
On Optimizing Network Management and Traffic Transport

in Software Defined Networks

by

Haythem YAHYAOUI

THESIS PRESENTED TO ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
IN PARTIAL FULFILLMENT FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
Ph.D.

MONTREAL, JULY 25, 2022

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

haythem yahyaoui, 2022

This Creative Commons license allows readers to download this work and share it with others as long as the

author is credited. The content of this work cannot be modified in any way or used commercially.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

M. Mohamed Faten Zhani, Thesis supervisor

Software and Information Technology Engineering Department at ÉTS

M. Amin Chaabane, Chair, Board of Examiners

Systems Engineering Department at ÉTS

M. Kim Khoa Nguyen, Member of the Jury

Electrical Engineering Department at ÉTS

Mrs. Noura Limam, External Independent Examiner

Computer Science department at University of Waterloo

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

ON "JULY 14, 2022"

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

ACKNOWLEDGEMENTS

Foremost, I would like to thank my advisor, Professor Mohamed Faten Zhani, for his assistance

during my PhD studies. He has been extraordinarily patient with me, enabling me to develop my

skills as a researcher. He has been an invaluable source of information and expertise during my

studies.

In addition to my advisor, I would like to thank the other members of my thesis committee,

Professors Amin Chaabane, Kim Khoa Nguyen and Noura Limam for accepting to evaluate this

thesis. I really appreciate them for their insightful comments and their valuable feedback.

My heartfelt gratitude goes to my parents for everything they have done for me. I am immensely

grateful for their spiritual support throughout my life. I also would like to thank my brothers for

their unconditional support and confidence.

Sur l’optimisation de la gestion du réseau et du transport du trafic
dans les réseaux définis par logiciel

Haythem YAHYAOUI

RÉSUMÉ

Les applications réseau futuristes telles que la téléchirurgie, la réalité virtuelle et la téléportation

nécessitent des performances élevées en termes de latence, bande passante et taux de perte de

paquets. Malheureusement, les infrastructures de réseau traditionnelles souffrent de nombreux

défauts qui les rendent incapables de fournir de telles performances. Ces défauts vont de

l’augmentation de la latence et de la consommation de bande passante à l’augmentation de taux

de perte de paquets et de leur délai de transmission.

L’objectif de cette thèse est de concevoir des solutions pour l’optmisation de la gestion du réseau

et du transport du trafic dans les réseaux définis par logiciel afin d’assurer les performances

requises par les applications du futur et de minimiser la latence et la consommation de bande

passante. Ainsi, la thèse comprend trois contributions principales. La première consiste à

proposer un mécanisme de surveillance et de collecte de statistiques sur les flux permettant

de minimiser les coût de surveillance dans les infrastructures à grande échelle. La deuxième

contribution consiste à proposer un algorithme de routage qui utilise le data mining pour afin

d’extraire le comportement des utilisateurs et optimiser le routage du trafic dans les réseaux

définis par logiciel. La troisième contribution consiste à un nouveau protocole de transport

permettant de réduire considérablement le délai de retransmission des paquets.

Mots-clés: Réseaux Définis par Logiciel, Surveillance des Flux, Routage, Protocole de

Transport

On Optimizing Network Management and Traffic Transport
in Software Defined Networks

Haythem YAHYAOUI

ABSTRACT

Futuristic network applications like telesurgery, virtual reality and teleportation require high

infrastructure performance (i.e., latency, bandwidth, packet loss). Unfortunately, traditional

network infrastructures are suffering from numerous shortcomings make them unable to provide

the minimum required performance for such applications. These shortcomings range from

increased latency and bandwidth consumption to increased packet loss and retransmission delay.

The objective of this thesis is to design solutions for the optimization of network management

and traffic transport in software-defined networks in order to ensure the performance required by

the applications of the future and to minimize latency. and bandwidth consumption. Thus, the

thesis includes three main contributions. The first is to propose a mechanism for monitoring

and collecting statistics on flows to minimize monitoring costs in large-scale infrastructures.

The second contribution is to propose a routing algorithm that uses data mining to extract user

behavior and optimize traffic routing in software-defined networks. The third contribution

consists of a new transport protocol allowing to considerably reduce packet retransmission

delays.

Keywords: Software Defined Networking, Flow Monitoring, Packet Routing, TCP, Packet

Retransmission

TABLE OF CONTENTS

Page

INTRODUCTION .1

CHAPTER 1 BACKGROUND MATERIAL AND LITERATURE REVIEW 5

1.1 Background Material . 5

1.1.1 Software Defined Networking . 5

1.1.2 Network Traffic Monitoring . 7

1.1.3 Traffic Routing Mechanisms . 8

1.1.4 Traffic Transport Protocol . 9

1.2 Literature Review . 11

1.2.1 Flow Monitoring Solutions . 11

1.2.2 Comparative Study of Existing Solutions . 13

1.2.3 Traffic Routing Strategies . 13

1.2.4 Comparison of Existing Strategies . 17

1.2.5 Solutions to Minimize TCP Retransmission Delay . 17

1.2.6 Comparative Study . 20

1.3 Conclusion . 20

CHAPTER 2 MINIMIZE FLOW MONITORING COST IN LARGE-SCALE

SDN NETWORKS . 23

2.1 Introduction . 23

2.2 Problem Description . 25

2.3 Problem Formulation . 27

2.3.1 Single Controller Case . 27

2.3.2 Multiple Controller Case . 31

2.4 Proposed Heuristic . 33

2.4.1 Low Cost Monitoring Solution (single controller) . 34

2.4.2 Low Cost Monitoring Solution (multiple controllers) . 36

2.5 Evaluation . 37

2.5.1 Single Controller Case . 37

2.5.2 Multiple Controller Case . 41

2.6 Conclusion . 45

CHAPTER 3 ON OPTIMIZING TRAFFIC ROUTING IN SDN NETWORKS 47

3.1 Introduction . 47

3.2 System Design . 49

3.2.1 Traffic Monitoring Module . 50

3.2.2 Association Rules Generator . 51

3.2.3 Routing Rules Generator . 53

3.3 Implementation and Evaluation . 53

3.3.1 Dataset Presentation . 53

XII

3.3.2 Experimentation . 53

3.4 Conclusion . 58

CHAPTER 4 ON MINIMIZING SEGMENT RETRANSMISSION DELAY 59

4.1 Introduction . 59

4.2 Proposed Solution . 61

4.2.1 Packet caching . 61

4.2.2 Packet loss detection . 62

4.3 Evaluation . 62

4.3.1 Experimental Environment . 62

4.3.2 Experimental Results . 64

4.4 Conclusion . 69

CONCLUSION AND RECOMMENDATIONS . 71

5.1 Thesis Summary . 71

5.2 Future Research Directions . 72

BIBLIOGRAPHY . 74

LIST OF TABLES

Page

Table 1.1 Our work versus existing strategies . 14

Table 1.2 Our work versus existing strategies . 18

Table 1.3 Our work versus existing strategies . 21

Table 2.1 Notation and meaning . 28

Table 2.2 Evaluation scenarios . 42

Table 3.1 Dataset sample . 51

LIST OF FIGURES

Page

Figure 1.1 SDN Architecture . 6

Figure 1.2 SDN flow monitoring . 8

Figure 1.3 Transport protocol . 10

Figure 2.1 Per-flow monitoring cost . 26

Figure 2.2 Flow to switch to controller assignment . 27

Figure 2.3 Low cost monitoring . 34

Figure 2.4 (Low Cost Monitoring solution - multiple controllers) . 37

Figure 2.5 LCM monitoring cost . 39

Figure 2.6 Polling interval . 40

Figure 2.7 LCM reporting time . 40

Figure 2.8 Execution time . 41

Figure 2.9 Monitoring cost . 43

Figure 2.10 LCM-M reporting time . 44

Figure 2.11 Execution time . 44

Figure 3.1 LUNA Architecture . 50

Figure 3.2 Flow size distribution . 54

Figure 3.3 Network infrastructure . 54

Figure 3.4 Flow completion time . 55

Figure 3.5 Throughput . 56

Figure 3.6 Packet loss . 56

Figure 3.7 Percentage of correctly identified flows . 57

Figure 4.1 Experimental infrastructure . 63

XVI

Figure 4.2 Global Flow completion time . 64

Figure 4.3 Flow completion time for critical flows . 65

Figure 4.4 Global average packet transmission time . 66

Figure 4.5 Average packet transmission time for critical flows . 66

Figure 4.6 Global lost packets . 67

Figure 4.7 Lost packets of critical flows . 67

Figure 4.8 Retransmitted packets from the source of all the flows . 68

Figure 4.9 Retransmitted packets from the source of critical flows . 68

LIST OF ALGORITHMS

Page

Algorithm 2.1 LCM .. 36

Algorithm 2.2 LCM-M . 38

Algorithm 3.1 Association Rules Generator . 52

LIST OF ABBREVIATIONS

ACK Acknowledgement

API Application Programming Interface

CDF Cumulative Distribution Function

ECMP Equal-cost Multi-Path routing

FCT Flow Completion Time

FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol

LCM Low-Cost Monitoring for single controller infrastructures

LCM-M Low-Cost Monitoring for Multiple controllers infrastructures’

NF Network Function

QoS Quality of Service

RTT Round Trip Time

SDN Software Defined Networking

SFC Service Function Chain

TA Transport Assistant

TCAM Ternary Content-Addressable Memory

TCP Transmission Control Protocol

UDP User Datagram Protocol

VoIP Voice over Internet Protocol

VR Virtual Reality

LIST OF SYMBOLS AND UNITS OF MEASUREMENTS

D Destination node

h Hop

S source node

C Controller

INTRODUCTION

With the emergence of a new breed of futuristic network applications like telesurgery, virtual

reality and telepresence, today’s networks and communication technologies are becoming

obsolete and unable to cater the performance requirements needed by such applications. Indeed,

today’s networks are still suffering from potential congestion and unpredictable performance in

terms of latency, bandwidth. However, for an application like telesurgery, a slight delay in the

packet delivery could result in serious consequences. In addition, packet loss is another major

problem leading to additional delay at the application level that may not be tolerated especially

when the carried data is highly relevant for the application. As a result, accurately controlling

parameters like packet loss, delay and bandwidth has become vital to be able to deploy and safely

use future applications.

In this context, growing efforts are currently under way to redesign and rethink different aspects

of network management including fault, configuration, accounting, performance and security

in order to cater to the stringent requirements needed for future application and offer guaranteed

performance. This thesis focuses on such aspects and advances the state of the art in order to

address three network and service management challenges related mainly to network monitoring,

data routing and transport.

In the following, we provide more details about these challenges, the thesis’s objectives

as well as the methodology that we adopted in order to achieve them.

Objectives and Methodology

Propelled by the need to overcome today’s networks limitations and motivated by the emergence

and maturity of Software Defined Networking (SDN) and cloud computing technology, there is a

growing interest by the community to further optimize network management functionalities and

traffic routing and transport protocols in order to minimize costs, reduce latency and minimize

2

bandwidth consumption. In this context, this dissertation presents three key contributions

allowing to achieve these sought-after objectives. In particular, we propose the following

contributions:

• Design of an efficient traffic monitoring scheme: to collect timely and accurately traffic

statistics in software defined networks, the controller and the switches need to continuously

exchange monitoring messages. These messages may consume significant amounts of bandwidth

especially when there are several hops in the paths connecting the controller to the switches.

Furthermore, monitoring messages could experience additional delays to reach the controller,

which could make the reported statistics untimely and less relevant. Unlike prior monitoring

mechanisms, we propose a monitoring scheme that carefully selects for each the switches

that report the statistics so as to minimize bandwidth consumption and the reporting delay

(i.e., the time needed for a monitoring message to reach the controller). In particular, we

formulate the switch-to-flow assignment problem as an Integer Linear Program (ILP) and

propose two heuristic algorithms to cope with large-scale instances of the problem. We consider

two realistic scenarios where, in the first one, a single SDN controller is deployed to collect

statistics, whereas in the second, multiple controllers are collecting statistics. Through extensive

simulations, we that the proposed algorithms provide near-optimal solutions with minimal

computation time and outperform existing monitoring strategies in terms of monitoring cost and

reporting delay.

•Design of a data-mining-based traffic routing scheme: the routing strategy is crucial to efficiently

deliver the traffic among the nodes and to carefully select and distribute the traffic within the

network based on several criteria and objectives. For instance, selecting the path with the

minimum number of hops could minimize the amount of bandwidth consumption as well as the

latency. Unlike prior traffic routing strategies, in this thesis, we propose a novel routing strategy

that leverages data mining techniques in order to identify the behaviors of the network users and

3

the size of their traffic flows (i.e., large, small) and efficiently compute the traffic routing rules.

Specifically, we put forward a novel class-based routing strategy called LUNA. LUNA classifies

the flows into mice and elephants based on their size. Afterwards, it leverages a data mining

technique called association rules to generate the forwarding rules and route each flow based

on its class (i.e., mouse or elephant). Experimental results show that LUNA has successfully

identified the class of 80% of the flows. Furthermore, its class-based routing outperforms basic

routing strategies in terms of flow completion time, throughput and packet loss by almost 47%,

41% and 23%, respectively.

• Design of a novel transport protocol: transport layer is typically implemented either by the

User Datagram Protocol (UDP) or the Transport Control Protocol (TCP). While UDP is suffering

from the lack of reliability, TCP provides a packet retransmission mechanism to detect and

retransmit lost packets. That is why most network applications (e.g., HTTP, FTP) are relying

on TCP to ensure a reliable delivery of the packets. However, TCP is an end-to-end protocol

that stipulates that only lost packets are only detected and retransmitted from the source. This

results in significant retransmission delays, especially when there are multiple hops between

the TCP sender and receiver. In this context, we propose a novel transport protocol that is

able to retransmit lost packets from intermediate nodes using a special network function, and

thereby, it is possible to minimize the number of hops traveled by retransmitted packets and

significantly reduce packet retransmission delays. In particular, we introduce a novel network

function called Transport Assistant that could be deployed within the network in order to cache,

detect and retransmit lost packets. Thanks to this function, there is no need to wait for the

source to detect and retransmit lost packets as the TA ensures packet retransmission from the

network and thereby minimize retransmission delays. Through extensive experiments, we show

that using the transport assistant allows to outperform the standard TCP by minimizing the

average packet transmission time, the flow completion time, the packet loss and the number of

retransmitted packets from the source.

4

Thesis Organization

The remaining part of this dissertation is organized as follows. We start by presenting the

background concept and the literature review in Chapter 1. We then introduce the proposed

network traffic monitoring mechanism to minimize both latency and bandwidth consumption in

chapter 2. We describe in chapter 3 the proposed data-mining-based traffic routing scheme able

to minimize latency. In Chapter 4, we detail the novel transport protocol that we are proposing to

reduce packet retransmission delays. Finally, we provide some concluding remarks and discuss

potential key research directions and potential extension of our work.

