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PERFORMANCE-BASED SEISMIC VULNERABILITY EVALUATION OF  
EXISTING BUILDINGS IN OLD SECTORS OF QUEBEC 

 
 

Amin KARBASSI 
 
 

ABSTRACT 
 
 

To perform a seismic vulnerability evaluation for the existing buildings in old sectors of 
Quebec, two major tools at two different levels are missing: first, in the context of the 
seismic vulnerability assessment of a group of buildings, an updated rapid visual screening 
method which complies with the Uniform Hazard Spectra presented in the 2005 version of 
the National Building Code of Canada (NBCC) does not exist; and second, in the context of  
loss estimation studies, capacity and fragility curves which are developed based on the 
specific building typologies present in those sectors are required. In this research work, in the 
first place, a building classification for the existing buildings in old sectors of Quebec 
considering the masonry as the main construction material is proposed. Later, an updated 
rapid visual screening method—in the form of vulnerability indices for different typologies 
and cities in Quebec—which is adapted to the Uniform Hazard Spectra in NBCC 2005 is 
proposed. The structural vulnerability indices (SVI) are calculated through the application of 
the improved nonlinear static analysis procedure in FEMA 440 Improvement of nonlinear 
static seismic analysis procedures for three levels of seismic hazard. A set of index modifiers 
are also presented for the building height, irregularities, and the design and construction year. 
To deal with the second problem, on the other hand, a performance-based seismic 
vulnerability evaluation method is applied to examine the structural performance of two 
buildings—a 6-storey industrial masonry building and a 5-storey concrete frame with 
masonry infill walls, as two of the building classes constructed vastly in old sectors in 
Quebec—at multiple seismic demand levels. The results of such an assessment are used to 
develop dynamic capacity and fragility curves for the target buildings. The Applied Element 
Method is used here as an alternative to FE-based methods to conduct a thorough 4-step 
performance-based seismic vulnerability evaluation. To this end, the Incremental Dynamic 
Analyses (IDA) for the buildings are carried out using various sets of synthetic and real 
ground motions representing three M and R categories. Consequently, the fragility curves are 
developed for the three structural performance levels—Immediate Occupancy, Life Safety, 
and Collapse Prevention. Finally, the mean annual frequencies of exceeding those 
performance levels are calculated by combining the data from the calculated fragility curves 
and those from the region’s hazard curves. The proposed method is shown to be useful to 
conduct seismic vulnerability evaluations in regions for which little observed damage data 
exists. 
 
 
Keywords: Applied Element Method, Masonry, Incremental Dynamic Analysis, Rapid 
Visual Screening, Performance-Based Seismic Evaluation 



ÉVALUATION DE LA VULNÉRABILITÉ SISMIQUE BASÉE SUR LA 
PERFORMANCE  POUR DES BÂTIMENTS EXISTANTS DANS LES ANCIENS 

QUARTIERS DU QUEBEC 
 
 

Amin KARBASSI 
 
 

RESUMÉ 
 
 

Actuellement, il manque deux outils importants et cela à deux niveaux différents pour 
l'évaluation de la vulnérabilité sismique des bâtiments existants dans les anciens quartiers du 
Québec. Premièrement, dans le cadre de l'évaluation de la vulnérabilité sismique d'un groupe 
de bâtiments, il n’y a pas de méthode d’attribution de pointage qui soit conforme aux spectres 
d'aléa uniforme de l’édition 2005 du Code national du bâtiment du Canada (CNBC). 
Deuxièmement, pour compléter des analyses d’estimation des dommages il est nécessaire de 
développer des courbes de capacité et de fragilité pour  les typologies spécifiques de 
bâtiments qu’on retrouve dans les anciens quartiers. Dans ce travail de recherche, on propose 
d’abord une classification typologique des bâtiments existants des anciens quartiers du 
Québec considérant la maçonnerie comme matériau de construction principal. Par la suite, on 
propose une nouvelle procédure d’évaluation rapide sur la base d’indices de vulnérabilité 
sismique pour les différentes typologies et villes du Québec. Un niveau de sismicité (faible, 
modéré ou élevé) est attribué à chaque ville selon les valeurs d'accélération spectrale de 
l’édition 2005 du Code national du bâtiment du Canada. Pour chaque niveau de sismicité, 
des indices de la vulnérabilité sismique structurale (IVS) et des modificateurs (ceux-ci 
considèrent la hauteur du bâtiment, les irrégularités, et les années de conception et de 
construction)  sont calculés à partir de la procédure d’analyse statique non-linéaire améliorée 
du FEMA 440 « Improvement of nonlinear static seismic analysis procedures ». Pour 
répondre à la deuxième problématique, une méthodologie basée sur les niveaux de 
performance est appliquée afin d’étudier la vulnérabilité sismique de deux bâtiments à de 
multiples niveaux de demande sismique. Deux classes de bâtiment présentes en grande 
proportion dans les anciens quartiers du Québec sont considérées, soient un bâtiment 
industriel en maçonnerie non armée de 6 étages et un cadre en béton armé avec des 
remplissages en maçonnerie non armée de 5 étages.  Les résultats de cette évaluation sont 
utilisés pour développer les courbes de capacité dynamique et les courbes de fragilité de ces 
bâtiments. La méthode des éléments appliqués (MEA) est utilisée ici, comme une alternative 
aux éléments finis, afin de faire une étude d'évaluation en quatre (4) étapes. À cette fin, une 
série d’analyses dynamiques incrémentales temporelles (IDA) est réalisée en utilisant des 
accélérogrammes synthétiques et réels représentant trois combinaisons amplitude-distance 
(M et R). Les courbes de fragilité sont développées pour trois niveaux de performance 
structurale (occupation immédiate, sécurité des occupants, et prévention de l’effondrement). 
La fréquence annuelle moyenne de dépassement de ces niveaux de performance est ensuite 
calculée en combinant les données des courbes de fragilité à celles des courbes d’aléa de la 
région. Une comparaison des courbes de fragilité développées dans ce travail de recherche 



 VII

avec les courbes de fragilité de HAZUS est présentée et les différences et les similarités sont 
discutées. Il est démontré que la méthode proposée ici est efficace pour réaliser des 
évaluations de vulnérabilité sismique dans les régions pour lesquelles il existe peu de 
données sur les dommages observés. 
 
Mots-clés: méthode des éléments appliqués, maçonnerie, analyse dynamique incrémentale 
temporelle, méthode d’attribution de pointage, niveaux de performance 
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INTRODUCTION 
 
 

In spite of all developments in the seismic design of new buildings in Canada in the recent 

years, it is important to know that the first detailed seismic provisions were not incorporated 

in the National Building Code of Canada until the 1950’s. This means that there are several 

structures, built before that time, which are not designed to resist earthquake loads. 

Consequently, human and economic losses can be high among those building stocks as a 

result of an earthquake in the future. Therefore, the same amount of attention that is given to 

the seismic design of new buildings should be paid to loss estimation of existing structures. 

Significant damages to structures built without seismic load resisting provisions have been 

observed in different parts of the world. The recent devastating earthquake in Haiti, in 

January 2010, is a clear example (USGS/EERI 2010).  

 

Although the occurrence rate of earthquakes in Quebec is lower in comparison with the 

earthquake frequency in Western Canada, the social and economical impacts of earthquakes 

on buildings that have been built before the existence of seismic regulations in the province 

cannot be neglected. The seismic zone of Charlevoix (located at a 100km distance from 

Quebec City) is the most active zone in the east part of Canada. Five earthquakes with the 

magnitude of six or more (in 1663, 1791, 1860, 1870, and 1925) have occurred in the 

region1. Moreover, in the 20th century, three significant earthquakes—The 1925 Charlevoix-

Kamouraska (Magnitude 6.2), The 1935 Timiskaming (or Témiscaming) (Magnitude 6.2), 

and The 1944 Cornwall-Massena (Magnitude 5.6)—have occurred in the province.  

 

Defining the problem 

 

Based on a study of the approximate distribution of seismic risk among Canada’s urban 

population due to the existing seismic hazard (probability of occurrence of an earthquake) 

(Adams et al. 2002) showed that Montreal and Quebec City are among the 6 most vulnerable 

                                                 
1 http://earthquakescanada.nrcan.gc.ca/zones/eastcan-eng.php 
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cities in the country. In this study, Vancouver is stated to have the highest population at risk, 

Montreal is placed second, and Quebec City is positioned in the 6th place. 

 

In regions highly populated and constructed, such as Montreal and Quebec City, the seismic 

risk can be high especially among old masonry buildings because of the combination of 

seismic hazard with the vulnerability of such a building class and the social and cultural 

values of those ancient structures. 

 

Masonry is considered the most important construction material in the world as it has been 

used in public and residential building construction over the past hundred years. Although 

some specific features have been added to improve the seismic behavior of masonry 

buildings during the course of time, such as the confined masonry construction and tying the 

walls, masonry constructions remain, even nowadays, the most vulnerable part of existing 

building stocks.  

 

To evaluate the seismic vulnerability of a building stock and perform a loss estimation study, 

several approaches are available. Most of those approaches rely on having a clear building 

classification for the area and developing the corresponding fragility curves for each class. 

These curves give the probability of exceeding a particular damage state given a level of 

seismic demand. It has been shown in previous studies that the available building 

classifications in North America does not include all types of unreinforced masonry buildings 

present in old sectors of Quebec (Lefebvre 2004). 

  

Taking into account the nonlinear dynamic behaviour of structures is essential for developing 

precise fragility curves for existing buildings. However, the dynamic structural analysis of 

unreinforced masonry buildings faces several challenges: because of the brittle properties of 

brick units and mortar joints, the overall behaviour of masonry units is often considered 

linear; nevertheless, the masonry units are shown to have an explicit nonlinear behaviour in 

progressive collapse cases (Colliat et al. 2002). Consequently, fragility curves should reflect 
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this nonlinear behaviour. Nonetheless, the difficulties to represent the global dynamic 

behaviour of masonry structures in an accurate way, stated in the literature, questions the 

validity of the available fragility curves for masonry buildings, developed by static pushover 

analysis.  

 

Objectives, applied methodology, and originality 

 

The main objective of this research work is to develop a predicted-based seismic 

vulnerability evaluation method for buildings with masonry construction in old sectors of 

Quebec. The focus will be on two types of masonry buildings: (1) unreinforced brick 

masonry buildings with wood floors (URMW) which represent the structures in the old 

industrial sectors in Montreal and Quebec City at the beginning of the century, and (2) RC 

frames with unreinforced masonry infill walls (CIW) which used to be a very popular 

building type between 1930 and 1950 in Quebec. The main objective is achieved at two 

levels. First of all, a rapid visual screening method compatible with the regional seismic 

hazard of the province is developed, and second, the dynamic capacity and fragility curves 

for buildings with unreinforced brick masonry are established considering the nonlinear 

dynamic behaviour of the masonry.  

 

To achieve the objective of this study, the following methodology is followed.  

 

1. Reviewing the existing seismic vulnerability evaluation methods used in different part of 

the world. 

2. Proposing a building classification that properly categorizes the existing ancient 

structures in Quebec, based on their structural characteristics and constructional 

materials. 

3. Establishing a vulnerability scoring system or index calculation, compatible with the 

seismic demand in Quebec.  
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4. Calculating the “dynamic” capacity and fragility curves for the most frequently seen 

classes in old sectors in Quebec (masonry and concrete building with masonry infill 

walls). 

 

The last step represents the main effort in this research thesis. The methodology used to 

calculate the dynamic capacity and fragility curves for the studied buildings consists of the 

most original contribution of this research work which is: 

 

1. Applying the Applied Element Method to overcome the problems one would encounter 

when using a FE-based method in the dynamic analyses of masonry buildings. This 

method is based on dividing structural members into virtual elements connected through 

springs, and is used in this research work as an alternative to Finite Element Method 

(FEM) to model the progressive collapse in brick masonry in an adequate way. 

2. Replacing the conventional dynamic analysis methodology by an Incremental Dynamic 

Analyses approach, when calculating the capacity and fragility curves because the later is 

shown to be an effective tool for thoroughly examining the structural performance of 

buildings under seismic loads (Christovasilis et al. 2009; Lagaros 2009).  

3. Using the latest regional seismic demands for Quebec, presented in the 2005 edition of 

the National building code of Canada (NBCC) (NRCC 2005) in the form of spectral 

acceleration response values. 

 

Organization of the thesis 

 

Various seismic vulnerability evaluation methods which are currently in use in different parts 

of the world are reviewed in Chapter 1, and the essential elements for a suitable seismic 

vulnerability evaluation method in Quebec are identified and discussed. Based on such a 

literature review, a new building classification is proposed for the existing buildings in the 

old sectors of the province. Later on in Chapter 2, the procedure to develop a score 

assignment method which is adapted to the seismic demand in the province, for the seismic 

vulnerability evaluation of a group of buildings in old sectors of Quebec is explained.  
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Chapter 3 explains a performance-based seismic vulnerability evaluation to develop the 

dynamic capacity and fragility curves for two target buildings in this study. This section of 

the research work aims to overcome the lack of appropriate capacity and fragility curves, 

unavailable in the literature, for buildings with masonry construction in Quebec. The results 

obtained from such a methodology is presented in Chapter 4 for a typical unreinforced brick 

masonry building and a RC frame with unreinforced masonry infill walls, in Quebec, and a 

set of fragility curves are calculated for each building. In the context of loss estimation, the 

return period of exceeding the performance levels considered in this study is also calculated 

in the same Chapter. In Chapter 5, the results of the Incremental Dynamic Analyses are used 

to study the local dynamic behaviour of the buildings. Moreover, the fragility curves 

calculated in Chapter 4 are discussed in further details. Finally, the summary of the study 

along with recommendations for future works are presented in Chapter 6. 



 

CHAPTER 1 
 
 

LITERATURE REVIEW 
 

1.1 Introduction 

Different types of seismic vulnerability evaluation studies may be used depending on the 

nature of the problem at hand and the purpose of the study (Coburn and Spence 2002). These 

are:  

 

1. Scenario studies, in which the effect of a single earthquake is calculated on a region (Fah 

et al. 2001). Major historic earthquakes are modeled to assess their effects on present-day 

portfolios to evaluate the resources that would be needed to withstand disasters such as 

those that occurred in the past, should similar ones occur in the future. 

2. Probabilistic risk analysis, in which potential losses from different sources are calculated 

along with their probability of occurrence for an individual building, group of buildings, 

or for a region (Shaw et al. 2007). The latest can be performed when a clear building 

classification exists for the building stock. The results of such studies can be used to 

develop loss exceedance probability curves, which illustrate the level of loss that would 

be experienced with different return periods.  

3. Potential loss studies, in which the effect of expected hazard levels across a region or 

country is mapped in order to show the locations of probable heavy losses to identify 

high-risk areas (Tantala et al. 2000). 

 

One of the key elements in every study of this type is the assessment of the seismic 

vulnerability of the population of buildings under investigation. In this regard, a clear 

definition of the terms frequently used in those studies would be helpful for the reader. 
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1.2 Definition of Terms 

1.2.1 Seismic Hazard  

In seismic engineering, the term Hazard is defined as «the probability of occurrence of an 

earthquake with a certain severity, within a specific period of time, at a given location » 

(Coburn and Spence 2002). The earthquakes can be specified in term either of their source 

characteristics (e.g., magnitude) or their effect on a specific location (e.g., intensity or peak 

ground acceleration). In either case, the annual recurrence rates are usually used. The inverse 

of this term is called the average return period. 

 

1.2.2 Seismic Vulnerability 

 Seismic Vulnerability is defined as the degree of exposure to loss (as the ratio of the 

expected loss to the maximum possible loss) for a given item at risk, ensuing from the 

occurrence of a specific level of seismic hazard. According to the characteristics of the 

element at risk, the measure of loss can be the casualty number, number of injuries or repair 

cost ratio. In a large population of buildings, this term may be defined as the proportion of 

buildings experiencing some particular level of damages. 

 

1.2.3 Seismic Risk 

 This term refers to the potential economic, social and environmental consequences of an 

earthquake in terms of probable physical damages to properties, human losses, and injuries 

that may occur over a specific future time-period. The loss and physical damage elements 

are key points in the definition. In a region with a high seismic hazard in which there are no 

people or property that could be injured or damaged by an earthquake, the seismic risk is 

zero.  

 

Based on the definition stated for each term, the seismic risk for a building (or a group of 

buildings) can be calculated as follows. 
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 Seismic risk = Seismic hazard× vulnerability× value   (1.1) 
 

The seismic risk in a region is defined as the probability of occurrence of an earthquake with 

a certain magnitude, times the probability of damage caused by that earthquake (seismic 

vulnerability) times the economical or social value of the building(s) at risk.  

 

1.3 Fragility Curves 

The fragility curve for a building presents the probability of exceeding a damage state D 

(e.g., Collapse Prevention level), given intensity measure IM (e.g., spectral acceleration or 

spectral displacement)  Therefore, the fragility curve is presented in the form of a two-

parameter lognormal distribution function as follows.  
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In Equation 1.2, Φ is the standard normal cumulative distribution function, X is the 

distributed intensity measure (e.g., Sa or Sd), and μ and σ  are the median and standard 

deviation of the natural logarithm of the intensity measures, respectively. Figure 1.1 shows 

an example of the fragility curves for a masonry building in terms of its spectral 

displacement.  
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Figure 1.1 Example of fragility curves for  
unreinforced masonry buildings.  

 

 

1.4 Seismic Vulnerability Assessment Methods 

It is seen from Equation 1.1 that one of the key elements in every loss estimation study is the 

assessment of the seismic vulnerability of the building population under investigation. There 

are two principal methods used in the seismic vulnerability assessment of existing buildings, 

one of which is known as the observed vulnerability procedure and the other, as the predicted 

vulnerability method (Sandi 1982). The later is based on a combined use of analytical 

modelling and expert opinions. 

 

The observed vulnerability assessment is based on the statistics of past earthquake damages. 

These can be accompanied by the opinion of experts and used to derive damage probability 

matrices (DPMs) which describe the probability that a building class is in a specific damage 

state for a given level of hazard. Such a procedure is suitable for non-engineered structures 

Ds, damage state; ds, damage level; SD, spectral displacement 
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whose earthquake resistance is difficult to calculate but for which, substantial statistical 

damage data exist.  

 

In the absence of sufficient observed data, the predicted vulnerability assessment is applied 

to evaluate the seismic vulnerability of buildings. This method evaluates the expected 

performance of building classes based on calculations and design specifications. The 

assessment can be performed using either simple analytical models (D'Ayala et al. 1997) or 

detailed analysis procedures (Decanini et al. 2004), depending on the objective of the 

particular evaluation. Simple analytical models are applicable where the procedure’s 

precision is not as important as its rapidity. Detailed analysis methods, generally used for the 

evaluation of individual building, are not suitable for earthquake scenario projects where a 

large number of buildings have to be evaluated. However, they can be used to generate 

fragility curves for typical buildings from which one can either perform a loss estimation 

analysis or develop scores that correlate potential structural deficiencies with structural 

characteristics for different building classes. This is the basis for a seismic vulnerability 

assessment method called the score assignment, which will be explained in further detail in 

the next chapter. In situations where there is a lack of sufficient observed earthquake damage 

data, such as in the province of Quebec, the predicted vulnerability technique, coupled with a 

score assignment procedure, can be a suitable method for the seismic vulnerability evaluation 

of a group of buildings. Figure 1.2 shows the different available methods to conduct a 

predicted-based seismic vulnerability assessment for existing buildings as a group or 

individually. 

 



 11

 

Figure 1.2 Existing methods for the predicted vulnerability assessment. 
 

Table 1.1 summarizes a number of references studied in this chapter as part of the literature 

review, based on their assessment methodology. Each method is described in the following 

sections.  
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Table 1.1 Selected references classified based on the assessment methodology 

  
Observed 

Vulnerability
Expert 

Opinions

Simple 
Analysis 
Models 

Score 
Assignment

Detailed 
Analysis 

(NRC-IRC 1992) --- --- --- √ --- 

(McCormack and Rad 
1997) 

--- √ --- √ --- 

(D'Ayala et al. 1997) --- --- √ --- --- 

(Faccioli et al. 1999) --- --- √ √ --- 

(Tantala et al. 2000) --- √ --- --- --- 

(Onur 2001) --- √ --- --- --- 

(D'Ayala and 
Speranza 2001) 

√ --- √ --- --- 

(ATC 2002a) --- --- --- √ --- 

(D’Ayala and 
Speranza 2002) 

--- --- √ --- --- 

(Lang 2002) --- --- √ --- --- 

 (ASCE 2003) --- --- --- --- √ 

(Rossetto and 
Elnashai 2003) 

√ --- --- --- --- 

(Cohen et al. 2004) --- --- --- --- √ 

(White et al. 2005) --- --- --- √ --- 

(Valluzzi et al. 2005) --- --- √ --- --- 

(LeBoeuf and Nollet 
2006) 

--- --- --- √ --- 

(Belmouden and 
Lestuzzi 2007) 

--- --- --- --- √ 

(Calderini and 
Lagomarsino 2008) 

--- --- --- --- √ 

(Christovasilis, 
Filiatrault et al. 2009) 

--- --- --- --- √ 
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1.4.1 Observed damage data 

To define a relationship between earthquake damages and earthquake intensity, a substantial 

quantity of data is requires. Such equations are only valid for the original region or for areas 

with similar building population. However, if the calculated equation acknowledges the 

seismic resisting system of damaged buildings, seismic design practices in the region, and the 

building’s characteristics such as height and the number of storeys, then the equation can be 

used in the seismic assessment of other buildings with similar structural characteristics but in 

a different region (Rossetto and Elnashai 2003). The reason lies in the fact that there are such 

structural uncertainties in deriving those equations that any differences in construction 

practices and detailing between different regions are overcome.  

 

1.4.2 Expert opinions 

The observed vulnerability assessment method is the basis for the ATC 13 report, 

Earthquake damage evaluation data for California (ATC 1985), which provides experts’ 

damage estimations that can be used to evaluate the local, regional, and national economic 

impacts of earthquakes in California. The report essentially derives damage probability 

matrices for 78 different facility classes, 40 of which refer to buildings by asking 58 experts 

to estimate the expected level of damage that a specific structural class would undergo if 

subjected to a Modified Mercalli Intensity (MMI) from VI to XII. However, in addition to 

the uncertainties due to the variability in the buildings actual performance inherent in any 

estimation of damages, there are uncertainties related to opinions of the experts.  

 

These damage probability matrices can not be easily calibrated or modified to incorporate 

new data and technological innovation (Porter et al. 2000) and it is difficult to extend the 

results to other building classes in other regions that have different construction practices, 

which include different construction details, building code requirements, construction 

materials, and workmanship quality. 

Similar to ATC 13 methodology, damage probability matrices (DPM) have been developed 

for 31 building classes in British Columbia (Ventura et al. 2005). This study started with a 
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preliminary investigation of the seismic vulnerability of the general building stock in British 

Columbia using ATC-13 methodology as a benchmark, i.e., surveying local engineers. To 

this end, the building classes in ATC-13 were included in the survey and experts were asked 

to provide their opinions about the existence of each building class in British Columbia. The 

numbers of occurrences were categorized as low (0 to 10 occurrences), medium (10 to 50 

occurrences), or high (more than 50 occurrences). Out of the 40 original building classes, 11 

were chosen as the most prevalent in British Columbia. Following up on this initial work, a 

more comprehensive classification system including 31 building classes was developed to 

encompass the local building inventory.  

 

1.4.3 Simple Analytical model 

In the absence of observed damage data to generate vulnerability functions, other methods 

are required to assess the vulnerability of existing buildings. In assessing the vulnerability of 

a group of buildings, those methods should be able to analyse a large number of buildings in 

a short amount of time. To this end, analytical methods including simple models of buildings 

which require a few input parameters can be applied. To make the results reliable, those input 

parameters must be able to model the general seismic behaviour of the buildings.  

 

Application in Europe 

 

Examples of such a methodology are the seismic vulnerability assessments based on the 

identification of potential collapse mechanisms, expressed as the critical acceleration 

(D'Ayala et al. 1997; Faccioli et al. 1999). This method was applied in the seismic 

vulnerability assessment for a group of buildings in a historical center in the Umbria region 

in Italy (Valluzzi et al. 2005). A collapse coefficient equal to a/g (the mass multiplier able to 

led the building’s elements (walls, floors, and roofs) to failure) was presented for each 

building class. Such a multiplier was calculated based on reaching the upper limit of the 

equilibrium conditions (for out-of-plane and in-plane mechanism) rather than the maximum 

strength of the materials.  



 15

 

Analytical models can be applied to define the capacity curves of buildings that typify given 

building classes. These curves are then combined with the seismic demand (Figure 1.3) to 

produce the fragility curves for each of the building classes according to damage states 

definitions. Within the scope of the seismic vulnerability evaluation of existing buildings, 

Lang (2002) presents a simple and effective evaluation method for masonry and concrete 

buildings derived from analytical models. The method considers the nonlinear deformation 

capacity of the buildings under study; however, it misses to consider the dynamic properties 

of the materials under seismic loads. Moreover, the method can be time-consuming for 

buildings with numerous openings.  

