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FOREWORD

This dissertation is written based on the author’s Ph.D. research outcomes under the supervi-

sion of Professor Georges Kaddoum from September 2017 to December 2021. This work is

financially supported by the Natural Sciences and Engineering Research Council of Canada un-

der Project RDCPJ 501617-16 and the Fonds de recherche du Québec under Doctoral Research

Scholarships 2020-2021. The main theme of this dissertation focuses on the emerging topic for

resource management in fog computing networks. This dissertation is written as a monograph

based on two published IEEE journal papers and two submitted IEEE journal papers as the first

author.

In this dissertation, the first two chapters present the introduction and the literature review of

fog computing and resource management algorithms. Next, the following four chapters are

written based on my research journal papers. Finally, the conclusion and the recommendation

for future work are given in the last chapter.
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Système de gestion des ressources basé sur l’intelligence artificielle pour les réseaux
informatiques de brouillard

Jungyeon Baek

RÉSUMÉ

De nos jours, la technologie est devenue une partie essentielle de la vie humaine et le monde

numérique se développe rapidement et progresse en termes de technologies de mise en réseau.

L’augmentation rapide des services et des applications sans fil exige des réseaux plus rapides et

de plus grande capacité. De plus, l’Internet des objets (IoT) alimente le besoin d’une connec-

tivité massive des appareils et d’interactions ultra-fiables et en temps réel. Dans ce contexte,

l’informatiques de brouillard (fog computing) est apparu comme une solution attrayante pour

répondre à ces exigences tout en gérant de près les demandes croissantes de données en rap-

prochant les services de l’informatique dans les nuages (cloud computing) des terminaux et

en intégrant des serveurs virtualisés. D’une part, en raison des demandes de trafic volatiles

et des ressources limitées en capacité (par exemple, calcul, stockage et batteries), les réseaux

de brouillard nécessitent une plate-forme intelligente distribuée qui peut s’adapter aux change-

ments du réseau et gérer efficacement l’exécution de tâches complexes basées sur le exigences

de candidature. D’autre part, étant donné que les nœuds de calcul sont relativement proches les

uns des autres dans les réseaux de brouillard, le déchargement des tâches est particulièrement

utile et permet d’équilibrer la charge en répartissant la charge de travail entre les différents

nœuds du réseau.

Dans cette thèse, trois objectifs principaux pour la conception de réseaux informatiques in-

telligents distribués sont considérés. Les trois objectifs sont l’évolutivité, l’hétérogénéité et

la gestion de la qualité de service (QoS). Plus précisément, afin d’améliorer l’utilisation des

ressources et les performances du réseau, l’hétérogénéité des ressources, la qualité de ser-

vice et les caractéristiques des tâches sont étudiées. Pendant ce temps, des architectures

hiérarchiques de l’informatiques de brouillard sont appliquées pour répartir les charges de

travail et les communications dans le temps et dans l’espace, permettant une gestion flexi-

ble. De plus, des algorithmes de gestion des ressources distribuées au niveau des nœuds de

brouillard, des points d’accès (AP) et des utilisateurs mobiles (MU), sont mis en œuvre pour

gérer et allouer de manière optimale les ressources. En particulier, cette thèse propose des

schémas prometteurs pour permettre une gestion des ressources efficace et évolutive pour les

réseaux de l’informatique dans les nuages en utilisant l’apprentissage par renforcement (RL)

et l’apprentissage profond comme outils principaux.

Dans cette veine, le chapitre 2 étudie le problème mixte de déchargement de tâches et d’allocation

de ressources tout en considérant des tâches de service hétérogènes en termes de caractéris-

tiques de ressources et d’exigences de QoS. Nous proposons un schéma dans lequel chaque

nœud de brouillard trouve indépendamment les politiques optimales de déchargement des

tâches et d’allocation des ressources dans des environnements partiellement observables dans

le but de maximiser les tâches de traitement achevées avec succès dans leurs limites de temps.



X

Par conséquent, une approche basée sur le l’apprentissage par renforcement est proposée pour

relever les défis associés aux informations de réseau incomplètes et à l’observabilité partielle.

Le chapitre 3 propose un nouvel algorithme de déchargement partiel et de planification des

ressources pour les réseaux multi-brouillards où la quantité de tâches de déchargement, la

vitesse de calcul et le niveau d’utilisation du processeur sont conjointement optimisés. Par

conséquent, une nouvelle méthode basée sur le réseau Q récurrent profond est fournie pour

minimiser la consommation d’énergie totale tout en maximisant le nombre de tâches exécutées

avec succès avec une bande passante et des ressources unité centrale de traitement (CPU) lim-

itées.

Contrairement aux chapitres 2 et 3, où les décideurs (nœuds de brouillard) sont entièrement

décentralisés, c’est-à-dire des apprenants indépendants qui ne communiquent pas directement

entre eux, au chapitre 4, les points d’acces, en tant que décideurs, apprennent à communiquer

avec les points d’acces voisins via des canaux de communication limités pour coordonner leur

comportement. Dans ce contexte, un nouveau cadre l’apprentissage par renforcement acteur-

critique est proposé pour minimiser les liens et serveurs surchargés et le coût global de la bande

passante. Nous étendons le modèle acteur-critique selon lequel le réseau critique est conçu

pour un apprentissage centralisé en partageant des paramètres entre les points d’acces. En re-

vanche, les réseaux d’acteurs individuels dans chaque points d’acces s’efforcent d’apprendre

la politique optimale uniquement en utilisant des messages d’information et de communica-

tion locaux. Le schéma proposé peut faire progresser le développement de la communication

pour un apprentissage efficace de la périphérie (edge learning) et l’application d’algorithmes

d’apprentissage distribué.

Le chapitre 5 présente l’apprentissage par renforcement multi-agents (MARL) et les principales

applications potentielles de MARL pour les réseaux de sixième génération (6G). À mesure que

les services et applications sans fil deviennent plus sophistiqués et intelligents, il est prévisi-

ble que les futurs réseaux sans fil deviendront omniprésents par l’intelligence artificielle (IA).

Compte tenu des applications d’IA omniprésentes et des réseaux de communication sans fil

dynamiques, il est crucial de créer des agents d’IA capables de s’adapter aux changements du

réseau et de coopérer les uns avec les autres. Ce chapitre comprend une étude de cas sur la

gestion coordonnée des ressources multi-agents dans les réseaux informatiques de périphérie

6G. L’étude démontre l’importance des méthodes de coordination pour obtenir une intelligence

distribuée dans les réseaux 6G.

Mots-clés: informatiques de brouillard, déchargement des calculs, répartition de charge, ap-

prentissage par renforcement, réseaux de neurones.



Artificial Intelligence-Empowered Resource Management System for Fog Computing
Networks

Jungyeon Baek

ABSTRACT
Nowadays, technology has become an essential part of human life and the digital world is

expanding rapidly and advancing in terms of networking technologies. The rapid increase

wireless services and applications is demanding faster and higher-capacity networks. Addi-

tionally, the Internet-of-Things (IoT) is fueling the need for massive device connectivity and

ultra-reliable and real-time interactions. In this context, fog computing has emerged as an ap-

pealing solution to meet these requirements while closely handling growing data demands by

bringing cloud computing services closer to end devices and integrating virtualized servers. On

the one hand, due to volatile traffic demands and capacity-limited resources (e.g., computation,

storage, and batteries), fog networks require a distributed intelligent platform that can adapt to

network changes and efficiently manage the execution of complex tasks based on the applica-

tion requirements. On the other hand, given the fact that computing nodes are relatively close

to each other in fog networks, task offloading is particularly useful and enables load balancing

by distributing the workload among different nodes throughout the network.

In this thesis, three main objectives for designing distributed intelligent computing networks

are considered. The three objectives are scalability, heterogeneity, and quality of service (QoS)

management. Specifically, in order to improve resource utilization and network performance,

heterogeneity in resources, QoS, and task characteristics are investigated. Meanwhile, hier-

archical fog computing architectures are applied to distribute workloads and communications

across time and space, enabling flexible management. Moreover, distributed resource man-

agement algorithms at the fog nodes, access points (AP), and mobile users (MU), are imple-

mented to optimally manage and allocate resources. In particular, this thesis proposes promis-

ing schemes to enable efficient and scalable resource management for fog computing networks

using reinforcement learning (RL) and deep learning as primary tools.

In this vein, Chapter 2 studies a joint task offloading and resource allocation problem that con-

siders heterogeneous service tasks in terms of resource characteristics and QoS requirements.

We propose a scheme in which each fog node independently finds the optimal task offloading

and resource allocation policies in partially-observable environments with the aim of maxi-

mizing the processing tasks successfully completed within their time limits. Hence, a deep

recurrent RL-based approach is proposed to tackle the challenges associated with incomplete

network information and partial observability.

Chapter 3 proposes a novel partial offloading and resource scheduling algorithm for multi-

fog networks where the amount of offloading tasks, computational speed, and CPU utilization

level are jointly optimized. Hence, a novel method based on the deep recurrent Q-network

is provided to minimize the total energy consumption while maximizing the number of tasks

successfully executed with limited bandwidth and CPU resources.
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In contrast to Chapters 2 and 3, where decision-makers (fog nodes) are fully decentralized, i.e.,

independent learners that do not directly communicate with each other, in Chapter 4, APs as

the decision-makers learn to communicate with neighboring APs over limited communication

channels to coordinate their behavior. In this context, a new actor-critic RL framework is

proposed to minimize the overloaded links and servers and overall bandwidth cost. We extend

the actor-critic model whereby the critic network is designed for centralized learning by sharing

parameters among the APs. In contrast, the individual actor networks in each AP strive to learn

the optimal policy only using local information and communication messages. The proposed

scheme can advance the development of communication for efficient edge learning and the

application of distributed learning algorithms.

Chapter 5 introduces multi-agent reinforcement learning (MARL) and major potential appli-

cations of MARL for sixth-generation (6G) networks. As wireless services and applications

become more sophisticated and intelligent, it is foreseeable that future wireless networks will

become AI-pervasive. Given the ubiquitous AI applications and dynamic wireless communi-

cation networks, it is crucial to build AI agents that are capable of adapting to network changes

as well as cooperate with each other. This chapter includes a case study of coordinated multi-

agent resource management in 6G edge computing networks. The study demonstrates the

importance of coordination methods to achieve distributed intelligence in 6G networks.

Keywords: fog computing, computation offloading, load balancing, reinforcement learning,

and neural networks.
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INTRODUCTION

Motivation, challenges, and research objective

Managing the data traffic generated by mobile devices, the Internet of things (IoT), and sen-

sors is one of the biggest challenges expected in the development of future wireless networks.

According to Cisco (2018), by 2023, 29.3 billion networked devices will be connected to the

Internet, and global mobile devices will grow from 8.8 billion in 2018 to 13.1 billion. The

International telecommunication union (ITU) in [ITU (2015)] estimates that each mobile sub-

scriber will consume 39.4 GB of average data traffic per month in 2025, and this will be around

257 GB in 2030.

To handle such explosive traffic demands, a shared pool of computing resources, such as cores,

memory, and storage in geographically remote cloud data centers has been an important trend

over the past decade. However, traditional cloud computing is encountering growing chal-

lenges. The fundamental challenge is the connectivity between the cloud and end devices.

Such connectivity is set over the Internet, which is not suitable for a large set of applications,

such as delay-sensitive services, due to high communication latency. Well-known examples

of delay-sensitive applications include autonomous vehicles, augmented reality (AR)/virtual

reality (VR), live-streaming, and a broad range of mobile applications. Furthermore, such ap-

plications are mainly distributed and consumed at the network edge, where traditional cloud

computing induces network bottlenecks and privacy gaps due to the transfer of traffic from end

devices to the remote cloud center. In addition, the irreplaceable dependency on cloud com-

puting demands the data centers to be continuously up and running, which consumes a huge

amount of power and yields a large carbon footprint [Sarkar, S., Chatterjee, S. & Misra, S.

(2018)].
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Figure 0.1 ITU estimations of global mobile traffic with and

without machine-to-machine (M2M) traffic in 2020-2030

Taken from [ITU (2015)]

To address these challenges, fog computing has been introduced as a solution that brings cloud

services physically and logically closer to ‘Things’ (e.g., sensors, mobile phones, switches,

routers, vehicles) [Peng, M., Yan, S., Zhang, K. & Wang, C. (2016); Chiang, M. & Zhang, T.

(2016)]. For example, commercial edge routers with high processing speed, a large number

of cores, and a connection to the outer layers of the network, can become a server for the fog

computing network [Tordera, E. M., Masip-Bruin, X., Garcia-Alminana, J., Jukan, A., Ren,

G.-J., Zhu, J. & Farré, J. (2016)]. Fog computing is a highly virtualized platform that builds

and offers computing capabilities by an end-to-end architecture [Yi, S., Li, C. & Li, Q. (2015);

Buyya, R. & Dastjerdi, A. (2016)]. Fog computing is versatile due to its diverse range of

features, such as computation, networking, storage, and control. Fog computing supporting

real-time processing, analysis, and decision-making can accelerate the deployment of mission-
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critical applications. Some of the expected benefits from the deployment of fog computing are

new ultra-low latency services, traffic optimization, and energy efficiency improvements.

From an architectural perspective, hierarchical computing architectures have been suggested

for fog computing [OpenFog Consortium Architecture Working Group (2017); Hu, P., Dhelim,

S., Ning, H. & Qiu, T. (2017)]. This structure is composed of fog nodes located between

the cloud and end devices, which helps distribute the processing of delay-aware services and

applications [Sarkar, S. & Misra, S. (2016)]. Fog nodes can be either physical elements (e.g.,

base stations (BS), switches, gateways) or virtual elements (e.g., virtual machines (VMs)),

which typically increase in capacity as they get closer to the cloud.

Although moving services to the fog nodes introduces many advantages, such as lower re-

sponse time and bandwidth, distributing the logic to different network nodes introduces new

issues and challenges. First, the fog computing network must consider the heterogeneity of

the fog nodes, with various degrees of computational and storage capabilities and energy con-

straints. Further, because these nodes are connected to the local devices that are distributed over

a large geographic area, the traffic demands are likely to be extremely dynamic. Imbalanced

fog nodes that handle highly disparate traffic volumes would lead to inefficient use of resources

and unequal quality of service (QoS). Moreover, due to the multi-layer and distributed environ-

ments, traditional resource management schemes need to be redesigned to accommodate the

fog computing paradigm.

In this context, the need for smart and autonomous network designs has become a central re-

search topic in fog computing implementations. Taking the aforementioned challenges into

account, this thesis aims to design a distributed intelligent platform in which the fog nodes

can interact and cooperate to satisfy stringent QoS requirements as well as self-adapt to time-

varying environments with uncertainties. The growing intelligence of wireless networks moti-

vates the development of learning-based approaches. In particular, we focus on reinforcement
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learning (RL) approaches that can find the optimal control policy for unknown environments

by learning from experience. Learning-based approaches are expected to play a critical role in

the deployment of distributed, intelligent, and flexible networks. More specifically, future fog

computing networks require high levels of intelligence to ensure efficient, robust, and resilient

resource management.

Contributions and Outline

The organization of this dissertation, which includes five chapters, is structured and detailed

as follows. In Chapter 1, a comprehensive literature review of edge computing technology

and resource management in fog computing networks is provided. In this vein, the concepts

of distributed computing and related technologies are presented. Additionally, recent works

on resource management and system designs in fog networks are discussed. In particular, we

focus on learning-based approaches for modeling and solving distributed resource management

problems.

Chapter 2 presents the first article studying a computational task offloading technique in a fog

network and proposing a novel task offloading and resource allocation scheme for a two-level

heterogeneous task model. More specifically, service tasks are classified into types according

to two characteristics, i.e. resource configurations (required resource sizes) and QoS require-

ments. In this context, we develop a novel architecture in which each fog node independently

finds the optimal task offloading and resource allocation policies in partially-observable en-

vironments. The aim is to maximize the processing tasks completed within their delay time

limits. To tackle the challenges associated with incomplete network information and partial-

observability, we develop a deep reinforcement learning (DRL)-based scheme and extend it by

combining recurrent neural networks (RNN).
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Chapter 3 presents the second article proposing a novel partial offloading and resource schedul-

ing algorithm in a hierarchical fog network. In this model, two kinds of service types are con-

sidered: service types that can be offloaded to other nodes for execution and service types that

can only be processed by the node where the data originally arrived. With the stochastic nature

of task arrivals and limited resources, independent fog nodes are modeled as a stochastic game.

A deep recurrent Q-network (DRQN) is used to find an optimal joint policy that minimizes

the total energy consumption while maximizing the number of tasks completed within their

deadline. In particular, the number of offloading tasks, computational speed, and CPU utiliza-

tion level are jointly optimized under service requirements and limited bandwidth and CPU

resources constraints.

Chapter 4 presents the third article developing a novel load balancing scheme in a combined

edge-fog-cloud environment. The joint optimization problem is formulated with multiple co-

operative access points (APs) to minimize the number of overloaded network links and servers

as well as the overall link bandwidth cost. In this context, we propose a novel multi-agent

actor-critic policy gradient method to design the load balancing scheme in fog networks. To

enhance our proposed distributed learning method, we extend the actor-critic model with com-

munication protocols to coordinate the behavior of the individuals and improve the overall

learning performance.

Chapter 5 presents the fourth article introducing the importance of multi-agent reinforcement

learning (MARL) in future wireless networks and discussing the potential applications of

MARL in 6G networks. While single-agent RL methods have rapidly emerged in the wire-

less communication domain, future wireless networks will face a wide range of multi-agent

problems in which many distributed nodes need to make independent decisions based on their

local observations. Furthermore, future intelligent objects (IoT devices, network nodes, BSs,

etc.) will have to cooperate with other intelligent objects and humans as artificial intelligence
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(AI) functions become pervasive in wireless applications. Thus, investigating the MARL de-

velopments in the context of wireless communication is of critical importance. Moreover, we

provide open challenges and core research questions to be considered in future wireless appli-

cations.



CHAPTER 1

LITERATURE REVIEW: EDGE COMPUTING TECHNOLOGY, FOG COMPUTING
ARCHITECTURE, AND RESOURCE MANAGEMENT

1.1 Edge computing technologies

The critical need for IoT devices and near-user edge devices to carry out substantial data pro-

cessing with ultra-low latency triggered adaptive and decentralized computational paradigms

that complement the centralized cloud computing model. Thus, a new computational paradigm,

called edge computing, has been introduced to bridge these technological gaps. Edge comput-

ing is a distributed computing paradigm that selectively moves some functionalities of the

cloud (e.g., computation, control, and decision-making) to the vicinity of end-users [Kaur, K.,

Dhand, T., Kumar, N. & Zeadally, S. (2017); Mouradian, C., Naboulsi, D., Yangui, S., Glitho,

R. H., Morrow, M. J. & Polakos, P. A. (2017)].

This section describes three different technologies (Fog computing, Multi-access edge com-

puting (MEC), and Cloudlet) within the realm of edge computing and highlights how fog

computing differs from other technologies. In addition, related works on the fog computing

architecture and its motivations are discussed.

1.1.1 Definition of Fog Computing, MEC, and Cloudlet

1.1.1.1 Fog computing

Fog computing represents a platform that brings cloud computing to the proximity of end-users.

The term “Fog” was initially introduced by Cisco and proposed in the area of IoT networks to

help execute applications and services [Bonomi, F., Milito, R., Zhu, J. & Addepalli, S. (2012)].

As the clouds are far above the sky, the fog is closer to the ground. The same concept is used

by fog computing, in which fog nodes as a distributed computing unit are deployed at any

point between the end devices and the cloud. The fog nodes are heterogeneous and can be
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different kinds of elements with processing capabilities, including but not limited to routers,

APs, IoT gateways, and BSs. The heterogeneity of the nodes enables them to support devices

with different protocol layers and access technologies [Tordera et al. (2016)].

Although both cloud and fog paradigms share an almost similar set of functionalities, such

as computation, storage, and networking, there are some differences. Fog deployments tar-

get a specific geographic region [Yi et al. (2015)]. Moreover, the fog is specifically designed

for applications requiring real-time response with minimum latency, e.g., mission-critical ap-

plications. Alternatively, the cloud is centralized and is mostly far from the user. Hence, it

suffers from some performance limitations regarding latency and response time for real-time

applications. This makes cloud-only solutions impractical for many use-cases. In other words,

because of its capability to support services that require fast analysis and decision-making, the

fog computing platform is suited for use-cases with demanding requirements for scalability,

low latency, availability, and bandwidth.

1.1.1.2 MEC

Mobile edge computing is designed to bring cloud computing capabilities and IT services at

the edge of cellular networks [Ahmed, E. & Rehmani, M. H. (2017)]. MEC offers low latency,

proximity, context and location awareness, and high network bandwidth. MEC servers are de-

ployed at cellular BSs enabling flexible and rapid deployment of new applications and services.

It can also be deployed at the LTE macro base station (eNodeB) sites, 3G radio network con-

troller (RNC), and multi-radio access technology (RAT) sites. MEC can be envisioned as cloud

servers running at the edge of mobile networks and performing specific tasks that cannot be

achieved with the traditional cloud network infrastructure. Instead of forwarding all traffic to

the remote cloud, the MEC shifts traffic targeted for the centralized cloud to the MEC servers.

In this way, the MEC servers run applications and perform related processing tasks closer to

the cellular customers, reducing network congestion and application response time [Taleb, T.,

Samdanis, K., Mada, B., Flinck, H., Dutta, S. & Sabella, D. (2017)].
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MEC was announced in 2014 by the European telecommunications standards institute (ETSI)

as an industry specification [Patel, M., Naughton, B., Chan, C., Sprecher, N., Abeta, S., Neal,

A. et al. (2014)]. An Industry Specification Group (ISG) within ETSI has been developing

system architectures and standardizing some APIs essential for MEC. In 2013, Nokia intro-

duced MEC as a step toward autonomous driving. BSs with distributed MEC have shown an

end-to-end latency of less than 20 ms, while the latency between vehicles and a central cloud

is usually more than 100 ms [Chamola, V., Tham, C.-K. & Chalapathi, G. S. (2017)]. How-

ever, the initial MEC scope was expanded in March 2017 to encompass non-mobile network

requirements. With the replacement of ‘Mobile’ by ‘Multi-Access’ in the name, multi-access

edge computing (MEC) provides a new ecosystem in which operators can open their radio

access network (RAN) edge to authorized third parties, allowing them to flexibly and rapidly

deploy innovative applications as a result of the scope expansion [ETSI (2018)].

1.1.1.3 Cloudlet

Despite the significant technological advances, mobile devices, such as smartphones and tablets,

still lack resources compared to other stationary devices, like laptops and wireless access

points. Meanwhile, there is a significant increase in the development of various mobile ap-

plications. Most of the emerging applications require more resources to handle their service

demands with minimum latency [Kaur et al. (2017)]. To meet these requirements, cloudlets

were designed explicitly as a virtualization feature that provides computing resources to mo-

bile users. The concept of cloudlet was proposed by [Satyanarayanan, M., Bahl, P., Caceres,

R. & Davies, N. (2009)]. A cloudlet is a “data center in a box” that can provide cloud services

closer to mobile users. Cloudlets reuse modern cloud computing techniques such as VM-based

virtualization [Satyanarayanan, M., Lewis, G., Morris, E., Simanta, S., Boleng, J. & Ha, K.

(2013)]. Thanks to the VM technology, cloudlets can dynamically scale up and down to sup-

port the broadest possible range of mobile users with minimal software constraints.

Using cloudlets, mobile devices run one or more VMs that can offload resource-intensive com-

putational tasks to ensure a real-time interactive response. The current definition of cloudlets
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has no regard for the interaction with the cloud. Instead, cloudlets can act as a complete cloud

on the edge because they can exist as a standalone environment without cloud intervention

[Satyanarayanan et al. (2009)]. In addition, a cloudlet is based on standard cloud technologies,

making it similar to traditional cloud infrastructures, such as Amazon and OpenStack [Ha,

K. & Satyanarayanan, M. (2015)].

1.1.2 Comparison of Fog Computing, MEC, and Cloudlet

This discussion focuses on fog computing, MEC, and cloudlet, where most of the currently

available edge technology works are based on these technologies. Fog computing, MEC, and

cloudlet essentially propose the use of proximity computing resources rather than remote re-

sources in data centers and rely on virtualization. However, there are a few subtle differences

between these technologies that need to be distinguished.

First, the three technologies were proposed and are being developed by different organizations.

MEC is driven by ETSI, an industry consortium that has been developing technical standards

for MEC. Cloudlet was introduced by the cloud computing research community, and an im-

plementation prototype was developed as a research project [Mouradian et al. (2017)]. Fog

computing, on the other hand, originated from the area of networking, where OpenFog was

founded by high-tech companies and academic institutions with the goal of producing a stan-

dard specification for fog computing [OpenFog Consortium (2017)].

Another difference is that cloudlet solely relies on VM technology for virtualization, whereas

MEC and fog consider virtualization technologies other than VM [Bilal, K., Khalid, O., Erbad,

A. & Khan, S. U. (2018)]. Furthermore, each technology targets different central applications.

Cloudlets focus primarily on mobile offloading applications, while MEC targets any appli-

cation that is better provisioned at mobile or non-mobile edges. Fog computing offers more

flexibility in choosing devices that can span the cloud and edge. Because fog nodes leverage

legacy devices by adding processing and storage, applications can be fully provisioned any-

where between the end-devices and the cloud, but typically have less computation and storage
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capacities than the cloud. Moreover, an abstraction layer is required in fog networks due to the

heterogeneity and diversity of fog nodes, which is unnecessary in MEC and Cloudlets as they

use dedicated devices as nodes. Unlike cloudlet and MEC, fog is closely linked to the presence

of the cloud. This has driven particular attention to the interaction between fog and cloud.

1.2 Fog Computing Architecture

The goal of the fog network is to connect every component along a continuum from cloud to

things. However, managing such a network, maintaining connectivity, and providing services

is challenging, especially in massive connectivity scenarios. This section discusses available

works related to the architectural aspects of fog computing.

1.2.1 Software-Defined Networking (SDN)-based Fog Computing Architecture

1.2.1.1 Definition of SDN

SDN has emerged to provide a flexible and scalable architecture that can handle network con-

gestion and easily maintain a network environment. In SDN, the data and control planes are

separated from each other to reduce network congestion and complexity. In general, the SDN’s

communication infrastructure operates according to standards designed by the Open Network-

ing Foundation (ONF). The OpenFlow (OF) protocol is used to handle traffic flows in SDN

[Mahmood, K., Chilwan, A., Østerbø, O. & Jarschel, M. (2015)]. The SDN-based architecture

consists of three separate planes: data, control, and application planes [Benzekki, K., El Fer-

gougui, A. & Elbelrhiti Elalaoui, A. (2016)]. The operation of these planes is discussed below.

- SDN Data plane

The data plane in SDN consists of all forwarding devices, such as OF physical switches,

OF virtual switches, OF routers, and OF gateways [Jain, R. & Paul, S. (2013)]. All these

forwarding devices act on the forwarding decisions made by the controller in the SDN

control plane. These decisions are organized into a flow table in the delivery device using
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a data control plane interface. The flow tables operate according to the instructions added

to the instruction set available on the controller [Aujla, G. S., Chaudhary, R., Kumar, N.,

Rodrigues, J. J. & Vinel, A. (2017)].

- SDN Control plane

The control plane is the core of the SDN architecture and serves as the decision-making

plane. This plane works according to the centralized control logic provided to the con-

troller. The main functions of this plane are to install control commands on the forwarding

devices, manage and keep global information of all SDN applications running at the ap-

plication plane, and collect feedback from the forwarding devices. Therefore, the SDN

controller provides an abstract model of the underlying network for the SDN application

layer. Moreover, the controller can use the network operating system to create a virtual

controller using a hypervisor. One of the essential characteristics of SDN is that the control

logic can be programmed and reconfigured according to the environment [Li, H., Dong,

M. & Ota, K. (2016)].

- SDN Application plane

With the help of network virtualization, the controller creates multiple virtual networks

on the physical network. Virtualization allows multiple virtual machines to run multiple

SDN applications simultaneously. Hence, network virtualization is an efficient solution for

handling extensive resources. It shares resources, provides isolation between users, and

aggregates small resources across physical devices [Mahmood et al. (2015)]. SDN applica-

tions are software programs that run to manage the resources and networks efficiently. With

the interface between the application and the control plane, the control logic generated by

the SDN controller handles internal decisions directly and maintains an abstract view of the

network.
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1.2.1.2 Recent SDN-based Fog Computing Architectures

The deployment of SDN can enable the implementation and management of many aspects of

fog computing, such as resource allocation, VM migration, topology monitoring, application-

aware control, and programmable interfaces. The potential of this concept lies in the fact that

traffic engineering and resource management can be performed more efficiently in a central-

ized system with insights into the applications’ requirements and available resources. Fog

nodes in a fog computing network can be managed by an SDN controller to address the appli-

cations that require mobility support and minimum delay [Poularakis, K., Qin, Q., Nahum, E.,

Rio, M. & Tassiulas, L. (2017)]. The role of the controller is to manage and keep the global

information of all SDN applications running at the application plane, which enables the con-

trol logic to be programmed and reconfigured very easily according to different environments.

Thus, SDN is the most viable network technology in fog environments [Kaur, K., Garg, S.,

Aujla, G. S., Kumar, N., Rodrigues, J. J. & Guizani, M. (2018)].

In [Tomovic, S., Yoshigoe, K., Maljevic, I. & Radusinovic, I. (2017)], the authors described

an IoT architecture model that utilizes the SDN and fog computing paradigms. They analyzed

generic IoT scenarios where features of both technologies are combined in one integrated sys-

tem. The proposed system structure consists of end devices equipped with multiple wireless

interfaces, SDN controllers, a heterogeneous fog infrastructure (virtualized servers, routers,

access points, etc.), and cloud in the network core. Since IoT applications are geographically

distributed, they assumed a hierarchical deployment of the fog network.

The authors in [Vilalta, R., Lopez, V., Giorgetti, A., Peng, S., Orsini, V., Velasco, L., Serral-

Gracia, R., Morris, D., De Fina, S., Cugini, F., Castoldi, P., Mayoral, A., Casellas, R., Martinez,

R., Verikoukis, C. & Munoz, R. (2017)] proposed a novel fog computing architecture called

TelcoFog. which can be deployed at the edge of wired and wireless networks for telecom

operators to provide new 5G services in a unified and cost-effective manner. TelcoFog com-

bines SDN, network function virtualization (NFV), and MEC into its architecture to enable

distributed and programmable fog technologies [Garg, S., Kaur, K., Kaddoum, G. & Guo, S.
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(2021)]. The key benefit of TelcoFog is its ability to dynamically and intelligently allocate

network resources for low-latency services that are spread across the entire network.

In [Cao, B., Sun, Z., Zhang, J. & Gu, Y. (2021a)], the authors developed a novel 5G Internet-of-

vehicles (IoV) architecture based on fog computing and SDN. Considering the high mobility

of vehicles, the concept of a fog cluster was introduced to provide services to each connected

vehicle, thereby preventing frequent handovers of service data. The roadside units (RSUs) in

the fog cluster collect road and vehicle information and deliver it to the RSU controller. The

RSU controller is the decision center of the fog layer that can make real-time decisions about

the allocation of heterogeneous resources for different service types. On the other hand, the

SDN controller resides in the cloud to maintain a global network state and forward different

service rules from the application layer to the RSU controller. As a result, the dual-layer

control model of the RSU and SDN controllers simplifies management and configuration, and

improves the real-time performance and scalability of the system.

A novel SDN-based multi-layer routing solution targeting fog-based deployments was pro-

posed in [Bellavista, P., Giannelli, C. & Montenero, D. D. P. (2020)]. This solution addresses

the challenges arising from the increased node heterogeneity in terms of hardware/software,

time-varying applications that can be served by multiple service providers simultaneously, and

frequent node joins/leaves. Their SDN controller configures the appropriate multi-layer rout-

ing forwarding mechanism and determines the most suitable path based on its centralized point

of view.

The work in [Bellavista et al. (2020)] investigated next-generation SDN networks based on P4

and P4Runtime, which are a data plane programming language and runtime protocol that con-

trol P4-defined switches, respectively. The authors argued that fog networks could especially

benefit from P4/P4Runtime as local and remote SDN controllers can work together for the

same data planes. For example, a local controller can handle requests that demand real-time

responses (e.g., task execution), while a remote controller is responsible for making decisions

that require a global view of the network (e.g., routing selection). As a result, they proposed
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a novel SDN control plane design that manages both the SDN data plane belonging to the fog

network and the SDN data plane deployed close to the core network. In other words, the SDN

controllers can manage cross-layer SDN data planes to offload delay-critical functionalities to

the edge and transfer delay-tolerant applications to the cloud.

