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Cadriciel d’analyse de la performance des propositions de nouvelles métaheuristiques 
 
 

Rémi Ehounou 
 
 

RÉSUMÉ 
 
 

L’évaluation des métaheuristiques joue un rôle important dans le développement de nouveaux 
algorithmes pour les problèmes d’optimisation. Cependant, plusieurs études dans le domaine 
critiquent le manque de rigueur méthodologique dans plusieurs études de cas. 
L’implémentation de cadres d’analyse améliorés est proposée comme une réponse adéquate à 
ce problème.  
 
Cette recherche étudie la faisabilité de ce principe en implémentant les recommandations de 
bonnes pratiques méthodologiques comme l’intégration d’analyses statistiques comme des 
études de régression entre la classification d’un problème et la performance des 
métaheuristiques à le résoudre. L’importance d’utiliser des études contrôlées est reconnue 
comme étant nécessaire pour assurer que les résultats soient fiables et répétables.  
 
Des méthodes de classification des problèmes de test en catégories basées sur des 
caractéristiques calculées de la librairie FLACCO (Feature-Based Landscape Analysis of 
Continuous and Constrained Optimization) native au langage R sont présentées. La sélection 
des paramètres d’évaluation, des instances de problèmes de test et des méthodes statistiques 
est aussi traité. Un cadriciel nommé Metaheuristics Design and Analysis Framework (MDAF), 
fut augmenté et testé avec une étude de cas présenté à la fin de ce mémoire.  
 
Il en ressort que l’évaluation de la performance d’algorithmes d’optimisation permet de 
déterminer des paramètres efficaces pour les études d’optimisation sur des fonctions 
spécifiques. 
 
Mots-clés : métaheuristiques, optimisation mathématique, optimisation stochastique, cadre 
d’analyse  

 





 

 
 
 

A Proposed Framework for the Analysis of the Performance of Newly Proposed 
Metaheuristics 

 
 

Rémi Ehounou 
 
 

ABSTRACT 
 
 

Metaheuristics benchmarking plays a key role in developing new algorithms for optimization 
problems. However, a number of published studies criticize the lack of reliable and repeatable 
experimentation in the analysis of many newly proposed metaheuristics. The enhancement of 
an analysis framework is studied and implemented as an adequate response to this issue.  
 
This research presents a framework for the design and analysis of the performance of newly 
proposed metaheuristic algorithms named Metaheuristics Design and Analysis Framework 
(MDAF). The importance of well-constructed and controlled studies is recognized as a 
necessary step for the benchmarking results to be reliable and repeatable.  
 
Methods such as the classification of problem instances into categories based on a 
representation calculated from the FLACCO (Feature-Based Landscape Analysis of 
Continuous and Constrained Optimization) library are discussed. The selection of 
benchmarking parameters, problem instances, and statistical methods are also presented.  
 
It is observed from the analyses that the implementation of valid experimental methods is an 
effective strategy for Benchmarking the performance of optimization algorithms. 
 
Keywords: metaheuristics, mathematical optimization, stochastic optimization, analytical 
framework 
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INTRODUCTION 
 

 
Several disciplines like computer science, engineering and economics require optimization 

problems to be solved. To accomplish this, different mathematical techniques and tools have 

been proposed. This research is interested in a special kind of optimization algorithm family 

called metaheuristics. More specifically, it is concerned with the evaluation and benchmarking 

of new metaheuristics proposals for various types of problems.  

 

The field of metaheuristics optimization has been applied to a wide range of real-world 

problems with success. Such problems are often too complex to solve manually and/or too 

resource intensive for common methods such as those of linear programming (Sala & Müller, 

2020). According to (Sörensen & Glover, 2013), metaheuristics define a high-level algorithmic 

framework that provides strategies to implement low-level heuristic optimization algorithms 

(Sörensen & Glover, 2013). Heuristics, from heuriskein in Greek which means “to find”, are 

algorithms that are designed using problem-specific information to find a good solution with 

relative ease (Bianchi et al., 2009). Therefore, metaheuristics can be seen as an abstract 

framework for heuristics. Metaheuristics research has grown into an established discipline, and 

it now contains a vast body of knowledge that can be applied to almost every field that involves 

optimization. 

 
Constrained optimization problems are concerned with the maximization or minimization of 

objective functions whose input variables are constrained usually for system identification 

reasons. These constraints generally represent characteristics of the real-world problems being 

modeled and help ensure that the solutions found make physical sense. Objective functions 

model one or more variables of the studied systems that we wish to control. Constraints can 

also be applied on the runtime, although this type of constraint is considered to be of a different 

kind than that of the constraints on the objective function variables since they are problem 
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independent. Figure 0.1 shows a sample objective function topology. A typical goal is to find 

the position of the global minimum of the function. This can be accomplished by using the 

well-known gradient descent algorithm (Curry, 1944), but the prevalence of local minima 

almost guarantees that it will find a suboptimal solution unless the starting point is at or near 

the global optimum. It is therefore necessary to use a different approach, such as the use of 

stochastic parameters, to let the optimization escape from these regions (Luke, 2013). 

Optimization problems can also be categorized in different ways which determine the type of 

metaheuristics that will be most effective for solving it. One such distinction is made between 

separable and non-separable objective functions. The former is considered easier to solve due 

to the simple linear relationship between the components (Brownlee, 2007). 

 

 

Figure 0.1 - Sample Objective Function Topology (Diego Andrés 
Alvarez Marín, 2010) 

 
A canonical metaheuristic algorithm called Simulated Annealing (SA) follows a process 

similar to the annealing process in materials engineering (Luke, 2013). This mimicking of 

nature is quite common with recently developed metaheuristic algorithms since many natural 

processes tend to have optimizing properties (Bianchi et al., 2009). As the name indicates, this 

algorithm optimizes objective functions by modeling the physical process by which particles 

inside a material rearrange themselves to achieve thermal equilibrium. The version outlined by 

Luke is based on the principle of local search heuristics which explores the problem space by 
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comparing the best obtained value of the objective function to that of a neighbor. It then selects 

the new point if it is better than the current one, or randomly selecting a new point depending 

on the temperature parameter: the higher the temperature parameter the more random changes 

are (Bianchi et al., 2009). A control parameter which effectively represents the temperature of 

the annealing process determines how much randomness is included in the optimization 

process. This principle is presented in APPENDIX I, which outlines the simulated annealing 

process in pseudo code. The temperature parameter 𝑇 is used in the calculation of the 

probability factor 𝑝. The calculated value is then compared to a randomly generated number 

to decide if it accepts the new position or not. It is this mechanism that makes SA a stochastic 

algorithm. It is also this mechanism that allows SA to sometimes move to non-improving 

positions. The so-called temperature of the algorithm is typically set to a high value (eg. 

T=1000) at the beginning of the process and then decreased gradually as time goes by (Luke, 

2013). When the temperature is reduced to a small enough value, SA becomes a purely greedy 

algorithm which is an algorithm that consistently follows the locally optimal choice at each 

iteration. The stochastic component is useful at the start of the process to help reduce the 

chances of the algorithm getting trapped in a local extreme value.  

 
As the field keeps advancing, algorithms are continuously being proposed so a systematic 

evaluation method is needed. To solve this issue, test problems are also being created to 

benchmark new metaheuristics to determine what types of problems they are good at solving. 

Benchmarking is defined as the determination of a metaheuristic’s performance when applied 

to a specific type of problem using a combination of theoretical and empirical approaches (Sala 

& Müller, 2020). In the context of this research, a framework is developed to evaluate 

metaheuristics on standard test problems to determine their performance.  For example, the 

Cross-Entropy Toolbox proposed in (Zdravko Botev et al., 2004) contains a diverse set of test 

functions for both constrained and unconstrained optimization that can be used to evaluate the 

performance of metaheuristics. This is discussed in more detail in Section 0. In addition to the 

test functions, principles and theories have been developed to address the challenges involved 

in benchmarking metaheuristic algorithms. For instance, the No Free Lunch Theorem (NFLT) 
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stipulates that no single algorithm is appropriate for all possible types of problems (Koppen et 

al., 2001) (Brownlee, 2007) (Sala & Müller, 2020). 

 

0.1. Problem Definition 
The field of metaheuristics is criticized for the lack of rigor in the current evaluation methods 

of newly proposed algorithms. The following points outline the main issues reported in the 

literature concerning current practices (Eiben & Jelasity, 2002):  

• Ad hoc selection of test functions: New Algorithm proposals are often tested on a set 

of functions without the justification of a solid experimental design, which prevents a 

full understanding of their performance in different contexts; 

• Overgeneralization of obtained results: The results of benchmark tests published for 

new algorithm proposals are often generalized beyond the specific functions on which 

they have been tested. Better definition and classification of the problems into 

categories is needed to improve generalizability; 

• Poor reproducibility: Since the source code associated with the algorithm proposal is 

often not made available to the public, it is difficult or practically impossible to 

replicate/validate the claims and reported results;  

• Lack of clearly stated objectives: Proposed algorithm Results/claims are sometimes 

interpreted without being related to the experimental objectives and expectations. 

 
The common practice of what esteemed Operations Research professor John Hooker called 

‘competitive testing’, in which algorithms are directly compared to each other by their direct 

runtime performance metrics (e.g., convergence time), is highly discouraged (Hooker, 1995). 

He describes them as non-scientific, citing two undesirable consequences when using this 

algorithm comparison technique, and proposes better methods for comparing algorithms. In 

fact, directly comparing the performance numbers of metaheuristics has led to a focus on speed 

which distracts researchers in the field from building well-designed and controlled 

experiments. The author also adds that machine speed and implementation-specific details of 

the various metaheuristics (e.g., programming language and style, architecture, etc.) have too 



7 

 

 

 

much of an impact on the runtime of algorithms for direct comparison to be scientifically 

meaningful. 

 
Another issue in metaheuristics benchmarking is the classification of problems into classes as 

well as the selection of problem instances for testing. For the selection of problem instances, it 

is preferable to perform the study on as many classes of problems as possible to acquire a 

general understanding of the algorithm. When it comes to the classification of test problem 

instances, the structural properties as well as the methods of generation of the problems (i.e. 

real world model or artificially constructed test functions) are proposed as possible taxonomic 

criteria (Brownlee, 2007). 

 
Finally, the optimizing tendency of a genetic algorithm is a characteristic that complex systems 

share. Therefore, carefully tuning such algorithms is an important preliminary step to testing 

and special attention also needs to be paid to the selection of performance metrics (Brownlee, 

2007). These recommendations must be included in future benchmark frameworks to ensure 

their effectiveness at comparing metaheuristics. 

 
In short, the benchmarking of metaheuristics requires careful consideration. In addition, 

recommendations for conducting this process exist in the literature such as the use of controlled 

experiments, the classification of problem instances into categories and the tuning of 

algorithms before benchmarking. 

 
0.2. Contribution 

This research is part of a larger research project on the design and analysis of metaheuristics. 

It aims to implement and automate some of the recommendations from (Gagnon, 2020) about 

the necessity of benchmarking new metaheuristics proposals. Recommendations from the 

literature which are described in Chapter0 will also be implemented in this research. Figure 0.2 

shows a structure for the project where the elements in green are the components being 

addressed by this research. This research proposes a framework for testing metaheuristics with 

modules for statistical analysis as well as data preprocessing to identify the characteristics of 

each experiment to be run through the framework. For example, the preprocessing module can 
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be used to set up a new study to benchmark a newly developed metaheuristic’s performance 

on a specific family of problems. The framework will then be able run the tests before 

performing a statistical analysis. A post processing stage is also included for exporting the 

results data and performing some basic analysis. This framework will be implemented in the 

Python 3 programming language and deployed as a PyPI package. PyPI is the official 

repository of the Python programming language packages.  

 
0.3. Research Objective 

The main objective of this research is to propose an analytical framework that could help 

researchers increase the quality of their research. In order to experiment with a solution 

proposal, an initial version of a prototype software of the framework for metaheuristics 

performance benchmarking will be designed and implemented based on some of the 

recommendations made in (Gagnon, April & Abran, 2020). This experimental framework 

prototype could serve as a tool to perform more rigorous statistical analyses of newly proposed 

metaheuristic algorithms in the future. Before a software prototype can be designed and coded,  

Figure 0.2 shows a high-level view of the architecture of the proposed framework. The green 

boxes represent the components that will be addressed in this research. Note that an important 

characteristic of the framework’s proposed software architecture is the ability for parallel 

computing which is described in more details in section 5.5 to improve performance. The 

following secondary objectives will also be addressed: 

 
• A modular architecture to make it easy to change the algorithms being tested;  

• The framework must be available on PyPI; 

• The presence of functionality to address some of the literature recommendations: 

modular architecture for test instances and algorithms, implementation of parametric 

statistical methods, implementation of more precise runtime calculation technics to 

determine the computing loads demanded by the algorithms.  

 

This research, therefore, proposes to automate the benchmarking process of new 

metaheuristics.  
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Figure 0.2 Structure of the Proposed Framework  

 
 

0.4. Future Work 
At the last step of this research, results will be assessed, and potential improvements will be 

identified. One improvement that can already be identified aims to adapt the proposed 

framework to include the possibility of performing meta-analysis by consolidating the results 

of multiple independent studies completed with the framework. These will not be addressed 

by the current research activities. 

 



 

 

 

 

CHAPTER 1 
 

LITERATURE REVIEW 
 

 
This Chapter addresses the state of the art in benchmarking the performance of metaheuristics. 

An in-depth survey of the literature shows that this is still an unsolved problem in many ways. 

For example, there are no standardized sets of methods to accomplish this task (Jamil & Yang, 

2013) (Brownlee, 2007). This has evidently motivated attempts to compile various test 

functions to facilitate the evaluation of newly proposed algorithms. It is relevant to highlight 

the difference between metaheuristic optimization frameworks (MOFs) and benchmarking 

frameworks. MOFs like the Opt4J (Lukasiewycz et al., 2011) (Opt4J, 2020) and EasyLocal++ 

(Di Gaspero & Schaerf, 2002) are used to design metaheuristics while benchmarking 

frameworks are used to test and compare the performance of existing metaheuristics. 

OptiBench by the company CIRG@UP, is an example of a benchmarking framework that is 

similar to what this research aims to accomplish (Peer et al., 2003). It comprises a library of 

standard problem instances and popular metaheuristics, an engine for data science, and a 

centralized results repository. Other frameworks similar to Opt4J include the following 
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Table 1.1. Existing Metaheuristic Frameworks organized by capabilities (Sean Luke et al., 
2020) (Lukasiewycz et al., 2011) (MOEA Framework, a Java Library for Multiobjective 

Evolutionary Algorithms, n.d.)   

Frameworks MOF Test Function Library 

jMetal Yes Yes 

EvA2 Yes Yes 

Watchmaker framework Yes Yes 

ECJ27 Yes Yes 

JCLEC Yes No 

MOEA framework Yes Yes 

Paradiseo Yes No 

 

It is recommended that benchmarking methods be more extensive than just the test functions 

provided with the MOF as is discussed in the paragraphs below.  This research is focused on 

benchmarking frameworks and will be integrated with algorithms either generated by a MOF 

or taken from the literature like the simulated annealing algorithm (Gagnon et al., 2020). 

