
Natural Language Generation for Intelligent Tutoring Systems

by

Do Dung VU

THESIS PRESENTED TO ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
IN PARTIAL FULFILLMENT FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
Ph.D.

MONTREAL, MAY 16th, 2022

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

Do Dung VU, 2022

This Creative Commons license allows readers to download this work and share it with others as long as the

author is credited. The content of this work cannot be modified in any way or used commercially.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Prof. Sylvie Ratté, Thesis supervisor

Département de génie logiciel et des TI, École de technologie supérieure

Prof. Tan Pham, President of the board of examiners

Département de génie mécanique, École de technologie supérieure

Prof. Luc Duong, Member of the jury

Département de génie logiciel et des TI, École de technologie supérieure

Prof. Thang Le Dinh, External independent examiner

Département Marketing et systèmes d’information, Université du Québec à Trois-Rivières

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

ON APRIL 5th, 2022

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

ACKNOWLEDGEMENTS

I had committed to pursuing my Ph.D. when I left South Korea after working there for 18

months in the machine learning field. I came to Canada with great zeal and a hopeful future.

However, the first company that promised to give me the fund for my Ph.D. project with the

application research of computer vision suddenly ceased after a few months without any reason.

My supervisor Prof. Sylvie Ratté gave me a concept of the applications of Natural Language

Processing. Although I did not understand this conception much, I figured out that it was an

amazing technology. It will avail human and machine communication and be the future of many

genuine-world applications.

Getting a research challenge without any fund in Canada in parallel with taking care of my own

family was at once not only a prodigiously exhilarating but also an affrighting time. I had never

been to Canada before, did not know anyone there, and did not realize the French language

barrier and the winter weather. Auspiciously, the supervisors and students in the lab were very

welcome and subsidiary. They had originated from abroad with many scenarios, hence we

could communicate easily and apportion the positive energy to each other. After culminating

the research time in the lab, I tried to contact many companies to obtain the fund for my Ph.

D, there of them contacted me. Unfortunately, most of the company’s focuses were out of my

research. However, I met Iulian Serban who was the CEO/CTO of Korbit Inc. The mission of

Korbit is to implement the Artificial Intelligence tutor. Hence, we had a great discussion about

my research and the way of obtaining funds. Through our discussion, I decided to fixate on my

research of natural language generation for intelligent tutoring systems. With my supervisor

support, a few months later, I obtained the grant from Mitacs which is a nonprofit national

research organization that, in partnerships with Canadian academia, private industry, and regime,

operates research and training programs in fields cognate to industrial and convivial innovation.

The Mitacs grant has coalesced between Korbit Inc and Government fund. I joined Korbit as an

intern to study and work under the supervisor of professor Sylvie Ratté and Iulian Serban. I’d

relish thanking each of them for their time, work, and support throughout the years. Without

them, my Ph.D. degree would never have become true.

VI

In the beginning, I mentally conceived that a Ph.D. fixates on reading the paper, doing the

experiment, and inscribing paper. However, I deduced that a Ph.D. is not only a long journey

of revelation, and exploration, but it is a hard training period in both academic and industrial

areas with many critical questions and answers, where both of them are always obnubilated.

During the Ph.D. program, I learned many things to answer the most consequential questions

Why and How when I solve a given quandary. By doing the literature survey, asking, and

applying the many research methodology(e.g., understanding and being proficiently adept at the

dependencies, software libraries, indite a scientific paper, etc.,), I found the solution for this

problem. It was a long and hard journey. I would relish thanking all of my collaborators whom I

have worked with during my Ph.D. I would relish to thank preceptor Sylvie Ratté who fortifies,

edifies, engages, and mentors me throughout the years. I would like to appreciate Iulian Serban,

and Korbit members who give me a great internship environment, a chance of working and

researching in Natural Language Processing. I would like to thank my lab mates at ÉTS who

always give me feedback when I prepare the presentation. Last, I would relish thanking the

thesis jury members for reading my thesis and providing their comments.

Conclusively, and most of all, I would relish thanking my profound appreciation, my wife and

partner in life, Trang Nhung, our daughter Ha An, our son Minh Huy. Trang Nhung has stood by

my side for 10 years, and she has always helped me to shoulder the inevitably ineluctable ups

and downs of my life. Ha An and Minh Huy have given me the happiness, potency, and purport

which avail me to pursue the scientific achievement.

Génération de langage naturel pour les systèmes de tutorat intelligents

Do Dung VU

RÉSUMÉ

Ce projet aborde le problème de la génération automatique de texte pour un système de tutorat

intelligent conversationnel (ITS). L’ITS conversationnel pose des questions à l’étudiant, puis

analyse sa réponse à l’aide d’algorithmes d’apprentissage automatique. Lorsque la réponse de

l’élève est classée comme étant incorrecte, le système doit donner un indice approprié pour

l’aider à répondre à la question ou à comprendre le problème. Le système est alimenté par une

base de données de questions, réponses et astuces. Le composant générant les conseils est appelé

le modèle de « génération de conseils ». À cette fin, nous proposons un modèle de génération de

feedback et d’astuces capable de générer des astuces pédagogiques significatives, personnalisées.

Pour rendre le cours plus engageant et efficace pour chaque étudiant, nous proposons en outre

un modèle de « génération de contenu » capable de générer un nouveau contenu, y compris

des questions, des réponses et des conseils, automatiquement à partir de texte non structuré (tel

que Wikipédia) ou de manière interactive avec l’aide des enseignants. En outre, nous étudions

également comment le système peut être capable d’adapter efficacement son contenu et ses

stratégies de tutorat à chaque élève.

Mots-clés: Intelligent Tutor, Artificial Intelligence, Natural Language Processing

Natural Language Generation for Intelligent Tutoring Systems

Do Dung VU

ABSTRACT

This project tackles the problem of automatically generating text for a conversational intelligent

tutoring system (ITS). The conversational ITS gives questions to the student and then analyzes

their answer using machine learning algorithms. When the student’s answer is classified as

being incorrect, the system must give an appropriate hint to help them answer the question

or understand the problem. The system is powered by a database of questions, answers, and

hints. The component generating the hints is called the “hint generation” model. To this end, we

propose a feedback and hint generation model capable of generating meaningful, personalized,

pedagogical hints. To make the course more engaging and effective for each student, we

propose a “content generation” model capable of generating new content, including questions,

answers, and hints, automatically from unstructured text (such as Wikipedia) or interactively

with assistance from teachers. In addition, we also investigate how the system may be capable of

efficiently adapting its content and tutoring strategies to individual students.

Keywords: Intelligent Tutor, Artificial Intelligence, Natural Language Processing

TABLE OF CONTENTS

Page

INTRODUCTION .1

0.1 Motivation .1

0.2 Central Hypothesis .1

0.3 Research objectives and methodology . 4

0.3.1 Objectives . 4

0.3.2 General Methodology . 5

0.4 Thesis structure . 6

CHAPTER 1 TECHNICAL BACKGROUND . 9

1.1 Probabilistic generative models . 9

1.1.1 n-Gram Models . 9

1.1.2 Recurrent Neural Networks . 10

1.1.3 Learning Word, Phrase and Sentence Embeddings with

Probabilistic Generative Models . 15

1.1.4 Supervised Learning . 18

1.1.4.1 Support Vector Machine . 18

1.1.4.2 Decision Tree . 20

1.1.4.3 Logistic Regression . 24

1.1.5 Latent Variable Models . 26

1.1.6 Cosine Similarity . 29

1.1.7 Term frequency - inverse document frequency . 30

1.2 Natural Language Processing . 32

1.2.1 Bag-of-words . 32

1.2.2 Evaluation metrics . 33

1.2.3 Part-of-speech (POS) tagging . 34

1.2.4 Chunking . 36

1.2.5 Textual Entailment or Natural Language Inference Process 36

1.2.6 Name Entity Recognition . 40

1.2.7 Language Model . 43

1.2.7.1 N-gram Language model . 43

1.2.7.2 RNN Language Model . 46

1.2.8 Co-reference Resolution Evaluation . 50

1.3 Dialogue Systems . 50

CHAPTER 2 AUTOMATED QUESTION AND ANSWER GENERATION

OF HINT INTERVENTIONS IN INTELLIGENT TUTORING

SYSTEM .. 55

2.1 Abstract . 55

2.2 Introduction . 55

2.3 Related work . 56

XII

2.4 Automated explanations of hint interventions . 58

2.4.1 Features generations . 58

2.4.2 Conceptual Hint Generations . 70

2.5 Experiment . 73

2.5.1 Evaluation algorithms . 73

2.5.2 Experiment result] . 75

2.6 Conclusion . 81

2.7 Acknowledgement . 82

CHAPTER 3 AUTOMATED DATA-DRIVEN GENERATION OF PERSONALIZED

PEDAGOGICAL INTERVENTIONS IN INTELLIGENT

TUTORING SYSTEMS . 85

3.1 Introduction . 85

3.2 Related Works . 87

3.2.1 Intelligent Tutoring System . 87

3.2.2 Natural Language-based Interactions in ITS . 89

3.3 Korbit Learning Platform . 92

3.4 Methodology . 94

3.4.1 Personalized Hints and Explanations . 94

3.4.1.1 Hints and Explanations Generation . 94

3.4.1.2 Personalized Hints and Explanations Selection 95

3.4.2 Wikipedia-Based Explanations . 98

3.4.3 Mathematical Hints .102

3.5 Experiment .103

3.5.1 Personalized Hints and Explanations .103

3.5.2 Wikipedia-Based Explanations .105

3.5.3 Mathematical Hints .105

3.6 Discussion .108

CHAPTER 4 A COMPARATIVE STUDY OF LEARNING OUTCOMES

FOR ONLINE LEARNING PLATFORMS WILL TRANSFORM

ONLINE LEARNING FOR MILLIONS . 111

4.1 Introduction . 111

4.2 Related Works .112

4.3 Experimental Setup .114

4.4 Results and Discussion . 117

4.5 Conclusions .122

CHAPTER 5 A LARGE-SCALE, OPEN-DOMAIN, MIXED-INTERFACE

DIALOGUE-BASED ITS FOR STEM .. .125

5.1 Introduction .125

5.2 The Korbit ITS .126

5.3 System Evaluation .128

XIII

CHAPTER 6 GENERAL DISCUSSION AND CONCLUSION . 131

BIBLIOGRAPHY .134

Appendices . 161

APPENDIX A PILOT PROGRAM DATA COLLECTION .163

A.1 Pilot 1 – Learn Data Science Skills with an AI .163

A.2 Pilot 2 – Personalized Curriculum .164

A.2.1 Experiment Flow .164

A.3 Pilot 3 – Comparison performance of two online learning platforms for

employee internal training . 167

A.3.1 Experiment Flow . 167

A.3.2 Instruction Document of studying on Korbit .169

A.3.3 Instruction Document of studying on Coursera .170

LIST OF TABLES

Page

Table 1.1 Probabilistic graphical model for bigram (2-gram) model . 10

Table 1.2 Examples of the closest tokens given by Skip-Gram model trained

on 30 billion training words. This table was adapted from Mikolov,

Sutskever, Chen, Corrado & Dean (2013) . 16

Table 1.3 The POS Tag list . 35

Table 1.4 The example of textual entailment . 40

Table 2.1 Examples of keywords and relevant articles . 61

Table 2.2 The example of acronyms . 62

Table 2.3 The example of synonyms . 62

Table 2.4 The example of Extracted and Generated Wikipedia Explanations 63

Table 2.5 The example description of Name Entity Recognize features 66

Table 2.6 The example of textual entailment features . 68

Table 2.7 The example of generated co-reference sentence . 69

Table 2.8 The training dataset . 70

Table 2.9 The algorithm performance comparison in scenario of all

consideration features . 70

Table 2.10 The example of Wikipedia-based explanation generation . 72

Table 2.11 The example of conceptual question and answer generations 73

Table 2.12 The Scenario of classification strategy . 74

Table 2.13 The classification scenarios with the F1-score value of each algorithm 75

Table 2.14 Student preferences and learning gains for Wikipedia-based

explanations. 76

Table 2.15 Mean and bound of result survey with C.I = 0.95 . 81

Table 2.16 Feedback distribution of each role . 81

XVI

Table 3.1 Text-based hint generation. Keywords and phrases are marked with

boxes, discourse-based modifications are underlined. 95

Table 3.2 Accuracy and F1 scores of different hint and explanation selection

models (with 95% confidence intervals) calculated based on cross-

validation with 𝑘 = 50 folds. ∗ indicates statistical significance

compared to baseline model at a 95% confidence level. 98

Table 3.3 Examples of keywords and relevant articles .100

Table 3.4 Examples of Wikipedia-based explanations. Identified keywords are

marked with boxes, and information that helps guide a student is

highlighted in italics. 101

Table 3.5 Student learning gains for personalized hints and explanations with

95% confidence intervals (C.I.). After being shown a hint or

explanation, their learning gain was determined by whether they

solved the exercise in their next attempt. ∗ indicates statistical

significance compared to baseline model at a 95% confidence level.104

Table 3.6 Student preferences and learning gains for Wikipedia-based

explanations. Students were shown two explanations (an extracted

one and a generated one) and asked which one they found most

useful. Afterward, their learning gain was determined by whether

they solved the exercise in their next attempt. ∗ indicates statistical

significance compared to all other explanation preference classes at

a 95% confidence level. .106

Table 3.7 Quality of feedback provided by mathematical hints. 107

Table 3.8 Examples of mathematical feedback provided . 107

Table 4.1 Estimated time spent on different learning activities on each platform

(minutes and % of total), excluding time spent on enrollment and

assessment .119

Table 4.2 Average perceived learning gains (±95% confidence interval) 121

Table 5.1 A/B testing results comparing the Full ITS against the xMOOC
ITS: average time spent by students (in minutes), returning students

(in %), students who said they will refer others (in %) and learning

gain (in %), with corresponding 95% confidence intervals. The ∗ and
∗∗ shows statistical significance at 90% and 95% confidence level

respectively. .129

LIST OF FIGURES

Page

Figure 0.1 The general system architecture . 5

Figure 1.1 Support Vector Machine . 18

Figure 1.2 Decision Tree Diagram . 21

Figure 1.3 Probabilistic graphical model for Hidden Markov Model and Kalman

filter model . 27

Figure 1.4 The cosine distance/similarity between two items . 30

Figure 1.5 Bag of word example . 32

Figure 1.6 Metrics example . 34

Figure 1.7 The example of NER . 40

Figure 1.8 The first deep neural network architecture model for NLP 47

Figure 1.9 A Recurrent Neural Network (RNN). Three time-steps are shown 47

Figure 1.10 The inputs and outputs to a neuron of an RNN . 48

Figure 1.11 An RNN Language Model . 49

Figure 1.12 An overview of the Dialogue System . 52

Figure 2.1 The Mockup of Question and Answer system . 59

Figure 2.2 Wikipedia-Based Explanations . 60

Figure 2.3 Conceptual Hints Generations . 71

Figure 2.4 Learning curve of language model . 74

Figure 2.5 Role of users . 77

Figure 2.6 Commit vs Actual studying time . 77

Figure 2.7 Normalized Learning gain of all employee with C.I = 95% 78

Figure 2.8 Normalized Learning gain of each employee with C.I = 95% 79

XVIII

Figure 2.9 Hint result of All employee . 80

Figure 2.10 Hint result of each employee . 80

Figure 2.11 User feedback . 83

Figure 3.1 An example of how the Korbit ITS inner-loop system selects the

pedagogical intervention. The student gives an incorrect solution

and afterwards receives a text hint. 93

Figure 3.2 The Wikipedia explanations multi-stage generation pipeline.

“Positive definitions" refer to the high-quality explanations, while

“negative definitions" are low-quality ones. 99

Figure 3.3 Example of Math Equation .102

Figure 4.1 Cousera follows a traditional learning approach, while Korbit uses

a personalized, active learning approach with problem-solving

exercises. .112

Figure 4.2 (a) Average learning gain 𝑔 with 95% confidence intervals. (b)

Average normalized learning gains 𝑔𝑛𝑜𝑟𝑚 with 95% confidence

intervals. Here and indicate a statistically significant difference at

95% and 90% confidence level respectively . 117

Figure 4.3 Normalized learning gains for each self-assessed comprehension

rating with 95% confidence intervals. Only 1 participant gave a

score lower than 3 (not shown here) .122

Figure 5.1 An example of how the Korbit ITS inner-loop system selects the

pedagogical intervention. The student gives an incorrect solution

and afterwards receives a text hint. 127

Figure 1.1 Learn Data Science Skills with an AI .164

Figure 1.2 Personalized Curriculum .165

Figure 1.3 Korbit platform .169

LIST OF ABBREVIATIONS

4IR Fourth Industrial Revolution

EdTech Education Technology

ITS Intelligent Tutor System

API Application Programming Interface

QA Question and Answer

KB Knowledge Bases

IDF Inverse Document Frequency

TF Term Frequency

RNN Recurrent Neural Network

RNNLM Recurrent Neural Network Language Model

LSTM Long-Term Short-Term

GRU Gated Recurring Units

LSA Latent Semantic Analysis

SVM Support Vector Machine

ID3 Iterative Dichotomiser

CART Classification and Regression Tree

CHAID Chi-squared Automatic Interaction Detector

IG Information Gain

HMMs Hidden Markov Models

XX

EM Expectation-Maximization

OOV Out of Vocabulary

UNK Unknown

NLP Natural Language Processing

NLU Natural Language Understanding

AI Artificial Intelligence

SMOTE Synthetic Minority Oversampling Technique

AV Autonomous Vehicle

CAV Connected and Autonomous Vehicle

STEM Science, Technology, Engineering, and Mathematics

MOOCs Massive Open Online Courses

MEMMs Maximum Entropy Models

CPU Central Processing Unit

GPU Graphics Processing Unit

HPC High-Performance Computing

C.I Confidence Interval

NLI Natural Language Inference

SNLI The Stanford Natural Language Inference (SNLI) Corpus

MNLI The Multi-Genre Natural Language Inference (MultiNLI) Corpus

LIST OF SYMBOLS AND UNITS OF MEASUREMENTS

N denotes the positive integer set

𝑃(𝑥) denotes the probability of 𝑥

{.} denotes a set of items

(.) denotes a sequence of items

{𝑥𝑖}𝐼
𝑖=1

denotes a set of items 𝑥1, 𝑥2, · · · , 𝑥𝐼

w = (𝜔1, · · · , 𝜔𝑀) denotes a sequence of M discrete symbols

R denotes the set of real-valued numbers.

R
𝑛 denotes the set of real-valued numbers in n dimensions.

𝑎 ∈ R denotes a real-valued variable named a.

[𝑎, 𝑏], where 𝑎, 𝑏 ∈ R and 𝑏 > 𝑎, denotes the closed set of real-valued

numbers between 𝑎 and 𝑏, including 𝑎 and 𝑏.

(𝑎, 𝑏), where 𝑎, 𝑏 ∈ R and 𝑏 > 𝑎, denotes the open set of real-valued numbers

between 𝑎 and 𝑏, excluding 𝑎 and 𝑏.

a ∈ R𝑛 denotes a real-valued vector of n dimensions.

𝐴 ∈ R𝑛×𝑚 denotes a real-valued matrix of n × m dimensions.

𝐴𝑇 and 𝐴T both denote the transpose of the matrix 𝐴

𝑖 = 1, · · · , 𝑛 means that i will take integer values 1, 2, 3, 4, 5 and so on until

and including integer 𝑛.

𝐴 × 𝐵 = (𝑎, 𝑏) |𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, where A and B are sets of items, denotes the

Cartesian product of 𝐴 and 𝐵.

XXII

𝑛-gram is a sequence of n consecutive words (or tokens).

𝑤 ∈ 𝑈, where 𝑈 is a sequence of tokens, denotes a token inside 𝑈

𝑒𝑥𝑝(𝑥) and 𝑒𝑥 denotes the exponential function of the value 𝑥.

log(𝑥) and ln(𝑥) denotes the natural logarithm function of the value 𝑥.

tanh(𝑥) denotes the hyperbolic tangent taken of value x.

𝑓 ′(𝑥) denotes the derivative of the function 𝑓 w.r.t. variable 𝑥.

𝛿
𝛿(𝑥) 𝑓 (𝑥) denotes the derivative of the function 𝑓 w.r.t. variable 𝑥.

∇𝜃 𝑓𝜃 (𝑥) denotes the derivative of the function 𝑓 w.r.t. parameters 𝜃. If 𝜃 is a

vector, then it denotes the Jacobian matrix

𝑥 · 𝑦, where 𝑥 and 𝑦 are vectors or matrices, denotes the element-wise product

between 𝑥 and 𝑦.

𝑥 often denotes an input variable (e.g., a real-valued variable or an input

sequence of string tokens).

𝑦 often denotes an output variable (e.g., an output label, such as a user intention

label).

𝜓 and 𝜓̂ usually denote model parameters

𝜃 and 𝜃 usually denote model parameters

𝑃𝜃 (.) usually denotes the probabilistic model parametrized by parameters 𝜃

𝑥 ∼ 𝑃𝜃 (𝑥) denotes a sample of the random variable 𝑥 following the probabilistic

model parametrized by parameters 𝜃

N𝑥 (𝜇,
∑) denotes the probability of variable 𝑥 under a multivariate normal

distribution with mean 𝜇 and covariance matrix
∑

XXIII

𝑥 ∼ Uniform(𝑎, 𝑏) denotes that 𝑥 is an integer random variable sampled at

uniformly random from the set {𝑎, 𝑎 + 1, · · · , 𝑏 − 1, 𝑏}, with 𝑎, 𝑏 ∈ N and

𝑏 > 𝑎

𝑥 ∼ Uniform(𝐴), where 𝐴 is a finite discrete set, denotes that 𝑥 is a random

variable sampled at uniformly random from the set 𝐴

E𝑥∼𝑃(𝑥) [𝑓 (𝑥)] =
∑

𝑥 𝑃(𝑥) 𝑓 (𝑥) =
∫

𝑃(𝑥) 𝑓 (𝑥)𝑑𝑥 is the expectation of the func-

tion 𝑓 (𝑥) w.r.t the random variable 𝑥 following the distribution given by the

probability or density function 𝑃

KL[𝑄 | |𝑃] = −
∫

𝑄(𝑥) log(𝑄(𝑥)
𝑃(𝑥) 𝑑𝑥 is the Kullback-Leibler (KL) divergence

between the two probability distribution 𝑃(𝑥) and 𝑄(𝑥)

1(.) denotes a Dirac-delta function, which equals one if the statement (.) is

true and otherwise equals zero

∀ denotes the for all operator

the phrase 𝑠.𝑡 is the abbreviation of the phrase subject to

the phrase w.r.t is the abbreviation of the phrase with respect to

INTRODUCTION

0.1 Motivation

Over the past decades, computers and the internet have become ubiquitous and essential for

connecting society. With the evolution of technology, many applications have been deployed

to create a new industrial revolution that helps improve productivity and production capacity

in almost life aspects such as finance, health care, education, manufacturing, entertainment,

transportation, and communication. Technology has a significant impact on students in their

study, such as: enhancing their engagement and enabling them to learn and retain more

information. Educational technology (EdTech) also works as the prime force to enhance student

motivation. Different factors relevant to EdTech like user-friendliness, users’ curiosity for new

learning tools, and psychological satisfaction effectively enhance students’ intrinsic motivation

in the long run rather than increasing extrinsic rewards, which are effective on a short-term

basis. Unfortunately, understanding and generating educated content is a very difficult problem.

Therefore, it is not surprising that these technologies are still in their infancy. This thesis

is motivated by these technology challenges that generate content for higher education. In

particular, the thesis focus on generating the natural language hint for the Intelligent Tutoring

System (ITS) by using the large text corpora. This thesis proposes a state-of-the-art to quickly

scale up personalized education on the ITS with a hint creation effort at low costs.

0.2 Central Hypothesis

By considering many relevance scientific research assumptions, the work in this thesis is built

based on several hypotheses. These hypotheses constitute the foundations underlying and

motivating the work presented in this thesis. Some are well-established in the field, while

others might be more contestable. This section provides an overview and discussion of these

hypotheses.

2

The first key hypothesis of this thesis is that communication between humans and machines

is collaborative and be beneficial to all parties. Two interlocutors might have a conversation

because they both believe that something to be gained through the conversation. In other

words, each interlocutor believes that there exists an alignment between their own goals and the

goals of the other party and that by conducting a conversation, they may both benefit from it.

Let’s consider the example of a dialogue system selling spa tickets. In addition to its primary

goal of finding a suitable ticket for a human customer, the system may have a secondary goal

to maximize profits by selling the most expensive ticket or adding services with the human

customer’s spending budget. This secondary goal will directly conflict with the customer if the

human customer has a secondary goal of purchasing the cheapest ticket.

The second key hypothesis is that, in general, the human and machine interlocutors only

have access to partial information about the state of the world, about the other interlocutor’s

information and goals, and even about their own goals. For example, the dialogue system selling

spa tickets cannot know the goals of a human customer beforehand, such as their skin, their

health, hair, or even their spending budget. On the other hand, the human customer does not

know which spa tickets are available and at what prices. The human customer may not even

know their health or their exact budget. Hence, customers might decide based on the options

presented by the dialogue system (e.g., the face, body, or hand and foot treatments, or all of

them).

Although these two key hypotheses may appear evident to the avid reader, they go against some of

the hypotheses implied by some of the literature on goal-driven dialogue systems. In particular,

on voice command system research, the assumption implies that a goal-driven dialogue system

should work as converting the human speech to an appropriate query and submitting it to an

application or a service API. For example, consider the case of a voice-controlled dialing system

on the vehicle. This system might only expect the human user to mention a contact (e.g., the

3

name or phone number), and based on the received command, the dialing service calls the

contact. This is not a collaborative dialogue where both parties stand to benefit. This simple

system further assumes that the human user has access to all relevant information, including

their own goal (e.g., the exact contact phone number).

The final key hypothesis of this thesis is predicated on the premise that humans learn the world

and about how to communicate through natural language by interacting with others. For example,

consider a student studying the topic machine learning, whose task is supervised learning model

implementation. She might search and research the cyber world for the kindred implementations

and the germane discussion thread on the convivial media network, forum (e.g., Stack Overflow,

Facebook, etc.). Suppose that on this discussion thread, another person exposes a solution to

a homogeneous quandary and get feedback from others about the bugs, error, issues in the

deployment. By reading and understanding the discussion, she might learn and apply it to her

implementation. By utilizing her knowledge and experience with what she learned, she might

decompose the task into sub-tasks to solve and consummate her project. During the conversation,

she may get avail by asking a relevant question. The premise is that a paramount amplitude of

information is being learned by visually examining and interacting with others. Hence, humans

learn a substantial amount about the world and how to communicate by interacting with others;

we suggest the final key posit of this thesis. The postulation is that a machine can additionally

learn a paramount quantity of the world. After that, it can communicate with a human by natural

language based on its knowledge to help humans understand the world. However, in particular,

it is arduous to deploy genuine-world machine learning systems, to keep the last postulation as

the further.

4

0.3 Research objectives and methodology

0.3.1 Objectives

The hint generation module is helpful to teach the student to find the correct solution step-by-step,

including how to write an answer, what to pay attention to, and how to express and understand a

concept. A major benefit of automatic hint generation is that it can be personalized for each

student and fix their knowledge gaps. Moreover, it is also a useful exploration for the future

task of automatic generation of the content of courses. Additionally, these generated hints are

beneficial for teachers. The teacher could select one hint and refine it, which makes the generated

hints more friendly to students.

First, it should ensure the contextual relevance between questions, answers, and the considered

concepts. This involves task complex contextual information, such as definitions which generally

contain many aspects (e.g., concepts, ideas, equations). Second, it requires generating diversified

hints for each concept, making the task more challenging. The key to the conversational system

is to answer factual questions from the users, especially for the intelligent system. Most of the

current systems for Question Answering (QA) are based on the structured Knowledge Bases

(KB) such as Freebase (Bollacker, Evans, Paritosh, Sturge & Taylor (2008)) and Wikidata

(Vrandečić & Krötzsch (2014)). Here, the question is converted to a logical form using semantic

parsing, which can be queried by the KB to obtain the answer (Fader, Zettlemoyer & Etzioni

(2014)).

On the other hand, KBs support only certain types of answer schema; constructing and

maintaining them is expensive. In addition, there is an enormous of unstructured knowledge

available in the content from Wikipedia, textbooks, social media. In this problem, the relevant

materials are utilized to extract the right content. This retrieval-based approach (Voorhees & Tice

(2000)) provided a much wider coverage over questions and is not limited to specific answer

5

schema. Here we argue that depending on the type of question and its’ knowledge base may

be more appropriate and introduce a new system architecture to automatically generate the

assumptive questions and answers for each exercise from unstructured data, including the answer

evaluation measurement method.

0.3.2 General Methodology

Figure 0.1 The general system architecture

A method to generate new hints is proposed. The hint generator is built on an encoder-decoder

framework, and we introduce the attention mechanism and relevance control to boost it. To

evaluate our method, we crawl the text stream from non-structured data such as Wikipedia,

stack overflow, etc., then perform experiments on it. Automatic evaluation with a score proves

that the generated new hints are close to human hints. We generate diversified hints with

different topics and different degrees of relevance by utilizing a random sample and the relevance

control. The hints discriminator is considered based on the student answer and profile, which

is one of the features to make the right hint for the learning student. The hints are generated

based on the keyword. A scoring model is proposed to evaluate the value of the keyword with

6

many features such as the co-reference resolution, the (Term-Frequency - Inverse Document

Frequency) TF-IDF, the length of the keyword, etc., Figure 0.1 represents the workflow of the

hint generation model.

0.4 Thesis structure

The thesis structure is organized as follows:

Chapter 1 covers background theory to machine learning, natural language processing, and

dialogue systems. The chapter is split into three components. The first part presents the

probabilistic generative models which form the substratum and act as a framework for some work

presented in this thesis. Neural network models are addressed here. The second part introduces

the natural language processing techniques with the given frameworks, which are utilized in

the thesis. The third part discusses dialogue systems in detail, including system components,

methods for optimizing system components, and methods for system evaluation.

Chapter 2 seeks the automatically generate, from an ontology, a personalized, accurate, and

syntactically correct paraphrase based on the user’s questions and answers in the ITS. State-of-

the-art generating hints and their results are presented.

Chapter 3 proposes the automatically generated feedback in a data-driven way methodology

and evaluates how the personalizing of feedback can lead to improving the student learning

gains. The state-of-the-art machine learning and natural language processing techniques are

leveraged to provide hints to students. On the other hand, the experiments were implemented to

prove the effectiveness of the feedback in higher education based on real students in a large-scale

dialogue-based ITS.

Chapter 4 investigates a head-to-head study comparison of learning outcomes for two online

learning platforms: Coursera and Korbit. The evaluation was based on the normalized learning

7

gain by using pre- and post-assessment quizzes with participants taking courses on an introductory

data science topic.

Chapter 5 presents Korbit, a large-scale, open-domain, dialogue-based ITS which has been

designed to easily scale to thousands of subjects by automating, standardizing, and simplifying

the content creation process.

Chapter 6 conclude the results and contributions of this thesis and discussion more about the

further research.

CHAPTER 1

TECHNICAL BACKGROUND

1.1 Probabilistic generative models

1.1.1 n-Gram Models

An important class of probabilistic models a the 𝑛-gram models for discrete sequences where

𝑛 ∈ N. Let w = (𝜔1, · · · , 𝜔𝑀) be a sequence of M discrete symbols, where 𝜔𝑀 ∈ 𝑉 for discrete

set of 𝑉 . For example, the variables can be the words of a paper, web, communications, etc.,

represented by their indices. The 𝑛-gram model, with parameter 𝜃, assumes the distribution over

variables factorizes:

𝑃𝜃 (w) = 𝑃𝜃 (𝜔1, · · · , 𝜔𝑀)

= 𝑃𝜃 (𝜔1)𝑃𝜃 (𝜔2 |𝜔1) · · · 𝑃𝜃 (𝜔𝑛−1 |𝜔1 · · ·𝜔𝑛−2)
𝑀∏

𝑚=𝑛

𝑃𝜃 (𝜔𝑚 |𝜔𝑚−𝑛+1, · · · , 𝜔𝑚−1)
(1.1)

The key approximation is that the probabilities over each variable can be computed utilizing

only the anterior 𝑛 − 1 tokens:

𝑃(𝜔𝑚 |𝜔1, · · · , 𝜔𝑚−1) ≈ 𝑃𝜃 (𝜔𝑚 |𝜔𝑚−𝑛+1, · · · , 𝜔𝑚−1)
= 𝜃𝜔𝑚,𝜔𝑚−𝑛+1,··· ,𝜔𝑚−1

(1.2)

where 𝜃𝜔𝑚,𝜔𝑚−𝑛+1,··· ,𝜔𝑚−1
∈ [0, 1] is the probability of observing token 𝑣 given the 𝑛 − 1 previous

token 𝜔𝑚−𝑛+1, · · · , 𝜔𝑚−1 which must sum to one:
∑

𝑣∈𝑉 𝜃𝑣,𝜔𝑚−𝑛+1,··· ,𝜔𝑚−1
= 1. The 2-grams

model is designated as bigram and probabilistic generative model, which can apply a probability

for any sequence of variables 𝜔1, · · · , 𝜔𝑀 and it can generate any such sequence by sampling

one variable at a time. This model is utilized in many natural language processing applications

((Goodman (2001)). The bigram model is shown in Table 1.1.

10

Table 1.1 Probabilistic graphical model for bigram

(2-gram) model
.

Text Token sequence Token value
My name is Vu 1 My name

My name is Vu 2 name is

My name is Vu 3 is Vu

Let 𝜔𝑖
𝑖=1𝐼 be a set of 𝐼 example sequences, which is denominated as the training dataset. We

postulate that all the sequences are independent and identically distributed. The model parameter

𝜃 is learned by maximizing the log-likelihood on the training set:

𝜃 = argmax
𝜃′

∑
𝑖

log𝑃𝜃′ (𝜔𝑖) (1.3)

By setting 𝜃𝑣,𝜔𝑚−𝑛+1, · · · ,𝜔𝑚−1
to be proportional to the number of times token 𝑣 was observed after

tokens 𝜔𝑚−𝑛+1,··· ,,𝜔𝑚−1
in the training data which are often normally regularized or learned with

Naïve Bayes methodology. As the value of 𝑛 grows, and the variables are discrete, the number

of possible amalgamations of 𝑛 variables is |𝑉 |𝑛, which grows exponentially with 𝑛. Therefore,

in practice, 𝑛 is conventionally a minuscule number around 3 or 4.

1.1.2 Recurrent Neural Networks

I observed that the Recurrent Neural Networks Language model (RNNLM) (Mikolov, Karafiát,

Burget, Cernocký & Khudanpur (2010)) has many applications in Natural Language Processing

field. Other variants have been applied to diverse sequential tasks, including verbalization

synthesis (Chung, Kastner, Dinh, Goel, Courville & Bengio (2015)), handwriting generation

(Graves (2013)) and music composition (Boulanger-Lewandowski, Bengio & Vincent (2012)).

As afore, let 𝜔1, · · ·𝜔𝑀 be a sequence of discrete variables, such that 𝜔𝑚 ∈ 𝑉 for a set 𝑉 .

𝑉 is called the lexicon, and each discrete 𝜔𝑚 is the token. The RNNLM is a probabilistic

generative model with parameters 𝜃, which decomposes the probability over tokens. We opted

to fixate on the well Recurrent Neural Networks Language model (RNNLM) (Mikolov et al.

11

(2010)). Other variants have been applied to diverse sequential tasks, including verbalization

synthesis (Chung et al. (2015)), handwriting generation (Graves (2013)) and music composition

(Boulanger-Lewandowski et al. (2012)). As afore, let 𝜔1, · · ·𝜔𝑀 be a sequence of discrete

variables, such that 𝜔𝑚 ∈ 𝑉 for a set 𝑉 . 𝑉 is called the lexicon, and each discrete 𝜔𝑚 is the

token. The RNNLM is a probabilistic generative model, with parameters 𝜃, which decompose

the probability over tokens:

𝑃𝜃 (𝜔1, · · ·𝜔𝑀) =
𝑀∏

𝑚=1

𝑃𝜃 (𝜔𝑚 |𝜔1, · · · , 𝜔𝑚−1) (1.4)

Unlike the 𝑛-gram models, the RNNLM does not make a hard postulation restricting the

distribution over a token to only depend on the 𝑛 − 1 anterior tokens. Instead, it parametrizes the

conditional output distribution over token as:

𝑃𝜃 (𝜔𝑚+1 = 𝑣 |𝜔1, · · · , 𝜔𝑚) = 𝑒𝑥𝑝(𝑔(ℎ𝑚, 𝑣))∑
𝑣′∈𝑉 𝑒𝑥𝑝(𝑔(ℎ𝑚, 𝑣′))

𝑔(ℎ𝑚, 𝑣) = 𝑂𝑇
𝑣 ℎ𝑚,

ℎ𝑚 = 𝑓 (ℎ𝑚−1, 𝐼𝜔𝑚

(1.5)

where ℎ𝑚 ∈ R𝑑𝑛 , for 𝑚 = 1, · · · , 𝑀 are the genuine-valued vectors called obnubilated states with

dimensionality 𝑑ℎ ∈ N. The function 𝑓 is a non-linear smooth function called the obnubilated

state update function. For each time step (each token) it coalesces the precedent obnubilated state

ℎ𝑚−1 with the current token input 𝜔𝑚 to output the current obnubilated state ℎ𝑚. The obnubilated

state ℎ𝑚 acts as a summary of all the tokens visually examined so far, which efficaciously

makes it an ample statistic from a statistical perspective. The matrix 𝐼 ∈ R𝑑𝑒×|𝑉 | is the input

word embedding matrix, where column 𝑗 contains the embedding for word (token) index 𝐽 and

𝑑𝑒 ∈ N is called the word embedding dimensionality. Similarly, the matrix 𝑂 ∈ R𝑑𝑒 × |𝑉 | is

called the output word embedding matrix. By Equation 1.4 and Equation 1.5, the probability

distribution over token 𝜔𝑚+1 is parametrized as a softmax function over the dot products between

the obnubilated state and the output word embeddings for each word in the lexicon. Consequently,

the more kindred an output word embedding vector 𝑂𝑣 is to the obnubilated state vector ℎ𝑚 (e.g.,

12

the more diminutive the angle between the two vectors) the higher the probability assigned to

token 𝑣.

Unlike the 𝑛-gram models discussed earlier, the RNNLM does not parametrize a different

probability value for every possible cumulation of tokens. Instead, it embeds words into

genuine-valued vectors utilizing the word embedding matrices, thereby sanctioning the rest of

the model to utilize the same set of parameters for all words visually examined. This was the

key innovation of the Neural Network Language Model, and it is utilized by the RNNLM and

its extensions, which gained state-of-the-art performance on several machine learning tasks

(Mikolov et al. (2010), Devlin, Chang, Lee & Toutanova (2019a), Jozefowicz, Vinyals, Schuster,

Shazeer & Wu (2016)). In addition to , by utilizing the RNN to compute the obnubilated state,

which parametrizes the output distribution, the RNNLM can potentially capture an illimitable

amplitude of context (unlike both 𝑛-gram models and the earlier Neural Network Language

Models).