1.2.2 Hierarchical Fog Computing Architecture

1.2.2.1 Hierarchical Network Architecture

A hierarchical architecture comprises multiple layers of components connected and reflects

the control and communication relations between them. The hierarchy illustrates the relative

significance of the components, where the higher ones in the structure typically have more

central roles [Graziani, R. & Vachon, B. (2014)].

A flat network model is characterized by a single layer and a large number of components

connected at the same level to a single parent node. This structure can affect scalability as

the parent node must manage and communicate with each child node. A hierarchical network

model consists of multiple layers with a relatively small number of nodes in each layer. Hierar-

chical models are widely adopted for designing reliable, scalable, and cost-effective networks

because they can break down the complex network design problem into small and manage-

able areas [Vázquez, A., Pastor-Satorras, R. & Vespignani, A. (2002)]. In addition, various

functions are separated into layers to facilitate network management in hierarchical models.

Compared to flat networks, it is easier to modify portions of the network, add new services, or

increase capacity without large-scale upgrades.

1.2.2.2 Hierarchical Fog Computing Architecture for Resource management

With emerging wireless technologies, various end-devices generate different types of traffic

with different requirements in terms of latency, compute, bandwidth, security, etc. Therefore,

fog nodes are expected to support multiple data types. Because fog systems are spatially dis-
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tributed in nature, their performance is highly dependent on the communication and workload

distribution in time and space. It may not be possible to satisfy all kinds of requirements in a

fog node, and the same is true for the cloud.

To achieve efficient resource management in fog computing networks, a hierarchical fog archi-

tecture is more suitable than a flat one. The basic idea is to serve workloads at the optimal fog

layer with respect to service properties and requirements, and the resource status of each fog

layer. Because fog nodes are closer to the users generating the data, fog computing can be su-

perior to cloud computing in terms of response time. As a result, we can serve more workloads

with the same amount of computing capacity provisioned at the edge and in the cloud while

satisfying the required service performance. In Fig. 1.1, the depicted system consists of four

main layers: a sensing layer, single fog layer, multiple fog layer, and cloud layer, for which

various objectives, such as energy, accuracy, or bandwidth should be met. Depending on the

network conditions, the number of layers or the size of each layer can change dynamically.

1.2.2.3 Recent Approaches to Hierarchical Fog Computing

A four-layer hierarchical fog computing platform for smart cities was presented in [Tang, B.,

Chen, Z., Hefferman, G., Wei, T., He, H. & Yang, Q. (2015)]. At the edge of the network,

layer 4 is a sensing network containing numerous sensor nodes. The large streams of sensing

data generated by these sensors are geospatially distributed to monitor state changes over time.

The next layer, layer 3, comprises many low-power and high-performance computing nodes or

edge devices. Its function is to send simple and quick feedback control to local components,

while reporting the data processing results to the next layer. Layer 2 consists of multiple

intermediate computing nodes, each connected to a group of edge devices at layer 3. Especially

when hazardous events are detected, smart cities must quickly respond to take control of the

infrastructure. Data analysis results are also reported to higher layers to perform large-scale

and long-term behavioral analysis and monitoring. The top layer is the cloud data center.

Complex and city-wide behavioral analyses can be done at this layer. They further enhance

the smartness of the infrastructure by employing advanced machine learning algorithms across
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Figure 1.1 Example of hierarchical fog architecture

all system layers. The observed performance indicates that the multi-layer fog computing

architecture has significant potential for future smart city monitoring and control applications.

In [Roca, D., Milito, R., Nemirovsky, M. & Valero, M. (2018)], a generic fog-based infrastruc-

ture in which fog nodes are interconnected in a hierarchy to provide services to multiple IoT

applications is described. In contrast to the structure in [Tang et al. (2015) that partitions the

system layers based on proximity to end devices, they also consider the size of the resource

pool. Due to the wide geographic deployment and location of fog nodes, it is possible to pro-

vide resources in real-time by processing data close to where it is generated. In most cases,

higher layers have larger resource pools at the expense of increased latency.

In [Zhang, W., Zhang, Z. & Chao, H.-C. (2017b)], a flexible hierarchical resource management

methodology is proposed. The authors present a regional cooperative fog computing architec-

ture to support large-scale IoV applications. The coordinator can conduct resource manage-
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ment to balance the load by allocating the traffic from a congested local fog server (LFS) to a

nearby LFS. However, each LFS has its own priorities that determine the working state of its

own VMs that are not dominated by the coordinator server. Therefore, they model two layers of

resource management, i.e., intra-fog resource management which controls the tasks assigned

to each LFS and adjusts the throughput of each LFS and inter-fog resource management in

the coordinator. The LFSs report their status to the coordinator, who can cooperate with the

intra-fog resource management layer to optimize the latency and dropping rate of the LFSs.

The authors in [Chekired, D. A., Khoukhi, L. & Mouftah, H. T. (2018)] designed a decentral-

ized multi-tier fog architecture for industrial IoT (IIoT) request scheduling and data analysis.

The basic idea is to optimally aggregate the IoT peak load and offload the load that exceeds the

capacity of fog servers in the lower tier to nodes in the higher tier. They used a probabilistic

model to compare the efficiency of the fog resource utilization between flat and hierarchical

architectures. The results showed that multi-tier fog architectures could handle large amounts

of IIoT device requests and data from various factory components. In addition, the hierarchi-

cal fog architecture is more efficient in terms of minimizing communication and computation

latency.

In [Jia, S., Ai, Y., Zhao, Z., Peng, M. & Hu, C. (2016)], a hierarchical content caching method

for fog-RANs (F-RANs) was studied. In the proposed model, radio APs in F-RANs are divided

into remote radio heads (RRHs) relying on a centralized cloud, without edge cache, and fog-

APs (F-APs) with edge caches. Both RRHs and F-APs can provide content delivery for users.

The aim is to alleviate capacity constraints on the fronthaul and decrease the transmit delay

by optimally designing the content access protocol. In order to fully explore the potential of

hierarchical content caching, three content transfer cases using different radio access links were

used to optimize the transmission latency of users requesting different contents. As a result,

the capacity of both the fronthaul and radio access links were improved, effectively reducing

transmission latency.
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1.3 Intelligent Resource Management in Fog Computing Networks

As wireless services and applications become ubiquitous and sophisticated, there is a growing

need to efficiently manage the execution of increasingly complex tasks based on the require-

ments of the application. Specifically, how to provide pervasive network resources close to

end-users and how to design resource management algorithms that can derive globally emerg-

ing system characteristics, such as agility, reliability, efficiency, and quality guarantee, are

central questions that are being studied in the literature. This section presents some critical

considerations of distributed computing algorithms and recent works on resource management

in edge computing, particularly fog computing networks.

1.3.1 Distributed Computing Applications

1.3.1.1 Resource Sharing

The first aspect investigated concerning distributed computing in fog systems is the sharing

of networking and computing resources and cooperation among the nodes. In fog networks,

the number of servers as well as the number of types of computing servers, including IoT

devices with computing capabilities, can be enormous. In particular, the differences between

fog and cloud nodes should be accounted for in terms of storage and computational capabili-

ties and communication bandwidth limitations. Discovering physical resources, such as CPU,

memory, and network interfaces, are one of the biggest challenges, and thus accurate resource

provisioning is required for reliable operation [Tomovic et al. (2017)].

On the other hand, virtualization involves abstracting and sharing resources among different

service providers. In particular, wireless network virtualization is a technology that abstracts

the physical wireless network infrastructure and physical radio resources, partitions them into

virtual wireless networks with specific corresponding functions, and isolates each function so

that multiple service providers can share them [Liang, C. & Yu, F. R. (2014); Cao, H., Aujla,

G. S., Garg, S., Kaddoum, G. & Yang, L. (2021b)]. In other words, the resources of physical
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machines are partitioned into virtual machines that host application computations and data

while isolating the applications from applications in other virtual machines [Lu, P., Barbalace,

A., Palmieri, R. & Ravindran, B. (2013)].

Compared to traditional servers, fog nodes are primarily designed based on the characteristics

and capabilities of the end devices. A fog node can be formed by one or more physical de-

vices with high processing capabilities [Tordera et al. (2016)]. For a better understanding, fog

nodes are logical concepts encompassing heterogeneous types of devices as physical infras-

tructure. In this way, fog nodes contain the end devices together, while the processing capacity

of end devices should be presented in relation to the virtual computing units. Hence, all phys-

ical devices in a fog node are aggregated as one single logical entity that can seamlessly run

distributed services as if these were on a single device.

The size of a fog node composed of physical devices should be carefully defined to efficiently

use limited physical resources to provide the maximum amount of end-device demand. Specif-

ically, a large fog can create long queuing and communication delays, while a fog node that is

too small may lack sufficient physical resources for computing and storage.

1.3.1.2 Task Scheduling and Resource Allocation

Because fog systems add computational power to the network’s edge, the primary challenge is

figuring out how to manage the actual task execution [Mouradian et al. (2017)]. Specifically,

how do we decide which tasks to run on the end-device layer, fog layer, and cloud layer, or

which nodes should be assigned to a particular task? For example, depending on the available

resources, tasks requested on a node may be executed all at once, some may be executed and

others postponed, or they may be sent to the remote cloud layer to be executed.

In this context, there are two different resource management techniques, which are resource

allocation and task scheduling. In fog computing networks, the resources of the fog nodes

can be divided into multiple applications, slices, or end devices. Resource allocation is about

allocating and utilizing available resources across various applications. There are two resource
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allocation methods. The first is a static allocation, in which allocation rules are programmed

into the system based on preliminary resource demand information. Since it considers obso-

lete information, it often leads to under-utilize or over-utilize of resources depending on the

time the applications are run. To tackle this issue, dynamic allocations adaptively adjust the

resource allocation decisions based on real-time workloads. In this context, resource allocation

strategies should be devised to account for the application or device type differences in fog

networks to avoid resource wastage.

Task scheduling, on the other hand, is the process of deciding which of the tasks should be

planned over a period of time and in what order. While resource allocation is concerned with

allocating all available resources to various applications, slices, or end-devices, task scheduling

is engaged with completing tasks in a timely manner with restricted resources. In priority-

based scheduling, tasks are sorted within the buffer by the deadline, so that high-priority tasks

are scheduled before low-priority ones [Verma, M. & Yadav, N. B. A. K. (2015)]. In fog

computing networks, end devices can request the nearest fog node to run their tasks. As more

tasks are sent to fog nodes than to the cloud server, one expected effect is that the system’s

power consumption increases while the system delay reduces. This is happening because the

servers in the cloud layer are more powerful and energy-efficient than fog nodes while imposing

additional communication delays. Therefore, the resource limitations and delay constraints on

the user side should be addressed in task scheduling.

Moreover, intelligent caching resource allocation strategies and cooperative caching policies

among edge devices as well as the cloud are essential to achieve significant resource and

cost/energy expenditures savings [Peng et al. (2016); Lin, H., Garg, S., Hu, J., Kaddoum,

G., Peng, M. & Hossain, M. S. (2021)]. To this end, network nodes need to learn and build

users’ demand profiles to predict future requests. One of the possible trends is to identify the

social relationship between edge devices. By leveraging users’ social relationships, future net-

works can learn correlation patterns from connected social and geographic data networks to

better predict and infer users’ behavior [Bastug, E., Bennis, M. & Debbah, M. (2014)]. This
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allows cloud and edge devices to allocate storage resources properly and consequently reduce

unnecessary traffic by caching popular data.

1.3.1.3 Offloading and Load Balancing

While distributing computational tasks over computing nodes across multiple layers of the sys-

tem is allowed by the resource sharing and task scheduling discussed in the previous section,

the possible workload imbalance between nodes must also be considered to improve the over-

all system performance. Specifically, load balancing is one of the criteria used when deciding

whether to offload a particular task [Verma & Yadav (2015); Mouradian et al. (2017)]. When

one server reaches its full capacity to run tasks, additional tasks will need to be distributed

among other servers within the range of the service provider. For example, a cloud data center

manages tasks by appropriately distributing them among different servers in the data center.

Similarly, fog nodes with multiple virtual machines can distribute tasks to balance the load of

the incoming requests. As mobile devices, usually resource-constrained, serve as fog nodes

providing fog applications, the performance and QoS of computation-intensive applications

will be significantly affected by the device’s limited computational capabilities [Wang, X.,

Hu, J., Lin, H., Garg, S., Kaddoum, G., Piran, M. J. & Hossain, M. S. (2022)]. The tension

between computation-intensive applications and resource-constrained mobile devices will cre-

ate a bottleneck that prevents satisfactory QoS. Thus, by offloading computation tasks to the

resource-rich servers, computational QoS and the efficiency of mobile devices to run diverse

resource-demanding applications can be greatly improved.

On the other hand, there are several other criteria that determine whether offloading is nec-

essary. Data management is one example. Data could be moved from one device to another

based on the popularity of the data. Data that is rarely used may no longer be needed by the

end device, but at the same time, it should be stored somewhere as it may be needed in the

future [Aazam, M., Zeadally, S. & Harras, K. A. (2018)]. In these cases, data can be offloaded

from the mobile devices to another storage-rich location, such as the cloud. This mechanism

is used in various data management problems, such as caching and service placement [Zhang,
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Z., Ma, L., Leung, K. K., Tassiulas, L. & Tucker, J. (2018c); Zhu, J., Chan, D. S., Prabhu,

M. S., Natarajan, P., Hu, H. & Bonomi, F. (2013); Kaur, K., Garg, S., Kaddoum, G., Gagnon,

F. & Jayakody, D. N. K. (2019)].

Furthermore, privacy and security are other examples that can determine the validity of of-

floading. Depending on the sensitivity and confidentiality of the data or tasks, offloading may

occur for privacy and security reasons. For example, the fog can act as the first node for access

control and traffic encryption, provide context integrity and isolation, and serve as an aggre-

gation and control point for privacy-sensitive data before leaving the edge [Chiang & Zhang

(2016)]. Hence, offloading can carry out selected security functions for resource-constrained

devices that may not have as many resources as the cloud on their own to meet certain security

requirements.

Load balancing is required to distribute large amounts of data across servers. Equally dis-

tributing workloads across the network can improve resource utilization, user satisfaction, and

overall system performance [Neghabi, A. A., Navimipour, N. J., Hosseinzadeh, M. & Rezaee,

A. (2018)]. Load balancing in fog computing networks applies to the physical nodes as well as

the VMs. In a fog architecture, fog nodes continuously receive task processing requests from

IoT devices and distribute the tasks among all processing nodes. Loads can be divided into

different types, such as CPU, storage, memory, and network. Load balancing is the process

of detecting over-loaded and under-loaded nodes and balancing the workload across all nodes.

The objective of load balancing is to enhance the execution speed of applications on resources,

where their execution times are run-time dependent and thus unpredictable.

In general, load balancing algorithms are divided into two types, i.e., static and dynamic

[Aslam, S. & Shah, M. A. (2015)]. In static load balancing, distribution rules are programmed

into the load balancer using preliminary information about the system. Given the dynamic

nature of server resources and unpredictable user behavior, static load balancing methods are

not very efficient in fog computing networks. On the other hand, dynamic load balancing al-

gorithms take real-time load information into account. The main idea behind dynamic load
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balancing is to find servers with a light load and distribute the load in real-time from the over-

loaded servers to under-loaded ones. This allows the workload to be shared between the servers

at run-time. Dynamic load balancing methods yield better overall performance but are more

challenging.

1.3.2 Learning Approaches for Intelligent Systems

Intelligent resource management methods are critical for the development and evolution of

future networks. To cope with the unprecedented complexity of future networks, the integration

of machine learning (ML) into wireless communication networks continues to increase [Zhang,

C., Patras, P. & Haddadi, H. (2019a); Wang, J., Jiang, C., Zhang, H., Ren, Y., Chen, K.-

C. & Hanzo, L. (2020)]. This section provides the background necessary to understand the

learning algorithms used in the thesis.

1.3.2.1 Reinforcement Learning

With advances in computer technology, we currently have the ability to store and process large

amounts of data. The stored data becomes useful only when it is analyzed and turned into

proper information, for example, to make control decisions. ML is a technique that automates

the statistical analysis of the data we observe [Goodfellow, I., Bengio, Y. & Courville, A.

(2016)].

RL is an area of ML that can perceive and interpret the environment through trial-and-error.

One of the key features of RL is that it explicitly considers the whole problem of a goal-directed

agent interacting with an uncertain environment. RL refers to a general set of training meth-

ods in which an agent can learn how to make good decisions and avoid undesired ones in its

environment through a sequence of interactions. In this context, the problem of RL can be

formulated using ideas from dynamical systems theory, specifically as the optimal control of

the incompletely known Markov decision process (MDP). While classical dynamic program-

ming (DP) algorithms require information of a complete MDP model [Bellman, R. & Karush,
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R. (1964)], RL can solve MDPs with unknown reward and transition functions by making ob-

servations from experience [Sutton, R. & Barto, A. (2018)]. This is a very attractive solution

because it is impossible to accurately predict in advance the transition probability distributions

and rewards in wireless communication systems that dynamically vary in time [Luong, N. C.,

Hoang, D. T., Gong, S., Niyato, D., Wang, P., Liang, Y.-C. & Kim, D. I. (2019)].

In RL, a learning agent must be able to sense the state of the environment and take actions

that affect the next state. The system controller can be thought of as an agent that provides

appropriate decisions about an application’s underlying network. The agent interactively learns

whether this action is good or not through the reward, and the reward function can be set

according to the requested system performance or QoS management function.

Most RL algorithms involve estimating a value function, a function of states that estimates how

good it is to perform a given action in a given state. Here, the notion of "how good" is defined

in terms of expected future rewards. Value functions are determined with respect to the agent’s

behavior at a given time, called a policy. A policy is a mapping from states to probabilities

of selecting each possible action. If the agent follows policy π , then π(a|s) is the probability

of taking action At = a in state St = s at time t. RL methods specify how the agent’s policy

changes as a result of experience.

The value of a state s under a policy π , denoted Vπ(s), is the expected return when starting in s

and following π thereafter. For MDPs, we can formally define Vπ as [Sutton & Barto (2018)]

Vπ(s)
.
= Eπ [Rt+1 + γVπ(St+1)|St = s]

= Eπ [
∞

∑
k=0

γkRt+k+1|St = s].
(1.1)

Among the various RL techniques, Q-learning is a classic model-free algorithm. Q-learning

is typically used to find the optimal state-action policy for any MDP without an underlying

policy. Given a controlled system, the learning controller interactively observes the current

state s, takes action a, and then a transition occurs, and it observes the new state s′ and the
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reward r. From these observations, the Q-function is updated for state s and action a as follows

[Sutton & Barto (2018)]:

Q(s,a)← Q(s,a)+α
[
R(s,a)+ γ max

a′∈As′
Q(s′,a′)−Q(s,a)

]
, (1.2)

where, α is the learning rate (0<α<1), balancing the weight of what has already been learned

with the weight of the new observation.

1.3.2.2 Neural Network and Deep Reinforcement Learning

Although RL algorithms have been largely employed for control systems’ optimization, they

are not adequate for solving large-scale network problems due to scalability issues. In fact, be-

cause the size of the state space grows exponentially as the number of state elements increases,

the RL method suffers from computational complexity. Moreover, theoretically, convergence

is guaranteed when the mathematical conditions are met [Bertsekas, D. & Tsitsiklis, J. (1996)].

However, the distance between the initial state value and the one at the time of convergence

greatly affects the learning speed. In addition, model-free RL algorithms like Q-learning learn

the state-action value function very progressively, updating only the state visited at each time

interval. Thus, it may take a long time to converge in all states [Mnih, V., Kavukcuoglu, K.,

Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M. A., Fidjeland,

A., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D.,

Wierstra, D., Legg, S. & Hassabis, D. (2015)]. After all, RL applications are very limited in

practice.

To address this challenge, NNs come to the rescue. NNs are a powerful technique for process-

ing high-dimensional data and extracting discriminative information from the data [Deng, L.,

Hinton, G. & Kingsbury, B. (2013); LeCun, Y. & Bengio, Y. (1998)]. NNs, which are usually

composed of multiple layers with neurons, can automatically extract features from the data.

A NN consisting of three or more hidden layers is known as a deep neural network (DNN).

Representations learned from the data as input are fed into the network and since the output
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of one layer is passed on to the next layer, any change can have a cascading effect on other

neurons in the network [Goodfellow et al. (2016)].

Starting around 2013, researchers showed an increasing interest in using DNNs to learn the

value, policy, and Q-functions of existing RL algorithms, and DRL was introduced [Li, Y.

(2017); Mnih et al. (2015)]. DRL uses a non-linear function approximator like NNs to esti-

mate the state-action value function, which is usually a linear function approximator in RL.

DRL takes advantage of NNs or DNNs to improve the learning process and enable the imple-

mentation of RL on large-scale MDP problems.

- Deep Q-network

The Q-network can be considered as a neural network approximator with an appoximate

action-value function Q(s,a;θ) with weights θ [Mnih et al. (2015)]. This is called deep

Q-network (DQN). DQN can be trained by iteratively adjusting the weights θ to minimize

a sequence of the loss functions, Li(θi), where the loss function at time-step t is defined as

Lt(θt) = E[(rt + γ max
a′

Q(st+1,a′;θt−1)−Q(st ,at ;θt))
2]. (1.3)

In other words, given a transition < st ,at ,rt ,st+1 >, the weights θ of the Q-network are

updated in a way that minimizes the squared error loss between the current predicted Q-

value of Q(st ,at) and the target Q-value of (rt + γ maxa′ Q(st+1,a′)).

Moreover, in the DQN algorithm, the experience replay technique is adopted as the training

method to address the instability of the Q-network due to the use of a non-linear approxi-

mation function [Mnih et al. (2015)]. This helps avoid forgetting the previous experiences,

which prevents the network from only learning about what is immediately done, but also

reduces correlations between experiences, which helps avoid being fixated on one region of

the state space by preventing the agent from taking the same action over and over.

Here, the transition experiences, et =< st ,at ,rt ,st+1 > are stored into a replay buffer ω =

{et−B, . . . ,et}, where B is the replay buffer capacity. At each time step, a random mini-

batch of transitions from the replay memory is chosen to train the Q-network, instead of
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the most resent transition et . Fig. 1.2 summarizes the DQN-based general-purpose fog

computing system.

Figure 1.2 Deep Q-Network based fog computing system

- Policy gradient

The policy gradient is another popular RL method. In policy-based methods, instead of

learning a value function used in Q-learning, which gives us the expected return given a state

and an action, we learn directly a policy function that maps states to actions [Sutton, R. S.,

McAllester, D., Singh, S. & Mansour, Y. (2000)]. The main idea is to directly adjust the pa-

rameters θ of the policy in order to maximize the total expected return J(θ)=Es∼pπ ,a∼πθ [R]

by taking steps in the direction of policy gradient ascent, ∇θ J(θ). Using the Q-function de-

fined previously, the gradient of the policy can be written as [Sutton et al. (2000)]:

∇θ J(θ) = Es∼pπ ,a∼πθ [∇θ logπθ (a|s)Qπ(s,a)], (1.4)

where pπ is the state distribution.

There are several advantages to using policy gradient methods. First, policy gradient meth-

ods have better convergence properties. The problem with value-based methods is that they
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can have large oscillations in selected actions while training. This is because value-based

methods directly estimate the Q-values and any small change in the estimated action value

can dramatically change the choice of action. On the other hand, with the policy gradient,

the agent simply follows the gradient to find the best policy instead of estimating the Q-

values. Because the gradient tells the agent in which direction it should update its policy

parameters without drastic changes in policy, the policy gradient method guarantees con-

vergence to either a local (worst case) or global (best case) maximum. Furthermore, policy

gradients are more effective in the context of high-dimensional action spaces or continuous

actions [Sutton & Barto (2018)]. Last but not least, policy gradient methods can learn a

stochastic policy. A stochastic policy allows an agent to explore the state space without

always taking the same action because it outputs a probability distribution over the actions.

As a consequence, it handles the exploration and exploitation trade-off without hard coding.

1.3.2.3 Recurrent Neural Network

In feedforward neural networks, the data is simply passed forward from input to output, and

thus the networks cannot understand the sequential relationship of the current input state with

the previous input states. Recurrent neural networks (RNNs) solve this issue with a hidden

state that plays a role of memory to remember information about what has been learned. More

specifically, the hidden states have the same parameters and hence can be rolled in together in

a single recurrent layer, as illustrated in Fig. 1.3. The right-hand side of Fig. 1.3 is the unrolled

RNN that represents the individual layers of the neural network at each time step. Therefore,

RNNs take two inputs, the input from the sample sequence and previously hidden state values.

This loop allows information to be passed from one step of the network to the next.

RNNs share the same weight parameter within each layer of the network. That said, these

weights are updated through the processes of back-propagation over sequential data. However,

vanilla RNNs run into a major problem, known as vanishing gradients. This issue is defined

by the size of the gradient, where it continues to become smaller and eventually stops learning,

and thus neural networks may forget important information from the beginning. To tackle
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Figure 1.3 Recurrent neural network

this issue, there are variant RNN architectures, such as Long short-term memory (LSTM) and

Gated recurrent units (GRU). These architectures address the vanishing gradient problem of

RNN by having "gates" that control how much and which information to retain in the network.

1.3.2.4 Multi-Agent Learning

When extending the decision-making process of RL to multi-agent systems (MASs), the prob-

lem can be formulated as a Markov game [Busoniu, L., Babuska, R. & Schutter, B. D. (2010);

Hernandez-Leal, P., Kartal, B. & Taylor, M. E. (2019)]. The Markov game was introduced by

[Littman, M. L. (1994b)] to generalize the MDP to scenarios where multiple agents interact

simultaneously with a shared environment and possibly with each other.

The Markov game is formalized by the tuple < N,S,A,P,R,O,γ >, where N is the number

of agents, S is the state space, and A = {A1, ...,AN} denotes the actions of all agents. The

transition probability P : S×A → P(S) describes the probability of a state transition. Ri is the

reward function of agent i, and O = {O1, ...,ON} is the observations of all agents. Finally,

γ ∈ [0,1) represents the discount factor. In a cooperative problem with N agents in a fully

observable environment, each agent i at time t observes the global state st
i, takes action at

i using

the local stochastic policy πt
i , and receives a joint reward value Rt

i, i.e., Rt
i = Rt

1 = ... = Rt
N .

If the agents cannot fully observe the state of the system, each agent only has access to its

own local observations Ot
i. Furthermore, the agents’ reward function may not be the same, i.e.,

Rt
i �= Rt

1 �= ... �= Rt
N .
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In contrast to the single-agent case in Eg.(1.1), the value function Vi does not only depend on

the individual policy of agent i but also on the policies of the other agents. The value function

for agent i can be defined as:

Vπi,π−i(s) = Est∼P,at∼π

[
∞

∑
k=0

γkRt+k
i |St = s

]
, (1.5)

where the agents behave according to the joint policy π = {π1, ...,πN}.

1.3.3 Recent Approaches to Resource Management in Fog Computing

1.3.3.1 Related Work on Cooperative Computing between Fog and Cloud

As discussed above, both the fog (or edge) and cloud should complement each other to fulfill

various performance requirements and heterogeneous resource configurations. In what follows,

recent studies showing the cooperation between fog and cloud are introduced.

The research in [Masip-Bruin, X., Marín-Tordera, E., Tashakor, G., Jukan, A. & Ren, G.-J.

(2016)] proposed a fog-to-cloud computing architecture that handles various cloud and fog

resources in a joint framework. The need for coordinated management in the fog-to-cloud

architecture was discussed. Specifically, it was mentioned that a management entity must dis-

cover the set of available fogs and their resource status to choose the ones that best meet the

service requirements. However, as the fog’s visibility might not be sufficient to discover the

global system status, the cloud plays an important role in the resource discovery and alloca-

tion. Moreover, the overall performance observed by the end users is strongly affected by the

resources available to deploy the service. In dynamic scenarios where fog nodes can be fre-

quently joined and torn down, the management entity must ensure seamless performance for

services. A solution can be to use the cloud as a backup to ensure the system is tolerant to the

fog nodes’ failures.
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In [Ren, J., Yu, G., He, Y. & Li, G. Y. (2019)], the authors studied the collaboration between

cloud and edge computing, where the tasks on mobile devices can be partially processed by

the edge nodes and a cloud server. Specifically, they considered a hierarchical computing

system within a multi-cell mobile cellular network where each BS has limited edge computing

capacity. The main idea of this study was to address two fundamental issues: how to collaborate

between the edge nodes and cloud server to achieve optimal computing performance and how

to jointly allocate limited network resources to minimize the end-to-end latency of mobile

devices. As a result, they found that the optimal task allocation strategy for each mobile device

largely depends on the back-haul communication capacity between the edge and the cloud, and

the cloud computation capacity.

The task scheduling and resource allocation in a heterogeneous cloud, including the edge and

remote cloud, was studied in [Zhao, T., Zhou, S., Guo, X. & Niu, Z. (2017)]. The optimiza-

tion problem was formulated to maximize the success probability, which is the probability

that the delay limit of a task is satisfied. The problem takes the stochastic wireless channels

and time-varying traffic loads into consideration. Experimental results showed that the edge

cloud should allocate more computational resources to users with stringent delay limits in the

heterogeneous cloud scenario. However, in the scenario with only the edge cloud, more com-

putational resources are allocated to users with looser delay limits when the traffic load is high.

This shows that the edge cloud can better handle delay-sensitive tasks by using heterogeneous

clouds. Thus, heterogeneous clouds must work together so that users with different delay re-

quirements can be served simultaneously.

A novel framework for online fog network formation and task distribution in a hybrid fog-

cloud network was studied in [Lee, G., Saad, W. & Bennis, M. (2019)]. The proposed online

optimization problem aims to minimize the maximum computational latency of all fog nodes

by adequately selecting a set of fog nodes from which computations are offloaded and properly

distributing the tasks among those fog nodes and the cloud. To solve this problem without

any prior knowledge of the future arrival of fog nodes, they defined a target competitive ratio,

which is the target ratio between the latency achieved by the proposed algorithm and the op-
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timal latency that can be achieved by the offline algorithm. Simulation results indicated that

the proposed framework can find a suitable competitive ratio that can reduce the latency of

fog computing while properly selecting the neighboring fog nodes with high performance and

properly distributing the tasks among fog nodes and the cloud server.

1.3.3.2 Related Work on Task Offloading and Scheduling

Offloading and distributing tasks while ensuring the QoS requirements of users is especially

critical in fog nodes with limited resource capacity. Therefore, many approaches have been

proposed in the literature to improve task offloading and scheduling problems for fog networks.

In [Yousefpour, A., Ishigaki, G., Gour, R. & Jue, J. P. (2018)], the authors introduced a delay-

minimizing offloading policy for fog nodes in IoT-fog-cloud application scenarios. Here, the

policy considers not only the length of the queue but also different types of requests with

varying processing times. In this paper, the authors considered two types of tasks, light and

heavy, and applied a fairness parameter based on how the fog node selects a certain type of

task from its queue. Following this, the fog node determines whether to offload the selected

tasks; if the estimated waiting time of the fog node is greater than an acceptable threshold, it

will offload the request to its best neighboring fog node.

In [Chen, X., Jiao, L., Li, W. & Fu, X. (2015)], the authors designed a computation offloading

problem between mobile device users equipped with MEC in a multi-channel wireless environ-

ment. They took a game-theoretic approach to address this problem. Their distributed compu-

tation offloading algorithm consists of two steps: radio interference measurement and offload-

ing decision update. This algorithm allows mobile device users to take turns in improving their

offloading decisions to reach mutually satisfactory decisions. Numerical results demonstrated

that the proposed algorithm achieves superior computation offloading performance compared

to centralized computation offloading, local computing by all users, and cloud computing by

all users. They showed that MEC enhances the system performance because it allows some
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executions to be done on the mobile itself instead of in the cloud to reduce overhead, including

transmission time and energy.

In [Zhang, H., Xiao, Y., Bu, S., Niyato, D., Yu, F. R. & Han, Z. (2017a)], the resource allocation

problem between fog nodes, data service operators, and data service subscribers was formu-

lated. First, service subscribers purchase the optimal number of computing resource blocks

from service operators using a Stackelberg game. Each subscriber competes for the required

computing resource blocks owned by the nearby fog nodes. In a many-to-many matching game

between service operators and fog nodes, each operator decides which fog nodes have comput-

ing resources to sell. Another many-to-many matching framework allows the resource blocks

of fog nodes to be allocated to the service subscribers.

The research in [Wang, C., Liang, C., Yu, F. R., Chen, Q. & Tang, L. (2017b)] demonstrated a

heterogeneous wireless cellular network with MEC that allows multiple mobile users (MUs) to

simultaneously offload their computational tasks to the MEC server over small cell networks.

