url = https://git.rehounou.ca/remi/MDAF
6. author = Remi Ehounou
7. author_email = remi.ehounou@outlook.com
8. license = MIT
9. long_description = file: README.md
10. long_description_content_type = text/markdown

11. classifiers =

12. Programming Language :: Python :: 3

13. License :: OSI Approved :: MIT License

14. Operating System :: OS Independent

15.

16.

17. [options]

18. package_dir =

19. = .

20. include_package_data = True

21. packages = find:

22. python_requires = >=3.6

23. install_requires =

24. numpy

25. sklearn

26. matplotlib

27. rpy2 == 3.4.4

80

APPENDIX III.

MDAF CODE

Algorithm-A III-1 MDAF Algorithm Implementation

 MDAF main Code
1.

2. from os import path

3. from os import sys

4. import importlib.util

5. import multiprocessing

6. import time

7. import re

8. from numpy import random as rand

9. from numpy import array, isnan, NaN, asarray, linspace,

append, meshgrid, ndarray

10. import statistics

11. from functools import partial

12. import shutil

13.

14. # Surrogate modelling and plotting

15. import matplotlib.pyplot as plt

16. from sklearn.neural_network import MLPRegressor

17. from sklearn.model_selection import train_test_split

18.

19. # Test function representation

20. from rpy2 import robjects as robjs

21. from rpy2.robjects.packages import importr

22. from rpy2 import rinterface

23.

24. # Test function characteristics

25. import statistics as st

26.

27.

28. def installFlacco(mirror =

'https://utstat.toronto.edu/cran/'):

81

29. utils = importr('utils')

30. utils.install_packages('flacco', repos=mirror)

31. utils.install_packages('list', repos=mirror)

32. utils.install_packages('lhs', repos=mirror)

33. utils.install_packages('plyr', repos=mirror)

34. utils.install_packages('RANN', repos=mirror)

35. utils.install_packages('numDeriv', repos=mirror)

36. utils.install_packages('e1071', repos=mirror)

37.

38. class counter:

39. #wraps a function, to keep a running count of how many

40. #times it's been called

41. def __init__(self, func):

42. self.func = func

43. self.count = 0

44.

45. def __call__(self, *args, **kwargs):

46. self.count += 1

47. return self.func(*args, **kwargs)

48.

49. def simulate(algName, algPath, funcname, funcpath, args,

initpoint):

50. # loading the heuristic object into the namespace and

memory

51. spec = importlib.util.spec_from_file_location(algName,

algPath)

52. heuristic = importlib.util.module_from_spec(spec)

53. spec.loader.exec_module(heuristic)

54.

55. # loading the test function object into the namespace and

memory

56. testspec =

importlib.util.spec_from_file_location(funcname, funcpath)

57. func = importlib.util.module_from_spec(testspec)

58. testspec.loader.exec_module(func)

59.

82

60. # defining a countable test function

61. @counter

62. def testfunc(args):

63. return func.main(args)

64.

65. # using a try statement to handle potential exceptions

raised by child processes like the algorithm or test functions or

the pooling algorithm

66. try:

67. #This timer calculates directly the CPU time of the

process (Nanoseconds)

68. tic = time.process_time_ns()

69. # running the test by calling the heuritic script

with the test function as argument

70. quality = heuristic.main(testfunc, initpoint, args)

71. toc = time.process_time_ns()

72. # ^^ The timer ends right above this; the CPU time is

then calculated below by simple difference ^^

73.

74. # CPU time in seconds

75. cpuTime = (toc - tic)*(10**-9)

76. numCalls = testfunc.count

77. converged = 1

78. except:

79. quality = NaN

80. cpuTime = NaN

81. numCalls = testfunc.count

82. converged = 0

83. return cpuTime, quality, numCalls, converged

84.

85. def measure(heuristicpath, funcpath, args, connection,

sampleSize = 30):

86. '''

87. This function runs a set of optimization flows for each

test function. it returns the mean and standard deviation of the

performance results

88. '''

83

89.

90. #defining the heuristic's name

91. heuristic_name =

path.splitext(path.basename(heuristicpath))[0]

92.

93. #defining the test function's name

94. funcname = path.splitext(path.basename(funcpath))[0]

95.

96. # Seeding the random module for generating the initial

point of the optimizer: Utilising random starting point for

experimental validity

97. rand.seed(int(time.time()))

98.

99. # guetting the representation of the function

100. funcChars = representfunc(funcpath)

101.

102. n = funcChars['dimmensions']

103. upper = funcChars['upper']

104. lower = funcChars['lower']

105.

106. if not isinstance(upper, list): upper = [upper for i in

range(n)]

107. if not isinstance(lower, list): lower = [lower for i in

range(n)]

108.

109. scale = list()

110. for i in range(n):

111. scale.append(upper[i] - lower[i])

112.

113.

114. # Defining random initial points to start testing the

algorithms

115. initpoints = [[rand.random() * scale[i] + lower[i] for i

in range(n)] for run in range(sampleSize)] #update the inner as

[rand.random() * scale for i in range(testfuncDimmensions)]

116. # building the iterable arguments

84

117. partfunc = partial(simulate, heuristic_name,

heuristicpath, funcname, funcpath, args)

118.

119. n_proc = multiprocessing.cpu_count() # Guetting the

number of cpus

120. with multiprocessing.Pool(processes = n_proc) as pool:

121. # running the simulations

122. newRun = pool.map(partfunc,initpoints)

123.

124. cpuTime = array([resl[0] for resl in newRun])

125. quality = array([resl[1] for resl in newRun])

126. numCalls = array([resl[2] for resl in newRun])

127. converged = array([resl[3] for resl in newRun])

128.

129. cpuTime = cpuTime[~(isnan(cpuTime))]

130. quality = quality[~(isnan(quality))]

131. numCalls = numCalls[~(isnan(numCalls))]

132. converged = converged[~(isnan(converged))]

133.

134.

135. results = dict()

136. results['cpuTime'] = array([statistics.fmean(cpuTime),

statistics.stdev(cpuTime)]) if cpuTime.size > 0 else array([])

137. results['quality'] = array([statistics.fmean(quality),

statistics.stdev(quality)]) if quality.size > 0 else array([])

138. results['numCalls'] = array([statistics.fmean(numCalls),

statistics.stdev(numCalls)]) if numCalls.size > 0 else array([])

139. results['convRate'] = array([statistics.fmean(converged),

statistics.stdev(converged)]) if converged.size > 0 else array([])

140.

141. connection.send((results,newRun,funcChars))

142.

143. def writerepresentation(funcpath, charas):

144. # Save a backup copy of the function file

145. shutil.copyfile(funcpath, funcpath + '.old')

146.

147. # create a string format of the representation variables

85

148. representation = ''

149. for line in list(charas):

150. representation += '\n\t#_# ' + line + ': ' +

repr(charas[line]).replace('\n','')

151. representation+='\n\n\t#_# Represented: 1\n\n'

152.

153. # Creating the new docstring to be inserted into the file

154. with open(funcpath, "r") as file:

155. content = file.read()

156. docstrs = re.findall(r"def

main\(.*?\):.*?'''(.*?)'''.*?return\s+.*?", content, re.DOTALL)[0]

157. docstrs += representation

158. repl = "\\1"+docstrs+"\t\\2"

159.

160. # Create the new content of the file to replace the

old. Replacing the whole thing

161. pattrn = re.compile(r"(def

main\(.*?\):.*?''').*?('''.*?return\s+.*?\n|$)", flags=re.DOTALL)

162. newContent = pattrn.sub(repl, content, count=1)

163. # Overwrite the test function file

164. with open(funcpath,"w") as file:

165. file.write(newContent)

166.

167. def representfunc(funcpath, forced = False):

168. if (funcpath.find('@') == 0): funcpath =

path.dirname(__file__) + '/TestFunctions/' + funcpath[1:]

169.

170. #defining the function name

171. funcname = path.splitext(path.basename(funcpath))[0]

172. # loading the function to be represented

173. spec = importlib.util.spec_from_file_location(funcname,

funcpath)

174. funcmodule = importlib.util.module_from_spec(spec)

175. spec.loader.exec_module(funcmodule)

176.