The model parameters are learned by maximum likelihood. However, unlike the 𝑛-gram models

discussed above, no closed-form solution exists. Consequently, the parameters are customarily

learned utilizing stochastic gradient descent on the training set. Let {𝑤𝑖}𝐼
𝑖=1

be the training

dataset. An example sequence 𝑤𝑖 is a sample at arbitrary, and the parameters are updated:

𝜃 ← 𝜃 + 𝛼∇𝜃 log 𝑃𝜃 (𝜔𝑖
1, · · · , 𝜔𝑖

𝑀) (1.6)

where 𝛼 > 0 is the learning rate and 𝑀𝑖 is the length of sequence 𝑖. In practice, any first-order

optimization method can be used. For example, the method was developed by (Kingma & Ba

(2015)) tends to work well. For the large model, in practice, the gradient w.r.t each parameter

can be computed efficiently using Graphics Processing Unit (GPUs) and parallel computing in

combination with the backpropagation algorithm, a type of dynamic programming (Goodfellow,

Bengio & Courville (2016))

13

There exist different parametrizations of the function 𝑓 . One of the simplest and most popular

parametrizations is the hyperbolic tangent one-layer neural network:

𝑓 (ℎ𝑚−1, 𝐼𝜔𝑚) = tanh(𝐻𝑖𝐼𝜔𝑚 + 𝐻ℎ𝑚−1) (1.7)

where 𝐻 ∈ R𝑑ℎ×𝑑ℎ and 𝐻𝑖 ∈ R�× are its parameters. Usually, a constant, called the bias or

intercept, is also added before applying the hyperbolic tangent transformation, but to keep

the notation simple, we will omit this. Another popular variant is the Gated Recurrent Unit

(GRU) proposed by (Cho, van Merriënboer, Gulcehre, Bahdanau, Bougares, Schwenk & Bengio

(2014)):

𝑟𝑚 = 𝜎(𝐼𝛾
𝜔𝑚

+ 𝐻𝛾ℎ𝑚−1), (reset gate)

𝑢𝑚 = 𝜎(𝐼𝑢
𝜔𝑚

+ 𝐻𝑢ℎ𝑚−1), (update gate)

ℎ̄𝑚 = tanh(𝐻𝑖𝐼𝜔𝑚 + 𝐻 (𝛾𝑚 · ℎ𝑚−1)), (candidate update)

ℎ𝑚 = (1 − 𝑢𝑚) · ℎ𝑚−1 + 𝑢𝑚 · ℎ̄𝑚, (update)

(1.8)

where · is the element-wise product and 𝜎 is the element-wise logistic function:

𝜎(𝑥) = 1

1 + 𝑒𝑥𝑝(−𝑥) (1.9)

and where 𝐼, 𝐼𝛾, 𝐼𝑢 ∈ R𝑑ℎ×|𝑉 |, 𝐻, 𝐻𝛾, 𝐻𝑢 ∈ R�×� and 𝐻𝑖 ∈ R𝑑ℎ×𝑑𝑒 are the parameters. The

motivation for this parametrization is that the reset gate and update gate equations control

whether or not the model reuses the anterior obnubilated state when computing the current

obnubilated state. If the precedent state is useless (i.e., its value will not determine future

tokens in the sequence), 𝛾𝑚 should be proximate to zero, and the candidate update will be

predicated mainly on the current input 𝜔𝑚. If the anterior state is utilizable (i.e., ℎ𝑚−1 may avail

prognosticate future tokens in the sequence), then 𝛾𝑚 should not be zero. If the antecedent state

ℎ𝑚−1 is utilizable. Still, the current input is frivolous; then, the update gate should set 𝑢𝑚 to zero,

14

ascertaining that minimal information is stored from the current input. When 𝑢𝑚 is proximate to

zero, the update is linear, and these avails propagate the gradients in the training procedure. This

parametrization appears to be superior to the hyperbolic tangent one-layer neural network across

several machine learning quandaries (Greff, Srivastava, Koutník, Steunebrink & Schmidhuber

(2015)).

A third, also very popular, parametrization is the Long-Term Short-Term Unit (LSTM):

𝑖𝑚 = 𝜎(𝐼𝛾
𝜔𝑚

+ 𝐻𝑖ℎℎ𝑚−1 + 𝐻𝑖𝑐𝑐𝑚−1)
𝑓𝑚 = 𝜎(𝐼 𝑓

𝜔𝑚
+ 𝐻 𝑓 ℎℎ𝑚−1 + 𝐻 𝑓 𝑐𝑐𝑚−1)

𝑐𝑚 = 𝑓𝑚𝑐𝑚−1 + 𝑖𝑚 tanh 𝐼𝑐
𝜔𝑚

+ 𝐻𝑐ℎℎ𝑚−1

𝑜𝑚 = 𝜎(𝐼𝑜
𝜔𝑚

+ 𝐻𝑜ℎℎ𝑚−1 + 𝐻𝑜𝑐𝑐𝑚−1)
ℎ𝑚 = 𝑜𝑚 tanh(𝑐𝑚)

(1.10)

where ℎ𝑚, 𝑐𝑚 ∈ R𝑑ℎ , for 𝑚 = 1, · · · , 𝑀 are genuine-value vectors, 𝐼𝛾, 𝐼 𝑓 , 𝐼𝑐, 𝐼𝑜 ∈ R𝑑ℎ×|𝑉 |

and 𝐻𝑖ℎ, 𝐻𝑖𝑐, 𝐻 𝑓 ℎ, 𝐻 𝑓 𝑐, 𝐻𝑐ℎ, 𝐻𝑜ℎ, 𝐻𝑜𝑐 ∈ R𝑑ℎ×𝑑ℎ are the parameters. The variables 𝑐𝑚 and ℎ𝑚

can be folded into a single vector by concatenation and re-inscribed as an obnubilated state

update function. The motivation abaft the LSTM parametrization is kindred to that of the GRU

parametrization. In practice, the LSTM unit appears to yield marginally more stable training

compared to the GRU unit, although in terms of performance they appear to perform well (Greff

et al. (2015), and Lipton (2015))

The Deep Bidirectional LSTMs (BiLSTM)is utilized in many applications of NLP. BiLSTM is

an extension of the LSTM models in which two LSTMS are applied to the input data. A LSTM

is applied to the input sequence (i.e., forward layer). In the second round, the inversion form of

the input sequence is victualed into the LSTM model (i.e., rearward layer). Applying the LSTM

twice leads to amend learning long-term dependencies and thus consequently will improve the

precision of the model.

15

1.1.3 Learning Word, Phrase and Sentence Embeddings with Probabilistic Generative
Models

In this section, we will introduce some probabilistic graphical models. The conception of

learning distributed embedding of linguistic units is that each linguistic unit can be mapped into

a genuine-valued, distributed vector are representing its semantic and syntactic components.

For example, suppose two linguistic units are proximate in this vector space. In that case,

they may likely that they have a homogeneous semantic or syntactic component (e.g., topic

information). An early and popular method for learning distributed word presentations is Latent

Semantic Analysis (LSA) (Deerwester, Dumais, Furnas, Landauer & Harshman (1990)), and

another approach can be found in (Ferrone & Zanzotto (2020) , Li & Yang (2018), Camacho-

Collados & Pilehvar (2018)). One recent and widely approach is the Skip-Gram model (Mikolov

et al. (2013), Mikolov et al. (2010)). Let {w𝑖}𝐼
𝑖=1

be a set of 𝐼 example sequences of word tokens,

called the training dataset, and surmise that each word token emanates from the lexicon 𝑉 . These

might be extracted from an astronomically immense corpus of news articles or Wikipedia articles

in many genuine-world applications. The Skip-Gram model aims to learn representations of

words, which soothsay their circumventing words (additionally called context words). This

approach is incentivized by the distributional hypothesis, which states that words that occur in

the same contexts incline to have homogeneous construals. During training, the Skip-Gram

model will sample a sequence at uniform desultory w𝑖. Then, it will sample a word pair at

uniform desultory from this sequence, 𝜔𝑡, 𝜔𝑡′ ∈ w𝑖, under the condition that the two words

are within 𝑐 distance of each other (i.e., |𝑡 − 𝑡′| ≤ 𝑐). The parameter 𝑐 is called the training

context and is conventionally set somewhere in the range between 3 and 12. Following this, the

Skip-Gram model prognosticates words 𝜔𝑡′ conditioned on the word 𝜔𝑡 by:

𝑃𝜃 (𝜔𝑡′ |𝜔𝑡) =
𝑒𝑥𝑝(𝐼𝑇

𝜔𝑡′ , 𝐼𝜔𝑡)
𝑒𝑥𝑝(∑𝜔∈𝑉 𝐼𝑇

𝜔𝐼𝜔𝑡)
(1.11)

with word embedding parameters 𝜃 = 𝐼 ∈ R𝑉×𝑑𝑒 and word embedding dimensionality 𝑑𝑒 ∈ N.

These word embedding parameters represent the mapping from a word (e.g., a word index) to

its corresponding real-valued, distributed vector representation. The simplest variant of the

16

model updates its parameters by maximizing the log-likelihood for that particular sample with

stochastic gradient descent:

𝜃 ← 𝜃 + 𝛼∇𝜃 log 𝑃𝜃 (𝜔𝑡′ |𝜔𝑡) (1.12)

When conditioned on a given world, the Skip-Gram model can be interpreted as a probabilistic

graphical model. Conditioned on one observed word (i.e., an observed random variable taking

values in the set 𝑉), the probabilistic graphical model predicts the set of surrounding words

independently.

Table 1.2 Examples of the closest tokens given by

Skip-Gram model trained on 30 billion training words.

This table was adapted from Mikolov et al. (2013)

Query Token Redmond Havel Ninjutsu Graffiti

Closest

Tokens

Redmond Wash

Redmond Washington

Miscrosoft

Vaclav Havel

president Vaclav

Havel

Velvel Revolution

ninja

martial arts

swordsmanship

spray

paint

graffiti

taggers

A simple extension of the Skip-Gram model, called the Skip-Phase model, enables the cognition

of distributed representations for phrases such as Montreal and Air Canada Mikolov et al. (2013).

In this case, frequently co-occurring tokens are mapped together to compose a single token.

For example, since Air and Canada co-occur together frequently, the Skip-Phase model might

supersede them with the amalgamated token Air_Canada. Examples of the word and phrase

embeddings learned by the Skip-Phrase model are shown in Table 1.2.

The Skip-Gram model belongs to a broader class of models kenned as Word2Vec word embedding

models. These models have benefited from many natural language processing tasks due to their

performance and computational efficiency. Much work has been done in learning distributed

representations for words. A very cognate model predicated on co-occurrence statistics is the

Glove model (Pennington, Socher & Manning (2014a)). Other pertinent work are Gaussian word

embeddings (Vilnis & McCallum (2015)), and contextualized word embedding (Pennington,

Socher & Manning (2014b), McCann, Bradbury, Xiong & Socher (2017), Li & Yang (2018)).

17

The models discussed so far are capable of representing words and phrases. However, various

methods and models exist for learning distributed sentence representations.

The Skip-Thought Vectors model (Kiros, Zhu, Salakhutdinov, Zemel, Torralba, Urtasun & Fidler

(2015)) is one of the neural networks which learns to embed sentences into authentic-valued,

distributed vectors. Analogous to the Skip-Gram model, this model aims to learn the sentence

embeddings by soothsaying neighboring sentences. Let {(𝑤𝑖
𝑝, 𝑤𝑖, 𝑤𝑖

𝑛)}𝐼
𝑖=1

be a set of 𝐼 example

triple, called the training dataset. For each example 𝑖, let 𝑤𝑖
𝑝, 𝑤𝑖 and 𝑤𝑖

𝑛 represent the sequence

of word tokens in three consecutive sentences inside a document. As afore, surmise that each

word token emanates from the lexicon 𝑉 . Conditioned on a sentence 𝑤𝑖, the Skip-Thought

Vectors model presages the precedent sentence words (𝑤𝑖
𝑝) and the next sentence words (𝑤𝑖

𝑛)
independently:

𝑃𝜃 (𝑤𝑖
𝑝), 𝑤𝑖

𝑛 |𝑤𝑖) = 𝑃𝜃 (𝑤𝑖
𝑝 |𝑤𝑖)𝑃𝜃 (𝑤𝑖

𝑛 |𝑤𝑖) (1.13)

where the probability distributions on the right-hand are given by:

𝑃𝜃 (𝑤𝑖
𝑝 |𝑤𝑖) = 𝑃𝜃 (𝜔𝑖

𝑝,1 |𝑤𝑖)
𝑀𝑝,𝑖∏
𝑚=2

𝑃𝜃 (𝜔𝑖
𝑝,𝑚 |𝑤𝑖, 𝜔𝑖

𝑝,1, · · · , 𝑤𝑖
𝑝,𝑚−1) (1.14)

𝑃𝜃 (𝑤𝑖
𝑛 |𝑤𝑖) = 𝑃𝜃 (𝜔𝑖

𝑛,1 |𝑤𝑖)
𝑀𝑛,𝑖∏
𝑚=2

𝑃𝜃 (𝜔𝑖
𝑛,𝑚 |𝑤𝑖, 𝜔𝑖

𝑛,1, · · · , 𝑤𝑖
𝑛,𝑚−1) (1.15)

where sentence 𝑤𝑖
𝑝 contains 𝑀𝑝,𝑖 words, sentence 𝑤𝑖

𝑛 contains 𝑀𝑛,𝑖 words, and where 𝜃 are

the model parameters. The probability distributions above are parametrized as variants of the

RNNLM with the GRU hidden state update function, but where the token word predictions are

excluded for the conditioning sentence 𝑤𝑖. The model is presented in detail in (Zhu, Kiros,

Zemel, Salakhutdinov, Urtasun, Torralba & Fidler (2015))

Akin to the Skip-Gram model, the training dataset for the Skip-Thought Vector model might

be extracted from an astronomically immense corpus of news articles or Wikipedia articles.

However, unlike the Skip-Gram model, the structure of the training dataset is a triple of three

18

sentences. One caveat, which is paramount to mention, is contestable how much learned

sentence representations, such as those learned by the Skip-Thought Vector model, capture

higher-level sentence structure (such as word order and lexical dependencies). For example,

Arora, Liang & Ma (2017) demonstrate that across several natural language processing tasks, the

Skip-Thought Vector models, and other models, which postulate to learn sentence embeddings

capturing word order, can be outperformed by simpler bag-of-words models. Nevertheless, the

field is perpetually dynamic, and it is likely that developing approaches, such as those proposed

in Devlin, Chang, Lee & Toutanova (2019b), maybe capture higher-level sentence structure.

1.1.4 Supervised Learning

1.1.4.1 Support Vector Machine

Support Vector Machines (SVM) are a machine learning tool that analyzes data and recognizes

patterns or decision boundaries within the dataset used mainly for classification or regression

analysis.

Figure 1.1 Support Vector Machine

SVM constructs the hyper-planes in a multidimensional space that separates different class

boundaries and the number of dimensions is called the feature vector of the dataset. SVM can

19

handle multiple continuous and categorical variables. The goal of the SVM is to separate the two

types into classes based on the features. The model consists of three lines. One is 𝑤 ∗ 𝑥 − 𝑏 = 0

that is the margin, the line 𝑤 ∗ 𝑥 − 𝑏 = 1 and 𝑤 ∗ 𝑥 − 𝑏 = −1 represents the position of the closest

data points of both the classes. The objective of the SVM is to maximize the perpendicular

distance between the two edges of the hyper-plane to minimize the occurrence of generation error.

Since the hyper-plane depends on the number of support vectors, the generalization capacity

increases with decreasing support vectors. The algorithm is realized as follows: Set the training

sample {𝑥𝑖, 𝑦𝑖}𝑁
𝑖=1

, where 𝑥𝑖 is the sample of input models, 𝑦𝑖 ∈ {−1, 1}, classification problem

correctly distributes the categorization tags for each sample in order to find the equation 𝑓 (𝑥).
The positive data and negative data are separated through the separating hyper-plane (𝑤, 𝑏) ∈ 𝛾,

where 𝛾 is the free margin, which supports vector to meet the conditions of data point (𝑥𝑖, 𝑦𝑖)

𝑤.𝑥𝑖 + 𝑏 = −1, 𝑦𝑖 = −1

(𝑜𝑟)
𝑤.𝑥𝑖 + 𝑏 = 1, 𝑦𝑖 = 1

min ‖𝑤‖2 + 𝐶

2

𝑛∑
𝑖=1

𝜉2
𝑖

subject to 𝑦𝑖 (〈𝑤.𝑥𝑖〉 + 𝑏) ≥ 1 − 𝜉𝑖, 𝑖 = 1, · · · , 𝑛

max

𝑛∑
𝑖=1

𝛼𝑖 − 1

2

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑦𝑖𝑦 𝑗𝛼𝑖𝛼𝑗 〈𝑥𝑖, 𝑥 𝑗 〉 − 1

2𝐶
𝛼2

𝑖

subject to

𝑛∑
𝑖=1

𝑦𝑖𝛼𝑖 = 0, 𝛼𝑖 ≥ 0, 𝑖 = 1, · · · , 𝑛

after the replacement of the kernel function

max

𝑛∑
𝑖=1

𝛼𝑖 − 1

2

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑦𝑖𝑦 𝑗𝛼𝑖𝛼𝑗 𝐾 (𝑥𝑖, 𝑥 𝑗) − 1

2𝐶
𝛼2

𝑖

Finally, the discriminant function is:

𝑓 (𝑥) = 𝑠𝑔𝑛(
𝑛∑

𝑖=1

𝛼𝑖𝑦𝑖𝐾 (𝑥𝑖.𝑥) + 𝑏)

(1.16)

20

In solving non-linear relegation quandaries, the non-linear kernel function 𝐾 (𝑥𝑖, 𝑥 𝑗) supersedes

the dot product 〈𝑥𝑖, 𝑥 𝑗 〉 and 𝐾 (𝑥𝑖, 𝑥 𝑗) is presented at (Dioşan, Rogozan & Pécuchet (2008)).

Hence, SVM can be acclimated to solve sundry quandaries in the genuine-world. SVM is

subsidiary in text and hyper text categorization (Pradhan, Ward, Hacioglu, Martin & Jurafsky

(2004)). SVM achievement shown the significantly higher search precision than traditional query

refinement schemes [10]. Relegation the satellite data (SAR) (Maity (2016)), or hand-inscribed

characters can be apperceived (Decoste & Schölkopf (2002)) (Maitra, Bhattacharya & Parui

(2015)), or text relegation (Lakhotia & Bresson (2018)). Hence, SVM has been widely applied

in the sciences with relegation tasks.

1.1.4.2 Decision Tree

Decision Tree Algorithm belongs to the family of supervised learning algorithms, which can

solve regression and relegation quandaries. The goal of utilizing a Decision Tree is to engender

a training model to presage the class or value of the target variable by learning simple decision

rules inferred from training data. In Decision Trees, for presaging a class label for a record, we

commence from the tree’s root. We compare the values of the root attribute with the record’s

attribute. We follow the branch corresponding to that value on the substratum of comparison

and jump to the next node. There are two types of Decision Trees:

• Categorical Variable Decision Tree: Decision Tree which has a categorical target variable.

• Continuous Variable Decision Tree: Decision Tree has a continuous target variable

The Figure 1.2 illustrates the visualization of Decision Tree, where

• Root Node: it represents the entire population or sample, which gets divided into two or

more homogeneous sets.

• Splitting: It is a process of dividing a node into two or more sub-nodes.

• Decision Node: When a sub-node splits into further sub-nodes, it is called the decision node.

• Leaf/Terminal Node: Nodes do not split is called Leaf or Terminal Node

• Pruning: When we remove sub-nodes of a decision node, this process is called pruning

which can be explained as the opposite process of splitting

21

Figure 1.2 Decision Tree Diagram

• Branch/Sub-Tree: A subsection of the entire tree is called branch or sub-tree

• Parent and Child Node: A node, divided into sub-nodes is called a parent node, whereas

sub-nodes, are the child of a parent node.

Decision Trees classify the examples by sorting them down the tree from the root to some leaf,

with the leaf node providing the relegation of the example. Each node in the tree acts as a test

case for some attribute, and each edge descending from the node corresponds to the possible

answers to the test case. This process is recursive and is reiterated for every sub-tree rooted at

the incipient node.

The decision to do strategic splits heavily affects a tree’s precision. The decision criteria are

different for relegation and regression trees. Decision trees use multiple algorithms to split

a node into two or more sub-nodes. The generation of sub-nodes increases the homogeneity

of resultant sub-nodes. The algorithm cull is withal predicated on the type of target variables

such as ID3 (Iterative Dichotomiser), C4.5, CART (Relegation and Regression Tree), CHAID

(Chi-squared Automatic Interaction Detector), which were mentioned in (Fürnkranz (2010)).

Suppose the data consists of N attributes, then deciding which attribute to place at the root

or different calibers of the tree as internal nodes is a perplexing step. Just arbitrarily culling

any node to be root can’t solve the issue. If we follow a desultory approach, it may give us

22

lamentable results with low precision. Hence, for solving this attribute cull quandary, some

criteria are utilized as:

• Entropy measures the randomness in the information being processed. The higher the

entropy, the harder it is to draw conclusions from that information. Hence, the entropy for

one attribute is represented as:

𝐸 (𝑆) =
𝑐∑

𝑖=1

−𝑝𝑖 log2 𝑝𝑖 (1.17)

where 𝑆 is the current state, and 𝑝𝑖 is the probability of an event 𝑖 of state 𝑆 or the percentage

of class 𝑖 in a node of state 𝑆. The entropy for multiple attributes is represented as:

𝐸 (𝑇, 𝑋) =
∑
𝑐∈𝑋

𝑃(𝑐)𝑃(𝑋) (1.18)

where 𝑇 is the current state, and 𝑋 is the culled attribute. ID3 abides by the rule, such as

a branch with an entropy of zero is a leaf node, and a branch with entropy more than zero

needs further splitting.

• Information gain (IG) is a statistical property that measures how well a given attribute

dissevers the training examples according to their target relegation. Constructing a decision

tree involves finding an attribute that returns the highest information gain and most little

entropy. Information gain is a decrementation in entropy. It computes the distinction between

entropy afore split and average entropy after the dataset split predicated on given attribute

values. ID3 decision tree algorithm utilizes the IG.

𝐼𝐺 = 𝐸 (𝑏𝑒 𝑓 𝑜𝑟𝑒) −
𝐾∑

𝑗=1

𝐸 (𝑗 , 𝑎 𝑓 𝑡𝑒𝑟) (1.19)

where (𝑏𝑒 𝑓 𝑜𝑟𝑒) is the dataset before the split, 𝐾 is the number of subsets generated by the

split and (𝑗 , 𝑎 𝑓 𝑡𝑒𝑟) is subset 𝑗 after the split.

23

• Gini index is a cost function used to evaluated splits in the dataset. It is caculated by

𝐺𝑖𝑛𝑖 = 1 −
𝐶∑

𝑖=1

(𝑝𝑖)2 (1.20)

Gini index works with the categorical target variable "Prosperity" or "Failure". It performs

only binary split. The higher value of the Gini index implicatively insinuates higher inequality

higher heterogeneity. CART utilizes the Gini index method to engender split points.

• Gain Ratio is a modification of information gain (IG) that abbreviates its in-equitableness and

is conventionally the best option. The gain ratio surmounts the quandary with information

gain by considering the number of branches that would result in the split. It rectifies

information gain by taking intrinsic information into account. Gain Ratio is utilized in C4.5,

the advantages version of ID3.

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜 =
𝐼𝑛 𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛

𝑆𝑝𝑙𝑖𝑡 𝐼𝑛 𝑓 𝑜
(1.21)

• Truncation in Variance is an algorithm utilized for perpetual target variables (regression

quandaries). This algorithm utilizes the standard formula of variance to operate the best split.

The split with lower variance is culled as the criteria to split the population:

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
∑(𝑋 − 𝑋̄)2

𝑛
(1.22)

where 𝑋̄ is the mean of the values, 𝑋 is actual, and 𝑛 is the number of values.

• Chi-Square is one of the oldest tree relegation methods (CHAID). It ascertains the statistical

paramountcy between the distinctions between sub-nodes and parent-node. We quantify it

by the sum of squares of standardized distinctions between visually examined and expected

frequencies of the target variable. It works with the categories target variable "Prosperity"

and "Failure". It can perform two or more splits. The higher the value of Chi-Square, is

higher the statistical paramountcy of distinctions between sub-node and parent node.

𝜒2 =
∑ (𝑂 − 𝐸)2

𝐸
(1.23)

24

where 𝜒2 is Chi-Square obtained,
∑

is the sum of, 𝑂 is the observed score, 𝐸 is the expected

score.

The common problem with Decision Trees is overfitting. There are two ways to remove

overfitting:

• Pruning Decision Tree: In pruning, you trim off the tree’s branches, i.e., abstract the decision

nodes starting from the leaf node such that the overall precision is not perturbed. This is done

by segregating the genuine training set into two sets: training data set, 𝐷, and validation

data set, 𝑉 . Prepare the decision tree utilizing the segregated training data set, 𝐷. Then

perpetuate trimming the tree accordingly to optimize the precision of the validation data set,

𝑉 .

• Random Forests are an ensemble learning method for relegation, regression, and other tasks

that operates by constructing a multitude of decision trees at training time and outputting the

class that is the mode of the classes (relegation) or mean/average presage (regression) of

the individual trees. Random forests correct for decision trees’ habit of overfitting to their

training set. Random forests generally outperform decision trees, but their precision is lower

than gradient boosted trees. However, data characteristics can affect their performance

1.1.4.3 Logistic Regression

Logistic regression (Tolles & Meurer (2016)) is a probabilistic linear classifier, parameterized

by a weight matrix w and a bias 𝑏. It enables the system to estimate categorical results with the

help of a group of independent variables. The classifier equation for logistic regression model is

given as:

𝑦 = 𝑠𝑔𝑛(w𝑇x + 𝑏) (1.24)

where 𝑦 ∈ {−1.1} denotes the output class recognized for the input x fed to the system. The

classifier equation 1.24 is rewritten using augment weight matrix 𝜃 as:

𝑦 = 𝑠𝑔𝑛(𝜽𝑇x) (1.25)

25

The augmented weight matrix 𝜽 is obtained during the training phase of logistic regression

model. Let {𝑥 𝑗 , 𝑦 𝑗 } for 𝑗 ∈ [1, 𝑚] denote the training dataset, where 𝑦 𝑗 is the target output for

training data 𝑥 𝑗 . The weight matrix is first initialized to 1, i.e., 𝜽 = 1. The equation for weight

updates is given as:

𝜽 𝑗 (𝒏) = 𝜽 𝑗 (𝒏 − 1) + 𝛼 · 𝜗𝑗 (1.26)

where 𝛼 is the learning rate of the model and 𝜗𝑗 is given as:

𝜗𝑗 =
𝑚∑

𝑖=1

(𝑦 (𝑖) − ℎ𝜃 (𝑥 (𝑖)))𝑥 (𝑖)
𝑗) (1.27)

where 𝑚 denotes the number of samples available in training dataset, 𝑗 ∈ [1, 𝑚] and ℎ𝑡ℎ𝑒𝑡𝑎(𝑥)
is the logistic function given as:

𝐽 (𝜃) = 1

𝑚

𝑚∑
𝑖=1

(𝜉 (ℎ𝜃 (𝑥 (𝑖)), 𝑦 (𝑖)) (1.28)

where 𝜉 (ℎ𝜃 (𝑥)), 𝑦) is given as:

𝜉 (ℎ𝜃 (𝑥)), 𝑦) =
⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−𝑙𝑜𝑔(ℎ𝜃 (𝑥)) if y = 1

−𝑙𝑜𝑔(1 − ℎ𝜃 (𝑥)) if y = 0

(1.29)

To obtain minimum average cost for the logistic regression model designed, the Gradient Descent

method is employed to obtain the iterative expression for 𝐽 (𝜃) as:

𝐽 (𝜃) = 𝐽 (𝜃) + (− 1

𝑚
) (

𝑚∑
𝑖=1

𝑦 (𝑖) log(ℎ𝜃 (𝑥 (𝑖))) + (1 − 𝑦 (𝑖) log(1 − ℎ𝜃 (𝑥 (𝑖)))) (1.30)

Let 𝜖 denote the acceptable threshold for cost function such that the iteration in equation

1.30 is terminate when 𝜖 ≥ |𝐽 (𝜃) | . Logistic regression can be binomial, ordinal, or multi-

nomial. Binomial or binary logistic regression deals with situations in which the visually

examined outcome for a dependent variable can have only two possible types, "0" and "1".

Multinomial logistic regression deals with situations where the outcome can have three or

26

more possible that are not authoritatively mandated. Ordinal logistic regression deals with

dependent variables that are authoritatively mandated. Logistic regression is use for relegating

text (Pranckevičius & Marcinkevičius (2016)) (Fesseha, Xiong, Emiru & Dahou (2020)), does the

prognostication of instauration from astringent hemorrhagic shock (Lucas, Williams & Cabrales

(2019)), analysis on learning deportment and learning effect (Ran, Zhang, Zheng & Wang

(2018)), and so on. Hence, logistic regression is utilized in sundry fields which included machine

learning, medical, and convivial sciences.

1.1.5 Latent Variable Models

Many probabilistic graphical models supplementally contain latent (obnubilated) stochastic

variables, i.e., stochastic variables which are not visually examined in the original data. The

Obnubilated Markov Models (HMMs) and Kalman filters (withal kenned as linear state-space

models) have two consequential classes. These models posit a sequence of latent stochastic

variables, with precisely one latent stochastic variable for each visually examined token, which

explains all the dependencies (e.g., correlations) between the tokens. Importantly, the latent

stochastic variables comply with the Markov property: each latent stochastic variable depends

only on the anterior latent stochastic variable. This is akin to the bigram model discussed in

section 1.1.1. It is instructive to understand the HMM and Kalman filter, and the role that latent

variables may play in probabilistic graphical models. Hence, we perpetuate by giving a formal

definition for these two models.

As before, let 𝜔1, · · · , 𝜔𝑀 be a sequence of discrete variables, such that 𝜔𝑀 ∈ 𝑉𝜔 for

𝑚 = 1, · · · , 𝑀 for a vocabulary 𝑉𝜔. Let 𝑠1, · · · , 𝑠𝑀 be a sequence of discrete latent variables,

such that 𝑠𝑚 ∈ 𝑉𝑠 for𝑚 = 1, · · · , 𝑀 for a discrete set 𝑉𝑠. The HMM, with parameter 𝜃, factorizes

the probability over variables as:

𝑃𝜃 (𝜔1, · · · , 𝜔𝑀, 𝑠1, · · · , 𝑠𝑀) = 𝑃𝜃 (𝑠1)
𝑀∏

𝑚=2

𝑃𝜃 (𝑠𝑚 |𝑠𝑚−1)
𝑀∏

𝑚=1

𝑃𝜃 (𝜔𝑚 |𝑠𝑚)

= 𝜃0
𝑠1

𝑀∏
𝑚=2

𝜃𝑠
𝑠𝑚𝑠𝑚−1

𝑀∏
𝑚=1

𝜃𝜔
𝜔𝑚,𝑠𝑚

(1.31)

27

where 𝜃0 ∈ R|𝑉 𝑠 |, 𝜃𝑠 ∈ R|𝑉 |𝑠×|𝑉 𝑠 | and 𝜃𝜔 ∈ R|𝑉 |𝜔×|𝑉 𝑠 | are no-negative parameters, which defined

probability distributions. The corresponding graphical model is shown in Figure 1.3

Figure 1.3 Probabilistic graphical model

for Hidden Markov Model and Kalman

filter model

It is straightforward to derive that the observed tokens are independent conditioned on the latent

variables:

𝑃𝜃 (𝜔1, · · · , 𝜔𝑀, 𝑠1, · · · , 𝑠𝑀) = 𝑃𝜃 (𝑠1)
𝑀∏

𝑚=2

𝑃𝜃 (𝑠𝑚 |𝑠𝑚−1)
𝑀∏

𝑚=1

𝑃𝜃 (𝜔𝑚 |𝑠𝑚)

= N𝑠1
(𝜽0

𝜇, 𝜃𝑠∑)
𝑀∏

𝑚=2

N𝑠𝑚 (𝜃𝑠
𝜇𝑠𝑚−1, 𝜃𝑠∑)

𝑀∏
𝑚=1

𝑒𝑥𝑝(𝜃𝜔
𝜔𝑚

𝑇 𝑠𝑚)∑
𝜔′𝑒𝑥𝑝(𝜃𝜔

𝜔′
𝑇 𝑠𝑚)

(1.32)

where N𝑥 (𝝁,
∑) is the probability of variable 𝑥 under the multivariate normal distribution with

mean 𝝁 ∈ R𝑑 and covariance matrix
∑ ∈ R𝑑×𝑑 . The parameters defining the generation process

over latent stochastic variables are 𝜽0
𝜇 ∈ R𝑑 and 𝜃𝑠

𝜇, 𝜃𝑠∑ ∈ R𝑑×𝑑 . The parameter defining the

generation process over observed variables is 𝜃𝜔 ∈ R𝑑×|𝑉𝜔 |, used in a similar way to the RNN

parameters. The graphical model is the same as the HMM model, shown in Figure 1.3

For the HMM, the diminutive lexica 𝑉𝑠 and 𝑉𝜔 the model parameters may be learned utilizing

the stochastic gradient descent procedure described earlier by simply summing out the latent

variables. For the Kalman filter and the HMM with astronomically immense lexica, the exact

gradient updates are generally intractable, and instead, other procedures must be utilized. Two

such training procedures are the prospect-maximization algorithm (EM) and the variational

28

learning procedure (Bishop (2006a)). The variational learning procedure assumes that a posterior

distribution Q𝜓 (𝑠1, · · · , 𝑠𝑀 |𝜔1, · · · , 𝜔𝑀) is estimated with parameters 𝜓, which approximates

𝑃𝜃 (𝑠1, · · · , 𝑠𝑀 |𝜔1, · · · , 𝜔𝑀) by a multivariate normal distribution. It utilizes a lower-bound on

the log-likelihood based on Jensen’s inequality:

log(𝑃𝜃 (𝜔1, · · · , 𝜔𝑀) = log
∑

𝑠1,··· ,𝑠𝑀
𝑃𝜃 (𝜔1, · · · , 𝜔𝑀, 𝑠1, · · · , 𝑠𝑀)

= log
∑

𝑠1,··· ,𝑠𝑀
Q𝜓 (𝑠1, · · · , 𝑠𝑀 |𝜔1, · · · , 𝜔𝑀) 𝑃𝜃 (𝜔1, · · · , 𝜔𝑀, 𝑠1, · · · , 𝑠𝑀)

Q𝜓 (𝑠1, · · · , 𝑠𝑀 |𝜔1, · · · , 𝜔𝑀)
(1.33)

The distribution Q𝜓 (𝑠1, · · · , 𝑠𝑀 |𝜔1, · · · , 𝜔𝑀) depends on 𝜔1, · · · , 𝜔𝑀 . Given a set of data

examples, it is possible to maintain a Q distribution with separate parameters 𝜓 over each

example. A more recent approach utilized in the neural network literature for perpetual latent

stochastic variables is to have a neural network parametrize the posterior, where all data examples

share the same parameters (Kingma & Welling (2014), Rezende, Mohamed & Wierstra (2014)).

Here, the approximate posterior factorizes are:

Q𝜓 (𝑠1, · · · , 𝑠𝑀 |𝜔1, · · · , 𝜔𝑀) =
𝑀∏

𝑚=1

Q𝜓 (𝑠𝑚 |𝜔1, · · · , 𝜔𝑀)

=
𝑀∏

𝑚=1

N𝑠𝑚 (𝜇𝜓
𝑚 (𝜔1, · · · , 𝜔𝑀), 𝜃

𝜓∑(𝜔1, · · · , 𝜔𝑀))
(1.34)

where 𝜇
𝜓
𝑚 ∈ R𝑑 and 𝜃

𝜓∑ ∈ R𝑑×𝑑 are functions of 𝜔1, · · · , 𝜔𝑀 , defined by the approximate

posterior parameters 𝜓 and where 𝜃
𝜓∑ is a positive diagonal matrix. The functions 𝜇

𝜓
𝑚 and 𝜃

𝜓∑ are

typically parameterized as neural networks. The procedure now requires a re-parameterization

in order to obtain samples (𝑠1, · · · , 𝑠𝑀)∼Q𝜓 (𝑠1, · · · , 𝑠𝑀 |𝜔1, · · · , 𝜔𝑀). Let 𝜖𝑚 ∼ N(0, 1), for

𝑚 = 1, · · · , 𝑀 (i.e., a sample from the multivariate normal distribution with zero mean, identity

covariance matrix and dimensionality 𝑑). It is then possible to rewrite 𝑠𝑚 as:

𝑠𝑚 = 𝑓𝑚 (𝜖𝑚, 𝜔1, · · · , 𝜔𝑀) = 𝜇
𝜓
𝑚 (𝜔1, · · · , 𝜔𝑀) +

√
diag(𝜃𝜓∑(𝜔1, · · · , 𝜔𝑀))𝜖𝑚 (1.35)

29

where
√

diag(𝜃𝜓∑(𝜔1, · · · , 𝜔𝑀)) is a diagonal matrix with diagonal elements equal to the square

roots of the diagonal elements in 𝜃
𝜓∑(𝜔1, · · · , 𝜔𝑀). This re-paramenterization method sanctions

the taking of gradient w.r.t parameter 𝜓. Predicated on these gradients, the training procedure

can utilize approximate stochastic gradient descent to learn model parameters. As before, let

{w𝑖
𝑖} be the training dataset. An example 𝑖 is sampled together with 𝜖𝑖

1
, · · · , 𝜖𝑖

𝑀 ∼ N(0, 1) and

the parameters are updated by:

𝜃 ← 𝜃 + 𝛼∇𝜃 log 𝑃𝜃 (𝜔𝑖
1, · · · , 𝜔𝑖

𝑀 |𝑠𝑖
1, · · · , 𝑠𝑖

𝑀) − 𝛼∇𝜃 log(Q𝜓 (𝑠𝑖
1
, · · · , 𝑠𝑖

𝑀 |𝜔𝑖
1
, · · · , 𝜔𝑖

𝑀)
𝑃𝜃 (𝑠𝑖

1
, · · · , 𝑠𝑖

𝑀))

𝜓 ← 𝜓 + 𝛼∇𝜓 log 𝑃𝜃 (𝜔𝑖
1, · · · , 𝜔𝑖

𝑀 |𝑠𝑖
1, · · · , 𝑠𝑖

𝑀) − 𝛼∇𝜓 log(Q𝜓 (𝑠𝑖
1
, · · · , 𝑠𝑖

𝑀 |𝜔𝑖
1
, · · · , 𝜔𝑖

𝑀)
𝑃𝜃 (𝑠𝑖

1
, · · · , 𝑠𝑖

𝑀))

(1.36)

where 𝑠𝑖
𝑚 = 𝑓𝑚 (𝜖𝑖

𝑚, 𝜔𝑖
1
, · · · , 𝜔𝑖

𝑀) for 𝑚 = 1, · · · , 𝑀. It is straightforward to compute the

gradients w.r.t 𝜃, and since 𝑠𝑖
𝑚 have been re-paramenterized in term of 𝜖𝑖

𝑚, it is also straightforward

to compute the gradients w.r.t 𝜓. Furthermore, it is possible to compute the gradient of the exact

Kullback Leibler divergence, which corresponds to the negative term in both equations which is

presented in details at (Kingma & Welling (2014), Rezende et al. (2014))

1.1.6 Cosine Similarity

The kindred attribute is the kindred attribute and is often utilized in data relegation that has

homogeneous characteristics. Kindred attribute measure can be exploited to calculate the

distance of the homogeneous attribute of the two things being compared and ameliorate precision

of information retrieval (Gomaa & Fahmy (2013)). Cosine homogeneous attribute is the method

used to quantify the degree of a kindred attribute. This method is a traditional method that is

often cumulated with the TF-IDF in section 1.1.7. Cosine homogeneous attribute is a kindred

attribute rate the calculation obtained from the cosine 0𝑜 is 1 and less than 1 to the value of the

homogeneous attribute of the two vectors are verbalized to be homogeneous when the value of

30

cosine homogeneous cosine is 1 which performed by the following equation:

cos 𝜃 =
𝐴 × 𝐵

|𝐴| × |𝐵| =
∑𝑛

𝑖=1 𝐴𝑖 × 𝐵𝑖√∑𝑛
𝑖=1(𝐴𝑖)2 ×

√∑𝑛
𝑖=1(𝐵𝑖)2

(1.37)

The concept of a two-way degree of similarity states that have similarities. As the equation

above, where 𝐴 is the weight of each feature of the vectors 𝐴 (Item 1) and 𝐵 (Item 2) is each

character in the vector B. Principles cosine similarity, the greater angle formed between two

coordinate vector comparison documents, the smaller degree of document similarity. Conversely,

the smaller the degree of cosine similarity level, the greater the degree of similarity.

