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Vers une meilleure compréhension et application de l’Intégration Continue (IC)

Islem SAIDANI

RÉSUMÉ

La croissance rapide de l’industrie du développement de logiciels pose de nouveaux défis aux

développeurs de logiciels, car ils doivent répondre rapidement aux besoins des utilisateurs. En

effet, les systèmes logiciels subissent de fréquentes modifications pour ajouter de nouvelles

exigences, corriger les bogues découverts et s’adapter aux nouveaux changements technologiques

et environnementaux. Ainsi, s’assurer que ces changements sont effectués de manière contrôlée

est d’une importance cruciale. À cette fin, les entreprises de développement de logiciels

ont massivement adopté l’Intégration Continue (IC) afin de réduire les risques d’erreur et

d’augmenter la vitesse déploiement pour obtenir un avantage concurrentiel. L’IC vise à aider

les développeurs à intégrer les changements de code constamment et rapidement grâce à des

processus de construction et de test automatisés. Néanmoins, comme toute solution, l’adoption

de l’IC induit plusieurs défis tels que la perte de productivité et les retards de livraison. Dans

le cadre de cette thèse, nous visons à soutenir l’adoption de l’IC en abordant deux problèmes

principaux. En premier lieu, nous nous attaquons au manque de connaissances empiriques sur

l’adoption et les défis de l’IC. Ensuite, nous abordons le problème de construction lié à sa longue

durée et à son échec.

Tout d’abord, nous avons examiné de manière empirique les défis auxquels sont confrontés les

développeurs sur la base des discussions dans Stack Overflow, un forum Questions & Réponses

populaire. Grâce à cette étude, nous avons révélé que la construction logicielle est un obstacle

majeur auquel les développeurs sont confrontés lorsqu’ils utilisent l’IC. Deuxièmement, nous

avons montré, à travers une étude empirique, comment l’adoption de l’IC peut avoir un impact

sur les efforts d’assurance qualité. Nous avons constaté que l’adoption de l’IC a le potentiel

de changer la façon dont les développeurs appliquent la refactorisation du code. Ensuite, nous

nous sommes attaqués au problème d’échec de construction, en développant deux solutions:

la première est basée sur l’adaptation de l’ algorithme génétique NSGA-II, une approche de

programmation génétique multi-objectifs. Cette approche permet de générer des règles à partir

des données historiques des constructions et dont la sortie prédit si la construction en question

est plus susceptible de réussir ou d’échouer. La deuxième approche utilise des réseaux de

neurones récurrents basés sur la mémoire à long court terme LSTM-RNN pour construire des

modèles de prédiction des résultats de construction. Le problème est composé d’une seule

série de résultats de construction et un modèle doit apprendre de la série d’observations passées

pour prédire le prochain résultat de construction dans la séquence. De plus, nous avons adapté

l’algorithme génétique mono-objectif GA pour régler les hyper-paramètres de nos modèles

LSTM. Les résultats de validation révèlent que les deux approches proposées ont montré de

meilleures performances prédictives que les techniques existantes. Enfin, nous avons introduit un

nouvel outil automatisé, basé sur l’adaptation de l’algorithme génétique multi-objectifs SPEA2,

pour détecter les changements qui ne nécessitent pas de déclencher la construction, c’est-à-dire



viii

qui peuvent être ignorés. Cette approche a surpassé les techniques existantes et a été approuvée

par une évaluation industrielle.

Mots-clés: Intégration Continue, Construction logicielle, Génie logiciel basé sur la recherche

heuristique, Génie logiciel empirique, apprentissage approfondi



Toward Better Understanding and Supporting of
Continuous Integration (CI) Practices

Islem SAIDANI

ABSTRACT

The rapid growth of the software development industry raises new challenges to software

developers as they need to respond quickly to the users’ needs in a world of complex and

continuous change. Indeed, software systems undergo frequent changes to add new user

requirements, fix discovered bugs, and adapt to new technological and environment changes.

Thus, ensuring that these changes are done in a controlled way is of crucial importance. To this

end, software development companies have massively adopted Continuous Integration (CI) in

order to reduce the scope for error and increasing the speed to market to gain a competitive

advantage. CI aims at supporting developers in integrating code changes constantly and quickly

through an automated build and test processes. Nevertheless, like any solution, CI brings with it

challenges like productivity loss and release delays. In this thesis, we aim to support the adoption

of CI by addressing two main problems. In the first place, we tackle the lack of empirical

knowledge about CI adoption and challenges. Then, we address the problem of CI builds related

to its long time and failure.

First, we empirically examined the challenges faced by CI developers based on the discussions

in Stack Overflow, a popular Q&A forum. Through this study, we revealed that software

build is a major barrier that developers face when using CI. Second, we showed through an

empirical study, how CI adoption can impact the quality assurance efforts. We found that

adopting CI has the potential to change the way developers apply code refactoring. Then, we

tackled the build failure problem, by developing two solutions: The first is based the adaption of

Non-dominated Sorting Genetic Algorithm (NSGA-II), a Multi-Objective Genetic Programming

(MOGP) approach which allows generating rules from historical data of CI builds and whose

binary output predicts whether the input build is most likely to succeed or fail. The second

approach uses Long Short-Term Memory (LSTM)-based Recurrent Neural Networks (RNN)

to construct prediction models for CI build outcome prediction. The problem is comprised of

a single series of CI build outcomes and a model is required to learn from the series of past

observations to predict the next CI build outcome in the sequence. In addition, we tailored

Genetic Algorithm (GA) to tune the hyper-parameters for our LSTM models. The validation

results reveal that the two proposed approaches showed better predictive performances than the

state-of-art techniques. Lastly, we introduced a novel automated tool, based on the adaption

of Strength-Pareto Evolutionary Algorithm (SPEA2), to detect changes that do not require to

trigger the build, i.e., can be skipped. This approach outperformed existing techniques and was

approved through an industrial evaluation.

Keywords: Continuous Integration, Software Build, Search-based Software Engineering,

Empirical Software Engineering, Deep Learning
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CHAPTER 1

INTRODUCTION

1.1 Research context

Due to fierce competition in the global software industry, the companies are under increasing

demands to continuously deliver high-quality products at low risk. Thus, improving the software

development process can give a company a competitive advantage over its competitors. In

this context, modern processes have gravitated towards agile methodologies to realize value

through improved performance and meet the needs of today’s complex software development.

However, in such context, software change management represents a fast-paced task of extreme

complexity (Yu, Vasilescu, Wang, Filkov & Devanbu, 2016a). In fact, developers are struggling

to find a balance between continuous delivery, and how to ensure that these quick changes

impact the development process positively rather than hinder it. A recent movement in the agile

development industry attempts to support an efficient change management process by relying on

Continuous Integration.

Continuous integration (CI) (Duvall, Matyas & Glover, 2007a) is an indispensable step of modern

software engineering practices (Brandtner, Giger & Gall, 2014) that aims to automatically

control the gate between development and deployment. First, it provides the mechanism through

which changes are evaluated for risk and then applied. Each time a change is requested to the

software system, the CI pipeline performs automated tests to ensure that the change will not

break the system, and makes changes that pass the automated tests available to be deployed

with appropriate authorization controls. Its philosophy, as put forward by Fowler (2006), is

to regularly integrate the changes introduced by different developers into a shared repository

branch. This best practice has proved to enhance team productivity by freeing developers to

do more thought provoking work without compromising quality with the early detection of

defects (Vasilescu, Yu, Wang, Devanbu & Filkov, 2015). For these valuable benefits, CI has

been widely adopted in the open-source as well as the software industry markets (Yu, Yin,
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Wang, Yang & Wang, 2016b; Vassallo, Palomba & Gall, 2018b; Vasilescu et al., 2015). For

instance, it has been reported that at least 40% of the 34,000 most popular open-source projects

on GitHub use CI (Hilton, Tunnell, Huang, Marinov & Dig, 2016). From the academic side, the

study of CI has become an active research topic and triggered many research papers to study its

impacts (Bernardo, da Costa & Kulesza, 2018; Ståhl, Mårtensson & Bosch, 2017; Gupta, Khan,

Gallaba & McIntosh, 2017; Vasilescu et al., 2015; Gupta et al., 2017), usage (Vassallo et al.,

2018b; Yu et al., 2016a; Vassallo, Palomba, Bacchelli & Gall, 2018a; Abdalkareem, Mujahid,

Shihab & Rilling, 2019) and costs (Widder, Vasilescu, Hilton & Kästner, 2018; Hilton et al.,

2016; Vassallo et al., 2017; Luo, Zhao, Ma & Chen, 2017).

1.2 Problem statement

While CI can be considered as a well-established discipline of change management, introducing

changes under such context still be is risky and can lead to productivity loss, release delays and

cost impacts. In the next subsections, we highlight the different challenges, to be addressed in

this thesis project, that are mainly related to the lack of empirical knowledge of CI adoption and

the complexity of CI build process.

1.2.1 Lack of empirical knowledge about CI

Like any software development process, CI brings many challenges (Widder et al., 2018) and

its adoption can have side effects on other software development practices (Zhao, Serebrenik,

Zhou, Filkov & Vasilescu, 2017). Although there is an increasing amount of literature has been

published on CI adoption and its challenges, there are many knowledge gaps that need to be

filled. We highlight these open issues, as follows:

Problem 1. Limited empirical knowledge about CI challenges

The existing studies highlighting the challenges faced by developers, relied on surveys of

CI practitioners (Hilton et al., 2016; Hilton, Nelson, Tunnell, Marinov & Dig, 2017), and
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case studies (Colomo-Palacios, Fernandes, Soto-Acosta & Larrucea, 2018; Ståhl et al., 2017).

However, interviews and case studies are a limited resource and cannot be generalized due to

the necessarily limited number of people/projects they gather information from. For instance,

while we know that developers struggle with CI builds (Luo et al., 2017), it is still unclear what

build tools/servers are challenging the most. There are other sources of information, besides

interviews and case studies, for understanding the challenges of CI; the popular Q&A forums

such as Stack Overflow 1. We therefore believe that an analysis about CI discussions on SO

can help the research community and CI stakeholders in better understanding of developers’

concerns and hence improving the adoption of CI.

Problem 2. Lack of empirical knowledge about the impacts of adopting CI on quality
assurance practices

A promising feature of CI is quality assurance (Duvall et al., 2007a; Vasilescu et al., 2015;

Hilton et al., 2017) that is usually performed through code Refactoring (Fowler, Beck, Brant,

Opdyke & Roberts, 1999). Indeed, as an agile method, the incremental nature of CI requires

the code to be continuously refactored in order to maintain high quality (Stamelos & Sfetsos,

2007) and keep the quality gates (i.e., steps required to ensure the reliability of code changes

(Schermann, Cito, Leitner & Gall, 2016)) always green (Vassallo et al., 2018b). Otherwise,

it may be hard for development teams to understand, maintain and extend their code (Szóke,

Antal, Nagy, Ferenc & Gyimóthy, 2014). Moreover, the absence of Continuous Refactoring

(CR) may result in the need for large refactorings (Stamelos & Sfetsos, 2007) that, like any other

complex change, may hinder the CI build progress and requires more debugging effort (Zhang,

Chen, Chen, Peng & Zhao, 2019). Although, recent work (Vassallo et al., 2018b) emphasized

the potential of CI in changing the way developers perceive and apply Refactoring. we still

lack empirical evidence to confirm or refute this assumption. Such empirical knowledge can

help evaluating CI impacts as well as guiding the design of tools and processes to control code

quality assessment.

1 http://stackoverflow.com/
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1.2.2 CI build failure and long time

There is a consensus that build failure is a major barrier that developers face when adopting

CI (Luo et al., 2017) which may prevent them from proceeding further with development.

Additionally, the build process is typically time and resource-consuming and can cause delays in

the product release dates. In this thesis by article, we identify two problems related to CI builds.

Problem 3. CI build failure

It is crucial to preemptively detect whether a change is likely to trigger a build failure before

integrating it to the system. This would help to save time and effort needed for build resolution

and thus enhancing the developers’ productivity. Existing solutions leverage the history of

previous CI builds in order to train Machine Learning (ML) based techniques. Although these

works have advocated that predicting CI build outcome is possible and beneficial, the CI build

failure prediction is not yet resolved as the accuracy on the failure prediction (i.e., minority

class) is not accommodated.

Problem 4. The long build time

As stated before, the build process is typically time-consuming. One of the main reasons for

such delays is that some simple changes (i.e., can be skipped) trigger the build, which represents

an unnecessary overhead and particularly painful for large projects. This challenge motivated the

research on developing techniques (Abdalkareem et al., 2019; Abdalkareem, Mujahid & Shihab,

2020) to speed up CI process by detecting commits that do not require the system’s build (e.g.,

commits affecting non-source files). However, these existing techniques are not practically

effective which suggests that the problem is not yet resolved.
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1.3 Research objectives

The main objective of this thesis is to enhance CI adoption by providing a better understanding

of its practice and proposing solutions to optimize its process. It will be achieved with four

specific objectives that are summarized as follows:

• Objective #1: Take advantage of the richness of information provided by Q&A forums to

gain a deep understanding of developers’ challenges when adopting CI in practice.

• Objective #2: Explore and understand the impacts of CI on the code quality assurance

efforts.

• Objective #3: Reduce the expenses of CI build failures by predicting its outcome.

• Objective #4: Speed-up the CI build process by detecting the commits that can be skipped

during the build.

1.4 Main contributions

To overcome the previously identified problems, we propose the following contributions: (cf.

Figure 1.1):

Contribution 1: Empirical study about CI challenges in Stack Overflow

We propose the first empirical study of CI challenges that is based on Q&A forums. Indeed, we

collect CI related posts from Stack Overflow (SO), the most popular crowd-sourced forum, and

analyze those posts through quantitative and qualitative analyzes. First, to study the trends of CI

discussions, we investigate the metadata of CI questions, users and tags. Then, we extract the

CI main topics using Latent Dirichlet Allocation (LDA) tuned with Genetic Algorithm (GA).

Finally, we investigate the most popular and difficult topics faced by developers and perform a

qualitative analysis based on a statistical sample of unanswered questions to get further insights

into the CI challenges. Additionally, we provide practical implications of our findings for

researchers, developers, tool builders and educators.
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Contribution 2: Empirical study about the impact of CI on Refactoring practice

We provide the first empirical evidence of the impact of CI on Refactoring by designing three

novel research questions to understand the evolution of Refactoring practices, in terms of

frequency, size and involved developers. We collect a large corpus of commits and Refactoring

operations extracted from open-source projects that adopt CI and analyze the changes before

and after CI adoption using Multiple Regression Analysis (MRA). We also provide practical

implications of our findings for future research on the Refactoring of modern systems, that can

be useful to raise developer’s awareness of Refactoring in the context of CI and recommend

Refactoring tools suitable to CI context.

Contribution 3: Two approaches to predict CI build failure

We first address problem of CI build failure by introducing a novel search-based approach

based on Non-dominated Sorting Genetic Algorithm (NSGA-II) to generate CI build failure

prediction rules. Our approach aims at finding the best combination of CI built features and

their appropriate threshold values, based on two conflicting objective functions to deal with both

failed and passed builds. We conduct an empirical study of our approach compared to different

existing techniques. Additionally, we provide qualitative evidence of the potential reasons

behind build failure through a novel feature ranking approach. The approach is implemented

as a command line-based tool called BF-Detector (Saidani, Ouni, Chouchen & Mkaouer,

2021a) that is available as a standalone Java jar file in order to facilitate its integration within CI

frameworks. Finally, we improve the prediction of BF-Detector by introducing bad smells

related information (Saidani & Ouni, 2021).

Then, we propose another formulation for CI build failure prediction problem as a time series

problem using Long short-term memory (LSTM) the artificial Recurrent Neural Network (RNN).

To the best of our knowledge, this is the first attempt to use deep learning LSTM-based approach

to learn CI build failures. The built model can be trained efficiently using a representative subset

of the CI build outcomes, which requires no feature engineering. Moreover, we use Genetic
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Algorithm (GA) to optimize the hyper-parameters of our models in order to achieve optimal

performance. To evaluate our approach, we compare it under different validation scenarios

against existing solutions.

Contribution 4: Search-based approach to detect CI Skip commits

We introduce a novel search-based approach based on the adaptation of Strength-Pareto

Evolutionary Algorithm (SPEA2) (Zitzler et al., 2001) to generate CI skip prediction rules. We

evaluate our approach and investigate the performance using different validation scenarios while

comparing its predictive performance against the baseline approaches. Furthermore, we evaluate

our approach through an empirical study conducted with industrial experts. In addition, we

provide qualitative evidence of the potential reasons behind CI skip using our proper detecting

rules.

1.5 Thesis organization

As shown in Figure 1.1, this thesis is composed of six chapters. Chapter 2 provides a review

of the literature on previous research that is relevant to the main themes of this dissertation.

In Chapter 3, we present our empirical study about CI challenges and discussions on Stack

Overflow. Then, in Chapter 4, we present our empirical study about the impacts about CI on

Refactoring practice. Chapter 5 and Chapter 6 reports our search-based and deep-learning based

contributions for the prediction of CI build failure respectively. In Chapter 7, we introduce our

search-based approach for the detection of CI Skip commits. Finally, we summarize the main

contributions and reporting the recommendations for future research in the Conclusion.

1.6 Publications

The following is a list of our publications related to this dissertation:
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CHAPTER 2

STATE OF THE ART

2.1 Introduction

This chapter provides a literature review on research work related to this thesis. We first provide

the background required to understand this thesis. Then, we survey the related work that is

relevant to the main themes of this research work.

2.2 Background

In this section, we provide the necessary background for CI process, search-based approaches

and LSTM-RNN approach.

2.2.1 CI process

CI aims to build healthier software systems by developing and testing in smaller increments

without compromising software quality. The basic notion of CI, as described by Folwer

(Fowler, 2006) is to support developers’ work by automating the code compilation, dependencies

collection and tests running. This process is an enduring check on the quality of contributed

code that mitigates the risk of “breaking the build" as regressions can be detected and fixed

immediately.

CI has a well-defined life-cycle when generating builds. The main phases of the CI build

life-cycle are depicted in Figure 2.1. First of all, a contributor forks, i.e., clones, the project

repository, makes some changes, as creating a new feature or by fixing some bugs, on the code

base (1). When the work is done, the contributor submits the changes to the original repository

(2). At this point, the CI service carries out a series of tasks to build and test these changes

(3). Then, it provides immediate feedback on the outcome of the test to the core team (4), i.e.,

developers who dispose of write access to a project’s code repository (Vasilescu et al., 2015).



12

When one or more of those tasks fail, the build is considered failed, otherwise it will be passed

and core team members proceed to do a code review and, if necessary, the submitter would be

requested for modifications. After a cycle of code reviews, automatic building and testing, if

everyone is satisfied, the submitted changes will be merged to the mainline branch.

Developer

Source Code 
[Commit(s)] 

Make the 
changes

1

2Submit a 
Pull Request (PR)

GitHub 
Repository Build and Run 

local tests

3

CI Server

Core Team

Notify Success 
or Failure

4

D l

Figure 2.1 CI build process

2.2.2 Search-based techniques

Different mono- and multi-objective metaheuristic techniques are used in this thesis. We provide

in this section the necessary background for unfamiliar readers with metaheuristics. More

specifically, we used the following metaheuristics: Genetic Algorithm (GA), Non-dominated

Sorting Genetic Algorithm (NSGA-II) and Strength-Pareto Evolutionary Algorithm (SPEA2).

2.2.2.1 Genetic Algorithm

GA is a widely used computational search technique, that has proven good performance in

solving many software engineering problems (Harman, Mansouri & Zhang, 2012; Harman,

McMinn, De Souza & Yoo, 2010; Mkaouer et al., 2015; Ouni, Kessentini, Sahraoui, Inoue & Deb,

2016). GA is inspired by Darwinian evolution and aims at finding -near- optimal solutions by

simulating a natural evolutionary process (Goldberg, 1989). Algorithm 2.1 provides a high level

pseudo-code of GA. It starts by randomly creating an initial population 𝑃0 of individuals encoded

using a specific representation. Then, a child population 𝑄 is generated from the population of
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parents 𝑃0 using genetic operators (crossover and mutation). The whole population 𝑄 is sorted

according to their performance computed by a fitness function and the worst solutions will be

excluded based on the elitism mechanism, i.e., only the fittest solution will survive and will be

transmitted to the next population. This process will be repeated until reaching the last iteration

according to a stop criterion.

Algorithm 2.1 High level pseudo code of the Genetic Algorithm (GA) (Davis, 1991)

1: Create an initial population 𝑃0;

2: EvalPopulation(𝑃0); /* Evaluates the population 𝑃0 */
3: 𝑡 = 0;

4: while stopping criteria not reached do
5: 𝑄 ← create-new-pop(𝑃𝑡 ); /* Create new solutions from 𝑃𝑡 */
6: /* EvalPopulation(𝑃𝑡 ); /* Evaluate the new solutions */
7: 𝑃𝑡+1 ← 𝐴𝑝𝑝𝑙𝑦𝐺𝑒𝑛𝑒𝑡𝑖𝑐𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠(𝑃𝑡 ∪𝑄); /* Next generation population*/
8: t = t+1;

9: end while

2.2.2.2 NSGA-II

NSGA-II (Deb & Jain, 2013) has proven good performance in solving many software engineering

problems (Harman et al., 2012, 2010; Mkaouer et al., 2015; Ouni et al., 2016). As described

in Algorithm 2.2, NSGA-II starts by randomly creating an initial population 𝑃0 of individuals

encoded using a specific representation (line 1). Then, a child population 𝑄0 is generated from

the population of parents 𝑃0 (line 2) using genetic operators (crossover and mutation). Both

populations are merged into an initial population 𝑅0 of size 𝑁 (line 5). Fast-non-dominated-sort

(Deb et al., 2002) is the technique used by MOGP to classify individual solutions into different

dominance levels (line 6) (Deb et al., 2002). The whole population that contains 𝑁 individuals

(solutions) is sorted using the dominance principle into several fronts (line 6). Solutions on the

first Pareto-front 𝐹0 get assigned dominance level of 0. Then, after taking these solutions out,

fast-non-dominated-sort calculates the Pareto-front 𝐹1 of the remaining population; solutions on

this second front get assigned dominance level of 1, and so on. Fronts are added successively

until the parent population 𝑃𝑡+1 is filled with 𝑁 solutions (line 8). When MOGP has to cut off a
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Algorithm 2.2 High level pseudo code of NSGA-II (Deb et al., 2002)

1: Create an initial population 𝑃0

2: Create an offspring population 𝑄0

3: 𝑡 = 0

4: while stopping criterion not reached do
5: 𝑅𝑡 = 𝑃𝑡 ∪𝑄𝑡

6: F = fast-non-dominated-sort(𝑅𝑡 )

7: 𝑃𝑡+1 = ∅ 𝑎𝑛𝑑 𝑖 = 1

8: while | 𝑃𝑡+1 | + | 𝐹𝑖 |� 𝑁 do
9: Apply crowding-distance-assignment(𝐹𝑖)

10: 𝑃𝑡+1 = 𝑃𝑡+1 ∪ 𝐹𝑖
11: 𝑖 = 𝑖 + 1

12: end while
13: 𝑆𝑜𝑟𝑡 (𝐹𝑖 , ≺ 𝑛)

14: 𝑃𝑡+1 = 𝑃𝑡+1 ∪ 𝐹𝑖 [𝑁− | 𝑃𝑡+1 |]

15: 𝑄𝑡+1 = create-new-pop(𝑃𝑡+1)

16: t = t+1

17: end while

front 𝐹𝑖 and select a subset of individual solutions with the same dominance level, it relies on

the crowding distance (Deb et al., 2002) to make the selection (line 9). This parameter is used to

promote diversity within the population. The front 𝐹𝑖 to be split, is sorted in descending order

(line 13), and the first (N- |𝑃𝑡+1 |) elements of 𝐹𝑖 are chosen (line 14). Then, a new population

𝑄𝑡+1 is created using selection, crossover and mutation (line 15). This process will be repeated

until reaching the last iteration according to a stop criterion (line 4).

2.2.2.3 SPEA2

SPEA2 is as an intelligent search-based algorithm, which has been widely adopted to solve many

software engineering problems (Zhao, Lei, Ma, Liu & Zhang, 2016; Garcia & Trinh, 2019;

Sofianopoulos & Tambouratzis, 2011). As described in Algorithm 2.3, SPEA2 starts with an

initial population 𝑃0 and an empty archive 𝑃0 (line 1). The external archive is a collection of

high-quality solutions to be maintained and used exclusively for mating of future generations.

The archive size is typically, but not necessary, equal to the population size. Then, the following

steps are performed in each iteration 𝑡. The fitness assignment (line 3), which is based on the
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Pareto dominance principle for both the population and the archive in order to quantify the

quality of candidate solutions in the current population. Note that a non-dominated solution

is a solution that has fitness values such that no other solution within the set has better fitness

values across all objectives. During the environmental selection step (line 4), all non-dominated

solutions from the population and archive are copied to the archive of the next generation:

�̄�𝑡+1. If the non-dominated set size fits exactly into the archive (|�̄�𝑡+1 | = 𝑁) the environmental

selection step is completed. Otherwise, there can be two situations: Either the archive �̄�𝑡+1 is

too small or too large. In the first case, the best 𝑁 − |�̄�𝑡+1 | dominated individuals in the previous

archive and population are copied to the new archive. In the second case, an archive truncation

procedure is employed to iteratively remove individuals from �̄�𝑡+1 until |�̄�𝑡+1 | = 𝑁 . Next, if the

stopping condition is not met then mating selection is performed (line 5). Binary tournament

selection with replacement on �̄�𝑡+1 is used to fill the mating pool. Finally crossover and mutation

operators are applied to the mating pool and set �̄�𝑡+1 to the resulting population. The generation

counter is increased (line 7) and this process will be repeated until some condition is satisfied.

(line 2).

Algorithm 2.3 Pseudo code of SPEA2 (Zitzler et al., 2001)

Require: N: population size, �̄�: archive size, T: maximum number of generations

Ensure: A: non-dominated set

1: Initialization: Generate an initial population 𝑃0, create an empty archive (external set)

𝑃0 = ∅. Set 𝑡 = 0

2: while 𝑡 < 𝑇 or another stopping criterion is not reached do
3: Fitness assignment: Calculate fitness values of individuals in 𝑃𝑡 and 𝑃𝑡

4: Environmental selection: Copy all non-dominated individuals in 𝑃𝑡 and �̄�𝑡 to �̄�𝑡+1

IF size of �̄�𝑡+1 > �̄� THEN reduce the size of �̄�𝑡+1

ELSE IF if size of �̄�𝑡+1 < �̄� THEN fill �̄�𝑡+1 with dominated individuals from 𝑃𝑡 and 𝑃𝑡

5: Mating selection: IF the stopping condition is not satisfied

THEN perform binary tournament selection with replacement on �̄�𝑡+1in order to fill

the mating pool ELSE Stop.

6: Variation: Apply crossover and mutation into �̄�𝑡+1

7: t = t+1

8: end while
9: Termination: 𝐴 = �̄�𝑡+1
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2.2.3 LSTM-RNN

Long Short-Term Memory (LSTM) networks (Hochreiter & Schmidhuber, 1997a) are a special

type of Recurrent Neural Networks (RNNs) that have recently emerged as effective models

capable of learning long-term dependencies. They were introduced by Hochreiter & Schmidhuber

(Hochreiter & Schmidhuber, 1997b) and widely applied in language modeling (Sundermeyer,

Schlüter & Ney, 2012), machine translation (Cui, Wang & Li, 2015), speech recognition

(Graves, Jaitly & Mohamed, 2013), classification (Athiwaratkun & Stokes, 2017; Wang, Huang,

Zhu & Zhao, 2016b; Graves & Schmidhuber, 2005) and many other real-world problems (Bouktif,

Fiaz, Ouni & Serhani, 2018, 2020).

LSTM networks were designed to overcome the difficulty of training RNNs due to the vanishing

gradient problem (Pascanu, Mikolov & Bengio, 2013). In a nutshell, it was observed that

the gradients in RNNs tend to get smaller with back-propagation which forces the network to

interrupt the learning process. In addition to hidden state and memory vectors, LSTMs introduce

three gating mechanisms (Karpathy, Johnson & Fei-Fei, 2015) namely (i) forget gate for deletion

of less important information from memory, (ii) input gate to add new information to cell state

and (iii) output gate which decides what to output from memory. These gates allow efficient

management of LSTM internal cell memory.

Figure 2.2 shows the information flow and the set of gates within LSTM cells (colah’s blog,

2020). In this diagram, the pink circles represent point-wise operations (e.g. "+" operation

for addition), while the yellow boxes stand for neural network layers. Lines merging denote

concatenation, while a line forking denotes its content being copied to different locations.

2.3 Related Work

This section presents the research around this thesis. In particular, the related work can be

divided broadly into two research areas: (1) studies on CI practice, impacts & challenges and (2)

work related to CI builds.
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Figure 2.2 An overview of information flow in LSTM

2.3.1 CI practice, impacts & challenges

2.3.1.1 CI practice and impacts

Many research works have focused on studying the outcomes of the adoption of CI, related

mainly to teams’ productivity, development practices and code quality. For the sake of clarity

and completeness of the reporting, we summarize these works in Table 2.1.

Many research works have shown that CI adoption can be beneficial. For instance, Vasilescu

et al. have found, using multiple regression modeling, that CI improves the number of processed

Pull Requests (PRs) (i.e., a submitted candidate code change to be merged into the mainline

repository) and reduces the quantity of rejected ones. These results indicate a significant

improvement in the team’s productivity. Hilton et al. claimed also that CI improves team’s

productivity. Indeed, they found that after adopting CI (i) the studied CI projects release twice

more than those that do not use CI and (ii) the PR is accepted faster. Yu et al. studied the

acceptance and latency of PR in CI context. Using regression models in a sample of 10 GitHub

projects that use Travis CI, the authors found that the availability of the CI pipeline is a dominant

factor in hastening the PR evaluation process. Yu et al. studied the nature of CI detected defects
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and social factors are associated with them and how they relate to eventual bugs. To this end, they

performed both quantitative and qualitative analysis: regression modeling and a qualitative study

of 50 PRs. As a result, they found that CI failures are not highly correlated with eventual bugs

and that mature CI process is associated with better fault detection. Zhao et al. used regression

discontinuity design (Imbens & Lemieux, 2008) to quantitatively evaluate the effect of adopting

CI on development practices, such as code writing and submission, issue and PR closing. The

main result of their study is that CI practice aligns with the “commit often" guideline (Fowler,

2006) while merged commits seem to be getting smaller as recommended by Fowler.

While studies mentioned above suggest that the adoption of CI increases the release frequency

of a software project, other works did not observe such an increase in their quantitative analyses.

For instance, Bernardo et al. have observed, by training regression models, that CI does not

always reduce the time for delivering merged PRs. Their models also reveal that PRs, which are

merged more recently in a release cycle, experience a slower delivery time. Rahman et al. have

observed for the studied OSS projects some CI benefits e.g., improvements in bug and issue

resolution. However, for the proprietary projects, they could not make similar observations.

To sum up, previous work showed that CI adoption can have some side effects but it is unclear

how it can impact the quality assurance efforts like code Refactoring. Hence, we fill this

knowledge in Chapter 4, by conducting the first empirical study to investigate the impacts of CI

on Refactoring activities.

2.3.1.2 CI challenges

Despite its valuable benefits, CI adoption brings with it many challenges. In the following, we

review the most relevant papers that discuss CI challenges and bad practices. These works are

summarized in Table 2.2.