 

 

Figure 1.3 Basics of vulnerability assessment using analytical models. 
 

1.4.4 Detailed analysis  

A detailed analysis evaluation is necessary for potentially hazardous buildings which have 

been flagged in the rapid screening step of a multi-phase seismic assessment procedure. This 

method is not suitable for earthquake scenario projects where a large number of buildings 

have to be evaluated. However, the procedure can be used to improve the results of simple 

analytical methods. Detailed analyses are also helpful for developing fragility curves of 

buildings which typify a building class. The methodology can be divided into linear (static or 

dynamic) or non-linear categories (static or dynamic). 
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Linear static analysis 

 

A linear procedure maintains the traditional use of a linear stress-strain relationship; 

however, to consider the nonlinear characteristics of a building’s seismic response in such a 

procedure, adjustments to the building’s deformations and material acceptance criteria are 

incorporated (ASCE 2000). In a linear static procedure, the building is modelled as an 

equivalent single-degree-of-freedom (SDOF) system with a linear elastic stiffness and an 

equivalent viscous damping. The seismic input is modelled by an equivalent lateral force 

with the objective to produce the same stresses and strains as the earthquake it represents. 

The equivalent lateral force is determined from the response spectrum (acceleration) of the 

fundamental vibration mode, multiplied by the building’s mass. This corresponds to the 

typical formula to calculate the lateral force, in the seismic design codes. 

 

V = m.Sa. C      (1.3) 
 

As shown in Equation 1.3, the second order effects such as stiffness degradation and force 

reduction due to anticipated inelastic behaviour are taken into account by the seismic 

coefficient C. This lateral force is then distributed over the height of the building and the 

corresponding internal forces and displacements are determined using linear elastic analysis. 

The results of linear procedures can be very inaccurate when applied to buildings with highly 

irregular structural systems, unless the building is capable of responding to the design 

earthquake(s) in a nearly elastic manner. 

 

Linear dynamic analysis 

 

Static procedures can be useful only when higher mode effects are not significant. This is 

generally true for short, regular buildings; otherwise, a dynamic procedure is required for 

buildings with irregularities (ASCE 2000). In the linear dynamic procedure, the building is 

modelled as a multi-degree-of-freedom (MDOF) system with a linear elastic stiffness matrix 

and an equivalent viscous damping matrix. The seismic input is modelled using either modal 

spectral analysis or time history analysis. In either case, the corresponding internal forces and 
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displacements are determined using linear elastic analysis. The advantage of a linear dynamic 

procedure with respect to a linear static one is that higher modes can be taken into 

consideration in the former. However, they are based on linear elastic response and hence, 

the applicability decreases in predicting the damage levels in the buildings in progressive 

collapse cases such as for masonry or concrete structures in an earthquake. Linear procedures 

are only applicable when the structure is expected to remain nearly elastic for the level of 

ground motions or when the design results in nearly uniform distribution of nonlinear 

response throughout the structure. However, from a performance point of view, greater 

inelastic demands are expected to be applied to the structure. Therefore, the uncertainty with 

linear procedures increases up to a point at which a high level of conservatism in demand 

assumptions and acceptability criteria is required to avoid unintended performance (ATC 

2005). The procedures incorporating inelastic analysis can reduce such uncertainty and 

conservatism.  

 

Nonlinear static analysis 

 

In a nonlinear static procedure, the building is modeled as a SDOF structural system. The 

seismic ground motion, on the other hand, is represented by a demand parameter such as the 

spectral acceleration response. Subsequently, story drifts and component actions are related 

to the demand parameter through the pushover or capacity curves. Those capacity curves are 

generated by subjecting the structural model to one or more lateral load patterns (vectors) and 

then increasing the magnitude of the total load to generate a nonlinear inelastic force-

deformation relationship for the structure at a global level. The load vector is usually an 

approximate representation of the relative accelerations associated with the first mode of 

vibration of the structure. 

 

Two main applications of such a procedure are known as (i) the Coefficient Method of 

Displacement Modification presented in FEMA 356, Pre-standard and Commentary for the 

Seismic Rehabilitation of Buildings (ASCE 2000) and (ii) the Capacity-Spectrum Method of 

Equivalent Linearization presented in ATC 40, Seismic Evaluation and Retrofit of Concrete 
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Buildings (ATC 1996). In the Coefficient Method of Displacement Modification, the total 

maximum displacement of the SDOF system is estimated by multiplying the elastic response, 

based on the initial linear properties and damping, by a series of coefficients (C0 through C3). 

At the first step, an idealized force-deformation curve (pushover) relating the base shear to 

roof displacement should be produced (Figure 1.4). An effective period, Teff, is generated 

from the initial period, Ti, by a graphical procedure to take into account some losses of 

stiffness in the transition from elastic to inelastic behaviour. The peak elastic spectral 

displacement is directly related to the spectral acceleration (obtained from the response 

spectrum) through Equation 1.4. 
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The final displacement is calculated through Equation 1.5. 

 

δt = C0.C1.C2.C3.Sd       (1.5) 
 

In this equation, C0 is the shape factor, C1 is the dynamic load factor, C2 implements the 

effect of pinching in load-deformation relationship due to degradation in stiffness and 

strength, and C3 applies the P-Δ effect. The values of each coefficient can be calculated from 

the corresponding table or equation presented in Chapter 3 of FEMA 356. 
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Figure 1.4 Coefficient method of displacement modification process.  
Taken from ATC (2005) 

 

The other method of the nonlinear static analysis, the Capacity-Spectrum Method of 

Equivalent Linearization, was first introduced by Freeman et al. (1975) as a rapid evaluation 

procedure in a pilot project for assessing the seismic vulnerability of buildings. The method 

assumes that the maximum total deformation (elastic and inelastic) of an SDOF system can 

be estimated from the elastic response of a system that has a larger period and greater 

damping than the original structure. The process begins with developing a force-deformation 

relationship (pushover curve) for the structure. To compare such a pushover curve with the 

seismic demand, as shown in Figure 1.5, the next step is to convert the force-formation 

capacity curve to an acceleration-displacement response spectrum.  

 

In this format, period is represented as radial lines emanating from the origin. The equivalent 

period, Teq, is assumed to be the secant period at which the seismic ground motion demand, 

reduced for the equivalent damping, intersects with the capacity curve (Capacity Spectrum) 

at the performance point. It is also assumed that the equivalent damping of the system is 

associated with the full hysteresis loop area, as shown by the shaded area in Figure 1.5. As 

the equivalent period (Teq) and damping areas (ED) are both functions of the displacement, 

the solution to determine the maximum inelastic displacement is therefore iterative. This is 
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the basis of the simplified analysis methodology presented in ATC 40 to determine the 

displacement demand imposed on a building expected to deform inelastically. 

 

 

 

Figure 1.5 Graphical illustration of the Capacity-Spectrum Method. 
Taken from ATC (2005) 

 

Recent studies (Chopra and Goel 2000; ATC 2005; Powell 2006) indicate that the capacity 

spectrum method implemented in ATC 40 leads to very large overestimations of the 

maximum displacement for relatively short-period systems (i.e., periods shorter than about 

0.5 s which relates to low and medium height buildings). Estimated maximum displacements 

in this period range can be, on average, more than twice as large as real maximum 

displacements. It is also shown that the procedure generally underestimates, by 30%, the 

maximum displacements of systems with periods greater than 0.5s. The results of an effort to 

improve the capacity spectrum method of ATC 40 are presented in FEMA 440, Improvement 

of Nonlinear Static Seismic Analysis Procedures (ATC 2005). The resulting suggestions 

focus on improved estimations of the equivalent period and damping. Similar to the current 
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ATC 40 procedure, the modified procedure’s effective period and damping both depend on 

the ductility, and so an iterative or graphical technique is required to calculate the 

performance point. The improved procedure is similar in application, to the current ATC 40 

capacity spectrum method, and is used in this research work (explained in more details in 

Chapter 2) to develop the scores for a modified index assignment procedure in Quebec.  

 

The current nonlinear static procedures based on invariant loading vectors such as those 

recommended in FEMA 356 or ATC 40 are shown to possess inherent drawbacks in 

adequately representing the effects of varying dynamic characteristics during the inelastic 

response of structures (Kunnath and Kalkan 2005). Although some improved nonlinear static 

procedures have been developed over the past few years (such as those in FEMA 440), their 

validity for a variety of structural systems and a range of ground motion characteristic have 

yet to be demonstrated. The results of nonlinear time history analyses based on actual 

earthquake recordings serve as the only reliable benchmark solutions against which the NSP 

results can be compared.  

 

Nonlinear dynamic analysis 

 

In a nonlinear dynamic analysis, a detailed structural model is subjected to a ground-motion 

record to produce estimates of the components deformations for different degrees of 

freedom. The modal responses at those degrees of freedom are then combined using schemes 

such as the square-root-sum-of-squares. This method is the most sophisticated analysis 

procedure for developing fragility curves of buildings which typify a building class. Because 

the calculated responses are sensitive to the characteristics of the individual ground motion 

used as the seismic input, different ground motion records are required to obtain a good 

estimation of the building’s responses. To this end, the Incremental Dynamic Analysis (IDA) 

has emerged as a potential tool for seismic evaluation because it applies a series of time 

history analyses.  
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Incremental Dynamic Analysis 

 

An IDA involves subjecting a structural model to various ground motion records, each scaled 

to multiple levels of intensity up to the point at which a collapse limit state is reached 

(Vamvatsikos and Cornell 2002). Therefore, the IDA method is often described as a 

“dynamic” pushover procedure. The approach has the potential to demonstrate the variation 

of structural responses, as measured by a damage measure (DM, e.g., inter-storey drift), 

versus the ground motion intensity level, measured by an intensity measure (IM, e.g., peak 

ground acceleration or the first-mode spectral acceleration). The IDA procedure provides 

dynamic capacity curves for different ground motion levels. Although it is possible to utilize 

a single record for IDA, it is essential to consider variations in ground motion content when 

utilizing IDA in performance-based assessment. For this reason, the selection of ground 

motion records that takes into consideration site characteristics and source mechanisms is 

critical. This will be discussed in Chapter 2 where the IDA method is applied to develop the 

fragility curves for two building classes in Quebec.  

 

1.4.5 Score assignment procedures 

The score assignment procedure aims to identify seismically hazardous buildings by 

exposing structural deficiencies. Potential structural deficiencies and structural characteristics 

are correlated for different building classes using certain sets of scores that are usually 

calibrated by experts or analytical models. In most cases, these scores do not have a 

probabilistic meaning, and can just be used to prioritize buildings with respect to the 

probability of collapse.   

 

Score assignment procedure in Canada 

 

The rapid visual screening (RVS) method in Canada is described in the Manual for Screening 

of Buildings for Seismic Investigation (NRC-IRC 1992). As shown in Table 1.2, 15 building 

classes are introduced in this manual based on the construction material and the seismic 
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resistance system. The seismic screening procedure examines a building’s seismicity, soil 

condition, structure type, structural irregularities, presence of non-structural hazards, usage, 

and occupancy to determine its seismic priority index (SPI). The SPI is the sum of a 

building’s structural index (SI) and non-structural index (NSI), and it is a measure of the 

building’s deviation from the National Building Code of Canada 1990 (NRCC 1990) seismic 

requirements. Buildings are then ranked according to their respective scores and divided into 

low-, medium-, or high-risk categories. An SPI higher than 20 is an indication that the 

building requires a detailed investigation. The 15 building types described in this procedure 

have been defined based on previous work done by the Applied Technology Council of 

California (ATC 1998), and are presented in Table 1.2.  

 

The current rapid visual screening method in Canada is based on seismic requirements of 

NBCC 1990; therefore, the indices in this manual would not fully comply with NBCC 2005 

(NRCC 2005) requirements. Some research works have been conducted (Karbassi and Nollet 

2008; Turenne 2009) to adapt this screening method to the 2005 version of NBCC. The 

structural indices in the current Canadian manual do not provide any probabilistic 

interpretation, and were developed mainly by considering the different base-shear force 

calculation concepts described in different versions of the NBCC. Later in Chapter 2, we will 

develop an index assignment procedure which is compatible with the regional seismic hazard 

in Quebec. The procedure is published in a paper by Karbassi and Nollet (2008).    
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Table 1.2 Building classification used in NRC-IRC (1992) 

 
Class  Structural Description 

WLF Light wood frame 

WPB Wood post and beam  

SMF Steel Moment resisting frame 

SBF Steel braced frame 

SLF Steel light frame 

SCW Steel frame with concrete shear wall 

SIW Steel frame with infill masonry wall 

CMF Concrete moment resisting frame 

CSW Concrete shear wall 

CIW Concrete frame with unreinforced masonry infill  

PCW Prefabricated concrete wall 

PCF Prefabricated concrete frame 

RML Reinforced masonry bearing walls with wood or metal diaphragms 

RMC Reinforced masonry bearing walls with concrete diaphragms 

URM Unreinforced masonry bearing walls 

 

Score assignment procedure in the United States 

 

The RVS of buildings for potential seismic hazards was initiated in 1988 with the publication 

of FEMA 154, Rapid Visual Screening of Buildings for Potential Seismic Hazards: a 

Handbook, (ATC 2002a) and its companion, FEMA 155, Supporting Documentation (ATC 

2002b), both of which were updated in 2002. A major improvement in this update was to link 

the FEMA 154 screening results to FEMA 310, Handbook for the Seismic Evaluation of 

Buildings - A Pre-standard (ASCE 1998) and FEMA 356. To this end, the seismic hazard 

level was changed from 10% probability of being exceeded to 2%, in 50 years. Table 1.3 

shows the acronym and description of the building classes considered in the latest version of 

this manual.  
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FEMA 154 procedure starts with a visual observation to identify the primary structural 

lateral-load resisting system based on the construction materials used (Table 1.3). Based on 

the identified structural system, the next step is to assign a Basic Structural Hazard score 

(BSH) to each building. The BSH is related to the probability of collapse in a building as a 

result of earthquakes in the future. As shown in Equation 1.6, the probability of collapse for a 

building is the product of the probability of the building being in the complete damage state 

multiplied by the fraction of buildings (of that class) which collapse when in the complete 

damage state. 

 

BSH =-Log10[P(Complete Damage State)×P(Collapse | Complete Damage State)]  (1.6) 
  

In the first edition of FEMA 154, the BSH scores were calculated from the damage 

probability matrices of ATC 13. In the later edition, however, these probabilities are 

calculated from the fragility curves presented in the Earthquake Loss Estimation 

Methodology Technical Manual (NIBS 1999).  

 

Finally, the overall score S (Equation 1.7) is calculated by modifying the BSH scores using a 

set of score modifiers which take into account some structural and site characteristics that are 

not considered in the calculation of the BSH scores and can be listed as follows.  

 

1. Building’s height (midrise and highrise): BSH scores are calculated for lowrise buildings. 

2. Vertical and horizontal irregularities. 

3. Design and construction year for pre-code and post-benchmark buildings.  

4. Buildings constructed on sites with soil classes C, D, or E: BSH scores are calculated for 

buildings on soil class B. 

 

S= BSH Score ± Score Modifier      (1.7) 
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Table 1.3 Building classification used in ATC (2002b) 

 
Structure 

Type 
Description 

W1 Light wood-frame residential and commercial buildings smaller than 

or equal to 5000 square feet 

W2 Light wood-frame buildings larger than 5000 square feet 

S1 Steel moment-resisting frame buildings 

S2 Braced steel frame buildings 

S3 Light metal buildings 

S4 Steel frame with cast-in-place concrete shear walls 

S5 Steel frame buildings with unreinforced masonry infill walls 

C1 Concrete moment-resisting frame buildings 

C2 Concrete shear-wall buildings 

C3 Concrete frame buildings with unreinforced masonry infill walls 

PC1 Tilt-up buildings 

PC2 Precast concrete frame buildings 

RM1 Reinforced masonry buildings with flexible floor and roof diaphragms 

RM2 Reinforced masonry buildings with rigid floor and roof diaphragms 

URM Unreinforced masonry bearing –wall buildings  

 

The final score S varies from zero to 9.8. A final score higher than 2.0, which approximately 

corresponds to a probability of collapse of 1%, indicated that a detailed analysis for the 

building is required. It should be noted that FEMA-154 methodology is primarily based on 

United States seismic hazard representations and California building typology defined mostly 

for data in California.  

 

UBC 100 project (British Columbia)  

 

The UBC 100 is a project that is conducted at the University of British Columbia to develop 

performance-based seismic risk assessment guidelines for buildings in that province. The 
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major development of UBC 100 in comparison to traditional seismic assessment methods is 

the use of performance-based criteria that allows for a more rational and systematic approach 

to the seismic evaluation and a relative ranking of a large inventory of structures (White et al. 

2005). The project is developed for low-rise buildings (1-3 storeys) in British Columbia. The 

level of ground shaking assumed is consistent with that of the 2005 National Building Code 

of Canada, which assumes a 2% in 50-year probability of occurrence. UBC 100 covers six 

distinct seismic zones within British Columbia on soil classes C, D and E. 

 

As the primary goal in every risk mitigation program is to minimize casualties, the 

performance level with this definition of risk is called “Life-Safety”. Two critical drift levels 

related to casualties are defined: (1) Life Safety Drift Limit (LSDL) which is the amount of 

the inter-storey drift a structure can sustain with no significant chance of casualties due to 

structural failure, and (2) the Instability Drift Limit (ISDL) that is the drift at which a 

structure may completely collapse, resulting in a very high rate of casualties. The 

displacement coefficient method outlined in FEMA 440 and some other nonlinear dynamic 

analysis programs were used to determine the maximum inter-storey drift for each case.  

 

The outcome of UBC 100 is the prioritized ranking of one structure in respect to other 

structures within the same building stock. The prioritization is performed based on the cost-

efficiency of structural retrofitting. This priority retrofit index (PRI) reflects the increase in 

life safety per dollar spent by retrofitting a structure, shown in Equation 1.8. 

 

stcoretrofit

occupancyratecasualty
PRI

100000××=      (1.8) 

 

  
In Equation 1.8, occupancy is in person-year, retrofit cost is the cost required to achieve a 

low risk level (life-safe building), and casualty rates reflect the casualties per 100,000 

persons. These priority indices do not have any damage probability interpretation for an 

individual building. Moreover, the results of such a methodology is not applicable for 
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existing buildings in Quebec as the building classification and the seismic demand values 

used to develop the priority retrofit indices are different from those in Quebec. 

 

The GNDT methodology in Italy 

 

The GNDT methodology that utilizes a composed damage index derived from discrete 

damage states assigned to different building components, weighted by their relative 

extension, is used in Italy to assess the vulnerability of masonry buildings (GNDT 1993). The 

assessment of a building group is done by completing two forms: the first level form gathers 

the basic informative elements for each building. Consequently, on the second level form, the 

answers to 11 descriptive and evaluative (typological/qualitative and quantitative, 

respectively) items are combined to calculate the vulnerability index for each building. 

According to answers to those items, one of the four classes (A, B, C, or D) is selected. The 

class D represents the most vulnerable level. Examples of the application of this 

methodology can be found in (D’Ayala and Speranza 2002) and (Faccioli, Pessina et al. 

1999). The most evident problem associated with this approach is the ignorance of the soil 

behavior on the seismic vulnerability (Augusti and Ciampoli 2000).  

 

1.5 Performance-based seismic vulnerability evaluation of existing buildings 

Conventional analytical methods, which examine only the ability of a building to stand 

significant earthquake excitations, have several major drawbacks. In any of those methods, 

only a single structural performance (e.g., Collapse Prevention) is considered. As a result, 

performance-based concepts that include a wider variety of structural performance states of 

an existing building excited by different levels of earthquake intensities are needed. The 

performance-based seismic evaluation (PBSE) of an existing building is a process that leads 

to the assessment of the building’s seismic vulnerability with a view to an understanding of 

the risk of structural and non-structural damages, and human and economic losses that may 

occur as a result of probable earthquakes (ATC 2009). The structural and/or the non-

structural performance state of the building are determined in terms of the damage evaluation 

for ground motions with different intensity levels. This information is used to estimate the 
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occupancy and economic losses at each level which can be used consequently to develop loss 

exceedance probability curves for different seismic hazards.  

 

The PBSE procedure can be divided into the following four stages (Krawinkler and Miranda 

2004; ATC 2009). 

 

1. The seismic hazard analysis stage: the seismic hazard data at the structure’s site is 

assessed to produce hazard curves that represent probability of exceedance in terms of an 

engineering demand parameter, such as the peak ground acceleration or the spectral 

acceleration values. 

2. The structural analysis stage: non-linear time-history analyses are carried out to 

determine the building’s response to a set of ground motions in terms of the engineering 

demand parameter. 

3. The damage analysis stage: the results of the previous stage are used to define the limit 

states (e.g., performance levels) in terms of structural responses such as maximum storey 

drifts or roof displacement. The information is then used to produce the building’s 

fragility curves for each limit state.  

4. The loss analysis stage: the fragility curves are combined with the hazard curves, 

produced in the first stage, to calculate the probability of exceeding any of the limit states 

during a specific period of time. This information is valuable to determine, for example, 

the operability of the building versus its repair costs and repair duration.  

 

1.6 Loss estimation analysis: mean annual frequency of exceeding damage states 

One piece of information sought in a performance-based seismic vulnerability evaluation of 

existing buildings is to know how often the damage states may be exceeded annually. This 

information is useful for risk analysis studies, those in charge of managing cost-allocation 

studies for reinforcing existing buildings, or insurance corporations. The mean annual 

frequency (MAF) of exceeding a damage state is expressed as the mean annual frequency of 

the “intensity measure” (e.g. the spectral acceleration) being larger than the capacity-intensity 
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measure (IMc) that pushes the building to reach the damage level, multiplied by the 

probability of such an intensity measure to happen. Once the fragility curves of the 

corresponding limit states along with the hazard curve for the site of interest is available, the 

MAF of exceeding those damage states can be calculated as follows (Ibarra and Krawinkler 

2005).  

 )()(
0

zdHCzFCMAF dsds ×= 
∞

    (1.9) 

 

In Equation 1.9, FCds(z) and dHC(z) are the values of the fragility curve for the 

corresponding damage state and the slope of the hazard curve at z = Sa(T), respectively. The 

hazard curves depend on the geographical location of the building. We will get back to this 

issue in the loss estimation stage in Chapter 4 where we calculate the MAF for the studied 

buildings in this research. 

 

1.7 State of the seismic vulnerability evaluation methods in Quebec 

Because enough observed earthquake damage data does not exist in the province, based on 

the literature review in this chapter, the predicted vulnerability method is seen to be a suitable 

method for the seismic vulnerability evaluation of a group of buildings here. Nevertheless, 

the application of the available methods in Canada or in other parts of the world for ancient 

buildings in Quebec faces three major problems.  

 

1. Adequacy of available building classifications.  

2. Applicability of existing methods to the seismic hazard representations in Quebec. 

3. Complexity level of analytical procedures (modeling, nonlinear analysis, etc.) for 

masonry buildings. 

 

1.7.1 Building classification in Quebec 

A good building classification should be able to comprehend if not all but the majority of the 

building types in the area, and to consider both the structural characteristics and the 
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construction materials. By matching an inventory of 89 buildings, located in old Montreal, to 

the current Canadian building classification (NRC-IRC 1992) presented in Table 1.2, 

(Lefebvre 2004) showed that the existing buildings in the historical sector of Montreal are 

not well represented by the available classification in Canada. As seen in Table 1.4, that 

research work concluded that the major problem with applying the current Canadian building 

typology to old sectors in Quebec is that it does not present any subclasses for masonry 

buildings. Four sub-classes that were found to exist in old Montreal are masonry building 

built with (I) rubble stone, (II) simple stone, (III) massive stone, and (IV) confined bricks. 

Another study done on a larger community of buildings in the same area for 516 structures 

(Rodrigue 2006) showed that two more classes (concrete and steel moment resisting frames) 

can be added to the “present in old Montreal” column in Table 1.4. 