To fulfill different user demands, different amounts of spectrum and computation resources

should be allocated to different UEs. Moreover, because the MEC server has limited caching

space, different caching policies should be applied for different types of content to maximize

the benefit of caching. Taking these observations into account, the authors proposed to jointly

optimize the computation offloading, spectrum resource allocation, and content caching in

wireless cellular networks with MEC.

In [Pan, S., Zhang, Z., Zhang, Z. & Zeng, D. (2019)], the authors proposed a MEC-based

dependency-aware task offloading algorithm with the goal of minimizing the execution time

for mobile services with limited battery power consumption. To account for battery power

constraints and inherent task dependencies within the application, they adopted a Q-learning

approach that adaptively learns to jointly optimize the offloading decision and energy con-

sumption by interacting with the network environment. Simulation results showed that the Q-

learning-based solution outperforms baseline methods, including random-offloading and brute-

force approach, while requiring similar time to reach the optimal solution.
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In [Yadav, R., Zhang, W., Elgendy, I. A., Dong, G., Shafiq, M., Laghari, A. A. & Prakash,

S. (2021)], the authors examined a computational offloading scheme for edge-enabled sensor

networks. An intelligent task offloading scheme, targeted for smart healthcare applications that

require long battery life and real-time monitoring, was needed to reduce overall latency and

improve the battery life of devices. Therefore, a computation offloading using reinforcement

learning (CORL) scheme was introduced to minimize the latency and the energy consumption

in situations with limited battery capacity and service deadline constraints.

The authors in [Cheng, M., Li, J. & Nazarian, S. (2018)] proposed a novel resource provision-

ing and task scheduling algorithm for large-scale cloud service providers with large numbers

of servers. To address the scalability issues encountered in large-scale cloud systems, they

designed a two-stage deep Q-learning-based system that learns from user request patterns and

a dynamic price model to generate the best long-term decisions automatically. This two-stage

structure provides the proposed scheme with high efficiency and scalability.

The study in [Min, M., Xiao, L., Chen, Y., Cheng, P., Wu, D. & Zhuang, W. (2019)] investigated

the computation offloading of IoT devices equipped with energy harvesting (EH) components

and connected to multiple edge devices with different communication overheads. Using the

energy extracted by the EH components, the IoT devices can either execute the computational

tasks locally or offload a part of the totality of the tasks to the edge devices. In this context,

they proposed an RL-based computation offloading method without complete knowledge of the

energy consumption and latency models. Moreover, they extended this model to a DRL-based

method to handle the huge state dimension using transfer learning to improve performance.

In [Chen, X., Zhang, H., Wu, C., Mao, S., Ji, Y. & Bennis, M. (2018)], the authors considered

designing computation offloading policies for a MEC system in an ultra-dense network, where

one of multiple BSs can be selected for computation offloading. They formulated the optimal

offloading problem as a MDP that aims to minimize the long-term cost. The offloading decision

is based on the channel quality between the MU and the BSs, energy queue state, and task

queue state. However, the existing reinforcement learning algorithm is infeasible due to the
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explosive increase in the state space since the BSs have different data transmission qualities.

To solve this problem, they resorted to a DNN-based function approximator. Their numerical

experiments found that a deeper DQN worsened the average cost performance because adding

more hidden layers to the DQN leads to higher training errors. In the considered MEC scenario,

one hidden layer with a large number of neurons can better approximate the Q-function than

the approximator with a large number of hidden layers.

The study in [Wan, X., Sheng, G., Li, Y., Xiao, L. & Du, X. (2017)] investigated a dynamic

malware detection strategy in which each mobile device selects the offloading rate of the ap-

plication traces to a secure server in the cloud. Mobile devices can offload their malware

detection tasks to secure servers with powerful computational resources and much larger se-

curity databases. Therefore, they proposed a novel offloading strategy based on a hotboot-

ing Q-learning approach that exploits the malware detection experience to initialize the ex-

pected long-term utility values and accelerates the performance of standard Q-learning algo-

rithm where all Q-values start at zero. In addition, they leveraged a deep convolutional neural

network (CNN) to increase the accuracy of the malware detection and reduce the detection

delay compared to the Q-learning-based detection method.

1.3.3.3 Related Work on Load Balancing

The rapid growth of real-time applications and the diversification of computing capacity be-

tween servers in fog environments have increased the need for an efficient load balancing strat-

egy that distributes the load between available fog nodes or clouds. Load balancing helps

improve the resource utilization, user satisfaction, and the overall performance of the system.

In recent years, many researchers have contributed to the literature on load balancing of fog

computing environments with various optimization objectives. A comprehensive review of

load balancing approaches in fog computing was conducted in [Kaur, M. & Aron, R. (2021)],

where the approaches reviewed were compared based on various aspects. Kashani, M. H.,

Ahmadzadeh, A. & Mahdipour, E. (2020) provided a systematic identification and taxonomic
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classification of load balancing mechanisms in fog computing and a thorough comparison to

analyze the potential and limitations of the existing approaches.

Xu, X., Fu, S., Cai, Q., Tian, W., Liu, W., Dou, W., Sun, X. & Liu, A. X. (2018) proposed a

new resource allocation method for load balancing in fog environments. The proposed method

is based on static resource allocation with dynamic service migration to achieve load balance

with diversified computing nodes in fog and cloud computing layers. Naqvi, S. A. A., Javaid,

N., Butt, H., Kamal, M. B., Hamza, A. & Kashif, M. (2018) studied load balancing based on a

meta-heuristic approach in the fog environment. Specifically, fog nodes are allocated to handle

requests from the smart grid, where each fog node contains a different number of VMs. They

used an Ant Colony Optimization (ACO) technique for VM allocation to optimize the response

time, processing time, and cost.

Tseng, C. H. (2016) proposed multi-path load balancing (MLB) routing to provide reliable ser-

vices, especially for data-intensive IoT applications. IoT devices with heavy data transmission

often cause bottleneck problems in wireless sensor networks (WSNs), therefore a proper load

balancing mechanism is required to handle busty traffic. To avoid the bottleneck problem, the

authors considered a distributed architecture that provides the possibility of selecting the neigh-

boring nodes with the minimum amount of load. In the proposed model, nodes can choose the

neighboring nodes with the least load as the next-hop, efficiently avoiding the bottlenecks.

The paper [Fan, Q. & Ansari, N. (2018)] introduced a load balancing scheme in which IoT

devices are assigned to suitable fog nodes and BSs to minimize both communication and com-

puting delays. In this scheme, each BS estimates its traffic load and the computing loads of fog

nodes and broadcasts this information. IoT devices can then select the suitable fog node based

on real-time estimated traffic and computing loads. They showed that the average latency could

be reduced by adjusting the IoT device allocation to simultaneously balance the network traffic

and computation loads.

In [He, X., Ren, Z., Shi, C. & Fang, J. (2016)], the authors integrated an SDN centralized

controller with a fog network to improve the latency performance of delay-sensitive services,
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such as the Internet of vehicles. Moreover, a novel load balancing algorithm using modified

constrained optimization particle swarm optimization was proposed. This algorithm uses a

centralized load balancer to balance workload between the fog and cloud servers, efficiently

reducing the task processing latency.

The authors in [Wan, J., Chen, B., Wang, S., Xia, M., Li, D. & Liu, C. (2018)] proposed an

energy-aware load balancing and scheduling model using fog computing in smart factories. In

this context, the remote cloud has a significant delay in recognizing the operating equipment

status, making it challenging to implement real-time multi-task and multi-object scheduling.

Therefore, the proposed model is deployed on fog nodes by utilizing the fog nodes capable of

automatic distributed processing. According to the relationship between the energy consump-

tion and workload of the smart factory equipment, an improved particle swarm optimization

algorithm is used to solve the load balancing model mathematically.

The work in [Elsharkawey, M. A. & Refaat, H. E. (2018)] demonstrated a fog computing en-

vironment where each fog server runs its own load balancing algorithm. The fog servers in the

proposed model are designed to perform both real-time and non-real-time tasks. The goal of

the load balancing algorithm is to meet task requirements that depend on the task deadline, ex-

ecution time, server capacity, and resource utilization. The architecture of the proposed model

is composed of four modules: the classifier, the task-load monitor, the fog-cloud-balancer, and

the VM-manager. As a result, the proposed model provides elastic reallocation of the available

processing resources of VMs according to load fluctuations. Moreover, it achieves an adaptive

allocation of real-time tasks according to their deadlines and non-real-time tasks according to

their priority levels.

In [Sharma, S. & Saini, H. (2019)], the authors proposed a delay-aware scheduling and load

balancing algorithm in a fog environment. To handle the huge amount of sensor data from

different IoT devices, a four-tier architecture was considered. Tier-1 is the lowest tier consist-

ing of IoT devices, and Tier-2 is the workload tier. Routers classify the workloads into high

and low priority based on the proposed fuzzy logic that considers the size of the task, arrival
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time, and minimum and maximum completion time. In Tier-3, the fog nodes are clustered

using the K-means clustering algorithm according to the current resource usage. Moreover,

an artificial neural network (ANN) based dynamic load balancing threshold policy algorithm

was introduced. The algorithm takes the current load of fog nodes as input to the ANN, and

the output predicts the balanced workload among fog nodes. Hence, the workload is shared

among multiple fog nodes based on real-time prediction. Finally, Tier-4 consists of the cloud

that executes tasks that are not processed by fog nodes in Tier-3.
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2.1 Introduction

Over the past decade, moving computing, control, and data storage into the cloud has been an

important trend in order to utilize much needed abundant computing resources to handle explo-

sive traffic demands. However, this relocation introduces network delays that bring significant

challenges related to meeting the latency requirements of critical applications. To overcome

the disadvantages of the cloud, fog computing, which selectively moves computation, commu-

nication, control, and decision making close to the network edge where data is being generated,

became inevitable in this era [A. Zaidi, Y. Hussain, M. Hogan, and C. Kuhlins, (2019)]. One of

the key benefits of fog computing stems from its highly virtualized platform that offers comput-

ing capacities allowing various applications to run anywhere. Hence, fog computing resolves

problems of cloud-only solutions for applications that require a real-time response with low

latency, e.g., mission-critical applications [Chiang & Zhang (2016); Peng et al. (2016)]. Given

the substantial benefits that can be drawn from this technology, fog computing is expected to

play a crucial role in IoT, 5G, and other advanced distributed and connected systems [Ku, Y.-J.,

Lin, D.-Y., Lee, C.-F., Hsieh, P.-J., Wei, H.-Y., Chou, C.-T. & Pang, A.-C. (2017); Mouradian

et al. (2017); Buyya & Dastjerdi (2016); Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aled-

hari, M. & Ayyash, M. (2015)].
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In fog networks, where fog nodes and cloud data centers present heterogeneous resources (e.g.,

computational, bandwidth, and memory), service tasks are classified according to various per-

formance requirements and heterogeneous resource configurations. In contrast to the cloud

server, the computing capacity of fog nodes is usually limited and in-homogeneous. Thus,

computation-intensive tasks often exhibit poor performance when they are processed by fog

nodes with extremely limited resource capacities [Lee et al. (2019); Xu et al. (2018)]. In this

context, offloading and distributing tasks over the network while guaranteeing the Quality-of-

Service (QoS) requirements of the users, can be particularly useful. Considering the fact that

fog nodes are located relatively close to each other, offloading from an originally requested

fog node to an affordable neighbor node with available resources can be an attainable solution

even for delay-critical services. Moreover, it is critical for the fog nodes and cloud to be able

to cope with heterogeneous tasks when deciding which service tasks should be deployed and

where. Specifically, the selection of suitable nodes and proper resource assignments are critical

in fog networks, where various types of applications are simultaneously running over the same

network [Aazam et al. (2018); Mach, P. & Becvar, Z. (2017)]. Hence, both the fog and cloud

should complement each other in a distributive way to fulfill service needs. To this end, the

hierarchical fog architecture was introduced to support a better distribution of the computing

resources with an elastic and flexible placement of resources [Zhang et al. (2017b)].

Recently, many approaches have been proposed in the literature to enhance task offloading and

resource allocation problems for fog networks. Yousefpour et al. (2018) introduce a delay-

minimizing offloading policy for fog nodes in IoT-fog-cloud application scenarios, where the

policy considers not only the length of the queue but also different request types that vary in

processing times. Following this, it determines whether or not to offload the selected tasks as

the estimated waiting time of fog node is greater than an acceptance threshold; it will offload

the request to its best neighbor fog node. Zhang et al. (2017a) formulate the resource allocation

problem between fog nodes, data service operators, and data service subscribers. First, service

subscribers purchase the optimal number of computing resource blocks from service opera-

tors with a Stackelberg game. Each subscriber competes for the required computing resource
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blocks owned by the nearby fog nodes. With a many-to-many matching game between service

operators and fog nodes, each operator determines its fog nodes that have computing resources

to sell. With another many-to-many matching framework, resource blocks of fog nodes are

allocated to the service subscribers.

Although some promising works have been dedicated to studying task offloading and resource

allocation in fog computing and edge computing networks, it is necessary to jointly address

the two issues to improve the overall performance. Wang, C., Liang, C., Yu, F. R., Chen,

Q. & Tang, L. (2017a) propose to jointly address computation offloading, resource allocation,

and content caching in wireless cellular networks with mobile edge computing. First, they

transform the original non-convex problem into a convex problem and prove the convexity of

the transformed problem. Then, they decompose the problem and apply an alternating direc-

tion method of multipliers to solve it in an distributed and practical way. Alameddine, H. A.,

Sharafeddine, S., Sebbah, S., Ayoubi, S. & Assi, C. (2019) address task offloading with joint

resource allocation and scheduling specifically focused on delay-sensitive IoT services. They

mathematically formulate the problem as a mixed-integer problem and present a decomposition

approach to achieve faster run times while providing the optimal solution. For heterogeneous

real-time tasks, Li, L., Guan, Q., Jin, L. & Guo, M. (2019) propose task offloading and re-

source allocation problems in a three-tier fog system with a parallel virtual queueing model.

They apply an adaptive queuing weight resource allocation policy based on the Lyapunov func-

tion. Moreover, they propose multi-objective sorting policies in terms of both the laxity and

execution times of the task to achieve a trade-off between the throughput and task completion

ratio optimization.

However, the computation offloading and resource allocation designs [Yousefpour et al. (2018);

Wang et al. (2017a); Alameddine et al. (2019); Li et al. (2019)] are mostly based on one-shot

optimization and may not be able to achieve a long-term stable performance in dynamic situ-

ations. And since most optimization problems that arise in network resource management are

non-convex and NP-hard, all these algorithms generally impose restrictions on the network to

simplify non-trivial mathematical equations [Luo, Z.-Q. & Yu, W. (2006)]. Nevertheless, such
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assumptions would require a revision of the objective functions, or even the system models,

that lead to these problem formulations in the first place.

Furthermore, there are related works using different meta-heuristic methods [Mishra, S. K.,

Puthal, D., Rodrigues, J. J. P. C., Sahoo, B. & Dutkiewicz, E. (2018); Tsai, C.-W. & Rodrigues,

J. J. P. C. (2014); Neil Bergmann, B., Chung, Y., Yang, X., Chen, Z., Yeh, W., He, X. & Jurdak,

R. (2013); Zhang, D., Haider, F., St-Hilaire, M. & Makaya, C. (2019b)]. Tsai & Rodrigues

(2014) introduce the scheduling of service requests to virtual machines (VMs) with the mini-

mum energy consumption at the fog servers. They formulate the service allocation algorithm

for the heterogeneous fog server system using three meta-heuristic methods, namely particle

swarm optimization (PSO), binary PSO, and bat algorithm. Moreover, the authors in [Zhang

et al. (2019b)] introduce a new evolutionary algorithm (EA) that is combined with a PSO and

genetic algorithm (GA) for the joint design of the computation offloading and fog nodes pro-

visioning.

However, in meta-heuristic algorithms, the memory required to maintain a population of can-

didate solutions becomes vast as the size of problems increases. Specifically, due to the larger

search space in large-scale problems, almost every state encountered will never have been seen

before, which makes it impossible to converge in limited time steps. In that respect, as the sys-

tem model becomes more complex, meta-heuristic methods can no longer be applied. In this

context, to make sensible decisions in such large search spaces, it is necessary to generalize

from previous encounters with different states that are in some sense similar to the current one.

In order to cope with an unprecedented level of complexity as we consider many parameters

to accurately model the system, embedding versatile machine intelligence into future wireless

networks is drawing unparalleled research interest [Wang et al. (2020); Zhang et al. (2019a)].

A lot of recent works try to address the resource allocation problem in IoT networks by using

supervised machine learning, i.e., Support Vector Machines (SVMs), Recurrent Neural Net-

works (RNNs), Convolutional Neural Networks (CNNs), etc [Sun, Y., Peng, M., Zhou, Y.,

Huang, Y. & Mao, S. (2019d)]. Nevertheless, supervised learning is learning from a fixed
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data set. Thus the algorithm does not directly interact with the environment where it operates,

which is not adequate to dynamically provision the on-demand resources, especially for highly

volatile IoT application demands. Moreover, in the context of resource management for IoT

networks, the lack of sufficient labeled data is another factor that hinders the practicality of

supervised learning-based algorithms.

On the other hand, a different machine learning technique that does not fall in the category of

supervised and unsupervised learning is reinforcement learning (RL) [Sutton & Barto (2018)].

One of the key features of reinforcement learning is that it explicitly considers the problem

of a goal-directed algorithm interacting with an uncertain environment. Therefore, RL-based

algorithms can continually adapt as the environment changes without needing explicit system

models. To tackle the curse of dimensionality of RL, deep reinforcement learning (DRL) was

recently introduced [Mnih et al. (2015)]. DRL embraces deep neural networks to train the

learning process, thereby improving the learning speed and the performance of RL-based algo-

rithms. Therefore, a DRL can provide efficient solutions for future IoT networks [Luong et al.

(2019)].

Chen et al. (2018) introduce an optimal computation offloading policy for mobile edge com-

puting (MEC) in an ultra dense system based on a deep Q-network (DQN) without prior knowl-

edge of the dynamic statistics. Pan et al. (2019) study the dependency-aware task offloading

decision in MEC based on Q-learning aiming to minimize the execution time for mobile ser-

vices with limited battery power consumption. Van Huynh, N., Thai Hoang, D., Nguyen,

D. N. & Dutkiewicz, E. (2019) develop an optimal and fast resource slicing framework based

on a semi-Markov decision process (MDP) that jointly allocates the computing, storage, and

radio resources of the network provider to different slice requests. To further enhance the per-

formance, they propose a deep Q-learning approach with a deep dueling neural network, which

can improve the training process and outperform all other reinforcement learning techniques

in managing network slicing. Chen, X., Zhao, Z., Wu, C., Bennis, M., Liu, H., Ji, Y. & Zhang,

H. (2019) consider a software-defined radio access network where multiple service providers

(SPs) compete to acquire channel access for their subscribed mobile users, thereby each mo-
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bile user proceeds to offload tasks and schedule queued packets over the assigned channel.

They transform the stochastic game between non-cooperative SPs into an abstract stochastic

game and propose a linear decomposition approach to simplify decision making. Also, a DRL

algorithm is leveraged to tackle the huge state space. Sun, Y., Peng, M. & Mao, S. (2019a) pro-

pose a DRL based joint communication mode selection and resource management approach

with the objective of minimizing the network power consumption. This approach can help

the network controller learn the environment from collected data and make fast and intelligent

decisions to reduce power consumption. Moreover, the tremendous growth in data traffic over

next-generation networks can be substantially reduced via caching, which proactively stores

reusable contents in geographically distributed memory storage [Sadeghi, A., Wang, G. & Gi-

annakis, G. B. (2019); Sun, Y., Peng, M. & Mao, S. (2019b); He, Y., Zhang, Z., Yu, F. R.,

Zhao, N., Yin, H., Leung, V. C. M. & Zhang, Y. (2017); Doan, K. N., Vaezi, M., Shin, W.,

Poor, H. V., Shin, H. & Quek, T. Q. S. (2020)]. Sun et al. (2019b) study the joint cache and

radio resource optimization on different timescales in fog access networks. The optimization

problem is modeled as a Stackelberg game. To solve the problem, single-agent RL and multi-

agent RL are utilized and rigorously analyzed. Meanwhile, Doan et al. (2020) exploit the

power allocation problem in non-orthogonal multiple access for a system with cache-enabled

users. They propose a DRL based scheme, which responds quickly upon requests from users

as well as allows all users to share the full bandwidth. Also, they show that applying iterative

optimization algorithms is not suitable for satisfying a short-response requirement from the

base station to users.

However, these methods require full knowledge of the environment and can be not suitable in

many applications due to a non-trivial amount of signaling overhead and communication la-

tency. Therefore, how to distribute the computing resources optimally throughout the network

and design algorithms based on local knowledge that can derive globally emergent system

characteristics such as agility, efficiency, and reliability are the central questions that lead this

paper.
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This paper focuses on resource management in a fog system with the aim of guaranteeing the

specific quality of service of each task as well as maximizing the resource utilization by cooper-

ating between fog computing nodes. To address this problem, we design a joint heterogeneous

task offloading and resource allocation algorithm whose goal is to maximize the processing

tasks completed within their delay time limits. More precisely, we consider an independent

multi-agent decision-making problem that is cooperative and partially observable. To solve this

problem, we propose a deep recurrent Q-network (DRQN) based learning algorithm, namely

deep Q-learning combined with a recurrent layer. The DRQN-based algorithm aims to resolve

partially observable environments by maintaining internal states. In particular, to guarantee the

convergence and accuracy of the neural network, the proposed DRQN-based algorithm adopts

an adjusted exploration-exploitation scheduling method, which efficiently avoids the exploita-

tion of incorrect actions as the learning progresses. To our best knowledge, this is the first

work that introduces DRQN to solve the joint task offloading and resource allocation problems

in fog computing networks. The key contributions of this paper are summarized as follows.

- The proposed algorithm considers two-levels of heterogeneity of service tasks in terms

of QoS requirements and resource demand characteristics. In real IoT scenarios, various

service tasks demanding different resource sizes can require different service performances.

In order to consider these heterogeneities, we propose a fog network slicing model that

manages different types of tasks separately and partitions physical resources to each slice.

- Regarding the feedback and memory overhead, we consider cooperative scenarios where the

independent multi-fog nodes perceive a common reward that is associated with each joint

action while estimating the value of their individual actions solely based on the rewards that

they receive for their actions. Therefore, this reduces the feedback and memory overheads

considerably compared to joint-action learning schemes where the fog nodes require the

reward, observation, and action sets of others.

- To deal with partial observability, we apply a DRQN approach to approximate the optimal

value functions. The DRQN-based algorithm can tackle partial observability issues by en-

abling the agent to perform the temporal integration of observations. This solution is more
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robust than DQN and deep convolutional Q-network (DCQN)-based methods in ways that

the neural network with a recurrent layer can learn its output depending on the temporal

pattern of observations by maintaining a hidden state, and thus it can keep internal states

and aggregate observations. Moreover, to guarantee the convergence and accuracy of the

neural network, an adjusted exploration-exploitation method is adopted.

- Numerical experiments using Tensorflow are presented to support the model and the pro-

posed algorithm. The proposed DRQN-based algorithm requires much less memory and

computation than the conventional Q-learning and meta-heuristic algorithms which are

impractical for solving the problem considered in this paper. Particularly, the proposed

DRQN-based algorithm is compared to the DQN and DCQN approaches where it is demon-

strated that the performance in terms of average success rate, average overflow rate, and task

delay can be significantly enhanced by using the proposed DRQN-based algorithm.

The remainder of this article is organized as follows: in section 2.2, the system description is

presented. The formulation of the offloading and resource allocation problem as a partially ob-

servable MDP (POMDP) is detailed in Section 2.3. In section 2.4, we propose the cooperative

decision-making problem between independent multi-nodes and derive a deep reinforcement

learning scheme to solve the problem formulated in Section 2.3. Simulation results are pre-

sented in Section 2.5. Finally, Section 2.6 concludes this paper and provides insight on possible

future work.

2.2 System description

In this section, we introduce a three-layer fog network system model that supports the integra-

tion of different services while serving the best of each dissimilar service characteristics, such

as CPU processing density and delay requirements, through a hierarchical model. The time

horizon is divided into decision epochs of equal durations (in millisecond) and indexed by an

integer t ∈ N+. The symbols used in this paper are listed in Table 2.1.
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Table 2.1 List of Notations

Symbol Definition

I The set of fog nodes

Z The set of cloud servers

Ki The set of fog slices at fog node i
Tk The packet size of the task of slice k

Dmax
k The maximum delay budget of the task of slice k

λi,k The task of slice k arrival rate for the fog node i

ai,k
The boolean variable whether the task of slice k
arrives at fog node i or not

bi,k The number of tasks in the buffer of slice k at fog node i

be
i,k

The number of tasks are allocated resources for processing

among all the tasks in the buffer of slice k at fog node i
Lc

k CPU processing density demanded for the task of slice k
Lm

k Memory size demanded for the task of slice k
Uc

i Total CPU resource capacity of fog node i
Um

i Total memory resource capacity of fog node i
Uc

z Total CPU resource capacity of cloud server z
Um

z Total memory resource capacity of cloud server z
ηc

i The allocation unit of CPU resource at fog node i
ηm

i The allocation unit of memory resource at fog node i
ηc

z The allocation unit of CPU resource at cloud server z
ηm

z The allocation unit of memory resource at cloud server z
BWi The transmission bandwidth of fog node i
Pi The transmission power of fog node i

β1,β2 The path loss constant and exponent

rc
i The available CPU resource units at fog node i

rm
i The available memory resource units at fog node i

fi,k
The offloading decision by fog node i that where

the task of slice k will be processed

wi,k
The resource allocation decision by fog node i that how many

tasks of slice k will be allocated resources for processing

ψi The local reward observed by fog node i

2.2.1 Three-layer fog network system

To improve scalability and resource utility in fog networks, a three-layer hierarchy is the most

considered architecture [Zhang et al. (2017b); Mouradian et al. (2017)]. A three-layer fog

network consists of an end-device layer, a fog layer, and a cloud layer. The end-device layer
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Figure 2.1 Three-layer fog network system

includes various types of devices, known as unintelligent devices, that are only producing data

and are not equipped with processing capacity. Therefore, devices can request the nearest fog

node to run their tasks on behalf of them. These tasks can be classified into types according to

two characteristics, the task performance requirement (also called QoS) and the heterogeneous

resource configuration (e.g., different CPU and memory configurations).

The fog layer is composed of multiple fog nodes i ∈ I . As illustrated in Fig. 2.1, we consider

the fog layer where the physical network infrastructure is split into multiple virtual networks

to offer heterogeneous service requests for different types of end-device segments, known as

network slicing [Jain & Paul (2013)]. With network slicing technology [Naeem, F., Kaddoum,

G. & Tariq, M. (2021)], fog nodes can set up customized slices to guarantee specific latency and

resource requirements by the supported services. Fog nodes are formed by at least one or more

physical devices with high processing capabilities, which are aggregated as one single logical

entity able to seamlessly execute distributed services as if it was on a single device. The shared

physical resources (e.g., bandwidth, CPU, and memory) on fog nodes are partitioned into fog
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slices to enable running the network functions that meet certain required slice characteristics

(e.g., ultra-low-latency, ultra-reliability, etc).

Finally, the cloud layer includes various servers that are capable of sufficient storage and com-

putational resources but are physically remote from end-devices. In our architecture, a fog

network comprises of a single cloud cluster z ∈ Z that interacts with all fog nodes.

2.2.2 SDN-based fog nodes and inter-SDN communications

To provide more distributed and scalable management, fog nodes make use of software-defined

networking techniques where the control plane is capable of decision-making while the data

plane simply serves forwarding and computing tasks [Mahmood et al. (2015); Tomovic et al.

(2017)]. Furthermore, many different applications are operated concurrently in the SDN ap-

plication plane. Besides, as individual SDN controllers are located in separate fog nodes, we

apply the concept of inter-SDN communications, which interconnects controllers to share in-

formation and coordinate their decisions [D. Gupta and R. Jahan (2014)]. It is noted that the

need for inter-SDN communications is increased as the explosive increase in task demands of

end devices is requiring networks formed by more than one SDN controller [Hou, X., Muqing,

W., Bo, L. & Yifeng, L. (2019)]. In our system model, each fog node defines, deploys, and

adapts independent decision-making in its separate SDN controller, and communication be-

tween the SDN controllers of the fog nodes aims to exchange feedback information required

by the independent decision-making processes. Details about the information exchange is pro-

vided in section 2.3.

2.2.3 Fog slices based on heterogeneous task models

We consider a fog network with fog nodes deploying the same set of logical fog slices for

different task types over separate infrastructures (i.e. Ki = K ,∀i ∈ I ). Let k ∈ Ki be the

set of slices available in the ith node where each slice processes a specific type of tasks in a

separate buffer. The task demanded from the end devices by slice k has a size of Tk bits. In this
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context, since the time slot duration is relatively small, at most one task arrives at each slice of

the fog node within a time slot. At the beginning of each time slot t, let ai,k(t) be the arrived

task, where ai,k(t) = 1 if a task of slice k arrives at fog node i, otherwise ai,k(t) = 0. Hence, the

probability that a new task of slice k arrives at fog node i within time slot t follows a Bernoulli

distribution with parameter λi,k, P(ai,k = 1) = λi,k. The number of tasks in a buffer for slice

k at fog node i and time slot t is bi,k(t), of which be
i,k(t) tasks are in progress in time slot t.

Meanwhile, the maximum buffer size is bi,k.

Classified tasks in each slice have specific QoS requirements as well as different resource con-

figurations. We assume that tasks delivered from end-devices are classified to the correspond-

ing slices regarding their characteristics without manual intervention since classifying tasks to

predict the type of application [Wang, P., Lin, S.-C. & Luo, M. (2016a)] are outside the scope

of this paper. In terms of QoS, we categorize tasks into three classes: 1) delay-critical class

(e.g., self-driving cars, live-streaming), 2) delay-sensitive class (e.g., augmented reality/virtual

reality (AR/VR), smartphone applications) and 3) delay-tolerant class (e.g., IoT sensors). The

priority of tasks is determined in a way that provides maximum reliability within an acceptable

delay, proper to each slice.

On the other hand, with regard to resource configurations, tasks of each slice demand two

types of resources (i.e. CPU and memory). To process a task of slice k, we denote the CPU

processing density (in cycles/bit) and the memory (in Mbyte) demands as Lc
k and Lm

k , respec-

tively. Therefore, although tasks require the same QoS demands, the resource demands can be

dissimilar [Kwak, J., Choi, O., Chong, S. & Mohapatra, P. (2016)]. One use case example of

the delay-critical class is a live sport-streaming application requiring high-throughput, while

another from the same class would be an emergency signal for self-driving cars which doesn’t

necessarily require high-throughput. Thus, they are processed through different slices.

Furthermore, the total resource capacities (i.e. CPU and memory) of fog node i and of the cloud

server z are Ui = (Uc
i ,U

m
i ), ∀i ∈ I and Uz = (Uc

z ,U
m
z ), respectively, where the superscript c

and m indicate CPU speed (in cycles/Δt) and memory size (in Mbyte), respectively. We assume
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that the cloud server is much more computationally powerful than its associated fog nodes, i.e.,

Uc
z 	 Uc

i , ∀i ∈ I , and provides limitless storage, i.e., Um
z ∼ ∞. The fog nodes and the cloud

server can allocate their resource on a resource unit basis. Hence, the total amount of resource

units, which can be allocated by fog node i to all slices, can be computed as Ni = (Nc
i ,N

m
i ) =(


Uc
i

ηc
i
�,
Um

i
ηm

i
�
)

where ηc
i and ηm

i stand for the number of allocated units of computing and

memory resources at fog node i, respectively, and 
·� denotes the floor function. Likewise, ηc
z

and ηm
z indicate the number of allocated units of computing and memory resources at cloud

server z and the total number of resource units of cloud server is unlimited.

Thus, for a given node i at time t, the occupied resource units of all slices can be calculated as

Gi (t) =
(
gc

i ,g
m
j
)
=

(
∑
k

be
i,k(t),∑

k
be

i,k(t) · �
Lm

k
ηm

i

)
, (2.1)

where �· is the ceiling function since a minimum of memory units greater than or equal to

Lm
k

ηm
i

must be allocated to execute the task of slice k. At every time slot t, fog nodes only

monitor their own available resources which correspond to the total resources minus the sum

of resources being allocated to tasks of all slices. Hence, the available resource units at fog

node i and time t can be measured as

Ri (t) =
(
rc

i ,r
m
j
)
= (Nc

i −gc
i ,N

m
i −gm

i ) , (2.2)

where rc
i +gc

i ≤ Nc
i and rm

i +gm
i ≤ Nm

i . Once the task processing is completed during the time

slot, the finished task will be eliminated from the buffer and the resource allocated to this task

will return to the available resource pool in the next time slot.