Debbiche et al. (2014) interviewed 11 developers at a major communication company to

investigate what challenges they faced when adopting CI. Their case study revealed a list of

challenges including testing, code dependencies and tools and infrastructures. Laukkanen et al.
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Table 2.2 Literature review summary of CI challenges

Paper Main Challenges Methodology

Elazhary et al. (2021)

• Build can be a bottleneck
• Longer builds
• Dependency management is complex
• UI difficult to test
• Developer works in isolation until merge
• No testing in deployment builds

• case study of three
small- to medium-sized
companies interviews
• Activity log mining

Widder, Hilton, Kästner & Vasilescu (2019)

• Lack of support for a project’s language
• Long builds frustrate users or make
CI impractical
• CI configuration files can be confusing
• Troubleshooting build failures is difficult

• 12 interviews from
Travis CI leavers

Vassallo, Proksch, Gall & Di Penta (2019b)

• Slow Build
• Skip Failed Tests
• Broken Release Branch
• Late Merging

• Survey with 124 developers

Pinto, Castor, Bonifacio & Rebouças (2018)
• Configuring the build environment
• Inadequate testing and time pressure
• False sense of confidence

• Survey with 158 CI users

Hilton et al. (2017)

• Troubleshooting a CI build failure
• Long build time
• Automating the build process
• Lack of support for the desired workflow
• Setting up a CI server or service
• Lack of tool integration
• Security and access controls

• Survey with 51 developers

Laukkanen, Itkonen & Lassenius (2017)

• Complex and inflexible build
• Large commits
• Merge conflicts
• Broken builds
• Long-running branches
• Ambiguous test result
• Time-consuming testing
• Lack of experience and motivation
• Slow integration approval

• Systematic Literature Review

Shahin, Babar & Zhu (2017)

• Build and test time
• Lack of awareness and transparency
on build and test results
• Lack of expertise and skill
• Lack of suitable tools and technologies
• Coordination and collaboration challenges
• Difficulty to change legacy culture
• Lack of proper test strategy
• Merging conflicts
• Security and scalability issues
in deployment pipeline

• Systematic literature Review

Laukkanen, Paasivaara & Arvonen (2015)

• Lack of Time
• Unstable Tests
• Slow Tests
• Insufficient Testing Environments
• Agreement on Tools
• Global Distribution of the Organization

• Interviewing 27
stakeholders at Ericsson

Debbiche, Dienér & Svensson (2014)

• Difficulty to cope with CI culture
• Difficulty with Tools and Infrastructure
• Regression Feedback Time
• Test Automation
• Unstable Test Cases
• Too Many Manual Tests
• Preserving Quality

• 11 interviews at a major
telecommunication company

(2015) interviewed 27 stakeholders at Erickson and found that the main challenges are due to the

lack of time, unstable tests, tools and team organization. Shahin et al. (2017) used Systematic

Literature Review (SLR) method for reviewing the peer-reviewed papers on continuous practices
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published between 2004 and 2016. Their findings revealed a list of critical factors including

testing effort and time, team awareness and transparency, good design principles and appropriate

infrastructures that should be carefully considered when introducing continuous practices in a

given organization. Another SLR was performed by Laukkanen et al. (2017) who identified

forty problems related to CI/CD adoption. The most critical reported problems were related to

testing, merging conflicts and system design. Hilton et al. (2017) have found, by interviewing 51

developers, that the latter face many trade-offs between speed and assurance, between better

access and information security, and between more CI configuration options and better flexibility

in use. Additionally, the main challenges they face are related to build failure and time, lack

of tool support and the setting of CI servers. Pinto et al. (2018) surveyed 158 CI users in

order to investigate work practices and challenges in CI. Their main results reveal that CI main

challenges are (i) the build environment, (ii) inadequate testing and time pressure and (iii) false

sense of confidence in CI servers’ feedback. Widder et al. (2019) conducted a mixed method,

including a survey and statistical modeling from 6,239 projects to identify the reasons behind CI

abandonment. There results revealed that many developers find that the most difficult issues

to resolve are (1) build failures, (2) complex tool setups like Docker and (3) long build times.

Vassallo et al. (2019b) survey with 124 developers revealed four relevant anti-patterns (i.e.,

practices that contradict CI principles) of CI namely slow build, skipping failed tests, broken

release branch and late merging. Elazhary et al. (2021) found, by performing a case study and

activity log mining, that CI main challenges are related to builds, dependency management and

testing.

The main conclusions to drive from this review is that it is confirmed that CI adoption brings

many challenges to the development team. The previous works that studied CI challenges

focused on interviewing/surveying a selected set of developers. However, surveys/interviews

are a limited resource of information and therefore cannot be generalized. At the same time,

there are other sources of information for examining CI challenges and SO is one of them. This

Q&A website is a popular venue for developers who seek advice to resolve many technical

problems/issues. To the best of our knowledge, there is no study that mined SO to investigate CI
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challenges. We fill this gap with an empirical study, where we analyze developers discussions to

investigate CI trends, topics and challenges. This study is presented in Chapter 3.

2.3.2 CI builds

2.3.2.1 Prediction of CI failure

Many research works have introduced prediction models to predict the build outcome. For the

sake of clarity, we summarise them in Table 2.3.

Xia & Li (2017) compared nine ML models to construct CI prediction models of 126 open source

projects hosted on GitHub. Their experiments were based on both cross-validation and online

scenarios. In cross-validation, their models achieved an Area Under the ROC Curve (AUC) score

of over 70%. However, under the online scenario, they observed a tendency for their prediction

scores to decrease up to 60% of AUC. In both scenarios, they found that Decision Tree (DT) and

Random Forest (RF) achieved the best performance scores. Ni & Li (2017) employed AdaBoost

(ADA) to predict CI build failures of 532 CI projects. This adaption achieved an AUC of 75%,

using 50% of the dataset as training set and last 50% instances as test set. Hassan & Wang

(2017) proposed the prediction model of CI build failure on three build systems, namely Ant,

Maven and Gradle, under the cross-project prediction and cross-validation scenarios. Using

RF, they achieved over 90% of AUC scores for the considered build systems. Additionally,

the cross-validation provided better results. However, when we looked at the provided dataset,

we found that there is a large number of redundant lines that may influence the validity of the

reported results. When looked at their dataset, we found that the dataset is perfectly balanced

(45% of failed builds) which is not the case in practice as it is generally known that failed builds

are much less to occur than passed ones (Xie & Li, 2018). Xia et al. (2017a) conducted an

empirical study to evaluate the predictive performance of six common ML models including RF

and DT considering cross-project validation. For dataset selection, they compared three methods

namely Random Selection, Burak Filter based on build-level and Bellwether Strategy based on

project-level. According to the results of their experiments, they found that Bellwether strategy
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performs better than the two other methods. And among the used models, they found that DT

classifier performs the best achieving a score of 17% for F1-score on average. Luo et al. (2017)

have used the features of TravisTorrent dataset to predict the result of a build. Additionally, they

compared Support Vector Machine (SVM), DT, RF and Logistic Regression (LR). Based on

10-fold cross-validation, the results reveal that LR and SVM were the best performers.

2.3.2.2 Optimization of CI build time

Abdalkareem et al. (2019) are the first to examine the CI commits that can be CI skip and determine

the reasons behind it. Additionally, they proposed a rule-based technique to automatically

detect and label the commits to be skipped by using five rules related mainly to non-source files

(e.g.documentation) and cosmetic changes (e.g., source code formatting). Based on a corpus of

ten open-source Java projects that use Travis CI, this technique has reached a moderate score of

58% in terms of F1-score. A related effort for improving CI skip detection, by Abdalkareem et al.

(2020), proposed a ML-based technique to raise the issue related to the moderate performance

of the rule-based approach. By conducting an empirical study based on the same dataset of

(Abdalkareem et al., 2019), the used DT model achieved higher F1-score of 79% within project

validation and 55% under cross-project validation. Additionally, they investigated the most

prominent features and found that the number of developers who changed the modified files and

the terms used in the written commit messages are the best indicators of CI skip commits.

2.3.2.3 Summary of research on CI builds

To sum up, there is a consensus that CI build failure is a major barrier to face when adopting

CI. To this end, many research studies have been conducted to prevent the failure by predicting

its outcome. Although these research efforts have advocated that predicting CI build failure is

possible, these works achieved a limited prediction accuracy that is sometimes comparable to

the performance of random guessing. Another main issue to classic ML-based approaches is

related to the imbalanced distribution of build results. This challenges their applicability due to

the performance bias that can occur when an imbalanced distribution of class examples is used.
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Furthermore, this imbalanced nature of the training data was rarely discussed in existing works.

However, in CI context, a good accuracy on the failed builds prediction is more important than

the passed builds accuracy. The existence of these issues suggest that the build failure prediction

problem is not yet resolved. In Chapters 5 and 6, we propose novel approaches to resolve the

problem of CI build prediction.

The second issue related to CI builds is its long duration. Previous works attempted to mitigate

the problem by proposing ML based approaches that detect the changes that can be skipped. But

similarly to CI build outcome problem, the applicability of ML is limited. Hence, to address

these limitations, we proposed in Chapter 7, a novel approach that improves the state-of-the-art

approaches.

2.4 Conclusion

In this chapter, we first presented the background of our thesis and the main techniques used to

implement our proposed tools. Then, we presented the research works that are related to this

thesis and how we plan to address their limitations.
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Abstract

During the last few years, Continuous Integration (CI) has become a common practice in open

source and industrial environments in order to reduce the scope for errors and increase the speed

to market through automated build and test processes. However, despite this wide adoption

throughout the years, little is known about the challenges developers discuss. Analyzing the

discussions of developers is required to understand what researchers, educators and practitioners

should focus on, and how discussion communities can be helpful to shed the light on CI

challenges. In this study, we examine Stack Overflow (SO), the most popular crowd-sourced

forum, to understand the challenges developers face under CI context. We collect a corpus of

27,728 CI related developers posts from SO and analyze those posts through a mixed-method

with quantitative and qualitative analyzes. To study the trends of CI discussions, we investigated

the metadata of CI questions, users and tags. Then, we extract the CI main topics using Latent

Dirichlet Allocation (LDA) tuned with Genetic Algorithm (GA). Finally, we investigate the most

popular and difficult topics faced by developers and perform a qualitative analysis based on a

statistical sample of unanswered questions to get further insights into CI challenges. The LDA

clustering reveals that developers face challenges with six main topics namely Build, Testing,

Version Control, Configuration, Deployment and CI Culture. Particularly, we found that the

build topic is the most popular among the studied topics and that version control and testing

topics are the most difficult for SO community. Our study uncovers insights about CI challenges
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and adds evidence to existing knowledge about CI issues related especially to software build.

Based on the results of our study, we conclude several implications for researchers, e.g., need

for more effort to investigate the reasons behind the reported issues, educators, e.g., teach CI

principals and philosophy, and practitioners, e.g., take the difficult topics into consideration

when distributing the tasks.

Keywords. Continuous Integration,Stack Overflow, Topic modeling, Latent Dirichlet Allocation,

Empirical Study

3.1 Introduction

Continuous Integration (CI) is a set of modern software development practices that is widely

adopted in industry and open-source environments (Vasilescu et al., 2015). CI advocates to

continuously integrate code changes, by automating the process of build and testing (Fowler,

2006), which reduces the cost and risk of delivering defective changes. Nevertheless, introducing

changes under such context still be is risky and can lead to productivity loss (Bernardo et al.,

2018), release delays (Widder et al., 2019) and cost impacts (Laukkanen et al., 2015).

Prior studies that have examined CI challenges relied mainly on surveys/interviews of a selected

number of stakeholders (Debbiche et al., 2014; Hilton et al., 2017; Pinto et al., 2018). Although

interviewing developers provides great insight, it has a major limitation: it cannot be generalized

due to the limited number of the interviewed persons. Therefore, there is a need to investigate

CI challenges on a large scale. At the same time, we observe that discussions related to CI are

becoming increasingly prevalent in online developer forums, to find answers to their CI related

issues. Stack Overflow (SO)1 is one of the most popular Q&A sites for developers, by recording

over 19 million questions in 2020 (Openja, Adams & Khomh, 2020). For instance, in one of the

SO posts2, a developer asked: �“I try to setup CI for Go app and Jenkins.. So, my questions

are (1) If my app will contain much more code file, packages etc. should I still build it as go

1 https://stackoverflow.com/

2 https://stackoverflow.com/questions/34731416
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build main.go? (2) How correctly give name for go build output file to add it to the artifacts? (3)

Should I use some kind of make file/script etc to collect dependencies on build machine? What is

best practice here?". This question received an answer only after over four years despite being

viewed 1k times. Which may indicate that the issue faced by this developer is difficult to resolve.

We therefore believe that an analysis about CI discussions on SO can help the research community

and CI stakeholders in better understanding developers’ concerns and hence improving the

adoption of CI. To this aim, we conduct in this paper a large-scale empirical study of 27,728 CI

related posts on SO to address the following Research Questions (RQs):

• RQ1: (Trends) How have CI discussions grown since the creation of Stack Overflow?

We aim to gain insights into the temporal trends of CI discussions. Specifically, we study the

volume of questions (11,641) and their answers (16,087), the users responsible for creating

such posts (17,992) and also the tags (2,806) associated with CI questions. Results show

that developers frequently use SO to seek help with their CI problems. We also found that

SO users are showing more interest in CI over the years and that most CI questions tags are

around CI servers and platforms.

• RQ2: (Topics) What topics are discussed around CI? We leverage Latent Dirichlet

Allocation (LDA) technique to identify the key topics that developers discuss on SO.

Additionally, we use an advanced parameter tuning technique based on Genetic Algorithm

(GA) to find the optimal parameters of LDA algorithm. Our tuned LDA reveals that CI

discussions cover six main topics namely Build, Testing, Version Control, Configuration,

Deployment and CI Culture. The primary driver behind these questions is enhance the

usage of CI tools/infrastructures in the development process. Specifically, around 40% of

discussions are related to build process suggesting this phase is key a concern within CI

projects development.

• RQ3: (Challenges) Which topics are the most popular and difficult among CI related

questions? We exploit the information provided in SO to discover the topics being the most

popular and difficult to answer CI questions. In addition, we examine a significant simple of

unanswered questions to gain further insights into the CI challenges. Our findings reveal that
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build related questions are the most popular (in terms of view, favorite and score questions).

Additionally, questions related to version control involve the highest rates of unanswered

questions, while testing questions require the longest time to receive accepted answers. When

examined the unanswered questions, we found that those questions usually receive responses

in the form of comments where users either suggest solutions to address the problem or ask

for more clarification.

The main contributions of this study can be summarized as follows:

• We conduct the first empirical study to mine and extract 27,728 SO posts related to CI to

better understand the challenges, trends and topics around CI.

• We perform a mixed-method study, though quantitative and qualitative analyses, to shed light

on characteristics of CI related topics and the usage of CI tools/infrastructures.

• We provide practical implications of our findings for researchers, developers, tool builders

and educators.

• We publicly provide a replication package (Saidani, 2021) that contains the dataset and

scripts in order to replicate our results.

The remainder of this paper is organized as follows. In Section 3.2, we describe our research

methodology and reveal the main findings of our study. In Section 3.3, we discuss the implications

of our work. Then, we review threats to validity in Section 3.4, and finally we address the

conclusions to draw in Section 3.5.

3.2 Empirical Study Design

The main goal of this study is to obtain and share insights to CI stakeholders regarding how CI

is discussed in practice by analyzing Stack Overflow (SO) posts. Figure 3.1 depicts an overview

of our methodology. Our methodology comprises two main steps: (1) CI posts extraction and

(2) analysis method. In the following, we present the details of each of these two steps.
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script Result
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tags

• Topic modeling with 
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questions

• Manual analysis of 
sample unanswered 
questions

Figure 3.1 Overview of the our study methodology

3.2.1 Extracting CI posts

3.2.1.1 SOTorrent Database

In this study, we mined CI questions & answers based on SOTorrent dataset (Baltes, Dumani,

Treude & Diehl, 2018). We particularly utilized the latest dump, dated on December 2020,

available on Google BigQuery 3 that allows to execute SQL queries on various public datasets.

The dataset contains information about questions, answers and their metadata such as the creation

date, score and view count. In the following we briefly describe the information used in our

study:

• Posts: Among the different types of posts in the dataset, we only consider the questions and

answers. For each question, we find the title and body fields. However, the answer type can

only contain a body. Only one answer can be marked as “accepted" if the developer asking

the question decides to.

• OwnerUserId: This field is used as an identifier of the post’s creator.

• Tags: When creating the question, the developer must select at least one tag and a maximum

of five tags to describe that question.

• View Count: This metric counts the number of times the question was viewed.

3 https://cloud.google.com/bigquery
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• Favorite Count: We use this metric to count the number of times SO users have marked the

question as a favorite.

• Score: This metric is based on the up-votes the post (question or answer) receives.

3.2.1.2 CI posts

To extract relevant discussions on SO, we query questions from SOTorrent dataset being tagged

with “continuous integration" or that contain this term in their title texts. Similarly to Peruma

et al. (2022), we excluded searching for the term in the body of the post to avoid the increase of

false positives in our dataset. Table 3.1 summarizes the collected data. As shown in the table,

we extracted 11,641 CI related questions, from which 1,981 (17.1%) questions did not receive

an answer, 5,382 (46.2%) had an accepted answer, while 4,278 (36.7%) questions received at

least one, but not accepted, answer.

Table 3.1 Statistics about the collected data

Item Count
Number of posts 27,728

Number of questions 11,641

Number of answered questions 9,660

Number of accepted answers 5,382

Number of distinct tags 2,806

Number of distinct users 17,992

Average number of tags per question 4

Average number of answers per question 1.4

3.2.2 Research Questions Analysis & Results

In this paper, we address three Research Questions (RQs). As described in Section 3.1, RQ1

aims to examine the temporal trends and growth of CI posts, users as well as the tags used to

describe the questions. In RQ2, we classify the CI discussions into topics based on Natural

Language Processing (NLP) techniques. Then, in RQ3, we are based on results of RQ2 to

identify the most popular and challenging topics being discussed among developers. In the next
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subsections, we explain the rationale behind each RQ and our approach to produce and analyze

the results. then we present our main findings.

3.2.2.1 RQ1. (Trends) How have CI discussions grown since the creation of SO?

Motivation. In this RQ, we are particularly interested to study the growth of CI discussions over

the years. This preliminary investigation helps us understand the extent to which developers

seek help on CI problems.

Approach. First, we explore the volume of CI posts (i.e., questions and answers) Then, we want

to analyze the developers’ involvement in CI discussions and whether a subset of SO users are

responsible for the majority of CI related questions and answers. Then, in order to determine the

concepts and technologies being associated with CI questions, we manually review the tags and

classify them in order to determine the different categories these tags fall under.

Results.

Trends of Questions. Figure 3.2 shows the yearly growth of CI questions with and without an

accepted answer. In this figure, the red bars represent the questions without an accepted answer,

while the blue bars are questions with an accepted answer. The total number of questions is

represented by the grey bars. Similarly to Peruma et al. (2022), we eliminate SO data of the

years 2008 (SO was launched this year) and 2020 as they contain incomplete information.

A first look at these bar-plots shows that, as the years pass, developers are showing more interest

in CI since the number of the total questions increases each year. The only exception is for the

year 2014 in which the number of questions decreased by 36 as compared to 2013. Regarding

questions with an accepted answer, except for the years 2013, 2014 and 2018, we found that

the related number of posts is also growing; while the number of questions without accepted

answers is always increasing. Additionally, from the year 2014, the number of questions without

accepted answers outnumber questions with an accepted answer.
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Figure 3.2 Count of CI questions and their answers per year

Trends of Users. Next, we look at the involvement of the SO community members in CI

discussions. We investigate unique users who post questions and answers and analyze their

trends over the years. Figure 3.3 reveals an increasing trend in the number of unique users

involved in CI discussions, except for the year 2014 (similarly to the number of CI questions

shown in Figure 3.2). Hence, we believe that the dip in questions and users in 2014 is an

interesting phenomenon that would require further investigation to explain the reasons behind it.

Next, we investigate the distribution of unique users for both questions and answers. As shown

in Table 3.2, we see that 9,566 distinct users created 11,641 CI related questions (Table 3.1). As

for answers, we observe that 4,525 distinct users posted accepted answers, while 5,589 distinct

users are responsible for non-accepted answers. We also see that 87.36% of the users asked at

most one question; which is applied to accepted and non-accepted answers. Indeed, 88% and

92% of the users were associated with only one accepted and non-accepted answer respectively.

Trends of Tags As a further step to study the trends of CI discussions, we investigate the categories

under which fall the tags associated with CI-related questions. In total, our dataset contains
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Figure 3.3 Count of distinct users involved in CI discussions per

year

2,806 distinct tags excluding “continuous integration’" tag. The top-10 tags are all related to

servers (jenkins 7.9%, teamcity 2.3%, azure-devops 2.1%, hudson 1.6%), platforms (docker

1.7%, gitlab 2.3%, github 1.4%), tools (git 2.7%), programming languages (Java 1.5%) and

concepts (continuous-deployment 3.12%). These popular tags represent 27.02% of the tags in

the dataset as shown in Table 3.3.

Next, we plot the yearly growth of these popular tags as shown in Figure 3.4. Recall that we

ignore the years 2008 and 2020 due to their incomplete data. Regarding CI servers, we observe

that, except for “azure-devops", all the related posts are decreasing from a particular year. For

instance, we see that the volume of “jenkins" tag shrinks from the year 2017 while the number

of “hudson" tagged posts show a steep decline from 2012. Additionally, the popularity of posts

related to “github", “gitlab", “docker" and “continuous-deployment" seems to be in constant

increase over the years. We also see that the curve of “git" and "java" tags are relatively constant.

Finally, we manually classify the tags to determine the most popular technologies/concepts

used in CI discussions. To this aim, we manually reviewed a statistically significant sample of

tags composed of 538 tags which represents a confidence level and interval of 99% and 5%

respectively. As a result, we clustered the tags into seven categories namely Platforms/Servers,

Tools/IDEs, Programming Languages, Framework/Library/API, Concepts, Operating Systems,
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Table 3.2 Distribution of the number of posts created by a user

Number of posts created by a user count Percentage
Questions -total distinct users 9,566

1 8,357 87.36%

2 844 8.82%

3 195 2.04%

4 94 0.98%

5 32 0.33%

Others 44 0.46%

Accepted Answers - total distinct user: 4,525
1 3,996 88.31%

2 376 8.31%

3 93 2.06%

4 35 0.77%

5 10 0.22%

Others 15 0.33%

Non-Accepted Answers - total distinct user: 5,589
1 5,154 92.22%

2 336 6.01%

3 64 1.15%

4 15 0.27%

5 8 0.14%

Others 12 0.21%

and Other. Figure 3.5 shows the distribution of the instances associated with each tag category.

Most of the tags (40.15%) are related to platforms and servers which include CI servers (e.g.,

Jenkins 4, Teamcity 5) and platform products such as Docker 6 and Amazon Web Services 7

The next most popular category is related to general concepts including CI principals (e.g.,

continuous deployment, continuous delivery and build automation), repository (e.g., pull request,

versioning) and programming (e.g., variables, command-line). The third most popular tags

fall under the Tools/IDEs category (17.85%). In this category, we found that tools are related

4 https://www.jenkins.io/

5 https://www.jetbrains.com/teamcity/

6 https://www.docker.com/

7 https://aws.amazon.com/
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Table 3.3 Top-10 most popular tags

Tag Occurrence Percentage
jenkins 2,647 7.98%

continuous-deployment 1,035 3.12%

git 899 2.71%

teamcity 771 2.32%

gitlab 770 2.32%

azure-devops 697 2.10%

docker 589 1.77%

hudson 534 1.61%

java 528 1.59%

github 490 1.48%

Others 24,210 72.98%
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Figure 3.4 Yearly growth of the popular tags associated with CI

posts

to version control (e.g., Git 8), build (e.g., Maven 9, MSbuild 10), testing (e.g., Selenium 11,

8 https://git-scm.com/

9 https://maven.apache.org/
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NUnit 12), configuration (e.g., chef-recipe 13) and code analysis (e.g., FindBugs 14 and Phpcs

15). The tagged posts include popular IDEs such as Xcode 16 and Visual Studio 17 Tags related

to programming languages represent only 8.5% of the tags in our sample set. In this category,

we found that the top-3 most popular languages are Java, python and C#. The category of

frameworks/libraries/APIs which represents 5.7% of the tags include popular frameworks such

as Node.js 18, Ruby on Rails 19 and Angular 20 With regards to Operating Systems (OS) category,

we found that the popular tags are mobile-based (e.g., Android and iOS).

Figure 3.5 Distribution of the tags’ categories

10 https://docs.microsoft.com/en-us/visualstudio/msbuild/msbuild?view=vs-2022

11 https://www.selenium.dev/

12 https://nunit.org/

13 https://www.chef.io/products/chef-infra

14 http://findbugs.sourceforge.net/

15 https://github.com/squizlabs/PHP_CodeSniffer

16 https://developer.apple.com/xcode/

17 https://visualstudio.microsoft.com/fr/

18 https://nodejs.org/en/

19 https://rubyonrails.org/

20 https://angular.io/
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Summary for RQ1. The findings of RQ1 reveal that SO is widely used by developers to

seek help with CI related problems. We found that the CI community is showing more

interest in CI over the years by posting over 1,000 questions in 2019. Additionally, we see

a rise in questions around Jenkins which indicates a need for support for this CI service.

Finally, our analysis of the questions tags reveals that 40% of posted questions are related

to servers and platforms followed by tags associated with general concepts (20%).

3.2.2.2 RQ2. (Topics) What topics are discussed around CI?

Motivation. We aim in RQ2 to identify the main issues faced by developers when adopting CI.

This can be helpful for tool builders in the design of their tools documentation and development,

for CI research community to gain focus their research efforts on the most interesting improvement

areas and also for educators to pay particular attention to the most challenging topics.

Approach. In order to explore the high level issues facing CI developers, we use Latent Dirichlet

Allocation (LDA) technique (Blei, Ng & Jordan, 2003) to aggregate and discover what is being

asked in the CI posts. LDA has been recognized as one of the best unsupervised Machine

Learning (ML) techniques that has shown its effectiveness in clustering a large volume of text

documents (Yang, Lo, Xia, Wan & Sun, 2016; Openja et al., 2020). In order to cluster CI posts,

we build a corpus in which each row is composed of a question’s title and body. Additionally, it is

necessary to preprocess the text in order to filter out irrelevant information. We start by removing

all the code snippets (i.e., enclosed in < 𝑐𝑜𝑑𝑒 > tag), HTML tags (such as <p> and </p>)

and URLs from the corpus. Then, we proceed with the removal of numbers and punctuation

marks as they add a little value to the text relevance. We also remove English stop words and

add an extra set of stop words composed of the frequently occurring words such as “question",

“answer”, etc. The full list of removed words is available in our replication package (Saidani,

2021). Finally, we apply lemmatization of words to convert the word to its meaningful base form

(which is called Lemma) similarly to previous studies (Peruma et al., 2022; Abdellatif, Costa,

Badran, Abdalkareem & Shihab, 2020). For example, “development" is mapped to “develop".
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To obtain optimal results with LDA, it is necessary to tune its parameters (Peruma et al., 2022;

Yang et al., 2016). The first required input for LDA, is the estimated number of 𝑡𝑜𝑝𝑖𝑐𝑠 to be

generated. Selecting a low value can result in general topics while a high value would produce

a long list of detailed topics that could contain noise. Moreover, LDA depends highly on the

number of 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 that define when the train reaches its end. Hence, we tune the maximum

number of iterations through the corpus when inferring the topic distributions. The same

uncertainty about the amount of these parameters also exists for the chunk size and 𝑝𝑎𝑠𝑠𝑒𝑠 as

they affect how well/poorly the model can perform. While the chunk size defines the umber of

documents to be used at one in each training cycle, the number of passes defines how many times

the algorithm is supposed to pass over the whole corpus. Hence, it is important to apply the

parameters’ tuning (Tantithamthavorn, McIntosh, Hassan & Matsumoto, 2018a) for LDA. One

the other hand, finding the suitable LDA configuration can be seen as a combinatorial problem

where the selection is made from a very large space of choices. Therefore, we use an advanced

tuning technique, Genetic Algorithm (GA), to effectively explore this large search space and

find the optimal set of parameter values of LDA. GA is a widely used computational search

technique, that has proven good performance in solving many software engineering problems

(Saidani, Ouni & Mkaouer, 2022; Mkaouer et al., 2015; Ouni et al., 2016).

In our adaptation of GA, we selected four parameters to be optimized presented in Table 3.4 along

with their values ranges. Additionally, we compute and evaluate the LDA models performance

using the Topic Coherence metric (Röder, Both & Hinneburg, 2015) which measures how similar

are the topic words are to each other.

Table 3.4 Configuration space for the

parameters of LDA

Parameters Search Space
Number of topics range [2,50]

Number of iterations range [10,5000]

Chunk size range [10,2000]

Passes range [1,100]
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Finally, since LDA does provide meaningful names for its generated topics, we manually label

the topic names. To implement LDA algorithm, we use the python package Gensim 21

Results.

As a result of tuning our LDA model using GA, we found that the (near) optimal configuration

consists of fixing the passes, iterations and chunk size to 200, 2,000 and 500 respectively as

depicted in Table 3.5. Additionally, the LDA clustering yields six main topics associated with SO

CI questions, that represent the main stages of CI/CD pipeline, namely Build, Testing, Version

Control, Configuration, Deployment and CI Culture as represented in Table 3.6. For each topic,

we show a partial set of the associated words (unigrams and bigrams).

Table 3.5 Best Configuration of LDA

as revealed by GA

Parameters Optimal Value
Number of topics 6

Number of iterations 2,000

Chunk size 500

Passes 200

Table 3.6 LDA topics and part of their corresponding words

Topic Related Key Words (unigrams & bigrams)

Build build, job, error, server, branch, fail, jenkins, teamcity, msbuild,

time

Testing test, run, test-case, code, file, xcode, script, integration-test,

unit-test, selenium

Deployment deploy, server, environment, pipeline, jenkins, use, application,

web, version, azure-devops

Configuration configur, file, setup, error, gitlab-ci, install, yml, resource,

jenkins, name

Version Control branch, git, gitlab, github, repository, master, change, push,

commit, pull-request

CI Culture want, need, know, use, way, favorite, important, best, tool

company, different

21 https://radimrehurek.com/gensim/
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Next, to determine the distribution of each topic, we assign for each question in our dataset, the

most dominant such as only topic can be selected.

As shown in Figure 3.6, we clearly see that, Build topics are the most frequently occurring topics

with 39.5% (4,601 questions). In the following, we describe in detail each topic and include

some representative examples of associated questions. It should be noted that our analysis of the

sub-topics is based on the frequent terms in each topic as well as our manual investigation.

Figure 3.6 Breakdown of the frequency of occurrence for each CI

topic

1. Build: As stated by previous research works (Saidani, Ouni, Chouchen & Mkaouer, 2020a;

Saidani et al., 2022; Hilton et al., 2017), software build represents a major barrier that developers

face when adopting CI. To this aim, developers turn to SO for assistance with build issues. In

fact, we encounter in the list of associated words, terms like “issue" and “fail" highlighting that

developers seek help mainly with fixing the broken builds (e.g., Quote 1). This suggests that

developers struggle to obtain working solutions for build resolution.
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How do I fix this incorrect CI build failure?

�““.. When the two dependencies change and all projects rebuild we get

incorrect failures like the one above. How can we stop from getting these

failures?"

Quote 1: An example of question where the user seeks help with fixing the build failure 22

Another common challenge is related to the build performance since the word “time" appeared

in the top-10 words as shown in Table 3.6. As stated in previous works (Ghaleb, da Costa & Zou,

2019a; Saidani, Ouni & Mkaouer, 2021c), the builds can take hours and even days in CI context.

This affects both the speed and cost of software development (Luo et al., 2017) as well as the

productivity of developers who seek help to speed up CI build as shown in Quote 2.