 

To verify the building classes in other regions of the province, the old district of Quebec City 

was visited in person. The area was investigated street by street, and several pictures were 

taken for the research database. Based on such visit and the studies mentioned above, the 

building classification shown in Table 1.5 is proposed for the existing buildings in the 

historical sectors of the province.  
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Table 1.4 Comparison of the current Canadian building classification  
with classes seen in old Montreal  

according to Lefebvre (2004) and Rodrigue (2006) 
 

Structure 

type 

NRC-IRC 

building classes 
Present in old Montreal 

Wood 
WLF Light wood frame 

WPB Wood post and beam  

Steel 

SMF 

Steel frame with bracing 

Steel frame with concrete shear walls 

Steel frames with masonry in-fills 

SBF 

SLF 

SCW 

SIW 

Concrete 

CMF 

Concrete frame with unreinforced 

masonry infills 

CSW 

CIW 

PCW 

PCF 

RML 

RMC 

Masonry URM 

Masonry building with rubble stone 

Masonry building with simple stone 

Masonry building with massive stone 

Masonry with confined bricks 

 

It should be noted that in some cases, assigning a class to a building from those proposed in 

Table 1.5 is not straightforward. This is mostly when a combination of two or more structural 

typologies are used in a building. In such cases, specific decisions should be made to 

consider the best representation for those buildings. 
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Table 1.5 Proposed building classification for existing structures  
in historical areas of Quebec  

 

Structure Type Description 

Wood Structures 
light wood frame 

wood beams and columns  

Steel Frame 

with bracing  

with concrete shear walls 

with unreinforced masonry infills 

moment resisting frames 

Concrete 
frame with unreinforced masonry infills (CIW) 

moment resisting frames 

Masonry 

with rubble stone  

with simple stone  

with massive stone  

confined bricks 

unreinforced with wood floors (URMW) 

 
1.7.2 Applicability of existing seismic vulnerability methods for Quebec 

Among the existing methods for the seismic vulnerability evaluation of buildings, score 

assignment method, can be used as the first step of a multi-phase procedure for identifying 

hazardous buildings. Those buildings must then be analysed in more details. As stated 

previously, the existing rapid visual screening procedure in Canada, explained in section 

1.4.5, relates to NBCC 1990, and has not been developed for ancient buildings. Moreover, 

the index proposed in that manual does not have any damage probability bases and it can be 

only used to rank a building in comparison with another. FEMA 154 procedure, on the other 

hand, is primarily based on United States seismic hazard representations and California 

building typology defined mostly for data in California. The dissimilarities between the 

seismic hazard representations in Canada (NRCC 2005) and those introduced in the 

American codes (BSSC 2003) diminish the validity of the results of any rapid visual 

evaluation performed in Canada that apply only the FEMA 154 scores without modifications. 
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1.7.3 Complexity level of analytical procedures for masonry buildings 

When considering the seismic vulnerability evaluation of masonry buildings such as those 

identified in Table 1.4, the complexity of the analytical procedures to represent the 

progressive collapse poses an additional challenge. 

 

1.7.4 Progressive collapse analysis of structures with masonry: Problem with FEM 

The following five failure modes can occur in the progressive collapse—in which the failure 

of a primary structural element results in the failure of adjoining structural elements, which 

in turn causes further structural failure—of masonry walls: (1) joint de-bonding, (2) units 

sliding along bed or head joints, (3) units cracking under direct tension, (4) units diagonal 

tensile cracking under high compression and shear, and (5) bricks splitting (Mayorca and 

Megura 2003). As the structural boundaries and load conditions prevent the masonry to fail 

in compression, only the first three failure modes, shown in Figure 1.6, are generally 

observed in an earthquake, and considered in this study. Any of these failure modes lead to 

large displacements and separation of elements. 

 

 

 

 

 

Figure 1.6 Failure modes in masonry walls observed in an earthquake.  
 

 

The Finite Element-based methods are considered as the main tools for the seismic 

vulnerability evaluation of existing buildings. However, using a FE-based method—that 

assumes the material as a continuum (Calderini and Lagomarsino 2008) in a progressive 

collapse analysis of masonry structures faces two main problems: (1) simulating elements 

with common nodes but different displacement, and (2) modeling cracks in the elements. In 

any FE-based analysis, elements are connected at nodes so, it is assumed that all elements 

1. joint de-bonding 2. unit sliding along 
bed or head joints 

3. unit cracking 
under direct tension 
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sharing the same node have the same displacement; however, to track the behaviour of each 

element in an accurate way when element separation occurs in a progressive collapse 

analysis, elements are considered to displace independently. An alternative is to use multiple 

node ID’s at expected separation points; nevertheless, this technique results in stress 

singularity and inaccurate stresses at locations of nodal separation that may lead to an 

uncertain stress distribution within the whole structure (Tagel-Din and Megura 2000).  

 

On the other hand, special techniques must be adapted to model cracks in the elements and to 

consider the effect of element separation on the building’s overall stiffness. Two techniques 

are generally applied to consider the crack effect in materials such as masonry. The first 

technique known as “smeared cracks” deals with cracks by considering their effect on 

stiffness and stress-strain equations (Cervera and Chiumenti 2006). Although showing 

considerable accuracy in calculating displacements and failure loads, models developed 

based on this method are relatively complicated. Moreover, special elements should be used 

in the location of dominant cracks (Meguro and Tagel-Din 2000). This also requires previous 

knowledge of the location and direction of cracks’ propagation. In most cases, the fracture 

plane is arbitrary and unknown before the analysis. The same problem exists for the other 

technique known as “discrete cracks” modeling, in which cracks are taken into account as 

discrete items (Carol et al. 1997). The latter method is more appropriate for cases with few 

cracks. 

 

Moreover, because of the challenges in material constitutive models and failure modes for 

masonry structures, predicting the deformation capacity through the application of FE-based 

methods is a difficult task (Belmouden and Lestuzzi 2007). Consequently, finding the 

maximum strength and deformations which are essential parameters in developing reliable 

fragility curves for masonry buildings is difficult.  

 

Some researches have applied elastic (or elastoplastic) FEM analyses [e.g., (Asteris et al. 

2005) and (Ismail et al. 2009)] for the seismic vulnerability assessment and rehabilitation of 

masonry buildings. Although these methods provide simple processes for the repair 
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methodology of unreinforced buildings under study, the nonlinear behaviour of the materials 

and consequently, of the whole structure, in a progressive collapse simulation is not fully 

considered; therefore, such methodologies may not lead to precise fragility curves for 

masonry buildings. 

 

Applied Element Method 

The Applied Element Method is used in this study as an alternative to the FEM. This method, 

which is based on dividing structural members into virtual elements connected through 

springs (Figure 1.7), which means that there are no common nodes, can simulate large 

displacements and elements progressive separation through successive failure of those 

springs (Meguro and Tagel-Din 2002). Exploration of the approach employed in the Applied 

Element Method began in 1995 at the University of Tokyo as part of a research study. The 

term "Applied Element Method," however, was first established in a journal paper in 2000 

(Meguro and Tagel-Din 2000).  

 

 

 
Figure 1.7 Modeling an element in AEM.  

 

 

As shown in Figure 1.8, pairs of normal and shear springs located at the element contact 

points, distributed around the edges, represent stresses, strains, and deformations of certain 

portions of the structure (Meguro and Tagel-Din 2002). Therefore, partial connectivity 

between elements is allowed during the analysis: while some of the springs fail, others are 

still effective.  

 See Fig. 1.8 

(b) Spring distribution (a) Element generation 
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Figure 1.8 Element shape, contact  
points, and degree of freedom in AEM.  

Adapted from (Mayorca and Megura 2003) 
 

 

 

 

 

 
 

Figure 1.9 Spring distribution and area  
of influence of each springs pair in AEM.  
Adapted from (Mayorca and Megura 2003) 

 

 

For the normal and shear springs inside the hatched area in Figure 1.9, extended from the 

centerline of one element to the centerline of the adjacent one, the normal and shear stiffness 

values are determined as: 
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Where a is the distance between the springs, d is the length of the represented area by each 

spring which is actually the element’s length, E and G are the Young’s and shear modulus of 

the material, and t is the thickness of the element, respectively. Application of this method 

for masonry buildings and details about its mathematical background are presented in 

Chapter 3.  

 

1.8 Proposed methodology for the Seismic Vulnerability Evaluation of Buildings 
with Masonry in Quebec 

From the literature review presented in this chapter, it was shown that in situations where 

there is lack of sufficient observed earthquake damage data, such as in the province of 

Quebec, the predicted vulnerability technique coupled with a score assignment procedure can 

be a suitable method for the seismic vulnerability evaluation of a group of buildings. The 

score assignment procedure can be used to identify the existing buildings which need further 

study, while the analytical modeling can be applied to develop capacity and fragility curves 

for those building classes in old sectors of Quebec which are not been well represented in the 

available building classification in Canada. The proposed methodology for the seismic 

vulnerability evaluation of existing buildings with masonry in Quebec includes two main 

components: (1) an adapted rapid visual screening procedure, and (2), a performance-based 

seismic vulnerability assessment.  

 

a) Rapid visual screening procedure 

 

Considering the shortcoming in the current rapid visual screening method in Canada (NRC-

IRC 1992), one of the main objectives of this research work is to develop an updated score 

assignment method that can be used for cities in Quebec with different seismic hazard levels. 

A previous study (Nollet et al. 2005) shows that most of the building classes observed in the 

old sectors of the province—except for the masonry structures, as shown in Table 1.4—can 

be represented by the current Canadian building typology (NRC-IRC 1992) or the ones 

available in FEMA 154 (ATC 2002a). Therefore, the available building classification in 
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(NRC-IRC 1992) and the capacity and fragility curves presented in (NIBS 2003) can be used 

for most Quebec building classes in the definition of  indices for a new rapid visual screening 

method. The goal of such a screening method is to provide a seismic vulnerability evaluation 

tool that can be used by urban-decision-makers, to help them identify and prioritize structures 

requiring seismic risk mitigation plans. The tool can also be used to evaluate the probability 

of damages in a group of buildings for different levels of seismic hazard. This procedure is 

developed in Chapter 2.  

 

b) Performance-based seismic vulnerability assessment 

 

Another objective of this research work, on the other hand, is to develop appropriate capacity 

and fragility curves for the new building classes proposed in Table 1.5. Considering the 

benefits of the Performance-based Seismic Vulnerability Evaluation for existing buildings, 

explained in this chapter, only dynamic-based methods are capable of conducting such type 

of evaluations which take into account the dynamic behaviour of structural models, and static 

analytical methods such as the Pushover analysis methodology is out of consideration in this 

case. To this end, the methodology to develop the dynamic capacity and fragility curves for 

two of the building classes proposed in Table 1.5—unreinforced masonry with wood floors 

(URMW) and RC frame with unreinforced masonry infills (CIW)—is presented in Chapter 3. 

The curves are developed at three structural performance levels—Immediate Occupancy, 

Life Safety, and Collapse Prevention defined in FEMA 356. As will be seen, the 

methodology uses an Applied Element-based approach to overcome the limitations of a FE-

based method in the progressive collapse case for masonry buildings in the Incremental 

Dynamic Analyses for the buildings studied here. 

 

1.9 Summary  

Different seismic vulnerability methods in use in different parts of the world were reviewed 

in this chapter to assess their applicability for such type of evaluation for the existing 

buildings in historical sectors of Quebec. The literature review shows that some essential 
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items for a predicted-based vulnerability method (that was shown to be the suitable method 

for the case of existing buildings in Quebec) are missing, and should be developed based on 

the available tools.  

 

1. Although most of the building classes in the current Canadian building typology (NRC-

IRC 1992) or the ones available in the American reference (ATC 2002a) can be used to 

classify the existing buildings in old sectors of the province (Table 1.4), masonry buildings in 

Quebec are not well represented in those references. For this reason, an adapted building 

classification was presented in this chapter (Table 1.5). 

 

2. As the first step for a seismic vulnerability evaluation, a rapid visual screening method 

was shown to be helpful to identify buildings which need further study. Such a screening tool 

which is in conformity with the seismic demand updates presented in the latest edition of the 

NBCC 2005 (NRCC 2005) is missing even for the current building classes in (NRC-IRC 

1992). 

 

Because of the important effect of material properties and the construction practice (in a 

region) on the dynamic behaviour of a building, in the context of the seismic vulnerability 

evaluation, the available capacity and fragility curve data in the literature may not be even 

close to the reality for some of the building classes (presented in Table 1.4) in Quebec, and 

have to be checked. To this end, in the second part of Chapter 2, those curves are developed 

for a typical masonry and a typical concrete frame building with infill masonry.  

 

3. Among the typology identified in Table 1.5, the structural analysis of masonry buildings 

is complex. However, the Applied Element Method offers an effective alternative to FEM to 

simulate the progressive collapse of masonry structures. 

 

4. The Performance-based Seismic Vulnerability Evaluation of existing buildings presents 

the possibility of studying the structural performance of a building (for different seismic 
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demands) and obtaining the information on the probability of exceeding any of the 

performance levels. 



 

CHAPTER 2 
 
 

SCORE ASSIGNMENT METHOD ADAPTED FOR THE SEISMIC HAZARD IN 
QUEBEC 

 

2.1 Introduction 

A rapid visual screening method which is adapted to the seismic demands in Quebec is 

developed through the application of the latest improvement for nonlinear static analysis 

procedure proposed in FEMA 440, Improvement of nonlinear static seismic analysis 

procedures (ATC 2005). The seismic demands used in the nonlinear static analysis procedure 

are those presented in the 2005 edition of the National building code of Canada (NBCC) 

(NRCC 2005) in the form of spectral acceleration response values and spectral amplification 

factors defined according to the NBCC 2005 site classification. Details of developing the 

method is published in a journal paper (Karbassi and Nollet 2008). 

 

2.2 Method development principles  

Adapting the score assignment method to account for Quebec’s different seismic hazard 

levels relies in part on the methodology applied in the development of scores in FEMA 154. 

Figure 2.1 illustrates the methodology followed in developing these new indices. The 

development of such an evaluation tool requires the consideration of three elements: (1) a 

building classification system defined on the regional basis, (2) the capacity curve for each 

building class, and (3) an appropriate seismic hazard representation for the area. As stated in 

the introduction of this chapter, the building classification used in this chapter is the same as 

that presented in the Manual for screening of buildings for seismic investigation (NRC-IRC 

1992), shown in Table 1.2. This building classification is in fact similar to the one presented 

in FEMA 154.  
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Figure 2.1 Essential elements for developing the tools for  

a score assignment method tools.  
 

The NBCC 2005 spectral acceleration response values for the province of Quebec serve as 

the seismic demand used to calculate a set of structural vulnerability indices and modifiers 

from the capacity and fragility curves (NIBS 2003) for different building classes. For each 

seismic hazard level, a structural vulnerability index (SVI) is computed based on the FEMA 

440 improved nonlinear static analysis procedure. Index modifiers are also computed for 

structures that may have different characteristics and deficiencies than those assumed in the 

calculation of the initial SVI values.  

 

SVI final = SVI ± Indices Modifiers    (2.1)  
 

Building 

classification 
 Capacity curve Seismic demand  Fragility curve 

 

═>  =

═> 

 

 

+

 

 

=

 

═>  =

V, base shear; ∆, roof displacement; Sa, spectral acceleration; Sd, spectral displacement;  

Pt, probability 
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2.3 Seismic hazard regions in Quebec  

To differentiate the seismic hazard levels of different cities, acceleration levels as well as 

spectral shapes must be compared. A city's acceleration level is well represented by its 

spectral acceleration values at 0.2 s, and the ratio of the spectral acceleration values at 0.2 

and 1.0 s is generally used to compare variations in spectral shapes (Heidebrecht 2003). The 

seismic hazard level of each city in the province is determined using FEMA 310 criteria, 

which are listed in Table 2.1. Although these criteria have been defined for US cities, 

reviewing the obtained rational classification (see Appendix I) confirms their application for 

cities in Quebec. Three seismic hazard levels (low, moderate, and high) are defined 

according to the spectral acceleration response, Sa, at 0.2 and 1.0 sec. [Sa(0.2) and Sa(1.0)], 

and the peak ground acceleration (PGA) values of the 119 cities and regions presented in 

NBCC 2005 for the province1.  

 

Table 2.1 Criteria for specifying the seismic hazard level for cities in Quebec  
taken from ASCE (1998)  

 

Seismic hazard level 
Spectral acceleration 
at 0.2 s, Sa(0.2) (g) 

Spectral acceleration 
at 1.0 s, Sa(1.0) (g) 

High > 0.500g > 0.200g 

Moderate 0.167g to 0.500g 0.067g to 0.200g 

Low < 0.167g < 0.067g 

 

The city with the highest seismic hazard level is La Malbaie, with Sa(0.2) = 2.3g, Sa(1.0) = 

0.6g, and PGA = 1.1g. Inukjuak and Kuujjuarapik, on the other hand, have the lowest seismic 

hazard, with Sa(0.2) = 0.12g, Sa(1.0) = 0.023g, and PGA = 0.059g. The 119 Quebec cities are 

divided into three groups according to their respective seismic hazard (see Appendix I), and 

the median of the spectral acceleration values are calculated for each group. The medians are 

chosen so that the results are consistent with NBCC 2005, which uses median ground 

motions. It is useful to mention that most of the cities fall in the moderate seismic hazard 

                                                 
1 Open File 4459, Geology Survey of Canada, available from earthquakescanada.nrcan.gc.ca/hazard/OF4459/index_e.php 
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group, as expected. Data for adjoining cities with similar spectral values are considered only 

once in the statistical calculations to avoid data repetition. The spectral acceleration values 

are used to compute the cumulative probability distribution of Sa(0.2) and Sa(1.0) within each 

seismic hazard level, as shown in Figure 2.2 and Figure 2.3. The resulting median spectral 

acceleration values are listed in Table 2.2, and are used to calculate the SVIs for different 

building classes.  
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Figure 2.2 Distribution of spectral acceleration values  
at 0.2 sec, Sa(0.2), in different seismic 

 hazard levels in Quebec.  
 

 

 

F[Sa(0.2)], cumulative probability 
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Figure 2.3 Distribution of spectral acceleration values  
at 1.0 sec, Sa(1.0), in different seismic hazard  

levels in Quebec.  
 

Table 2.2 Median of spectral acceleration values for  
different periods at different seismic hazard levels 

 
 Spectral acceleration, g 

High Moderate Low 

Sa(0.2) 1.22 0.45 0.13 

Sa(0.5) 0.66 0.24 0.07 

Sa(1.0) 0.32 0.11 0.04 

Sa(2.0) 0.10 0.03 0.01 

 

2.4 Basic assumptions in the calculation of indices  

In the improved capacity spectrum method of FEMA 440 considered in this research project, 

we start off by plotting the capacity curves provided in the Multi-hazard loss estimation 

model HAZUS-MH MR 1 technical user's manual (NIBS 2003) and the seismic demand 

spectra developed from the spectral acceleration values proposed in Table 2.2 in acceleration-

displacement response spectrum (ADRS) format as shown in Figure 2.4. In Figure 2.4, T0 is 

the initial period of the building (in the elastic mode), Teq is the period of the building at the 

F[Sa(1.0)], cumulative probability 
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performance point, and βeff is the effective damping. The next step is to find the performance 

point, which is the maximum displacement of each building group representation. This is a 

point on the capacity spectrum that lies on the appropriate demand response spectrum, 

reduced for the nonlinear effects by a reduction factor B defined in FEMA 440 by Equation 

2.2.  

)ln(6.5
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Figure 2.4 Graphical illustration of  
the Capacity-Spectrum Method.  

Adapted from (ATC 2005) 
 

The effective damping in Equation 2.2, βeff, consists of the hysteretic damping and the elastic 

damping (β0) for each building class. Equations for calculating hysteretic damping are 

normally based on the inelastic behaviour and ductility of the structure, whereas the 

equations used here (proposed by FEMA 440) are those that are independent of the hysteretic 

model of the structure and have been optimized for use in any capacity curve over a wide 

range of ductilities. Based on the inelastic behaviour and ductility factor μ1 of the structure, 

βeff  is calculated from one of the following equations.  

 

For 1.0 < μ1 < 4.0:  βeff = 4.9(μ1 - 1)2 - 1.1(μ1 - 1)3 + β0           (2.3) 
 

For 4.0 ≤ μ1 ≤ 6.5:  βeff = 14.0 + 0.32(μ1 - 1) + β0               (2.4) 

T0

Teq= Tsec 

Initial seismic demand 

Reduced demand 
for βeff  

Capacity Spectrum 

Performance 
Point 
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For μ1 > 6.5: βeff = [ ] 0
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The equivalent period in Equation (2.5) is computed from the following equation. 
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It should be noted that the above equations are applicable for buildings with initial period 

between 0.2 to 2.0 sec. 

 

The elastic damping values used in this study are selected according to building type to 

reflect inherent differences in the damping behaviour of different materials. Recommended 

damping values are given in (Newmark and Hall 1982) for two levels of stress: working 

stress and stresses at or just below the yield point (Table 2.3). Upper-bound values are to be 

used for ordinary structures, whereas lower-bound ones may better reflect the elastic 

damping in special structures, which should be designed more conservatively (Chopra 2001).  
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Table 2.3 Recommended Damping Values  
taken from (Newmark and Hall 1982) 

 

Stress Level Building Type 
Damping 

Ratio (%) 

Working stress 

Welded steel, pre-stressed concrete, well-reinforced 
concrete (slight cracking) 

2-3 

Reinforced concrete with considerable cracking 3-5 

Bolted and/or riveted steel, wood structures with nailed 
or bolted joints 

5-7 

At or just below 

yield point 

Welded steel, pre-stressed concrete (without complete 
loss in pre-stress) 

5-7 

Pre-stress concrete with no pre-stress left 7-10 

Reinforced concrete 7-10 

Bolted and/or riveted steel, wood structures with bolted 
joints 

10-15 

Wood structures with nailed joints 15-20 

 

The recommended damping values for unreinforced and reinforced masonry structures are 

3% and 7%, respectively; however, most building codes disregard the variation in damping 

with structural materials and consider a 5% damping ratio for all building types. The elastic 

damping values considered in the calculations of this chapter, which are similar to those 

proposed by (NIBS 2003), are presented in Table 2.4.  

 

Table 2.4 Suggested values for the elastic damping used in this chapter 
  

Building Type 
Damping  
(% of critical) 

Steel Buildings 5 – 7 

Reinforced Concrete and Pre-cast Concrete Buildings 7 

Reinforced Masonry Buildings 7- 10 

Unreinforced Masonry Bearing Wall and Infill Buildings 10 

Wood Buildings 10 – 15 
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The performance point determination requires a trial-and-error. As shown in Figure 2.4, this 

point represents the situation for which the seismic capacity of the structure is equal to the 

seismic demand imposed on it by a specific ground motion (ATC 1996). The performance 

point is then used to compute the probability of complete damage, which is determined from 

complete damage state curves produced from past earthquake damage observation data and 

(or) analytical models (Figure 2.5).  
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Figure 2.5 Example of fragility curves for unreinforced masonry buildings.  
 

The complete damage state is used in calculating the scores, as the score assignment 

procedure is generally used to identify those structures within a group that have the highest 

probability of collapse. Other damage states curves can be considered when developing 

scores for more important structures, such as hospitals or fire stations that require an 

operational performance level after an earthquake.  

 

Performance 
Point 

Ds, damage state; ds, damage level; SD, spectral displacement 
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As for the basic structural hazard (BSH) scores in FEMA 154, the proposed SVIs are defined 

as the negative of the logarithm (base 10) of the probability of collapse given the seismic 

demand corresponding to the seismic hazard level considered for each region (Equation 2.7). 

 

SVI = - Log10[P(collapse | seismic demand)]    (2.7) 
 

In developing the fragility and capacity curves, different design criteria are defined for 

different seismic design zones. The SVIs for the various building types are calculated for 

buildings constructed after the first national seismic codes were adopted, and before they 

were substantially improved. These criteria correspond to buildings constructed between 

1953 and 1970 in Canada (Table 2.5). In regions with low seismic hazard, the SVIs are 

calculated for buildings constructed before the initial adoption of the seismic codes.  

 

Soil type C, with an average shear wave velocity of 360-750 m/s in the uppermost 30 m, is 

the reference soil class in NBCC 2005 (Adams and Atkinson. 2003) and is used in the 

calculation of the SVIs. Specific modifiers are then considered to adapt these SVIs to reflect 

the effects from other site classes (types D and E). These modifiers are not proposed for the 

sites with soil classes A and B, and thus SVIs for buildings do not benefit from the better soil 

condition. 

 

Table 2.5 Selection of the Canadian seismic design level as a function of  
the design date and the seismic hazard level 

 

 Design date 

Seismic hazard level After 1970 1953-1970  Before 1953 

High  High-Code Moderate-Code Pre-Code 

Moderate  Moderate-Code Low-Code Pre-Code 

Low  Low-Code Pre-Code Pre-Code 

 

Figure 2.6 illustrates the detailed procedure to calculate the SVI for one of the building 

classes, the URM building class, for regions with a high seismic hazard level.  
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Figure 2.6 Graphical illustration of the process of calculating  
the BSH for the URM building class. 

 

A major modification is made in the calculation of these scores, versus those in the second 

edition of FEMA 154/155, through a different consideration of the seismic hazard level in the 

application of the seismic demand. The maximum earthquake ground motions considered in 

American provisions (ASCE 2000) are based on a set of rules that depend on the seismic 

hazard of an individual region. The design ground motions are based on a lower bound 

estimate of the margin against collapse inherent in structures designed to the provisions. 