 
Metaheuristics are used in almost all the domains of engineering (Gandomi & Yang, 2011) as 

well as in computer science and mathematics (Mendes et al., 2009) (Web of Science Core 

Collections, 2020). According to Web of Science, there were 681 publications with 

“metaheuristics” in their title in the past 5 years, and there is a growing number of citations 

each year, totaling 1509 citations since 2016 (Citation Report, 2020). Therefore, this field is 

growing and affects other disciplines, making it important that the algorithms being proposed 

are well understood to ensure their appropriate use and value. One of the most popular 

techniques to validate a new algorithm is to test it using common multi-modal mathematical 

functions whose global min/maxima are known and to compare the results (e.g., number of 

objective function evaluations, first hitting times, etc.) with those of other algorithms that 

already exist (Hooker, 1995).This validation method is criticized by (Hooker, 1995) and 

(Brownlee, 2007) for lacking rigor and for being too simplistic considering the complexity of 

the algorithms being evaluated. A more mathematically rigorous validation approach is 

suggested in which the new algorithms are evaluated on a series of benchmark problems and 
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the results are analyzed with statistical methods to better address their stochastic nature as well 

as ensuring their complexities (Brownlee, 2007) (Jamil & Yang, 2013). These test results may 

then carefully be extrapolated to other classes of problems based on how representative the 

sample problems used for the benchmark were (Sala & Müller, 2020). The authors also 

advocate for the substitution of real-life optimization problems with “computationally 

affordable representative benchmark problems” citing the No Free Lunch Theorem (NFLT) as 

a justification. This theorem is discussed in the following paragraphs. Possible problem 

instances are divided into classes based on their characteristics and the theory is that heuristic 

algorithms will have a similar performance when applied to problems of the same class. The 

following equation is a general mathematical description of typical optimization problems. 

This will be useful in standardizing the test problems in the framework as objects. 

 𝐺𝑖𝑣𝑒𝑛 𝑓:𝑅 → 𝑅 𝑓𝑖𝑛𝑑 𝑥  𝜖 𝑅  𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝑓 𝑥 ≤ 𝑓 𝑥 ,𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝜖 𝑅  
 (1) 

 
Where 𝑓(𝑥) represents an objective function to be minimized or maximized depending on the 

specific problem being modeled. 

 
The NFLT stipulates that all optimization algorithms have similar average performance when 

tested over all possible types of objective functions (Brownlee, 2007), which implies that the 

search for a single general-purpose algorithm is not a viable endeavor. More importantly, this 

theorem implies that the observed behavior of an algorithm on a specific problem class requires 

careful analysis when attempting to extrapolate to other problem classes. Therefore, 

optimization algorithms need to be matched to the specific problem classes they are suited for. 

This encourages the use of domain specific knowledge in optimization algorithms as a good 

practice since its ability to be applied to all possible optimization problems is not a meaningful 

characteristic of a heuristic. Even in the case of metaheuristic algorithms like particle swarm 

optimization (PSO) (Russell Eberhart et al., 2001), the use of domain-specific knowledge is  

recommended since they are designed for specific problem classes (Brownlee, 2007) (Jamil & 

Yang, 2013). Caution is advised when interpreting the NFLT since many do not apply it 

correctly due to the misunderstanding of its implications (Russell Eberhart et al., 2001). The 

theorem does not argue against the generalization of metaheuristics since most algorithms can 
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solve a wide range of problems, like machine learning algorithms (Moon et al., 2019) (Lu et 

al., 2020) (Zhang et al., 2020). However, it does warn that the performance of metaheuristics 

cannot be optimal for all types of problems. 

 
The challenges involved in getting meaningful and publishable results must be discussed. They 

are divided into the following three main categories as per (Brownlee, 2007): 

 
1. Parameter selection; 

2. Problem instance selection; 

3. Selection of statistical methods for the analysis and interpretation of results. 

 
The selection of algorithmic parameters is a challenge because of their non-linear correlation 

with the performance of the algorithm. Many approaches are proposed for this issue such as 

self-adaptive parameters in which the parameters of the algorithm are encoded as binary 

strings, meta-algorithms which optimize the parameters of the algorithm in question, and 

sensitivity analysis which determines the sensitivity of the algorithm to changes in each 

parameter (Brownlee, 2007). Empirical selection by trial and error is also recommended as a 

good starting point, although deficiencies in this approach have been highlighted in (Francois 

& Lavergne, 2001). For example, they stipulate that seeking general rules for parametrization 

will lead to a lack of convergence and/or low efficiency. Many approaches are presented to 

address the selection of parameters: the Calibration and Relevance Estimation approach 

proposed in (Nannen, 2006) (Eiben & Jelasity, 2002); the steepest decent approach by (Coy et 

al., 2001); and the design of experiments (DOE) approach applied to metaheuristics research 

as in (Bartz, 2003). Finally, the use of Monte Carlo methods along with other statistical 

methods is presented for the intelligent sampling of the parameter space in (Birattari, 2002). 

 
In addition to the selection of algorithmic parameters, a rigorous procedure for experimentation 

is important to ensure that the collected results will be statistically relevant. The following 

methods are proposed in (Brownlee, 2007): 
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1. Define the goals of the experiment; 

2. Select measures of performance and factors to explore; 

3. Design and execute the experiment; 

4. Analyze the data and draw conclusions; 

5. Report the experimental results. 

 
The author also reminds the reader about the usual guidelines for scientific experimentation in 

general. He proposes that all important factors capable of influencing the results such as 

computer code and the runtime environment have to be reported, that the measures be taken 

precisely, that the results be compared with those of other methods, that all parameters be 

specified, and the importance of the use of statistical experiment design (Brownlee, 2007). He 

reminds the reader of these scientific principles because they are often lacking in the field of 

meta-heuristic benchmarking. Key issues emphasized in the algorithm benchmarking literature 

can be identified as the duplication of efforts by the various groups working in the field due to 

ineffective written communication, insufficient testing, occasional failure to test using state-

of-the-art techniques, poor choices of parameters, conflicting results, and sometimes invalid 

statistical inference (Brownlee, 2007) (Peer et al., 2003). 

 
The issues outlined above are important to the field and addressing them is the subject of this 

research. For example, as explained in (Brownlee, 2007), other similar fields of study, such as 

data science, have already passed the step of establishing standardized benchmarking methods 

and procedures. These methods and procedures act as standards for the field, increasing the 

trustworthiness of the results produced. This enables more effective collaboration between 

researchers and with industry. Scientifically, the establishment of standard benchmarking and 

testing methods is crucial as it is at the core of the scientific method itself. Standardizing 

metaheuristic performance benchmarking methods will make the results more reliable and 

easier to reproduce, thus eliminating the risks of duplicated efforts and providing robust 

grounds on which the field can build upon. 

 
The next theme concerns the selection of the problem instances and classes that are used to 

perform the benchmarking tests. Many of these have been created by various actors in the 
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industry (Brownlee, 2007; Jamil & Yang, 2013). Examples of such problem instances are 

found in the GLOBAL library which is part of the cross-entropy toolbox (Zdravko Botev et 

al., 2004). This MATLAB toolbox is a collection of test problems with relevant data that can 

be of use to a researcher looking to benchmark a new heuristic. However, this collection of 

resources is challenging to implement into a study because it misses the statistical rigor alluded 

to in (Brownlee, 2007). This is also the case for most of the other resources available. All the 

components exist but there is a need to put them into a concise whole. Other resources for 

finding problem instances include GAMS World, which is a library of functions and test 

problems (GLOBAL World - GLOBALLib, n.d.). It was made to bridge the gap between 

academia and industry by providing a platform as well as resources to perform metaheuristic 

studies more easily. The “Cuter” testing environment was developed at the Polytechnique 

Montréal (Dominique Orban, 2002). It has now been superseded by a newer version named 

“CUTEst” which is an acronym for Constrained and Unconstrained Testing Environment with 

Safe Threads. This environment focuses on having a wide range of test functions numbering 

approximately 1150 in total (Gould et al., 2015). It is a mature software and is optimized to be 

able to run the tests efficiently. It could therefore play a role in this research for the testing 

phase of each analysis. It is important to note that this environment does not mention any 

experimental framework with statistical analysis which this research aims to address. The 

global optimization test problems' collection by (Abdel-Rahman Hedar, n.d.) is a collection of 

test problems divided in constrained and unconstrained groups. This collection is much less 

advanced than the “CUTEst” environment, but it is more versatile with the problems being 

formulated in mathematical form as well as MATLAB code compared to those of “CUTEst” 

which are only programmed in MATLAB. The collection of continuous global optimization 

test problems (The COCONUT Benchmark, n.d.) is a set of libraries containing test functions 

as well as some tools for performing basic analysis like calculating the standard unit time of 

an algorithm. The libraries of COCONUT use the AMPL modeling language, which is not 

ideal for this research since it plans to contribute to the Python library and should model its 

algorithms and functions using Python. Opt4J is a metaheuristics optimization framework that 

includes the following benchmark problem collections (Lukasiewycz et al., 2011) (Opt4J, 

2020) : 
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- Knapsack;  

- Zitzler–Deb–Thiele (ZDT) (Lim et al., 2015);  

- Deb, Thiele, Laumanns and Zitzler (DTLZ) (Meneghini et al., 2020);  

- WFG (Meneghini et al., 2020). 

 

It is written in Java and its test functions can be used for this research. ECJ is also written in 

Java and contains benchmark test functions like Opt4J despite being focused on the algorithm 

design aspect of generating new metaheuristics (Scott & Luke, 2019; Sean Luke et al., 2020). 

It is mainly used for evolutionary algorithms. The examples given above are well known, but 

other such sets of test functions exist which are not necessarily well documented or recognized 

(Andrei, 2008; Auger & Hansen, 2005; GEATbx - Genetic and Evolutionary Algorithms 

Toolbox in Matlab - Main Page, n.d.; Kaj Madsen - Head of Department•DTU Informatics, 

n.d.; Mishra, 2006). For this research, these test functions will be useful as building blocks of 

the framework being implemented.  

 
Despite the widespread use of benchmark functions, their simple use without a rigorous 

experiment design with statistical analysis is discouraged because they do not produce 

reproducible results due to the stochastic nature of the algorithms being tested (Brownlee, 

2007). Brownlee advocates instead for more statistical analysis of the algorithm being tested 

on multiple test problems in a controlled setting, and a well-documented procedure is also 

advised to ensure the rigor of the experiment. 

 
As proposed in (Jamil & Yang, 2013), benchmark functions can be classified in the following 

terms (Jamil & Yang, 2013):  

 
• Modality: the number of peaks and valleys in the topology of the test function. This 

is relevant because the ambiguous peaks tend to trap the algorithm toward a local 

minimum (see Figure 3 and Figure 4). 
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Figure 1.1 - Multimodal test function example: Six-Hump Camel  
Back (Li et al., 2013) 

 

 

Figure 1.2 - Unimodal test function example: Trid (A. Hedar’s, n.d.) 

• Basins: They are defined as a steep decline surrounding a large area. They can hamper 

the optimization process if the algorithm falls into a basin that leads to a local minimum. 

The following figure shows a graphical representation of a basin. 
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Figure 1.3 - Example of large basin in Rosenbrock’s function 

 
• Valleys: Like geographical valleys, they can slow down the process when the algorithm 

gets to the bottom of the valley because this type of region usually does not provide 

local information that leads to the global solution. Figure 1.4 shows two valleys running 

parallel to the coordinate axes. 
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Figure 1.4 - Example of the Topology of a Benchmarking Test  

Function (Tsang, 2018) 

 

• Separability: A measure of how difficult the test function is to solve. Separable 

functions are more linear than less separable ones. Equation 2.1 expresses the 

requirement for a function to be considered separable where 𝑥 represents one of the 

components of the vector �̅�. Separable functions can, therefore, be optimized with 

respect to each of the input components separately while keeping the others constant. 

This greatly reduces the difficulty.  

 

 ∂f(�̅�)∂x = 𝑔(𝑥 )ℎ(�̅�) 
(2) 

 
• Dimensionality: The number of components of the input vector of the objective 

function. The difficulty of a problem generally scales with its dimensionality (Jamil 

and Yang, 2013). 
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1.1. Choice of a Programming Paradigm  
To implement the framework, a programming paradigm must be selected. This section 

discusses object-oriented programming (OOP) and the flow-based programming (FBP) 

paradigms and their applicability to this research. They both have their strengths and 

weaknesses which make them more appropriate for modeling some programs compared to 

others. 

 
OOP is a scheme in which the program is modeled as a collection of object types to be 

instantiated and which interact with one another via message passing (Grady Booch et al., 

2007). Message passing happens when an object is passed as an argument to another object’s 

methods or when an object’s method directly accesses the attributes of another object for which 

it has access rights. This approach to programming offers the convenience of organizing the 

components of the solution into well-defined classes that can be interchanged or modified 

easily. For example, (Brownlee, 2007) proposed the creation of algorithm and problem classes 

to represent the components of an optimization scheme (Grady Booch et al., 2007). This makes 

the framework very modular, enabling the swapping of algorithms and test functions with 

relative ease when performing experiments. A drawback of OOP is the issue with 

encapsulation (Gamma et al., 1995). Encapsulation defines the accessibility of object data to 

the various methods of the program. A common approach is to set all the attributes of a specific 

class as private and creating getter as well as setter methods to access the needed ones. The 

problem is that this approach is not always followed correctly, and alternative encapsulation 

schemes are often poorly supported by even the most powerful object-oriented languages like 

C++ (Gamma et al., 1995). For this reason, an OOP architecture can be rendered unnecessarily 

complex if the design of the program is not carefully considered. 

 
FBP is a scheme which is centered around the flow of information inside the program. In fact, 

this scheme organizes processes in chains with data going through them one after the other 

performing computation units (Grady Booch et al., 2007). This often requires the use of parallel 

computing (Grady Booch et al., 2007), which improves the performance of large programs 

compared to non-parallel computation programs by utilizing all the processing units available 

compared to single thread programs. Another advantage of this approach is that the computing 
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units can be interchanged readily to improve the program or try alternative units. Weaknesses 

of this programming scheme is the complexity of timing the various parallel processes involved 

in the program so that they communicate effectively. In fact, errors in these types of programs 

are not easy to detect and would allow the program to keep running before failing under the 

right conditions. A famous example of this is the reset issue of the pathfinder Mars rover 

(Durkin, 1997) (Bertrand Meyer, 1997). This means that special attention needs to be paid 

when correcting programs based on the FBP paradigm to make sure that no errors have been 

made in their implementation.  

 
1.2. Conclusion 

This chapter presented a review of the prior articles in the field of metaheuristic benchmarking. 

Common challenges in getting meaningful and publishable results are outlined and include 

issues of parameter selection, problem instance selection, and shortcomings in the application 

of solid statistical methods.  The existing techniques and recommendations in the literature to 

improve the quality of the results obtained from metaheuristic benchmarking studies were then 

addressed. Some of these recommendations are to pay attention to the experiment design to 

make sure that it follows the guidelines of scientific control studies, that the test problems be 

divided into classes with similar characteristics, and that the goals of benchmarking 

experiments as well as the metrics to be measured be carefully considered. It is also 

recommended to report all factors capable of influencing the results of the experiment, like the 

runtime environment and the computer code. Possible programming paradigms for the 

implementation of the testing framework have also been presented: object-oriented and flow-

oriented programming.  





 

 

 

 

CHAPTER 2 
 

RESEARCH PLANNING 
 

 

This second Chapter of the thesis presents an overview of the proposed research using the 

Basili framework (Basili et al., 1986) (Bourque & Côté, 1991). This software engineering 

research planning framework is particularly relevant at this stage of the research because it 

enables a clear definition of the research subject as well as the activities that are necessary for 

its realization. It sets clear expectations for the activities and the objectives that will be included 

or excluded from the research as well as a list of activities. 

 
The research question will be addressed by designing, implementing, and testing a Python 

framework for metaheuristics benchmarking. The work is divided into four phases that 

encapsulate the activities and evolution of the research project. Figure 2.1 shows a work 

breakdown structure for the research. It follows the structure of Basili’s framework to provide 

a full view of the activities. 

 



24 

 

 

Figure 2.1 - Work Breakdown Structure of this Research Activity 
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2.1. Phase I — Definition 
This first phase presents the definition and the audience for which the research is being 

conducted. The motivation, subject, objectives and users of the proposed framework are 

identified in the table below, as recommended in Basili’s framework (Basili et al., 1986). 