Build in VSO takes a long time

�“.. However, the execution of the builds takes forever. I have created a small

test solution (one class with one property) and a test project (with a single test,

using NUnit), and the build takes more than 20 minutes to complete. Is there any

way we can speed things up in VSO"

Quote 2: A sample question highlighting the need to speed up CI build 23

Servers/infrastructures are an essential for adopting CI as they allow the automation of build

process. The presence of the terms “jenkins", “teamcity", indicate that these CI servers may not

be easily utilized by stakeholders. For instance, the user in Quote 3, is asking how to speed-up

the build with Jenkins. This question, despite being viewed 7k times, did not receive a right

answer after 8 years of being published.

22 https://stackoverflow.com/questions/7837902

23 https://stackoverflow.com/questions/29848548
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Jenkins - How to run post-build action without re-running the job?

�“I have a lengthy Jenkins job with a failing post-build action. How can I

repeatedly run the post-build action without re-running the whole job?"

Quote 3: Sample question related to Jenkins24

Build systems were developed to automate the code compilation and they are an essential part of

CI process. Hence, more effort is needed to improve build systems. In particular, according to

Table 3.6, more attention should be given to MsBuild, the Microsoft build tool, that contains

difficult-to-understand features which leads to commonly occurring errors (Hashimi & Hashimi,

2006). For instance, in Quote 4, the developer is seeking help to solve an MsBuild error. This

question is among the most popular questions in our dataset by reaching 73k views. This finding

aligns with Openja et al. (2020) results.

build .NET application in Jenkins using MSBuild

�“.. I’ve added MSBuild plugin ..But my build processes are failing by showing

the below error message"

Quote 4: Sample question related to MSBuild25

2. Testing: Figure 3.6 shows that Testing is the second most dominating topic representing

19% of CI questions that developers ask in SO. This topic deals mainly with questions that

actively discuss the basics of testing. Indeed, when observing the frequent terms in this topic,

we encounter terms related to unit testing, test cases and integration testing. For example, in

Quote 5, the user wants to know how to run integration tests. The accepted answer suggested to

“run integration tests automatically on TeamCity agent after main build is completed".

24 https://stackoverflow.com/questions/15191539

25 https://stackoverflow.com/questions/10227967
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How to run integration tests?

�“..For plain unit tests, we use TeamCity for continuous integration. How do

you run the integration unit tests and when do you run them?"

Quote 5: Sample question related to integration tests26

Some questions that may be interesting to investigate are questions related to mobile testing.

Specifically, we found that Xcode, an Integrated Development Environment (IDE) for mac-OS,

is a frequent term in testing topic. Indeed, mobile apps undergo frequent updates to introduce

new features, fix reported issues or adapt to new technological or environment changes. Hence,

introducing changes in this context is risky and can harmfully affect the application rating and

competitiveness. Thus, ensuring that the changes can by safely integrated (i.e., by testing them)

is of crucial importance. As a result of our analysis, we found that developers search information

about how to solve their problems related to testing or setting a mobile test environment as

shown in the question of Quote 6.

Travis CI Android Tests: no connected devices

�“I am trying to set up Travis for Android. Running the build seems to work so

far, but when it comes to the tests, it complains about no connected devices!."

Quote 6: Sample question related to mobile testing27

In addition to mobile apps, developers seem to be interested to the continuous testing of Web

applications. Specifically, we found that Selenium, a set of tools and libraries for supporting

Web browser automation, is a frequent term in this topic. In Quote 7, we highlight an example

of a question about running Selenium tests with CI:

26 https://stackoverflow.com/questions/2552506

27 https://stackoverflow.com/questions/31264136
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How to run Selenium tests with CI (Continuous Integration)?

�“..I’m using Selenium for automated testing my websites. I have around 100

test cases and I want to run them every day by making Test Suite automatically.. "

Quote 7: Sample question to testing Web applications with Selenium28

3. Deployment: Continuous Deployment (CD) is an essential practice consisting of automatically

deploying every change into the production environment (Shahin et al., 2017). We found that

this topic covers 16% of discussions about CI. When analyzing the related questions, we found

that more than 70% of the discussions on this topic include “how to" suggesting that generally,

users are seeking help with performing specific tasks about deployment. This result aligns with

the findings of Openja et al. (2020) who find that the majority of “how" questions are related to

Deployment topic.

A manual investigation of a significant sample of questions reveals that users enquire about the

deployment pipelines and their associated tools. Indeed, the success of implementing CI/CD

practices depends heavily on the appropriate selection of tools/infrastructures (Shahin et al.,

2017). By observing the frequent terms in this topic, we encounter “jenkins" and “azure-devops",

two popular CI/CD servers. While we found 357 (or 18% of deployment questions) Jenkins

tagged questions, Azure (previously known as Team Foundation Server (TFS)) tagged questions

represent 16.7%. Quotes 8 and 9 show the most popular questions about these two tools (in

terms of views count).

JENKINS how to deploy artifacts to maven repo?

�“I use Jenkins 1.500 and I looking for plugin that will provide possibility to

deploy artifacts to maven repository, in previous version of jenkins it was possible

in post build actions using maven-plugin but for now that option disappear."

Quote 8: Sample question asking about deploying artifacts with Jenkins29

28 https://stackoverflow.com/questions/5627070

29 https://stackoverflow.com/questions/14694696
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How to set Azure pipeline variable from PowerShell

�“..am trying to set the Azure pipeline variable value in PowerShell. I have

created one variable winversion in the Azure pipeline. Now, in a PowerShell task,

I want to assign some values to the winversion variable. My simple question is

how can I change the value of an Azure PipeLine variable at run time?"

Quote 9: Sample question asking how to setup Azure pipeline30

Web deployment is a relevant sub-topic in Deployment since the terms “web" and “application"

appear the frequent LDA terms in this topic. When analyzing the deployment questions, we

found that 17% of discussions encounter the term “web". An example of Web deployment

question is presented in Quote 10.

Is there any stable tool for complete Web deployment & CI

�“I’ve spent a plenty of hours trying to find a full stable solution for an

application deployment (in my case it’s php). There are a lot of SO answers,

where phing / capistrano / hudson are being proposed, but such propositions

make me feel sad."

Quote 10: Sample question about Web deployment31

4. Configuration: Configuration management is an essential part of CI/CD pipeline and

discussions on this topic cover around 10% of CI questions in our dataset. By observing the

frequent terms in this topic, we realize that most of the concerns about configuration is related

to the appropriate setup of infrastructures/servers. Indeed, we encounter the terms “jenkins"

and “gitlab-ci". By analyzing the questions in this topic, we found many questions related to

configuration issues with Jenkins. For instance, in Quote 11, the user is asking how to configure

Jenkins to run on port 80. This question despite being viewed 77k times, did not receive any

accepted answer.

30 https://stackoverflow.com/questions/55472792

31 https://stackoverflow.com/questions/35995990
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How to configure Jenkins to run on port 80

�“..Is this because jenkins is running as the jenkins user on a privileged port? If

so, how do I fix this? Any other ideas a welcome"

Quote 11: Sample question about the configuration of Jenkins32

Gitlab CI is a popular service that allows build up CI/CD pipelines. According to our analysis, it

seems that configuring the Gitlab CI tool is not trivial. For example, in Quote 12, the developer

is facing an issue with the configuration file (i.e., gitlab-ci.yml) of Gitlab CI that does not execute

the scripts of build, deployment and testing. In the accepted answer, it was mentioned that the

developer should use local paths in order to recognize the directory of the scripts.

gitlab-ci.yml not executing shell script

�“I set up gitlab-ci for my project, and inserted the following yml script..Do I

have the wrong setup? Obviously its not the syntax and the permissions are

allright, otherwise i’d get an error.What could this be?"

Quote 12: Sample question about the configuration of Gitlab-CI33

5. CI Culture: To take full advantage of CI, a set of guiding principles should be applied. In this

topic that represents 8% of discussions in our dataset, developers discuss how to properly embed

CI in their companies/projects. For instance, the developer in Quote 13 seeks to gain deeper

understanding of the importance of using CI. The accepted answer of this question includes:

�“Using CI is a useful skill to have, but you want to avoid developing any bad habits that

wouldn’t translate to a team environment".

32 https://stackoverflow.com/questions/9330367

33 https://stackoverflow.com/questions/33807387
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Is Continuous Integration important for a solo developer?

�“h’ve never used CI tools before, but from what I’ve read, I’m not sure it would

provide any benefit to a solo developer that isn’t writing code every day. First -

what benefits does CI provide to any project? Second - who should use CI? Does

it benefit all developers?"

Quote 13: Sample question for CI culture topic aims to understand how CI is important34

This topic includes also discussions in which developers establish comparisons about different

tools of CI. For example, in Quote 14, the developers needs to choose between two popular CI

servers namely Jenkins and Travis CI. This question has been viewed 132k times.

Jenkins vs Travis-CI. Which one would you use for a Open Source project?

�“For my project I need to choose between Jenkins and Travis-CI. I’ve been

using Jenkins for years but I’ve also read good reviews about Travis-CI. Which

one would you use for an Open Source project? What are the main benefits or

advantages of both?"

Quote 14: Sample question for CI culture topic aims to compare between Jenkins and Travis

CI35

6. Version Control: A core practice of CI is that all developers commit to the mainline (or

master) branch daily. This topic is related to challenges in setting up repository branches

and maintaining their synchronization and covers around 6% of questions in our dataset. By

observing the topic related words, we found “gitlab" and “github" are among the most used

terms which indicates that developers are facing challenges when using these two version control

systems. For example, in Quote 15, the user wants to find out a way to force other developer to

mention the issue in the commit message on GitHub that seems to be a missed feature in GitHub.

Additionally, the question did not receive any accepted answer after 9 years.

34 https://stackoverflow.com/questions/130592

35 https://stackoverflow.com/questions/32422264
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How to avoid developers to commit without mention the issue on commit

message on Github

�“.. Our project is currently hosted on GitHub, and we have a well configured

Jenkins CI Server too. The doubt is: "how we can force our developers to

mention a issue before commit?"

Quote 15: Sample question for Version Control topic36

Summary for RQ2. the LDA clustering results in six topics including Build, Testing,

Version Control, Configuration, Deployment and CI Culture. Specifically, around 40% of

discussions are related to build process suggesting this phase is a key concern within CI

projects development.

3.2.2.3 RQ3. (Challenges) Which topics are the most popular and difficult among CI
related questions?

Motivation. In the last RQ, we aim to provide further insights by investigating the most popular

topics that attract CI community the most.

Approach. Similarly to previous studies (AlOmar et al., 2020; Peruma et al., 2022; Openja

et al., 2020), we consider the (1) view count, (2) favorite count, and (3) score of CI questions

as metrics to measure the topic popularity. The high scores obtained for these metrics, the

most popular is the CI topic. In addition, we aim to identify the most difficult/challenging for

developers. Particularly, we look at questions that do not have any (accepted) answers as well as

the median time the community takes to provide an acceptable answer to a question. Finally,

we perform a qualitative analysis by examining a significant sample of unanswered questions

(i.e., questions without an accepted and non-accepted answer post). This sample include 498

questions and represents a confidence level of 99% and an interval of 5% for each topic, from a

total of 1,981 unanswered questions.

36 https://stackoverflow.com/questions/13704498



51

Results. Table 3.7 shows the results of our CI topics’ popularity and difficulty.

Popularity. Looking at the table, we clearly see that Build topic is the most the most popular in

terms of favorite, view and score counts while Configuration topic is the least popular. This

finding confirms that build issues are the main concerns of CI developers who turn to SO

community to seek for help. Next, we compare the popularity of CI questions against the other

discussions on SO that are not part of our dataset. As a result, we found that CI questions

have a higher average of scores (2.94) compared to the average score of non-CI questions (2.1).

However, the views and favorites of non-CI questions are higher by reaching average values of

2472.2 (compared to 1996.5) and 2.7 (compared to 0.89) respectively. This suggests that CI

discussions are not among the popular discussions of SO.

Difficulty. When it comes to the questions’ difficulty, we found that Version Control discussions

have the highest rate of unanswered questions among the six topics by reaching 21% and 59%

of the questions having no answers or any accepted answer respectively. With regards to time

needed to receive an accepted answer, we found that Testing questions take over 18 hours in

median to receive an accepted answer. These results suggest that these two topics are most

challenging for CI developers to answer. At the same time, questions related CI Culture seem to

be the least challenging by achieving the lowest average percentage of questions without answers

(17%) and of median hours to receive an accepted answer (only 5 hours). This may be explained

by the fact that usually this type of questions are non-technical (e.g., comparison between two

CI servers) and not specific to the developer’s project, which make it easier for developers to

answer. Overall, we see that CI questions receive accepted answers within a short period of

time (11 hours) and that only 17% of the questions remain unanswered. In the following, we

investigate some of these unanswered questions.

Unanswered questions As a final step of our analysis, we examine the unanswered questions (i.e.,

questions without any accepted or non-accepted answer). To this aim, we manually reviewed

a statistically significant sample of unanswered from each topic with a confidence level and

interval of 99% and 5% respectively. Specifically, we examined these unanswered questions for
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incompleteness (e.g., lack of source code, concrete examples, etc.) and ambiguity (unclear or

short question) to identify the reasons behind the poor interaction of users with these questions.

The result of our examination reveals that about 60% of these questions were not completely

ignored by users but rather received a least one comment (up to 10 comments per question). We

found that these comments are either suggesting some solutions/answers to address the questions

(e.g., QuestionID = 45439753 37) or requesting for more clarification (e.g., in QuestionID =

55527078 38). In other comments, the users mention that is no solution for the problem (e.g.,

QuestionID = 8041785 39). Moreover, since our dataset covers the questions until March 2020,

we found some questions being already answered after this date (e.g., QuestionID = 38680366

40). Finally, we found rare cases where the unanswered questions are not related to CI which

means that in these questions, the developers missuses the “continuous integration" tag in the

question (e.g., QuestionID = 40231075 41). Hence, it seems that most of these questions are not

actually ignored by the CI community.

By manually reviewing the rest of the unanswered questions, we found that, for Build topic, the

users are seeking help to resolve builds issues related to Jenkins (e.g., QuestionID = 2426220

42). With regards to Testing topic, we found that the questions are often focused on testing

mobile apps using Xcode IDE that adopt CI/CD principals (e.g., QuestionID = 24678804 43).

Same observation is made for questions about Version Control. Indeed, in most of unanswered

questions, developers are asking about nonexistent versioning features (e.g., QuestionID =

55952407 44). Considering the remaining topics, we found that users are asking about better

37 https://stackoverflow.com/questions/45439753

38 https://stackoverflow.com/questions/55527078

39 https://stackoverflow.com/questions/28741142

40 https://stackoverflow.com/questions/38680366

41 https://stackoverflow.com/questions/40231075

42 https://stackoverflow.com/questions/17156569

43 https://stackoverflow.com/questions/24678804

44 https://stackoverflow.com/questions/55952407
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ways to apply CI which may not be possible with the current tools (e.g., QuestionID = 10242059

45).

Summary for RQ3. The analysis of the most popular/difficult topics reveals that questions

related to build issues are the most popular while those related version control and testing

are challenging. By reviewing a significant sample of unanswered questions, we found that

these questions usually receive responses from SO community in the form of comments

which either seek for more details/clarifications or suggesting to address the problem.

3.3 Discussion and Takeaways

In the previous section, we showed that SO is widely used by developers to seek help with

infrastructures and servers, and receive a response within a short period of time (11 hours on

average). In our study, we supplement our quantitative analysis with a qualitative analysis based

on a statistically significant set of CI questions to gain a deeper understanding of CI challenges.

In this section, we discuss how our findings can help the researchers, tool builders, developers

and educators.

3.3.1 Takeaways for researchers

We believe that our results can help CI researchers to further evolve the field. While we consider

that all the revealed topics are important and worth to be studied, we think that the most

popular/difficult topics should be given more attention by researchers and can be important

directions of research. We particularly encourage researchers to consider further investigations

on the following problems:

More research on build (failure, time and systems). Despite the significant number of studies

that investigated the factors behind build failures (Rausch, Hummer, Leitner & Schulte, 2017;

Beller, Gousios & Zaidman, 2017; Luo et al., 2017) and the proposed automatic prediction tools

45 https://stackoverflow.com/questions/10242059
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(Hassan & Wang, 2017; Xie & Li, 2018; Saidani et al., 2020a, 2022), CI developers still seek

assistance to deal with build failures (as revealed by our findings) ; which suggests that more

effort is required to investigate/prevent the reasons behind the build breakage. Future research

can leverage the history of discussions on SO to examine the possible reasons behind the build

failure. Moreover, our findings in RQ2 reveal that the long CI build time is another challenge

faced by developers who seek help with solutions to speed up CI process. Recently, some

solutions have been proposed to partially address the problem, by detecting the changes that can

be skipped during the build (Abdalkareem et al., 2019; Saidani et al., 2021c). Nevertheless,

more effort is need to speed up the time need for changes that cannot be skipped. Finally, as

revealed in RQ2, the discussions around build systems (e.g., MSbuild) are emergent. This

potentially indicates a need for research in build systems as they are an important part of CI

practices, as there is a limited research being conducted on them (Barua, Thomas & Hassan,

2014).

Investigate the issues of Deployment. Our analysis has revealed that deployment is a popular

topic in CI discussions. Similarly to CI, Continuous Deployment (CD) practice helps reducing

errors and speeding up the development process (Shahin et al., 2017) which motivates the need

to study its specific challenges. Having provided a methodology to investigate CI challenges,

our study can be extended to conduct an in-deeper investigation of deployment challenges that

being faced by developers.

Research on the configuration of CI environments. Our study revealed that the configuration

of CI servers/infrastructure a large concern for developers. While is it been reported that CI

systems are vulnerable to misconfiguration (Gruhn, Hannebauer & John, 2013), little is known

how the features are misused in CI specification files. Hence, we encourage researchers to

conduct empirical studies on this matter in order to improve the management and verification of

CI configurations.
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More attention should be paid to Web/mobile platforms. In RQ2, we found Web-related

keywords (e.g., "Selenium") in testing and deployment topics (Table 3.6). Moreover, the

emergence of the mobile development is also apparent in these two topics (e.g., "Xcode" and

"application" keywords). This suggests a trend towards the CI of software for Web and mobile

platforms. At the same time, we note the very limited academic research being done today in

supporting the adoption in Web/mobile domains. Hence, we believe that a more research effort

is required to study the specific needs, related to CI adoption, of developers in these platforms.

3.3.2 Takeaways for tool builders and vendors

Enhance the user experience. Developers use a variety of tools, including servers, Version

Control Systems (VCS), testing frameworks and build systems, to support the CI of their

software changes. In this paper, we showed that most of the tags in the CI questions are

related to infrastructures and tools. Moreover, we revealed that some tools/infrastructures are

emergent in developers’ discussions. We therefore believe that tool builders must ensure that

their products exhibit an optimal user experience. Specifically, a particular attention should be

paid to tools/infrastructures being mentioned in this paper (e.g., Jenkins, TeamCity, Docker etc.)

as optimizing these tools would potentially reduce the obstacles for developers.

Improve testing activity. Getting people to write tests has been broadly recognized as difficult

(Widder et al., 2019). This finding is confirmed by our study as developers usually inquire

about the basics of testing in the context of CI. Hence, we believe that testing tools builders

should summarize more detailed instructions to help developers create their tests more easily

and quickly.

3.3.3 Takeaways for practitioners and developers

Recommendation to team leads. Based on our results, we suggest that team leads should take

the difficult topics into consideration when distributing the tasks between the development team
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members. Specifically, tasks related to testing and version control might be assigned and/or

reviewed by experienced developers.

Better choice for appropriate tools/infrastructures. The wide adoption of CI depends

largely on the high availability of tools/infrastructures. We encourage project stakeholders and

developers to pay more attention to the selection of appropriate tools and infrastructures (and

their configurations) for build CI pipelines in order to mitigate its challenges.

Lack of expertise and skill. CI/CD pipelines can be difficult for newcomers. The SO

community might need to propose incentives to encourage CI experts to further contribute. Our

findings motivate more experienced developers to explore the CI-related problems discussed by

practitioners and solutions for these problems.

Misuse of version control system (VCS). The misuse of VCS can hinder the CI process (e.g.,

big commits can lead to build failure (Saidani et al., 2020a)). Developers must avoid bad

practices (Zampetti et al., 2020) related to the repository organization and be aware of its impacts

on the CI process.

3.3.4 Takeaways for educators

Towards a better understanding of CI practices/principals. 8% of CI questions discuss how

to get into the philosophy Of CI. This finding is an indicator of the of the limited availability of

knowledge and training for CI and therefore suggests that it is still challenging for developers to

practice CI effectively. Hence, educators are encouraged to ensure that CI principals/practices

are covered and practiced in course materials and laboratories.

More focus on different CI topics. We highly recommend educators to pay a particular attention

to the most popular and difficult topics based on specific experiences occurred to developers and

discussed in Stack Overflow (e.g., build, testing, version control, etc.) and ensure that these

issues are covered in course materials and/or practiced by students in labs and/or assignments.
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3.4 Threats to validity

Threats to internal validity are concerned with the factors that could have affected the validity

of our results. First, we entirely relied on the existence of the term “continuous integration"

in the tag or in the title to identify CI related posts in SO. There is the possibility that we may

have missed other CI posts by excluding synonymous terms. However, we highly decreased the

false positives (i.e., selected questions that are not really related to CI). Indeed, in rare cases,

we found that “continuous integration" term was miss-used by developers when posting the

question. Hence, broadly speaking, we believe that our approach resulted in a significantly

relevant dataset.

Threats to construct validity are mainly related to the rigor of the study design. The use

of LDA to cluster CI discussions can be considered as a threat to the construct validity of

our study. However, as mentioned earlier in the paper, this technique has been widely used

in similar contexts (Peruma et al., 2022; Openja et al., 2020). Additionally, the search space

used to tune LDA parameters could introduce some bias in our results as considering different

ranges/parameters may yield to different results. To mitigate this threat, we used an advanced

technique, Genetic Algorithm (GA) widely used for the automatic tuning of Machine Learning

(ML) techniques (Saidani et al., 2022; Yang & Shami, 2020; Wicaksono & Supianto, 2018).

Nevertheless, future replication of this work should explore other ranges/parameters and their

impacts on LDA performance. In terms of qualitative analysis, we rely heavily on manual

analyzing. Due to the large volume of our data, we selected significant sample of tags (RQ1) and

unanswered questions (RQ3) as representative data for our manual analysis with a confidence

level and interval of 99% and 5% respectively.

Threats to external validity concerns the possibility to generalize our results. To conduct our

study, we collected data from Stack Overflow (SO), the most popular Q&A forum (Openja et al.,

2020), within a period of 12 years (from 2008 to 2020). However, we cannot guarantee the

generalizability of our findings to other forums/websites. Future work should replicate our study

considering other technology-based question and answer websites.
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3.5 Conclusion and Future Work

In this work, we present the first empirical study to investigate the trends, topics and challenges

discussed by developers on Stack Overflow (SO) when adopting Continuous Integration (CI).

By analyzing the asked questions, we show that SO has been widely used by developers to seek

assistance with CI challenges. Specifically, Servers and Platforms are tagged the most in CI

questions. With regards to CI topics, we found, using tuned LDA modeling, that discussions on

CI can be categorized into six topics where 40% of the questions are about “Build" topic. Next,

we investigate the characteristics of answers in terms of popularity (e.g., number of views) and

difficulty (e.g., hours to receive an accepted answer) and find that “Build" topics are the most

popular, while “Version Control" and “Testing" topics seem to be the most difficult. Based on our

quantitative and qualitative analysis, we also distill many takeaways for different stakeholders.

We plan, as a future work to conduct a survey with different CI stakeholders from both open-

source and industry in order to complement our empirical study with further insights into CI

adoption and its related challenges; e.g., we can ask the interviewed persons about the topics we

observed in our empirical study and how difficult they are for them.
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Abstract

The ultimate goal of Continuous Integration (CI) is to support developers in integrating changes

into production constantly and quickly through automated build process. While CI provides

developers with prompt feedback on several quality dimensions after each change, such frequent

and quick changes may in turn compromise software quality without Refactoring. Indeed,

recent work emphasized the potential of CI in changing the way developers perceive and apply

Refactoring. However, we still lack empirical evidence to confirm or refute this assumption. We

aim to explore and understand the evolution of Refactoring practices, in terms of frequency, size

and involved developers, after the switch to CI in order to emphasize the role of this process in

changing the way Refactoring is applied. We collect a corpus of 99,545 commits and 89,926

Refactoring operations extracted from 39 open-source GitHub projects that adopt Travis CI and

analyze the changes using Multiple Regression Analysis (MRA). Our study delivers several

important findings. We found that the adoption of CI is associated with a drop in the Refactoring

size as recommended, while Refactoring frequency as well as the number (and its related rate)

of developers that perform Refactoring are estimated to decrease after the shift to CI, indicating

that Refactoring is less likely to be applied in CI context. Our study uncovers insights about CI

theory and practice and adds evidence to existing knowledge about CI practices related especially
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to quality assurance. Software developers need more customized Refactoring tool support in the

context of CI to better maintain and evolve their software systems.

Keywords. Continuous Integration, Refactoring, Exploratory Study, Mining Software Reposito-

ries, Multiple Regression Analysis

4.1 Introduction

A major challenge in modern software engineering is ensuring the quality of increasingly

large and complex software systems. To this end, software development companies have

massively adopted Continuous Integration (CI) in order to deliver software with fewer defects

and shorter release cycles. CI aims at supporting developers in integrating changes, into a shared

repository, more frequently (and even daily) and the key to making this possible, according to

Fowler, is automating the build and test processes. For its valuable benefits, such as significant

improvements in productivity (Vasilescu et al., 2015), CI has been promoted as the leading edge

of software engineering practices (Hilton et al., 2016).

To take full advantage of CI, a set of guiding principles have been introduced to support developers

adopting CI in practice (Shahin et al., 2017; Duvall et al., 2007a; Vassallo et al., 2018b,a;

Zampetti et al., 2020). For instance, as advocated by Duvall et al., CI users should continuously

inspect code quality, which includes performing Static Code Analysis (SCA), in order to maintain

the code of good health. Another key principle is Continuous Refactoring (CR) (Chen & Babar,

2014; Vassallo et al., 2018b) which consists of “searching for Refactoring opportunities at every

completed change and to perform Refactoring immediately, without postponing it" (Vassallo

et al., 2018b). Indeed, as an Agile method, the incremental nature of CI requires the code to

be continuously refactored in order to maintain high quality (Stamelos & Sfetsos, 2007) and

keep the quality gates, steps required to ensure the reliability of code changes (Schermann et al.,

2016), always green (Vassallo et al., 2018b). Otherwise, it may be hard for development teams

to understand, maintain and extend their code (Szóke et al., 2014). Moreover, the absence of

CR may result in the need for large refactorings (Stamelos & Sfetsos, 2007) that, like any other
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complex change, may hinder the CI build progress and requires more debugging effort (Zhang

et al., 2019). Hence, it is encouraged to partition the large change into many smaller ones of few

hours each (Zhao et al., 2017).

From the academic side, the adoption of Refactoring techniques for CI has received some

attention and automatic tools were proposed (Wyrich & Bogner, 2019; Alizadeh, Ouali,

Kessentini & Chater, 2019), while others used the outcome of SCA tools to detect Refactoring

opportunities (Wedyan, Alrmuny & Bieman, 2009; Mens & Tourwé, 2004; Ouni et al., 2016).

However, in practice, there is a lack of empirical knowledge of how Refactoring is applied in CI

context. The only preliminary study was conducted by Vassallo et al. through a survey with

CI developers. Their findings point out the potential of CI to change the way developers adopt

Refactoring as it is commonly known that the late is often not applied (Negara, Chen, Vakilian,

Johnson & Dig, 2012; Silva, Tsantalis & Valente, 2016; Murphy-Hill, Parnin & Black, 2012) and

performed only by specific developers (Tsantalis, Guana, Stroulia & Hindle, 2013). However,

there is no empirical evidence confirming this assumption.

In this paper, we want to investigate the possible impact of CI on the way Refactoring is applied

in practice. First, we study whether CI adoption has increased the likelihood of applying

Refactoring more frequently to answer the following question (RQ1): Does CI impact the

Refactoring frequency?. Second, we study whether the size of Refactoring changes would

decrease after the switch to CI. This leads us to our RQ2: Does the adoption of CI affect

the Refactoring change size? Third, we study the relationship between adopting CI and the

involvement of developers in Refactoring activities. Particularly, we ask our last research

question (RQ3): How are developers involved in code Refactoring before and after the adoption

of CI?

We present an extension of Vassallo et al. work and conduct the first exploratory study involving

a benchmark of 99,545 commits and 89,926 Refactoring operations during four year development

of 39 Open-Source Software (OSS) projects centered around the adoption of Travis CI, a widely

used CI service (Vasilescu et al., 2015). Using Multiple Regression Analysis (MRA), we show
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that the adoption of CI is associated with a drop in the Refactoring size, which aligns with the

“small Refactoring” guideline (Stamelos & Sfetsos, 2007), while Refactoring frequency as well

as the number (and its related rate) of developers that perform Refactoring are estimated to

decrease after the shift to CI, indicating that Refactoring is less likely to occur and, in contrast

with the earlier findings (Vassallo et al., 2018b), Refactoring is not spread in CI context. Our

MRA also indicates that these trends will continue over time but with different variations

between projects with different sizes, ages and releasing frequency. Based on these findings, we

conjecture that software developers may need more customized Refactoring tool support in the

context of CI to better maintain and evolve their software systems.

In summary, this paper makes the following contributions:

1. Empirical evidence of the impact of CI on Refactoring: We designed three novel research

questions and conducted an empirical study that allowed us to provide the first in-depth

answers to questions about the impacts of CI adoption on Refactoring practices.

2. Data collection and analysis: We collected and analyzed a benchmark of 99,545 commits

and 89,926 Refactoring operations from 39 long-lived OSS projects. Then, we analyzed the

data using MRA to capture any effects of CI adoption.

3. A research road-map: We provide practical implications of our findings for future research

on the Refactoring of modern systems. We believe that novel techniques should be innovated

to (i) raise developer’s awareness of Refactoring in the context of CI, (ii) recommend

micro-refactoring operations in order to avoid build failure and (iii) support newcomers

when performing code quality tasks.

Replication Package. The dataset used in our study is publicly available for future replication

and extension purposes (Saidani, 2020a).

Structure of the paper. The remainder of this paper is organized as follows. We present our

research methodology in section 4.2, while present and analyze the obtained results in Section

4.3. In Section 4.4, we discuss the obtained results and their implications. Then, we review

threats to validity in Section 4.5, and finally we address the conclusions to draw in Section 4.6.
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4.2 Study Design and Methodology

The goal of this study is to investigate the possible impact of CI adoption on Refactoring

activities by analyzing how developers change the way they refactor their software systems in

practice. In this section, we define our research questions and present the design of our study.

4.2.1 Research questions

The study aims at addressing the following research questions:

RQ1. Does CI impact the Refactoring frequency? In this first RQ, we are particularly

interested in investigating how frequently developers refactor their software systems after the

adoption of CI. Our motivation is based on the fact that the aim of CI is to get changes into

production as quickly as possible, without compromising software quality. We speculate that

without continuous Refactoring, such frequent and quick changes during the CI process may

negatively affect some quality attributes such as readability, understandability, flexibility, etc.

(Vassallo et al., 2018a). Indeed, Refactoring is known to have a paramount importance to deliver

a high-quality software product, by removing defects and reducing technical debt (Fowler et al.,

1999) which are introduced by quick and often unsystematic development (Stamelos & Sfetsos,

2007).

RQ2. Does the adoption of CI affect the Refactoring change size? In this research question,

we want to assess the size of the changes related to Refactoring through the software system

before and after the adoption of CI. Indeed, Refactoring is recommended to be small in size

(Stamelos & Sfetsos, 2007) as this would (i) help developers track the progress, (ii) reduce

the risk of introducing complexity or defects during Refactoring and (iii) avoid breaking the

build (Zhang et al., 2019). Hence, we expect that after adopting CI, developers would integrate

Refactoring related changes with smaller chunks.