Based on experience, this lower bound is deemed to correspond to a factor of about 1.5 in 

ground motions. Consequently, the design earthquake ground motion is selected at a ground 

shaking level that is 1/1.5 (2/3) of the maximum considered earthquake ground motion. The 

Canadian code for its part, however, considers the median seismic hazard values in the 

presentation of the spectral acceleration values therefore, the “2/3” reduction factor is ignored 

in this case (Adams and Atkinson 2003).  

 

The developed structural vulnerability indices for the fifteen building classes of Table 1.2 are 

presented in Table 2.6.  

Performance 
Point : 3.1 cm 

Performance 
Point : 3.1 cm 

Probability of 
Collapse: 10.5% 

1 

2 

3

4

5 From Eq. 2.7: SVI= -log10(0.105×0.15)=1.8 

Collapse rate for masonry buildings in 
complete damage state (NIBS 2003) 
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Table 2.6 Structural vulnerability indices for different building classes in Quebec  
Refer to Table 1.2 for building class definitions 

 
Seismic hazard 
Level 

Building Class 
WLF WPB SMF SBF SLF SCW SIW CMF 

High 3.3 4.0 2.9 3.1 2.9 2.8 2.1 2.5 
Moderate 5.1 5.4 3.9 4.1 4.0 4.0 3.8 3.6 
Low 7.4 7.6 6.0 6.1 6.1 6.1 6.0 5.7 
 CSW CIW PCW PCF RML RMC URM  
High 2.9 1.8 2.2 2.6 2.7 2.7 1.8  
Moderate 3.9 3.5 3.8 3.6 4.2 4.2 3.0  
Low 6.4 5.7 5.1 6.1 6.1 6.3 3.9  

 

2.5 Development of index modifiers  

The structural vulnerability indices presented in Table 2.6 have been calculated for the low-

rise building class on type C soil for each seismic hazard level. However, the procedure 

should be able to screen other buildings that may have different characteristics from those 

assumed in the calculation of the SVIs. For this reason, a variety of index modifiers need to 

be developed to account for the probable conditions that may exist within the building 

classes. In this study, modifiers have been developed to take into account the following 

variances from the SVI basic assumptions:  

 

1. Sites with soil classes D and E as defined in the NBCC 2005. 

2. Buildings with horizontal and vertical irregularities. 

3. Design and construction years that are pre-code and post-benchmark. 

4. Building heights that are mid-rise and high-rise. 

 

The medians of the spectral acceleration values for each seismic hazard level (Table 2.2) are 

applied as the seismic demands in the calculation of index modifiers.  
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Index modifiers for soil classes D and E  

Soil modification factors, Fa and Fv, for different soil classes are presented in NBCC 2005. 

These coefficients are used to incorporate the soil amplification effect on earthquake ground 

shaking in the spectral acceleration values. Index modifiers used to consider the effect of soil 

types D and E are computed based on the differences that would be obtained for the SVIs 

were the basic indices to be calculated for these soil classes by applying soil modification 

factors (Fa and Fy) on the demand spectra. The index modifiers for soil type D for each 

seismic hazard level are determined by subtracting the SVIs calculated for this soil class from 

the original SVIs computed for the reference soil class, C. Similar calculations are performed 

for soil class E, and the results are presented in Table 2.7. 

 

Table 2.7 Index modifiers for soil classes D and E  
 
Seismic hazard 
level 

Soil 
Class 

Building Class 
WLF WPB SMF SBF SLF SCW SIW CMF 

High 
D -0.3 -0.3 -0.3 -0.3 -0.2 -0.3 -0.2 -0.3 
E -0.7 -1.0 -0.7 -0.8 -0.7 -0.8 -0.5 -0.7 

Moderate 
D -0.5 -0.7 -0.6 -0.5 -0.5 -0.7 -0.3 -0.6 
E -0.5 -0.7 -0.6 -0.5 -0.5 -0.7 -0.3 -0.6 

Low 
D -0.6 -0.7 -0.7 -0.6 -0.6 -0.6 -0.6 -0.7 
E -0.6 -0.7 -0.7 -0.6 -0.6 -0.6 -0.6 -0.7 

  CSW CIW PCW PCF RML RMC URM  

High 
D -0.4 -0.2 -0.1 -0.3 -0.2 -0.2 -0.2  
E -0.4 -0.2 -0.1 -0.3 -0.2 -0.2 -0.2  

Moderate 
D -0.6 -0.5 -0.7 -0.5 -0.8 -0.8 -0.4  
E -0.6 -0.5 -0.7 -0.5 -0.8 -0.8 -0.4  

Low 
D -0.7 -0.6 -0.5 -0.7 -0.6 -0.7 -0.4  
E -0.7 -0.6 -0.5 -0.7 -0.6 -0.7 -0.4  

  

Index modifiers for plan and vertical irregularities  

Any type of plan irregularity is directly related to the characteristics of each individual 

building, and so it is somewhat difficult to obtain any index modifier that can precisely 

account for the effect of this phenomenon (ATC 2002b). Similar to the FEMA 155 approach, 
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plan irregularity modifiers (Table 2.8) are computed by first calculating an interim index 

using a 50% increase in the seismic demand of each seismic hazard level (Table 2.2) to take 

into account the effect of the increased seismic load due to this type of irregularity. The index 

modifier is then calculated based on the difference of this interim index and the SVIs in 

Table 2.6. The seismic design code level and soil class assumed are the same ones considered 

in the calculation of the original SVIs.  

 

Table 2.8 Index modifiers for plan irregularities 
 

Seismic hayard 
level 

Building Class 
WLF WPB SMF SBF SLF SCW SIW CMF 

High -0.5 -0.8 -0.6 -0.7 -0.5 -0.6 -0.4 -0.6 
Moderate -0.8 -0.8 -0.7 -0.7 -0.6 -0.8 -0.7 -0.7 
Low -0.9 -0.9 -0.9 -0.8 -0.9 -0.9 -0.9 -0.9 
 CSW CIW PCW PCF RML RMC URM  
High -0.8 -0.4 -0.4 -0.7 -0.6 -0.6 -0.4  
Moderate -0.8 -0.7 -0.9 -0.7 -0.8 -0.8 -0.5  
Low -0.9 -0.9 -0.8 -0.9 -0.9 -0.9 -0.5  

 

Because of the large variety of factors that can cause vertical irregularity in a building, it is 

not easy to numerically quantify the effect of this type of irregularity on SVIs. Similar to the 

FEMA 154 and FEMA 155 methodology, these index modifiers are calculated based on the 

assumption that, were they the only modifiers to be considered in the evaluation process, the 

final index would be below the cutoff index (which will later be shown to be equal to 2'). The 

values of these irregularity modifiers are provided in Table 2.9. 

  

Because of the minor risk in regions with low seismic hazard, the vertical irregularity 

modifiers are considered the same as for the moderate seismic hazard level regions, meaning 

that in regions with low seismic hazard, the vertical irregularity modifier does not solely 

result in a final index smaller than the cutoff index. 
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Table 2.9 Index modifiers for vertical irregularities 
 
Seismic hazard 
level 

Building Class 
WLF WPB SMF SBF SLF SCW SIW CMF 

High -1.4 -2.1 -0.9 -1.1 NA -0.9 NA -0.6 
Moderate -3.1 -3.5 -2.0 -2.2 NA -2.0 -1.9 -1.6 
Low -5.5 -3.5 -2.0 -2.2 NA -2.0 -1.9 -1.6 
 CSW CIW PCW PCF RML RMC URM  
High -1.0 NA NA -0.7 -0.7 -0.7 NA  
Moderate -2.0 -1.5 NA -1.7 -2.2 -2.3 -1.0  
Low -2.0 -1.5 NA -1.7 -2.2 -2.3 -1.0  

Note: NA, Not Applicable 

 

Index modifier for design and construction date  

These modifiers account for SVI variations attributable to different building design and 

construction dates than those assumed in the calculation of the SVIs. The criteria proposed in 

Table 2.5, which specify the assumed seismic code design levels for various time domains 

(post-1970, 1953-1970, and pre-1953), are used in the development of these index modifiers. 

Post-benchmark modifiers are calculated from the difference between an interim SVI for 

each seismic hazard level and the original SVI for each building class. The interim indices 

are calculated for buildings designed after the benchmark year (i.e., when provisions were 

revised and improved in the seismic code of Canada) using the application capacity and 

fragility curve data for the appropriate design level. The soil type used in these calculations is 

class C.  

 

The methodology for the calculation of the pre-code design modifiers is similar to that 

mentioned above, but with just one exception: the pre-code modifiers do not apply for 

regions with low seismic hazard, where the design level considered in Table 2.5 is constant 

and independent of the construction year. The values calculated for these modifiers are 

provided in Tables 2.10 and 2.11.  
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Table 2.10 Index modifiers for post-benchmark buildings 
 
Seismic hazard 
level 

Building Class 
WLF WPB SMF SBF SLF SCW SIW CMF 

High 0.7 1.4 1.4 1.1 0.1 1.0 NA 1.0 
Moderate 0.0 0.7 0.8 0.8 0.6 1.0 NA 1.1 
Low 0.0 0.7 0.4 0.5 0.4 0.5 0.5 0.4 
 CSW CIW PCW PCF RML RMC URM  
High 0.6 NA 0.6 0.5 0.4 0.5 NA  
Moderate 1.2 NA 0.0 1.1 0.4 0.4 NA  
Low 0.3 0.6 1.2 0.2 0.8 0.7 0.8  

Note: NA, Not Applicable 

 

Table 2.11 Index modifiers for pre-code buildings 
 
Seismic hazard 
level 

Building Class 
WLF WPB SMF SBF SLF SCW SIW CMF 

High 0.0 -0.9 -0.7 -0.8 -0.6 -0.8 -0.2 -0.7 
Moderate 0.0 -0.5 -0.3 -0.3 -0.3 -0.3 -0.2 -0.3 
Low NA NA NA NA NA NA NA NA 
 CSW CIW PCW PCF RML RMC URM  
High -1.0 -0.2 -0.5 -0.9 -0.8 -0.8 -0.2  
Moderate -0.3 -0.4 -0.7 -0.2 -0.5 -0.5 -0.4  
Low NA NA NA NA NA NA NA  

Note: NA, Not Applicable 

 

Index modifiers for mid-rise and high-rise buildings  

Two sets of interim indices for each seismic hazard level, one for mid-rise and the other for 

high-rise buildings, are calculated from the capacity and fragility curves data (NIBS 2003) 

for midrise and high-rise buildings, respectively. The modifiers for mid-rise buildings are 

then computed by deducting the original SVIs obtained for low-rise structures from the 

interim indices calculated for mid-rise buildings. A similar procedure is used for high-rise 

buildings. The NBCC 2005 (NRCC 2005) reference soil class is considered in the 

calculations of the above interim indices. The results are shown in Table 2.12 and 2.13. 
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Table 2.12 Index modifiers for mid-rise buildings 
 
Seismic hazard 
level 

Building Class 
WLF WPB SMF SBF SLF SCW SIW CMF 

High NA NA 0.5 0.3 NA 0.5 0.5 0.5 
Moderate NA NA 0.3 0.1 NA 0.3 0.2 0.3 
Low NA NA -0.7 -0.5 NA -0.3 -0.5 -0.4 
 CSW CIW PCW PCF RML RMC URM  
High 0.2 0.4 NA 0.2 0.5 0.5 0.2  
Moderate 0.2 0.0 NA 0.2 0.0 0.0 0.6  
Low -0.5 -0.4 NA -0.6 -0.1 -0.3 1.0*  

NA: Not Applicable 

*Modifier decreased from 1.9 to 1.0, based on judgment, to cause more buildings to have final 
indices less than 2.0 

 

Table 2.13 Index modifiers for high-rise buildings 
 
Seismic hazard 
level 

Building Class 
WLF WPB SMF SBF SLF SCW SIW CMF 

High NA NA 0.8 1.0 NA 0.9 1.0 0.9 
Moderate NA NA 1.0 1.0 NA 0.7 0.6 0.9 
Low NA NA 0.6 0.9 NA 0.0 -0.2 -0.2 
 CSW CIW PCW PCF RML RMC URM  
High 0.7 0.7 NA 0.4 NA 0.7 NA  
Moderate 0.6 0.1 NA 0.3 NA 0.1 NA  
Low -0.6 -0.7 NA -0.7 NA -0.4 NA  

NA: Not Applicable 

 

2.6 Cutoff index  

According to Equation 2.7, the SVI is proportional to the collapse probability of a building at 

a specific level of seismic hazard. Normally, a cutoff index determines whether further 

seismic evaluation is needed for that structure. The cutoff index for any region can be 

calculated by conducting a cost-benefit analysis that compares the costs of a detailed review 

with the benefits of increased seismic safety (ATC 2002b). As an example, Table 2.14 

presents the building typology distribution of a city with a high seismic hazard, a population 

of 10 000, and a building inventory of 3000 structures. Based on the SVIs calculated for 
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different building classes in Table 2.6, the approximate number of buildings expected to 

collapse is computed assuming that no index modifier is applicable. It can be seen that the 

total number of the buildings to collapse is 32, which is about 1.06% of the building 

inventory. This represents an index of 1.97 according to the definition of the SVI in Equation 

2.7.  

 

    (2.8) 

 

Table 2.14 Example 1 building inventory used to evaluate the cutoff index 
 

Building 
Class 

No. of 
Buildings 

SVI 
Probability of 
Collapse 

No. of buildings 
expected to collapse 

URM 1320 1.8 0.0158 21 
SCW 300 2.8 0.00158 0 
SIW 900 2.1 0.00794 7 
CIW 240 1.8 0.0158 4 
WLF 240 3.3 0.000501 0 
Total : 3000   32 

Note: SVI, structural vulnerability index 

 

This example is repeated for another region with high seismic hazard but a different building 

inventory of 2500 buildings (Table 2.15). It is observed that the total number of the buildings 

to collapse will be 13, which represents an index of 2.3 in this case.  

 

Ideally, each community should give some thought to the costs and benefits associated with 

seismic safety, and then decide what cutoff index is appropriate for their particular situation. 

According to the above explanation, for the province of Quebec, a cutoff index equal to 2 can 

be considered acceptable for all building classes at this time. An SVI of 2 represents a 1% 

probability of collapse, given the considered level of seismic hazard for the area. 

 

 

 

- Log10[1.06%] = 1.97 
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Table 2.15 Example 2 building inventory used to evaluate the cutoff index 
 

Building Class 
No. of 
Buildings 

SVI 
Probability of 
Collapse 

No. of buildings 
expected to collapse 

URM 700 1.8 0.0158 11 
CMF 175 2.5 0.00316 1 
WLF 1625 3.3 0.000501 1 
Total : 2500   13 

Note: SVI, structural vulnerability index 

 

2.7 Discussion of the SVI scores  

The differences between the indices obtained here (Table 2.6) and the scores presented in the 

latest edition of FEMA 154 demonstrate the effect of the seismic demand modification on 

SVI scores (Figures 2.7, 2.8, and 2.9). It should be noted that although different assumptions 

are made in the calculation of these indices in some cases (i.e., the assumption for the 

reference soil), the calculated indices show a trend similar to that seen with the FEMA 154 

scores.  

 

For region with high seismic hazard, the indices developed for Quebec are close to the 

FEMA 154 scores, except in the case of light wood frame buildings (WLF). This is a result 

of a difference in the seismic demand spectrum shape as shown in Figure 2.10. The shape of 

the spectrum for regions with high seismic hazard in Quebec in comparison with the one for 

the spectrum of FEMA 154 results in a higher performance point for the case in Quebec 

which leads to a higher vulnerability index. The same explanation applies to the differences 

found between the indices calculated for the URM building class in regions with moderate 

and low seismic hazard in Quebec and the equivalent indices calculated in FEMA 154. For 

the moderate and low seismic hazard regions in Quebec, FEMA 154 scores are generally 

smaller than indices developed in this research. According to Equation 2.7, this means that 

the performance points in FEMA models have generally larger values than the performance 

point values here. 
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A comparison of Figures 2.7 through 2.9 shows that for most of the building classes, the 

differences between the indices developed in this chapter and the basic structural hazard 

scores of FEMA 154 decrease when the seismic hazard level increases. Therefore, for 

regions with higher seismic hazard levels, the shape of the capacity curve could become an 

important factor in calculating the performance point in the capacity spectrum method. In 

other words, capacity (and consequently the fragility) curves which are developed based on 

the regional structural properties for common building classes in an area should be used in 

the process of calculating such indices.   
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Figure 2.7 Comparison of the seismic vulnerability indices (SVI) in Quebec and the 
basic structural hazard (BSH) scores in the USA, in regions with high seismic hazard.  
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Figure 2.8 Comparison of the seismic vulnerability indices (SVI) in Quebec and the 
basic structural hazard (BSH) scores in the USA, in regions with moderate seismic 

hazard.  
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Figure 2.9 Comparison of the seismic vulnerability indices (SVI) in Quebec and the 
basic structural hazard (BSH) scores in the USA, in regions with low seismic hazard.  

 

 

Figure 2.10 Graphical illustration of the  
spectrum shape effect on the calculation of  

the performance point for WLF class. 
 

WLF capacity curve  

Demand spectrum of FEMA 

Demand spectrum of high seismic 
hazard regions in Quebec 
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2.8 Application of proposed procedure  

The adapted RVS method proposed in this chapter can be used to pursue two objectives: (i) 

establishment of a priority list for buildings in view of a more detailed evaluation and (ii) 

estimation of the damage distribution for a large population of buildings. To ascertain the 

applicability of the proposed method in establishing priorities, the result of a recent 

comprehensive study of a group of buildings in Quebec City using the proposed RVS method 

is compared with results obtained using the current Canadian procedure (NRC-IRC 1992) on 

the same building population. Building information was gathered through the review of 

available documentation (drawings and reports) and on-site visual inspections of the 106 

buildings included in the study. The seismic soil class was obtained from the microzonation 

maps of the Quebec City area (LeBoeuf and Nollet 2006). 

 

It is observed that for all structures considered ''critical'' according to the current Canadian 

procedure, the final index determined using the proposed procedure is below 1.9 (15% of the 

buildings). There are some constructions with a final index below 2.0 that obtained a ''high'' 

or ''moderate'' priority label using the Canadian procedure (8% and 11%, respectively). 

Seventy-eight percent of the buildings that had final indices above 2.5 were considered to be 

low priority in terms of the need for further study, based on the current Canadian procedure.  

 

If an SVI lower than 2.0 is considered equivalent to the ''critical'' and ''high'' categories of the 

current Canadian procedure, the developed procedure turns out to be more sensitive in 

determining which buildings need further evaluation (49% versus 26%). This can be 

explained by a number of factors:  

 

5. The seismic priority index (SPI) indicates if the structure is in conformity with the 

seismic provision of the 1990 NBCC (NRCC 1990), while the final indices of the 

developed RVS method is an indication of the probability of collapse.  
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6. In the developed RVS method, the index modifiers for vertical irregularity have been 

calculated assuming that, if these irregularities were the only modifiers to be considered 

in the evaluation process, the final index would be below the cutoff.  

 

7. Consideration of site effect (soil class) is observed to have a more significant effect on 

indices calculated using the developed RVS method than those obtained using the current 

Canadian procedure.  

 

Both methods offer the possibility of ranking the buildings according to structural seismic 

vulnerability; however, only the adapted RVS method can lead to a damage probability 

distribution of building groups in the region. Based on the building type distribution in the 

Quebec City project (Figure 2.11), and similar to the examples presented in the cutoff index 

section, the distribution of the collapse probability for the different building classes can be 

seen in Figure 2.12.  
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Figure 2.11 Distribution of building types in  
the Quebec City project.  
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Figure 2.12 Distribution of collapse probability among existing  
building types in a damage scenario in the Quebec City project. 

 

It should be noted that Fig. 2.12 shows the contribution of the different building types in a 

damage scenario given the seismic demand considered (spectral acceleration values for 

regions with moderate seismic hazard in Quebec). 

 

2.9 Summary 

A score assignment method for the seismic vulnerability evaluation of a group of buildings in 

old sectors of Quebec was developed in this chapter. The methodology is adapted to the 

seismic demand in the province in the form of the spectral acceleration response values of the 

National building code of Canada (NRCC 2005). Considering that most of the building 

classes observed in the old sectors of the province—exceptions are masonry structures—can 

be represented by the current Canadian building typology (NRC-IRC 1992) or the ones 

available in FEMA 154 (ATC 2002a), the available building classification in (NRC-IRC 

1992) and the capacity and fragility curves presented in NIBS (2003) were used in the 

procedure of calculating the indices for a new rapid visual screening method.   

 



 

CHAPTER 3 
 
 

PERFORMANCE-BASED SEISMIC VULNERABILITY EVALUATION OF 
BUILDINGS WITH MASONRY IN QUEBEC: STRUCTURAL ANALYSE STAGE 

 

3.1 Introduction 

The purpose of this chapter is to present a complete approach to the development of dynamic 

capacity and fragility curves for two of the building classes in Table 1.5: (1) unreinforced 

brick masonry buildings with wood floors (URMW) which represent the structures in the old 

industrial sectors at the beginning of the century, and (2) RC frames with unreinforced 

masonry infill walls (CIW) which used to be a very popular building type between 1930 and 

1950. 

 

3.2 Description of the studied buildings 

The unreinforced brick masonry construction is used widely in old sectors of the province. 

Because of the common vulnerability of masonry to resist lateral loads, this building class is 

selected for further studies in this research work. RC frames with unreinforced masonry infill 

walls, on the other hand, were used as a very common construction in Quebec before the 

official regulation for seismic-resistant design of buildings in Canada in historical sectors of 

Montreal and other cities in the province. Adequate knowledge of the dynamic behaviour is 

required to assess the seismic vulnerability of those structures and to reduce loss to lives and 

properties associated with possible structural failures. This building class has been the 

subject of many researches due to the complexity of the infill walls effects on the overall 

dynamic behaviour of this building class. For this reason, a typical building from this class is 

studied later in this chapter. 
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3.2.1 First studied building: unreinforced brick masonry (URMW) 

The studied building in this section is a masonry building which typifies the industrial 

structures built in the beginning of the century in Eastern Canada (Lefebvre 2004). Figure 3.1 

shows a view of such a building with window openings on the two adjacent faces.  

 

 
 

Figure 3.1 Three-dimensional views of the unreinforced masonry structure. 
 

The structural characteristics of the building are shown in Table 3.1, and the material 

properties used in the dynamic analysis of this chapter are indicated in Table 3.2. These 

properties are chosen based on a literature review of buildings with masonry construction in 

Eastern Canada and especially in Quebec (Canadian Standards Association 2004; Beaulieu 

2006; Nollet et al. 2009).  
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Table 3.1 Structural characteristics of the building  
shown in Figure 3.1 

 
 

 

 

 

 

 

 

 

 

 

 

 

Table 3.2 Material properties used in the  
Incremental Dynamic Analyses 

 
 Brick Mortar 
Modulus of elasticity (GPa)  14 0.5 

Compression strength (MPa) 10 1.0 

Tensile strength (MPa) 1.0 0.5 

Density (KN/m3) 18 15 

 

3.2.2 Second studied building: RC frame with unreinforced masonry infill walls 
(CIW) 

The structural model for the concrete frame building in this study is constructed based on the 

typical geometrical properties of this building class in Quebec (Lefebvre and Nollet 2009). A 

3-D view of the building is shown in Figure 3.2.  

 

 URMW building 

Number of stories  6 

Year of construction 1905 

Structural system 
Columns and beams of 

steel and wood 

Lateral load  

Resisting system 
Exterior masonry walls 

Floor material Wood 

1st mode period (longer dir.) T= 0.38 sec. 

1st mode period (shorter dir.) T= 0.69 sec. 
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Figure 3.2 Three-dimensional views of the RC  
frame with unreinforced masonry infill walls. 

 

The structural characteristics of this building are shown in Table 3.3. The material properties 

for the concrete used in the dynamic analysis of this section, on the other hand, are shown in 

Table 3.4.  

 

Table 3.3 Structural characteristics of the building shown in Figure 3.2 
 
 

 

 

 

 

 

 

 

 

 

 CIW building 

Number of stories  5 

Year of construction 1930-1950 

Structural system Concrete columns and beams 

Lateral load Resisting system Moment resisting joints and infill walls 

Floor material Concrete 

1st mode period (longer dir.) T= 0.29 sec. 

1st mode period (shorter dir.) T= 0.37 sec. 
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These properties are chosen based on a literature review of buildings with concrete frame 

with masonry in-fills construction in Eastern Canada and especially in Quebec (Gauthier 

1976; Biddah 1997; Arrien and Lemyre 2003). For masonry, the same properties indicated in 

Table 3.2 are applied.  