 
Table 2.1 Phase I – Definition of the Research 

Motivation Subject Objectives Users 

 
• Address the criticisms 

of the current 
benchmarking 
paradigm in 
metaheuristics 
research. with respect 
to benchmarking. 

 
• The evaluation of the 

current 
methodological 
paradigm for 
metaheuristics 
benchmarking. 

 
 

 
• Propose an 

analytical 
framework that 
helps researchers 
increase the 
quality of their 
work. 

 

 
• Students and researchers 

involved or interested in 
mathematical 
optimization; 

 
• Professionals involved in 

projects that include or 
would benefit from 
mathematical 
optimization. 

 
 
 

2.2. Phase II – Planning 
This second phase of the research will focus on a literature review of the field of metaheuristic 

benchmarking to describe the state of the art relating to analytical frameworks that validate the 

claims of a proposed metaheuristic. The deliverables are: 

 
1. Compilation and classification of currently existing metaheuristic test functions as well 

as frameworks; 

2. Compilation and organization of tools and procedures for quantitative analysis of 

metaheuristics (i.e., the analytical framework); 

3. Comparison between practices in the literature and the proposed framework. 
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Table 2.2 Phase II - Planning Stage of the Research  

Milestones Inputs Deliverables 

 
• Literature review; 

 
• Analytical framework. 

 

 
• Research articles, books, etc. 

 
 

 

 
• Classification of existing 

benchmarking resources; 
 

• Introduction and Chapter 1 
of the thesis; 

 

 
 

2.3. Phase III – Operation 
This third phase describes what will be accomplished by implementing the proposed 

framework, organizing the test functions within its structure, running the experiment following 

the analytical frameworks gathered in the previous phase, and performing a comparative 

analysis between the proposed framework and the observed practices from the literature.  

The proposed framework will have elements of both object oriented and flow programming. 

A visual representation of its structure is shown in Figure 0.2. The metaheuristics definition 

step is outside the scope of this research. For testing a specific algorithm, the framework comes 

in the form of a Python software in which relevant problem instances are selected at the 

preprocessing stage. The algorithm is then run on the selected problem at the testing stage 

during which the results are collected and stored for analysis and post-processing.  
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Table 2.3 Phase III - Planning stage of the framework design and test 

Preparation Execution Analysis 

 
• Pilot study using standard 

algorithms; 
 

• Design of experiments: 
Classification, and selection of 
problem instances 

 

• Collection and classification of 
metaheuristics test functions; 

 

 
• Use of the framework to 

benchmark a representative set of 
proposed algorithms 

• Collection of experimental data 
issued from the application of the 
framework; 
 

 
• Analysis of the gathered 

experimental data with tools 
and procedures taken from the 
framework; 

 
• Chapters 2 and 3 of the thesis. 

 

 
 

2.4. Phase IV — Interpretation 

This last phase of the research plan describes the research steps where the results of the 

experimentation of the new framework proposal are assessed and interpreted. It allows for 

reviewing the initial research objectives, organizing and discussing the results, and identifying 

future research opportunities. Conclusions about the utility and usability of the proposed 

framework are also presented. 
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Table 2.4 Phase IV - Interpretation and results of the research 

Interpretation context Extrapolation of results Future works 

 
• Analysis of algorithms based 

on mathematical 
simplifications and statistical 
analysis of performance 
distributions on benchmark 
functions; 

 

• Analysis of originality based 
on patent law principles. 

 

 
• Generalization of results based on 

comparative studies; 
 

• Future metaheuristics can be 
compared with previous results 
using the framework to assess 
originality of contribution. 

 
• Application of framework 

on some of the 
metaheuristics that were not 
selected in this work; 
 

• Quantitative analysis of the 
trade-off between 
exploration and exploitation; 

 
• Automation of experimental 

design procedures for 
metaheuristics; 
 

 
 

 
 
This section briefly returned on the initial goals of the proposed research. The overall planning 

proposed, based on Victor Basili’s software engineering research method, helps in providing 

a well laid out project structure.  

 

2.5. Conclusion 
This chapter presented a work breakdown of this research following the framework of Basili. 

All the relevant activities have been outlined and organised in four phases: definition, Planning, 

Operation, and Interpretation. It was established that the objective of the project is to propose 

an analytical framework that helps researchers increase the quality of their work. Deliverables 

for the Planning stage like a literature review have been identified as well as the critical factors 

for the correct execution of the Operation and Interpretation stages.



 

 

 

 

CHAPTER 3 
 

DESIGN OF THE FRAMEWORK 
 

 
The proposed framework’s requirements were specified using diagrams similar to the unified 

modelling language (UML). A set of logical diagrams are presented in the subsequent figures 

and have been conceived to serve as the requirement specifications for this project. Visual 

representations have been preferred to producing a written requirements document in the form 

of the system requirement specification format (SRS document). In addition, UML is widely 

used in the software engineering discipline and is conducive to better requirement engineering 

as there is less ambiguity between the parties and it allows for an easier requirements tracking 

processes (Borges & Mota, 2007). More specifically, the 4+1 views model introduced by 

(Kruchten, 1995) will be used. It is composed of four views dedicated to the functionalities of 

the software: 

 
1. A use case view: This view outlines the workflows of the software as well as the 

resources involved  

2. The process view defines the interactions between the various execution threads as well 

as tasks and how they are synchronized. 

3. The logical view describes the processes of the algorithm as well as the data structures 

involved. Descriptions of the objects are also included 

4. The realisation view organizes the components of the software in the development 

environment.  

5. A view dedicated to the deployment and production environment of the software is also 

included in the model.  
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Figure 3.1 - A Diagram of the "4+1" View Model (Kruchten, 1995) 
 

The following figures outline the design that was produced for this research on the 

framework for the analysis of the performance of proposed metaheuristics.  

 

          

Figure 3.2 - Legend of the Components in the Flowchart 
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This diagram shows the convention used in the design of the various flowcharts. This 

convention was used instead of the formal UML shapes for reasons of keeping the toolchain 

used for the design process as streamlined as possible. In fact, the use of the formal UML 

shapes would have required the introduction of a new software as well as the modification 

of the development workflow. The solution that was finally chosen focuses on 

implementing the UML format despite the use of a custom convention for the elements.  
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Figure 3.3 - Main Logical View of the Framework 
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The flowchart above displays the main logical view of the framework to specify its 

requirements. The most important aspects to notice are the need for an algorithm module 

and the preprocessing module. The importance of these two elements was realised while 

producing the diagram which reinforces the importance of producing a good architecture. 

These two modules are specified in more details in the following figures. Another point to 

note is the fact that the actual runs of the proposed algorithm on the various test problems 

will be executed simultaneously in batches using parallel computing. The framework is 

therefore using a hybrid between the object oriented and flow-based programming 

paradigms. Example objects are the algorithm module as well as the test problems. They 

indicate the object-oriented nature of the framework. The flow-oriented nature of the 

program can be observed by looking closely at the flow by which the experiments are run. 

All the parallel processes can be modelled as sets of operations that perform calculations 

on data structures containing the attributes of each experiment. These attributes are: 

 
1. The metaheuristic object being tested; 

2. The tests to apply for the specific run; 

3. The results obtained after the run; 

4. The performance data collected about the specific run. 

 
To accomplish this, multiple processes and threads will be accessing the experiment data 

structure quasi simultaneously. Semaphores (which can essentially be understood as system 

level variables) can be used to synchronize these activities.  
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Figure 3.4 - The Preprocessing Module 
 
The preprocessing module plays an important role in the framework as it sets up the 

environment required for the experiments to be run correctly and parses the inputs given 

by the user. For this reason, its development involves the user more than the other modules 

and the design decisions taken at this level will determine the design of the rest of the 

framework.  
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Figure 3.5 - The Postprocessing Module 
 
The post processing module, like the preprocessing module is important because it 

communicates directly with the user.  
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Figure 3.6 - The Experiment Running Process 
 
The diagram above showcases the experiment batch running process for one experiment. 

As displayed in the main flowchart, all the runs will be performed in different threads to 

leverage the power of parallel computing and reduce the execution time of the whole 

process. The various threads will be synchronized, and the data will be stored in custom 

data structures containing all the required information as specified above.  

 

The Algorithm module below (Figure 3.7) specifies the contents and format of the 

algorithm object that the user has to provide as argument to the framework when calling it. 
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Figure 3.7 - The Algorithm Module 
 

This architecture is a hybrid between the flow oriented and object-oriented paradigms. This 

is to leverage the advantages of both paradigms as outlined in section 1.1.  

 
Beyond the architecture of the program itself, the lifecycle used by the development team 

is also an important consideration. In the case of this research, an agile lifecycle was 

preferred since the requirements were not all completely defined from the start and the 

ability to refine the architecture based on the results of the various experiments in the 

testing phase is important. 

 
Therefore, the life cycle chosen was Kanban because it fulfills the agile requirement and 

provides the required flexibility for a research project. It also makes it possible to reassess 

the priorities of the various tasks and functionalities being treated to make sure that the 

stages of the project are fulfilled correctly.  

 
The importance of a well-designed and documented architecture is emphasized in this 

project as it makes the software more accessible to future contributions and facilitates 

collaboration. It is also associated with reduced development cost in industry as well as 

improved quality and reliability. In fact, it is much easier to avoid breaking a program when 

its architecture is known compared to trying to modify an obscure software. an added 

benefit of well-designed and documented architectures is therefore the reduction of the 
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maintenance cost associated with it. For example, less time is invested fixing unattended 

consequences of code changes. The following paragraph expands on this by discussing the 

notion of technical debt. 

 
In their paper entitled, “Technical Debt: from Metaphor to Theory and Practice”, Philippe 

et al. explain the impact that skipping the good practices of software development can have 

on the product (2012). The following figure outlines the technical debt landscape as defined 

in the paper and organized by how “visible” they are. The visibility characteristics relates 

to how readily detectable they are by usual identification tools like static code analysers.  

 

 

Figure 3.8 - The Technical Debt Landscape as proposed by Philippe (2012) 
 

To address this issue of technical debt, the practice of refactoring is recommended. The article 

also recommends paying attention to the design phase of the development process and to use 

iterative design lifecycles as they provide the opportunity to fix non ideal processes and weakly 

implemented standards and protocols. The article also brings to light the fact that the use of 

iterative lifecycles does not automatically improve technical debt and that there is a need to 

specifically dedicate some activities for refactoring. 

 

3.1.  Requirements tracking 
For tracking the requirements of the framework, multiple tools have been explored to select 

the right solution that would conform to the lifecycle of the project as well as its level of 

complexity. Following is a list of notable tools that have been considered: 
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1. Jira with Confluence. This tool enables the integration of the entire development 

environment from the version control resources like GitHub to the task management 

utilities and specification and scheduling documents. A communication functionality is 

also included. (Atlassian, n.d.) 

2. Forecast PM as in project management is a management solution that integrates project 

management tools and integrates an artificial intelligence for process automation purposes. 

It is important to note that this is a commercial software(Forecast, n.d.). 

3. Visure is a very comprehensive solution that offers many features for project management 

as well as requirements tracking (Hewitt, 2014). It uses a process driven approach by 

pushing the users to define the processes by which the requirements are supposed to be 

managed and enforces them in the workflow presented to access the requirements. It also 

comes with a library of standards that can be applied to the requirements management 

process. This has the benefit of simplifying the process control procedures of the users. 

 
From the tools presented above, Jira is most interesting and accessible as it is particularly well 

suited for the lifecycle used in this research namely Kanban. It will therefore be used to 

integrate the tools that are already in use like Slack, Draw.io, and GitLab. 

 

3.2. Conclusion 
The 4+1 views model of Kruchten was used to model the system being proposed in this 

research. It was established that a hybrid between flow based, and object-oriented 

programming would be ideal for the proposed framework. The notion of technical debt was 

discussed to identify the potential risks this might pose to the project. Finally, options for 

requirements tracking were identified and the Kanban lifecycle was chosen for the 

development of the proposed framework. 





 

 

 

 

CHAPTER 4 
 

EXPLORATORY LANDSCAPE ANALYSIS 
 

 

As this research aims to streamline the benchmarking process of metaheuristics, Alternative 

strategies of classifying the test functions are explored. A numerical method is selected   instead 

of the qualitative approaches described in the literature review above because numerical 

methods lend themselves to better statistical analysis and are more repeatable.  Exploratory 

landscape analysis (ELA) enables the classification of test functions using numerical methods 

and automation. This method has been developed to determine parameters which can reliably 

predict the performance of metaheuristic algorithms on other problems with similar  parameters 

(Kerschke & Trautmann, 2016). In addition, the high level features discussed in the literature 

review such as the basin sizes and multimodality are debated and can be evaluated differently 

by different experts(Kerschke & Trautmann, 2016). Therefore, this method (ELA) will be used 

as the standard test function classification method in this research.   

 

Other  benefits  of using numeric landscape analysis features are the  possibility of combining 

the features with data from benchmarking the metaheuristics on test functions to build 

predictive and selection models   for matching future optimization problems with the 

appropriate metaheuristics (Kerschke & Trautmann, 2016).  

 

To automate the ELA process in this research, a software library named FLACCO (Feature-

Based Landscape Analysis of Continuous and Constrained Optimization) will be integrated 

into the code of the framework.   FLACCO is written in the R language while the Framework 

being developed in this research is written in Python. To bridge this compatibility gap, the 

Rpy2 framework is imported into the program to handle the collaboration between the two 

languages.    FLACCO is capable of calculating at least 16 feature sets which are basically 
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vectors containing similar features. Example of feature sets which can be computed with 

FLACCO are ela_meta, ela_distr, nbc, gcm, cm_angle etc.… The FLACCO package also 

comes with ready-made visualization functions to better understand the characterization of the 

test functions. Example visualizations can be seen below. 

 

 

Figure 4.1 - 3D Barrier Tree Visualization by FLACCO (kerschke, 2015/2021) 
 

 



43 

 

 

 

 

Figure 4.2 - Cell Mapping Visualization by 
FLACCO (kerschke, 2015/2021) 

 

 

Figure 4.3 - Information Content Plot by FLACCO 
(kerschke, 2015/2021) 
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FLACCO also has the flexibility of configuring control parameters for each of its available 

feature sets (Kerschke & Trautmann, 2016).  This makes it possible to adapt features to the 

specific landscape of the problems at hand. 

 

4.1. Conclusion 
The Integration of FLACCO into MDAF is discussed. FLACCO is a great addition to the 

proposed framework as it enables a quantitative assessments of problem instances and makes 

the application of NFLT a more objective process.   



 

 

 

 

CHAPTER 5 
 

IMPLEMENTATION OF THE METAHEURISTICS DESIGN AND ANALYSIS 
FRAMEWORK 

 

 

This research developed a software Framework for the analysis of metaheuristics. To fulfill 

this objective, it includes features to automatically calculate performance metrics of 

optimization algorithms and visualization functions which enable the operator to get a deeper 

understanding of the results and the test function characteristics.  

 

The program implements recommendations outlined in the first chapter of this paper like the 

use of valid statistical methodology recommended by (Brownlee, 2007). For example, the 

performance calculations are repeated 30 times by default with different initial conditions for 

each test function and the average as well as standard error of the performance metric are kept 

as the real performance characteristics. This ensures that the stochastic nature of some 

algorithms is captured. The performance metrics calculated by the framework are: 

 

• The CPU time of the calculations: this determines exactly how much time the CPU of 

the computer spent specifically on tasks related to the algorithm being tested excluding 

the time spent on any other applications running on the computer. This is to ensure the 

repeatability of the performance results obtained independently from the load the 

computer is operating under. 

• Number of calls to the objective function: this metric is calculated since some 

algorithms have more complex logic but require few real calculations of the objective 

function (e.g., surrogate assisted algorithms) while other algorithms have simpler logic 

but require frequent calls to the objective function. This metric therefore captures the 

impact of how difficult the objective function is to evaluate.  
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• The Quality of achieved results: this metric measures how good the obtained results are 

as some algorithms can find a solution quickly but would oscillate around the optimum 

while other algorithms take more steps to find a solution of greater quality. 