CHAPTER 1

BACKGROUND MATERIAL AND LITERATURE REVIEW

This chapter starts first by presenting the basic concepts related to Software Defined Networking

(SDN), network traffic monitoring and routing as well as transport protocols. We then review

the main literature pertaining to the tackled research problems and we highlight the limitations

of existing solutions while comparing them using several criteria.

1.1 Background Material

This sections presents the basic concepts related to the addressed research problems. We start by

defining Software Defined Networking paradigm. We then present network traffic monitoring

and routing mechanisms in SDN-based networks. Lastly, we provide an overview of the key

transport protocols in traditional networks.

1.1.1 Software Defined Networking

Software Defined Networking is a relatively new technology that received a lot of attention as

it offers a centralized control plane allowing a flexible and a fine-grained way to manage and

configure the network as opposite to traditional networks where the control plane is decentralized

and does not allow any flexibility in configuring and managing the flow routes. Indeed,the

SDN technology separates the control plane (i.e., the decision) from the data plane (i.e., packet

forwarding). The control plane is logically centralized in a component called "controller". The

controller builds a global view with the detailed network state allowing to efficiently compute

routing rules and it then communicates with the data plane switches in order to manage the

infrastructure. Unlike traditional networks, SDN allows to dynamically change routing behavior

on the fly without interruption at a fine-grained level. Furthermore, the global network view

available at the SDN controller helps to more efficiently compute routing rules and to react

to dynamic changes of the traffic or the network characteristics in order to achieve targeted

6

performance objectives (e.g., minimize delays, minimize packet loss, minimize bandwidth

consumption).

Figure 1.1 SDN Architecture

Figure 1.1 describes the typical SDN architecture composed of the control plane and the data

plane. Both planes communicate together through the Southbound APIs. OpenFlow is the

most known southbound protocol that provides three types of messages exchanged between the

controller and the SDN switches: 1) controller-to-switch messages that are used to configure the

switch and manage the flow tables, 2) symmetric messages that can be used in both direction and

are useful to identify potential problems in the switch-controller connection, and 3) asynchronous

messages that are sent from the switch to the controller to announce any change in the network

state.

The main purpose of the controller in a typical SDN implementation is to manage the network

traffic in order to achieve the objectives of the network operator (e.g., minimize latency, minimize

bandwidth consumption, increase the throughput, minimize packet loss). In a huge infrastructure

where a single controller is unable to manage thousands of flows (set of packets), the network

operator could instantiate several controllers in order to distribute the control tasks among them

(i.e., each controller could be responsible of a sub-network). In this case, these controllers

7

communicate among each other using Est and West APIs in order to share and synchronize the

network state information and build the global view on the network state for each of them.

To manage the network and the offered services, the network operator could deploy SDN

applications (e.g., routing, monitoring, congestion control) on the top of the controller. These

applications communicate with the controller through an interface called the Northbound APIs

(e.g., RESTful APIs). The Northbound APIs could be used by SDN applications to leverage the

collected information from the controller to set up the routing rules. The controllers forward

these packets according to the installed rules.

In the following, we detail and provide the potential challenges for network traffic monitoring,

network traffic routing and network traffic transport protocol.

1.1.2 Network Traffic Monitoring

Network monitoring is the process of collecting the statistics about the network’s components

including network functions and the traversing traffic. Monitoring is crucial for all aspects of

network and service management ranging from fault management, configuration and accounting

to performance and security. This process helps to detect network infrastructure anomalies like

traffic bursts, link failures, congestion and enables the network operator to quickly react to such

anomalies in order to continuously ensure high network performance (i.e., latency, packet loss

and throughput). Figure 1.2 illustrates the way that the controller and the switch communicate

in order to collect flow statistics.

In order to collect flow statistics in a typical SDN implementation, the controller sends flow

statistics’ request messages to the switches that reply with flow statistics reply message. The

exchanged messages could contain statistics of either a single flow or a set of flows. The reported

statistics by the switch to the controller could include several measurements like packet count,

flow duration, and amount of transmitted bytes.

8

Figure 1.2 SDN flow monitoring

The main challenge for monitoring mechanisms is how to collect timely and accurately flow

statistics while minimizing the costs of collecting statistics and transmitting monitoring messages

to the controller. Ideally, the reporting switch should be physically close to the controller in

order to ensure the lowest possible delay, and thereby ensure timely statistics. In addition, to

ensure the accuracy of the measurements, monitoring messages should be sent frequently and

continuously to the controller.

1.1.3 Traffic Routing Mechanisms

Network traffic routing is the process of selecting a route between two nodes while trying to

satisfy performance requirements (e.g., low delay, high throughput, low bandwidth consumption).

Routing is key for network operators as it has a significant impact on the network infrastructure

performance. For instance, if delay is not carefully taken into consideration by the routing strategy,

the impact on the performance of several network application running on the infrastructure could

be significant.

Technically, the SDN controller computes the routing rules based on the statistics collected by

the monitoring mechanism. Afterwards, the computed rules are installed in the switch in the

9

way that when the packets of a certain traffic arrive, they are forwarded accordingly. These rules

are installed in the routing table which is stored in a limited memory in the switch called TCAM.

Each rule has a timeout. If it expires, the rule is automatically deleted in order to effectively

leverage the TCAM memory. When the TCAM does not contain a routing rule for a certain

traffic, the switch requests a routing rules from the controller. This is why the first packet of a

flow experiences additional delay compared to the remaining packets as these ones are directly

forwarded thanks to the installed rule.

One of the main challenges for traffic routing strategies is how to select the shortest path that

guaranties the lowest delay between two nodes. This is not trivial as the network state is changing

frequently and the best path that guaranties the lowest delay for a certain traffic can become

congested when other traffic arrive to the switch and need to be forwarded through the same

path. Another interesting challenge is how to deliver the traffic while minimizing bandwidth

consumption as bandwidth costs are high.

1.1.4 Traffic Transport Protocol

The transport layer of the OSI model is in charge of ensuring end-to-end process communication

over the network. The main two protocols that are used today in the Internet are the Transport

Control Protocol (TCP) and the User Datagram Protocol (UDP). While TCP ensures a reliable

delivery for all the packets of the traffic flow thanks to its packet loss detection and retransmission

mechanisms, UDP is a simple protocol that does not offer any reliability and is only limited

to multiplexing and multiplexing services used to identify the source and the destination.

That is why several network applications (e.g., HTTP, FTP) are relying on such a protocol to

successfully deliver their traffic between end-hosts. Furthermore, TCP offers additional services

like congestion and flow control and that are not offered by UDP.

In the following, we focus only on TCP as it is the most widely used protocol used today. Our

goal is to further improve it in order to satisfy the requirements of futuristic applications.

10

Figure 1.3 Transport protocol

In a typical TCP implementation, when a node transmits a segment, a timer called TCP Timeout

is triggered. This timeout is computed during the connection establishment phase based on the

delay between the two nodes (also called end-to-end delay) and generally it is almost equal to

two end-to-end delays (called Round Trip Time - RTT). When the TCP timeout expires, the

sender node assumes that the packet was lost and retransmits it. Another way, TCP uses to detect

packet loss is based on duplicate acknowledgment. Indeed, when the sending nodes receives

three duplicate acknowledgments, it assumes the first segment that was not acknowledged is lost

and retransmits it.

There are several challenges with TCP to make it able to meet the futuristic network application

requirements. For instance, TCP is not accurate in detecting packet loss as it tries to guess

whether the packet is lost or not based on the timeout, which is usually variable and hence,

not computed accurately. For instance, if the computed timeout is low, this would lead to

11

unnecessary retransmissions. This could increase the amount of consumed bandwidth as well as

the transmission delay in the switches because unneeded packets will share the switches queue

with the other packets.

1.2 Literature Review

In this section, we present and compare existing contributions that have aimed to improve

network infrastructures performance in order to meet futuristic application requirements in

terms of delay and bandwidth. First, we summarize literature focusing on minimizing flow

monitoring cost. We then present existing solutions addressing the problem of improving

network performance by proposing a routing strategy that carefully selects a path for the traffic.

Finally, we present the existing works addressing the problem of minimizing TCP retransmission

delays.

1.2.1 Flow Monitoring Solutions

The problem of minimizing monitoring cost has been widely addressed in the literature Yu et al.

(2013) Su, Wang, Xia & Hamdi (2014) Tootoonchian, Ghobadi & Ganjali (2010) Chowdhury,

Bari, Ahmed & Boutaba (2014) Van Adrichem, Doerr & Kuipers (2014) Yang & Yeung (2020)

Henni, Hadjaj-Aoul & Ghomari (2016). Existing contributions can be classified into two

categories: 1) solutions advocating to minimize the monitoring cost by minimizing the number

of reporting switches and carefully selecting them among all the network’s switches, and 2)

solutions advocating to minimize the monitoring cost by varying or adapting the polling interval.

Among the solutions of the first category, Yu et al. (2013)’s work aims at measuring the utilization

of the network links and propose a push-based approach called FlowSense. FlowSense collects

only the byte count and duration of each flow thanks to the information available in the two

OpenFlow messages PacketIn and FlowRemoved sent at the arrival of the flow and at the

end of it, respectively. It then computes the link utilization by summing up the bandwidth usage

of all the flows. The advantage of FlowSense is that it uses only two messages for each flow,

12

and hence, does not use any additional monitoring messages. However, this technique does not

provide accurate statistics as the delay between the two message is unpredictable and could be

high for long flows.

Su et al. (2014) propose FlowCover, a scheme that focuses on minimizing monitoring cost while

ensuring high accuracy. FlowCover minimizes the number of monitoring messages by selecting

only the least-loaded switches to report the flows’ statistics to the controller. However, the

selected switches can be far from the controller which lead to high reporting delay.

Tootoonchian et al. (2010) tackle the problem of measuring the traffic matrix with minimal

number of monitoring messages. They propose OpenTM, a monitoring SDN application for

OpenFlow controllers that reduces the number of messages by minimizing the number of

reporting switches. It proposes five algorithms to select such switches as follows the last switch

to the destination, uniformly random switch , non-uniformly random switch (switch selected

with different probabilities), Round Robin and the least-loaded switch. However, OpenTM does

not take into consideration the reporting delay, i.e., the time need to send the statistics from the

switches to the controller.

Among the solutions of the second category which focus mainly on adapting the frequency at

which statistics are reported to the controller. For instance, Chowdhury et al. (2014) address

the problem of minimizing the number of monitoring messages and introduce PayLess, a low

cost monitoring framework for SDN networks. PayLess measures the current byte count and

compare it to the previous one. If the difference is greater than a threshold, the polling interval

is reduced. Otherwise, the polling interval is increased. Similarly, Van Adrichem et al. (2014)

introduce OpenNetMon which compares the current throughput measure with the previous

measure and adjust the polling interval accordingly. However, both PayLess and OpenNetMon

do not consider neither the bandwidth consumed by the monitoring messages, which may be

high when the measured variables are very variable, nor the reporting delay as they do not

discuss how the reporting switches are selected.

13

Furthermore, some contributions focused on finding a trade-off between improving the mea-

surement accuracy and minimizing the monitoring cost. These two objectives are conflicting

because to improve the accuracy, we need to increase the communication frequency between the

switches and the controller, which results in an increase in the monitoring cost. For instance,

Tang, Shojaee & Haque (2021) address the problem of minimizing both monitoring cost and

measurement accuracy in SDN-based networks. They propose a solution called Accurate and

Cost-Effective Measurement System in SDN that selects the reporting switches for the current

flows and identifies the reporting frequency while respecting the switches capacities’. However,

this solution does not consider the reporting delay when selecting the reporting switch, which

prevents from having timely statistics.

1.2.2 Comparative Study of Existing Solutions

We summarize in Table 1.1 the aforementioned solutions based on their objectives i.e., minimize

the number of monitoring messages, minimize the amount of bandwidth consumption or

minimizing the reporting delay. It also shows the reporting frequency for each solution whether

it is periodic (i.e., fixed) or adaptive (i.e., adjusted based on the variability measured statistics).

1.2.3 Traffic Routing Strategies

In this subsection, we present the related work pertaining to traffic classification and routing.

These problems have been widely addressed in the literature Al-Fares et al. (2010) Curtis,

Kim & Yalagandula (2011) Liu et al. (2014) Poupart et al. (2016) Chao, Lin & Chen (2016).

Several objectives have been considered like minimizing the network congestion, the flow

completion time and the workload of SDN controller and also maximizing the overall throughput

in the network.

Liu et al. (2014) focus on minimizing network congestion and load imbalance in SDN networks.

They introduce a routing algorithm which identifies elephant flows and routes them. A flow is

identified as an elephant if the number of bytes in the TCP buffer exceeds a predefined threshold.

14

T
ab

le
1
.1

O
u
r

w
o
rk

ve
rs

u
s

ex
is

ti
n
g

st
ra

te
g
ie

s

Pa
pe

r
O

bj
ec

tiv
es

Re
po

rt
in

g
fr

eq
ue

nc
y

M
in

im
ize

m
on

ito
rin

g
m

es
sa

ge
s

M
in

im
ize

ba
nd

wi
dt

h
co

ns
um

pt
io

n

Re
sp

ec
t

re
po

rt
in

g
de

la
y

Co
ns

id
er

m
ul

tip
le

co
nt

ro
lle

rs
Fl

ow
Se

ns
e

Yu
et

al
.(

20
13

)
√

X
X

X
Pe

rio
di

c

Fl
ow

Co
ve

r
Su

et
al

.(
20

14
)

√
X

X
X

Pe
rio

di
c

O
pe

nT
M

To
ot

oo
nc

hi
an

et
al

.(
20

10
)

√
X

X
X

Pe
rio

di
c

Pa
yL

es
s

Ch
ow

dh
ur

y
et

al
.(

20
14

)
√

X
X

X
Ad

ap
tiv

e

O
pe

nN
et

M
on

Va
n

Ad
ric

he
m

et
al

.(
20

14
)

√
X

X
X

Ad
ap

tiv
e

LS
F

Ya
ng

&
Ye

un
g

(2
02

0)
√

X
X

X
Pe

rio
di

c

H
en

ni
et

al
.(

20
16

)
√

X
X

X
Ad

ap
tiv

e

Ta
ng

et
al

.(
20

21
)

√
√

X
X

Ad
ap

tiv
e

15

All elephant flows are split into multiple sub-flows. To improve load balance and link utilization,

each sub-flow is routed through different paths depending on link utilization. Experimental

results show that the proposed routing algorithm outperforms single path routing and Equal

Cost Multi-Path routing (ECMP) Hopps et al. (2000) in terms of network throughput and link

utilization. However, the complexity of the proposed algorithm is greater than 𝑂 (𝑛3). As a

result, it takes relatively long time to detect elephant flows and compute forwarding rules which

can degrade the infrastructure’s performance.