 

Table 3.4 Properties used for the concrete  
in the Incremental Dynamic Analyses  

 

 Concrete 
Modulus of elasticity (GPa)  23.2 

Compression strength (MPa) 21 

Density (KN/m3) 23.6 

 

3.3 Analytical modeling 

3.3.1 Application of the Applied Element Method for Masonry 

To apply the AEM method (explained in section 1.7.3) for masonry, two types of springs are 

needed to represent bricks and the brick-mortar interaction. The values of stiffness for 

springs which model forces and displacements in bricks are calculated from Equation 1.10 as 

they connect elements of identical materials. For brick-mortar springs, however, the 

equivalent values for normal and shear stiffness (Kneq and Kseq) are calculated based on a 

series-system of springs shown in Figure 3.3. The equivalent stiffness is therefore calculated 

as follows. 
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Figure 3.3 Modeling masonry in AEM. 
 

Where Eb, Gb, Em, and Gm are the brick and mortar Young’s and shear modulus, respectively. 

On the other hand, t and tm are the element and mortar thicknesses. Referring to Figure 1.6, 

we observe that failure modes 1 and 2, which are joint de-bonding and unit sliding along bed 

or head joints, should be reflected in brick-mortar springs and failure mode 3, defined as 

units cracking under direct tension, has to be modeled with brick springs. 

 

Three degrees of freedom are assumed for each element, one for rotation and two for 

translation in X and Y directions. Since internal deformations are represented by the springs, 

the assembly of elements is deformable, in spite of the fact that an element’s shape remains 

unchanged during the analysis. The elements in Figure 1.8 are connected by one pair of 

normal and shear springs at a general point. The components of the 6×6 stiffness matrix is 

determined by calculating the forces required at the centroid of each element to restrain all 

other degrees of freedom, and to satisfy equilibrium conditions against the unit displacement 

at the corresponding degree of freedom. Equation 3.3 shows the components of the upper left 

quarter of the stiffness matrix; for masonry, Kneq and Kseq are calculated from Equations 3.1 

and 3.2. Other parameters in Equation 3.3 are shown in Figure 1.8. As seen in this equation, 

the matrix components depend on the spring’s stiffness and the contact point location. It 

should be noted that Equation 3.3 presents the stiffness matrix for a case in which only one 

pair of springs exists between the two elements. However, the global stiffness matrix is 

determined by combining the stiffness matrices of all the individual spring pairs around the 

element.  

 

tm Km 

Kb 
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a
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3.3.2 Application of AEM in the Incremental Dynamic Analysis 

In a performance base seismic evaluation (PBSE) process, the calculated responses are 

sensitive to the characteristics of the individual ground motion used as the seismic input. 

Therefore, different ground motion records are required to obtain a good estimation of the 

building’s responses. To this end, the Incremental Dynamic Analysis (IDA) is shown to be an 

effective tool for thoroughly examining the structural performance of buildings under seismic 

loads (Christovasilis, Filiatrault et al. 2009; Lagaros 2009). An IDA involves subjecting a 

structural model to various ground motion records, each scaled to multiple levels of intensity 

up to the point at which a limit state is reached (Vamvatsikos and Cornell 2002). The 

approach has the potential to demonstrate the variation of structural responses, as measured 

by a damage measure (DM, e.g., inter-storey drift), versus the ground motion intensity level, 

measured by an intensity measure (IM, e.g., peak ground acceleration or the first-mode 

spectral acceleration). In other words, the IDA procedure provides dynamic capacity curves 

for different ground motion levels.  

 

To apply the Applied Element Method in the IDA procedure, large deformations of an 

element under dynamic loads are calculated by the following general dynamic equation of 

motion (Tagel-Din and Meguro 2000). 

 

 [ ][ ] [ ][ ] [ ][ ] Gm RRtfUKUCUM ++Δ=Δ+Δ+Δ )('''   (3.4)  

 

In Equation 3.4, [M] is the mass, [C] is the damping, and [K] is the stiffness matrix. 

Moreover, ∆ƒ(t) is the incremental applied load vector, [∆U] is the incremental displacement 
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vectors, and [∆U’] and [∆U”] are the incremental velocity and acceleration vectors, 

respectively. The vector Rm in Equation 3.4 stands for the residual forces caused by cracking, 

or the incompatibility between strains and stresses at the spring location due the nonlinear 

behaviour of materials. The vector RG, on the other hand, represents the residual forces 

caused by geometrical changes of the structure during loading. In this regard, the AEM has 

an advantage over the FEM noting that the latter considers the redistribution of internal 

forces resulting from geometrical changes by adopting a geometrical stiffness matrix. The 

nonlinear material behavior in the AEM is taken into account in calculating [K] and Rm. The 

reader is referred to (Tagel-Din and Meguro 2000) for more information regarding the 

solution process of Equation 3.4, the Eigen value analysis, and the methodology to calculate 

the displacement of elements. 

 

3.4 Structural analysis stage for the URMW building    

A total number of 5 springs is used on each face of the elements in the Applied Element 

Model for the URMW building. The size of the meshing is picked in a way to avoid creating 

elements with large aspect ratios. Therefore, an approximate number of 10’000 elements are 

used for this building. The floors are modeled as wood elements (semi-rigid). However, as 

they are of less interest, in comparison to the masonry walls, beams, and columns in this 

study, a bigger meshing size is chosen for them. 

   

3.4.1 Time-history analysis of the building: selection of Accelograms 

Although it is possible to utilize a single record in an IDA procedure, it is essential to 

consider variations in ground motion content when utilizing IDA in a performance-based 

assessment. For this reason, the selection of ground motion records that takes into 

consideration site characteristics and source mechanisms is critical. Previous studies show 

that 10 to 20 records are sufficient to predict, with acceptable accuracy, the seismic demand 

of a mid-rise building (Shome et al. 1998). Therefore, the time-history analyses of this 

chapter have been carried out using a set of 14 synthetic and historic ground motion records. 

The synthetic ground motions considered in this study belong to three M and R categories 
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chosen based on seismic hazard de-aggregation of Eastern Canada (Halchuk et al. 2007) 

which determine the dominant earthquakes contributing to spectral acceleration values of a 

site. For each category, four sets of ground motions have been developed with identical 

durations (Atkinson and Beresnev 1998). The historic ground motion records used, on the 

other hand, include the data from the Saguenay1 (1988) and Nahanni2 (1985) earthquakes. 

Table 3.5 shows the characteristics of each set of these ground motion records. Figure 3.4 to 

Figure 3.7 illustrate examples of these ground motion records along with their spectral 

acceleration curves. 

 

Table 3.5 Characteristics of records used in the Incremental Dynamic Analyses 
 

  M R 
(km) 

Duration 
(sec.) 

Time step 
(sec.) 

PGA (g) Site 

C
at

eg
. 1

 

Set1 6.0 30 8.8 0.01 0.43 - 

Set2 6.0 30 8.8 0.01 0.52 - 

Set3 6.0 30 8.8 0.01 0.47 - 

Set4 6.0 30 8.8 0.01 0.44 - 

C
at

eg
. 2

 

Set1 7.0 70 24.0 0.01 0.30 - 

Set2 7.0 70 24.0 0.01 0.29 - 

Set3 7.0 70 24.0 0.01 0.34 - 

Set4 7.0 70 24.0 0.01 0.29 - 

C
at

eg
. 3

 

Set1 7.0 20 15.2 0.01 1.71 - 

Set2 7.0 20 15.2 0.01 1.69 - 

Set3 7.0 20 15.2 0.01 1.93 - 

Set4 7.0 20 15.2 0.01 1.62 - 

H
is

to
ri

c 
E

ar
th

Q
. Saguenay 

(1988) 
5.9* - 17.7 0.005 0.12 S7 (Baie-St-

Paul) 
Nahanni 
(1985) 

6.8* - 9.8 0.005 0.07 S3 (Battlement 
Creek) 

   
*
 Moment magnitude  

                                                 
1 http://earthquakescanada.nrcan.gc.ca/historic_eq/20th/saguenay88/saguenay88_e.php 
2 http://earthquakescanada.nrcan.gc.ca/historic_eq/20th/nahanni/nahanni85_e.php 
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Figure 3.4 M6D30 set 1 time-history record used in the IDA of the URMW.  
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Figure 3.5 M7D70 set 2 time-history record used in the IDA of the URMW. 
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Figure 3.6 M7D20 set 3 time-history record used in the IDA of the URMW. 
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Figure 3.7 Saguenay S7 time-history record used in the IDA of the URMW. 
 

 

Studies show that scaling records to a specific value within each category, e.g. the bin-

median spectral acceleration, reduces the dispersion of nonlinear responses without affecting 

the median estimates of most measures of nonlinear behaviour (Shome et al. 1998). The same 

reference states that this scaling also decreases the response dependency to M and R given a 

specific Sa intensity. The bias in estimating structural responses and the number of required 

records are also shown to decrease significantly when records are scaled to match a target 

spectrum over a range of periods (Hancock et al. 2008).  
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The selected ground motion records used for the time history analyses have to be compatible 

with the seismic hazard of the building’s site. Considering that one objective of this study is 

to assess the seismic performance of masonry buildings in Quebec (but not at any specific 

location), the ground motion records of Table 3.5 are scaled to a target spectrum (Table 3.6), 

in the frequency domain, that represents the spectral acceleration medians of regions with a 

high seismic hazard in Quebec, as defined in Table 2.2. By matching those accelograms to 

such a target spectrum, we also aim to avoid the bias reported in the structural responses 

(Baker and Cornell 2006) when the accelograms are magnified by big scaling factors in the 

incremental dynamic analysis, to push the structure to enter its nonlinear range.  

 

The scaling process starts with calculating the spectral acceleration values of each 

accelogram in Table 3.5. Next, the calculated spectral acceleration values at different periods 

are matched to the target spectrum within 3 iterations in the frequency domain. In this way, 

the frequency content of each ground motion record does not change. Finally, an inverse 

Fourier Transform is applied to calculate the associated ground motion records. Figure 3.8 

shows the matched spectral acceleration values of the 14 accelograms. The matching results 

in 14 sets of accelograms that are then used in the IDA of a masonry building.  
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Figure 3.8 5%-damped elastic response from  
records in Table 3.3 matched to  

the target spectrum. 
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Table 3.6 Spectral acceleration values of the  
target spectrum at different periods  

 
T (sec.) 0.2 0.5 1.0 0.2 

Sa (T) 1.22 0.66 0.32 0.10 

 

3.4.2 Application of the Incremental Dynamic Analysis  

The application of the IDA method for the masonry building helps us to calculate 

displacements thoroughly, and to observe collapse progress under seismic loads. For the first-

mode-dominated masonry building shown in Figure 3.1, the spectral acceleration value at the 

first-mode period is selected as the intensity measure (IM) for the IDA because the structure 

is sensitive to the power of the frequency content near the first-mode. In this way, no extra 

energy is imposed on the structure as a result of increasing the intensity of the ground motion 

records in the Incremental Dynamic Analysis. The inter-storey drift (ISD), on the other hand, 

is picked as the damage measure (DM) because it relates well to joint rotations and the storey 

local and global collapse (Vamvatsikos and Cornell 2002).  

 

To assess the masonry building’s strength in both directions, the IDA curves are developed 

for both longer and shorter directions, separately. In other words, the structure is assumed as 

two systems with different first modes of vibration, T1= 0.69 sec. and 0.38 sec. in the shorter 

and longer directions, respectively. Overall, 308 time-history analyses have been carried out, 

on an analytical model which consists of about 10000 elements, using the Extreme Loading® 

for Structures (Applied Science International 2007) which is a AEM-based software. 

Verifications of the application of this tool for the nonlinear analysis of masonry and 

concrete structures are presented in Appendix II.  

 

Each of the 14 ground motions presented previously is scaled to multiple levels of intensity 

according to its spectral acceleration value at the building’s first-mode period in each 

direction and the nonlinear dynamic analyses are carried out at each level of intensity using 

the Applied Element Method. The intensity measure is increased up to the point at which a 

small increase in that value results in a large increase in the damage measure (inter-storey 



 80

drift) or until complete collapse occurs in the analytical model. The results are shown in 

Figure 3.9 where the incremental dynamic analysis curves for the masonry building are 

illustrated in both the longer and shorter directions for all ground motions. 

 

0.0

0.2

0.4

0.6

0.8

0.000 0.002 0.004 0.006 0.008
Max. Inter-storey Drift

"f
ir

st
 m

od
e"

 S
a(

g)

 

Figure 3.9 IDA curves for both the longer and shorter 
directions of the URMW building. 

 

3.4.3 Distribution of structural performance levels 

The next step toward the PBSE of the masonry building is to determine the limit states on the 

IDA curves shown in Figure 3.9. To conduct the seismic vulnerability evaluation with a 

performance-based approach, the three structural performance levels—Immediate Occupancy 

(IO), Life Safety (LS), and Collapse Prevention (CP)—defined in FEMA 356 (ASCE 2000) 

are used here. Table 3.7 presents the definition of each performance level for unreinforced 

masonry walls along with the typical inter-storey drift ratios for the in-plane behaviour (bed-

joint sliding). These typical values are not used to determine the limit states here. Instead, in 

this research, the IO limit-state is set as the ultimate point in the elastic region where the 

structure’s stiffness is almost the same as the elastic value, as shown in Figure 3.10. The CP 

limit-state, on the other hand, is defined as the point at which the building is on the verge of 

collapse, but still stable. However, any increase in the lateral force will produce instability in 

the system. Finally, The Life Safety limit state is determined as the point which represents 

three-fourth of the deformation capacity which is the Collapse Prevention level in this 

document (Abrams 2001).  
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Table 3.7 Definition of Structural Performance levels  
taken from ASCE (2000)  

 

Performance 
levels 

Description of damages 
ASCE inter-
storey drift 

ratio 

Interpretation 
of DM in this 

study 

Immediate 
Occupancy (IO) 

Minor cracking of veneers. 
Minor spalling in veneers at 
few corner openings. No 
observable out-of-plane offsets 

0.1% 
Ultimate point 
in the elastic 
region 

Life Safety (LS) 
Extensive cracking. Noticeable 
in-plane offsets of masonry 
and minor out-of-plane offsets 

0.3% 
Three-fourth of 
the deformation 
capacity 

Collapse 
Prevention (CP) 

Extensive cracking; face 
course and veneer may peel 
off. Noticeable in-plane and 
out-of-plane offsets 

0.4% 
The verge of 
collapse, but 
still stable 

 

This means that the LS limit-state is chosen as the point where extensive cracking exists in 

the masonry walls but there is an acceptable safety margin to prevent collapse in the 

structure. Figure 3.11 to Figure 3.13 show the damage states at those performance levels in 

the masonry building subjected to Nahanni’s ground motion record. In Figure 3.11 showing 

the Immediate Occupancy level, minor cracks are seen in the masonry walls around the 

structure. These cracks, however, have not yet affected the lateral strength of the building. At 

the Life Safety level, noticeable cracks are seen in one corner of the building in Figure 3.12. 

The wood slab is also detached from the masonry wall in few places.  In the Collapse 

Prevention level, significant cracks are formed all around the masonry wall in Figure 3.13. 

The slabs are almost detached from the wall. As a result, the building is on the verge of 

collapse, but still stable. Based on the interpretation of the damage measures in Table 3.7, the 

DM and IM values at each performance level are calculated for each ground motion record, 

and presented in Chapter 3.  
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Figure 3.10 IDA curve of the URMW building in 
the shorter direction for Nahanni ground motion. 

 

 

 

Figure 3.11 URMW building at Immediate Occupancy  
level  for Nahanni S3-EN1 ground motion record.  

 

I.O: Figure 2.16 

L.S: Figure 2.17 

C.P: Figure 2.18 
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Figure 3.12 URMW building at Life Safety  
level for Nahanni S3-EN1 ground motion record.  

 

 

Figure 3.13 URMW building at Collapse Prevention  
level for Nahanni S3-EN1 ground motion record.  
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3.5 Structural analysis stage for the CIW building  

The same number of springs per element face (five) is used in the Applied Element Model 

for the CIW building. The size of the meshing is again picked in a way to avoid creating 

elements with large aspect ratios in the beams, columns, and masonry infill walls. Therefore, 

an approximate number of 12’000 elements are used for this building. The RC floors were 

modeled as rigid slabs with bigger meshing size in comparison to the other structural 

elements in the building. The perfect way to model the masonry infill walls would be to 

connect the masonry and the concrete frame with a gap through which only friction forces 

keep the masonry inside the frame. As such precise detailing is not possible, the masonry 

bricks are attached to the concrete elements through springs which have combined properties 

from both materials (Mayorca and Megura 2003).     

 

3.5.1 Time-history analysis of the building: selection of Accelograms 

At the time of this part of the research, synthetic ground motions compatible with the 2005 

National building code of Canada (NRCC 2005) uniform hazard spectrum became available 

(Atkinson 2009). Unlike the synthetic ground motions used for the dynamic analysis of the 

masonry building in the previous section which could only be used to conduct one-

directional structural analysis, these recent ground motions can be used to simulate bi-

directional seismic loads (as a real earthquake) on the structural model. Therefore, in this 

section, full 3D Incremental dynamic Analyses are performed to develop the dynamic 

capacity and fragility curves for the concrete frame building with unreinforced masonry infill 

walls. 

  

To select the ground motion records for the Incremental Dynamic Analyses from (Atkinson 

2009), the spectral acceleration data of the ground motion records for three of the earthquake 

scenarios (M6 at 20-30 km, M7 at 15-25 km, and M7 at 50-100 km) were compared with the 

target spectrum presented in Table 3.6 (Figure 3.14 to Figure 3.16). According to the 

instruction provided in that reference, for each ground motion, the mean of the fraction  
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(Sa target/Sa record)—over a range of period from 0.1 to 0.5 sec. for M6 scenarios and from 0.5 to 

2 sec. for M7 ones—were calculated. Out of the 45 ground motion records in each scenario, 

those sets which have a mean of the fraction (Sa target/Sa record) in the approximate range from 

0.5 to 2.5 and the lowest standard deviation values, were selected (Table 3.8). Later, each 

selected set was scaled to its own (Sa target/Sa record) ratio, according to the instructions in  

Atkinson (2009). Each two sets then formed a group which are used as the two perpendicular 

components of the earthquake scenario in the dynamic analysis of the CIW building.  
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Figure 3.14 Comparison of the spectral  
acceleration data for M6 at D20-30  

ground motion records (Table 3.5) with  
the target spectrum in Table 3.6 
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Figure 3.15 Comparison of the spectral 
 acceleration data for M7 at D15-25  

ground motion records (Table 3.5) with  
the target spectrum in Table 3.6 

Target spectrum 

Target spectrum 
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Figure 3.16 Comparison of the spectral  
acceleration data for M7 at D50-100  

ground motion records (Table 3.5) with  
the target spectrum in Table 3.6 

 

Target spectrum 
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Table 3.8 Characteristics of synthetic ground motion records used in  
the Incremental Dynamic Analyses 

 
  M R (km) Duration 

(sec.) 
Time step 

(sec.) 
PGA 
(g) 

G
ro

up
 

 1
 Set 1 6.0 20-30 7.2 0.002 0.59 

Set 8 6.0 20-30 7.2 0.002 0.63 

G
ro

up
 

 2
 Set 7 6.0 20-30 9.0 0.002 0.65 

Set 9 6.0 20-30 9.0 0.002 0.71 

G
ro

up
  

3 

Set 11 6.0 20-30 4.5 0.002 0.65 

Set 4 6.0 20-30 4.5 0.002 0.86 

G
ro

up
  

4 

Set 5 6.0 20-30 4.5 0.002 0.75 

Set 13 6.0 20-30 4.5 0.002 0.68 

G
ro

up
  

5 

Set 1 7.0 15-25 12.7 0.002 0.73 

Set 6 7.0 15-25 12.7 0.002 0.87 

G
ro

up
  

6 

Set 11 7.0 15-25 13.9 0.002 1.03 

Set 25 7.0 15-25 13.9 0.002 0.59 

G
ro

up
  

7 

Set 18 7.0 15-25 12.0 0.002 0.57 

Set 45 7.0 15-25 12.0 0.002 0.86 

G
ro

up
  

8 

Set 1 7.0 50-100 16.7 0.002 0.47 

Set 8 7.0 50-100 16.7 0.002 0.51 

G
ro

up
  

9 

Set 3 7.0 50-100 12.75 0.002 0.57 

Set 9 7.0 50-100 12.75 0.002 0.50 

G
ro

up
  

10
 Set 7 7.0 50-100 14.0 0.002 0.51 

Set 14 7.0 50-100 14.0 0.002 0.45 

 

 

3.5.2 Application of the Incremental Dynamic Analysis  

Similar to IDA analysis for the URMW building, for the CIW building, the spectral 

acceleration value at the first-mode period is selected as the intensity measure (IM), and the 

inter-storey drift (ISD), on the other hand, is chosen as the damage measure (DM). The two 
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components in each group are scaled to Sa(Tx,5%)—spectral acceleration value at the period 

of the first mode of vibration in the longer direction. This is achieved by scaling the set in 

each group which has higher Sa(Tx,5%), while the second set would follow the scaling rule, 

thus preserving their relative ratio (Lagaros 2009). About 100 three-dimensional time-history 

analyses have been carried out, on an analytical model which consists of about 12000 

elements, using the AEM method. The resulted IDA curves are seen in Figure 3.17.  
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Figure 3.17 Two-dimensional IDA curves  
for the CIW building. 

 

3.5.3 Distribution of structural performance levels 

For each ground motion record group, the intensity measure was increased with the goal to 

reach to a point at which a small increase in that value would result in a large increase in the 

damage measure (inter-storey drift) or until complete collapse would happen in the analytical 

model. However, as seen in Figure 3.17, the IDA curves do not show any sign of complete 

collapse or instability (curves turning downwards) even when the Intensity Measure reached 

a value of 4g. At such an extreme intensity, the infill masonry walls were extensively 

cracked. However, because there was no perfect way to model the out-of-plan behaviour for 

those walls through the connection of the walls with the concrete frame, the walls stayed 

within the concrete frame. This means that the masonry walls would still partially contribute 

to the stiffness of the frames. Nevertheless, in reality this is not the case. For this reason, to 

determine the inter-storey drift values at the three structural performance levels—Immediate 
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Occupancy (IO), Life Safety (LS), and Collapse Prevention (CP)—in the case of the CIW 

building, the values of this drift ratio at the damage states introduced in NIBS (1999) for this 

building class are used instead (Table 3.9). These values are very close to the ISD threshold 

values presented in Rossetto and Elnashai (2005) for this building class. 

    

Table 3.9 Definition of buildings damage states 
taken from NIBS (1999)  

 

Damage level Description 
Inter-storey 
drift ratio 

Slight (≈ IO) 
Diagonal hairline cracks on most infill walls; 
cracks at frame-infill interfaces 

0.0016 

Extensive  

(≈ LS) 

Most infill walls exhibit large cracks; some bricks 
may dislodge and fall; some infill walls may bulge 
out-of-plane; few walls may fall partially or full; 
few concrete columns or beams may fail in shear 
resulting partial collapse.  

0.008 

Complete  

(≈ CP) 

Structure is in imminent danger of collapse due to a 
combination of total failure of the infill walls and 
non ductile failure of the concrete beams and 
columns. 

0.0187 

 

Based on the above assumptions, the DM and IM values at each performance level (damage 

states) are calculated and presented in the next chapter.  

 

3.6 Summary 

In this chapter, for two buildings—an unreinforced masonry building with wood floors and 

an RC frame building with unreinforced masonry infill walls—which represent two of the 

building classes introduced in Table 1.5, the dynamic capacity curves were developed by 

applying the Applied Element Method in an Incremental Dynamic Analyses of the structural 

models. The intensity and damage measures for each building are calculated in the next 

chapter. These values are then used to develop the fragility curves for each building class 

which will be presented in Chapter 4. 



 

CHAPTER 4 
 
 

STRUCTURAL ANALYSIS RESULTS: DAMAGE ANALYSIS AND LOSS 
ANALYSIS STAGES 

 

4.1 Introduction 

In this chapter, the structural analysis results for the dynamic analyses conducted for the two 

buildings explained in Chapter 3 are presented. In the first place, for each building, the values 

of the intensity (IM) and damage measures (DM) on the IDA curves are determined based on 

the criteria explained in sections 3.4.3 and 3.5.3. Later on, the fragility curves for each 

building class studied in this research work are presented along with a loss estimation study 

for each building.  