Figure 1.4 The cosine distance/similarity

between two items

1.1.7 Term frequency - inverse document frequency

Tf-idf stands for term frequency-inverse document frequency, and the tf-idf weight is often

utilized in information retrieval and text mining. This weight is a statistical measure used to

evaluate how important a word is to a document in an amassment or corpus. The paramountcy

increases proportionally to the number of times a word appears in the document but is offset by

the frequency of the word in the corpus. Search engines often utilize variations of the Tf-idf

31

weighting scheme as a central implement in scoring and ranking a document’s pertinence given

a utilizer query. (Rajaraman & Ullman (2011)). Tf-idf value increases proportionally to the

number of times a word appears in the document. It is offset by the number of documents in the

corpus containing the word, which allows adjusting that some words appear more frequently in

general. Tf-idf is one of the most popular term-weighting schemes today. A survey conducted

in 2015 showed that 83 % of text-predicated recommender systems in digital libraries use Tf-idf

(Beel, Gipp, Langer & Breitinger (2016)). The first part of the formula (term frequency (tf))

tf(𝑡, 𝑑) is simply to calculate the number of times each term 𝑡 appeared in each document. Of

course, as with prevalent text mining methods: stop words like “a”, “the”, punctuation marks

will be abstracted beforehand, and words will all be converted to lower cases.

tf(𝑡, 𝑑) = 𝑓𝑡,𝑑∑
𝑡′∈𝑑 𝑓𝑡′,𝑑

(1.38)

where 𝑓𝑡,𝑑 is the raw count of a term in a document, i.e., the number of times that term 𝑡

occurs in a document 𝑑. The inverse document frequency (idf) is a quantification of how much

information the word provides. It is the logarithm scaled inverse fraction of the documents

that contain the word (obtained by dividing the total number of documents by the number of

documents containing the term and then taking the logarithm of that quotient:

idf(𝑡, 𝐷) = log
|𝐷 |

|{𝑑 ∈ 𝐷 : 𝑡 ∈ 𝑑}| (1.39)

where, 𝐷 is inferring to our document space. It can also be seen as 𝐷 = {𝑑1, 𝑑2, ·, 𝑑𝑛} where 𝑛 is

the number of documents in the collection. |𝑑 ∈ 𝐷 : 𝑡 ∈ 𝑑 | implies the total number of times in

which term 𝑡 appeared in all of your document 𝑑 (the 𝑑 ∈ 𝐷 restricts the document to be in your

current document space). If the term is not in the corpus, this will lead to a division-by-zero. It

is therefore common to add 1 to avoid the division-by-zero. So the denominator is constructed

as 1 + |{𝑑 ∈ 𝐷 : 𝑡 ∈ 𝑑}| . Then tf-idf is calculated as:

tfidf(𝑡, 𝑑, 𝐷) = tf(𝑡, 𝑑) · idf(𝑡, 𝐷) (1.40)

32

Multiplying these two numbers results in the tf-idf score of a word in a document. The higher

the score, the more pertinent that word is in that particular document.

1.2 Natural Language Processing

Natural Language Processing (NLP) aims to train computers to understand natural language,

which maps a text to linguistic structures encode its meaning Smith (2011).

1.2.1 Bag-of-words

In some contexts, we will represent a text as a bag-of-words (BOW) 𝑥 ∈ R|𝑉 | where 𝑉 is the

vocabulary. Each entry 𝑥𝑖 corresponds to the number of occurrences of the 𝑖-th word in the

vocabulary in the text. This frequency may be weighted with term frequency-inverse document

frequency (tf-idf), which additionally reflects how important a term is in a corpus, a collection

of texts. An 𝑛-gram is a contiguous sequence of 𝑛 words in a text. In the standard BOW model,

we consider only unigrams, sequences of one word. We may additionally consider bigrams,

sequences of two words. The BOW ignores grammar and word order.

Figure 1.5 Bag of word example

33

1.2.2 Evaluation metrics

NLP systems are typically evaluated with regards to their performance on the test set of the

specific task. For binary classification, accuracy is the common evaluation measure, which is

defined as follows:

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(1.41)

where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, 𝐹𝑁 are the number of true positives, true negatives, false positives, and

false negatives, respectively. Intuitively, the number of true predictions is divided all predictions.

For multi-class classification, the 𝐹 score is used Debole & Sebastiani (2004)

𝐹𝛽 =
(𝛽2 + 1)𝑃 × 𝑅

𝛽2𝑃 + 𝑅

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(1.42)

where 𝛽 = 1 to obtain teh 𝐹1 score. The 𝐹1 metric balances precision, the fraction of correctly

predicted instances and recall, the fraction of correctly predicted instances out of all instances of

the category. It provides a good estimate of the overall quality of a model. Certain tasks may

use specialized evaluation metrics, which will be introduced with the corresponding task. The

metric has evolved to be used for three difference averages, namely micro, macro, and weighted.

• Let 𝑦 be the set of predicted (sample, label) pairs,

• 𝑦̂ be the set of true or gold standard (sample, label) paris,

• 𝐿 the set of labels,

• 𝑦𝑙 the subset of 𝑦 with label 𝑙

• 𝑃(𝐴, 𝐵) = |𝐴⋂
𝐵|

|𝐴|
• 𝑅(𝐴, 𝐵) = |𝐴⋂

𝐵|
|𝐵| , where 𝑅(𝐴, 𝐵) = 0 and 𝑃(𝐴, 𝐵) = 0 for 𝐵 = ∅,

• 𝐹𝛽 (𝐴, 𝐵) = (1 + 𝛽2) 𝑃(𝐴,𝐵)×𝑅(𝐴,𝐵)
𝛽2𝑃(𝐴,𝐵)+𝑅(𝐴,𝐵)

34

Figure 1.6 Metrics example

Then the metrics are defined1 as:

𝐹𝛽−𝑚𝑖𝑐𝑟𝑜 = 𝐹𝛽 (𝑦, 𝑦̂)

𝐹𝛽−𝑚𝑎𝑐𝑟𝑜 =
1

𝐿

∑
𝑙∈𝐿

𝐹𝛽 (𝑦𝑙 , 𝑦𝑙)

𝐹𝛽−𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =
1∑

𝑙∈𝐿 | 𝑦̂𝑙 |
∑
𝑙∈𝐿

| 𝑦̂𝑙 |𝐹𝛽 (𝑦𝑙 , 𝑦̂𝑙)

(1.43)

1.2.3 Part-of-speech (POS) tagging

POS tagging is the task of tagging a word in a text with its corresponding part-of-verbalization.

A POS is a category of words with homogeneous grammatical properties. Mundane English

POS are entity, verb, adjective, adverb, pronoun, preposition, conjunction, etc. POS tagging is

1 https://scikit-learn.org

35

arduous as many words can have multiple components of verbalization. POS can be arbitrarily

fine-grained and are typically predicated on the culled tag set. The most prevalent tag set

utilized by the Penn Treebank comprises 36 tags 2. However, POS tags vary greatly between

languages due to cross-lingual differences. The creation of a “universal” tag set has been an

ongoing development: Petrov, Das & McDonald (2012) proposed a tag set of 12 coarse-grained

categories, while the current tag set of the Universal Dependencies 2.0 3 contains 17 tags

Nivre, de Marneffe, Ginter, Goldberg, Hajic, Manning, McDonald, Petrov, Pyysalo, Silveira,

Tsarfaty & Zeman (2016).

Table 1.3 The POS Tag list

POS Description Examples
ADJ adjective *big, old, green, incomprehensible, first*

ADP adposition *in, to, during*

ADV adverb *very, tomorrow, down, where, there*

AUX auxiliary *is, has (done), will (do), should (do)*

CONJ conjunction *and, or, but*

CCONJ coordinating conjunction *and, or, but*

DET determiner *a, an, the*

INTJ interjection *psst, ouch, bravo, hello*

NOUN noun *girl, cat, tree, air, beauty*

NUM numeral *1, 2017, one, seventy-seven, IV, MMXIV*

PART particle *’s, not,*

PRON pronoun *I, you, he, she, myself, themselves, somebody*

PROPN proper noun *Mary, John, London, NATO, HBO*

PUNCT punctuation *., (,), ?*

SCONJ subordinating conjunction *if, while, that*

SYM symbol *$, %, 𝛼, 𝛽, 𝜃, +, -, ×, = *

VERB verb *run, runs, running, eat, ate, eating*

X other *sfpksdpsxmsa*

SPACE space

2 https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

3 https://universaldependencies.org/u/pos/

36

1.2.4 Chunking

Chunking, also known as shallow parsing, aims to identify continuous spans of tokens that

form syntactic units. Chunks are different from parts of speech as they typically represent

higher-order structures such as noun phrases or verb phrases. Approaches typically use BIO

notation, differentiating the beginning (B) and the inside (I) of chunks. O is used for tokens

that are not part of a chunk. Both POS tagging and chunking act mostly on the grammatical

and syntactic level, compared to the following tasks, which capture more of the semantic and

meaning-related aspects of the text.

1.2.5 Textual Entailment or Natural Language Inference Process

Textual entailment is the task of determining whether a “hypothesis” is true, given a “premise”.

The cognition holds whenever the truth of one text fragment follows from another text. In

the TE framework, the entailing and entailed texts are termed text (𝑝) and hypothesis (ℎ),
respectively. Textual entailment is not equipollent to pristine logical entailment – it has a more

simple definition: "p entails h" (𝑝 → ℎ) if, typically, a human reading t would infer that ℎ is

most likely true. Alternatively: 𝑝 → ℎ if and only if, typically, a human reading 𝑝 would be

justified in inferring the proposition expressed by ℎ from the proposition expressed by 𝑝. The

cognition is directional because even if "p entails h", the inversion "h entails p" is much less

certain.

A sentence’s meaning can be inferred from its lexical and syntactic composition. Features

like negation or synonyms can be acclimated to compare sentences. Dependency graph can

withal be habituated to understand how different entities interact with each other. But because

of the variability and ambiguity of natural language, semantics cannot be ignored. With the

advent of SNLI 4 and MNLI 5 corpus, it became possible to run deep learning models for

Natural Language Inference, (NLI). Astronomically big data, which comprises many examples

4 https://nlp.stanford.edu/projects/snli/

5 https://cims.nyu.edu/~sbowman/multinli/

37

of differing compositions, sanctions revelation of features that would otherwise be arduous to

identify. Before deep learning, most of the approaches utilized hand-crafted features, mostly

distance metrics, to train the NLI models. Additionally, since different languages have a different

composition of sentences, manually extracting sundry language features is not feasible. As a

result, most recent developments have relied upon learned features utilizing deep neural networks.

• SVM approach: is one of the popular ways of classifying a set of features into one of the

target classes. It tries to find a hyperplane that separates the input into distinct classes.

Malakasiotis & Androutsopoulos (2007) applied SVM on ten lexical and shallow syntactic

features, namely Levenshtein distance, Jaro-Winkler distance, Soundex Manhattan distance,

Euclidean distance, Cosine similarity, N-gram distance, Matching coefficient, Dice coefficient,

and Jaccard coefficient. Castillo & Alemany (2008) uses lexical and semantic features along

with some hand-crafted rules. Textual entailment challenges attracted many SVM-based

solutions, but even the best-performing system had less than 65 % accuracy.

• LSTM approach: is engendered in an endeavor to dispense the evanescent gradient quandary

that was subsisting in RNN and recollecting contexts for a longer period. In simple, RNN, as

more and more words are input, antecedently learned network weights start fading as they

are superseded by more recently visually perceived words. This is because the cognition of

weights transpires predicated on the gradient of loss, and with time gradient goes on truncating

since it has to be back-propagated through time. Bowman, Angeli, Potts & Manning (2015)

proposed the first deep learning approach to learn the NLI task. The input premise and

hypothesis are encoded utilizing an LSTM into two 100 dimension vectors. Concatenation

of these two vectors is then utilized for learning the 3-class relegation. The network consists

of a stack of three tanh layers followed by a softmax layer.

LSTMs processes sentences sequentially to learn a concise representation. This seems akin

to a natural approach since humans learn to read text sequentially, word-by-word. But as

we become more adept at reading, we are inclined to focus more on certain words in the

sentence, which are more paramount than the others. This deportment can be learned by

fixating on consequential words. Bahdanau, Cho & Bengio (2014) proposed an attention

38

mechanism to learn what words to fixate on. It amalgamated the overall representation

engendered by LSTM with individual word vectors. Predicated on the loss calculated, each

word vector gets its weight-adjusted determining how much the word contributes to the final

representation. Rocktäschel, Grefenstette, Hermann, Kočiský & Blunsom (2015) applied

an attention mechanism to identify words in the premise that can be influential in deciding

the overall relegation. They proposed three models for comparison. The first one uses two

LSTMs, one for the premise and one for the hypothesis, arranged such that the initial state of

the second LSTM that processes the hypothesis is set to the final state of the first LSTM.

This is a conditional encoding since the hypothesis is encoded conditioned on the premise.

Zhao, Huang & Ma (2016) mimicked the same for tree representation of sentences. The

intuition is that natural language sentences are inherently recursive and can be represented as

a tree. Representing premise and hypothesis as a binary tree and then utilizing the attention

mechanism to find alignment between nodes of these trees gives a way to find entailment

cognation recursively. Neural Tree Indexer (NTI) Vaswani, Shazeer, Parmar, Uszkoreit,

Jones, Gomez, Kaiser & Polosukhin (2017) is a way to capture the compositionality of a

sentence. Compared to other tree-predicated methods, they did not engender two trees for

premise and hypothesis. Instead, they engendered only one tree predicated on the words in

hypothesis, and cumulation of these words becomes the tree’s nodes.

• WordNet: Knowledge-based Inference Model (KIM) Chen, Zhu, Ling, Inkpen & Wei (2018)

involved the utilization of external knowledge in the neural network. Generally, neural

networks for Entailment include encoder, attention, local entailment, and sentence level

entailment. This model does the same but uses External Knowledge in the form of WordNet.

This addition of WordNet is beneficial to help recognize the word or phrase-level relations.

It also helps when the training data is limited, and the model cannot learn much from the

given data. At first, sentences are encoded by encoders as context-dependent representations.

Second, the co-attention between premise and hypothesis was calculated to obtain word-

level alignment. After that, the local inference information for entailment/non-entailment

prediction was collected. Finally, the composition component aggregates all sentences and

predicts the label. WordNet relations need to be converted to a numerical representation.

39

Semantic relations among the words are determined using synonymy, antonymy, hypernymy,

hyponymy, etc. All these relations or features are converted to real numbers. Positive relations

like synonymy, hypernymy and hyponymy help capture the entailment, whereas negative

relations antonymy co-hyponymy (words with the same hypernymy) helps in determining

non-entailment. The Co-attention component uses a co-attention matrix and softly aligns

word pairs between the premise and hypothesis with the help of external knowledge. The

inference collection component computes local entailment between words or phrases by

comparing premise and hypothesis alignment vectors. Inference composition uses the

BiLSTM layer and determines sentence level entailment between a premise and a hypothesis.

• Transformer Network: Vaswani et al. (2017) proposed to process the input in a non-sequential

manner so that the computations could be parallelized. The proposed model was called a

Transformer network. It follows a similar approach to other sequence-to-sequence models.

An encoder layer converts the input into an intermediate representation, which is then decoded

to output value by the decoder layer. But it differs from recurrent architectures because it

does not need the encoder layer to process the input sequentially before the decoder can

generate the output. The encoder layer produces the output for each word in parallel. The

decoder learned to attend to output from the encoder. The input to the model is a combination

of word embedding and position vector. Position vector allows using features related to

the position of words in the sentence. There are multiple encoder and decoder layers, and

each layer has multiple sub-layers. In the case of an encoder, there are two sub-layers: the

first is the multi-head attention layer, and the second is a fully connected neural network

layer. The attention layer learned a weighted combination of inputs that helps focus on the

relevant words. Multi-head attention learns these attention weights in multiple representation

sub-spaces and then combines them. The decoders have a similar structure except for the

third layer of multi-head attention that attends to the outputs from the encoder layer.

40

Table 1.4 The example of textual entailment

Premise Hypothesis Entailment Contradiction Neutral
If you help the

needy, God will

reward you.

Giving money to

the poor has good

consequences.

77.6% 0.3% 22.1%

Two women are

wandering along the

shore drinking

iced tea.

Two women are

sitting on a blanket

near some rocks

talking about politics.

0.1% 98.7% 1.2%

A large, gray

elephant walked beside

a herd of zebras.

The elephant was lost. 0.3% 16.1% 83.6%

1.2.6 Name Entity Recognition

Denominated Entity Recognition (NER) Tjong Kim Sang & De Meulder (2003) is one of the

tasks of automatic natural language processing (NLP). The task is to automatically identify

soi-disant named entities: words or sequences of words that denote unique denominations,

locations, organizations, and so on. These entities are withal sometimes called proper names

in natural language. The task typically involves relegating of these identified entities into

a set of predefined classes. Consequently, the task of NER is sometimes subtasks: named

entity identification (the task is to correctly identify a denominated entity span without further

relegation, that is, to retrieve all designated entity tokens) and name entity relegation (the task

is to correctly relegate the retrieved designated entity tokens into a set of predefined classes).

Hence, the NER customarily stands for both of the tasks performed jointly. NER is an often

solved task of NLP as a pre-processing step of more involute tasks. Figure 1.7 is an example of

NER in practice.

Figure 1.7 The example of NER

41

The categories culled for a particular NER may be dependable on its requisites. If numerical

relegation plays a vital role in a particular field, then the categories describing numerical data

may need more refinement. NER can be defined as a word-level tagging quandary where each

word in a sentence is either mapped to a designated entity-tag or is relegated as a conventional

prevalent word Yadav & Bethard (2019a). Hence, the most common approaches Li, Sun,

Han & Li (2018) to NER are followings:

• Rule-predicated approaches: Early NER systems were predicated on handcrafted pattern-

predicated rules, lexicons, orthographic features and ontologies (Callan & Mitamura (2002)

Sekine & Nobata (2004)). This approach proposes to learn extraction rules that rely on

linguistic, syntactic, or document format patterns that are homogeneous and consistent across

a group of documents. Rules can be engendered predicated on syntactic-lexical patterns

and domain-concrete gazetteers. Rule predicated systems work very well, provided the

lexicon is exhaustive. In general, precision inclines to be generally high for rule-predicated

NER systems because of the lexicons. Still, the recall may often be low due to domain and

language-categorical rules and incomplete dictionaries. Another drawback of rule-predicated

NER systems is the desideratum of domain experts for constructing and maintaining the

knowledge resources and the fact that the system cannot be transferred to other domains

Yadav & Bethard (2019b).

• Unsupervised Learning approaches: A typical unsupervised learning approach is clustering.

Clustering-predicated NER systems extract denominated entities from the clustered groups

predicated on context homogeneous attribute Nadeau & Sekine (2007). The primary concept

is that lexical resources, lexical patterns, and statistics computed on a sizably voluminous

corpus can be acclimated to infer occurrences of denominated entities.

• Feature-predicated Supervised learning approaches: Supervised machine learning models

learn directly from the training data and can be habituated to supersede human-curated rules.

This data must be labeled, which implies that there is an expected output defined to each

input. The application of supervised learning necessitates feature engineering. Predicated

on these features, many machine learning algorithms have been applied in supervised NER,

including Obnubilated Markov Models, Decision Trees, Maximum Entropy Models, Support

42

Vector Machines, and Conditional Arbitrary Fields Li et al. (2018). Such systems propose

applying a rule system over feature vectors defined on the word level. They describe word

cases, punctuation, numerical value, and special characters. Supplementally, resources in

the form of gazetteers, lexicons, and dictionaries were victualed to the classifier to enable

lookup techniques.

• Deep learning approaches: In recent years, DL-predicated NER models have become the

prevailing approach to apperceive denominated entities. Compared to feature-predicated

approaches, deep learning is propitious in discovering obnubilated features automatically

and thus distributing state-of-the-art results. Deep learning is one of the fields of machine

learning that utilizes the growing volume and availability of data to train models efficaciously

by utilizing incremented computational processing puissance. It fixates on training artificial

neural networks, which compose multiple processing layers and learning representations of

data with multiple levels of abstraction. Contemporary neural architectures for NER can be

predominantly relegated into categories that depend on their representation of the words in a

sentence. For example, the form of representation may be predicated on words, characters,

other sub-word units, or any aggregate.

- Word level architectures: In this architecture, the words of a sentence are given as input

to a Recurrent Neural Network (RNN). Each word is represented by its word embedding.

Huang, Xu & Yu (2015) experiment with a variety of LSTM predicated models for

sequence tagging. They presented a word LSTM model and showed that integrating

a Conditional Arbitrary Field (CRF) layer to the top of the word LSTM ameliorated

performance, achieving 84.26% F1-score on the English CoNLL 2003 dataset.

- Character level architectures: A sentence is perceived to be a sequence of characters in

the character level architecture. This sequence is passed through an RNN, prognosticating

labels for each character. Character labels are transformed into word labels during a

post-processing step. Character-level representation has been shown to exploit explicit

sub-word-level information such as prefix and suffix. Another advantage of character-level

representation is that it handles the out-of-lexicon quandary well due to its intrinsic

43

properties. Thus the character-predicated model is capable of inferring representations for

unseen words and apportion information of morpheme-level regularities Li et al. (2018)

1.2.7 Language Model

Language models compute the probability of occurrence of several words in a particular sequence.

The probability of a sequence of 𝑚 words {𝜔1, · · · , 𝜔𝑚} is denoted as 𝑃(𝜔1, · · · , 𝜔𝑚). Since

the number of words coming before a word 𝜔𝑖 varies depending on its location in the input

document. 𝑃(𝜔1, · · · , 𝜔𝑚) is usually conditioned on a window of 𝑛 previous words rather than

all previous words:

𝑃(𝜔1, · · · , 𝜔𝑚) =
𝑖=𝑚∏
𝑖=1

𝑃(𝜔𝑖 |𝜔1, · · · , 𝜔𝑖−1) ≈
𝑖=𝑚∏
𝑖=1

𝑃(𝜔𝑖 |𝜔𝑖−𝑛, · · · , 𝜔𝑖−1) (1.44)

In machine translation, the model chooses the best word ordering for an input phrase by assigning

a goodness score to each output word sequence alternative.

1.2.7.1 N-gram Language model

Let’s begin with the task of computing 𝑃(𝜔|ℎ), the probability of a word 𝜔 given some history

ℎ. Suppose the history ℎ is “its water is so transparent that” and we want to know the probability

that the next word is 𝑡ℎ𝑒:

𝑃(𝑡ℎ𝑒 |𝑖𝑡𝑠 𝑤𝑎𝑡𝑒𝑟 𝑖𝑠 𝑠𝑜 𝑡𝑟𝑎𝑛𝑠𝑝𝑎𝑟𝑒𝑛𝑡 𝑡ℎ𝑎𝑡) (1.45)

One way to estimate this probability emanates from relative frequence counts: take a profoundly

and astronomically immense corpus, count the number of times we visually perceive its

dihydrogen monoxide is so transparent that, and count the number of times this is followed by

the. This would be answering the question “Out of the times we visually perceived the history ℎ,

44

how many times was it followed by the word 𝜔” as follows:

𝑃(𝑡ℎ𝑒 |𝑖𝑡𝑠 𝑤𝑎𝑡𝑒𝑟 𝑖𝑠 𝑠𝑜 𝑡𝑟𝑎𝑛𝑠𝑝𝑎𝑟𝑒𝑛𝑡 𝑡ℎ𝑎𝑡) = 𝐶 (𝑖𝑡𝑠 𝑤𝑎𝑡𝑒𝑟 𝑖𝑠 𝑠𝑜 𝑡𝑟𝑎𝑛𝑠𝑝𝑎𝑟𝑒𝑛𝑡 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒)
𝐶 (𝑖𝑡𝑠 𝑤𝑎𝑡𝑒𝑟 𝑖𝑠 𝑠𝑜 𝑡𝑟𝑎𝑛𝑠𝑝𝑎𝑟𝑒𝑛𝑡 𝑡ℎ𝑎𝑡)

(1.46)

Let’s start with a little formalizing of notation. To present the probability of a particular random

variable 𝑋𝑖 taking on the value “the”, or 𝑃(𝑋𝑖 = “𝑡ℎ𝑒′′), or 𝑃(𝑡ℎ𝑒). A sequence of 𝑁 words is

presented as 𝜔1, · · · , 𝜔𝑛 or 𝜔1:𝑛. The join probability of each word is 𝑃(𝜔1, · · · , 𝜔𝑛) which is

computed by the chain rule:

𝑃(𝜔1:𝑛) =
𝑛∏

𝑘=1

𝑃(𝜔𝑘 |𝜔1:𝑘−1) (1.47)

It shows the link between computing the joint probability of a sequence and computing the

conditional probability of a word given previous words. The Equation 1.47 suggests that we

could estimate the joint probability of an entire sequence of words by multiplying together

a number of conditional probabilities. The intuition of the n-gram model is that instead of

computing the probability of a word given its entire history, we can approximate the his few

words. The bigram model, for example, approximates the probability of a word given all the

previous words 𝑃(𝜔𝑛 |𝜔1:𝑛−1) by using only the conditional probability of the preceding word

𝑃(𝜔𝑛 |𝜔 + 𝑛 − 1). When we use a bigram model to predict the conditional probability of the

next word, we are thus making the following approximation:

𝑃(𝜔|𝜔1:𝑛−1) ≈ 𝑃(𝜔𝑛 |𝜔𝑛−1) (1.48)

The assumption that the probability of a word depends only on the previous word is called

a Markov assumption. Markov models are the class of probabilistic models that assume we

can predict the probability of some future unit without looking too far into the past. We can

generalize the bigram (looks on word into the past) to trigram (looks two words into the past)

and thus to the n-gram (looks 𝑛 − 1 words into the past). Thus, the general equation for this

n-gram approximation to the conditional probability of the next word in a sequence is:

𝑃(𝜔𝑛 |𝜔1:𝑛−1) ≈ 𝑃(𝜔𝑛 |𝜔𝑛−𝑁+1:𝑛−1) (1.49)

45

Given the bigram assumption for the probability of an individual word, we can compute the

probability of a complete word sequence by:

𝑃(𝜔1:𝑛) ≈
𝑛∏

𝑘=1

𝑃(𝜔𝑘 |𝜔𝑘−1) (1.50)

To estimate these bigram or n-gram probability, a Maximum Likelihood Estimation (MLE)

methodology is used. We get the MLE estimate for the parameters of an n-gram model by

getting counts from a corpus, and normalizing the counts so that they are between 0 and 1.

𝑃(𝜔𝑛 |𝜔𝑛−𝑁+1:𝑛−1) =
𝐶 (𝜔𝑛−𝑁+1:𝑛−1 𝜔𝑛)

𝐶 (𝜔𝑛−𝑁+1:𝑛−1)
(1.51)

The Equation 1.51 estimates the n-gram probability by dividing the observed frequency of a

particular sequence by the observed frequency of a prefix. Let’s work through an example

using a mini-corpus of three sentences. A special symbol 〈 s 〉 is added to the beginning of the

sentence as the first word. The end-symbol is added to the end of sentence, too. Hence, the

example is presented as:

〈 s 〉 I am Vu 〈 s 〉
〈 s 〉 Vu I am 〈 s 〉
〈 s 〉 I do not like green eggs and ham 〈 s 〉

Here are the calculations for some of the bigram probabilities from this corpus: 𝑃(𝐼 |〈𝑠〉) = 2
3
=

0.67 ; 𝑃(𝑉𝑢 |〈𝑠〉) = 1
3
= 0.33 ; 𝑃(𝑎𝑚 |𝐼) = 2

3
= 0.67 ; 𝑃(〈𝑠〉|𝑉𝑢) = 1

2
= 0.5 ; 𝑃(𝑑𝑜 |𝐼) = 1

3
= 0.33

On the other hand, what about words we simply have never seen before? In such a closed

vocabulary system, the test set can only contain words from this lexicon, and there will be no

unknown words. This is a reasonable assumption in some domains, such as speech recognition

or machine translation, where we have a pronunciation dictionary or a phrase table fixed in

advance. So the language model can only use the words in that dictionary or phrase table. In

other cases, we have to deal with words we haven’t seen before, which we will call unknown

46

words, our out of vocabulary (OOV) words. The OOV rate is the percentage of OOV words

that appear in the test set. An open vocabulary system is one in which we model these potential

unknown words in the test set by adding a pseudo-word or tag < 𝑈𝑁𝐾 >. The exact choice of

the < 𝑈𝑁𝐾 > model does affect on metrics like perplexity. A language model can achieve low

perplexity by choosing a small vocabulary and assigning the unknown word a high probability.

For this reason, perplexities should only be compared across language models with the same

vocabularies (Buck, Heafield & van Ooyen (2014)).

Hence, there are two main issues with n-gram Language Models:

• Sparsily problems with these models arise due to two issues:

- If the 𝜔1, 𝜔2 and 𝜔3 never appear together in the corpus, the probability of 𝜔3 is zero. To

solve this, a small 𝜎 could be added to the count for each word in the vocabulary, called

smoothing.

- If 𝜔1 and 𝜔2 never occurred together in the corpus, then no probability can be calculated

for 𝜔3. To solve this, we could condition on 𝜔2 alone. This is called backoff.

Increasing 𝑛 makes sparsity problems worse. Hence, 𝑛 ≤ 5.

• Storage problems: when 𝑛 increases, the model size increases as well.

1.2.7.2 RNN Language Model

A large-scale deep learning for natural language processing model was proposed at Bengio,

Ducharme, Vincent & Janvin (2003). This models learns a distributed representation of words,

along with the probability function for word sequences expressed in terms of these representation.

A simplified version of this model can be seen in Figure 1.8, where the blue layer signifies

concatenated word embeddings for the input words x = [𝑥 (1); 𝑥 (2); 𝑥 (3); 𝑥 (4)] the red layer

signifies the hidden layer: h = 𝑓 (We + b1), and the green output distribution is a softmax over

the vocabulary: ŷ = softmax(Uh + b2).

The architecture of RNN is introduced in Figure 1.9, where each vertical rectangular box is a

hidden layer at a timestep 𝑡. Each such layer holds several of neurons, each of which performs a

linear matrix operation on its inputs followed by a non-linear operation (e.g., tanh()). At each

47

Figure 1.8 The first deep neural network

architecture model for NLP

timestep, there are two inputs to the hidden layer: the output of the previous layer ℎ𝑡−1, and

the input at the time step 𝑥𝑡 . The former input is multiplied by a weight matrix 𝑊 (ℎℎ) and the

latter by a weight matrix 𝑊 (ℎ𝑥) to produce output features ℎ𝑡 , which are multiplied with a weight

matrix 𝑊𝑆 and run through a softmax over the vocabulary to obtain a prediction output 𝑦̂ of the

next word.

Figure 1.9 A Recurrent Neural Network

(RNN). Three time-steps are shown

48

ℎ𝑡 = 𝜎(𝑊 (ℎℎ)ℎ𝑡−1 + 𝑊 (ℎ𝑥)𝑥𝑡)
𝑦̂ = softmax(𝑊 (𝑆)ℎ𝑡)

(1.52)

The inputs and outputs of each single neuron are illustrated in Figure 1.10.

Figure 1.10 The inputs and

outputs to a neuron of an RNN

What is interesting here is that the same weights 𝑊 (ℎℎ) and 𝑊 (ℎ𝑥) are applied repeatedly at each

timestep. Thus, the number of parameters the model has to learn is less, and most importantly,

is independent of the length of the input sequence-thus defeating the curse of dimensionality.

Their parameters in the network are as follows:

An example of an RNN language model is shown in Figure 1.11.

• 𝑥1, · · · , 𝑥𝑡−1, 𝑥𝑡 , 𝑥𝑡+1, · · · , 𝑥𝜏: the word vectors corresponding to a corpus with 𝜏 words

• ℎ𝑡 = 𝜎(𝑊 (ℎℎ)ℎ𝑡−1 +𝑊 (ℎ𝑥)𝑥𝑡): the relationship to compute the hidden layer output features at

each time-step 𝑡

- 𝑥𝑡 ∈ R𝑑 input word vector at time 𝑡

- 𝑊 (ℎ𝑥) ∈ R𝐷ℎ×𝑑: weights matrix used to condition the input word vector 𝑥𝑡

- 𝑊 (ℎℎ) ∈ R𝐷ℎ×𝐷ℎ : weights matrix used to condition the output of the previous time-step

ℎ𝑡−1

49

Figure 1.11 An RNN Language Model

- ℎ𝑡1 ∈ R𝐷ℎ : output of the non-linear function at the previous time-step, 𝑡 − 1. ℎ0 ∈ R𝐷ℎ is

an initialization vector for the hidden layer at time-step 𝑡 = 0

- 𝜎(): the non-linearity function (sigmoid)

• 𝑦̂ = softmax(𝑊 (𝑆)ℎ𝑡): the output probability distribution over the vocabulary at each time-

step 𝑡. Essentially, 𝑦𝑡 is the next predicted word given the document context score so far (i.e.,

ℎ𝑡−1) and the last observed word vector 𝑥 (𝑡) . Here 𝑊 (𝑆) ∈ R|𝑉 |×𝐷ℎ and 𝑦̂ ∈ R|𝑉 | where |𝑉 | is

the vocabulary.

An example of an RNN language model is shown in Figure 1.11.

50

1.2.8 Co-reference Resolution Evaluation

1.3 Dialogue Systems

Intelligent Tutoring Systems (ITS) appeared in the early 1970s (Brown & Burton (1975)). One

of the goals of AI technologies is to create educational tools that can be adapted to the learner.

Because an ITS can play different roles such as "information presentation tools", "knowledge

processing tools", "communication tools", it succeeds through each of these roles in stimulating

learning and cognitive development of the learner:

• "Information presentation tools": By using these tools, information becomes more accessible,

more up-to-date, and can be presented in different formats. It can be a good stimulant for the

learner’s imagination, memorization, and comprehension.

• "Knowledge processing tools": These tools support for supervision of the learner better,

more personalized, and adaptive learning. The learner can do their self-evaluations get

recommendations and feedback faster.

• "Communication tools": These tools are utilized for human and machine communication

projects through intelligent agents. The better communication is, the better teaching will be,

and hence the more effort learning is.

Communication is one of the basic pillars of education, some intelligent tutoring systems

proposed in the past were based on conversational dialogs (Freedman (1999), Nkambou,

Mizoguchi & Bourdeau (2010)). On the other hand, constructing a complete system including all

the necessary components (e.g., representing the domain, modeling the pedagogical knowledge,

monitoring the students’ progress to offer appropriate help, and constructing the appropriate

user interface) is a hot challenge. However, ITS seem effective for improving students’ learning

outcomes (Bowen, Chingos, Lack & Nygren (2014), Pane, Griffin, McCaffrey & Karam

(2014)). One of the key aspects of these systems is the provision of instructional feedbacks

or hints that are helpful and appropriate. Many systems are based on production rules, or

constraints Nesbit, Adesope, Liu & Ma (2014) where the students’ responses are matched

against pre-organized solutions. In practice, this often returns in a high development and

51

maintenance cost. However, appropriate feedback (hint) is a major challenge for ITS. With recent

advances in AI and Big data technologies, data-driven tutors are now proposed in Koedinger,

Cunningham, Skogsholm & Leber (2008). The personalized supports students du Boulay (2016)

and often used in conjunction with conversational agents Lane, Menzies, Ennis & Bezdek (2013)

are considered deeply. When a student fails to answer the question, which is issued by the

system, the system may respond one of several tactics, such as short feedback (i.e., positive,

neutral, negative), pumps (e.g., “Uh, tell me more”), prompts, suggestions, clues, assertions,

scaffolding, corrections, and summaries Graesser, Wiemer-Hastings, Wiemer-Hastings, Harter,

Group & Person (2000). In early systems, such as AutoTutor, the hints were created by experts or

professors manually. Naturally, this is a time-consuming and hard work process, which cannot

be scaled to many domains. In some early systems, hints have been generated by applying

pre-defined templates to generate textual hints (Hume, Michael, Rovick & Evens (1996a),

Graesser, Wiemer-Hastings, Wiemer-Hastings & Kreuz (1999)), which reduced some of the

manual efforts, but they remained a time-consuming process. In later systems, hints have also

been generated using a domain ontology, such as a knowledge base (Tsovaltzi, Fiedler & Horacek

(2004), Tosun (2006)). However, domain ontologies are also expensive to build and maintain.

On the other hand, a dialogue system can be a program that communicates with a human user

throughout the natural language. The dialogue system provides an associate interface between

the user and a computer-based application that permits interaction with the appliance relatively

naturally. Analysis on the dialogue system put together stated as interactive conversational,

virtual assistants, or usually chatbots have been started from the mid-60s with Weizenbaum’s

proposed program named ELIZA that was a rule-based system mimicking a Rogerian expert by

persistently either recasting statements or asking Weizenbaum (1966). A few years once ELIZA,

another chatbot with a clinical science focus, PARRY (Colby (1981)), was accustomed study

psychosis. In addition to ELIZA-like regular expressions, the PARRY system was a model of its

condition, impacting variables for the agent’s levels of concern and anger; certain topics of oral

communication could lead PARRY to become further angry or suspicious. However, neither of

these a pair of systems used data-driven learning approaches. Later work, just like the MegaHal

system by Hutchens and Alder in 1998, began to use data-driven ways (Shawar & Atwell

52

(2007)). They planned to model the dialogue as a random sequence of separate symbols (words)

mistreatment. Figure 1 illustrates the standard design for dialogue systems. It incorporates an

Automatic Speech Recognizer, Natural Language Interpreter, Dialogue State Tracker, Dialogue

Response Selection, Natural Language Generator, and Text-to-Speech Converter, which we can

intergrade our system to make it more effectively.