Al-Fares et al. (2010) address the problem of improving data center network utilization and

propose Hedera, a dynamic flow scheduling system. Hedera considers that each flow is small

until the number of packets exceeds a predefined threshold. To achieve optimal load balancing,

small flows are routed using ECMP Hopps et al. (2000). For large flows, the link that has enough

bandwidth is selected. Experimental results show that Hedera outperforms ECMP in terms of

bandwidth utilization. However, Hedera increases the controller’s workload because it requires

to regularly update to the packet counters at the controller.

Curtis et al. (2011) focus on minimizing the workload of the network controller and present

Mahout, a traffic management system that is able to identify the class of the flows and route

them accordingly. Mahout detects elephant flows at the end host through a shim in the operating

system. If the amount of data in TCP buffers exceeds a threshold, then this flow is identified as

elephant. When an elephant flow is detected, the network controller is noticed using in-band

signaling mechanism. The controller computes the forwarding rules based on link utilization

and selects the one with the lowest utilization. Mice flows are routed using ECMP. Experimental

results show that Mahout outperforms Hedera Al-Fares et al. (2010) in terms of the time needed

to detect elephant flows which reduces controller workload. However, Mahout focuses only on

minimizing the controller’s workload.

Chao et al. (2016) tackle the problem of flow classification in software defined data centers.

They devise FlowSeer, a fast elephant flow detection method at the switch level that uses data

stream mining. FlowSeer collects some statistics from the first few packets of each flow to train

16

the stream classification models. These statistics include the IP address and the maximum and

the minimum packet size. Moreover, FlowSeer enables the switch to identify elephant flows.

Finally, elephant flows are routed through the least congested paths in order to improve the

throughput. Experimental results show that FlowSeer outperforms ECMP and Hedera. However,

FlowSeer focuses only on maximizing the throughput.

Poupart et al. (2016) address the problem of minimizing the flow completion time. They propose

an online flow size prediction to improve network routing using several machine learning

techniques including Neural Networks, Gaussian Process Regression and Online Bayesian

Moment Matching. The prediction is based on some information collected from the first few

packets including source IP, destination IP, source Port, destination Port, the protocol and the

size of the first three packets. After predicting the flow size, large flows (elephant flows) are

routed through the least congested paths. Experimental results show that the flow completion

time has been significantly improved. However, this solution computes forwarding rules only

when the flow arrives. As a result, the FCT is impacted by the time needed to compute and

install forwarding rules.

Liu, Yang, Gong & Ren (2021) focus on minimizing the flow completion time by proposing a

routing strategy that adapts the weight evaluation of the hops throughout the path as well as the

link bandwidth. They define three kinds of flows: Time-Triggered, Audio-Video-Bridging and

Best-Effort traffic. The proposed strategy selects a path for each flow based on the flow type.

For instance, time-triggered flows are routed through the shortest path so that the additional

network delays of the other paths are avoided.

Sun, Wang & Zhang (2021) tackle the problem of improving the quality of service (QoS) by

proposing a routing strategy that selects a path for each flow based on its QoS requirements.

To do so, a classification method called MACCA2-RF&RF is proposed. This method aims

at identifying flow category to obtain QoS requirements. Then, they propose a path selection

algorithm which selects QoS guaranteed routing path for different flows with distinct QoS

requirements.

17

1.2.4 Comparison of Existing Strategies

Table 1.2 compares existing routing strategies with respect to their targeted performance

objectives. It classifies them into reactive and proactive depending on the way they are

computing and installing forwarding rules. Furthermore, it highlights the classification technique

leveraged to classify the flows whether it is threshold-based or ML-based classification.

1.2.5 Solutions to Minimize TCP Retransmission Delay

In this subsection, we provide an overview of the literature focusing on minimizing the packet

retransmission delay. Such a problem has been widely addressed recently Chen et al. (2019b)

Wang, Chen, Chi & Lei (2017) Chen et al. (2019a) Wan, Campbell & Krishnamurthy (2002).

Existing contributions are mainly focusing on minimizing the retransmission delay by detecting

and retransmitting lost packets from the switch’s cache. In this way, the number of hops traveled

by retransmitted packets is reduced and therefore the retransmission delay is minimized. For

instance, Wang et al. (2017) address the problem of minimizing TCP retransmission delay

and propose a scheme called SDUDP, where edges switches are enabled with a TCP-UDP

conversation function in order to minimize TCP overload (handshaking, ACK), while middle

switches are enabled with retransmission function to store, detect and retransmit lost packets.

The retransmission function monitors the identification field of each packet. If it is out of

order, the function assumes that a packet is lost and requests it from the previous switch in the

path. However, delayed packets could be considered as lost which results in unneeded packet

retransmissions.

Wan et al. (2002) which focus on the problem of minimizing packet retransmission delay

in wireless sensor networks. They introduce a scheme called PSFQ which minimizes the

retransmissions from the source by transmitting packets in a hop-by-hop manner. PSFQ detects

lost packets by monitoring the sequences number. If it is out of order, then a lost packet is

detected. Afterwards, the lost packet is requested from previous switch in the flow path. However,

PSFQ may significantly increase flow completion time as when it detects a lost packet, it stops

18

T
ab

le
1
.2

O
u
r

w
o
rk

ve
rs

u
s

ex
is

ti
n
g

st
ra

te
g
ie

s

Pa
pe

r
O

bj
ec

tiv
es

Re
ac

tiv
e

Pr
oa

ct
iv

e
Cl

as
sifi

ca
tio

n
Te

ch
ni

qu
e

M
in

im
iz

e

C
o
n
g
es

ti
o
n

M
ax

im
iz

e

th
ro

u
g
h
p
u
t

M
in

im
iz

e

F
lo

w

C
o
m

p
le

ti
o
n

T
im

e

M
in

im
iz

e

w
o
rk

lo
ad

s

T
h
re

sh
o
ld

b
as

ed

M
L

b
as

ed

Cu
rt

is
et

al
.(

20
11

)
X

X
X

√
√

X
√

X

Li
u

et
al

.(
20

14
)

√
√

X
X

√
X

√
X

Al
-F

ar
es

et
al

.(
20

10
)

X
√

X
√

√
X

√
X

Li
u

et
al

.(
20

21
)

X
√

X
√

√
X

√
X

Ch
ao

et
al

.(
20

16
)

X
√

X
X

√
X

X

D
at

a

st
re

am

m
in

in
g

Po
up

ar
te

ta
l.

(2
01

6)
√

X
√

X
√

X
X

N
eu

ra
l

n
et

w
o
rk

s

Su
n

et
al

.(
20

21
)

√
X

√
X

√
X

X
V

ar
ie

ty
o
f

M
L

al
g
o
ri

th
m

s

19

forwarding next packets until the lost packet is recovered. Moreover, relying on the packet order

to detect lost packets is not necessarily accurate as delayed packets could be considered lost.

Sugimoto & Ito (2021) address the problem of degradation of quality of service due to congestion

in SDN networks and propose a method consisting of three control strategies: Selection Control,

Redundancy Control and Single-path Control. The proposed method dynamically switches the

three controls based on the network state. Selection control chooses the path with the largest

amount of traffic as the main path for high priority packets and prioritizes packets based on

their size. Redundancy Control duplicates the packets in the ingress switches and discards the

duplicated packets before they arrive to their destinations. Finally, Single-path Control leverage a

single path to transfer the packets. However, this method is suffering from several shortcomings.

First, packet duplication causes high bandwidth consumption which results in high operational

costs. Second, a packet loss detection mechanism is needed to carefully detect lost packets.

lastly, critical packets are not considered.

Chen et al. (2019a) suggest a scheme that can be implemented over UDP. This scheme enables

edge switches to store packets, detect lost packets and retransmit them thanks to a caching

and retransmission function. This function monitors the duration between consecutive packets.

If a packet transmission exceeds this duration, then the packet is considered lost. It is then

retransmitted from the caching function. Closely, Chen et al. (2019b) address the problem of

minimizing the retransmission delay and propose SDATP, an adaptive transmission protocol for

critical-time services. SDATP aims at enabling the switches with additional functionalities like

in-path packet caching and in-path packet retransmission. To do so, an algorithm is proposed

which determines the number of caching switches and their placements in the way that minimizes

the retransmission delay with minimum caching switches. it detects lost packets based on the

time interval of consecutive packets and the number of disordered packets. However, both

strategies in Chen et al. (2019b) and Chen et al. (2019a) are relying on the duration between

consecutive packets to assume packet loss which is not accurate and could result in numerous

unneeded packets retransmissions’.

20

1.2.6 Comparative Study

The aforementioned papers are suffering from several limitations. First, existing solutions do

not inaccurate packet loss detection as they are relying either on the time interval between

consecutive packets or on the packet order which can result in unneeded retransmissions for

delayed packets. Second, they lack flexibility with respect to packet types as all packets are

treated the same way. Finally, they are not scalable as the they rely on the switches resources’

(i.e., processing, memory, storage), which are limited. Hence, for a large number of flows, the

switches would not have enough resources to cache additional packets. Contrarily, the novelty

of our work relies on the idea of proposing a network function implemented in software that

accurately detects lost packets, and allows the the network operator to select which packets to

prioritize and able also to scale-up when the number of flows increases. Table 1.3 compares

the existing strategies in terms of addressed objective, flexibility, scalability and the packet loss

detection metric.

1.3 Conclusion

In this chapter, we provided key concepts related to the three addressed topics in this dissertation,

namely, traffic routing, flow monitoring and traffic transport protocol. We also presented the

related work and highlighted the shortcomings of the existing solutions of each of the addressed

problems.

In the next chapter, we address the first objective in this dissertation that consists in minimizing

flow monitoring cost in large-scale SDN networks.

21

T
ab

le
1
.3

O
u
r

w
o
rk

ve
rs

u
s

ex
is

ti
n
g

st
ra

te
g
ie

s

Pa
pe

r
O

bj
ec

tiv
e

Fl
ex

ib
ili

ty
Sc

al
ab

ili
ty

Pa
ck

et
Lo

ss
De

te
ct

io
n

M
et

ric
M

in
im

ize
Re

tr
an

sm
iss

io
n

De
la

y
Co

ns
id

er
cr

iti
ca

l
flo

ws

W
an

g
et

al
.(

20
17

)
√

𝑋
𝑋

𝑋
Pa

ck
et

id
en

tifi
ca

tio
n

fie
ld

W
an

et
al

.(
20

02
)

√
𝑋

𝑋
𝑋

Pa
ck

et
or

de
r

Ch
en

et
al

.(
20

19
a)

√
𝑋

𝑋
𝑋

Ti
m

ei
nt

er
va

lo
f

co
ns

ec
ut

iv
ep

ac
ke

ts

Ch
en

et
al

.(
20

19
b)

√
√

𝑋
𝑋

Ti
m

ei
nt

er
va

lo
f

co
ns

ec
ut

iv
ep

ac
ke

ts

Su
gi

m
ot

o
&

Ito
(2

02
1)

√
𝑋

𝑋
𝑋

Ti
m

eo
ut

,
Du

pl
ica

te
ac

kn
ow

led
ge

m
en

t

TC
P

Po
ste

le
ta

l.
(1

98
1)

𝑋
𝑋

𝑋
𝑋

Ti
m

eo
ut

,
Du

pl
ica

te
ac

kn
ow

led
ge

m
en

t

CHAPTER 2

MINIMIZE FLOW MONITORING COST IN LARGE-SCALE SDN NETWORKS

2.1 Introduction

Network monitoring services is central to all aspects of network and service management from

fault management, configuration, accounting to performance and security. More interestingly,

with the growing popularity of high-precision and critical applications (e.g., telesurgery, remote

virtual reality, augmented reality), an accurate, timely and scalable monitoring of the traffic flows

becomes necessary to carefully improve network services and quickly react to detect congestion,

failures and adjust the network configuration and routing strategy Clemm, Zhani & Boutaba

(2020); Zhani & ElBakoury (2020); Yahyaoui, Aidi & Zhani (2020) It is hence not surprising

that a recent study Mon (2018) predicts that the network monitoring market will increase from

1.67 billion in 2018 to 2.93 billion in 2023.

In a typical software-defined network, switches could send periodically monitoring messages

carrying flow statistics about the traversing traffic flows to the controller. The controller receives

these statistics within a delay that depends mainly on the polling interval, i.e., the time between

consecutive monitoring messages (reverse of the monitoring frequency), and the reporting delay,

i.e., the time needed for a monitoring packet to leave the switch reporting the statistics (i.e., the

reporting switch) and to cross the network to reach the controller.

To provide accurate and timely flow statistics, both the polling interval and the reporting delay

should be minimized. While a small polling interval would improve the accuracy of the statistics

and allow to report every and each small variation in the traffic, it may result in a large number

of monitoring traffic between the switch and the controller. Scalability becomes a severe issue

in a realistic case where millions of flows should be monitored. To make the matter worse, when

the reporting switch is located several hops from the controller, monitoring messages consume

large amounts of bandwidth throughout all the links composing the path towards the controller

(referred to in the following as the monitoring cost). In addition, when the path between the

24

reporting switch and the controller has a high propagation delay, the reporting delay becomes

significant and the statistics carried by the message might become obsolete.

To remediate to these problems, several research efforts have focused on minimizing the number

of monitoring messages by either varying the polling interval or by minimizing the number of

reporting switches Yu et al. (2013) Su et al. (2014) Tootoonchian et al. (2010) Chowdhury et al.

(2014) Van Adrichem et al. (2014) Yang & Yeung (2020) Henni et al. (2016). However, they

overlooked the reporting delay, which is a key parameter to consider in order to ensure a timely

and accurate delivery of the monitored information in order to allow a quick reaction by the

controller.

Unlike previous work, in this chapter, we aim at minimizing the monitoring cost while respecting

the reporting delay constraint of each of the flows. Indeed, as applications have different

requirements, their associated flows tolerate different monitoring reporting delays depending on

how critical is the application and how fast should the reaction of the controller to any anomaly

or change in the traffic pattern.

In our work, we consider two cases. The first one assumes that the monitoring traffic is forwarded

to a single controller, whereas the second one, assumes monitoring traffic is distributed among

multiple controllers within the network.

We hence formulate the problem of reporting switch-to-flow assignment for the two cases

as an Integer Linear Program (ILP) that selects a reporting switch for each flow in order to

minimize the overall monitoring cost and satisfy the flow reporting delay and while taking into

account the switch monitoring capacity (i.e., the number of flows that can be monitored by the

switch).

The addressed problem boils to the problem of resource allocation in virtualized networks

which is known as NP-hard Zhani, Zhang, Simona & Boutaba (2013), we also propose two

heuristic algorithms that carefully assign reporting switches for the flows taking into account the

switch capacity, the requested flow reporting delay and the bandwidth consumption. The first

25

heuristic solution is the Low-Cost Monitoring algorithm (LCM) that assumes the monitoring

traffic is forwarded to a single controller, whereas the second one, Low-Cost Monitoring Multiple

controllers (LCM-M) assumes monitoring traffic is distributed among multiple controllers within

the network.