86

177. # Finding the function characteristics inside the

docstring

178. if funcmodule.main.__doc__:

179. regex = re.compile(r"#_#\s?(\w+):(.+)?\n") # this

regular expression matches the characteristics already specified in

the docstring section of the function -- old exp:

"#_#\s?(\w+):\s?([-+]?(\d+(\.\d*)?|\.\d+)([eE][-+]?\d+)?)"

180. characs = re.findall(regex, funcmodule.main.__doc__)

181. results = {}

182. for charac in characs:

183. results[charac[0]] =

eval(charac[1].replace('nan','NaN'))

184.

185. # Automatically generate the representation if the

docstrings did not return anything

186. if not ('Represented' in results):

187. print("Warning, the Representation of the Test

Function has not been specified\n===\n******Calculating the

Characteristics******")

188. n = int(results['dimmensions'])

189. blocks = int(1+10/n)

190. if blocks< 3: blocks=3

191.

192. # Importing FLACCO using rpy2

193. flacco = importr('flacco')

194.

195. # creating the r functions

196. rlist = robjs.r['list']

197. rapply = robjs.r['apply']

198. rvector = robjs.r['c']

199. r_unlist = robjs.r['unlist']

200. rtestfunc =

rinterface.rternalize(funcmodule.main)

201.

202. # Verify if a list of limits has been specified

for all dimensions or if all dimensions will use the same

boundaries

87

203. if (type(results['lower']) is list):

204. lowerval =

r_unlist(rvector(results['lower']))

205. upperval =

r_unlist(rvector(results['upper']))

206. else:

207. lowerval = results['lower']

208. upperval = results['upper']

209.

210. X = flacco.createInitialSample(n_obs = 500, dim =

n, control = rlist(**{'init_sample.type' : 'lhs',

'init_sample.lower' : lowerval, 'init_sample.upper' : upperval}))

211. y = rapply(X, 1, rtestfunc)

212. testfuncobj = flacco.createFeatureObject(**{'X':

X, 'y': y, 'fun': rtestfunc, 'lower': lowerval, 'upper': upperval,

'blocks': blocks, 'force': forced})

213.

214. # these are the retained features. Note that some

features are being excluded for being problematic and to avoid

overcomplicating the neural network.... the feature sets are

redundant and the most relevant ones have been retained

215. # the excluded feature sets are: 'bt',

'ela_level'

216. # feature sets that require special attention:

'cm_angle', 'cm_grad', 'limo', 'gcm' (large set with some nans),

217. featureset =

['cm_angle','cm_conv','cm_grad','ela_conv','ela_curv','ela_distr','

ela_local','ela_meta','basic','disp','limo','nbc','pca','gcm','ic']

218. pyfeats = dict()

219. for feature in featureset:

220. rawfeats =

flacco.calculateFeatureSet(testfuncobj, set=feature)

221. pyfeats[feature] = asarray(rawfeats)

222.

223. writerepresentation(funcpath, pyfeats)

224.

88

225. for feat in results.keys():

226. if isinstance(results[feat],ndarray):

227. results[feat] =

results[feat].reshape(results[feat].shape[:-1])

228.

229. return results

230.

231.

232.

233. def exp(heuristicpath, testfunctionpaths, args,

measurementSampleSize = 30):

234. for i,funpath in enumerate(testfunctionpaths):

235. if funpath.find('@') == 0:

236. testfunctionpaths[i] = path.dirname(__file__) +

'/TestFunctions/' + funpath[1:]

237.

238. if (heuristicpath.find('@') == 0): heuristicpath =

path.dirname(__file__) + '/SampleAlgorithms/' + heuristicpath[1:]

239.

240. #defining the function's name

241. funcnames = [path.splitext(path.basename(funcpath))[0]

for funcpath in testfunctionpaths]

242.

243. #defining the heuristic's name

244. #heuristic_name =

path.splitext(path.basename(heuristicpath))[0]

245.

246. # logic variables to deal with the processes

247. proc = []

248. connections = {}

249.

250. # loading the test functions into the namespace and

memory

251. for idx, funcpath in enumerate(testfunctionpaths):

252. funcname = funcnames[idx]

253. # Creating the connection objects for communication

between the heuristic and this module

89

254. connections[funcname] =

multiprocessing.Pipe(duplex=False)

255. proc.append(multiprocessing.Process(target=measure,

name=funcname, args=(heuristicpath, funcpath, args,

connections[funcname][1], measurementSampleSize)))

256.

257. # defining the response variables

258. responses = {}

259. failedfunctions = {}

260.

261. # Starting the subprocesses for each testfunction

262. for idx,process in enumerate(proc):

263. process.start()

264.

265. # Waiting for all the runs to be done

266. for process in proc: process.join()

267.

268. for process in proc:

269. run = process.name

270. if process.exitcode == 0: responses[run] =

connections[run][0].recv()

271. else:

272. responses[run] = "this run was not successful"

273. failedfunctions[run] = process.exitcode

274. connections[run][0].close()

275. connections[run][1].close()

276.

277.

278. # display output

279. print("\n\n||||| Responses: [mean,stdDev] |||||")

280. for process in proc: print(process.name + "____\n" +

str(responses[process.name][0]) + "\n_________________")

281.

282. #return the performance values

283. return responses

284.

90

285. def plotfuncs(funcpaths, feature, low_limit = 0, high_limit =

200):

286. pi = 3.141592653589793

287. for i,funpath in enumerate(funcpaths):

288. if funpath.find('@') == 0:

289. funcpaths[i] = path.dirname(__file__) +

'/TestFunctions/' + funpath[1:]

290.

291. funcnames = [path.splitext(path.basename(funcpath))[0]

for funcpath in funcpaths]

292. representations = {}

293.

294. for idx,funpath in enumerate(funcpaths):

295. representations[funcnames[idx]] =

representfunc(funpath)[feature]

296.

297. # generate a list of the categories of the plot

298. elements = list(representations.values())

299. categories = [str(i) for i in

list(range(len(elements[0])))]

300.

301. # creating the plot figure

302. fig = plt.figure(figsize = (12,8))

303. ax = plt.subplot(polar = "True")

304.

305. for idx, func in enumerate(representations):

306. vals = representations[func]

307. vals = [float(v) for v in vals]

308.

309. # get the number of dims of the plot

310. N = len(vals)

311. # repeat the first value to close the circle

312. vals += vals[:1]

313. #calculate the angles for each category

314. angles = [n/float(N)*2*pi for n in range(N)]

315. angles += angles[:1]

316. #creating the polar plot

91

317. ax.plot(angles,vals)

318.

319. # X ticks

320. plt.xticks(angles[:-1], categories)

321.

322. #ax.set_rlabel_position(0)

323.

324. # y ticks

325. # set dynamic scaling for each dimension

326. plt.ylim(low_limit,high_limit)

327.

328. plt.title("Radar Plot of the "+feature+ " feature for the

following Functions")

329. plt.legend(funcnames)

330. plt.show(block=True)

331. return representations

332.

333. def visualize2D(funcpath, min = -10, max=10):

334. if funcpath.find('@') == 0:

335. funcpath = path.dirname(__file__) + '/TestFunctions/'

+ funcpath[1:]

336.

337. # loading the test function object into the namespace and

memory

338. testspec =

importlib.util.spec_from_file_location(path.splitext(path.basename(

funcpath))[0], funcpath)

339. func = importlib.util.module_from_spec(testspec)

340. testspec.loader.exec_module(func)

341.

342. # create the 2D mx

343. x = linspace(min,max)

344. y = linspace(min,max)

345. X, Y = meshgrid(x, y)

346. vals = array([[X[i][j],Y[i][j]] for i in

range(X.shape[0]) for j in range(X.shape[1])])

92

347. z = array([func.main(arg) for arg in vals])

348. Z = z.reshape([50,50])

349. fig = plt.figure()

350. ax = plt.axes(projection='3d')

351. ax.plot_surface(X,Y,Z)

352. plt.show()

353.