RQ3. How are developers involved in code Refactoring before and after the adoption of

CI? The motivation of this research question stems from previous research works (Tsantalis
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et al., 2013) confirming that Refactoring is performed by specific developers that usually have a

key role in the management of the project. In this study, we want to analyze whether CI raises

the code authorship, i.e., motivation to program the code with high quality by performing the

Refactoring (Wang, 2009).

4.2.2 Methodology

Figure 4.1 provides an overview of our research methodology to address our defined research

questions. Our methodology comprises three main steps: (i) context selection, (ii) Refactoring

data extraction, and (iii) analysis method. In the following, we present the details of each of

these three steps.

TravisTorrent
Dataset

Result
of script

List of
Projects

Clone GitHub
projects

Commit activity
extraction

History of
99,545 

commits

Step 1: Context Selection Step 2: Refactoring
Data Extraction

Refactoring Miner
89,926 

Refactoring
Instances

Step3: Analysis
Method

Metrics Collection

Multiple Regression
AnalysisGoogle BigQuery

Figure 4.1 An overview of our research methodology to study the

Refactoring practices in CI

4.2.2.1 Context Selection

We gather our dataset from 39 OSS projects hosted on GitHub which have switched to Travis CI,

a widely used CI system, at some point during their life-cycle. To answer our research questions,

we mined these projects based on the latest TravisTorrent dump dated on 2017/02/081 and using

the Big Query Google Tool 2 to query pieces of information such as the programming language

and the repository URL. The choice of the subject systems was driven by the following criteria:

1 https://travistorrent.testroots.org/

2 https://cloud.google.com/bigquery
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• Projects with sufficiently long historical code change records, i.e., at least two years before

and after the adoption of CI to get deep insights into the possible impacts and feed our

regression models with sufficient data.

• Projects that have a consistent change activity during the studied period i.e., having at least

one merged commit in the mainline branch each month for the studied period. We chose a

monthly partition following previous studies on the impact of CI (Yu et al., 2016a; Gupta

et al., 2017; Rahman et al., 2018; Vasilescu et al., 2015; Zhao et al., 2017) because (i) it leads

to more meaningful results than providing only one value per year and (ii) to fit our regression

models and control for time variable. Hence, we avoid biasing our results with zero values

due to projects not being active during some months (thus no Refactoring activities will take

place).

• We also restricted our analysis to Java projects as we rely on the RefactoringMiner tool

(Tsantalis, Mansouri, Eshkevari, Mazinanian & Dig, 2018a), an automated tool for detecting

Refactoring activities applied in software projects during their development life-cycle (Section

**-B).

Thereafter, we cloned all project repositories and extracted all their commits change history to be

used in next steps. We recorded a total of 99,545 commits on the mainline branch for the studied

projects. Table 4.1 reports the analyzed projects, the number of commits, Refactoring related

commits and contributors. Moreover, we report other historical statistics about the projects

such as the age in months and the number of releases. All the data collected and used in our

exploratory study is publicly available for replication purposes in our comprehensive replication

package (Saidani, 2020a).

4.2.2.2 Refactoring Data Extraction

We use in our study the tool RefactoringMiner3, a commit-based Refactoring detection tool

that is based on the UMLDiff algorithm (Xing & Stroulia, 2005) for computing the differences

between object-oriented models (Tsantalis, Mansouri, Eshkevari, Mazinanian & Dig, 2018b).

3 https://github.com/tsantalis/RefactoringMiner
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Table 4.1 Systems involved in the study

Project Description Historical Statistics Considered in the study

Age
Total

Commits

Total

Contributors

# of

releases

# of

commits

# of ref.

commits

airlift/airlift Framework for building REST services 37 2,371 73 227 905 114

apache/pdfbox Mirror of Apache PDFBox 75 8,120 24 49 4,340 801

apache/storm Mirror of Apache Storm 42 7,321 477 39 4,722 412

aws/aws-sdk-java The official AWS SDK 36 1,835 188 787 291 110

chocoteam/choco3 A Java library for Constraint Programming 35 3,819 30 28 2,328 565

dropwizard/dropwizard A library for RESTful web services 26 3,905 444 143 2,240 290

druid-io/druid A real-time analytics database. 25 7,330 381 428 5,308 881

DSpace/DSpace A digital asset management system 134 9,209 213 95 2,370 236

FasterXML/jackson-databind Data-binding package 25 4,237 184 115 2,225 545

FenixEdu/fenixedu-academic Student Information System 123 36,934 162 345 5,517 644

geoserver/geoserver Open source software server 27 7,568 295 123 3,562 575

GeoWebCache/geowebcache Caching server 101 2,134 75 122 461 80

google/error-prone Static analysis tool 35 3,597 222 31 1,497 307

google/guava Google core libraries 61 4,995 319 87 2,383 393

grails/grails-core Grails Web Application Framework 106 16,152 329 189 5,513 405

igniterealtime/Openfire A XMPP server 115 7,931 183 158 1,377 201

jOOQ/jOOQ Light database-mapping software library 23 7,135 84 73 4,137 697

jpos/jPOS Open source library/framework 179 4,378 74 49 713 62

junit-team/junit A testing framework 155 2,002 207 23 843 137

lenskit/lenskit Recommender toolkit 40 5,884 50 52 3,575 588

maxcom/lorsource Website engine 64 6,759 89 1 3,500 415

mybatis/mybatis-3 SQL mapper framework 32 2,399 142 29 1,220 146

nutzam/nutz Web Framework 47 5,379 94 57 1,897 256

oblac/jodd An open-source Java utility library 53 5,055 63 54 2,446 597

orbeon/orbeon-forms Open source web forms solution 90 22,092 36 50 4,844 304

owncloud/android Android App 28 6,141 91 92 3,607 511

perfectsense/brightspot-cms Enterprise user experience platform 32 5,678 49 23 4,557 298

proofpoint/platform Security Awareness & Education Platform 49 3,132 69 216 1,203 187

sparklemotion/nokogiri Web parser 36 4,013 195 147 1,585 81

spring-data-commons shared infrastructure across the Spring Data 47 1,891 91 155 714 147

tananaev/traccar GPS Tracking System 58 5,214 113 37 3,162 388

TGAC/miso-lims An open-source LIMS for NGS sequencing centres 58 3,209 25 219 2,908 450

tinkerpop/blueprints A Property Graph Model Interface 28 1,532 64 19 1,414 322

tinkerpop/rexster A Graph Server 26 1,476 26 17 1,400 259

twall/jna Java Native Access 171 3,112 170 52 1,272 125

Unidata/thredds A middleware 86 9,780 63 60 3,739 1,122

weld/core Integrations for Servlet containers and Java SE 71 7,534 108 160 2,351 501

xtreemfs/xtreemfs Distributed Fault-Tolerant File System 66 4,742 52 20 2,175 255

zxing/zxing Barcode scanning library 74 3,434 143 27 1,244 118

Median 49 4,995 94 60 2,328 307
Average 64.5 6,395.6 146.1 117.9 2,552.4 372.4

Total - 249,429 5,697 4,598 99,545 14,525

Table 4.2 presents the list of Refactoring operations that can be detected by RefactoringMiner

with their respective number of Refactoring instances identified in the 39 projects involved in our

study. We selected the RefactoringMiner tool as it provides high precision of 98% and recall of

87% (Tsantalis et al., 2018a), implements the detection of over 32 Refactoring operations, and

has been widely used in recent empirical studies (Tan & Bockuisch; Silva et al., 2016; Vassallo,

Grano, Palomba, Gall & Bacchelli, 2019a; AlOmar, Mkaouer, Ouni & Kessentini, 2019).
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Table 4.2 Analyzed Refactoring operations statistics with their

different levels

Refactoring Operation Level Instances Projects
Move Class Class 13,312 38

Rename Method Method 10,749 39

Rename Variable Block 9,527 39

Rename Attribute Field 7,341 39

Rename Parameter Block 6,706 39

Extract Method Method 6,154 39

Pull Up Attribute Field 5,780 38

Move Method Method 5,527 39

Move Attribute Field 3,691 39

Pull Up Method Method 3,414 39

Extract Variable Block 2,964 39

Rename Class Class 2,855 39

Inline Method Method 2,009 39

Push Down Method Method 1,077 36

Extract Class Class 997 39

Move And Rename Class Class 915 37

Move Source Folder Package 655 31

Inline Variable Block 653 39

Push Down Attribute Field 602 30

Extract Super-class Class 553 37

Parameterize Variable Method 479 38

Replace Variable With Attribute Block 461 36

Extract Interface Class 324 32

Change Package Package 305 28

Extract Subclass Class 126 32

Move And Rename Attribute Field 32 13

Replace Attribute Field 24 8

Total 89,926 39

4.2.2.3 Analysis Method

Used Metrics:

To address RQ1, we define two measures including the number of Refactoring commits per

month (NRC) and the Refactoring rate (RRC) as follows:
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• NRC: Number of Refactoring Commits It counts the number of commits that have at least one

Refactoring operation applied, in each month. In this study, we only consider commits that

are merged into the mainline development branch as local git commits may not be subjected

to CI by Travis as stated by previous works (Zhao et al., 2017; Vasilescu et al., 2015)

• RRC: Rate of Refactoring Commits which computes the ratio of Refactoring commits (NRC)

among the total number of merged commits (NC) per month. This measure gives insights

about the extent to which developers tend to refactor their code during the development of

their projects.

To answer RQ2, we capture the change size of a Refactoring commit. For this aim, we define

the following measures. Note that each mean value bellow is computed over all Refactoring

commits in the considered month.

• RB: Refactoring Breadth The average number of files where at least one Refactoring

operation was applied per commit. To compute this metric, we used a predefined method of

RefactoringMiner called “detectAtCommit” which returns all the needed information about

the involved classes.

• RBR: Refactoring Breadth Rate The average rate of Refactoring breadth per commit. The

rate refers to the number of files related to Refactoring divided by the total number of

modified files.

To answer RQ3, we assess the extent to which developers are involved in Refactoring activities

before and after the adoption of CI by defining the following metrics:

• NRefDev: Number of Refactoring Developers Counts the number of developers who applied

at least one Refactoring per month.

• RRD: Rate of Refactoring Developers The ratio of the number of committers who applied

Refactoring in their commit changes divided by the total number of committers.
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Multiple Regression Analysis

To evaluate the effects of the adoption of CI (RQs 1-3), we use Multiple Regression Analysis

(MRA) (Edwards, 1985) as a method for analyzing the relationship between a set of explanatory

variables (predictors, e.g., the time in months) and a response (outcome, e.g., the rate of

Refactoring commits), while controlling for known covariates (e.g., project age) that might

influence the response. Solving the regression gives us the coefficients for each predictor. If

the coefficient is significant, it can help us reason about the treatment (e.g., the adoption of CI

in our case) and its effects, if any, while controlling for confounding variables. In our study,

we perform our MRA to estimate the trends in our set of metrics (Section 4.2.2.3) marked as 𝑌

before the adoption of CI, and the changes in the trend after the adoption CI as follows:

𝑦𝑡 = 𝛼 + 𝛽 ∗ time_before_ci𝑡 + 𝛾 ∗ time_after_ci𝑡 + 𝛿 ∗ ci_is_adopted𝑡 + 𝜖

Here 𝑦𝑡 is the trend (i.e., the predicted value) in the outcome variable Y in each time 𝑡; time_-

before_ci indicates the time in months at time 𝑡 from the start of the observation and coded 0

after CI adoption(i.e., from -24 to -1); time_after_ci counts the number of months at time 𝑡 after

the CI adoption and coded 0 before the adoption (i.e., from 1 to 24); ci_is_adopted indicates

whether CI is adopted at time 𝑡 (𝑐𝑖_𝑖𝑠_𝑎𝑑𝑜𝑝𝑡𝑒𝑑 = 1) or not (𝑐𝑖_𝑖𝑠_𝑎𝑑𝑜𝑝𝑡𝑒𝑑 = 0). Using this

model, we can capture any divergence (regression) in the slopes (decrease/increase) before and

after the adoption of CI. Moreover, we consider the following confounding variables (𝜖):

• Total number of commits (TotalComm) Following Zhao et al., we consider the total

number of commits in a project’s history as an indicator for project activity/size.

• Total number of developers (TotalDev) We also consider the total number of developers as

a proxy for the project’s community size.

• Project age at the time of CI adoption (AgeAtCI) in months. Mature projects may be less

affected by the adoption of CI than other projects (Zhao et al., 2017).
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• Number of releases (NReleases) We manually checked the timeline of each project to

collect its number of releases. We want to inspect the releasing frequency on Refactoring

practice as it is known that projects with frequent releases may have the chance to fix bugs

faster (Habchi, Rouvoy & Moha, 2019) and hence apply more refactorings.

We implement the MRA using the function lm from lmerTest4 package in R. Log transform

predictors (Cohen, West & Aiken, 2014) are used to stabilize the variance and improve model fit.

To avoid multicollinearity phenomenon in which one predictor variable can be linearly predicted

from the others (Cohen et al., 2014), we consider the Variance Inflation Factor (package car5 in

R). To improve robustness, the top 3% of the data was filtered out as outliers in order to avoid

inflating the model’s fit (Vasilescu et al., 2015). For each model, we report (i) the coefficients that

describe the mathematical relationship between each independent variable and the dependent

variable and higher values suggests higher effect, (ii) 𝜌 − 𝑣𝑎𝑙𝑢𝑒𝑠 that provide the significance

level of the coefficients, (iii) the sum of squares which computes the variance explained by each

variable, and (iv) the standard error which indicates how wrong the regression model using the

units of the response variable; smaller values are better to provide evidence of the fitted model.

4.3 Study Results

In this section, we present and discuss the results of our study to answer our research questions

RQ1-3. All the data collected and used in our study is publicly available for replication and

extension purposes in our comprehensive replication package (Saidani, 2020a).

For the sake of clarity, the key metrics used in our study are shown in Table 4.3. The results of

our MRA are presented and discussed in the next section.

4 https://cran.r-project.org/web/packages/lmerTest/index.html

5 https://cran.r-project.org/web/packages/car/car.pdf
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Table 4.3 Summary of the study measures

Metric Description
NRC Number of Refactoring Commits

RRC Rate of Refactoring Commits

RB Refactoring Breadth

RBR Refactoring Breadth Rate

NRefDev Number of Refactoring Developers

RRD Rate of Refactoring Developers

TotalComm Total number of commits

TotalDev Total number of developers

AgeAtCI Project age at the time of CI adoption

NReleases Number of releases

4.3.1 RQ1: Trends in Refactoring frequency after the adoption of CI

We start by quantifying the trends in the number of Refactoring commits (NRC) and Rate of

Refactoring Commits (RRC) using the Multiple Regression Analysis (MRA) as described in

Section 4.2.2.3. Table 4.4 summarizes the regression analysis results for Refactoring frequency

measures. For each variable, we report its coefficients (Coeff ) and corresponding sum of squares

(Sum Sq), a measure of variance for each variable and the standard error of the regression (Error)

which represents the average distance between the observed values and the regression line. The

statistical significance is indicated by stars symbols. We consider coefficients to be important if

they are statistically significant (𝜌 < 0.05).

From the obtained results in Table 4.4, the NRC model confirms a statistically significant negative

baseline trend in the response with ci_is_adopted which means that the number Refactoring

commits would decrease after introducing CI. The coefficient for time is negative, suggesting a

decreasing baseline trend in terms of Refactoring commits after the adoption of CI. However,

the model does not detect any effect for the time before the adoption of CI since the coefficient

time_before_ci is not statistically significant. Overall, the trend remains descending (the sum of

the coefficients for time_after_ci and ci_is_adopted is negative): less Refactoring commits after

the adoption of CI.
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Table 4.4 MRA results for Refactoring frequency in terms of

Number of Refactoring Commits (NRC) and Rate of Refactoring

Commits (RRC)

Metric NRC Model RRC Model
Coeff Error 𝜌 − 𝑣𝑎𝑙𝑢𝑒 Sum Sq Coeff Error 𝜌 − 𝑣𝑎𝑙𝑢𝑒 Sum Sq

Intercept -11.76 6.39 . 0.34 0.11 ** -

ci_is_adopted -2.20 0.51 *** 548.9 -0.01 7.9∗10−3 * 0.041

time_before_ci 0.01 0.02 9.25 -7.9∗10−4 4.0∗10−4 . 0.027

time_after_ci -0.12 0.02 *** 631.8 -7.9∗10−4 4.0∗10−4 . 0.027

log(TotalComm) 4.07 0.72 *** 947.4 -0.01 0.01 0.004

log(TotalDev) -0.72 0.61 42 -0.01 0.01 0.019

log(AgeAtCI) -3.12 0.83 *** 423.1 -0.02 0.01 0.013

log(NReleases) 0.09 0.43 1.51 0.01 7.7∗10−3 0.016

𝑅2 0.17 0.07

***: 𝜌 < 0.001, **: 𝜌 < 0.01, *: 𝜌 < 0.05, ‘.’: 𝜌 < 0.1, ‘ ’: 𝜌 ≥ 0.1

Next, we assess the confounding variables namely the project size in terms of total number of

commits, developers, project age, and number of releases. As reported in Table 4.4, the NRC

model confirms a statistically significant, positive, baseline trend in the response with project

size (𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑚𝑚) which explains an important amount of variability in the response (Sum Sq

= 947.4). This finding suggests that Refactoring is performed more frequently within bigger

projects as they are more active and have larger codebase. For example, in Unidata/thredds

project for which we recorded a 9,780 of commits, developers merged 20 Refactoring commits

per month on median, while in airlift/airlift project with 2,371 commits, developers tend to merge

about 2 Refactoring commits per month on median for the studied period. Also, the model reveals

a particular trend for older projects (𝐴𝑔𝑒𝐴𝑡𝐶𝐼) to apply less code refactorings. This finding is

quite surprising since it is commonly admitted that as projects age, the maintenance focus is

generally shifted to bug-fixing (Zhao et al., 2017) or quality assurance to master the increasing

software complexity (Lehman, 1996) which is usually performed through the assistance of

Refactoring (Fowler, 2018). Moreover, we observe that the team size (𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑣: the total

number of commit authors over the entire history) has no statistically significant effect which

means that projects with larger committers base do not necessarily apply more the Refactoring

(cf. Table 4.4). For example, apache/storm project which has the larger base of contributors in

our dataset with 477 contributors, developers tend to merge 6 Refactoring commits per month
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while in TGAC/miso-lims with 25 contributors, we recorded a median number of Refactoring

commits of 9 in the studied period. Furthermore, we found no evidence for the releasing

frequency (𝑁𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑠) to affect Refactoring frequency estimators which means that, for the

studied projects, a higher releasing frequency does not necessarily imply that developers apply

more Refactoring.

Looking at the rate of Refactoring commits, i.e., the RRC model, we see that the only significant

predictor is the CI adoption variable suggesting that the rate of Refactoring commits would

decrease after introducing CI with a slight decrease trend of 0.01. The model reveals no evidence

for time variables to be effective as the coefficients are not significant. With regard to the

confounding variables, we observe that all the studied project characteristics have no significant

effect.

Summary for RQ1. Our MRA study results suggest that the adoption of CI can result

into a decrease in terms of Refactoring frequency. However, the regression analysis

reveals that projects with larger size are less sensitive to this trend. Moreover, the MRA

models suggest the more aged is the project, the less performed is the Refactoring.

4.3.2 RQ2: Trends in Refactoring change size after the adoption of CI

In this research question, we are particularly interested in exploring the possible effects of CI

on Refactoring breadth. Hence, we analyze by using MRA models the relationships between

CI related variables and metrics related to Refactoring churn and breadth while controlling for

confounding variables. The MRA models for Refactoring breadth are summarized in Table 4.5.

First, Table 4.5 reveals a significant drop in the number of changed files related to Refactoring

after the adoption of CI since 𝑐𝑖_𝑖𝑠_𝑎𝑑𝑜𝑝𝑡𝑒𝑑 variable is statistically significant but with no

significant effect for the time which indicates that this trend may change over time. This

result reveals that refactoring tends to be less diffused after the adoption of CI. Looking at the

confounding variables, we see through the RB model that in aged projects, Refactoring changes
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tend to affect fewer files since the relative coefficient (-0,6) is negative while in the RBR model,

this effect was not significant. Additionally, we found no evidence for the project size to affect

the Refactoring breadth. Moreover, we see that the rate of Refactoring breadth slightly decreases

after CI with a higher frequency of releasing as suggested in the RBR model indicating that

𝑁𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑠 predictor has a significant effect on the response variables.

Table 4.5 MRA analysis results for the Refactoring breadth (RB)

and the Refactoring breadth rate (RBR)

Metric RB Model RBR Model
Coeff Error 𝜌 − 𝑣𝑎𝑙𝑢𝑒 Sum Sq Coeff Error 𝜌 − 𝑣𝑎𝑙𝑢𝑒 Sum Sq

Intercept 1 1.9 0.3 0.2

ci_is_adopted -0.6 0.2 ** 51.6 -0.04 0.02 * 0.22

time_before_ci 5∗10−3 0.01 1.1 9∗10−4 10−3 0.03

time_after_ci -0.02 0.01 * 33.8 -2∗10−3 10−3 * 0.24

log(TotalComm) 0.4 0.2 . 22.75 0.04 0.02 0.13

log(TotalDev) -0.1 0.1 2.1 -∗10−3 0.02 2∗10−3

log(AgeAtCI) -0.6 0.2 * 36.8 -0.02 0.02 0.02

log(NReleases) 0.2 0.1 14.7 -0.03 0.02 *

𝑅2 0.05 0.05

***: 𝜌 < 0.001, **: 𝜌 < 0.01, *: 𝜌 < 0.05, ‘.’: 𝜌 < 0.1, ‘ ’: 𝜌 ≥ 0.1

Summary for RQ2. Our MRA results reveal that the Refactoring tend to affect less files

after the adoption of CI. Additionally, our model suggests a slight drop in the relative

rate after the adoption of CI but with different variations between projects especially with

higher releasing frequency.

4.3.3 RQ3: How are developers involved in Refactoring activities?

In this research question, we analyze using MRA whether the adoption of CI impacts the

way developers are involved in Refactoring activities. The statistical model for the number of

Refactoring developers and its relative rate are summarized in Table 4.6.

Looking at the number of Refactoring developers (NRefDev) model, we observe that the

time_after_ci and ci_is_adopted predictors exhibit negative coefficients scores of -0.02 and

-0.39, respectively. We first note such a slight increasing trend in the number of Refactoring
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Table 4.6 The MRA analysis results for the Number of

Refactoring Developers (NRefDev) and the Rate of Refactoring

Developers (RRD)

Metric NRefDev Model RRD Model
Coeff Error 𝜌 − 𝑣𝑎𝑙𝑢𝑒 Sum Sq Coeff Error 𝜌 − 𝑣𝑎𝑙𝑢𝑒 Sum Sq

Intercept -4.4 1.8 * 0.82 0.28 **

ci_is_adopted -0.39 0.1 *** 17.2 -0.12 0.02 *** 1.83

time_before_ci 0.01 5*10−3 *** 17.4 -2*10−3 10−3 * 0.33

time_after_ci -0.02 5*10−3 *** 19.6 -5*10−3 10−3 *** 1.12

log(TotalComm) 0.7 0.2 *** 17.5 0.04 0.03 0.14

log(TotalDev) 0.2 0.1 2.05 -0.1 0.02 *** 0.88

log(AgeAtCI) -0.39 0.2 3.3 -0.08 0.03 * 0.29

log(NReleases) 0.14 0.12 1.66 7*10−3 0.01 0.01

𝑅2 0.2 0.14

***: 𝜌 < 0.001, **: 𝜌 < 0.01, *: 𝜌 < 0.05, ‘.’: 𝜌 < 0.1, ‘ ’: 𝜌 ≥ 0.1

developers prior to the adoption of CI, although the trend slows down following the adoption

of CI. In addition, our model results indicate that the variable counting for the project size

(𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑚𝑚) behaves consistently with NRC model 4.4: bigger projects tend to have larger

base of Refactoring developers. Moreover, we found no evidence for the contributor base

(𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑣) to have any effects which indicates that a large number of contributors does not

imply having more developers to apply Refactoring. Neither the age nor the releasing frequency

seems to have any significant effect.

With regard to RRD model, we observe a significant negative for time variable before the

adoption of CI which remains decreasing after the switch to CI considering its related predictors.

When we look at the confounding variables, we observe also a significant negative trend for

the variables accounting for the age. Another important result to highlight is the significant

negative effect of the contributor base (𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑣) on the rate of Refactoring developers which

indicates that the more involved developers are in the project, the less is the rate of those who

apply Refactoring. Overall, this model suggests that the rate of Refactoring developers tends to

decrease as the time passes and this trend is slightly accelerated after the adoption of CI.
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To get more insights, we provide an example extracted from our dataset namely mybatis-3

project6 which is an SQL mapper framework for Java. During its development, the Mybatis

project version control system involves, for the studied period, 8 developers before the adoption

of CI and 40 developers after its adoption. Figures 4.2a and 4.2b show the percentage of the

Refactoring operations performed by Mybatis developers before and after the adoption of CI,

respectively. While all the developers have applied at least one Refactoring before CI (8/8

developers), Refactoring activities were performed by a limited number of developers after

the adoption of CI (7/40 developers). Additionally, the top-one Refactoring developer, namely

“developer1" (a core team member), performed 72% of the Refactoring commits before and after

the adoption of CI. He is also the top-one committer with 67% and 52% of the commits before

and after the adoption of CI, respectively. These observations are consistent with previous results

(Tsantalis et al., 2013) claiming that most of the applied refactorings are generally performed

by specific developers (usually core team members). Moreover, we can confirm a previous

assumption about developers attraction in the context of CI (Vasilescu et al., 2015).
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Figure 4.2 Distribution of Refactoring contributors in the project

mybatis/mybatis-3

6 https://github.com/mybatis/mybatis-3
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Summary for RQ3. MRA results reveal a decreasing trend for the rate of Refactoring

developers especially with the adoption of CI with a considerable negative effect for aged

projects and those with larger number of contributors. This may be due to the fact that

the Refactoring is usually performed by particular developers and as the contributors base

gets larger after the adoption of CI, the Refactoring rate will decrease.

4.4 Discussion

In this section, we further discuss the main findings of our study along with outlining their

practical implications for future research on the Refactoring of modern systems.

Refactoring is less applied in CI. Our results reveal that the Refactoring frequency tend to

decrease after the shift to Travis CI. This finding was surprising as CI principles may suggest

developers to refactor their code more frequently to improve software quality. This may be

due to the fact that CI developers may not consider quality degradation to affect the success

of the build process as stated by Vassallo et al.. Based on this finding, we believe that future

research effort should be devoted to build techniques able to increase the developer’s awareness

of Refactoring in the context of CI, for instance through improved visualization approaches that

may graphically show to developers how a certain Refactoring action, conducted at build-time,

would be beneficial for the quality of source code.

Towards Just-In-Time Refactoring recommendation. Our results for RQ2 reveal that

developers tend to make smaller Refactoring changes to software projects, as they have a lower

Refactoring breadth, which is consisting with “refactor smaller" (Stamelos & Sfetsos, 2007)

and “commit smaller" (Fowler, 2006) guidelines. We believe that this finding would encourage

tool builders to conceive Refactoring recommendation systems that can be adopted in a CI

environment and able to recommend micro-refactoring operations or, even better, small local

Refactoring operations that targets specific files touched by developers during a code change

(i.e., commit). These just-in-time Refactoring tools would (i) avoid changing the program

design radically, and (ii) allow developers reviewing the recommendations, and their relative
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impacts and hence easily decide whether to apply or ignore them. Such tools could be in the

form of Refactoring recommendation systems or bots that can be integrated into existing CI

systems. While some preliminary research has been conducted toward this direction (Lambiase,

Cupito, Pecorelli, De Lucia & Palomba, 2020; Pantiuchina, Bavota, Tufano & Poshyvanyk,

2018; Ujihara, Ouni, Ishio & Inoue, 2017; Alizadeh et al., 2019; Wyrich & Bogner, 2019), we

believe that additional effort is needed to build Refactoring tools that more properly reflect the

developer’s needs in the context of CI development.

Support for newcomers to better practice Refactoring. To survive and thrive, a software

project must attract, support and retain new developers and help them be productive. However,

our findings show that newcomers may be reluctant to practice Refactoring activities in the

project: these are perfectly in line with the results reported by previous studies on the barriers

that newcomers face when joining a new project (Steinmacher, Wiese, Chaves & Gerosa, 2013;

Steinmacher, Conte, Gerosa & Redmiles, 2015). However, our study shows that an additional

barrier consists of newcomers not being able to refactor source code to improve its quality.

Based on this result, we envision a novel category of tools that may support newcomers when

performing code quality tasks: more specifically, tool builders should provide development teams

with more practical tools and/or techniques for supporting newcomers during the integration in

the development team as well as instruments that community shepherds may use to identify the

developers having adequate skills to properly guide the newcomers in their Refactoring phases.

4.5 Threats to validity

A number of possible threats might affect the validity of our empirical study.

Threats to Internal validity concern factors that could have influenced our results (Palomba,

Panichella, Zaidman, Oliveto & De Lucia, 2017). From the list of Cook, we consider that one

threat to internal validity can be related to instrumentation: We opted for RefactoringMiner, an

open-source tool, to collect Refactoring data. This tool has a high F1-score of 81% according

to recent experiments conducted in (Tan & Bockuisch). To alleviate any potential threats with
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RefactoringMiner, we are planning to replicate our study with other existing tools such as RefDiff,

a state-of-the-art Refactoring detection tool that has shown a high accuracy (Silva & Valente,

2017). More interestingly, to enable other researchers to verify and extend our study, we provide

our replication package along with detailed results available for the research community (Saidani,

2020a). Another threat is related to confounding variables. To mitigate this issue, we included

controls in our models, to capture project size, age, community base and releasing trends that

could have confounded the relationship between CI adoption and Refactoring practice.

Construct threats to validity are mainly related to the fact that some projects may leave CI

systems after its adoption (Widder et al., 2018). To address this issue, we manually checked

whether Travis-CI was disabled/abandoned by investigating all the commits in which the CI

configuration file was modified and found that none of our studied projects has abandoned CI

during the studied period. Another potential threat could be related to selecting projects that

used another CI system before adopting Travis-CI. Hence, we mitigated this issue by inspecting

the existence of any other CI configuration file (e.g., “.appveyor.yml" for AppVeyor CI system)

before the adoption of Travis-CI. In this investigation, we considered AppVeyor,7 Circle-CI,8 and

Drone.9 Additionally, we checked that our studied projects never used a self-hosted CI system

(i.e., using their CI service locally) like Jenkins,10 Team-city,11 or Easy-CIS,12 by inspecting

whether the commit messages contained the name of the above mentioned CI systems.

Conclusion threats to validity refer to issues that affect our ability to draw the correct conclusions

and the way we estimated Refactoring practice. The fact that developers did not apply more

frequently/intensively Refactoring, this does not mean that they did not search for Refactoring

opportunities. In other terms, developers could have some recommendations of Refactoring (or

checked manually Refactoring opportunities) but find them not relevant, so they may end up

7 https://www.appveyor.com/

8 https://circleci.com/

9 https://drone.io/

10 https://jenkins.io/

11 https://www.jetbrains.com/teamcity/

12 http://easycis.aspone.cz/
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not applying them. It is worth remarking that we have studied Refactoring practice by looking

at the actions actually performed by developers over the history of the considered software

projects. Yet, we cannot exclude that developers still employed Refactoring recommendation

tools (e.g., JDeodorant (Fokaefs, Tsantalis, Stroulia & Chatzigeorgiou, 2011) or Aries (Bavota,

De Lucia, Marcus, Oliveto & Palomba, 2012)) to get suggestions on how to improve source code

quality. However, we were interested in understanding how the actual application of Refactoring

changes from before to after the adoption of CI. As such, the investigation of whether Refactoring

recommendation tools have been used is out of the scope of our paper.