Finally, we evaluate our algorithms for different scenarios and compare it to two existing

solutions, OpenTM proposed by Tootoonchian et al. (2010) and FlowCover introduced by Su

et al. (2014). The comparison shows that our solution provides near-optimal solution and

outperforms OpenTM and FlowCover in terms of monitoring cost and reporting delay.

The remainder of this chapter is organized as follows. Section 2.2 describes the addressed

problem and highlights the challenges. Section 2.3 details the proposed problem formulation.

Section 2.4 presents the proposed heuristic. The experimental results are then presented in

Section 2.5. Finally, Section 2.6 concludes the chapter.

2.2 Problem Description

In this Section, we further describe the addressed problem and we provide a deeper discussion

about the impact of the polling interval and the reporting delay on the monitoring cost. Flow

monitoring refers to collecting statistics about a flow using the switches crossed by this flow.

Typically, the controller sends a flow statistics Request message to the switch that replies with

a flow statistics reply message. According to OpenFlow specification Ope (2018) the minimum

size of the request and reply messages are 122 bytes and 174 bytes, respectively. Therefore, a

single flow measurement (e.g., flow statistics request and reply messages) woukd costs 296 bytes

per message. To ensure high monitoring accuracy, the controller should request flow statistics

from the switches at a high frequency, i.e., with a small polling interval.

Figure 2.1 shows the impact of varying the polling interval on the monitoring cost (bandwidth)

for a single flow. It clearly shows that, for a small polling interval, the monitoring cost is high

and drops when the polling interval decreases, however, at the expense of monitoring accuracy.

Furthermore, when the reporting switch is several hops away from the controller, the amount of

26

Figure 2.1 Per-flow monitoring cost

consumed bandwidth will be multiplied by the number of hops as it bandwidth is consumed

throughout all the links of the path leading to the controller. It also leads to a high reporting

delay due to the high propagation delay of the path.

In this work, we assume that the polling interval and the reporting delay of each flow are fixed by

the network operator for each flow depending on the requirements of its associated application.

For instance, these delays could be high for non-critical applications (e.g., web services, VoIP)

where the monitoring could be delayed. However, they should be small to ensure a high-precision

and fast monitoring for critical applications (e.g., telesurgery, real-time virtual reality).

The above discussion together with figure 2.2 clearly show that the selection of the monitoring

switch for each flow has a direct impact on the monitoring cost and reporting delay, and hence

27

Figure 2.2 Flow to switch to controller assignment

the need for a flow-to-switch assignment scheme that ensures that a maximum number of flows

are monitored with minimal monitoring cost and while satisfying the requested reporting delay.

In the following, we provide a brief overview of existing proposals to address this problem

before presenting our proposed solution.

2.3 Problem Formulation

In this section, we mathematically formulate the flow-to-switch assignment as an Integer Linear

Program (ILP) with the objective of minimizing the monitoring cost. We present, in the first

subsection, the problem formulation by considering a single controller used for the whole

network. In the second subsection, we present the formulation for the case of multiple controllers

managing the network.

2.3.1 Single Controller Case

We model the network as an undirected graph 𝐺 = (𝑆, 𝐸), where 𝑆 is the set of switches and 𝐸

is the set of edges. Let 𝑆 = {𝑠1, 𝑠2, ...𝑠 |𝑆 | } and the set of flows 𝐹 = { 𝑓1, 𝑓2, ... 𝑓|𝐹 | }. Table 2.1

summarises the used notations and their meaning.

28

Table 2.1 Notation and meaning

Notation Meaning
𝑆 Set of switches

𝐹 Set of flows

𝐾 Set of controllers 𝑆
𝑗 a flow belonging to 𝐹
𝑖 a switch belonging to 𝑆
𝑘 a controller belonging to 𝐾

𝑐𝑖 𝑗
The consumed bandwidth by the monitoring messages

traveling from the switch i to the controller

𝑐𝑖 𝑗 𝑘
The consumed bandwidth by the monitoring messages

of the flow 𝑗 traveling from the switch 𝑖 to the controller 𝑘
𝑚 The size of a monitoring message expressed in byte

𝑛𝑖
The number of hops between the switch 𝑖 ∈ 𝑆 and

the controller

𝑛𝑖𝑘
The number of hops between the switch 𝑖 ∈ 𝑆 and

the controller 𝑘 ∈ 𝐾

𝑇𝑗
The requested reporting frequency for the flow 𝑗 ∈ 𝐹
expressed in number of monitoring messages per second

𝜎𝑗 The maximum reporting delay for the flow 𝑗
𝑝𝑖 𝑗 Boolean variable capturing the path of the flow 𝑗

𝑝𝑖 𝑗 𝑘
Boolean variable capturing the path of the flow 𝑗
by considering the controller 𝑘

𝑥𝑖 𝑗
Decision variable to indicate if the switch 𝑖 reports

the statistics of the flow 𝑗

𝑥𝑖 𝑗 𝑘
Decision variable to indicate if the switch 𝑖 reports

the statistics of the flow 𝑗 to the controller 𝑘
𝑑𝑖 The reporting delay of the switch 𝑖
𝑑𝑖𝑘 The reporting delay from the switch 𝑖 to the controller 𝑘

𝛾𝑖 The maximum number of the monitored flows by switch 𝑖

𝛿𝑖
The maximum bandwidth consumption by

monitoring messages in the switch 𝑖

𝛼𝑘
The maximum number of the monitored flows

by the controller 𝑘

The cost of monitoring the statistics of the flow 𝑗 ∈ 𝐹 by the switch 𝑖 ∈ 𝑆 is denoted by 𝑐𝑖 𝑗 and

represents the amount of bandwidth consumed by the monitoring messages that travels from

the switch 𝑖 to the controller. We define 𝑚 as the size of a monitoring message expressed in

byte, 𝑛𝑖 the number of hops between the switch 𝑖 ∈ 𝑆 and the controller. We also denote by

29

𝑇𝑗 the requested reporting frequency for the flow 𝑗 ∈ 𝐹 expressed in number of monitoring

messages per second. The maximum reporting delay for the flow 𝑗 that can be tolerated is

denoted by 𝜎𝑗 . The reporting frequency 𝑇𝑗 and the reporting delay 𝜎𝑗 for each flow 𝑗 ∈ 𝐹 can

be fixed depending on the performance and monitoring delays requirements of the application

associated with this flow and it can be adjusted by the network operator. Furthermore, we define

𝑝𝑖 𝑗 as a Boolean variable capturing the path of the flow 𝑗 ∈ 𝐹. Hence, 𝑝𝑖 𝑗 is equal to 1 if the

switch 𝑖 belongs to the path of the flow 𝑗 , and 0 otherwise.

The monitoring cost 𝑐𝑖 𝑗 can be then expressed as follows:

𝑐𝑖 𝑗 = 𝑇𝑗𝑛𝑖𝑚 ∀𝑖 ∈ 𝑆,∀ 𝑗 ∈ 𝐹 (2.1)

• Decision variables: we define 𝑥𝑖 𝑗 ∈ {0, 1} to indicate if the switch 𝑖 is reporting the statistics

of the flow 𝑗 .

𝑥𝑖 𝑗 =

⎧⎪⎪⎨
⎪⎪⎩

1, if switch 𝑖 reports the statistics of flow 𝑗 .

0, otherwise.

• Objective function: our main objective is to minimize the monitoring cost while satisfying the

requested reporting delay for each flow. Technically, we aim at minimizing the number of hops

crossed by the monitoring messages while taking into consideration the flow requirements in

terms of reporting delay and the switch capacities. The objective function can be then expressed

as follows:

𝑀𝑖𝑛
∑
𝑖∈𝑆

∑
𝑗∈𝐹

𝑥𝑖 𝑗 𝑐𝑖 𝑗 (2.2)

• Problem Constraints: in order to find a feasible solution, we should satisfy several constraints.

For instance, we assume that the statistics are reported by a single switch for each flow. This

30

constraint can be expressed as follows:

∑
𝑖∈𝑆

𝑥𝑖 𝑗 = 1 ∀ 𝑗 ∈ 𝐹 (2.3)

We also need to ensure that the selected switch belongs to the path of the flow 𝑗 . This constraint

can be expressed as:

𝑥𝑖 𝑗 ≤ 𝑝𝑖 𝑗 ∀𝑖 ∈ 𝑆,∀ 𝑗 ∈ 𝐹 (2.4)

The selected switch to report the statistics of the flow 𝑗 should not exceed the requested reporting

delay 𝜎𝑗 of the flow. We denote by 𝑑𝑖 the reporting delay, i.e., the propagation delay, of the path

from the switch 𝑖 to the controller. This constraint can be written as follows:

𝑥𝑖 𝑗 𝑑𝑖 ≤ 𝜎𝑗 ∀𝑖 ∈ 𝑆,∀ 𝑗 ∈ 𝐹 (2.5)

When a switch is selected to report the statistics of several flows, its processing delay increases

and thereby its reporting delay increases too. As a result, the selected switch may report untimely

statistics. To avoid such a problem, we need to limit the number of monitored flows for each

switch (e.g., each switch has a limited set of flows to report their statistics). To this end, we

define 𝛾𝑖 as the maximum number of flows to be monitored by the switch 𝑖. This parameter can

also be adjusted by the network operator. The switch capacity constraint can written as follows:

∑
𝑗∈𝐹

𝑥𝑖 𝑗 ≤ 𝛾𝑖 ∀𝑖 ∈ 𝑆 (2.6)

We also define a threshold 𝛿𝑖 as the maximum bandwidth consumption by flow monitoring

messages in each switch. For instance, the network operator can specify how much bandwidth

is dedicated for flow monitoring messages in his network infrastructure. In the following, we

31

define the constraint of the maximum dedicated bandwidth for monitoring messages:

∑
𝑗∈𝐹

𝑥𝑖 𝑗𝑇𝑗𝑚 ≤ 𝛿𝑖 ∀𝑖 ∈ 𝑆 (2.7)

2.3.2 Multiple Controller Case

The undirected graph 𝐺 = (𝑆, 𝐸) from the previous formulation is kept, where 𝑆 denotes the set

of switches and 𝐸 denotes the set of edges. Let the set of controllers 𝐾 = {𝑘1, 𝑘2, ...𝑘 |𝐾 | }, the set

of switches 𝑆 = {𝑠1, 𝑠2, ...𝑠 |𝑆 | } and the set of flows 𝐹 = { 𝑓1, 𝑓2, ... 𝑓|𝐹 | }. Table 2.1 summarises

the used notations and their meaning.

The monitoring cost of the flow 𝑗 from the switch 𝑖 to the controller 𝑘 is denoted by 𝑐𝑖 𝑗 𝑘 and

represents the amount of bandwidth consumed by the monitoring messages when traveling from

the switch 𝑖 to the controller 𝑘 . In order to simplify the formulation, we keep the same variables

from the formulation of single controller case. These variables include the monitoring message

size 𝑚, the reporting frequency 𝑇𝑗 of the flow 𝑗 , the maximum number of the monitored flows

by each switch 𝛾𝑖, the maximum reporting delay 𝜎𝑗 and the maximum bandwidth consumption

by monitoring messages in each switch 𝛿𝑖

The monitoring cost can therefore be written as follows

𝑐𝑖 𝑗 𝑘 = 𝑇𝑗𝑛𝑖𝑘𝑚 ∀𝑖 ∈ 𝑆,∀ 𝑗 ∈ 𝐹,∀𝑘 ∈ 𝐾 (2.8)

• Decision variables: we define 𝑥𝑖 𝑗 𝑘 ∈ {0, 1} to indicate if the switch 𝑖 is reporting the statistics

of the flow 𝑗 to the controller 𝑘 .

𝑥𝑖 𝑗 𝑘 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1,
if switch 𝑖 reports the statistics

of flow 𝑗 to the controller 𝑘 .

0, otherwise.

32

• Objective function: our main objective is to minimize the monitoring cost while satisfying

the requested reporting delay for each flow. Unlike the formulation of single controller case, we

aim at considering multiple controllers when selecting a reporting switch. Specifically, we aim

at selecting a controller and a switch to monitor the incoming flow. The objective function can

therefore be expressed as follows:

𝑀𝑖𝑛
∑
𝑘∈𝐾

∑
𝑖∈𝑆

∑
𝑗∈𝐹

𝑥𝑖 𝑗 𝑘 𝑐𝑖 𝑗 𝑘 (2.9)

• Problem Constraints: in order to find a feasible solution, we should satisfy several constraints.

For instance, we assume that the statistics are reported by a single switch for each flow. This

constraint can be expressed as follows:

∑
𝑘∈𝐾

∑
𝑖∈𝑆

𝑥𝑖 𝑗 𝑘 = 1 ∀ 𝑗 ∈ 𝐹 (2.10)

We also need to ensure that the switch 𝑖 managed by the controller 𝑘 belongs to the path of the

flow 𝑗 . This constraint can be written as follows:

𝑥𝑖 𝑗 𝑘 ≤ 𝑝𝑖 𝑗 𝑘 ∀𝑖 ∈ 𝑆,∀ 𝑗 ∈ 𝐹,∀𝑘 ∈ 𝐾 (2.11)

The reporting delay of the switch 𝑖 reporting the statistics of the flow 𝑗 to the controller 𝑘 should

not exceed the requested reporting delay 𝜎𝑗 by the network operator. We denote by 𝑑𝑖𝑘 the

reporting delay from the switch 𝑖 to the controller 𝑘 . This constraint can be expressed as follows:

𝑥𝑖 𝑗 𝑘 𝑑𝑖𝑘 ≤ 𝜎𝑗 ∀𝑖 ∈ 𝑆,∀ 𝑗 ∈ 𝐹,∀𝑘 ∈ 𝐾 (2.12)

In order to avoid any kind of additional delay invoked by the increase of the switch processing

delay due to a large number of flows. We need to limit the number of monitored flows by each

switch. To do so, we present the following constraint:

33

∑
𝑗∈𝐹

𝑥𝑖 𝑗 𝑘 ≤ 𝛼𝑘 ∀𝑖 ∈ 𝑆,∀𝑘 ∈ 𝐾 (2.13)

We also define a constraint for the maximum bandwidth consumption by the monitoring messages

in each switch. The network operator can change it depending on his infrastructure. This

constraint can be expressed as follows:

∑
𝑗∈𝐹

𝑥𝑖 𝑗 𝑘𝑇𝑗𝑚 ≤ 𝛿𝑖 ∀𝑖 ∈ 𝑆,∀𝑘 ∈ 𝐾 (2.14)

In order to avoid any impact on the controller performance and to minimize its workload, we

need to limit the number of monitored flows for each controller. Therefore, we define 𝛼𝑘 as

the maximum number of flows per controller. This parameter can be adjusted by the network

operator. The constraint to respect the maximum number of flows for each controller is defined

as follows: ∑
𝑗∈𝐹

∑
𝑖∈𝑆

𝑥𝑖 𝑗 𝑘 ≤ 𝛼𝑘 ∀𝑘 ∈ 𝐾 (2.15)

In order to minimize the number of monitoring messages in the infrastructure, we need to

ensure that each flow 𝑗 is monitored by a single switch 𝑖 which reports the statistics to a single

controller 𝑘 . ∑
𝑘∈𝐾

𝑥𝑖 𝑗 𝑘 = 1 ∀𝑖 ∈ 𝑆,∀ 𝑗 ∈ 𝐹 (2.16)

This formulation is proved to be NP-hard and hence, cannot scale for large instances of the

problem. We therefore introduce in the following two heuristics to overcome this limitation.

