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SUR L’EFFET DES ALGORITHMES DE FORAGE DE DONNÉES SUR LES 
RECOMMANDATIONS DES CHANGEMENTS DE CODE SOURCE 

 
 

Saeed KHALILAZAR 

 
RESUME 

 
Des recherches passées et récentes ont tiré parti du forage de données pour créer des approches 

et des techniques qui peuvent guider les développeurs lors de leurs modifications du code 

source. A notre connaissance, très peu de travaux ont étudié des techniques avancées 

d'exploration de données (par exemple autres qu'Apriori) et/ou ont comparé leurs résultats avec 

d'autres algorithmes ou un référentiel de base.  

Dans cet article, nous proposons une approche automatique pour recommander des 

changements de code source à l'aide de quatre algorithmes de forgae de données, Apriori, FP-

Growth, Eclat et Relim. Nous considérons Apriori, l'algorithme de forage de données 

largement adopté, comme notre référentiel de base. Nous recommandons non seulement des 

changements de code source en utilisant ces quatre algorithmes de data mining, mais nous 

fournissons également une évaluation empirique de leurs performances en utilisant différentes 

configurations et explorons comment ces différentes configurations affectent la pertinence des 

recommandations produites. 

Notre étude empirique implique sept projets open-source à partir desquels nous avons extrait 

l'historique des changements de source au niveau du fichier. Nous avons comparé les résultats 

en termes de précision, de rappel et de F-mesure en considérant comme référence l'algorithme 

Apriori. 

Nos résultats apportent des preuves empiriques sur le fait que bien que certains algorithmes 

avancés puissent dans certains cas être plus performants que des algorithmes de base tels 

qu'Apriori, les résultats dépendent de l'historique des changements, du type de techniques 

d'exploration de données appliquées, de la nature et des caractéristiques des projets, y compris 



VI 

du total. nombre de transactions. Nous pensons que la communauté des chercheurs travaillant 

dans ce domaine peut tirer parti de ces résultats lors de la sélection d'algorithmes de forage de 

données pour créer leurs recommandations pour les changements du code source. 

Mots-clés: Changements du code source, Systèmes de recommandation, forage de données, 

historique des changements du code source, Apriori, FP-Growth, Eclat, ReLim, étude 

empirique.



 

ON THE EFFECT OF DATA MINING TECHNIQUES ON RECOMMENDING 
SOURCE CODE CHANGES 

 
Saeed KHALILAZAR 

 
ABSTRACT 

 
Past and recent research has leveraged data mining to build approaches and techniques that can 

guide developers during their source code changes. To the best of our knowledge, very few 

works have investigated advanced data mining techniques (e.g., FP-Growth, Relim, or Eclat, 

etc.) and--or compared their results with other algorithms or a baseline.  

In this paper, we suggest an automatic approach to recommend source code changes using four 

data mining algorithms, Apriori, FP-Growth, Eclat and Relim. We consider Apriori, the 

widely-adopted data mining algorithm, as our baseline. We not only recommend source code 

changes using these four data mining algorithms, but we also provide an empirical evaluation 

of their performances using different configurations and explore how these different 

configurations affect the relevance of the produced recommendations.  

Our empirical study involves seven open-source projects from which we have extracted source 

change history at the file level. We have compared the results in terms of precision, recall, and 

F-measure by considering as our baseline, the Apriori algorithm. 

Our findings bring empirical evidence on the fact that although some advanced algorithms 

may, in some cases, perform better than basic algorithms such as Apriori, the results depend 

on the change history, type of applied data mining techniques, the nature and characteristics of 

the projects including total number of transactions. We believe the research community 

working in this area can leverage these findings when selecting data mining algorithms to build 

their recommenders for source code changes.  

Keywords: Source code changes, Recommendation systems, data mining, source code change 

history, Apriori, FP-Growth, Eclat, ReLim, empirical study.
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INTRODUCTION 
 
In recent years, developers accomplish their tasks and do their activities by means of 

Recommendation Systems. These kinds of tools prepare and provide sufficient data for 

developers which are appropriate and relevant to the context of their tasks. In order to prevent 

re-inventing the wheel, some piece of valuable information such as reusable code snippets, 

method invocations from external libraries and resolution of reported bugs could be provided 

to developers with the help of recommendation systems. Recommendation systems ability to 

explore through large volume of produced information enhances its capability to present 

customized contents for individual user of recommendation system. 

Exploring research contributions presents multiple approaches with different goals and 

functionalities such as traditional static and dynamic analysis techniques, IR-based methods 

and mining software repositories. 

The utilization of data mining algorithms for the purpose of recommending source code 

changes has been continuously expanding in many areas including industrial, scientific and 

commercial ones (Borg et al., 2017; Robillard et al., 2009; Ponzanelli et al., 2017). Software 

developers must consider modification tasks in software systems in terms of dependencies 

between different parts of the source code such as files that were changed together regularly 

(Agrawal & Horgan, 1990; Parnas, 1972; Weiser, 1984). To supplement these considerations, 

we investigate various advanced association rules mining algorithms that produce 

recommendations for source code changes using four data mining algorithms, ie Apriori, FP-

Growth, Relim, and Eclat. 

Our work is inspired by Zimmerman et al (2004) and Ying et al (2004) and it is an extension 

of the work done by our lab member, Pierre Poilane in this area (Pierre Poilane, 2017). 

Zimmerman et al (2004) and Ying et al (2004) used Apriori and FP-Growth algorithms 

respectively to predict file change patterns, while Pierre Poilane has leveraged both Apriori 

and FP-Growth to recommend source code changes. Similarly, to these works, we predict 

source code file changes by leveraging data mining. However, we explore four advanced data 

mining techniques, as well as different configurations of each algorithm along with the 
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performances corresponding to each configuration. Furthermore, we perform a comparison 

between our examined algorithms by considering Apriori (used in Zimmerman et al (2004)) as 

our baseline. To the best of our knowledge, we are the first to investigate the use of four 

different advanced data mining algorithms: Apriori, FP-Growth, Relim, and Eclat to predict 

changes in source code files. 

In this research, we address two main research questions: 

• RQ1: How do the four studied advanced data mining techniques, i.e. Apriori, FP-

Growth, Eclat and Relim perform in terms of Precision, Recall and F-measure? 

• RQ2:  Are there any differences between the four studied advanced data mining 

techniques, i.e. Apriori, FP-Growth, Eclat and Relim in terms of their performances 

when recommending source code file changes? 

Our empirical research consists of seven open-source projects: Eclipse, ElasticSearch, Rhino, 

SWT, Kotlin, Guava and JabRef, from which we extract the change history at the file level. 

We chose these projects because they are different in size and domain. In addition, they have 

a reasonable source code change history that can be used for our study purposes. 

We show through our empirical investigation that while some advanced algorithms can 

perform better in some cases than basic algorithms such as Apriori, the results depend on the 

change history, type of applied data mining techniques, the nature and characteristics of the 

projects including total number of transactions. 

In thesis, we will discuss some principal concepts of recommendation systems in software 

engineering, literature review, their goals and functionality as well as different approaches and 

algorithms used in developing recommendation systems. Furthermore, we will introduce some 

proposed implemented recommendation systems in further details as well as their comparison 

considering used approaches and results. 

We can categorize recommendation in terms of their goals and functionality to different 

categories such as supporting developers in change tasks, API usage, reusable software 
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components, etc. More technically, it can be clustered based on recommendation filtering 

techniques as follows (Isinkaye, Folajimi, & Ojokoh, 2015): 

• Content-based filtering technique, 

• Collaborative filtering technique: Model-based filtering techniques (Clustering 

techniques, Association techniques, Bayesian network, Neural network), Memory-

based filtering techniques (User-based, Item-based), 

• Hybrid filtering technique. 

Malheiros et al., (2012) propose Mentor which helps newcomers in order to resolve change 

requests by source code file recommendation. It utilizes the Prediction by Partial Matching 

(PPM) algorithm as well as some heuristics with purpose of data mining within version control 

system and change request analysis in order to provide relevant source code recommendations 

that assist developers to handle change requests. The programming language is not important 

for the tool whether it is written in C, C++, Java or mix programming languages. In order to 

find similar change requests, it makes use of the Support Vector Machine (SVM) classifier 

(Malheiros, Moraes, Trindade, & Meira, 2012). 

One of the important aspects of recommendation systems to consider is the level of granularity 

which shows what level and details will a recommendation system addresses. Lee & Kim 

(2015) explored characterization of the contexts of files to edit with the help of histories with 

purpose of using finer-grained association rules. They extended ROSE, an edit-based 

recommendation system and developed MI (Mining programmer Interaction histories). There 

are two paradigms for history-based recommendation systems, one is based on mining software 

revision histories.  Zimmerman et al (2004) and Ying et al (2004) proposed their 

recommendation systems which recommends files to be edited considering mined software 

revision histories. Association rules among most edited files together are mined then file-to-

edit are recommended (Lee & Kim, 2015). One pitfall in this approach is failure in 

recommendation when the programmer has not edited a file up to moment. In MI as a 

recommender system, files are recommended based on both the viewed files and the edited 

files. Furthermore, they have extended MI capability to mine programmer interaction histories 
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that means files to edit are recommended using mining association rules in programmer 

interaction in either viewed of edited files. Mining rules using MI outperforms the rules mined 

from edit histories in ROSE which shows that MI provides higher recommendation accuracy 

than ROSE (Zimmerman et al., 2004). 

Another level of granularity examined by researchers is the API methods level. In effect, 

(Zhong, et al., 2009) have developed an API usage mining tool called MAPO (Mining API 

usage Pattern from Open-source repositories) which automatically mines API usage patterns. 

MAPO clusters code snippets based on the level of similarity to each other which shows 

various usages of different clusters. Also, MAPO organizes API usage patterns and 

recommends code snippets based on that organization. Holmes et al., (2005) proposed 

Strathcona which suggests code snippet by comparing developing and stored code snippet in 

repository and lists relevant code snippets (Holmes et al., 2005). 

We focus on source code changes issued for developers in this study, we investigate various 

advanced data mining algorithms that produce recommendations for source code changes using 

four data mining algorithms, followed by an empirical study in order to measure the 

performance of those techniques with seven different projects. In the next chapter, we 

investigate four data mining algorithms.



 

CHAPTER 1 
 
 

TECHNICAL BACKGROUND 

In this section, we provide an overview of the data mining algorithms that we have applied in 

our study, i.e., Apriori, FP-Growth, Eclat and Relim. 

1.1 Apriori 

Apriori was the first data mining algorithm that was proposed for frequent itemset mining by 

Agrawal and Srikant (1994). It is known to be a reference and one of the most used association 

mining rule algorithms to find sets of items from transactions (Agrawal and Srikant, 1994). 

This algorithm uses two steps “join” and “prune” to reduce the search space. It is a level-wise 

iterative approach to discover the most frequent itemset (Iqbal et al., 2008). Apriori starts by 

generating candidates, i.e., potential sets of frequent items. The list of candidates in the second 

step are taken as input and checks if they are common. To do this, each of the candidates from 

the transactions is verified by the calculation of its support and if equal to or greater than the 

minimum support defined, the candidate will be considered a frequent item and will be part of 

the list of frequent sets. An extended list of frequent candidates is then generated and the 

process continues (starting from step 1) to build the next list of candidates, and so on. Finally, 

when the last generated list of candidates is empty, the algorithm ends.  
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Figure 1.1 Apriori breadth-first search extracted from Heaton (2016) 

 

In Figure 1.1, a real example of Apriori technique is illustrated. As it can be seen, Apriori uses 

a breadth first search for scanning the itemsets and begins by an empty candidate set. Then, a 

list of all singleton itemsets is created. A combination of the singleton itemsets builds the next 

set of candidates frequent itemsets. The itemsets including minimum support will be added to 

the candidate set. For example, usb-cable, mp3-player, and book-dct are all singleton itemsets 

with sufficient support. Minimum support for usb-cable, mp3-player, and book-dct are 4, 3 and 

3, respectively. As mentioned earlier, K+1 itemset are built based on K itemset from previous 

layer as shown in the figure. Combinations of all singleton itemsets are created in the next 

layer. In this example, all 2-itemsets combinations have minimum support as follows. 

Minimum support for “usb-cable, mp3-player”, “usb-cable, book-dct” and “mp3-player, book-

dct” are 3, 2 and 2, respectively which is sufficient to proceed to the next level. Then in the 

next layer, a triplet itemset with all three items for 3-itemsets will be evaluated in terms of 

minimum support in order to decide whether to end the algorithm or to continue. In this 
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example, minimum support is set two and “usb-cable, mp3-player, book-dct” hold sufficient 

minimum support of two (Heaton, 2016). 

1.2 FP-Growth 

This algorithm is an improvement to the Apriori method introduced by Han et al. (2000). The 

algorithm follows divide-and-conquer strategy (Han and Kamber, 2006). A frequent pattern is 

generated without the need for candidate generation. FP-Growth algorithm represents the 

database in the form of a tree called a frequent pattern tree or FP tree. It constructs an FP Tree 

rather than using the generate and test strategy of Apriori. As illustrated in Figure 1.2, FP tree 

consists of a null root node and child nodes (Alzahrani et al., 2015). The focus of the FP Growth 

algorithm is on fragmenting the paths of the items and mining frequent patterns. 