External threats to validity concern the generalizability of our results. First, we conducted this

study based on a large dataset of 99,545 commits from 39 GitHub projects consistently active

during our 48-month observation period. This filtering was required to fit our models and control

for time variable as well as to avoid biasing our conclusions due to an inflation of zero values in

our data. We also made restrictions, since we depend on RefactoringMiner, to Java projects.

To our knowledge, current available Refactoring detection tools are dedicated to Java language

(Tan & Bockuisch). Moreover, we only-considered Travis CI, the most popular CI service on

GitHub (Hilton et al., 2016). These three constraints allowed the statistical investigation of active

projects that have introduced CI since years: as such, the results of our study apply to projects

having similar characteristics and might therefore be used by developers of those projects to

reason about continuous integration has changed the way they apply Refactoring.

We cannot speculate on the validity of our results when considering projects having different

characteristics, e.g., non-active projects, or written in different programming languages. Similarly,

we would like not to raise opinions on the applicability of the results to software systems following

different programming practices. Our future research agenda includes a replication of our study

on a different and more varied set of software projects.
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4.6 Conclusion

We presented in this paper the first empirical study that investigates the possible impacts of

continuous integration (CI), a quality-driven process, on changing the way developers practice

Refactoring. To analyze potential CI impacts, we (1) employed different heuristics estimating

Refactoring commits frequency, size and involved developers, (2) used Multiple Regression

Analysis (MRA) to estimate CI impacts on Refactoring practice while controlling for different

confounding variables and (3) analyzed the change in Refactoring tactics two years before and

after the adoption of CI.

Based on data extracted from a sample of 39 GitHub projects deploying CI, our results revealed

that the Refactoring change size tends to decrease as recommended. However, the frequency and

Refactoring authors tend to drop during the two years following the CI adoption. These findings

lend support to previous research efforts claiming the presence of barriers, related especially to

lack of time and knowledge, preventing developers from adopting Refactoring techniques/tools

in CI context. We believe that software developers need more customized Refactoring tool

support in the context of CI to better maintain and evolve their software systems.

Our future work will include extending our study to other open-source and industrial projects

from different programming languages and application domains. We also plan to conceive

Refactoring tools that can support CI developers in their quality enhancement efforts.





CHAPTER 5

PREDICTING CONTINUOUS INTEGRATION BUILD FAILURES USING
EVOLUTIONARY SEARCH

Islem Saidania , Ali Ounia , Moatez Chouchena , Mohamed Wiem Mkaouerb

a Department of Software Engineering and IT, École de Technologie Supérieure,

1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3
b Rochester Institute of Technology, 1 Lomb Memorial Dr, Rochester,

NY 14623, United States

Paper published in Information and Software Technology, August 2020

Abstract

Continuous Integration (CI) is a common practice in modern software development and it is

increasingly adopted in the open-source as well as the software industry markets. CI aims at

supporting developers in integrating code changes constantly and quickly through an automated

build process. However, in such context, the build process is typically time and resource-

consuming which requires a high maintenance effort to avoid build failure. The goal of this study

is to introduce an automated approach to cut the expenses of CI build time and provide support

tools to developers by predicting the CI build outcome. In this paper, we address problem of CI

build failure by introducing a novel search-based approach based on Multi-Objective Genetic

Programming (MOGP) to build a CI build failure prediction model. Our approach aims at

finding the best combination of CI built features and their appropriate threshold values, based on

two conflicting objective functions to deal with both failed and passed builds. We evaluated

our approach on a benchmark of 56,019 builds from 10 large-scale and long-lived software

projects that use the Travis CI build system. The statistical results reveal that our approach

outperforms the state-of-the-art techniques based on machine learning by providing a better

balance between both failed and passed builds. Furthermore, we use the generated prediction

rules to investigate which factors impact the CI build results, and found that features related to

(1) specific statistics about the project such as team size, (2) last build information in the current
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build and (3) the types of changed files are the most influential to indicate the potential failure of

a given build. This paper proposes a multi-objective search-based approach for the problem

of CI build failure prediction. The performances of the models developed using our MOGP

approach were statistically better than models developed using machine learning techniques.

The experimental results show that our approach can effectively reduce both false negative rate

and false positive rate of CI build failures in highly imbalanced datasets.

Keywords. Continuous Integration, Build Prediction, Multi-Objective Optimization, Search-

Based Software Engineering, Machine Learning

5.1 Introduction

Continuous integration (CI) (Duvall, Matyas & Glover, 2007b) is a set of software development

practices that are widely adopted in industry and open source environments (Vasilescu et al.,

2015). A typical CI system, such as Travis CI (CI, 2021), advocates to continuously integrate

code changes, introduced by different developers, into a shared repository branch. The key to

making this possible, according to Fowler (Fowler, 2006), is automating the process of building

and testing, which reduces the cost and risk of delivering defective changes. From the academic

side, the study of CI adoption has become an active research topic and it has already been shown

that CI improves developers’ productivity (Hilton et al., 2016), helps to maintain code quality

(Vasilescu et al., 2015) and allows for a higher release frequency (Zhao et al., 2017).

However, despite its valuable benefits, CI brings its own challenges. Hilton et al. (Hilton

et al., 2017) revealed that build failure is a major barrier that developers face when using CI. A

build failure, i.e., failing to compile the software into machine executable code, represents a

blocker that prevents developers from proceeding further with development, as it requires an

immediate action to resolve it. In addition, the build resolution may take hours or even days to

complete, which severely affects both, the speed of software development and the productivity of

developers (Abdalkareem et al., 2019). Such challenges motivated researchers and practitioners
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to develop techniques for preemptively detecting when a software state is most likely to trigger a

failure when built, and thus developers can take the necessary preventive actions to avoid it.

Existing studies leverage the history of previous build success and failures in order to train

machine learning (ML) models. Such models learn from the CI builds history and use the domain

knowledge to extract features and predict the outcome of a given input build. For instance,

Foyzul and Wang (Hassan & Wang, 2017) used Random Forest (RF), for the binary classification

of build outcome, and Ni and Li (Ni & Li, 2017) adapted the cascaded classifiers to improve

the accuracy of CI build prediction. Although these works have advocated that predicting

CI build outcome is possible and beneficial, none of them accommodated for the imbalanced

distribution of the successful and failed classes when building their prediction models. This

challenges their applicability due to the performance bias that can occur when an imbalanced

distribution of class examples is used in the learning process (Bhowan, Johnston & Zhang,

2011; Bhowan, Zhang & Johnston, 2010; Bhowan, Johnston, Zhang & Yao, 2013; Saidani,

Ouni, Chouchen & Mkaouer, 2020c). Hence, the minority class instances, i.e., the failed builds

class in our case, is much more likely to be miss-classified. However, in CI context, a good

accuracy on the failed builds prediction is more important than the passed builds accuracy. Also,

increasing the accuracy of the builds failure class (known as probability of detection) can result

in maximizing also the number of incorrectly classified failed builds (i.e., false alarms) which

makes these two objectives in conflict (Malhotra & Khanna, 2017; Bhowan et al., 2011).

To deal with the above mentioned challenges, Evolutionary Multi-Objective Optimization

(EMO) (Harman et al., 2012; Nam, Fu, Kim, Menzies & Tan, 2017; Ouni, Kessentini,

Sahraoui & Boukadoum, 2013; Chen, Nair, Krishna & Menzies, 2018; Kessentini & Ouni,

2017) have been found useful for developing software engineering predictive models (Eckart,

Marco & Lothar, 2001; Jin & Sendhoff, 2008). Researchers have advocated that the use of (EMO)

is appropriate because it allows adapting the fitness function to evolve classifiers with good

classification ability across both the minority and majority classes, e.g, balance between failed

and passed builds. This is accomplished by treating the conflicting objectives independently

in the learning process using the notion of Pareto Dominance. Additionally, to deal with the
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imbalanced nature of the dataset, a Multi-Objective Genetic Programming (MOGP) approach

(Zhao, 2007), that promotes diversity between solutions equally on both minority and majority

classes, allows the imbalanced training data to be used directly in the learning process i.e.,

without relying on sampling techniques to re-balance the data (Bhowan, Johnston, Zhang & Yao,

2012; Bhowan et al., 2013) which advocates that MOGP approaches are more suitable for binary

classification tasks with imbalanced data (Bhowan et al., 2011).

In this paper, we introduce a novel MOGP approach to predict CI build outcome. The idea is

based on the adaption of the Non-dominated Sorting Genetic Algorithm (NSGA-II) (Deb et al.,

2002) with a tree-based solution representation, in order to generate rules from historical data

of CI builds using two competing objectives in the learning process, namely the probability of

detection and the probability of false alarms. As a solution to this binary classification problem,

a candidate rule is expressed as a combination of metrics and their appropriate threshold values;

and should cover as much as possible the build results from the base of build results. In a

nutshell, our approach takes as input, a given build, calculates a set a metrics that are fed into our

rule, previously generated using the history of builds, and whose binary output predicts whether

the input build is most likely to succeed or fail, based on its likelihood to the successful or failed

builds.

To evaluate our approach, we conducted an empirical study on a benchmark composed of 56,019

build instances from 10 open source projects that use the Travis CI system, one of the most

popular CI systems. We compare our predictive performance to existing Genetic Programming

(GP) algorithms and three widely-used ML techniques namely Random Forest, Decision Tree

and Naive Bayes. The statistical results reveal that our approach advances the state-of-the art by

outperforming existing prediction models. Moreover, we examine the most important features,

used by our generated rules, in indicating the correct CI build outcome, in order to provide the

practitioners with useful insights on how to avoid build failures. In summary, the contributions

of this work are the following:

• A novel formulation of the CI build prediction as a multi-objective optimization problem to

handle imbalance nature of CI builds as well as to achieve a good predictive performance on
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both classes (passed and failed). To the best of our knowledge, this is the first attempt to use

a search-based approach for the CI build prediction.

• An empirical study of our MOGP technique compared to different existing approaches based

on a benchmark of 10 large and long-lived projects. The obtained results reveal that our

proposal is more efficient than existing techniques with a median of AUC (Area Under The

Curve) of 68% compared to 61% achieved by existing ML techniques for which we applied

re-sampling. Additionally, our approach is able to strike a better balance between both failed

and passed builds achieving an improvement of at least 15% for the balance metric (Malhotra,

2015). These are interesting and actionable results considering the highly imbalanced nature

of the studied projects with an average failure rate of 19% in the minority class.

• A qualitative evidence of the potential reasons behind build failure through a novel feature

ranking approach. The rules analysis shows that the metrics related to (1) specific statistics

about the project such as team size, (2) last build information in the current build and (3) the

types of changed files are the most influential to indicate the potential failure of a given build.

• A comprehensive dataset (Saidani, 2020d) collected from 10 long-lived software projects,

containing over 56,019 records of build results.

Replication Package. The comprehensive dataset collected and used in our study is publicly

available in (Saidani, 2020d) for future replications and extensions. Also, we provide all details

about the validation results as well as illustrative examples of the generated rules available for

the research community.

Paper Organization. The remainder of this paper is organized as follows. We present our

approach in section 5.2. Section 5.3 shows the experimental setup of our empirical study. Section

5.4 presents the results and findings of our studied research questions. Section 5.5 discusses the

implications of our findings for developers, researchers and tool builders. Section 5.6 reviews

the threats to the validity of our results. Finally, Section 5.7 concludes the paper and outlines

avenues for future work.
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5.2 Search-based Prediction of CI build failure

In this section, we describe our approach that uses multi-objective GP based on an adaptation of

NSGA-II.

5.2.1 Approach Overview

Figure 5.1 provides an overview of our proposed approach to generate rules for CI builds

outcome prediction. In our study, we start from the observation that it is more beneficial for CI

developers to identify good practices to follow in order to avoid build failures rather than simply

detecting whether the build will succeed or fail. Thus, the goal of the proposed approach is to

generate a set of rules, as a combination of CI-related metrics extracted from various sets of

information about CI builds. As described in Figure 5.1, the first step of our approach consists

of collecting a set of examples of build results (failed and succeeded builds) information based

CI-related (cf. Section 5.2.3). Then, in the second step, we take these inputs to generate a set of

predictive rules that predict as much as possible the CI builds outcome with high accuracy.

The multi-objective GP algorithm is the key element of our approach. First, it starts by generating

a set of solutions. Every solution is composed of a set of prediction rules i.e., combination

of threshold values assigned to each metric. These combination of metrics-thresholds are

connected with logical operators. All the generated solutions in the population are evaluated

using two objectives to (1) maximize the true positive rate, and (2) minimize the false positive

rate. Change operators are applied, at every iteration, to generate new solutions. After repeating

this process until reaching a stop criteria, the best solution is returned by the algorithm. In

our experiments, the stop criteria is when reaching a maximum number of generations. All

parameters configuration details are described later in Section 5.3.5.

5.2.2 NSGA-II adaptation

In this section, we describe in details our search-based approach.
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Generation of Build Failures Prediction Rules
(Multi-objective Genetic Programming)

1. Maximize the number of correctly predicted failed builds
2. Minimize the number of incorrectly classified failed builds

Optimal Prediction Rules

Examples of real-world 
build results

New Build Build outcome

Figure 5.1 An overview of our approach

The following three subsections describe more precisely our adaption of GP to the CI build

failure problem.

i. Solution/Individual representation: Our adaptation to the NSGA-II algorithm is to adopt

it with the generic model of GP learning to the space of programs. Unlike other evolutionary

search algorithms, in GP, solutions are themselves programs following a tree-like representation

instead of fixed length linear string formed from a limited alphabet of symbols (Koza & Koza,

1992). For the build failures prediction problem, a candidate solution, i.e., a prediction rule, is

represented as an IF – THEN clause with the following template:

IF (Combination of metrics and their thresholds) THEN RESULT.

The IF clause describes the conditions under which a build is said to be succeeded or failed. The

condition corresponds to a logical expression that combines some metrics and their threshold

values using logical operators (OR, AND). A solution is encoded as a tree where each terminal

belongs to the set of metrics described in Table 5.1 and their corresponding thresholds are

generated randomly. Each internal-node belongs to the connective set C = {AND, OR}. Figure

5.2 shows an illustrative example of a solution.
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proj_fail_rate_history >0.6AND

gh_diff_files_added >= 5Team_size >= 20

AND

Figure 5.2 A simplified example of solution encoding for CI build

failure prediction

This rule predicts the build failure in case the fail rate history is greater than 0.6 and the files

added are higher than or equal to 5 and the team size is higher than or equals to 20.

IF proj_fail_rate_history > 0.6 AND team_size ≥ 20 AND gh_diff_files_added ≥ 5

THEN Failure.

ii. Generation of an initial population: To generate an initial population composed of

𝑛 solutions, we start by defining the maximum tree length (should not exceed a predefined

threshold). The actual tree length will vary with the number of metrics to use for failure

prediction that vary from 1 to 33 (the number of considered metrics, cf. Table 5.1). Notice

that a high tree length value does not necessarily mean that the results are more precise since,

usually, only a few metrics are needed to predict the failure. Because the individuals will evolve

with different tree lengths (structures), with the root (head) of the trees unchanged, we randomly

assign for each one:

• One metric and threshold value to each leaf node. The threshold values are ranged between

lower and upper bounds of the metric in question (e.g, if the number of team sizes is between

1 and 10, the threshold will be randomly selected according this metric distribution). These

upper bounds are fixed based on the training set. We also assign a mathematical operator

(≥, ≤, =) that depends on the metric category. Note that “=" is only used for categorical metrics

(e.g, gh_is_pr), ≥ and ≤ are applied only with continuous (e.g, committer_fail_history) or

discrete metrics (e.g, gh_team_size).

• A logic operator (AND, OR) to each function node.
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It is worth to mention that during individual generation or evolution, the infeasible rules that

contain nodes with the a condition and its negation in the same sub-tree like for example

“gh_is_pr = 1 AND gh_is_pr = 0" are automatically rejected.

iii. Genetic operators: Crossover and mutation are defined as follows.

Crossover: is used to combine the genetic information of two parents. In this adaptation, we use

single-point crossover operator. A sub-tree is extracted from each parent. Then, the crossover

operator exchanges the nodes and their relative sub-trees between parents. Figure 5.3 shows an

example of the crossover process. In fact, two parent solutions, namely P1 and P2, are combined

to generate two new child solutions. The right sub-tree of P1 is swapped with the left sub-tree of

P2.

OR

git_diff_test_churn >= 4100gh_is_pr =1

P1

P2

proj_fail_rate_history >0.6AND

gh_diff_files_added >= 5Team_size >= 20

AND

OR

git_diff_test_churn >= 4100

gh_is_pr =1

C1

C2

proj_fail_rate_history >0.6AND

gh_diff_files_added >= 5

Team_size >= 20

AND

Figure 5.3 An example of crossover operator

For example, after applying the crossover operator the new rule C2 to predict build failure will

be:

IF gh_is_pr = 1 OR gh_diff_files_added ≥ 5 THEN Failure.

Mutation: it can be applied either to a function node or a terminal node. In this problem, the

mutation operator first randomly selects a node in a randomly selected tree. Then, if the selected

node is a terminal, it is replaced by another terminal (metric or another threshold value). If the

selected node is a function (logical operators), it is replaced by a new function (e.g, OR becomes
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AND). Then, the node and its sub-tree are replaced by a new randomly generated sub-tree. To

illustrate the mutation process, consider again the example that corresponds to a candidate rule

to predict CI build failure. Figure 5.4 illustrates the effect of a mutation that deletes the note

containing proj_fail_rate_history feature, leading to the automatic deletion of node AND (no

left sub-tree).

proj_fail_rate_history >0.6AND

gh_diff_files_added >= 5Team_size >= 20

AND

AND

gh_diff_files_added >= 5Team_size >= 20

X X
Before mutation

After mutation

Figure 5.4 An example of mutation operator

Thus, after applying the mutation operator the new rule will be:

IF team_size ≥ 20 OR gh_diff_files_added ≥ 5 THEN Failure.

iii. Multi-criteria solution evaluation (fitness function): An appropriate fitness function

should be defined to evaluate how good is a candidate solution. According to Harman and Clark

(Harman & Clark, 2004), search-based algorithms used from prediction can use performance

measures to identify better solutions in the search process. To evaluate the fitness of each

solution, we use two objective functions to be optimized, based on two well-known metrics, the

true positive rate and false positive rates (Malhotra & Khanna, 2017):

• (1) Maximize the True Positive Rate (TPR), also known as the probability of detection (PD).

PD is an indicator of the percentage of builds that are correctly classified as failed. The
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higher the value of PD, the better is the solution.

𝑃𝐷 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100

where TP and FN are the number of true positives and the number of false positives,

respectively.

• (2) Minimize the False Positive Rate (FPR), also known as probability of false alarm (FP),

which is the ratio of false positives (i.e., incorrectly classified failed builds) to the actual

number of passed builds. The lower the value of PF, the better is the solution.

𝑃𝐹 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
× 100

where FP and TN are the number of false positives and the number of true negatives,

respectively.

iv. Pareto-front selection: Multi-objective algorithms such as NSGA-II do not produce a

single solution like GA, but a set of non-dominated solutions called Pareto-optimal solutions.

These solutions provide a trade-off between the prediction accuracy of both failed and passed

build classes. In the CI built prediction problem, the best solutions are those who represent the

Pareto-front that maximize the TPR and minimize the FPR. Hence a solution is chosen based on

its preferences in terms of trade-off. To this end, and in order to fully automate our approach, we

extract a single default best solution from the returned set of solutions. Since in our case the ideal

solution (True Pareto) has the best TPR value (equals to 1) and the best FPR value (equals to 0),

we select the nearest solution to the ideal one in terms of Euclidean distance. The following

equation is used to choose the solution (noted BestSol) (Ouni, Kessentini, Sahraoui & Hamdi,

2012; Ouni, Kessentini, Inoue & Cinnéide, 2017) that corresponds of the best compromise

between TPR and FPR:
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𝐵𝑒𝑠𝑡𝑆𝑜𝑙 =
𝑛

min
𝑖=1

√
(1 − 𝑇𝑃𝑅[𝑖])2 + 𝐹𝑃𝑅[𝑖]2

where n is the number of solutions in the Pareto front returned by NSGA-II.

5.2.3 Dataset and CI-related Metrics

To collect our data, we use TravisTorrent (Beller, Gousios & Zaidman, 2017), which is a publicly

available dataset that contains information about Travis-CI builds of several projects hosted in

GitHub. By combining the data from Travis-CI and GitHub, detailed features, i.e., metrics can

be extracted and used for predictions (Xia et al., 2017a; Ni & Li, 2017; Xia & Li, 2017; Luo

et al., 2017; Xie & Li, 2018). Table 5.1 lists the build metrics used to generate our prediction

rules. Besides the existing TravisTorrent features (marked as T in the third column), we also

generated other features marked as G which were extracted from existing research. During

feature selection, we considered 10 categories described as follows:

• Change size. These features measure how the change made is distributed across the different

aspects, including the commits and code.

• Files change. These features compute the changes (deletion, addition or modification) at the

file level.

• Cooperation. These metrics estimate the level of cooperation in terms of comments and

code revisions.

• Triggering Commit. In this group, we collect some information about the commit that

triggered the build, to know whether the build is managed by a core member or as part of

pull requests which may increase the risk of breaking the build. We are also interested in

collecting other temporal factors such as the day of the week.

• Change Type. In this group, we count different types of files changed in built commits using

file extensions. The changes may be related to source, documentation, configuration or other

files.
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• Test Change. These features measure the test changes which represent additional indicators

on the quality of the build code.

• Link to last build. This set of features estimates the project’s stability which may lead to a

better prediction.

• Committer experience. These metrics estimate the committer experience related mainly to

the number of passed/failed builds that may reflect her/his level of experience.

• Project statistics. This group of features captures some additional information about the

committer and the project experience which may indicate the quality of the current build.

• Test Density. This set of features is dedicated to estimate the project familiarity with testing,

one of the core goals of CI (Fowler, 2006).

By using these metrics, we collected a total of 56,019 records of build results. However,

it is worth mentioning that some builds were filtered out from the original dataset since no

information about the last build was found. Additionally, since TravisTorrent dataset organizes

the build results at the job level, we aggregate the results of all jobs related to a build and provide

one outcome using the build identifier in the TravisTorrent dataset. This is required to avoid

biasing our results due to duplicated builds. Also, we eliminated builds that have a status of

“Error" or “Cancel" from our dataset since we only focus on builds that have a “pass" or “fail"

status. For a broader public for reproducibility and extension, we provide our data available

(Saidani, 2020d).

5.3 Validation

In this section, we report the results of a large-scale empirical study on a benchmark of 56,019

build instances. The comprehensive dataset collected and used in our study is publicly available

in (Saidani, 2020d) for future replications and extensions.

Figure 5.5 provides an overview of our experimental design used in the validation of our

approach. First, we evaluate our predictive performance against existing approaches in the

two first questions. At this step, we run search-based algorithms and non deterministic ML
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Online validation

Figure 5.5 Experimental design

techniques used in this empirical study 1,000 times to deal with the stochastic nature of these

algorithms. To validate the predictive performance, we consider online validation (Xia & Li,

2017). Next step in this validation is related to a qualitative study of the most important metrics

to indicate CI build outcome. In the following, we describe each step in detail.

5.3.1 Research Questions

We designed our experiments to answer three research questions:

• RQ1. (SBSE validation) How does the proposed NSGA-II perform compared to Random

Search (RS), mono-objective algorithm (GA) and other Multi-Objective algorithms?

• RQ2. (Performance evaluation with ML) How does our approach perform compared to

ML techniques?

• RQ3. (Features analysis) What features are most important to predict CI build failures?
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5.3.2 Analysis method

5.3.2.1 Prediction performance

The first goal of our empirical study is to evaluate the performance of our approach for the CI

build failure prediction problem compared to existing techniques (RQ1+RQ2).

RQ1 is a “standard" question asked in any Search-Based Software Engineering (SBSE)

formulation (Harman & Jones, 2001). First, we compare our SBSE formulation against Random

Search (RS) (Harman et al., 2010; Karnopp, 1963) is the simplest form of search-based algorithms.

It may fail to find optimal solutions that occupy small proportion of the overall search as it is

unguided without efficient use of genetic operators (Harman et al., 2010). In this RQ, we aim in

the first place as a sanity check to evaluate the need for an intelligent method such as NSGA-II

that can outperform RS. In addition, it is important also to determine if considering separate

conflicting objectives to be optimized (multi-objective) is an appropriate formulation compared

to aggregating them in a single objective. Hence, we compared NSGA-II to mono-objective GP

where a single fitness function, Fit(mono), is used. Fit(mono) is defined as follows:

𝐹𝑖𝑡 (𝑚𝑜𝑛𝑜) =
𝑃𝐷 + (1 − 𝑃𝐹)

2
(5.1)

In order, to make our results comparable, we compute the well-known evaluation metric Area

Under the ROC Curve (AUC). This measure indicates how much a prediction model/rule is

capable of distinguishing between classes. A larger AUC value indicates better prediction

performance. For binary classification, AUC is defined as follows (Cervantes, Li & Yu, 2013):

𝐴𝑈𝐶 =
1 + 𝑃𝐷

100
− 𝑃𝐹

100

2
∈ [0, 1] (5.2)

Moreover, it is important to account for imbalance in a data set. Indeed, various researchers

(Li, Zhang, Wu & Zhou, 2012; Menzies, Greenwald & Frank, 2006; Malhotra, 2015) advocate
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the use of the balance metric to assess the performance of models that were initially trained

using imbalanced training data. Balance measure computes the Euclidean distance between the

optimum couple (PD=100, PF=0) to a specific pair of (PD, PF) (Menzies et al., 2006). Higher

balances are desirable for a model. The balance metric is defined as follows.

𝐵𝑎𝑙𝑎𝑛𝑐𝑒 = 1 −

√
(0 − 𝑃𝐹

100
)2 ∗ (1 − 𝑃𝐷

100
)2

2
∈ [0, 1] (5.3)

The main merit of the AUC and balance is their robustness toward imbalanced data.

5.3.2.2 Algorithms performance

We evaluate the performance of NSGA-II over other MOEAs to identify the most effective

algorithm in multi-objective optimization. Thus, we compare our approach with NSGA-III

(Deb & Jain, 2013), Indicator-Based Evolutionary Algorithm (IBEA) (di Pierro, Khu & Savic,

2007) and Strength-Pareto Evolutionary Algorithm (SPEA2) (Zitzler et al., 2001), as they are

among the most popular MOEAs and have been widely utilized in SBSE (Harman et al., 2012,?;

Harman, 2007; Ouni, 2020; Saidani et al., 2020c; Mkaouer et al., 2015). Additionally, all

the search-based algorithms used in this paper are implemented using the MOEA framework

(Hadka, 2013), an open source framework for developing and experimenting with MOEAs

(Hadka, 2014).

Since the underlying goal of MOEAs is to determine a set of alternative solutions known as Pareto

front approximations (Hadka, 2014), we aim to compare the performance of each algorithm

using Zitzler et al. (Zitzler, Thiele, Laumanns, Fonseca & Da Fonseca, 2003) measures, based

on three different performance aspects for multi-objective optimization (1) the quality of the

generated Pareto fronts, (2) the convergence to the exact Pareto front, and (3) the diversity of the

produced solutions. In particular, we consider the following metrics :

• Hyper-volume (HV): calculates the volume of the space dominated by all the solutions

i.e., convergence of a solution set. A larger HV value indicates better performance. This
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metric is widely accepted as it guarantees that any approximation set that achieves more

HV value for a particular MOP, it should contain more Pareto optimal solutions (Riquelme,

Von Lücken & Baran, 2015).

• Generational Distance (GD): measures the average distance between each Pareto front

solution and the true Pareto front. Smaller is GD, better is the MOEA i.e., closer it is from

the Pareto optimal. This metric occupied the second position, after HV, of the most used

MOGP performance metrics (Riquelme et al., 2015).

• Spacing (SP): is the most popular uniformity indicator (Li & Yao, 2019). It measures the

standard deviation of distance from each solution to its closest neighbor in the obtained set.

A lower SP value is preferable as it indicates that the solution provides a better Pareto front

representation and hence it can be considered to possess better quality.

These indicators are automatically computed, on the testing set, using the MOEA Framework

tool which provides the statistical analysis and displays the minimum, median and maximum

values of each performance indicator.

To answer RQ2, we compare the prediction performance of NSGA-II with three widely-used ML

techniques in previous CI and software engineering research (Xia et al., 2017a; Ni & Li, 2018;

Xia & Li, 2017; Luo et al., 2017; Hassan & Wang, 2017; Ni & Li, 2018; Santolucito, Zhang,

Zhai & Piskac, 2018), namely Decision Tree (DT), Random Forest (RF) and Naive Bayesian

(NB). We use both prediction metrics, balance and AUC, as described for RQ1.

ML preprocessing: First, data scaling is performed in order to standardize the range of variables.

Then we rely on Synthetic Minority Oversampling Technique (SMOTE) method (Chawla,

Bowyer, Hall & Kegelmeyer, 2002), to re-sample the training data. Note, that we did not

re-sample the testing dataset since we want to evaluate ML techniques in a real-life scenario,

where the data is imbalanced.

Validation scenario: We conduct an online validation in which builds are ordered and predicted

chronologically. Similar to prior work (Xia & Li, 2017), we ranked for each selected project,

the builds according to its start time and broke the whole set of a given project into ten folds.
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Then, we used the latter five folds as testing sets: At each iteration i (1 ≤ 𝑖 ≤ 5), the test set fold

j (6 ≤ 𝑗 ≤ 10), the former j-1 folds were selected as training set to train the model. It is worthy

to mention, that we verified for each project and validation iteration, the existence of failed

builds. To get more details about the failure rate in each validation iteration, please consider our

replication package (Saidani, 2020d).

5.3.2.3 Feature Ranking

The goal of RQ3 is to analyze the factors influencing build failures which will be valuable for

developers to prevent potential build failures in their projects. While existing research works

(Rausch et al., 2017; Beller et al., 2017; Luo et al., 2017) attempted to give insights into CI build

failure by applying correlation analysis to discover the relationship between the selected features

and the build outcome. In this paper, we address this problem by exploring the interpretable

knowledge provided by our generated rules. Since we use online validation, the analysis produces

5 rules for each project. Thus, the same feature may occur multiple times in the near-optimal

rules. The higher the number of occurrences of a feature, the more important is the feature in

identifying failed builds. In addition, to give a more general view, we aggregate the results of

features ranking for each project and feature category (cf. Section 5.2.3).

5.3.3 Subjects Selection

Our experiments are based on TravisTorrent dataset 1, from which we selected top-10 Java and

Ruby, the only supported languages in this dataset (Beller et al., 2017), projects according to the

number of build records (after removing inadequate rows as described in Section 5.2.3). An

overview about the studied projects is reported in Table 5.2. It is noteworthy that the data in all

these projects is highly imbalanced. Our replication package is publicly available at (Saidani,

2020d).