• The convergence rate of analyses: This metric is used because some algorithms diverge 

and are not able to find the solution depending on multiple factors like the step size or 

the initial conditions. Therefore, the percentage of trials which found a solution is 

included as a metric. 

 

The framework also comes with functions capable of automatically calculating a numerical 

representation of all the test functions. This is accomplished by integrating the FLACCO 

framework to MDAF. As explained in the previous chapter, FLACCO is written in the R 

programming language and the integration with MDAF (written in Python) is accomplished 

with RPy2 which is a compatibility framework between the two languages. Using FLACCO, 

the ELA feature sets presented in Figure 5.1 can be calculated. A subset can be chosen among 

them depending on the analysis to be conducted like in the following case study.  

 

 

Figure 5.1 FLACCO Feature Sets Provided By FLACCO (Tanabe, 2021) 
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Plotting functions are also included in the framework which enable the users to visualize the 

test functions as shown in Figure 5.2 below. 

 

 

Figure 5.2 - Test Function Visualization produced by MDAF 
 

Radar plots are also available to visualize the ELA representation of various test functions and 

compare them to other functions. The radar plots represent each feature set which are vectors 

with the elements plotted at the respective angles. Multiple functions can be automatically 

plotted together. This feature can also be used to verify that a benchmarking analysis contains 

a good representation or sample of all possible feature set values. Figure 5.3 shows an example 

of ELA representation radar plots.  
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Figure 5.3 - Radar Plot of Bukin2 and Bukin6 test functions' ela_meta 
feature set by MDAF 

 

 

5.1. Default Test Functions 
MDAF comes with 27 built-in test functions which can be used to benchmark new 

metaheuristics. When launching an analysis, these preprogrammed test functions can be 

referenced using the ‘@’ symbol in front of the function name. Preprogrammed test functions 

include Bukin6, and Brown as visualized in the following figures. The functions were taken 

from (Hussain et al., 2017) and (Jamil & Yang, 2013). 

 

The user also has the flexibility of adding external test functions to its analyses. To this end, 

the new test functions need to be organised following APPENDIX IV. It must accept a list as 
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input with each element of the list representing a factor of the optimization problem. For the 

function to be compatible with the plotting routines inside MDAF, the function must be 3 

dimensional. External libraries such as matplotlib and SciPy can be used for higher 

dimensional data. 

 

 

Figure 5.4 - Bukin6 Visualization(Bukin Function N. 6, n.d., p. 6) 
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Figure 5.5 - Brown Function Visualization 
 

5.2. PyPI Packaging 
The code of the framework is packaged for the PyPI repository. It can be downloaded from Git 

and installed using the python preferred installer program (pip). This makes it possible to the 

operator to use the framework in the python interactive shell. The package metadata as well as 

Python init files can be found in APPENDIX II and APPENDIX X. 

 

5.3. Experimental Planning 
The framework has the ability to run experiment plans (EP) by calling the exp function. The 

code of this function is available in APPENDIX III of this report. A list of the test functions 

on which the experiments need to be run is provided by the operator as an argument. 

Preprogrammed functions need to be specified as explained in the previous sections. The 

operator is expected to use the plotting methods provided by the framework in the analysis 

planning stage. The exp method runs the optimization algorithm 30 times by default or a user-
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defined number of times on each test function provided. It then calculates the average and 

standard deviation for all the benchmarking metrics. This makes it possible to capture the 

stochastic nature of certain algorithms. In fact, as stochastic algorithms can have varying 

performance on the same problem due to the impact of the random parameters like the 

temperature in simulated annealing, the repeated benchmarking runs makes this phenomenon 

detectable for analysis. 

 

5.4. Automated Testing 
Automated tests were designed and implemented to guide the development process of the 

program. They are included in this report as they can be used to quickly validate changes to 

the code. This simplifies the continuous improvement of the framework by automating 

repetitive tests that need to be performed to validate the changes. APPENDIX V presents the 

automated testing algorithms used for the design of MDAF. The unittest library was used 

for this feature as well as doctests. The unittest library was applied to testing the 

framework’s methods while doctests were used for the integrated test functions. Figure 5.6 

below shows a view of the testing environment. On the left sidebar, the list of automated tests 

is displayed with their status. In this particular example, all the tests were successful. 
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Figure 5.6 - Snapshot of the Automated Tests Results in VS Code 
 

Doctests were also used in the implementation of the preprogrammed test functions. The 

Doctests were executed using the following command. The results of automated testing can 

be observed in the figure below. 

 

Algorithm 5.1. PyTest Command 
python -m pytest --doctest-modules --doctest-continue-on-failure 

 

The options of the command have the following meaning: 

- “doctest-modules”: automatically runs the doctests in all python modules in the current 

directory 

- “doctest-continue-on-failure”: prevents the process from stopping when any one test 

fails. 

 

In Figure 5.7 below, the results of running the doctests for the integrated test functions of 

MDAF is displayed. We can see at the bottom of the figure that all 28 tests passed successfully. 

This can also be observed by the small green dot beside each test function name listed in the 

figure. The percentages listed at the right of the figure show the progress of the overall testing 

process.  Therefore, we know that the test has completed when the last line with the Zirilli 
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test function is displayed. The 100% value on the right shows that this was the last function 

being tested. 

 

Figure 5.7 - Automated Python Doctest Results 

 

5.5. Efficient computation 
As the computations involved in benchmarking an optimization algorithm are heavy and can 

be time consuming, parallel computing has been extensively employed in the implementation 

of the framework to leverage the power of modern CPUs more effectively. The framework will 

automatically determine the number of cores available on the machine and evenly spread the 

load and maximize throughput. This is achieved using the python multiprocessing library. For 

this goal, the relevant functions of the framework are designed to be picklable. Meaning that 

they can be serialized by the python pickle module(Pickle — Python Object Serialization — 
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Python 3.10.1 Documentation, n.d.). Figure 5.8 showcases the task manager of the computer 

running MDAF while benchmarking a PSO algorithm. Numbered 1 to 16 are the CPU cores 

all showing close to 100% utilisation (annotated 1). This attribute of MDAF is dynamic and 

automatically adapts to the machine on which it is running by detecting the number of cores 

available and adjusting its multithreading and multiprocessing logic accordingly. Annotated 2 

are the processes that have been spawned by MDAF. They all run independently from each 

other and the results are collected by one of the processes playing a managerial role. 

1  

Figure 5.8 - Optimally Loaded Central Processing Unit (CPU) 
 

5.6. Conclusion 
The implementation of the proposed framework is discussed as well as its features and usage 

recommendations. The framework can benchmark algorithms with a variety of metrics such as 

the number of objective function evaluations, the CPU time of computation, the quality of 

achieved results, and the convergence rate of analyses. A default set of test functions are 

provided with the proposed framework containing 27 functions such as The Bukin and Ackley 

test functions. Features such as the multiprocessing abilities of the framework are also 

discussed. 

 

1 

2 



 

 

 

 

CHAPTER 6 
 

CASE STUDY:  BENCHMARKING THE PARTICLE SWARM ALGORITHM WITH 
DIFFERENT PARAMETERS TO DETERMINE THE EFFICIENT VALUES 

 

 

The specific algorithm being investigated in this case study can be found in APPENDIX IX. 

The algorithm will be benchmarked using the MDAF framework which implements the 

recommendations outlined in the literature review. For example, special attention was used in 

selecting the measures of performance as recommended by (Brownlee, 2007). This measure 

will be the number of calls to the test function as this measure is independent of the machine 

on which the benchmark is being computed. A maximum number of iteration parameter is set 

to 10’000 because the analysis is looking for effective parameters. MDAF allows the user to 

set this value to any number. Parameters that require the algorithm to perform more than 

10’000 iterations before achieving a suitable solution are considered ineffective. This has the 

benefit of keeping the runtime of the analysis manageable as a study can run for days if no 

limits are applied. 

 

6.1. Methodology 
The following steps can be implemented to reproduce this study. 

1. Select test functions from the preprogrammed library or generate python files for new 

test functions that are to be included in the Analysis; 

2. The “visualize2D” function in MDAF can be used at this stage to quickly visualize 

the shape of a test function; 

3. Create a list object in python containing the paths to all the selected test functions; 

Preprogrammed library test functions should be specified with the symbol “@” before 

the function name (e.g., @bukin.py); 

4. Make sure to have called the install FLACCO function at least once since installing 

MDAF; 
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5. Calculate the features of all the selected test functions by calling the “representfunc” 

function of MDAF; 

6. The plot function method of MDAF, can be used to generate a radar plot of the 

selected benchmarking test functions’ FLACCO feature sets; 

7. The steps 1 to 5 can be repeated until a good set of test functions is identified. This 

list will be referred to as the experiment list; 

8. Call the exp function from MDAF with the experiment list as argument as well as 

any arguments which are supposed to be passed to the metaheuristic algorithm; 

9. MDAF will then proceed to calculate the performance of the algorithm on the test 

functions and return a dictionary containing all the performance data; 

10. This case study utilises MDAF for parameter tuning and the additional script for this 

is outlined in APPENDIX VIII. 

 

6.2. Results 
The below figures display the output of running the Visualize2D method of MDAF. The 

method is used to investigate test functions while putting together the experiment list. It can 

also be useful to assess newly proposed test functions. 
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Figure 6.1 - Result of the Visualize2D function for the 
Step Test Function 

 

Figure 6.2 - Result of the Visualize2D function for the 
Price2 Test Function 
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Figure 6.3 - Result of the Visualize2D function for 
the Leon Test Function 

 

Figure 6.4 - Result of the Visualize2D function 
for the Brown Test Function 
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Figure 6.5 - Result of the Visualize2D function for the Ackley2 
Test Function 
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Figure 6.6 - Result of the Visualize2D function for the 
Styblinski-Tang Test Function 

 

The following figure displays the outputs of the plotfuncs method of the framework to 

investigate the FLACCO feature set values of the test functions. This plot represents the gcm 

feature set being considered in this analysis. Please note that the algorithm of the “plotfuncs” 

method is available in the appendix. Each line on the plots represents a test function and for 

each test function, the feature values are marked on their respective axes. 

 

These plots can also be used to assess the distribution of the test functions across the feature 

space. The actual values for all the features for all the functions will be presented in table 

format in APPENDIX VI. 

 

As explained by Kerschke and Trautmann, it is necessary to combine the feature sets to make 

sure that the test functions are fully characterized as each feature set only capture a small subset 

of relevant characteristics for metaheuristic algorithms(Kerschke & Trautmann, 2016). 
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Figure 6.7 - Result of the plotfuncs Function for gcm features 
 

From the plot above, it is apparent that the selected set of test functions fills up the space of 

possible values for the gcm feature set. The gcm feature set is quite extensive and could be 

used on its own for a quantitative model of metaheuristic performance as it contains a large 

number of features which are well distributed. The scale of some of its features (24 and 25), 

however, need to be normalized as they might overly influence the model. It is also important 

to note that some features are calculated by FLACCO to a value of “NaN” meaning not a 

number. This special value is used to represent the result of undefined operations.  All features 
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with such values need to be addressed before building a quantitative model. This can be 

achieved by dropping all such features which is a standard technique. Other methods of dealing 

with NaN values exist which are not addressed in this paper as they are not part of the study 

being conducted. 

 

The following data represents the results of benchmarking the PSO Algorithm using MDAF 

for the following test functions: Leon, Price2, Brown, Ackley2, Styblinski-Tang, and Step. The 

impact of the c1 and c2 parameters of the PSO algorithm on its effectiveness at optimizing test 

functions is studied. The optimization effectiveness is measured by the number of calls from 

the algorithms to the test function. This data is plotted on heatmaps with the c1 values on the 

x-axis and c2 on the y-axis with the colors from violet to red showing the number of calls to 

the test function.  

 

Each test function studied in this case is evaluated 16 times for each point on the map and the 

average statistic is used for mapping. The number of trials was set to 16 for practical purposes 

since increasing this value resulted in exponentially longer running times. The standard error 

of the average statistics is also calculated for each point and displayed on another heatmap. 

The standard error statistic is calculated using the following formula: 

 
 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟  = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛    𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒  (3) 

 

With 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 = 16, and standard deviation calculated automatically using the python 

statistics library. Therefore, each test function produces two heatmaps and the same c1 and c2 

values are used across all test functions. The specific c1 and c2 values used in the experiment 

as well as all the performance data used for the following plots can be consulted in APPENDIX 

VII. 
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Figure 6.8 - Average Number of Function Calls for Solving the 
Leon Test Function vs c1 and c2 Parameter Values 

 

 

Figure 6.9 - Standard Errors for the Number of Function 
Calls for Solving the Leon Test Function vs c1 and c2 

Parameter Values 
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Figure 6.10 - Average Number of Function Calls for Solving the 
Price2 Test Function vs c1 and c2 Parameter Values 

 

 

Figure 6.11 - Standard Errors for the Number of Function Calls for 
Solving the Price2 Test Function vs c1 and c2 Parameter Values 
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Figure 6.12 - Average Number of Function Calls for Solving the 
Brown Test Function vs c1 and c2 Parameter Values 

 

 

Figure 6.13 - Standard Errors for the Number of Function Calls 
for Solving the Brown Test Function vs c1 and c2 Parameter 

Values 
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Figure 6.14 - Average Number of Function Calls for Solving the 
Ackley2 Test Function vs c1 and c2 Parameter Values 

 

 

Figure 6.15 - Standard Errors for the Number of Function Calls 
for Solving the Ackley2 Test Function vs c1 and c2 Parameter 

Values 
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Figure 6.16 - Average Number of Function Calls for Solving the 
Styblinski-Tang Test Function vs c1 and c2 Parameter Values 

 

 

Figure 6.17 - Standard Errors for the Number of Function Calls 
for Solving the Styblinski-Tang Test Function vs c1 and c2 

Parameter Values 
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Figure 6.18 - Average Number of Function Calls for Solving 
the Step Test Function vs c1 and c2 Parameter Values 

 

 

Figure 6.19 - Standard Errors for the Number of Function 
Calls for Solving the Step Test Function vs c1 and c2 

Parameter Values 
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6.3. Discussion 
The heatmaps displayed in the results section show the performance of the PSO algorithm at 

various c1 and c2 parameter values. These parameters are used to calculate the “velocity” of 

each point at each iteration and c1 and c2 are respectively used as weights to determine the 

importance of each point’s previous best and the historical best point of the algorithm. Please 

see APPENDIX IX for the full PSO algorithm.  

 

As explained above, the performance of the PSO algorithm is measured by the number of times 

it needed to call the function being optimized for each run. This measure is taken 16 times for 

each point (unique combination of c1 and c2 values) and the average is used for analysis. This 

is a good way to detect the stochastic nature of some algorithms. As PSO does not highly rely 

on randomness to achieve global optimization but rather utilises a population of points, the 

relatively small number of deviations observed for most functions analysed makes sense. For 

example, Step function’s results show that only a small subset of the possible combinations 

between c1 and c2 generate high levels of deviation in the performance of the algorithm 

between runs with the same parameters.  

 

From the Leon test function results, we observe that most combinations of c1 and c2 yield a 

poor performance of PSO. The few effective combinations are almost randomly distributed 

across the parameter space. This could be explained by the shape of the test function. As it can 

be observed in Figure 6.3, the Leon test function’s shape is flat everywhere except very close 

to the optimal. This makes it very difficult for PSO to optimize it and the performance of the 

algorithm is therefore expected to be poor (high number of calls to the test function). This is 

consistent with the observed results from MDAF, and the few parametric regions of good 

performance can be explained by random chance as the initial positions of all points of the 

algorithm is random.  