354.

355.

356. def model(features, doe_data):

357.

358. X_train, X_test, y_train, y_test =

train_test_split(features, doe_data, random_state=1)

359.

360. regr = MLPRegressor(random_state=1,

max_iter=500).fit(X_train, y_train)

361.

362. score = regr.score(X_test, y_test)

363. return (score, regr)

364.

365.

366. if __name__== "__main__":

367. #plotfuncs(['@Bukin2.py','@Bukin6.py'], 'ela_meta')

368. testfuns =

['@Bukin2.py','@Bukin6.py','@Leon.py','@Miele_Cantrell.py','@Brown.

py','@Keane.py','@McCormick.py']

369. #perf = exp('@SimmulatedAnnealing.py', testfuns,{"t":

1000, "p": 0.95, "objs": 0},measurementSampleSize=30)

370. visualize2D(testfuns[1])

371. #feats = array([representfunc(testfun)['ela_meta'] for

testfun in testfuns])

372.

373. perfs = array([[perf[func][0]['cpuTime'][0],

perf[func][0]['numCalls'][0], perf[func][0]['quality'][0],

perf[func][0]['convRate'][0]] for func in perf.keys()])

374. features = array(feats)

375.

93

376. model(features, perfs)

377. # %%

APPENDIX IV.

SAMPLE STRUCTURE OF PREPROGRAMMED TEST FUNCTIONS

Algorithm-A IV-1 The Bukin2 Test Function Implementation

Bukin2 function:
1. def main(args):
2. '''
3.

4. #_# dimmensions: 2

5. #_# upper: [-5, 3]

6. #_# lower: [-15, -3]

7. #_# minimum: [-10,0]

8. #_# Represented: 0
9.
10. '''

11. return 100*(args[1]-0.01*args[0]**2+1)+0.01*(args[0]+10)**2

APPENDIX V.

AUTOMATED TESTS ALGORITHMS

Algorithm-A V-1 The Unittest Automated Testing Script

Automated Testing Script
1. import unittest

2. import os

3.

4. from MDAF.MDAF import representfunc

5. from MDAF.MDAF import exp

6.

7. #target = __import__("MDAF.py")

8.

9. # Testing the test function representation workflow

10. class Test_representfunc(unittest.TestCase):

11. def testexternalfuncs(self):

12. """

13. Test that the function can calculate the

representation and write to the function docstring

14. """

15. funcpath = 'tests/Bukin2.py'

16. #funcpath_backup = 'tests/Bukin2.py.old'

17.

18. results = representfunc(funcpath, forced = True)

19.

20. with open(funcpath,"r") as file:

21. content = file.read()

22. reprCheck = bool(content.find('#_# Represented:

1'))

23.

24. #os.remove(funcpath)

25. #os.replace(funcpath_backup, funcpath)

26. self.assertTrue(reprCheck)

27. self.assertIsInstance(results, dict)

28.

96

29. def testinternalfuncs(self):

30. """

31. Test that the function can calculate the

representation and write to the function docstring

32. """

33. funcpath = '@Bukin2.py'

34. funcverify = 'MDAF/TestFunctions/Bukin2.py'

35. #funcpath_backup = 'tests/Bukin2.py.old'

36.

37. results = representfunc(funcpath, forced = True)

38.

39. with open(funcverify,"r") as file:

40. content = file.read()

41. reprCheck = bool(content.find('#_# Represented:

1'))

42.

43. #os.remove(funcpath)

44. #os.replace(funcpath_backup, funcpath)

45. self.assertTrue(reprCheck)

46. self.assertIsInstance(results, dict)

47.

48.

49.

50. # Testing the flacco installation workflow

51. class Test_flaccoInstall(unittest.TestCase):

52. def testoutput(self):

53. """

54. Test that the flacco packages are able to install

automatically

55. """

56. #installFalcoo()

57.

58.

59. # Testing the DOE execution workflow

60. class Test_DOE(unittest.TestCase):

61. def testexternalfuncs(self):

62. """

97

63. Test that it can execute a DOE and output the

dictionarry of the results

64. """

65. testfunctionpaths = ["tests/Bukin2.py"]

66. heuristicpath = "tests/SimmulatedAnnealing.py"

67. args = {"t": 1000, "p": 0.95, "objs": 0}

68. data = exp (heuristicpath, testfunctionpaths, args)

69. self.assertIsInstance(data, dict)

70.

71. def testinternalfuncs(self):

72. """

73. Test that it can execute a DOE and output the

dictionarry of the results

74. """

75. testfunctionpaths = ["@Bukin2.py"]

76. heuristicpath = "@SimmulatedAnnealing.py"

77. args = {"t": 1000, "p": 0.95, "objs": 0}

78. data = exp (heuristicpath, testfunctionpaths, args)

79. print(data)

80. self.assertIsInstance(data, dict)

APPENDIX VI.

FLACCO Features Data

Table-A VI-1 The gcm Feature Set Values
 Leon Price2 Ackley2 Step Brown Styblinski-Tang