 

4.2 Damage analysis for the URMW building 

4.2.1 Distribution of the structural performance levels 

Using the assumptions explained in section 3.4.3, the DM and IM values for the URMW 

(shown in Figure 3.1) at each performance level are calculated in each direction, and shown 

in Table 4.1 and Table 4.2. From those performance levels, the Immediate Occupancy and 

the Collapse Prevention are pointed out on the IDA curves, shown in Figure 4.1 (The Life 

Safety performance level is not shown just to avoid unclear figures with several points). 
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Table 4.1 The IM and DM values at the three performance levels  
of the URMW building in the longer direction  

 
 Sa(T1)/g ISD (Inter-storey Drift) 

Ground motion IO LS CP IO LS CP 

M6D30_Set1 0.42 0.59 0.76 8.43E-04 2.17E-03 7.39E-03 

M6D30_Set2 0.40 0.49 0.72 8.24E-04 2.15E-03 7.16E-03 

M6D30_Set3 0.35 0.49 0.62 6.60E-04 2.51E-03 2.86E-03 

M6D30_Set4 0.33 0.46 0.62 6.77E-04 3.18E-03 9.20E-03 

M7D70_Set1 0.21 0.39 0.47 6.01E-04 8.44E-04 4.54E-03 

M7D70_Set2 0.26 0.39 0.52 6.01E-04 1.09E-03 4.23E-03 

M7D70_Set3 0.16 0.25 0.33 4.78E-04 7.46E-04 1.06E-03 

M7D70_Set4 0.26 0.43 0.60 5.67E-04 3.09E-03 1.29E-02 

M7D20_Set1 0.27 0.44 0.54 6.16E-04 2.19E-03 4.00E-03 

M7D20_Set2 0.27 0.36 0.50 4.71E-04 4.03E-03 4.76E-03 

M7D20_Set3 0.16 0.40 0.60 1.18E-03 1.44E-03 3.80E-03 

M7D20_Set4 0.26 0.35 0.48 5.52E-04 7.19E-04 2.69E-03 

Saguenay (S7) 0.24 0.33 0.42 5.59E-04 1.27E-03 9.26E-03 

Nahanni (S3) 0.18 0.27 0.36 4.76E-04 4.31E-04 6.70E-04 
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Table 4.2 The IM and DM values at the three performance levels  
of the URMW building in the shorter direction 

 
 Sa(T1)/g ISD (Inter-storey Drift) 

Ground motion IO LS CP IO LS CP 

M6D30_Set1 0.22 0.30 0.49 2.30E-03 3.81E-03 5.08E-03 

M6D30_Set2 0.21 0.37 0.48 2.36E-03 4.32E-03 5.77E-03 

M6D30_Set3 0.26 0.45 0.56 2.38E-03 5.88E-03 7.84E-03 

M6D30_Set4 0.24 0.37 0.45 2.38E-03 7.77E-03 1.04E-02 

M7D70_Set1 0.16 0.24 0.27 1.73E-03 2.96E-03 3.95E-03 

M7D70_Set2 0.12 0.19 0.26 1.38E-03 1.97E-03 2.62E-03 

M7D70_Set3 0.08 0.09 0.13 9.83E-04 1.08E-03 1.44E-03 

M7D70_Set4 0.11 0.21 0.24 1.12E-03 3.32E-03 4.43E-03 

M7D20_Set1 0.20 0.36 0.43 2.41E-03 3.54E-03 4.73E-03 

M7D20_Set2 0.14 0.33 0.42 1.90E-03 5.18E-03 6.90E-03 

M7D20_Set3 0.13 0.35 0.38 3.45E-03 3.95E-03 5.26E-03 

M7D20_Set4 0.17 0.36 0.42 2.04E-03 5.31E-03 7.075E-03 

Saguenay (S7) 0.15 0.23 0.31 1.70E-03 4.62E-03 6.16E-03 

Nahanni (S3) 0.14 0.24 0.26 2.05E-03 3.33E-03 4.44E-03 
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Figure 4.1 Distribution of the IO and CP performance levels on the URMW’s IDA 
curves.  

 

4.2.2 Development of the fragility curves for the URMW building 

General methodology 

 

According to the definition of the fragility curves presented in Chapter 1, the fragility curves 

can be developed using Equation 1.2 by calculating the median and the standard deviation of 

the logarithmic values of the IM measures at each performance level. The intensity measure 

values that will be calculated in the next chapter for the masonry building and the concrete 

frame building are used to develop the fragility curves at the three desired performance 

levels. 

 

As seen in Equation 1.2, the intensity measure values at each performance levels are 

supposed to have a normal distribution. This assumption is checked through a normality test 

for the IM’s calculated for each building. 

 

Normality check 

 

Example of this check is presented in Figure 4.2 in which the intensity measure values (Sa) in 

Table 4.1 and Table 4.2 at the Collapse Prevention level are plotted along with the values 
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which those measures would have had, were their distribution perfectly normal. As seen, a 

1:1 straight line can be fitted to those data (with R2 = 0.92 and 0.89) which shows that the 

normal distribution assumption for the IM values is completely valid. 

 

  

Figure 4.2 Q-Q plots for the IM values at the Collapse Prevention level.  
 

 

Fragility curves for the URMW building 

 

By calculating the median and the standard deviation of the logarithmic values of the IM 

measures shown in Table 4.1 and Table 4.2 at each performance level, the fragility curves 

can be developed using Equation 1.2. To this end, the first step is to calculate the logarithmic 

values of the IM’s, as shown in Table 4.3 and Table 4.4.  

 

 

 

 

 

 

 

R2 = 0.926 

(b) shorter direction (a) longer direction 

R2 = 0.892 
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Table 4.3 Logarithmic values of the URMW’s intensity measures in  
Table 4.1 for the three performance levels, in the longer direction 

 
 ln[Sa(T1)/g] ln[Sd(T1)] 

Ground Motion IO LS CP IO LS CP 

M6D30_Set1 -0.868 -0.335 -0.281 0.42 0.96 1.01 

M6D30_Set2 -0.908 -0.391 -0.333 0.38 0.90 0.96 

M6D30_Set3 -1.038 -0.638 -0.478 0.25 0.65 0.81 

M6D30_Set4 -1.104 -0.662 -0.476 0.19 0.63 0.82 

M7D70_Set1 -1.328 -0.810 -0.618 -0.04 0.48 0.67 

M7D70_Set2 -1.298 -1.044 -0.692 0.00 0.25 0.60 

M7D70_Set3 -1.840 -0.803 -0.518 -0.54 0.49 0.78 

M7D70_Set4 -1.334 -0.759 -0.728 -0.04 0.53 0.57 

M7D20_Set1 -1.543 -0.813 -0.754 -0.25 0.48 0.54 

M7D20_Set2 -1.340 -0.712 -0.647 -0.05 0.58 0.65 

M7D20_Set3 -1.807 -1.348 -1.114 -0.51 -0.05 0.18 

M7D20_Set4 -1.354 -0.606 -0.506 -0.06 0.69 0.79 

Saguenay (S7) -1.450 -0.899 -0.863 -0.16 0.39 0.43 

Nahanni (S3) -1.730 -1.118 -1.037 -0.44 0.18 0.26 
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Table 4.4 Logarithmic values of the URMW’s intensity measures in  
Table 4.2 for the three performance levels, in the shorter direction 

 
 ln[Sa(T1)/g] ln[Sd(T1)] 

Ground Motion IO LS CP IO LS CP 

M6D30_Set1 -1.518 -1.212 -0.707 0.94 1.25 1.75 

M6D30_Set2 -1.551 -1.001 -0.740 0.91 1.46 1.72 

M6D30_Set3 -1.335 -0.799 -0.587 1.12 1.66 1.87 

M6D30_Set4 -1.430 -1.005 -0.794 1.03 1.46 1.67 

M7D70_Set1 -1.600 -1.034 -0.838 0.86 1.43 1.62 

M7D70_Set2 -1.963 -1.121 -0.864 0.49 1.34 1.59 

M7D70_Set3 -2.006 -1.046 -0.977 0.45 1.41 1.48 

M7D70_Set4 -1.791 -1.022 -0.875 0.67 1.44 1.59 

M7D20_Set1 -1.824 -1.448 -1.313 0.63 1.01 1.14 

M7D20_Set2 -2.133 -1.680 -1.344 0.33 0.78 1.11 

M7D20_Set3 -2.547 -2.415 -2.036 -0.09 0.04 0.42 

M7D20_Set4 -2.248 -1.560 -1.437 0.21 0.90 1.02 

Saguenay (S7) -1.930 -1.478 -1.156 0.53 0.98 1.30 

Nahanni (S3) -1.948 -1.432 -1.342 0.51 1.03 1.12 

 

The median and the standard deviation of those logarithmical values are then computed 

(Table 4.5 and Table 4.6), and used in Equation 1.2 to develop the fragility curves for each 

performance level. The acceleration and displacement based curves are shown in Figure 4.3 

and Figure 4.4, for the longer and shorter directions, respectively. The relation between 

spectral displacement (Sd) and spectral acceleration (Sa) is given in Equation 4.1 in which T is 

the period of the first mode of vibration. 

 

da S
T

S ×





=

2
.2 π

     (4.1)  
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Table 4.5 Median and standard deviation values  
of ln[Sa(g)] shown in Table 4.3 and Table 4.4 

 
 Longer dir. Shorter dir. 

 μ σ μ σ  

IO -1.337 0.308 -1.877 0.338 

LS -0.781 0.269 -1.166 0.412 

CP -0.632 0.242 -0.926 0.390 

 

Table 4.6 Median and standard deviation values  
of ln[Sd(cm)] shown in Table 4.3 and Table 4.4 

 
 Longer dir. Shorter dir. 

 μ σ μ σ  

IO -0.044 0.307 0.582 0.338 

LS 0.513 0.269 1.292 0.412 

CP 0.660 0.242 1.533 0.390 
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Figure 4.3 Fragility curves for the three performance levels,  
URMW longer direction.  
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Figure 4.4 Fragility curves for the three performance levels,  
URMW shorter direction.  

 

 

4.2.3 Combined fragility curves for the URMW building 

Because the synthetic ground motion records used for the URMW building are not developed 

for bidirectional structural analysis, the analytical studies for that building have been 

conducted for the longer and shorter directions of the structure, separately. However, in a real 

situation, the direction in which an earthquake hits a building is arbitrary; therefore, unified 

fragility curves considering the dynamic behaviour of the building in both directions should 

be developed. 

 

To this end, the weakest link theory is applied in this study to obtain the combined fragility 

curves for the masonry building: it is assumed that the overall structural performance of the 

building exceeds any of the limit states—Immediate Occupancy, Life Safety, or Collapse 

Prevention—if the performance level in either direction exceeds those limit states. In other 

words, the building is considered as a series-type system in which the failure of one 

component results in the failure of the system. According to the theory of reliability (Haldar 

and Mahadevan 2000), the first-order upper and lower bounds on the failure probability of 

such a system is defined as follows.  
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Where FCx(z) and FCx(z) are the probability of exceeding a damage state in the longer and 

shorter directions, respectively, and FCT(z) is the building’s overall fragility. The lower 

bound in Equation 4.2 shows the case in which the events are perfectly dependent, and the 

upper bound represents the situation in which the events are mutually exclusive. If exceeding 

the damage levels in the longer and shorter directions are assumed marginally independent, 

Equation 4.2 can be written as follows. 

 

 
yx

i
iTyx zFCzFCzFCzFC

,

)](1[1)()](),(max[ −−≤≤     (4.3) 

 

Equation 4.3 shows that at each IM level, the lower bound of the building’s fragility is the 

fragility of the longer or shorter direction, whichever is weaker, while its upper bound is a 

combination of the fragility of the two main directions.  

 

Using Equation 4.3, the upper and lower bounds of the combined acceleration and 

displacement-based fragility curves for the URMW building are developed and shown in 

Figure 4.5. Results show that the combined acceleration-based fragility curves are closer to 

the fragility curve of the direction that is weaker in strength, which is the shorter direction. 

On the other hand, the combined displacement-based fragility curves are closer to the 

fragility curve of the direction that is stiffer, the longer direction. This means that because of 

the lower level of ductility in the longer direction, applying the same amount of displacement 

in both directions produces more damages in the longer direction than in the shorter one. 
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Figure 4.5 Upper (UB) and lower bounds (LB) of the fragility curves. 
 

4.3 Damage analysis for the CIW building 

4.3.1 Distribution of the structural performance levels 

Using the assumptions explained in Table 3.9, the DM (Inter-storey Drift) and IM (Spectral 

Acceleration) values for the concrete building with masonry infill walls (shown in Figure 

3.2) at each performance level are calculated, and shown in Table 4.7. As seen in that table, 

due to the criteria used to determine the damage measures (DM) in this case, the values of 

Inter-storey Drifts at each performance level is identical. From those performance levels, the 

Immediate Occupancy and the Collapse Prevention are pointed out on the IDA curves, shown 

in Figure 4.6. 
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Table 4.7 The IM and DM values at the three performance levels of the CIW building  
 

 Sa(T1)/g ISD (Inter-storey Drift) 

Ground motion IO LS CP IO LS CP 

M7D20_Group 1 0.33 1.62 2.29 1.60E-03 8.00E-03 1.87E-02 

M7D20_Group 2 0.16 1.43 2.82 1.60E-03 8.00E-03 1.87E-02 

M6D30_Group 3 0.35 1.01 2.80 1.60E-03 8.00E-03 1.87E-02 

M6D30_Group 4 0.10 1.59 4.01 1.60E-03 8.00E-03 1.87E-02 

M7D20_Group 5 0.28 1.49 2.96 1.60E-03 8.00E-03 1.87E-02 

M7D75_Group 6 0.43 1.63 3.40 1.60E-03 8.00E-03 1.87E-02 

M7D75_Group 7 0.34 0.83 1.87 1.60E-03 8.00E-03 1.87E-02 

M6D30_Group 8 0.23 1.19 3.28 1.60E-03 8.00E-03 1.87E-02 

M6D30_Group 9 0.14 0.92 2.88 1.60E-03 8.00E-03 1.87E-02 

M7D75_Group 10 0.21 0.82 2.02 1.60E-03 8.00E-03 1.87E-02 
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Figure 4.6 Distribution of the IO and CP  
performance levels on the CIW’s IDA curves. 
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4.3.2 Development of the fragility curves for the CIW building 

Normality check 

 

Example of this check for the CIW building is presented in Figure 4.7 in which the intensity 

measure values (Sa) in Table 4.7 at the Collapse Prevention level are plotted along with the 

values which those measures would have had, were their distribution perfectly normal. As 

seen, a 1:1 straight line can be fitted to those data (with R2 = 0.86) which shows that the 

normal distribution assumption for the IM values is valid. 

 

 

Figure 4.7 Q-Q plots for the IM values at  
the Collapse Prevention level.  

 

Fragility curves for the CIW building  

 

By calculating the median and the standard deviation of the logarithmic values of the IM 

measures shown in Table 4.7 at each performance level, the fragility curves can be developed 

using Equation 1.2. To this end, the first step is to calculate the logarithmic values of the 

IM’s, as shown in Table 4.8.  

 

 
 

R2 = 0.856 
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Table 4.8 Logarithmic values of the CIW’s intensity measures in  
Table 4.9 for the three limit states 

 

 ln[Sa(Tx)/g] ln[Sd(Tx)] 

Ground Motion IO LS CP IO LS CP 

M7D20_Group 1 -1.103 0.483 0.831 -0.366 1.219 1.567 

M7D20_Group 2 -1.850 0.360 1.035 -1.113 1.097 1.772 

M6D30_Group 3 -1.039 0.007 1.030 -0.302 0.744 1.766 

M6D30_Group 4 -2.291 0.461 1.389 -1.555 1.198 2.125 

M7D20_Group 5 -1.264 0.399 1.084 -0.527 1.136 1.820 

M7D75_Group 6 -0.848 0.489 1.225 -0.112 1.225 1.961 

M7D75_Group 7 -1.092 -0.183 0.628 -0.355 0.553 1.365 

M6D30_Group 8 -1.464 0.171 1.187 -0.727 0.907 1.924 

M6D30_Group 9 -1.962 -0.079 1.059 -1.226 0.657 1.796 

M7D75_Group 10 -1.565 -0.198 0.702 -0.828 0.538 1.439 

 

The median and the standard deviation of those logarithmical values are then computed 

(Table 4.12), and used in Equation 1.2 to develop the fragility curves for each performance 

level. The results are shown in Figure 4.8 and Figure 4.9. 

 

Table 4.9 Median and standard deviation  
values for ln[Sa(g)] and ln[Sd(cm)], shown in Table 4.8 

 
 ln[Sa(g)] ln[Sd(cm)] 

 μ σ μ σ  

IO -1.448 0.466 -0.711 0.466 

LS 0.191 0.282 0.928 0.282 

CP 1.017 0.236 1.754 0.236 
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Figure 4.8 Acceleration-based fragility curves for  
the CIW building at the three performance levels. 
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Figure 4.9 Displacement-based fragility curves for  
the CIW building at the three performance levels. 

 

4.4 Loss analysis stage: mean annual frequency of exceeding the damage states 

To calculate the MAF (explained in Chapter 1) of exceeding the limit states—Immediate 

Occupancy, Life Safety, and Collapse Prevention, here—for the buildings studied in this 

document, the hazard curves are obtained from the geological studies of Geological Survey 

of Canada conducted for different sites in the country. Considering that the ground motion 

records were scaled to the acceleration spectrum of the regions with high seismic hazard in 
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Quebec, the results are independent from the de-aggregation of any specific city in the 

province (Shome et al. 1998). Therefore, we can assume that, for example, both buildings are 

located in La Malbaie, Quebec, the spectral acceleration values1 at different periods for 

different probabilities of exceedance, for this city is shown in Table 4.10 and illustrated in 

Figure 4.10.  

 

Table 4.10 Spectral acceleration values (g) with different  
probability of exceedance in La Malbaie, Quebec 

 
T(sec.) 2% in 

50 yrs. 
5% in 
50 yrs. 

10% in 
50 yrs. 

40% in 
50 yrs. 

0 (PGA)  1.11 0.79 0.58 0.27 

0.2 2.28 1.53 1.01 0.37 

0.29† 1.95 1.30 0.85 0.30 

0.37† 1.65 1.09 0.71 0.24 

0.38‡ 1.61 1.06 0.69 0.23 

0.5 1.18 0.77 0.48 0.14 

0.69‡ 0.85 0.52 0.30 0.08 

1.0 0.59 0.34 0.20 0.05 

2.0 0.19 0.10 0.06 0.015 

4.0 0.093 0.052 0.030 0.0075 
‡ Concrete frame building’s first mode of vibration in the two directions 
 ‡ Masonry building’s first mode of vibration in the two directions  

 

 

                                                 
1 http://earthquakescanada.nrcan.gc.ca/hazard-alea/interpolat/ 
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Figure 4.10 Spectral acceleration curves with 
 different probability of exceedance in 50 years  

for La Malbaie, Quebec. 
 

4.4.1 URMW building  

For the masonry building, the lower bound of the combined fragility curves shown in Figure 

4.5, which represent a more realistic case of the interaction between the two main directions, 

are applied is Equation 1.9. The hazard curves for the annual probability of exceedance at 

Tx=0.38 sec. and Ty=0.69 sec are illustrated in Figure 4.11. The equations for the curves that 

best fit the hazard data are also shown on that figure.  
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Figure 4.11 Hazard curves calculated at the  
URMW building’s fundamental periods  

in the longer and shorter directions. 
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To calculate the MAF from Equation 1.9, the hazard curves shown in Figure 4.11 are 

illustrated along with the lower bound of the combined fragility curves, in Figure 4.12.  
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Figure 4.12 Lower bound of the combined fragility  
curves along with the hazard curves at the URMW  

building’s dominant modes of vibration. 
 

The MAF at any Sa(T)—the inner part of the integration in Equation 1.9—which is equal to 

the value of the corresponding fragility curve multiplied by the slope of the hazard curve at 

that point is calculated and shown in Figure 4.13 to Figure 4.15, for the three performance 

levels. 
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Figure 4.13 URMW building’s mean annual 
frequency of exceeding the Immediate  

Occupancy performance level, due to Sa = z. 

M
A

F
M

A
F



 108

1.E-06

1.E-04

1.E-02

1.E+00

0 0.2 0.4 0.6 0.8 1
Sa(g)

M
E

F
 o

f 
E

xc
ee

da
nc

e

MAF (T=0.38)
MAF (T=0.69)

 

Figure 4.14 The URMW building’s mean annual  
frequency of exceeding the Life Safety performance  

level, due to Sa = z. 
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Figure 4.15 The URMW building’s mean annual  
frequency of exceeding the Collapse Prevention 

 performance level, due to Sa = z. 
 

The curves shown in any of these figures have a descending trend as the slope of the hazard 

curves tends toward zero for large values of Sa. The total MAF of exceeding any of the 

performance levels, on the other hand, is equal to the area under the curves shown in Figure 

4.13 to Figure 4.15, from zero to the infinity. The MAF of exceedance for each of the two 

dominant modes of vibration are presented in Table 4.11 and Table 4.15. The mean “return 
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period” of the damage-state exceedance, on the other hand, can be computed by inverting the 

values expressed for the MAF of exceedance. 

 

Table 4.11 MAF’s of exceedance and return periods of violating the  
performance levels, displacement in the longer direction (T=0.38 sec.)  

 
 IO LS CP 

MAF of exceedance 0.0228 0.0106 0.0069 

Return period (yrs.) 43 94 144 

 

Table 4.12 MAF’s of exceedance and return periods of violating the  
performance levels, displacement in the shorter direction (T=0.69 sec.) 

 
 IO LS CP 

MAF of exceedance 0.0051 0.0027 0.0018 

Return period (yrs.) 196 370 555 

 

To pick the right MAF for each damage state, the weakest link theory is applied again. As 

seen in Table 4.11 and Table 4.15, the mode of vibration in the longer direction governs in 

this case as it results in higher MAF of exceedance (lower return period, consequently). 

Therefore, the values in Table 4.11 are chosen as the main annual frequency of exceedance 

for the three damage states. It should be noted that the epistemic uncertainties related to the 

structural properties as well as our geological knowledge can influence these results.  

 

4.4.2 CIW building  

For the RC frame building with unreinforced masonry infill walls, the fragility curves shown 

in Figure 4.8 are applied is Equation 1.9. The hazard curves for the annual probability of 

exceedance at Tx=0.29 sec. and Ty=0.37 sec. are illustrated in Figure 4.16. The equations for 

the curves that best fit the hazard data are also shown on that figure.  
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Figure 4.16 Hazard curves at the CIW building’s  
fundamental periods in the longer and shorter directions. 

 

To calculate the MAF from Equation 1.9, the hazard curves shown in Figure 4.16 are 

illustrated in Figure 4.17 along with the calculated fragility curves.  
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Figure 4.17 CIW building’s fragility curves with the  
hazard curves at building’s dominant modes of vibration. 

 

It is seen in Figure 4.17 that the hazard curves for the two dominant period of vibration are 

very close. Therefore, only one of those curves which is the hazard curve for T=0.29 sec. is 
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considered for the rest of our calculations. The MAF at any Sa(T)—the inner part of the 

integration in Equation 1.9—which is equal to the value of the corresponding fragility curve 

multiplied by the slope of the hazard curve at that point is calculated and shown in Figure 

4.18, for the three performance levels. 
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Figure 4.18 The CIW building’s mean annual frequency 
of exceeding the three performance levels, due to Sa = z. 

 
The total MAF of exceeding any of the performance levels, on the other hand, is equal to the 

area under the curves shown in Figure 4.18, from zero to the infinity. The MAF of 

exceedance for each of the performance levels are presented in Table 4.13. The mean “return 

period” of the damage-state exceedance, on the other hand, can be computed by inverting the 

values expressed for the MAF of exceedance. 

 

Table 4.13 MAF’s of exceedance and return periods of  
violating the performance levels 

 
 IO LS CP 

MAF of exceedance 0.014 0.00086 0.00016 

Return period (yrs.) 71 1162 6250 
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As seen in Table 4.13, such a building in La Malbaie exceeds the Collapse Prevention 

performance level for an earthquake with a return period which surpasses the actual NBCC 

2005 design earthquake. This result is surprising considering that concrete frame with 

masonry infill wall structures in Quebec are generally considered to be among the most 

vulnerable structures towards seismic loads (Lefebvre and Nollet 2009). However, as seen in 

Table 4.13, such a result only applies to the Collapse Prevention level (risk of complete 

damage), and the Life Safety and Immediate Occupancy performance levels for the building 

are expected to exceed within the return period considered in the seismic design of buildings 

according to the building code. This means that vulnerability can be high in buildings which 

are expected to stay functional after the earthquake (IO level) or buildings in which high 

number of people live or work (LS level). Moreover, it should be kept in mind that the 

current knowledge on the behaviour of RC frames with unreinforced masonry infill walls 

subjected to seismic loads is mostly a result of observed damages.  Those observations 

confirm that the seismic vulnerability of such structures is highly related to either the out-of-

plane failure of the masonry infill or the shear failure of the concrete columns. Although the 

second phenomenon is well represented by the AEM methodology, it is difficult to simulate 

the out-of-plane failure. As long as masonry elements stay inside the frame, there is a certain 

lateral rigidity and resistance that is, in fact, lost in case of out-of-plane failures. This may 

partially explain the results of Table 4.13. One should also consider that the results were 

obtained from an IDA which considers the dynamic properties of the structure; therefore, the 

methodology leads to different results from those generally found from static non-linear 

analysis. In any case, the results in Table 4.13 should be interpreted with caution as it has 

been developed for only one building. Analytical modeling of more buildings from this class 

will allow us to obtain even a better idea about the general behaviour of this building class. 