Figure 1.12 An overview of the Dialogue System

Motivated by the recent developments, we focus on generating hints, questions, and answers

based on non-structured data in this project. We propose several models, largely inspired by

recent neural machine translation models, and we use an approach for dealing with the problem

of keywords. We’d like to generate hints using as little supervision as possible (e.g., knowing

that the type of a question is (a) “definition”, the system can recognize that hints eliciting the

definition should be provided, such as asking the student about the attributes/properties of the

concept. The properties should be deduced from the input material (e.g., non-structure data as

Wikipedia, textbook). Alternatively, we can compile and maintain some sort of ontology of key

concepts with their typical attributes. We use the additional questions that do not coincide with

the expected answer but help point the student in the right direction. The auxiliary question types

are different in their structure and aimed at eliciting different types of information as an answer

(e.g., definition, explanation, definition & explanation, two or more definitions contrasting each

other, list of properties, and deeper understanding). Even working with the auxiliary question,

if the student answers a question different from the original one, we propose a gap reference

solution, where the system “masks” the key bit of the answer it is expecting (i.e., given the variety

of reference solutions in the dataset, the system can select one at random) and present the student

53

with the gap solution. We consider the question and answer generator as a transduction problem

starting from a Freebase fact, represented by a triple consisting of a subject, a relationship, and

an object, which is transduced into a question about the subject, where the object is the correct

answer. We evaluate the produced questions and answer in the experiment as well as concerning

automatic evaluation metrics, including the well-established machine translation metrics BLEU

(Papineni, Roukos, Ward & Zhu (2002)), METEOR (Lavie & Agarwal (2007)), ROUGE (Lin

(2004)), ADEM (Lowe, Noseworthy, Serban, Angelard-Gontier, Bengio & Pineau (2017)),

and a scoring table with many features (e.g., idf, length of words, similarity of each word)

respects with considering the value of co-reference resolution. This suggests that the produced

question-answer pairs are of high quality, and therefore they will be useful for training Question

- Answer systems. Finally, a confidence model is proposed to generate content interactively with

the assistance from teacher.

CHAPTER 2

AUTOMATED QUESTION AND ANSWER GENERATION OF HINT
INTERVENTIONS IN INTELLIGENT TUTORING SYSTEM

2.1 Abstract

Intelligent Tutoring Systems (ITS) have proven to be very effective in supporting e-learning

when compared to traditional computerized pedagogical approaches. However, many ITS use

experts to design and develop rules and exercises, which makes them difficult to build and

transfer between domains, and also limits their effectiveness. Additionally, many educational

critiques of ITS point to the inadequate immediate feedback and cue sequences that are integrated

to make the system intelligent. Indeed, critics highlight their failure to promote personalized

learning for students. In this research, we seek to automatically generate, from an ontology, a

personalized, precise and syntactically correct paraphrase based on the user’s questions and

answers in the ITS. We present a methodology that builds the hints and the results collected to

show the efficiency of the proposed model. Thus, we propose a machine learning approach to

generate personalized hints that have a close relationship with the interests of users and their

variety of explanations of the concepts used. Our approach thus considers the individual needs

of students while minimizing the need for expert intervention in designing craft rules.

2.2 Introduction

The Personalized tutoring is the service with the goal of helping students in their education

process effectively Anania (1983b); Bloom (1984); Burke (1983); Hrastinski, Stenbom, Ben-

jaminsson & Jansson (2019a) that will push them to do their best while enjoying the process.

Traditionally, such personalized tutoring service are using the human tutors as teachers and

lecturers which content are generated, taught, and evaluated by teachers in a undrirectional

fashion and based on the teacher’s experience in a specific area of knowledge. On the other

hand, the effective state of students will be understood by the human tutors, and thus they

will provide the personalized feedback by considering and adapting instructions accordingly.

56

However, generally, one-on-one tutorial costs too much to conduct on a large scale over the world,

hence it is not readily available. Intelligent Tutoring Systems (ITS) is a computer system that

aims to provide immediate and customized instruction or feedback to learners which attempt to

mimic human tutoring with a low-cost Anderson, Boyle & Reiser (1985b); Nye, Graesser & Hu

(2014b). An ITS typically tries to replicate the demostrated benefits of one-to-one, personalized

tutoring, in contexts where students would stay at home (online) or at the school (in the class).

ITS provides step-by-step guidance for problem solving, progress tracking student’s skills and

knowledge improvement, and selecting the invdividual basis problems. On the other hands, by

comparing to other computer-based learning environments, ITSs are more effective in promoting

learning Kulik & Fletcher (2016b); VanLehn (2011b). ITS might compare with Massive Open

Online Courses (MOOCs) which are low-cost, computer-based environment with hundreds of

millions of students enrolled over the world. However, previous research shows that the rate

of student dropout in MOOCs often greater than 90% Jona & Naidu (2014); Rieber (2017).

The main reason of the big dropout rate is the poor interaction between system and its users in

parallel with the lack of support during the learning period Hone & El Said (2016). However,

ITS can deal with the poor interaction by providing a great adaptive and interactive environment

to the users. One weakness major to scale-up the ITS is the expensive and laborious process

of creating content and pedagogical interventions. Many ITSs use the experts to design the

curriculum with hand-crafted rules to generate system interventions, which make the limitation

of building and transferring across domains, and their potential scablability Folsom-Kovarik,

Schatz & Nicholson (2010b); Olney & Cade (2015b).

2.3 Related work

Many ITS have been successfully deployed to improve students’ learning experience in the

different domain and application areas in over past decades. There some technical subjects are

taught by ITS such as: helping students in mathematics Büdenbender, Frischauf, Goguadze,

Melis, Libbrecht & Ullrich (2002b); Goguadze, Palomo & Melis (2005); Hrastinski et al. (2019a);

Melis & Siekmann (2004b); Passier & Jeuring (2006), algorithms AbuEl-Reesh & Abu-Naser

57

(2018); Al-Nakhal & Abu-Naser (2017); Leelawong & Biswas (2008); real-world applications

Agha, Jarghon & Abu-Naser (2018); Al Rekhawi & Abu-Naser (2018); Qwaider & Abu-Naser

(2018). On the other hand, some ITSs are able to provide the general assistance and feedback

on student performance (e.g., student characteristics Graesser, Cai, Morgan & Wang (2017),

the process of cognition Wu & Looi (2010). The different students have the different aptitudes

and knowledge, respectively, so personalized feedback is critical for effective learning. The

penalisation of ITS not only help student in independent learning, but also help teachers

feedback well Baker (2016); Holstein, McLaren & Aleven (2017, 2019); Al-Dahdooh & Abu-

Naser (2017); Al-Nakhal & Abu-Naser (2017); Albacete, Jordan, Katz, Chounta & McLaren

(2019b); Chi, Koedinger, Gordon, Jordan & Vanlehn (2011); Lin, Yeh, Hung & Chang (2013b);

Munshi & Biswas (2019b); Rus, Stefanescu, Baggett, Niraula, Franceschetti & Graesser (2014b);

Rus, Stefanescu, Niraula & Graesser (2014d). In this area of dialogue-based, ITSs have been

proved to be some of the most effective tools for learning Ahn, Chang, Watson, Tejwani,

Sundararajan, Abuelsaad & Prabhu (2018); Nye et al. (2014b); Ventura, Chang, Foltz, Mukhi,

Yarbro, Salverda, Behrens, Ahn, Ma, Dhamecha et al. (2018), which help to improve student

motivation and experience. In the real world, ITS interaction tries to mimic the student-human

tutor interactions which present the list of questions and engage students to work on their

own problems, pose their questions, and other types of communication with tutor to approach

the knowledge via solving problems. In addition, the selection of questions is critical for

curriculum structures with both of humans tutor or ITSBoaler & Brodie (2004); Jiang (2014).

The main limitation in providing students feedback is the multiple scenarios in student-to-system

interactions based on the incorporation or inspiration of teacher instructional scaffolding, where

questions as the hints are important to help student Van de Pol, Volman & Beishuizen (2010);

Wood (2003). In this paper, we focus on delivering the feedback as the hints in a dialogue-based

ITS during problem solving exercises. These feedback include hints, explanations, questions of

relevance concept. We utilize the large amount of open data in creating educational content

with the given domains such as Wikipedia Brunskill, Mu, Goel & Bragg (2018); Dinan, Roller,

Shuster, Fan, Auli & Weston (2019); Guo, Kulkarni, Kittur, Bigham & Brunskill (2016); Liu,

Calvo & Rus (2012b); Willis, Davis, Ruan, Manoharan, Landay & Brunskill (2019). By using

58

NLP techniques, the pedagogical concepts are generated which identify the main knowledge of

a topic and help student to study better.

2.4 Automated explanations of hint interventions

To support our research, we utilize the Chat platform named Zulip. The communications on

Zulip1 occurs in streams (which are like channels). Each stream can have several topics, so it fits

with the E-learning class where many topic might be considered and discussed. Its’ features a

unique threading model, in which each message also has a topic, along with the content. Zulip

claims that this improves productivity by "making easy to catch up after a day of meetings".

Apart from this, Zulip offers standard features found in collaboration apps like message reactions,

message search history, polls, private messaging, group messaging etc. Zulip streams can be

private or public - only people invited to a private stream can view messages in it, while anyone

within an organization can join a public stream. Messages in Zulip can be sent in plain-text or

formatted using markdown, along with images, links, and file attachments. Zulip supports native

integrations with hundreds of services, which can extend its functionality. Hence, we expect to

use Zulip as our platform to embed the MediatorBot which has the mockup at the Figure 2.1

to help users who have the conflict and want to solve a given problem within a topic of linear

regression.

2.4.1 Features generations

Bloom’s taxonomy LW, DR, PW, KA, Mayer, PR, Raths & MC (2001) comprises six categories

of cognitive skills, from low to high levels, namely, remember, understand, apply, analyze,

evaluate, and create. Remembering and understanding the meaning of a concept are the two

fundamental skills in knowledge acquisition. To explore the missing acknowledgement of user,

the system analysis the sentences which are interacted such as: questions and answers. Then by

giving the hints like the different presentation of concept, we expect that users will be aware

of the concepts to solve their problems. An aide gathers background information on a topic:

1 https://zulip.com/

59

Figure 2.1 The Mockup of Question and Answer system

Wikipedia has available broad subject matter. A wide variety of information on the subject.

With over 6 million articles containing over 3.5 billion words, English Wikipedia provides

extensive material for the NLP components of our system. The hierarchical structure of the

hyperlinks imposed by the Wikipedia format facilitates identification of the sets of pages related

to the topic. In addition, the format adopted for Wikipedia articles themselves, where the first

sentence typically provides the definition of the title concept and the first paragraph presents a

concise description of the topic Kapugama, Lorensuhewa & Kalyani (2016), makes information

extraction easier. Hence, it will be great source for us to do the research of generating hints with

the given domain which named Wikipedia-Based Explanations such as Table 2.1. The process

of generating the Wikipedia-Based Explanations is presented at the Fig 2.2 Given a domain (e.g.,

"Machine learning", the process is as the following:

Get the list of candidate keyword – Wikipedia offers several ways to group articles: categories,

list articles (including item lists, as well as topical glossary, index, outline, and timeline articles),

other lists including embedded lists, and navigation templates (of which article series boxes are

60

Figure 2.2 Wikipedia-Based Explanations

one type). The grouping of articles by one method neither requires nor forbids the use of the other

methods for the same informational grouping. Instead, each method of organizing information

has its own advantages and disadvantages, and is applied for the most part independently of

the other methods following the guidelines and standards that have evolved on Wikipedia for

each of these systems. Hence, by using the given domain as the keyword of the categories in

the Wikipedia2, we create a recursive_function to query all the relevance articles within the

categories based on a given of depth recursive level (e.g., depth recursive level is 3), the store

them to the raw_dataset 𝐷. To deal with the depth of recursive level, we follow section "See

also" of Wikipedia article which contains list of relevance articles as the reference. So the list of

technical keywords within the domain is generated based on the title of relevance articles in both

horizontal and vertical direction.

In fact, many acronyms technical keywords are used within the articles given a domain. Hence,

We disambiguate abbreviations frequently used for technical terms Schwartz & Hearst (2003)

(e.g., ‘SVM’ is the acronym of ‘Support Vector Machine’ in Table 2.2 with a domain "machine

2 https://www.mediawiki.org/wiki/API:Main_page

61

Table 2.1 Examples of keywords and relevant articles

Domain Keyword Relevant articles

“Machine Learning"

“Estimation theory"

“Deep learning"

“Robotics"

“Autonomous car”

“Glossary of artificial intelligence”

“Microbotics”

“Autonomous things”

“Self-driving car”

“Linear regression”

“Statistical learning theory”

“Deep learning”

“Linear regression”

“Pattern recognition”

learning". On the other hand, this feature is utilized to identify the abbreviated keyword within

the users’ questions or answers.

Given the extracted keyword, the synonyms are collected by using Wiki Synonyms API3 with a

given domain (e.g, the synonyms of ‘autonomous car’ is ‘self-driving car’ at Table 2.3. These

synonyms is utilized to paraphrase the definition or detect the user technical terms within the

dialogue.

Co-reference resolution generating – Given the 1st paragraph of the articles within the domain

which contain the considered keyword, the co-reference resolution sentences Clark & Manning

(2016) are generated based on the couple of consequence sentences to explain the concept in a

new aspect. However, the accuracy of generated sentences are not good enough (e.g., typos, not

meaningful, etc.,) which means some sentences are meaningful, the others are not meaningful

(e.g., Table 2.4). Hence, we marked them as the generated definitions.

The extracted definition is the good concept which is extracted from the 1st sentence of Wikipedia

Article summary via Wikipedia API to explain the concept’s meaning clearly.4

After getting the extracted and generated definitions, we would like to classify the good definitions

and not good definitions to explain to the students. Hence, we propose a table features to support

3 https://rapidapi.com/ipeirotis/api/wikisynonyms

4 https://pypi.org/project/wikipedia/

62

Table 2.2 The example of acronyms

Acronyms Full name
SVM Support Vector Machine

SRL Statistical relational learning

JAIR Journal of Artificial Intelligence Research

WSNs wireless sensor networks

AI artificial intelligence

NLP Natural language processing

AGI artificial general intelligence

HMM hidden Markov models

SVM support vector machine

FNNs feedforward neural networks

CNNs convolutional neural networks

RNNs recurrent neural networks

LSTM long short-term memory

Table 2.3 The example of synonyms

Keywords Synonyms

Self-driving car

Autonomous vehicle’, ’Driverless Car’, ’Robotic cars’,

’CyberCars’, ’Robot Car’, ’Autonomous automobile’,

’Robot car’, ’Computer-driven car’, ’Driver-less cars’,

’Autonomous driving’

Linear regression

’Linear modeling’, ’Regression line’,

’Multiple linear regression’, ’Linear trend’,

’Best fit line’, ’Linear weights’, ’

Least squares regression’, ’Regression coefficient’,

’Regression Coefficient’, ’Multi-linear regression’

the classification algorithm with high accuracy to obtain the good definition which is named as

Wikipedia-base explanation. To make the features table, we considers some features which are

presented as the numerical scores.

Term frequency–inverse document frequency (Tf-idf) feature: Before generating this feature,

the pre-processed data stage for Tf-idf was implemented to construct the index of document

collections. Indexing is the process of building a document representation by giving an identifier

to text items. Pre-procesesd stage has these steps as below:

63

Table 2.4 The example of Extracted and Generated

Wikipedia Explanations

Keywords Wikipedia Explanations Label

Artificial Intelligence

Artificial intelligence (AI), sometimes called

machine intelligence, is intelligence demonstrated

by machines, in contrast to the natural

intelligence displayed by humans and other animals.

Extracted

Artificial Intelligence
Artificial intelligence is breaking into

the healthcare industry by assisting doctors.
Generated

• Tokenizing: Cutting the input strings into separate sentences into words

• Filtering: removing the unnecessary words in the text (e.g., remove stop-words)

• Cleaning: removing the uni-code words in the text

The Tf-idf gives weight to the relationship of a word (term) to a documents. This method

combines two concepts for calculating weights: the frequency of a word in a particular document

and the inverse frequency of documents containing the word. The frequency of words in the

document provided shows how important the word is. The frequency of decrements containing

the word indicate how common the word is. So the weight of the relationship between a word

and a document will be high if the word frequency is high in the document and the overall

frequency of the document containing the word is low. This feature was created by using the

raw_dataset 𝐷. Given a collection of terms 𝑡 ∈ 𝐷 that appear in a set of 𝑁 documents 𝑑 ∈ 𝐷,

each of length 𝑛𝑑 , 𝑡 𝑓 − 𝑖𝑑𝑓 weighting is computed as follows:

𝑡 𝑓𝑡,𝑑 =
𝑓𝑡,𝑑
𝑛𝑑

𝑖𝑑𝑓𝑡 = 𝑙𝑜𝑔
𝑁

𝑑𝑓𝑡

𝑊𝑡,𝑑 = 𝑡 𝑓𝑡,𝑑 × 𝑖𝑑𝑓𝑡

(2.1)

where 𝑓𝑡,𝑑 is the frequency of term 𝑡 in document 𝑑, and 𝑑𝑓𝑡 is the document frequency of term

𝑡, that is, the number of documents in which term 𝑡 appears, and 𝑊𝑡,𝑑 is the weight of feature

Tf-idf.

64

Language Model score: Before computing the language model score, the pre-processed data

stage for Language model score was implemented with the raw dataset as followings:

• Tokenizing: Cutting the input strings into separate sentences into words

• Filtering: removing the unnecessary words in the text (e.g., remove stop-words)

• Cleaning: removing the uni-code words in the text

• Creating Vocabulary dictionary: Get the top 220000 common words in the raw dataset

• Creating Token dictionary: Make the index for each tokenizing of the clean raw-dataset, if

the word is not mentioned in the vocabulary dictionay, it will be replaced by tag <unk >, and

each token is identified with an given index

• Creating train, validation, and test dataset: the train, validation, and test dataset were created

by spliting the raw dataset with the ration 70%, 10%, and 20%, respectively.

• Creating Corpus: The corpus of each sentences with the index of token was created with tag

<eos > which identifies the end of sentence.

To train the language model, we apply a multi-layer long short-term memory (LSTM) RNN to

an input sequence. For each element in the input sequence, each layer computes the following

function:

𝑖𝑡 = 𝜎(𝑊𝑖𝑖𝑥𝑡 + 𝑏𝑖𝑖 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑒𝑖𝑖)
𝑓𝑡 = 𝜎(𝑊𝑖 𝑓 𝑥𝑡 + 𝑏𝑖 𝑓 + 𝑊ℎ 𝑓 ℎ𝑡−1 + 𝑏ℎ 𝑓)

𝑔𝑡 = tanh(𝑊𝑖𝑔𝑥𝑡 + 𝑏𝑖𝑔 + 𝑊ℎ𝑔ℎ𝑡−1 + 𝑏ℎ𝑔)
𝑜𝑡 = 𝜎(𝑊𝑖𝑜𝑥𝑡 + 𝑏𝑖𝑜 + 𝑊ℎ 𝑓 ℎ𝑡−1 + 𝑏ℎ𝑜)

𝑐𝑡 = 𝑓𝑡 � 𝑐𝑡−1 + 𝑖𝑡 � 𝑔𝑡

ℎ𝑡 = 𝑜𝑡 � tanh(𝑐𝑡)

(2.2)

where ℎ𝑡 is the hidden state at time 𝑡, 𝑐𝑡 is the cell state at time 𝑡, 𝑥𝑡 is the input at time 𝑡, ℎ𝑡−1 is

the hidden state of the layer at time 𝑡 − 1 or the initial hidden state at time 0, and 𝑖𝑡 , 𝑓𝑡 , 𝑔𝑡 , 𝑜𝑡

are the input, forget, cell, and output gates, respectively. 𝜎 is the sigmoid function, and � is

the Hadamard product. In a multiplayer LSTM, the input 𝑥𝑙
𝑡 of the 𝑙 layer (𝑙 ≥ 2 is the hidden

65

state ℎ(𝑙−1)
𝑡 of the previous layer multiplied by dropout 𝜎 (𝑙−1)

𝑡 where each 𝜎 (𝑙−1)
𝑡 is a Bernoulli

random variable which is 0 with probability dropout. After finishing the training language

model, we turn to the computing language model score to evaluate the quality of the sentence.

The weight of each term was computed from output layer which is the tensor of containing the

output feature ℎ𝑡 from the last layer of the LSTM, for each 𝑡. Then the score of sentence was

computed as the log-likehood of the norm of word weight tensor as following:

𝐿𝑆 = −𝑙𝑜𝑔(
∑(𝑠𝑡𝑖)
‖𝑆‖) (2.3)

where 𝐿𝑆 is the language model score of the considered sentence 𝑆, 𝑠𝑡𝑖 is the score of each term

in the sentence 𝑆, and ‖𝑆‖ is the size of sentence 𝑆.

Named Entity Recognition (NER) score:

The spaCy5 tool, offered by Explosion AI, utilizes a hybrid of Hidden Markov Models (HMM,)

Maximum Entropy Models (MEMMs), and Decision Tree Analysis, which are all eventually

coated with a convolutional neural network to handle extremely large and diverse sets of data,

as well as incorporate new training data at the user’s request [8]. It is beyond the scope of this

paper to thoroughly derive all of these mathematical models, but it is worth briefly mentioning

what each of these statistical techniques accomplish. HMMs are generative models that assign

joint probabilities to paired observations and label sequences. The parameters are then trained to

maximize the joint likelihood of training sets. MEMMs are conditional probabilistic sequence

models that can represent multiple features of a word and can handle long term dependency.

Lastly, a decision tree model has very high computational efficiency and is understandable and

has high computational effeciency. Hence, the vector of name entity of each term in the sentence

is generated to recognize the objects within the sentence. For example, a good definition of a

math or an abstract concept should not contain < 𝑀𝑂𝑁𝐸𝑌 > or < 𝑂𝑅𝐺 >, respectively in

Table 2.5. The Named Entity Recognition (NER) scores are defined as the binary vector of

5 https://spacy.io/

66

Entity within the considered sentence.

𝑁𝐸𝑅 = [𝜗𝑖], 𝑖 ∈ (1, 𝑛), 𝑛 is the size of NER vector

where 𝜗𝑖 =

⎧⎪⎪⎨
⎪⎪⎩

1, if NER label in the sentence

0, otherwise

(2.4)

Table 2.5 The example description of Name Entity

Recognize features

Type Description
PERSON People, including fictional

NORP Nationalities, religious, political groups

ORG Companies, agencies, institutions

GPE Contries, cities, states

LOC Non GPE locations, mountains, bodies of waters

FACILITY Building, airports, highways

PRODUCT Objects, vehicles, foods

EVENT Wars, sports, battles

LAW name of document in law

DATE Date time

MONEY Money value including unit

ORDINAL first, second, third, etc

LANGUAGE Any named languages

Textual Entailment score:

Textual Entailment recognizing is a probability decision problem i.e., the process indicates how

many percentages text 𝜏 entails hypothesis �. There are three kind of features named entailment

𝜖 , neutral 𝜈, and contradiction 𝜙. These features come with their probability relationship between

𝜏 and �. The entailment 𝜖 is the probability of the scenario if the � is the entailment of 𝜏 which

means � might be utilized to explain the 𝜏. The contradiction 𝜙 is the probability of the scenario

if the � contradicted with the 𝜏 which means � is false if 𝜏 is true. Moreover, the neutral 𝜈 is

the probability of the scenario which is not entailment or contradiction. If the feature score of

hypothesis is greater than 0.7, it will be considered as the label of hypothesis. The example of

67

textual entailment features are presented in the Table 2.6.

𝑇𝐸 = [𝜖, 𝜈, 𝜙]
𝜖 = 𝑃𝑒𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡 (�, 𝜏)

𝜙 = 𝑃𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (�, 𝜏)
𝜈 = 𝑃𝑛𝑒𝑢𝑡𝑟𝑎𝑙 (�, 𝜏)

where,

⎧⎪⎪⎨
⎪⎪⎩

𝜏, the premise sentence (extracted definition)

�, the hypothesis sentence (generated definition)

(2.5)

Co-reference score:

The Co-reference score is generated by a neural mention-ranking modelClark & Manning

(2016). Mention-ranking models score pairs of mentions for their likelihood of co-reference

rather than comparing partial co-reference clusters. Therefore, they operate in a simple setting

where co-reference decisions are made independently. Our co-reference feature is the maximum

probability of generating new sentence based on couple of given sentence which contain the

relation condition grammar. The example of co-reference generation sentences are present

in Table 2.7. In this table, the input sentences are sentence 1, sentence 2 which were the

consequence couple sentences within the article, and the Generate 1,2,3 are the generated

sentences with the probability of pronoun replacement are 8.4%, 30.5%, and 30.4%, respectively.

Hence, the generate 2 is considered as the generated definitions which co-reference score (CR)

equals 0.305.

𝐶𝑅 = 𝑚𝑎𝑥(𝑃(𝑠𝑖, 𝑠 𝑗)) (2.6)

where, 𝑃(𝑠𝑖, 𝑠 𝑗) is the probability of pronoun replacement of each sentence 𝑠𝑖 and 𝑠 𝑗 within an

article

68

Table 2.6 The example of textual entailment features

Type Description Description Description

Premise

Bayesian hierarchical

modeling is a

statistical model

written in multiple

levels (hierarchical form)

that estimates the

parameters of

the posterior

distribution using the

Bayesian method.

Random forests or

random decision forests

are an ensemble

learning method

for classification,

regression and other

tasks, that operate

by constructing

a multitude of

decision trees at

training time and

outputting the class

that is the mode

of the classes

(classification) or mean

prediction (regression)

of the individual

trees.

In probability theory

and statistics, the

coefficient of variation

(CV), also known

as relative standard

deviation (RSD), is

a standardized

measure of dispersion

of a probability

distribution or

frequency distribution.

Hypothesis

Bayesians argue

that relevant

information regarding

decision making and

updating beliefs cannot

be ignored and that

hierarchical modeling has

the potential to overrule

classical methods in

applications where

respondents give

multiple observational

data.

Random forests are

a way of averaging

multiple deep decision

trees, trained on

different parts of

the same training

set, with the goal

of reducing the

variance.

CV measures

are often

used as quality

controls for

quantitative laboratory

assays.

Probability

𝑃𝑒𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡 = 0.86
𝑃𝑛𝑒𝑢𝑡𝑟𝑎𝑙 = 0.12

𝑃𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =0.02

𝑃𝑒𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡 =0.03

𝑃𝑛𝑒𝑢𝑡𝑟𝑎𝑙 =0.19

𝑃𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 0.78

𝑃𝑒𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡 =0.02

𝑃𝑛𝑒𝑢𝑡𝑟𝑎𝑙 = 0.70
𝑃𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 0.28

Label Entailment Contraction Neutral

Similarity score:

The similarity score is computed by considering the percentage matching ratio between two

69

Table 2.7 The example of generated co-reference

sentence

Label Description Probability

Sentence 1

A decision tree is a decision support

tool that uses a tree-like model of

decisions and their possible

consequences, including chance event

outcomes, resource costs, and utility.

Sentence 2

It is one way to display an

algorithm that only contains

conditional control statements.

Generate 1

a decision tree is a decision support

tool that uses a tree-like model

of decisions and their possible

consequences, including chance event

outcomes, resource costs, and utility

8.4%

Generate 2

a decision tree is a decision support

tool one way to display an algorithm

that only contains conditional control

statements uses a tree-like model

of decisions and their possible consequences,

including chance event outcomes,

resource costs, and utility

30.5%

Generate 3

a decision tree is a decision support tool

an algorithm that only contains conditional

control statements uses a tree-like model

of decisions and their possible consequences

, including chance event outcomes,

resource costs, and utility.

30.4%

sentences by using cosine similarity methodology Lahitani, Permanasari & Setiawan (2016).

Hence, we will compute the cosine similarity score between generated definition and extracted

definition. After the features table is generated, we turn to the classify step which help us

to get the right definitions or good Wikipedia-base explanations from our data Table 2.8. In

this data, the number of generated definitions is much larger than the number of extracted

definitions, the sample weights data is 23.55. Hence the sampling method likes synthetic

minority oversampling technique (SMOTE) which was proposed in Mathew, Pang, Luo & Leong

(2018) is considered to fix this issue. In the training data, we label the first sentence of each

70

article is the extracted Wikipedia-based explanation, the generated sentence by considering

co-reference resolution and reconstructed definition are generated Wikipedia-based explanations.

We experimented with a number of models, including Decision Tree classifiers Breiman,

Friedman, Olshen & Stone (1984), Random Forests Breiman (2001), Logistic Regression Bishop

(2006b), and Support Vector Machines Smola & Schölkopf (2004), using the scikit-learn

implementation. Among those, the Decision Tree classifier performed best in a 50-fold cross-

validation experiment, yielding an average accuracy of 81.87% ± 3.2% and average F1-score of

96.97% ± 0.6% in Table 2.9. After that, we obtain the good generated and extract Wikipedia-

based explanations as the hints which can be used for explaining in another way of definitions

for students. Hence, the hints are stored into the hints dataset with a given domain Figure 2.3.

There are two types of hints such as explanations and Q&A (questions and answers). The hints

generations are presented in the Section 2.4.2.

Table 2.8 The training dataset

Description Quantity
Number of extracted Wikipedia-based explanation 3223

Number of generated Wikipedia-based explanation 75895

Sample weights 23.55

Table 2.9 The algorithm performance comparison in

scenario of all consideration features

Algorithm F1-score Accuracy
Random Forests 48.95% ± 0.5% 95.87% ± 0.2%

Support Vector Machines 49.35% ± 1.4% 95.89% ± 0.7%

Logistic Regression 77.35% ± 7.8% 96.42% ± 0.84%

Decision Trees 81.87% ± 3.2% 96.97% ± 0.6%

2.4.2 Conceptual Hint Generations

Identify keyword – Given a question and answers of an exercise, the nouns and nouns phrases

within the question are extracted and labeled as the keyword of the question. After tokenization

71

Figure 2.3 Conceptual Hints Generations

step, a state-of-the-art dependency parsing spaCy6 makes a prediction of which tag or label. In

the examples in Table 2.10 such keywords and phrases are marked with text boxes: for instance,

autonomous car, 0 , Zero, No one, and No body are automatically identified as the noun phrase

by using spaCy. The explanation hints are generated by matching between the keywords within

the question of exercises, given answers, and the Wikipedia-based explanation, and constructing

with the given prefix (e.g., Think about the following:, Note that, Consider that, Recall that,

Observe that, Think about the following definition:, Here’s a hin for you:) which are presented

in Table 2.10.

The system will extract the candidate keywords for each exercie, making user confuse or

misunderstand in questions and answers. Then, the system generate the relevance question

to help student remember the misconceptions. Hence, we will have the background truth of

knowledge which is very important for knowing. Then we propose the context of matching

6 https://spacy.io

72

Table 2.10 The example of Wikipedia-based explanation

generation

Exercise Expectation Generated Explanation Hints

How many human drivers

would be needed to drive

an autonomous car ?
0
Zero
No one
Nobody

is needed

Think about the following definition:

A self-driving car , also known as

an autonomous vehicle (AV), connected

and autonomous vehicle (CAV),

a driverless car, robot

car, or robotic car is a vehicle that

is capable of sensing its environment

and moving safely with little or no

human input

Here’s a hint for you: Different methods

and levels of autonomy can

be achieved through monitoring and

remote control from a nearby manned

ship, an onshore control center

or through artificial intelligence and

machine learning, letting the vessel

itself decides the course of action.

Observe that nobody is needed

keywords and type of questions to help user step by step to approach the problem of exercise.

By using the micro-services API, we generate questions and answers for guiding the users. The

couple of questions and answers solution will be shown to make sure that users understand the

concept and can be back to solve their problem with the exercises which is presented in the

Figure 2.3. To make it more intuitively, Table 2.11 shows the example of couples generated

questions and answers which related to the exercise in Table 2.10. Because there is only one

keyword autonomous car appears in the exercise, so the system only generate the questions for

this keyword and the respective answers. Hence, users can understand the concept autonomous

car in some different aspects before they make the right answers.

73

Table 2.11 The example of conceptual question and

answer generations

Hint Question Hint Answer
What is the

meaning

of autonomous

car ?

A self-driving car, also known as an autonomous vehicle (AV),

connected and autonomous vehicle (CAV), driverless car, robo-car,

or robotic car, is a vehicle that is capable of sensing its environment

and moving safely with little or no human input

Can you explain

the definition of

autonomous car ?

Regulatory, safety, legal and security challenges are viewed as the

largest obstacles in making autonomous cargo ships a reality

What is the

autonomous car ?

The technologies needed to make remote and autonomous ships a

reality exist. We will see a remote controlled ship in commercial

use by the end of the decade.

What is the definition

of autonomous car ?

Autonomous cargo ships, also known as autonomous container

ships or maritime autonomous surface ships (MASS), are seaborne

vessels that transport either containers or bulk cargo over navigable

waters with little or no human interaction

2.5 Experiment

2.5.1 Evaluation algorithms

CUDA has been developed as an integrated development environment for GPUs. GPUs can

achieve high performance by executing massively parallel threads simultaneously. For using

GPUs effectively, a deep knowledge about them has been required. For example, data should

be transferred between CPU and GPU, several GPU memories with different access speeds

and sizes should be used according to the cases of processing, and a lot of threads should

be managed. Hence, we use NVIDIA® V100 Tensor Core which is the most advanced data

center GPU ever built to accelerate AI, high performance computing (HPC), data science and

graphics and is integrated on the Google cloud7 to train our Language model. The learning

curve of language model training is presented at Fig 2.4 When the model is over fitting, we stop

the training process and get the tensor of weight to compute the Language model score which

was mentioned in the Section 2.4. After generating the features table which was mentioned

7 https://cloud.google.com/

74

Figure 2.4 Learning curve of language model

in the Section 2.4, we set up the classifications scenarios to optimize the performance of each

relevance feature. We define the classifications scenarios as the Table 2.12. To deal with

many scenarios and algorithms in the Table2.12, we use the multiprocessing technology which

supports spawning processes using an API similar to the threading module. The multiprocessing

offers both local and remote concurrency, effectively side-stepping the Global Interpreter Lock

by using sub-processes instead of threads. Due to this, the multiprocessing module allows us

to fully leverage multiple processors on a given machine. The performance of each algorithm

Table 2.12 The Scenario of classification strategy

Basic Basic + LM Basic + TE Basic + LM + TE

tf-idf, co-reference,

length_definition,

length_keyword,

#_words_definition,

#_words_keyword,

key_equal_title,

NER_score

tf-idf, co-reference,

length_definition,

length_keyword,

#_words_definition,

#_words_keyword,

key_equal_title,

NER_score,

language_model

_score

tf-idf, co-reference,

length_definition,

length_keyword,

#_words_definition,

#_words_keyword,

key_equal_title,

NER_score,

text_entailment

_score

tf-idf, co-reference,

length_definition,

length_keyword,

#_words_definition,

#_words_keyword,

key_equal_title,

NER_score,

language_model_score,

text_entailment_score

(F1-score) with each scenario is presented at Table 2.13. We observed that the performance of

Decision Tree with the scenario basic + TE + LM had the biggest value of F1-score. Hence, this

75

algorithm is chosen for our classification methodology. Moreover, by considering the result of

Cohen-kappa Wang, Yang & Xia (2019) 𝜅 = 0.61 which means the expert has the substantial

agreement the generated explanations are useful.

Table 2.13 The classification scenarios with the

F1-score value of each algorithm

Decision Tree SVM Random Forest Logistic Regression
Basic + TE + LM 81.12% 68.47% 80.46% 77.35%

Basic + TE 78.92% 64.38% 77.25% 77.34%

Basic + LM 79.46% 67.23% 77.43% 77.29%

Basic 77.88% 62.95% 77.31% 77.25%

2.5.2 Experiment result]

Participants To support our claims, we ran experiments involving 796 annotated student–system

interactions, collected from 183 students enrolled for free and studying the machine learning

course on the platform A between January and February, 2020. To evaluate the Wikipedia-based

explanations, we conduct a second experiment. When the student gives an incorrect solution,

the system shows two randomly-selected Wikipedia-based explanations (one extracted and one

generated) and asks the student to select the most helpful one, or to select if both are equally

helpful, or if neither of them is helpful. The system then asks the student to attempt the exercise

again, based on which the student’s learning gain is measured. It should be noted that since

the student receives two hints at once, the observed learning gains are influenced by both hints

shown. The results are given in Table 2.14. As would be expected, students find the originally

extracted explanations more helpful on average: they are selected as helpful 55.66% of the time,

while the automatically generated explanations are selected 44.44% of the time. However, when

both types of explanations are shown, at least one of them is rated as helpful 83.33% of the time,

with this difference in results between both types and each individual type being significant at a

95% confidence level.

76

This proves that, although generated explanations are slightly less helpful on average, students

are far more likely to rate the feedback as helpful when both types of explanations are shown to

them (as compared to only showing extracted explanations).

Lastly, as shown in Table 2.14 where students were shown two explanations (an extracted one and

a generated one) and asked which one they found most useful. Afterwards, their 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑔𝑎𝑖𝑛

was determined by whether they solved the exercise in their next attempt. ∗ indicates statistical

significance compared to all other explanation preference classes at a 95% confidence level.

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑔𝑎𝑖𝑛 = 𝑝𝑜𝑠𝑡_𝑞𝑢𝑖𝑧 − 𝑝𝑟𝑒_𝑞𝑢𝑖𝑧 (2.7)

The student learning gains appear to be highly similar for both extracted and generated explana-

tions, with no statistically significant difference between the two types. Taken together, these

results strongly support the hypothesis that generated Wikipedia-based explanations can provide

helpful feedback.

Table 2.14 Student preferences and learning gains for

Wikipedia-based explanations.

Explanation Student Preference Student Learning Gains
Mean 95% C. I. Mean 95% C. I.

Extracted 55.56% [43.37%, 67.28%] 16.00% [4.54%, 36.08%]
Generated 44.44% [32.72%, 56.63%] 16.67% [3.58%, 41.42%]

Extracted,

Generated or

Both Preferred

83.33%∗ [72.70%, 91.08%] 17.65% [6.76%, 34.53%]

On the other hand, we run our pilot with FPT8 employees for two months with personalized and

flexible Data science courses which utilized the hints above to help users understand and solve

their problems. The study ran over 2 months from 21-December-2020 to 21-February-2021

with many roles (levels) of users such as: student, junior engineer, experience engineer, senior

8 https://www.fpt.com.vn/en/

77

engineer, manager, other based on 200 users the respective levels. average commitment and

actual studying time are 4.9 and 2.03 hours per week, respectively in Figure ??.