2.4 Proposed Heuristic

In this section, we present our heuristic solutions to address the problem of minimizing the

monitoring cost while respecting the reporting delay. Specifically, we propose two heuristics

Low-Cost Monitoring (LCM) and Low-Cost Monitoring Multiple controllers (LCM-M) that

consider the single controller case and the multiple controllers case, respectively.

34

Figure 2.3 Low cost monitoring

Figures 2.3 and 2.4 present how our solution could be implemented in realistic infrastructures.

Unlike figure 2.3 which describes LCM where a single controller is considered, 2.4 describes

LCM-M which consider multiple controllers and highlights how LCM-M instances could

exchange information (e.g., the number of hops between the switches and each controller)

between each other in order to easily select the reporting switch and receiving controller. In the

following, we provide the details of the two heuristics.

2.4.1 Low Cost Monitoring Solution (single controller)

The proposed algorithm is called Low Cost Monitoring (LCM) and aims at selecting the switch

to report the statistics of each the flows of the network. It considers three criteria: the monitoring

cost, the maximum number of flows assigned for each switch (i.e., switch capacity) and the

reporting delay. In the following, we provide more details about these criteria:

• Monitoring cost: we consider the monitoring cost as the amount of bandwidth consumed by

the monitoring messages. This amount depends on the number of monitoring messages and

35

the number of hops crossed throughout the switch-to-controller path. For instance, a single

monitoring message sent to the controller through a path consisting of 3 hops will generate 3

messages. To estimate the bandwidth consumed by the monitoring messages, we multiply their

number by their size and the number of hops in their paths towards the controllers.

• Switch capacity: a single switch could be report the statistics of several flows as it may belong

to the path of multiple flows, When a switch reports the statistics of a significant number of

flows simultaneously, it may be overloaded and its processing delay may increase which impacts

it main task (i.e., packet forwarding). To deal with such an issue, LCM sets a capacity threshold

for each switch (i.e., the maximum number of flows) so as to balance the monitoring load among

all switches. In other words, if the capacity of a switch is reached, it cannot be considered by

LCM as a candidate to monitor more flows.

The proposed algorithm LCM can be implemented as an SDN application running on the top

of an SDN controller. LCM computes the shortest paths from the controller to the reporting

switches and then merges them to build the shortest path tree.

The switch selection is made by considering the number of hops in each switch-to-controller

path and the number of assigned flows for each switch. The closest switch with number of

assigned flows smaller than its capacity is selected to report the flow statistics.

Algorithm 1 takes as input the set of flows and their paths and generate a tree consisting of the

reporting switch of each flow. For switch selection, LCM considers not only the number of hops

to the controller, but also the reporting delay and the number of assigned flows for each switch.

The reporting delay and number of assigned flow should not exceed 𝜎 and 𝛾, respectively.

These thresholds can be adjusted by the network operator depending on the infrastructure’s

characteristics.

The reporting delay depends on the number of hops in the switch-to-controller path (e.g., the prop-

agation delay) and the processing delay of the switches belonging to the switch-to-controller

36

Algorithm 2.1 LCM

Input: The topology, active flows F, 𝜎, 𝛾 and 𝛿
Output: Reporting_switches[]

1 for all 𝑓 ∈ 𝐹 do
2 𝑓 𝑙𝑜𝑤_𝑝𝑎𝑡ℎ[] ← 𝑔𝑒𝑡_ 𝑓 𝑙𝑜𝑤_𝑝𝑎𝑡ℎ(𝑓);
3 𝑠𝑤𝑖𝑡𝑐ℎ_𝑙𝑖𝑠𝑡 [] ← 𝑠𝑜𝑟𝑡_𝑠𝑤𝑖𝑡𝑐ℎ𝑒𝑠_𝑏𝑦_ℎ𝑜𝑝𝑠(𝑓 𝑙𝑜𝑤_𝑝𝑎𝑡ℎ[]);
4 for 𝑠 ∈ 𝑠𝑤𝑖𝑡𝑐ℎ_𝑙𝑖𝑠𝑡 [] do
5 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← 𝑔𝑒𝑡_𝑡ℎ𝑒_ 𝑓 𝑖𝑟𝑠𝑡_𝑠𝑤𝑖𝑡𝑐ℎ();
6 𝑠𝐷𝑒𝑙𝑎𝑦 ← 𝑟𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔_𝑑𝑒𝑙𝑎𝑦(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒);
7 𝑠𝐹𝑙𝑜𝑤𝑠 ← 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑_ 𝑓 𝑙𝑜𝑤𝑠(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒);
8 𝑠𝐵𝑊 ← 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ_𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒);
9 if ((𝑠𝐷𝑒𝑙𝑎𝑦 ≤ 𝜎) & (𝑠𝐹𝑙𝑜𝑤𝑠 ≤ 𝛾) & (𝑠𝐵𝑊 ≤ 𝛿)) then

10 𝑅𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔_𝑆𝑤𝑖𝑡𝑐ℎ𝑒𝑠[] ← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒;

11 end if
12 else
13 𝑆𝑒𝑒𝑘 𝑡ℎ𝑒 𝑛𝑒𝑥𝑡 𝑠𝑤𝑖𝑡𝑐ℎ 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑖𝑠𝑡;
14 end if
15 end for
16 end for

path. Therefore, the more we minimize the number of hops and switches in this path, the more

the reporting delay is decreased.

2.4.2 Low Cost Monitoring Solution (multiple controllers)

The second proposed algorithm is called Low Cost Monitoring for Multiple controllers (LCM-M).

It aims at minimizing the monitoring cost while respecting the reporting delay in large scale

networks. More specifically, algorithm 2.2 selects not only the reporting switch but also the

receiving controller in a way that minimizes the monitoring cost and satisfies the requested

reporting delay which is represented by 𝜎, the switch and controller capacities and the dedicated

bandwidth for monitoring messages which are represented by 𝜎, 𝛾, 𝛿, 𝛼, respectively.

In large-scale networks where there are millions of flows, selecting the reporting switch and

receiving controller is highly challenging. Indeed, the capacity of of the switches and controllers

37

in terms of the maximum number of monitored flows should be respected. Technically, when the

number of flows to be monitored increases, the controller’s processing delay may increase and

hence the controller decisions may experience additional delays. To solve this problem, LCM-M

takes into account the maximum number of monitored flows in each controller provided by the

network operator. Afterwards, it selects the reporting switch and receiving controller that better

minimize the monitoring cost.

Figure 2.4 (Low Cost Monitoring solution - multiple

controllers)

2.5 Evaluation

2.5.1 Single Controller Case

We evaluate our algorithm through extensive simulations using different evaluation scenarios to

clearly show the improvements of our algorithm compared to the monitoring strategies proposed

in the literature. For each strategy, we measure the monitoring cost, the reporting delay and the

execution time. We also investigate the impact of varying the polling interval on the monitoring

cost. For the simulation environment, all our simulations were conducted using Mininet (2018)

where we implement the GEANT topology Geant (2018). The capacities and delays of the links

are randomly varied between 5Mbps to 20Mbps and between 10ms to 100ms, respectively. We

considered 10 scenarios where the number of flows is linearly varying from 100 to 1000 flows.

38

Algorithm 2.2 LCM-M

Input: The set of flows and their paths, The set of controllers, 𝜎,𝛼, 𝛾 and 𝛿
Output: Reporting switch and receiving controller []

1 for all 𝑓 ∈ 𝐹 do
2 𝑓 𝑙𝑜𝑤_𝑝𝑎𝑡ℎ[] ← 𝑔𝑒𝑡_ 𝑓 𝑙𝑜𝑤_𝑝𝑎𝑡ℎ(𝑓);
3 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟_𝑎𝑛𝑑_𝑠𝑤𝑖𝑡𝑐ℎ_𝑙𝑖𝑠𝑡 [] ← 𝑠𝑜𝑟𝑡_𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟𝑠

𝑎𝑛𝑑_𝑡ℎ𝑒_𝑠𝑤𝑖𝑡𝑐ℎ𝑒𝑠_𝑏𝑦_ℎ𝑜𝑝𝑠(𝑓 𝑙𝑜𝑤_𝑝𝑎𝑡ℎ[]);
4 for 𝑠 ∈ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟_𝑎𝑛𝑑_𝑠𝑤𝑖𝑡𝑐ℎ_𝑙𝑖𝑠𝑡 [] do
5 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← 𝑔𝑒𝑡_𝑡ℎ𝑒_ 𝑓 𝑖𝑟𝑠𝑡_𝑠𝑤𝑖𝑡𝑐ℎ_𝑎𝑛𝑑_𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 ();
6 𝑠𝐷𝑒𝑙𝑎𝑦 ← 𝑟𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔_𝑑𝑒𝑙𝑎𝑦(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒);
7 𝑠𝐹𝑙𝑜𝑤𝑠 ← 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑_ 𝑓 𝑙𝑜𝑤𝑠_𝑝𝑒𝑟_𝑠𝑤𝑖𝑡𝑐ℎ(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒);
8 𝑐𝐹𝑙𝑜𝑤𝑠 ← 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑_ 𝑓 𝑙𝑜𝑤𝑠_𝑝𝑒𝑟_𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 (𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒);
9 𝑠𝐵𝑊 ← 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ_𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒);

10 if ((𝑠𝐷𝑒𝑙𝑎𝑦 ≤ 𝜎) & (𝑠𝐹𝑙𝑜𝑤𝑠 ≤ 𝛾)
& (𝑐𝐹𝑙𝑜𝑤𝑠 ≤ 𝛼) & (𝑠𝐵𝑊 ≤ 𝛿)) then

11 𝑅𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔_𝑆𝑤𝑖𝑡𝑐ℎ𝑒𝑠_𝑎𝑛𝑑_𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 [] ← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒;

12 end if
13 else
14 𝑆𝑒𝑒𝑘 𝑡ℎ𝑒 𝑛𝑒𝑥𝑡 𝑠𝑤𝑖𝑡𝑐ℎ 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑖𝑠𝑡;
15 end if
16 end for
17 end for

In addition to the proposed monitoring strategy LCM, we implemented two monitoring strategies

from the literature, namely OpenTM Tootoonchian et al. (2010) and FlowCover Su et al. (2014).

OpenTM selects for each flow the last switch to the destination to report the statistics whereas

FlowCover selects the switches with highest number of flows the report the statistics. For LCM,

we fixed the dedicated bandwidth for monitoring messages 𝛿 at 30% of the total bandwidth

capacity and we varied the switch capacity 𝛾 (i.e., maximum number of monitored flows per

switch) from 10 to 100 depending on the scenario. Finally, we compute the reporting delay of

the switches based on the number of hops between the switch and the controller.

Fig. 2.5 depicts the monitoring cost obtained with the three compared strategies and the optimal

one provided by CPLEX for the 10 different scenarios. It clearly shows that LCM outperforms

39

Figure 2.5 LCM monitoring cost

OpenTM and FlowCover and provides near optimal results. In fact, OpenTM selects the last

switch to the destination to report the statistics whereas FlowCover selects the highest loaded

switch. Both strategies do not take into account the number of hops crossed by a monitoring

message to reach the controller. Unlike these strategies, LCM selects the closest switch to the

controller satisfying the bandwidth, delay and capacity constraints. Therefore, the monitoring

messages are traveling through less hops to reach the controller.

Fig. 2.7 illustrates the reporting delay for the implemented strategies. It clearly shows that LCM

outperforms OpenTM and FlowCover and provides near optimal results. Indeed, FlowCover

selects the highest loaded switch and does not consider neither the processing delay nor the

number of hops in the switch-to-controller path. Similarly, OpenTM does not take into account

the number of hops and the processing delay as it selects the last switch to the destination. On

the other hand, LCM does not only select the closest switch to the destination but also takes into

account the number of assigned flows for each switch to avoid overloading switches.

Fig. 2.8 shows the execution time of the all strategies. The execution time is the time needed to

generate the set of reporting switches for all flows. As shown in this figure, LCM takes more

time to generate the set of reporting switches compared to OpenTM and FlowCover. This is

40

Figure 2.6 Polling interval

Figure 2.7 LCM reporting time

because LCM searches for the solution considering more criteria like the number of hops in the

switch-to-controller paths, the number of assigned flows, the reporting delay and the bandwidth.

However, the advantage of LCM is that it generates a near optimal result in much less time than

CPLEX Cpl (2015).

41

Figure 2.8 Execution time

We next study the impact of the polling interval (i.e., the time between two consecutive monitoring

messages) on the monitoring cost. Indeed, reducing the polling interval leads to higher accuracy

but at the expense of higher monitoring cost (i.e., more monitoring messages).

Fig. 2.6 shows the monitoring cost (computed using Eq. 2.1) for different polling intervals 𝑇𝑗

and for all the studied strategies. It shows that LCM outperforms OpenTM and FlowCover and

provides results close to the optimal ones found by CPLEX. For instance, when the polling

interval is equal to 100 ms, the monitoring cost of LCM is almost 24.36 Mbps compared to

when it comes to 125.68 Mbps and 73.88 Mbps for OpenTM and FowCover, respectively. This

shows that LCM provides higher monitoring accuracy with minimal monitoring cost.

2.5.2 Multiple Controller Case

In the following, we evaluate our solution to minimize the monitoring cost considering multiple

controllers. We use 10 scenario where we vary the numbers of flows, switches and controllers.

We also vary the bandwidth capacity and the propagation delay of each link. Table 2.2 provides

more details about the implemented scenarios. We compare our work to the results provided by

the solver and the results of the baseline solution.