2.2.4 Calculation of task latency

In our architecture, at the beginning of each time slot t, fog nodes use an independent offloading

policy to decide whether they will process arrived tasks locally or offload them to another

node between neighboring fog nodes and the cloud server. Furthermore, decisions on resource
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allocation are simultaneously made by fog nodes with regard to their own resources through

separate allocation policies.

We define a task latency to enable different delay constraints for tasks, thereby minimizing

timeout failures that result from high transmission latency from offloading to a remote node or

long waiting delays due to insufficient resource capacities at the processing node. Formally, the

task latency can be denoted as the sum of the transmission delay, waiting delay, and processing

delay. We assume that the fog nodes have information regarding the distance to neighboring

fog nodes in the fog network as well as to the cloud server. To model the transmission delay

of offloading, the tasks are transmitted to the selected node over a wireless channel. Then the

transmission delay for fog node i to forward the task of slice k can be defined as

Ds
i, j,k,n(t) =

⎧⎪⎨
⎪⎩

Tk
νi, j,n(t)

, if i �= j

0, otherwise,

(2.3)

where j ∈ {I ,Z } if the selected node is a fog or cloud node, respectively, and n ∈ {1,2, ..K}
indicates the total number of tasks offloaded by fog node i at time slot t. Moreover, νi, j,n(t)

represents the transmission rate from fog node i to the selected node j, which is given by [Lee

et al. (2019)]:

νi, j,n(t) = BWi,n(t) · log

(
1+

β1di, j
−β2 ·Pi

BWi,n(t) ·σ2

)
, (2.4)

where di, j, β1, and β2 are the distance between two nodes, the path loss constant, and the path

loss exponent, respectively. The variable Pi denotes the transmission power of fog node i and

σ2 is the noise power spectral density. Additionally, the bandwidth is given by BWi,n(t) = BWi
n ,

which means that the total bandwidth of the fog node BWi is equally shared by n tasks. For

example, when a fog node i offloads a total of two different tasks during a time slot, each task

is transmitted with BWi
2 in separate ways. When i = j, a fog node i processes this task locally,

thus there is no transmission delay. Moreover, in most cases, the size of task after processing

is small, thus the transmission delay of the result after processing can be ignored.
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Next, when the slice k task arrives in the corresponding buffer at node j, the waiting delay

Dq
i, j,k(t) can be calculated as

Dq
i, j,k(t) =

⎧⎪⎨
⎪⎩

b j,k(t)
μ j,k(t)

, if j ∈ I

0, otherwise,

(2.5)

where b j,k(t) is the number of tasks previously existing in a buffer and μ j,k(t) is the service

rate (i.e., the rate of tasks leaving a buffer). However, since a fog node does not have prior

information about the buffer status of the other nodes when offloaded tasks arrive in its buffer

and given that the service rate varies depending on the resource scheduling process, the waiting

delay cannot be calculated in advance. On the other hand, we assume that the waiting time at

the buffer of the cloud can be disregarded because the cloud is equipped with a larger number of

cores than the fog node. This indicates that the cloud initiates the computation for the received

tasks without queuing delay.

When a task is computed by fog nodes, the processing delay Dp
i, j,k(t) can be denoted as

Dp
i, j,k(t) =

⎧⎪⎪⎨
⎪⎪⎩

Tk·Lc
k

ηc
j
, if j ∈ I

Tk·Lc
k

ηc
z
, otherwise,

(2.6)

where Tk ·Lc
k refers to the number of CPU cycles required to complete the execution of a task

of slice k. When the task is offloaded to a fog node j ∈ I , the task of slice k is executed by a

fog node j with the CPU speed ηc
j . Likewise, when the task is offloaded to the cloud server z,

the processing delay is formulated in the bottom equation of (2.6) where ηc
z is the CPU speed

of cloud server z. Thus, the processing delay is dependent on both the resource configuration

of the task and the amount of allocated resources.
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In essence, if a slice k task is offloaded from a fog node i to a neighboring fog node j �= i, the

latency is obtained as

Di, j,k,n(t) = Ds
i, j,k,n(t)+Dq

i, j,k(t)+Dp
i, j,k(t)

=
Tk

νi, j,n(t)
+

b j,k(t)
μ j,k(t)

+
Tk ·Lc

k
ηc

j
.

(2.7)

If a slice k task is computed locally by a fog node i, the latency becomes

Di,i,k,n(t) = Dq
i,i,k(t)+Dp

i,i,k(t)

=
bi,k(t)
μi,k(t)

+
Tk ·Lc

k
ηc

i
.

(2.8)

Finally, if a slice k task is offloaded from a fog node i to the cloud server z, the latency is

Di,z,k,n(t) = Ds
i,z,k,n(t)+Dp

i,z,k(t)

=
Tk

νi,z,n(t)
+

Tk ·Lc
k

ηc
z

.
(2.9)

2.3 Problem formulation

In this section, we define the problem of heterogeneous task offloading and resource allocation

in a system with multiple fog nodes as a POMDP across the time horizon.

2.3.1 Partially observable MDP based problem formulation

The main goal of the system is to make an optimal offloading and resource allocation decision

at each node with the objective of maximizing the successfully processed tasks while guar-

anteeing the corresponding delay constraint of each task. Therefore, the joint offloading and

resource allocation decision is achieved by finding proper processing nodes for the tasks and an

optimal allocation of the node’s resources to all individual slices. We assume that the joint of-

floading and resource allocation decisions from all fog nodes are made simultaneously at every
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time slot t. To this end, each node repeatedly observes its own system states at the beginning

of the time slot. The local observation by fog node i is defined as

Oi(t) =
(

Ai(t),Bi(t),Be
i (t),Ri(t)

)
, (2.10)

where Ai(t) = (ai,k(t) : k ∈ Ki), Bi(t) = (bi,k(t) : k ∈ Ki), and Be
i (t) = (be

i,k(t) : k ∈ Ki) are

the set of arrived tasks, the number of tasks in the buffer, and the number of tasks in progress

among Bi(t) from all slices at the fog node i ∈ I and time t, respectively. Moreover, Ri(t) =(
rc

i (t),r
m
i (t)

)
is the available resource units at the fog node i ∈ I at time t.

Note that the underlying states of the system including the states of other fog nodes are not

accessible by the fog node. Instead, only the aforementioned state set in (2.10) can be observed

and thus the system becomes a POMDP. We suppose that the observations are limits to the

measurement accuracy of the state but are enough to make usable state data for a POMDP

system.

In the presence of uncertainties stemming from the task demands and resource availability at

the fog nodes, we formulate the POMDP based problem across the time horizon as a stochastic

game in which each node selects actions as a function of their local observation. In our model,

a fog node’s offloading and resource allocation policy operates independently from the other

nodes’ policies. Thus, each fog node does not have any prior information on the task demands,

buffer status, and resource availability of the other fog nodes. Accordingly, the actions are

defined as

Xi(t) =
(

X f
i (t),X

w
i (t)

)
, (2.11)

where X f
i (t) = ( fi,k(t) : k ∈ Ki) and Xw

i (t) = (wi,k(t) : k ∈ Ki) denote the offloading decision

and resource allocation decision, respectively. fi,k(t) ∈ {0,1, ..., I+1} represents by whom the

task will be processed, where fi,k(t) = 0 if the slice k task doesn’t arrive at the fog node i at time

t, fi,k(t)= i if the slice k task arrives and will be computed locally, and fi,k(t)= j, j ∈I and j �=
i, if the slice k task arrives and will be offloaded to another node ( fi,k(t) = I+1 implies that the
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fog node will offload this task to the cloud server). The resource allocation decision wi,k(t) ∈
{0,1, ...,
Um

i
Lm

k
�} represents how many tasks will be initiated by being allocated resources where


Um
i

Lm
k
� is the maximum number of tasks that can be simultaneously processed by the fog node

i. For example, wi,k(t) = 2 indicates that, at time t, fog node i allocates its resources to slice k

to execute two tasks that are not in progress in the buffer. Each node takes an action Xi(t) only

among the ones allowed in that observation, i.e., Xi(t) ∈ Xi(O(t)). We apply the following

constraints for the offloading and resource allocation at time t,

fi,k(t) = 0, if ai,k(t) = 0,∀k ∈ Ki,∀i ∈ I , (2.12)

wi,k(t)≤ (Bi(t)−Be
i (t)),∀k ∈ Ki,∀i ∈ I , (2.13)

∑
k∈Ki

wi,k(k)≤ rc
i ,∀i ∈ I , (2.14)

∑
k∈Ki

wi,k(k) · �
Lm

k
ηm

i
 ≤ rm

i ,∀i ∈ I (2.15)

to ensure that the fog node cannot offload the task when it doesn’t arrive by (2.12), cannot

allocate more than the number of tasks waiting for allocation by (2.13), and the sum of newly

allocated resources cannot exceed the available resources by (2.14) and (2.15).

Given that each node is in state Oi(t) and action Xi(t) is chosen, a transition probability is

given by (2.16), where X(t) = (Xi(t) : i ∈ I ) are the set of actions occurring at time t. From

(2.16), Be
i (t +1) and Ri(t +1) only depend on the action Xi(t) of fog node i, while Ai(t +1) is

determined regardless of the action. Since one node’s offloading decisions result in increasing

others’ buffers, the sequence of each node’s buffer status Bi(t) depends on the actions of all

agents X(t).

P

(
Oi(t +1)|Oi(t),X(t)

)
=P

(
Ai(t +1)

)
×P

(
Bi(t +1)|Bi(t),X(t)

)
×P

(
Be

i (t +1)|Be
i (t),X

w
i (t)

)
×P

(
Ri(t +1)|Ri(t),Xw

i (t)
) (2.16)



59

ψi(Oi(t),X(t)) =
1

K
· ∑

k∈K

ai,k(t) ·
(
(−1)1(D

max
k ≤Di,k(t))−ξk ·1(b fi,k,k(t +Dt

i,k(t))≥ b fi,k,k)
)

(2.17)

Based on the set of actions X(t) in local observation Oi(t), we define the local reward in (2.17),

where Dmax
k is the maximum delay budget of the task in slice k where the task is discarded if

its processing is not completed within this budget. The first term of the summation in (2.17)

represents the success reward, a positive reward if the task is successfully completed and neg-

ative reward if timeout failure is encountered, which depends on both offloading decisions of

arrived fog node i and resource allocation decision of the processing fog node. The second term

describes the overflow cost which defines whether the task is dropped because the slice buffer

is already full, thus it is related to the buffer status of processing fog node b fi,k,k. Moreover, ξk

is a constant weighting factor that balances the importance of the overflow failure for tasks of

slice k.

2.3.2 Cooperative games by independent learners

Although each fog node’s main goal is to optimize its own service performance and its resource

interests, the fog nodes must still coordinate on the resource flows between neighboring nodes

in order to achieve a meaningful solution from an overall system perspective [Busoniu, L.,

Babuska, R. & De Schutter, B. (2008)]. In addition, the service performance experienced by

service tasks during the processing is determined by the offloading and the resource allocation

decisions of all fog nodes. Therefore, our stochastic game, sometimes called Markov game,

follows a cooperative network to maximize the common goal rather than a competitive game

where each fog node has opposing goals [Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel,

P. & Mordatch, I. (2020); Hausknecht, M. J. & Stone, P. (2015)].

More precisely, we apply cooperative scenarios between independent multi-fog nodes where

the fog nodes share their local rewards with others as feedback information. This decision-

making problem implies that independent fog nodes perceive the common reward that is as-
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sociated with each joint-action while estimating the value of their individual actions solely

based on the rewards that they receive for their actions. Therefore, this reduces the feedback

and memory overheads considerably compared to joint-action learning schemes where the fog

nodes share their reward, observation, and action sets with others to maintain a model of the

strategy of other agents. As such, at each time step, each node executes an individual action,

with the joint goal of maximizing the average rewards of all nodes which can be formally

formulated as

ψ(t) = ∑
i∈I

ψi

(
Oi(t),X(t)

)
. (2.18)

Thus, each node’s reward is drawn from the same distribution, reflecting the value assess-

ment of all nodes [Claus, C. & Boutilier, C. (1998). Moreover, the convergence performance

of joint-action learning schemes is not enhanced dramatically despite the availability of more

information due to the exploration strategy [Kapetanakis, S. & Kudenko, D. (2002)]. As de-

tailed in section 2.2, the reward feedback is transmitted through inter-SDN communications

to the SDN controllers of all the fog nodes for the decision-making process. In summary, the

decision-making process at each fog node is fully distributed for real-time task offloading and

resource management while communications between SDN controllers aims to exchange less

time-sensitive reward information.

2.4 Learning the optimal offloading and resource allocation policies

In this section, we propose a Q-learning-based optimal policy solution to address the limitations

of the traditional approaches and discuss deep recurrent Q-networks (DRQN) which can better

approximate actual Q-values from sequences of observations, leading to better policies in a

partially observable environment.

2.4.1 Optimal policy solution using Q-learning

In the case where the system has access to transition probability functions and rewards for

any state-action pair, the MDP can be solved through dynamic programming (DP) approaches
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to find the optimal control policy [Bellman & Karush (1964); Puterman, M. (2005)]. How-

ever, in our cases, the system cannot precisely predict the transition probability distributions

and rewards. To address this limitation, reinforcement learning is proposed in which the lack

of information is solved by making observations from experience [Sutton & Barto (2018)].

Among the different reinforcement learning techniques, Q-learning is used to find the optimal

state-action value for any MDP without an underlying policy. Given the controlled system, the

learning node i repeatedly observes the current state Ot
i, takes action Xt

i that incurs a transition,

then it observes the new state Ot+1
i and the reward ψ t

i . From these observations, it can update

its estimation of the Q-function for state Ot
i and action Xt

i as follows:

Qi(Ot
i,X

t
i )← (1−α) ·Qi(Ot

i,X
t
i )+α · [ψ t

i + γ max
X ′∈X(Ot+1

i )
Qi(Ot+1

i ,X ′)], (2.19)

where α is the learning rate (0<α<1), balancing the weight of what has already been learned

with the weight of the new observation, and γ is the discount factor (0<γ<1).The most com-

mon action selection rule is the ε-greedy algorithm that behaves greedily most of the time i.e.,

Greedy selection (Xt .
= argmaxX ′ Q(Ot ,X ′)) and explores other options by selecting a random

action with a small probability ε . This greedy selection and the ε probability of random se-

lection are called exploitation and exploration, respectively. Non-optimal action selection can

be uniform during exploration (ε-greedy algorithm) or biased by the magnitudes of Q-values

(such as Boltzmann exploration) [Sutton, R. S. (1990); Perkins, T. J. & Precup, D. (2002)].

Moreover, we discuss the computational complexity of the Q-learning algorithm. The Q-

algorithm requires storing a |O|× |X | size table of Q-values, i.e., Q(O,X) for all O ∈ O and

X ∈X . In our problem, the size of local observation spaces |Oi| and local action spaces |Xi| is

calculated as ∏k∈K

(
2×(1+bi,k)

2
)
×(1+Nc

i )×(1+Nm
i ) and (I+2)K ×∏k∈K

(
1+
Um

i
Lm

k
�
)

.

When I = 5, K = 3, bi,k = 5, Nc
i = 5, Nm

i = 5, and 
Um
i

Lm
k
� = 5, one node i has to update a total

of 9.955× 108 Q-function values, which makes it impossible for the conventional Q-learning

process to converge within a limited number of time steps. This problem is even more pro-

nounced in multi-agent scenarios, where the number of joint actions grows exponentially with

the number of agents in the system.
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2.4.2 Convergence to equilibrium

π∗
i of a node i is the optimal policy to other nodes. Recall from fictitious play [Fudenberg,

D. & Kreps, D. (1990)], the exploration strategy is required to be asymptotically myopic to

ensure that Nash equilibrium will be reached in multi-agent RL strategies. An action selection

rule πi is said to be asymptotically myopic if the loss from agent i’s choice of actions at every

given history πi goes to zero as t proceeds [Fudenberg & Kreps (1990)]:

ψ(πt
i )↗ max{ψ(Xi)|Xi ∈ Xi(Oi)}, (2.20)

as t → ∞, where ψ denotes the reward function. Therefore, the independent multi-agent Q-

learning in cooperative systems will converge to equilibrium almost surely when the following

conditions are satisfied [Claus & Boutilier (1998)]:

- The learning rate α decreases over time such that ∑t α = ∞ and ∑t α2 < ∞.

- Each node visits every action infinitely often.

- The probability P
t
i(x) that node i selects action x is nonzero, x ∈ X (o).

- The exploration strategy of each node is exploitative such that

lim
t→∞

P
t
i(π

t
i ) = 0 ,

where πt
i is a random variable denoting a non-optimal action was taken based on estimated

Q-values of node i at time t.

The first two conditions are required for convergence in Q-learning, while the third ensures that

nodes explore with a positive probability at all times, which will ensure the second condition.

Last but not least, the fourth condition guarantees that agents exploit their knowledge as the

number of time steps increases. In fact, convergence of Q-learning does not depend on the

exploration strategy used, which implies that there is no rule to choose actions as long as

every action is visited infinitely often. However, effective exploration strategies will encourage
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long run optimal equilibrium [Claus & Boutilier (1998). To this end, we propose an adjusted

exploration-exploitation method in the next subsection.

2.4.3 Deep Q-learning with nonlinear transformation

To solve the scalability issues of Q-learning, we adopt Q-learning with a neural network, called

deep Q-network (DQN). The DQN embraces the advantage of deep neural networks (DNNs)

to train the learning process at each node i ∈ I , thereby improving the learning speed and the

performance of Q-learning algorithms.

The Q-network can be trained by iteratively adjusting the weights θ to minimize a sequence of

the loss function, Li (θ t), where the loss function at time slot t is defined in (2.21).

Li
(
θ t

i
)
= E

[(
ψ t + γ max

X ′∈Xi
Qi
(
Ot+1

i ,X ′;θ t−1
i

)−Qi
(
Ot

i,X
t
i ;θ t

i
))2

]
(2.21)

Precisely, given a transition 〈Ot
i,X

t
i ,ψ

t ,Ot+1
i 〉, the weights θ t

i of the Q-network of node i ∈ I

are updated in a way that minimizes the squared error loss between the current predicted Q-

value of Qi (Ot
i,X

t
i ) and the target Q-value of

[
ψ t + γ maxX ′∈Xi Qi(Ot+1

i ,X ′)
]
. The gradient of

the loss function with respect to the weights θ t
i is given by (2.22).

∇θ t
i
Li
(
θ t

i
)
= E

[(
ψ t+γ max

X ′∈Xi
Qi
(
Ot+1

i ,X ′;θ t−1
i

)−Qi
(
Ot

i,X
t
i ;θ t

i
)) ·∇θ t

i
Qi
(
Ot

i,X
t
i ;θ t

i
)]
(2.22)

Moreover, in the DQN algorithm, the experience replay technique is adopted as the training

method to address the instability of the Q-network due to the use of non-linear approximation

functions [Mnih et al. (2015)]. Hence, the transition experiences, et
i = 〈Ot

i,X
t
i ,ψ

t ,Ot+1
i 〉 are

stored into a replay buffer Mi = {et−Di
i , . . . ,et

i}, where Di is the replay buffer capacity. Due to

possible delays in the reward feedback between fog nodes, the past transition experiences may

need to wait in the temporal replay buffer to combine the rewards (as in (2.18)), where they

are transferred to the replay buffer as soon as it is ready. At each time step, instead of the most

recent transition et
i, a random mini-batch Ni of transitions from the replay memory is chosen to
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train the Q-network by node i. Furthermore, every C time steps, the network Qi is duplicated

to obtain a target network Q̂i which is used for generating the target Q-value for the following

C updates to Qi.

In addition, to guarantee the convergence and accuracy of the neural network, we adopt an ad-

justed exploration-exploitation scheduling method. At the beginning of the process, the agent

with a normal ε-greedy algorithm selects more random actions with a probability ε = εstart to

encourage initial exploration. Then, the exploration rate is asymptotically decayed with εdecay

until it reaches a certain minimum value εmin and is preserved until the last iteration. Since εmin

is a very small number, after this initial exploration phase, most decisions take the highest es-

timated value at the present iteration. However, this often leads to a sub-optimal policy due to

exploiting bad estimates of the Q-value which were learned during the early iterations and in-

sufficient exploration in large state-action space cases. To deal with this problem. the adjusted

exploration-exploitation method allows the agent to shift back into exploratory mode every Rε

time slots, where the starting exploration probability εstart is decreased δ ε (0<δ ε<1) times

every update. Therefore, this method efficiently avoids the exploitation of incorrect actions by

selecting better estimates of the Q-value as the learning progresses. The optimal control policy

learning implementation using the DQN algorithm is illustrated in Fig. 2.2.

2.4.4 Deep-recurrent Q-learning for partial observability

Another problem is that estimating a Q-value from an immediate observation in DQN can

be arbitrarily wrong since the network states are partially observed and hinge upon multiple

users [Omidshafiei, S., Pazis, J., Amato, C., How, J. P. & Vian, J. (2017)]. Any system that

requires a memory of more than an immediate observation will appear to be non-Markovian

because the future system states depend on more than just the current input. This issue can

be solved by allowing the agent to perform temporal integration of observations. The solution

adopted in [Mnih et al. (2015)] stacks the last four observations in memory and feeds them

to the convolutional neural network (called DCQN) instead of a single observation at a time.

However, their DCQN takes in a fixed size vector as input, a stack of 4 observations, which
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Figure 2.2 Application of a deep Q-network (DQN) to

approximate the optimal joint offloading and resource allocation

control policy of the SDN-based fog nodes

limits its usage in situations that involve a sequence type input with no predetermined size.

In order to address this issue, we implement a DRQN which replaces the DCQN’s first fully

connected layer by a recurrent layer. By utilizing a recurrent layer, the neural network will

be able to learn its output depending on the temporal pattern of observations by maintaining a

hidden state that it computes at every iteration. The recurrent layer can feed the hidden state

back into itself, and thus it can maintain internal states and aggregate observations.

However, during backpropagation, vanilla recurrent neural networks suffer from the vanishing

gradient problem, which makes layers that get a small gradient value stop learning, and thus

neural networks may forget important information from the beginning. To tackle this problem,

we use Gated Recurrent Unit (GRU) for the recurrent layer. Similar to Long short-term memory
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Figure 2.3 The proposed DRQN structure with GRU

(LSTM), GRU was introduced as a solution to the short-term memory of vanilla recurrent

neural networks [Chung, J., Gülçehre, Ç., Cho, K. & Bengio, Y. (2014)]. The main concept of

GRUs is a gating mechanism, which can learn which information is relevant to keep or forget

during training in the recurrent network. GRU has two gates (reset and update) and is known to

be computationally more efficient and faster than LSTM which consists of three gates (forget,

input, and output) and cell state, while its performance is comparable to LSTM [Jozefowicz,

R., Zaremba, W. & Sutskever, I. (2015); Le, T.-D. & Kaddoum, G. (2021)]. The proposed

DRQN structure is illustrated in Fig. 2.3.

Gt
r = σ(W s

r St−1 +W g
r Gt

i +biasr),

Gt
z = σ(W s

z St−1 +W g
z Gt

i +biasz),

S̃t = tanh(W s(Gt
r �St−1)+W gGt

i +bias),

St = Gt
z �St−1 +(1−Gt

z)� S̃t ,

(2.23)

where Gt
r and Gt

z are reset and update gates, respectively. With that, the recurrent network

can learn how to use some of its units to selectively cancel out the irrelevant information and

protect the state. Sigmoid and Tanh activation functions can make these decisions by filtering

values between 0 and 1 for each state element.
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Algorithm 2.1 details the procedure of the proposed learning algorithm at fog node i. The

neural network takes the state sequence as an input to the first convolutional layer. Since the

valid action space is dependent upon the current state value, we involve a step in the action

selection that sets the probability of invalid actions to zero and re-normalizes the sum of the

probabilities of the other actions to 1.

Algorithm 2.1 Deep recurrent Q-learning algorithm for approximating the optimal

state-action value functions of a fog node i ∈ I with experience memory

1 Set Initialize replay buffer Mi to capacity Di, state-action value function Qi with

random weights θi, target state-action function Q̂i with weights θi− = θi.

2 while (t ≤ maximum iteration) do
3 Observe the arrival task At

i, buffer state Bt
i,B

e,t
i , resource status Rt

i and combine

them as Ot
i

4 Take Ôt
i as an input to the DRQN network with parameter θi, where Ôt

i is a state

sequence

5 Calculate ε = max[exp(−εdecay · (t mod Rε) + logεstart),εmin], and choose

random action Xt
i from valid action spaces X(Ot

i) with probability ε otherwise

select Xt
i
.
= argmaxX ′ Q(Ot

i,X
′;θi)

6 Execute action Xt
i ; offload tasks according to X f ,t

i and allocate the resource Xw,t
i

7 Observe local reward ψ t
i , next state Ot+1

i and receive rewards from other nodes

ψ t
j �=i

8 Save transition 〈Ot
i,X

t
i ,ψ

t ,Ot+1
i 〉 in Mi

9 Sample a random mini-batch from Mi Ni = 〈Ôn
i ,X

n
i ,ψ

n, Ôn+1
i 〉

10 Set yn
i = ψn + γ maxX ′∈Xi Qi(On+1

i ,X ′;θ t
i −)

11 Perform a gradient step in (19) with respect to the parameter θ t
i

12 Every C time step, reset the target network parameters θ t+1
i − = θ t

i
13 Every Rε time step, update εstart = δ ε · εstart and εdecay =− log εmin

Rε − εstart
Rε

14 t←t+1

15 end

2.5 Performance evaluation

In this section, we quantify the performance gain from the proposed DRQN-based learning

algorithm for heterogeneous task offloading and resource allocation problems in multi-fog net-

works using numerical experiments based on Python-TensorFlow simulator. We used three dif-

ferent environments which are equipped with Inter(R) Core i7-7500 U CPU @ 2.7GHz 64-bit
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OS, Intel(R) Xeon(R) CPU E3-1225 v6 @ 3.3GHz 64-bit OS, and AMD Ryzen Threadripper

1920X 12-Core Processor.

2.5.1 Simulation settings

For our simulations, we consider a fog layer consisting of five fog nodes that are randomly dis-

tributed within a network area of 100×100 m2. In addition, a total of three different slices are

created on top of each fog node. Slice characteristics are customized by the two-level of het-

erogeneity, namely the resource demands types and delay constraints, which are summarized

in Table 2.2. As an example of slice characteristics in Table 2.2, slice k can be dedicated to

Standard resource type services to meet the delay-critical constraint. To obtain realistic values

for the processing capacities of fog nodes, we use the CPU processing densities and memory

sizes from [Kwak et al. (2016)] which used real applications data including a YouTube video

data set in [Cheng, X., Dale, C. & Liu, J. (2008)]. For slice k at fog node i, the task arrivals

follow a Bernoulli distribution with parameter λi,k (in task/slot) and the packet size is 5·106

bits. Additionally, the buffer size in each slice is 10, which means that a maximum of 10 slice

tasks can stay in the buffer concurrently until processing terminates. The path loss constant and

exponent are set to 10−3 and 4, respectively. The bandwidth for each fog node is 1MHz. The

transmission power of the fog node is 20dBm, while the noise power density is -174dBm/Hz

[Lee et al. (2019)]. In regard to resource capacity distribution at fog nodes, the CPU speed of

a fog node is randomly sampled from [5GHz, 6GHz, 7GHz, 8GHz, 9GHz, 10GHz], where the

memory size of a fog node is randomly sampled from [2.4GB, 4GB, 8GB]. The allocation unit

of CPU and memory resources are 1GHz and 400MB, respectively.

To evaluate the performance of different neural network settings, three neural networks are

considered to estimate the Q-value in our simulation. For all of them, the output layer is a

fully connected layer of |Xi(t)| units, where |Xi(t)| represents the dimension of the action set.

Additionally, the activation function of the output layer is a linear activation function, which

corresponds to the predicted Q-value of all possible actions. These neural networks differ from

each other on the input layer and the hidden layers as detailed below.
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Table 2.2 Two-level of heterogeneity values to service tasks in simulation

Resource Types Delay Constraints
Critical Sensitive Tolerant

Standard

Dmax
k = 10ms

Lc
k = 400 cycles/bit

Lm
k = 400 Mbytes

Dmax
k = 50ms

Lc
k = 400 cycles/bit

Lm
k =400 Mbytes

Dmax
k = 100ms

Lc
k =400 cycles/bit

Lm
k =400 Mbytes

CPU intensive

Dmax
k = 10ms

Lc
k = 600 cycles/bit

Lm
k = 400 Mbytes

Dmax
k = 50ms

Lc
k =600 cycles/bit

Lm
k =400 Mbytes

Dmax
k = 100ms

Lc
k =600 cycles/bit

Lm
k =400 Mbytes

Memory intensive

Dmax
k = 10ms

Lc
k = 200 cycles/bit

Lm
k = 1200 Mbytes

Dmax
k = 50ms

Lc
k =200 cycles/bit

Lm
k =1200 Mbytes

Dmax
k = 100ms

Lc
k =200 cycles/bit

Lm
k =1200 Mbytes

- DRQN: for the design of the deep recurrent Q-network, the input to the network consists

of Seq×|Oi(t)|, where |Oi(t)| is the dimension of the state set and Seq is the sequence size

for the 1D-convolutional network. The first hidden layer convolves 32 filters with a kernel

size of 3 and applies a Rectified Linear Unit (ReLU). The second hidden layer convolves

64 filters with a kernel size of 3, again followed by a ReLU. This is followed by a recurrent

layer in which we use GRU. The number of units in the GRU cell is 128 and the sequence

length is 10. The final GRU state is followed by a fully connected layer with ReLU, which

has 64 units.

- DCQN: the deep convolutional Q-network is almost identical to the deep recurrent Q-

network except for a recurrent hidden layer. The resulting activations from the second

convolutional hidden layer are followed by two fully-connected layers with ReLU, the first

one has 128 units and the second has 64 units.

- DQN: we use four fully-connected hidden layers consisting of 64, 128, 128, and 64 units

with ReLU.

In all the experiments, we use the Adam optimizer with a learning rate of 0.001 and learning

starts after 104 iterations. A discount factor γ of 0.98 is used in the Q-learning update. The

replay memory size of Di is 104. The target network parameters C is updated every 103 time

slots. We use a mini-batch size of 32 transition samples per update. The ε-renewal factor
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δ ε , ε-renewal rate Rε , ε-start εstart and minimum-ε εmin are set to 0.9, 5000, 1 and 0.01,

respectively.

For performance comparisons, the existing methods are simulated as baseline schemes. Given

the large state and action spaces in the problem considered, we compare methods that are prac-

ticable using limited computational resources. Specifically, one baseline offloading method is

used as follows:

- Threshold Offloading with Nearest Node selection: the node offloads its tasks only if the

buffer is above a certain threshold and we set the threshold to 0.8 which implies that the task

is to be offloaded if the buffer is more than 80% full. Also, the node selects the most adja-

cent neighboring node aiming to minimize communication delays and energy consumption

which is an offloading algorithm widely used in IoT and device-to-device communications.

On the other hand, two conventional resource allocation algorithms are simulated as baseline

schemes, namely:

- Round Robin (RR): this algorithm allows every slice that has tasks in the queue to take

turns in processing on a shared resource in a periodically repeated order.

- Priority Queuing (PQ): this algorithm handles the scheduling of the tasks following a

priority-based model. Tasks are scheduled to be processed from the head of a given queue

only if all queues of higher priority are empty, which is determined by a delay constraint.

For different evaluation scenarios, we specifically assign three different cases in terms of slices’

characteristics to analyze how each slice’s different resource demands and delay priorities are

interrelated to each other. Thus, the three simulation cases according to the three slices’ char-

acteristics are summarized in Table 2.3. It is noted that this evaluation can simply be expanded

by configuring Table 2.2 and Table 2.3 to suit the needs of the fog network.
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Table 2.3 Simulation cases according to the three slices’ characteristics

Case fog slice-1 fog slice-2 fog slice-3

case-1 Standard

Delay-Critical

CPU-intensive

Delay-Critical

Memory-intensive

Delay-Critical

All slices have the same delay constraint,

but different resource type tasks

case-2 Standard

Delay-Critical

Standard

Delay-Sensitive

Standard

Delay-Tolerant

All slices have the same resource type tasks,

but different delay priorities

case-3 Standard

Delay-Critical

CPU-intensive

Delay-Critical

Standard

Delay-Sensitive

Some slices have the same resource type tasks,

but different delay priorities and some vise versa

2.5.2 Performance analysis

In this subsection, we evaluate the performance of the proposed algorithm by comparing the

simulation results under different system parameters.