Figure 2.5 Role of users

Figure 2.6 Commit vs Actual studying time

All participants were required to take an assessment quiz before the course 𝑝𝑟𝑒_𝑞𝑢𝑖𝑧 and after

the course 𝑝𝑜𝑠𝑡_𝑞𝑢𝑖𝑧, where 𝑝𝑟𝑒_𝑞𝑢𝑖𝑧 and 𝑝𝑜𝑠𝑡_𝑞𝑢𝑖𝑧 are calculated as the percentage of right

answers. Using the 𝑝𝑟𝑒_𝑞𝑢𝑖𝑧 and 𝑝𝑜𝑠𝑡_𝑞𝑢𝑖𝑧 score, we measure the 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑔𝑎𝑖𝑛

78

in Equation 2.8 to quantify how efficiently each participant has learnt.

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑔𝑎𝑖𝑛 =
𝑝𝑜𝑠𝑡_𝑞𝑢𝑖𝑧 − 𝑝𝑟𝑒_𝑞𝑢𝑖𝑧

100% − 𝑝𝑟𝑒_𝑞𝑢𝑖𝑧
(2.8)

The numerator gives the absolute improvement in the student’s score on the concept inventory.

The denominator is a correction factor that takes into account the available ‘headroom’. This

acknowledges that it is easier for an initially low-scoring student to have a larger absolute

improvement than an initially high-scoring student, since they have more opportunity to change

from incorrect to correct answers. In essence, the normalised gain is the answer to the question,

‘What fraction of the questions that the student got wrong before instruction did they get right

after instruction?’ Having calculated the individual gain for each student, the mean normalised

gain, is simply the mean for all students in the class. The maximum possible normalised gain is

1.0. This occurs when a student answers all questions correctly on the post-test. If the student

makes no improvement between tests their g will be 0.0, and a half-way improvement is 0.5.

Figure 2.7 Normalized Learning gain of all employee with C.I = 95%

Of course, it is possible for a student’s performance to deteriorate. In this case, the normalised

gain is negative. The nature of the calculation makes this particularly acute for students who

perform well on the pre-quiz: since their ‘headroom’ is low, even a modest deterioration can

79

Figure 2.8 Normalized Learning gain of each employee with C.I = 95%

result in large negative gains. (In fact, g has an upper bound of +1.0 but a lower bound of)

This asymmetry is one of the main criticisms of mean normalised gain as a measure, but its

conceptual simplicity, ease of calculation and widespread existing use maintain its position as

the leading measure of learning gain. When users get the trouble with his problem, the hints are

shown by the system, then based on the hints, users try to find the solution. Hence, we defined

the hint_result in Equation 2.9, which showed the effect of hint to the users.

ℎ𝑖𝑛𝑡_𝑟𝑒𝑠𝑢𝑙𝑡 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, user answer correctly after getting hint (𝜀)

0, user does not answer correctly after getting hint (𝜀)

ℎ𝑖𝑛𝑡_𝑟𝑒𝑠𝑢𝑙𝑡_𝑟𝑎𝑡𝑖𝑜 =
∑

𝜀𝑖∑
𝜀𝑖 +

∑
𝜀𝑖

, 𝑖 ∈ [1, 𝑛], 𝑛 the number of users

(2.9)

Figure 2.9 and Figure 2.10 show the effect of hint_result with the employees and each role,

respectively. We observe in the Figure 2.9 that in the general, the hint_result_ratio = 47.83%

which is the percentage users solving their problem with the hints. This ratio is impressive since

the users are doing well with the hints generation.

80

Figure 2.9 Hint result of All employee

Figure 2.10 Hint result of each employee

For each role of user, the ℎ𝑖𝑛𝑡_𝑟𝑒𝑠𝑢𝑙𝑡_𝑟𝑎𝑡𝑖𝑜 is different in Figure 2.9. We observed that the

Student, Manager and Senior Engineer have the value of
∑

𝜀 𝑗 greater than the value of
∑

𝜀 𝑗 . On

the other hand, the value of
∑

𝜀 𝑗 smaller than the value of
∑

𝜀 𝑗 for the role Junior, Experience

Engineer and Other. Most of the times, the hints are useful to help users to solve their problems.

After users completed the course, we make the quick survey which is used for evaluating the

81

quality of the system and the feedback of the intelligence tutor which is presented in the Figure

2.11.

Table 2.15 Mean and bound of result survey with C.I =

0.95

Question Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
Mean 3.78 1.33 3.72 1.49 3.78 4.04 3.80 3.71 1.71

Lower bound 3.45 1.16 3.57 1.32 3.53 3.78 3.59 3.48 1.50

Upper bound 4.10 1.5 3.86 1.65 4.02 4.31 4.01 3.93 1.91

The Question 8 focus on evaluating the feedback quality with the scale [1, 5], where 1 is

unhelpful and 5 is great helpful feedback, respectively. The result of question 8 is presented in

the Table 2.15 for the mean and its’ bound of result feedback with the C.I = 95%. The mean

value is 3.71 within the bound [3.48, 3.93]. On the other hand, the table 2.16 presents the details

of survey results based on 50 users who got the certificate. We observe that most of users satisfy

with the feedback results. This mean, the feedback (hint) helps users to improve their knowledge

and follow the course well.

Table 2.16 Feedback distribution of each role

Role Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 # users
Student 3.56 1.47 3.50 1.41 3.62 4.16 3.75 3.66 1.90 32

Junior

Engineer
4.29 1.38 4.14 1.88 4.14 4.14 4.00 4.00 1.12 8

Experienced

Engineer
3.00 1.00 3.00 1.00 3.00 4.00 3.00 4.00 1.00 1

Senior

Engineer
4.62 1.00 3.88 1.62 4.12 3.88 4.00 4.00 1.75 8

Other 3.00 1.00 3.00 1.00 4.00 3.00 4.00 3.00 1.00 1

2.6 Conclusion

In conclusion, the result results strongly support the AI tutor system to improve student learning

outcomes. Future work should investigate how Wikipedia-based explanations and mathematical

82

hints may improve student learning outcomes, as well as interplay with student learning profiles

and knowledge gaps.

2.7 Acknowledgement

The research presented in this paper was financially supported by MITACS (The Mathematics of

Information Technology and Complex Systems) IT12816 and approved by the ethical committee

of École de technologie supérieure (H20190508).

83

Figure 2.11 User feedback

CHAPTER 3

AUTOMATED DATA-DRIVEN GENERATION OF PERSONALIZED PEDAGOGICAL
INTERVENTIONS IN INTELLIGENT TUTORING SYSTEMS

An adapt version of this chapter has been published in International Journal of Artificial

Intelligence in Education 2021.

3.1 Introduction

Personalized tutoring helps students achieve their learning goals effectively (Anania (1983a),

BLOOM (1984), BURKE (1980), Hrastinski, Stenbom, Benjaminsson & Jansson (2021), Hume,

Michael, Rovick & Evens (1996b)). Traditionally, such personalized tutoring has been provided

by human tutors. The benefits of having a human tutor include a tutor’s ability to understand the

effective state of the student, and thus provide personalized feedback by adapting instructions

accordingly. Conventional setting, such as teaching each student’s personal needs, however

one-on-one tutoring is generally seen as too costly to be conducted on a large scale in most

societies, an is thus not readily available.

Intelligent Tutoring System (ITS), "computer-based instructional systems with models of

instructional content that specify what to teach, and teaching strategies that specify how to

teach" (Wilson (1990), attempt to mimic personalized human tutoring in a computer-based

environment and are a low-cost alternative to human tutors (Anderson, Boyle & Reiser (1985a),

Nye, Graesser & Hu (2014a)). ITS are capable of providing step-by-step guidance during

problem solving, tracking students’ skills and knowledge development, and selecting problems

on an individual basis. When compared to other computer-based learning environment (e.g.,

Massive Open Online Courses), ITS have been shown to be more effective in promoting

learning, with the particular strength of ITS lying in their ability to deal with the interactive and

personalized aspects of individual learning effectively (Hone & El Said (2016), Kulik & Fletcher

(2016a), Vanlehn (2011)).

86

However, one major bottleneck to a wider-spread use of ITS is the expensive and laborious

process of creating content and pedagogical interventions. Many ITS reply heavily on expert

design and hand-crafted rules to generate system intervention, which makes them difficult to build

and transfer across domains, and limits their potential efficacy and scalability (Folsom-Kovarik,

Schatz & Nicholson (2010a), Olney & Cade (2015a)). In this paper, we address this major

bottleneck in ITS development, and make two significant contributions.

Frist, we describe how state-of-the-art machine learning (ML) and natural language processing

(NLP) techniques can be used to automatically generate data-driven personalized hints and

Wikipedia-based explanations. Feedback generated this way takes the individual needs of

students into account, does not require expert intervention or hand-crafted rules, and is easily

scale-able and transferable across domains. Second, we demonstrate that the personalized

feedback leads to substantially improved student learning outcomes and improved subjective

feedback evaluation in pratice.

To support our claims, we utilize the personalized feedback models in Korbit, a large-scale

dialogue-based ITS, which was launched in 2019 and today has over 15000 students enrolled in

courses on machine learning and data science. We present the results of the experiments run

on the Korbit learning platform remotely between January and February, 2020, involving

796 annotated student-system interactions collected from 183 students enrolled for free. We

measure student success rate as the proportion of instances where a student provides a correct

solution after receiving a hint or explanation from our ITS. The results show that personalized

feedback provided on our platform significantly increases learning outcomes, as it leads to an

average success rate of 60.47% at solving exercises on the platform. Moreover, we observe the

substantial improvement in subjective feedback evaluation provided by the students.

87

3.2 Related Works

In this section, we first overview previous work related to the development of ITS in various

domains, and then we discuss applications of NLP techniques in ITS for adaptivity, personalization

and automated feedback generation.

3.2.1 Intelligent Tutoring System

Over the past two decades, many ITS have been successfully deployed to enhance teaching

and improve students’ learning experience in a number of domains and application areas. In

particular, ITS have been actively used to teach technical subjects: from helping students acquire

knowledge about theoretical concepts, mathematics (Büdenbender et al. (2002b); Goguadze

et al. (2005); Hrastinski et al. (2019a); Melis & Siekmann (2004b); Passier & Jeuring (2006)),

and logic (Abel, Chang & Pfenning (2001); Andrews, Brown, Pfenning, Bishop, Issar & Xi

(2004); Kaliszyk, Wiedĳk, Hendriks & Raamsdonk (2007); Stamper, Eagle, Barnes & Croy

(2011b)) algorithms (AbuEl-Reesh & Abu-Naser (2018); Al-Nakhal & Abu-Naser (2017);

Leelawong & Biswas (2008); to assisting students in knowledge and skill acquisitions in natural

science (Makatchev, Vanlehn & Jordan (2006b); Zhang & VanLehn (2016, 2017)); to teaching

real-world applications (Agha et al. (2018); Al Rekhawi & Abu-Naser (2018); Qwaider & Abu-

Naser (2018). Apart from providing students with general assistance and feedback on their

performance, ITS are able to address individual student characteristics (Graesser et al. (2017))

and cognitive processes (Wu & Looi (2010)). Since students differ in terms of their aptitudes and

knowledge, personalized instruction in education is critical for effective learning. Personalization

and adaptability of ITS to individual student needs have been shown to not only help students in

independent learning, but also help teachers personalize feedback and instruction, in particular

in blended and flipped-classroom environments (Baker (2016); Holstein et al. (2017, 2019)).

Many ITS incorporate explicit student models and consider the development of a personalized

curriculum and personalized feedback (Al-Dahdooh & Abu-Naser (2017); Al-Nakhal & Abu-

Naser (2017); Albacete et al. (2019b); Chi et al. (2011); Lin et al. (2013b); Munshi & Biswas

88

(2019b); Rus et al. (2014b,d)). In this respect, dialogue-based ITS have been shown to be some

of the most effective tools for learning (Ahn et al. (2018); Graesser, Chipman, Haynes & Olney

(2005); Graesser, VanLehn, Rosé, Jordan & Harter (2001b); Nye et al. (2014b); Ventura et al.

(2018)), as they simulate the familiar learning environment of student–tutor interaction, which

helps improve student confidence and motivation and leads to a better learning experience. In

particular, dialogue-based ITS excel in their ability to ask students questions and present them

with problem-solving exercises, while also providing students with the opportunity to pose their

own questions, request hints and explanations, and engage in other types of communication with

the tutor.

The tradition to structure tutoring around active dialogue and, in particular, in the manner

of asking questions and eliciting answers related to the subject material dates as far back as

the Socratic method and Plato’s academy (Mills, Rice, Berliner & Rosseau (1980)). Previous

research shows that when students attempt to provide answers, they get involved in such

constructive activities as reflecting on the taught material, explaining material to themselves as

well as to others, self-assessing and understanding the level of their knowledge, and connecting

different areas of the subject, among others (Graesser & Person (1994); Hrastinski et al. (2019a)).

Such activities are central to reasoning and understanding (Ram (1991); Webb (1989)). In

addition, the selection of questions to present students with and the analysis of their performance

in answering these questions is critical for curriculum structuring itself, both for human tutors

and in ITS (Boaler & Brodie (2004); Jiang (2014)). Here, ITS can structure their curriculum

appropriately by selecting the questions according to each student’s individual development.

At the same time, the main bottleneck in providing students with personalized feedback in ITS

is the ability of such systems to address the multitude of possible scenarios in student–system

interactions, and this is where methods of automated, data-driven feedback generation are of

critical importance. Much of the work investigating personalized feedback incorporates or takes

inspiration from research on student–teacher instructional scaffolding (Van de Pol et al. (2010);

Wood (2003)).

89

In this paper, we focus on delivering personalized feedback in a dialogue-based ITS during

problem-solving exercises. Such feedback includes hints, explanations, elaborations, and

prompts, among other pedagogical interventions. Following up on the promising results from

past research, we investigate how we can leverage large amounts of open-access data in creating

educational content. Of particular relevance here is the line of related work, where researchers

have investigated how machine learning and large-scale, open-access resources such as Wikipedia

can be utilized to generate various types of educational content and interactions with the aim of

scaling up computer-based learning systems and addressing the needs of their students (Brunskill

et al. (2018); Dinan et al. (2019); Guo et al. (2016); Liu et al. (2012b); Willis et al. (2019)). In

particular, it has been shown that the use of NLP techniques in application to Wikipedia may

help to generate pedagogically motivated concept maps to be used within an ITS (Lahti (2009));

identify pre-requisite relations and sequencing among learning objects to better model the

learning path of the student and assess gaps in student’s understanding of the subject (De Medio,

Gasparetti, Limongelli, Sciarrone & Temperini (2016); Ramírez-Noriega, Juárez-Ramírez,

Jiménez, Martínez-Ramírez & Figueroa Pérez (2018); Talukdar & Cohen (2012)); and generate a

variety of pedagogical interventions ranging from open questions (Liu, Calvo, Aditomo & Pizzato

(2012a); Shah, Shah & Kurup (2017)) to multiple-choice quizzes (Guo et al. (2016); Tamura,

Takase, Hayashi & Nakano (2015)) across a number of subject domains.

3.2.2 Natural Language-based Interactions in ITS

A number of previous approaches designed dialogue-based ITS using natural language interface

and allowing students to provide unrestricted input to the system (Stamper et al. (2011b);

Makatchev, VanLehn, Jordan & Pappuswamy (2006a)). Previous research shows that such

unrestricted interaction helps support meta-cognitive processes in students, while also helping the

system identify misconceptions in student’s reasoning. Since such systems provide students with

an opportunity to interact with the tutor in an unrestricted manner, this leads to further challenges

related to natural language understanding on the one hand, and to natural language-based

90

generation of interactive and personalized feedback and interventions on the another hand. This

paper primarily focuses on the latter task.

In a tutorial dialogue, where one participant represents a teacher, an expert on the subject, or a

more knowledgeable partner (in particular, such a partner may be represented by a human or an

AI tutor) and another participant is a less knowledgeable partner (i.e., a student), hinting is a

widely-used tactic (Hume et al. (1996b)). (Hume, Michael, Rovick & Evens (1996c)) defined a

hint as "a rhetorical device that is intended to either: (1) provide the student with a piece of

information that the tutor hopes will stimulate the student’s recall of the facts needed to answer

a questions, or (2) provide a piece of information that can facilitate the student’s making an

inference that is needed to arrive at an answer to a question or the prediction of system behavior".

Hints are aimed at encouraging students to engage in active cognitive processes that are thought

to promote deeper understanding and long-term retention. It is important to note that while

hints are widely used by teachers to prompt students to correct their errors, they normally do

not provide the full information the students need to solve a particular problem (Hume et al.

(1996b)). It identify hints that convey information needed to arrive at an answer and those that

point students to the relevant information that they already possess as the two main types of hints

used in practice. They further distinguish between hints in the form of explanations, summaries,

questions, and negative acknowledgements. In this work, we focus on generating hints in the

form of explanations, pointing students at the relevant information and conveying related facts

without revealing the actual answer.

Previous work investigated the impact of data-driven hints on educational outcomes in terms

of learning and persistence. In particular, (Stamper, Eagle, Barnes & Croy (2011a)) augment

their Deep Thought logic tutor with a Hint Factory that generates data-driven, context-specific

hints for an existing computer aided instructional tool. The results show that students who

receive hints attempt and complete significantly more problems than the control, no-hint group.

Moreover, students who receive hints early in the learning process outperform all other students

in the post-test. These results suggest that data-driven hints are effective in promoting learning.

However, the data-driven component in the Hint factory is primarily concerned with the

91

automated generation of hint sequences of varying complexity. In contrast, our work addresses

the NLP-based generation of hints in a natural language.

There is a growing body of research on automated hint generation for programming exercises

(McBroom, Koprinska & Yacef (2021), Price, Dong, Zhi, Paaßen, Lytle, Cateté & Barnes

(2019)). Most work in this area is concerned with generation of a suitable sequence of hints

to provide to students at specific points during their learning, and hints are mainly generated

using templates combining mixed-language input (Rivers (2017)). This line of work is related

to ours. However, we note that hints related to programming exercises are mostly concerned

with procedural knowledge, whereas our platform addresses both procedural and declarative

knowledge. In addition, interactions on our platform are more open-ended and involve more

unrestricted language.

NLP techniques have also been widely used to model ITS’s natural language understanding (NLU)

components. For instance, Benzmüller, Horacek, Kruĳff-Korbayova, Pinkal, Siekmann & Wolska

(2005) introduce a dialogue system into a mathematical assistance tool, where a student builds a

proof by producing natural language utterances, and the system provides them with domain-

specific hints produced when the student is stuck or shows non-understanding of domain concepts.

The NLU modules in Benzmüller et al. (2005) uses a specialized syntactic parser and relies on an

in-domain semantic interpretation. Similar to this work, Aleven, Popescu & Koedinger (2001)

are mostly concerned with the challenges in NLU and the interpretation of mixed language

input from the student, rather than with the natural language-based generation of pedagogical

interventions.

Finally, Zhang & Vanlehn (2016) and Zhang & VanLehn (2017) consider the use of NLP

techniques in automated generation and adaptation of questions on biology to learner profiles

using a semantic network, thus alleviating the need for domain expert intervention. They show

that students with adaptive question selection have larger learning gains than those with adaptive

question selection.

92

To summarize, in contrast to the previous work, we apply NLP techniques to generate hints

expressed in a natural language. Since we do not rely on hand-crafted rules or templates, our

methodology can be applied to any input domain and potentially address both declarative and

procedural knowledge.

3.3 Korbit Learning Platform

Korbit is a large-scale, open-domain, mixed-interface, dialogue-based ITS, which uses

machine learning, natural language processing (NLP), and reinforcement learning (RL) to

provide interactively, personalized learning online. The ITS has over 7,000 students enrolled

worldwide, including students from educational institutions and professionals from industry

partners. Korbit is capable of teaching topics related to data science, machine learning, and

artificial intelligence. The platform is highly modular and will soon be expanded with many

more topics.

Students enroll on the Korbit website by selecting either a course or a set of skills they would

like to study. Students may also answer a few questions about their background knowledge.

Based on these, Korbit generates a personalized curriculum for each student. Following

this, Korbit tutors the student by alternating between short lecture videos and interactive

problem-solving exercises. The outer-loop system decides on which lecture video or

exercise to show next based on the personalized curriculum. The initial curriculum currently

determines the ordering of videos and exercises, but work is underway to adapt the curriculum

during the learning process.

During the exercise sessions, the inner-loop system manages the interaction. First, it shows

the student a problem statement (e.g.,, a question). The student may then attempt to solve the

exercise, ask for help, or skip the exercise. If the student attempts to solve the exercise, their

solution attempt is compared against the expectation (i.e. reference solution) using an NLP

model. If their solution is classified as incorrect, then the inner-loop system will select one

of a dozen different pedagogical interventions. The pedagogical interventions include textual

93

Figure 3.1 An example of how the Korbit ITS inner-loop

system selects the pedagogical intervention. The student gives

an incorrect solution and afterwards receives a text hint.

hints, mathematical hints, elaborations, explanations, concept tree diagrams, and multiple-choice

quiz answers. The pedagogical intervention is chosen by an ensemble of machine learning

models based on the student’s profile and last solution attempt. Depending on the pedagogical

intervention, the inner-loop system may either ask the student to retry the initial exercise or

follow up on the intervention (e.g., with additional questions, confirmations, or prompts).

The Korbit ITS is closely related to the line of work on dialogue-based ITS, such as the

pioneering AutoTutor and the newer IBM Watson Tutor (Ahn et al. (2018); Graesser et al. (2005,

2001b); Nye et al. (2014b); Ventura et al. (2018)). Although Korbit is highly constrained

compared to existing dialogue-based ITS, a major innovation of Korbit lies in its modular,

scalable design. The inner-loop system is implemented as a finite-state machine. Each

pedagogical intervention is a separate state, with its own logic, data, and machine learning

models. Each state operates independently of the rest of the system, has access to all database

content (including exercises and lecture videos), and can autonomously improve as new data

becomes available. This ensures that the system gets better and better, that it can adapt to new

content, and that it can be extended with new pedagogical interventions. Furthermore, the

transitions between the states of the finite-state machine are decided by a reinforcement learning

94

model, which is agnostic to each state’s underlying implementation and continues to improve as

more and more data becomes available.

3.4 Methodology

TheKorbit ITS utilizes different types of data sources to generate a large variety of personalized

feedback automatically. In this section, we describe in detail the automatic generation process

for personalized hints and explanations, Wikipedia-based explanations, and mathematical hints.

These constitute three of the many intervention types employed by the Korbit ITS. We also

present three personalized hints and explanations selection models.

3.4.1 Personalized Hints and Explanations

Personalized hints and explanations are generated using NLP techniques and assessed according

to several metrics related to the quality of the hint or explanation and the past interaction of the

system with the student.

3.4.1.1 Hints and Explanations Generation

The system generates many of hints and explanations by applying linguistic patterns to all

expectations (i.e., reference solutions) available in our database. Table 3.1 demonstrates some

examples of hints generated using our 3-step algorithm detailed below:

1. Identification of keywords and keyphrases: These include nouns and noun phrases within

the question. In the examples in Table 3.1 such keywords and phrases are marked with

text boxes: for instance, overfitting, underfitting and logistic regression are automatically

identified as keywords and phrases.

2. Identification of an appropriate sentence span: It would seem likely the best hints should

not include keywords, keyphrases, and related words as they may reveal the solution to the

student. We apply state-of-the-art dependency parsing with spaCy1 to eliminate parts of

1 https://spacy.io

95

the expectation sentences that contain keywords and phrases: for instance, in Table 3.1 the

clause A model is underfitting is filtered out, while it has a high bias is considered as a

candidate for hint generation.

3. Generation of a grammatically correct hint is done automatically using discourse-based

modifications (e.g., Think about the case) and the partial hint extracted from an expectation

in step (2) (e.g. when it has a high bias).

Table 3.1 Text-based hint generation. Keywords and

phrases are marked with boxes, discourse-based

modifications are underlined.

Question Expectation Generated hint
What is the difference A model is underfitting Think about the case

between overfitting when it has a high bias. when it has a high bias.

and underfitting ?

Would you use linear I would use logistic Think about the

regression or logistic regression , because following: the outputs

regression to model the outputs are discrete. are discrete.

a classification problem ?

3.4.1.2 Personalized Hints and Explanations Selection

Once hints and explanations are generated with the algorithm described above, they are ranked

based on their quality and appropriateness for each student. The appropriateness of this ranking

determines the quality of the personalized feedback provided to the student. We employ a

machine learning approach and utilize the Random Forest classifier from the scikit-learn2

suite (Breiman (2001). The algorithm considers various sets of features described below. The

sets of features considered define the complexity of the feedback selection model.

1. Baseline model relies on the use of linguistic features, which assess the quality of the

hint or explanation from the linguistic perspective only. These features do not take into

account personal aspects of the student–system interaction and only assess feedback (hint or

2 https://scikit-learn.org

96

explanation) in isolation. This set contains a total of 14 features to capture various aspects

of the generated feedback, including its quality, grammaticality, and appropriateness to the

question. We describe some of the features below.

• We measure the length of the hint / explanation in terms of the number of words, which

helps the algorithm learn how comprehensive suggested feedback is.

• Completeness of the parse tree is measured using the proportion of sentences in the

hint / explanation that contain subject-verb structure: For instance, this feature would

penalize incomplete sentences like “Note that grow with the size of the dataset", which

would be generated by the hint-generation algorithm described in Section 3.4.1.1 using a

combination of a discourse-based modification “Note that" and the partial hint “grow with

the size of the dataset" extracted from an expectation after the keyphrase “non-parametric

models" is eliminated.

• Perplexity score is estimated with a Wikipedia-based language model, and it helps the

algorithm assess the quality, fluency, and grammaticality of generated feedback.

• Keyword overlap and topic overlap between the hint / explanation and the question help

assess the fit of generated feedback for the question: the more related feedback is to

the question, the higher is the overlap between the two in terms of words and topics.

Here, we define “topics" narrowly as the titles of the Wikipedia articles that contain

possible definitions of the keywords and phrases (see Section 3.4.2 for more details on

our Wikipedia-based approach).

• Average uniqueness score of the keywords in the hint / explanation is estimated as an

average of the inverse-document frequencies of the keywords according to their use

across reference solutions. This feature helps the algorithm estimate how informative a

keyword or phrase is: the more frequently it occurs in reference solutions to various

questions in our database, the less specific it is about any given question. An example of

such a generic keyword is the model.

97

• Ambiguity of the keywords is further estimated as the number of senses associated with a

word in WordNet,3 which we access via the NLTK interface.4

• Features based on the proportion of lexical items of a certain type (for instance, pronouns

and named entities) are used as proxies for specificity of the hint’s / explanation’s content.

2. Shallow personalization model relies on the combination of linguistic features pertain-

ing to the hint / explanation and performance-based features. Performance-based features

consider past student performance and include the total number of attempted questions,

proportion of correctly and incorrectly answered questions, and the total length of the

student–system dialogue interaction, among other features. As a result, this model uses a

total of 22 features.

3. Deep personalization model, in addition to the 22 features described above, takes into

account up to 4 previous interaction turns between the student and the system (selected to

maximize overall coverage of interactions that are currently available on our platform) and

analyzes them from the linguistic point of view by taking the proportion of keywords and

topics overlapping between the question and each of the student statements. This final model

relies on 49 features in total and combines linguistic features about the hint / explanation,

performance-based features, and linguistic features applied to the past student–system

interactions.

Thus, our feedback selection models get increasingly more complex in terms of the amount

of personalization involved – from no personalization in the baseline model based on the

linguistic quality of the hint / explanation only, to the shallow personalization model that

adds high-level, quantitative student performance metrics, to the deep personalization model

that also takes into account dialogue-based interactions between the student and the platform.

3 https://wordnet.princeton.edu

4 http://www.nltk.org

98

The models are trained and evaluated on a collection of 450 previously recorded student–system

interactions of up to 4 turns in length.5 The models are trained in a binary classification setting

to predict if a student given a specific hint or explanation will correctly solve the exercise in

their next attempt.

Table 3.2 Accuracy and F1 scores of different hint and

explanation selection models (with 95% confidence

intervals) calculated based on cross-validation with

𝑘 = 50 folds. ∗ indicates statistical significance compared

to baseline model at a 95% confidence level.

Model Accuracy F1-score
Random 53.64% ± 3.99% 48.21% ± 3.63%

Baseline (No Personalization) 60.57% ± 4.45% 54.90% ± 4.74%

Shallow Personalization 68.75% ± 4.06% 62.23% ± 4.49%

Deep Personalization 86.71%∗ ± 3.34% 84.81%∗ ± 3.97%

Table 3.2 shows the results. The random model achieves an accuracy of 53.64% ± 3.99% and

an F1 score of 48.21% ± 3.63%. The baseline system that relies on the linguistic features only

to select the best matching explanation reaches slightly higher performance. Taking individual

performance measures into account brings considerable improvements in the results, with the

shallow personalization model achieving an accuracy of 68.75%± 4.06% and an F1 score of

62.23% ± 4.49%. The best performing model overall uses deep personalization and achieves

86.71% ± 3.34% accuracy and 84.81% ± 3.97% F1 score, which are statistically significant

improvements at a 95% confidence level over all other models. Therefore, we should expect the

deep personalization model to select the most appropriate personalized feedback.

3.4.2 Wikipedia-Based Explanations

Wikipedia-based explanations provide alternative ways of helping students to understand and

remember concepts more effectively. With over 6 million articles containing over 3.5 billion

5 These students–system interactions were recorded from an earlier version of the Korbit ITS, which

selected the hints to show uniformly and randomly, i.e., without any consideration for the student

performance or the hint quality.

99

words, English Wikipedia provides extensive material for the NLP component of our system.

The hierarchical structure of the hyperlinks imposed by the Wikipedia format facilitates the

identification of the sets of pages related to the topic. In addition, the format adopted for

Wikipedia articles themselves, where the first sentence typically defines the title concept and

the first paragraph presents a concise description of the topic (Kapugama et al. (2016), makes

information extraction easier. Thus, by generating a large set of Wikipedia-based explanations for

the subject domain (e.g., hundreds of explanations for each exercise in Korbit), a personalized

feedback model may be able to target a larger set of student knowledge gaps and provide more

effective help.

Figure 3.2 The Wikipedia explanations multi-stage

generation pipeline. “Positive definitions" refer to the

high-quality explanations, while “negative definitions" are

low-quality ones.

To generate Wikipedia-based explanations, we use a multi-stage generation pipeline. This is

illustrated in Figure 3.2. Five major stages in this pipeline are:

1. Extracting keywords from questions and expectations (reference solutions)

2. Generating candidate explanations based on these keywords

3. Extracting features for candidate explanations classification

4. Evaluating candidate explanations with respect to their quality level

5. Selecting all relevant Wikipedia explanations

100

In the first stage, all relevant domain keywords are extracted from the reference questions and

solutions by extracting noun phrases and pronouns using spaCy (some examples of extracted

keywords and relevant articles are presented in Table 3.3). We disambiguate abbreviations

frequently used for technical terms (Schwartz & Hearst (2003),collect synonyms for the

keywords using the WikiSynonyms API,6 and apply co-reference resolution to substitute

pronouns (Clark & Manning (2016).

Table 3.3 Examples of keywords and relevant articles

Domain Keyword Relevant articles

“Machine Learning"

“Estimation theory"

“Deep learning"

“Robotics"

“Autonomous car”

“Glossary of artificial

intelligence”

“Microbotics”

“Autonomous things”

“Self-driving car”

“Linear regression”

“Statistical learning

theory”

“Deep learning”

“Linear regression”

“Pattern recognition”

Next, using NLP techniques, we create a set of extracted Wikipedia-based explanations based

on the first sentence in each article and generate candidate Wikipedia-based explanations using

the rest of the article. We consider the extracted Wikipedia-based explanations to be “high

quality” explanations since they are grammatically correct and describe the article topic clearly

and succinctly. On the other hand, the majority of candidate Wikipedia-based explanations may

be expected to be of “low quality” (e.g., containing irrelevant, off-topic information or being

grammatically incorrect) since they were generated from different snippets of each Wikipedia

article. Thus, to select the most appropriate candidate Wikipedia-based explanations, we train

several binary classification models to label an explanation as being either “high quality” or

“low quality” based on its linguistic features. The best performing classification model is then

used to select the set of best candidate Wikipedia-based explanations, which we will refer to as

the generated Wikipedia-based explanations (since our pipeline generated them).

6 https://rapidapi.com/ipeirotis/api/wikisynonyms

101

A 2GB in-domain (“Machine learning”) dataset was crawled from Wikipedia and re-sampled us-

ing the SMOTE algorithm (Mathew et al. (2018) to tackle the oversampling problem. We extracted

several features using NLP techniques, including co-reference resolution score (Clark & Man-

ning (2016), language model score using a state-of-the-art LSTM neural network (Al-Rfou,

Choe, Constant, Guo & Jones (2018), textual entailment-based relations using a state-of-the-art

attention-based neural network (Parikh, Täckström, Das & Uszkoreit (2016), TF-IDF scores, and

named entity classes (Nothman, Ringland, Radford, Murphy & Curran (2013), among others.

We experimented with a number of models, including Decision Tree classifiers (Breiman et al.

(1984), Random Forests (Breiman (2001), Logistic Regression (Bishop (2006b), and Support

Vector Machines (Smola & Schölkopf (2004), using the scikit-learn implementation.

Among those, the Decision Tree classifier performed best in a 50-fold cross-validation experi-

ment, yielding an average accuracy of 81.87% ± 3.2% and average F1-score of 96.97% ± 0.6%.

Examples of originally extracted and automatically generated Wikipedia explanations are shown

in Table 3.4.

Table 3.4 Examples of Wikipedia-based explanations.

Identified keywords are marked with boxes, and

information that helps guide a student is highlighted in

italics.

Question Wikipedia explanations Label
How many

human drivers

would be

needed to

drive an

autonomous car ?

A self-driving car , also known as an autonomous

vehicle (AV) connected and autonomous vehicle

(CAV), driverless car, robot car, or robotic car, is

a vehicle that is capable of sensing its environment

and moving safely with little or no human input.

Extracted

Different methods and levels of autonomy can be

achieved through monitoring and remote control

from a nearby manned ship, an onshore control

center or through artificial intelligence and

machine learning, letting the vessel itself decide
the course of action.

Generated

102

3.4.3 Mathematical Hints

One of the key novel features of the Korbit ITS is its ability to evaluate free-form math

equations, written using LATEX. Math equations are particularly challenging to evaluate and give

feedback because equivalent mathematical expressions can have different string representations.

Moreover, the notation between students may vary, and the notation itself can be ambiguous.

For example, the equation “𝑦(𝑥 + 5)” has two interpretations, as shown in Figure 3.3: 𝑦 could

be a function or a term multiplied by 𝑥 + 5. To evaluate students’ equations, we first convert

their LATEX string containing the equation into multiple parse trees, where each tree represents

a possible interpretation of the equation. We train a scoring function that looks at parse tree

features such as number of variables, number of operators, number of functions, and number of

repeating variables and functions to assign an energy value to each candidate parse tree. The

lowest energy tree is selected as the most likely intended parse tree.

*

y +

5x

a)

y(.)

+

5x

b)

Figure 3.3 Example of Math Equation

To determine if an equation is correct, the ITS compares the student’s most likely parse tree to

the parse trees formed by equations in the expectations (i.e. reference solutions). If a match is

found, then the solution is accepted.

There are two ways in which students receive mathematical hints from the Korbit ITS.

First, when an exercise has a LATEX equation inside an expectation, the system will provide a

mathematical hint in the form of four suggested equations, where some terms (such as variables

103

and operators) are hidden. One of these equations is generated from the expectation, and the

remaining three are generated from incorrect solutions. The student must select the appropriate

masked equation and fill it in with the correct symbols.

Second, suppose a student inputs an incorrect equation. In that case, the system will attempt to

match it to a similar reference equation and provide a mathematical hint on what the student

needs to change in their equation. The hint is based on the edits that the student’s equation

parse tree must undergo to become the parse tree of an expectation (e.g., changing the contents

of a node, adding nodes, or removing nodes from the equation parse tree). This method only

compares student equations to reference equations and is agnostic to everything else. This allows

us to provide hints for equations in any domain. However, the hints are also domain-independent

– they can only tell a student in what way their equation is wrong, and what to change to correct it,

but not identify conceptual errors. Only this second type of mathematical hints is personalized

to each student and will be considered in the experiments section.

Being fully automated, feedback provided on the Korbit platform differs from that on other ITS

teaching mathematics, where hand-crafted test cases typically generate feedback (Büdenbender

et al. (2002b); Hennecke (1999).

3.5 Experiment

This section presents the results obtained with the Korbit ITS using personalized feedback.

The experiments involve 796 annotated student–system interactions, collected from 183 students

enrolled for free and studying the machine learning course on the Korbit learning platform

remotely between January and February 2020.

3.5.1 Personalized Hints and Explanations

To evaluate the personalized hints and explanations, a hint or explanation is selected at uniform

random from one of the personalized feedback selection models when a student gives an incorrect

solution. Afterward, the student learning gain is measured as the proportion of instances where a

104

student provides a correct solution after receiving a personalized hint or explanation. Since it is

possible for the ITS to provide several pedagogical interventions for a given exercise, we separate

the learning gains observed for all students from those for students who received a personalized

hint or explanation before their second attempt at the exercise. To accurately measure student

learning gains, all student solutions are manually annotated by domain experts as being either

correct or incorrect.

The results are given in Table 3.5. In line with the results from Table 3.2, the deep personal-

ization model leads to the highest student learning gains at 48.53% followed by the shallow

personalization model at 46.51% and the baseline model at 39.47% for all attempts. Fur-

thermore, the difference between the learning gains of the deep personalization model and

baseline model for the students before their second attempt is statistically significant at 95%

confidence level based on a 𝑧-test (𝑝=0.03005). These results strongly support the hypothesis

that automatically generated personalized hints and explanations lead to substantial student

learning gains.

Table 3.5 Student learning gains for personalized hints

and explanations with 95% confidence intervals (C.I.).

After being shown a hint or explanation, their learning

gain was determined by whether they solved the exercise

in their next attempt. ∗ indicates statistical significance

compared to baseline model at a 95% confidence level.

All Attempts Before Second Attempt
Model Mean 95% C.I. Mean 95% C.I.

Baseline
(No Personalization) 39.47% [24.04%, 56.61%] 37.93% [20.69%, 57.74%]
Shallow

Personalization 46.51% [31.18%, 62.34%] 51.43% [33.99%, 68.62%]
Deep

Personalization 48.53% [36.22%, 60.97%] 60.47%∗ [44.41%, 75.02%]

105

3.5.2 Wikipedia-Based Explanations

To evaluate the Wikipedia-based explanations, we conduct a second experiment. When the

student gives an incorrect solution, the system shows two randomly-selected Wikipedia-based

explanations (one extracted and one generated) and asks the student to select the most helpful

one, or to select if both are equally helpful, or if neither of them is helpful. The system then asks

the student to attempt the exercise again, based on which the student’s learning gain is measured.

It should be noted that since the student receives two hints at once, the observed learning gains

are influenced by both hints shown.