42

T
ab

le
2
.2

E
v
al

u
at

io
n

sc
en

ar
io

s

Sc
en

ar
io

Nu
m

be
ro

f
flo

ws
Nu

m
be

ro
f

sw
itc

he
s

Nu
m

be
ro

f
lin

ks
Nu

m
be

ro
f

co
nt

ro
lle

rs
Li

nk
sd

ela
ys

’
(m

s)
(r

an
do

m
ly

)
Li

nk
sc

ap
ac

iti
es

’
(M

bp
s)

(r
an

do
m

ly
)

1
5
0

0
0
0

1
0
0
0

3
0
0
0

2
5

[1
0
,
1
0
0
]

[1
0
,
7
0
]

2
7
0

0
0
0

1
4
0
0

4
2
0
0

3
5

[1
0
,
1
0
0
]

[1
0
,
7
0
]

3
1
2
0

0
0
0

2
4
0
0

7
2
0
0

6
0

[1
0
,
8
0
]

[1
0
,
7
0
]

4
1
7
0

0
0
0

3
4
0
0

1
0

2
0
0

8
5

[1
0
,
8
0
]

[2
0
,
8
0
]

5
2
0
0

0
0
0

4
0
0
0

1
2

0
0
0

1
0
0

[1
0
,
7
0
]

[2
0
,
8
0
]

6
2
5
0

0
0
0

5
0
0
0

1
5

0
0
0

1
2
5

[5
,
7
0
]

[2
0
,
1
0
0
]

7
5
0
0

0
0
0

1
0

0
0
0

3
0

0
0
0

2
5
0

[5
,
5
0
]

[2
0
,
1
5
0
]

8
7
0
0

0
0
0

1
4

0
0
0

4
2

0
0
0

3
5
0

[5
,
5
0
]

[2
0
,
1
5
0
]

9
1

M
il
li
o
n

2
0

0
0
0

6
0

0
0
0

5
0
0

[5
,
4
0
]

[5
0
,
1
7
0
]

1
0

2
M

il
li
o
n

4
0

0
0
0

1
2
0

0
0
0

1
0
0
0

[5
,
3
0
]

[5
0
,
2
0
0
]

43

In the baseline solution, we assume that each controller monitors a set of switches and each last

switch to the destination in a flow path, reports the statistics to its managing controller.

We measure the monitoring cost which is the amount of consumed bandwidth when reporting

the statistics to the controller, the reporting delay which is the time needed to report the statistics

from the switch to the controller and the computation time which is the time spent to select a

reporting switch for each flow.

Figure 2.9 Monitoring cost

Figure 2.9 describes the monitoring cost for the three solutions. Its is clearly shown that LCM-M

outperforms our baseline and provides a near optimal solution. While the baseline solution

assumes that each set of switches is managed by a single controller and select the last switch

to the destination to report the flow statistics, LCM-M selects the reporting switch and the

receiving controller in the flow path that better minimize the bandwidth consumption and satisfy

the selection criteria (i.e., the switch and controller capacities, the reporting delay, the number of

hops between the switch and the controller). As a result, the monitoring messages are traveling

the minimum number of hops to reach the controller. Starting from scenario 8, the ILP solver

(i.e., CPLEX) is not able to find the optimal solution due to the high number of inputs.

44

Figure 2.10 LCM-M reporting time

Figure 2.11 Execution time

Figure 2.10 depicts the average reporting delay for the three solutions. As presented in this

figure, LCM-M outperforms the baseline and provides a near optimal solution. We compute the

average reporting delay by summing up the reporting delay of all the flows then dividing by the

number of flows in each scenario. Unlike the baseline, LCM-M takes into account the delay in

45

each switch-to-controller path before selecting the reporting switch and the receiving controller.

That is why LCM-M provides significant results compared to the baseline. Similarly like the

monitoring cost metric, our solver is not able to find the optimal solution starting from scenario

8.

Figure 2.11 illustrates the computation time for the three solutions. Its is clearly shown that

the solver provides the optimal results but with unacceptable computation time. As a matter of

fact, the flow can start and finish transferring before selecting the reporting switch. In this way,

some flows could not be monitored and the controller could miss important information that

can help to further improve the network performance and survivability. In contrast to LCM-M,

the baseline provides the results faster than LCM-M because it does not take into account any

criteria when selecting the reporting switch and receiving controller.

2.6 Conclusion

In this chapter, we addressed the problem of minimizing the flow monitoring cost while respecting

the reporting delay. We hence proposed two heuristic algorithms LCM and LCM-M that ensure

the minimum monitoring cost. The performed simulations show that both heuristics outperform

existing monitoring strategies and provides near optimal solution in minimal computation time

compared to CPLEX.

As a future work, we plan to propose a network function to minimize the controller’s workload

by minimizing the amount of monitoring messages between the switch and the controller.

CHAPTER 3

ON OPTIMIZING TRAFFIC ROUTING IN SDN NETWORKS

3.1 Introduction

Cloud storage is a promising service that allows customers to store and retrieve files while

benefiting from the scalability and performance provided by cloud infrastructures Dieye,

Zhani & Elbiaze (2017). According to a recent study, the worldwide storage industry would grow

by 25.8 percent per year by 2021 Markets & Markets (2018). As a result, minimizing file transfer

time through large-scale networks has become of a paramount importance for storage service

providers as it may impact users’ satisfaction. According to Tlili, Yahyaoui, Zhani & Elbiaze

(2019), a slight increase in the file transfer time can reduce the user’s satisfaction and thereby

lead to a loss of revenue. For instance, according to Amazon an increase of 100ms in the file

transfer time can decrease sales by 1% Linden (2006).

Typically, the time needed to transfer a file is the time needed to transfer all the packets of its

corresponding flow. This time is referred to as the Flow Completion Time (FCT). In this context,

Software Defined Networking (SDN) is a promising technology providing the programmability

which can improve network infrastructure’s performance and in particular the flow completion

time Nunes, Mendonca, Nguyen, Obraczka & Turletti (2014). SDN enables the implementation

of customized routing strategies which can significantly minimize the FCT Poupart et al. (2016).

Recently, several network operators are gradually embracing SDN technology. This raises

several challenges as how to improve the performance of SDN infrastructures. In this context,

one of the main issues is how to minimize the file transfer time. To solve such issue, the flow

completion time of each file should be minimized. This requires to carefully route the flow of

packets from the source to the destination.

Several studies have recently addressed this particular issue Poupart et al. (2016) Liu et al.

(2014) Al-Fares et al. (2010) Chao et al. (2016). Typically, they classify the flows into mice and

48

elephants and they compute forwarding rules accordingly. For instance, elephant flows can be

routed through least congested paths and thereby minimizing their FCTs Poupart et al. (2016).

However, previous work address this issue in a reactive way. In other words, they compute

forwarding rules and install them in the switches only when the flow arrives. As a result, the

flow completion time is impacted by the time needed to compute and install forwarding rules.

Unlike existing work, we are the first to leverage association rules Agrawal, Imieliński & Swami

(1993) to compute routing paths in SDN networks. Furthermore, we computes forwarding rules

and install them in the switches proactively. In other words, forwarding rules are computed and

installed before the flow arrival. As a result, the packets are forwarded as soon as they arrive

and the flow completion time is not impacted.

In this chapter, we address the problem of minimizing flow completion time and we propose a

class-based routing strategy called LUNA operating as follows:

• LUNA classifies the flows into mice and elephants based on their size using K-means

algorithm Jain (2010).

• LUNA analyzes users’ behavior by computing their corresponding association rules. An

association rule is an if-then statement describing the relation between a user and the class

of his typically requested flows.

• LUNA routes each flow based on its class.

LUNA computes and installs forwarding rules proactively which means before the flow arrival.

Unlike reactive strategies, when the packets of a flow arrive, they are directly forwarded without

any additional delays. Furthermore, LUNA improves not only the flow completion time, but

also the throughput and the network congestion.

The remainder of this chapter is organized as follows. The proposed routing strategy is detailed

in Section 3.2. The experimental results are presented in Section 3.3. Finally, Section 3.4

concludes the chapter.

49

3.2 System Design

In this section, we propose a new class-based routing strategy called LUNA. It aims at improving

network performance by minimizing flow completion time and packet loss and maximizing the

network throughput. In the following, we detail how LUNA achieves this objective.

LUNA focuses only on the user IP and the flow to be routed from the server to the user. The

different steps of LUNA are presented as follows:

• Collect historical users’ requests: LUNA first collects all the information related to the

historical users’ requests including: the user IP, the request, the time when the user sends the

request and the number of bytes in the reply. The number of bytes in the reply represents the

size of the flow to be routed to the user.

• Classify the flows into mice and elephant: it focuses on the flow size (i.e., the number of

bytes in the reply) to classify the flows into mice and elephants. To avoid any classification

thresholds which impact the flexibility of LUNA, an unsupervised classification algorithm

k-means is leveraged. Thresholds based classification impacts the flexibility of routing

solutions because when deploying such solutions in different network infrastructures, the

threshold from an infrastructure to another should be carefully chosen, hence the need to

avoid them.

• Learn association rules: an association rule is a data mining technique describing if-then

statements. It is computed using a statistic metric called confidence index Agrawal et al.

(1993). In this work an association rule is written as:

𝐵𝑜𝑏 → 𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡

In other words, if the switch receives a packet to be routed to Bob then this packet belongs to

an elephant flow.

• Compute forwarding rules: forwarding rules are computed for each user by considering

his association rule. If there is an association rule for such user, then the forwarding

rule is computed based on the class of the flow. In particular, if the association rule is

50

𝐵𝑜𝑏 → 𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡 then the forwarding rules route all the packets with IP destination: Bob

through the least congested path.

As presented in Fig. 3.1, LUNA is an SDN application running on top of the SDN controller.

It consists of three modules: a traffic monitoring module, an association rules generator and a

routing rules generator.

Figure 3.1 LUNA Architecture

3.2.1 Traffic Monitoring Module

The traffic monitoring module collects the traffic information from the network infrastructure.

These information are the user IP, the request, the request type and the number of bytes in

the reply. The request can be a specific web page or a file. The number of bytes in the reply

represents the size of the flow to be routed to the user.

51

3.2.2 Association Rules Generator

The association rules generator classifies the flows into mice and elephants based on their size

using K-means algorithm (K=2). Afterwards, it generates association rules between all users

and the class of their flows. Table 3.1 presents a sample of the dataset after classification.

Table 3.1 Dataset sample

User Flow class
Bob elephant

Bob elephant

Alice elephant

Bob elephant

Alice mouse

Alice elephant

Eve mouse

Eve mouse

In the dataset, each column consists of set of items and each line is called item set. Association

rules learning tries to find frequent item sets among large datasets. Afterwards, it extracts

frequent patterns. Such a technique helps to understand users’ behavior. In particular, an

association rule can be written as 𝑋 → 𝑌 , where 𝑋 and𝑌 are the user and the class of his typically

requested flows. In other words, an association rule in this work is written as 𝐵𝑜𝑏 → 𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡

This means that Bob is frequently asking for elephant flows. There are two essential metrics

to compute association rules: support and confidence index. The support of an item set is the

percentage of its occurrence in the dataset. The confidence index of an association rule is the

percentage that presents the occurrence frequency of a rule head (i.e., Bob) among all item sets

containing the rule body (i.e., elephant) in the dataset. It presents how reliable an association

rule is. The higher the confidence index is, the more likely the head item (i.e., Bob) occurs

among item sets containing the rule body (i.e., elephant).

52

The confidence index (𝐶𝐼) is presented by equation 3.1:

𝐶𝐼 (𝑢𝑠𝑒𝑟 → 𝑐𝑙𝑎𝑠𝑠) = 𝑓 𝑟𝑒𝑞(𝑢𝑠𝑒𝑟, 𝑐𝑙𝑎𝑠𝑠)
𝑓 𝑟𝑒𝑞(𝑢𝑠𝑒𝑟) (3.1)

Where freq(user,class) represents how frequently the user asks for a flow class in the dataset

whereas freq(user) represents how frequently the user occurs in the dataset. If 𝐶𝐼 (𝑢𝑠𝑒𝑟 →
𝑐𝑙𝑎𝑠𝑠) = 1, then the user asked for 100% of all his occurrences in the dataset for that flow class

which is the case of 𝐵𝑜𝑏 → 𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡 in table 3.1. LUNA leverages this association rule to

predict the future flow class to be requested by the user. In other words, if a user occurs in the

dataset for n times and he asked for elephant flows for n times. Then, we can assume that he will

ask for elephant flow for his n+1 time.

Algorithm 3.1 Association Rules Generator

Input: DataSet consisting of historical user requests

Output: Association Rules []

1 𝑖 = 0;

2 for all network users do
3 if (𝐶𝐼 (𝑢𝑠𝑒𝑟 → 𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡) = 1) then
4 // The class of the flow for this user is elephant

𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛_𝑅𝑢𝑙𝑒𝑠[𝑖] ← ”𝑢𝑠𝑒𝑟 → 𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡”;

5 𝑖 + +;

6 end if
7 else if (𝐶𝐼 (𝑢𝑠𝑒𝑟 → 𝑚𝑜𝑢𝑠𝑒) = 1) then
8 // The class of the flow for this user is mouse

𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛_𝑅𝑢𝑙𝑒𝑠[𝑖] ← ”𝑢𝑠𝑒𝑟 → 𝑚𝑜𝑢𝑠𝑒”;

9 𝑖 + +;

10 end if
11 else
12 // The class of the flow is unknown

𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛_𝑅𝑢𝑙𝑒𝑠[𝑖] ← ”𝑢𝑠𝑒𝑟 → ∅”;

13 𝑖 + +;

14 end if
15 end for

53

3.2.3 Routing Rules Generator

The routing rules generator represents the core component of LUNA. It selects of path for each

flow based on the generated association rules. In particular, if the flow class is an elephant,

then it selects the least congested path. As a results, the congestion is avoided and the flow

completion is improved. If the flow class is unknown, then the routing path is randomly selected.

A flow class is reported unknown only if there is no association rule for his user.

3.3 Implementation and Evaluation

In this section we evaluate the solution using Mininet (2018) and a real dataset.

3.3.1 Dataset Presentation

The used dataset for the experimentation consists of a set of HTTP requests collected from

ClarkNet (2018) during a month from August 1𝑠𝑡 to August 31𝑠𝑡 , 2016. The dataset contains

more than one million requests and almost 78000 users. For each request, we have the user IP,

access time, reply code and number of bytes in the reply. In this work, we are focusing on the

number of bytes of the reply as this amount represents the size of the flow to be routed from the

server to the user.

Fig. 3.2 illustrates the cumulative distribution function of the size of the flows to be routed to

the users. Almost 90% of the flows are smaller than 32Kb.

3.3.2 Experimentation

To show the performance of LUNA, We implement our solution and two different routing

strategies. An ideal routing where we assume that all the classes of the flows are known and

therefore all elephant flows are routed through least congested paths. And a random strategy

where all flows are randomly routed.

54

Figure 3.2 Flow size distribution

Figure 3.3 Network infrastructure

We implement LUNA as an SDN application on top of the ONOS controller Berde et al. (2014).

To generate association rules, we run algorithm 3.1. We implement the GEANT topology Geant

(2018) illustrated by Fig. 3.3 and we randomly set links capacity from 10Mbps to 20Mbps. All

the flows from the collected dataset (i.e., HTTP reply) should be routed through the network

55

infrastructure. We connected the source to node number 1 and the destination to node number

22.