2.5.2.1 Complexity analysis

In this section, the memory complexity and processing time of the proposed algorithm are in-

vestigated. The proposed DRQN-based learning algorithm described in Section 2.4.C requires

storing a replay buffer which consists of the state Ot
i, action Xt

i , reward ψ t , next state Ot+1
i ,

and valid action spaces of the next state Ξ(Ot+1
i ) for the target Q-network. In single transition

experience, the state, action, and reward require storing a len Ai + len Bi + len Be
i + len Ri =

3×K × 2 size array of decimal values, single integer numbers, and single float numbers, re-

spectively. Moreover, the valid action space of the next state is an |Xi| size array of binary

values, where Ξ[X ′] = 0 if X ′ ∈ Xi is invalid in state Ot+1
i , otherwise Ξ[X ′] = 1. Finally, using

the parameters in Section 2.4.A, the proposed algorithm requires much less memory than the

conventional Q-learning algorithm, i.e., approximately 2.8GB compared to 7.24TB. It is worth

mentioning that we leverage a Python-based simulator where the array as a whole is an object

that stores the float data in consecutive regions of the memory, and thus the memory size of an
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individual float is not explicit. Therefore, the memory usage compared corresponds to the data

contained in the object.

Furthermore, multi-node learning alleviates the overhead of the network infrastructure as well

as improves the system response time, compared to the centralized architecture. In our sim-

ulation, assuming each node is equipped with a single CPU, the processing time per iteration

is around 0.04s. Moreover, the proposed neural network model can be trained in parallel on

multiple CPUs or GPUs to improve the training time and memory usage.

2.5.2.2 Convergence performance

In this experiment, we evaluate the convergence property of different neural networks with the

above parameter settings to confirm whether the proposed deep reinforcement learning-based

algorithm can achieve stable performance. To quantify the impact of task traffic status on the

convergence performance, we implement two different average task arrival rates, which are

categorized into normal(λ̄=0.6) and heavy(λ̄=0.8), where λ̄ is the average task arrival rate per

slice at the fog node. Since the uniform random policy runs for 104 iterations at all nodes before

learning starts, the total average reward value is not enhanced during this time and thus we show

the average total reward of fog nodes after they start learning their networks. Once each node

starts learning its own state-action value functions with a preassigned neural network, the total

average rewards are increasing and asymptotically converge after around 1.5× 104 iterations

as shown in Fig. 2.4. In regard to the average task arrival rate, when the nodes receive a smaller

number of tasks per time slot, the average total reward value is larger over all simulation cases.

The main reason behind this is that the number of successfully processed tasks with limited

resources of fog nodes is higher when a fewer number of tasks are waiting in the buffer and

also that the buffers are less likely to be overflowed. Given the findings from this experiment,

the proposed algorithm using DRQN can achieve greater total reward compared to DQN and

DCQN. This result implies that DRQN controllers can handle partial observability by retaining

some memory of previous observations to help the nodes achieve better decision making.
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Figure 2.4 The convergence property of the proposed algorithm using

different neural networks

2.5.2.3 Performance under different characteristics of fog slices

This experiment mainly aims to demonstrate the performance in terms of the average pro-

cessing success rate, the average overflow rate, and the average task latency under different

characteristics of fog slices as shown in Table 2.3. Like the previous experiment, two kinds of

traffic demands, normal and heavy, are used for evaluation. Fig. 2.5 and Fig. 2.6 illustrates the

average success rate of tasks and the average overflow rate per fog node. From Fig. 2.5 (a) and

Fig. 2.6 (a), it can be observed that the proposed scheme using DRQN achieves the highest av-

erage success rate. Moreover, as the traffic requested increases, a larger number of tasks fail to

attain their delay performance requirements due to the lack of resources. Comparing the three

cases, when the nodes are requested the same traffic rate but demanding high computation and

memory resources (Case-1), fog nodes are more likely to experience a lower success rate. This

is because the processing time takes longer with limited resources, which also leads to failure

of the delay requirements.

In Fig. 2.5 (b) and Fig. 2.6 (b), it is shown that, when implementing baseline methods, ex-

tremely large amounts of tasks are dropped due to overloading buffers. This is because fog

nodes always select the most proximate fog node to offload their tasks, where the same fog

node can be selected by several neighbors and thus its buffers will fill up quickly with tasks

from multiple neighboring nodes. Furthermore, the resource allocation methods also affect the

overflow performance. As we mentioned, the slices with large resource demands take more
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processing time than the slices with small resource demands. Thus, when implementing RR

and PQ methods, there is unfairness in the allocation of slices with small resource demands,

which induces the high number of task drops from overloaded buffers. On the other hand, even

though slices of Case-2 constitute the tasks with the same resource demands, their overflow

rate is higher than that of Case-1 and Case-3. The difference in Case-2 is that the fog slice-3 of

nodes are dedicated to delay-tolerant tasks where tasks of this slice can stay in the buffer until

they exceed their large delay limit. Hence, the average processing success rate from Case-2

is higher due to relatively adequate delay limits, while the average overflow performance is

worse. However, the proposed algorithm can offload their tasks to different neighboring nodes

depending on their buffer and resource status and avoid unfairness among slices with different

priorities in the resource allocation process, leading to an increased average success rate.

Moreover, Fig. 2.5 and Fig. 2.6 show that the variances of the success and overflow rates

indicated by the error bars vary from one algorithm to the other. The error bars in these figures

represent the largest value as the upper limit and the smallest value as the lower limit among

all the nodes. For example in Fig. 2.5 (a), the success rate of Case-2 using DRQN has a

mean of 95.6% and varies between 95.3% to 96.1%, while the success rate of Case-2 using

nearest node selection with PQ resource allocation has a mean of 62.1% and varies between

36.8% to 90.8%. We can clearly see that the variability of the task success rate between fog

nodes is greater for baseline methods than for the proposed algorithms, where the same trend

is shown in the overflow rate. This result indicates that the proposed algorithm discourages

selfish behavior in nodes and achieves a win-win cooperation between fog nodes by making

rational offloading and resource allocation decisions.

Fig. 2.7 illustrates the average task delay under different cases. In contrast to the baseline

methods, the proposed algorithm decreases the average task delay by selecting a neighboring

fog node that minimizes transmission delay as well as waiting time in the buffers and allowing

distinct resource allocation with respect to characteristics of each slice.
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Figure 2.5 Performance of (a) average success rate and (b) average overflow rate of

normal traffic under different cases

2.5.2.4 Performance under different task arrival rates

In this experiment, we consider how the task arrival rates impact the average performance in

terms of the average processing success rate, the average overflow rate, and the average task

latency per slice. In this simulation, we set all fog nodes’ slice characteristics to Case-2. In

Fig. 2.8 (a), as the task arrival rate increases, more tasks fail to be completed within their delay

limits. Similar observations can be found from Fig. 2.8 (b) where more tasks are dropped when

the task arrival rate increases from 0.5 to 0.9. The reason behind this is that, as the task arrival

rate increases, the waiting time becomes longer due to the larger number of tasks waiting in the

buffer, which means that the tasks are more likely to fail their delay requirements or be dropped

if they arrive when the buffer is full. Meanwhile, over the variation of the task arrival rate, the
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Figure 2.6 Performance of (a) average success rate and (b) average overflow rate of

heavy traffic under different cases

maximum success rate and minimum overflow rate is achieved from the proposed algorithm.

Moreover, as shown in Fig. 2.8 (c), the DRQN-based algorithm has the lowest average delay

in Case-2.

These empirical results show that temporal integration of observations from a recurrent net-

work allows the nodes to coordinate in their choices without knowing the explicit state and

action sets of the others which makes the proposed DRQN-based algorithm relatively robust

to the dynamics of the partially observable environment. These results also demonstrate that

intelligently distributing resources to slices requiring different delay constraints makes a huge

impact on the overall system performance.
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Figure 2.7 Task delay performance of (a) normal traffic and (b) heavy traffic

under different cases

Figure 2.8 Performance of (a) average success rate, (b) average overflow rate,

and (c) average task delay of Case-2 under different task arrival rates

2.6 Conclusion

In this paper, we devised a joint heterogeneous task offloading and resource allocation algo-

rithm whose goal is to maximize the processing tasks completed within their delay constraints

while minimizing the task drops from buffer overflows. The SDN-based fog network we con-

sider has multiple fog nodes that are coordinating to achieve the best overall network perfor-

mance without knowing the explicit status of other fog nodes. In the presence of uncertainties

stemming from task demands and resource status, we formulate the problem as a partially ob-
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servable stochastic game and apply cooperative multi-agent deep reinforcement learning with

a global reward that aims to maximize the common goal of nodes and stabilize the convergence

property. Further, we implement a recurrent neural network to tackle the partial-observability

by maintaining internal states and aggregating temporal observations. Moreover, to guaran-

tee the convergence and accuracy of the neural network, an adjusted exploration-exploitation

method was adopted. Provided numerical results show that the proposed DRQN-based algo-

rithm can achieve a higher average success rate and lower average overflow than DQN and

DCQN as well as non-deep learning based baseline methods.



CHAPTER 3

ONLINE PARTIAL OFFLOADING AND TASK SCHEDULING IN SDN-FOG
NETWORKS WITH DEEP RECURRENT REINFORCEMENT LEARNING

Jungyeon Baeka and Georges Kaddouma

a Department of Electrical Engineering, École de Technologie Supérieure,

1100 Notre-Dame west, Montreal, Canada H3C 1K3.

Paper published in IEEE Internet of Things Journal, Early Access, November 2021.

3.1 Introduction

The goals of smart industrial developments are to achieve a higher level of operational effi-

ciency and productivity, as well as a higher level of automatization [Lu, Y. (2017); Schumacher,

A., Erol, S. & Sihn, W. (2016)]. However, they are vulnerable to many challenges created by

volatile user demands and miscellaneous applications [Liu, X. F., Shahriar, M. R., Al Sunny,

S. N., Leu, M. C. & Hu, L. (2017)]. The rapid proliferation of industrial Internet-of-Things

(IIoT) devices and extensive data analysis are gradually increasing the load on remote cloud

centers, which suffers high execution latency. Consequently, traditional cloud computing will

be unable to guarantee real-time multitask and multi-object processing in future markets [Liu

et al. (2017)]. To overcome these challenges, fog computing has emerged as an extension of

traditional cloud computing, where computing, control, and networking can reside in multiple

layers of a network’s topology. Furthermore, fog computing is a distributed intelligent platform

that exploits several technologies, including Software-defined networking (SDN) and virtual-

ization [Schumacher et al. (2016)]. In this context, the deployment of SDN can enable the

implementation and management of many aspects of resource allocation, virtual machine mi-

gration, topology monitoring, application-aware control, and programmable interfaces in fog

computing [Tomovic et al. (2017)].

Considering its high scalability, close proximity, efficient information sharing, fog nodes can

easily form a group and cooperate. Indeed, during a computation process, any individual fog
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node failure could cause a catastrophe; however, with grouped fog nodes, one fog node failure

can be compensated by other healthy nodes in the group [Aazam et al. (2018)]. Furthermore,

computation tasks can be offloaded to more powerful nodes, enabling the fog node to share the

load with others [Baek, J., Kaddoum, G., Garg, S., Kaur, K. & Gravel, V. (2019)]. The com-

putation offloading model can be divided into full offloading and partial offloading models. In

the full offloading model, also known as binary offloading, all the tasks can only be processed

locally or offloaded to the other server as a whole. As comparing to the full offloading model,

partial offloading refers to a scenario where a user’s workload can be partially offloaded to

other nodes and can partially executed locally. The partial offloading model is more suitable

for delay-critical services since it takes advantage of parallelism [Tang, Q., Lyu, H., Han, G.,

Wang, J. & Wang, K. (2020)]. Moreover, unnecessary transmissions can be eliminated, which

is essential as the bandwidth between fog nodes is limited.

In this regard, many works are devoted to partial offloading models. Ning, Z., Dong, P., Kong,

X. & Xia, F. (2019) design an iterative heuristic mobile edge computing (MEC) resource al-

location algorithm for the partial computation offloading problem by taking both MEC re-

source restriction and interference among IoT-based users into consideration. Kuang, Z., Li,

L., Gao, J., Zhao, L. & Liu, A. (2019) study a partial offloading and power allocation problem

in single-user MEC systems, whose is to minimize the execution delay and energy consumption

while guaranteeing the transmission power constraint of the tasks. The authors in [Wang, Y.,

Sheng, M., Wang, X., Wang, L. & Li, J. (2016b)] focus on jointly optimizing communication

and computation resources for partial computation offloading using dynamic voltage scaling,

which aims to minimize the energy consumption and the application execution time. Muñoz,

O., Pascual-Iserte, A. & Vidal, J. (2015) present an energy-optimal partial offloading strat-

egy by parallelising the processing in a multiple-input multiple-output (MIMO) setup. Mao,

Y., Zhang, J., Song, S. & Letaief, K. B. (2016) formulate a stochastic optimization problem to

optimize the energy efficiency subject in aspect to the network stability, the maximum CPU fre-

quency, peak transmission power, and energy causality constraints in mobile edge computing

systems. Yadav, R., Zhang, W., Kaiwartya, O., Song, H. & Yu, S. (2020) propose an energy-
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efficient dynamic computation offloading and resources allocation scheme, called ECOS, to

minimize the energy consumption and service delay in a three-tier vehicular cloud network ar-

chitecture. Tang et al. (2020) formulate the scheduling of service requests to virtual machines

(VMs) as a bi-objective minimization problem, where a trade-off is maintained between the

energy consumption and makespan.

On the other hand, computation offloading may not be beneficial due to possible long trans-

mission delays and high transmission energy from remote task executions. As an operator,

enabling networks to use as little energy as possible, while managing expected growth in data

traffic is critical in terms of both cost and environmental impact. In [Kim, J. (2012)], the au-

thor introduces the concept of offloadable task, which is a task initially intended to process on

a primary fog node but later could process on other nodes. An offloadable task is typically a

task that requires high processing power and a small amount of data transmission. In contrast,

a non-offloadable task is a task that requires extensive data communication time. For example,

a task manipulating a large amount of memory footage located on the primary fog node is not

offloadable since the benefit of offloading may not be justified because of high transmission

cost. Neto, J. L. D., Yu, S.-Y., Macedo, D. F., Nogueira, J. M. S., Langar, R. & Secci, S.

(2018) design and develop a comprehensive mobile computing framework that provides accu-

rate execution time and energy consumption estimations to support the offloading decision in

order to take care of the remote execution of the offloadable computations. Thus, to increase

the benefits of cooperation between multiple computing nodes, offloading problems in fog net-

works should not only consider the dynamics of the environment but also take into account the

characteristics of the offloading tasks.

However, existing methods based on one-shot optimization are no longer adequate to deal

with the inconsistent network environment, which needs to re-calculate the optimal policies

when the environment changes. To this end, deep learning (DL) techniques have become

popular in fog computing networks to assure the requirements of complex applications [Zhang

et al. (2019a)]. In particular, deep reinforcement learning (DRL), which has the significant

advantage of not requiring apriori knowledge of the uncertain environment [Sutton & Barto
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(2018)], has the potential to provide efficient solutions for future wireless networks. Here,

the learning agent is not informed about which decisions to take but instead must discover

which decisions yield the most reward by trying different approaches. Cheng et al. (2018)

propose a novel resource provisioning and task scheduling algorithm using DRL aiming to

minimize energy cost for large-scale cloud service providers with a large number of servers.

Min et al. (2019) propose an RL-based computation offloading method with energy harvesting

in a mobile edge network without complete knowledge of the energy consumption and latency

model. Moreover, they expand this model to a DRL-based method to tackle the huge state

dimension, which is processed with transfer learning to improve the performance. The authors

in [Ke, H., Wang, J., Wang, H. & Ge, Y. (2019)] focus on jointly optimizing the transmission

delay, renewable energy consumption, and bandwidth allocation based on a deep deterministic

policy gradient method.

However, DRL is limited to fully-observable environments, which would constitute an invalid

assumption for the application at hand. Nonetheless, deep recurrent reinforcement learning

has been shown to handle partial-observations by taking leverage over a recurrent neural net-

work architecture [Hochreiter, S. & Schmidhuber, J. (1997)]. The deep recurrent Q-network

(DRQN), an extension of the DQN that combines recurrent neural networks (RNN), was pro-

posed in [Hausknecht & Stone (2015)]. DRQN gives the network the ability to deal better with

partially-observable models by integrating information over an extended period of time. The

authors in [Sorokin, I., Seleznev, A., Pavlov, M., Fedorov, A. & Ignateva, A. (2015)] intro-

duced deep attention recurrent Q-network (DARQN), where additional connections are added

from the recurrent units to lower layers. This method allows the network to select which part

of its next input needs attention, making the DARQN better than DQN on systems requiring

long-term estimation.

Inspired by the above discussions, in this paper, we propose an online partial offloading and re-

source scheduling scheme in SDN-fog network where multi-fog nodes optimize the offloading

decisions and resource allocation in a partially-observable environment. The key contributions

of this paper are summarized as follows:
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- We proposed an online partial computational offloading algorithm by jointly optimizing the

number of offloading tasks, computational speed, and CPU utilization level to minimize

energy consumption while maximizing the number of tasks successfully executed with the

limited transmission and CPU resources. The CPU utilization level of computing nodes has

a direct impact on the energy consumption and their resilience to failure, and thus fog nodes

benefit from maintaining an optimal utilization level.

- We consider two different types of task demands, namely offloadable and non-offloadable

types, which demand different data sizes, CPU processing densities, and delay constraints.

They are segregated for processing in separate buffers. In contrast to the non-offloadable

tasks, offloadable tasks could process on other nodes. However, if they are queued in the

same buffer, offloadable tasks can be located behind non-offloadable tasks in the buffer. In

this situation, offloadable tasks cannot be offloaded even if the fog nodes have communica-

tion resources to offload them to neighboring nodes.

- In the presence of uncertainties stemming from the user workload and limited resources, the

independent cooperative fog nodes are modeled as a stochastic game, aiming to maximize

the common goal for the overall system performance.

- To deal with the vast state space and partial-observability instead of the DQN, we apply

a DRQN approach to approximate the optimal value functions and better deal with the

insufficient state observations. The proposed learning scheme is fully online, where the

weight updates of the neural networks are performed using information available at that

time.

- Numerical experiments using Tensorflow are presented to validate the proposed model and

algorithm.

The remainder of this article is organized as follows: Section 3.2 includes the system descrip-

tion. The partial offloading and task scheduling problem among the multiple cooperative fog

nodes is presented in Section 3.3. In Section 3.4, we derive a DRQN method to solve the
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problem. Simulation results are presented in Section 3.5. Finally, Section 3.6 concludes this

paper.

3.2 System description

In this section, we introduce the system model which includes a hierarchical fog system ar-

chitecture, user workload model, and energy consumption model. The time horizon is divided

into decision epochs of equal durations τ (in millisecond) and indexed by an integer t ∈ N+.

The symbols used in this paper are listed in Table 3.1.

Table 3.1 List of Notations

Symbol Definitions

F The set of fog nodes

I The number of fog nodes in the network

Ki The total CPU resources of fog node fi
ηc

i The allocation unit of CPU resource at fog node fi
Ni The total CPU resource units at fog node fi
gi, j The transmission bandwidth between node fi and node f j
di, j The distance between node fi and node f j
Λi,n The arrival rate for n tasks at node fi
Ln The input data size of n type task

γn The required CPU cycles of n type task

D(max)
n The deadline of n type task

B(t)
i,n The number of n type tasks queued in node fi at time t

M(t)
i,n The number of n type task processing by node fi at time t

R(t)
i,n The number of n type task removed from node fi at time t

P(max)
i The maximum power of fog node fi

β1,β2 The path loss constant and exponent

κi, ρi The coefficients representing the energy efficiency of node fi
Πi,(o) The computation offloading policy of fog node fi

Πi,(r) The task scheduling policy of fog node fi

Ψi The local reward observed by fog node fi
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Figure 3.1 A hierarchical fog network system.

3.2.1 Hierarchical Fog System Architecture

We consider a hierarchical fog network where the users request the nearby fog nodes for their

task executions, and the fog nodes may offload some of the workloads to the cloud without vi-

olating the SLA (Service Level Agreement). As shown in Fig.3.1, the hierarchical fog network

consists of an end-device layer, a single fog layer, a fog cluster layer, and a cloud layer. The

system owns I fog nodes F = { f1, f2, ..., fI} in the second layer, which are later grouped into

fog clusters. The nodes within one fog cluster are connected through local channels, which

are modeled as an undirected graph, where each vertex represents a fog node, and each edge

corresponds to a transmission channel. The bandwidth of the channel between nodes fi and f j

is embodied by the weight of the edge g(i, j), ∀ fi, f j ∈ F . Note that data transmission in the
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same node does not induce a transmission delay, i.e., g(i, i) = ∞. In this aspect, the system can

be managed by mobile operators, cloud platform providers or other types of service providers.

Furthermore, the total computing resource of fog node fi is Ki, ∀ fi ∈ F , which corresponds

to its CPU speed (in cycles/τ). We are assuming that the maximum CPU capacity differs

between fog nodes. It is determined at the initial stage and does not change over time. The

fog nodes allocate their CPU resources on a resource unit basis, represented as ηi. Hence,

the total number of CPU units at node fi can be calculated as Ni = 
Ki
ηi
�. Finally, the cloud

layer includes various servers that are capable of sufficient storage and computational resources

but are physically remote from end-devices. We assume that the cloud server is much more

computationally powerful than its associated fog nodes, i.e., Kcloud 	 Ki, ∀ fi ∈ F .

To provide more distributed and scalable management, we leverage a SDN-based fog network

[Chiang & Zhang (2016)]. To interconnect individual SDN controllers located in separate

fog nodes, we apply the concept of inter-SDN communications, which connect controllers to

share information and coordinate their decisions [D. Gupta and R. Jahan (2014)]. With the

help of inter-SDN communications, each node deploys independent decision-making in its

separate SDN controller, while communication between the SDN controllers of the nodes aims

to exchange feedback required by the independent decision-making processes.

3.2.2 User Workload Model

We consider two types of tasks: offloadable tasks (OFF), which can be offloaded and processed

on other nodes, and non-offloadable tasks (NON), that are only processed on a primary node.

Monitoring tasks that manipulate data stored on a primary fog node and a confidential task

which requires a special verification are examples of non-offloadable tasks. For each time

slot t, the task arrival rates are Λ(t)
i,OFF ∈ {0,1, ...,Λ(max)

i,OFF} and Λ(t)
i,NON ∈ {0,1, ...,Λ(max)

i,NON} for

OFF and NON tasks, respectively. Here, tasks of each type demand different data sizes, CPU

processing densities, and delay constraints. Hence, each task is associated with a three-tuple

parameter set (LOFF ,γOFF ,D
(max)
OFF ) for OFF and {LNON ,γNON ,D

(max)
NON } for NON, where L,
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γ , and D(max) denote the input task data size (bit), number of CPU cycles required per bit

(cycles/bit), and deadline, respectively. Moreover, the arrived tasks get queued in two separate

buffers until they are 1) processed locally at a primary node for {OFF,NON} tasks or 2)

offloaded to other nodes for {OFF} tasks. Let B(t)
i,OFF and B(t)

i,NON be, respectively, the buffer

length of offloadable and non-offloadable tasks of node fi at the beginning of slot t. During

operation, the processing state of node fi is represented as {M(t)
i,OFF ,M

(t)
i,NON}, where M(t)

i,OFF

and M(t)
i,NON are the number of offloadable and non-offloadable tasks that are processed on node

fi at time slot t, respectively.

Since we consider a partial offloading model, the computation offloading decision for node fi at

slot t specifies the number W (t)
i of OFF tasks to be transmitted to node U (t)

i ∈ {1,2, ..., I +1},

where U (t)
i = i and W (t)

i = 0 if the node fi processes all arrived tasks Λ(t)
i,OFF locally, while

U (t)
i = I+1 and W (t)

i �= 0 implies that the node i offloads the number W (t)
i of OFF tasks to the

cloud server. Hence, the final number of OFF tasks to be queued in the buffer is Λ(t)
i,OFF −W (t)

i .

Meanwhile, the task scheduling decision for node fi at slot t specifies R(t)
i,OFF and R(t)

i,NON , which

represent the number of tasks to be removed from the OFF and NON task buffers of node fi,

respectively. Therefore, the buffer lengths of node fi are updated as follows:

B(t+1)
i,OFF = min{B(t)

i,OFF +Λ(t)
i,OFF −W (t)

i +V (t)
i −R(t)

i,OFF , B(max)
OFF },

B(t+1)
i,NON = min{B(t)

i,NON +Λ(t)
i,NON −R(t)

i,NON , B(max)
NON },

(3.1)

here V (t)
i is the number of OFF tasks offloaded from other nodes f j ∈ F \{ fi} to node fi at slot

t, and also B(max)
OFF and B(max)

NON are the maximum buffer size of offloadable and non-offloadable

tasks, respectively.

3.2.3 Energy Consumption Model

The total energy consumption of node fi in time slot t is composed of both the offloading

transmission energy consumption and the CPU energy consumption. We first introduce the

offloading communication model in the system. The transmission power for a node fi at time
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slot t is denoted as P(t)
i,(tr). The transmission rate from a node fi to the selected node U (t)

i for

computation offloading is given by

ν(t)
i = g

(
i,U (t)

i

)
· log

⎛
⎜⎝1+

β1d
i,g
(

i,U (t)
i

)−β2 ·P(t)
i,(tr)

g
(

i,U (t)
i

)
·σ2

⎞
⎟⎠ , (3.2)

where d
i,U (t)

i
, β1, and β2 are the distance between the node fi and node U (t)

i , the path loss

constant, and the path loss exponent, respectively, whereas the variable σ2 is the noise power

spectral density. Therefore, when offloading data of size LOFF ·W (t)
i , the transmission time of

a node fi can be defined as:

D(t)
i,(tr) =

LOFF ·W (t)
i

ν(t)
i

, (3.3)

where D(t)
i,(tr)(t) = 0 if U (t)

i = i as g(i, i) is infinite. For simplicity, we assume that the maximum

available transmission power at the fog node is equal to the power consumption of the maxi-

mum task offloading and hence the node can transmit W (t)
i tasks within one time slot, namely

P(t)
i,(tr) ≤ P(max)

i,(tr) . In other words, the transmission time for offloading tasks is fixed to the length

of one time slot, i.e., D(t)
i,(tr) = τ , and thus the transmission rate can be denoted as

ν(t)
i =

LOFF ·W (t)
i

τ
. (3.4)

Therefore, the power consumed by node fi for reliable transmission of input data of offloadable

tasks during a time slot t can be computed by combining (3.2) and (3.4) as

P(t)
i,(tr) =

g
(

i,U (t)
i

)
·σ2

β1d
i,U (t)

i

−β2

⎛
⎜⎜⎝2

LOFF ·W (t)
i

τ·g
(

i,U(t)
i

)
−1

⎞
⎟⎟⎠ . (3.5)

Next, the CPU power consumption consists of the static P(t)
i,(st) and the dynamic P(t)

i,(dy) power

consumption, where both are dependent on the CPU utilization rate of node fi at time slot t,



89

which is calculated as

Util(t)i =
∑n∈{OFF,NON}ηi ·M(t)

i,n

Ki
×100%. (3.6)

We assume that fog nodes benefit from an optimal utilization level in terms of performance-

per-watt, which is defined as Util(Opt)
i for node fi and is known as Util(Opt)

i ≈ 70% for modern

servers [Gao, Y., Wang, Y., Gupta, S. K. & Pedram, M. (2013)]. Thus, P(t)
i,(st) is constant when

Util(t)i > 0 and zero otherwise. On the other hand, P(t)
i,(dy) linearly increases when Util(t)i is

under Util(Opt)
i , and grows quadratically with the increase in power consumption beyond this

level. Therefore, P(t)
i,(dy) is calculated as:

P(t)
i,(dy) =

⎧⎨
⎩

κi ·Util(t)i , if Util(t)i <Util(Opt)
i

κi ·Util(Opt)
i +ρi · (Util(t)i −Util(Opt)

i )2, if Util(t)i ≥Util(Opt)
i

(3.7)

where κi and ρi are coefficients characterizing the energy efficiency of node fi. The total CPU

power consumption of node fi at time slot t is P(t)
i,(CPU)

= P(t)
i,(st) +P(t)

i,(dy). The expected time to

compute a task scheduled on node fi can be calculated as:

D(t)
i,n,(CPU)

=
γn ·Ln

ηi
, ∀n ∈ {OFF,NON}. (3.8)

3.3 Problem formulation

In this section, we present the partially-observable MDP (POMDP) based offloading problem

formulation and discuss the optimal control policy from a stochastic game perspective.

3.3.1 POMDP-based Task Offloading Problem

At the beginning of each time slot t, fog nodes use an independent offloading policy to decide

whether they will process the arrived offloadable tasks locally or offload them. If so, the policy

also helps in determining tasks will be transmitted and to which node among neighboring fog
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nodes in the same cluster and the cloud server. Furthermore, decisions on task scheduling are

simultaneously made by fog nodes with regard to their own CPU resources through scheduling

policies.

- Observation: We denote the local network state as X(t)
i =

(
Λ(t)

i ,V (t)
i ,B(t)

i ,Ready(t)i

)
∈ Xi

at node fi ∈ F , where Λ(t)
i =

(
Λ(t)

i,OFF ,Λ
(t)
i,NON

)
and B(t)

i =
(

B(t)
i,OFF ,B

(t)
i,NON

)
. Ready(t)i =

Ni −
(

M(t)
i,OFF +M(t)

i,NON

)
denotes the available CPU resources of node fi at time slot t. It

is noted that the system is a POMDP because the underlying states of the system including

the states of other fog nodes are not accessible by the fog node.

- Action: Each fog node fi ∈F designs a control policy Πi =
(
Πi,(o),Πi,(r)

)
, where Πi,(o) and

Πi,(r) are the computation offloading and the task scheduling policies, respectively. With the

observation of X(t)
i , node fi determines the number of OFF computation tasks W (t)

i that are

to be offloaded to node U (t)
i and the number of offloadable tasks R(t)

i,OFF and non-offloadable

tasks R(t)
i,NON to be executed following Πi, that is Πi

(
X(t)

i

)
=
(

U (t)
i ,W (t)

i ,R(t)
i,OFF ,R

(t)
i,NON

)
.

- Reward: The reward function determines what the decision maker needs to accomplish,

i.e., the objective. The objective of each node is to find an optimal offloading and re-

source allocation solution that minimizes the total energy consumption and the task drops

while maximizing the number of tasks being successfully executed. Therein, the objective

problem is a multi-objective optimization problem that consists of multiple sub-objective

functions. Solving this problem is not straightforward because sub-objectives are conflict-

ing with limited bandwidth, CPU resources, and the delay constraints of tasks. To solve

this problem, we convert the problem with multiple sub-objectives into a single-objective

optimization problem, which is later used for the reward function. Considering the local

observation and policies, we define the instantaneous reward function for node fi at slot t

as:

Ψi(X
(t)
i ,Πi(X

(t)
i )) = Ψ(1)

i (Pro f it(t)i )−Ψ(2)
i (Drops(t)i )−ξi ·Ψ(3)

i

(
P(t)

i,(tr) +P(t)
i,(CPU)

)
, (3.9)
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where Pro f it(t)i and Drops(t)i , given in (3.10) and (3.11), denote the number of tasks that

are completed within the deadline by task scheduling (R(t)
i,OFF ,R

(t)
i,NON) and the number of

task drops that occur when the buffer vacancy is less than the number of arriving tasks,

respectively.

Pro f it(t)i = ∑
R(t)

i,OFF

1
(

t +D(t)
i,OFF,(CPU)

≤ D(max)
OFF

)
+ ∑

R(t)
i,NON

1
(

t +D(t)
i,NON,(CPU)

≤ D(max)
NON

)
(3.10)

Drops(t)i = max
{

B(t)
i,OFF +Λ(t)

i,OFF−W (t)
i +V (t)

i −R(t)
i,OFF −B(max)

OFF , 0
}

+max
{

B(t)
i,NON +Λ(t)

i,NON −R(t)
i,NON −B(max)

NON , 0
} (3.11)

The third term on the right hand side of (3.9) denotes the energy cost corresponding to the

overall energy consumption during a time step, consisting the energy consumed to transmit

offloading tasks and the CPU energy consumed for processing scheduled tasks. Moreover,

ξi ∈R+ is a constant weighting factor that balances the importance of the energy consump-

tion within the time slot. In other words, the higher ξi is used, the more the nodes focuses

on minimizing the energy consumption at the cost of deadline failures and task drops. This

reward function allows fog nodes to execute as many tasks as possible with minimal energy

consumption.

We apply the following constraints in the offloading and task scheduling of node fi at time t,

W (t)
i = 0, if U (t)

i = i or Λ(t)
i,OFF = 0,∀ fi ∈ F , (3.12)

W (t)
i ≤ Λ(t)

i,OFF ,∀ fi ∈ F , (3.13)

R(t)
i,n ≤ min

(
B(t)

i,n,Ready(t)i

)
,∀n ∈ {OFF,NON}, (3.14)

(
R(t)

i,OFF +R(t)
i,NON

)
≤ Ready(t)i , (3.15)

where constraints (3.12) and (3.13) ensure that the node cannot offload a task that didn’t arrive

and cannot offload more than the number of arrived tasks at time slot t. In addition, (3.14) and
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(3.15) guarantee that the node cannot schedule more tasks than the number of tasks queued in

the buffers and the available CPU resources.