The epistemic uncertainties related to the structural properties as well as better geological 

knowledge can influence these results.  
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4.5 Summary 

The result of the Incremental Dynamic Analyses in which an Applied Element-based Method 

was used, was presented in this chapter. The performance-based seismic evaluation (PBSE) 

for a typical industrial unreinforced masonry building and an RC frame building with 

unreinforced masonry infill walls led to the development of acceleration and displacement-

based fragility curves for those buildings. To summarize the large amount of information 

regarding the different behaviours of the studied buildings towards each ground motion 

record, the IDA curves were summarized into their median, 16%, and 84% fractile values 

using the cross-section fractile method. The lognormal distribution of intensity measures, on 

the other hand, was used to develop the acceleration and displacement-based fragility curves. 

The loss estimation studies for existing buildings mainly depend on the geographical location 

of the structure. In this chapter, the mean annual frequencies of exceeding the three 

performance levels were calculated assuming that the studied buildings were located in La 

Malbaie which has the highest seismic hazard level in Quebec. The calculations show that 

the masonry and the concrete frame buildings will exceed the Collapse Prevention level 

within about 150 and 6250 years, respectively. Considering the age of some unreinforced 

masonry buildings in the province, such a return period is not much and can raise the red flag 

for many masonry buildings. It should be noted that the MAF of exceeding the performance 

levels decreases with the decrease of the seismic hazard level.  



 

CHAPTER 5 
 
 

DISCUSSION OF THE RESULTS 
 

5.1 Introduction 

In this chapter we will discuss the results of the structural analyses which were presented in 

the previous chapters. First of all, the statistical analysis of the information obtained from the 

IDA curves is presented and those curves are used to study the local dynamic behaviour of 

each building. This section is followed by a comparison of our fragility curves with those 

presented in the Technical and User's Manual of HAZUS (NIBS 2003) for the similar 

building classes. Later, the application of the newly developed fragility curves, for the 

buildings studied in this research work, to develop vulnerability scores is presented. Finally, 

a discussion on the application of the AEM in progressive collapse study is presented and the 

chapter is concluded with an explanation of the standard error in the estimation of the 

intensity and damage measure values. 

 

5.2 Statistical analysis of the information obtained from the IDA curves 

5.2.1 Unreinforced masonry building  

The IDA curves in Figure 4.1 demonstrate a large amount of information regarding the 

masonry building’s different behaviour towards each ground motion record. This information 

can be analyzed in two different ways.  

 

I. Distribution of DM given the IM 

 

The first way is to classify the obtained information from the IDA curves according to the 

distribution of the DM (inter-storey drifts here) given the IM (spectral acceleration value at 

building’s first-mode period) and the probability of exceeding any performance level given a 

specific IM level. The distribution of limit states can be summarized into their medians and 
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measures showing their dispersion; Table 5.1 and Table 5.2 show the 16%, 50% (median 

values), and 84% fractiles of DM and IM values at the IO, LS, and CP levels. From the 

values in these tables, it can be noted that for example, 16% of ground motions cause the 

building to exceed the Collapse Prevention performance level at a spectral acceleration value 

of 0.42g—at building’s first mode in the longer direction of the building (Table 5.1)—which 

is equal to an ISD of 0.0027. For the same fractile (16%), the spectral acceleration and the 

ISD values for exceeding that performance level in the shorter direction are Sa= 0.26g and 

ISD = 0.0039. This shows that the building is weaker in terms of earthquake intensity 

resistance and more flexible, in the shorter direction. Considering that the ISD values in 

Table 3.7 are average values of this damage measure at each performance level, the ISD 

values in that table can be compared with the median values in Tables 5.1 and 5.2. As seen in 

these tables, the median values for the ISD in both longer and shorter directions of the 

URMW building are very close to the values presented in Table 3.7 for CP and LS 

performance levels (e.g., 3.29E-03 for the LS level in comparison with 0.003 in Table 3.7). 

In the case of the IO performance level, the 0.1% value in Table 3.7 represents an upper limit 

for the ISD values in the longer direction and a lower limit for the values in the shorter 

direction of the URMW building, in Tables 5.1 and 5.2.        

 

Table 5.1 Summary of the limit states in the URMW’s longer direction 
 

Fractile Sa(T1)/g Max Inter-Storey Drift (ISD) 

 IO LS CP IO LS CP 

16% 0.18 0.36 0.42 4.84E-04 2.03E-03 2.70E-03 

50% 0.26 0.46 0.53 6.01E-04 3.29E-03 4.38E-03 

84% 0.35 0.54 0.62 8.12E-04 6.80E-03 9.06E-03 
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Table 5.2 Summary of the limit states in the URMW’s shorter direction 
 

Fractile Sa(T1)/g Max Inter-Storey Drift (ISD) 

 IO LS CP IO LS CP 

16% 0.12 0.21 0.26 1.41E-03 2.99E-03 3.99E-03 

50% 0.15 0.31 0.40 2.05E-03 3.88E-03 5.17E-03 

84% 0.22 0.37 0.48 2.38E-03 5.30E-03 7.06E-03 

 

II. Curves in their fractile format 

 

The second way to classify the information obtained from the IDA curves in Figure 3.9 is to 

present the curves (and not just the DM and IM values) in their fractile format. To this end, 

the cross-section fractile method (Vamvatsikos and Cornell 2002) is used to present those 

curves in their median, 16%, and 84% fractile values. Using the sp-line interpolation, for 

each curve, the DM values are calculated at arbitrary levels of IM’s. Therefore, at each 

seismicity level, this procedure results in fourteen finite or infinite DM values (for the 14 

accelograms) at each IM level. These values are used to draw the fractiles of the IDA curves 

for both the longer and shorter directions, shown in Figure 5.1.  
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Figure 5.1 Summary of URMW’s IDA curves into  
the median, 16%, and 84% fractiles.  
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As seen from Figure 5.1.a, in the longer direction of the masonry building, for example, 

given  Sa(T1) = 0.4g, 84% of the records cause an inter-storey drift smaller than 0.0032, 50% 

smaller than 0.0015, and 16% smaller than 0.0008. On the other hand, as seen in Figure 

5.1.b, for example, to develop an inter-storey drift equal to 0.003 in the shorter direction, the 

spectral acceleration values of 84% of the records at T= 0.69 sec. (building’s period of 

vibration in that direction) should be scaled to 0.19g or greater, 50% to 0.26g or greater, and 

16% to 0.32g or greater.  

 

The median, 16%, and 84% fractiles of the IO and CP performance levels as computed at the 

beginning of this section are also pointed out on Figure 5.1. The definition described in this 

section for these limit states results in a different distribution of the performance levels in 

comparison with those of the IDA curves. As a result, as seen in Figure 5.1, the IO and CP 

fractiles do not necessarily reside on their corresponding IDA curve fractiles, but do lie quite 

close to them.  

 

5.2.2 RC frame building with unreinforced masonry infill walls 

I. Distribution of DM given the IM 

 

The information included in the IDA curves in Figure 4.6 can be analyzed in the same two 

different ways stated in section 3.2.2. The first way is to classify the obtained information 

from the IDA curves according to the distribution of the DM (inter-storey drifts in this paper) 

given the IM (spectral acceleration value at building’s first-mode period) and the probability 

of exceeding any performance level given a specific IM level. The distribution of limit states 

are summarized into their medians and measures showing their dispersion; Table 5.3 shows 

the 16%, 50% (median values), and 84% fractiles of DM and IM values at the IO, LS, and 

CP levels. From the values in this Table, it can be noted that for example, 16% of ground 

motions cause the building to exceed the Collapse Prevention performance level at a spectral 

acceleration value of 2.18g—at building’s first mode in the longer direction (Table 5.1)—

which is equal to an ISD of 0.0187.  
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Table 5.3 Summary of the limit states for the CIW building 
 

Fractile Sa(T1)/g Max Inter-Storey Drift (ISD) 

 IO LS CP IO LS CP 

16% 0.15 0.89 2.18 1.60E-03 8.00E-03 1.87E-02 

50% 0.22 0.94 2.51 1.60E-03 8.00E-03 1.87E-02 

84% 0.34 1.6 3.33 1.60E-03 8.00E-03 1.87E-02 

 

II. Curves in their fractile format 

 

As the second way to classify the information obtained from the IDA, the IDA curves are 

presented in their median, 16%, and 84% fractile values as shown in Figure 5.2.  
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Figure 5.2 Summary of the CIW’s IDA curves into  
the median, 16%, and 84% fractiles. 

  
As seen from Figure 5.2, given Sa(T1) = 1.5g, 84% of the records cause an inter-storey drift 

smaller than 0.012, 50% smaller than 0.009, and 16% smaller than 0.007. On the other hand, 

to develop an inter-storey drift equal to 0.014 or greater, the spectral acceleration values of 

84% of the records at T= 0.29 sec. (building’s period of vibration in the longer direction) 

should be scaled to 1.8g or greater, 50% to 2.2g or greater, and 16% to 2.9g or greater. The 

median, 16%, and 84% fractiles of the IO and CP performance levels are also pointed out on 
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Figure 5.2. Similar to the case for the URMW building, the IO and CP fractiles for the 

concrete frame building do not necessarily reside on their corresponding IDA curve fractiles, 

but do lie quite close to them.  

 

5.3 Studying the structural dynamic behaviour from IDA  

5.3.1 Unreinforced masonry building 

The information obtained from the IDA can be applied to evaluate the local behaviour of 

each storey during an earthquake. Figure 5.3 demonstrates the maximum ISD outline of all 

storeys in both the longer and shorter directions at various IM levels for set 1 ground motion 

record of category 3 with M=7 and D=20 km (Table 3.5). As seen in this figure, while higher 

storeys accumulate the deformation at lower intensities (first mode’s effect) the second storey 

accumulates a major part of the deformation at higher intensities, an indication of higher 

mode effects on the building’s overall behaviour. 
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Figure 5.3 URMW’s maximum ISD of all storeys at different values of  
Sa(T1) for set 1 ground motion record of category 3 in Table 3.5.  

 
 

Another useful piece of information is the incremental behaviour of each storey through the 

dynamic analysis. Figure 5.4 shows the IDA curves for all the storeys in both directions for 
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IM passes the 0.35g value, the fifth and the roof (6th) floors suddenly start to accumulate 

more and more deformation. In the shorter direction (Figure 5.4.b), however, almost all of 

the storeys except the first floor accumulate deformation in fairly the same manner. From 

Figure 5.4, it can be noted that the higher mode effect pointed out in Figure 5.3 seems to be 

more significant in the longer direction as the IDA curve of the second floor end up to pass 

other upper floors except the roof and the fifth floor.  
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Figure 5.4 IDA curves for each storey of the URMW building,  
for set 1 ground motion record of category 3.  

 

The IDA results can also be used to evaluate ductility change in the building (Krawinkler et 

al. 2003), which could be useful to obtain information of structure softening during an 

earthquake.  However, this issue is out of score of this research work. 

 

5.3.2 RC frame building with unreinforced masonry infill walls 

Figure 5.5 demonstrates the maximum ISD outline of all storeys at various IM levels for 

group 5 of the ground motion records in Table 3.8, with M=7 and R=15 to 25 km. As seen in 

this figure, the building shows a strong higher mode effect even at lower intensities. The first 

and second storeys accumulate the major part of the deformation at all intensities, which is 

typical of a structure in which the lateral resisting system is partly constituted from a frame. 
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Figure 5.5 CIW’s maximum ISD of all storeys  
at different values of Sa(Tx) for group 5  

of the ground motion in Table 3.8.  
 

Figure 5.6, on the other hand, shows the incremental behaviour of each storey through the 

dynamic analysis. The IDA curves are shown for all the storeys for the same record used to 

draw Figure 5.5. Up to the IM=2.3 g, the second floor accumulates the most deformation. 

After this point, it is the first floor which passes the second floor and accumulates the major 

part of deformation in the building. This observation confirms the behaviour seen in Figure 

5.5.  
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Figure 5.6 IDA curves for each storey of the CIW  
building, for group 5 of the ground motion records.  
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Because bi-directional accelograms have been used in the Incremental Dynamic Analysis of 

the CIW building, the effects of seismic loading in one direction on the deformation of the 

other direction can be also studied for this building, if the ISD in Figures 5.5 and 5.6 are 

calculated for each direction, individually.   

 

5.4 Comparing with HAZUS fragility curves 

5.4.1 Unreinforced masonry building 

The displacement-based fragility curves in Figure 4.3 and Figure 4.4 are compared with 

those for the medium-rise pre-code masonry building presented in the Technical and User's 

Manual of HAZUS, which is the closest typology to the building classification of FEMA. It 

should be noted that HAZUS curves are developed for damage-based states—such as Slight, 

Moderate, Extensive, and Complete—while the fragility curves in this research work are 

calculated for performance-based states. Assuming that the Slight Damage state is similar to 

the Immediate Occupancy level, the Extensive Damage to the Life Safety, and the Complete 

Damage to Collapse Prevention, the curves are compared in Figure 5.7 and Figure 5.8. As 

seen in both figures, while the median values (50% probability of occurrence) of the extreme 

damage states in HAZUS (extensive and complete) are greater than those of the masonry 

model in this research work, the median values of the slight damage state are close to the IO 

level in both directions. This means that the model considered here is less ductile than the 

one in HAZUS. In other words, from a PBSE perspective, the masonry building here is more 

vulnerable as for the same value of Sd, the probability of exceeding extreme damage states 

are higher for the masonry building in this research work. 
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Figure 5.7 Fragility curves of the masonry building  
in the longer direction compared with HAZUS  
fragility curves for a pre-code midrise URM. 
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Figure 5.8 Fragility curves of the masonry building  
in the shorter direction compared with HAZUS  

fragility curves for a pre-code midrise URM.  
 

One reason for having such different median values in the extreme damage cases is the 

differences in the buildings’ height since NIBS (2003) doesn’t present any fragility curves 

for masonry buildings above 3 storeys. Moreover, the number of openings in the masonry 

building studied here affects the failure mode which is normally expected in a masonry 

building.  It is expected that having greater height and more openings make the masonry 

building analyzed here more ductile. However, since the URMW is taller and heavier, the 

HAZUS 

HAZUS 
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seismic demand on the building is greater, and more damages is expected to be observed in 

the 6-storey building than in a 3-storey building, for the same seismic acceleration. Except 

the first two first floors in the URMW building, other floors stay rigid (Figure 5.5), which 

means that the total drift of the 6-storeys URMW will be less than HAZUS 3-storeys. This 

confirms the higher rigidity for the URMW observed in Figures 5.7 and 5.8. The different 

way of treating masonry properties (dynamic analysis here in comparison to static analysis in 

HAZUS) could also be the cause of those different results.    

 

Differences in the curves’ standard deviations (variances in damage data) also results in 

curves with different slopes. As seen in Figure 5.7 and Figure 5.8, the fragility curves 

developed in this document are mostly steeper (smaller standard deviation) than those of 

(NIBS 2003). There are exceptions though, for the curves in the extreme damage cases in 

Figure 5.8 where the extensive and complete damage curves are almost parallel to the LS and 

CP curves. To have a better idea of the differences in the standard deviations, the coefficient 

of variation (COF), defined in Equation 3.10, is calculated, for fragility curves in Figure 5.7 

and Figure 5.8, and presented in Table 5.4.  

 

μ
σ=iationoftCoefficien var      (5.1) 

 

In Equation 5.1, μ  and σ  are the mean and standard deviation values of the fragility curves, 

respectively.  

 

Table 5.4 Coefficient of variation for masonry buildings’ fragility curves  
in HAZUS (NIBS 2003) and those developed in Chapter 4   

 
 HAZUS Masonry longer dir. Masonry shorter dir. 

IO (≈ Slight) 1.98 0.30 0.32 

LS (≈ Extreme) 0.36 0.26 0.33 

CP(≈ Complete) 0.15 0.23 0.33 
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The coefficient of variation in Table 5.4 for the fragility curves developed here are generally 

smaller than of those in HAZUS. This can be a result of comparing HAZUS curves that have 

been developed based on an average behavior of the URM class with this document’s curves 

which have been developed for just one building with average properties.      

 

5.4.2 RC frame building with unreinforced masonry infill walls 

The displacement-based fragility curves in Figure 4.9 are compared with those for the 

medium-rise pre-code concrete frame buildings with infill walls presented in the Technical 

and User's Manual of HAZUS. Again it is assumed that the Slight Damage state is similar to 

the Immediate Occupancy level, the Extensive Damage to the Life Safety, and the Complete 

Damage to Collapse Prevention, the curves are compared in Figure 5.9. The median values 

(50% probability of occurrence) of all limit states in HAZUS are again greater than those of 

the concrete frame building in this research work; the median value of the slight damage state 

is the closest to its corresponding limit state in this document, the IO level.  
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Figure 5.9 Fragility curves of the concrete  
frame building compared with HAZUS  

fragility curves for a pre-code midrise C3M. 
 

 This means that the RC frame with masonry infill wall model considered here is less ductile 

than the one in HAZUS. Knowing that the number of storeys and year of construction are 

somewhat similar, such a difference can be a result of the way that HAZUS takes into 

HAZUS 
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account the effect of the infill walls in its structural models which has resulted in a generally 

softer structural behavior (larger displacement) than the CIW studied here. Moreover, 

HAZUS curves are developed based on information from expert opinions and static analyses 

of structural models, which does not take into account the dynamic characteristics of the 

structure such as period modification. The advantages of the bi-directional analysis—through 

which the interaction between the lateral resisting systems in both directions is considered—

and the Incremental Dynamic Analysis, applied in this research work should not be ignored 

in such comparison.    

 

However, same as what explained for the case of the unreinforced masonry building, more 

RC frame buildings with masonry infill walls analyzed with the methodology proposed here 

will allow us to obtain even a better idea regarding the differences between the curves in the 

two documents. Parallel curves in most cases in Figure 5.9, on the other hand, indicates a 

similar standard deviation calculated in Table 4.12 with those for HAZUS curves.  

 

5.5 Application of the loss estimation studies in developing SVI 

Based on the definition of SVI in Equation 2.7, the information calculated in Table 4.11 and 

Table 4.13 regarding the MAF’s of exceeding the Collapse Prevention performance level in 

the unreinforced masonry and RC frame buildings with masonry infills can be used to 

develop new basic vulnerability indices for those buildings. The advantage of such new 

indices is that, unlike the indices presented here, the dynamic behaviour of each building 

class is considered in the process of index calculation.  

 

As Table 4.11 and Table 4.13 present the probability of exceeding the Collapse Prevention 

performance level on a yearly based, the first step is to calculate the frequency of the event 

occurrence in 50 years.  
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Table 5.5 Probability of exceedance of the Collapse Prevention  
level in 50 years, calculated from Table 4.11 and Table 4.13 

 
 URMW CIW 

Probability (%) 34.5 0.8 

 

Using Equation 2.7, new SVI can then be calculated from the values presented in Table 5.5. 

These SVI’s are presented in Table 5.6.   

 

Table 5.6 Seismic Vulnerability Indices for the two  
studied buildings in this research work 

 
 URMW CIW 

SVI 0.46 2.09 

  

Unlike the results developed for these building classes in Chapter 2, the indices here are 

developed through a performance-based seismic evaluation of the structural models. Because 

of such a difference, the results in Table 5.6 are not directly comparable with those presented 

in Table 2.6 in Chapter 2 for regions with high seismic risk (1.8 for both building classes). 

However, relative comparison of the results in Table 5.6 indicates that the unreinforced 

masonry building has a significant lower score which means a higher vulnerability for this 

building class in comparison to the concrete frame building with infill walls. Considering the 

differences between the structural behaviour of these two building classes, such a result is 

more rational than the equal vulnerability indices in Table II.1 (for the regions with high 

seismic risk).  

 

To have a better idea of the meaning of these indices, on the other hand, a cutoff index 

should be chosen. If the same seismic risk level considered in developing the seismic 

demands in the Building Code of Canada (NRCC 2005) is chosen—%2 in 50 years—, using 

Equation 2.7, the cuttoff index is equal to 1.69. This means that any building with an SVI 

lower than 1.69 needs to be evaluated in further details. The indices shown in Table 5.6 are 
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basic ones and they should be modified according to the existence of index modifiers 

explained in section 2.2.4. In other words, although the RC frame building with masonry 

infill walls (in regions with high seismic risk) doesn’t have a basic index smaller than the 

cutoff index, structural irregularities or site conditions could cause buildings from this class 

to require further assessment. According to the basic index in Table 5.6, the unreinforced 

masonry building in regions with high seismic risk in Quebec will always require further 

investigation. As the basic index calculated here directly depends on the level of the seismic 

risk, such a “pre-defined further evaluation” can change in regions with moderate and low 

seismic risk, such as in Montreal or Quebec City.   

 

It should be noted that the indices shown in Table 5.6 are developed using the performance-

based evaluation of one building in each class. As these indices should aim to evaluate the 

average behaviour of each building class rather than individual buildings, better indices can 

be developed when the loss estimation is repeated for a number of buildings in each class 

with different structural characteristics. This is, of course, out of the scope of this research 

work.     

 

5.6 Application of the AEM in the progressive collapse of the studied structures 

As stated in section 1.7.3, the Applied Element Method was used in this research work to 

overcome the FEM shortcomings in the progressive collapse case of buildings with masonry 

construction. Thanks to the partial connectivity that can exist between elements during the 

analysis in this method—some springs fail, while others are still effective—the “joint de-

bonding” and “unit sliding along bed or head joint” modes shown in Figure 1.6 were the 

dominant failure modes (shear failure) which could be captured in the various structural 

analyses for both models. The “unit cracking under direct tension” mode could only be seen 

in higher intensity measures. On the other hand, although the RC frame buildings with 

masonry infill walls are known to be vulnerable to the out-of-plane failure mode, even AEM 

methodology is deficient about modeling such a failure mode for the CIW building studied 

here. This may explain the difference between the fragility curves obtained based on expert 
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opinion methods and analytical models. Due to the high gravity loads, in case of the URMW 

building, the out-of–plan failure mode was not a controlling factor in the analyses. 

  

The easiness of calculating the performance points on the IDA curves, obtained from the 

AEM methodology, directly depends on the clarity of the available definition for each 

performance level. In case of the unreinforced masonry building here, the three performance 

levels were calculated according to both the criteria explained in section 3.4.3 and the visual 

damage on the structural model. For the RC frame with unreinforced masonry infill walls, 

although some local failure were observed in the columns of the first floor, no clear overall 

damage was observed in the structural model. Therefore, the performance points were 

determined using the criteria explained in Table 3.9 which are maximum interstorey drift 

ratios recommended by NIBS (2003). The effect of variations in determining those 

performance points (which directly affects the IM and DM values) are discussed in the next 

section. 

 

5.7 Standard error in the estimation of the measured values 

The standard errors of estimation (SEE) are used here to determine the preciseness of the 

calculated damage and intensity measure values for the immediate occupancy, life safety, and 

collapse prevention levels (presented in Table 4.1, Table 4.2, and Table 4.7), based on the 

number of the accelograms used in the nonlinear dynamic analysis.  

 

The SEE, which is the standard deviation of the measured values divided by n  (n: the 

number of accelograms), of the damage and intensity measures are presented in Tables 5.7 

and 5.8. As seen in Table 5.7, the standard errors of estimation of the spectral acceleration 

values at the edge of the URMW building’s collapse, life safety, and immediate occupancy 

are all less than 10% of the estimated median values, which appear to be reliable. The largest 

error is shown to be in the estimation of the maximum inter-storey drift at the CP and LS 

performance levels in the longer direction. Later, we will show how to determine the number 
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of additional records needed for the non-linear analyses to keep those errors under a certain 

value. 

  

Table 5.7 Medians and standard errors of estimation of DM’s and IM’s  
of the URMW building at different performance states  

 
   Median SEE (% of the median) 

   longer dir. shorter dir. longer dir. Shorter dir. 

IO 
Sa(g)  0.26 0.15 8.3 9.4 

Inter-storey drift  6.01E-04 2.05E-03 8.4 8.2 

LS 
Sa(g)  0.46 0.31 7.2 8.1 

Inter-storey drift  3.29E-03 3.88E-03 20.9 11.5 

CP 
Sa(g)  0.53 0.39 6.2 8.1 

Inter-storey drift  4.38E-03 5.17E-03 21 11.5 

 

In the case of the CIW building, almost all of the errors are around 10% or below. Because 

the same criteria has been used to determine the damage measures (ISD) for different ground 

motion records for this building (Table 3.9), the SEE is zero, as shown in Table 5.8. 