 

The Price2 test function results also show a poor performance of PSO. This is also to be 

expected as this function is very chaotic, and algorithm can very easy remain trapped in a local 

optimal. In fact, the heatmap for this test function shows that the huge majority of combinations 
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for c1 and c2 yield poor performance by PSO with small random regions of effective values 

mostly concentrated towards the lower values of c2. This means that this test function is easier 

to optimize when each particle follows its path to the best solution instead of all converging 

towards a historical general best point. This is explained by the chaotic nature of the test 

function since PSO being less social (higher c1 values) makes it explore a wider area of 

possibilities compared to more social combinations of c1 and c2 (higher values of c2). 

 

The Brown test function is showing more significant results as a concentration of effective 

parameters can be observed for lower values of the c2 parameter. This is similar to the case of 

Price2. In fact, the shape of Brown ( Figure 6.4), despite being very different from Price2, is 

also challenging for PSO to optimize as it does not provide a good slope to follow toward the 

optimal. The improvement introduced for smaller values of the c2 parameter can be explained 

by the fact that it pushes the algorithm to be more exploratory as each point follows a more 

independent route from the others. 

 

Ackley2’s results are showing a meaningful trend as the combinations with c2 values below 

three always produce effective performances of PSO. This indicates that the c1 parameter’s 

value does not matter for this test function for values ranging from zero to ten. This can be 

explained by the shape of the Ackley2 test function. As is shown in Figure 6.5, Ackley2 does 

not have local minima. Therefore, low values for the c2 parameter ensure that the algorithm 

follows a gradient descent towards the optimal solution as quickly as possible as the points in 

the population fall down the funnel all together instead of being “distracted” by the general 

historical best point. In fact, high values of the c2 parameter can cause the particles to overshoot 

the optimal. To further understand what happens in the “ideal” region for the parameters c1 

and c2 of PSO for this function, a specific benchmarking study was performed on Ackley2 for 

c1 values ranging between 0 and 3 and c2 values going from 0 to 10. The following heatmap 

was produced showing a complex region with values ranging from 400 calls to 6000. All these 

points could be considered acceptable parameters for the algorithm depending on other 

constraints on the design. In fact, for such small variations in the performance, other factors 

might have a bigger impact on the performance of PSO on similar algorithms. MDAF can also 
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be used in this scenario to evaluate these other factors like the values of the weight parameter, 

and the number of particles used by the algorithm. 
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Figure 6.20 - PSO Average Number of Function Calls Heatmap for Sub Region of Interest 
for the Ackley2 Test Function 

 

 

Figure 6.21 - Standard Error Heatmap for the Above Average Values of the Performance of 
PSO on Ackley2 
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The Styblinski-tang test function also shows a similar behavior of being mostly influenced by 

the value of the c2 parameter. In fact, it has a shape that is loosely similar to Ackley2 since 

there is no local minima in this function. The effective values of c2 for this test function are 

between two and four.  

 

The step function being very similar to Ackley2, and Styblinski-Tang also outputted similar 

performance data. The effective values of c2 for this function are between 0.5 and 4.  

 

As discussed above, the c2 parameter had the most importance on the performance of PSO on 

the studied functions. It was also observed that similar test functions generated similar 

performance maps for the PSO algorithm. This agrees with the prediction outlined by the 

NFLT. As the trends outlined are good for building rules of thumbs, it is also relevant to note 

that the heatmaps showcased specific cases of c1 and c2 parameter combinations like with the 

Step function. In fact, despite the fact that most optimal combinations happen with c2 below 

4, some combinations like c1 at 5.2 and c2 at 7.9 yields effective performance. This can be 

useful in exceptional cases. 

 

Observing the gcm feature set computed with the integrated FLACCO module of MDAF, it is 

apparent that the Step and Ackley2 test functions are very similar. In fact, the traces of both 

these functions on Figure 6.7 are almost identical. It is therefore expected that PSO will have 

similar performances on both functions. This is because ELA features capture the important 

characteristics for predicting the performance of optimization algorithms on the function in 

question. As can be observed in the results section (Figure 6.18, and Figure 6.14), the 

performance of PSO is very similar for both functions. The figure below compares the feature 

sets for the Step and Ackley2 test functions as well as the performance heatmaps of PSO to 

solve them at various values of c1 and c2. 
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Figure 6.22 - Comparison of the Representation and Performance of the Ackley2 and 
Step Test Functions 
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 The gcm feature set radar plots overlaps for both functions and the performance characteristics 

of PSO for both show a similar pattern. Indeed, insights obtained from the study of the Ackley2 

test function can be effectively applied to the Step function. This is in line with the NFLT 

which implies that optimization algorithms have similar performances on problems of the same 

category. It also shows that ELA feature sets can be an effective method of classifying 

functions to be optimized. It is relevant to note the variations between both cases as the Step 

function is more complex than Ackley2 and therefore has a more intricate performance heat 

map than Ackley2. However, these slight differences are to be expected as these are two 

different functions and a careful selection of optimal parameters from the simpler function 

(Ackley2) applies very well to the more complex one (Step). 

 

6.4. Test Case Conclusion 
it appears that the most effective parameters to be used with PSO vary depending on the type 

of function to be optimised despite the existence of some popular combinations of c1 and c2 

which work well on a wide array of function types. This highlights the usefulness of MDAF 

as it makes it possible to readily assess the performance of a proposed algorithm on various 

problem types. The addition of FLACCO to the framework improves its usefulness further as 

it is also possible to generate a quantitative representation of an arbitrary problem to be 

optimized using exploratory landscape analysis and comparing this representation to available 

test functions. A suitably similar test function can then be used to perform a meta optimization 

(the optimization of the parameters of an optimization algorithm) either manually or 

automatically using MDAF. This would be very useful for costly functions like multi-domain 

simulations which often need to be optimized in the design process of various products. For 

example, computational fluid dynamics simulations are often conducted to optimize the shape 

of formula1 airfoils. The same type of studies is also conducted in aerospace for optimizing 

the shape of turbo compressor blades and turbine vanes. As these simulations can be quite 

costly to compute, it is important to make sure that the algorithm being used for optimization 

is tuned to achieve the ideal solution with as few objective function evaluations as possible. 

 



 

 

 

 

 
CONCLUSION AND PERSPECTIVES 

 

 

This research explored algorithm benchmarking using quantitative analysis in an attempt to 

simplify and streamline this process. A Framework (MDAF) was developed using the Python 

programming language to automate the computation of the benchmarks of given algorithms. 

This framework contains various features like visualization helper functions, and test function 

characterization methods. For example, the framework has default 3D and radar plotting 

routines that can generate standardized visualizations of any mathematical numerical function.  

 

MDAF facilitates the implementation of the best practice guidelines outlined in the first chapter 

of this paper by automating the benchmarking process and implementing reliable 

benchmarking metrics like the number of objective function calls required by an algorithm to 

achieve a solution. Other Benchmarking metrics are also implemented into MDAF like the 

CPU time of analysis as well as the convergence rates. The CPU time is considered a reliable 

metric because it measures specifically the time that was spent by the CPU on the analysis 

processes only and excludes other operating system runtimes. Therefore, this metric is 

repeatable regardless of other processes on the analysis computer unlike the runtime metric 

which is often used. Finally, the convergence rate indicates what proportion of test runs 

achieved the desired results against the number of runs which diverged. 

 

 Following the development of the Framework, a case study was performed using MDAF to 

benchmark a PSO algorithm. This case study showed that the framework was capable of 

benchmarking the performance of optimization algorithms for various parameter values. 

Therefore, the framework can be utilised in many types of analyses for metaheuristics like 

parameter optimization. 
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This work can be extended and improved in many ways to achieve a better understanding of 

any metaheuristic. For example, regression models of the performance of metaheuristics can 

be implemented using an engine like TensorFlow. The inputs of such a model would be the 

ELA features of a test function and the model could output a predicted performance or a 

suitability score. Autoencoders can be used to eliminate non important ELA features in this 

use case. Another use case would be to utilize MDAF in the design of an algorithm selection 

model which would automatically determine the best algorithm to be used based on the ELA 

feature representation of a test function. Such a model could find applications in any industry 

which performs optimization analyses. In fact, such a model would take the guessing work 

out of choosing which solvers to use for given optimization problems. 

 



 

APPENDIX I. 
SIMULATED ANNEALING PSEUDO CODE 

 
Algorithm-A  I-1 Simulated Annealing Pseudo Code 

/* 
Borrowed Code: Simulated Annealing pseudo code 
The following lines have been borrowed from (Luke, 2013) 
*/          1. 𝑡 ←  𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑙𝑦 𝑎 ℎ𝑖𝑔ℎ 𝑛𝑢𝑚𝑏𝑒𝑟  2. 𝑆 ←  𝑠𝑜𝑚𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  3. 𝐵𝑒𝑠𝑡 ← 𝑆  4. 𝒓𝒆𝒑𝒆𝒂𝒕  1. 𝑅 ←  𝑇𝑤𝑒𝑎𝑘(𝐶𝑜𝑝𝑦(𝑆))  2. 𝒊𝒇 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑅) >𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑆) 𝑜𝑟 𝑖𝑓 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑐ℎ𝑜𝑠𝑒𝑛 𝑓𝑟𝑜𝑚 0 𝑡𝑜 1 < 𝑒 ( ) ( )  𝑡ℎ𝑒𝑛 3. 𝑆 ←  𝑅  4. 𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑡  5. 𝒊𝒇 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑆)  >  𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝐵𝑒𝑠𝑡) 𝒕𝒉𝒆𝒏  1. 𝐵𝑒𝑠𝑡 ← 𝑆  5. 𝒖𝒏𝒕𝒊𝒍 𝐵𝑒𝑠𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑑𝑒𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛,𝑤𝑒 ℎ𝑎𝑣𝑒 𝑟𝑢𝑛 𝑜𝑢𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒, 𝑜𝑟 𝑡 ≤ 0  

6. 𝑟𝑒𝑡𝑢𝑟𝑛 𝐵𝑒𝑠𝑡 
/* End of the Borrowed Code */ 

 

 



 

APPENDIX II. 
 

PACKAGE META DATA 
 

Algorithm-A  II-1 Package Meta Data for MDAF 

 

Package meta data:  
1. [metadata] 
2. name = MDAF 
3. version = 0.1 
4. description =A Framework for the Analysis and Benchmarking of 

Metaheuristics 

5. url = https://git.rehounou.ca/remi/MDAF 
6. author = Remi Ehounou 
7. author_email = remi.ehounou@outlook.com 
8. license = MIT 
9. long_description = file: README.md 
10. long_description_content_type = text/markdown 

11. classifiers = 

12.     Programming Language :: Python :: 3 

13.     License :: OSI Approved :: MIT License 

14.     Operating System :: OS Independent 

15.  

16.  

17. [options] 

18. package_dir = 

19.     = . 

20. include_package_data = True 

21. packages = find: 

22. python_requires = >=3.6 

23. install_requires = 

24.     numpy 

25.     sklearn 

26.     matplotlib 

27.     rpy2 == 3.4.4 
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APPENDIX III. 
 

MDAF CODE 
 

Algorithm-A  III-1 MDAF Algorithm Implementation 

 MDAF main Code 
1.  

2. from os import path 

3. from os import sys 

4. import importlib.util 

5. import  multiprocessing 

6. import time 

7. import re 

8. from numpy import random as rand 

9. from numpy import array, isnan, NaN, asarray, linspace, 

append, meshgrid, ndarray 

10. import statistics 

11. from functools import partial 

12. import shutil 

13.  

14. # Surrogate modelling and plotting 

15. import matplotlib.pyplot as plt 

16. from sklearn.neural_network import MLPRegressor 

17. from sklearn.model_selection import train_test_split 

18.  

19. # Test function representation 

20. from rpy2 import robjects as robjs 

21. from rpy2.robjects.packages import importr 

22. from rpy2 import rinterface 

23.  

24. # Test function characteristics 

25. import statistics as st 

26.  

27.  

28. def installFlacco(mirror = 

'https://utstat.toronto.edu/cran/'): 
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29.     utils = importr('utils') 

30.     utils.install_packages('flacco', repos=mirror) 

31.     utils.install_packages('list', repos=mirror) 

32.     utils.install_packages('lhs', repos=mirror) 

33.     utils.install_packages('plyr', repos=mirror) 

34.     utils.install_packages('RANN', repos=mirror) 

35.     utils.install_packages('numDeriv', repos=mirror) 

36.     utils.install_packages('e1071', repos=mirror) 

37.  

38. class counter: 

39.     #wraps a function, to keep a running count of how many 

40.     #times it's been called 

41.     def __init__(self, func): 

42.         self.func = func 

43.         self.count = 0 

44.  

45.     def __call__(self, *args, **kwargs): 

46.         self.count += 1 

47.         return self.func(*args, **kwargs) 

48.  

49. def simulate(algName, algPath, funcname, funcpath, args, 

initpoint): 

50.     # loading the heuristic object into the namespace and 

memory 

51.     spec = importlib.util.spec_from_file_location(algName, 

algPath) 

52.     heuristic = importlib.util.module_from_spec(spec) 

53.     spec.loader.exec_module(heuristic) 

54.  

55.     # loading the test function object into the namespace and 

memory 

56.     testspec = 

importlib.util.spec_from_file_location(funcname, funcpath) 

57.     func = importlib.util.module_from_spec(testspec) 

58.     testspec.loader.exec_module(func) 

59.  
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60.     # defining a countable test function 

61.     @counter 

62.     def testfunc(args): 

63.         return func.main(args) 

64.  

65.     # using a try statement to handle potential exceptions 

raised by child processes like the algorithm or test functions or 

the pooling algorithm 

66.     try: 

67.         #This timer calculates directly the CPU time of the 

process (Nanoseconds) 

68.         tic = time.process_time_ns() 

69.         # running the test by calling the heuritic script 

with the test function as argument 

70.         quality = heuristic.main(testfunc, initpoint, args) 

71.         toc = time.process_time_ns() 

72.         # ^^ The timer ends right above this; the CPU time is 

then calculated below by simple difference ^^ 

73.  

74.         # CPU time in seconds 

75.         cpuTime = (toc - tic)*(10**-9) 

76.         numCalls = testfunc.count 

77.         converged = 1 

78.     except: 

79.         quality = NaN 

80.         cpuTime = NaN 

81.         numCalls = testfunc.count 

82.         converged = 0 

83.     return cpuTime, quality, numCalls, converged 

84.  

85. def measure(heuristicpath, funcpath, args, connection, 

sampleSize = 30): 

86.     ''' 

87.     This function runs a set of optimization flows for each 

test function. it returns the mean and standard deviation of the 

performance results 

88.     ''' 
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89.      

90.     #defining the heuristic's name 

91.     heuristic_name = 

path.splitext(path.basename(heuristicpath))[0] 

92.  

93.     #defining the test function's name 

94.     funcname = path.splitext(path.basename(funcpath))[0] 

95.  

96.     # Seeding the random module for generating the initial 

point of the optimizer: Utilising random starting point for 

experimental validity 

97.     rand.seed(int(time.time())) 

98.  

99.     # guetting the representation of the function 

100.     funcChars = representfunc(funcpath) 

101.  

102.     n = funcChars['dimmensions'] 

103.     upper = funcChars['upper'] 

104.     lower = funcChars['lower'] 

105.  

106.     if not isinstance(upper, list): upper = [upper for i in 

range(n)] 

107.     if not isinstance(lower, list): lower = [lower for i in 

range(n)] 

108.  

109.     scale = list() 

110.     for i in range(n):  

111.         scale.append(upper[i] - lower[i]) 

112.  

113.  

114.     # Defining random initial points to start testing the 

algorithms 

115.     initpoints = [[rand.random() * scale[i] + lower[i] for i 

in range(n)] for run in range(sampleSize)] #update the inner as 

[rand.random() * scale for i in range(testfuncDimmensions)] 

116.     # building the iterable arguments 
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117.     partfunc = partial(simulate, heuristic_name, 

heuristicpath, funcname, funcpath, args) 

118.      