3.3.2 Optimal Control Policy

In the presence of uncertainty stemming from the stochastic nature and limited resources, the

POMDP-based problem is formulated as a stochastic game in which each node selects actions

given local observation. In this paper, multiple cooperative fog nodes aim to minimize the en-

ergy consumption under a delay constraint. The state transitions and the sequences of instan-

taneous rewards per slot
{

Ψi

(
X(t)

i ,Πi

(
X(t)

i

))
, t ∈N+

}
,∀ fi ∈ F are determined according to

the joint control policy. The cooperative fog nodes share their instantaneous rewards with each

other through inter-SDN communication at each time slot, aiming to maximize the common

goal on the overall system performance. The service quality experienced by users’ tasks is de-

termined by the offloading and task scheduling decisions of all fog nodes, and thus fog nodes

must cooperate to achieve a desirable solution from an overall system perspective.

By taking the expectation with respect to the sequence of instantaneous rewards per slot, the

expected long-term reward of the node fi ∈F for a given initial local state X(1)
i can be defined

as in (3.16), where γ is the discount factor (0<γ<1).

Vi(Xi,Πi) = E
[+∞

∑
t=1

γ t−1 · ∑
fi∈F

Ψi

(
X(t)

i ,
(

U (t)
i ,W (t)

i ,R(t)
i,OFF ,R

(t)
i,NON

))∣∣∣X(1)
i = Xi

]
(3.16)

Here, the aim of each fog node fi is to attain an optimal control policy Π∗
i that maximizes the

average rewards of all nodes, which can be formulated as

Π∗
i = argmax

Πi

Vi(Xi,Πi), ∀Xi ∈ X

s.t. (3.12),(3.13),(3.14),and (3.15).

(3.17)
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With the objective optimization problem (3.17), each fog node can attain an optimal control

policy that maximizes the average rewards of all nodes, which allows all fog nodes to execute

a maximum number of tasks within their delay constraints with minimal energy consumption.

Definition 3.1. An equilibrium describes the rational behavior of the nodes in a stochastic

game. In our stochastic game, an equilibrium is a tuple of control policies Π∗
i ,∀ fi ∈ F , where

each Π∗
i of a node fi is the optimal policy to other nodes.

3.4 Learning the optimal computation offloading and task scheduling policies

This section proposes a Q-learning-based online optimal policy solution and discusses DRQN,

which can better approximate actual Q-values, leading to better policies in a partially observ-

able environment.

3.4.1 Optimal policy solution using Q-learning

In order to solve the optimization problem (3.17), the well-known value iteration [Bellman,

R. (1957)] can be implemented. However, this method requires complete knowledge of the

state transitions and rewards, which is impossible without prior information of the user’s work-

loads and available resources. To address this limitation, Q-learning can be used to find the

optimal state-action value for any MDP without prior knowledge of the network transitions

[Sutton & Barto (2018)]. Given the controlled system, node fi repeatedly observes the current

state X(t)
i , takes action Πi(X

(t)
i ) that incurs a transition, then it observes the new state X(t+1)

i

and the reward Ψ(t) = ∑ fi∈F Ψ(t)
i . From these observations, the Q-function is updated as:

Q(t+1)
i

(
X(t)

i ,Πi(X
(t)
i )
)
= (1−α) ·Q(t)

i

(
X(t)

i ,Πi(X
(t)
i )
)

+α ·
[

∑
fi∈F

Ψ(t)
i + γ max

Π′
i

Q(t)
i

(
X(t+1)

i ,Π′
i

)]
,

(3.18)

here α is the learning rate (0<α<1). The most common action selection rule is the ε-greedy

algorithm that exploits the best action from recently learned Q-function (exploitation) most of
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the time and explores other options by selecting a random action with a small probability ε

(exploration).

Definition 3.2. Nash equilibrium will surely be reached in cooperative multi-agent Q-learning

systems when the following conditions are satisfied [Claus & Boutilier (1998)]:

- The learning rate α decreases over time such that ∑t α = ∞ and ∑t α2 < ∞.

- Each node visits every action infinitely often.

- The exploration strategy of each node is exploitative such that a probability of non-optimal

action taken, based on estimated Q-values becomes zero as time increases.

Remark 1. The tabular based Q-algorithm requires the storage |X |× |Π| table of Q-values.

For our study, the sizes of the local observation spaces |Xi| and local action spaces |Πi| are

calculated as:

|Xi|= (1+Λ(max)
i,OFF) · (1+Λ(max)

i,NON) · (1+B(max)
i,OFF) · (1+B(max)

i,NON) · (1+Ni)

|Πi|= (I +1) · (1+Λ(max)
i,OFF) · (1+B(max)

i,OFF) · (1+B(max)
i,NON)

When I = 5, Λ(max)
i,OFF = Λ(max)

i,NON = 5, B(max)
i,OFF = B(max)

i,NON = 10, and Ni = 10, one node fi has to

update a total of 2.0872×108 Q-values, which makes it impossible for the Q-learning process

to converge within a limited time steps.

3.4.2 Deep recurrent Q-learning with non-linear transformation

To solve the scalability issues of Q-learning, the DQN embraces the advantage of deep neural

networks (DNNs) to improve the learning speed and the performance of Q-learning algorithms.

However, DQNs assume that the agent has full-observability of the complete state information.

To this end, we attempt to find an efficient algorithm that redeems incomplete state observa-

tions resulting from partial-observability. The authors in [Hausknecht & Stone (2015)] ob-
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served that the performance of DQNs declines when given incomplete state information. Thus,

they proposed the deep recurrent Q-network, which is a combination of an RNN and a DQN,

to deal efficiently with the partial-observability of local network states by maintaining hidden

states in the network. In feed-forward neural networks, all the inputs and outputs are inde-

pendent, and hence the hidden layers cannot learn and understand the relationship between

previous and current inputs. A recurrent neural network solves this issue with the help of the

hidden state, which preserves the information and passes it from one step of the network to

the next. More specifically, a Long Short Term Memory (LSTM) network resolves the van-

ishing gradient problem and the short-term memory of the vanilla recurrent neural network

[Hausknecht & Stone (2015)]. LSTM consists of a cell that remembers information values

over an arbitrary time and three gates (forget, input, and output) that regulate which values are

relevant to keep and forget.

In this work, we consider a concurrent learning scheme for a multi-fog node system requiring

cooperative behavior where each node learns its own value function model from local observa-

tions and hidden states while rewards are shared jointly by all nodes in order to maximize the

overall system performance. Algorithm 3.1 discusses the procedure of the proposed learning

algorithm at fog node fi, which involves the following steps:

1. Initialize the replay buffer Oi and parameters of neural networks Qi and Q̂i.

2. At the beginning of time slot t, fog node fi observes its local network state, X (t)
i =(

Λ(t)
i ,V (t)

i ,B(t)
i ,Ready(t)i

)
.

3. For the actor selection, with a small probability of ε , a random exploratory action is se-

lected. Otherwise, fog node fi selects the action associated with the largest Q-value output,

i.e. Π(t)
i

.
= argmaxΠ′ Q(X (t)

i ,Π′;θ (t)
i ). Here, the fog node is only able to select actions from

the valid action space, which is determined by the current observation value and is denoted

as valid(X (t)
i ). Therefore, the probabilities of selecting invalid actions are set to zero, and

the sum of the probabilities of the valid actions is normalized to 1. To this end, the fog
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node is required to store the action probability array with the corresponding transition

experience in the replay buffer.

4. Based on the actions taken by fog nodes, fog node fi receives the reward and observes the

next local state. Then, the transition experience, ot
i = 〈X (t)

i ,Π(t)
i ,Ψ(t),X (t+1)

i 〉 is stored into

a replay buffer Oi = {ot−O+1
i , . . . ,ot

i}, where O is the replay buffer size.

5. At every learning step, given a random mini-batch of experiences Ji, the DRQN is trained

by adjusting the weights θ (t)
i to minimize the loss function, Li

(
θ (t)

i

)
, where the loss

function at time slot t is defined in (3.19).

Li

(
θ (t)

i

)
= E

⎡
⎣( ∑

fi∈F

Ψ(t)
i + γ max

Π′
i

Qi

(
X (t+1)

i ,Π′
i;θ (t)

i,−
)
−Qi

(
X (t)

i ,Πi(X
(t)
i );θ (t)

i

))2
⎤
⎦

(3.19)

The Q-function in (3.18) can be approximated with LSTM network instead of the feed-

forward network [Baek, J. & Kaddoum, G. (2021)]. Precisely, the DRQN estimates the

Q-value of Qi

(
X (t)

i ,H(t−1)
i ,Πi(X

(t)
i );θ (t)

i

)
by adding an extra input H(t−1)

i , where H(t−1)
i

and θ (t)
i denote the hidden state of the network returned at the previous time slot and

the parameters of the neural network, respectively. Thus, Q(t)
i and H(t)

i are the outputs

of the DRQN at each time slot t, where the current hidden state H(t)
i is calculated us-

ing information in X (t)
i and H(t−1)

i . Consequently, the weights θ (t)
i of the Q-network

of node fi ∈ F are updated in a way that minimizes the squared error loss between

the current predicted Q-value of Qi

(
X (t)

i ,H(t−1)
i ,Πi(X

(t)
i );θ (t)

i

)
and the target Q-value

of
[
Ψ(t) + γ maxX ′∈Xi Q̂i

(
X (t+1)

i ,H(t)
i ,Π′

i;θ (t)
i,−
)]

. The gradient of Li

(
θ (t)

)
w.r.t. the

weights θ (t)
i is given in (3.20).

∇
θ (t)

i
Li

(
θ (t)

i

)
= E

[(
∑

fi∈F

Ψ(t)
i + γ max

Π′
i

Qi

(
X (t+1)

i ,Π′
i;θ (t)

i,−
)
−Qi

(
X (t)

i ,Πi(X
(t)
i );θ (t)

i

))
·

∇
θ (t)

i
Qi

(
X (t)

i ,Πi(X
(t)
i );θ (t)

i

)]
(3.20)
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6. Furthermore, every time step (C ), the parameters of the DRQN are copied to the target

DRQN, which is used to generate the target Q-value for the following C updates.

To update the LSTM layer, we can consider two update methods, i.e., Bootstrapped sequential

updates and Bootstrapped random updates [Hausknecht & Stone (2015)]. In this analysis, we

use the random update strategy in which the experience sequence {ok
i , . . . ,o

k+J
i } is selected

randomly from the replay buffer, where J is the number of time steps, and updates proceed for

only a single rolled LSTM cell that is unrolled J times. As our problem involves a continuing

process, i.e., a non-episodic and never-ending process, the random update strategy is more

applicable than the sequential update where updates begin at the beginning of the episode and

progress through time until the end of the episode. Furthermore, the random update strategy

is better suited for the experience replay in DQN that guarantees low correlations and better

convergence behavior in the observation sequence [Mnih et al. (2015)]. As a consequence of

using random updates, the hidden states in LSTM must be zeroed at the beginning of each

update. We investigate the memory usage of the proposed DRQN networks in Section 3.5.2.1.

3.5 Performance evaluation

In this section, we quantify the performance gain from the proposed DRQN-based partial of-

floading method using numerical experiments with Python-Tensorflow simulator.

3.5.1 Simulation settings

For our simulations, we considered that the fog network has a coverage of 100m, where I = 5

fog nodes are randomly distributed in the region. Node fi’s CPU capacity ki is randomly set to

{6, 7, ... , 10} GHz while the bandwidth between two nodes is randomly set to {0.5, 1, 1.5, 2,

2.5} MHz. We refer to the values of CPU capacity and bandwidth from [Kwak et al. (2016)],

which used real measurements of contemporary computing servers. Moreover, the path loss

variables β1 and β2 are set to 10−3 and 4 [Baek et al. (2019)], respectively. The task arrivals

follow Poisson distribution with an average rate λ (tasks/τ) varying between 3 to 8 for each
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Algorithm 3.1 DRQN algorithm for partial computation offloading and task scheduling

of a fog node fi ∈ F

1 Set Initialize replay buffer Oi, state-action value function Qi with random weights θi,

target state-action function Q̂i with weights θi− = θi
2 while (t ≤ maximum iteration) do
3 Observe the local network state X (t)

i =
(

Λ(t)
i ,V (t)

i ,B(t)
i ,Ready(t)i

)
as an input to the

network with parameter θ (t)
i Choose random action

Π(t)
i =

(
U (t)

i ,W (t)
i ,R(t)

i,OFF ,R
(t)
i,NON

)
from valid action spaces with probability ε

otherwise select Π(t)
i

.
= argmaxΠ′ Q(X (t)

i ,H(t−1)
i ,Π′;θ (t)

i ) Execute action Π(t)
i ;

transmit the offloadable tasks and schedule the tasks

4 Observe local reward Ψ(t)
i , next state X (t+1)

i and get feedback from other nodes

Ψ(t)
j �=i

5 Save transition 〈X (t)
i ,Π(t)

i ,Ψ(t),X (t+1)
i 〉 in Oi

6 if learning step then
7 Sample a random mini-batch from Oi Ji = 〈X (n)

i ,Π(n)
i ,Ψ(n),X (n+1)

i 〉
8 Set Ψ(n) + γ maxΠi Qi(X

(n+1)
i ,H(t)

i ,Π′;θ t
i−), and perform a gradient step in (19)

w.r.t. the parameter θ (t)
i

9 Reset the LSTM’s hidden state H(t)
i

10 end
11 Every time step C , update the target network parameters θ (t+1)

i− = θ (t)
i

12 The time slot is updated by t←t+1

13 end

type of task. The input data size LOFF and LNON are both of 5 · 103 bits [Chen et al. (2019)].

Additionally, we set B(max)
OFF = B(max)

NON = 10, which implies that a maximum of 10 tasks can wait

in a buffer. The processing densities γOFF and γNON are of 600 and 400 cycles/bit, respectively.

For the CPU energy consumption, the coefficients κ and ρ are set to 0.2 and 0.05 [Gao et al.

(2013)], respectively, where the static power consumption is 3 W [Chen et al. (2019)].

To evaluate the utility of partial offloading over full offloading, we compare the proposed

DRQN-based partial offloading algorithm with the DRQN-based full offloading algorithm.

Also, the conventional DQN model for partial offloading is simulated to verify the need for

recurrent networks in our problem. For the design of the DRQN, the input state is processed by
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two 1D-convolutional layers, with a kernel size of 3, that apply a Rectified Linear Unit (ReLU),

with 32 and 64 filters, respectively. This is followed by LSTM layer with 256 units. The final

LSTM state is followed by a fully connected layer that has 128 units with a ReLU. The output

layer is a fully connected layer of |Πi| units with a linear activation function. For the design

of the DQN, the input state is followed by four fully connected layers consisting of 128, 256,

256, and 128 units, respectively, consisting ReLU activation function, where the output layer is

identical to that of the DRQN. All networks are trained using the Adam optimizer with a learn-

ing rate of 10−3. The discount factor γ is set to 0.98. The replay buffer contains one million

most recent transitions. The number of time steps and the mini-batch size are set to 10 and 32,

respectively. The network learns every five times slot, and the target network parameters are

updated every 103 time slot.

In addition to that, considering performance comparisons, many existing solutions of optimiza-

tion and meta-heuristic methods cannot be implemented to solve our problem due to the large

search space as shown in Section 3.4.1. Therefore, we compare the proposed algorithm with

two baseline schemes, namely, local processing and random offloading schemes, which de-

mands feasible computational resources. For local processing and random offloading schemes,

round-robin scheduling is simulated as a baseline task scheduling method.

3.5.2 Performance analysis

3.5.2.1 Complexity analysis

This experiment investigates the complexity of memory in the proposed algorithm. The pro-

posed DRQN-based learning algorithm described in Section 3.4.2 requires each node to store

the replay buffer which contains the local state observation X (t)
i , local action Π(t)

i , reward Ψ(t),

next state observation X (t+1)
i , and valid action probability valid(X (t)

i ). In our research, the

local observation and action arrays consist of six decimal values and a single integer value,

respectively. In addition, the reward requires storing a single float number and the action prob-

ability array consisting |Πi| binary values, where valid[Π′] = 1, if the action Π′ is valid in state
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observation X (t)
i , otherwise valid[Π′] = 0. Furthermore, to calculate the memory required to

load all neural network models in the system, we compute the number of trainable parameters

calculated for each layer in the network. As a result, the DRQN and DQN networks have a

total of 3,372,242 and 1,162,802 parameters, respectively. The reason behind the obtained re-

sult is that the DRQN model includes a single LSTM layer that requires weights for the input,

forget, and output gates, and also the cell states. Although the DRQN model needs more mem-

ory than the DQN model, we found that the memory usage is tolerable and that the proposed

DRQN-based algorithm can achieve a higher average success rate, lower overflow, and lower

energy consumption, as shown in Section 3.5.2.3. The memory consumption of the proposed

algorithm is about 1.6GB, which is much lower than the conventional Q-learning algorithm

that demands approximately 25GB for the parameter settings in Section 3.5.1.

3.5.2.2 Convergence performance

This experiment evaluates the convergence property of the proposed DRQN-based offloading

and task scheduling algorithm. To quantify the impact of the task arrival rate on the conver-

gence performance, we implement different average task arrival rates. Fig. 3.2 validates the

convergence behaviour of our method, which shows convergence after 1.5× 104 iterations.

Considering the average task arrival rate, the average total reward is decreased while the task

arrival rate increases. This is because the number of successfully processed tasks with limited

fog node resources is lower when more tasks are waiting in the buffer. Besides, the proposed

partial offloading method outperforms in comparisons with full offloading method in terms of

the average reward, which implies that partial offloading is better when it comes to optimizing

the expected long-term performance.

3.5.2.3 Performance under various average task arrival rates

This experiment demonstrates the performance in terms of average success rate, overflow rate,

and energy consumption under different average task arrival rates. Fig. 3.3 and Fig. 3.4 il-

lustrate the average success and overflow rates per fog node, respectively. From Fig. 3.3, it is
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Figure 3.2 The convergence property of the proposed algorithm

Figure 3.3 Average success rate per fog node under different average task arrival rates
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Figure 3.4 Average overflow rate per fog node under different average task arrival rates

observed that the proposed DRQN partial offloading algorithm is superior to the DRQN full

offloading algorithm, which proves that partial offloading can achieve better performance for

delay-critical services with limited communication and computation resources. In addition,

the proposed algorithm outperforms the DQN-based method, random offloading, and local

processing schemes. Compared to the local computing method, where the nodes execute all

their tasks locally, the DRQN-based offloading algorithm achieves better results, especially

for high task arrival rates. In this case, the proposed partial offloading algorithm and the full

offloading algorithm tend to offload most of the computation tasks to the neighboring nodes

or the cloud server to process them with limited computing resources. Thus the average suc-

cess rate is higher than for the local computing method. Similar observations can be drawn

from Fig. 3.4, which demonstrates that the average overflow rate from the proposed partial

offloading algorithm is far lower than it was in baseline methods. Specifically, a much larger

amount of tasks from the DQN-based method are dropped due to overflowed buffers, as the

task arrival rate increases. These empirical results show that adding a recurrent layer to the

DQN allows the network to estimate the partially-observable environment efficiently. Other-

wise, making decisions from an inefficient observation in DQN can be arbitrarily wrong and
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yield even worse performance than non-neural network-based methods. Here, Fig. 3.5 de-

Figure 3.5 Average transmission energy and CPU energy consumption per fog node

under different average task arrival rates

picts the average transmit energy and CPU energy consumption achieved from the proposed

scheme and the three other baselines under different task arrival rates. It is observed that the
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average energy consumption in the transmission of the proposed partial offloading algorithm is

lower than that of the full offloading scheme. This is because the partial offloading algorithm

can reduce unnecessary transmissions, which is essential given the limited bandwidth between

fog nodes. Also, the average CPU consumption of partial offloading is much lower than that

of the local processing and random offloading schemes. This result indicates that the proposed

partial offloading algorithm not only offloads the offloadable computation tasks to other nodes

(based on the trade-off between the merits of local computing and full offloading) but also ex-

ploits the affordable transmission energy while considering the queue length and assuring the

corresponding delay constraint of each task.

3.6 Conclusion

In this paper, an online partial offloading and task scheduling problem is analyzed with the ob-

jective of minimizing the energy consumption under the corresponding delay constraint of each

task. Over the scheduling slots, each fog node determines the offloading and task scheduling

policies given its local observation, which is overall modeled as a stochastic game with co-

operative behaviors to maximize the overall system performance. To solve the problem, we

propose a deep Q-network-based algorithm to find optimal control policies. Furthermore, a

recurrent neural network is applied in the DQN to tackle the partial-observability of local net-

work states. The proposed DRQN-based method required comparatively less computational

complexity than the conventional Q-learning algorithm. The experimental results show that

the proposed DRQN-based partial offloading algorithm outperforms the DQN-based algorithm

as well as non-neural network-based baseline methods. More specifically, the proposed method

can effectively deal with both transmission and CPU energy consumption while guaranteeing

convergence in a limited time. This work allows the offloading and resource allocation in fog

networks to be more robust and adaptable to the difficulties arising from the high levels of

volatility and partial observability.
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4.1 Introduction

Tremendous developments in wireless networks, telecommunications, and informatics have

paved the way for prevalent intelligence [Shafique, K., Khawaja, B. A., Sabir, F., Qazi, S. & Mus-

taqim, M. (2020)], which will enable the future Internet of things (IoT). According to Cisco

(2018), 29.3 billion networked devices will be connected to the internet by 2023, and global

mobile devices will grow from 8.8 billion in 2018 to 13.1 billion by 2023. Among many chal-

lenges emerging as a direct result of the growing demands of the IoT, the inefficiency of the

conventional cloud-based central computing paradigm in supporting massive connectivity of

devices and providing them necessary nearly instantaneous response time is widely discussed.

To address this limitation, fog computing has become increasingly popular as it offers virtual

real-time computing solutions. Establishing a fog computing architecture involves locating

servers closer to the data-generating IoT devices. In this context, reducing the resource cost

and the end-to-end delay supporting real-time applications in the fog computing environment is

both a research and an operational challenge for the current research community and industry.

The main advantage of the fog computing architecture comes from its ability to transfer some

of the cloud network’s functions closer to the network edge. Given the physical proximity of

the fog servers, computational workloads from end-user devices can be distributed among the

servers, guaranteeing the latency constraints of applications, while respecting the bandwidth

and power constraints of the network.
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Despite the benefits of using fog computing, the uncertainties innate in fog networks, such as

the incomplete information on future task arrivals, network link status, and diversified comput-

ing capabilities, bringing new challenges. Considering the limited computing power of edge

servers, offloading tasks between servers across the different layers of the system for load bal-

ancing is a prominent feature in fog computing networks. While load balancing helps achieve

high resource utilization, it also improves the overall performance of the system, in terms of

throughput, latency, and energy consumption [Kaur & Aron (2021)].

In this context, finding an optimal computation offloading method for load balancing, which

allows the avoidance of resource wastage while serving the best of each dissimilar service

requirement, has been an active research area. Furthermore, the utilization of network devices

directly affects the performance of the network and its resilience to failure [Tseng (2016)],

and thus the desired network load and utilization are other critical aspects of the decision

making process [Ghobaei-Arani, M., Souri, A. & Rahmanian, A. (2020)]. Hence, research

efforts should not only be aimed at improving the computational resources but also at ensuring

the network resource management is intelligent enough to flexibly and automatically adapt to

sudden fog computing environment changes, as well as rapid traffic evolutions.

At the moment, the most existing learning solutions consider a system consisting of a central-

ized controller and multiple servers, where each server makes a decision based on the policy

that is operated by the centralized controller [Zhang, C., Liu, Z., Gu, B., Yamori, K. & Tanaka,

Y. (2018a); Sun, Y., Peng, M. & Mao, S. (2019c)]. However, such centralized solutions may

lead to a violation of the latency constraints of delay-critical applications, or may be infeasi-

ble due to bandwidth and power constraints. Furthermore, it may impose security and privacy

concerns arising from interactions and information exchanges with the centralized decision-

makers.

Despite the advances made in decentralized resource management for fog computing networks

in recent years [Liu, X., Yu, J., Feng, Z. & Gao, Y. (2020); Li, Y., Qi, F., Wang, Z., Yu,

X. & Shao, S. (2020)], a number of challenges remain to be addressed, including the poor
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scalability, heterogeneous workload demands, and the impact of integration on network perfor-

mance. To address these challenges, distributed machine learning at the network edge provides

a promising solution, where edge servers collaboratively train their models in an online manner

subject to uncertain environments. In fully distributed systems, edge servers need to learn how

to behave cooperatively as well as how to communicate with each other to effectively coor-

dinate their decisions towards an universal goal. Consequently, distributed learning structures

are naturally suitable for future network architectures and can be used to support distributed

IoT demands.

Even though effective communications between edge servers is key to successfully distributed

coordination, how benefits are achieved from communication is not necessarily determined,

especially in complex settings with multiple learning agents where the optimal strategy is un-

known. The recent rapid progress of machine learning and deep learning, in particular, opens

the door to a new perspective on this aspect [Hernandez-Leal et al. (2019)]. In particular, re-

inforcement learning (RL) has become one of the most promising methods to solve such prob-

lems. In this context, to solve the scaling issue where a common environment is influenced

by the joint actions of multiple decision-making entities, multi-agent reinforcement learning

models arise as a natural solution [Oroojlooyjadid, A. & Hajinezhad, D. (2019)].

The multi-agent learning literature has been studied from a broad range of communities, such as

RL, dynamic programming, game theory, heuristic search, etc [Hernandez-Leal et al. (2019)].

Among them, machine learning has been adopted as a popular approach to solve multi-agent

system (MAS) problems because the complexity associated to such problems can make con-

ventional heuristic solutions prohibitively infeasible. The simplest approach is to use the in-

dependent learners directly by applying single-agent algorithms in multi-agent settings [Tan,

M. (1993)]. But this approach ignores the non-stationarity in multi-agent systems and can

fail to learn from the past history of interactions when opponent learners adapt their behav-

iors. Hu, J. & Wellman, M. P. (1998) discussed theoretical perspectives on the multi-agent

Q-learning algorithm for general-sum games, and showed that it converges to a Nash equilib-

rium. Claus & Boutilier (1998) studied the behavior of multiple agents employing Q-learning
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independently, with a focus on how the exploration strategies affect the convergence to Nash

equilibria. In [Peshkin, L., Kim, K., Meuleau, N. & Kaelbling, L. P. (2014)], the authors

studied policy search method-based distributed learning applied to cooperative multi-agent do-

mains with partially observable environments where agents have incomplete perceptions of the

global state. Also, Schaerf, A., Shoham, Y. & Tennenholtz, M. (1995) particularly discussed

multi-agent learning for adaptive load balancing. In this context, the goal of each agent is to

adapt its resource selection behavior to the other agents’ behaviors as well as to its environ-

ment’s dynamics.

On the other hand, there are studies [Foerster, J. N., Assael, Y. M., de Freitas, N. & White-

son, S. (2016); Sukhbaatar, S., Szlam, A. & Fergus, R. (2016); Kim, D., Moon, S., Hostallero,

D., Kang, W. J., Lee, T., Son, K. & Yi, Y. (2019)] on the emergence of communication be-

tween agents using MARL. Such research usually considers a set of cooperative agents in a

partially observable environment, where agents seek to maximize their shared payoff by means

of communications. The authors in Foerster et al. (2016) proposed two methods, Reinforced

Inter-Agent Learning (RIAL) and Differentiable Inter-Agent Learning (DIAL), to learn to com-

municate in DRL. Both methods were designed with a neural network that outputs the Q-values

as well as a communication message to other agents in the subsequent time step. RIAL uses

the concept of parameter sharing to share parameters of the deep recurrent Q-network (DRQN)

among all agents while DIAL directly pushes gradients of continuous communication mes-

sages through the communication channel during training, and messages are discretized during

execution. Also, Kim et al. (2019) proposed a MARL framework, called SchedNet where the

agents communicate over a shared limited medium, and thus only a restricted number of agents

can transmit their messages via communication scheduling. Their experiments showed that the

learning of communication protocols is essential for the agents to coordinate their behavior,

especially in partially observable environments with limited communication channels.

As discussed above, DRL is a promising and powerful tool that can provide autonomous and ef-

fective solutions to enhance the resource efficiency in fog computing networks. However, most

research contributions focused on centralized approaches [Pan et al. (2019); Min et al. (2019);
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Ke et al. (2019)], which makes modeling and computational complexity become challenging as

the search space continues to increase. Though distributed schemes with multiple agents were

considered in [Liu et al. (2020); Li et al. (2020); Wei, Y., Yu, F. R., Song, M. & Han, Z. (2019);

Cui, J., Liu, Y. & Nallanathan, A. (2020); Nasir, Y. & Guo, D. (2019)], the prior studies has

considered only computation offloading for server-level load balancing, and no work is done to

optimize both the network and server load balancing together in fog computing environments.

This paper considers a joint network link and server load balancing with multiple coopera-

tive access points (APs) in a fog network. The joint optimization problem is formulated as

a stochastic game with the aim of minimizing the overloaded links and servers and the over-

all bandwidth cost. To this end, we propose the actor-critic RL framework, called FLoadNet,

to optimize a joint load balancing policy in the fog networks. Motivated by the advantages

of communication protocols in MARL [Foerster et al. (2016); Sukhbaatar et al. (2016); Kim

et al. (2019)], we consider settings where cooperative APs as concurrent learning agents learn

to communicate to coordinate the behavior of each individual and have one shared learning

network as a way to improve learning. Thereby, the proposed approach will advance on the

development of communication for efficient edge learning and the application of distributed

learning algorithms to fog network optimization. To the best of our knowledge, no work has

considered these problems jointly in a distributed manner with cooperative APs in the area of

load balancing in fog networks. The key contributions of this paper are summarized as follows.

- The proposed approach addresses the minimization of the overall bandwidth cost and over-

loaded servers while balancing the computational load among all the available servers and

network links. In this context, we grasp the latency for selecting edge server against server

in fog and cloud layers through different weights for the bandwidth cost per link in different

layers. An efficient load balancing method can allow not only a reduction in transmission

delay at the link level but also faster processing at the server level.

- The proposed multi-agent load balancing model is formalized as a stochastic game. In the

cooperative setting, each AP aims to maximize the global average payoff.
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- We propose FLoadNet which is a multi-agent actor-critic RL framework for load balancing

in fog networks. We extend the actor-critic model whereby the critic network facilitates

the centralized learning by sharing parameters among the agents, while the individual actor

networks strive to learn the optimal policy only using local information and communication

messages. Due to the imperfect observations and limited communication channel capacity,

the learning agents must discover a proper communication protocol that allows them to

coordinate their decisions and achieve the optimal performance for all the agents.

- In particular, centralized learning enables the agents to not only share parameters of the neu-

ral network but also back-propagate errors with respect to the value functions and commu-

nication messages. As a result, each agent can give other agents more precise feedback on

both the value function and communication messages, which reduces the required amount

of learning iterations and accelerates the discovery of proper communication protocols.

- Numerical experiments using Tensorflow 2.0 are presented to support the proposed algo-

rithm. Performance analysis is conducted using different values of the weight factors as-

sociated with each goal of the combined objective function. In other words, the weighting

factors are used to adjust the priority to minimize link cost, link and server utilization, and

task drop, respectively.

The remainder of this article is organized as follows: in Section 4.2, the system description

and assumptions are presented. The stochastic game-based problem formulation and the best-

response solution are discussed in Section 4.3. In Section 4.4, we describe the concrete frame-

work of FLoadNet. Simulation results are presented in Section 4.5. Finally, Section 4.6 con-

cludes this paper.

4.2 System description and assumptions

In this section, we define the concrete framework in which we study distributed offloading

and load balancing. The model we propose captures adaptive offloading and load balancing in

a three-layer fog computing network. The whole system operates across discrete scheduling
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slots of equal duration (in milliseconds) that are indexed by an integer t ∈ N+. The symbols

used in this paper are listed in Table 4.1.