1 1 7 1 1 1 4

2 0.02777778 0.19444444 0.02777778 0.02777778 0.001371742 0.11111111

3 0.97222222 0.80555556 0.97222222 0.97222222 0.541838134 0.88888889

4 0 0.66666667 0 0 0 0.47222222

5 1 0.09454594 1 1 0.543209877 0.20065046

6 1 0.14285714 1 1 0.543209877 0.25

7 1 0.11484541 1 1 0.543209877 0.24278043

8 1 0.29185606 1 1 0.543209877 0.31378867

9 nan 0.07241316 nan nan nan 0.04700162

10 1 0.02777778 1 1 0.543209877 0.11111111

11 1 0.04761905 1 1 0.543209877 0.13194444

12 1 0.02777778 1 1 0.543209877 0.11111111

13 1 0.11111111 1 1 0.543209877 0.19444444

14 nan 0.03090826 nan nan nan 0.04166667

15 1 0.33333333 1 1 0.543209877 0.52777778

16 1 0.02777778 1 1 0.543209877 0.25

99

 Leon Price2 Ackley2 Step Brown Styblinski-Tang

17 1 0.14285714 1 1 0.543209877 0.25

18 1 0.11111111 1 1 0.543209877 0.25

19 1 0.36111111 1 1 0.543209877 0.25

20 nan 0.11275243 nan nan nan 0

21 1 1 1 1 0.543209877 1

22 1 0.18140016 1 1 0.543209877 0.31378867

23 0.02777778 0.02777778 0.02777778 0.02777778 0.001371742 0.02777778

24 0 0 0 0 0 0

25 0.02 0.396 0.021 0.293 7.939 0.19

26 2 6 1 1 1 4

27 0.05555556 0.16666667 0.02777778 0.02777778 0.001371742 0.11111111

28 0.94444444 0.83333333 0.97222222 0.97222222 0.541838134 0.88888889

29 0.83333333 0.75 0 0 0 0.75

30 0.48352763 0.11878172 1 1 0.543209877 0.21908552

31 0.5 0.16666667 1 1 0.543209877 0.25

32 0.5 0.15022098 1 1 0.543209877 0.24131732

33 0.51647237 0.26560387 1 1 0.543209877 0.29827985

34 0.02329546 0.05358846 nan nan nan 0.03423605

35 0.08333333 0.02777778 1 1 0.543209877 0.02777778

100

 Leon Price2 Ackley2 Step Brown Styblinski-Tang

36 0.08333333 0.04166667 1 1 0.543209877 0.0625

37 0.08333333 0.02777778 1 1 0.543209877 0.02777778

38 0.08333333 0.08333333 1 1 0.543209877 0.16666667

39 0.0 0.02324056 nan nan nan 0.06944444

40 0.16666667 0.25 1 1 0.543209877 0.25

41 0.44444444 0.05555556 1 1 0.543209877 0.25

42 0.5 0.16666667 1 1 0.543209877 0.25

43 0.5 0.13888889 1 1 0.543209877 0.25

44 0.55555556 0.30555556 1 1 0.543209877 0.25

45 0.07856742 0.0860663 nan nan nan 0

46 1 1 1 1 0.543209877 1

47 0.48352763 0.26560387 1 1 0.543209877 0.29827985

48 0.02777778 0.02777778 0.02777778 0.02777778 0.001371742 0.02777778

49 0 0 0 0 0 0

50 0.02 0.335 0.02 0.261 7.537 0.557

51 1 4 1 1 2 4

52 0.02777778 0.11111111 0.02777778 0.02777778 0.002743484 0.11111111

53 0.97222222 0.88888889 0.97222222 0.97222222 0.997256516 0.88888889

54 0 0.44444444 0 0 1 0.75

55 1 0.12066382 1 1 0.5 0.22466354

101

 Leon Price2 Ackley2 Step Brown Styblinski-Tang

56 1 0.25 1 1 0.5 0.25

57 1 0.2662074 1 1 0.5 0.24621096

58 1 0.34692138 1 1 0.5 0.28291453

59 nan 0.09797158 nan nan 0.0 0.02445002

60 1 0.05555556 1 1 0 0.02777778

61 1 0.13888889 1 1 0 0.0625

62 1 0.13888889 1 1 0 0.02777778

63 1 0.22222222 1 1 0 0.16666667

64 nan 0.06804138 nan nan 0.0 0.06944444

65 1 0.55555556 1 1 0 0.25

66 1 0.13888889 1 1 0.488340192 0.25

67 1 0.25 1 1 0.5 0.25

68 1 0.26388889 1 1 0.5 0.25

69 1 0.33333333 1 1 0.511659808 0.25

70 nan 0.08784105 nan nan 0.0164894585 0

71 1 1 1 1 1 1

72 1 0.23343294 1 1 1 0.28291453

73 0.02777778 0.02777778 0.02777778 0.02777778 0.002743484 0.02777778

74 0 0 0 0 0 0

102

 Leon Price2 Ackley2 Step Brown Styblinski-Tang

75 0.022 0.279 0.024 0.239 12.115 0.204

APPENDIX VII.

PSO PERFORMANCE DATA

Table-A VII-1 c1 Parameter Values Used for the Case Study
0.00

0.53

1.05

1.58

2.11

2.63

3.16

3.68

4.21

4.74

5.26

5.79

6.32

6.84

7.37

7.89

8.42

8.95

9.47

104

10.0

0

10.0

0

10.0

0

10.0

0

10.0

0

10.0

0

10.0

0

10.0

0

10.0

0

10.0

0

10.0

0

10.0

0

10.0

0

10.0

0

10.0

0

10.0

0

10.0

0

10.0

0

10.0

0

10.0

0

105

Table-A VII-2 c2 Parameter Values Used for the Case Study
0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00

106

Table-A VII-3 Average Number of calls Required to Optimize the Leon Test Function using PSO for each c1 and c2 Parameter
variations

OVFL 291 291 13000 OVFL 401 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 691 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 231 OVFL 211 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 9461 OVFL OVFL 5801 OVFL

OVFL 471 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 16101 OVFL OVFL

OVFL OVFL 551 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 41 OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL OVFL 661 OVFL 251 OVFL OVFL 641 OVFL OVFL OVFL OVFL OVFL 19170 OVFL OVFL OVFL OVFL OVFL 22091

OVFL 161 OVFL OVFL OVFL OVFL OVFL 50011 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 711 93784 OVFL 951 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 321 OVFL OVFL 921 611 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 6811 OVFL OVFL

OVFL OVFL 181 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 281 OVFL 391 OVFL OVFL 371 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL OVFL 281 OVFL 311 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL OVFL OVFL 241 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL OVFL 371 511 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 331 261 OVFL OVFL 201 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 231 341 361 231 OVFL 381 OVFL OVFL 531 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL OVFL 351 OVFL 331 451 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 271 331 311 501 OVFL OVFL 561 OVFL OVFL OVFL OVFL OVFL 32011 301 OVFL OVFL 6141 OVFL OVFL

OVFL OVFL 581 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 221 OVFL OVFL OVFL OVFL

OVFL 309 211 151 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

107

Table-A VII-4 Standard Errors for the Average Numbers of calls Statistics Required to Optimize the Leon Test Function using
PSO for each c1 and c2 Parameter variations

0 0 0 8490 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

0

0

0

0 0 0 0 0 0 0 0 0 0 0 0 0 5389 0 0 0 0 0 0

0 0 0 0 0 0 0 12907 0 0 0 0 0 0 0 0 0 0 0 0

0 0 6217 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

108

Table-A VII-5 Average Number of calls Required to Optimize the Price2 Test Function using PSO for each c1 and c2 Parameter
variations

OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 15241 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL OVFL OVFL OVFL OVFL OVFL 991 OVFL 26691 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL OVFL 371 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 14861 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL OVFL OVFL OVFL 661 OVFL OVFL OVFL OVFL OVFL OVFL OVFL 55011 OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 301 OVFL OVFL OVFL 791 OVFL OVFL 11081 OVFL OVFL 46531 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 1361 OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL

OVFL OVFL OVFL OVFL OVFL OVFL OVFL 2061 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 3301 OVFL OVFL OVFL

OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 7861 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 281 OVFL OVFL OVFL OVFL OVFL 26071 OVFL 58827 25601 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 20101 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL OVFL OVFL OVFL OVFL OVFL OVFL 5721 1771 17711 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL OVFL OVFL 441 OVFL OVFL OVFL 20801 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL OVFL OVFL OVFL 751 87574 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL

OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 4411 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 2821 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

21 OVFL OVFL OVFL OVFL OVFL OVFL 4004 OVFL OVFL 78831 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL OVFL OVFL 501 OVFL OVFL OVFL OVFL 52979 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

109

Table-A VII-6 Standard Errors for the Average Numbers of calls Statistics Required to Optimize the Price2 Test Function using
PSO for each c1 and c2 Parameter variations

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0 0 0 0 1856 0 0 0 0 0 0 0 0 0 0

0

0

0

0 0 0 0 0 8490 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

0

0

0 0 0 0 0 0 0 372.7 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 4589 0 0 0 0 0 0 0 0 0 0 0

110

Table-A VII-7 Average Number of calls Required to Optimize the Brown Test Function using PSO for each c1 and c2 Parameter
variations

OVFL OVFL 451 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 761 OVFL 691 OVFL OVFL 3851 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL OVFL 391 671 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 1091 OVFL OVFL OVFL 1481 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 461 50226 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL OVFL 441 OVFL OVFL 1321 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL

OVFL 511 OVFL 671 901 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL OVFL 501 OVFL 881 OVFL 2571 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL

OVFL 291 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 421 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL OVFL OVFL 761 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL OVFL 391 OVFL 1041 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 371 681 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL

OVFL 691 481 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 371 461 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 431 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL OVFL OVFL 521 781 1681 3731 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

111

Table-A VII-8 Standard Errors for the Average Numbers of calls Statistics Required to Optimize the Brown Test Function using
PSO for each c1 and c2 Parameter variations

0

0

0

0

0 0 12852 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

112

Table-A VII-9 Average Number of calls Required to Optimize the Ackley2 Test Function using PSO for each c1 and c2 Parameter
variations

OVFL 621 681 1211 951 1691 4361 69531 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 701 801 941 1601 1771 4451 33671 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 751 621 701 1421 2001 1931 96071 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 751 951 801 1271 2711 3021 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 681 721 701 1601 1751 2391 46061 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 709 811 1121 1641 1721 5641 41931 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 741 541 921 2581 1621 3901 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 721 781 931 2131 2051 7271 31261 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 531 561 901 1561 2151 1431 91781 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 681 821 1071 841 1701 4061 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 801 971 911 1481 2731 3911 79641 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 621 861 871 901 3121 9361 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 541 901 1061 801 2291 4496 39281 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 681 751 1581 1101 2701 8783 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 511 711 651 1041 2521 5441 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 621 801 661 1791 5091 2535 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 651 851 1121 1271 1521 10971 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 761 731 1321 1081 1431 3891 97521 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 661 711 871 1881 2311 1361 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 481 691 1041 961 1231 4131 60701 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