Figure 3.4 Flow completion time

Fig. 3.4 illustrates the cumulative distributed function of the flow completion time for each

routing strategy. It is clear that LUNA can significantly improve the FCT compared to Random

strategy. Almost 90% of flows are transferred with FCT less than 4 seconds. But for random

strategy, almost 90% of flows are transferred with FCT less than 256 seconds. To explain this

result, LUNA is routing network flows based on their classes but when the class is not provided

(i.e., unknown user behavior), the flow is routed randomly. Thus, in its worst case (i.e., the case

where it is unable to predict all flows’ classes) LUNA deals like random routing strategy.

Fig. 3.5 depicts the throughput for the three routing strategies. The throughput is the amount of

transferred data in a given time. It is clearly shows that LUNA can also improve the throughput.

Almost 90% of the flows are transferred with a throughput greater than 81 kb/s. However, for

random strategy, almost 90% of the flows are transferred with a throughput greater than 32 kb/s.

To explain this results, contrary to random routing, LUNA is avoiding congestion by selecting

least congested paths. The queuing delay is therefore minimized and the throughput is improved.

56

Figure 3.5 Throughput

Figure 3.6 Packet loss

Fig. 3.6 compares the three strategies based on the amount of data which are lost. A packet loss

occurs when a router is overloaded and cannot receive additional packets. This figure highlights

57

Figure 3.7 Percentage of correctly identified flows

the improvements of LUNA in term of packet loss compared to random. For instance, almost

half of flows are transferred with amount of packet loss less than 421 bytes. However, for random

strategy, almost half of flows are transferred with amount of packet loss less than 736 bytes.

In this work, we define the accuracy as the number of correctly identified flows (mouse or

elephant) over the total number of flows which can be represented as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟𝑜 𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑑𝑓 𝑙𝑜𝑤𝑠

𝑇𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜 𝑓 𝑓 𝑙𝑜𝑤𝑠
(3.2)

Fig. 3.7 shows the percentage of correctly identified flows for the two routing strategies. LUNA

has succeeded to identify almost 34% of elephant flows and almost 46% of mouse flows. The

reason behind incorrectly identifying a user’s flow class is due to the fact that there is no

association rule for this user.

58

3.4 Conclusion

In this chapter, we focused on the problem of minimizing flow completion time in SDN networks.

We hence proposed a predictive routing strategy called LUNA based on association rules mining.

Unlike the existing solutions, LUNA is able to improve network performance by avoiding

congestion. In particular, elephant flows are routed through least congested paths. On average,

LUNA demonstrates high classification accuracy exceeding 80% for all flows. In particular, 34%

of elephant flows and 46% of mouse flows. Experimental results show that LUNA outperforms

the random solution and converges to the ideal routing in terms of the FCT, throughput and

packet loss.

As future work we aim at optimizing the number of routing rules in large scale to save TCAM

memory.

CHAPTER 4

ON MINIMIZING SEGMENT RETRANSMISSION DELAY

4.1 Introduction

With the emergence of new network applications like telesurgery, telepresence and virtual/aug-

mented reality, minimizing the network delays becomes a pressing requirement Zhani & ElBak-

oury (2020). For instance, a telesurgery application would require stringent bounded end-to-end

delays to ensure realistic, reliable and smooth operation Sedaghat & Jahangir (2021). Increased

network delays and high transfer times could also lead to significant loss of revenue for several

network applications. For instance, according to a study from Amazon, an increase of 100𝑚𝑠 in

file transfer time (e.g., web pages) could decrease the sales by up to 1% Yahyaoui et al. (2020).

One of the major reasons of high network delays is congestion which occurs when a network

link receives more packets than it can handle Yahyaoui & Zhani (2020). This naturally leads to

increased queuing delays and high rates of dropped packets Xu, Zhao & Muntean (2021). In

today’s Internet where the Transport Control Protocol (TCP) is the most used protocol to ensure

the transport of packets between two end-points, lost packets are detected and retransmitted

by the source Stevens et al.. More precisely, when the source transmits a packet, it launches a

timer called the TCP timeout. When this timer expires before receiving an ACKnowledgement

(ACK) from the destination, the source assumes that the packet is lost and retransmits it. This

retransmission mechanism is suffering from several shortcomings. First, TCP is not able to

accurately detect packet loss as the TCP timeout may expires before the acknowledgement is

received.

However, this mechanism suffers from several shortcomings. First, the detection of packet loss

is not accurate as the TCP timeout may expire before the acknowledgement is received. Indeed,

the packet or its acknowledgement may experience some additional delays (for instance, because

of congestion or routing through different paths). In this case, the packet is not lost but the

timeout expires, leading to unneeded retransmissions.

60

Another major shortcoming of TCP is that, when the packet is really lost, the retransmission is

only triggered when the TCP timeout expires and the retransmission is only performed by the

source. This means that the total time needed to deliver the packet, including the retransmission

time, is estimated to be three times the end-to-end delay (two end-to-end delays for the timeout

and one end-to-end delay for the retransmitted packet). Of course, this time could be much

higher when the same packet experiences several losses.

In this chapter, we address the problem of minimizing TCP retransmission delay and we propose

a novel network function called Transport Assistant (TA) which can be deployed within the path

connecting the source to the destination. The role of the TA is to cache (i.e., keep a copy of

the transmitted packets), detect packet loss and retransmit lost packets so as to minimize the

total packet delivery time (which includes packet retransmission time). Several instances of the

TA could be created between the source and the destination and could cooperate to achieve the

sought-after objectives.

As advocated in Zhani & ElBakoury (2020); Bueno et al. (2022), future networks are expected

to be softwarized and fully programmable, which makes it possible to implement and dynamically

instantiate advanced network functions like the Transport Assistant function proposed in this work.

In this chapter, our contribution aims at designing and evaluating the performance of the TA that

should be able to perform the following operations:

• Packet caching: the TA should be able to smartly cache packets in order to use this cache to

retransmit the packets in case of failure. As there might be several instances of the TA within

the path, the caching strategy should optimize the usage of the available caches and avoid

caching the same packets multiple times.

• Packet loss detection and retransmission: the TA should be able to detect lost packets and

locate as accurate as possible the location where the loss has occurred and then request to

retransmit the lost packets from the nearest TA in order to minimize retransmission time.

The remainder of this chapter is organized as follows. Section 4.2 details the proposed solution.

Section 4.3 presents the experimental results. Finally, Section 4.4 concludes the chapter.

61

4.2 Proposed Solution

In this section, we introduce the proposed network function called Transport Assistant (TA).

The TA aims at improving TCP retransmission mechanism by accurately detecting lost packets

and minimizing their retransmission delay. The TA encompasses 1) a packet caching mechanism

which caches packets based on the type of the flow (i.e., critical, non-critical) and ensures

that packets are not cached multiple times in different TA instances, 2) a packet loss detection

mechanism which monitors the traffic and detects lost packets, and 3) a retransmission mechanism

which enables the TA instances throughout the path to communicate with each other in order to

locate and retransmit a copy of the lost packet.

Several challenges pertaining to the deployment of TA need to be addressed. For instance,

packet caching, loss detection and retransmission strategies should be carefully designed in order

to minimize the size of the cache and reduce the number of unneeded retransmissions. In the

following, we detail how these challenges are addressed in this work.

4.2.1 Packet caching

One of the main limitations of packet caching mechanisms in the literature is that packets are

cached blindly, without considering their types (i.e., critical, non-critical). In addition, caching

all packets could quickly overload the cache and hence, many lost packets would not have any

cached copies. To solve these limitations, the proposed TA considers two types of flows and

caches first packets of critical flows. Packets of non-critical flows are only cached when there

is room and could be dropped anytime if needed to make room for packets of critical flows.

Furthermore, when a TA instance decides to cache a packet, it marks it with a special flag

(1-bit) so that next TA instances do not cache the packet again. This allows to efficiently use

the resources allocated to the caches of the different TA by avoiding caching the same packets

in multiple TAs.

62

4.2.2 Packet loss detection

Most of the existing packet loss detection strategies are relying either on the time interval of

consecutive packets or on the packet order to assume a lost packet. The major shortcoming of

these strategies is that delayed packets could be considered as lost which results in increased

unneeded packet retransmissions. To solve this issue, we first force the TCP packets of the same

connection to follow the same path in order to avoid packet disorder. A TA instance detects

then the existence of missing packets when the sequence number (the one used by TCP) of the

received packet is not the expected sequence number. In this case, the TA sends an explicit

request to the prior TA instance asking for the missing packets. When such a request is received

by a TA instance, it retransmits the requested packets if they are available in its cache otherwise

forwards the request backwards to the prior TA. This is repeated until one of the prior TAs

retransmits the missing packets or the request reaches the source.

It is worth noting that, when the TA is deployed, the traditional TCP packet loss detection and

retransmission mechanism is disabled in order to avoid unneeded retransmissions.

4.3 Evaluation

In this Section, we evaluate the advantage of using the TA through extensive experiments using

different scenarios to clearly highlight the benefit provided by the TA compared to the baseline

(i.e., standard TCP).

4.3.1 Experimental Environment

To show the benefits of using the TA, we used the Mininet Emulator Mininet (2018) in which

we integrated the Transport Assistant function that we developed in Python.

In our experiments, we considered four scenarios as described in Fig. 4.1a, 4.1b, 4.1c and 4.1d.

The first scenario is the Baseline (Fig. 4.1a) as there are no TAs deployed and standard TCP

implementation is used. The considered topology is shown in the figure with two sources

63

a) Baseline b) First scenario

c) Second scenario d) Third scenario

Figure 4.1 Experimental infrastructure

of traffic flows (i.e., the two hosts on the left side of the figure) sending traffic through the same

path towards two destinations (i.e., the two hosts on the right side of the figure). This path is

composed of four switches connected using links with capacities and delays randomly generated

between 10Mbps to 70Mbps and between 10ms to 100ms, respectively. The sources are sending

100 traffic flows where 30% of them are critical and 70% are non-critical. The size of the flows

was randomly generated between 1Mb and 5Gb.

In the other three scenarios (Fig. 4.1b, 4.1c and 4.1d), we considered the same topology used in

the Baseline (i.e., with the same propagation delays and bandwidth between switches); However,

we incorporated 1, 2 or 3 TA instances within the path towards the destinations as shown

in the figures. In these scenarios, the sources are sending the same flows considered in the

Baseline with exactly the same characteristics (i.e., starting time, size, source, destination,

type). Furthermore, as the TA is used in these three scenarios, the standard TCP packet loss

detection and retransmission mechanisms are disabled as the TAs ensure packet retransmission

as described above.

We ran the experiments for the four considered scenarios and we evaluated, for each of them, the

obtained performance using several metrics including the flow completion time which is the

time needed to transfer all the packets of the flow, the average segment transmission time (which

64

includes retransmission time), the number of lost packets, and the number of retransmitted

packets from the source.

4.3.2 Experimental Results

Fig. 4.2 depicts the flow completion time obtained with the four compared scenarios. It clearly

shows that all the scenarios containing at least one TA outperform standard TCP. As a matter of

fact, TCP retransmits lost packets from the source after a timeout which significantly increases

the flow completion time. Unlike TCP, the Transport Assistant retransmits lost packets from its

cache or request them from another TA instance. As a result, the number of hops crossed by a

retransmitted packet from a TA is smaller than the number of hops crossed by a retransmitted

packet from the source (the case of TCP). In addition, the figure show that flow completion

time is further reduced when increasing the number of TA instances between the source and the

destination. This is expected as, the more TA instances there are, the more cache is available,

which means there is less probability to resort to the source to retransmit the lost packet and

packets will be retransmitted from one of the TAs.

Figure 4.2 Global Flow completion time

65

Figure 4.3 Flow completion time for critical flows

Fig. 4.4 illustrates the average segment transmission time (including retransmission time) for

all the considered scenarios. As shown in the figure, all the scenarios using the TA provide

better results than the baseline (i.e., standard TCP). Unlike standard TCP, lost segments are

retransmitted from the TA instances rather than the source and this significantly reduces the

average segment transmission time compared to TCP. The segment transmission time is naturally

further reduced when more TAs are deployed.

Figures 4.3 and 4.5 show respectively the flow completion time and the average segment

transmission time for critical flows. Unlike standard TCP, which retranmits the packets blindly

without considering their types (i.e., critical or non-critical), the TA prioritizes critical packets.

This clearly shows that using the TA helps to prioritize critical flows and significantly minimizes

their retransmission time compared to that obtained with TCP.

Fig. 4.6 shows the amount of lost packets in all the studied scenarios. It clearly shows that, even

with a single TA, the use of the TA provides better results than standard TCP and reduces the

number of lost packets.

66

Figure 4.4 Global average packet transmission time

Figure 4.5 Average packet transmission time for critical flows

Fig. 4.8 depicts the amount of retransmitted packets from the source. As expected, the TA

significantly reduces the number of packets retransmitted from the source compared to TCP.

Moreover, by increasing the number of TA instances, the amount of retransmitted packets from

67

the source is further minimized as packet loss detection and retransmission are handled by more

TA instances.

Figure 4.6 Global lost packets

Figure 4.7 Lost packets of critical flows

68

Figure 4.8 Retransmitted packets from the source of all the

flows

Figure 4.9 Retransmitted packets from the source of critical

flows

69

Figures 4.7 and 4.9 show respectively the amounts of lost packets and the amount of retransmitted

packets from the source for only the critical flows. It is clearly shown that the TA significantly

reduces both metrics compared to standard TCP as critical packets are given more priority

in the cache of the TA instances than non-critical packets and hence they are served first.

4.4 Conclusion

In this chapter, we addressed the problem of minimizing the TCP retransmission delay and we

proposed a novel network function called Transport Assistant (TA) that could be integrated

within the network with the goal of minimizing packet retransmission delays compared to

TCP and allowing the possibility to ensure more priority to critical flows over the non-critical

ones. The proposed solution considers the deployment of several TA instances that can smartly

cooperate in order to ensure packet caching as well as efficiently detecting and retransmitting

lost packets so as to achieve the sought-after objectives.

The performed experiments using Mininet show that, compared to the standard TCP, the use of

the Transport Assistant significantly reduces average packet transmission time (which includes

retransmission time), flow completion time, the number of lost packets and the number of

packets retransmitted from the source.

As a future work, we aim at further refining the TA caching, packet detection and retransmission

mechanisms in order to further optimize the use of the cache and reduce packet transmission

time.

CONCLUSION AND RECOMMENDATIONS

5.1 Thesis Summary

In this thesis, we have presented three objectives aiming at enabling today’s network infrastruc-

tures to provide the required performance (i.e., latency, bandwidth and packet loss) of futuristic

network applications.

In chapter 1, we minimized the monitoring cost (expressed in bandwidth consumption) while

ensuring a minimal reporting delay by proposing two heuristic algorithms: LCM and LCM-M

for single and multiple controller infrastructures, respectively. Extensive simulations show that

both heuristics significantly minimize the monitoring cost. They provide near optimal solution

with minimal computation time compared to CPLEX.