Table 4.1 List of Notations

Symbol Definition
Constants

I, i The set of access points, index

K,k The set of task types, index

dk,hk,ck Data size, bandwidth, and CPU demands for task k
Pi, p The set of available paths from AP i, index

L, l The set of all available links in the system, index

si
p,L

i
p The destination server pool and set of links of path p

κ i
l,p

Link-path indicator, where κ i
l,p = 1 if path p passes

link l, otherwise κ i
l,p = 0

gl,φl Bandwidth capacity and unit cost per bandwidth of link l
Le The subset of links included in the edge layer

L f The subset of links included in the fog layer

Lc The subset of links included in the cloud layer

ωs Computation capacity of single server

Na The number of servers in each AP’s service pool

Nf The number of servers in fog service pool

Nc The number of servers in cloud service pool

Bi
max The maximum task buffer size of AP i

Variables
W i

t Arrived tasks for AP i at time t

δ i
m,k,t

Task-type arrival variable, where δ i
m,k,t = 1

if the mth arrival task from AP i at time t is type k,

otherwise δ i
m,k,t = 0

η i
m,p,t

Task-path allocation variable, where η i
m,p,t = 1 if AP i

transfers the mth task along the path p at time t,

otherwise η i
m,p,t = 0

yi
p,t

The total amount of bandwidth utilized on path p
by AP i at time t

τ i
t The total link cost for AP i at time t

Bi
t The length of task buffer of AP i at time t
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Figure 4.1 A hierarchic edge-fog-cloud computing network

4.2.1 Three-Layer Fog Networks

In this paper, we consider a hierarchical fog computing network consisting of three layers,

namely the edge, fog, and cloud layers, as shown in Fig. 4.1. The edge layer consists of

multiple APs i ∈ I = {1, . . . , I}, which are grouped into clusters. Each AP receives computa-

tion demands from different types of edge-user devices and has its own pool of computational

servers that is less powerful than server pools in the fog and cloud layers. Hence, the APs

apply a cooperative computing scheme where the additional resources can be borrowed from
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nearby clusters of the same layer as well as higher layers to support the demands from edge-

user devices. In the proposed system, each AP has an autonomous decision-making capability

aiming to share the system resources and coordinate its decisions with others. In what follows,

we treat APs as decision-making agents who can sense the environment, act on it, and pursue

their own objective, and hence we use the terms AP and agent interchangeably.

As illustrated in Fig. 4.1, the APs can send information required for their resource manage-

ment to an SDN controller placed in the fog layer over OpenFlow communications. Using this

communication, each AP i can also be informed of a set of available server pools and paths to

offload its demands, where a server pool contains more than one server. For simplicity, we as-

sume that the set of server pools and paths active in the coverage of the SDN controller is static

over the time horizon. As a result, the APs and OpenFlow nodes (switches and routers) act

as an IoT gateway, which provides a communication link between servers or layers and real-

time control of edge devices. While there are related works [Schaerf et al. (1995)] associated

with strictly distributed load balancing where the agents only use their own local information

for making decisions, we don’t impose a complete limitation on the communication between

agents and instead fully encourage them to coordinate their decisions with each other and take

full advantage of the SDN architectures. Given a hierarchical and distributed control design,

APs operate on their local view and may exchange messages to enhance their knowledge, while

processes that require network-wide knowledge are performed by a centralized controller in the

fog layer. However, we acknowledge that some problems necessitate restrictions on the com-

munications, such as real-time applications which require considerable restrictions on com-

munication due to both latency and overhead. Hence, we allow communication with limited

bandwidth, further described in Section 4.3.

4.2.2 Task offloading and load balancing model

In this work, we consider heterogeneous tasks received from the APs, where the associated

bandwidth and computation resource demands can differ. At the beginning of each scheduling

slot t, each AP i receives a number Wt
i ∈ W = {0,1, . . . ,Wi,max} of computational tasks. The
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APs support k ∈ K type of tasks, where these tasks are classified according to the resource

demand configuration. The task k consists of a 3-tuple < dk,hk,ck >, where dk,hk, and ck are

the input data size (in bits), bandwidth resource (in MHz) , and computation resource (in CPU

cycles/bits), respectively. Hence, we define δ t
i,w,k as a task-type variable, where δ t

i,w,k = 1 if the

wth (≤Wt
i ) arrival task from AP i at time slot t is of type k, otherwise δ t

i,m,k = 0. In this work,

we assume that the sequence of computational tasks (Wt
i , t ∈ N+) follows a Markov process,

and the task arrival process is independent among the APs and across the scheduling slots.

Furthermore, the type of each arrival task is determined by a probabilistic process.

During the scheduling slot, each AP i determines the scheduling decisions for each computation

task. The computation tasks arrived in AP i can be processed locally by the servers in its own

server pool or be offloaded to the server pools in other APs, the fog, or the cloud. In particular,

AP i chooses a path p ∈ Pi, which routes each of its demand to a specific service pool.

Definition 4.1. The proposed multi-AP stochastic model is a 5-tuple < I ,W ,P,δ ,Π >,

which involves the set of APs, the probabilistic arrival of new tasks to the APs, the path map,

the probabilistic task types, and the joint load balancing policy.

For each new task, the AP selects one of the paths, which is denoted as Π above, called a

task-path allocation policy. This is further discussed in Section. 4.3.

4.2.3 Model objective and assumptions

In this section, we formulate an optimization model to mathematically represent the system

framework of this work. In the proposed system architecture, there are multiple paths for

transferring the tasks between each AP and server pool. We assume that the APs choose the

paths that pass the smallest number of links, i.e. the shortest paths. In particular, Pi represents

the set of paths to the server pools which are accessible by AP i. Path p ∈ Pi consists of a

2-tuple < si,p,Li,p >, where si,p is the destination server pool and Li,p is the set of links on

this path. Moreover, κi,l,p represents a link-path indicator, where κi,l,p = 1 if path p passes link

l, otherwise κi,l,p = 0.
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Next, we define η t
i,w,p as a task-path allocation variable, where η t

i,w,p = 1 if AP i transfers the

wth task along the path p at time slot t. Note that the number of tasks scheduled must be

equivalent to the number of arrived tasks at time t:

∑
p∈Pi

η t
i,w,p =Wt

i . (4.1)

The total amount of bandwidth utilized on path p by AP i can be calculated as

yt
i,p = ∑

w∈W t
i

∑
k∈K

δ t
i,w,k ·η t

i,w,p ·hk. (4.2)

If path p is selected to transfer the tasks from AP i, all the links Li,p used by this path carry

the tasks to the destination server pool si,p. As a result, the total amount of bandwidth utilized

on link l for all paths can be measured as

yt
i,l = ∑

p∈Pi

κi,l,p · yt
i,p. (4.3)

On the other hand, the bandwidth capacities of the links are different according to the layer

where the links are included. For example, the capacities of the links included in the edge layer

(gl : ∀l ∈Le) are smaller than their counterparts (gl : ∀l ∈L f ,Lc) in the fog and cloud layers,

where Le,L f , and Lc are the subsets of links included in the edge, fog, and cloud layers,

respectively. Finally, the link l’s bandwidth utilization at time slot t can be calculated as

ut
l =

∑i∈I yt
i,l

gl
, (4.4)

which shows the percentage of bandwidth utilized off the total bandwidth available. In order

to avoid overloading the links, the maximum utilization of any link cannot be more than 1 at

any point

0 ≤ ut
l ≤ 1, ∀l ∈ L . (4.5)
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To verify the proposed load balancing scheme among all the available links, we assume that the

total amount of bandwidth demands during each scheduling slot cannot exceed the available

bandwidth capacity in the system. In other words, the available bandwidth capacity of the edge,

fog, and cloud layers can fulfill the sum of the allocated bandwidth to establish paths from the

APs to the server pools of all these layers as described in Eq. (4.6).

∑
i∈I

∑
w∈W t

i

∑
k∈K

δ t
i,w,k ·hk ≤ ∑

l∈Le

gl + ∑
l∈L f

gl + ∑
l∈Lc

gl (4.6)

Upon determining the load balancing decisions of tasks on dedicated paths, the total link cost

for AP i at time slot t can be measured as

τ t
i = ∑

l∈Li,p

φl · yt
i,l, (4.7)

where φl is an unit cost per bandwidth for link l. We assume that all APs are synchronized,

and the bandwidth demand required for each task is set to arrive to the destination server pool

during the scheduling slot.

Meanwhile, a computation task buffer is maintained at each AP i to buffer the tasks that are

decided to be processed locally and are offloaded from other APs. We denote the number of

servers in the service pool of each AP, fog, and cloud as Na,N f , and Nc, respectively, where

we assume that the capacity of a single server is equal to ωs. If all servers are busy in the

service pool, the task waits in the buffer until a server becomes available. Then, the server

removes the task from the buffer and starts processing it. Let Bi
t be the length of the task buffer

of AP i at the beginning of slot t, which can be measured as

Bt
i = min{Bt−1

i +newt
i − idlet

i,s,Bi,max}, (4.8)
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where newt
i and idlet

i,s represent the total number of arrived tasks and the number of servers

becoming idle in the buffer of AP i at time slot t. Herein, newt
i can be calculated as

newt
i = ∑

i∈I
∑

w∈W t
i

∑
p∈Pi

η t
i,w,p ·1(si,p = i) , (4.9)

where the second term of the multiplication is 1 if the destination server pool of the path p is

that of the AP i, and 0 otherwise. Also, Bi,max describes the maximum buffer size for AP i. In

addition, the number of task drops can be described as

Zt
i = max{Bt−1

i +newt
i − idlet

i,s −Bi,max,0}, (4.10)

which occurs due to the overload of AP i buffer at time slot t.

At the beginning of each time slot t, each AP repeatedly observes its own local state, which

is denoted as Xt
i = {δ t

i,B
t
i,U

t
i,l} ∈ Xi, where δ t

i = (δ t
i,m,k : ∀w ∈ W t

i ,∀k ∈ K ) and Ut
i,l = (ut

l :

∀l ∈ Li,a). Herein, Li,a is a set of adjacent links from AP i, which implies that each AP

only has partial information on the link status in the network. Hence, Xt = (Xt
i : ∀i ∈ I )

describes the global state. Then, the APs simultaneously choose their load balancing decisions

η t
i = (η t

i,w,p : ∀w ∈ W t
i ,∀p ∈ Pi). Likewise, the joint load balancing decision of all the APs is

given by η t = (η t
i : ∀i ∈ I ).

The objective of the proposed model is to minimize the total link cost, maximum link utilization

level, average length of the task buffer, and the number of task drops. To this end, we define

the composite objective function as

F(Xt ,η t) = ( ∑
i∈I

ϖ1 · τ t
i +ϖ2 ·Bt

i +ϖ3 ·Zt
i )+ϖ4 ·max{ut

l : ∀l ∈ L }, (4.11)

where the first term denotes the total link cost corresponding to the total bandwidth that is

allocated to all available links in the network. The second term denotes the length of the task

buffer, and the third term is the number of task drops because of buffer overflow. Furthermore,

the last term describes the maximum utilization level among the links. This objective function
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allows the APs to balance task loads between available links with minimal bandwidth cost

but also to monitor the risk for servers overload. Moreover, ϖ1,ϖ2,ϖ3, and ϖ4 are constant

weighting factors that balance the priority associated with each part of the objective function.

For example, the more the APs focus on minimizing the link bandwidth cost at the expense of

ideal link and server utilization and task drops, the higher ϖ1 is.

In summary, the goal of the optimization problem is to minimize (4.11) subject to the con-

straints (4.1), (4.5), and (4.6), namely

min F(Xt ,η t)

subject to (4.1),(4.5) and (4.6).
(4.12)

4.3 Game-theoretical problem formulation

In this section, we first adopt the game theory model of a stochastic game to formalize the

proposed problem of multi-agent load balancing. Then, finding the best-response solution in

game theoretic perspective is discussed.

4.3.1 Stochastic game-based problem formulation

In the proposed scenario, each AP is responsible of solving the optimization model. First, we

adopt the stochastic game settings to model the proposed load balancing problem and formalize

the interaction between multi-agent and environment. Stochastic games are an extension of

Markov decision processes (MDPs), which include multiple agents [Lisa, J. Yan and Nick,

Cercone (2010)]. The environment is modeled by a finite set of states, and the dynamics of the

environment employed by the other agents are unknown to the given agent. Based on the joint

action/policy, the environment transitions into the next state and each agent receives a payoff.

Definition 4.2. A load balancing stochastic game can be represented as < I,X,η ,T,F >,

where
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- I = {1, ..., I} ∈ I is the set of agents;

- X = (Xi : ∀i ∈ I ) ∈ X is the joint state from all the agents;

- η = (ηi : ∀i ∈ I ) is the joint load balancing decision from all the agents;

- T : X × η ×X → [0,1] is a transition function, where T (x,η ,x′) = Pr(x′|x,η) is the

probability that the environment transitions to state x′ when joint load balancing decision

η is taken at state x, and ∑x′ T (x,η ,x′) = 1.

- F : X ×η ×X →R is a payoff function. Fi(xi,η ,x′i) is agent i’s payoff upon transitioning

from state xi to state x′i given joint task-path allocation η .

The behavior of agent i in a stochastic game is described by a policy. The policy is a mapping

πi : Xi → Prπi(ηi), where Prπi(ηi) is a probability of taking action ηi in state Xi under stochas-

tic policy πi. A tuple of policies Π = (π1, ...,πI) for all agents is called a joint load balancing

policy. As the objective of this study is to obtain Eq. (4.12), (4.11) can be converted into a pay-

off function by negation (F = −G). The objective of an agent is to maximize its accumulated

payoffs presented as the agent’s return. Then, the corresponding value function of agent i can

be presented as in (4.13).

V πi
i (Xi) = ∑

ηi

πi(ηi) ∑
F,X ′

i

Pr(X ′
i ,F(X,η)|Xi,ηi) ·

[
F(X,η)− f (πi)+V πi

i (X ′
i )
]

(4.13)

4.3.2 Finding an equilibrium solution in stochastic game

A policy π is considered as being better than a policy π ′ if its expected return is greater than

that of π ′ for all states. Given the stochastic game model, the goal of each agent is to find a

best-response policy that maximizes the value function (4.13). Thus, the best-response of agent

i can be obtained as in (4.14). Note that a policy for a given agent can only be evaluated in

the context of all the agents’ policies. A Nash equilibrium (NE) is a collection of strategies for

each of the agents where each agent’s strategy is a best-response to the other agents’ strategies
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[Nash, J. F. (1950)]. Game-theoretical problems analyze the performance by the notion of

a NE, which is the most common interpretation to capture rational behaviors in multi-agent

games.

Definition 4.3. The best-response policy for agent i is the set of all policies that are optimal

given the other agents’ policies π−i. Formally, π�
i is in the best-response function, if and only

if, V<π�
i ,π−i>

i (x)≥V<πi,π−i>
i (x),∀πi ∈ Πi,∀x ∈ Xi.

Thus, the best-response of agent i can be obtained as in (4.14).

π�
i = argmax

πi(ηi)
∑
F,X ′

i

Pr
(
X ′

i ,F (X,ηi,η−i) |Xi,πi (ηi|Xi) ,π�
−i (η−i|Xi−1)

· [F (X,ηi,η−i)− f (πi)+V πi
i
(
X ′

i
)] (4.14)

However, the approaches from game theory usually rely on the strong assumption that the

game is perfectly known and observable to the agents. To address the limitations of game-

theoretical approaches, the goal of RL techniques is to learn through interaction rather than

solving an equilibrium [Sutton & Barto (2018)]. Instead of building an explicit model of the

other agents’ strategy, the agent learns through observation over time and selects actions in

the environment based on observations of state transition and payoff. Littman, M. L. (1994a)

proposed a Q-learning algorithm, called Minimax-Q, which converges to optimal decisions for

two-agent zero-sum games. This is relatively straightforward to compute, as it can be calcu-

lated in polynomial time using linear programming. However, our proposed problem is defined

as a general-sum stochastic game as agents’ payoffs are not always negatively related (zero-

sum) but are arbitrarily related. In general games, the learning problem has been proven much

more challenging as the problem of computing any NE is now known to be PPAD-complete

[Sodomka, E., Hilliard, E., Littman, M. & Greenwald, A. (2013)]. Due to the complexity of

finding NE, a lot of recent works, such as cheap-talk [Foerster et al. (2016)], cognitive hi-

erarchy, and side payment [Sodomka et al. (2013)], have been studied in solving correlated

equilibrium. A joint policy is called a correlated equilibrium if no agent can improve its ex-

pected value by changing its policy. The main advantage of correlated equilibrium is that they
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are computationally less expensive than NE and allow agents to correlate their actions in the

game. In this study, we leverage communication protocols among the agents, allowing the

possibility of playing correlated strategies.

4.4 Learning the optimal policy using actor-critic methods in the multi-agent prob-
lem

In this section, we first present the RL model proposed to find the optimal solution in the

stochastic game. Thereafter, we discuss an actor-critic method proposed to learn approxima-

tions to policy, value functions, and communication protocols in multi-agent task offloading

for load balancing problems.

4.4.1 Properties of the proposed learning algorithm

In multi-agent scenarios, where the joint state and joint action spaces grow exponentially with

the number of agents in the system, RL approaches face significant scalability issues. There-

fore, we use deep neural networks (NN) to represent both policies and value functions of the

RL method, i.e. deep RL.

The main objective of this work is to find a deep RL algorithm that allows each agent to

independently estimate and converge to a policy that enables all agents to achieve the maximum

average payoff. In particular, the learning algorithm considered in the proposed problem is

characterized by:

- Concurrent learning: concurrent learning uses multiple concurrent learners where each

learner aims to achieve the common objective by modifying its own strategy from a separate

learning process.

- Identical payoff stochastic game (IPSG) in [Matignon, L., Laurent, G. J. & Le Fort-

Piat, N. (2009)]: all agents in a Markov environment receive the same payoff based on the

joint policy. In this study, we consider an average-payoff setting where returns are defined

by differences between instantaneous payoffs and the average payoff to all agents. This is
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called the differential return F− f (π), where f (π) is the average payoff while following the

policy π . The average payoff is usually used in continuing problems where the interaction

between agents and environment goes on forever without end or start states.

- Communication protocol : agents share information related to their current policies by ex-

changing communication messages over a limited bandwidth channel. This helps enhance

the agents’ knowledge and increase the size of the external information available to the

agents. We are interested in such settings because since multiple learning processes and

partial observability coexist in the proposed problem, the communication between agents

is vital to coordinate the behavior of each individual. As the communication is implicit and

is not given beforehand, the agents must collaborate and develop an appropriate protocol to

accomplish the objective. Consequently, the agents learn a problem-specific communica-

tion protocol that aids converging to a correlated equilibrium.

4.4.2 Learning the optimal policy and communication protocol via Actor-critic meth-
ods

To this end, we propose a new load balancing scheme in multi-agent fog networks using Actor-

Critic framework with communications, called FLoadNet, whose overall architecture is de-

picted in Fig. 4.2. For simplicity, only two agents are presented in Fig. 4.2. FLoadNet consists

of two components:

- Distributed individual actor networks: The individual actor network per AP is a function

approximator with a neural network that produces the load balancing action distribution πθi

for a given local state Xt
i .

- Centralized critic network: We extend the critic network, which outputs the value Vt
ϕ

and the communication message Mt
ϕ given by the state Xt

i and combined messages Mt−1
ϕ,−i

received from other agents at the previous learning step. Consequently, the critic network

is trained to decode the coming messages to coordinate amongst the APs while evaluating

the actions from the actor networks by computing the value function. Note that since the
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Figure 4.2 The proposed multi-agent learning using the Actor-critic policy gradient

method with communication messages

communication messages are continuous, i.e. Mϕ ∈ M → R, they can be trained via back-

propagation, and thus be combined with the critic network.

According to the cooperative setting, we use parameter sharing for the critic network across all

agents, in which the value functions and communication protocols of all agents are parameter-

ized by the same weight, ϕ . The advantage of parameter sharing is that the computational cost

can be significantly reduced by sharing weight parameters, which also improves the learning

speed by aggregating experiences across different agents. Despite using the same parameters,

the agents still learn differently because they input their own agent index i, local states, and

combined communication messages to the network, which makes each agent’s learning pro-

cess distinct.
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Another modification to the conventional DRL method made in the proposed scheme is dis-

abling experience replay on which deep Q-learning relies [Mnih et al. (2015)]. As we men-

tioned, multi-agent learning settings introduce non-stationarity as multiple agents learn concur-

rently, which makes experience obsolete and deceptive. To update the networks, we consider

n-step bootstrapping methods. While the update of one-step temporal-difference (TD) meth-

ods is based on just the one next return, n-step bootstrapping methods perform an update based

on the next n-step returns. n-step bootstrapping works better when a recognizable state change

has occurred over a one-time step, but also the update can be more stable because of more

real return information. Also, one important observation [Mnih et al. (2015)] is that the bias

introduced through bootstrapping is often advantageous to reduce the variance and enhance the

sample efficiency.

Algorithm 4.1 details the procedure of the FLoadNet learning algorithm. At the beginning of

time step k, each agent receives communication messages from other agents at the previous

time step, Mk−1
−1 . Simultaneously, each agent selects an action ηk

i with respect to the actor net-

work πi(Xk
i ). Then, the agents feed in the agent index i and the combined incoming messages

Mk−1
−1 along with the local state Xk

i to the critic network. Once the outgoing messages are gen-

erated, the agents broadcast their messages to other agents. After all agents have implemented

their actions, the state of the environment and total payoff are updated.

During the update steps, the agents look backward to recently visited states to accumulate

the payoffs and gradients. Here, the agent i calculates a target value ϒk
i using the observed

payoff and average payoff. As the steps go on, the average payoff will need to be updated

as well, where β is the learning rate dedicated for the payoff update. Next, the policy of

agent i can be improved through gradient ascent using the policy gradient. As each agent

passes its batches through the centralized critic network individually, all the gradients from the

agents are accumulated and applied in one optimizer step. To give feedback on communication

messages, agent i accumulates the gradients with regard to its outgoing message Mk
i . The

message gradient represents how much impact the outgoing message made on the TD error

of other agents. After this, the weights of the actor and critic networks are updated with the
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Algorithm 4.1 FLoadNet: Actor-critic method with communications for load balancing

in multi-agent fog networks

1 Set Initialize the initial state X0, the actor networks with random weights

< θ1, ...,θi >, the critic network with random weights ϕ
2 for t ∈ [0,end] do
3 for k ∈ [0,N] do
4 for Each i ∈ I do
5 Receive messages Mk−1

−i from other agents

6 Select an action ηk
i using the actor πθi

7 Get V k
i ,M

k
i = Critic(i,Xk

i ,M
k−1
−i ;ϕ)

8 end
9 Get next state Xk+1

i , payoff Fk+1 given actions ηk

10 Transfer communication messages to other agents

11 end
12 for k = N to 1, -1 do
13 for Each i ∈ I do
14 ϒk

i = Fk − f (πθi)+Vi

(
Xk+1

i ,Mk
−i;ϕ

)
15 ΔV k

i = ϒk
i −Vi(Xk

i ;ϕ)
16 f (πθi)← f (πθi)+β ·ΔV k

i
17 Accumulate the actor gradients using the critic:

18 ∇θi ← ∇θi +∇θi logπθi(X
k
i ) · [ϒk

i −Vi(Xk
i ;ϕ)]

19 Accumulate gradients for the value function:

20 ∇ϕ ← ∇ϕ +∇ϕ
(
ΔV k

i
)2

21 Accumulate gradients for the communications:

22 μk
i = 1{k < N −1}∑ j �=i

∂
∂Mk

i

(
ΔV k+1

j

)2

23 ∇ϕ ← ∇ϕ +μk
i · ∂Mk

i
∂ϕ

24 end
25 Update the actors using gradient descent:

26 for Each i ∈ I do
27 θi ← θi +αa ·∇θi
28 end
29 Update the critic using gradient descent:

30 ϕ ← ϕ +αc ·∇ϕ
31 end
32 end

accumulated gradients, where αa and αc are the learning rates of the actor and critic optimizer,

respectively.
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4.5 Performance evaluation

In this section, we evaluate FLoadNet and compare it with baseline methods. The numerical

experiments are performed using the Python-Tensorflow 2.0 simulator to quantify the perfor-

mance gain of FLoadNet.

4.5.1 Simulation settings

For simulation, we leverage a traditional 3-tier network topology matched with the cloud, fog,

and edge layers in the proposed network. The edge switches in the edge layer receive tasks

from the APs and forward them to the fog layer, while the fog switches connect the fog layer

to the cloud. We divide the links into four subsets based on their bandwidth capacities, where

L1,L2,L3, and L4 consist of links from the APs to the edge switches, from the edge switches

to the fog controller, from the fog controller to the fog servers, and from the fog controller to

the cloud, respectively.

The distance to reach the servers of a given layer is set by the number of required links. Also,

the bandwidth cost φl to use links in edge, fog, and cloud layers is in increasing order, which

implicitly reflects the delay cost to reach the servers of each layer. The number of servers in

the server pool varies based on the layer that the server pool is located in, namely Na,N f ,Nc,

where the cloud layer has the largest number since the cloud is the service of on-demand

computing. To simplify, the computation capacity ωs of all the available servers of each layer

is considered equal, and therefore the total server capacity of each server pool varies based on

the number of servers. The parameters used in the experiments are listed in Table 4.2. It is

noted that the topology used in this evaluation can be simply reconfigured to suit the needs of

fog networks.

For the design of FLoadNet, the input state is followed by four dense layers consisting of 64,

128, 256, and 128 neurons, respectively, with the ReLu activation function for both the actor

and critic networks. The output layer of the actor-networks is a dense layer consisting of |ηi|
neurons, where |ηi| is the number of all possible actions from AP i. On the other hand, the critic



127

Table 4.2 The values of topology related parameters

Parameter Value
The number of access points 8

The number of clusters 4

The number of access points per cluster 2

The number of edge and fog switches 4, 2

The capacity and cost of links in L1 100Mbps, 1

The capacity and cost of links in L2 300Mbps, 2

The capacity and cost of links in L3 500Mbps, 5

The capacity and cost of links in L4 1000Mbps, 10

The number of servers in Na,N f ,Nc 3, 15, 40

The capacity of server 2.5GHz

network has two separate output layers for the value and communication message functions,

respectively. The activation function for the output of the communication message is the tahn

function. The parameters are optimized using the Adam optimizer with a learning rate of 0.005

for the actors and 0.001 for the critic [Liu et al. (2020)].

For performance comparisons, five baseline methods are simulated:

- FLoadNet w/o communications: to assess the need for communication protocols, we com-

pare FLoadNet with a version of FLoadNet which has the same features except for the

communication protocols.

- IL-based MA-Q [Liu et al. (2020)]: independent learning agents are used to solve the

proposed optimization problem in multi-agent settings. Each agent learns its own policy

and treats dynamics from other agents as part of the environment. For DQN, the hidden

layers and output layer are identical to that of the actor network in FLoadNet. ε-greedy

policy with ε = 0.1 is used, and the target network is updated every 500-time steps.

- Local computing: all APs execute their computation tasks using their own local servers

and do not offload.

- Round-Robin (RR): each AP assigns each task among servers and paths in a circular order.
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- Random policy: each AP generates a load balancing policy randomly in which the execu-

tion location of each task is determined at random.

4.5.2 Performance analysis

4.5.2.1 Convergence performance

In this experiment, we evaluate the convergence property of FLoadNet and compare it with

other learning settings. To demonstrate the need for deep neural networks in the proposed

multi-agent problem, we implement a shallow neural network-based FLoadNet, which consists

of two hidden layers with 128 neurons. In the left four subplots in Fig. 4.3, we plot the loss

functions of the actor and critic networks over 5× 103 time steps with different depth of the

neural networks. Here, DNN-based FLoadNet results in a more stable gradient estimate across

the learning procedures. On the other hand, the right two subplots in Fig. 4.3 present the loss

functions of FLoadNet without communication protocols, which fails to converge after given

the learning iterations. This result proofs that the communication between agents is crucial to

coordinate the behavior of each individual in the non-stationary environment.

Fig. 4.4 illustrates the average payoff performance across different learning models. As we

can see, the total average payoff of FLoadNet is increasing and asymptotically converges after

around 1500 iterations. Meanwhile, the other two learning models do not converge properly

and give unstable learning results. From our investigation, the policy of each agent can easily

get stuck in a local optimum in the beginning of the learning procedures, when the learned

policy may by only optimal to the current policies of the other agents at that time, which means

the approximations of the value and policy are not accurate. Once more, this emphasizes the

impact of learning a problem-specific communication that boosts performance, especially in a

partially observed environment with concurrent learners.
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Figure 4.3 The convergence property across the learning procedure

and versus depths of neural network

Figure 4.4 The average payoff performance across the learning procedures
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4.5.2.2 Variation in weights of link cost ϖ1

This experiment demonstrates the performance, in terms of average link cost, maximum link

utilization, and average server buffer length under different link cost weights ϖ1 in Eq. (4.11).

From Fig. 4.5, it is observed that FLoadNet is superior to the baseline methods in minimizing

the link bandwidth usage cost while minimizing the maximum link utilization and average

buffer length in servers. Compared to the Round-Robin and Random policies, learning models

can dynamically change their behavior based on the cost information. As ϖ1 increases, the

APs are less likely to choose to send their tasks to the cloud, which is most costly due to the

distance from the APs and then servers in the fog layer.

One of the interesting observations from the results is that two learning models without com-

munication protocols show the decreasing average link cost as the weights of link cost are

increased with the expense of overloaded links and server buffers. This is because these mod-

els minimize the link cost too much by allocating most tasks to local servers or servers in

neighbor clusters. Unlike this, agents using FLoadNet can jointly minimize the link cost while

distributing tasks among all the possible servers. This implies that FLoadNet can implicitly

reduce the link-level delay as well as computation delay at servers.

Figure 4.5 Average link cost, maximum link utilization rate, and average buffer length

across the learning procedure versus link cost weight ϖ1
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4.5.2.3 Variation in weights of link utilization ϖ2

Fig. 4.6 depicts how the average link cost, the maximum link utilization, and the server buffer

length varies under ϖ2 in Eq. (4.11). When the value of ϖ2 is increased, a higher priority is

pursued on the link-level utilization. All three learning models, including FLoadNet are able to

regulate all the under-loaded links. However, the learning models with no communication are

unsuccessful in reducing the link cost and server utilization, which shows a worse performance

than static load balancing schemes.

Furthermore, FLoadNet shows a higher average link cost than the one of 4.5.2.3. The reason

behind this is that FLoadNet distributes computation tasks among different layers, and this

leads to the number of offloading to the fog and cloud layers increases. Therefore, the maxi-

mum link utilization can be balanced by applying an appropriate ϖ2 value, while adjusting the

bandwidth cost within an affordable amount.

Figure 4.6 Average link cost, maximum link utilization rate, and average buffer length

across the learning procedure versus link utilization weight ϖ2

4.5.2.4 Variation in weights of server buffer length ϖ3

Fig. 4.7 aims to demonstrate the performance under different weights ϖ3 on server buffer

length in Eq. (4.11). The length of server buffers is a direct implication of the performance in

terms of the processing latency, which is faster when a fewer number of demands are waiting

in the buffer. Therefore, this is very useful in identifying the state of servers and preventing

overloaded servers. Since the total server capacity available in the higher layers is larger than
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the local capacity in APs, more computation tasks can be processed by the servers of the higher

layer within one scheduling step. As a result, the server buffers in the APs tend to be more

occupied.

In this context, as weight ϖ3 increases, APs using FLoadNet are more likely to send their

tasks to the higher layer to adjust the number of tasks waiting in the buffers. However, if all

the APs offload their tasks to the higher layers, the overall link utilization is increased, which

can aggravate the delay performance by increasing the queuing delay at the link level. This

trend can be seen in the results of two learning models with no communication protocols.

Therefore, one of the key findings in this experiment is that cooperative APs, who only have

local information, effectively optimize the trade-off between opposing performances utilizing

communications.

Figure 4.7 Average link cost, maximum link utilization rate, and average buffer length

across the learning procedure versus server buffer length weight ϖ3

4.5.2.5 Variation in bandwidth and computation resource demands

This experiment aims to show how the variation of bandwidth and computation resource de-

mands impacts the performance. Figs. 4.8 (a) and (b) demonstrate the average link cost and

the maximum link utilization, respectively, under different resource demands arranged in as-

cending of the average data and bandwidth size from left to right. As the resource demands

increase, the average link cost also increases because the link cost of offloading a task is pro-

portional to the size of the bandwidth demand. This is also because a larger number of tasks

are sent to the higher layers, due to the lack of computation resources in the APs.
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Figure 4.8 Average link cost and maximum link utilization rate across the learning

procedure versus average resource demand of tasks

From Fig. 4.8 (b), only FLoadNet achieves the maximum link utilization under 1 over all the

variations of resource demands. This indicates that FLoadNet can use real-time information to

flexibly and automatically adapt to the high traffic demands at run time.