119.     n_proc = multiprocessing.cpu_count() # Guetting the 

number of cpus 

120.     with multiprocessing.Pool(processes = n_proc) as pool: 

121.         # running the simulations 

122.         newRun = pool.map(partfunc,initpoints) 

123.          

124.     cpuTime = array([resl[0] for resl in newRun]) 

125.     quality = array([resl[1] for resl in newRun]) 

126.     numCalls = array([resl[2] for resl in newRun]) 

127.     converged = array([resl[3] for resl in newRun]) 

128.  

129.     cpuTime = cpuTime[~(isnan(cpuTime))] 

130.     quality = quality[~(isnan(quality))] 

131.     numCalls = numCalls[~(isnan(numCalls))] 

132.     converged = converged[~(isnan(converged))] 

133.  

134.      

135.     results = dict() 

136.     results['cpuTime'] = array([statistics.fmean(cpuTime), 

statistics.stdev(cpuTime)]) if cpuTime.size > 0 else array([]) 

137.     results['quality'] = array([statistics.fmean(quality), 

statistics.stdev(quality)]) if quality.size > 0 else array([]) 

138.     results['numCalls'] = array([statistics.fmean(numCalls), 

statistics.stdev(numCalls)]) if numCalls.size > 0 else array([]) 

139.     results['convRate'] = array([statistics.fmean(converged), 

statistics.stdev(converged)]) if converged.size > 0 else array([]) 

140.  

141.     connection.send((results,newRun,funcChars)) 

142.  

143. def writerepresentation(funcpath, charas): 

144.     # Save a backup copy of the function file 

145.     shutil.copyfile(funcpath, funcpath + '.old') 

146.  

147.     # create a string format of the representation variables 
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148.     representation = '' 

149.     for line in list(charas): 

150.         representation += '\n\t#_# ' + line + ': ' + 

repr(charas[line]).replace('\n','') 

151.     representation+='\n\n\t#_# Represented: 1\n\n' 

152.  

153.     # Creating the new docstring to be inserted into the file 

154.     with open(funcpath, "r") as file: 

155.         content = file.read() 

156.         docstrs = re.findall(r"def 

main\(.*?\):.*?'''(.*?)'''.*?return\s+.*?", content, re.DOTALL)[0] 

157.         docstrs += representation 

158.         repl = "\\1"+docstrs+"\t\\2" 

159.  

160.         # Create the new content of the file to replace the 

old. Replacing the whole thing 

161.         pattrn = re.compile(r"(def 

main\(.*?\):.*?''').*?('''.*?return\s+.*?\n|$)", flags=re.DOTALL) 

162.         newContent = pattrn.sub(repl, content, count=1) 

163.     # Overwrite the test function file 

164.     with open(funcpath,"w") as file: 

165.         file.write(newContent) 

166.  

167. def representfunc(funcpath, forced = False): 

168.     if (funcpath.find('@') == 0): funcpath = 

path.dirname(__file__) + '/TestFunctions/' + funcpath[1:] 

169.  

170.     #defining the function name 

171.     funcname = path.splitext(path.basename(funcpath))[0] 

172.     # loading the function to be represented 

173.     spec = importlib.util.spec_from_file_location(funcname, 

funcpath) 

174.     funcmodule = importlib.util.module_from_spec(spec) 

175.     spec.loader.exec_module(funcmodule) 

176.  



86 

 

177.     # Finding the function characteristics inside the 

docstring 

178.     if funcmodule.main.__doc__: 

179.         regex = re.compile(r"#_#\s?(\w+):(.+)?\n") # this 

regular expression matches the characteristics already specified in 

the docstring section of the function  -- old exp: 

"#_#\s?(\w+):\s?([-+]?(\d+(\.\d*)?|\.\d+)([eE][-+]?\d+)?)" 

180.         characs = re.findall(regex, funcmodule.main.__doc__) 

181.         results = {} 

182.         for charac in characs: 

183.             results[charac[0]] = 

eval(charac[1].replace('nan','NaN')) 

184.  

185.         # Automatically generate the representation if the 

docstrings did not return anything 

186.         if not ('Represented' in results): 

187.             print("Warning, the Representation of the Test 

Function has not been specified\n===\n******Calculating the 

Characteristics******") 

188.             n = int(results['dimmensions']) 

189.             blocks = int(1+10/n) 

190.             if blocks< 3: blocks=3 

191.  

192.             # Importing FLACCO using rpy2 

193.             flacco = importr('flacco') 

194.              

195.             # creating the r functions 

196.             rlist = robjs.r['list'] 

197.             rapply = robjs.r['apply'] 

198.             rvector = robjs.r['c'] 

199.             r_unlist = robjs.r['unlist'] 

200.             rtestfunc = 

rinterface.rternalize(funcmodule.main) 

201.  

202.             # Verify if a list of limits has been specified 

for all dimensions or if all dimensions will use the same 

boundaries 
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203.             if (type(results['lower']) is list):  

204.                 lowerval = 

r_unlist(rvector(results['lower'])) 

205.                 upperval = 

r_unlist(rvector(results['upper'])) 

206.             else: 

207.                 lowerval = results['lower'] 

208.                 upperval = results['upper'] 

209.  

210.             X = flacco.createInitialSample(n_obs = 500, dim = 

n, control = rlist(**{'init_sample.type' : 'lhs', 

'init_sample.lower' : lowerval, 'init_sample.upper' : upperval})) 

211.             y = rapply(X, 1, rtestfunc) 

212.             testfuncobj = flacco.createFeatureObject(**{'X': 

X, 'y': y, 'fun': rtestfunc, 'lower': lowerval, 'upper': upperval, 

'blocks': blocks, 'force': forced}) 

213.              

214.             # these are the retained features. Note that some 

features are being excluded for being problematic and to avoid 

overcomplicating the neural network.... the feature sets are 

redundant and the most relevant ones have been retained 

215.             # the excluded feature sets are: 'bt', 

'ela_level' 

216.             # feature sets that require special attention: 

'cm_angle', 'cm_grad', 'limo', 'gcm' (large set with some nans),  

217.             featureset = 

['cm_angle','cm_conv','cm_grad','ela_conv','ela_curv','ela_distr','

ela_local','ela_meta','basic','disp','limo','nbc','pca','gcm','ic'] 

218.             pyfeats = dict() 

219.             for feature in featureset: 

220.                 rawfeats = 

flacco.calculateFeatureSet(testfuncobj, set=feature) 

221.                 pyfeats[feature] = asarray(rawfeats) 

222.              

223.             writerepresentation(funcpath, pyfeats) 

224.              
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225.     for feat in results.keys(): 

226.         if isinstance(results[feat],ndarray): 

227.             results[feat] =  

results[feat].reshape(results[feat].shape[:-1]) 

228.  

229.     return results 

230.  

231.  

232.  

233. def exp(heuristicpath, testfunctionpaths, args, 

measurementSampleSize = 30): 

234.     for i,funpath in enumerate(testfunctionpaths): 

235.         if funpath.find('@') == 0: 

236.             testfunctionpaths[i] = path.dirname(__file__) + 

'/TestFunctions/' + funpath[1:] 

237.  

238.     if (heuristicpath.find('@') == 0): heuristicpath = 

path.dirname(__file__) + '/SampleAlgorithms/' + heuristicpath[1:] 

239.  

240.     #defining the function's name 

241.     funcnames = [path.splitext(path.basename(funcpath))[0] 

for funcpath in testfunctionpaths] 

242.  

243.     #defining the heuristic's name 

244.     #heuristic_name = 

path.splitext(path.basename(heuristicpath))[0] 

245.  

246.     # logic variables to deal with the processes 

247.     proc = [] 

248.     connections = {} 

249.  

250.     # loading the test functions into the namespace and 

memory 

251.     for idx, funcpath in enumerate(testfunctionpaths): 

252.         funcname = funcnames[idx] 

253.         # Creating the connection objects for communication 

between the heuristic and this module 
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254.         connections[funcname] = 

multiprocessing.Pipe(duplex=False) 

255.         proc.append(multiprocessing.Process(target=measure, 

name=funcname, args=(heuristicpath, funcpath, args, 

connections[funcname][1], measurementSampleSize))) 

256.  

257.     # defining the response variables 

258.     responses = {} 

259.     failedfunctions = {} 

260.  

261.     # Starting the subprocesses for each testfunction 

262.     for idx,process in enumerate(proc): 

263.         process.start() 

264.  

265.     # Waiting for all the runs to be done 

266.     for process in proc: process.join() 

267.  

268.     for process in proc: 

269.         run = process.name 

270.         if process.exitcode == 0: responses[run] = 

connections[run][0].recv() 

271.         else: 

272.             responses[run] = "this run was not successful" 

273.             failedfunctions[run] = process.exitcode 

274.         connections[run][0].close() 

275.         connections[run][1].close() 

276.      

277.      

278.     # display output 

279.     print("\n\n||||| Responses: [mean,stdDev] |||||") 

280.     for process in proc: print(process.name + "____\n" + 

str(responses[process.name][0]) + "\n_________________") 

281.      

282.     #return the performance values 

283.     return responses 

284.  



90 

 

285. def plotfuncs(funcpaths, feature, low_limit = 0, high_limit = 

200): 

286.     pi = 3.141592653589793 

287.     for i,funpath in enumerate(funcpaths): 

288.         if funpath.find('@') == 0: 

289.             funcpaths[i] = path.dirname(__file__) + 

'/TestFunctions/' + funpath[1:] 

290.      

291.     funcnames = [path.splitext(path.basename(funcpath))[0] 

for funcpath in funcpaths] 

292.     representations = {} 

293.  

294.     for idx,funpath in enumerate(funcpaths): 

295.         representations[funcnames[idx]] = 

representfunc(funpath)[feature] 

296.      

297.     # generate a list of the categories of the plot 

298.     elements = list(representations.values()) 

299.     categories = [str(i) for i in 

list(range(len(elements[0])))] 

300.  

301.     # creating the plot figure 

302.     fig = plt.figure(figsize = (12,8)) 

303.     ax = plt.subplot(polar = "True") 

304.  

305.     for idx, func in enumerate(representations): 

306.         vals = representations[func] 

307.         vals = [float(v) for v in vals] 

308.  

309.         # get the number of dims of the plot 

310.         N = len(vals) 

311.         # repeat the first value to close the circle 

312.         vals +=  vals[:1] 

313.         #calculate the angles for each category 

314.         angles = [n/float(N)*2*pi for n in range(N)] 

315.         angles += angles[:1] 

316.         #creating the polar plot 
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317.         ax.plot(angles,vals) 

318.  

319.     # X ticks 

320.     plt.xticks(angles[:-1], categories) 

321.  

322.     #ax.set_rlabel_position(0) 

323.  

324.     # y ticks 

325.     # set dynamic scaling for each dimension 

326.     plt.ylim(low_limit,high_limit) 

327.  

328.     plt.title("Radar Plot of the "+feature+ " feature for the 

following Functions") 

329.     plt.legend(funcnames) 

330.     plt.show(block=True) 

331.     return representations 

332.  

333. def visualize2D(funcpath, min = -10, max=10): 

334.     if funcpath.find('@') == 0: 

335.         funcpath = path.dirname(__file__) + '/TestFunctions/' 

+ funcpath[1:] 

336.      

337.     # loading the test function object into the namespace and 

memory 

338.     testspec = 

importlib.util.spec_from_file_location(path.splitext(path.basename(

funcpath))[0], funcpath) 

339.     func = importlib.util.module_from_spec(testspec) 

340.     testspec.loader.exec_module(func) 

341.  

342.     # create the 2D mx 

343.     x = linspace(min,max) 

344.     y = linspace(min,max) 

345.     X, Y = meshgrid(x, y) 

346.     vals = array([[X[i][j],Y[i][j]] for i in 

range(X.shape[0]) for j in range(X.shape[1])]) 
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347.     z = array([func.main(arg) for arg in vals]) 

348.     Z = z.reshape([50,50]) 

349.     fig = plt.figure() 

350.     ax = plt.axes(projection='3d') 

351.     ax.plot_surface(X,Y,Z) 

352.     plt.show() 

353.  

354.  

355.  

356. def model(features, doe_data): 

357.  

358.     X_train, X_test, y_train, y_test = 

train_test_split(features, doe_data, random_state=1) 

359.  

360.     regr = MLPRegressor(random_state=1, 

max_iter=500).fit(X_train, y_train) 

361.  

362.     score = regr.score(X_test, y_test) 

363.     return (score, regr) 

364.      

365.  

366. if __name__== "__main__": 

367.     #plotfuncs(['@Bukin2.py','@Bukin6.py'], 'ela_meta') 

368.     testfuns = 

['@Bukin2.py','@Bukin6.py','@Leon.py','@Miele_Cantrell.py','@Brown.

py','@Keane.py','@McCormick.py'] 

369.     #perf = exp('@SimmulatedAnnealing.py', testfuns,{"t": 

1000, "p": 0.95, "objs": 0},measurementSampleSize=30) 

370.     visualize2D(testfuns[1]) 

371.     #feats = array([representfunc(testfun)['ela_meta'] for 

testfun in testfuns]) 

372.  

373.     perfs = array([[perf[func][0]['cpuTime'][0], 

perf[func][0]['numCalls'][0], perf[func][0]['quality'][0], 

perf[func][0]['convRate'][0]] for func in perf.keys()]) 

374.     features = array(feats) 

375.  
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376.     model(features, perfs) 

377. # %% 



 

APPENDIX IV. 
 

SAMPLE STRUCTURE OF PREPROGRAMMED TEST FUNCTIONS 
 

Algorithm-A  IV-1 The Bukin2 Test Function Implementation 

Bukin2 function: 
1. def main(args): 
2.             '''   
3.   

4.  #_# dimmensions: 2 

5.  #_# upper: [-5, 3] 

6.  #_# lower: [-15, -3] 

7.  #_# minimum: [-10,0] 

8.             #_# Represented: 0 
9.  
10.  ''' 

11.     return 100*(args[1]-0.01*args[0]**2+1)+0.01*(args[0]+10)**2 

 



 

APPENDIX V. 
 

AUTOMATED TESTS ALGORITHMS 
 

Algorithm-A  V-1 The Unittest Automated Testing Script 

Automated Testing Script 
1. import unittest 

2. import os 

3.  

4. from MDAF.MDAF import representfunc 

5. from MDAF.MDAF import exp 

6.  

7. #target = __import__("MDAF.py") 

8.  

9. # Testing the test function representation workflow 

10. class Test_representfunc(unittest.TestCase): 

11.     def testexternalfuncs(self): 

12.         """ 

13.         Test that the function can calculate the 

representation and write to the function docstring 

14.         """ 

15.         funcpath = 'tests/Bukin2.py' 

16.         #funcpath_backup = 'tests/Bukin2.py.old' 

17.  

18.         results = representfunc(funcpath, forced = True) 

19.  

20.         with open(funcpath,"r") as file: 

21.             content = file.read() 

22.             reprCheck = bool(content.find('#_# Represented: 

1')) 

23.  

24.         #os.remove(funcpath)  

25.         #os.replace(funcpath_backup, funcpath) 

26.         self.assertTrue(reprCheck) 

27.         self.assertIsInstance(results, dict) 

28.      
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29.     def testinternalfuncs(self): 

30.         """ 

31.         Test that the function can calculate the 

representation and write to the function docstring 

32.         """ 

33.         funcpath = '@Bukin2.py' 

34.         funcverify = 'MDAF/TestFunctions/Bukin2.py' 

35.         #funcpath_backup = 'tests/Bukin2.py.old' 

36.  

37.         results = representfunc(funcpath, forced = True) 

38.  