113

Table-A VII-10 Standard Errors for the Average Numbers of calls Statistics Required to Optimize the Ackley2 Test Function
using PSO for each c1 and c2 Parameter variations

0.00

0.00

0.00

0.00

0.00

0.00 27.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00 0.00 0.00 0.00 0.00 148.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 1063.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00

0.00 0.00 0.00 0.00 0.00 0.00 24.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00

0.00

0.00

0.00

114

Table-A VII-11 Average Number of calls Required to Optimize the Styblinski-Tang Test Function using PSO for each c1 and c2
Parameter variations

OVFL 301 OVFL OVFL 371 931 1221 1471 5881 8381 OVFL OVFL 23741 OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 361 OVFL 381 581 801 781 2691 7721 OVFL 5321 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 441 OVFL OVFL 641 OVFL 1711 571 9961 OVFL OVFL OVFL 42271 OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL OVFL 561 OVFL 681 OVFL 1441 6001 11521 13741 67111 OVFL 37351 OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL OVFL OVFL 451 OVFL 241 2591 581 12551 12611 67141 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 411 361 OVFL 401 761 1221 1601 9283 78791 51951 OVFL 45971 OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL OVFL OVFL 401 921 891 1604 1741 62601 69871 OVFL 20621 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL OVFL 161 OVFL 831 1061 1881 5201 52341 15981 33041 OVFL OVFL OVFL OVFL 84501 OVFL OVFL OVFL OVFL

OVFL 311 221 411 951 1141 1151 2131 10211 70891 OVFL 69941 65841 OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 291 429 OVFL 603 741 1161 1081 2441 16781 OVFL OVFL OVFL OVFL OVFL OVFL OVFL 55201 OVFL OVFL

OVFL OVFL OVFL 551 OVFL 2311 571 781 13711 44281 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 321 OVFL OVFL 601 OVFL 2851 17451 21351 31671 13217 OVFL OVFL OVFL 93596 OVFL OVFL OVFL OVFL OVFL

OVFL 251 OVFL OVFL 511 761 2021 5081 15931 36547 70601 93441 OVFL 49131 24331 OVFL OVFL OVFL OVFL 37291

OVFL OVFL OVFL 441 OVFL 1221 2301 4281 18051 13431 OVFL 9081 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL OVFL 381 471 OVFL 1641 1681 9731 11731 81635 59931 OVFL OVFL OVFL 14811 OVFL OVFL OVFL OVFL OVFL

OVFL 411 431 OVFL 461 931 931 5141 1230 30051 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 301 261 OVFL 391 481 1791 3881 12751 80711 59847 OVFL 94384 44351 OVFL OVFL OVFL OVFL OVFL OVFL

OVFL OVFL 261 OVFL OVFL 691 2171 4751 44758 21651 33791 OVFL OVFL 31677 OVFL OVFL OVFL OVFL OVFL OVFL

OVFL OVFL 431 551 1271 1481 2171 3421 14274 63791 OVFL 45711 OVFL 56331 16771 64301 OVFL OVFL OVFL OVFL

OVFL 381 311 331 OVFL 941 1331 3181 10211 OVFL OVFL 30531 88931 OVFL OVFL OVFL OVFL OVFL OVFL OVFL

115

Table-A VII-12 Standard Errors for the Average Numbers of calls Statistics Required to Optimize the Styblinski-Tang Test
Function using PSO for each c1 and c2 Parameter variations

0.00

0.00

0.00

0.00

0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 334.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 107.59 72.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00

0.00

0.00 0.00 1.87 0.00 31.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5785.62 0.00 0.00 0.00 1653.76 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3406.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7033.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2875.58 4091.25 0.00 3837.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5118.53 0.00 0.00 0.00 0.00 11893.64 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1461.27 9349.38 0.00 0.00 0.00 0.00 0.00 3483.96 0.00 0.00 0.00 0.00

0.00

116

Table-A VII-13 Average Number of calls Required to Optimize the Step Test Function using PSO for each c1 and c2 Parameter
variations

OVFL 251 301 271 631 771 1291 1231 52761 37781 OVFL OVFL OVFL OVFL OVFL OVFL OVFL 11561 OVFL OVFL

OVFL 251 381 471 201 357 791 4004 5095 16427 43151 40441 OVFL 20261 OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 291 321 331 791 591 961 2772 39361 51141 OVFL 51601 OVFL OVFL OVFL OVFL OVFL OVFL 57081 OVFL

OVFL 291 471 301 221 241 791 5851 2391 70401 8841 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 281 371 371 561 1721 2006 4291 37261 26601 OVFL OVFL 60191 OVFL OVFL OVFL OVFL 84780 OVFL OVFL

OVFL 281 191 381 511 781 1001 7621 5901 11381 42551 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 221 411 401 531 461 1181 2021 4011 OVFL 24641 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 291 341 461 291 1071 2371 1181 6991 48791 50001 87721 OVFL 48091 OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 311 291 441 1271 361 961 2031 17641 92971 9791 OVFL OVFL OVFL OVFL OVFL 84611 OVFL OVFL OVFL

OVFL 261 181 581 1081 251 1081 4931 7861 6361 24911 OVFL 97411 47711 OVFL 11 OVFL OVFL OVFL OVFL

OVFL 351 271 521 741 1461 511 1491 2911 40651 OVFL 631 OVFL 33381 OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 291 571 361 601 851 1311 4131 4351 23331 OVFL 98081 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 191 351 301 621 351 2471 281 5131 50761 OVFL OVFL OVFL 21601 OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 151 261 371 641 471 2131 1261 17661 14111 66821 OVFL OVFL OVFL OVFL 91567 OVFL OVFL OVFL 85231

OVFL 211 271 371 271 641 1681 9641 12261 12971 41311 95005 93351 OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 311 381 411 331 481 661 654 8331 43891 57912 30591 OVFL 80241 41321 94990 OVFL OVFL 98285 OVFL

OVFL 288 391 481 301 401 604 3801 17969 5221 75284 OVFL OVFL OVFL OVFL 99986 OVFL OVFL OVFL OVFL

OVFL 161 331 291 321 681 2171 7226 2348 OVFL 20871 41041 62591 OVFL OVFL OVFL OVFL OVFL OVFL OVFL

91 315 351 331 1041 1771 1451 1851 36542 22626 62961 64291 91678 OVFL OVFL OVFL OVFL OVFL OVFL OVFL

OVFL 251 171 331 511 441 1981 2921 18641 79371 921 OVFL OVFL OVFL 52271 OVFL OVFL OVFL OVFL OVFL

117

Table-A VII-14 Standard Errors for the Average Numbers of calls Statistics Required to Optimize the Step Test Function using
PSO for each c1 and c2 Parameter variations

0.00

0.00 0.00 0.00 0.00 0.00 19.21 0.00 322.78 567.38 2296.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 586.42 0.00 0.00 0.00 8425.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00

0.00 0.00 0.00 0.00 0.00 0.00 151.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4456.14 0.00 0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4533.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4996.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 112.50 0.00 0.00 7326.71 0.00 0.00 0.00 0.00 5010.62 0.00 0.00 114.37 0.00

0.00 3.84 0.00 0.00 0.00 0.00 58.64 0.00 3859.26 0.00 6135.03 0.00 0.00 0.00 0.00 5.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 765.91 669.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 6.25 0.00 0.00 0.00 0.00 0.00 0.00 2896.37 3915.88 0.00 0.00 4473.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 67.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

APPENDIX VIII.