The results are given in Table 3.6. As expected, students find the originally extracted explanations

more helpful on average: they are selected as helpful 55.66% of the time, while the automatically

generated explanations are selected 44.44% of the time. However, when both types of

explanations are shown, at least one of them is rated as helpful 83.33% of the time, with this

difference in results between both types and each type being significant at a 95% confidence

level. This proves that, although generated explanations are slightly less helpful on average,

students are far more likely to rate the feedback as helpful when both types of explanations

are shown to them (compared to only showing extracted explanations). Lastly, as shown in

Table 3.6, the student learning gains appear to be highly similar for both extracted and generated

explanations, with no statistically significant difference between the two types. Taken together,

these results strongly support the hypothesis that generated Wikipedia-based explanations can

provide helpful feedback.

3.5.3 Mathematical Hints

For this last experiment, we used two different methods to evaluate the quality of the provided

mathematical hints. We first collected 86 previous student–system interactions with the ITS,

where the student’s solution attempt was incorrect and contained a mathematical equation.

Two domain experts then independently labeled the feedback from the ITS as “very useful",

106

Table 3.6 Student preferences and learning gains for

Wikipedia-based explanations. Students were shown two

explanations (an extracted one and a generated one) and

asked which one they found most useful. Afterward, their

learning gain was determined by whether they solved the

exercise in their next attempt. ∗ indicates statistical

significance compared to all other explanation preference

classes at a 95% confidence level.

Student Preference Student Learning Gains
Explanation Mean 95% C. I. Mean 95% C. I.

Extracted 55.56% [43.37%, 67.28%] 16.00% [4.54%, 36.08%]
Generated 44.44% [32.72%, 56.63%] 16.67% [3.58%, 41.42%]

Extracted,

Generated or

Both Preferred

83.33%∗ [72.70%, 91.08%] 17.65% [6.76%, 34.53%]

“somewhat useful" or “not useful".7 The results, presented in Table 3.7, show that the majority

of the mathematical hints were labeled as “very useful", with over 90% labeled as either “very

useful" or “somewhat useful".

We also measure the learning gains of the feedback on student data collected between May

1st, 2020, and June 21st, 2020. We observe a learning gain of 41.38% with a 95% confidence

interval of [23.50%, 61.10%]. Although the learning gains from the mathematical hints do not

reach the level of the deeply personalized hints, we note that these two values cannot be directly

compared. Indeed, the data for this experiment was collected from different students than the

ones from the previous experiments. In addition, the problem of understanding math equations

is different from the problem of understanding natural language and thus requires a completely

different approach to solve.

Some examples of feedback are provided in Table 3.8. The useful feedback states what the

student must change to get the correct solution. Most of the “not useful" feedback is due to

students writing syntactically incorrect LATEX equations, such as forgetting to use “_" to subscript

indices.

7 The inter-annotator agreement between experts had a Spearman’s rank correlation of 0.623.

107

Table 3.7 Quality of feedback provided by mathematical

hints.

Feedback Quality Mean 95% C.I.
Not useful 9.3% [4.1%, 17.51%]

Somewhat useful 39.53% [29.15%, 50.66%]

Very useful 51.16% [40.14%, 62.10%]

Learning gains 41.38% [23.50%, 61.10%]

We also note that the majority of students prefer to fill in the equations given by our automatically

generated mathematical hints (described in Section 3.4.3) instead of writing their own equations.

This means that their equations are often close to an expectation’s equation, which makes it easy

to determine the appropriate feedback to give.

Finally, as stated earlier, the main limitation of the mathematical hints is that they do not capture

any of the conceptual information described by the equations and can only tell the student how

to correct their equations, but not why they need to be corrected. Therefore, in the future, we

plan to expand this system with explanatory formative feedback focusing on why the equation is

conceptually incorrect.

Table 3.8 Examples of mathematical feedback provided

Feedback Quality Student Solution Feedback Provided

Very Useful
∑

𝑖 |ℎ(𝑥𝑖) − 𝑦𝑖 |
Hmm... I expected to see

the expression

(ℎ(𝑥𝑖) − 𝑦𝑖)2

in your answer.

Somewhat Useful 𝐽∗(ℎ1) < 𝐽∗(ℎ2)
Let’s see... I think you

should change

the < in 𝐽∗(ℎ1) < 𝐽∗(ℎ2)
into >.

Not Useful 𝜙(𝑦) = 𝑥1 ∗ 𝑥2

Hmm... I think something

is incorrect in

𝑥 ∗ 1 ∗ 𝑥 ∗ 2. In particular, you

should not be multiplying

𝑥 ∗ 1 and 𝑥.

108

3.6 Discussion

In this paper, we have proposed methods for automated generation and personalization of

feedback in an intelligent tutoring system (ITS). In particular, we have focused on generation

and personalization of text-based hints and extraction and generation of Wikipedia-based

explanations leveraging large amounts of potentially useful data available for learner needs on

Wikipedia. We generate each of these types of feedback in a fully automated manner, using

data-driven approaches and state-of-the-art machine learning and natural language processing

techniques. We have conducted several experiments investigating the utility of personalized

feedback, including measuring student success rates and students’ subjective preferences for

each type of feedback. The experiments strongly support our hypothesis that the personalized

hints and Wikipedia-based explanations help to improve student learning outcomes. In this work,

we have shown that personalized feedback automatically generated in a data-driven way leads

to improved learning outcomes measured as the success rate in the students’ ability to answer

the questions on the material correctly after being provided with an informative hint. This is a

crucial step towards solving one of the major bottlenecks for large-scale ITS, which have often

relied on expert design and hand-crafted rules in the past. Future work will investigate the

scalability and transferability of our personalized data-driven feedback models across multiple

domains. One limitation of the current work is that we measure learning outcomes as success in

answering the question immediately after personalized feedback is provided. We believe that

observed improvements are important as they show that the generated hints and explanations

are helpful and guide students in the right direction. However, future experiments on our

platform will address student learning gains and their ability to retain knowledge, which can

be tested using delayed post-tests on the relevant concepts, as well as to perform near transfer

(i.e., testing knowledge of the same concept in a similar context), and far transfer (i.e., testing

knowledge of the same concept in a new context). Such future experiments will further support

the usefulness of the automatically generated personalized feedback. An additional challenge

for ITS that teach technical subjects, such as machine learning, data science, and artificial

intelligence, lies in the combination of various modalities and the use of mixed language

109

involved in generating the pedagogical interventions and the provision of feedback. An ITS

in these domains must evaluate answers expressed in a purely textual form and provided by

the students in response to the questions that are, likewise, expressed in a natural language

(e.g., “What is a linear regression model?’’). However, ITS focusing on technical domains

must also handle other modalities, such as mathematical equations, chemical equations, source

code, and so on. For example, an ITS teaching machine learning will often have to evaluate

and provide feedback on mathematical expressions. On the one hand, such expressions may be

included in student answers: e.g.a mathematical expression would be expected as a response

to the question “Define the sum-of-squares error function” from an ITS. On the other hand,

mathematical expressions may be included in the mixed-modality questions, which may further

combine them with textual content, as does a question like “Suppose the output is categorical

with ten categories (𝑦 = 1, 2, · · · , 10). If 𝑦𝑖 = 9, then what would its corresponding one-hot

vector representation be?”. This proved to be particularly challenging in the past, with many

systems aiming to provide feedback on mathematical expressions resorting to hand-crafted rules

Büdenbender, Frischauf, Goguadze, Melis, Libbrecht & Ullrich (2002a), Goguadze et al. (2005),

Hennecke (1999) or involving a human tutor Cukurova, Mavrikis, Luckin, Clark & Crawford

(2017),Hrastinski, Stenbom, Benjaminsson & Jansson (2019b). In addition, as Benzmüller

et al. (2005) and Dietrich & Buckley (2008) note, students’ responses using mixed language are

often characterized by underspecification and ambiguity, with the latter being typical of both

natural language and mathematical expressions. Math equations are particularly challenging to

evaluate and give feedback because equivalent mathematical expressions can have different string

representations. Moreover, the notation between different students may vary, and the notation

itself can be ambiguous Dietrich & Buckley (2008). For example, the equation “𝑦(𝑥 + 5)” has

two interpretations, as shown in Figure 3: y could be a function or a term multiplied by 𝑥 + 5.

Our ongoing research is concerned with the models capable of analyzing math equations in

addition to purely text-based content and providing relevant feedback. Preliminary results show

that our data-driven mathematical hints provide students with useful insights. In the future,

we also plan to expand the set of hints with those on programming exercises and investigate

students’ learning outcomes from the feedback that complements textual hints with mathematical

110

equations and code snippets or instructions relevant for the specific taught concepts. We have

shown that students generated hints and Wikipedia-based explanations helpful. Future work

should also investigate how and what types of hints and explanations may improve student

learning outcomes and their interplay with student learning profiles and knowledge gaps. In

particular, we plan to investigate how varying hint complexity and the level of hint transparency

can be used in instructional scaffolding. In addition, we will explore how large amounts of

available learning material can be leveraged to generate further pedagogical interventions in

a data-driven way. Of particular importance for future work is the development of models

capable of explanatory formative feedback. Such models can be applied both to mathematical

hints, providing students with further insights as to why their equations may be incorrect, and to

textual hints and explanations, identifying what is missing or what is conceptually incorrect

in the given answer and providing students with the guidance towards fixing the missing or

incorrect ideas in their answers. Future work should also investigate the interplay between the

granularity of such formative feedback and various student learning profiles. Finally, it should

be noted that there has been a massive increase in the use of ITS, and more broadly, online

learning platforms, separate from and alongside traditional human teacherstudent interactions

(for example, in flipped classrooms and blended learning environments). Therefore, future

research must look closely into such aspects of the learning process as student motivation,

engagement, and managing students’ emotional states. Of particular interest are such questions

as to whether tutoring via an ITS should mimic human tutoring or rather provide students with

an alternative means of learning and which aspects of the learning process are best addressed

with an ITS tutor versus a human one.

CHAPTER 4

A COMPARATIVE STUDY OF LEARNING OUTCOMES FOR ONLINE LEARNING
PLATFORMS WILL TRANSFORM ONLINE LEARNING FOR MILLIONS

An adapt version of this chapter has been published in Artificial Intelligence in Education. AIED

2021. Lecture Notes in Computer Science(), vol 12749. Springer and arXiv:2203.03724v1.

4.1 Introduction

In a comparative head-to-head study, we investigate the learning outcomes induced by two

popular online learning platforms. Coursera is a widely used learning platform that follows a

traditional model for online courses: students on this platform learn by watching lecture videos,

reading, and testing their knowledge with multiple-choice quizzes. In contrast, Korbit1 takes a

different approach to online learning, focusing more on active learning and personalization for

the student (Serban, Gupta, Kochmar, Vu, Belfer, Pineau, Courville, Charlin & Bengio (2020)).

Korbit is powered by an AI tutor, which creates a personalized curriculum for every student and

teaches through short lecture videos, interactive problem-solving exercises, mini-projects, and

personalized pedagogical interventions mimicking a human tutor. Specifically, Korbit alternates

between lecture videos and interactive problem-solving statements, and students attempt to

solve the exercises. Students can also pose their questions on the material, ask for help, or

even skip exercises. The AI tutor addresses each incorrect attempt and each request for help

with one of a dozen pedagogical interventions tailored to students’ needs, thus ensuring that

interactions are personalized. Figure 4.1 visualizes the differences between two platforms. This

study aims is to measure the efficiency with which students learn on each platform. Since

the key difference between the platforms is that Korbit supports personalized, active learning

and problem-based learning, we aim to investigate to what extent such mode of tutoring on

online platforms contributes to learning outcomes. We aim to test the following hypothesis:

Participants who take the courses on Korbit have higher learning gains than those who take

1 www.korbit.ai

112

Figure 4.1 Cousera follows a traditional learning approach,

while Korbit uses a personalized, active learning approach

with problem-solving exercises.

the course on Coursera because Korbit provides a wider and more personalized variety of

pedagogical elements to its students.

4.2 Related Works

Online learning platforms providing a massive number of students with access to learning

on various subjects have the potential to revolutionize education (Graesser, VanLehn, Rose,

Jordan & Harter (2001a), Koedinger & Corbett (2005), Wang, Paquette & Baker (2014)). In

particular, such platforms have the capability of bridging the gap and addressing inequalities in

the society caused by uneven access to in-person teaching (Hrastinski et al. (2021), Tomkins,

Ramesh & Getoor (2016)). The current pandemic only exacerbates the need for the high quality

online education being accessible to a wide variety of students (Adedoyin & Soykan (2020),

Armstrong-Mensah, Ramsey-White, Yankey & Self-Brown (2020), Pokhrel & Chhetri (2021)).

Nevertheless, the efficacy of online and distance learning has been and continues to be challenged

113

by researchers. It was found that the course design and the mode of teaching strongly influence

how students progress (Tomkins et al. (2016), Vigentini & Clayphan (2015)). Specifically,

it may be hard to address the differences in students’ learning needs, styles, and aptitudes

(Coffield, Learning & Britain) (2004), Stash, Cristea & De Bra (2004), VanLehn, Graesser,

Jackson, Jordan, Olney & Rosé (2007)), and this calls for approaches that can be adapted and

personalized to the needs of each particular student. Studies confirm that personalization is key

to successful online and distance learning (Narciss, Sosnovsky, Schnaubert, Andrès, Eichelmann,

Goguadze & Melis (2014), Sampson & Karagiannidis (2002)), such as personalized complexity

level and personalized feedback, as it can maximize the learning benefits for each student

(Yin, Patikorn, Botelho & Heffernan (2017)). A number of studies have demonstrated that

problem-solving is a highly effective approach for learning in various domain (Chow, Yacef,

Koprinska & Curran (2017), Kumar (2005b), Wood & Wood (1996), Woolf (2008)). Such

problem-solving learning activities can be addressed by intelligent tutoring systems, which are

also capable of giving personalized feedback and explanations, incorporating conversational

scaffolding, and engaging students into active and problem-solving exercises (Albacete, Jordan,

Katz, Chounta & Mclaren (2019a), Büdenbender et al. (2002a), Chi (2011),Fossati (2014),

Kumar (2005c), Lin, chu Yeh, Hung & Chang (2013a), Melis & Siekmann (2004a), Munshi,

Mishra, Zhang, Paquette, Ocumpaugh, Baker & Biswas (2020), Nye et al. (2014b)). Many

studies have been conducted evaluating the impact of educational technology and online learning

platforms on student learning outcomes (Demmans Epp, Phirangee, Hewitt & Perfetti (2020),

Kashihara & Hasegawa (2005), Ma, Adesope, Nesbit & Liu (2014), Mark & Greer (1993),Rosé,

Moore, VanLehn & Allbritton (2001),RTan. Y.,Quintana (2019),Tomkins et al. (2016),Vanlehn,

Graesser, Jackson, Jordan, Olney & Rosé (2007). We adopt the well-established pre- post-

assessment framework, where students are split into intervention groups and their knowledge

of the subject is evaluated before and after their assigned intervention. In contrast to previous

studies investigating learning outcomes with intelligent tutoring systems, in this study, the

AI-powered learning platform, Korbit, is a fully automated system based on machine learning

models (Serban et al. (2020)). The system is trained from scratch on educational content

to generate automated, personalized feedback for students. It can automatically generalize

114

to new subjects and improve as it interacts with new students (Kochmar, Do Dung, Belfer,

Gupta, Serban & Pineau (2020b), Grenander, Belfer, Kochmar, Serban, St-Hilaire & Cheung

(2021)). In the context of online and distance learning, students’ ability to self-assess, and to

develop self-regulation skills and strategies, plays a crucial role (Barokas, Ketterl & Brooks

(2010b),Kashihara & Hasegawa (2005)). However, many studies show that students generally

struggle to evaluate their knowledge and skills’ level (Brown, Andrade & Chen (2015b))

4.3 Experimental Setup

Participants 48 participants completed a 3-hour long course on linear-regression using one of

two online platforms. Their learning outcomes were measured before and after the course using

pre- and post- assessment quizzes. The experiment was run completely online. Participants

completing either course were rewarded a $200 Amazon gift card. We posted ads on social media

and sent out emails to student clubs from local universities to recruit participants. Candidates

interested in participating had to fill out a questionnaire specifying their field of study, their

degree, and whether they have completed courses in machine learning or artificial intelligence.

Candidates were classified as eligible or ineligible based on their answers to this enrollment

questionnaire. Specifically, candidates who had or were studying a math-heavy discipline at

university (e.g., mathematics, statistics, physics) or who had completed any courses on statistics,

machine leanings, or artificial intelligence were deemed ineligible. As a result, out of the

60 applicants, 48 participants were selected. The majority fall into our target audience of

undergraduates (89.6%) studying disciplines not centered around mathematics: health sciences

(27.7%), computer science (23.4%), cognitive science (12.8%), among others. To ensure an

unbiased setting for the experiments on two platforms, we randomly divided participants into two

groups. The first group was asked to study the course on linear regression in Coursera and the

second was asked to study the course on the same subject from Korbit. Choice of the Material

Linear regression was selected as the topic of study on both online platforms since it is one of

the most fundamental topics that is covered early on in any course on machine learning and data

science, and the material covering this topic on both platforms is comparable. Extra care was

115

taken to yield a fair comparison between the two platforms to ensure that the linear regression

courses were as similar as possible. The sub-topics covered, the difficulty level, and both courses’

length were carefully aligned. The linear regression course on Korbit was adapted for this study,

combining existing and new content specifically created to align with the sub-topics covered in

the Coursera course. As a result, the courses on both platforms contain an introductory session

and provide short lecture videos, followed by multiple-choice questions in the case of Coursera

and interactive problem-solving exercises in the case of Korbit. The sub-topics taught include

numerical variables, correlation, residuals, least squares regression, and evaluation metrics. The

course on each platform takes approximately 3 hours to complete. Study Flow The study ran

over four days with strict deadlines set for the participants. The participants received instructions

detailing all the steps they would need to complete on first day, and from this point, they had three

days to complete the course. If they completed all necessary steps before the third day deadline,

they were asked to complete the final post-assessment quizzes by the end of the fourth day. All

participants were required to take an assessment quiz on linear regression before the course

(pre-quiz) and another one after the course (post-quiz). Using pre- and post- quiz scores, we

measure learning gains to quantify how efficiently each participant has learned. The pre- and the

post- quizzes both consisted of 20 multiple-choice questions. They were equally adapted to both

courses, meaning that any topic or concept mentioned in the quizzes was covered in both courses

to an equal extent, ensuring that students mastering the topics using either course would succeed

in answering them. In addition, the quizzes went through an independent review process, which

ensured that the quiz scores were not inherently biased towards one of the learning platforms.

Furthermore, each question of the pre-quiz was isomorphically paired with a question in the

post-quiz, meaning that the difficulty of the two quizzes was as similar as possible without any

question being identical. This ensured that learning gains were accurately measured without

bias from the differing quiz difficulty. Safeguarding Against Invalid Results Since the study

ran fully online, it was important to take precautionary measures to minimize the participants’

chances of cheating or otherwise not following the instructions. We identified the following two

potential scenarios:

116

• A participant might have completed the pre- and the post- quizzes without really studying

the course, or going through the course without paying attention, skipping the videos and

exercises

• A participant might have used external resources to find the correct answers on the quizzes.

In both cases, the participant’s scores would be meaningless because they would be completely or

almost completely unrelated to the course and the learning platform. To minimize the chances of

this happening, we provided participants with very clear instructions on what they were required

and what they were not allowed to do. We required them to upload a completion certificate

confirming that they went through the whole course on the corresponding platform. We also

expect that scheduling the study over four days, regardless of how quickly the participants could

go through the course, helped discourage them from breezing through the quizzes and the course

to get their gift card immediately and ensured there was a delay between their learning and

assessment. For Korbit involving problem-solving exercises, we further defined a minimum

requirement for participants to attempt at least 80% of the exercises. Learning Gains To

evaluate which of the two online learning platforms teaches the participants more effectively,

we compare Coursera and Korbit based on the average learning gain and normalized learning

gain[14] of the participants on each platform. A student’s learning gain 𝑔 is estimated as the

difference between their score on the post-quiz and on the pre-quiz as follows:

𝑔 = 𝑝𝑜𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 − 𝑝𝑟𝑒_𝑠𝑐𝑜𝑟𝑒 (4.1)

where 𝑝𝑜𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 and 𝑝𝑟𝑒𝑠𝑐𝑜𝑟𝑒 are the score of the post-quiz and pre-quiz, respectively. Both

scores fall in the interval [0%, 100%]. A student’s invidual normalized learning gain 𝑔𝑛𝑜𝑟𝑚 is

calculated by offsetting a particular student’s learning gain against the score range in the ideal

scenario in which a student achieves a score of 100% in the post-quiz.

𝑔𝑛𝑜𝑟𝑚 =
𝑝𝑜𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 − 𝑝𝑟𝑒_𝑠𝑐𝑜𝑟𝑒

1 − 𝑝𝑟𝑒_𝑠𝑐𝑜𝑟𝑒
(4.2)

117

4.4 Results and Discussion

25 participants completed the course on Coursera and 23 participants completed the course on

Korbit. One participant on Korbit did no satisfy the requirement of attempting at least 80%

of the exercises and was therefore excluded from the analysis. It is worth noting that to align

the courses on the two platforms closely, the personalized curriculum and the programming

exercises offered by Korbit were specifically disabled for this study. On the one hand, this

allowed us to compare the two platforms on a fair basis and specifically explore the effects of

personalized, active learning and problem-based exercises on the learning outcomes following

the formulated hypothesis. On the other hand, given that the personalized curriculum and

programming exercises are highlighted on the Korbit website, this may have created a mismatch

between students’ expectations and their actual learning experience with this platform. Future

experiments using the full functionality of Korbit will aim to investigate the effect of other

pedagogical elements. Learning Outcomes Average learning gains are shown in Figure 4.2

Figure 4.2 (a) Average learning gain 𝑔 with 95% confidence

intervals. (b) Average normalized learning gains 𝑔𝑛𝑜𝑟𝑚 with

95% confidence intervals. Here and indicate a statistically

significant difference at 95% and 90% confidence level

respectively

for the two platform 2. The average normalized learning gains 𝑔𝑛𝑜𝑟𝑚 for Korbit participants are

49.24% higher than the average normalized gains for Coursera participants. The difference is

2 95% confidence interval (C.I) are estimated as: 1.96 ∗ 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛√
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑆𝑖𝑧𝑒

118

statistically significant at the 90% confidence level (𝑝 = 0.068). When considering raw learning

gains 𝑔, the Korbit average is 70.43% higher than the Coursera average with 95%confidence

(𝑝 = 0.038). It should be observed that there are three participants from Coursera and two from

Korbit, who showed negative learning gains. These results are hard to interpret because the

difficulty level of the pre- and the post-assessment quizzes is the same. A possible explanation

for this is that they had little prior knowledge and did not learn the material during the course

but managed to pick the correct answers in the pre-quiz by chance and were less lucky in the

post-quiz. We also observed that the median normalized learning gain 𝑔𝑛𝑜𝑟𝑚 is only slightly

higher for Korbit, being at 31.82% as opposed to 28.57% for Coursera. Because the Korbit

average is higher substantially than Coursera, this could mean that participants on Coursera and

Korbit are well below the Coursera median and well above the Korbit median, respectively. This

might stem from the fact that Korbit is better adapted to students with different backgrounds

and learning needs by having various pedagogical tools and more active learning. However, we

believe that more data and further studies would be needed to confirm this assumption. Further,

the medians for raw learning gain 𝑔 are closer to the respective average values for both platforms:

10% for Coursera and 15% for Korbit. This is in line with our hypothesis but suggests that

while the normalization process produces a more meaningful metric for learning gains, it does

introduce a lot of variance in the metric due to dividing by the pre-quiz score. Overall, our

hypothesis that learning outcomes are higher for participants on Korbit than participants on

Coursera is confirmed by the results presented here, with the average learning gains 𝑔 and

normalized learning gains 𝑔𝑛𝑜𝑟𝑚 being substantially higher for Korbit at 95% and 90% statistical

significance-level respectively. To explain these results, we theorize that the active learning

elements of Korbit play a significant role in the participants’ learning experience. The key

difference between the two platforms is that Korbit supports active learning and problem-based

learning, while Coursera is limited in this regard. To give an idea of the extent to which Korbit

provides more active learning than Coursera, we estimate how much time participants spent on

different learning activities while completing the course on either platform. Table4.1 presents

the estimates. For Coursera, the time estimates for videos and readings come directly from the

course website. Coursera gives no time estimate for the 13 multiple choice questions in the

119

Table 4.1 Estimated time spent on different learning

activities on each platform (minutes and % of total),

excluding time spent on enrollment and assessment

Learning Activity Coursera Korbit
Watching lecture videos 46.0 min (33.82%) 29.6 min (24.89%)

Reading material 50.0 min (36.76%) 0.0 min (0.00%)

Solving quizzes and exercises 40.0 min (29.42%) 89.3 min (75.11%)

course for the exercises. We estimate it at 40 minutes by testing it ourselves. For Korbit, we

have access to the data from the participants’ interactions on the platform, which lets us directly

calculate estimates for the average time spent watching videos and solving exercises. Based

on these estimates, we conclude that participants on Korbit spent more time on active learning

than Coursera participants by a factor of 2.23. We believe that this substantial difference in

the active learning time is one of the main reasons for the higher learning gains observed w.r.t

Korbit participants. We further investigate the participants’ behavior on Korbit using the data

collected automatically on this platform and report the most insightful correlations observed

between participants’ behavioral factors and their learning gains.

Firstly, we establish a correlation between the total amount of time participants spent on solving

exercises and their overall performance. Specifically, there is a positive correlation between

the time spent on exercises and the rate participants provided correct answers on the first try

(𝑟 = 0.34). At the same time, the time spent on exercises and the average number of attempts

participants needed to get a correct answer is negatively correlated (𝑟 = −0.34). This suggests

that participants who took more time working on the exercises and formulating their answers

performed better. These participants got the correct answer on the first try more often and, on

average, took fewer attempts to answer correctly.

Secondly, we observe a correlation between the participants’ performance on exercises and their

learning gains. Specifically, the rate of correct answers on the first try positively correlates with

both learning gains (𝑟 = 0.44) and post-quiz results (𝑟 = 0.46), and the number of exercises

completed positively correlates with the post-quiz score (𝑟 = 0.28). These correlations may

120

suggest that participants who spent more of their study time on active learning and problem-

solving exercises performed better and, as a result, obtained higher post-quiz scores and learning

gains. We believe this might indicate the effectiveness of active learning elements on Korbit.

One limitation to this hypothesis is that no strong correlation was found between the time spent

on exercises and the learning gains or post-quiz scores. We believe this is partly due to the

diversity in the participants’ background knowledge, leading to high variance in the pace at

which participants completed exercises. More data is needed to understand the factors driving

the learning gains thoroughly.

Another interesting observation is that participants who scored higher on the pre-quiz were

less receptive to the pedagogical intervention from the AI tutor on Korbit. Specifically, for

participants who scored over 50% on the pre-quiz, there is a stronger negative correlation between

their learning gains and the total number of hints they received during the course (𝑟 − 0.58).

This correlation is weaker for participants who score below 50% on the pre-quiz (𝑟 = −0.32).

This suggests that the pedagogical interventions were more helpful for the students with lower

pre-quiz scores. We believe that the negative correlation between the number of hints received

and learning gains is partly explained because pedagogical interventions on Korbit mostly occur

when a student is already struggling with an exercise. Therefore, participants who received more

hints most likely struggled more with the exercises, which, as discussed above, correlates with

lower learning gains. Metacognitive Evaluation In addition to measure actual learning gains

using pre- and post- quizzes, we evaluated various metaconition aspects related to the students’

learning experience with the two platforms using a questionnaire where students were asked to

report on their experience. Table 4.2 list 3 questions we asked the participants on their perceived

learning gains There is a strong correlation between how participants rated their comprehension

of the topics studied and their actual learning gains (Q1). This can be seen in Figure 4.3 which

shows the normalized learning gains depending on this subjective rating. The correlation is

higher for Korbit participants (𝑟 = 041) than for Coursera participants (𝑟 = 0.26). This suggests

that Korbit gave participants a more accurate understanding of their knowledge level and helped

improve their metacognition. For Q2 and Q3 on perceived learning, no correlation was found

121

Table 4.2 Average perceived learning gains (±95%

confidence interval)

ID Question Coursersa Korbit

Q1
How would you rate your comprehension

of the topics you studied? (1-5)
4.16 ± 0.27 3.65 ± 0.29

Q2
How well do you think you performed

on the final quiz (1-100%)
76.7% ± 5.41% 75.2% ± 5.63%

Q3

How capable would you feel in applying the skills

you learned in a practical setting (at your job,

in a personal project, in you research, etc)? (1-5)

3.68 ± 0.29 3.35 ± 0.38

with the actual learning gains. Even though perceived learning gains are strongly correlated

with the actual learning gains for Korbit, on average, participants from Korbit reported lower

levels of comprehension in absolute term Q1, and the difference from the Coursera average

is significant (𝑝 < 0.5). This directly contradicts the fact that Korbit participants obtained

higher learning gains on average. In addition, the results for Q2 and Q3 suggest that the Korbit

participants’ perception of their performance on the post-quiz and their perceived capability

to apply the skills they learned are slightly lower than for Coursera participants.In line with

previous work, we note that this indicates that students generally struggle to evaluate their

knowledge and skills level (Crowell (2015a),Brown et al. (2015b), ref (2013)). Furthermore, we

hypothesize that this contradictory result is the presence of some frustrating elements in Korbit:

for instance, one common source of confusion reported for Korbit is the fact that the AI tutor did

not always understand participants’ answers. On the one hand, the AI tutor on Korbit engaging

in a dialogue with participants and providing them with the interactive problem-solving exercises

strongly contributes to higher learning gains on Korbit. On the other hand, this aspect makes

Korbit more technically challenging to implement than the more traditional approach taken

by Coursera. In line with previous research (Lehman, D’Mello & Graesser (2012a),Yin et al.

(2017)), we hypothesize that improvements in the AI tutors’ understanding of students’ answers

and feedback might contribute to higher perceived learning gains in students. Future research

should investigate this hypothesis.

122

Figure 4.3 Normalized learning gains for each self-assessed

comprehension rating with 95% confidence intervals. Only 1

participant gave a score lower than 3 (not shown here)

4.5 Conclusions

This study compared two popular online learning platforms concerning the learning outcomes and

metacognition included by the platforms. The first platform, Coursera, is a widely-used learning

platform that follows a traditional model for online courses: students learn by watching lecture

videos, reading, and testing their knowledge with multiple-choice quizzes. The second platform,

Korbit, focuses on active learning and personalization, where each student learns through short

lecture videos and interactive problem-solving exercises accompanied by personalized feedback.

We assessed the learning gains of 47 participants after a 3-hour long course on linear regression

topic, with 25 participants taking the course on Coursera and 22 on Korbit. We observed

that the average learning gain for Korbit is 70.43% higher than on Coursera (𝑝 < 0.05). This

supports the hypothesis that participants on Korbit have higher learning gains than those who

take the course on Coursera because Korbit provides a wider and more personalized variety of

pedagogical elements to its students. Furthermore, the average normalized learning gain for

Coursera and Korbit participants are 21.73% and 32.43%, respectively. With Korbit producing

123

49.24% higher (𝑝 < 0.1) learning gains relative to Coursera, the result support the hypothesis

that Korbit teaches more effectively. However, more data should be collected to validate the

same hypothesis w.r.t normalized learning gains. In addition, perceived learning gains and

metacognition abilities were assessed with a feedback questionnaire filled out by participants

after the post-assessment quiz. It was found that Coursera participants report higher perceived

learning gains even though their actual learning gains are lower on average. Higher correlations

between perceived learning and actual learning gains for Korbit participants suggest that Korbit

induces better metacognition. Lower perceived learning gains on Korbit can be explained

because this platform involves more complex teaching elements. These elements may contribute

to higher actual learning gains; they may at the same time also be a source o frustration and

confusion for some participants. Future research should look more closely into the factors

that affect the perceived learning for participants and should investigate to what extent the

participants benefit from the course being adapted to their learning needs and preferences.

CHAPTER 5

A LARGE-SCALE, OPEN-DOMAIN, MIXED-INTERFACE DIALOGUE-BASED ITS
FOR STEM

An adapt version of this chapter has been published in Artificial Intelligence in Education, 2020,

Springer International Publishing, p. 387–392.

5.1 Introduction

Intelligent tutoring systems (ITS) are computer programs powered by artificial intelligence

(AI), which deliver real-time, personalized tutoring to students. Traditional ITS implement

or imitate the behavior and pedagogy of human tutors. In particular, one type of ITS are

dialogue-based tutors, which use natural language conversations to tutor students Nye et al.

(2014b). This process is sometimes called “Socratic tutoring”, because of its similarity to

Socratic dialogue Rosé et al. (2001). Newer ITS have started to interleave their dialogue with

interactive media (e.g. interactive videos and web applets) – a so-called “mixed-interface system”.

It has been shown that ITS can be twice as effective at promoting learning compared to the

previous generation of computer-based instruction and that ITS may be as effective as human

tutors in general Kulik & Fletcher (2016b).

However, even though ITS have been around for decades and are known to be highly effective,

their deployment in education and industry has been extremely limited Olney (2018); Ritter,

Anderson, Koedinger & Corbett (2007). A major reason for this is the sheer cost of devel-

opment Folsom-Kovarik et al. (2010b); Olney (2018). As observed by Olney Olney (2018):

“Unfortunately, ITS are extremely expensive to produce, with some groups estimating that it

takes 100 hours of authoring time from AI experts, pedagogical experts, and domain experts to

produce 1 hour of instruction.” On the other hand, lower-cost educational approaches, such

as massive open online courses (MOOCs), have flourished and now boast millions of learners.

It is estimated that today there are over 110 million learners around the world enrolled in

MOOCs Shah (2019). However, the learning outcomes resulting from learning in MOOCs de-

126

pend critically on their teaching methodology and quality of content and remains questionable in

general Cavanaugh & Jacquemin (2015); Colvin, Champaign, Liu, Zhou, Fredericks & Pritchard

(2014); Kirtman (2009); Koedinger, Kim, Jia, McLaughlin & Bier (2015); Koxvold (2014); Otto,

Bollmann, Becker & Sander (2018). In particular, recent research indicates that MOOCs with

low active learning levels, little feedback from instructors and peers, and few peer discussions

tend to yield poor learning outcomes Koedinger et al. (2015); Otto et al. (2018). Furthermore,

it is well-known that student retention in MOOCs is substantially worse than in traditional

classroom learning Hone & El Said (2016). By combining the low cost and scalability of

MOOCs with the personalization and effectiveness of ITS, we hope Korbit may one day help

to teach and motivate millions of students around the world effectively.

5.2 The Korbit ITS

Korbit is a large-scale, open-domain, mixed-interface, dialogue-based ITS, which uses

machine learning, natural language processing (NLP) and reinforcement learning (RL) to

provide interactive, personalized learning online. The ITS has over 7,000 students enrolled

from around the world, including students from educational institutions and professionals from

industry partners. Korbit is capable of teaching topics related to data science, machine

learning, and artificial intelligence. The platform is highly modular and will soon be expanded

with many more topics.

Students enroll on the Korbit website by selecting either a course or a set of skills they would

like to study. Students may also answer a few questions about their background knowledge.

Based on these, Korbit generates a personalized curriculum for each student. Following

this, Korbit tutors the student by alternating between short lecture videos and interactive

problem-solving exercises. The outer-loop system decides on which lecture video or

exercise to show next based on the personalized curriculum. The ordering of videos and

exercises is currently determined by the initial curriculum, but work is underway to adapt the

curriculum during the learning process.

127

Figure 5.1 An example of how the Korbit ITS inner-loop

system selects the pedagogical intervention. The student gives

an incorrect solution and afterwards receives a text hint.

During the exercise sessions, the inner-loop system manages the interaction. First, it shows

the student a problem statement (e.g., a question). The student may then attempt to solve the

exercise, ask for help, or skip the exercise. If the student attempts to solve the exercise, their

solution attempt is compared against the expectation (i.e. reference solution) using an NLP

model. If their solution is classified as incorrect, then the inner-loop system will select one

of a dozen different pedagogical interventions. The pedagogical interventions include textual

hints, mathematical hints, elaborations, explanations, concept tree diagrams, and multiple choice

quiz answers. The pedagogical intervention is chosen by an ensemble of machine learning

models based on the student’s profile and last solution attempt. Depending on the pedagogical

intervention, the inner-loop system may either ask the student to retry the initial exercise or

follow up on the intervention (e.g., with additional questions, confirmations, or prompts).

The Korbit ITS is closely related to the line of work on dialogue-based ITS, such as the

pioneering AutoTutor and the newer IBM Watson Tutor Ahn et al. (2018); Graesser et al. (2005,

2001b); Nye et al. (2014b); Ventura et al. (2018). Although Korbit is highly constrained

compared to existing dialogue-based ITS, a major innovation of Korbit lies in its modular,

scalable design. The inner-loop system is implemented as a finite-state machine. Each

128

pedagogical intervention is a separate state, with its own logic, data and machine learning models.

Each state operates independently of the rest of the system, has access to all database content

(including all exercises and lecture videos) and can autonomously improve as new data becomes

available. This ensures that the system gets better and better, that it can adapt to new content

and that it can be extended with new pedagogical interventions. Furthermore, the transitions

between the states of the finite-state machine is decided by a reinforcement learning model,

which itself is agnostic to the underlying implementation of each state and also continues to

improve as more and more data becomes available.

5.3 System Evaluation

We have conducted multiple studies to evaluate the Korbit ITS. Some of these studies have

evaluated the entire system, while others have focused on particular aspects or modules. Taken

together, the studies demonstrate that the Korbit ITS is an effective learning tool and that

it overall improves student learning outcomes and motivation compared to alternative online

learning approaches.

In this paper, to keep things short, we limit ourselves and discuss only one of these studies. The

study we present compares the entire system (Full ITS) against an xMOOC-like system Daniel

(2012). The purpose of this particular study is to evaluate 1) whether students prefer the Korbit

ITS or a regular MOOC, 2) whether the Korbit ITS increases student motivation, and 3) which

aspects of the Korbit ITS students find most useful and least useful. In an ideal world, Korbit

ITS would be compared against a regular xMOOC teaching students through lecture videos and

multiple-choice quizzes in a randomized controlled trial (a randomized A/B testing experiment).

However, it is not possible to compare against such a system in a randomized controlled trial

because it would create confusion and drastically offset our students’ expectations.1 Therefore,

in this study, we compare the Full ITS against a reduced ITS, which appears identical to the

Full ITS and utilizes the same content (video lectures and exercise questions), but defaults to

1 Indeed, this was attempted in an earlier study. During that study, however, when students found out

that they were assigned to the xMOOC system instead of the ITS system, they would complain, logout,

and create a new account to access the main ITS system.

129

multiple choice quizzes 50% of the time. Thus, students assigned to the reduced ITS effectively

spend about half of their interactions in an xMOOC-like setting. We refer to this system as the

xMOOC ITS.

Table 5.1 A/B testing results comparing the Full ITS
against the xMOOC ITS: average time spent by students

(in minutes), returning students (in %), students who said

they will refer others (in %) and learning gain (in %), with

corresponding 95% confidence intervals. The ∗ and ∗∗

shows statistical significance at 90% and 95% confidence

level respectively.