 

 

Figure 1.2 A FP-tree extracted from Alsulim et al. (2015) 

 

1.3 Eclat 

(Zaki, 2000) introduced Eclat (Equivalence Class Transformation) which is a mining frequent 

itemsets algorithm. Using a vertical data format, Eclat, mines and groups all the transactions 

having particular itemset into the same record. In the first step, database is scanned and data 

will be transformed from horizontal to vertical format. This process is illustrated in the 

following tables (Table 1.1, Table 1.2, Table 1.3) 
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Table 1.1 Transactional data in vertical data format  

extracted from Chee et al. (2019) 
Itemset TID set 

I1 {T100, T400, T500, T700, T800, T900} 
I2 {T100, T200, T300, T400, T600, T800, T900} 
I3 {T300, T500, T600, T700, T800, T900} 
I4 {T200, T400} 
I5 {T100, T800} 

 

Table 1.2 Two-Itemsets in vertical data format  

extracted from Chee et al. (2019) 
Itemset TID set 
{I1, I2} {T100, T400, T800, T900} 
{I1, I3} {T500, T700, T800, T900} 
{I1, I4} {T400} 
{I1, I5} {T100, T800} 
{I2, I3} {T300, T600, T800, T900} 
{I2, I4} {T200, T400} 
{I2, I5} {T100, T800} 
{I3, I5} {T800} 

 

Table 1.3 Three-itemsets in vertical data format  

extracted from Chee et al. (2019) 
Itemset TID set 

{I1, I2, I3} {T800, T900} 
{I1, I2, I5} {T100, T800} 

 

Then, by means of intersecting the transactions of the frequent k-itemsets, it produces frequent 

(k+1)-itemsets. Once there will be no more itemset generated, it will continue iterations. Unlike 

other algorithms, it is not necessary for database to be scanned multiple times. Eclat scans the 

database only once and data will be transformed from horizontal to vertical (Chee et al., 2019). 

Using a vertical database layout, this depth-first search algorithm can easily calculate the 

support of an itemset (Pramod & Vyas ,2010).  
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Figure 1.3 An example of Eclat extracted from Heaton (2016) 

 

This process is better illustrated using an example in Figure 1.3. Eclat uses a structure called a 

trie graph, in which the root node is always empty. Itemsets are inserted into the trie graph 

from left, in which the left-most item corresponds to a child of the root node. Mp3-player and 

usb-charger are having minimum support of three, while usb-charger is holding 1 as the value 

of minimum support. Likewise, mp3-player, usb-charger, book-dct are identified as frequent 

itemset due to the support value of two. All paths are created based on encountered 

transactions. Eclat traverses the whole graph in the same manner and extracts all frequent 

itemsets. For example, as it can be seen, 4-itemsets of “mp3-player, usb-charger, book-dct, 

book-ths” which is the left-most path in the trie graph, is representing 4-itemsets with minimum 

support of two. Likewise, second path in the graph is presenting 2-itemsets of “book-dct, book-

ths” with minimum support of three (Heaton, 2016). 
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1.4 ReLim 

Borgelt et al., 2005 developed the Relim algorithm, like numerous other algorithms in the 

search for frequent elements, based on recursive deletion of elements from transactional 

database (Borgelt et al., 2005). ReLim begins by forming a frequency table using the frequency 

of each item, then infrequent items are dropped because those are not among repeated items 

(Figure 1.4). 

 

 

Figure 1.4 Transaction table (left), frequent table (right)  

extracted from Fakir et al. (2020) 

 

Next step is to create initial database based on frequency of the first item of each itemset that 

includes the first item of each itemset as well as its frequency. In the next step, the items with 

the lowest frequency are eliminated. The above-mentioned process repeats until reaching a 

final list which is keeping the null frequencies except the last one which finishes the process. 

This process is depicted in Figure 1.5. 
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Figure 1.5 The process of the Relim algorithm  

extracted from Fakir et al. (2020) 

 

ReLim's major strength is the simplicity of its structure since everything is done in a recursive 

function (Fakir et al., 2020). On the other hand, the structure of ReLim is built in a time-

consuming manner as well as consuming many system resources. ReLim algorithm is different 

from other extracting frequent items algorithms in terms of simple processing and its data 

structure (Fakir et al., 2020). 
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1.5 Comparison of Frequent Pattern Mining algorithms 

There are different kinds of association rule mining depending upon the type of itemsets 

generated during the itemset generation phase e.g., Frequent itemset generation, closed 

frequent itemset generation, Maximal frequent itemset generation (Borah & Nath, 2021). 

Among the Frequent itemset generation algorithms, Apriori (Agrawal & Srikant, 1994) is the 

first algorithm generated in 1994. For this study, we considered Apriori as the baseline and 

three more algorithms for comparison purposes, i.e., FP-Growth, Eclat and Relim. These 

algorithms were selected because they are among the most frequently cited studies referenced 

in the literature (Bayardo, 1998; Borah & Nath, 2017; Borah & Nath, 2018).  

Various researchers have done many experimental tests in order to evaluate the performance 

of Frequent Pattern Mining algorithms considering advantages and disadvantages in terms of 

execution time, memory consumption and number of generated itemsets. Additionally, 

important performance measures including precision and recall are critical to evaluate those 

algorithms. In our study, four algorithms have been chosen from different categories to 

evaluate on seven different datasets from popular projects. Advantages and disadvantages of 

the chosen algorithms are illustrated in following in Table 1.4. Generally, three main 

classifications of Frequent Pattern Mining algorithms are Join-Based, Tree-Based, and Pattern 

Growth. In this study, all the categories are covered with Apriori which is Join-Based in nature, 

Eclat is classified as Tree-Based algorithm, as well as FP-Growth which is considered as a 

Pattern Growth algorithm (Chee et al., 2019). 
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Table 1.4 Advantages and disadvantages of investigated algorithms 
Investigaed Algorithms Advantages Disadvantages 

Apriori (Agrawal and Srikant, 
1994) 

- Applying an iterative 
level-wise search 
technique which results in 
(k+1)-itemsets discovery 
from k-itemsets (Chee et 
al., 2019) 

- Being time-consuming 
while generating 
candidate 

- Needing numerous scans 
on the databases while 
performing 

- Generating redundant 
rules (Mythili & 
Shanavas, 2013) 

Eclat (Zaki, 2000) 

- The database is not 
required to be scanned 
multiple times in order to 
identify the (k+1)-
itemsets (Chee et al., 
2019). 

- The database is also not 
required to be scanned 
multiple times in order to 
identify the support count 
of every frequent itemset 
(Chee et al., 2019). 

- Take extensive memory 
space and processing time 
for intersecting the 
itemsets (Chee et al., 
2019). 

FP-Growth (Han and Pei, 2000) 

- Maintaining the 
association information of 
all itemsets 

- Reducing target data to be 
scanned and searched 
(Chee et al., 2019) 

- For large datasets, FP-tree 
construction is time-
consuming (Chee et al., 
2019) 

ReLim (Fakir et al., 2020) 

- Simplicity of its structure 
(Applying recursive 
function) (Fakir et al., 
2020) 

- Consuming many system 
resources 

- Time-consuming (Fakir et 
al., 2020) 

 

(Pramod & Vyas ,2010) showed that Relim is outperforming FP-Growth in terms of execution 

time for various support thresholds. (Mythili & Shanavas, 2013) revealed that Apriori 

consumes large memory in comparison to FP-Growth due to candidate generation. 

Additionally, they evaluated the performance of Apriori and FP-Growth algorithms and 

revealed that the FP-Growth is outperforming Apriori in terms of execution time for various 

values of support, based on their two datasets.  





 

CHAPTER 2 
 
 

RELATED WORK 

A large body of past and recent research works have leveraged data mining to gain knowledge 

and insights from various data sources. In the following, we divide our related work into two 

sections. The first section presents the relevant research works that have leveraged source code 

change history, while the second section states the most relevant works to our research, from 

the software engineering literature, on recommendation systems that have been developed to 

guide software developers during their engineering tasks.  

2.1 Research works that leveraged source code change history  

(Kovalenko, Palomba, & Bacchelli, 2018) defined and approach which tries Mining Software 

Repository (MSR) using two different algorithms. One algorithm only follows the first parent 

of each commit when traversing the repository, while the other returns the full modification 

history of a file across all branches The influence of the file history retrieval method on 

accuracy of recommendations is evaluated based on the history of changes using Mean 

Reciprocal Rank (MRR) and top-k precision. Inference of association rules are implemented 

using the Apriori algorithm. 

McIntosh et al. (2014) proposed Basic Model Attributes in which Number of Files, Prior Build 

Co-Changes, (Source/Test) File added, deleted or renamed are measures for improving existing 

prediction models (Macho et al., 2016). In our research work, our granularity level is the file 

level and we have selected projects that include thousands of files. Developers have to be 

vigilant while changing files in each commit. Additionally, we investigate four advanced data 

mining algorithms, in particular, Apriori, FP-Growth, ReLim, and Eclat which operate at the 

file level since built on top of a prioro work that has been already started by the research group 

and that the aimis to extend it to other fine-grained levels such as the method level. 

(Kovalenko, Palomba, & Bacchelli, 2018) defined and approach which tries Mining Software 

Repository (MSR) using two different algorithms:  
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• One algorithm only follows the first parent of each commit when traversing the 

repository; 

• The other returns the full modification history of a file across all branches. 

The influence of the file history retrieval method on accuracy of recommendations is evaluated 

based on the history of changes using the following metrics: Mean Reciprocal Rank (MRR) 

and top-k precision. Inference of association rules are implemented using the Apriori 

algorithm. In our study, four advanced data mining algorithms have been empirically 

investigated and their performance has been measured in terms of Precision, Recall and F-

measure. 

(Canfora & Cerulo, 2005) proposed a method to derive the set of source files impacted by a 

proposed change request. In order to link between change request and revisions of source file 

changes in a versioning system, namely CVS, and in a bug tracking system, Bugzilla, this 

method relies on information retrieval algorithms. Also, based on explicit traceability 

relationship, they achieved traceability analysis which identifies affected software objects. 

With evolution of software systems, there will be an increase in the number as well as the 

complexity of interactions in code which results in, challenges for developers, when 

identifying the impact of changes. One solution is using change impact analysis aims to find 

artifacts (e.g., files, methods, classes) affected by a given change.  

Canfora and Cerulo considered the file level but suggest that considering different levels of 

granularity of impacted entities such as program and architectural entities such as modules 

improves the results. In our study, we also investigate source code changes at the file level of 

granularity with four advanced data mining techniques in order to evaluate their performance. 

The results show that their approach got a precision that ranges between 30% and 78%. There 

are not many papers which infer and use traceability links between artifacts in bug repositories 

and source code artifacts via Mining Software Repositories (MSR).  

In (Canfora & Cerulo, 2005), it is assumed that there is a dependency between artifacts which 

is a limitation of existing impact analysis techniques. In order to overcome such a limitation, 
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approaches such as those based on information retrieval that leverage the textual content of the 

artifacts have been proposed. Also, this approach has a weakness which is failing in exploring 

links in between when similarity is low, or finding false positives when artifacts seem similar 

but in fact, they are not relevant. It seems that approach used in this research work is (formal) 

language/artifact centric (e.g., static, and dynamic dependencies such as call graphs) which 

could be replaced by developer/human centric approaches (e.g., comments and identifiers, and 

commit practices). In our study, we consider investigation of the performance of four data 

mining algorithms when recommending source file changes. 

Other studies went further by using the context of the developer’s work. For example, 

(Ponzanelli, et al., 2017) used web browsing data navigated by developers along with source 

code changes, as well as the semantic relationships of the resources used by developers to help 

build a holistic recommendation system that can assist software developers. However, in our 

study, association rules are generated and reported based on changes committed by developers 

according to various advanced data mining algorithms using several configurations of each 

data mining techniques and comparisons among them. 

(Sisman & Kak, 2012) focuses on finding bugs using the development history of projects. 

Specifically, the authors focused on the frequency of files that could be associated with defects 

and changes from history, which can be then used to construct estimates of the prior probability 

that a given file would be the source of bugs. We also leverage source code change history but 

for the purpose of recommending source code file changes using different advanced data 

mining techniques with different configurations. 

(Malik & Shakshuki, 2010) have relied on different heuristics, including the analysis of related 

entities if they have similar files. By combining these heuristics, the researchers have 

demonstrated that source code changes can be used to generate recommendations for functions. 

In our study, recommendations are generated based on files changes rather than functions, 

using advanced data mining techniques rather than heuristics. Using frequent itemsets mining 

techniques such as Apriori, FPGrowth, Eclat and ReLim, we are able to identify files changed 

together.  
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(Heo, Oh, & Yang, 2019) proposed an algorithm for learning a controller for abstraction 

coarsening. The learning algorithm is inspired by batch mode reinforcement learning. The 

algorithm solves the problem in approximately using heuristics from the reinforcement 

learning community. Using the decision tree algorithm in the scikit-learn package, they have 

implemented supervised learner. 

(Malheiros, Moraes, Trindade, & Meira, 2012) propose Mentor which helps newcomers in 

order to resolve change requests by source code file recommendation. It uses the Prediction by 

Partial Matching (PPM) algorithm as well as some heuristics with purpose of data within 

version control system and change request analysis in order to provide relevant source code 

recommendation that assists developers to handle change requests. In order to find similar 

change requests, it makes use of the Support Vector Machine (SVM) classifier. 

The above-mentioned studies have not considered the temporal dimension. However, (Robbes, 

Pollet, & Lanza, 2010) have conducted research in which they recorded all developer 

interactions with the IDE, allowing them to track back the time spent by each developer to 

perform his/her changes. 

We share with these research works the idea that recommendation systems can be useful to 

guide and support developers when performing software maintenance and evolution tasks. 

Similarly, to these works, we leverage source code change history to build our recommenders.  