On the other hand, Figs. 4.9 (a) and (b) depict the average server buffer length and overflow

ratio, respectively, with increasing bandwidth and computation demands. Here, it is shown

that even if local computing does not require any bandwidth resources since the APs process

all their tasks locally, the average buffer status is very large, which incurs a high number of

task drops from overflowing.
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Figure 4.9 Average buffer length and average overflow ratio across the learning

procedure versus average resource demand of tasks

For the FLoadNet with no communication and IL-based MA-Q models, the average perfor-

mance on this experiment is observed to be worse than Round-Robin and Random policy as

the resource demands increase. These empirical results show that the learning properties of

FLoadNet allow multiple agents to estimate the partially observable environment better by

communicating and aggregating experiences across different agents. Otherwise, making deci-

sions from a misleading observation in no communication learning models can be arbitrarily

wrong and yield even worse performance than non-learning-based static load balancing meth-

ods.
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4.6 Conclusion

In this paper, a joint link and server load balancing problem, with multiple cooperative access

points in a three-layer fog network was studied. First, the optimization problem was formulated

as a stochastic game with the aim of minimizing the link cost, the maximum link utilization,

the server buffer length, and the number of overflow tasks. To this end, an actor-critic rein-

forcement learning framework, called FLoadNet, was proposed to optimize the joint policy

for load balancing. To advance the performance, centralized learning with parameter sharing

and distributed execution was considered to approximate individual policies, value functions,

and communication protocols between the access points. The experimental results showed that

FLoadNet outperforms no communication learning models and other baseline load balancing

methods. This work demonstrated that communication protocols aid the co-adaptation of the

learning processes, which helps the access points distribute tasks while satisfying the objective.





CHAPTER 5

TOWARD 6G: A NEW ERA OF DISTRIBUTED INTELLIGENCE WITH
MULTI-AGENT REINFORCEMENT LEARNING

Jungyeon Baeka and Georges Kaddouma

a Department of Electrical Engineering, École de Technologie Supérieure,

1100 Notre-Dame west, Montreal, Canada H3C 1K3.

Paper Submitted in IEEE Communications Magazine,

December 2021, Under Review.

5.1 Introduction

Over the past several decades, we have witnessed the wireless communications market continue

to grow and wireless communications be used in a broad spectrum of applications. Following

3GPP Release 15, Release 15, telecommunication operators around the world are still develop-

ing the fifth generation (5G), yet researchers are already looking ahead to the sixth generation

(6G). The central theme of the 6G network will be the merging of digital and real worlds in

all dimensions [Jiang, W., Han, B., Habibi, M. A. & Schotten, H. D. (2021)]. Sixth-generation

networks are expected to deliver a high-quality experience through the seamless integration of

distributed communication, computing, control, and artificial intelligence (AI). The growing

use of AI and machine learning (ML) techniques in recent years has been attributed to a broad

spectrum of wireless communication applications. Furthermore, a new computing paradigm,

called edge computing, has been introduced to extend the computing, networking, and stor-

age capabilities of the cloud to the edge of networks that are physically and logically close to

end users. The emergence of AI and edge computing is expected to contribute significantly

to future 6G networks and support the coordination of vertically and horizontally distributed

intelligence [Peltonen, E., Bennis, M., Capobianco, M., Debbah, M., Ding, A., Gil-Castiñeira,

F., Jurmu, M., Karvonen, T., Kelanti, M., Kliks, A. et al. (2020)]. A prime example is an in-

dustrial internet of things, which brings intelligence to connected sensors and edge devices to

help improve product quality, productivity, and operational efficiency in real time. With the



138

emergence of new technologies and the continuous evolution of existing technologies, many

unprecedented applications will become possible in 6G networks [Wu, J., Li, R., An, X., Peng,

C., Liu, Z., Crowcroft, J. & Zhang, H. (2021)].

Traditionally, ML has been used by transferring all data collected from connected devices to

a centralized server to train a generic model that is in turn deployed on the local devices. In

other words, decision rules are defined a priori. Some types of ML algorithms that are based

on a dataset of examples are classification, support vector machine, and many other super-

vised and unsupervised learning methods. However, all these algorithms become no longer

viable as future training data is continuously altered according to the algorithms’ decisions or

the dynamic nature of the environments. One area in which this commonly occurs is wireless

communication networks where the decision-makers are located in the nodes of a time-varying

environment and actively change the kind of data they need in later parts of the training process.

For these reasons, reinforcement learning (RL) has rapidly emerged in many wireless commu-

nication and networking domains. Human and animal behavior inspired the development of

RL algorithms that interact with the environment to solve assigned tasks by sequentially taking

actions based on observations. The learner or decision-maker is called “agent" in RL. At each

time step, the agent observes some representation of the environment’s state and selects an ac-

tion on the basis of its observations. The agent receives a numerical reward in response to its

action and observes a new state. The agent aims to find a policy that maximizes the expected

sum of rewards received. The action taken determines the immediate reward and the transition

probability of the following state, which in turn changes future rewards. Therefore, the policy

is not a priori but instead has to be learned from experience.

Most of the progress that has been made in RL has been focused on settings in which a sin-

gle agent learns an optimal policy in a particular environment and is operated by a centralized

entity. This single-agent setting is not quite suitable for environments that contain many dis-

tributed nodes that need to make independent decisions based upon their local observations

[Busoniu et al. (2008)]. Examples of this types of environment include autonomous vehicles,

traffic control, smart factories, smart cities, and a broad range of mobile applications. Hence,
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multi-agent RL (MARL) naturally become an appealing solution to deal with problem domains

where multiple agents make individual decisions by distributing a comprehensive observation

space across multiple local spaces [Panait, L. & Luke, S. (2005)]. As AI-based applications

become increasingly pervasive in wireless networks, future AI agents will have to interact with

other intelligent agents and humans. Thus, human-like cognitive skills and reasoning abili-

ties should be the goal of distributed intelligent 6G systems. To this end, MARL will play a

critical role in beyond-5G networks as a foothold for the development of human-level intelli-

gence [Dafoe, A., Hughes, E., Bachrach, Y., Collins, T., McKee, K. R., Leibo, J. Z., Larson,

K. & Graepel, T. (2020)].

This article introduces the general concept of multi-agent learning from a RL perspective and

depicts several challenges that arise due to the presence of multiple learners in a shared en-

vironment, e.g., non-stationarity, coordination, credit assignment problems, that need to be

addressed in the future. Furthermore, we provide a variety of MARL models as potential so-

lutions for some of challenges outlined in the article. In addition, we suggest MARL models

for 6G system architectures and analyze key drivers of distributed intelligence in 6G systems.

More specifically, we conduct simulations to demonstrate how MARL can be utilized to opti-

mize offloading decisions with multiple agents. We then describe key applications of MARL

in wireless communications. Finally, the article concludes with core research questions for

MARL development in future wireless networks.

5.2 Overview and Motivations

As connected objects become more intelligent to run our lives, many real-world problems

arise concerning environments that include multiple decision-makers and are thus inherently

multi-agent systems (MASs). In this view, future wireless communication networks will face

a wide range of multi-agent learning problems. Multi-agent learning has been studied by var-

ious communities, including game theory, dynamic programming, RL, and heuristic methods.

More specifically, RL solutions have become increasingly popular to find the optimal policy

for incompletely known systems. Moreover, because the complexity of multi-agent learning
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problems can make manual solutions extremely difficult and infeasible, deep reinforcement

learning (DRL), which embraces neural networks to improve the learning speed and perfor-

mance of RL algorithms, is widely used.

MARL is the extension of RL to MASs, where a common environment is influenced by the

actions of multiple agents. Each agent implicitly or explicitly interacts with the other agents

in its environment to take actions concurrently, and their actions jointly determine the next

state of the environment. Unlike many ML algorithms that learn from data collected from

past events, MARL addresses learning in an interactive environment where each agent learns

from observations made in the moment and adjusts its policy in response to changes in the

behavior of others. MARL has been shown to act as an accelerator for intelligent behavior

among multiple decision-makers [Dafoe et al. (2020)]and will therefore play a fundamental

role in enabling distributed intelligence in 6G systems.

Yes No

Do they coordinate with each other?

Yes No

Is there more than one agent operating in an environment?

Yes No

Are all actions known to the agent? Independent RL learners

Joint-action RL learners Decentralized policies

Single-agent RL

Learning to communicate

Learning from other agents

Credit assignment

Consensus

Centralized learning Decentralized learning

Centralized critic- 
decentralized actor

Parameter sharing

Agent 1
Agent 2

Networked agents

Wireless communication networks

Agent 3

Agent N

Centralized learning unit

 Networked agents

Agent 1

Agent 2

Wireless communication networks

Agent 3

Agent N

Observe1
Observe2

Observe3
ObserveN

Action1
Action2

Action3
ActionN

Observe1 Observe2
Observe3

ObserveN

Action1 Action2 Action3
ActionN

(a) (c)

(b)

Reward

Reward

Figure 5.1 (a) A flowchart of MARL model settings

(b) MARL architecture for decentralized policies with a centralized control unit

(c) MARL architecture for decentralized policies with networked agents

The most straightforward MARL setting, called independent learners, applies single-agent RL

techniques and ignores the existence of other agents. In contrast, joint-action learners attempt

to learn the values of joint actions, the policies employed by other agents, or both. This joint-
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action learning implies that each agent has all the action (and state) information of other agents.

However, the joint state and action spaces of all agents grow exponentially with the number

of agents, which makes joint-action learning settings infeasible in a large-scale MAS [Lisa,

J. Yan and Nick, Cercone (2010)]. To address this challenge, many MARL problems have

focused on decentralized policies, integrating independent learners with coordination methods.

Decentralized policies seek an optimal solution under the constraint that each agent selects

its own action based only upon its local observation. Coordination methods are critical to

address the challenges associated with the resulting lack of information and allow the agents in

a group to take account of the existence of other agents and understand others’ points of view

[Varshavskaya, P., Kaelbling, L. P. & Rus, D. (2009)]. A flowchart of MARL model settings

and two different MARL architectures are shown in Fig. 5.1.

On the other hand, MARL deals with various problem domains, each of which caters to dif-

ferent settings to achieve a particular task or take place in a specific environment [Oroojlooy-

jadid & Hajinezhad (2019)]. Depending on the characteristics of the tasks, the agents can

be cooperative or competitive with each other. Cooperative agents work towards a common

goal, whereas competitive agents compete to achieve distinct goals. Many works involving

multiple RL agents have achieved prominent outcomes in competitive settings, such as chess,

poker, and Go. However, such settings of purely conflicting interests are exceptionally rare

in wireless communication networks; the agents more commonly have mixed interests, both

cooperative and competitive. For instance, in radio resource allocation problems, users have a

common interest in reaching a maximum throughput but are in conflict due to scarce frequency

resources and inter-user interference. Given the prevalence of mixed-interests settings and the

challenges associated with MARL in wireless communications, building AI agents that are

capable of cooperating in that context will be a critical goal. Whereas most RL research has

focused on improving the individual intelligence of algorithms and agents, now is the time to

develop cooperative MARL where all agents effectively cooperate to solve the problems they

face.
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5.3 Case Study: Multiple Agents with Coordination for Resource Management

This case study presents MARL models for 6G system architectures in which base stations

(BSs) provide both traditional cellular service and multi-access edge computing (MEC) ser-

vice to mobile users (MUs). The intelligent management of computational task offloading

between resource-limited mobile devices and BSs in addition to the dynamic allocation of cel-

lular packets will be even more critical in 6G networks. Here, MARL models are based on

distributed policy learning at the MUs to address the challenges involved in providing low la-

tency, real-time reactivity, and scalability. Consequently, numerical experiments are conducted

using different MARL-based offloading algorithms, and the importance of coordination meth-

ods to train decentralized policies in MARL is discussed.

Experiment Settings: We consider a cellular network composed of 4 BSs and 10 MUs in a

2×2 km2 area. The BSs are placed equidistance from one another, and each one has a limited

number of orthogonal channels with the same bandwidth, 500 MHz. The MUs move within the

service area following a random waypoint model. This mobility model is widely used in the

literature [Mao, S. (2010)]. The average channel gain experienced by each MU is determined

by the distance between the MU and the selected BS. Each MU maintains a queue to buffer

packets for traditional cellular service until transmission. We assume that packet arrivals follow

a Poisson process with an average rate of five packets/slot and the packet size is 5× 103 bits.

Meanwhile, each MU independently and randomly generates computation tasks at every time

slot. The computation tasks can be processed locally on the MU’s end or be offloaded to one

of the BSs. The input size and the number of CPU cycles required to complete one bit of

the computation task are 3× 103 bits and 700 cycles/bit, respectively. At the beginning of

each slot, each MU makes joint decision; 1) which BS to select, 2) how many packets will be

transmitted to the BS selected, and 3) how many computation tasks will be offloaded to the

BS. Each MU aims to solve an optimal decision-making problem that minimizes the power

required to transmit the packets and computation tasks and perform the computation tasks, the

number of packets queued, and the number of packets dropped due to queue overflows [Chen

et al. (2019)]. The challenge when it comes to finding the optimal decision arises from the
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randomness associated with the movement of MUs and the stochastic nature of communication

channels. Furthermore, each MU learns its own control policy from its local observations.

Since the MUs that select the same BS share the BS’s limited number of channels, MUs need

to cooperate effectively. We leverage MARL algorithms to learn the optimal policies and

consider each MU as an agent. For the DRL algorithm, we take an actor-critic approach. The

actor learns the policy to control the agent’s behavior, and the critic estimates a value function

to measure the actions taken by the actor. We design both the actor and the critic with one

hidden layer of 128 neurons. We select a rectified linear unit as the activation function and

Adam as the optimizer.

Analysis: Figure 5.2 presents the convergence of the globally averaged returns of different de-

centralized MARL models for our problem. We perform two different reward functions for the

MARL models. In Fig. 5.2(a), each MU receives the same global reward obtained at a team

level in response to joint actions, while in Fig. 5.2(b), each MU receives a local reward deter-

mined solely based on its individual action. The results show that if there is no coordination

among users (“Independent"), the average return obtained from the local reward does not differ

significantly from the average one obtained from the global reward but shows unstable results.

However, once the “Central" and “Networked2" models start learning their networks, the av-

erage return obtained from the local reward is higher than the one obtained from the global

reward. These results suggest that coordination methods are crucial when using the local re-

ward function to train decentralized policies. While the local reward function better evaluates

the performance of each MU’s policy, the coordination methods help to discourage selfish be-

haviors among MUs. On the other hand, the “Networked1" model underperforms compared

to the“Independent" model, which is expected as communicating with only one neighbor does

not give MUs enough cooperation advantages in our mixed-interests setting.

Here, the coordination overhead indicates the size of the memory of the object sent to other

learning systems at each learning step. In the “Central" model, this is a sum of the observation

history transferred from each MU to the centralized critic and the state value sent from the

central unit to the MUs. In the “Networked" model, the parameters of the decentralized critic
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Figure 5.2 Convergence of MARL algorithms

The “Independent", “Central", and “Networked" MARL methods are performed for the

learning architecture. The “Central" method uses a centralized critic at a central unit that is

accessed by all MUs, while each MU has a distributed actor for its local policy [Foerster, J.,

Farquhar, G., Afouras, T., Nardelli, N. & Whiteson, S. (2018)]. In the “Networked" method,

each MU performs fully decentralized learning based on its local observation and the

information it receives from its neighbors [Zhang, K., Yang, Z., Liu, H., Zhang, T. & Basar, T.

(2018b)]. Here, MUs choose to communicate with one (“Networked1") or two

(“Networked2") neighboring MUs in the communication range (500 m) and exchange their

parameters for critic networks.

at each MU are shared with the neighbor(s). Although the coordination methods require more

overhead to improve performance, finding the right balance between the overhead and the

reliability that can be achieved by sharing intelligence with other learning systems is still a

problem to be discussed.

5.4 Applications of MARL for Distributed Intelligence in 6G Networks

As the location of AI models plays a huge role in meeting the stringent 6G requirements,

such as real-time decision-making and adaptability to dynamic environments, distributed in-

telligence system development will evolve over the next decade. In this context, we elaborate

three applications of MARL in wireless communication systems, as shown in Fig. 5.3.
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Agents Observation Action Reward

Vehicles,  
traffic lights,
pedestrians, 
parking lots

Wireless nodes, 
radio units,   
base stations,
cellular devices

Edge, fog, cloud
servers,  

data centers 

Location of vehicles, image of
surroundings, direction and speed of
movement, the set of neighboring
vehicles, traffic signal states

Channel state information, idle
spectrum band, SNR, path loss, the
set of neighboring nodes, maximum
terminal output power, link failures

States of the computation buffer, the
number of active virtual machines
(VMs), CPU usage/capacity, the
number of requests for content

Computational resource allocation,
task offloading, load balancing, VM
allocation, VM migration, caching

Brake or maintain or accelerate,
adjustment of the direction, steering
of the wheels, change of lanes

Communication resource allocation,
power allocation, multi-user
scheduling policies, overlay/underlay  

Collision avoidance, driving efficiency
(driving speed, arrival time), keeping
in the lane, gas/battery consumption

Processing delay, buffer overflow
ratio, utilization rate, service cost,  
CPU overload probability, popularity of
content stored in cache

Network throughput, transmission
delay, spectral efficiency, transmission
power consumption, error probability

Autonomous
driving

Cognitive
radio

Edge
computing

Figure 5.3 Elements of three key applications for physical, network, and application

layers in wireless communication systems

5.4.1 Autonomous Driving

Autonomous driving is a broad research area covering applications from driver assistance sys-

tems to self-driving vehicles that operate without human intervention. Despite the high-speed

data transfer rates and connectivity benefits of 5G, self-driving vehicles are not on our roads

yet. A key challenge in designing a fully autonomous driving system is building vehicles

that are capable of performing as autonomous agents with cognitive capabilities like humans

[Dafoe et al. (2020)]. ML models rely on static information downloaded from data sources

that are effective in well-defined scenarios, such as driving along a well-paved road on a clear

day, but may yield undesirable outcomes in poorly defined scenarios, such as driving along

unpaved or snowy roads. Challenges associated with the development of autonomous agents

in dynamic and open environments have been a continuing concern in the field of MARL.

The primary objective is to develop autonomous vehicles that are capable of coexisting and

cooperating with other vehicles and humans in the real world while continuously acquiring

knowledge to adapt quickly to network changes. Because the goal of MARL is to learn a pol-

icy for each agent through interaction with other agents so that all agents together attain the

system’s goal, MARL is a promising tool for developing the human-level cognitive systems

necessary for self-driving vehicles. MARL would benefit from improved communication and

network technology enablers, such as software-defined networking, MEC, fog computing, and

IoT gateways, to address flexible implementations and maximize collaboration between agents.
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5.4.2 Cognitive Radio Network

IoT devices undoubtedly play a central role in 5G networks. It is foreseeable that 6G networks

will be hyper-connected networks consisting of pervasive smart devices, and communication

among these devices will be the primary traffic type in future wireless cellular networks. How-

ever, the communication spectrum has insufficient availability to accommodate the continuous

growth of IoT devices. Thus, beyond-5G networks need to increase spectrum use by leverag-

ing the under-utilized frequency band for future devices. The cognitive radio network (CRN) is

emerging to increase spectrum use by detecting under-utilized spectrum bands, re-configuring

system parameters, and allowing dynamic spectrum access based on the surrounding environ-

ment. Related works on CRNs focus mainly on a centralized architecture that groups together

multiple cognitive radio units (CRUs) and allows one control unit to reduce the overhead and

computational cost. Although methods that attempt to share the spectrum in a distributed

manner have been studied, their CRUs simply follow a greedy approach to maximize individ-

ual capacity or have no regard for coordination between them. This opens up a number of

challenges that must be addressed to deploy intelligent systems that automatically adapt to dy-

namic networks and allocate radio resources to where they are most needed. We believe that

this challenging design target will be significantly addressed by MARL. The main motive is

to mesh the objective of MARL with the definition of a CRN framework. From its definition

in [Haykin, S. (2005)], cognitive radio is aware of its surrounding environment, learns from

its environment, and adapts its internal states by making corresponding changes to specific

operational parameters, e.g., frequency band, transmission power, modulation schemes, and

routing path. Similarly, MARL algorithms enable agents to learn by interacting with their en-

vironment through observation-action loops. MARL agents train continuously on new samples

(observations, actions, and rewards) in an online manner and can thus respond to their evolving

environment by changing their behavior. Decentralized MARL models in particular have been

explored to limit interactions between agents by enforcing conditional independencies such as

observation independence among agents. Therefore, distributed MARL can be an efficient and

scalable solution for CRNs to perform computation and limit the amount of communication.
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5.4.3 Edge Computing

The unprecedented amount of traffic data drives academia and industry to invest in developing

an intelligent edge computing network. Pushing learning abilities toward the edge is motivated

by making it possible for edge devices to quickly train AI models, which empowers intelligent

devices to solve real-time policies, such as scheduling, computational task offloading, load bal-

ancing, and routing [Peltonen et al. (2020)]. Edge intelligence will be an essential functionality

to guarantee the efficiency of 6G networks. Although edge computing has versatile potential

applications due to its diverse range of features, MARL can allow edge computing systems to

speed up their support of mission-critical applications in various ways. First, MARL is needed

to make edge computing faster, more efficient, and more scalable. Edge computing aims to

integrate a growing number of edge devices, nodes, and servers to process the data generated

nearby, and multi-agent learning strives to resolve complex problems in decentralized ways

by using autonomous agents. While a few applications may work with centralized AI models

and deploy pre-trained models at the edge nodes, most mission-critical applications demand

distributed learning algorithms that are subject to delay constraints, limited computational ca-

pacities, and communication bottlenecks between the edges. With the increasing capability of

intelligence at the edge, it is possible to bring AI features to each edge node, which becomes a

learning agent, to learn to understand the goals of target services. Furthermore, when dealing

with distributed learning algorithms, it is essential to minimize dependencies between learn-

ing agents to guarantee efficient, robust, secure, and resilient network functionalities. From

this perspective, a centralized component that has sole authority over all systems is not very

suitable. MARL can address these problems in which distributed agents need to learn how to

behave independently and cooperate with other agents to effectively coordinate their decisions

towards a common goal. In addition, MARL can address the challenges associated with edge

devices having access to limited data by enabling dynamic decision-making based on only the

knowledge available from each device.
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5.5 Open challenges and future works

Despite the advances made in MARL methods [Oroojlooyjadid & Hajinezhad (2019)], several

challenges remain to be addressed and are core research questions to consider in future 6G

applications.

5.5.1 Compact and heterogeneous MARL model

From a wireless communication perspective, on-device hardware limitations and insufficient

communication channels among devices become more critical when developing MARL algo-

rithms. The agents in a large-scale MAS range from devices with limited storage capacity

and batteries (e.g., mobile and IoT devices) to higher-performance objects (e.g., BSs, vehicles,

and cloud servers). While transforming high-dimensional neural networks into RL models

and frequent coordination among agents can help make cognitive decisions in complex MAS

environments, doing so could be infeasible due to energy limitations, hardware failures, and

geographical limitations. These constraints demand low-complexity, low-capacity, and energy-

efficient MARL model designs. Moreover, since agents have heterogeneous capacities and

abilities, how different agents can utilize the other agents’ capacities to learn a more efficient

policy is an open question.

5.5.2 The combination of RL and other AI techniques

Potential applications of MARL require real-time execution while ensuring reasonable per-

formance to guarantee reliability constraints are met and avoid catastrophic situations dur-

ing training. Despite the numerous successes of model-free RL methods, a typical limitation

is sample efficiency because they rely on actual samples, and a large number of samples is

needed to obtain adequate performance. To address the challenge of developing ultra-reliable

low-latency communication systems, generative adversarial networks can be used to pre-train

the DRL framework using a mix of real and synthetic data to gain experience faster, especially

in the case of sporadic events. Furthermore, transfer learning, which is a technique that utilizes
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external knowledge to accelerate the learning process of the target task, can apply to MARL

architectures in which homogeneous agents run the same learning model or share common

goals. Federated learning can also be combined with MARL centralized learning models in

which agents share one network’s parameters and perform the federated updating that enables

high-quality updates with fewer iterations.

5.5.3 Reward specification and credit assignment

One of the most critical components of RL is the reward function. While in some problems

(e.g., games), the reward is evident, in many wireless applications, where the problems are

often continuous and involve multi-objective optimization, formulating the reward function is

burdensome and may lead to undesirable results. In addition, one inherent problem when deal-

ing with multiple agents is how to assign credit to each agent after the reward is received based

upon their joint actions, which is termed the credit assignment problem in MARL research.

The problem deals with assessing the contribution of individual agents to the overall reward

without encouraging selfish behavior. As highlighted above, mixed interests between agents

in wireless communications should also be considered when studying the credit assignment

problem.

5.6 Conclusion

MARL is a framework that addresses learning in an interactive environment with multiple dis-

tributed agents. This article aims to introduce MARL’s importance for AI-pervasive future

networks and key applications of MARL in the area of wireless communications. Given that

network dynamics incorporate uncertainties and non-stationarity is at play when there are mul-

tiple learning agents, building AI agents that are capable of adapting to network changes and

cooperating with other AI agents will be a critical goal for future networks. With the integra-

tion of MARL frameworks and coordination methods, the agents can effectively cooperate to

solve shared problems under the system constraints. Finally, we see an opportunity to increase

MARL’s applicability to problems in 6G networks.





CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion and Lessons that we learned

Over the past decade, wireless technology has had an incredible impact on society. According

to the Ericsson Mobility Report [Cerwall, P., Lundvall, A., Jonsson, P., Carson, S., Möller, R.,

Saksena, R., Lu, D. & Celik, I. (2021)], there has been an almost 300-fold increase in mo-

bile data traffic since 2011 due to the explosive progress of smart devices. Moreover, massive

IoT deployments are forecast to account for 51% of all cellular connections by 2027. Mean-

while, performance requirements for wireless network applications are becoming increasingly

stringent, with potential speeds of up to 10 gigabits per second, increased network capacity,

and ultra-low latency in the millisecond range. In this context, fog computing has emerged to

overcome the challenges of traditional cloud computing architectures where the connections

between remote data centers and end devices cause unpredictably high latencies.

Nowadays, fog computing is one of the key technologies that is enabling 5G networks to

support low-latency services and IoT applications, such as smart homes, industrial automa-

tion, and autonomous vehicles. Indeed, numerous new computing-intensive applications and

AI-powered devices are driving the development of fog computing in the next-generation of

wireless systems, i.e., beyond 5G and 6G. In particular, this thesis targeted the design of an

intelligent fog computing platform that implements efficient resource management strategies

in a complex environment with heterogeneous resources and volatile traffic demands. In this

vein, this thesis proposed promising distributed computing approaches for future fog comput-

ing networks. Specifically, the contributions of the thesis are summarized as follows:

- In Chapter 2, we proposed a joint heterogeneous task offloading and resource allocation

scheme for SDN-based fog networks and designed a DQL-based algorithm where multiple

fog nodes aim to maximize the processing tasks successfully completed within their delay
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constraints. Furthermore, we leveraged RNN to tackle the partial-observability from the

limited information and evaluated the performance of the proposed scheme against different

neural networks. Numerical results show that the proposed DRQN-based algorithm can

achieve a higher average success rate and lower average overflow than baseline methods.

- In Chapter 3, an online partial offloading and task scheduling problem was analyzed to

minimize the energy consumption. We considered two types of tasks, namely, offloadable

and non-offloadable tasks to investigate the characteristics for offloading and optimizing

their allocation. In addition, we implemented DRQN-based algorithms to deal with the

vast state space and partial-observability. It was demonstrated that the proposed DRQN-

based method requires comparatively less computational complexity than the conventional

Q-learning algorithm and can effectively deal with both transmission and CPU energy con-

sumptions while guaranteeing convergence in a limited time.

- Chapter 4 provided a novel offloading problem for network link and server levels load

balancing in a combined edge-fog-cloud environment. We formulated the optimization

problem as a stochastic game with multiple cooperative APs and proposed an actor-critic

framework that consists of a centralized critic and distributed actor networks in all the APs.

We further extended the critic network to learn to communicate among APs while eval-

uating the value function. The experimental results showed that the proposed algorithm

outperforms baseline load balancing methods.

- Chapter 5 presented an introduction to multi-agent learning from an RL perspective and

suggested MARL models for 6G system architectures. In addition, we discussed key en-

ablers for distributed intelligence in 6G and potential applications of MARL in 6G net-

works. Particularly, we conducted a case study that presents MARL-based offloading mod-

els with different coordination methods in future 6G architectures.
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As a summary, according to the conducted research, valuable lessons we learned are listed as

follows:

- Computational and system hierarchies are essential for fog architecture to support effective

QoS management. Additionally, fog architecture modules, such as network slicing and

priority-based buffers are required to ensure the QoS requirements of each application.

- RL approaches are especially promising in fog computing architectures where edge and fog

nodes have access to limited data and need to make dynamic decisions solely based on the

local information.

- The performance of RL algorithms can be enhanced by leveraging advanced neural net-

works, e.g., RNN, to deal with complex dynamical systems, such as fog computing archi-

tectures.

- The communication between intelligent nodes is crucial to coordinate the behavior of each

individual in non-stationary environments due to the presence of multiple learners.
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6.2 Recommendations: Fog computing and resource management for 6G networks

According to [Xiao, Y., Shi, G., Li, Y., Saad, W. & Poor, H. V. (2020)], 6G networks will be a

new vision of ubiquitous AI architecture that brings human-level intelligence into every aspect

of communication and networking systems. Given the requirements of this challenging design

target, it is expected that future 6G networks will be highly distributed intelligent architec-

tures, combining seamless integration of AI, advanced communication technologies, and edge

computing infrastructures. Hence, some potential directions for future research are discussed

below.

6.2.1 Fog computing-based WSN systems

With the rapid acceleration of smart sensors, wireless sensor networks have been receiving in-

creasing attention in the field of wireless communication research. One of the major challenges
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for WSNs stems from the limited capacity of sensor nodes for computing and data storage and

access. Moreover, due to the limitations of the WSN communication range, the sensing data

from devices cannot be transmitted over long distances, where various communication proto-

cols further complicate the connection between sensors and the internet. To overcome these

limitations, fog computing can play a key role in providing specialized functionalities to smart

gateways [Sun, Z., Wei, L., Xu, C., Wang, T., Nie, Y., Xing, X. & Lu, J. (2019e)]. A fog-based

sensor gateway can provide sensor data aggregation, flexible query management between sen-

sors and the web, and efficient resource access among crowded devices.

6.2.2 Fog computing for massive MIMO beamforming

To ensure that every user gets a high-quality experience in future 6G networks, the RAN pro-

cessing power will need to be able to execute advanced radio frequency functions for more

users and devices, more antenna branches, and more frequency bands [Sim, M. S., Lim, Y.-G.,

Park, S. H., Dai, L. & Chae, C.-B. (2020)]. In particular, an exponential increase in process-

ing demand will be required in Layer 1 and 2 for 5G with massive multi-input multi-output

(MIMO) beamforming [Long, Y., Chen, Z., Fang, J. & Tellambura, C. (2018)]. In this con-

text, a fog computing-based radio access network (F-RAN) is a promising solution to address

this big processing challenge. F-RAN can provide lower layer RAN functions over a generic

computing platform instead of a purpose-built hardware platform, and manage the RAN appli-

cation virtualization. By performing radio frequency functions at distributed fog-based radio

units (i.e., RRHs), the amount of front-haul overhead and the overall complexity can be greatly

reduced while satisfying the latency constraints.
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6.2.3 Generative adversarial network (GAN) for resource managements in fog com-
puting networks

A GAN is a class of unsupervised learning that formulates a game between two opponents: a

generator and a discriminator [Goodfellow, I. J. (2017)]. The core idea of a GAN is based on

the discriminator’s prediction on synthetic data produced by the generator from the distribution

of the real data. The goal of the generator is not to minimize the distance to a specific labeled

training data, but to increase the error rate of the discriminator. GANs have been proven useful

for predicting possible futures from time-series data and thereby could be used for planning

RL algorithms. For instance, the combination of GAN and RL enables learning a conditional

distribution over future states of the environment, given the current state and hypothetical ac-

tions that an agent might take. In summary, GANs are a promising solution to cope with the

statistical properties of wireless channels and the uncertainties associated with communication

environments in real-time resource management applications.

6.2.4 Digital twin for reliable and efficient fog computing networks

The various types of smart devices with heterogeneous capacities and diverse applications with

different resource demands pose significant challenges on the implementation of intelligent fog

computing applications. In this context, a digital twin is a promising technology, which brings

state abstractions of physical devices into mirrored virtual spaces [Zhang, K., Cao, J. & Zhang,

Y. (2021)]. This state information is used to track the evolving behavior of individual devices

and to analyze incoming events. The digital twin simplifies the re-design and re-engineering

process by enabling thorough self-examination of the evolving status of devices and provid-

ing automatic correlation of incoming events for each device. Thus, merging digital twin and

AI can provide comprehensive and accurate system information, which is needed to design

reliable learning processes. More specifically, the digital twin can demonstrate potential coop-
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eration for multi-agent learning between smart devices and reduce the complexity of service

management required to organize hierarchical fog computing networks.
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