39.         with open(funcverify,"r") as file: 

40.             content = file.read() 

41.             reprCheck = bool(content.find('#_# Represented: 

1')) 

42.  

43.         #os.remove(funcpath)  

44.         #os.replace(funcpath_backup, funcpath) 

45.         self.assertTrue(reprCheck) 

46.         self.assertIsInstance(results, dict) 

47.  

48.  

49.  

50. # Testing the flacco installation workflow 

51. class Test_flaccoInstall(unittest.TestCase): 

52.     def testoutput(self): 

53.         """ 

54.         Test that the flacco packages are able to install 

automatically 

55.         """ 

56.         #installFalcoo() 

57.  

58.  

59. # Testing the DOE execution workflow 

60. class Test_DOE(unittest.TestCase): 

61.     def testexternalfuncs(self): 

62.         """ 
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63.         Test that it can execute a DOE and output the 

dictionarry of the results 

64.         """ 

65.         testfunctionpaths = ["tests/Bukin2.py"] 

66.         heuristicpath = "tests/SimmulatedAnnealing.py" 

67.         args = {"t": 1000, "p": 0.95, "objs": 0} 

68.         data = exp (heuristicpath, testfunctionpaths, args) 

69.         self.assertIsInstance(data, dict) 

70.      

71.     def testinternalfuncs(self): 

72.         """ 

73.         Test that it can execute a DOE and output the 

dictionarry of the results 

74.         """ 

75.         testfunctionpaths = ["@Bukin2.py"] 

76.         heuristicpath = "@SimmulatedAnnealing.py" 

77.         args = {"t": 1000, "p": 0.95, "objs": 0} 

78.         data = exp (heuristicpath, testfunctionpaths, args) 

79.         print(data) 

80.         self.assertIsInstance(data, dict) 

 
 



 

APPENDIX VI. 
 

FLACCO Features Data 
 

Table-A VI-1 The gcm Feature Set Values 
 Leon Price2 Ackley2 Step Brown Styblinski-Tang 

1 1 7 1 1 1 4 

2 0.02777778 0.19444444 0.02777778 0.02777778 0.001371742 0.11111111 

3 0.97222222 0.80555556 0.97222222 0.97222222 0.541838134 0.88888889 

4 0 0.66666667 0 0 0 0.47222222 

5 1 0.09454594 1 1 0.543209877 0.20065046 

6 1 0.14285714 1 1 0.543209877 0.25 

7 1 0.11484541 1 1 0.543209877 0.24278043 

8 1 0.29185606 1 1 0.543209877 0.31378867 

9 nan 0.07241316 nan nan nan 0.04700162 

10 1 0.02777778 1 1 0.543209877 0.11111111 

11 1 0.04761905 1 1 0.543209877 0.13194444 

12 1 0.02777778 1 1 0.543209877 0.11111111 

13 1 0.11111111 1 1 0.543209877 0.19444444 

14 nan 0.03090826 nan nan nan 0.04166667 

15 1 0.33333333 1 1 0.543209877 0.52777778 

16 1 0.02777778 1 1 0.543209877 0.25 
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 Leon Price2 Ackley2 Step Brown Styblinski-Tang 

17 1 0.14285714 1 1 0.543209877 0.25 

18 1 0.11111111 1 1 0.543209877 0.25 

19 1 0.36111111 1 1 0.543209877 0.25 

20 nan 0.11275243 nan nan nan 0 

21 1 1 1 1 0.543209877 1 

22 1 0.18140016 1 1 0.543209877 0.31378867 

23 0.02777778 0.02777778 0.02777778 0.02777778 0.001371742 0.02777778 

24 0 0 0 0 0 0 

25 0.02 0.396 0.021 0.293 7.939 0.19 

26 2 6 1 1 1 4 

27 0.05555556 0.16666667 0.02777778 0.02777778 0.001371742 0.11111111 

28 0.94444444 0.83333333 0.97222222 0.97222222 0.541838134 0.88888889 

29 0.83333333 0.75 0 0 0 0.75 

30 0.48352763 0.11878172 1 1 0.543209877 0.21908552 

31 0.5 0.16666667 1 1 0.543209877 0.25 

32 0.5 0.15022098 1 1 0.543209877 0.24131732 

33 0.51647237 0.26560387 1 1 0.543209877 0.29827985 

34 0.02329546 0.05358846 nan nan nan 0.03423605 

35 0.08333333 0.02777778 1 1 0.543209877 0.02777778 
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 Leon Price2 Ackley2 Step Brown Styblinski-Tang 

36 0.08333333 0.04166667 1 1 0.543209877 0.0625 

37 0.08333333 0.02777778 1 1 0.543209877 0.02777778 

38 0.08333333 0.08333333 1 1 0.543209877 0.16666667 

39 0.0 0.02324056 nan nan nan 0.06944444 

40 0.16666667 0.25 1 1 0.543209877 0.25 

41 0.44444444 0.05555556 1 1 0.543209877 0.25 

42 0.5 0.16666667 1 1 0.543209877 0.25 

43 0.5 0.13888889 1 1 0.543209877 0.25 

44 0.55555556 0.30555556 1 1 0.543209877 0.25 

45 0.07856742 0.0860663 nan nan nan 0 

46 1 1 1 1 0.543209877 1 

47 0.48352763 0.26560387 1 1 0.543209877 0.29827985 

48 0.02777778 0.02777778 0.02777778 0.02777778 0.001371742 0.02777778 

49 0 0 0 0 0 0 

50 0.02 0.335 0.02 0.261 7.537 0.557 

51 1 4 1 1 2 4 

52 0.02777778 0.11111111 0.02777778 0.02777778 0.002743484 0.11111111 

53 0.97222222 0.88888889 0.97222222 0.97222222 0.997256516 0.88888889 

54 0 0.44444444 0 0 1 0.75 

55 1 0.12066382 1 1 0.5 0.22466354 
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 Leon Price2 Ackley2 Step Brown Styblinski-Tang 

56 1 0.25 1 1 0.5 0.25 

57 1 0.2662074 1 1 0.5 0.24621096 

58 1 0.34692138 1 1 0.5 0.28291453 

59 nan 0.09797158 nan nan 0.0 0.02445002 

60 1 0.05555556 1 1 0 0.02777778 

61 1 0.13888889 1 1 0 0.0625 

62 1 0.13888889 1 1 0 0.02777778 

63 1 0.22222222 1 1 0 0.16666667 

64 nan 0.06804138 nan nan 0.0 0.06944444 

65 1 0.55555556 1 1 0 0.25 

66 1 0.13888889 1 1 0.488340192 0.25 

67 1 0.25 1 1 0.5 0.25 

68 1 0.26388889 1 1 0.5 0.25 

69 1 0.33333333 1 1 0.511659808 0.25 

70 nan 0.08784105 nan nan 0.0164894585 0 

71 1 1 1 1 1 1 

72 1 0.23343294 1 1 1 0.28291453 

73 0.02777778 0.02777778 0.02777778 0.02777778 0.002743484 0.02777778 

74 0 0 0 0 0 0 
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 Leon Price2 Ackley2 Step Brown Styblinski-Tang 

75 0.022 0.279 0.024 0.239 12.115 0.204 



 

APPENDIX VII. 
 

PSO PERFORMANCE DATA 
 

Table-A VII-1 c1 Parameter Values Used for the Case Study 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 

1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 

1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58 

2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.11 

2.63 2.63 2.63 2.63 2.63 2.63 2.63 2.63 2.63 2.63 2.63 2.63 2.63 2.63 2.63 2.63 2.63 2.63 2.63 2.63 

3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.16 

3.68 3.68 3.68 3.68 3.68 3.68 3.68 3.68 3.68 3.68 3.68 3.68 3.68 3.68 3.68 3.68 3.68 3.68 3.68 3.68 

4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 4.21 

4.74 4.74 4.74 4.74 4.74 4.74 4.74 4.74 4.74 4.74 4.74 4.74 4.74 4.74 4.74 4.74 4.74 4.74 4.74 4.74 

5.26 5.26 5.26 5.26 5.26 5.26 5.26 5.26 5.26 5.26 5.26 5.26 5.26 5.26 5.26 5.26 5.26 5.26 5.26 5.26 

5.79 5.79 5.79 5.79 5.79 5.79 5.79 5.79 5.79 5.79 5.79 5.79 5.79 5.79 5.79 5.79 5.79 5.79 5.79 5.79 

6.32 6.32 6.32 6.32 6.32 6.32 6.32 6.32 6.32 6.32 6.32 6.32 6.32 6.32 6.32 6.32 6.32 6.32 6.32 6.32 

6.84 6.84 6.84 6.84 6.84 6.84 6.84 6.84 6.84 6.84 6.84 6.84 6.84 6.84 6.84 6.84 6.84 6.84 6.84 6.84 

7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 

7.89 7.89 7.89 7.89 7.89 7.89 7.89 7.89 7.89 7.89 7.89 7.89 7.89 7.89 7.89 7.89 7.89 7.89 7.89 7.89 

8.42 8.42 8.42 8.42 8.42 8.42 8.42 8.42 8.42 8.42 8.42 8.42 8.42 8.42 8.42 8.42 8.42 8.42 8.42 8.42 

8.95 8.95 8.95 8.95 8.95 8.95 8.95 8.95 8.95 8.95 8.95 8.95 8.95 8.95 8.95 8.95 8.95 8.95 8.95 8.95 

9.47 9.47 9.47 9.47 9.47 9.47 9.47 9.47 9.47 9.47 9.47 9.47 9.47 9.47 9.47 9.47 9.47 9.47 9.47 9.47 
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Table-A VII-2 c2 Parameter Values Used for the Case Study 
0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00 

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00 

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00 

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00 

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00 

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00 

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00 

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00 

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00 

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00 

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00 

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00 

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00 

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00 

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00 

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00 

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00 

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00 

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00 

0.00 0.53 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 5.79 6.32 6.84 7.37 7.89 8.42 8.95 9.47 10.00 

 

  



106 

 

Table-A VII-3 Average Number of calls Required to Optimize the Leon Test Function using PSO for each c1 and c2 Parameter 
variations 

OVFL 291 291 13000 OVFL 401 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 691 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 231 OVFL 211 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 9461 OVFL OVFL 5801 OVFL 

OVFL 471 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 16101 OVFL OVFL 

OVFL OVFL 551 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 41 OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL 661 OVFL 251 OVFL OVFL 641 OVFL OVFL OVFL OVFL OVFL 19170 OVFL OVFL OVFL OVFL OVFL 22091 

OVFL 161 OVFL OVFL OVFL OVFL OVFL 50011 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 711 93784 OVFL 951 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 321 OVFL OVFL 921 611 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 6811 OVFL OVFL 

OVFL OVFL 181 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 281 OVFL 391 OVFL OVFL 371 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL 281 OVFL 311 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL OVFL 241 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL 371 511 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 331 261 OVFL OVFL 201 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 231 341 361 231 OVFL 381 OVFL OVFL 531 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL 351 OVFL 331 451 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 271 331 311 501 OVFL OVFL 561 OVFL OVFL OVFL OVFL OVFL 32011 301 OVFL OVFL 6141 OVFL OVFL 

OVFL OVFL 581 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 221 OVFL OVFL OVFL OVFL 

OVFL 309 211 151 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 
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Table-A VII-4 Standard Errors for the Average Numbers of calls Statistics Required to Optimize the Leon Test Function using 
PSO for each c1 and c2 Parameter variations 

0 0 0 8490 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 5389 0 0 0 0 0 0 

0 0 0 0 0 0 0 12907 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 6217 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table-A VII-5 Average Number of calls Required to Optimize the Price2 Test Function using PSO for each c1 and c2 Parameter 
variations 

OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 15241 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL OVFL OVFL OVFL OVFL 991 OVFL 26691 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL 371 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 14861 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL OVFL OVFL 661 OVFL OVFL OVFL OVFL OVFL OVFL OVFL 55011 OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 301 OVFL OVFL OVFL 791 OVFL OVFL 11081 OVFL OVFL 46531 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 1361 OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL OVFL OVFL OVFL OVFL OVFL 2061 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 3301 OVFL OVFL OVFL 

OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 7861 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 281 OVFL OVFL OVFL OVFL OVFL 26071 OVFL 58827 25601 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 20101 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL OVFL OVFL OVFL OVFL OVFL 5721 1771 17711 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL OVFL 441 OVFL OVFL OVFL 20801 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL OVFL OVFL 751 87574 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 4411 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 2821 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

21 OVFL OVFL OVFL OVFL OVFL OVFL 4004 OVFL OVFL 78831 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL OVFL 501 OVFL OVFL OVFL OVFL 52979 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 
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Table-A VII-6 Standard Errors for the Average Numbers of calls Statistics Required to Optimize the Price2 Test Function using 
PSO for each c1 and c2 Parameter variations 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1856 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 8490 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 372.7 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 4589 0 0 0 0 0 0 0 0 0 0 0 
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Table-A VII-7 Average Number of calls Required to Optimize the Brown Test Function using PSO for each c1 and c2 Parameter 
variations 

OVFL OVFL 451 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 761 OVFL 691 OVFL OVFL 3851 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL 391 671 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 1091 OVFL OVFL OVFL 1481 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 461 50226 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL 441 OVFL OVFL 1321 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 511 OVFL 671 901 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL 501 OVFL 881 OVFL 2571 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 291 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 421 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL OVFL 761 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL 391 OVFL 1041 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 371 681 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 691 481 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 371 461 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 431 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL OVFL 521 781 1681 3731 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 
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Table-A VII-8 Standard Errors for the Average Numbers of calls Statistics Required to Optimize the Brown Test Function using 
PSO for each c1 and c2 Parameter variations 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 12852 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table-A VII-9 Average Number of calls Required to Optimize the Ackley2 Test Function using PSO for each c1 and c2 Parameter 
variations 

OVFL 621 681 1211 951 1691 4361 69531 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 701 801 941 1601 1771 4451 33671 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 751 621 701 1421 2001 1931 96071 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 751 951 801 1271 2711 3021 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 681 721 701 1601 1751 2391 46061 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 709 811 1121 1641 1721 5641 41931 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 741 541 921 2581 1621 3901 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 721 781 931 2131 2051 7271 31261 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 531 561 901 1561 2151 1431 91781 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 681 821 1071 841 1701 4061 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 801 971 911 1481 2731 3911 79641 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 621 861 871 901 3121 9361 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 541 901 1061 801 2291 4496 39281 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 681 751 1581 1101 2701 8783 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 511 711 651 1041 2521 5441 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 621 801 661 1791 5091 2535 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 651 851 1121 1271 1521 10971 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 761 731 1321 1081 1431 3891 97521 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 661 711 871 1881 2311 1361 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 481 691 1041 961 1231 4131 60701 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 
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Table-A VII-10 Standard Errors for the Average Numbers of calls Statistics Required to Optimize the Ackley2 Test Function 
using PSO for each c1 and c2 Parameter variations 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 27.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 148.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 1063.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 24.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table-A VII-11 Average Number of calls Required to Optimize the Styblinski-Tang Test Function using PSO for each c1 and c2 
Parameter variations 

OVFL 301 OVFL OVFL 371 931 1221 1471 5881 8381 OVFL OVFL 23741 OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 361 OVFL 381 581 801 781 2691 7721 OVFL 5321 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 441 OVFL OVFL 641 OVFL 1711 571 9961 OVFL OVFL OVFL 42271 OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL 561 OVFL 681 OVFL 1441 6001 11521 13741 67111 OVFL 37351 OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL OVFL 451 OVFL 241 2591 581 12551 12611 67141 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 411 361 OVFL 401 761 1221 1601 9283 78791 51951 OVFL 45971 OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL OVFL 401 921 891 1604 1741 62601 69871 OVFL 20621 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL 161 OVFL 831 1061 1881 5201 52341 15981 33041 OVFL OVFL OVFL OVFL 84501 OVFL OVFL OVFL OVFL 