2.2 Recommendation systems developed to guide software developers 

(Ying, Murphy, Ng, & Chu-Carroll, 2004) developed an approach using FP-Growth to predict 

file change patterns. Several other works leveraged change history to guide developers during 

their software changes. In effect, (Uddin, Dagenais, & Robillard, 2011) has developed a 

recommender that identifies API changes using a temporary API usage pattern. Likewise, in 

our thesis, the performance of Apriori, FP-Growth, Relim and Eclat algorithms, are measured 

in terms of Precisions and Recall, and F-measure using various configurations of support and 

confidence for each examined algorithm.  
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Zimmermann et al., (2005) proposed ROSE which analyzes the full history of a project to 

predict the location of most likely further changes and uses the Apriori Algorithm in order to 

compute association rules. This algorithm computes the set of all association rules, taking a 

minimum support and minimum confidence. Through this approach, they could detect 

coupling between program parts which are developed in different languages that shows it is 

not limited to a specific programming language. They developed an Eclipse plug-in that 

explores source code changes retrieved from repositories in order to help developers with 

possible co-changes (Zimmermann, Zeller, Weissgerber, & Diehl, 2005).  

They proposed P (A → B) =  N(A ∩ B) N(A)  to compute the probability of impacted source code unit 

in terms of association rule. Because it assumes that support value term only includes 

intentional co-changes, A and B were modified at the same time for the same reason.  

Considering a situation in which A and B might be related to separate features that are included 

in the same release shows that the aforementioned assumption is not held necessarily. It is 

possible that, A and B edit at the same time, is not associated with A change because it has 

been changed several times in the past.  

Using historical data occurs at different granularity levels, such as coupling between files and 

classes as well as detecting coupling between fine-grained program entities functions and 

variables which is implemented in (Zimmermann, Zeller, Weissgerber, & Diehl, 2005) 

research work. These data enable us to propose suggestion about possible relevant source code 

to a developer during her task accomplishment. 

They suggested the usage of fine-grained co-change dependencies on Module Dependency 

Graph (MDGs) which is a graph representation of software. Using data mining to extract the 

co-change coupling, some quantitative code metrics such as LOC, Weighted Methods per 

Class (WMC) and Coupling Between Objects (CBO) using static impact analysis have been 

provided.  

The results show that for stable systems, ROSE delivers many and precise suggestions: 44% 

of related files and 28% of related entities can be predicted, with a precision of about 40% for 

each single suggestion, and a likelihood of over 90% for the three topmost suggestions. But 
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for changing and evolving systems will deliver better suggestions at the file level. When ROSE 

warns it should be considered seriously because just 2% of all transactions results in false 

alarms.  

In our study, we have increased the number of data mining algorithms to four by adding FP-

Growth, Relim, and Eclat, whose performance is measured in terms of precision, recall, and 

F-measure using various configurations of support and confidence. Additionally, we have 

empirically evaluated our approach using seven different open-source projects. 

(Martinez & Monperrus, 2019) presented, Coming, which is a tool that takes as input a Git 

repository and mines instances of code change patterns present on each commit. It first applies 

an AST-diff algorithm to compute the code changes between them at a fine-grained level. It 

does a fine-grained comparison of each revision pair by comparing their ASTs (Abstract 

Syntax Tree). 

Several works in the software engineering literature have leveraged development history to 

build data mining-based recommenders. (Palomba, et al., 2017) have used it for the detection 

of bad smells in the source code. Their system for called HIST (Historical Information for 

Smell Detection), it uses data from change history in order to look for the presence of bad 

practices in the source. The results generated by HIST have shown that the use of development 

history as a data source provide promising results. 

(Dotzler, Kamp, Kreutzer, & Philippsen, 2017) proposed ARES which gets higher accuracy 

because of using algorithms that take care of code movements when creating patterns and 

recommendations. It uses a tree differencing algorithm that extracts the differences between 

two abstract syntax trees (ASTs) as well as MTDIFF, the currently most precise tree 

differencing algorithm that considers code movements. 

(Zhang, Upadhyaya, Reinhardt, Rajan, & Kim, 2018) designed ExampleCheck, an API usage 

mining framework that extracts patterns through combining frequent subsequence mining and 

SMT-based guard condition mining to retain important API usage features. Global-Aware 

Recommendations for Repairing Violations in Exception Handling The authors presented 
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RAVEN, a heuristic strategy aware of the global context of exceptions that produces 

recommendations of how violations in exception handling may be repaired. 

(Martinez & Monperrus, 2019) presented, Coming, which is a tool that takes as input a Git 

repository and mines instances of code change patterns presented on each commit. It first 

applies a ASTdiff algorithm to compute the code changes between them at a fine-grained level. 

It performs a fine-grained comparison of each revision pair by comparing their ASTs (Abstract 

Syntax Tree). (Nguyen, et al., 2019) presented FOCUS which is a Context-aware 

collaborative-filtering recommender system that mines open-source software (OSS) 

repositories to provide developers with API FunctiOn Calls and USage patterns. It makes use 

of the structural Expectation-Maximization (EM) algorithm. 

In another research by (Nguyen, et al., 2019), the researchers proposed CPATMINER that 

detects unknown repetitive changes through mining fine-grained semantic code change 

patterns from many repositories. It relies on fine-grained change graphs to capture program 

dependencies. Results show that this tool using graph-based approach, detects 2.1x more 

meaningful patterns in comparison with AST-based technique. They proposed a graph-based 

program representation that captures the control/data dependencies as in Program-Dependence 

Graphs (PDGs) and uses the API elements as in Object Usage Graphs (GROUMs). 

(Huang, Xia, Xing, Lo, & Wang, 2018) presented BIKER (Bi-Information source-based 

Knowledge Recommendation), an API recommendation approach aims to bridge the lexical 

gap using word embedding technique to calculate the similarity score between two text 

descriptions. Using NLTK package, the sentence is tokenized. Based on several heuristic rules 

to extract API entities from each question’s answers, Asymmetric similarity and IDF-weighted 

sum of similarities, BIKER recommends APIs at method-level. 

(Liu, Huang, & Ng, 2018) presented, RecRank, which is an approach and tool that applies a 

novel ranking-based discriminative approach leveraging API usage path features to improve 

top-1 API recommendation that uses the graph-based statistical model to recommend top-10 

API candidates effectively. This approach does not rely on code change history. RecRank 

employs a discriminative re-ranker that is trained to re-rank Gralan’s top-10 candidate APIs: 
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A novel kind of features are proposed for use in conjunction with discriminative re-ranker, API 

usage path-based features. Re-ranking systems are either trained using the Naive Bayes (NB) 

generative model or the Support Vector Machine learner. 

(Nagashima & He, 2018) comprises two main parts, naming PaMpeR’s preparation phase and 

its recommendation phase. PaMpeR first preprocesses the database and generates a database 

for each proof method. Then, PaMpeR applies a regression algorithm to each database and 

creates a regression tree for each proof method. This regression algorithm attempts to discover 

combinations of features useful to recommend which proof method to apply. 

Zhong et al. (2009) have developed an API usage mining tool called MAPO (Mining API usage 

Pattern from Open-source repositories), which automatically mines API usage patterns. MAPO 

clusters code snippets based on the level of similarity to each other, which shows various 

usages of different clusters. Also, MAPO organizes API usage patterns and recommends code 

snippets based on that organization (Zhong, et al., 2009). Holmes et al (2005) proposed 

Strathcona, which suggests code snippet by comparing of developing and stored code snippet 

in repository and lists relevant code snippets (Holmes et al., 2005). 

 



 

CHAPTER 3 
 
 

METHODOLOGY 

In this section, we describe the methodology followed to address our research problem. As 

shown in Figure 3.1, our methodology consists of the following main steps. The first step 

consists of reviewing the literature. Based on the literature review, we stated the research 

problems. Next step consists of studying, understanding and investigating the advanced data 

mining techniques used in our study. This step is followed by our empirical study, which is 

composed of four main steps: definition, planning, implementation and interpretation of the 

obtained results. This phase is followed by conclusions drawn from our findings, which lead 

us to write our thesis to convey our message to the research community.  

 

 

Figure 3.1 Overview of the methodology followed in our thesis 

 

Since our approach is empirical, we illustrate first the main steps of our empirical approach as 

illustrated in Figure 3.2 in the following sections of this chapterwhile the other phases of the 

overall methodology presented in Figure 3.1 will be discussed separately in the following 

chapters of the thesis for organization purposes.  
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Figure 3.2 Overview of our Empirical Approach 

 

As it can be noticed from Figure 3.2, the first step consists of extracting the source code change 

of each studied project and saving this information in a PostgreSQL database for data 

organization. The second step consists of filtering and creating the training and test data. 

Finally, the third step corresponds to the application of the four data mining algorithms 

investigated on the training data to generate recommendations of source code change files. The 

generated recommendations are empirically validated against the test data. After that, a 

comparison between the four algorithms, Apriori, FP-Growth, Eclat and Relim is performed, 

while considering the simple Apriori as a baseline. 

3.1 Extracting source code change history 

The first step of our methodology consists of generating a list of all Java source code file 

changes from a project repository through a change extraction program using the JGit tool. 
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Prior to that, if a project was only available in SVN, we had to migrate from SVN to Git using 

the svn2git tool. This step begins with launching a local repository under Git for the studied 

project. Then, the history extraction program goes through all the changes that have been made 

to the repository in the past and when the change concerns one or more Java files (.Java files), 

the change is selected by the program. Various information concerning the files are then mined, 

in particular, the change ID, the change log, the change date, the type of modification 

performed (add, modify, rename or delete), the file name for each modified file and a unique 

index for each file. Finally, each selected file is inserted into a PostGreSQL database with the 

various extracted information. We hence obtain a database, for each project, containing all the 

Java files that have been modified, in the form of transactions. A transaction consists of a set 

of files that have changed in the same commit (Zimmermann, Zeller, Weissgerber, & Diehl, 

2005). Each file is identified by the same author, same date, and a message under Git. 

 

3.2 Data filtering and processing 

The second step of our methodology consists of filtering and processing the transactions 

retrieved from the PostGreSQL databases of each project, using a Perl script and the DBI 

module and generating the training and test data in two separate files. For each project from 

which the local repository has been extracted in PostGreSQL, a Perl script will go through all 

the project transactions, start by filtering them, then end by processing the transactions in order 

to organize them into transactions belonging to the training file and transactions belonging to 

the test file. 

The first filter applied concerns transactions linked to only one file. Whether be it for the 

training or test data, transactions with only one file are not helpful to draw any predictions 

since the used data mining algorithms use the different files occurring in the same transactions 

to extract frequent sets of files. The second filter ignore transactions with more than 100 files 

as used in other studies such as (Hassan & Xie, 2010), (Ying, Murphy, Ng, & Chu-Carroll, 

2004). These types of changes and the information they provide are not relevant to the 
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predictions we target since the files within these transactions are, for example, not necessarily 

linked to the files that have been modified to implement a new feature.  

Once the filters are applied, the processing phase selects the filtered transactions in order to 

split them into the training and test data. To this aim, we mirrored previous (Zimmermann, 

Zeller, Weissgerber, & Diehl, 2005), for each studied change history of each project, we 

examined a number of full months containing the last 1,000 transactions, but not more than 

50% of all transactions (Zimmermann, Zeller, Weissgerber, & Diehl, 2005). In this period, 

called in the mining jargon, the evaluation period, we verified for each transaction, whether its 

files can be predicted from earlier change history, from the training data. 

For some recent projects, we have noticed that when selecting the last 1,000 transactions, the 

latter are spread over only a few months, while for older projects, the latter 1000 transactions 

may extend over several years. To overcome this challenge, we verified, for each project, if 

the last 1,000 transactions go beyond one year. If this is case, the script only selects transactions 

from the last year. If, however, the transactions do not exceed one year, then the script rounds 

the date to the full month based on the earliest date in the thousand selected and most recent 

transactions. As a result of this step, we create the training and test data for each examined 

project. 

3.3 Recommending source code file changes 

To explore the relationships between files in our transactional databases and generate the 

predictions of file changes, we have applied four different data mining algorithms, Apriori, 

FP-Growth, Eclat and ReLim on our training data set, previously produced in the second step 

of our process, using different parameters and configurations for each studied project. The 

recommendations generated for files have been checked against the test data. 

When generating the change file recommendations, the minimum support and confidence 

parameters (Webb, 1989) must be considered according to the kind of algorithm used. For each 

project, we have empirically investigated different values of support and confidence. The 
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reason is that we aimed to compare the four studied algorithms in terms of their performance 

using different configurations.  

It is important to mention that we empirically noticed during our different experiments, that 

the lower the selected support and confidence parameters are, the greater the number of 

generated association rules will be, but this is at the expense of an increase in the computation 

time. The same applies to the number of transactions since the computation time significantly 

increases when dealing with a large volume of data. Since the main purpose of producing these 

file change recommendations is to support and guide developers during their software 

development and maintenance activities, computation time must be normally as short as 

possible if real-time suggestions are to be made.  

The results of this step consist of generating, for each studied algorithm, a list of files that 

change together. After generating source code change files recommendation for each project, 

our last task consists of verifying the relevance of the recommendations made using each of 

our considered algorithms. 

For each recommendation, we have compared if a correspondence exists in the test data of the 

concerned project. From these various comparisons, statistics are generated, and the 

performance of our algorithms is measured in terms of precision, recall, and F-measure. Other 

analytical methods, presented in « Chapter 4 Empirical Evaluation », are then used to quantify 

these results and to represent them graphically, facilitating our discussion in Section Results 

and Discussion. 





 

CHAPTER 4 
 
 

EMPIRICAL EVALUATION 

To address our research questions, we have performed an empirical study following the Basili 

framework described in Wohlin (Wohlin, et al., 2012). This framework consists of definition, 

planning, operation and interpretation (Basili et al., 1986) which are described in this section. 

4.1 Definition and Planning of the study 

The Goal of the study (Basili et al., 1986) is to compare the effect of different advanced data 

mining techniques algorithms, when recommending source code file changes. 

The Quality focus (Basili et al., 1986) is represented by the performance of the four studied 

algorithms, Apriori, FP-Growth, Eclat and Relim measured in terms of precision, recall, and 

F-measure using different configurations. 