   

Table 5.8 Medians and standard errors of estimation of DM’s and IM’s  
of the CIW building at different performance states  

 
   Median SEE (% of the median) 

IO 
Sa(g)  0.22 11.6 

Inter-storey drift  1.60E-03 0.0 

LS 
Sa(g)  0.88 6.1 

Inter-storey drift  8.00E-03 0.0 

CP 
Sa(g)  2.45 8.7 

Inter-storey drift  1.87E-02 0.0 

 

It should be noted that these errors are related to the seismic demand source. In general, there 

are two other sources of errors: (1) the uncertainty in the performance level thresholds, (2) 
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variability in the capacity properties of the analytical models. Theses two sources of errors 

are not considered in this section. 

 

5.8 Discussion on Fragility Curves: Estimation of confidence intervals 

As a result of the above errors in the estimation of DM’s and IM’s for each of the three limit 

states, there is a statistical variation in the estimation of the fragility curves. Therefore, a 

confidence interval (CI) which is an interval likely to include those curves, instead of 

estimating them by a single median and standard deviation value can be presented. To avoid 

repetition in this section, the procedure to calculate this value is only explained here for the 

unreinforced masonry building.  

 

For a population with known standard deviation, the confidence intervals for the population’s 

median can be computed as follows (Haldar and Mahadevan 2000). 

 

 
n

zIC
σμ ... ±=      (5.2) 

 

In Equation 5.2, z is the upper critical value for the standard normal distribution, and μ and 

σ  are the median and standard deviation of the sample population, respectively. From 

Equation 5.2, the 90% confidence interval—from the Normal Distribution Table, z is equal to 

1.64 for this C.I. level—of the medians of the DM and IM values for the most important limit 

state, the collapse prevention in Table 5.7, are calculated and displayed in Table 5.. A 90% 

confidence level in Table 5. means that there is only 5% probability that for the CP 

performance level, the estimated median falls below the lower or above the upper limits 

indicated in that table. 

 

As an issue raised previously, using Equation 5.2, we can now show with a simple 

calculation that the number of records (n) required to decrease the SEE and consequently the 

width of the confidence interval of, for example, the inter-storey drift in the longer direction 
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(Table 5.7) to, let say, 15% of its median value, results in n = 74. Therefore, to reduce the 

value of SEE to 15% of the ISD’s median value in that specific direction, an additional of 60 

ground motion records should be added to the motion records shown in Table 5.. 

  

Table 5.9 90% confidence interval of the DM and IM median values  
for the CP damage state 

 
 90% CI 

 Longer dir. shorter dir. 

Sa(g) [0.48; 0.58] [0.34; 0.44] 

Inter-storey drift [2.87E-03; 5.88E-03] [4.19E-03; 6.14E-03] 

 

As seen in Table 5.9, the typical values for the ISD ratio in Table 3.7 falls within the interval 

obtained for the longer direction of the URMW building. On the other hand, the 0.4% ISD 

ratio in Table 3.7 acts as a lower bound for the interval presented in Table 5.9. It can be 

concluded that the masonry building in this research behaves more similar to the typical 

URM building in ASCE (2000), in the longer direction.  

 

The IM median’s upper and lower limits shown in Table 5. can be used to develop the 

fragility curves with 5% and 95% confidence, for the longer and shorter direction of the 

building (Figure 5.10). The standard deviation values used to develop these curves are the 

same as those used to draw the average curves shown in Figure 4.3 and Figure 4.4.  
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Figure 5.10 The URMW 5% and 95% confidence-level  
fragility curves, for the CP limit state.  

  
The same procedure used to calculate the combined fragility curves previously is applicable 

here to derive the combined fragility curves with 5% and 95% confidence levels for the 

masonry building, as shown in Figure 5.11.  
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  Figure 5.11 Upper and lower bounds of the  
5% and 95% confidence-level URMW  
fragility curves, for the CP limit state. 

 

5.9 Summary 

The information obtained from the IDA curves are used to study the dynamic behaviour of 

each building, in different ways. On one hand, the statistical analysis of those curves 
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provided us with useful information about the behaviour of the building towards the ground 

motion records used in the dynamic analysis. On the other hand, the IDA curves presented 

very useful information regarding the local dynamic behaviour of the building (higher mode 

effects, etc.).  

 

A comparison of the fragility curves developed in this research work with the curves for the 

relevant building classes in HAZUS indicated a more vulnerable structural behaviour for 

both buildings studied here. However, more masonry and concrete frame building with infill 

walls should be considered and analysed with the methodology presented here to be able to 

explain the differences in the standard deviations observed between HAZUS curves and 

those developed here. 

 

The results of the loss estimation in Chapter 4, for each of the buildings studied in this 

research work, were used here to develop new kind of vulnerability indices which not only 

include a probabilistic interpretation regarding the building’s exceeding a desired limit state, 

but also are based on considering the dynamic behaviour of each building class. Finally, a 

thorough explanation of the method to calculate the confidence intervals for the damage and 

intensity measure values was presented, as well. Those confidence intervals were then used 

to develop fragility curves with desired confidence-levels (5% and 95% here).  

 

  

 



 

CONCLUSION 

 
 
Summary 

 

The predicted vulnerability technique coupled with a score assignment procedure is shown to 

be a suitable method for the seismic vulnerability assessment of a group of buildings for 

regions in which there is not much observed earthquake damage data available, such as in the 

province of Quebec. Considering the vulnerability of masonry as a construction material and 

its massive use in buildings which have been built in the old sectors of the province before 

the first detailed seismic provisions were incorporated in the National Building Code of 

Canada in 1953, the main objective of this research work is to develop a predicted-based 

seismic vulnerability evaluation method for those buildings with masonry construction in old 

sectors of Quebec. This main objective is achieved at two levels. First of all, using the 

current building classification in Canada, a rapid visual screening tool which is compatible to 

the regional seismic hazard of the province, is developed. Later on, for two of the building 

classes—unreinforced brick masonry buildings and concrete frames with unreinforced 

masonry infill walls—used largely in old sectors of Quebec and not well represented in the 

literature, the dynamic capacity and fragility curves are calculated considering the nonlinear 

dynamic behaviour of the masonry. The Applied Element Method in the form of Incremental 

Dynamic Analyses is used here to overcome the limitations of a FE-based method in the 

progressive collapse case of masonry buildings. 

 

The two building classes studied here are chosen from the building classification proposed in 

chapter one for buildings in old sectors of the province, based on the review of the literature 

and personal visits in the area. The methodology to achieve the main objectives in this 

research work is presented in two parts. In the first place in Chapter 2, the procedure to 

develop a score assignment method which is adapted to the seismic demand in the province, 

for the seismic vulnerability evaluation of a group of buildings in old sectors of Quebec is 

explained.  Later on, in Chapter 3, the methodology to conduct a performance-based seismic 

vulnerability evaluation to develop the dynamic capacity curves for the target buildings in 
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this study is explained. Those curves are calculated through the application of the Applied 

Element Method in the Incremental Dynamic Analyses of the structural models. The results 

of those Incremental Dynamic Analyses are presented in Chapter 4 where the lognormal 

distribution of intensity measures on the IDA curves are used to develop the acceleration and 

displacement-based fragility curves for each building. The loss estimation study of those 

buildings, on the other hand, is conducted in the same chapter to evaluate the Mean Annual 

Frequency of exceeding the performance levels—Immediate Occupancy, Life Safety, and 

Collapse Prevention—considered in this study. It was shown that if for example, the URMW 

building is located in La Malbaie, the IO, LS, and CP performance levels will be exceed in 

43, 94, and 144 years, respectively. These return periods are calculated to be 71, 1162, and 

6250 years for the same performance levels for the CIW building.  

 

In Chapter 5, the information obtained from the IDA curves are used to study the dynamic 

behaviour of each building. A comparison of the fragility curves developed in this research 

work with the curves for the relevant building classes in HAZUS is also presented. It is 

shown that the models considered here are less ductile than the ones in HAZUS. From a 

PBSE perspective, this means that the unreinforced masonry and concrete frame with infill 

wall buildings here are more vulnerable as for the same value of Sd, the probability of 

exceeding extreme damage states are higher. Later, the results of the loss estimation 

presented in the previous chapter are used to develop new kind of vulnerability indices for 

the two buildings studied. Finally, the application of the AEM in the progressive collapse of 

the studied structures is discussed, and a set of standard errors in estimating the intensity and 

damage measure values at the threshold of each performance level is presented. It is shown 

that those errors are less than 10% of the estimated median values for most of the cases, 

which are indications of reliable results in the structural analysis section.   

 

The weakest link theory was used here in this research work to obtain the combined fragility 

curves for the URMW building. This means that the fragility curves for each direction was 

calculated and the final results were combined. Another way to face this problem would have 

been to combine the damage measures (max. inter-storey drift in this research) from the 
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structural analysis of each direction, and then to obtain bi-directional curves from those 

results. The problem with this methodology, though, is that the maximum of the inter-storey 

drifts (ISD) does not necessarily happen at the same time in both directions. Therefore, 

combining the maximum of ISD’s would create conservative curves, in this case. 

 

Original contribution of the research work 

 

The main outcome of this research work is developing dynamic capacity and fragility curves 

for an unreinforced masonry building and an RC frame with unreinforced masonry infill 

walls. Other outcomes can be stated as follows (the order of the items does not reflect their 

level of importance). 

  

1. Proposing a building classification for the existing buildings in old sectors of Quebec 

considering the masonry as the main construction material 

 

2. Developing a rapid visual screening tool adapted to the seismic demand in Quebec: The 

indices are calculated through the application of the improved nonlinear static analysis 

procedure proposed in FEMA 440. It also includes the use of the seismic hazard 

definition in the 2005 edition of NBCC. 

 

3. Proposing a performance based seismic evaluation methodology for masonry buildings 

that can be used in regions with few observed earthquake damage data. This methodology 

includes: 

 

a. Application of the Applied Element Method to model progressive collapse of URM 

building and RC building with infill walls 

b. Structural analysis in the form of Incremental Dynamic Analysis to determine the 

building’s response considering dynamic properties: The IDA conducted in this 

research work consisted of 14 accelograms in 2D analyses for the unreinforced 
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masonry building and 10 bi-directional accelograms in 3D analyses for the RC frame 

with unreinforced masonry infill walls.  

c. Damage analysis in which three (3) performance levels—Immediate Occupancy, Life 

Safety, and Collapse Prevention defined in FEMA 356—are located on the IDA 

curves using the criteria explained in Chapter 3 and used to develop dynamic capacity 

and fragility curves for the unreinforced masonry building and the RC frame with 

unreinforced masonry infill walls. 

d. Loss estimation analysis in which the return period for exceeding any of the 

performance levels are evaluated for the studied buildings. Such estimations depend 

on the geographical location of the building under study. The results of this section 

are used to develop new type of screen vulnerability indices for the masonry and 

concrete frame with infill wall buildings. 

 

Difficulties encountered in the application of the Applied Element Method 

 

Although the application of the Applied Element method in this research work provided us 

with a tool to evaluate the nonlinear dynamic behaviour of the masonry, the process to 

conduct each step of the Incremental Dynamic Analysis is time-consuming and varies from 4 

to 8 hours/step. Knowing that a minimum number of 10 to 15 increments are required for 

each ground motion record, every effort should be made to minimize the processing time. 

Items that influence the speed of structural analyses are (i) the size of meshing for the 

structural elements such as masonry walls, beams and columns, and slabs; and (ii) the length 

of the ground motion records used in the dynamic analysis. 

 

The meshing size and the number of springs per element face are shown to have great effects 

on the time required for completing the analysis and the preciseness of the results (Meguro 

and Tagel-Din 2000). Therefore, the goal should be decreasing those numbers without 

sacrificing the output results. In this research work, it was seen that increasing the number of 

springs (per face) above 5 would not necessarily change the results of the IDA. Therefore, 

such a number was chosen in all cases. On the other hand, the size of element meshing was 
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picked in a way to avoid creating elements with large aspect ratios. Such a decision resulted 

in a total number of approximately 10’000 and 12’000 elements for the unreinforced 

masonry and the RC frame with masonry infill walls, respectively.   

 

The length of the ground motion records, on the other hand, significantly affects the time 

required to conduct the dynamic analysis. This factor is out of our control as there is limited 

number of ground motion records available for Eastern Canada. Therefore, the IDA can not 

be necessary done only for shorter records.   

 

One the other hand, experimental tests are known to be the best way to validate the results 

obtained from analytical models and the results of this research work are not an exception. 

The cost of such experiment test, however, can be very high considering the equipments (size 

of the shaking table, etc.) required for performing a reliable test. Therefore, there may not be 

a clear solution for such a validation, at the present time.    

 

 

 

 



 

RECOMMENDATIONS 

 

5.9.1 Rapid Visual Screening procedure 

It was shown in section 5.5 that the results of the Performance-based Seismic Vulnerability 

Evaluation can be used to develop vulnerability indices for the building classes under study. 

The advantage of such indices is that, unlike the indices presented in Chapter 2, the dynamic 

behaviour of each building class is considered in the process of index calculation. Therefore, 

the methodology in this research work can be applied to develop new indices for all the 

building classes in Table 1.5.   

 

As explained previously in Chapter 2, the vertical irregularity modifiers for the index 

assignment method proposed here are calculated based on the assumption that if these 

irregularities were the only modifiers to be considered in the evaluation process, then the 

final index would be below the cutoff index. The experience of an assessment project 

conducted in Quebec City indicates that this may not be the best way to consider the 

existence of such irregularities in the seismic evaluation of a group of buildings, as it may 

unnecessarily penalize structures with SVIs well above the cutoff, causing them to fall below 

the cutoff. This has the potential of unreasonably increasing the cost of the detailed 

evaluation phase, which is usually performed after the RVS stage. The following steps can be 

done to better consider the effect of such irregularity in a rapid visual screening 

methodology.  

 

1. For each building class (concrete, masonry, etc.), a set of structural models with different 

vertical irregularities should be developed. 

2. The capacity curve for each analytical model should be calculated, and the interim 

vulnerability index for each one should be developed.  

3. Within each building class, the different interim SVI should be compared with the rest to 

obtain a pattern for the average analytical behaviour for each building class when vertical 

irregularities come into account.  



 141

 

The experience of the Quebec City assessment also shows that the effect of site amplification 

has more impact on the proposed SVI than it does in the current Canadian procedure. This 

allows for a better identification of buildings with seismic vulnerabilities that may relate to 

soil conditions rather than structural deficiencies. 

 

5.9.2 Development of fragility and capacity curves with IDA 

1. Number of accelograms used 

 

It was shown in section 5.8 that the error in estimation of DM’s and IM’s can be reduced 

through increasing the number of accelograms used in the Incremental Dynamic Analysis of 

the structural models. Although almost all available significant real and synthetic 

accelograms for Eastern Canada has been used here, new studies in the future can develop 

new synthetic ground motion records. Moreover, future earthquakes in the region can provide 

us with new real accelograms. In this way, the number of accelograms used would be closer 

to the upper bound of the required number of accelograms stated in Chapter 3—20 as 

suggested by (Shome et al. 1998). 

 

2. Bi-directional versus uni-directional analysis 

 

At the time of the structural analysis for the CIW building, the bi-directional synthetic 

records become available. Therefore, for the second building, unlike the URMW building, bi-

directional fragility curve were developed directly from the damage analysis stage. The 

combined fragility curves developed for the URMW building can be re-checked if the 

structural analyses are repeated using those bi-directional ground motion records to develop 

bi-directional curves. Considering the amount of time one needs to run the AEM models 

using an IDA approach, such a task was left as a future work.     
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3. Variation in the material properties 

 

The values for the masonry and concrete material properties in the IDA of this research work 

are average ones which are chosen based on a literature review of buildings with masonry 

construction in Eastern Canada and especially in Quebec (Table 3.2 and Table 3.4). 

Considering the variation of such material properties in different constructions in the 

province, the structural analyses can be done for a range of properties (instead of single 

values done here) for the extreme possible low and high values. The results should then be 

integrated using computational algorithms (e.g., Monte Carlo Method) that rely on repeated 

random sampling to compute results. Knowing that the combination of such an approach 

with IDA would be extremely time consuming, an in advance validation of the gain in the 

obtained precision is necessary. 

  

4. Number of building studied 

 

As the fragility and capacity curves for each building class should aim to represent the 

average behaviour of that class, the Performance-based Seismic Vulnerability Evaluation 

methodology introduced here should be applied to evaluate more unreinforced masonry and 

RC frame with unreinforced masonry infill walls (with different height, dimensions, number 

of openings, etc.). The overall behaviour of all those models can then be used to produce a 

general fragility curve for each building class. Moreover, because of the time constrains in 

this research work, only two of the building classes in Table 1.5 were studied. This does not 

mean that, in the context of seismic vulnerability in Quebec, other building classes stated in 

that table are of less importance. As a part of a bigger project to increase public safety against 

seismic hazard in the province, the same methodology should be applied to develop the 

dynamic capacity and fragility curves for all building classes in Table 1.5.  
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5. Infill wall behaviour in RC frame buildings 

 

The differences between the fragility curves for the CIW buildings in this study with those 

currently available in other references such as (NIBS 2003)—presented in section 5.4.2—

show the real challenge over finding an optimized criteria to study the seismic behaviour of 

that building class. Although the application of the methodology proposed in this research 

work does not bring the large efforts in the engineering communities to assess the dynamic 

behaviour of such a building class to an end, results obtained from AE-based studies can be 

considered an important step forward. For this reason, it seems very useful to compare the 

analytical results from AE-based methods with small scale experimental tests to obtain a 

better idea regarding the analytical method precision.  



 

APPENDIX I 
 
 

CLASSIFICATION OF CITIES IN QUEBEC ACCORDING TO THEIR SEISMIC 
HAZARD LEVEL 

 

Table-A 0.1 Spectral acceleration values of cities in Quebec that are in a high 
 seismic hazard region according to the criteria of Table 2.1 

 

Locality Lat-N Lon-W
Sa(0.2)

 
Sa(0.5) Sa(1.0) Sa(2.0) PGA 

La-Malbaie 47.65 -70.15 2z.3 1.2 0.6 0.19 1.1 

RIIière-du-
Loup 

47.83 -69.53 1.1 0.63 0.29 0.098 0.67 

St-Georges-de-
Cacouna 

47.92 -69.5 0.98 0.54 0.25 0.084 0.56 

Montmagny 46.98 -70.55 0.89 0.48 0.23 0.076 0.49 

Tadoussac 48.15 -69.72 0.84 0.46 0.22 0.073 0.46 

 

Table-A 0.2 Spectral acceleration values of cities in Quebec that are in a moderate  
seismic hazard region according to the criteria of Table 2.1 

 
Locality Lat-N Lon-W Sa(0.2) Sa(0.5) Sa(1.0) Sa(2.0) PGA 

Léry 45.35 -73.8 0.7 0.34 0.14 0.048 0.43 

Montréal 45.5 -73.6 0.69 0.34 0.14 0.048 0.43 

Matane 48.85 -67.53 0.68 0.38 0.17 0.052 0.44 

Baie-Comeau 49.22 -68.15 0.66 0.37 0.16 0.05 0.44 

Maniwaki 46.38 -75.97 0.66 0.3 0.14 0.04 0.42 

Sorel 46.03 -73.12 0.65 0.32 0.13 0.044 0.41 

St-Hubert-de-
Témiscouata 

47.82 -69.05 0.64 0.36 0.18 0.06 0.34 

Lachute 45.65 -74.33 0.64 0.31 0.14 0.043 0.4 

Chicoutimi 
(Bagotville) 

48.35 -70.88 0.63 0.33 0.16 0.053 0.4 

Mont-Joli 48.58 -68.18 0.62 0.33 0.15 0.048 0.39 
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Locality Lat-N Lon-W Sa(0.2) Sa(0.5) Sa(1.0) Sa(2.0) PGA 

Québec 46.8 -71.23 0.59 0.3 0.14 0.048 0.37 

Drummondville 45.88 -72.48 0.5 0.25 0.1 0.037 0.32 

Cowansville 45.2 -72.75 0.48 0.24 0.1 0.036 0.3 

Port-Cartier 50.02 -66.87 0.46 0.26 0.11 0.038 0.29 

Plessisville 46.22 -71.78 0.45 0.23 0.1 0.034 0.29 

Sutton 45.1 -72.62 0.44 0.23 0.099 0.034 0.26 

Victoriaville 46.05 -71.97 0.43 0.22 0.097 0.033 0.27 

Brome 45.2 -72.57 0.42 0.22 0.097 0.034 0.25 

Lac-Mégantic 45.58 -70.88 0.4 0.22 0.091 0.031 0.27 

Richmond 45.67 -72.15 0.38 0.21 0.091 0.032 0.21 

Sept-Iles 50.2 -66.38 0.37 0.22 0.092 0.033 0.21 

Sherbrooke 45.42 -71.9 0.37 0.2 0.086 0.031 0.2 

Thetford-Mines 46.08 -71.3 0.35 0.2 0.097 0.033 0.19 

Ville-Marie 47.33 -79.43 0.33 0.16 0.075 0.022 0.21 

Havre-St-Pierre 50.23 -63.6 0.33 0.17 0.07 0.023 0.22 

St-Félicien 48.65 -72.45 0.31 0.18 0.086 0.029 0.2 

La-Tuque 47.43 -72.78 0.29 0.18 0.091 0.03 0.16 

Gaspé 48.83 -64.48 0.22 0.14 0.064 0.022 0.093 

Val-d'Or 48.1 -77.78 0.22 0.12 0.063 0.018 0.12 

Povungnituk 59.78 -77.32 0.22 0.088 0.041 0.011 0.15 

Malartic 48.13 -78.13 0.21 0.12 0.059 0.017 0.11 

Percé 48.53 -64.22 0.2 0.13 0.061 0.02 0.092 

Rouyn 48.23 -79.02 0.2 0.11 0.056 0.016 0.11 
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Table-A 0.3 Spectral acceleration values of cities in Quebec that are in a low  
seismic hazard region according to the criteria of Table 2.1 

 
Locality Lat-N Lon-W Sa(0.2) Sa(0.5) Sa(1.0) Sa(2.0) PGA 

Amos 48.57 -78.12 0.17 0.11 0.054 0.015 0.087 

Gagnon 51.93 -68.17 0.12 0.09 0.045 0.013 0.059 

Harrington-
Harbour 

50.5 -59.48 0.12 0.082 0.043 0.013 0.071 

Kuujjuaq 58.1 -68.4 0.12 0.065 0.033 0.01 0.059 

Nitchequon 53.21 -70.91 0.12 0.061 0.031 0.01 0.059 

Schefferville 54.8 -66.83 0.12 0.059 0.031 0.01 0.059 

Inukjuak 58.48 -78.1 0.12 0.056 0.023 0.006 0.059 
Kuujjua-
rapik 

55.28 -77.75 0.12 0.056 0.023 0.006 0.059 

 
 

 

 



 

APPENDIX II 
 
 

VALIDATION OF THE APPLIED ELEMENT METHOD APPLICATION FOR 
NONLINEAR ANALYSIS OF CONCRETE AND MASONRY STRUCTURES 

To validate the accuracy of the AEM to represent the nonlinear behaviour of masonry or 

concrete structures, results of some experimental tests have been compared with the 

analytical model outputs. As the first example, the experimental result of the monotonic 

loading on a concrete shear wall (Ghorbani-Renani et al. 2008) is compared with the output 

of the pushover analysis (Figure-A II.1). 

   

                    

Figure-A 0.1 Plan view of the concrete wall  
under monotonic loading and the analytical model. 

Taken from Ghorbani-Renani et al. (2008)  
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Figure-A 0.2 Load-deformation curve comparing  
the Pushover analysis and experimental test. 

 

As seen in Figure-A II.2, the results from the analytical model coincide with the experimental 

test in the linear and nonlinear area. The divergence of the two lines in the collapse mode can 

be explained as a result of the reinforcement confinement in the analytical model which 

causes it to fail sooner than the experimental test.  

 

The second verification is done by comparing the experimental test results of a concrete 

frame with masonry infill wall. This example is taken from the software verification 

documents of the Extreme Loading® for Structures (Applied Science International 2007). 

Figure-A II.3 shows the frame which is subjected to a lateral displacement control until 

reaching failure along with the analytical model.  
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Figure-A 0.3 Plan view of the concrete frame with masonry  
infill wall and the analytical model. 

Taken from Applied Science International (2007) 

 

 

Figure-A 0.4 Load-deformation graph comparing the  
analytical and experimental test results. 

 

Figure-A II.4 illustrates the analytical load-deflection results compared to the experimental ones. 

The analytical results show good agreement with the experiment test as the behaviour is well 

predicted in the elastic stage, post cracking stage, and in the post-yielding stage.  
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