In chapter 2, we improved the network performance (i.e., delay, throughput and packet loss) by

introducing LUNA, a novel routing strategy that understands the user behavior and extracts the

size of frequently requested flows thanks to the association rules mining technique to compute

routing rules. Extensive simulations show that LUNA significantly minimizes both delay and

packet loss as well as maximises the network throughput.

In chapter 3, we solved the problem of increased retransmission delay in TCP. We proposed a

novel network function called Transport Assistant that is able to cache, detect and retransmit lost

packets. As a result, instead of retransmitting lost packets from the source which in fact costs too

much delay, the transport assistant that is placed in the service function chain will take in charge

the packet retransmission. Extensive simulations show that the more we add transport assistant

instances to the service function chain, the more the network performance are improved.

72

5.2 Future Research Directions

Minimize monitoring cost: the number of monitored flows per controller is crucial for high

performance networks. When the controller monitors multiple flows, its processing delay could

increase due to the huge number of monitoring messages frequently exchanged. Therefore, all

the traffic management decisions taken by the controller could be untimely, which could result in

poor management decisions. That is why we plan to introduce a novel network function which

minimizes the monitoring messages transmitted from the switch to the controller. It collects

them and take decisions without interacting with the controller.

Improve network performance with a novel routing strategy: LUNA routing strategy

computes the routing rules based on the user behavior then install them in the switches (exactely

in TCAM memory). However, TCAM memory is limited and efficiently leveraging this memory

is a must to achieve high network performance. That’s why the routing strategy should consider

the number of generated rules, their timeouts and priorities. We plan to extend the idea of routing

the traffic based on the user behavior in order to effectively leverage the available resources.

Minimize TCP retransmission delay: selecting which kind of packets to prioritize when

caching and retransmitting lost packets without any interaction with the network operator is

challenging. For instance, the Transport Assistant is not able to identify packets of critical

applications which represents an issue that should be solved. Therefore, we plan to further extend

the idea of Transport Assistant in order to make it able to take efficient decisions independently.

APPENDIX

List of publications:

• Yahyaoui, Haythem, Mohamed Faten Zhani, Ouns Bouachir and Moayad Aloqaily. "On

Minimizing Flow Monitoring Costs in Large-Scale SDN Networks." In the International

Journal of Network Management. Under review.

• Yahyaoui, Haythem, Melek Majdoub, Mohamed Faten Zhani, and Moayad Aloqaily. "On

Minimizing TCP Retransmission Delay in Softwarized Networks." In IEEE/IFIP Network

Operations and Management Symposium (NOMS), pp. 1-6. IEEE, 2022.

• Yahyaoui, Haythem, and Mohamed Faten Zhani. "On providing low-cost flow monitoring

for SDN networks." In 2020 IEEE 9th International Conference on Cloud Networking

(CloudNet), pp. 1-6. IEEE, 2020.

• Yahyaoui, Haythem, Saifeddine Aidi, and Mohamed Faten Zhani. "On using flow classi-

fication to optimize traffic routing in SDN networks." 2020 IEEE 17th Annual Consumer

Communications & Networking Conference (CCNC). IEEE, 2020.

BIBLIOGRAPHY

(2015). The CPLEX Optimizer. Retrieved on 2020-02-02 from: https://www.ibm.com/ca-

fr/analytics.

(2018). The expected growth in the network Monitoring market. Retrieved on 2020-03-

02 from: https://www.marketsandmarkets.com/Market-Reports/network-monitoring-

market-51888593.html.

(2018). OpenFlow protocol. Retrieved on 2020-02-19 from: https://www.opennetworking.org/

wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf.

Agrawal, R., Imieliński, T. & Swami, A. (1993). Mining association rules between sets of items

in large databases. ACM SIGMOD international conference on Management of data,

pp. 207-216.

Akyildiz, I. F., Lee, A., Wang, P., Luo, M. & Chou, W. (2014). A roadmap for traffic engineering

in SDN-OpenFlow networks. Elsevier computer Networks, 71, 1-30.

Al-Fares, M., Radhakrishnan, S., Raghavan, B., Huang, N., Vahdat, A. et al. (2010). Hedera:

dynamic flow scheduling for data center networks. Nsdi, 10(8), 89-92.

Baik, S., Lim, Y., Kim, J. & Lee, Y. (2015). Adaptive flow monitoring in SDN architecture.

Asia-Pacific Network Operations and Management Symposium (APNOMS), pp. 468-470.

Berde, P., Gerola, M., Hart, J., Higuchi, Y., Kobayashi, M., Koide, T., Lantz, B., O’Connor, B.,

Radoslavov, P., Snow, W. et al. (2014). ONOS: towards an open, distributed SDN OS.

Proceedings of the third workshop on Hot topics in software defined networking, pp. 1-6.

Bueno, G., Saquetti, M., Rodrigues, P., Lamb, I., Gaspary, L., Luizelli, M. C., Zhani, M. F.,

Azambuja, J. R. & Cordeiro, W. (2022). Managing Virtual Programmable Switches:

Principles, Requirements, and Design Directions. IEEE Communications Magazine,

60(2), 53-59.

Chao, S.-C., Lin, K. C.-J. & Chen, M.-S. (2016). Flow classification for software-defined data

centers using stream mining. IEEE Transactions on Services Computing, 12(1), 105-116.

Chen, J., Yan, S., Ye, Q., Quan, W., Do, P. T., Zhuang, W., Shen, X. S., Li, X. & Rao, J. (2019a).

An SDN-based transmission protocol with in-path packet caching and retransmission.

International Conference on Communications (ICC), pp. 1-6.

Chen, J., Ye, Q., Quan, W., Yan, S., Do, P. T., Zhuang, W., Shen, X. S., Li, X. & Rao, J. (2019b).

SDATP: An SDN-based adaptive transmission protocol for time-critical services. IEEE
Network, 34(3), 154-162.

76

Chowdhury, S. R., Bari, M. F., Ahmed, R. & Boutaba, R. (2014). Payless: A low cost network

monitoring framework for software defined networks. IEEE Network Operations and
Management Symposium (NOMS), pp. 1-9.

ClarkNet. (2018). ClarkNet HTTP requests. Retrieved on 2019-10-29 from: http://ita.ee.lbl.gov/

html/contrib/ClarkNet-HTTP.html.

Clemm, A., Zhani, M. F. & Boutaba, R. (2020). Network management 2030: Operations and

control of network 2030 services. Journal of Network and Systems Management, 1-30.

Curtis, A. R., Kim, W. & Yalagandula, P. (2011). Mahout: Low-overhead datacenter traffic

management using end-host-based elephant detection. IEEE International Conference
on Computer Communications (INFOCOM), pp. 1629-1637.

Dieye, M., Zhani, M. F. & Elbiaze, H. (2017). On achieving high data availability in

heterogeneous cloud storage systems. IFIP/IEEE Symposium on Integrated Network and
Service Management (IM), pp. 326-334.

Dridi, L. & Zhani, M. F. (2016). SDN-guard: DoS attacks mitigation in SDN networks. IEEE
International Conference on Cloud Networking (Cloudnet), pp. 212-217.

Geant. (2018). Geant Topology. Retrieved on 2019-10-29 from: https://geant3plus.archive.geant.

net/home.aspx.

Grover, N., Agarwal, N. & Kataoka, K. (2015). liteflow: Lightweight and distributed

flow monitoring platform for SDN. Proceedings of the IEEE Conference on Network
Softwarization (NetSoft), pp. 1-9.

Hark, R., Tounsi, K., Rizk, A. & Steinmetz, R. (2019). Decentralized Collaborative Flow

Monitoring in Distributed SDN Control-Planes. International Conference on Networked
Systems (NetSys), pp. 1-8.

He, Q., Wang, X. & Huang, M. (2018). OpenFlow-based low-overhead and high-accuracy SDN

measurement framework. Transactions on Emerging Telecommunications Technologies,
29(2), e3263.

Henni, D.-E., Hadjaj-Aoul, Y. & Ghomari, A. (2016). Probe-SDN: A smart monitoring

framework for SDN-based networks. Global Information Infrastructure and Networking
Symposium (GIIS), pp. 1-6.

Hopps, C. et al. (2000). Analysis of an equal-cost multi-path algorithm. RFC 2992.

77

Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Elsevier Pattern recognition
letters, 31(8), 651-666.

Kreutz, D., Ramos, F. M., Verissimo, P. E., Rothenberg, C. E., Azodolmolky, S. & Uhlig, S.

(2014). Software-defined networking: A comprehensive survey. Proceedings of the
IEEE, 103(1), 14-76.

Li, Q., Zou, X., Huang, Q., Zheng, J. & Lee, P. P. (2018). Dynamic packet forwarding verification

in SDN. IEEE Transactions on Dependable and Secure Computing, 16(6), 915-929.

Linden, G. (2006). Make data useful. Stanford CS345 Talk.

Liu, J., Li, J., Shou, G., Hu, Y., Guo, Z. & Dai, W. (2014). SDN based load balancing mechanism

for elephant flow in data center networks. IEEE International Symposium on Wireless
Personal Multimedia Communications (WPMC), pp. 486-490.

Liu, Y., Yang, D., Gong, K. & Ren, J. (2021). A routing strategy with adaptive weight between

‘hop’and ‘bandwidth’. IEEE 5th Advanced Information Technology, Electronic and
Automation Control Conference (IAEAC), pp. 1-6.

Markets & Markets. (2018). Cloud storage market. Retrieved on 2019-10-01 from: https:

//www.marketsandmarkets.com/cloud-storage.asp.

Mininet. (2018). Mininet website. Retrieved on 2019-10-01 from: http://mininet.org/.

Nunes, B. A. A., Mendonca, M., Nguyen, X.-N., Obraczka, K. & Turletti, T. (2014). A survey

of software-defined networking: Past, present, and future of programmable networks.

IEEE Communications surveys & tutorials, 16(3), 1617-1634.

Postel, J. et al. (1981). Transmission control protocol. STD 7, RFC 793.

Poupart, P., Chen, Z., Jaini, P., Fung, F., Susanto, H., Geng, Y., Chen, L., Chen, K. & Jin, H.

(2016). Online flow size prediction for improved network routing. IEEE International
Conference on Network Protocols (ICNP), pp. 1-6.

Sedaghat, S. & Jahangir, A. H. (2021). RT-TelSurg: Real Time Telesurgery Using SDN, Fog,

and Cloud as Infrastructures. IEEE Access, 9, 52238-52251.

Stevens, W. et al. TCP slow start, congestion avoidance, fast retransmit, and fast recovery

algorithms. rfc 2001, January.

78

Su, Z., Wang, T., Xia, Y. & Hamdi, M. (2014). FlowCover: Low-cost flow monitoring scheme in

software defined networks. IEEE Global Communications Conference (GLOBECOM),
pp. 1956-1961.

Su, Z., Wang, T., Xia, Y. & Hamdi, M. (2015). CeMon: A cost-effective flow monitoring system

in software defined networks. Elsevier computer Networks, 92, 101-115.

Sugimoto, S. & Ito, Y. (2021). Proposal of Adaptive TCP Multi-Pathization Method with SDN.

IEEE 10th Global Conference on Consumer Electronics (GCCE), pp. 635-636.

Sun, W., Wang, Z. & Zhang, G. (2021). A QoS-guaranteed intelligent routing mechanism in

software-defined networks. Elsevier Computer Networks, 185(2), 107709.

Tang, F., Shojaee, M. & Haque, I. (2021). ACE: an Accurate and Cost-Effective Measurement

System in SDN. arXiv preprint arXiv:2108.12849, pp. 1-6.

Tlili, G., Yahyaoui, H., Zhani, M. F. & Elbiaze, H. (2019). Daresch: deadline-aware request

scheduling for cloud storage services. Annals of Telecommunications, 74(9), 545-557.

Tootoonchian, A., Ghobadi, M. & Ganjali, Y. (2010). OpenTM: traffic matrix estimator

for OpenFlow networks. International Conference on Passive and Active Network
Measurement, pp. 201-210.

Van Adrichem, N. L., Doerr, C. & Kuipers, F. A. (2014). Opennetmon: Network monitoring

in openflow software-defined networks. IEEE Network Operations and Management
Symposium (NOMS), pp. 1-8.

Vazirani, V. V. (2001). Approximation algorithms. Springer.

Wan, C.-Y., Campbell, A. T. & Krishnamurthy, L. (2002). PSFQ: a reliable transport protocol

for wireless sensor networks. ACM international workshop on Wireless sensor networks
and applications, pp. 1-11.

Wang, M.-H., Chen, L.-W., Chi, P.-W. & Lei, C.-L. (2017). SDUDP: A reliable UDP-Based

transmission protocol over SDN. IEEE Access, 5, 5904-5916.

Xia, W., Wen, Y., Foh, C. H., Niyato, D. & Xie, H. (2014). A survey on software-defined

networking. IEEE Communications Surveys & Tutorials, 17(1), 27-51.

Xu, C., Zhao, J. & Muntean, G.-M. (2021). Congestion control design for multipath transport

protocols: A survey. IEEE communications surveys & tutorials, 18(4), 2948-2969.

79

Xu, H., Yu, Z., Qian, C., Li, X.-Y. & Liu, Z. (2017). Minimizing flow statistics collection

cost of SDN using wildcard requests. IEEE Conference on Computer Communications
(INFOCOM), pp. 1-9.

Yahyaoui, H. & Zhani, M. F. (2020). On providing low-cost flow monitoring for SDN networks.

IEEE International Conference on Cloud Networking (CloudNet), pp. 1-6.

Yahyaoui, H., Aidi, S. & Zhani, M. F. (2020). On using flow classification to optimize traffic

routing in SDN networks. IEEE Annual Consumer Communications & Networking
Conference (CCNC), pp. 1-6.

Yang, X., Han, B., Sun, Z. & Huang, J. (2017). SDN-based DDoS attack detection with cross-

plane collaboration and lightweight flow monitoring. IEEE Global Communications
Conference (GLOBCOM), pp. 1-6.

Yang, Z. & Yeung, K. L. (2017). An efficient flow monitoring scheme for SDN networks. IEEE
Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1-4.

Yang, Z. & Yeung, K. L. (2020). Flow monitoring scheme design in SDN. Computer Networks,
167, 107007.

Yu, C., Lumezanu, C., Zhang, Y., Singh, V., Jiang, G. & Madhyastha, H. V. (2013). Flowsense:

Monitoring network utilization with zero measurement cost. International Conference
on Passive and Active Network Measurement, pp. 31-41.

Zhani, M. F. & ElBakoury, H. (2020). FlexNGIA: A flexible Internet architecture for the

next-generation tactile Internet. Journal of Network and Systems Management, 1-45.

Zhani, M. F., Zhang, Q., Simona, G. & Boutaba, R. (2013). VDC planner: Dynamic migration-

aware virtual data center embedding for clouds. IFIP/IEEE International Symposium on
Integrated Network Management (IM), pp. 18-25.