The Perspective (Basili et al., 1986) concerns researchers and developers that are interested in 

having recommendations systems that can guide them through their software maintenance and 

development activities. The Context consists of seven open-source projects: Eclipse1, 

ElasticSearch2, Rhino3, SWT4, Kotlin5, Guava6, JabRef7, and their corresponding source code 

history. The main characteristics of the projects under study are summarized in Table 3.1. As 

it can be noticed, this table shows the examined projects, their evaluation period, which means 

the time period corresponding to the considered change history, the number of transactions, 

                                                 
 
1 https://github.com/eclipse/eclipse.jdt.core 
2 https://github.com/elastic/elasticsearch 
3 https://github.com/mozilla/rhino 
4 https://www.eclipse.org/swt 
5 https://github.com/JetBrains/kotlin 
6 https://github.com/google/guava 
7 https://github.com/JabRef/jabref 
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the number of files that changed together in the same commit, as well as the number of 

contributors to each project. 

4.2 Research Questions 

We address the main following research questions in this research work: 

RQ1: How do the four studied advanced data mining techniques, Apriori, FP-Growth, Eclat 

and Relim perform in terms of Precision, Recall and F-measure? 

RQ2:  Are there any differences between the four studied advanced data mining techniques, 

Apriori, FP-Growth, Eclat and Relim in terms of their performances when recommending 

source code file changes? 

We derived five specific research questions from the above-mentioned research questions. 

These specific research questions along with their corresponding null and alternative 

hypothesis are as follows: 

RQ11: How does the Apriori algorithm perform in terms of Precision, Recall and F-measure? 

RQ12: How does the FP-Growth algorithm perform in terms of Precision, Recall and F-

measure? 

RQ13: How does the Eclat algorithm perform in terms of Precision, Recall and F-measure? 

RQ14: How does the Relim algorithm perform in terms of Precision, Recall and F-measure? 

RQ21: How does the Apriori perform compare to FP-Growth when recommending source code 

file changes? 

- H0-21: There is no statistically significant difference between Apriori and FP-Growth in 

terms of their performance when recommending source code file changes. 

- Ha-21: There is statistically a significant difference between Apriori and FP-Growth in 

terms of their performance when recommending source code file changes. 
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RQ22: How does the ReLim perform compare to FP-Growth when recommending source code 

file changes? 

- H0-22: There is no statistically significant difference between ReLim and FP-Growth in 

terms of their performance when recommending source code file changes. 

- Ha-22: There is statistically a significant difference between ReLim and FP-Growth in 

terms of their performance when recommending source code file changes. 

RQ23: How does the ReLim perform compare to Apriori when recommending source code file 

changes? 

- H0-23: There is no statistically significant difference between ReLim and Apriori in 

terms of their performance when recommending source code file changes. 

- Ha-23: There is statistically a significant difference between ReLim and Apriori in terms 

of their performance when recommending source code file changes. 

RQ24: How does the Apriori perform compare to Eclat when recommending source code file 

changes? 

- H0-24: There is no statistically significant difference between Apriori and Eclat in terms 

of their performance when recommending source code file changes. 

- Ha-24: There is statistically a significant difference between Apriori and Eclat in terms 

of their performance when recommending source code file changes. 

RQ25: How does the ReLim perform compare to Eclat when recommending source code file 

changes? 

- H0-25: There is no statistically significant difference between ReLim and Eclat in terms 

of their performance when recommending source code file changes. 

- Ha-25: There is statistically a significant difference between ReLim and Eclat in terms 

of their performance when recommending source code file changes. 

RQ26: How does the FP-Growth perform compare to Eclat when recommending source code 

file changes? 
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- H0-26: There is no statistically significant difference between FP-Growth and Eclat in 

terms of their performance when recommending source code file changes. 

- Ha-26: There is statistically a significant difference between FP-Growth and Eclat in 

terms of their performance when recommending source code file changes. 

4.3 Variables selection 

In this section, we present the variables selection related to our empirical investigation 

according to Basili Framework (Basili et al., 1986) along with the metrics used to measure the 

performance of our studied algorithms. The main independent variable of our study is the kind 

of advanced data mining algorithm being used. There are four different values for this factor: 

Apriori, FP-Growth, Eclat and ReLim. 

The dependent variable considered in our study is the accuracy, performance of the advanced 

data mining algorithms measured in terms of precision, recall, and F-measure. 

We compute these measures following the method used in past research (Zimmermann, Zeller, 

Weissgerber, & Diehl, 2005), (Ying, Murphy, Ng, & Chu-Carroll, 2004). In fact, for each 

project, for each transaction of the test data, we evaluated a number of queries. A query is 

simply a file from a transaction in the test data. Each query q has an expected result Bq that is 

all items, files in those transactions but not the query. Let us consider that Aq represents the 

rules/predictions generated by one of our data mining algorithms (Apriori, FP-Growth, Eclat 

or Relim) for the query q. We assess q using the precision Pq, recall Rq, and F-Measure Fq, 

which is the harmonic mean of precision and recall (van Rijsbergen, 1979): 

Pq = |୅୯ ∩ ୆୯| |୅୯| , Rq = |୅୯ ∩ ୆୯| |୆୯| , Fq = ଶ.୔୯.ୖ୯ ୔୯ାୖ୯  

To measure the overall performance of an algorithm, we computed the mean value (of 

performances computed for all queries as above) of the precision, recall, and F-measure triples 

as in (Zimmermann, Zeller, Weissgerber, & Diehl, 2005). 
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4.4 Analysis method 

Our analysis method is based on both descriptive statistics and statistical analyses. As per 

descriptive statistics, we have used the boxplots, which is a simple way to present the results 

(McGill, Tukey, & Larsen, 1978). 

For comparisons purposes, we have compared the precision, recall, and F-Measure using a 

non-parametric test for pair-wise median comparison, namely the Wilcoxon paired test 

(Wilcoxon, 1945). 

We used a paired test as our samples are dependent, as we generate, for each source code file 

among the test data, the precision, recall and F-Measure of the predictions made by each type 

of studied algorithm using the training data. The Wilcoxon test reports whether the median 

difference between the two advanced data mining algorithms is zero. Since the Wilcoxon test 

has been used multiple times, p-values must be adjusted. To this aim, the Holm correction 

method was used (Holm, 1979). This procedure sorts the results of p-values from n tests in 

ascending order of values, multiplying the smallest by n, the next by n-1, and so on. Results 

are interpreted as statistically significant at α = 5%. Then, the Cliff’s delta is calculated in order 

to measure the effect size between two different applied data mining techniques. Cliff’s delta 

ranges from -1 to 1 and its values signify for various effectiveness levels, in which, 0.474≤|d| 

is considered as large, 0.33 ≤ |d| < 0.474 is considered as medium, 0.147 ≤ |d|< 0.33 is 

considered as small and |d| < 0.147 will be considered as negligible (Chen et al., 2019). 

 

Table 4.1 Characteristics of the investigated projects 
Project Evaluation period Records Contributors 
Eclipse 27/01/2001- 24/04/2017 22,509 56 

ElasticSearch 08/02/2010 – 01/06/2017 28,078 854 
Rhino 21/04/1999 – 19/12/2016 3,383 31 
SWT 02/08/2012 – 26/06/2017 25,585 53 
Kotlin 10/12/2010 – 31/05/2017 35,115 197 
Guava 15/09/2009 – 31/05/2017 5,654 189 
JabRef 16/10/2003 – 25/04/2017 16,489 175 
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Characteristics of the investigated projects are illustrated in Table 4.1, in which, evaluation 

period signifies for the date of first and last records in databases of each project. Total number 

of records are presented by the Records column, which is the total number of extracted records 

before transforming the commits data to transactions in the database corresponding to each 

examined project, while total number of contributors are shown in Contributor’s column. Then, 

in Table 4.2, after filtering each project using above-mentioned procedure, total number of 

transactions, number of transactions after filtering, division of transactions to training and test 

transactions are illustrated. As can be seen, some projects, naming Eclipse, ElasticSearch and 

Kotlin are maintaining more than ten thousand of transactions. 

 

Table 4.2 Number of transactions for each project 

Project Total transactions After filtering Training 
transactions 

Test 
transactions 

Eclipse 17,985 10,320 7,224 3,096 
ElasticSearch 20,659 12,414 8,690 3,724 

Rhino 2,840 1,406 984 422 
SWT 21,588 8,260 5,782 2,478 
Kotlin 25,710 15,115 10,580 4,535 
Guava 3,887 2,399 1,679 720 
JabRef 7,074 4,229 2,960 1,269 

 

In this section, all seven projects mentioned above are investigated statistically in terms of 

Number of releases (Releases), Number of Contributors (Contributors), Number of Files 

(Files), Number of Commits (Commits) and Number of Branches (Branches) are illustrated in  

Table 4.3. Level of granularity in this study is file therefore the most important measure in 

order to compare projects and number of transactions will be files. According to this table, 

Elasticsearch and Kotlin are largest projects in terms of files and contributors. 
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Table 4.3 Projects statistics 
Project Releases Contributors Files Commits Branches 
Eclipse 87 325 8.6k 1230 129 

ElasticSearch 74 1712 22.5k 62868 163 
Rhino 15 76 4.6k 4090 51 
SWT 2 12 1k 466 10 
Kotlin 179 532 65.6k 91069 4k 
Guava 34 271 3k 5735 19 
JabRef 33 403 13k 16888 20 

  





 

CHAPTER 5 
 
 

RESULTS AND DISCUSSION 

To verify if our data follows a normal distribution or not, we have used the Shapiro-Wilk 

normality test (Shapiro & Wilk, 1965). According to this test, when the p-value is greater than 

0.05, this implies that the distribution of the data is not significantly different from normal 

distribution. In other words, almost all of the performance measures of the different projects 

that we have examined are not following a normal distribution. We therefore apply a non-

parametric statistical test, i.e., Wilcoxon paired test and non-parametric effect-size measure, 

namely Cliff’s Delta. Table 5.1 illustrates the output of the Shapiro-Wilk normality test: 

 

Table 5.1 Results of the Shapiro-Wilk normality test 
Project Precision Recall F-score 
Eclipse <0.0001 0.1103 0.02614 

ElasticSearch <0.0001 0.0009518 <0.0001 
Guava <0.0001 <0.0001 <0.0001 
Jabref <0.0001 <0.0001 <0.0001 
Kotlin 0.00708 0.01017 0.001215 
Rhino 0.007473 0.001503 0.1342 
SWT 0.0001218 <0.0001 0.003301 

 

5.1 Results of RQ1 

RQ1: How do the four studied advanced data mining techniques, Apriori, FP-Growth, Eclat 

and Relim perform in terms of Precision, Recall and F-measure? 

In this section, we present the descriptive statistics of four data mining algorithms that we have 

investigated, namely Apriori, FPGrowth, Eclat and ReLim, as well as their performance 

measured in terms of precision, recall and F-measure for each studied project. We organize the 

results as follows. For each project of the seven studied projects, we show the descriptive 

statistics of precision, recall, and F-measure, namely Min, Mean, Sd, Median and IQR. Min 

shows the minimum value of measure for each data mining technique. Mean reveals the 

average of obtained values for every algorithm. Sd illustrates the standard deviation which 
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shows amount of variation in each dataset. Median represents the middle number in dataset 

and IQR is showing the interquartile range which contains the second and third quartiles of 

dataset. 

5.1.1 Descriptive statistics of Eclipse 

Table 5.2 Descriptive statistics of Eclipse 
Precision 

Algorithms Min Mean Sd Median IQR 
Apriori 0.433 0.452 0.018 0.454 0.034 

FPGrowth 0.26 0.391 0.036 0.400 0.020 
ReLim 0.349 0.398 0.017 0.402 0.007 
Eclat 0.281 0.395 0.070 0.412 0.104 

Recall 
Algorithms Min Mean Sd Median IQR 

Apriori 0.885 0.937 0.058 0.926 0.107 
FPGrowth 0.453 0.654 0.091 0.639 0.119 

ReLim 0.434 0.660 0.099 0.666 0.122 
Eclat 0.552 0.735 0.109 0.762 0.147 

F-score 
Algorithms Min Mean Sd Median IQR 

Apriori 0.604 0.609 0.004 0.609 0.008 
FPGrowth 0.377 0.486 0.042 0.496 0.044 

ReLim 0.404 0.494 0.037 0.507 0.034 
Eclat 0.373 0.507 0.0624 0.503 0.106 

 

Regarding the precision, as it can be noticed from Table 5.2, the min of precision varies from 

0.26 to 0.433 and the mean of the precision varies from 0.39 to 0.45, while the sd ranges from 

0.17 to 0.7. Also, median changes from 0.4 to 0.454, while IQR differs from 0.007 to 0.104. 

For Recall, the min of recall varies from 0.434 to 0.885 and the mean of the recall varies from 

0.654 to 0.937, while the sd ranges from 0.058 to 0.109. Also, median changes from 0.639 to 

0.926, while IQR differs from 0.107 to 0.147. Accordingly, for F-score, the min of F-score 

varies from 0.373 to 0.604 and the mean of the F-score varies from 0.486 to 0.609, while the 

sd ranges from 0.004 to 0.0624. Also, median changes from 0.496 to 0.609, while IQR differs 

from 0.008 to 0.106. 
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5.1.2 Descriptive statistics of ElasticSearch  

 

Table 5.3 Descriptive statistics of ElasticSearch 
Precision 

Algorithms Min Mean Sd Median IQR 
Apriori 0.5 0.5 0 0.5 0 

FPGrowth 0.097 0.366 0.122 0.400 0.0582 
ReLim 0.097 0.388 0.106 0.413 0.0620 
Eclat 0.097 0.404 0.126 0.439 0.0952 

Recall 
Algorithms Min Mean Sd Median IQR 

Apriori 0.75 0.958 0.102 1 0 
FPGrowth 0.394 0.618 0.159 0.689 0.290 

ReLim 0.394 0.628 0.147 0.689 0.178 
Eclat 0.41 0.638 0.154 0.712 0.278 

F-score 
Algorithms Min Mean Sd Median IQR 

Apriori 0.6 0.656 0.0272 0.667 0 
FPGrowth 0.173 0.428 0.119 0.471 0.0992 

ReLim 0.173 0.457 0.108 0.488 0.0851 
Eclat 0.173 0.466 0.116 0.503 0.129 

 

Regarding the precision, as it can be noticed from  

Table 5.3, the min of precision varies from 0.097 to 0.5 and the mean of the precision varies 

from 0.366 to 0.5, while the sd ranges from 0 to 0.126. Also, median changes from 0.4 to 0.5, 

while IQR differs from 0 to 0.0952. For Recall, the min of recall ranges from 0.394 to 0.75 and 

the mean of the recall varies from 0.618 to 0.958, while the sd ranges from 0.102 to 0.159. 