System Time Spent Returning Students Refer Others Learning Gain
xMOOC ITS 22.98±4.18 26.98%±3.44% 44.83% ± 9.00% 39.14%±2.35%
Full ITS 39.86±3.70∗∗ 31.69%±1.92%∗ 54.17%±4.05%

The experiment was conducted in 2019 with n=612 participants. Students who enrolled online

were randomly assigned to either the Full ITS (80%) or xMOOC ITS (20%). Students came

from different countries and were not subject to any selection or filtering process. Apart from

bug fixes and minor speed improvements, the system was kept fixed during this time period to

limit confounding factors. After using the system for about 45 minutes, students were shown a

questionnaire to evaluate the system.

Table 5.1 shows the experimental results. The average time spent in the Full ITS was 39.86

min compared to 22.98 min in the xMOOC ITS. As such, the Full ITS yields a staggering

73.46% increase in time spent. In addition, the percentage of returning students and the

percentage of students who said they would refer others to use the system is substantially higher

for the Full ITS compared to the xMOOC ITS. These results were also confirmed by the

feedback provided by the students in the questionnaire. Thus, we can conclude that students

strongly prefer Korbit ITS over xMOOCs and that the Korbit ITS increases overall student

motivation. Table 5.1 also shows the average student learning gain, which was observed to be

39.14%. The learning gain is measured as the proportion of instances where a student provides

a correct exercise solution after having received a pedagogical intervention from the Korbit

ITS. Thus, the pedagogical interventions appear to be effective.

130

Finally, in the questionnaire, 85.31% of students reported that they found the chat equally or

more fun than learning alone, and 66.67% of students reported that the chat helped them learn

better sometimes, many times, or all of the time. For the Full ITS, 54.17% of students

reported that they would refer others to use Korbit ITS. In addition, students reported that the

Korbit ITS could be improved by more accurately identifying their solutions as being correct

or incorrect and, in the case of incorrect solutions, by providing more relevant and personalized

feedback.

CHAPTER 6

GENERAL DISCUSSION AND CONCLUSION

This thesis proposes methods for automated generation and personalization of feedback in an

intelligent tutoring system. In addition, we run some pilot programs with real users, including

high education students and employees, to compare the performance of the systems and the

learning outcome between our system and the MOOCs system. In particular, we have focused on

the generation and personalization of text-based hints, extraction, and generation of Wikipedia-

based explanations leveraging large amounts of potentially useful data available for learner needs

on Wikipedia. Each type of feedback is generated in a fully automated manner, using data-driven

approaches and state-of-the-art machine learning and natural language processing techniques.

In addition, we conducted several experiments to investigate the effectiveness of personalization

feedback and measure student success rates and students’ preference for each type of feedback.

By running these experiments with more than 200 students and almost 1000 software developers

(junior, experienced, and senior developers) within one year, the results strongly support our

hypothesis that the personalized hints and Wikipedia-based explanations help to improve student

learning. In this work, the personalized feedback is automatically generated in a data-driven

way leads to improved learning outcomes measured as the success rate in the students’ ability to

answer the questions on the material correctly after being provided with an informative hint. This

is a crucial step towards solving one of the major problems for large-scale ITS, which have often

relied on expert design and hand-crafted rules in the past. Our future research will investigate

how to scale and transfer the personalized data-driven feedback models across multiple domains.

We will do step by step for the similar domains first, then big differences later. The other

limitation is that we measure learning outcomes as the success rate in answering the question

immediately after personalized feedback is provided. We compute the normalized learning gain

by using the result of post-quizzes and pre-quizzes. Since we believe that generated hints and

explanations are helpful and guide students in the right direction.

132

Moreover, we delayed post-tests on the relevant concepts to evaluate the students’ ability to

retain knowledge. Future experiments on our platform will address the student self-correcting

features by observing the students’ improvement via their behavior. An additional challenge for

ITS is that they teach technical subjects by using multiple languages or doing the short projects

involved in generating the pedagogical interventions and the provision of feedback.

An ITS in these domains must evaluate answers expressed in a purely textual form and provided

by the students in response to the questions that are, likewise, expressed in a natural language

(e.g., “What is a linear regression model?’’). On the one hand, such expressions may be

included in student answers: e.g.a mathematical expression would be expected as a response to

the question “Define the sum-of-squares error function” from an ITS. Mathematical expressions

may be included in the mixed-modality questions, which may further combine them with

textual content, as does a question like “Suppose the output is categorical with 10 categories

(𝑦 = 1, 2, · · · , 10) If 𝑦𝑖 = 9, then what would its corresponding one-hot vector representation

be?”. This proved to be particularly challenging in the past, with many systems aiming to provide

feedback on mathematical expressions resorting to hand-crafted rules or involving a human

tutor. In addition, students use mixed language under ambiguity with both natural language

and mathematical expressions. Sometimes, they forget the math operators or use the different

names of the variable to explain the same meaning of the equations. Our ongoing research is

concerned with the models capable of analyzing math equations in addition to purely text-based

content and providing relevant feedback. In the future, we also plan to work on the set of hints

with those on programming exercises and investigate students’ learning gain with the specific

concepts. We have shown that students and generated hints and Wikipedia-based explanations

are helpful. Future work should also investigate how and what type of hints may improve student

learning outcomes. In particular, we plan to investigate how varying hint complexity and the

level of hint transparency can be used in instructional scaffolding in parallel with optimizing the

number of hints for each student to engage him to study. Moreover, the peer-to-peer hint might

be considered in our future research; the ranking system will be applied to pick up the good

133

student answers, suggestions, and explanations to use as the hints for another student based on

the student interaction and profile.

Future work should also investigate the interplay between the granularity of such formative

feedback and various student learning profiles. Finally, it should be noted that there has been a

massive increase in the use of ITS, and more broadly, online learning platforms, separate from

and alongside traditional human teacher and student interactions (e.g., in flipped classrooms and

blended learning environments). Therefore, future research must look closely into such aspects

of the learning process as student motivation, engagement, and managing students’ emotional

states. In particular, doing the student emotion states analysis strategy will give better feedback

of updating the quality of the hints. Of particular interest are such questions as to whether

tutoring via an ITS should mimic human tutoring or rather provide students with an alternative

means of learning and which aspects of the learning process are best addressed with an ITS

tutor versus a human one.

We compared two popular online learning platforms concerning the learning outcomes and

metacognition included by the platforms. The first platform, Coursera, is a widely used learning

platform that follows a traditional model for online courses: students learn by watching lecture

videos, reading, and testing their knowledge with multiple-choice quizzes. The second platform,

Korbit, focuses on active learning and personalization, where each student learns through short

lecture videos and interactive problem-solving exercises accompanied by personalized feedback.

We assessed the learning gains of almost 200 participants after a 3-hour long course linear

regression topic, with 30% participants taking the course on Coursera, 35% on Korbit with

feedbacks, 35% on Korbit without feedback. We observed that the normalized learning gain

for Korbit with feedback has significantly higher than Coursera and Korbit without feedback

(𝑝 < 0.05). This supports the hypothesis that Korbit with feedback (hints) teaches more

effectively.

In addition, we did the study for both students in university and the fresher developers who do

not have experience with linear regression or machine learing, and we got the same result for

134

both types of candidates, which means Korbit with hints induces the better meta-cognition. Our

experiment with 68 fresh software developers included both Korbit with and without feedback

as a baseline shows that the normalized learning gain of Korbit with feedback is better almost

3 times than Coursera with 95% confidence level (𝑝 = 0.04176). However, Korbit without

feedback and personalized learning gains are almost Coursera, demonstrating that feedback and

personalization are core components and major drivers of student learning outcomes. Future

research should look more closely into the participant’s benefit from the course being adapted to

their learning needs and prefer

BIBLIOGRAPHY

(2013). SAGE Handbook of Research on Classroom Assessment AU - Brown, Gavin T. L. AU -

Harris, Lois R. Thousand Oaks: SAGE Publications, Inc. Student Self-Assessment<span

class="hi-superscript">1, doi: 10.4135/9781452218649.

Abel, A., Chang, B.-Y. E. & Pfenning, F. (2001). Human-Readable, Machine-Verifiable Proofs

for Teaching Constructive Logic. Proceedings of the Workshop on Proof Transformations,
Proof Presentations and Complexity of Proofs (PTP’01).

AbuEl-Reesh, J. Y. & Abu-Naser, S. S. (2018). An Intelligent Tutoring System for Learning

Classical Cryptography Algorithms (CCAITS). International Journal of Academic and
Applied Research (ĲAAR), 2(2), 1–11.

Adedoyin, O. B. & Soykan, E. (2020). Covid-19 pandemic and online learning:

the challenges and opportunities. Interactive Learning Environments, 0(0), 1-13.

doi: 10.1080/10494820.2020.1813180.

Agha, M., Jarghon, A. & Abu-Naser, S. (2018). An Intelligent Tutoring Systems For Teating

SQL. International Journal of Academic Information Systems Research (ĲAISR), 1–7.

Ahn, J.-W., Chang, M., Watson, P., Tejwani, R., Sundararajan, S., Abuelsaad, T. & Prabhu,

S. (2018). Adaptive Visual Dialog for Intelligent Tutoring Systems. International
Conference on Artificial Intelligence in Education, pp. 413–418.

Al-Dahdooh, R. & Abu-Naser, S. (2017). Development and Evaluation of the Oracle Intelligent

Tutoring System (OITS). European Academic Research, 4, 8711-8721.

Al-Nakhal, M. & Abu-Naser, S. (2017). Adaptive Intelligent Tutoring System for Learning

Computer Theory. European Academic Research, 4, 8770-8782.

Al Rekhawi, H. & Abu-Naser, S. (2018). Android Applications UI Development Intelligent

Tutoring System. International Journal of Engineering and Information Systems (ĲEAIS),
1–14.

Al-Rfou, R., Choe, D., Constant, N., Guo, M. & Jones, L. (2018). Character-Level Language

Modeling with Deeper Self-Attention.

Albacete, P., Jordan, P., Katz, S., Chounta, I.-A. & Mclaren, B. (2019a, 06). The Impact

of Student Model Updates on Contingent Scaffolding in a Natural-Language Tutoring

System. pp. 37-47. doi: 10.1007/978-3-030-23204-7_4.

136

Albacete, P., Jordan, P., Katz, S., Chounta, I.-A. & McLaren, B. M. (2019b). The Impact

of Student Model Updates on Contingent Scaffolding in a Natural-Language Tutoring

System. International Conference on Artificial Intelligence in Education, pp. 37–47.

Aleven, V., Popescu, O. & Koedinger, K. (2001). Towards Tutorial Dialog to Support Self-

Explanation: Adding Natural Language Understanding to a Cognitive Tutor. 246–255.

Anania, J. (1983a). The influence of instructional conditions on student learning and achievement.

Evaluation in Education, 7(1), 1-92. doi: https://doi.org/10.1016/0191-765X(83)90002-2.

Anania, J. (1983b). The Influence of Instructional Conditions on Student Learning and

Achievement. Evaluation in Education: An International Review Series, 7(1), 3–76.

Anderson, J. R., Boyle, C. F. & Reiser, B. J. (1985a). Intelligent Tutoring Systems. Science,

228(4698), 456–462.

Anderson, J. R., Boyle, C. F. & Reiser, B. J. (1985b). Intelligent tutoring systems. Science,

228(4698), 456–462.

Andrews, P. B., Brown, C. E., Pfenning, F., Bishop, M., Issar, S. & Xi, H. (2004). ETPS:

A System to Help Students Write Formal Proofs. J. Autom. Reason., 32(1), 75–92.

doi: 10.1023/B:JARS.0000021871.18776.94.

Armstrong-Mensah, E., Ramsey-White, K., Yankey, B. & Self-Brown, S. (2020). COVID-19

and Distance Learning: Effects on Georgia State University School of Public Health

Students. Frontiers in Public Health, 8, 547.

Arora, S., Liang, Y. & Ma, T. (2017). A Simple but Tough-to-Beat Baseline for Sentence

Embeddings. ICLR.

Arroyo, I., Beal, C. R., Bergman, A. M., Lindenmuth, M., Marshall, D. & Woolf, B. P. (2003).

Intelligent Tutoring for high-stakes achievement tests.

Bahdanau, D., Cho, K. & Bengio, Y. (2014). Neural Machine Translation by Jointly Learning to

Align and Translate. cite arxiv:1409.0473Comment: Accepted at ICLR 2015 as oral

presentation, Consulted at http://arxiv.org/abs/1409.0473.

Baker, R. S. (2016). Stupid tutoring systems, intelligent humans. International Journal of
Artificial Intelligence in Education, 26(2), 600–614.

Barokas, J., Ketterl, M. & Brooks, C. A. (2010a). Lecture Capture: Student Perceptions,

Expectations, and Behaviors.

137

Barokas, J., Ketterl, M. & Brooks, C. (2010b, 01). Lecture Capture: Student Perceptions,

Expectations, and Behaviors. pp. 424-431.

Baxter, J. A. & Haycock, J. (2014). Roles and student identities in online large course forums:

Implications for practice. The International Review of Research in Open and Distributed
Learning, 15(1), 20–40. doi: 10.19173/irrodl.v15i1.1593.

Beel, J., Gipp, B., Langer, S. & Breitinger, C. (2016). Research-paper recommender systems

: a literature survey. International Journal on Digital Libraries, 17(4), 305–338.

doi: 10.1007/s00799-015-0156-0.

Bengio, Y., Ducharme, R., Vincent, P. & Janvin, C. (2003). A Neural Probabilistic Language

Model. J. Mach. Learn. Res., 3(null), 1137–1155.

Benzmüller, C., Horacek, H., Kruĳff-Korbayova, I., Pinkal, M., Siekmann, J. & Wolska, M.

(2005, 01). Natural Language Dialog with a Tutor System for Mathematical Proofs.

pp. 1-14. doi: 10.1007/978-3-540-70934-3_1.

Bishop, C. M. (2006a). Pattern Recognition and Machine Learning (Information Science and
Statistics). Berlin, Heidelberg: Springer-Verlag.

Bishop, C. M. (2006b). Pattern Recognition and Machine Learning. Springer. Consulted at http:

//research.microsoft.com/en-us/um/people/cmbishop/prml/.

Bloom, B. S. (1984). The 2 sigma problem: The search for methods of group instruction as

effective as one-to-one tutoring. Educational researcher, 13(6), 4–16.

BLOOM, B. S. (1984). The 2 Sigma Problem: The Search for Methods of Group Instruction as

Effective as One-to-One Tutoring. Educational Researcher, 13(6), 4-16.

Boaler, J. & Brodie, K. (2004). The importance, nature, and impact of teacher questions.

Proceedings of the twenty-sixth annual meeting of the North American Chapter of the
International Group for the Psychology of Mathematics Education, 2, 774–782.

Bollacker, K., Evans, C., Paritosh, P. K., Sturge, T. & Taylor, J. (2008). Freebase: a collaboratively

created graph database for structuring human knowledge. SIGMOD Conference.

Boulanger-Lewandowski, N., Bengio, Y. & Vincent, P. (2012). Modeling Temporal Depen-

dencies in High-Dimensional Sequences: Application to Polyphonic Music Generation

and Transcription. Proceedings of the 29th International Coference on International
Conference on Machine Learning, (ICML’12), 1881–1888.

138

Bowen, W. G., Chingos, M. M., Lack, K. A. & Nygren, T. I. (2014). Interactive Learning Online

at Public Universities: Evidence from a Six-Campus Randomized Trial. Journal of Policy
Analysis and Management, 33(1), 94-111. doi: https://doi.org/10.1002/pam.21728.

Bowman, S. R., Angeli, G., Potts, C. & Manning, C. D. (2015). A large annotated corpus for

learning natural language inference. Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pp. 632–642. doi: 10.18653/v1/D15-1075.

Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. (1984). Classification and Regression
Trees. Monterey, CA: Wadsworth and Brooks.

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32.

doi: 10.1023/A:1010933404324.

Brown, G. & Harris, L. (2013, 01). Student self-assessment. pp. 367-393.

Brown, G., Andrade, H. & Chen, F. (2015a). Accuracy in student self-assessment: Directions

and cautions for research. Assessment in Education Principles Policy and Practice, 22,

444-457. doi: 10.1080/0969594X.2014.996523.

Brown, G. T., Andrade, H. L. & Chen, F. (2015b). Accuracy in student self-assessment:

directions and cautions for research. Assessment in Education: Principles, Policy &
Practice, 22(4), 444-457. doi: 10.1080/0969594X.2014.996523.

Brown, J. & Burton, R. (1975). MULTIPLE REPRESENTATIONS OF KNOWLEDGE FOR

TUTORIAL REASONING.

Brunskill, E., Mu, T., Goel, K. & Bragg, J. (2018). Automatic Curriculum Generation Applied

to Teaching Novices a Short Bach Piano Segment. NeurIPS Demonstrations.

Buck, C., Heafield, K. & van Ooyen, B. (2014). N-gram Counts and Language Models

from the Common Crawl. Proceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC’14), pp. 3579–3584. Consulted at http:

//www.lrec-conf.org/proceedings/lrec2014/pdf/1097_Paper.pdf.

Büdenbender, J., Frischauf, A., Goguadze, G., Melis, E., Libbrecht, P. & Ullrich, C. (2002a).

Using Computer Algebra Systems as Cognitive Tools. Intelligent Tutoring Systems,
pp. 802–810.

Büdenbender, J., Frischauf, A., Goguadze, G., Melis, E., Libbrecht, P. & Ullrich, C. (2002b).

Using computer algebra systems as cognitive tools. International Conference on
Intelligent Tutoring Systems, pp. 802–810.

139

BURKE, A. J. (1980). STUDENTS’ POTENTIAL FOR LEARNING CONTRASTED UNDER
TUTORIAL AND GROUP APPROACHES TO INSTRUCTION. (Ph.D. thesis, Ann

Arbor).

Burke, A. J. (1983). Students’ potential for learning contrasted under tutorial and group
approaches to instruction. (Ph.D. thesis, University of Chicago, Joseph Regenstein

Library, Department of Photoduplication).

Callan, J. & Mitamura, T. (2002). Knowledge-Based Extraction of Named Entities. 532–537.

doi: 10.1145/584792.584880.

Camacho-Collados, J. & Pilehvar, M. T. (2018). From Word to Sense Embeddings: A

Survey on Vector Representations of Meaning. J. Artif. Int. Res., 63(1), 743–788.

doi: 10.1613/jair.1.11259.

Castillo, J. J. & Alemany, L. A. (2008). An approach using Named Entities for Recognizing

Textual Entailment. Proceedings of the First Text Analysis Conference, TAC 2008,
Gaithersburg, Maryland, USA, November 17-19, 2008. Consulted at https://tac.nist.gov/

publications/2008/participant.papers/Sagan.proceedings.pdf.

Cavanaugh, J. K. & Jacquemin, S. J. (2015). A large sample comparison of grade based student

learning outcomes in online vs. face-to-face courses. Online Learning, 19(2), n2.

Cazden, C. (1979). Peekaboo as an Instructional Model: Discourse Development at Home and

at School. Papers and Reports on Child Language Development, No. 17, 33–58.

Chen, Q., Zhu, X., Ling, Z.-H., Wei, S., Jiang, H. & Inkpen, D. (2017). Enhanced LSTM

for Natural Language Inference. Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 1657–1668.

doi: 10.18653/v1/P17-1152.

Chen, Q., Zhu, X., Ling, Z.-H., Inkpen, D. & Wei, S. (2018). Neural Natural Language Inference

Models Enhanced with External Knowledge. Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2406–2417.

doi: 10.18653/v1/P18-1224.

Chi, M. (2011). Instructional Factors Analysis: A Cognitive Model For Multiple Instructional

Interventions.

Chi, M., Koedinger, K., Gordon, G., Jordan, P. & Vanlehn, K. (2011, 01). Instructional Factors

Analysis: A Cognitive Model For Multiple Instructional Interventions. EDM 2011 -
Proceedings of the 4th International Conference on Educational Data Mining, pp. 61-70.

140

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H. & Bengio,

Y. (2014). Learning Phrase Representations using RNN Encoder–Decoder for Statistical

Machine Translation. Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 1724–1734. doi: 10.3115/v1/D14-1179.

Chow, S., Yacef, K., Koprinska, I. & Curran, J. (2017). Automated Data-Driven Hints for Com-

puter Programming Students. Adjunct Publication of the 25th Conference on User Model-
ing, Adaptation and Personalization, (UMAP ’17), 5–10. doi: 10.1145/3099023.3099065.

Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A. C. & Bengio, Y. (2015). A Recurrent

Latent Variable Model for Sequential Data. NIPS.

Clark, K. & Manning, C. (2016). Deep Reinforcement Learning for Mention-Ranking

Coreference Models. Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, 2256–2262.

Coffield, F., Learning & Britain), S. R. C. G. (2004). Learning styles and pedagogy in post-16
learning : a systematic and critical review. London: London : Learning and Skills

Research Centre.

Colby, K. M. (1981). Modeling a paranoid mind. Behavioral and Brain Sciences, 4(4), 515–534.

doi: 10.1017/S0140525X00000030.

Colvin, K. F., Champaign, J., Liu, A., Zhou, Q., Fredericks, C. & Pritchard, D. E. (2014).

Learning in an introductory physics MOOC: All cohorts learn equally, including an

on-campus class. The international review of research in open and distributed learning,

15(4), 263–283.

Crowell, T. L. (2015a). Student Self Grading: Perception vs. Reality. American Journal of
Educational Research, 3(4), 450–455. doi: 10.12691/education-3-4-10.

Crowell, T. L. (2015b). Student Self Grading: Perception vs. Reality. American Journal of
Educational Research, 3(4), 450–455. Consulted at http://pubs.sciepub.com/education/

3/4/10.

Cui, G., Lu, Q., Li, W. & Chen, Y. (2009, Sep.). Mining Concepts from Wikipedia for Ontology

Construction. 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence
and Intelligent Agent Technology, 3, 287-290. doi: 10.1109/WI-IAT.2009.284.

Cukurova, M., Mavrikis, M., Luckin, R., Clark, J. & Crawford, C. (2017). Interaction analysis in

online maths human tutoring: The case of third space learning. international conference
on artificial intelligence in education, pp. 636–643.

141

Daniel, J. (2012). Making sense of MOOCs: Musings in a maze of myth, paradox and possibility.

Journal of interactive Media in education, 2012(3), 18.

De Medio, C., Gasparetti, F., Limongelli, C., Sciarrone, F. & Temperini, M. (2016). Automatic

Extraction of Prerequisites Among Learning Objects Using Wikipedia-based Content

Analysis. International conference on intelligent tutoring systems, pp. 375–381.

Debole, F. & Sebastiani, F. (2004). Supervised Term Weighting for Automated Text Categoriza-

tion. Text Mining and its Applications, pp. 81–97.

Decoste, D. & Schölkopf, B. (2002). Training Invariant Support Vector Machines. Machine
Learning, 46(1), 161-190. doi: 10.1023/A:1012454411458.

Deerwester, S., Dumais, S., Furnas, G., Landauer, T. & Harshman, R. (1990). Indexing by latent

semantic analysis. Journal of the American Society for Information Science 41, 391-407.

Demmans Epp, C., Phirangee, K., Hewitt, J. & Perfetti, C. A. (2020). Learning management

system and course influences on student actions and learning experiences. Educational
Technology Research and Development, 68(6), 3263-3297. doi: 10.1007/s11423-020-

09821-1.

Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. (2019a). BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding. Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pp. 4171–4186. doi: 10.18653/v1/N19-1423.

Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. (2019b). BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding. Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pp. 4171–4186. doi: 10.18653/v1/N19-1423.

Dietrich, D. & Buckley, M. (2008). Verification of human-level proof steps in mathematics

education. Teaching Mathematics and Computer Science, 6, 345-362.

Dinan, E., Roller, S., Shuster, K., Fan, A., Auli, M. & Weston, J. (2019). Wizard of Wikipedia:

Knowledge-powered Conversational Agents. Proceedings of the International Conference
on Learning Representations (ICLR).

Dioşan, L., Rogozan, A. & Pécuchet, J.-P. (2008). Evolutionary Optimisation of Kernel and

Hyper-Parameters for SVM. Modelling, Computation and Optimization in Information
Systems and Management Sciences, pp. 107–116.

142

du Boulay, B. (2016). Artificial Intelligence as an Effective Classroom Assistant. IEEE
Intelligent Systems, 31(6), 76-81. doi: 10.1109/MIS.2016.93.

Fader, A., Zettlemoyer, L. & Etzioni, O. (2014). Open question answering over curated

and extracted knowledge bases. Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, 1156—1165.

Ferrone, L. & Zanzotto, F. M. (2020). Symbolic, Distributed, and Distributional Representations

for Natural Language Processing in the Era of Deep Learning: A Survey. Frontiers in
Robotics and AI, 6, 153. doi: 10.3389/frobt.2019.00153.

Fesseha, A., Xiong, S., Emiru, E. D. & Dahou, A. (2020). Text Classification of News

Articles Using Machine Learning on Low-resourced Language: Tigrigna. 2020 3rd
International Conference on Artificial Intelligence and Big Data (ICAIBD), pp. 34-38.

doi: 10.1109/ICAIBD49809.2020.9137443.

Folsom-Kovarik, J., Schatz, S. & Nicholson, D. (2010a). Plan Ahead : Pricing ITS Learner

Models.

Folsom-Kovarik, J. T., Schatz, S. & Nicholson, D. (2010b). Plan ahead: Pricing ITS learner

models. Proceedings of the 19th Behavior Representation in Modeling & Simulation
(BRIMS) Conference, pp. 47–54.

Fossati, D. (2014). Data driven automatic feedback generation in the iList intelligent tutoring

system.

Freedman, R. (1999). Atlas: A Plan Manager for Mixed-Initiative, Multimodal Dialogue.

Fürnkranz, J. (2010). Decision Tree. In Sammut, C. & Webb, G. I. (Eds.), Encyclopedia of
Machine Learning (pp. 263–267). Boston, MA: Springer US. doi: 10.1007/978-0-387-

30164-8_204.

Goguadze, G., Palomo, A. G. & Melis, E. (2005). Interactivity of Exercises in ActiveMath.

ICCE, pp. 109–115.

Gomaa, W. & Fahmy, A. (2013). A Survey of Text Similarity Approaches. international journal
of Computer Applications, 68, 13–18. doi: 10.5120/11638-7118.

Gong, Y., Luo, H. & Zhang, J. (2018). Natural Language Inference over Interaction Space.

International Conference on Learning Representations. Consulted at https://openreview.

net/forum?id=r1dHXnH6-.

Goodfellow, I., Bengio, Y. & Courville, A. (2016). Deep Learning. MIT Press.

143

Goodman, J. T. (2001). A bit of progress in language modeling. Computer Speech & Language,

15(4), 403-434. doi: https://doi.org/10.1006/csla.2001.0174.

Graesser, A. C. & Person, N. K. (1994). Question asking during tutoring. American educational
research journal, 31(1), 104–137.

Graesser, A. C., Wiemer-Hastings, K., Wiemer-Hastings, P. & Kreuz, R. (1999). Auto-

Tutor: A simulation of a human tutor. Cognitive Systems Research, 1(1), 35-51.

doi: https://doi.org/10.1016/S1389-0417(99)00005-4.

Graesser, A. C., Wiemer-Hastings, P., Wiemer-Hastings, K., Harter, D., Group, T. R. G.

T. R. & Person, N. (2000). Using Latent Semantic Analysis to Evaluate the Contributions

of Students in AutoTutor. Interactive Learning Environments, 8(2), 129-147.

Graesser, A. C., VanLehn, K., Rose, C. P., Jordan, P. W. & Harter, D. (2001a). In-

telligent Tutoring Systems with Conversational Dialogue. AI Magazine, 22(4), 39.

doi: 10.1609/aimag.v22i4.1591.

Graesser, A. C., VanLehn, K., Rosé, C. P., Jordan, P. W. & Harter, D. (2001b). Intelligent

tutoring systems with conversational dialogue. AI magazine, 22(4), 39–39.

Graesser, A. C., Chipman, P., Haynes, B. C. & Olney, A. (2005). AutoTutor: An intelligent

tutoring system with mixed-initiative dialogue. IEEE Transactions on Education, 48(4),

612–618.

Graesser, A. C., Cai, Z., Morgan, B. & Wang, L. (2017). Assessment with computer agents that

engage in conversational dialogues and trialogues with learners. Computers in Human
Behavior, 76, 607 - 616. doi: https://doi.org/10.1016/j.chb.2017.03.041.

Graves, A. (2013). Generating Sequences With Recurrent Neural Networks. CoRR,

abs/1308.0850, 1–43. Consulted at http://dblp.uni-trier.de/db/journals/corr/corr1308.

html#Graves13.

Greer, J. & Mark, M. (2016). Evaluation Methods for Intelligent Tutoring Systems Revis-

ited. International Journal of Artificial Intelligence in Education, 26(1), 387-392.

doi: 10.1007/s40593-015-0043-2.

Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R. & Schmidhuber, J. (2015).

LSTM: A Search Space Odyssey. cite arxiv:1503.04069Comment: 12 pages, 6 figures,

doi: 10.1109/TNNLS.2016.2582924.

Grenander, M., Belfer, R., Kochmar, E., Serban, I., St-Hilaire, F. & Cheung, J. (2021, 03). Deep

Discourse Analysis for Generating Personalized Feedback in Intelligent Tutor Systems.

144

Guo, Q., Kulkarni, C., Kittur, A., Bigham, J. P. & Brunskill, E. (2016). Questimator: Generating

knowledge assessments for arbitrary topics. Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence (ĲCAI’16). AAAI Press.

Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student

survey of mechanics test data for introductory physics courses. American Journal of
Physics, 66, 64-74.

Hennecke, M. (1999). Online Diagnose in intelligenten mathematischen Lehr-Lern-Systemen.

VDI-Verlag.

Hevner, A. R., March, S. T., Park, J. & Ram, S. (2004). Design Science in Information Systems

Research. MIS Q., 28(1), 75–105.

Holstein, K., McLaren, B. M. & Aleven, V. (2017). Intelligent Tutors as Teachers’ Aides:

Exploring Teacher Needs for Real-time Analytics in Blended Classrooms. Proceedings
of the Seventh International Learning Analytics & Knowledge Conference, pp. 257–266.

Holstein, K., McLaren, B. M. & Aleven, V. (2019). Designing for complementarity: Teacher

and student needs for orchestration support in AI-enhanced classrooms. International
Conference on Artificial Intelligence in Education, pp. 157–171.

Hone, K. & El Said, G. (2016). Exploring the factors affecting MOOC retention: A survey

study. Computers & Education, 98, 157–168. doi: 10.1016/j.compedu.2016.03.016.

Hone, K. S. & El Said, G. R. (2016). Exploring the factors affecting

MOOC retention: A survey study. Computers & Education, 98, 157-168.

doi: https://doi.org/10.1016/j.compedu.2016.03.016.

Hone, K. S. & El Said, G. R. (2016). Exploring the factors affecting MOOC retention: A survey

study. Computers & Education, 98, 157–168.

Hrastinski, S., Stenbom, S., Benjaminsson, S. & Jansson, M. (2019a). Identifying and

exploring the effects of different types of tutor questions in individual online syn-

chronous tutoring in mathematics. Interactive Learning Environments, 0(0), 1-13.

doi: 10.1080/10494820.2019.1583674.

Hrastinski, S., Stenbom, S., Benjaminsson, S. & Jansson, M. (2019b). Identifying and

exploring the effects of different types of tutor questions in individual online syn-

chronous tutoring in mathematics. Interactive Learning Environments, 29, 1-13.

doi: 10.1080/10494820.2019.1583674.

145

Hrastinski, S., Stenbom, S., Benjaminsson, S. & Jansson, M. (2021). Identifying and exploring

the effects of different types of tutor questions in individual online synchronous tutoring

in mathematics. Interactive Learning Environments, 29(3), 510-522.

Huang, Z., Xu, W. & Yu, K. (2015). Bidirectional LSTM-CRF Models for Sequence Tagging.

Consulted at http://arxiv.org/abs/1508.01991.

Hume, G., Michael, J., Rovick, A. & Evens, M. (1996a). Hinting as a Tactic in One-on-One

Tutoring. The Journal of the Learning Sciences, 5, 23-47.

Hume, G., Michael, J., Rovick, A. & Evens, M. (1996b). Hinting as a Tactic in One-

on-One Tutoring. Journal of The Learning Sciences - J LEARN SCI, 5, 23-47.

doi: 10.1207/s15327809jls0501_2.

Hume, G., Michael, J., Rovick, A. & Evens, M. (1996c). Hinting as a Tactic in One-on-One

Tutoring. Journal of the Learning Sciences, 5(1), 23-47.

J. Mackness, S. M. & Williams, R. (2010). The ideals and reality of participating in a

MOOC. In Proceedings of the 7th International Conference on Networked Learning
2010 (pp. 266–275). University of Lancaster.

Jabri, S., Dahbi, A., Gadi, T. & Bassir, A. (2018). Ranking of text documents using TF-

IDF weighting and association rules mining. 2018 4th International Conference on
Optimization and Applications (ICOA), 1-6.

Jiang, Y. (2014). Exploring teacher questioning as a formative assessment strategy. RELC
Journal, 45(3), 287–304.

Jona, K. & Naidu, S. (2014). MOOCs: emerging research. Distance Education, 35(2), 141-144.

doi: 10.1080/01587919.2014.928970.

Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N. & Wu, Y. (2016). Exploring the Limits of
Language Modeling. Consulted at https://arxiv.org/abs/1602.02410.

Kaliszyk, C., Wiedĳk, F., Hendriks, M. & Raamsdonk, F. (2007). Teaching logic using a

state-of-the-art proof assistant.

Kapugama, K. D. C. G., Lorensuhewa, S. A. S. & Kalyani, M. A. L. (2016, Sep.).

Enhancing Wikipedia search results using Text Mining. 2016 Sixteenth Interna-
tional Conference on Advances in ICT for Emerging Regions (ICTer), pp. 168-175.

doi: 10.1109/ICTER.2016.7829915.

146

Kashihara, A. & Hasegawa, S. (2005). A Model of Meta-Learning for Web-

Based Navigational Learning. Advanced Technology for Learning, 2, 198-206.

doi: 10.2316/Journal.208.2005.4.208-0862.

Kingma, D. P. & Ba, J. (2015). Adam: A method for stochastic optimization. International
Conference on Learning Representations (ICLR).

Kingma, D. P. & Welling, M. (2014). Auto-Encoding Variational Bayes. 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16,
2014, Conference Track Proceedings.

Kiros, R., Zhu, Y., Salakhutdinov, R., Zemel, R. S., Torralba, A., Urtasun, R. & Fidler, S. (2015).

Skip-Thought Vectors. cite arxiv:1506.06726Comment: 11 pages, Consulted at http:

//arxiv.org/abs/1506.06726.

Kirtman, L. (2009). Online versus in-class courses: An examination of differences in learning

outcomes. Issues in teacher education, 18(2), 103–116.

Knight, K. (1983). Book Reviews : The Manual of Learning Styles Peter Honey and Alan

Mumford: Published and distributed by Peter Honey, Ardingley House, 10 Linden

Avenue, Maidenhead, Berkshire, SL6 6BH, 1982, 83 pp., £25·20, ISBN 0 9508444 0 3.

Management Education and Development, 14(2), 147-150.

Kochmar, E., Vu, D. D., Belfer, R., Gupta, V., Serban, I. & Pineau, J. (2020a). Automated

Personalized Feedback Improves Learning Gains in An Intelligent Tutoring System.

Artificial Intelligence in Education, 12164, 140 - 146.

Kochmar, E., Do Dung, V., Belfer, R., Gupta, V., Serban, I. & Pineau, J. (2020b, 05). Automated

Personalized Feedback Improves Learning Gains in an Intelligent Tutoring System.

Kochmar, E., Vu, D. D., Belfer, R., Gupta, V., Serban, I. V. & Pineau, J. (2020c). Automated

Personalized Feedback Improves Learning Gains in An Intelligent Tutoring System.

Artificial Intelligence in Education, pp. 140–146.

Kochmar, E., Vu, D. D., Belfer, R., Gupta, V., Serban, I. V. & Pineau, J. (2021). Auto-

mated Data-Driven Generation of Personalized Pedagogical Interventions in Intelli-

gent Tutoring Systems. International Journal of Artificial Intelligence in Education.

doi: 10.1007/s40593-021-00267-x.

Koedinger, K., Cunningham, K., Skogsholm, A. & Leber, B. (2008). An Open Repository and

analysis tools for fine-grained, longitudinal learner data. EDM.

147

Koedinger, K. R. & Corbett, A. (2005). Cognitive Tutors. In Sawyer, R. K. (Ed.), The
Cambridge Handbook of the Learning Sciences (pp. 61–78). Cambridge University

Press. doi: 10.1017/CBO9780511816833.006.

Koedinger, K. R., Kim, J., Jia, J. Z., McLaughlin, E. A. & Bier, N. L. (2015). Learning is not a

spectator sport: Doing is better than watching for learning from a MOOC. Proceedings
of the second (2015) ACM conference on learning@ scale, pp. 111–120.

Koxvold, I. (2014). MOOCs: Opportunities for their use in compulsory-age education.

Department for Education.

Kulik, J. A. & Fletcher, J. D. (2016a). Effectiveness of Intelligent Tutoring Sys-

tems: A Meta-Analytic Review. Review of Educational Research, 86(1), 42-78.

doi: 10.3102/0034654315581420.

Kulik, J. A. & Fletcher, J. (2016b). Effectiveness of intelligent tutoring systems: a meta-analytic

review. Review of educational research, 86(1), 42–78.

Kumar, A. N. (2005a). Results from the Evaluation of the Effectiveness of an Online Tutor on

Expression Evaluation. SIGCSE Bull., 37(1), 216–220. doi: 10.1145/1047124.1047422.

Kumar, A. N. (2005b). Results from the Evaluation of the Effectiveness of an Online Tutor

on Expression Evaluation. Proceedings of the 36th SIGCSE Technical Symposium on
Computer Science Education, (SIGCSE ’05), 216–220. doi: 10.1145/1047344.1047422.

Kumar, A. N. (2005c). Generation of Problems, Answers, Grade, and Feedback—

Case Study of a Fully Automated Tutor. J. Educ. Resour. Comput., 5(3), 3–es.

doi: 10.1145/1163405.1163408.

Lahitani, A. R., Permanasari, A. E. & Setiawan, N. A. (2016). Cosine similarity to determine simi-

larity measure: Study case in online essay assessment. 2016 4th International Conference
on Cyber and IT Service Management, pp. 1-6. doi: 10.1109/CITSM.2016.7577578.

Lahti, L. (2009). Guided generation of pedagogical concept maps from the Wikipedia. E-Learn:
World Conference on E-Learning in Corporate, Government, Healthcare, and Higher
Education, pp. 1741–1750.

Lakhotia, S. & Bresson, X. (2018). An Experimental Comparison of Text Classifica-

tion Techniques. 2018 International Conference on Cyberworlds (CW), pp. 58-65.

doi: 10.1109/CW.2018.00022.