CASE STUDY CODE

Algorithm-A VIII-1 Case Study Python Script used with MDAF to Generate the Results
 testfuns = ['@Ackley2.py', '@Alpine.py', '@Brown.py', '@Bukin2.py',\
'@Bukin4.py', '@Bukin6.py', '@Keane.py', '@Leon.py', '@Matyas.py',\
'@McCormick.py', '@Miele_Cantrell.py', '@Periodic.py',\
'@PowellSingular2.py', '@Price1.py', '@Price2.py', '@Quartic.py',\
'@Rastriring.py', '@Scahffer.py', '@Schwefel.py', '@Sphere.py',\
'@Step.py', '@Step2.py', '@Styblinski-Tang.py', '@SumSquare.py',\
'@Wayburn.py', '@Zettle.py', '@Zirilli.py']

 selections = testfuns['@Leon.py', '@Price2.py', '@Ackley2.py',
'@Step.py', '@Brown.py', '@Styblinski-Tang.py']

 # Measurement sample size
 print("Input the measurement sample size Default(16): ")
 s = int(input() or 16)
 print(s)
 #PSO population size
 print("\n\nInput the PSO population size Default(10): ")
 pop = int(input() or 10)
 print(pop)

 #visualize2D('@Ackley2.py', -10,10)
 #feats = array([representfunc(testfun, True)['ela_meta'] for testfun
in testfuns])
 #plotfuncs(['@Bukin2.py','@Bukin6.py'], 'ela_meta')

 # Initialize output data model
 # Value iterations
 print("\n\nInput the max min and number of elements for the first
parameter iterations. Default(0,10,20): ")
 vmax = int(input() or 0)
 vmin = int(input() or 10)
 vnum = int(input() or 20)
 print(vmax, vmin,vnum)
 ###
 print("\n\nInput the max min and number of elements for the second
parameter iterations. Default(0,10,20): ")
 vmax2 = int(input() or 0)
 vmin2 = int(input() or 10)
 vnum2 = int(input() or 20)
 print(vmax2, vmin2,vnum2)
 ### First parameter
 iterations = linspace(vmax, vmin, vnum)
 ### Second parameter for mapping
 iterations2 = linspace(vmax2, vmin2, vnum2)
 x,y = meshgrid(iterations,iterations2, indexing='ij')

 avgs = {}

119

 devs = {}
 for i in selections:
 avgs[path.splitext(path.basename(i))[0].replace('@','')] = []
 devs[path.splitext(path.basename(i))[0].replace('@','')] = []

 # Loop over range of meta parameters
 for i in range(len(iterations)):
 vectavgs = {}
 vecdevs = {}
 for c in selections:

vectavgs[path.splitext(path.basename(c))[0].replace('@','')]=[]

vecdevs[path.splitext(path.basename(c))[0].replace('@','')]=[]
 for j in range(len(iterations2)):
 #initialize the particles
 args = {'high':100, 'low':-100, 't':0.0001, 'p':0,
'iter_max':10000, 'pop_size':pop, 'dimensions':6, 'c1':x[i,j],
'c2':y[i,j], 'neededQuality':100, 'sigma':0.001, 'wmax':0.9,
'wmin':0.4,'w':0.75}
 # Run the simulation
 perf = exp('@PSO-Annealing.py', selections, args,\
measurementSampleSize=s)
 perfs = {}
 deviations = {}
 for func in perf.keys():
 perfs[func] = [perf[func][0]['cpuTime'][0], \
perf[func][0]['numCalls'][0], perf[func][0]['quality'][0], \
perf[func][0]['convRate'][0]]

 deviations[func]=[perf[func][0]['cpuTime'][1],\
perf[func][0]['numCalls'][1], perf[func][0]['quality'][1],\
perf[func][0]['convRate'][1]]

 vectavgs[func].append(perfs[func][1])
 vecdevs[func].append(deviations[func][1]/(s**0.5))

 for func in perf.keys():
 avgs[func].append(vectavgs[func])
 devs[func].append(vecdevs[func])

 # Generate 2D heatmaps
 for idx, name in enumerate(list(avgs.keys())):
 heatmap(x,y,array(avgs[name]),name)
 heatmap(x,y,array(devs[name]),name+'stdErrs')

 # Save the csv files
 with open("Data/"+"Xs.csv", "w") as f:
 writer = csv.writer(f)
 writer.writerows(x)
 f.close()
 with open("Data/"+"Ys.csv", "w") as f:
 writer = csv.writer(f)
 writer.writerows(y)

120

 f.close()
 for idx, name in enumerate(list(avgs.keys())):
 with open("Data/"+name+"Avgs.csv", "w") as f:
 writer = csv.writer(f)
 writer.writerows(avgs[name])
 f.close()
 with open("Data/"+name+"Devs.csv", "w") as f:
 writer = csv.writer(f)
 writer.writerows(devs[name])
 f.close()

APPENDIX IX.

PSO ALGORITHM

Algorithm-A IX-1 The PSO Algorithm

import math as m

import numpy as np

from numpy import random as r

import time

import copy as cp

r.seed(int(time.time()))

route = list()

#Ackley2 for rapid testing

def func(args):

 return -200 * m.e**(-0.02 * m.sqrt(args[0]**2 + args[1]**2))

def Quality(func, Sc,objective):

 func_output = func(Sc)

 if hasattr(func_output, '__iter__'):

 if (objective is not list):

 objective = [objective for x in range(len(func_output))]

 error = max([func_output[i]-objective[i] for i in range(len(func_output))])

 else:

 error = func_output - objective

 return 1/(abs(error)+0.00000001)

def move(p,args,best):

122

 v = []

 for d in range(args['dimensions']):

 v.append(args['w']*p['v'][d] + args['c1'] * r.random() * (p['best'][d] - p['params'][d]) \

 + args['c2'] * r.random() * (best['params'][d] - p['params'][d]))

 return v

def main(func, S, args):

 high = args["upper"] if hasattr(args["upper"], '__iter__') else [args["upper"] for i in

range(args['dimensions'])]

 low = args["lower"] if hasattr(args["lower"], '__iter__') else [args["lower"] for i in

range(args['dimensions'])]

 vmax = [val/3 for val in high]

 vmin = [val/3 for val in low]

 t = args["t"]

 twprob = args["p"]

 route = list()

 #initialize the particles

 particles = []

 for i in range(args['pop_size']):

 p = {}

 p['params'] = np.array([r.uniform(low[i],high[i]) for i in range(args['dimensions'])])

 p['fitness'] = 0.0

 p['v'] = [0.1 for i in range(args['dimensions'])]

 particles.append(p)

 Best = cp.deepcopy(particles[0])

 Q = 0

123

 route.append(cp.deepcopy(Best['params'][:]))

 for iter in range(args['iter_max']):

 # Dynamic linear update of the inertia Weight factor

 #args['w'] = (args['iter_max'] - iter)*(args['wmax']-args['wmin'])/args['iter_max'] +

args['wmin']

 for p in particles:

 Q = Quality(func, p['params'],args['objs'])

 # Particle best

 if (Q > p['fitness']) or (i==0):

 p['fitness'] = Q

 p['best'] = p['params']

 # general best

 if Q > Best['fitness']:

 Best = cp.deepcopy(p)

 route.append(Best['params'][:])

 # move the particles to their next location

 v = move(p,args,Best)

 for x in range(args['dimensions']):

 if p['v'][x] > vmax[x]: p['v'][x] = vmax[x]

 if p['v'][x] < vmin[x]: p['v'][x] = vmin[x]

 p['params'][x]+=v[x]

 if p['params'][x] > high[x]: p['params'][x] = high[x]

 if p['params'][x] < low[x]: p['params'][x] = low[x]

 p['v'] = v

 if p['fitness'] > args['neededQuality']:

 break

124

 return Quality(func, Best['params'],args['objs']), route

if __name__== "__main__":

 # import plot stuff

 import matplotlib.pyplot as plt

 from mpl_toolkits import mplot3d

 import plotly

 import plotly.graph_objs as go

 obje = func

 args = {'upper':100, 'lower':-100, 't':100, 'p':0.2, 'objs':-200, 'neededQuality':100,

'iter_max':10000, 'pop_size':10, 'dimensions':2, 'c1':2, 'c2':2, 'sigma':0.001, 'wmax':0.9,

'wmin':0.4, 'w':0.75}

 a, path = main(obje, 100, args)

 print(a)

 # Plot 2D

 h1 = [i[0] for i in path]

 h2 = [i[1] for i in path]

 plt.plot(h1,h2)

 plt.show()

 # Plot 3D

 #h3 = [func(s) for s in path]

 #trace = go.Scatter3d(x=h1,y=h2,z=h3,mode='markers',marker={'size': 5,'opacity': 0.8,})

 #layout = go.Layout(margin={'l': 0, 'r': 0, 'b': 0, 't': 0})

 #data = [trace]

 #plot_figure = go.Figure(data=data, layout=layout)

 # Render the plot.

125

 #plotly.offline.iplot(plot_figure)

 #fig = plt.figure()

 #ax = plt.axes(projection='3d')

 #ax.scatter3D(h1, h2, h3, c=h3, cmap='Greens');

 #plt.show()

APPENDIX X.