Also, median changes from 0.689 to 1, while IQR differs from 0 to 0.29. Accordingly, for F-

score, the min of Fscore ranges from 0.173 to 0.6 and the mean of the F-score varies from 

0.428 to 0.656, while the sd ranges from 0.0272 to 0.119. Also, median changes from 0.471 to 

0.667, while IQR differs from 0 to 0.129. 
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5.1.3 Descriptive statistics of Guava 

Table 5.4 Descriptive statistics of Guava 
Precision 

Algorithms Min Mean Sd Median IQR 
Apriori 0.378 0.397 0.0141 0.4 0.0216 

FPGrowth 0.111 0.375 0.150 0.4 0.163 
ReLim 0.111 0.359 0.164 0.4 0.310 
Eclat 0.12 0.384 0.152 0.41 0.167 

Recall 
Algorithms Min Mean Sd Median IQR 

Apriori 0.7 0.838 0.117 0.875 0.131 
FPGrowth 0.333 0.797 0.264 1 0.344 

ReLim 0.333 0.760 0.280 0.875 0.466 
Eclat 0.34 0.804 0.259 1 0.330 

F-score 
Algorithms Min Mean Sd Median IQR 

Apriori 0.519 0.536 0.0163 0.539 0.0281 
FPGrowth 0.167 0.508 0.193 0.547 0.203 

ReLim 0.167 0.484 0.209 0.522 0.387 
Eclat 0.177 0.518 0.192 0.560 0.207 

 

Regarding the precision, as it can be noticed from  Table 5.4, the min of precision ranges from 

0.111 to 0.378 and the mean of the precision varies from 0.359 to 0.397, while the sd ranges 

from 0.0141 to 0.164. Also, median changes from 0.4 to 0.41, while IQR differs from 0.0216 

to 0.31. For Recall, the min of recall ranges from 0.333 to 0.7 and the mean of the recall varies 

from 0.76 to 0.838, while the sd ranges from 0.117 to 0.28. Also, median changes from 0.875 

to 1, while IQR differs from 0.131 to 0.466. Accordingly, for F-score, the imn of Fscore ranges 

from 0.167 to 0.519 and the mean of the F-score varies from 0.484 to 0.536, while the sd ranges 

from 0.0163 to 0.209. Also, median changes from 0.539 to 0.56, while IQR differs from 0.0281 

to 0.387. 
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5.1.4 Descriptive statistics of Jabref 

Table 5.5 Descriptive statistics of Jabref 
Precision 

Algorithms Min Mean Sd Median IQR 
Apriori 0.442 0.457 0.0206 0.444 0.0276 

FPGrowth 0.152 0.372 0.0852 0.402 0.116 
ReLim 0.242 0.394 0.0765 0.431 0.104 
Eclat 0.402 0.417 0.0206 0.404 0.0276 

Recall 
Algorithms Min Mean Sd Median IQR 

Apriori 0.692 0.745 0.0607 0.722 0.101 
FPGrowth 0.2 0.646 0.180 0.691 0.183 

ReLim 0.2 0.633 0.190 0.676 0.157 
Eclat 0.65 0.705 0.0609 0.685 0.105 

F-score 
Algorithms Min Mean Sd Median IQR 

Apriori 0.541 0.565 0.0184 0.575 0.0279 
FPGrowth 0.25 0.458 0.108 0.488 0.132 

ReLim 0.239 0.477 0.110 0.525 0.139 
Eclat 0.499 0.522 0.0188 0.531 0.0281 

 

Regarding the precision, as it can be noticed from  Table 5.5, the min of precision ranges from 

0.152 to 0.442 and the mean of the precision varies from 0.372 to 0.457, while the sd ranges 

from 0.0206 to 0.0852. Also, median changes from 0.402 to 0.444, while IQR differs from 

0.0276 to 0.116. For Recall, the min of recall ranges from 0.2 to 0.692 and the mean of the 

recall varies from 0.633 to 0.745, while the sd ranges from 0.0607 to 0.19. Also, median 

changes from 0.676 to 0.722, while IQR differs from 0.101 to 0.183. Accordingly, for F-score, 

the min of Fscore ranges from 0.239 to 0.541 and the mean of the F-score varies from 0.458 to 

0.565, while the sd ranges from 0.0184 to 0.11. Also, median changes from 0.488 to 0.575, 

while IQR differs from 0.0279 to 0.139. 
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5.1.5 Descriptive statistics of Kotlin 

Table 5.6 Descriptive statistics of Kotlin 
Precision 

Algorithms Min Mean Sd Median IQR 
Apriori 0.435 0.453 0.0247 0.444 0.0177 

FPGrowth 0.085 0.247 0.110 0.281 0.184 
ReLim 0.0776 0.264 0.103 0.302 0.117 
Eclat 0.087 0.244 0.0938 0.273 0.128 

Recall 
Algorithms Min Mean Sd Median IQR 

Apriori 0.933 0.989 0.0272 1 0 
FPGrowth 0.722 0.838 0.0528 0.838 0.0646 

ReLim 0.722 0.842 0.0416 0.842 0.0646 
Eclat 0.722 0.831 0.0483 0.829 0.0641 

F-score 
Algorithms Min Mean Sd Median IQR 

Apriori 0.606 0.620 0.0172 0.615 0.0169 
FPGrowth 0.154 0.368 0.137 0.427 0.241 

ReLim 0.141 0.391 0.127 0.449 0.143 
Eclat 0.156 0.367 0.117 0.413 0.154 

 

Regarding the precision, as it can be noticed from  Table 5.6, the min of precision ranges from 

0.0776 to 0.435 and the mean of the precision varies from 0.244 to 0.453, while the sd ranges 

from 0.0247 to 0.11. Also, median changes from 0.273 to 0.444, while IQR differs from 0.0177 

to 0.184. For Recall, the min of recall ranges from 0.772 to 0.933 and the mean of the recall 

varies from 0.831 to 0.989, while the sd ranges from 0.0272 to 0.0528. Also, median changes 

from 0.829 to 1, while IQR differs from 0 to 0.0646. Accordingly, for F-score, the min of 

Fscore ranges from0.141 to 0.606 and the mean of the F-score varies from 0.367 to 0.62, while 

the sd ranges from 0.0172 to 0.137. Also, median changes from 0.413 to 0.615, while IQR 

differs from 0.0169 to 0.241. 
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5.1.6 Descriptive statistics of Rhino  

Table 5.7 Descriptive statistics of Rhino 
Precision 

Algorithms Min Mean Sd Median IQR 
Apriori 0.417 0.427 0.0128 0.420 0.0190 

FPGrowth 0.25 0.416 0.0701 0.415 0.0799 
ReLim 0.308 0.426 0.0560 0.413 0.0842 
Eclat 0.43 0.437 0.00404 0.438 0.00483 

Recall 
Algorithms Min Mean Sd Median IQR 

Apriori 0.491 0.643 0.126 0.633 0.197 
FPGrowth 0.4 0.702 0.180 0.768 0.281 

ReLim 0.4 0.706 0.173 0.75 0.201 
Eclat 0.52 0.679 0.134 0.665 0.201 

F-score 
Algorithms Min Mean Sd Median IQR 

Apriori 0.451 0.510 0.0490 0.504 0.0751 
FPGrowth 0.364 0.508 0.0712 0.523 0.0984 

ReLim 0.364 0.519 0.0640 0.516 0.0624 
Eclat 0.482 0.543 0.0438 0.537 0.0567 

 

Regarding the precision, as it can be noticed from  Table 5.7, the min of precision ranges from 

0.25 to 0.43 and the mean of the precision varies from 0.416 to 0.437, while the sd ranges from 

0.00404 to 0.0701. Also, median changes from 0.42 to 0.438, while IQR differs from 0.00483 

to 0.0842. For Recall, the min of recall ranges from 0.4 to 0.52 and the mean of the recall varies 

from 0.643 to 0.706, while the sd ranges from 0.126 to 0.18. Also, median changes from 0.633 

to 0.768, while IQR differs from 0.197 to 0.281. Accordingly, for F-score, the min of Fscore 

ranges from 0.364 to 0.482 and the mean of the F-score varies from 0.508 to 0.543, while the 

sd ranges from 0.0438 to 0.0712. Also, median changes from 0.504 to 0.537, while IQR differs 

from 0.0567 to 0.0984. 
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5.1.7 Descriptive statistics of SWT 

Table 5.8 Descriptive statistics of SWT 
Precision 

Algorithms Min Mean Sd Median IQR 
Apriori 0.467 0.474 0.00394 0.474 0.000892 

FPGrowth 0.069 0.265 0.130 0.247 0.226 
ReLim 0.069 0.284 0.173 0.248 0.253 
Eclat 0.0707 0.267 0.133 0.247 0.258 

Recall 
Algorithms Min Mean Sd Median IQR 

Apriori 0.824 0.858 0.0338 0.848 0.0530 
FPGrowth 0.583 0.757 0.0888 0.774 0.159 

ReLim 0.656 0.795 0.0699 0.814 0.0994 
Eclat 0.529 0.735 0.108 0.758 0.171 

F-score 
Algorithms Min Mean Sd Median IQR 

Apriori 0.596 0.610 0.00941 0.609 0.0102 
FPGrowth 0.127 0.372 0.141 0.372 0.241 

ReLim 0.13 0.398 0.151 0.374 0.252 
Eclat 0.127 0.366 0.139 0.371 0.231 

 

Regarding the precision, as it can be noticed from  Table 5.8, the min of precision ranges from 

0.069 to 0.467 and the mean of the precision varies from 0.265 to 0.474, while the sd ranges 

from 0.00394 to 0.173. Also, median changes from 0.247 to 0.474, while IQR differs from 

0.000892 to 0.258. For Recall, the min of recall ranges from 0.529 to 0.824 and the mean of 

the recall varies from 0.735 to 0.858, while the sd ranges from 0.0338 to 0.108. Also, median 

changes from 0.758 to 0.848, while IQR differs from 0.053 to 0.171. Accordingly, for F-score, 

the min of Fscore ranges from 0.127 to 0.596 and the mean of the F-score varies from 0.372 to 

0.61, while the sd ranges from 0.00941 to 0.151. Also, median changes from 0.371 to 0.609, 

while IQR differs from 0.0102 to 0.252. 

According to the descriptive statistics illustrated in  Table 5.2 to Table 5.8, we can notice that 

Apriori is performing better than the other investigated data mining techniques in terms of 

precision, recall and f-score for Eclipse, Elasticsearch, Jabref, Kotlin and SWT, however, for 

Rhino and Guava, there is no considerable difference between four investigated data mining 

techniques. While these trends are based on descriptive statistics for each project, more 

statistical tests are needed to examine the differences in terms of performance for the four 
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investigated data mining techniques. In the following, we present, for each project, the results 

of comparisons between the four data mining techniques measured in terms of precision, recall, 

and F-measure. 

 

5.2 Results of RQ2 

RQ2:  Are there any differences between the four studied advanced data mining techniques, 

Apriori, FP-Growth, Eclat and Relim in terms of their performances when recommending 

source code file changes? 

In this section, we use boxplots in order to display the distribution of data in a standard and 

visual way. Every boxplot represents five values, naming minimum, first quartile, median, 

third quartile, and maximum, as well as outliers, if exist. Additionally, we present all the 

adjusted p-values and Cliff’s Delta values for performance measures, namely the Precision, 

Recall and F-score for all the studied projects. 

5.2.1 Eclipse 

Are there any differences between the four advanced data mining techniques considered, i.e., 

Apriori, FP-Growth, Eclat and ReLim in terms of their performance when recommending 

source code file changes for Eclipse? 
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Figure 5.1 Boxplots of precision for the Eclipse project 

 

The boxplots in Figure 5.1 show that Apriori is producing better results in terms of precision, 

compared to other three data mining techniques. While, Eclat, FPGrowth and ReLim are 

almost similar and they are only slightly different. 
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Figure 5.2 Boxplots of recall for the Eclipse project 
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The boxplots in Figure 5.2 show that Apriori is producing better results in terms of recall. 

Additionally, it can be noticed that Eclat is performing better than ReLim and FPGrowth, while 

there is no considerable difference between ReLim and FPGrowth. 

 

 

Figure 5.3 Boxplots of F-measure for the Eclipse project 

 

The boxplots in Figure 5.3 show that Apriori is producing better results in terms of Fscore, 

compared to other three data mining techniques. While, Eclat, FPGrowth and ReLim are 

almost similar and they are only slightly different. 