1 https://travistorrent.testroots.org/
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Table 5.2 Studies projects statistics

Project Name Language # of Builds Failure
Rate

Age at CI
(days)

CloudifySource/cloudify java 4,568 0.25 220

gradle/gradle java 3,822 0.08 1,833

Graylog2/graylog2-server java 3,341 0.12 470

mitchellh/vagrant ruby 3,569 0.14 765

openMF/mifosx java 2,252 0.07 2

opf/openproject ruby 5,913 0.35 287

rails/rails ruby 11,732 0.30 2,354

rapid7/metasploit-framework ruby 6,391 0.07 2,571

ruby/ruby ruby 11,814 0.21 5,099

SonarSource/sonarqube java 2,317 0.24 1,013

Average − 5,602 0.19 1,461

Cloudify2 is a cloud-enablement platform that on-boards applications to public and private

clouds without architectural or code changes. Gradle3 is a popular build tool with a focus

on build automation and support for multi-language development. It offers a flexible model

that can support the entire development lifecycle from compiling and packaging code to

publishing web sites. Graylog2-server4 is an open source log management system that centrally

captures, stores, and enables real-time search and log analysis against terabytes of machine

data from different component in the IT infrastructure. Vagrant5 is a tool for building and

distributing development environments that provides easy workflow for developers and leverages

a declarative configuration file which describes all software requirements, packages, operating

system configuration, users, and so on. Mifosx6 is an open technology platform for financial

inclusion that provides core functionalities to deliver financial services. OpenProject7 is one of

2 https://github.com/CloudifySource/cloudify

3 https://github.com/gradle/gradle

4 https://github.com/Graylog2/graylog2-server

5 https://github.com/hashicorp/vagrant

6 https://github.com/openMF/mifosx

7 https://github.com/opf/openproject
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the leading open source web-based project management systems. Rails8 is a web application

framework that provides several features needed to create database-backed web applications

according to the Model-View-Controller (MVC) pattern. Metasploit9 is a penetration testing

platform that enables to write, test, and execute exploit code with a suite of tools to test

security vulnerabilities, enumerate networks, execute attacks, and evade detection. Ruby10 is an

interpreted object-oriented programming language often used for web development. Finally,

SonarQube11 is a platform for continuous inspection of code quality to perform automatic

reviews with static analysis of code to detect bugs, code smells, and security vulnerabilities on

several programming languages.

5.3.4 Inferential Statistical Test methods Used

When applied to the same problem instance, search-based algorithms, DT and RF techniques

may provide different results on each run. To deal with this stochastic nature, it is important

to assess their effectiveness by performing several runs, at least 1,000 runs as suggested by

Arcury and Briand guidelines (Arcuri & Briand, 2011) as well as recent works (Zhang, Harman,

Ochoa, Ruhe & Brinkkemper, 2018; Paixao, Harman, Zhang & Yu, 2017; Ferrucci, Harman,

Ren & Sarro, 2013; Almarimi et al., 2019; Ouni et al., 2016; Boukharata, Ouni, Kessentini,

Bouktif & Wang, 2019; Mkaouer et al., 2015). In addition, it is also essential to use the statistical

tests that provide support for/rejection of the conclusions derived by analyzing the obtained

results. In this paper, we employ Wilcoxon signed rank test (Wilcoxon, Katti & Wilcox, 1970)

in order to detect significant performance differences between the algorithms under comparison

(𝛼 is set at 0.05). In this validation, each iteration is repeated 1,000 times, for each algorithm

and each project. It is worth mentioning that for RQ3, we choose the rule with the median value

through 3,000 runs of each iteration.

8 https://github.com/rails/rails

9 https://github.com/rapid7/metasploit-framework

10 https://github.com/ruby/ruby

11 https://github.com/SonarSource/sonarqube
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We also use Vargha-Delaney A (VDA) (Vargha & Delaney, 2000), a non-parametric effect

size measure which is widely used in SBSE (Nejati & Gay, 2019). The A measure indicates

the probability that one technique will achieve better performance than another technique.

When the A measure is 0.5, the two techniques are equal. When the A measure is above or

below 0.5, one of the techniques outperforms the other (Thomas, Hemmati, Hassan & Blostein,

2014). Vargha-Delaney statistic also classifies the magnitude of the obtained effect size value

into four different levels (negligible, small, medium, and large) (Scalabrino, Grano, Di Nucci,

Oliveto & De Lucia, 2016).

5.3.5 Parameter Tuning and Setting

First, we investigated a number of calibration of different parameters in order to effectively set

the parameters of each technique used in the study. To facilitate the replication of our results,

we report in Table 5.3 our algorithmic parameter tuning. The initial populations of all the

search-based algorithms were randomly generated. The process is stopped when the maximum

number of generations, set to 500, is reached. The maximum depth of the tree (i.e., rules) is

fixed to 10.

Table 5.3 Algorithms parameters

Algorithms Parameters Values

NSGA-II, NSGA-III

IBEA, SPEA2, GA, RS

Population size

Maximum number of generations

Maximum depth of the tree

Crossover probability *

Mutation probability *

100

500

10

0.9

0.1

RF
Maximum depth of the tree

Number of estimators

10

200

DT Maximum depth of the tree 10

NB Used NB classifier Gaussian naive Bayes

* Not applied to RS

The three ML techniques analyzed in the study are DT, RF and NB. The parameter settings for

DT method include maximum depth of 10. RF’s parameter setting involves using a maximum



107

tree depth of 10 and number of estimators of 200. For NB classifier selection, we use Gaussian

Naive Bayesian (John & Langley, 2013) as the majority of the handled data is continuous.

5.4 Experimental results

This section presents the experimental results obtained for RQ1-3.

5.4.1 RQ1. Results for GP comparison

In this RQ, we report the results comparing the performance of NSGA-II the other search-based

technique in order to determine the most effective GP technique for CI build prediction. Figure

5.6 plots the results while Table 5.4 highlights the statistical tests results of this comparison.

As shown in Figure 5.6, we clearly see that NSGA-II outperformed RS as well as GA and

this by an increase of 17% and 35% in terms of AUC and balance respectively. In fact, both

mono-objective algorithms achieved a median score of 31% in terms of balance, while GA

was slightly better in terms of AUC with a score of 51% compared to 50% achieved by RS.

Additionally, the Wilcoxon test results showed that over 50,000 experiment instances (5 iterations

× 1,000 runs × 10 projects), NSGA-II was significantly better than GA and RS, with large VDA

effect sizes. This provides evidence that the use of multi-objective formulation for the prediction

problem is more suited as it can provide a better compromise between PD and PF.

With regards to other MOEAs, NSGA-II was the best in terms of AUC in all the studied

projects while it showed better predictive performance in nine out of ten projects in terms of

balance. Overall, the statistical tests results reveal that NSGA-II is significantly the best among

other MOEAs with small effect sizes. Next, we compare the performance of multi-objective

optimization for the different MOEAs. Table 5.5 shows the results of MOEAs comparisons

based on the hyper-volume (HV), Generational Distance (GD) and Spacing (SP) as described in

Section 5.3.2.1. The experiment shows that, in median, NSGA-II was significantly the best in

terms of HV, GD and SP. In fact, NSGA-II achieved a median score of 0.99 in terms of HV, while

the other algorithms achieved 0.96 which means that NSGA-II is better to cover the volume of
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the space dominated by its solutions. In terms of GD, NSGA-II is also better to achieve a closer

distance between its Pareto front solutions and the true Pareto front with a score of 4 ∗ 10−3

compared to 0.01 for NSGA-III, SPEA2 and IBEA. Regarding SP, NSGA-II achieves also the

best spacing between the generated solutions with median SP score of 0.05. Hence, these results

motivate our choice to use NSGA-II as a search method

Furthermore, we show the Pareto front of each algorithm in Figure 5.7 from the

mitchellh/vagrant project. We observe that NSGA-II tends to evolve more near-optimal solutions

in the middle region of the identified Pareto front with a good spread of solutions along the front,

pushing it outwards toward the ideal point (i.e., high true positive rate and low false positive rate).

We observe also that NSGA-III and IBEA have less non-dominated solutions in the middle of the

Pareto front. However, for both extremes of the Pareto front we observe that most of algorithms

reach similar regions of the search space. On the other hand, we observe that IBEA achieves less

interesting solutions in its Pareto front. For the CI build failures prediction problem, optimal

solutions within the extreme edges of the Pareto front are typically less desirable than solutions in

the middle region. That is, solutions in the middle region provide the optimal trade-off between

both objective functions (TPR and FPR) while solutions from the extreme edge region represent

predictions rules with either high true positive rate (TPR) or low false positive rate (FPR).

Table 5.4 Statistical tests results of NSGA-II compared to other search-based techniques

NSGA-II Measures vs. RS vs. GA vs. IBEA vs. NSGA-III vs. SPEA2

AUC
p-value < 10−16 < 10−16 < 10−16 < 10−16 < 10−16

A estimate
Magnitude

0.98

Large

0.97

Large

0.62

Small

0.62

Small

0.57

Small

Balance
p-value < 10−16 < 10−16 < 10−16 < 10−16 < 10−16

A estimate
Magnitude

0.98

Large

0.98

Large

0.62

Small

0.62

Small

0.59

Small

5.4.2 RQ2. Results for the comparison with ML

Figures 5.8 and 5.9 show the boxplots comparing the results of all the executed experiments

iterations to compare NSGA-II with ML algorithms (DT, NB, and RF) in each studied project.
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Figure 5.7 An example of Pareto Front extracted from

mitchellh/vagrant project

Table 5.5 Performance metrics achieved by each of the MOEAs in

terms of hyper-volume (HV), generational distance (GD), and

spacing (SP)

NSGA-II SPEA2 NSGA-III IBEA
HV 0.99 0.96 0.96 0.96

GD 0.004 0.01 0.01 0.01

SP 0.05 0.10 0.24 0.21

Table 5.7 reports the average (of 5 online validation iterations) balance and AUC scores while

Table 5.6 shows the statistical comparisons of these experiments. Note that NSGA-II, RF and

DT were executed 1,000 times for each experimentation instance to deal with their stochastic

nature. Then we computed the median values of each experiment. Also, in the figures, the

horizontal black lines indicate the average values of the corresponding scores.

As we can see, our NSGA-II technique achieves an average AUC of 69% and an average balance

of 66%. Although the achieved results may seem modest performance numbers, they are quite

significant given the high imbalanced nature of the data (i.e., only a small portion of the builds
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Table 5.6 Statistical tests results of NSGA-II compared to ML

techniques

Metric Statistics NSGA-I vs. RF NSGA-II vs DT NSGA-I vs NB

AUC
p-value < 10−16 < 10−16 < 10−16

A estimate
Magnitude

0.76

Large

0.92

Large

0.92

Large

Balance
p-value < 10−16 < 10−16 < 10−16

A estimate
Magnitude

0.80

Large

0.91

Large

0.93

Large

Figure 5.8 Boxplots comparing the achieved AUC values for NSGA-II

and each of the machine learning techniques, DT, NB and RF

are failed) as can be noticed from Table 5.2. Moreover, we see from Table 5.7 that for the 10

studied projects, the best AUC and balance values were achieved by the NSGA-II algorithm.

On the other hand, for the different projects, the statistical analysis provide evidence that our

approach performs better than the ML techniques with a large VDA’s effect size and A estimate

> 0.5 for both balance and AUC.
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Figure 5.9 Boxplots comparing the achieved balance values for

NSGA-II and each of the machine learning techniques, DT, NB and

RF

For instance, in the Graylog2/graylog2-server project in which the number of failed builds

represent only 12%, our approach achieved 71% in terms of AUC compared to 58% for NB,

56% for RF and 52% for DT which represents an improvement of 13% over ML. Also, in

mitchellh/vagrant project, in which we obtained the best results, our approach outperforms ML

techniques by achieving 78% in terms of AUC compared to 69%, 63% and 60% for RF, NB and

DT, respectively.

Based on these results, we can conjecture that NSGA-II performs better in comparison with

ML techniques even without need for features scaling or relying on any re-sampling technique.

This could be justified by the fact that NSGA-II had a better trade-off (i.e., balance and AUC)

between both positive (i.e., failed) and negative (i.e., passed) accuracies, which indicates that our

approach is advantageous over ML when developing prediction rules for imbalanced datasets.

Although the results reveal that GP shows less sensitivity to deal with imbalanced data than
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Table 5.7 Performance of NSGA-II vs ML techniques

Project AUC Balance
NSGA-II DT RF NB NSGA-II DT RF NB

cloudify 0.67 0.55 0.62 0.56 0.65 0.43 0.47 0.41

gradle 0.69 0.50 0.62 0.61 0.67 0.42 0.51 0.54

graylog2-server 0.71 0.52 0.56 0.58 0.67 0.41 0.41 0.46

metasploit-framework 0.68 0.49 0.60 0.47 0.63 0.44 0.54 0.32

mifosx 0.75 0.62 0.64 0.46 0.72 0.53 0.55 0.36

openproject 0.64 0.52 0.54 0.53 0.63 0.50 0.45 0.47

rails 0.61 0.55 0.58 0.60 0.56 0.44 0.47 0.50

ruby 0.72 0.58 0.71 0.50 0.69 0.56 0.68 0.31

sonarqube 0.65 0.53 0.58 0.54 0.64 0.50 0.49 0.45

vagrant 0.78 0.60 0.69 0.63 0.75 0.53 0.60 0.59

Median 0.68 0.54 0.61 0.55 0.66 0.47 0.50 0.46

Average 0.69 0.55 0.61 0.55 0.66 0.48 0.52 0.44

ML, we advocate the use of HyBridized Techniques (HBT) which have been found useful

by combining the advantages of search-based and ML techniques to produce better results

(Malhotra & Khanna, 2017).

5.4.3 RQ3. Results for Feature Analysis

In this RQ, we want to better understand what features contributed to achieving higher

performances. Figure 5.10 shows the results of feature ranking for each project while Table 5.8

provides a summary for the all studied projects. Broadly speaking, the figure did not reveal any

significant variation between features categories with regard to the rate of occurrences. However,

among all projects, the most important feature types are project history, link to the last build and

change type.

Project History features are the most prominent features for six projects namely cloudify,

graylog2-server, vagrant, openproject, sonarqube and ruby. For these projects, a closer

examination reveals that the statistics of the project have a clear indication of the build outcome.

For instance, in openproject project, our rules expose that one of the conditions to cause build
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Figure 5.10 Features ranking for each project

failure is having a historical failure rate higher than 34% which alone covers around 63% of the

builds in this project. A similar behavior was observed in sonarqube project as well. This result

lends support to previous research efforts (Ni & Li, 2017) claiming that the statistics about the

project are the most useful features in predicting the build outcome.

Link to last build is another features category that seems to be important, which appears the

most in metasploit-framework and mifosx projects. For instance, in metasploit-framework most

of our generated rules classify the instances that failed along from the previous one. On the other

side, in this project, there exist 500 failed builds of which 124 occurred consecutively (about

25%) which pr1ovides additional support for our rules. As stated previously (Hassan & Wang,
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Table 5.8 A summary of the features

ranking for all the studied projects

Category Occurrence (%)
Project history 12.77

Link to last build 12.08

Change type 11.78

Committer experience 9.40

Triggering commit 9.34

Files change 9.20

Cooperation 9.04

Test density 8.97

Test change 8.75

Change size 8.67

2017; Ni & Li, 2017; Rausch et al., 2017), it is apparent that phases of build instability perpetuate

failures.

Change type features are the most occurring among two projects namely rails and gradle. This

suggests that changes to specific types of files can affect the build outcome. For example, in

rails project, there exists 2,567 builds where changes to only source code files introduced build

failures which represent 72% of failed builds.

Other features are also important in indicating CI build outcome. For instance, metrics about

test change represent also an important percentage of appearance in sonarqube project. However,

statistics about the triggering commit seem to be less important and the least appearing in three

projects which indicates that these features are not highly related to the build outcome.

5.5 Discussion

In this section, we discuss our findings and their implications for developers, researchers and

tool builders.
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5.5.1 For CI developers

We can help developers to take the necessary preventive actions to avoid breaking the build.

We have shown that our approach is able to predict the CI build results, however, the key

innovation of our approach is that it is able to provide an explainable prediction model, and

also some modalities to be respected in order to avoid build failures. For instance, Figure 5.11

shows an example of a prediction rule that was generated by our tool to predict the failure in the

mitchellh/vagrant project with high AUC and balance scores of 92%. In this rule, it is suggested

that, among different conditions, if the number of modified files (FM) in the current build is

less 10 then your CI build is likely to fail. As an alternative to avoid such build failures, the

developer may opt to reduce the number of modified files in a commit or may also split the

number the files into two or more build pushes to reduce the change complexity, and thus reduce

potential build failures. More interestingly, we plan to extend our approach with further support

to software developers by suggesting change fixes for their failed CI builds based on the violated

conditions in the generated tree-based rules.

Hence, such explainable models show indeed that it is possible to pinpoint the root cause of

a CI build failure using our search-based approach. Moreover, it is worth noting that it may

be possible to reduce the complexity of the generated prediction rules (e.g, tree size and/or

depth) in order to provide easier explainable models for CI developers with smaller slice and

less complexity, but with of cost of scarifying with some accuracy. Indeed, as part of our future

work, we plan to extend our approach into a multi-objective approach to find the best trade-off

between the model accuracy and complexity, which are in conflicting considerations.

Usage scenario of our tool. Figure 5.12 provides a typical usage scenario of our tool in practice.

When a developer commits a change to the repository (1) our tool is triggered to predict potential

build failures. Once triggered, (2) the user is invited to choose whether to load the previously

generated rule or generate new rule. This decision can be made if the current rule is not no more

up-to-date, i.e., after a number of builds. After the generation/loading of the prediction rule, our

tool analyzes the changes made in the commit’s files and compute the CI metrics to determine
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whether the build would pass/fail. Finally, the prediction is provided to the developer with the

required explanation to guide the developer in his retro-actions if needed. In this way, developers

can cut off the expenses of CI build process by saving the build generation time and effort.

Explained Build Outcome Prediction 
(Passed/Failed)

Source Code 
[Commits] 

Make the changes

YESNO

Load saved 
prediction rule

Generate 
prediction rule

1

2
Detect CI build

Failure

Load rule?

Search-based 
prediction

Figure 5.12 A usage workflow of our approach

Build verification is fast. We envisage our solution being used by developers, in their daily CI

workflow to check whether their changes will break the build. One of the benefits of using our

approach is that also, like ML techniques, we can save the learning model to be used for the

prediction or updated later when more data is available over time as the project evolves. Thus,

it is important to assess the scalability of our approach from the data point of view. To this

end, we conducted an experiment to assess the ability of our search-based approach to scale to

larger datasets. Figure 5.13 reports the results of our experiment. We find that our search-based

approach scales linearly i.e., depends on the size of the learning set, as shown in the figure.

For instance, with a dataset composed of 10,629 our tool can train the model within 9 minutes

approximately, which is considered reasonable from computation point of view. However, from

a developer point of view it is worth noting that the training on the dataset is required only once

to build the model that will be used later for the prediction. The prediction consists of simply
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checking whether the conditions that appear in the prediction rule (e.g, Figure 5.11) are violated

or not which takes typically few seconds. Thereafter, the tool can update the model with more

data after a number builds that could be configured by the developer.

Note that in this work, all the experiments are executed on a computer equipped with an Intel

Core i7-7700k 4.2 GHZ CPU and 16GB memory.

2000 4000 8000 10000

0
10

0
20

0
30

0
40

0

6000

ataset size

T
 (s

ec
)

Figure 5.13 The impact of the training dataset size on the

NSGA-II execution time to build the prediction model

5.5.2 For researchers

The reasons behind build failure need more in-depth studies. Although, in this paper, we

showed that failure prediction is possible with encouraging scores, we believe that by enhancing

the feature engineering, we can obtain better results. Hence, the results may encourage CI

researchers to investigate other measurable internal and external metrics and factors that could

be correlated with the build outcome.

Retro-actions to fix a failed build. As discussed earlier in Section 5.5.1, our explainable model

for build failures prediction can provide a valuable support to developers on how to proceed to fix

their failed builds based on the violated rules or conditions. Moreover, looking at what rules or
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specific conditions were violated in a build failure represent a crucial information and valuable

knowledge to be used as a starting point to prepare or recommend retro-action plans to fix the

failed build. Thus, such valuable information may encourage researchers to develop automated

build failure fix approaches, which is indeed one of our future research works. Furthermore,

providing such information on the build failures may increase learning within developers and

provide them with better understanding on the root causes of such build failures. Moreover,

documenting such violations may also increase knowledge transfer from developers.

Researchers could investigate periodicity in build failure. Our features analysis lends support

to previous a research efforts (Rausch et al., 2017) showing that many failed builds occurred

consecutively which indicate that if the build failed, the next build is more likely to fail as well.

This finding may encourage researchers to get insights into the periodic trends of build failure

which would help us to enhance the prediction accuracy.

5.5.3 For tool builders

Rules updating strategies should be considered when building CI build prediction tools. As we

can see from our obtained models, the final prediction rules (features, and threshold values) can

differ from one project to another, and from datasets in the same project. Ideally, the prediction

rules/models should be updated regularity as the project evolves, i.e., after a given number

of builds, or generalized among other projects. However, in a real world setting, prediction

models may achieve less performance when applied to different data and different contexts

(Choetkiertikul et al., 2018; Abdalkareem et al., 2020; Zhang, Zheng, Zou & Hassan, 2016).

For instance, Figure 5.14 highlights a simplified example, considering a rule R1 for project A

and R2 for project B. In the same rule R1, we see that the feature denoting the source churn

(git_diff_src_churn) can be associated to two different thresholds, in different sub-trees, i.e., a

failed build if the source churn is ≥ 200 and the elapsed days ≤ 2; or if the number of modified

files ≤ 2 and the source churn ≥ 500. However, in project B, the rule indicates a failed build

if one the three mentioned conditions is met. Hence, it would be difficult to generalize the

threshold values to be recommended for each feature. However, generating new prediction
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rules frequently during the development process could be costly (Janssen, Moons, Kalkman,

Grobbee & Vergouwe, 2008). As an alternative solution to leverage this issue is to update the

existing prediction rule by combining the information that is captured in the original rule with

the information of the recent data, hence updating the existing rule (e.g., threshold values, or

features). Hence, an interesting feature to consider with tools builders is to adjust the prediction

rules on-the-fly based on the developers preferences or when the prediction accuracy starts to

decrease over time. We are planning to integrate this feature in our approach as part of our

future work.

AND
AND

OR

R1

ORR2

OR

elapsed_days_last_build<=2
git_diff_src_churn>=200

git_diff_src_churn>=500

gh_diff_files_modified <=2

gh_diff_files_modified <=12

elapsed_days_last_build >= 10 git_diff_src_churn>=550

Figure 5.14 An example showing how the prediction rules can be

less effective when applied to other projects

Tool for recommending relevant files for build failures localization. Our features ranking

analysis showed that change type features, such as the number of configuration files touched

in the built commits, are prominent to detect build failures in the studied projects. On another

hand, developers may follow a tedious process to localize the file causing the failure. Hence,

tool builders should supply development teams with tools to identify potential files in order to

accelerate the build fixing process.

5.6 Threats to validity

This section describes the threats to the validity of our experiments.
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Internal validity. One threat to internal validity is related to training and test sets selection. As

an attempt to mitigate this issue, we considered online validation which is a realistic scenario as

it considers the chronological order of CI builds and mimics what happens during the continuous

integration process. Future work is planned to validate our approach considering other scenarios

such as cross-project validation. Another threat to validity can be related to the stochastic nature

of the meta-heuristic algorithms (Harman et al., 2012; Arcuri & Briand, 2011). To mitigate this

threat, we performed 1,000 runs of each experimentation instance and considered the median

value in each validation iteration. Moreover, we have double checked our experiments as well as

the datasets collected from TravisTorrent through manual inspection, still there could be errors

that we did not notice.

Construct validity. Threats to construct validity can be related to the set of used metrics and

performance measure. We basically used standard performance metrics such as AUC and balance

that are widely accepted in predictive models in software engineering (Malhotra & Khanna,

2017). As for the used measurements, we used standard features from TravisTorrent data set and

other generated features related especially to historical build failure that commonly used in the

literature (Xia et al., 2017a; Ni & Li, 2018; Xia & Li, 2017; Luo et al., 2017; Hassan & Wang,

2017; Ni & Li, 2018; Santolucito et al., 2018). Although our approach is not closely coupled

with the features used in this paper, we plan to extend our measurements to other code level

metrics and other external factors as an attempt to see their impact on the prediction performance.

Another potential threat could be related to the selection of the prediction techniques. Although

we used different search-based techniques, i.e., NSGA-II, NSGA-II, SPEA2, GA, and random

search, and different machine learning techniques, i.e., DT, RF and NB, which are the most

applied in existing solutions for build prediction and several other software engineering problems

(Xia et al., 2017a; Luo et al., 2017; Santolucito et al., 2018; Hassan & Wang, 2017). To mitigate

this threat, we plan as part of our future work to conduct a large scale empirical study with other

search-based and machine learning techniques.

Conclusion validity. We have carefully chosen non-parametric tests, namely Wilcoxon and

Vargha-Delaney A, in the study as they do not require data normality assumptions and also for
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being the most used statistical tests in SBSE research community (Nejati & Gay, 2019). The

suitability of the used statistical non-parametric methods with data ordinality, along with no

assumption on their distribution raises our confidence about the significance of the analyzed

statistical relationships. Moreover, to increase the confidence in the study results, we used

two widely-acknowledged prediction performance measures, i.e., balance and AUC, and three

performance measures, i.e., hyper-volume (HV), generational distance (GD) and spacing (SP) to

evaluate the obtained results from the considered algorithms.

External validity. Our experimental results might have concerns of generalizability, since we

performed the experiments with ten open source projects that use TravisTorrent as their CI host

tool. While TravisTorrent is one of widely used CI tools, our results could not be generalized to

other CI tools and other open-source or industrial projects. As future work, we plan to extend

our study on other open source and industrial projects as well as other CI tools. We also plan to

provide our approach as bot to be integrated into code review and CI tools to help developers

predicting their build failure risks.

5.7 Conclusions and Future Work

In this article, we introduced a new search-based approach for CI build failure prediction. In

our genetic programming (GP) adaptation, prediction rules are represented as a combination of

metrics and threshold values that should correctly predict as much as possible the failed builds

extracted from a base of real world examples. Considering online validation, the statistical

analysis of the obtained results provides evidence that our approach outperforms three Machine

Learning (ML) techniques, for which we applied re-sampling, as well as Random Search and

mono-objective Genetic Algorithm, based on a benchmark of 56,019 CI builds of ten projects

that use Travis CI. Regarding the most important indicators used by our generated rules, we

found that features related to (1) specific statistics about the project such as team size, (2) last

build information in the current build and (3) the types of changed files are the most influential

to indicate the potential failure of a given build.
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While the obtained results are considered promising, it could be further validated with larger

sample size with a variety of CI systems to conclude about the general applicability of our

methodology. Moreover, we believe that by using a more personalized group of features with

external factors, the prediction performance could be further improved, which we plan to explore

in the future. Also, we plan also to extend our approach by adopting HyBridized Techniques

(HBT) which have been found useful by combining the advantages of search-based and ML

techniques to produce better results.
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Abstract

Continuous Integration (CI) aims at supporting developers in integrating code changes constantly

and quickly through an automated build process. However, the build process is typically time

and resource-consuming as running failed builds can take hours until discovering the breakage;

which may cause disruptions in the development process and delays in the product release dates.

Hence, preemptively detecting when a software state is most likely to trigger a failure during the

build is of crucial importance for developers. Accurate build failures prediction techniques can

cut the expenses of CI build cost by early predicting its potential failures. However, developing

accurate prediction models is a challenging task as it requires learning long- and short-term

dependencies in the historical CI build data as well as extensive feature engineering to derive

informative features to learn from. In this paper, we introduce DL-CIBuild a novel approach that

uses Long Short-Term Memory (LSTM)-based Recurrent Neural Networks (RNN) to construct

prediction models for CI build outcome prediction. The problem is comprised of a single series

of CI build outcomes and a model is required to learn from the series of past observations to

predict the next CI build outcome in the sequence. In addition, we tailor Genetic Algorithm (GA)

to tune the hyper-parameters for our LSTM model. We evaluate our approach and investigate

the performance of both cross-project and online prediction scenarios on a benchmark of 91,330

CI builds from 10 large and long-lived software projects that use the Travis CI build system.
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The statistical analysis of the obtained results shows that the LSTM-based model outperforms

traditional Machine Learning (ML) models with both online and cross-project validations.

DL-CIBuild has shown also a less sensitivity to the training set size and an effective robustness

to the concept drift. Additionally, by considering several Hyper-Parameter Optimization (HPO)

methods as baseline for GA, we demonstrate that the latter performs the best.

Keywords. Continuous Integration, Build Prediction, Travis CI, Genetic Algorithm, Long Short

Term Memory, Machine Learning, Hyper-Parameters Optimization , Concept Drift.

6.1 Introduction

Continuous integration (CI) (Duvall et al., 2007b) is a set of software development practices

that are widely adopted in commercial and open source environments (Vasilescu et al., 2015).

A typical CI system, such as Travis CI (CI, 2021), a widely-used cloud-based platform for

providing CI services to software projects, advocates to continuously integrate code changes,

introduced by different developers, into a shared repository branch. The key to making this

possible, according to Fowler (Fowler, 2006), is automating the process of building and testing,

which reduces the cost and risk of delivering defective changes. From the academic side,

the study of CI adoption has become an active research topic and it has already been shown

that CI improves developers’ productivity (Hilton et al., 2016; Saidani et al., 2021c; Saidani,

Ouni, Chouchen & Mkaouer, 2020b), helps to maintain code quality (Vasilescu et al., 2015;

Saidani, Ouni, Mkaouer & Palomba, 2021b; Saidani et al., 2021a) and allows for a higher release

frequency (Zhao et al., 2017).

However, despite its valuable benefits, CI brings its own challenges. Hilton et al. (2017) revealed

that build failures represent major barriers that developers face when using CI . A build failure,

i.e., failing to compile the software into machine executable code, represents a blocker that

hinders developers from proceedings further with development, as it requires immediate action

to resolve it. Indeed, Ghaleb et al. (2019a) have shown that long build duration is not always

associated with passed builds as expected and Hilton et al. (2016) found that passed builds can
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run faster than failed builds. For example, in the TravisTorrent dataset (Beller et al., 2017),

failed Travis CI builds run 12 hours while passed builds can take 8 hours on average. In addition

to the long build duration issue, the resolution may take hours or even days to complete, which

severely affects both, the speed of software development and the productivity of developers

(Vasilescu et al., 2015).

Such challenges motivated researchers and practitioners to develop techniques for preemptively

detecting when a software state is most likely to trigger a failure when built. In recent years,

numerous prediction methods have been developed to leverage the history of previous build

success and failures in order to train Machine Learning (ML) models. Such models learn from

the CI builds history and use the domain knowledge to extract features and predict the outcome

of a given input build. For instance, Hassan & Wang (2017) used Random Forest (RF), for

the binary classification of build outcome , while Ni & Li (2017) adapted AdaBoost (ADA)

to improve the accuracy of CI build prediction. Although these techniques have advocated

that predicting CI build failures is possible in practice and beneficial, the applicability of these

approaches is limited due to three main challenges:

• Feature engineering: Traditional ML techniques rely on a set of features manually designed

for characterizing a given problem, e.g., CI builds. Generally, the feature engineering task

is tedious, time-consuming, error-prone and requires substantial expertise in the field (Li,

Gong, Yu & Zhou, 2018; Shan et al., 2016; Bouktif et al., 2018; Sundsøy, Bjelland, Reme,

Iqbal & Jahani, 2016). Additionally, the accuracy of prediction models depends highly on

the relevance of the selected features. Broadly speaking, the build failure prediction problem

is not yet resolved as the reasons behind the build failure is still ambiguous.

• Temporal information: Previous work on CI build prediction is focused on TravisTorrent-

based measures (e.g., number of all built commits, number of distinct authors, etc.) to

predict new CI build results in the future, without taking temporal information into account,

i.e., chronological order of CI build outcomes. As a result, these works achieved a limited

prediction accuracy. The CI builds outcome data is by nature a time series data (Atchison,

Berardi, Best, Stevens & Linstead, 2017) where the temporal dimension is of crucial
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importance. However, such time series data can be highly erratic and complex with much

noise and high dimensionality especially with unexpected or repetitive build failures over

time (Längkvist, Karlsson & Loutfi, 2014).

• Data imbalance: Another innate issue to classic ML-based approaches is related to the

imbalanced distribution of class examples as failed builds are typically likely to occur less

than passed ones (Xie & Li, 2018). This challenges their applicability due to the performance

bias that can occur when an imbalanced distribution of class examples is used (Bhowan

et al., 2011, 2010, 2013). Furthermore, this imbalanced nature of the training data was rarely

discussed in existing works. However, in CI context, a good accuracy on the failed builds

prediction is more important than the passed builds accuracy.