PACKAGE INIT FILE

Algorithm-A X-1 MDAF Package Init File
from MDAF.MDAF import representfunc

from MDAF.MDAF import exp

from MDAF.MDAF import plotfuncs

from MDAF.MDAF import model

from MDAF.MDAF import visualize2D

from MDAF.MDAF import installFlacco

LIST OF REFRENCES

A-R. Hedar (n.d.). Trid Function. Retrieved August 7, 2020, from http://www-
optima.amp.i.kyoto-
u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page2904.htm

A-R. Hedar (n.d.). GLOBAL OPTIMIZATION TEST PROBLEMS. Retrieved July 31,
2020, from http://www-optima.amp.i.kyoto-
u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm

Andrei, N. (2008). An unconstrained optimization test functions collection. Advanced
Modeling and Optimization, issn: 1841-4311,10(1):2008, pp:147–161.

Atlassian. (n.d.). A brief overview of Confluence. Atlassian. Retrieved November 29, 2020,
from https://www.atlassian.com/software/confluence/guides/get-started/confluence-
overview

Auger, A., Hansen, N. (2005). Performance evaluation of an advanced local search
evolutionary algorithm. IEEE Congress on Evolutionary Computation, September 2-
5, Edinburgh, UK, pp:1777–1784. https://doi.org/10.1109/CEC.2005.1554903

Bartz-Belelstrin, T. (2003). Experimental Analysis of Evolution Strategies – Overview and
Comprehensive Introduction, University of Dortmund, Germany, 36p.

Basili, V. R., Selby, R. W., & Hutchens, D. H. (1986). Experimentation in software
engineering. IEEE Transactions on Software Engineering, SE-12(7), 733–743.
https://doi.org/10.1109/TSE.1986.6312975

Bertrand Meyer. (1997). Object-Oriented Software Construction, Second Edition, Prentice
Hall, 1296 p., https://archive.eiffel.com/doc/oosc/

Bianchi, L., Dorigo, M., Gambardella, L. M., & Gutjahr, W. J. (2009). A survey on
metaheuristics for stochastic combinatorial optimization. Natural Computing, 8(2),
239–287. https://doi.org/10.1007/s11047-008-9098-4

Birattari, M., Stützle, T. et al. (2002). A racing algorithm for configuring metaheuristics.
Proceedings of the 4th annual conference on Genetic and Evolutionary
Computation, New-York, USA, pp:11–18.

Borges, R. M., & Mota, A. C. (2007). Integrating UML and Formal Methods. Electronic
Notes in Theoretical Computer Science, 184, 97–112.
https://doi.org/10.1016/j.entcs.2007.03.017

128

Bourque, P., & Côté, V. (1991). An experiment in software sizing with structured analysis
metrics. Journal of Systems and Software, 15(2), 159–172.
https://doi.org/10.1016/0164-1212(91)90053-9

Brownlee, J. (2007). A Note on Research Methodology and Benchmarking Optimization
Algorithms, Complex Intelligent Systems Laboratory, Faculty of Information and
Communication Technology, Swinburne University.

Bukin Function N. 6. (n.d.), Surjanovic, S. and Bingham D., Simon Fraser University,
Retrieved September 7, 2021, from https://www.sfu.ca/~ssurjano/bukin6.html

Citation Report. (2020). Web of Science.
https://apps.webofknowledge.com/CitationReport.do?action=home&product=WOS
&search_mode=CitationReport&cr_pqid=5&qid=5&isCRHidden=&SID=7EOfvJq9
WTtEVdtZTx4

Coy, S. P., Golden, B. L., Runger, G. C., & Wasil, E. A. (2001). Using Experimental Design
to Find Effective Parameter Settings for Heuristics. Journal of Heuristics, 7(1), 77–
97. https://doi.org/10.1023/A:1026569813391

Di Gaspero, L., and Schaerf, A. (2002). Writing Local Search Algorithms Using
Easylocal++. In S. Voß & D. L. Woodruff (Eds.), Optimization Software Class
Libraries (pp. 155–175). Springer US. https://doi.org/10.1007/0-306-48126-X_5

Diego Andrés Alvarez Marín. (2010). Rastrigin Function, Simon Fraser University,
https://www.sfu.ca/~ssurjano/rastr.html

Dominique Orban. (2002). CUTEr Website. http://www.cuter.rl.ac.uk//problems.html

Durkin, T. (1997). What the Media Couldn’t Tell You About Mars Pathfinder. 3.

Eiben, A. E., & Jelasity, M. (2002). A critical note on experimental research methodology in
EC. Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat.
No.02TH8600), 1, 582–587. https://doi.org/10.1109/CEC.2002.1006991

Forecast. (n.d.). Help Center | The Basics. Retrieved November 29, 2020, from
https://help.forecast.it/the-basics

Francois, O., & Lavergne, C. (2001). Design of evolutionary algorithms-A statistical
perspective. IEEE Transactions on Evolutionary Computation, 5(2), 129–148.
https://doi.org/10.1109/4235.918434

Gagnon, I., April, A., & Abran, A. (2020). A critical analysis of the bat algorithm.
Engineering Reports, n/a(n/a), e12212. https://doi.org/10.1002/eng2.12212

Gagnon Iannick. (2020). A Proposed Framework for the Design and Analysis of
Metaheuristics (Unpublished doctoral dissertation). École de technologie supérieure.

129

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns: Elements of
Reusable Object-Oriented Software. 431.

Gandomi, A. H., & Yang, X.-S. (2011). Benchmark Problems in Structural Optimization. In
S. Koziel & X.-S. Yang (Eds.), Computational Optimization, Methods and
Algorithms (pp. 259–281). Springer. https://doi.org/10.1007/978-3-642-20859-1_12

GEATbx—Genetic and Evolutionary Algorithms Toolbox in Matlab—Main Page. (n.d.).
Retrieved July 31, 2020, from http://www.geatbx.com/

GLOBAL World—GLOBALLib. (n.d.). Retrieved July 31, 2020, from
http://www.gamsworld.org/global/globallib.htm

Gould, N. I. M., Orban, D., & Toint, P. L. (2015). CUTEst: A Constrained and
Unconstrained Testing Environment with safe threads for mathematical
optimization. Computational Optimization and Applications, 60(3), 545–557.
https://doi.org/10.1007/s10589-014-9687-3

Grady Booch, Robert Maksimchuk, Michael Engle, Jim Conallen, Kelli Houston, & Bobbi
Young. (2007). Object-Oriented Analysis and Design with Applications.
https://www.pearson.com/us/higher-education/product/Booch-Object-Oriented-
Analysis-and-Design-with-Applications-3rd-Edition/9780132797443.html

Hewitt, P. (2014). BUSINESS BENEFITS OF EFFECTIVE REQUIREMENTS
MANAGEMENT. 11.