In the following, we will present the statistical tests corresponding to the different comparisons. 
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Table 5.9 P-values and Cliff’s Delta for paired algorithms for Eclipse 
Algorithms Precision Recall F-score 

Adj. P-
values 

Cliff’s Delta Adj. P-
values 

Cliff’s Delta Adj. P-
values 

Cliff’s Delta 

Apriori - FPGrowth 0.031 1 (large) 0.031 1 (large) 0.031 1 (large) 
ReLim - FPGrowth 0.62 0.04 

(negligible) 
0.95 0.059(negligible) 0.95 0.12 

(negligible) 
ReLim - Apriori 0.031 -1 (large) 0.031 -1 (large) 0.031 -1 (large) 
Apriori - Eclat 0.43 0.79 (large) 0.031 0.95 (large) 0.06 0.89 (large) 
ReLim - Eclat 0.74 -0.2 (small) 0.0007766 -0.38 (medium) 0.52 -0.15 (small) 

FPGrowth - Eclat 0.92 -0.23(small) 0.0007482 -0.41 (medium) 0.14 -0.18 (small) 

 

For the Eclipse project, regarding the precision, as it can be noticed from Table 5.9 that presents 

the p-values and Cliff’s Delta values for each pair of comparison, there are statistically 

significantly differences between Apriori and FPGrowth (p-value = 0.031 and Cliff’s delta is 

large) as well as statistically significantly differences between ReLim and Apriori (p-value = 

0.031 and Cliff’s delta is large). 

For what concerns the recall, there are statistically significantly differences between Apriori 

and FPGrowth as well as ReLim and Apriori (p-value =0.03125 and Cliff’s delta is large). 

Also, Table 5.9 shows statistically significantly differences between Apriori and Eclat (p-value 

= 0.031 and Cliff’s delta is large) as well as ReLim and Eclat (p-value =0.0007766 and Cliff’s 

delta is medium). Besides, there are statistically significantly differences between FPGrowth 

and Eclat (p-value =0.0007482 and Cliff’s delta is medium). 

Regarding the F-score, as it can be noticed from Table 5.9, there are statistically significantly 

differences between Apriori and FPGrowth as well as ReLim and Apriori (p-value = 0.031 and 

Cliff’s delta is large).  

For Eclipse, we can conclude that there are statistically significant differences between Apriori 

and FP-Growth as well as Apriori and ReLim for precision, recall, and F-measure with a large 

effect-size measure. Additionally, Eclat is performing better than ReLim and FPGrowth in 

terms of recall only with medium effect-size measure when recommending source code change 

files. Overall, we reject the null hypothesis H0-21 and H0-23 for the comparison between Apriori 

and FP-Growth as well as Relim and Apriori.  
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5.2.2 ElasticSearch 

Are there any differences between the four advanced data mining techniques considered, i.e., 

Apriori, FP-Growth, Eclat and ReLim in terms of their performance when recommending 

source code file changes for Elasticsearch? 

 

Figure 5.4 Boxplots of precision for the ElasticSearch project 
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The boxplots in Figure 5.4 show that Apriori is producing better results in terms of precision, 

compared to other three data mining techniques. Additionally, it can be noticed that both Eclat 

and ReLim are performing better than FPGrowth.  

 

 

Figure 5.5 Boxplots of recall for the ElasticSearch project 

 

The boxplots in  Figure 5.5 show that Apriori is producing better results in terms of recall, 

compared to other three data mining techniques. Additionally, it can be noticed that there is no 

considerable difference between the performance of Eclat, FPGrowth and ReLim. 



52 

 

Figure 5.6 Boxplots of F-measure for the ElasticSearch project 

 

The boxplots in  Figure 5.6 show that Apriori is producing better results in terms of Fscore, 

compared to other three data mining techniques. Additionally, it can be noticed that both Eclat 

and ReLim are performing better than FPGrowth.  

In the following, we will present the statistical tests corresponding to the different comparisons. 

Table 5.10 P-values and Cliff’s delta for paired algorithms for Elasticsearch 
Algorithms Precision Recall F-score 

Adj. P-values Cliff’s Delta Adj. P-values Cliff’s Delta Adj. P-values Cliff’s Delta 
Apriori - FPGrowth 0.031 1 (large) 0.031 0.95 (large) 0.031 1 (large) 
ReLim - FPGrowth 0.037 0.17 (small) 0.1 0.083 

(negligible) 
0.03 0.18 (small) 

ReLim - Apriori 0.031 -1 (large) 0.031 -0.96 (large) 0.031 -1 (large) 
Apriori - Eclat 0.031 0.89(large) 0.031 0.93(large) 0.031 1 (large) 
ReLim - Eclat 0.21 -0.12 

(negligible) 
0.27 -0.12 

(negligible) 
0.06 -0.12 

(negligible) 
FPGrowth - Eclat 0.009 -0.3 (small) 0.0076 -0.18 (small) 0.00058 -0.26 (small) 
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For the Elasticsearch project: Regarding the precision:  As it can be noticed from Table 5.10 

that presents the p-values and Cliff’s Delta values for each pair of comparison, there are 

statistically significantly differences between Apriori and FPGrowth (p-value =0.031 and 

Cliff’s delta is large) as well as ReLim and FPGrowth (p-value =0.037 and Cliff’s delta is 

small). Additionally, there are statistically significantly differences between ReLim and 

Apriori (p-value =0.031 and Cliff’s delta is large) as well as Apriori and Eclat (p-value =0.031 

and Cliff’s delta is large). Furthermore, we obtained statistically significantly differences 

between FPGrowth and Eclat (p-value =0.009 and Cliff’s delta is small). 

For what concerns the recall, there are statistically significantly differences between Apriori 

and FPGrowth as well as ReLim and Apriori (p-value =0.031 and Cliff’s delta is large). In 

addition, there are statistically significantly differences between Apriori and Eclat (p-value 

=0.031 and Cliff’s delta is large) as well as FPGrowth and Eclat (p-value =0.0076 and Cliff’s 

delta is small). 

Regarding the F-score, Table 5.10 indicates that there are statistically significantly differences 

between Apriori and FPGrowth as well as ReLim and Apriori (p-value =0.031 and Cliff’s delta 

is large) along with ReLim and FPGrowth (p-value =0.03 and Cliff’s delta is small). Table 1-

10 also shows that there statistically significantly differences between Apriori and Eclat (p-

value =0.031 and Cliff’s delta is large) as well as FPGrowth and Eclat (p-value =0. 00058 and 

Cliff’s delta is small). 

For Elasticsearch, we conclude that there are statistically significant differences for almost all 

instances of comparisons between algorithms for the triple precision, recall, and F-score with 

an effect-size ranging from small to large, apart from Relim and Eclat, for which no statistically 

significant differences have been obtained between these two data mining algorithms.  We 

therefore reject the null hypothesis, for this project, for all instances of comparisons except for 

ReLim – Eclat. 
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5.2.3 Guava 

Are there any differences between the four advanced data mining techniques considered, i.e., 

Apriori, FP-Growth, Eclat and ReLim in terms of their performance when recommending 

source code file changes for Guava? 

 

Figure 5.7 Boxplots of precision for the Guava project 
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The boxplots in Figure 5.7 show that there are no considerable differences between 

performance of four data mining techniques in terms of precision.  

 

Figure 5.8 Boxplots of recall for the Guava project 

 

The boxplots in  Figure 5.8 show that Eclat and FPGrowth are performing better than ReLim 

and Apriori in terms of recall.  
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Figure 5.9 Boxplots of F-measure for the Guava project 

 

The boxplots in Figure 5.9 show that there are no considerable differences between 

performance of four data mining techniques in terms of Fscore.  

In the following, we will present the statistical tests corresponding to the different comparisons. 

Table 5.11 P-values and Cliff’s delta for paired algorithms for Guava 
Algorithms Precision Recall F-score 

Adj. P-values Cliff’s Delta Adj. P-values Cliff’s Delta Adj. P-values Cliff’s Delta 
Apriori - FPGrowth 0.29 -0.09 

(negligible) 
0.035 -0.13 

(negligible) 
0.035 -0.07 

(negligible) 
ReLim - FPGrowth 0.37 -0.056 

(negligible) 
1 -0.07 

(negligible) 
0.37 -0.06 

(negligible) 
ReLim - Apriori 0.29 0.037 

(negligible) 
0.035 0.028 

(negligible) 
0.035 -0.037 

(negligible) 
Apriori - Eclat 0.28 -0.17 (small) 0.035 -0.13 

(negligible) 
0.058 -0.11 

(negligible) 
ReLim - Eclat 0.00027 -0.31 (small) 0.009 -0.13 

(negligible) 
0.00018 -0.31 (small) 

FPGrowth - Eclat 0.00027 -0.26 (small) 0.01 -0.05 
(negligible) 

0.00018 -0.25 (small) 
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For the Guava project, regarding the precision:  As it can be noticed from Table 5.11, there are 

statistically significantly differences between FPGrowth and Eclat (p-value =0.00027 and 

Cliff’s delta is small) as well as statistically significantly differences between ReLim and Eclat 

(p-value =0.00027 and Cliff’s delta is small).  

For what concerns the recall, Table 5.11 indicates that there are statistically significantly 

differences between Apriori and FPGrowth as well as ReLim and Apriori (p-value =0.035 with 

a negligible Cliff’s delta).  In addition, there are statistically significantly differences between 

Apriori and Eclat, ReLim – Eclat, as well as FPGrowth – Eclat with a negligible Cliff’s delta. 

Regarding the F-score, Table 5.11 shows that there are statistically significantly differences 

between Apriori and FPGrowth (p-value =0.035), ReLim and Apriori (p-value = 0.035), as 

well Apriori and Eclat (p-value =0.058) but with a negligible Cliff’s delta. Additionally, there 

are statistically significantly differences between ReLim and Eclat (p-value = 0.00018) as well 

as FPGrowth – Eclat (p-value = 0.00018). 

Overall, for Guava, we can conclude that there are statistically significant differences between 

ReLim and Eclat as well as FPGrowth and Eclat for precision, recall, and F-score but with a 

negligible to small effect-size measure. Other instances of comparisons are statistically 

significant differences for the recall and F-score parts but the effect-size measure is negligible. 

5.2.4 Jabref 

Are there any differences between the four advanced data mining techniques considered, i.e., 

Apriori, FP-Growth, Eclat and ReLim in terms of their performance when recommending 

source code file changes for Jabref? 
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Figure 5.10 Boxplots of precision for the Jabref project 
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The boxplots in  Figure 5.10 show that Apriori is producing better results than other data 

mining techniques in terms of precision.  

 

Figure 5.11 Boxplots of recall for the Jabref project 
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The boxplots in  Figure 5.11 show that Apriori is producing better results than other data 

mining techniques in terms of recall.  

 

Figure 5.12 Boxplots of F-measure for the Jabref project 

 

The boxplots in  Figure 5.12 show that Apriori is producing better results than other data 

mining techniques in terms of Fscore.  

In the following, we will present the statistical tests corresponding to the different comparisons. 

Table 5.12 P-values and Cliff’s delta for paired algorithms for Jabref 
Algorithms Precision Recall F-score 

Adj. P-
values 

Cliff’s Delta Adj. P-
values 

Cliff’s Delta Adj. P-
values 

Cliff’s Delta 

Apriori - FPGrowth 0.16 0.7 (large) 0.29 0.31 (small) 0.29 0.74 (large) 
ReLim - FPGrowth 0.15 0.2(small) 0.13 0.09(negligible) 0.127 0.16 (small) 

ReLim - Apriori 0.15 -0.48 (large) 0.031 -0.28 (small) 0.031 -0.59 (large) 
Apriori - Eclat 0.035 0.78(large) 0.035 0.44 (medium) 0.035 1 (large) 
ReLim - Eclat 0.84 0.17(small) 0.031 0.06(negligible) 0.31 0 (negligible) 

FPGrowth - Eclat 0.84 -0.18 (small) 0.031 -0.06 
(negligible) 

0.22 -0.08 
(negligible) 
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For the Jabref project: regarding the precision, as it can be noticed from  Table 5.12, there are 

statistically significantly differences between Apriori and Eclat (p-value =0.035 and Cliff’s 

delta is large).  

For what concerns the recall, Table 5.12 indicates that there are differences between ReLim 

and Apriori (p-value =0.031 and Cliff’s delta is small) as well as statistically significantly 

differences between Apriori and Eclat (p-value =0.035 and Cliff’s delta is medium). 

Furthermore, there are differences between FP-Growth and Eclat as well as ReLim and Eclat 

(p-value =0.031 while Cliff’s delta is negligible). 

Regarding the F-score, as it can be noticed from Table 5.12, there are statistically significantly 

differences between Apriori and Eclat (p-value =0.035 and Cliff’s delta is large) as well as 

ReLim and Apriori (p-value =0.031 and a large Cliff’s delta). 

Overall, for Jabref, we reject the null hypothesis H0-24 for the comparison between Apriori and 

Eclat since there are statistically significant differences between these two algorithms in terms 

of precision, recall, as well as F-measure with a medium to large effect-size. Other instances 

such as the comparison between ReLim and Apriori yield statistically significant differences 

but this is limited to recall and F-measure.  

5.2.5 Kotlin 

Are there any differences between the four advanced data mining techniques considered, i.e., 

Apriori, FP-Growth, Eclat and ReLim in terms of their performance when recommending 

source code file changes for Kotlin? 
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Figure 5.13 Boxplots of precision for the Kotlin project 

 

The boxplots in  Figure 5.13 show that Apriori is producing better results than other data 

mining techniques in terms of precision. 
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Figure 5.14 Boxplots of recall for the Kotlin project 

 

The boxplots in  Figure 5.14 show that Apriori is producing better results than other data 

mining techniques in terms of recall. 
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Figure 5.15 Boxplots of F-measure for the Kotlin project 

 

The boxplots in  Figure 5.15 show that Apriori is producing better results than other data 

mining techniques in terms of Fscore. 

In the following, we will present the statistical tests corresponding to the different comparisons. 