These challenges make Deep Learning (DL) time series models suitable for this kind of problems

(Längkvist et al., 2014). Indeed, DL methods make no assumption about the underlying pattern in

the data and are also more robust to noise (which is common in time series data), making them an

ideal choice for time series analysis of CI builds. Additionally, DL models are known to decrease

the reliance on engineered features to address classification problems (Ordóñez & Roggen,

2016).

In this paper, we introduce DL-CIBuild, a novel approach to predict CI build failure. In particular,

Long Short-Term Memory (LSTM) network is trained on sequential data in which each series

observation is the history of build results during a specific time period. The time series prediction

produced by LSTM models are then used to estimate the outcome of future builds. Moreover,

as naive selection of hyper-parameter values may compromise the effectiveness of any DL

adaptation, we opt for an automated hyper-parameter optimization (Tantithamthavorn et al.,

2018a; Jebnoun, Braiek, Rahman & Khomh, 2020). In particular, we rely on Genetic algorithm

(GA) to find the optimal set of parameter values to build a model with optimal prediction

accuracy. Furthermore, to handle the data imbalance, we apply Threshold Moving (Zhou & Liu,

2005) to move the classification threshold such that more failed builds can be classified correctly

(Zheng, 2010).
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To evaluate our approach, we conducted an empirical study on a benchmark composed of

91,330 builds records from 10 open source projects that use the Travis CI system, one of the

most popular CI systems (Hilton et al., 2017). We compare our predictive performance to

five widely-used ML techniques namely Random Forest (RF), Decision Tree (DT), AdaBoost

(ADA), Logistic Regression (LR) and Support Vector Classification (SVC) for which we applied

resampling. The statistical results reveal that our approach advances the state-of-the art by

outperforming existing prediction models.

In summary, the contributions of this work are the following:

• We introduce a new formulation of the CI build failure prediction as a time series problem

using LSTM-RNN, and implement it with a tool called DL-CIBuild. To the best of our

knowledge, this is the first attempt to use deep learning LSTM-based approach to learn CI

build failures. The built model can be trained efficiently using CI build outcomes, which

requires no feature engineering. Moreover, we use GA to optimize the hyper-parameters of

our models for optimal performance.

• We conduct an empirical study to evaluate our LSTM-RNN based technique compared to

different existing approaches based on a benchmark of 10 large open source projects with a

total number of 91,330 builds. First, we validated the efficiency of GA for Hyper-Parameters

Optimization (HPO) against four HPO methods such as Particle Swarm Optimization (PSO).

Additionally, the obtained results of the predictive performance comparison reveal that

DL-CIBuild is more efficient than existing ML techniques in terms of AUC, F1-score and

accuracy which indicates that our approach is able to strike a better balance between both

failed and passed builds accuracies. These results are further enhanced under cross-project

validation by achieving a median of 72%, 57% and 78% of AUC, F1-score and accuracy,

respectively. The obtained results indicate that DL-CIBuild is a promising solution to deal

with the lack of data in software projects. Moreover, we conducted a sensitivity analysis

suggesting that our approach has less sensitivity than ML techniques with regards to the

dataset size. Last but not least, we showed that DL-CIBuild is robust to concept drift

(Widmer & Kubat, 1996).
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• We provide our comprehensive dataset package available for future replications and extensions

(Saidani, 2020c). Our replication package contains the CI build dataset, the source code of

DL-CIBuild, all the scripts used to run and reproduce the experiments with the necessary

documentation.

The remainder of this paper is organized as follows. Section 6.2 provides the motivation

for time-series prediction We present our approach in Section 6.3. Section 6.4 shows the

experimental setup of our empirical study while Section 6.5 presents the obtained results.

Section 6.6 discusses the results implications on CI developers, researchers and tool builders.

Section 6.7 reviews the threats to the validity of our results. Finally, Section 6.8 concludes the

paper and outlines avenues for future work.

6.2 Motivating example

Figure 6.1 depicts an example of CI build outcome fluctuations over time for Jruby GitHub

project (Jruby, 2019) that uses the Travis CI system. As shown in the figure, we can observe that

there exist data patterns and an explicit dependency on the time variable that may have a strong

association with build outcome. In practice, it is common that after a CI build failure, developers

proceed to take the right actions to fix the cause of the build failure which may lead to a sequence

of build failures followed by a succeeded build, as can be seen in Figure 6.1. Conversely, after a

sequence of successful builds, build failures often happen in an unexpected manner over time.

Moreover, previously experienced bugs and failures can be the root cause of new failures during

the CI build, while other unforeseen failures may happen in an independent manner resulting

into temporal dynamic behavior and complex non-linear dependencies between failures. Thus,

individual observations, i.e., build results, cannot be predicted independently on each other.

This makes the CI build failures a time-series data involving a sequence of observations over

regularly spaced intervals. Indeed, time series data consists typically of sampled data points

taken from a continuous, real-valued process over time, such as the CI build process.
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Figure 6.1 A snapshot of build outcome fluctuations in JRuby

between 2016-08-01 and 2016-08-31. "1" means a failed build, and

"0" for a passed build

This motivates us to formulate the CI build failure prediction as a time series problem of using

LSTM deep learning to learn from past observations in order to identify temporal patterns

that best describe the inherent structure and temporal process embodied in the series and thus

increase the predictive performance.

6.3 Our Proposed Approach

In this section, we present our approach DL-CIBuild for CI build failure prediction. We first

explain how we built our LSTM-RNN model to learn CI build failures, then we describe our

genetic algorithm-based method to optimize the model hyper-parameters.

6.3.1 Methodology Overview

The main goal of our approach is to help developers cutting off such expenses by effectively

predicting the CI build outcome before they happen. Indeed, CI build failures are generally time

and resource-consuming and can cause disruptions in the development process and delays in

the software product release dates (Ghaleb et al., 2019a). In particular, we handle the problem

of CI build failures as a time series prediction problem by estimating the outcome of a given

build based on the history of observed build processes. We use LSTM-based Recurrent Neural
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Network (RNN) to model the CI build process sequential data. Figure 6.2 provides an overview

of our proposed approach.

DL-CIBuild

A sequence of 
CI build results

Adaptation of GA to HPO

Select Best LSTM Model

LSTM 
configuration 2 .. LSTM 

configuration n
LSTM 

configuration 1

Reshaping data for candidate models

Training of candidate models

Initialize (creation of initial population)

Genetic operations (creation of child 
population)

Sort

Stop?

Yes

No

New Build

Build outcome

CI Build Prediction
using Threshold Moving

Figure 6.2 DL-CIBuild overview

Our framework starts by adapting Genetic Algorithm (GA) to determine the appropriate hyper-

parameters for the LSTM model. These parameters are then used to build the architecture of the

final LSTM model. During this Hyper-Parameters Optimization (HPO), the input data,i.e., a

sequence of CI build results, is prepared using reshaping; then the candidate models are trained
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according to their generated configurations. The training data is extracted from the history of

CI builds that are typically recorded using the CI build system used by a software project, e.g.,

Travis CI. At the end of HPO, the optimal model, i.e., providing the best score, is selected. In

the prediction phase, our optimal model is used to predict if an unknown build would fail or

succeed. The hyper-parameters to be tuned, the data preprocessing and the adaptation of GA are

described in the following sub-sections.

6.3.2 LSTM model construction and hyper-parameters tuning

We first need to design and configure our LSTM-RNN model by choosing the architecture, setting

up the initial hyper-parameters, and selecting the mathematical components such as activation

functions, loss functions, and gradient-based optimizers (Jebnoun et al., 2020; Bouktif et al.,

2020). Obtaining good results using LSTM networks is not trivial, as it requires consideration

of the tuning of many parameters. Unfortunately, applying LSTM models may not produce

acceptable or optimal results, not only because of the nature of the analyzed data but also due to

the naive selection of its hyper-parameter values. Table 6.1 lists the parameters to be optimized

for the LSTM model.

To construct the model, the first LSTM parameters to be tuned are the numbers of hidden layers

and neurons per layer. As a neural network, LSTM depends highly on the settings of these

parameters. There is no final definite rule of how many nodes (i.e., hidden neurons) or how many

layers one should be choosing, and generally, practitioners perform a trial and error approach

to get the best results. The same uncertainty about the amount of these parameters also exists

for the number of 𝑒𝑝𝑜𝑐ℎ𝑠 and the 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 as they affect how well/poorly the model can

perform and also can help to prevent over-fitting. Another important parameter to be optimized

is the optimizer. Among the optimizers, there exists stochastic root mean square propagation

(RMSprop) and adaptive moment estimation (adam). Last but not least we have to decide, the

probability of 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 which stands for a regularization method where input and connections

to LSTM neurons are partially excluded from activation and weight updates in order to avoid

over-fitting. Not that for each layer, we set the same dropout probability.
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As LSTM input data is essentially a set of past observation sequences, it is important to identify

the most relevant time steps to feed the model. This can allow the LSTM model to capture the

valuable information contained with different timescales.

Table 6.1 List of parameters for the LSTM model

Category N° Parameter Description

Hyper-parameters

1 Number of units Number of neurons in each LSTM layer.

2 Number of layers Number of hidden layers to be used to train the model.

3 Batch Size
Number of samples to be propagated through the network

before updating the internal parameters.

4 Number of epochs
Number of times that the learning algorithm will work

through the entire training set.

5 Optimizer
Type of optimizer used to update weights during

training.

6 Dropout probability
Sets the rate of input units to drop in order to avoid

over-fitting.

Input parameters 7 Time Step
Number of previous observations that are used

to predict the next result outcome.

Finding the suitable configuration is, on the one hand, a combinatorial problem where the

selection is made from a very large space of choices; on the other hand, it is a learning problem

where the hyper-parameters should reflect the CI build domain knowledge, such as the size

of the software project, the number of developers, the adopted testing methods, the used CI

system, influential time lags, seasonality, and other socio-technical factors that could differ from

one project to another. We describe in the next subsection how GA is used to find the suitable

hyper-parameters for our LSTM model.

6.3.3 GA Adaptation for HPO of LSTM

In this section, we describe how we adapted Genetic Algorithm (GA) for LSTM model

configuration problem, then we provide the hyper-parameters to be optimized for our LSTM

model. In particular, as described in Section 2.2.2.1, for any attempt to use GA in a real-world

problem, a number of key elements need to be defined such as the solution representation,

genetic operators and the fitness function.
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6.3.3.1 Individual representation

A candidate solution, i.e., a set of parameters configurations, is represented as an array where

each cell corresponds to a randomly generated value for a specific parameter as depicted in

Figure 6.3. The initial population is composed of 𝑁 solutions created randomly.

Number of 
units = 64

Number of 
layers = 3

Batch Size 
=25

Number of
epochs=5

Optimizer=
‘Adam’

Dropout 
probability=

0.1

Time 
Step=60

Figure 6.3 An example of solution encoding for the GA

6.3.3.2 Genetic operators

To evolve a population of solutions, genetic operators such as crossover and mutation are used.

We formulate our genetic operators as follows.

• Crossover: is used to combine the genetic information of two parents. In our adaptation, we

use the standard single-point crossover operator. A sub-list is extracted from each parent.

Then, the crossover operator exchanges the two sub-lists between parents. Figure 6.4 shown

an example of the crossover operator applied to Parents 1 and 2 to produce two offspring

solutions Child 1 and Child 2.

• Mutation: The mutation operator aims at adding slight modifications to a candidate solution.

In our adaptation, the mutation operator first randomly selects one or more cells from a given

candidate solution. Then, the selected cell(s) will be replaced by new randomly generated

values. Figure 6.5 shows an example of mutation operators where three random cells from

a parent solution are selection, i.e., the number of layers, the number of epochs and the

optimizer, and randomly replaced by other values.

6.3.3.3 Solution evaluation (fitness function):

Each candidate solution should be evaluated to assess how good it is in solving the problem at

hand. An appropriate fitness function should be defined to evaluate the fitness of a candidate
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Figure 6.4 An example of crossover operator for the GA

Number of 
units = 64

Number of 
layers = 3

Batch Size 
= 25

Number of
epochs=5

Optimizer=
‘Adam’

Dropout 
probability=

0.1

Time 
Step=60

Number of 
units = 64

Number of 
layers = 2

Batch Size 
= 25

Number of
epochs=10

Optimizer=
‘RMSprop’

Dropout 
probability=

0.1

Time 
Step=60

Parent

Child

Mutation

Figure 6.5 An example of mutation operator for the GA

solution, i.e., the selected hyper-parameters to build out model. In this paper, we aim to

optimize the architecture of our LSTM-RNN model by minimizing the validation loss (Li, Dong,

Wang & Xu, 2020).

6.3.4 Data preprocessing

To train the model, we must first transform the data to a specific encoding that could be modeled

with LSTM. The input data for LSTM, which consists of set of CI builds results, needs to be
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reshaped into a 3D array with the following dimensions [samples, time steps, features], where

the samples are the input data, time steps are the number of previous observations (which is tuned

by GA) used to predict the next build result and features is the number of features considered to

feed the network which corresponds to 1 as we use a single LSTM model. In Figure 6.6, we

provide an example of input data (i.e., a sequence of builds outcomes) and how it reshaped with

a time step = 5.

0 0 0 0 1 0 1 0 0 1

Input data:

Time step = 5

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

Reshaping

Figure 6.6 An example of data preprocessing

6.3.5 CI Build Prediction based on Threshold Moving strategy

In our case, LSTM works as a binary classifier where the output is the probability of class

membership (i.e., the probability of new build to fail) and this must be interpreted before it

can be mapped to a class label (e.g., failed or passed). Hence, it is crucial to set the decision

threshold above which all values are mapped to one class and all other values are mapped to

another class. Threshold moving has brought the attention from the DL research community

(Collell, Prelec & Patil, 2018; Buda, Maki & Mazurowski, 2018; Krawczyk & Woźniak, 2015;

Zhou & Liu, 2005; Zheng, 2010) as a solution to handle the imbalanced distribution of class

examples in time series data, which is indeed the case of build failure prediction (Xie & Li,

2018). This solution refers to tuning the threshold used to map probabilities to class labels as

the default value (=0.5) can lead to a poor predictive performance when the data is imbalanced

(Provost, 2000).
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6.4 Empirical Study Setup

In this section, we describe the design of empirical study that we performed to evaluate our

approach, DL-CIBuild, based on the TravisTorrent dataset (Beller et al., 2017).

Figure 6.7 provides an overview of our experimental design. First, we start by selecting the

suitable optimization technique for our DL approach (RQ1). Then to validate the predictive

performance, we compare our results with five widely-used Machine Learning (ML) techniques

including Decision Tree (DT) (Quinlan, 2014), Random Forest (RF) (Breiman, 2001), AdaBoost

(ADA) (Schapire, 2013; Ni & Li, 2017), Support Vector Classification (SVC) (Hsu, Chang,

Lin et al., 2003) and Logistic Regression (LR) (Bishop). We first consider online validation

(Xia & Li, 2017) (RQ2). Then, we investigate the generalizability of identifying CI build failures

by applying cross-project validation using the Bellwether strategy (Xia et al., 2017a) (RQ3).

Lastly, we evaluate the sensitivity of our DL approach to the training size while comparing

its performance against the other ML techniques (RQ4). In the following, we describe our

validation in detail.

6.4.1 Replication Package

We provide our replication package available at (Saidani, 2020c). Specifically, we provide a

comprehensive dataset, the source code of DL-CIBuild and the benchmark models (i.e., RF,

ADA, DT, LR and SVC). We also provide detailed instructions on how to run the code and

replicate all the experiments we reported in this paper for future replications and extensions.

6.4.2 Data

Our experiments are based on TravisTorrent dataset, from which we selected top-10 projects

according to the number of build records. An overview about the studied projects is reported in

Table 6.2. It is worth noting that the dataset is highly imbalanced as reported in Table 6.2 with

an average failure rate of 0.3.
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Table 6.2 Studies projects statistics

Project Language Number of builds Failure
(%)

Age at CI
(in days)

rails/rails Ruby 19,447 35 2,354

ruby/ruby Ruby 15,388 22 5,099

jruby/jruby Ruby 12,085 62 1,074

rapid7/metasploit-framework Ruby 8,839 8 2,571

apache/jackrabbit-oak Java 8,205 42 102

opf/openproject Ruby 7,088 36 287

CloudifySource/cloudify Java 5,742 26 220

Graylog2/graylog2-server Java 5,199 11 470

SonarSource/sonarqube Java 4,690 27 1,013

openSUSE/open-build-service Ruby 4,647 29 341

Rails1 is a web application framework that provides several features needed to create database-

backed web applications according to the Model-View-Controller (MVC) pattern. Ruby2 is an

interpreted object-oriented programming language often used for web development. JRuby(Jruby,

2019) is an implementation of Ruby on the JVM. Metasploit3 is a penetration testing platform that

enables to write, test, and execute code with a suite of tools. Jackrabbit Oak4 is a scalable, high-

performance hierarchical content repository designed for use as the foundation of modern web

sites and content applications. OpenProject5 is one of the leading open source web-based project

management systems. Cloudify6 is a cloud-enablement platform that on-boards applications

to public and private clouds without architectural or code changes. Graylog2-server7 is a log

management system that centrally captures, stores, and enables real-time search and log analysis.

Vagrant8 is a tool for building and distributing development environments with a declarative

1 https://github.com/rails/rails

2 https://github.com/ruby/ruby

3 https://github.com/rapid7/metasploit-framework

4 https://github.com/apache/jackrabbit-oak

5 https://github.com/opf/openproject

6 https://github.com/CloudifySource/cloudify

7 https://github.com/Graylog2/graylog2-server

8 https://github.com/hashicorp/vagrant
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configuration file. SonarQube9 is a popular platform for continuous inspection of code quality.

Finally, the Open Build Service10 is a generic system to build and distribute binary packages

from sources in an automatic, consistent and reproducible way.

6.4.3 Research Questions

We designed our experiments to answer five research questions:

RQ1. (Hyper-Parameter Optimization Comparison) How effective is GA for HPO compared

to existing techniques?

Motivation. To fit our approach into the CI build prediction problem, we must first tune their

hyper-parameters. Since there are many different HPO methods with different use cases, it is

crucial to evaluate the need for an intelligent method such as GA.

Approach. In order to verify the performance of GA, we compare it with four methods. These

techniques are selected based were chosen based on their popularity (Yang & Shami, 2020),

diversity (belonging to different families) and availability in Python:

1. Random Search (RS): A HPO technique that belongs to the family of model-free algorithms.

This method was proposed to overcome certain limitations of Grid Search (GS) related

mainly to the computational costs random search (RS). RS is similar to GS; but, instead of

testing all values in the search space, RS randomly selects a pre-defined number of samples

between the upper and lower bounds. To implement RS, we use Hyperopt (HpBandSter,

2021b) (the HPO Python framework) while selecting rand.suggest algorithm. With regards

to its performance, Bergstra & Bengio (2012) argued that RS is more effective than GS.

2. Tree-structured Parzen Estimators (TPE): is a Bayesian optimization (BO) based method

that, unlike GS and RS, determines the future evaluation points based on the previously-

obtained results. This technique has been widely applied in practice (Xia, Liu, Li & Liu,

9 https://github.com/SonarSource/sonarqube

10 https://github.com/openSUSE/open-build-service
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2017b; Guo, Hu, Wu, Peng & Wu, 2019). We use the implementation of this technique as

provided by Hyperopt using the algorithm tpe.suggest.

3. Bayesian Optimization HyperBand (BOHB): is a multi-fidelity optimization technique that

uses a subset of the original to solve the constraint of limited time and resources. It has

been shown that BOHB outperforms many other optimization techniques when tuning SVM

and DL models (Falkner, Klein & Hutter, 2018). To implement this technique, we use

HpBandSter Python library (HpBandSter, 2021a).

4. Particle Swarm Optimization (PSO): is another meta-heuristic conceived by Shi & Eberhart

(1998) that has been widely adopted for complex HPO problems (Tharwat & Hassanien,

2019; Lorenzo, Nalepa, Kawulok, Ramos & Pastor, 2017). Note that PSO is supported in

Optunity HPO framework (Optunity, 2019) as the default option.

In order to ensure a fair comparison, some constraints should be satisfied. First, we evaluate

the different HPO methods using the same hyper-parameter configuration space. Table 6.3

summarizes the configuration space for LSTM model. Additionally, since the studied HPO

methods evaluate the candidate configurations based on an objective function to be optimized,

we use the same function to be optimized namely the validation loss. The training loss functions

are threshold-independent metrics i.e., not sensitive to imbalanced data (Tantithamthavorn et al.,

2018a).

Table 6.3 Configuration space for the hyper-parameters of LSTM

Hyper-parameters Search Space
Number of units range [32,512]

Number of layers range [1,7]

Batch Size range [4,256]

Number of epochs range [2,10]

Optimizer [‘adam’, ‘rmsprop’]

Dropout probability range [0.01,0.3]

Time step range [30,120]

After that, to deal with the stochastic nature of HPO methods, we repeat each experiment 31

times and the median performance is reported as the performance estimate, as recommended by
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Arcuri & Briand (2011). On the other hand, we set the maximum number of iterations to 50 for

RS, TPE, PSO and BOHB; while we set the number of generations and population size to 5 and

10 respectively for GA (5 ∗ 10 = 50).

In the next step, the performance metrics are selected. For each experiment on the selected

ten datasets, online validation (cf. Section 6.4.3) is considered to evaluate the studied HPO

methods. First, the Area Under the ROC Curve (AUC) (cf. Section 6.4.4) is used as the

classification performance metric. Additionally, the computational time (CT), the total time

needed to complete an experimentation, is also used as the efficiency metric (Yang & Shami,

2020; Wicaksono & Supianto, 2018; Xia et al., 2017b; Tantithamthavorn et al., 2018a). Note

that AUC is computed on the testing set while CT is calculated on the training set as the HPO

methods are applied on this set.

It is also worth mentioning that in this work, all the experiments are executed on a computer

equipped with an Intel Core i7-8700k CPU 3.20 GHz and using 64-bit based Windows.

RQ2. (Within-project validation) How does our DL-CIBuild approach perform compared

to ML techniques within projects?

Motivation. The first goal of our empirical study is to evaluate the performance of our DL-based

approach for the CI build failures prediction problem against existing ML techniques. Thus,

we want to investigate the efficiency of considering the time series dataset which consists of a

sequential data of CI build outcomes against the use of ML techniques trained on state-of-the-art

CI related features to assist developers in automatically identifying build failure.

Approach. We conduct an online validation in which builds are ordered and predicted

chronologically. Similar to prior work by Xia and Li (Xia & Li, 2017), we ranked for each

selected project, the builds according to its start time and broke the whole set of a given project

into ten folds. Then, we used the latter five folds as testing sets: At each iteration 𝑖 (1 ≤ 𝑖 ≤ 5),

the test set fold 𝑗 (6 ≤ 𝑗 ≤ 10), the former 𝑗 − 1 folds are selected as training set to train the
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model. It is worthy to mention, that we verified for each project and validation iteration, the

existence of failed builds.

RQ3. (Cross-project validation) How effective is our approach compared to ML techniques

when applied on cross-projects?

Motivation. Building a model to predict CI build failure requires having labeled data to train on.

However, in real world situation, many projects do not have sufficient historical labeled data to

build a classifier (Xia et al., 2017a) (e.g., small or new project) which may prevent the project

team from using a prediction tool. In this research question, we investigate to what extent a build

failure prediction can be generalized through cross-project prediction.

Approach. Cross-project validation is a the-state-of-art technique to solve the lack of training

data in software engineering (Xia et al., 2017a). Specifically, we adopt Bellwether strategy

(Krishna, Menzies & Fu, 2016) as the project-level filter. The Bellwether strategy is a recently

introduced source filtering method that can further improve prediction results of existing filtering

methods, as reported by Xia et al. (Xia et al., 2017a). In this strategy, the Bellwethers are

selected as the best source projects according to previous prediction result, and considered as the

source projects in the following cross-project prediction. In this section, we select the bellwether

as the project providing the best results within online validation (RQ1).

RQ4. (Sensitivity to training size) How effective is our approach when varying the training

set size?

Motivation. After validating the effectiveness of DL-CIBuild under two validation scenarios,

we want to go further by showing the effects of the training data on the effectiveness of our

technique compared to ML techniques which remains unknown. Knowing the impact of the size

of training set is important, as it allows us to estimate the performance of DL-CIBuild when a

small amount of data is provided. Also, given the same amount of data, the best scores we get,

the more useful an approach is.
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Approach. Using the same dataset described in Section 6.4.2, we train and evaluate our approach

against baseline techniques based on different training sizes. Similarly to RQ2, we split the data

into 10 folds sorted by the time of the build; then, we vary the size of the training set while

using the same testing fold in each experiment. In the first experiment, 50% of the datasets are

used to construct the predictive models. In the second experiment, the datasets used for the

model construction are increased to 70%. In the third experiment, the datasets used for model

construction are increased to 90%. In the testing phase, we compare the predictive performance

as described in the next section.

RQ5. (Concept drift) To which extent is our approach robust to concept drift?

Motivation. As the time passes, data can change. In some cases, the performance of the

prediction models can degrade because the learned relationship between the input and output

variables is no longer valid. This problem is called concept drift (Widmer & Kubat, 1996;

Tsymbal, 2004) which should be detected and addressed to ensure the successful application

of ML/DL based techniques (Singh, Walenstein & Lakhotia, 2012; Ekanayake, Tappolet,

Gall & Bernstein, 2009; Zenisek, Holzinger & Affenzeller, 2019). In this paper, we aim to

investigate whether the CI build failure prediction drifts over time using DL-CIBuild. This

would help us assess the need of the model’s retraining to prevent degradation in performance.

On the other hand, if the drift is found to be negligible, this would indicate the robustness of our

proposed approach.

Approach. To study the possible concept drift, we train and test the predictive performance of

our approach over time against baseline techniques. As shown in Figure 6.7, we first split the data

into 10 folds sorted by the time of the build. In the first iteration, we train the models using folds

1 to 5 (old data) and folds 2 to 6 (recent data) and compare the predictive performance on the

fold 7. In the second iteration, we compare the old data (i.e., folds from 1 to 5) to the folds 3 to 7

and test both data on fold 8 etc. In this way, we assess the effectiveness of the approaches based

on data from two different time periods in order to assess whether the predictive performance

drifts over time.
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6.4.4 Evaluation Metrics

To evaluate the predictive performance (i.e., RQ2-5), we first compute the widely-used perfor-

mance evaluation metric F1-score which is defined as follows:

F1-score = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
∈ [0, 1] (6.1)

In our study, the recall is the percentage of correctly classified failed builds relative to all of the

builds that actually failed while the precision is the percentage of detected failed builds that

actually failed. These metrics are defined as follows:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
∈ [0, 1] (6.2)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
∈ [0, 1] (6.3)

where TP is the number of failed builds that are correctly classified as CI failed; FP denotes the

number of passed builds classified as failed; and FN measures the number of classes of actual

CI failed builds that identified as passed.

The second metric we consider in this study the Accuracy. It refers to the proportion of correct

predictions made by the model. Formally, Accuracy is defined as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
∈ [0, 1] (6.4)

Moreover, it is important to account for imbalance in a data set as generally failed builds are much

less to occur than past ones in typical software projects (Xie & Li, 2018). Hence, we consider

AUC measure which indicates how much a prediction model/rule is capable of distinguishing

between classes. A larger AUC value indicates better prediction performance. The main merit
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of the AUC is its robustness toward imbalanced data. For binary classification, AUC is defined

as follows (Cervantes et al., 2013):

𝐴𝑈𝐶 =
1 + 𝑇𝑃

𝑇𝑃+𝐹𝑁 −
𝐹𝑃

𝐹𝑃+𝑇𝑁

2
∈ [0, 1] (6.5)

6.4.5 Machine learning benchmark

We compare the prediction performance of our DL-CIBuild approach with five widely-used

ML techniques in previous CI and software engineering research (Xia et al., 2017a; Ni & Li,

2018; Xia & Li, 2017; Luo et al., 2017; Hassan & Wang, 2017; Ni & Li, 2018; Santolucito et al.,

2018), namely Decision Tree (DT), Random Forest (RF), AdaBoost (ADA), Support Vector

Classification (SVC) and Logistic Regression (LR). The initial input to these models is a set

of features comprising 21 state-of-the-art CI features from TravisTorrent dataset (Xia et al.,

2017a; Ni & Li, 2018; Xia & Li, 2017; Luo et al., 2017; Hassan & Wang, 2017; Ni & Li, 2018;

Santolucito et al., 2018). These features are summarized in Table 6.4.

6.4.5.1 Data pre-processing

Data pre-processing is a vital step to obtain better performance of ML models which comprises

data cleansing, normalization, and structure change(Hastie, Tibshirani & Friedman, 2009). As

ML models are sensitive to the scale of the inputs, the data are normalized in the range [0, 1] by

using feature scaling. Also, to mitigate the issue related to the imbalanced nature of the dataset,

we rely on Synthetic Minority Oversampling Technique (SMOTE) method (Chawla et al., 2002),

to resample the training data. Note, that we did not resample the testing dataset since we want to

evaluate ML techniques in a real-life scenario, where the data is imbalanced. Additionally, for

the sake of fairness, we apply Threshold Moving (TM) to all ML techniques.
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6.4.5.2 Parameter tuning for Machine Learning techniques

We use the best HPO method as the one to be revealed in RQ1. In order to facilitate the

replication of our results, we provide the selected main parameters and their respective search

spaces for ML techniques as shown in Table 6.5.

Table 6.5 Configuration space for the hyper-parameters of ML

models

Model Hyper-parameters Search Space

SVC
C [’linear’, ’rbf’]

kernel range [1,10]

max of iterations range [200,5000]

DT

Criterion [’gini’, ’entropy’]

max depth range [10,100], None

min samples split range [2,10], None

min samples leaf range [1,5], None

max features [’sqrt’, ’log2’, None]

RF

Number of estimators range [50,600]

max depth range [10,100], None

Criterion [’gini’, ’entropy’]

min samples split range [2,10], None

min samples leaf range [1,5], None

max features [’sqrt’, ’log2’, None]

ADA

random state [None,0]

Number of estimators range [50,600]

Algorithm [’SAMME’, ’SAMME.R’]

learning rate range [0,1]

LR
max of iterations range [200,5000]

penalty [’l1’,’l2’,’none’]

solver [’newton-cg’, ’lbfgs’, ’sag’,’saga’,’liblinear’]

6.4.6 Inferential Statistical Test methods Used

When applied to the same problem instance, ML and LSTM models may provide different results

on each run. To deal with this stochastic nature, it is important to assess their effectiveness by

performing a large number of runs, at least 30 runs as suggested in (Arcuri & Briand, 2011).
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Additionally, it is essential to use the statistical tests that provide support for/rejection of the

conclusions derived by analyzing the obtained results.

6.4.6.1 Statistical tests for RQ1, RQ4 and RQ5

To perform multiple comparison tests, we cluster the approaches using Scott-Knott Effect

Size Difference (ESD) method (Tantithamthavorn, McIntosh, Hassan & Matsumoto, 2017,

2018b). Scott-Knott partitions the set of treatment means (e.g., means of model performance)

into statistically distinct groups with non-negligible difference (i.e., 𝜌−𝑣𝑎𝑙𝑢𝑒 < 0.05). This

clustering algorithm has been widely applied to different software engineering domains such as

ranking the classification techniques (Ghotra, McIntosh & Hassan, 2015) and comparing HPO

methods (Tantithamthavorn et al., 2018a). We use the implementation of the Scott-Knott test

provided by the ScottKnott R package (Jelihovschi, Faria & Allaman, 2014). The Scott-Knott

test ranks each approach exactly once, however several approaches may appear within one rank.