Hooker, J. (1995). Testing Heuristics: We Have It All Wrong. Journal of Heuristics 1(1): 33-
42. Journal of Heuristics, 1, 33–42. https://doi.org/10.1007/BF02430364

Hussain, K., Salleh, M. N. M., Cheng, S., & Naseem, R. (2017). Common Benchmark
Functions for Metaheuristic Evaluation: A Review. JOIV : International Journal on
Informatics Visualization, 1(4–2), 218–223. https://doi.org/10.30630/joiv.1.4-2.65

Jamil, M., & Yang, X.-S. (2013). A Literature Survey of Benchmark Functions For Global
Optimization Problems. International Journal of Mathematical Modelling and
Numerical Optimisation, 4(2), 150. https://doi.org/10.1504/IJMMNO.2013.055204

Kaj Madsen—Head of Department•DTU Informatics. (n.d.). Retrieved July 31, 2020, from
http://www2.imm.dtu.dk/~kajm/Test_ex_forms/test_ex.html

kerschke. (2021). flacco: Feature-Based Landscape Analysis of Continuous and Constrained
Optimization Problems [R]. https://github.com/kerschke/flacco (Original work
published 2015)

130

Kerschke, P., & Trautmann, H. (2016). The R-Package FLACCO for exploratory landscape
analysis with applications to multi-objective optimization problems. 2016 IEEE
Congress on Evolutionary Computation (CEC), 5262–5269.
https://doi.org/10.1109/CEC.2016.7748359

Koppen, M., Wolpert, D. H., & Macready, W. G. (2001). Remarks on a recent paper on the
“no free lunch” theorems. IEEE Transactions on Evolutionary Computation, 5(3),
295–296. https://doi.org/10.1109/4235.930318

Kruchten, P. (1995). The 4+1 View Model of Architecture. IEEE Software, 12, 45–50.
https://doi.org/10.1109/52.469759

Kruchten, P., Nord, R. L., & Ozkaya, I. (2012). Technical Debt: From Metaphor to Theory
and Practice. IEEE Software, 29(6), 18–21. https://doi.org/10.1109/MS.2012.167

Li, X., Engelbrecht, A., & Epitropakis, M. G. (2013). Benchmark Functions for CEC’2013
Special Session and Competition on Niching Methods for Multimodal Function
Optimization. 10.

Lim, W. J., Jambek, A. B., & Neoh, S. C. (2015). Kursawe and ZDT functions optimization
using hybrid micro genetic algorithm (HMGA). Soft Computing, 19(12), 3571–
3580. https://doi.org/10.1007/s00500-015-1767-5

Lu, W., Fu, D., Kong, X., Huang, Z., Hwang, M., Zhu, Y., Chen, L., Jiang, K., Li, X., Wu,
Y., Li, J., Yuan, Y., & Ding, K. (2020). FOLFOX treatment response prediction in
metastatic or recurrent colorectal cancer patients via machine learning algorithms.
Cancer Medicine, 9(4), 1419–1429. https://doi.org/10.1002/cam4.2786

Lukasiewycz, M., Glaß, M., Reimann, F., & Teich, J. (2011). Opt4J: A modular framework
for meta-heuristic optimization. Proceedings of the 13th Annual Conference on
Genetic and Evolutionary Computation - GECCO ’11, 1723.
https://doi.org/10.1145/2001576.2001808

Luke, S. (2013). Essentials of metaheuristics: A set of undergraduate lecture notes (Second
edition, online version 2.0). lulu.com.

Mendes, Sí. P., Molina, G., Vega-Rodriguez, M. A., Gomez-Pulido, J. A., Saez, Y., Miranda,
G., Segura, C., Alba, E., Isasi, P., Leon, C., & Sanchez-Perez, J. M. (2009).
Benchmarking a Wide Spectrum of Metaheuristic Techniques for the Radio
Network Design Problem. IEEE Transactions on Evolutionary Computation, 13(5),
1133–1150. https://doi.org/10.1109/TEVC.2009.2023448

Meneghini, I. R., Alves, M. A., Gaspar-Cunha, A., & Guimarães, F. G. (2020). Scalable and
Customizable Benchmark Problems for Many-Objective Optimization. Applied Soft
Computing, 90, 106139. https://doi.org/10.1016/j.asoc.2020.106139

131

Mishra, S. K. (2006). Performance of the Barter, the Differential Evolution and the Simulated
Annealing Methods of Global Optimization on Some New and Some Old Test
Functions (SSRN Scholarly Paper ID 941630). Social Science Research Network.
https://doi.org/10.2139/ssrn.941630

MOEA Framework, a Java library for multiobjective evolutionary algorithms. (n.d.).
Retrieved December 30, 2021, from http://moeaframework.org/

Moon, S. J., Hwang, J., Kana, R., Torous, J., & Kim, J. W. (2019). Accuracy of Machine
Learning Algorithms for the Diagnosis of Autism Spectrum Disorder: Systematic
Review and Meta-Analysis of Brain Magnetic Resonance Imaging Studies. Jmir
Mental Health, 6(12), e14108. https://doi.org/10.2196/14108

Nannen, V. (2006). A Method for Parameter Calibration and Relevance Estimation in
Evolutionary Algorithms. Genetic and Evolutionary Computation Conference,
GECCO 2006, Proceedings, 8–12.

Opt4J. (2020). Opt4J - A Modular Framework for Meta-Heuristic Optimization.
http://opt4j.sourceforge.net/

Peer, E. S., Engelbrecht, A. P., & van den Bergh, F. (2003). CIRG@UP OptiBench: A
statistically sound framework for benchmarking optimisation algorithms. The 2003
Congress on Evolutionary Computation, 2003. CEC ’03., 4, 2386-2392 Vol.4.
https://doi.org/10.1109/CEC.2003.1299386

Pickle—Python object serialization—Python 3.10.1 documentation. (n.d.). Retrieved
December 27, 2021, from https://docs.python.org/3/library/pickle.html

Russell Eberhart, Yuhui Shi, & James Kennedy. (2001). Swarm Intelligence—1st Edition.
https://www.elsevier.com/books/swarm-intelligence/eberhart/978-1-55860-595-4

Sala, R., & Müller, R. (2020). Benchmarking for Metaheuristic Black-Box Optimization:
Perspectives and Open Challenges. ArXiv:2007.00541 [Cs, Math].
http://arxiv.org/abs/2007.00541

Scott, E. O., & Luke, S. (2019). ECJ at 20: Toward a general metaheuristics toolkit.
Proceedings of the Genetic and Evolutionary Computation Conference Companion,
1391–1398. https://doi.org/10.1145/3319619.3326865

Sean Luke, Eric O. Scott, Liviu Panait, Gabriel Balan, & Sean Paus. (2020). ECJ.
https://cs.gmu.edu/~eclab/projects/ecj/

Sörensen, K., & Glover, F. (2013). A History of Metaheuristics (pp. 960–970).
https://doi.org/10.1007/978-1-4419-1153-7_1167

132

Tanabe, R. (2021). Towards Exploratory Landscape Analysis for Large-scale Optimization:
A Dimensionality Reduction Framework. Proceedings of the Genetic and
Evolutionary Computation Conference, 546–555.
https://doi.org/10.1145/3449639.3459300

The COCONUT Benchmark. (n.d.). Retrieved July 31, 2020, from
https://www.mat.univie.ac.at/~neum/glopt/coconut/benchmark.html

Tsang, K. K. T. (2018). Basin of Attraction as a measure of robustness of an optimization
algorithm. 2018 14th International Conference on Natural Computation, Fuzzy
Systems and Knowledge Discovery (ICNC-FSKD), 133–137.
https://doi.org/10.1109/FSKD.2018.8686850

Web of Science Core Collections. (2020). Web of Science.
https://wcs.webofknowledge.com/RA/analyze.do?product=WOS&SID=7EOfvJq9W
TtEVdtZTx4&field=TASCA_JCRCategories_JCRCategories_en&yearSort=false

Zdravko Botev, Dirk Kroese, Thomas Taimre, Jenny Liu, & Sho Nariai. (2004). Main. The
Cross-Entropy Toolbox. https://www.maths.uq.edu.au/CEToolBox/

Zhang, P., Wu, H.-N., Chen, R.-P., & Chan, T. H. T. (2020). Hybrid meta-heuristic and
machine learning algorithms for tunneling-induced settlement prediction: A
comparative study. Tunnelling and Underground Space Technology, 99, 103383.
https://doi.org/10.1016/j.tust.2020.103383