Table 5.13 P-values and Cliff’s delta for paired algorithms for Kotlin 
Algorithms Precision Recall F-score 

Adj. P-values Cliff’s Delta Adj. P-values Cliff’s Delta Adj. P-values Cliff’s Delta 
Apriori - FPGrowth 0.031 1 (large) 0.031 1 (large) 0.031 1 (large) 
ReLim - FPGrowth 0.079 0.068 

(negligible) 
0.9 0.02 

(negligible) 
0.1 0.06 

(negligible) 
ReLim - Apriori 0.031 -1 (large) 0.031 -1 (large) 0.031 -1 (large) 
Apriori - Eclat 0.031 1 (large) 0.031 1 (large) 0.031 1 (large) 
ReLim - Eclat 0.1 0.1 

(negligible) 
0.53 0.14 

(negligible) 
0.06 0.13 

(negligible) 
FPGrowth - Eclat 0.83 0.02 

(negligible) 
0.31 0.13 

(negligible) 
0.38 0.06 

(negligible) 
 

For the Kotlin project, regarding the precision:  As it can be noticed from Table 5.13, there are 

statistically significantly differences between Apriori and FPGrowth (p-value =0.03125 and 

Cliff’s delta is large) as well as ReLim and Apriori (p-value =0.031 and Cliff’s delta is large), 
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and between Apriori and Eclat (p-value =0.031 and Cliff’s delta is large).  The same trends are 

observed for recall as well as F-measure for these instances of comparisons.  

We therefore reject the null hypothesis H0-21, H0-23 and H0-24 for the comparisons between 

Apriori and FPGrowth, ReLim and Apriori, as well as Apriori and Eclat. 

Overall, we can conclude, that for the Kotlin project, Apriori is outperforming Eclat, ReLim 

and FPGrowth in terms of precision, recall, as well as F-measure. 

5.2.6 Rhino 

Are there any differences between the four advanced data mining techniques considered, i.e., 

Apriori, FP-Growth, Eclat and ReLim in terms of their performance when recommending 

source code file changes for Rhino? 

 

Figure 5.16 Boxplots of precision for the Rhino project 

 

The boxplots in Figure 5.16 show that Eclat is slightly better than ReLim and FPGrowth in 

terms of precision. 
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Figure 5.17 Boxplots of recall for the Rhino project 

 

The boxplots in Figure 5.17 show that ReLim and FPGrowth are slightly better than Eclat and 

Eclat is slightly better than Apriori in terms of recall. 
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Figure 5.18 Boxplots of F-measure for the Rhino project 

 

The boxplots in Figure 5.18 show that Eclat is performing slightly better than other data mining 

techniques. 

In the following, we will present the statistical tests corresponding to the different comparisons. 

Table 5.14 P-values and Cliff’s delta for paired algorithms for Rhino 
Algorithms Precision Recall F-score 

Adj. P-values Cliff’s Delta Adj. P-values Cliff’s Delta Adj. P-values Cliff’s Delta 
Apriori - FPGrowth 0.09 0.1388889 

(negligible) 
0.14 -0.26 (small) 0.84 -0.000923 

(negligible) 
ReLim - FPGrowth 0.81 0.009259259 

(negligible) 
0.59 -0.018 

(negligible) 
0.9 0.046 

(negligible) 
ReLim - Apriori 0.06 -0.1388889 

(negligible) 
0.14 0.26 (small) 0.84 0.11 

(negligible) 
Apriori - Eclat 0.16 -0.3333333 

(medium) 
0.031 -0.28 (small) 0.031 -0.44 

(medium) 
ReLim - Eclat 0.031 -0.2222222 

(small) 
0.56 0.13 

(negligible) 
0.56 -0.17 (small) 

FPGrowth - Eclat 0.031 -0.2222222 
(small) 

0.31 0.13 
(negligible) 

0.69 -0.22 (small) 
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For the Rhino project, regarding the precision:  As it can be noticed from Table 5.14, there are 

statistically significantly differences between ReLim - Eclat as well as FPGrowth and Eclat (p-

value =0.031 and Cliff’s delta is small).  

For what concerns the recall, Table 5.14 shows that there are statistically significantly 

differences for only one instance of comparison, i.e., Apriori and Eclat (p-value =0.031 while 

Cliff’s delta is small). 

Regarding the F-score,  Table 5.14 also indicates a statistically significantly difference, for one 

instance only, i.e., Apriori and Eclat (p-value =0.031 with a medium Cliff’s delta). 

For Rhino, we conclude that there are statistically significant differences for some instances of 

comparisons. Specifically, Eclat yield some better performances than ReLim and FPGrowth 

for precision (with a small effect-size). Additionally, it performs better than Apriori in terms 

of recall (small effect-size) and F-measure (medium effect-size). 

5.2.7 SWT 

Are there any differences between the four advanced data mining techniques considered, i.e., 

Apriori, FP-Growth, Eclat and ReLim in terms of their performance when recommending 

source code file changes for SWT? 
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Figure 5.19 Boxplots of precision for the SWT project 

 

The boxplots in Figure 5.19 show that Apriori is performing better than Eclat, FPGrowth and 

ReLim. 
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Figure 5.20 Boxplots of recall for the SWT project 

 

The boxplots in  Figure 5.20 show that Apriori and ReLim are performing slightly better than 

Eclat and FPGrowth. 
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Figure 5.21 Boxplots of F-measure for the SWT project 

 

The boxplots in  Figure 5.21 show that Apriori is performing better than other data mining 

techniques. While, Relim is slightly better than FPGrowth and Eclat. 

In the following, we will present the statistical tests corresponding to the different comparisons. 

Table 5.15 P-values and Cliff’s delta for paired algorithms for SWT 
Algorithms Precision Recall F-score 

Adj. P-values Cliff’s Delta Adj. P-values Cliff’s Delta Adj. P-values Cliff’s Delta 
Apriori - FPGrowth 0.031 1 (large) 0.16 0.74(large) 0.031 1 (large) 
ReLim - FPGrowth 0.014 0.1 

(negligible) 
0.01 0.27(small) 0.012 0.1358025 

(negligible) 
ReLim - Apriori 0.031 -1 (large) 0.22 -0.51 (large) 0.031 -1 (large) 
Apriori - Eclat 0.031 1 (large) 0.06 0.72 (large) 0.031 1 (large) 
ReLim - Eclat 0.12 0.07 

(negligible) 
0.0045 0.35 

(medium) 
0.018 0.1358025 

(negligible) 
FPGrowth - Eclat 0.68 -0.003 

(negligible) 
0.13 0.099 

(negligible) 
0.3 0.03703704 

(negligible) 
 

For the SWT project, regarding the precision:  As it can be noticed from Table 5.15, there are 

statistically significantly differences between Apriori and FPGrowth, ReLim and Apriori, as 
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well as Apriori and Eclat (p-value = 0.031 and Cliff’s delta is large). Additionally, there are 

differences between ReLim and FPGrowth (p-value = 0.014 but with a negligible effect-size).  

For what concerns the recall, Table 5.15 reports that there are statistically significantly 

differences between ReLim and Eclat (p-value = 0.0045 and Cliff’s delta is medium) as well 

as differences between ReLim and FPGrowth (p-value = 0.01 and Cliff’s delta is small).  

Regarding the F-score, similarly to the precision, we obtained statistically significantly 

differences between Apriori and FPGrowth, ReLim and Apriori, as well as Apriori and Eclat 

(p-value = 0.031 and Cliff’s delta is large). Other instances of comparisons yield statistical 

differences such as ReLim and FPGrowth as well as ReLim and Eclat but the effect size is not 

significant.  

For SWT, we conclude that, overall, Apriori yields better performances than Eclat, ReLim and 

FPGrowth since significant differences have been obtained with large effect-size for F-score.  

Overall, the main results obtained can be summarized as follows. 

Apriori yields better performances than Eclat, ReLim and FPGrowth in particular in terms of 

precision and Fscore as the case for Kotlin, Elasticsearch and SWT projects, and sometimes in 

terms of recall too (e.g., Eclipse and Jabref projects). 

Eclat shows better performances than ReLim and FPGrowth in terms of precision and F-score 

for Rhino, it yields better performances than Aprior in terms of recall such as the case for 

Eclipse, as well as in terms of all performance measures as in the case of the Guava project. 

Additionally, Eclat performs better than FPGrowth for all performance measures in the 

Elasticsearch project. ReLim and FPGrowth have shown better performances than Apriori in 

terms of recall for the Guava project.  

A possible explanation to the obtained findings is the fact that the Apriori algorithm generates 

less candidate set of itemsets while running, which results in better performance for projects 

such as Kotlin, Elasticsearch and SWT, having 15k, 12k and 8k transactions, respectively, in 

comparison with other projects with less than 3k transactions. Additionally, data mining 
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techniques including Apriori and Eclat are applying optimized frequent itemsets generation 

strategies such as pruning techniques in Apriori and vertical-based mining in Eclat, which 

results in a decrease in the number of candidates and comparisons, consequently it yields better 

performance for larger databases as mentioned.  

Like any research work, our work has its limitations. One of the main limitations is that the 

granularity level of our approach is limited to the file level. Our approach could be extended 

to other levels such as the method level, which we consider as part of our future work. Another 

limitation is that our approach is limited to recommending source code changes for Java files 

only for instance, we therefore can address more programming language such as C# and 

Python. Clearly, our empirical study has its threats to validity also, which we discuss in details 

in the next section. 

5.3 Threats to validity 

There are threats to validity related to our empirical study in spite of the fact that we have 

evaluated it empirically and statistically. The most frequent ones are discussed in the following 

section: 

5.3.1 Internal validity 

Internal validity is the extent to which a study results are reliable or accurate (Godwin et al., 

2003). We provided empirical evidence of the differences between traditional data mining 

algorithms and advanced ones. Possible threats could be related to the data filtering that we 

did when filtering source code file changes. Yet, when dealing with such a process, we 

mirrored widely-adopted filtering ways as in previous works (Zimmermann, Zeller, 

Weissgerber, & Diehl, 2005), (Ying, Murphy, Ng, & Chu-Carroll, 2004). 

5.3.2 External validity 

External validity is the extent to which a study results are generalizable (Godwin et al., 2003). 

Our study examined seven real open-source projects: Eclipse, ElasticSearch, SWT, Kotlin, 
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Guava, SWT and JabRef. The projects may be not representative of all software projects. 

However, they are different in size and domains. In the future, it would be interesting to 

consider more projects in other contexts as well, the industrial field. 

5.3.3 Reliability validity 

Reliability is the extent to which a study is producing analogous results in variuos conditions 

(Godwin et al., 2003). The source code repositories of Eclipse, ElasticSearch, Rhino, SWT, 

Kotlin, Guava and JabRef are publicly-available. The frame-times of the code histories that we 

investigated are reported in the thesis. Additionally, we used the apriori package of Python to 

run Apriori, as well as running FPGrowth and ReLim by pymining Python package (using the 

parameters reported in the thesis), while we used the source code of Eclat made available by 

their authors. 

5.3.4 Conclusion Validity 

Conclusion validity is the extent to which the conclusions of a study is arising out of sufficient 

data analysis and all the research questions are accurately and logically answered (MA García-

Pérez, 2012). We have performed adequate tests, for the purpose of comparison, in order to 

statistically reject the null hypotheses. In particular, we used nonparametric tests, which do not 

make any assumption on the distributions of the data, and, specifically, the Wilcoxon pair-wise 

test. In addition, our conclusions have not been based only on the presence of significant 

differences between pairs of data mining algorithms, but also on the effect-size measure 

presence, i.e., the magnitude of the difference, between two algorithms. Furthermore, we dealt 

with issues related to performing multiple Wilcoxon tests using the Holm correction. 



 

CONCLUSION 

 

The use of advanced data mining techniques for generating predictions of phenomena or 

patterns or recommending source code file changes is becoming increasingly popular and has 

been quite common since the advent of big data. In this work, our focus is on four advanced 

data mining algorithms that mine development history to recommend source code file changes. 

To the best of our knowledge. while some research works have attempted to suggest 

recommendations for source code changes, they leveraged simple data mining algorithms such 

as Apriori, they have not investigated other advanced data mining techniques. Additionally, 

they have not investigated different configurations of support and confidence and they have 

not compared their work to any baseline and–or previous works. To the best of our knowledge, 

we are the first to suggest recommending source code file changes by applying four different 

algorithms and comparing their performances using a large number of configurations. We 

believe such research can be beneficial to both the research community and practitioners 

interested in leveraging appropriate data mining algorithms for their research context. In this 

paper, we applied four advanced mining algorithms: Apriori, FP-Growth, Eclat and Relim on 

the development history of seven widely-used open-source projects: Eclipse, ElasticSearch, 

Rhino, SWT, Kotlin, Guava and JabRef. We also compare the performance results of the four 

investigated algorithms in terms of their precision, recall, and F-measure, while using as our 

baseline the Apriori algorithm. 

Our findings demonstrate that, Apriori is outperforming Eclat, ReLim and FPGrowth in 

particular in terms of precision and Fscore as the case for Kotlin, Elasticsearch and SWT 

projects, and sometimes in terms of recall too (e.g., Eclipse and Jabref projects). Eclat yields 

performances than Aprior in terms of recall such as the case for Eclipse, as well as in term of 

all performance measures as in the case of the Guava project. Also, Eclat outperforms 

FPGrowth for all performance measures in the Elasticsearch project. On the other hand, ReLim 

and FPGrowth have shown better performances than Apriori in terms of recall for the Guava 

project. 



76 

As future work, we plan to explore more projects with different programming languages other 

than Java, as well as extending the approach to more fine-grained levels such as methods. We 

also intend to improve the quality of our transactions by using different filters on our 

development history and considering metrics on the quality of transactions to identify only 

those that are relevant to the developer’s task at hand. Finally, one idea could be to build new 

models of source code changes that consider the temporal aspect of change history, and in 

particular, the order of the source code changes. 

 



 

APPENDIX 

In Table A, some generated rules from seven projects are illustrated, in which frequent files 

changed together are shown. 