OVFL 311 221 411 951 1141 1151 2131 10211 70891 OVFL 69941 65841 OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 291 429 OVFL 603 741 1161 1081 2441 16781 OVFL OVFL OVFL OVFL OVFL OVFL OVFL 55201 OVFL OVFL 

OVFL OVFL OVFL 551 OVFL 2311 571 781 13711 44281 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 321 OVFL OVFL 601 OVFL 2851 17451 21351 31671 13217 OVFL OVFL OVFL 93596 OVFL OVFL OVFL OVFL OVFL 

OVFL 251 OVFL OVFL 511 761 2021 5081 15931 36547 70601 93441 OVFL 49131 24331 OVFL OVFL OVFL OVFL 37291 

OVFL OVFL OVFL 441 OVFL 1221 2301 4281 18051 13431 OVFL 9081 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL 381 471 OVFL 1641 1681 9731 11731 81635 59931 OVFL OVFL OVFL 14811 OVFL OVFL OVFL OVFL OVFL 

OVFL 411 431 OVFL 461 931 931 5141 1230 30051 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 301 261 OVFL 391 481 1791 3881 12751 80711 59847 OVFL 94384 44351 OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL 261 OVFL OVFL 691 2171 4751 44758 21651 33791 OVFL OVFL 31677 OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL OVFL 431 551 1271 1481 2171 3421 14274 63791 OVFL 45711 OVFL 56331 16771 64301 OVFL OVFL OVFL OVFL 

OVFL 381 311 331 OVFL 941 1331 3181 10211 OVFL OVFL 30531 88931 OVFL OVFL OVFL OVFL OVFL OVFL OVFL 
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Table-A VII-12 Standard Errors for the Average Numbers of calls Statistics Required to Optimize the Styblinski-Tang Test 
Function using PSO for each c1 and c2 Parameter variations 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 334.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 107.59 72.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 1.87 0.00 31.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5785.62 0.00 0.00 0.00 1653.76 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3406.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7033.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2875.58 4091.25 0.00 3837.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5118.53 0.00 0.00 0.00 0.00 11893.64 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1461.27 9349.38 0.00 0.00 0.00 0.00 0.00 3483.96 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 



116 

 

Table-A VII-13 Average Number of calls Required to Optimize the Step Test Function using PSO for each c1 and c2 Parameter 
variations 

OVFL 251 301 271 631 771 1291 1231 52761 37781 OVFL OVFL OVFL OVFL OVFL OVFL OVFL 11561 OVFL OVFL 

OVFL 251 381 471 201 357 791 4004 5095 16427 43151 40441 OVFL 20261 OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 291 321 331 791 591 961 2772 39361 51141 OVFL 51601 OVFL OVFL OVFL OVFL OVFL OVFL 57081 OVFL 

OVFL 291 471 301 221 241 791 5851 2391 70401 8841 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 281 371 371 561 1721 2006 4291 37261 26601 OVFL OVFL 60191 OVFL OVFL OVFL OVFL 84780 OVFL OVFL 

OVFL 281 191 381 511 781 1001 7621 5901 11381 42551 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 221 411 401 531 461 1181 2021 4011 OVFL 24641 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 291 341 461 291 1071 2371 1181 6991 48791 50001 87721 OVFL 48091 OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 311 291 441 1271 361 961 2031 17641 92971 9791 OVFL OVFL OVFL OVFL OVFL 84611 OVFL OVFL OVFL 

OVFL 261 181 581 1081 251 1081 4931 7861 6361 24911 OVFL 97411 47711 OVFL 11 OVFL OVFL OVFL OVFL 

OVFL 351 271 521 741 1461 511 1491 2911 40651 OVFL 631 OVFL 33381 OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 291 571 361 601 851 1311 4131 4351 23331 OVFL 98081 OVFL OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 191 351 301 621 351 2471 281 5131 50761 OVFL OVFL OVFL 21601 OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 151 261 371 641 471 2131 1261 17661 14111 66821 OVFL OVFL OVFL OVFL 91567 OVFL OVFL OVFL 85231 

OVFL 211 271 371 271 641 1681 9641 12261 12971 41311 95005 93351 OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 311 381 411 331 481 661 654 8331 43891 57912 30591 OVFL 80241 41321 94990 OVFL OVFL 98285 OVFL 

OVFL 288 391 481 301 401 604 3801 17969 5221 75284 OVFL OVFL OVFL OVFL 99986 OVFL OVFL OVFL OVFL 

OVFL 161 331 291 321 681 2171 7226 2348 OVFL 20871 41041 62591 OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

91 315 351 331 1041 1771 1451 1851 36542 22626 62961 64291 91678 OVFL OVFL OVFL OVFL OVFL OVFL OVFL 

OVFL 251 171 331 511 441 1981 2921 18641 79371 921 OVFL OVFL OVFL 52271 OVFL OVFL OVFL OVFL OVFL 
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Table-A VII-14 Standard Errors for the Average Numbers of calls Statistics Required to Optimize the Step Test Function using 
PSO for each c1 and c2 Parameter variations 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 19.21 0.00 322.78 567.38 2296.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 586.42 0.00 0.00 0.00 8425.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 151.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4456.14 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4533.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4996.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 112.50 0.00 0.00 7326.71 0.00 0.00 0.00 0.00 5010.62 0.00 0.00 114.37 0.00 

0.00 3.84 0.00 0.00 0.00 0.00 58.64 0.00 3859.26 0.00 6135.03 0.00 0.00 0.00 0.00 5.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 765.91 669.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 6.25 0.00 0.00 0.00 0.00 0.00 0.00 2896.37 3915.88 0.00 0.00 4473.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 67.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

  



 

APPENDIX VIII. 
 

CASE STUDY CODE 
 

Algorithm-A  VIII-1  Case Study Python Script used with MDAF to Generate the Results 
    testfuns = ['@Ackley2.py', '@Alpine.py', '@Brown.py', '@Bukin2.py',\ 
'@Bukin4.py', '@Bukin6.py', '@Keane.py', '@Leon.py', '@Matyas.py',\ 
'@McCormick.py', '@Miele_Cantrell.py', '@Periodic.py',\ 
'@PowellSingular2.py', '@Price1.py', '@Price2.py', '@Quartic.py',\ 
'@Rastriring.py', '@Scahffer.py', '@Schwefel.py', '@Sphere.py',\ 
'@Step.py', '@Step2.py', '@Styblinski-Tang.py', '@SumSquare.py',\ 
'@Wayburn.py', '@Zettle.py', '@Zirilli.py'] 
 
    selections = testfuns['@Leon.py', '@Price2.py', '@Ackley2.py', 
'@Step.py', '@Brown.py', '@Styblinski-Tang.py'] 
 
    # Measurement sample size 
    print("Input the measurement sample size Default(16): ") 
    s = int(input() or 16) 
    print(s) 
    #PSO population size 
    print("\n\nInput the PSO population size Default(10): ") 
    pop = int(input() or 10) 
    print(pop) 
 
    #visualize2D('@Ackley2.py', -10,10) 
    #feats = array([representfunc(testfun, True)['ela_meta'] for testfun 
in testfuns]) 
    #plotfuncs(['@Bukin2.py','@Bukin6.py'], 'ela_meta') 
 
    # Initialize output data model 
    # Value iterations 
    print("\n\nInput the max min and number of elements for the first 
parameter iterations. Default(0,10,20): ") 
    vmax = int(input() or 0) 
    vmin = int(input() or 10) 
    vnum = int(input() or 20) 
    print(vmax, vmin,vnum) 
    ### 
    print("\n\nInput the max min and number of elements for the second 
parameter iterations. Default(0,10,20): ") 
    vmax2 = int(input() or 0) 
    vmin2 = int(input() or 10) 
    vnum2 = int(input() or 20) 
    print(vmax2, vmin2,vnum2) 
    ### First parameter 
    iterations = linspace(vmax, vmin, vnum) 
    ### Second parameter for mapping 
    iterations2 = linspace(vmax2, vmin2, vnum2) 
    x,y = meshgrid(iterations,iterations2, indexing='ij') 
 
    avgs = {} 
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    devs = {} 
    for i in selections:  
        avgs[path.splitext(path.basename(i))[0].replace('@','')] = [] 
        devs[path.splitext(path.basename(i))[0].replace('@','')] = [] 
 
    # Loop over range of meta parameters 
    for i in range(len(iterations)): 
        vectavgs = {} 
        vecdevs = {} 
        for c in selections: 
            
vectavgs[path.splitext(path.basename(c))[0].replace('@','')]=[] 
            
vecdevs[path.splitext(path.basename(c))[0].replace('@','')]=[] 
        for j in range(len(iterations2)): 
            #initialize the particles 
            args = {'high':100, 'low':-100, 't':0.0001, 'p':0, 
'iter_max':10000, 'pop_size':pop, 'dimensions':6, 'c1':x[i,j], 
'c2':y[i,j], 'neededQuality':100, 'sigma':0.001, 'wmax':0.9, 
'wmin':0.4,'w':0.75} 
            # Run the simulation 
            perf = exp('@PSO-Annealing.py', selections, args,\ 
measurementSampleSize=s) 
            perfs = {} 
            deviations = {} 
            for func in perf.keys(): 
                perfs[func] = [perf[func][0]['cpuTime'][0], \ 
perf[func][0]['numCalls'][0], perf[func][0]['quality'][0], \ 
perf[func][0]['convRate'][0]] 
 
                deviations[func]=[perf[func][0]['cpuTime'][1],\ 
perf[func][0]['numCalls'][1], perf[func][0]['quality'][1],\ 
perf[func][0]['convRate'][1]] 
 
                vectavgs[func].append(perfs[func][1]) 
                vecdevs[func].append(deviations[func][1]/(s**0.5)) 
 
        for func in perf.keys(): 
            avgs[func].append(vectavgs[func]) 
            devs[func].append(vecdevs[func]) 
 
    # Generate 2D heatmaps 
    for idx, name in enumerate(list(avgs.keys())):  
        heatmap(x,y,array(avgs[name]),name) 
        heatmap(x,y,array(devs[name]),name+'stdErrs') 
         
    # Save the csv files 
    with open("Data/"+"Xs.csv", "w") as f: 
        writer = csv.writer(f) 
        writer.writerows(x) 
        f.close() 
    with open("Data/"+"Ys.csv", "w") as f: 
        writer = csv.writer(f) 
        writer.writerows(y) 
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        f.close() 
    for idx, name in enumerate(list(avgs.keys())): 
        with open("Data/"+name+"Avgs.csv", "w") as f: 
            writer = csv.writer(f) 
            writer.writerows(avgs[name]) 
            f.close() 
        with open("Data/"+name+"Devs.csv", "w") as f: 
            writer = csv.writer(f) 
            writer.writerows(devs[name]) 
            f.close() 



 

APPENDIX IX. 
 

PSO ALGORITHM 
 

Algorithm-A  IX-1 The PSO Algorithm 

import math as m 

import numpy as np 

from numpy import random as r 

import time 

import copy as cp 

 

 

r.seed(int(time.time())) 

route = list() 

 

#Ackley2 for rapid testing 

def func(args): 

    return -200 * m.e**(-0.02 * m.sqrt(args[0]**2 + args[1]**2)) 

 

def Quality(func, Sc,objective): 

    func_output = func(Sc) 

    if hasattr(func_output, '__iter__'): 

        if (objective is not list): 

            objective = [objective for x in range(len(func_output))] 

        error = max([func_output[i]-objective[i] for i in range(len(func_output))]) 

    else: 

        error = func_output - objective 

    return 1/(abs(error)+0.00000001) 

 

 

def move(p,args,best): 
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    v = [] 

    for d in range(args['dimensions']): 

        v.append(args['w']*p['v'][d] + args['c1'] * r.random() * (p['best'][d] - p['params'][d]) \ 

             + args['c2'] * r.random() * (best['params'][d] - p['params'][d])) 

     

    return v 

 

def main(func, S, args): 

 

    high = args["upper"] if hasattr(args["upper"], '__iter__') else [args["upper"] for i in 

range(args['dimensions'])] 

    low = args["lower"] if hasattr(args["lower"], '__iter__') else [args["lower"] for i in 

range(args['dimensions'])] 

    vmax = [val/3 for val in high] 

    vmin = [val/3 for val in low] 

    t = args["t"] 

    twprob = args["p"] 

 

    route = list() 

    #initialize the particles 

    particles = [] 

    for i in range(args['pop_size']): 

        p = {} 

        p['params'] = np.array([r.uniform(low[i],high[i]) for i in range(args['dimensions'])]) 

        p['fitness'] = 0.0 

        p['v'] = [0.1 for i in range(args['dimensions'])] 

        particles.append(p) 

     

    Best = cp.deepcopy(particles[0]) 

    Q = 0 
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    route.append(cp.deepcopy(Best['params'][:])) 

    for iter in range(args['iter_max']): 

        # Dynamic linear update of the inertia Weight factor 

        #args['w'] = (args['iter_max'] - iter)*(args['wmax']-args['wmin'])/args['iter_max'] + 

args['wmin'] 

        for p in particles: 

            Q = Quality(func, p['params'],args['objs']) 

             

            # Particle best 

            if (Q > p['fitness'])  or (i==0): 

                p['fitness'] = Q 

                p['best'] = p['params'] 

             

            # general best 

            if Q > Best['fitness']: 

                Best = cp.deepcopy(p) 

                route.append(Best['params'][:]) 

             

            # move the particles to their next location 

            v = move(p,args,Best) 

            for x in range(args['dimensions']):  

                if p['v'][x] > vmax[x]: p['v'][x] = vmax[x] 

                if p['v'][x] < vmin[x]: p['v'][x] = vmin[x] 

                p['params'][x]+=v[x] 

                if p['params'][x] > high[x]: p['params'][x] = high[x] 

                if p['params'][x] < low[x]: p['params'][x] = low[x] 

            p['v'] = v 

         

        if p['fitness'] > args['neededQuality']: 

            break 
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    return Quality(func, Best['params'],args['objs']), route 

 

 

 

if __name__== "__main__": 

    # import plot stuff 

    import matplotlib.pyplot as plt 

    from mpl_toolkits import mplot3d 

    import plotly 

    import plotly.graph_objs as go 

 

    obje = func 

    args = {'upper':100, 'lower':-100, 't':100, 'p':0.2, 'objs':-200, 'neededQuality':100, 

'iter_max':10000, 'pop_size':10, 'dimensions':2, 'c1':2, 'c2':2, 'sigma':0.001, 'wmax':0.9, 

'wmin':0.4, 'w':0.75} 

    a, path = main(obje, 100, args) 

    print(a) 

    # Plot 2D 

    h1 = [i[0] for i in path] 

    h2 = [i[1] for i in path] 

    plt.plot(h1,h2) 

    plt.show() 

    # Plot 3D 

    #h3 = [func(s) for s in path] 

    #trace = go.Scatter3d( x=h1,y=h2,z=h3,mode='markers',marker={'size': 5,'opacity': 0.8,}) 

    #layout = go.Layout(margin={'l': 0, 'r': 0, 'b': 0, 't': 0}) 

    #data = [trace] 

    #plot_figure = go.Figure(data=data, layout=layout) 

    #   Render the plot. 
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    #plotly.offline.iplot(plot_figure) 

 

    #fig = plt.figure() 

    #ax = plt.axes(projection='3d') 

    #ax.scatter3D(h1, h2, h3, c=h3, cmap='Greens'); 

    #plt.show() 



 

APPENDIX X. 
 

PACKAGE INIT FILE 
 

Algorithm-A  X-1 MDAF Package Init File 
from MDAF.MDAF import representfunc 

from MDAF.MDAF import exp 

from MDAF.MDAF import plotfuncs 

from MDAF.MDAF import model 

from MDAF.MDAF import visualize2D 

from MDAF.MDAF import installFlacco 
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