Lane, K., Menzies, H. M., Ennis, R. & Bezdek, J. M. (2013). School-wide Systems to Promote

Positive Behaviors and Facilitate Instruction. Journal of Curriculum and Instruction, 7,

148

6-31.

Lavie, A. & Agarwal, A. (2007). METEOR: An automatic metric for MT evaluation with high

levels of correlation with human judgments. 228-231.

Leelawong, K. & Biswas, G. (2008). Designing learning by teaching agents: The Betty’s Brain

system. International Journal of Artificial Intelligence in Education, 18(3), 181–208.

Lehman, B., D’Mello, S. & Graesser, A. (2012a). Confusion and complex learning during

interactions with computer learning environments. The Internet and Higher Education,

15(3), 184-194. doi: https://doi.org/10.1016/j.iheduc.2012.01.002. Emotions in online

learning environments.

Lehman, B., D’Mello, S. & Graesser, A. (2012b). Confusion and complex learning during

interactions with computer learning environments. Internet and Higher Education, 15(3),

184–194. Consulted at https://www.learntechlib.org/p/199222.

Li, J., Sun, A., Han, J. & Li, C. (2018). A Survey on Deep Learning for Named Entity Recognition.

Los Alamitos, CA, USA: IEEE Computer Society. doi: 10.1109/TKDE.2020.2981314.

Li, Y. & Yang, T. (2018). Word Embedding for Understanding Natural Language: A Survey.

In Srinivasan, S. (Ed.), Guide to Big Data Applications (pp. 83–104). Cham: Springer

International Publishing. doi: 10.1007/978-3-319-53817-4_4.

Lin, C.-Y. (2004, 01). ROUGE: A Package for Automatic Evaluation of summaries. pp. 10.

Lin, C. F., chu Yeh, Y., Hung, Y. H. & Chang, R. I. (2013a). Data mining for providing a

personalized learning path in creativity: An application of decision trees. Computers &
Education, 68, 199-210. doi: https://doi.org/10.1016/j.compedu.2013.05.009.

Lin, C. F., Yeh, Y.-C., Hung, Y. H. & Chang, R. I. (2013b). Data mining for providing a

personalized learning path in creativity: An application of decision trees. Computers &
Education, 68, 199 - 210. doi: https://doi.org/10.1016/j.compedu.2013.05.009.

Lipton, Z. C. (2015). A Critical Review of Recurrent Neural Networks for Sequence Learning.

Liu, M., Calvo, R. A., Aditomo, A. & Pizzato, L. A. (2012a). Using Wikipedia and

Conceptual Graph Structures to Generate Questions for Academic Writing Support.

IEEE Transactions on Learning Technologies, 5(3), 251–263.

Liu, M., Calvo, R. A. & Rus, V. (2012b). G-Asks: An intelligent automatic question generation

system for academic writing support. Dialogue & Discourse, 3(2), 101–124.

149

Lowe, R., Noseworthy, M., Serban, I. V., Angelard-Gontier, N., Bengio, Y. & Pineau, J.

(2017). Towards an Automatic Turing Test: Learning to Evaluate Dialogue Responses.

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers).

Lucas, A., Williams, A. T. & Cabrales, P. (2019). Prediction of Recovery From Severe Hemor-

rhagic Shock Using Logistic Regression. IEEE Journal of Translational Engineering in
Health and Medicine, 7, 1-9. doi: 10.1109/JTEHM.2019.2924011.

LW, A., DR, K., PW, A., KA, C., Mayer, R., PR, P., Raths, J. & MC, W. (2001). A Taxonomy for
Learning, Teaching, and Assessing: A Revision of Bloom’s Taxonomy of Educational
Objectives. New York: Longman.

Ma, W., Adesope, O. O., Nesbit, J. & Liu, Q. (2014). Intelligent tutoring systems and learning

outcomes: A meta-analysis. Journal of Educational Psychology, 106, 901-918.

Maitra, D. S., Bhattacharya, U. & Parui, S. K. (2015). CNN based common approach to

handwritten character recognition of multiple scripts. 2015 13th International Conference
on Document Analysis and Recognition (ICDAR), pp. 1021-1025. doi: 10.1109/IC-

DAR.2015.7333916.

Maity, A. (2016). Supervised Classification of RADARSAT-2 Polarimetric Data for Different

Land Features. Consulted at http://arxiv.org/abs/1608.00501.

Makatchev, M., VanLehn, K., Jordan, P. & Pappuswamy, U. (2006a). Representation and

Reasoning for Deeper Natural Language Understanding in a Physics Tutoring System.

FLAIRS Conference.

Makatchev, M., Vanlehn, K. & Jordan, P. W. (2006b). Representation and Reasoning for Deeper

Natural Language Understanding in a Physics Tutoring System.

Malakasiotis, P. & Androutsopoulos, I. (2007). Learning Textual Entailment using SVMs and

String Similarity Measures. Proceedings of the ACL-PASCAL Workshop on Textual En-
tailment and Paraphrasing, pp. 42–47. Consulted at https://aclanthology.org/W07-1407.

Malekzadeh, M., Mustafa, M. & Lahsasna, A. (2015). A Review of Emotion Regulation in

Intelligent Tutoring Systems. Educational Technology & Society, 18, 435-445.

Mark, M. A. & Greer, J. E. (1993). Evaluation Methodologies for Intelligent Tutoring Systems.

JOURNAL OF ARTIFICIAL INTELLIGENCE IN EDUCATION, 4, 129–153.

Mathew, J., Pang, C. K., Luo, M. & Leong, W. H. (2018). Classification of Imbalanced Data by

Oversampling in Kernel Space of Support Vector Machines. IEEE Transactions on Neural

150

Networks and Learning Systems, 29(9), 4065-4076. doi: 10.1109/TNNLS.2017.2751612.

McBroom, J., Koprinska, I. & Yacef, K. (2021). A Survey of Automated Programming Hint Gener-

ation: The HINTS Framework. ACM Comput. Surv., 54(8), 1–27. doi: 10.1145/3469885.

McCann, B., Bradbury, J., Xiong, C. & Socher, R. (2017). Learned in Translation: Contextualized
Word Vectors. Advances in Neural Information Processing Systems. Curran Associates,

Inc.

Melis, E. & Siekmann, J. (2004a). ActiveMath: An Intelligent Tutoring System for Mathematics.

Artificial Intelligence and Soft Computing - ICAISC 2004, pp. 91–101.

Melis, E. & Siekmann, J. (2004b). ActiveMath: An Intelligent Tutoring System for Mathematics.

Artificial Intelligence and Soft Computing - ICAISC 2004, pp. 91–101.

Mikolov, T., Karafiát, M., Burget, L., Cernocký, J. & Khudanpur, S. (2010). Recurrent neural

network based language model. INTERSPEECH, pp. 1045-1048. Consulted at http:

//dblp.uni-trier.de/db/conf/interspeech/interspeech2010.html#MikolovKBCK10.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. & Dean, J. (2013). Distributed Representations

of Words and Phrases and their Compositionality. CoRR, abs/1310.4546. Consulted at http:

//arxiv.org/abs/1310.4546.

Mills, S. R., Rice, C. T., Berliner, D. C. & Rosseau, E. W. (1980). The correspondence

between teacher questions and student answers in classroom discourse. The Journal of
Experimental Education, 48(3), 194–204.

Milne, D. & Witten, I. H. (2013). An open-source toolkit for mining Wikipedia. Artificial
Intelligence, 194, 222 - 239. doi: https://doi.org/10.1016/j.artint.2012.06.007. Artificial

Intelligence, Wikipedia and Semi-Structured Resources.

Munshi, A. & Biswas, G. (2019a). Personalization in OELEs: Developing a Data-Driven

Framework to Model and Scaffold SRL Processes. Artificial Intelligence in Education,

pp. 354–358.

Munshi, A. & Biswas, G. (2019b). Personalization in OELEs: Developing a Data-Driven

Framework to Model and Scaffold SRL Processes. International Conference on Artificial
Intelligence in Education, pp. 354–358.

Munshi, A., Mishra, S., Zhang, N., Paquette, L., Ocumpaugh, J., Baker, R. & Biswas, G. (2020).

Modeling the Relationships Between Basic and Achievement Emotions in Computer-

Based Learning Environments. Artificial Intelligence in Education, pp. 411–422.

151

Nadeau, D. & Sekine, S. (2007). A survey of named entity recognition and classification.

Lingvisticae Investigationes, 30, 3-26.

Narciss, S., Sosnovsky, S., Schnaubert, L., Andrès, E., Eichelmann, A., Goguadze, G. & Melis,

E. (2014). Exploring feedback and student characteristics relevant for personalizing

feedback strategies. Computers & Education, 71, 56–76.

Nesbit, J. C., Adesope, O. O., Liu, Q. & Ma, W. (2014). How Effective are Intelligent Tutoring

Systems in Computer Science Education? 2014 IEEE 14th International Conference on
Advanced Learning Technologies, pp. 99-103. doi: 10.1109/ICALT.2014.38.

Nivre, J., de Marneffe, M.-C., Ginter, F., Goldberg, Y., Hajic, J., Manning, C. D., McDonald,

R., Petrov, S., Pyysalo, S., Silveira, N., Tsarfaty, R. & Zeman, D. (2016). Uni-

versal Dependencies v1: A Multilingual Treebank Collection. Proceedings of the
Tenth International Conference on Language Resources and Evaluation (LREC 2016).
Consulted at http://www.petrovi.de/data/lrec16.pdf.

Nkambou, R., Mizoguchi, R. & Bourdeau, J. (2010). Advances in Intelligent Tutoring Systems
(ed. 1st). Springer Publishing Company, Incorporated.

Nothman, J., Ringland, N., Radford, W., Murphy, T. & Curran, J. (2013). Learning multilin-

gual named entity recognition from Wikipedia. Artificial Intelligence, 194, 151–175.

doi: 10.1016/j.artint.2012.03.006.

Nye, B., Graesser, A. & Hu, X. (2014a). AutoTutor and Family: A Review of 17 Years of

Natural Language Tutoring. doi: 10.1007/s40593-014-0029-5.

Nye, B. D., Graesser, A. C. & Hu, X. (2014b). AutoTutor and family: A review of 17 years of

natural language tutoring. International Journal of Artificial Intelligence in Education,

24(4), 427–469.

Olney, A. & Cade, W. (2015a, 08). Authoring Intelligent Tutoring Systems Using Human

Computation: Designing for Intrinsic Motivation. pp. 628-639. doi: 10.1007/978-3-319-

20816-9_60.

Olney, A. M. (2018). Using novices to scale up intelligent tutoring systems. Interservice/Industry
training, Simulation, and Education Conference (I/ITSEC).

Olney, A. M. & Cade, W. L. (2015b). Authoring intelligent tutoring systems using human

computation: designing for intrinsic motivation. International conference on augmented
cognition, pp. 628–639.

152

Otto, D., Bollmann, A., Becker, S. & Sander, K. (2018). It’s the learning, stupid! Discussing the

role of learning outcomes in MOOCs. Open Learning: The Journal of Open, Distance
and e-Learning, 33(3), 203–220.

Pane, J. F., Griffin, B. A., McCaffrey, D. F. & Karam, R. (2014). Effectiveness of Cognitive

Tutor Algebra I at Scale. Educational Evaluation and Policy Analysis, 36(2), 127-144.

Papineni, K., Roukos, S., Ward, T. & Zhu, W.-J. (2002). BLEU: A Method for Automatic

Evaluation of Machine Translation.

Parikh, A., Täckström, O., Das, D. & Uszkoreit, J. (2016). A Decomposable Attention Model for

Natural Language Inference. Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pp. 2249–2255. doi: 10.18653/v1/D16-1244.

Passier, H. & Jeuring, J. (2006). Feedback in an interactive equation solver. UU WINFI

Informatica en Informatiekunde.

Pennington, J., Socher, R. & Manning, C. (2014a). GloVe: Global Vectors for Word

Representation. Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543. doi: 10.3115/v1/D14-1162.

Pennington, J., Socher, R. & Manning, C. D. (2014b). Glove: Global Vectors for Word

Representation. EMNLP, 14, 1532–1543. Consulted at https://nlp.stanford.edu/pubs/

glove.pdf.

Petrov, S., Das, D. & McDonald, R. (2012). A Universal Part-of-Speech Tagset. Proceedings of
the Eighth International Conference on Language Resources and Evaluation (LREC’12),
pp. 2089–2096. Consulted at http://www.lrec-conf.org/proceedings/lrec2012/pdf/274_

Paper.pdf.

Pokhrel, S. & Chhetri, R. (2021). A Literature Review on Impact of COVID-19 Pandemic on

Teaching and Learning. Higher Education for the Future, 8(1), 133-141.

Polyzou, A., Athanasios, N. & Karypis, G. (2019). Scholars Walk: A Markov Chain Framework

for Course Recommendation. Proceedings of the 12th International Conference on
Educational Data Mining, pp. 396–401.

Pradhan, S. S., Ward, W. H., Hacioglu, K., Martin, J. H. & Jurafsky, D. (2004). Shallow Semantic

Parsing using Support Vector Machines. Proceedings of the Human Language Technology
Conference of the North American Chapter of the Association for Computational
Linguistics: HLT-NAACL 2004, pp. 233–240. Consulted at https://www.aclweb.org/

anthology/N04-1030.

153

Pranckevičius, T. & Marcinkevičius, V. (2016). Application of Logistic Regression with

part-of-the-speech tagging for multi-class text classification. 2016 IEEE 4th Workshop
on Advances in Information, Electronic and Electrical Engineering (AIEEE), pp. 1-5.

doi: 10.1109/AIEEE.2016.7821805.

Price, T. W., Dong, Y., Zhi, R., Paaßen, B., Lytle, N., Cateté, V. & Barnes, T. (2019). A

Comparison of the Quality of Data-Driven Programming Hint Generation Algorithms.

International Journal of Artificial Intelligence in Education, 29(3), 368-395.

Qwaider, S. R. & Abu-Naser, S. S. (2018). Excel Intelligent Tutoring System. International
Journal of Academic Information Systems Research (ĲAISR), 2(2), 8–18.

Rajaraman, A. & Ullman, J. D. (2011). Mining of Massive Datasets. USA: Cambridge University

Press.

Ram, A. (1991). A theory of questions and question asking. Journal of the Learning Sciences,
1(3-4), 273–318.

Ramachandran, S., Jensen, R., Ludwig, J., Domeshek, E. & Haines, T. (2018). ITADS: a

real-world intelligent tutor to train troubleshooting skills. International Conference on
Artificial Intelligence in Education, pp. 463–468.

Ramírez-Noriega, A., Juárez-Ramírez, R., Jiménez, S., Martínez-Ramírez, Y. & Figueroa Pérez,

J. (2018). Determination of the course sequencing to intelligent tutoring systems using

an ontology and Wikipedia. Journal of Intelligent & Fuzzy Systems, 34(5), 3177–3185.

Ran, J., Zhang, G., Zheng, T. & Wang, W. (2018). Logistic Regression Analysis on Learning

Behavior and Learning Effect Based on SPOC Data. 2018 13th International Conference
on Computer Science Education (ICCSE), pp. 1-5. doi: 10.1109/ICCSE.2018.8468834.

Rezende, D. J., Mohamed, S. & Wierstra, D. (2014). Stochastic Backpropagation and

Approximate Inference in Deep Generative Models. Proceedings of the 31st International
Conference on International Conference on Machine Learning - Volume 32, (ICML’14),

II–1278–II–1286.

Rieber, L. P. (2017). Participation patterns in a massive open online course (MOOC) about

statistics. British Journal of Educational Technology, 48(6), 1295–1304.

Ritter, S., Anderson, J. R., Koedinger, K. R. & Corbett, A. (2007). Cognitive Tutor: Applied

research in mathematics education. Psychonomic bulletin & review, 14(2), 249–255.

Rivers, K. (2017). Automated Data-Driven Hint Generation for Learning Programming.

doi: 10.1184/R1/6714911.v1.

154

Rocktäschel, T., Grefenstette, E., Hermann, K., Kočiský, T. & Blunsom, P. (2015). Reasoning

about Entailment with Neural Attention.

Rosé, C. P., Moore, J. D., VanLehn, K. & Allbritton, D. (2001). A comparative evaluation of
socratic versus didactic tutoring. Proceedings of the Annual Meeting of the Cognitive

Science Society.

RTan. Y.,Quintana, R. M. (2019). What can we learn about learner interaction when one

course is hosted on two MOOC platforms? Companion Proceedings to the International
Conference on Learning Analytics and Knowledge (LAK).

Rus, V., Stefanescu, D., Baggett, W., Niraula, N., Franceschetti, D. & Graesser, A. C. (2014a).

Macro-adaptation in Conversational Intelligent Tutoring Matters. Intelligent Tutoring
Systems, pp. 242–247.

Rus, V., Stefanescu, D., Baggett, W., Niraula, N., Franceschetti, D. & Graesser, A. C. (2014b).

Macro-adaptation in conversational intelligent tutoring matters. International Conference
on Intelligent Tutoring Systems, pp. 242–247.

Rus, V., Stefanescu, D., Niraula, N. & Graesser, A. C. (2014c). DeepTutor: Towards Macro-

and Micro-Adaptive Conversational Intelligent Tutoring at Scale. Proceedings of
the First ACM Conference on Learning @ Scale Conference, (L@S ’14), 209–210.

doi: 10.1145/2556325.2567885.

Rus, V., Stefanescu, D., Niraula, N. & Graesser, A. C. (2014d). DeepTutor: towards macro-and

micro-adaptive conversational intelligent tutoring at scale. Proceedings of the first ACM
conference on Learning@ Scale conference, pp. 209–210.

Sampson, D. & Karagiannidis, C. (2002). Personalised Learning: Educational, Technological

and Standardisation Perspective. Digital Education Review, 24-39.

Schwartz, A. & Hearst, M. (2003). A Simple Algorithm For Identifying Abbreviation

Definitions in Biomedical Text. Pacific Symposium on Biocomputing. Pacific Symposium
on Biocomputing, 4, 451-62. doi: 10.1142/9789812776303_0042.

Sekine, S. & Nobata, C. (2004). Definition, Dictionaries and Tagger for Extended Named Entity

Hierarchy. Proceedings of the Fourth International Conference on Language Resources
and Evaluation (LREC’04). Consulted at http://www.lrec-conf.org/proceedings/lrec2004/

pdf/65.pdf.

Serban, I. V., Gupta, V., Kochmar, E., Vu, D. D., Belfer, R., Pineau, J., Courville, A., Charlin,

L. & Bengio, Y. (2020). A Large-Scale, Open-Domain, Mixed-Interface Dialogue-Based

ITS for STEM. Artificial Intelligence in Education, pp. 387–392.

155

Sethi, I. K. & YOO, J. H. (1997). Structure-driven induction of decision tree

classifiers through neural learning. Pattern Recognition, 30(11), 1893 - 1904.

doi: https://doi.org/10.1016/S0031-3203(97)00005-8.

Shah, D. (2019). By The Numbers: MOOCs in 2019.

Shah, R., Shah, D. & Kurup, L. (2017). Automatic question generation for intelligent tutoring

systems. 2017 2nd International Conference on Communication Systems, Computing
and IT Applications (CSCITA), pp. 127–132.

Shawar, B. & Atwell, E. (2007). Chatbots: Are they Really Useful? LDV Forum, 22, 29-49.

Smith, N. A. (2011). Linguistic Structure Prediction. Morgan and Claypool.

Smola, A. J. & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and
Computing, 14(3), 199-222. doi: 10.1023/B:STCO.0000035301.49549.88.

Stamper, J., Eagle, M., Barnes, T. & Croy, M. (2011a, 06). Experimental Evaluation of Automatic

Hint Generation for a Logic Tutor. 22, 345-352. doi: 10.1007/978-3-642-21869-9_45.

Stamper, J. C., Eagle, M., Barnes, T. & Croy, M. (2011b). Experimental Evaluation of Automatic

Hint Generation for a Logic Tutor. Artificial Intelligence in Education, pp. 345–352.

Stash, N. V., Cristea, A. I. & De Bra, P. M. (2004). Authoring of Learning Styles in Adaptive

Hypermedia: Problems and Solutions. (WWW Alt. ’04), 114–123.

Sundermeyer, M., Schlüter, R. & Ney, H. (2012). LSTM Neural Networks for Language

Modeling. INTERSPEECH.

Talukdar, P. P. & Cohen, W. W. (2012). Crowdsourced Comprehension: Predicting Prerequisite

Structure in Wikipedia. Proceedings of the Seventh Workshop on Building Educational
Applications Using NLP, pp. 307–315.

Tamura, Y., Takase, Y., Hayashi, Y. & Nakano, Y. I. (2015). Generating quizzes for history

learning based on Wikipedia articles. International Conference on Learning and
Collaboration Technologies, pp. 337–346.

Tjong Kim Sang, E. F. & De Meulder, F. (2003). Introduction to the CoNLL-2003 Shared

Task: Language-Independent Named Entity Recognition. Proceedings of the Sev-
enth Conference on Natural Language Learning at HLT-NAACL 2003, pp. 142–147.

Consulted at https://www.aclweb.org/anthology/W03-0419.

156

Tolles, J. & Meurer, W. J. (2016). Logistic Regression: Relating Patient Characteristics to

Outcomes. JAMA, 316(5), 533-534. doi: 10.1001/jama.2016.7653.

Tomkins, S., Ramesh, A. & Getoor, L. (2016). Predicting Post-Test Performance from Online

Student Behavior: A High School MOOC Case Study.

Tosun, N. (2006). Determination of optimum parameters for multi-performance characteris-

tics in drilling by using grey relational analysis. International Journal of Advanced
Manufacturing Technology, 28, 450-455. doi: 10.1007/s00170-004-2386-y.

Tsovaltzi, D., Fiedler, A. & Horacek, H. (2004, 08). A Multi-dimensional Taxonomy for

Automating Hinting. 3220, 772-781. doi: 10.1007/978-3-540-30139-4_73.

Van de Pol, J., Volman, M. & Beishuizen, J. (2010). Scaffolding in teacher–student interaction:

A decade of research. Educational psychology review, 22(3), 271–296.

VanLehn, K., Graesser, A., Jackson, G. T., Jordan, P., Olney, A. & Rosé, C. (2007). When Are

Tutorial Dialogues More Effective Than Reading? Cognitive science, 31 1, 3-62.

VanLehn, K. (2011a). The relative effectiveness of human tutoring, intelligent tutoring

systems, and other tutoring systems. Educational Psychologist, 46(4), 197–221.

doi: 10.1080/00461520.2011.611369. Funding Information: I am grateful for the

close readings and thoughtful comments of Michelene T. H. Chi, Dexter Fletcher, Jared

Freedman, Kasia Muldner, and Stellan Ohlsson. My research summarized here was

supported by many years of funding from the Office of Naval Research (N00014-00-1-

0600) and National Science Foundation (9720359, EIA-0325054, 0354420, 0836012,

and DRL-0910221).

VanLehn, K. (2011b). The Relative Effectiveness of Human Tutoring, Intelligent Tutoring

Systems, and Other Tutoring Systems. Educational Psychologist, 46(4), 197-221.

doi: 10.1080/00461520.2011.611369.

Vanlehn, K. (2011). The Relative Effectiveness of Human Tutoring, Intelligent Tutor-

ing Systems, and Other Tutoring Systems. Educational Psychologist, 46, 197-221.

doi: 10.1080/00461520.2011.611369.

Vanlehn, K., Graesser, A., Jackson, G., Jordan, P., Olney, A. & Rosé, C. (2007). When

Are Tutorial Dialogues More Effective Than Reading? Cognitive science, 31, 3-62.

doi: 10.1080/03640210709336984.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł. & Polo-

sukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing
Systems, pp. 5998–6008.

157

Ventura, M., Chang, M., Foltz, P., Mukhi, N., Yarbro, J., Salverda, A. P., Behrens, J., Ahn, J.-w.,

Ma, T., Dhamecha, T. I. et al. (2018). Preliminary evaluations of a dialogue-based digital

tutor. International Conference on Artificial Intelligence in Education, pp. 480–483.

Vigentini, L. & Clayphan, A. (2015). Pacing through MOOCs: Course Design or Teaching

Effect? Proceedings of the 8th International Conference on Educational Data Mining,
EDM 2015, Madrid, Spain, June 26-29, 2015, pp. 572–573. Consulted at http://www.

educationaldatamining.org/EDM2015/proceedings/poster572-573.pdf.

Vilnis, L. & McCallum, A. (2015). Word Representations via Gaussian Embedding. ICLR.

Voorhees, E. M. & Tice, D. M. (2000). Building a Question Answering Test Collection. Proceed-
ings of the 23rd Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, (SIGIR ’00), 200–207. doi: 10.1145/345508.345577.

Vrandečić, D. & Krötzsch, M. (2014). Wikidata: A Free Collaborative Knowledgebase.

Communications of the ACM, 57, 78-85. doi: 10.1145/2629489.

Walls, J., Widmeyer, G. & Sawy, O. (2004). Assessing information system design theory

in perspective: How useful was our 1992 initial rendition? Journal of Information
Technology Theory and Application, 6, 43-58.

Wang, J., Yang, Y. & Xia, B. (2019). A Simplified Cohen’s Kappa for Use in Binary Classi-

fication Data Annotation Tasks. IEEE Access, 7, 164386-164397. doi: 10.1109/AC-

CESS.2019.2953104.

Wang, Y., Paquette, L. & Baker, R. (2014). A Longitudinal Study on Learner Career Advancement

in MOOCs. Journal of Learning Analytics, 1(3), 203-206. doi: 10.18608/jla.2014.13.23.

Webb, N. M. (1989). Peer interaction and learning in small groups. International journal of
Educational research, 13(1), 21–39.

Weizenbaum, J. (1966). ELIZA—a Computer Program for the Study of Natural Lan-

guage Communication between Man and Machine. Commun. ACM, 9(1), 36–45.

doi: 10.1145/365153.365168.

Willis, A., Davis, G., Ruan, S., Manoharan, L., Landay, J. & Brunskill, E. (2019). Key Phrase

Extraction for Generating Educational Question-Answer Pairs. Proceedings of the Sixth
(2019) ACM Conference on Learning@ Scale, pp. 1–10.

Wilson, J. D. (1990). Artificial Intelligence and Tutoring Systems. Journal of Research on
Computing in Education, 23(1), 142-144.

158

Wood, D. (2003). The Why? What? When? and How? of Tutoring: The Development of

Helping and Tutoring Skills in Children. Literacy teaching and learning, 7, 1–30.

Wood, D. & Wood, H. (1996). Vygotsky, Tutoring and Learning. Oxford Review of Education,

22(1), 5-16. doi: 10.1080/0305498960220101.

Woolf, B. P. (2008). Building Intelligent Interactive Tutors: Student-Centered Strategies for
Revolutionizing e-Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc.

Wu, L. & Looi, C.-K. (2010). Agent Prompts: Scaffolding Students for Productive Reflection in

an Intelligent Learning Environment. Intelligent Tutoring Systems, pp. 426–428.

Yadav, V. & Bethard, S. (2019a). A Survey on Recent Advances in Named Entity Recognition

from Deep Learning models. Consulted at http://arxiv.org/abs/1910.11470.

Yadav, V. & Bethard, S. (2019b). A Survey on Recent Advances in Named Entity Recognition

from Deep Learning models.

Yin, B., Patikorn, T., Botelho, A. F. & Heffernan, N. T. (2017). Observing Personalizations in

Learning: Identifying Heterogeneous Treatment Effects Using Causal Trees. Proceedings
of the Fourth (2017) ACM Conference on Learning @ Scale, (L@S ’17), 299–302.

doi: 10.1145/3051457.3054009.

Zhang, L. & VanLehn, K. (2016). How do machine-generated questions compare to human-

generated questions? Research and Practice in Technology Enhanced Learning, 11(1),

7. doi: 10.1186/s41039-016-0031-7.

Zhang, L. & Vanlehn, K. (2016). How do machine-generated questions compare to human-

generated questions? Research and Practice in Technology Enhanced Learning, 11,

1–28. doi: 10.1186/s41039-016-0031-7.

Zhang, L. & VanLehn, K. (2017). Adaptively selecting biology questions generated

from a semantic network. Interactive Learning Environments, 25(7), 828-846.

doi: 10.1080/10494820.2016.1190939.

Zhang, Y., Paquette, L., Baker, R. S., Ocumpaugh, J., Bosch, N., Munshi, A. & Biswas, G.

(2020). The Relationship between Confusion and Metacognitive Strategies in Betty’s

Brain.

Zhao, K., Huang, L. & Ma, M. (2016). Textual Entailment with Structured Attentions and

Composition. Proceedings of COLING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pp. 2248–2258. Consulted at https:

159

//aclanthology.org/C16-1212.

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A. & Fidler, S. (2015).

Aligning Books and Movies: Towards Story-Like Visual Explanations by Watching

Movies and Reading Books. 2015 IEEE International Conference on Computer Vision
(ICCV), pp. 19-27. doi: 10.1109/ICCV.2015.11.

Appendices

161

APPENDIX A

PILOT PROGRAM DATA COLLECTION

This appendix describes the pilot program data collection conducted for the Korbit ensemble

system to evaluate the performance of this ITS in parallel with the effect of the natural language

generation system. Even Korbit has many pilot programs with many industrial and education

partners. I would like to describe the pilot programs with FPT-Software (Fsoft) which I was

involved 100% as the coordinated project manager. We run three pilot programs with Fsoft,

one of the biggest Information Technology companies in Vietnam. The pilot program allows

Fsoft employees to learn Data Science Courses on the Korbit platform, then ask them to score

how they feel about the system. After three pilots for almost one year, we obtain more than

1000 participants for our experiment with the better feedback pilot by pilot. Our setup asks the

different employees from Fsoft to study with and without the Korbit feedback (hints), or to study

with another platform (Coursera), then evaluate the systems with the questionnaire tables. We

use two ways to collect feedback data as follows:

• On the Korbit platform: we ask users feedback when they finish their module

• On the Typeform platform: to be fair with the other online learning platforms, we use

Typeform to gather users’ feedback.

A.1 Pilot 1 – Learn Data Science Skills with an AI

Fsoft and Korbit agreed to conduct a test pilot using Korbit’s “Learn AI with an AI” course to

upskill and reskill Fsoft employees on AI. Fsoft employees usually have a monetary training and

development allocation (CAD 25) upon completing Udemy, Coursera, etc. Korbit was added

to this list of options and was advertised on the internal Yammer network. The test pilot took

place between September and December 2019. The following analysis is an evaluation of the

results, an A/B test, the platform survey and written feedback provided by the Fsoft users on the

platform.

164

Figure 1.1 Learn Data Science Skills with an AI

A.2 Pilot 2 – Personalized Curriculum

Fsoft will distribute a link to the Korbit platform inside the company to have 2000 employees

register and study data science and machine learning on Korbit. We have completed an initial

test pilot with FPT, and more than 600 employees registered on the platform for the Learn

Data Science skills with an AI course. Many employees skipped exercises and videos, and

management finally decided to set a minimum of 45 exercises per employee. There was a lack

of communication, and many employees were unaware of this requirement.

A.2.1 Experiment Flow

FPT pilot start (tentative): April 22, 2020 End: after 3 months

Total learning time (included quizzes/ assignments): 10.5 hours Users will be able to personalize

their learning path (select skills)

• Pre-quiz: 15 minutes

165

Figure 1.2 Personalized Curriculum

• Post-quiz: 30 minutes

for the multiple-choice questions and 120 minutes for the model applications

Course content, videos (see below, point 4)

Questions and answers (14 modules, 3 exercises/module, 5 minutes/exercise: 210 minutes) Total

estimate: (content: 110 + 180 + questions and answers: 210 + pre- and post quizzes: 120 + 15 =

635 minutes 10.5 hours)

Course duration Depends on the skills users select (they can select one or more skills)

• Min: 30 minutes

• Max: 110 minutes

166

of video (new content) and 180 minutes of video (machine learning content)

Pass criteria (Grade scale: 10)

Diligence score: frequency of learning, time of interaction, questions and answers (20Users

watch videos: Number of watched minutes/ total video minutes (minimum 50%)

Users interact with Korbi: questions/answers/hints: how many interactions does a student have

with Korbit?

E.g., ten questions -> how many correct answers does a user have? Number of answers/Number

of questions (minimum 50%)

E.g., ten questions -> how many interactions does a user have? Number of interactions/Number

of questions (minimum 50%)

Knowledge score: post-quizzes (80%) : 8 MCQ

Theory post-quizzes: 60% MCQ

Programming quizzes (models): 40% - MCQ with given dataset (2000 exercises -> sample

them)

Total score: Diligence score + Knowledge score (grade scale: 10)

<50%: failed (5) - nothing, ask to study again

>50%: passed (5) - certificate

>75%: excellent (7.5) - certificate + bonus (medals)

The way to get support directly from Korbit. Users: Email (vu@korbit.ai) TeamViewer

(Remote) - configure, setup the learning (e.g., register users/passwords)

Access the admin panel (reports) - dashboard

167

A.3 Pilot 3 – Comparison performance of two online learning platforms for employee
internal training

A.3.1 Experiment Flow

FPT pilot: April 2021

Send out a recruitment email with a link to the enrollment survey: https://korbitai.typeform.com/

to/ICg5SAWn

Wait a few days for employees to respond.

When enough employees have responded, take the responses from TypeForm and filter out

overqualified employees for the study (those who already have experience with AI/stats/math/data

science/etc.)

Take the resulting list of employees from step 3 and send them an email asking them to confirm

their participation in the study here: https://korbitai.typeform.com/to/gMZRLX65

Download the list of participants who confirmed their participation from TypeForm. This is

now the list of employees who will participate in the study.

Randomly divide the list of participants into two groups. Group 1 (33% of participants) for

Coursera. And Group 2 (66% of participants) for Korbit. The Korbit group will then randomly be

assigned one of the two Korbit variants when they sign-up (with feedback or without feedback).

So we will end up with 33% Coursera, 33% Korbit without feedback, 33% Korbit with Feedback.

On May 4th (ideally in the morning Vietnam time), send an email to Group 1 explaining that

the study is starting today, and that includes a PDF of the Coursera instructions : https://docs.

google.com/document/d/136EgvAxDtLkHBW_2jcj4X94IGV24zG0AXFWsQVKcXN4/edit

168

On May 4th (ideally in the morning Vietnam time), send an email to Group 2 explaining that the

study is starting today, and that includes a PDF of the Korbit instructions : https://docs.google.

com/document/d/1uaR3oFJJhvzfhla0JBxVwUoXCkAzbfHE-2moQpB7sDI/edit

Monitor the experiment and respond to questions and issues.

Participants have until May 9th before midnight (gmt+7) to complete the course. On May 9th,

during the day (Montreal time), check that every participant from Group 1 has uploaded their

“week 1 quiz answers” here: https://korbitai.typeform.com/to/mU5BHbYD

And that Group 2 participants have uploaded their completion certificate here: https://korbitai.

typeform.com/to/m37HpsWr

Participants who don’t upload those won’t continue in the experiment.

From TypeForm, download the list of participants who have uploaded their “week 1 quiz answers”

(Group 1) and their completion certificate (Group 2).

On May 10th in the morning (GMT+7), send an email to the participants from step 11 saying

something to the effect of: “Congratulations on completing the course. Please complete the first

final quiz before the end of the day. The second final quiz will take place on May 24th.” with the

link to the post-quiz: https://korbitai.typeform.com/to/iUzvSvoz

On May 24th in the morning (GMT+7), send an email to the participants who completed the

final quiz, saying something to the effect of: “Congratulations on completing the first final quiz.

Please complete the second final quiz before the end of the day. with the link to the delayed quiz:

https://korbitai.typeform.com/to/DFlMOkxT

On May 25th, send an email to the participants who completed the delayed quiz, saying something

to the effect of “Thank you for completing the study. You will receive an official email from

Korbit stating that you have completed the course and the quizzes. Don’t forget to fill out the

feedback form:

169

https://korbitai.typeform.com/to/OUaihHoo\T1\textquotedblright

Figure 1.3 Korbit platform

A.3.2 Instruction Document of studying on Korbit

Please make sure to complete each step of this document in order. You will need about 4 hours

in total to complete all the steps, which include a preliminary quiz (30 min), an online course on

linear regression (2 hours), and a final quiz (1 hour 30 min) Course Subject: Linear Regression

Platform: Korbit AI

Complete the preliminary quiz: Quiz link: https://www.korbit.ai/fpt-pre-quiz

Sign-up to Korbit. Go to https://app.korbit.ai/signup/curriculum/linear-regression And complete

the sign-up process. You will automatically be assigned with the linear regression course. Create

an account with your FPT email address. For a better experience on the platform, please use

Chrome or Firefox.

170

Complete the course before May 23rd at 11:59 pm GMT+7. Get your completion certificate by

completing each module on your learning path. While studying on Korbit, please avoid using

any external help or resources (e.g., other websites).

Upload your completion certificate before May 23rd at 11:59 pm GMT+7 Upload link: https:

//www.korbit.ai/fpt-completion-certificate-upload

Complete the final quiz before May 24th at 11:59 pm GMT+7 If you’ve successfully completed

steps 1 through 4, you will receive an email from Korbit on May 24th at 8:00 am GMT+7. This

email will contain a link to the final quiz. This quiz contains a coding assessment. You will

have 1 hour to complete the coding assessment part.

Fill out this feedback form: Link:https://www.korbit.ai/fpt-feedback-survey

Once step 6 is completed, you will receive a confirmation email from Korbit, attesting that you

have completed the study.

A.3.3 Instruction Document of studying on Coursera

Please make sure to complete each step of this document in order. You will need about 4 hours

in total to complete all the steps, which include a preliminary quiz (30 min), an online course on

linear regression (2 hours), and a final quiz (1 hour 30 min) Course Subject: Linear Regression

Platform: Coursera

Complete the preliminary quiz. Quiz link: https://www.korbit.ai/fpt-pre-quiz

Enroll in the Coursera course on linear regression and modeling. Choose the “Audit the course”

option. Go to https://www.coursera.org/learn/linear-regression-model and click on the “Enroll

for Free” button (ignore the date). Sign-up with the email address you provided us and click on

“Join for Free”.

Read and accept the consent form for this study. Consent form link: https://www.korbit.ai/

fpt-study-consent

171

Complete only week 1 of the course before May 23rd at 11:59 pm GMT+7. You must:

• Watch all week 1 video

• Complete all the week 1 reading

• Complete and pass the week 1 practice quiz

• Complete the week 1 quiz (no need to submit it on Coursera)

• Avoid using any external help or resources (e.g., other websites)

Upload a screenshot of your week 1 practice quiz result. Upload the screenshot before May 23rd

at 11:59 pm GMT+7. Upload link: https://www.korbit.ai/fpt-mooc-week-one-practice-quiz

Please make sure your name and quiz grade are visible (see format below).

Complete the final quiz before May 24th 11:59 pm GMT+7. If you’ve completed steps 1 through

5, you will receive an email from Korbit on May 24th at 8:00 am GMT+7. This email will

contain a link to the final quiz.

This quiz contains a coding assessment. You will have 1 hour to complete the coding assessment

part.

Fill out this feedback form: https://www.korbit.ai/fpt-feedback-survey

Once step 7 is completed, you will receive a confirmation email from Korbit, attesting that you

have completed the study.