Table A Generated rules that show changed files together for different projects 
Eclipse 

"frozenset({'org.eclipse.jdt.core/batch/org/eclipse/jdt/internal/compiler/batch/Main.java', 
'org.eclipse.jdt.core/model/org/eclipse/jdt/core/JavaCore.java', 
'org.eclipse.jdt.core/compiler/org/eclipse/jdt/internal/compiler/problem/ProblemReporter.java', 
'org.eclipse.jdt.core/compiler/org/eclipse/jdt/core/compiler/IProblem.java'})",  
 
"frozenset({'org.eclipse.jdt.core/compiler/org/eclipse/jdt/internal/compiler/problem/ProblemReporter.java', 
'org.eclipse.jdt.core/compiler/org/eclipse/jdt/core/compiler/IProblem.java', 
'org.eclipse.jdt.core/model/org/eclipse/jdt/core/JavaCore.java'})",  
 
"frozenset({'org.eclipse.jdt.core/model/org/eclipse/jdt/core/JavaCore.java', 
'org.eclipse.jdt.core/compiler/org/eclipse/jdt/core/compiler/IProblem.java'})",  
 
"frozenset({'org.eclipse.jdt.core/model/org/eclipse/jdt/core/JavaCore.java', 
'org.eclipse.jdt.core/compiler/org/eclipse/jdt/internal/compiler/problem/ProblemReporter.java'})",  
 
"frozenset({'org.eclipse.jdt.core/batch/org/eclipse/jdt/internal/compiler/batch/Main.java', 
'org.eclipse.jdt.core/compiler/org/eclipse/jdt/internal/compiler/problem/ProblemReporter.java', 
'org.eclipse.jdt.core/compiler/org/eclipse/jdt/core/compiler/IProblem.java'})",  
 
"frozenset({'org.eclipse.jdt.core/batch/org/eclipse/jdt/internal/compiler/batch/Main.java', 
'org.eclipse.jdt.core/compiler/org/eclipse/jdt/core/compiler/IProblem.java'})",  
 
"frozenset({'org.eclipse.jdt.core/batch/org/eclipse/jdt/internal/compiler/batch/Main.java', 
'org.eclipse.jdt.core/compiler/org/eclipse/jdt/internal/compiler/problem/ProblemReporter.java'})",  
 
"frozenset({'org.eclipse.jdt.core/batch/org/eclipse/jdt/internal/compiler/batch/Main.java', 
'org.eclipse.jdt.core/compiler/org/eclipse/jdt/core/compiler/IProblem.java', 
'org.eclipse.jdt.core/model/org/eclipse/jdt/core/JavaCore.java'})",  
 
"frozenset({'org.eclipse.jdt.core/batch/org/eclipse/jdt/internal/compiler/batch/Main.java', 
'org.eclipse.jdt.core/model/org/eclipse/jdt/core/JavaCore.java'})" 
 

Elasticsearch 
"frozenset({'src/main/java/org/elasticsearch/index/mapper/core/LongFieldMapper.java', 
'src/main/java/org/elasticsearch/index/mapper/ip/IpFieldMapper.java', 
'src/main/java/org/elasticsearch/index/mapper/core/ShortFieldMapper.java', 
'src/main/java/org/elasticsearch/index/mapper/core/DateFieldMapper.java', 
'src/main/java/org/elasticsearch/index/mapper/core/DoubleFieldMapper.java', 
'src/main/java/org/elasticsearch/index/mapper/core/FloatFieldMapper.java', 
'src/main/java/org/elasticsearch/index/mapper/core/ByteFieldMapper.java'})",  
 
"frozenset({'src/main/java/org/elasticsearch/index/mapper/core/DateFieldMapper.java', 
'src/main/java/org/elasticsearch/index/mapper/core/DoubleFieldMapper.java', 
'src/main/java/org/elasticsearch/index/mapper/core/ByteFieldMapper.java', 
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'src/main/java/org/elasticsearch/index/mapper/core/FloatFieldMapper.java', 
'src/main/java/org/elasticsearch/index/mapper/ip/IpFieldMapper.java', 
'src/main/java/org/elasticsearch/index/mapper/core/ShortFieldMapper.java'})",  
 
"frozenset({'src/main/java/org/elasticsearch/index/mapper/core/DoubleFieldMapper.java', 
'src/main/java/org/elasticsearch/index/mapper/ip/IpFieldMapper.java', 
'src/main/java/org/elasticsearch/index/mapper/core/FloatFieldMapper.java', 
'src/main/java/org/elasticsearch/index/mapper/core/ByteFieldMapper.java', 
'src/main/java/org/elasticsearch/index/mapper/core/ShortFieldMapper.java'})",  
 
"frozenset({'src/main/java/org/elasticsearch/index/mapper/core/ByteFieldMapper.java', 
'src/main/java/org/elasticsearch/index/mapper/core/FloatFieldMapper.java', 
'src/main/java/org/elasticsearch/index/mapper/ip/IpFieldMapper.java', 
'src/main/java/org/elasticsearch/index/mapper/core/ShortFieldMapper.java'})",  
 
"frozenset({'src/main/java/org/elasticsearch/index/mapper/ip/IpFieldMapper.java', 
'src/main/java/org/elasticsearch/index/mapper/core/FloatFieldMapper.java', 
'src/main/java/org/elasticsearch/index/mapper/core/ShortFieldMapper.java'})", 
 

Kotlin 
"frozenset({'compiler/frontend/src/org/jetbrains/jet/di/InjectorForLazyResolve.java', 
'compiler/frontend/src/org/jetbrains/jet/di/InjectorForMacros.java', 
'compiler/frontend/src/org/jetbrains/jet/di/InjectorForTopDownAnalyzerBasic.java', 
'compiler/frontend/src/org/jetbrains/jet/di/InjectorForBodyResolve.java', 
'compiler/frontend.java/src/org/jetbrains/jet/di/InjectorForTopDownAnalyzerForJvm.java'})",  
 
"frozenset({'compiler/frontend/src/org/jetbrains/jet/di/InjectorForMacros.java', 
'compiler/frontend/src/org/jetbrains/jet/di/InjectorForTopDownAnalyzerBasic.java', 
'compiler/frontend/src/org/jetbrains/jet/di/InjectorForBodyResolve.java', 
'compiler/frontend.java/src/org/jetbrains/jet/di/InjectorForTopDownAnalyzerForJvm.java'})",  
 
"frozenset({'compiler/frontend/src/org/jetbrains/jet/di/InjectorForTopDownAnalyzerBasic.java', 
'compiler/frontend/src/org/jetbrains/jet/di/InjectorForBodyResolve.java', 
'compiler/frontend.java/src/org/jetbrains/jet/di/InjectorForTopDownAnalyzerForJvm.java'})",  
 
"frozenset({'compiler/frontend/src/org/jetbrains/jet/di/InjectorForMacros.java', 
'compiler/frontend/src/org/jetbrains/jet/di/InjectorForBodyResolve.java', 
'compiler/frontend.java/src/org/jetbrains/jet/di/InjectorForTopDownAnalyzerForJvm.java'})",  
 
"frozenset({'compiler/frontend/src/org/jetbrains/jet/di/InjectorForMacros.java', 
'compiler/frontend/src/org/jetbrains/jet/di/InjectorForTopDownAnalyzerBasic.java', 
'compiler/frontend.java/src/org/jetbrains/jet/di/InjectorForTopDownAnalyzerForJvm.java'})",  
 
"frozenset({'compiler/frontend/src/org/jetbrains/jet/di/InjectorForMacros.java', 
'compiler/frontend/src/org/jetbrains/jet/di/InjectorForTopDownAnalyzerBasic.java', 
'compiler/frontend/src/org/jetbrains/jet/di/InjectorForBodyResolve.java'})", 
 

Guava 
"frozenset({'guava/src/com/google/common/collect/Multimaps.java','guava-gwt/src-
super/com/google/common/collect/super/com/google/common/collect/FluentIterable.java', 
'guava/src/com/google/common/collect/Iterators.java'})",  
 
"frozenset({'guava/src/com/google/common/graph/Network.java', 
'guava/src/com/google/common/graph/Graph.java', 'guava/src/com/google/common/collect/Maps.java'})",  
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"frozenset({'guava-gwt/src-
super/com/google/common/collect/super/com/google/common/collect/Maps.java', 
'guava/src/com/google/common/util/concurrent/Futures.java', 'guava-gwt/src-
super/com/google/common/collect/super/com/google/common/collect/Sets.java'})"],  
 

Jabref 
"frozenset({'src/java/net/sf/jabref/JabRefFrame.java','src/java/net/sf/jabref/GUIGlobals.java', 
'src/java/net/sf/jabref/JabRefPreferences.java'})",  
 
"frozenset({'src/main/java/net/sf/jabref/gui/BasePanel.java', 
'src/main/java/net/sf/jabref/gui/actions/Actions.java'})",  
 
"frozenset({'src/main/java/net/sf/jabref/gui/BasePanel.java', 
'src/main/java/net/sf/jabref/gui/JabRefFrame.java'})",  
 
"frozenset({'src/main/java/net/sf/jabref/gui/JabRefFrame.java', 
'src/main/java/net/sf/jabref/sql/importer/DbImportAction.java'})" 
 
"frozenset({'src/java/net/sf/jabref/JabRefFrame.java','src/java/net/sf/jabref/BasePanel.java', 
'src/java/net/sf/jabref/JabRefPreferences.java'})",  
 
"frozenset({'src/java/net/sf/jabref/JabRefFrame.java','src/java/net/sf/jabref/BasePanel.java', 
'src/java/net/sf/jabref/GUIGlobals.java'})",  
 
"frozenset({'src/main/java/net/sf/jabref/gui/JabRefFrame.java', 
'src/main/java/net/sf/jabref/gui/actions/Actions.java'})",  
 

Rhino 
"frozenset({'src/org/mozilla/javascript/Interpreter.java', 
'src/org/mozilla/javascript/optimizer/Codegen.java'})",  
 
"frozenset({'src/org/mozilla/javascript/Token.java', 'src/org/mozilla/javascript/optimizer/Codegen.java'})",  
 
"frozenset({'src/org/mozilla/javascript/Token.java', 'src/org/mozilla/javascript/Interpreter.java'})",  
 
"frozenset({'src/org/mozilla/javascript/optimizer/Codegen.java', 
'src/org/mozilla/javascript/Interpreter.java'})",  
 
"frozenset({'src/org/mozilla/javascript/IRFactory.java', 'src/org/mozilla/javascript/Interpreter.java'})",  
"frozenset({'src/org/mozilla/javascript/IRFactory.java', 
'src/org/mozilla/javascript/optimizer/Codegen.java'})",  
 
"frozenset({'src/org/mozilla/javascript/optimizer/Codegen.java', 'src/org/mozilla/javascript/Parser.java'})",  
 
"frozenset({'src/org/mozilla/javascript/Interpreter.java', 'src/org/mozilla/javascript/Parser.java'})",  
 
"frozenset({'src/org/mozilla/javascript/Interpreter.java', 
'src/org/mozilla/javascript/optimizer/Codegen.java'})",  
 
"frozenset({'src/org/mozilla/javascript/optimizer/Codegen.java', 
'src/org/mozilla/javascript/ScriptRuntime.java'})",  
 
"frozenset({'src/org/mozilla/javascript/Interpreter.java', 'src/org/mozilla/javascript/ScriptRuntime.java'})",  
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"frozenset({'src/org/mozilla/javascript/Interpreter.java', 
'src/org/mozilla/javascript/optimizer/Codegen.java'})" 
 

SWT 
"frozenset({'bundles/org.eclipse.swt/EclipseSWT/gtk/org/eclipse/swt/widgets/Table.java', 
'bundles/org.eclipse.swt/EclipseSWT/gtk/org/eclipse/swt/widgets/Control.java'})",  
 
"frozenset({'bundles/org.eclipse.swt/EclipseSWT/gtk/org/eclipse/swt/widgets/List.java', 
'bundles/org.eclipse.swt/EclipseSWT/gtk/org/eclipse/swt/widgets/Table.java'})",  
 
"frozenset({'bundles/org.eclipse.swt/EclipseSWT/gtk/org/eclipse/swt/widgets/Tree.java', 
'bundles/org.eclipse.swt/EclipseSWT/gtk/org/eclipse/swt/widgets/Table.java', 
'bundles/org.eclipse.swt/EclipseSWT/gtk/org/eclipse/swt/widgets/Control.java'})",  
 
"frozenset({'bundles/org.eclipse.swt/EclipseSWT/gtk/org/eclipse/swt/widgets/Tree.java', 
'bundles/org.eclipse.swt/EclipseSWT/gtk/org/eclipse/swt/widgets/List.java'})",  
 
"frozenset({'bundles/org.eclipse.swt/EclipseSWT/gtk/org/eclipse/swt/widgets/Tree.java', 
'bundles/org.eclipse.swt/EclipseSWT/gtk/org/eclipse/swt/widgets/List.java', 
'bundles/org.eclipse.swt/EclipseSWT/gtk/org/eclipse/swt/widgets/Table.java'})",  
 
"frozenset({'bundles/org.eclipse.swt/EclipseSWT/gtk/org/eclipse/swt/widgets/Combo.java','bundles/org.eclip
se.swt/EclipseSWT/gtk/org/eclipse/swt/widgets/Table.java', 
'bundles/org.eclipse.swt/EclipseSWT/gtk/org/eclipse/swt/widgets/Control.java'})",  
 
"frozenset({'bundles/org.eclipse.swt/EclipseSWT/gtk/org/eclipse/swt/widgets/Table.java', 
'bundles/org.eclipse.swt/EclipseSWT/gtk/org/eclipse/swt/widgets/Control.java'})",  
 
"frozenset({'bundles/org.eclipse.swt/EclipseSWT/gtk/org/eclipse/swt/widgets/Combo.java', 
'bundles/org.eclipse.swt/EclipseSWT/gtk/org/eclipse/swt/widgets/Control.java'})", 
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