6.4.6.2 Statistical tests for RQ2 and RQ3

W employ Wilcoxon signed rank test (Wilcoxon et al., 1970) in order to detect significant

performance differences between the algorithms under comparison (𝛼 is set at 0.05). We also use

the Cliff’s delta, 𝛿, a non-parametric effect size measure for ordinal data (Cliff, 1993) to assess

the difference magnitude. The effect size is considered negligible when | 𝛿 |< 0.147, small

when 0.147 ≤| 𝛿 |< 0.33, medium when 0.33 ≤| 𝛿 |< 0.474 and large otherwise (Romano,

Kromrey, Coraggio & Skowronek, 2006).

6.5 Experimental Results

In this section, we present the results of our empirical study with respect to the five research

questions.



151

6.5.1 RQ1. Results of HPO comparison

The experiments of applying GA and other four different HPO methods when applied to LSTM

models are summarized in Table 6.6. This table shows the average performance of each HPO

methods evaluated based on AUC and the Computational Time (CT).

With regards to AUC scores, we clearly see that meta-heuristics methods, GA and PSO showed

significantly better performances than other HPO methods. Using PSO, the LSTM model can

achieve 60% in terms of AUC, while with GA, it can achieve a better performance with an

improvement of 5%. This confirms that meta-heuristic techniques are more suitable to complex

search spaces as stated by previous studies (Yang & Shami, 2020). Then, we see that BOHB

method have shown a better performance than TPE as excepted since BOHB combines the

advantages of Bayesian optimization and Hyperband by using TPE as a standard surrogate model.

Lastly, we have found that TPE and RS obtained 53% and 52% in terms of AUC respectively but

with no significant difference.

With the same search space size, we have found that BOHB is faster than other HPO methods.

Conversely, BOHB does not yield the best performance in our experiments. On the other hand,

the computation time of RS and TPE is on average better than meta-heuristic algorithms due to

their lower algorithmic complexities (Yang & Shami, 2020). In addition, PSO is faster than GA

since the latter requires an additional computational time dedicated to genetic operations (i.e.,

mutation and cross-over). But statistically, the difference is not significant (same ranking group).

Table 6.6 The ranking of the HPO methods for LSTM,

divided into distinct groups that have a statistically

significant difference in the mean

AUC CT
Method Rank Avg (%) Method Rank Avg(sec)
GA 1 65 BOHB 1 386

PSO 2 60 RS 2 520

BOHB 3 56 TPE 3 765

TPE
4

53 PSO
4

1,670

RS 52 GA 1,750
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Summary for RQ1. DL-CIBuild can achieve higher predictive performance when using

GA as HPO method with an improvement of 5% compared to PSO. But this comes

with a higher computational time. Nevertheless, we use GA as HPO method in order

to guarantee near-to-optimal configurations for LSTM models. For the sake of a fair

comparison, we also use GA as HPO method for ML models.

6.5.2 RQ2. Results of online validation

Table 6.7 reports the average (of 5 online validation iterations) AUC, F1 and accuracy scores for

each studied project. Note that DL-CIBuild, all the involved techniques are executed 31 times to

deal with their stochastic nature. Then, we computed the median values of each experiment.

Moreover, Table 6.8 shows the statistical comparisons of these experiments.

With regards to AUC, we clearly see that, for nine out of ten projects, the best scores are obtained

by DL-CIBuild achieving on median 65% with an improvement of 7% over ML techniques.

On the other hand, for the different projects, the statistical analysis provides evidence that our

approach performs better than the ML techniques with large Cliff’s delta effect sizes. For

instance, in the ruby project for which we obtained the best AUC results, our approach achieved

74% in terms of AUC compared to 59% for RF, 58% for LR, 57% for ADA, 56% for SVC and

55% for DT; which represents an improvement of 15% over ML for this project. However, in

the sonarqube and metasploit-framework project, RF was slightly better than DL-CIBuild. One

explanation for this results could be related to the fact that the CI-related features are more

efficient to predict the failure than the temporal information for these projects.

Overall, the results for AUC reveal that DL-CIBuild can reach a better trade-off (i.e., balance)

between both positive (i.e., failed) and negative (i.e., passed) accuracies, by applying threshold

moving, than all the ML techniques even with resampling. This result lends support to previous

results confirming that threshold-moving is a better choice in training cost sensitive neural

networks (Zhou & Liu, 2005).
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Looking at F1-scores, we also see that DL-CIBuild achieved the best results for 6 out of 10

projects with a median score of 49% with an improvement of 10% as compared to the results

achieved by SVC (the best ML performing technique). The statistical tests reveal that DL-CIBuild

outperforms ML with medium (compared to ADA, DT, LR and SVC) to large effect sizes

(with RF). Exceptionally, in sonarqube project, we found evidence for LR algorithm to be

better than DL-CIBuild. But overall, we clearly see that LR achieved poor performances in

terms of F1-scores of 33% in median. This is especially the case for graylog2-server and

metasploit-framework projects as LR turns out to be inefficient to correctly detect failed builds.

Broadly speaking, F1-score results demonstrate a compelling superiority of DL-CIBuild to

identify more failed builds than ML techniques.

As for the accuracy scores, the obtained results also show that DL-CIBuild is a better performer

than the five considered ML techniques, with a significant improvement of 11% in median, and

large effect sizes as shown in Table 6.8. Additionally, the accuracy scores of our approach range

from 63% to 85% while achieving in median a high score of 72% and for 9 out of 10 projects,

the accuracy values of DL-CIBuild exceed those of ML techniques.

To sum up, it is worth noting that, due to the highly imbalanced nature of the analyzed data (i.e.,

only a small portion of the builds are failed) as can be seen from Table 6.2, the achieved AUC,

F1 and accuracy results by DL-CIBuild are considered significant. Furthermore, we can see

from the statistical results, that ML modest performance may not be only related to the nature of

the dataset as we applied resampling to the training data using SMOTE, but this could be related

to the complex and erratic temporal dependencies between the builds that are hard to capture

with traditional ML techniques. Thus, DL-based time series models seem more appropriate to

such a problem.
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Table 6.7 Performance of DL-CIBuild vs ML techniques under

online validation

AUC F1 Accuracy

Projects D
L-

C
IB

ui
ld

D
T

LR AD
A

RF SV
C

D
L-

C
IB

ui
ld

D
T

LR AD
A

RF SV
C

D
L-

C
IB

ui
ld

D
T

LR AD
A

RF SV
C

cloudify 72 52 58 58 61 53 52 23 26 28 34 29 85 51 62 72 72 41

graylog2-server 64 53 60 57 59 59 30 12 14 12 14 14 72 59 53 42 59 61

jackrabbit-oak 61 52 54 57 57 54 52 56 31 54 45 48 63 51 42 55 48 49

jruby 69 53 55 53 54 53 77 70 68 55 41 61 72 61 59 60 47 55

metasploit-framework 60 55 63 57 64 53 22 17 23 19 24 15 81 75 70 56 79 70

open-build-service 67 53 60 59 56 58 46 27 38 36 31 35 77 56 49 48 55 54

openproject 62 52 53 53 53 51 45 41 31 37 39 47 70 55 55 57 58 47

rails 66 52 54 52 54 51 52 32 35 16 34 43 69 61 60 65 63 34

ruby 74 55 58 57 59 56 64 51 49 43 40 50 77 54 47 57 63 54

sonarqube 57 57 62 60 63 59 35 36 44 40 43 34 66 63 70 70 71 77
Median 65 53 58 57 58 53 49 34 33 37 37 39 72 57 57 57 61 54

Average 65 53 58 56 58 55 47 36 36 34 35 38 73 58 57 58 62 54

Table 6.8 Statistical tests results of DL-CIBuild compared to ML

techniques under online validation

DL-CIBuild vs. ADA vs. DT vs. LR vs. RF vs. SVC

Accuracy p-value 10−9 10−9 10−11 10−6 10−10

Effect Size Large Large Large Large Large

AUC p-value 10−11 10−16 10−9 10−9 10−14

Effect Size Large Large Large Large Large

F1 p-value 10−5 10−3 10−4 10−5 10−3

Effect Size Medium Medium Medium Large Medium

Summary for RQ2. DL-CIBuild can achieve higher predictive performance than state-

of-the-art ML techniques with a statistical significance under online-validation. Instead

it achieved, in median, 65% and 49% in terms of AUC and F1-score respectively while

reaching 72% of the overall classification accuracy. Moreover, we find that jruby project

results outperform all the other projects by achieving the best scores in median. Thus, we

select this project as the source (i.e., training set) project in the following cross-project

prediction.
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6.5.3 RQ3. Results of cross-projects validation

As mentioned earlier, jruby project exhibited the highest prediction capability among the studied

projects by achieving the best scores on average (and in median) and it is considered as the

Bellwether for cross-project strategy. Hence, we train DL-CIBuild, based on jruby project, using

our evaluation metrics, the Area Under the ROC Curve (AUC), F1-score, and accuracy values, to

measure the performance of our classifier. Table 6.9 presents the effectiveness of cross-project

modeling compared to ML techniques while Table 6.10 reports the statistical tests results.

First, the results show that DL-CIBuild achieves a performance of AUC value of 72% in median

which ranges from 63-82%. Six projects out of nine show good performance results (≥ 70%)

and cloudify achieves high AUC value of 82%. Compared to within-project validation, these

results show that our approach can achieve with cross-projects a significant improvement of

7% in median over online validation with a large effect size. Except for ruby whose AUC score

slightly decreased from 74% to 73%, may be because the data in this project is larger than

the bellwether data, all the studied projects show a better performance which indicates that

DL-CIBuild a very promising solution to mitigate the lack of data, especially for new software

projects. Additionally, we observe an improvement of 17% in median over ML techniques

whose results are worse than their within-project scores. The statistical tests results show that

the difference is significant with large effect sizes.

The same observations for AUC can be applied to F1-score for which we recorded for DL-CIBuild

a significant improvement of 8% compared to within-project results with a medium effect size.

Also, DL-CIBuild is the best technique across all the studied projects by achieving in median

57% compared to ML techniques that showed modest to low F1-scores of 37% for SVC, 35%

for LR and ADA, 34% for RF and 31% for DT. The statistical tests results show that DL-CIBuild

is significantly better with large effect sizes, as reported in Table 6.10. Another observation

to report from these results is that all ML techniques have shown a drop in F1-scores; which

confirms previous findings in the literature who pointed out that ML techniques are less effective

for cross-project prediction (Choetkiertikul et al., 2018; Abdalkareem et al., 2020; Zhang et al.,
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2016). This result shows that when building ML techniques under cross-project prediction, the

target project has a low collinearity with the source project features.

Looking at the classification accuracy, we see that the scores are significantly improved compared

to within project results, with a small effect size, for eight projects out of nine by achieving in

median 78% (and 80% on average) and the accuracy values range from 68-89%. Similarly to

online validation, DL-CIBuild obtained better accuracy results compared to ML with significant

differences and large effect sizes.

Table 6.9 Performance of DL-CIBuild vs ML techniques under

cross-project

AUC F1 Accuracy
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cloudify 82 52 50 52 56 51 76 31 2 36 34 41 89 52 74 39 66 29

graylog2-server 77 53 50 55 55 53 51 16 12 20 20 21 87 65 42 66 54 23

jackrabbit-oak 74 50 54 57 53 57 70 46 55 59 48 59 76 49 52 53 53 53

metasploit-framework 63 52 60 54 53 52 29 13 21 12 14 15 86 65 72 76 79 41

open-build-service 70 51 56 52 52 52 57 28 35 35 43 26 78 52 65 47 43 63

openproject 63 51 55 53 52 51 51 33 34 31 25 22 68 57 63 60 62 58

rails 72 50 55 51 52 50 62 43 40 43 39 51 77 42 59 46 53 35

ruby 73 50 55 51 52 52 61 28 37 23 23 37 85 42 46 60 63 31

sonarqube 64 51 55 57 52 50 46 42 41 41 36 43 77 34 52 58 46 28

Median 72 51 55 53 52 52 57 31 35 35 34 37 78 52 59 58 54 35

Average 71 51 54 53 53 52 56 31 31 33 31 35 80 51 58 56 58 40

Table 6.10 Statistical tests results of DL-CIBuild under

cross-projects compared to its achieved within-project results as

well as ML techniques

DL-CIBuild vs. online
validation vs. DT vs. LR vs. ADA vs. RF vs. SVC

AUC p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Effect Size Large Large Large Large Large Large

F1 p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Effect Size Medium Large Large Large Large Large

Accuracy p-value 0.01 < 0.001 0.002 0.002 0.002 < 0.001

Effect Size Small Large Large Large Large Large
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Summary for RQ3. Our findings show a substantial improvement for DL-CIBuild

compared to online validation results by achieving 72%, 57% and 78% in terms of AUC,

F1-score and accuracy, respectively. These results indicate that our approach is effective

when learning from a cross-project training corpus. We explain these results by the fact

that in a cross-project setting, our approach is fed with more data. Moreover, our proposed

approach still outperforms state-of-the-art ML techniques.

6.5.4 RQ4. Results of the sensitivity to training size

We have validated the effectiveness of DL-CIBuild in terms of AUC, F1-score and accuracy

through the RQ2 and RQ3. In this experiment, we want to go further by assessing the extent to

which our approach can perform when varying different amounts of data compared to other ML

techniques.

Figure 6.8 presents the performance (in terms of AUC, F1 and accuracy) on the test dataset,

of the studied approaches, after training for 31 times with 50%, 70% and 90% of the dataset.

Additionally, Table 6.11 shows the rank differences for all of the studied approaches when

varying the training sizes.

Looking at the plotted boxplots of DL-CIBuild, we observe that, for all the computed measures,

the performance of our approach increases up to 90% of the datasets for which the best scores

were recorded. For instance, increasing the training from 50% to 90% of the datasets, results in

an improvement of 3%, 5% and 9% in terms of AUC, F1 and accuracy in median respectively.

Moreover, Table 6.11 shows that there is a clear separation of AUC, F1 and accuracy scores of

DL-CIBuild into distinct Scott-Knott ranks for 50% and 90% of training data. However, the

scores seem comparable when training on 70% and 90% of the datasets; which means that our

approach plateaus out from 70%. Nevertheless, we can conjecture that an advantage of using

our approach in practice is that, as the project ages and more CI build records are available,

DL-CIBuild will reach higher scores.
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As compared to ML techniques, we clearly see that DL-CIBuild is better across different training

set sizes. Moreover, Table 6.11 shows that for AUC scores, DL-CIBuild is statistically better

than other techniques even when trained only on 50% of the datasets. As for F1 and accuracy

scores, we see that DL-CIBuild share the same ranking with other ML but achieves better scores.

Overall, we conjecture that, for different training sizes, our approach is more suitable than the

ML techniques.

Table 6.11 The ranking of the approaches when varying the

training size, divided into distinct groups that have a statistically

significant difference in the average (Avg)

AUC F1 Accuracy
Approach Avg(%) Rank Approach Avg(%) Rank Approach Avg(%) Rank

DL-CIBuild-90 64
1

DL-CIBuild-90 48
1

DL-CIBuild-90 69
1DL-CIBuild-70 63 DL-CIBuild-70 46 DL-CIBuild-70 68

DL-CIBuild-50 61 2 DL-CIBuild-50 43
2

RF-50 64

2

RF-50 60 3 RF-50 39 RF-70 62

ADA-70 60

4

LR-70 37 3 DT-50 62

RF-90 60 LR-50 37

4

ADA-50 62

RF-70 59 RF-90 36 ADA-70 62

ADA-90 59 LR-90 36 DT-90 60

LR-70 59 RF-70 35 RF-90 60

LR-50 59 ADA-50 35 ADA-90 60

ADA-50 59 DT-70 35 DL-CIBuild-50 60

LR-90 58 SVC-90 34 DT-70 59

DT-90 56

5

DT-50 34 SVC-50 57

3

DT-50 56 DT-90 33 SVC-70 56

DT-70 56 SVC-70 32 LR-70 56

SVC-50 56 ADA-90 31 LR-50 55

SVC-70 55 ADA-70 31 SVC-90 53

SVC-90 54 SVC-50 31 LR-90 51

Summary for RQ4. The sensitivity analysis shows that our approach is more effective

in CI build failure prediction than other ML techniques considering different training

sizes. Although DL-CIBuild is able to work well for reduced amount of training data, its

performance can be further improved within larger datasets.
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Figure 6.8 Comparison of the prediction performance with

different training sets sizes

6.5.5 Results of the concept drift evaluation

In the last evaluation, we study the extent to which the approaches under evaluation suffer from

concept drift (i.e., the degradation in the predictive performance over time (Widmer & Kubat,

1996)). Figure 6.9 presents the performance (in terms of AUC, F1 and accuracy) on the test
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dataset, of the studied approaches, after training for 31 times using old (in red) and recent (in

blue) training data. Additionally, Table 6.11 shows the ranks for all of the studied approaches

when training in different time intervals.

As shown in Figure 6.9, we observe that, for all the computed measures, the performance of

DL-CIBuild slightly increases when training the models on recent training data. For instance,

we recorded a median improvement of 2% in terms of AUC when training on more recent data.

However, when looking at Table 6.12, we see that the obtained results on both recent and old data

seem to be comparable (same ranking group). These results indicate that while predicting the

next builds is better when training on more recent build records, the data stream does not seem

to be drifting for our approach. Thus, the models of DL-CIBuild do not need to be frequently

retrained.

With regard to ML techniques, we found a significant drift in the performance of LR and ADA

techniques while the RF, SVC and DT seem to be more robust to the concept drift as their results

seem to be comparable using both old and recent data. But overall, we conjecture that, for

different time intervals, our approach is more suitable than the ML techniques.

Table 6.12 The ranking of the approaches when varying the

training time, divided into distinct groups that have a statistically

significant difference in the average (Avg)

AUC F1 Accuracy
Approach Avg Rank Approach Avg Rank Approach Avg Rank

DL-CIBuild-recent 67
1

DL-CIBuild-recent 48
1

DL-CIBuild-recent 70
1DL-CIBuild-old 65 DL-CIBuild-old 46 DL-CIBuild-old 68

LR-recent 58 2 LR-recent 39 2 LR-recent 60

2RF-recent 56
3

RF-old 36

3

ADA-recent 59

RF-old 56 SVC-recent 35 RF-old 57

LR-old 56

4

DT-recent 35 ADA-old 57

3

ADA-recent 56 LR-old 35 RF-recent 56

SVC-old 56 SVC-old 34 SVC-recent 56

SVC-recent 55 RF-recent 34 LR-old 54

ADA-old 54 5 DT-old 34 SVC-old 54

DT-recent 53
6

ADA-old 34 DT-old 52

DT-old 53 ADA-recent 33 DT-recent 45 4
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Figure 6.9 Comparison of the prediction performance of

DL-CIBuild against ML techniques trained on old and recent data

Summary for RQ5. Unlike ADA and LR techniques, our approach showed an effective

robustness to the concept drift which indicates that the latter do not need to be frequently

retrained. Additionally, the results reveal that, again, DL-CIBuild is statically better than

the baselines considering different training time intervals.



162

6.6 Discussions and Implications

In this section, we discuss our findings and their implications for CI developers, researchers and

tool builders.

6.6.1 For CI Developers

Usage scenarios, benefits and costs of using our tool. We have shown that our approach is

able to effectively predict the CI build results by achieving good results, reaching up to 80% in

terms of AUC. The typical usage scenario of our tool is to provide suggestions on suspicious CI

builds. Hence, DL-CIBuild allow teams to check their estimation of CI build results by providing

accurate predictions on their builds that are likely to fail. In this way, developers can cut off the

expenses of CI build process. Such accurate predictions can help save the build generation time

and effort, especially when there are limited resources. However, the cost is that sometimes

some few failed builds may be missed or result in a waste of effort on false positives.Additionally,

developers cannot simply analyze the warnings made by our tool in isolation, but rather, they

need the reasons behind the failure to easily localize it. Nonetheless, more details on the reasons

for the failure are important, we plan to extend our approach with further support to software

developers by providing sufficient details about what retro-actions needed to fix a failed build.

DL-CIBuild can run faster. One of the acknowledged drawbacks of using our approach is that it

is computationally expensive due to the massive training time of LSTM models as well as using

Genetic Algorithm (GA) for Hyper-parameters Optimization (HPO). In order to mitigate this

issue, we improve the efficiency of GA by enabling the parallel evaluation of the configurations in

each generation (which includes the training of LSTM models using the candidate configurations).

By integrating this parallelization mechanism, we significantly reduced the execution time of

GA as can be shown in Figure 6.10. As we clearly see, the optimized version of GA can even

run faster than BOHB technique that also supports the parallelization (Yang & Shami, 2020).
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Figure 6.10 The impact of the training set size on the execution

time to run GA before (blue) and after (green) parallelization

compared to BOHB (in red)

The time of GA can be optimized in other ways: We can reduce the size of the hyper-parameter

search space to better value ranges or defining other termination conditions for example when

there has been no improvement in the population for K iterations.

6.6.2 For Researchers

Researchers could investigate periodicity in build failure. Our study analysis lends support

to previous research efforts (Rausch et al., 2017) showing that many failed builds occurred

consecutively which indicates that if the build failed, the next build is more likely to fail as well.

This finding may encourage researchers to get insights into the periodic trends of build failure

which would help researchers to enhance the CI practice. Researchers can further analyze the

periodicity of CI build failures and investigate what software engineering activities may link

with such failure periods, e.g., feature requests, bug fixes, refactoring, release preparation, etc.
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Deep learning LSTM is a suitable modelling choice for software engineering problems

for which the temporal dimension is important. To the best of our knowledge, our work

is the first attempt to use deep learning LSTM for the problem of learning CI build failures.

The use of LSTM models has allowed to automatically learn the periodicity of build results

and use this for predicting build failure. The evaluation results demonstrate the significant

improvement that our DL approach has brought in terms of predictive performance especially

with comparison to ML techniques. These results represent a significant improvement that can

help researchers to mitigate the issues related to feature engineering which is a tedious and

error-prone process that needs specific expertise with the domain knowledge to generate features

for ML models. Moreover, DL-CIBuild has shown effectiveness in handling the lack of data

considering cross-project validation while no existing solution has been demonstrated to work at

this performance scale. Knowing that software engineering tasks are process-based where the

temporal dimension is of crucial importance, our proposed approach can serve as the baseline for

further research in the application of DL and LSTM models to time series problems in software

engineering.

Dynamic selection of the classification threshold. Another possible direction to enhance

the prediction accuracy of deep learning LSTM models is to accurately set the classification

threshold (above which a build is considered failed) which can highly impact the prediction

results. As illustrated in Figure 6.11, we can see an example highlighting the importance of

threshold moving from the Ruby project. In this figure, the chart (a) plots the output of our

LSTM model (which is following the real trend), while the chart (b) shows the prediction results

when the classification threshold is set by default (=0.5) which results in classifying all the

builds as succeeding (none of the failed builds can be detected). Based on these observations,

an important research direction for CI researchers is to consider adaptive threshold selection

over time when conceiving DL-based models. This selection can be performed dynamically

over time, i.e., adapted depending on the project’s activity period such as major/minor releases,

new features, library dependencies upgrade/migration, code reengineering, code optimization,
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etc. We conjecture that a dynamic selection can be an effective solution for deep learning LSTM

based prediction.

a) Failure prediction probability b) Failure prediction result when the

threshold is set to 0.5

Figure 6.11 An example showing the impact of the threshold

moving on the prediction accuracy extracted from the project Ruby

Can the predictive performance be improved with re-sampling? So far, we showed that

DL-CIBuild provides an effective improvement over the ML techniques without re-sampling but

instead using Threshold Moving (TM). Unlike sampling, TM does not rely on the manipulation

of the training set but instead on manipulating the classifier output. However, one can argue that

the use of resampling can further improve the identification of CI build failures for DL-CIBuild,

even though the latter has shown less sensitivity to the class imbalance problem as pointed out in

our previous research questions (RQ2+RQ3). Thus, we conduct a set of additional experiments

to re-balance the input data prepared in Section 6.2(online and cross-project validations) using

SMOTE (Chawla et al., 2002) the standard oversampling approach; and re-run the LSTM-RNN

learning process on the new balanced data. Similar to (Buda et al., 2018), the combination

of TM and SMOTE is also tested. To provide a comprehensive comparison, we compute the

F1-score, AUC score and the overall accuracy. Figure 6.12 shows the obtained results using

SMOTE (in red), TM (in blue) and by combining the two approaches (in green). Considering

online validation, we observe that framework shows a better performance using TM than when
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applying SMOTE with a statistically significant (but small) improvement of 4% in terms of

AUC and F1 respectively.

Figure 6.12 Comparison of DL-CIBuild results with SMOTE

(red), Threshold Moving (blue) and by combining them (green)

Moreover, combining the two approaches can slightly enhance the TM results by 2% in terms

of AUC and F1 respectively. However, the statistical test suggests that the difference between

TM and the combination is negligible. Hence, using TM on a balanced dataset can provide

comparable results to applying it to the original data. Additionally, the overall accuracy of

SMOTE is slightly better due to the skewed data distribution in the testing set. When it comes

to cross-project, the three strategies seem comparable with no significant differences for F1,
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AUC and the accuracy. This suggests that using although SMOTE is effective, it is not so good

as threshold-moving which is in line with previous studies results(Zhou & Liu, 2005; Buda

et al., 2018). Additionally, taking into account the drawbacks of re-sampling such as over-fitting

(Tantithamthavorn et al., 2018a) and the computational expense (Bhowan, Johnston & Zhang,

2009), we advocate that threshold-moving alone can be successfully applied.

6.6.3 For tool builders

Feedback mechanisms to predict build failures. CI services such as Travis CI could

provide mechanisms for developers to estimate the likelihood that their current build would fail.

Information about the predicted build failures can help the software development team to avoid

time overhead. Such information would provide decision support to avoid useless build runs or

suggest running builds during project inactivity periods (e.g., out of the working hours) in order

to avoid the risk of reducing the team’s productivity and release delays.

Retro-actions to fix the build failure. Besides failure prediction, tools are needed to help

developers fixing build breakages. One possible direction is to define the delegated developers

to fix the build which may result in a better management of the resources. We also encourage

tool builders to go further by recommending the relevant actions and code changes needed to fix

the failed build.

Dealing with concept drift. While in RQ5, we showed that DL-CIBuild is robust to concept

drift, its performance can be further improved when training on more recent data. This result

would encourage us and other tool builders to upgrade the prediction tools in a way to allow

re-fitting the models periodically using the most recent historical data. However, the main

difficulty remains in detecting the right moment when the model needs to be re-trained. One

possible solution to this problem is to monitor the prediction performance and if it is degraded

below a certain threshold (i.e., a concept drift is detected), an alarm is triggered to re-train the

model. This threshold can be configured by the tools users.
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Importance of hyper-parameters tuning. In our Appendix 1, we provide all the optimal

obtained by the Genetic Algorithm (GA) for each project and experiment considering different

validations. We notice that the optimal parameters change over time and differ from one project

to another. This highlights the importance of exploring the parameter space periodically in order

to ensure the performance stability/improvement.

6.7 Threats to validity

This section describes the threats to the validity of our experiments.

Internal validity is related to the relationship between treatment and outcome. In this paper,

it concerns our selection of subject systems, methods and tools. A threat to internal validity

could be related to the stream of the selected projects data. When most of the build failures

occur early during the project growth phase, there is little added value in exploring their data

later in the life-cycle (Shrikanth, Majumder & Menzies, 2020). To address this issue, we have

double-checked each project data stream by computing the number of failed builds in each

studied month. We have found that the build failure is well distributed among all the studied

periods. We cannot also generalize our findings to other projects as they may have different

temporal stream patterns. We also considered two validation scenarios: Online validation which

is a realistic scenario as it considers the chronological order of CI builds and mimics what

happens during the CI process. The second scenario we considered is cross-project which was

used to assess the generalizability of our approach based on the Bellwether strategy. Future work

is planned to validate our approach considering other scenarios/strategies. Another potential

threat is related to the selected performance metrics. We basically used standard performance

metrics namely F1-score, accuracy and AUC that are widely accepted in predictive models in

software engineering (Hastie et al., 2009). On the other hand, the variation of metrics also

strengthens the generalization of our results as our findings are not based on one specific metric.

Another potential threat could be related to the selection of the prediction techniques. We have

investigated existing papers related to the prediction of CI builds, and we have adapted their

algorithms in our comparative study (Xia et al., 2017a; Ni & Li, 2017; Xia & Li, 2017; Luo
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et al., 2017; Hassan & Wang, 2017). We replicated their models based on their descriptions, and

we have used our dataset as a baseline to compare all approaches. It is important to point out that

these models were tuned to use the set of features that are available with respect to the projects

we use in our experiments. These ML techniques were used in previous CI and AI for software

engineering research (Abdalkareem et al., 2020; Ghotra et al., 2015; Tantithamthavorn et al.,

2018b). Nevertheless, we plan as part of our future work to conduct a large-scale empirical

study with other techniques. Another threat comes from our choice of HPO methods. We

compared GA against methods that are often seen in literature and implemented in Python

frameworks/libraries. But even with all that, we have not explored all the existing HPO methods.

To some extent, that is because no single paper can explore all algorithms. But also, sometimes

we choose not to explore certain algorithms since they are out-of-scope for this study.

It would be also interesting to compare the performance of the Threshold Moving against other

sampling techniques like MAHAKIL (Bennin, Keung, Phannachitta, Monden & Mensah, 2017)

or SMOTUNED (Agrawal & Menzies, 2018), which would be an interesting future work

Construct validity refers to the extent to which the experiment setting reflects the theory. The

first threat to construct validity is randomness that may introduce bias. To mitigate this threat, we

performed 31 runs of each algorithm and considered the median value in each validation iteration

and applied statistical tests to remove spurious distinctions. As for the used features to feed ML

techniques, we used standard features from TravisTorrent dataset that commonly used in the

literature (Xia et al., 2017a; Ni & Li, 2018; Xia & Li, 2017; Luo et al., 2017; Hassan & Wang,

2017; Ni & Li, 2018; Santolucito et al., 2018). We plan to extend these features in an attempt to

see their impact on the prediction performance. Additionally, the hyper-parameters search space

could introduce some bias in our results as considering different ranges/parameters may yield

different results. However, the exploration of the parameter space of automated HPO methods

may require a considerable computational cost. Thus, future replication of this work should

explore other ranges/parameters and their impacts on the predictive performance. Another threat

to construct validity is related to the setting of RQ5 to detect the concept drift since defining

another validation scenario could lead to different results. Further experiments are required to
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confirm/refute the existence of concept drift in CI builds. Another threat to construct validity

could be related to the annotated set of builds as in our dataset, the build results are noisy

(Ghaleb, da Costa, Zou & Hassan, 2019b; Gallaba, Macho, Pinzger & McIntosh, 2018). While

according to our knowledge, TravisTorrent is the only available dataset of CI builds, a future

work based on clean build breakage dataset is required.

Conclusion validity affects the ability to draw correct conclusions about the relationship between

treatment and outcome. We have carefully chosen non-parametric tests, namely Wilcoxon and

Cliff’s delta, in the study as they do not require data normality assumptions (Malhotra & Khanna,

2017). The suitability of the used statistical non-parametric methods with data ordinality, along

with no assumption on their distribution raises our confidence about the significance of the

analyzed statistical relationships. Moreover, to increase the confidence in the study results, we

used three widely-acknowledged prediction performance measures, i.e., F1-score, accuracy and

AUC to evaluate the obtained results from the considered algorithms.

External validity concerns the possibility to generalize our results. Our experimental results

might have concerns of generalizability, since we performed the experiments with ten open

source projects that use TravisTorrent as their CI host tool. While TravisTorrent is one most

popular cloud-based platforms for providing CI services to software projects, our results could

not be generalized to other CI tools and other open-source or industrial projects. As future work,

we plan to extend our study on other open source and industrial projects as well as other CI tools.

We also plan to provide our approach as bot to be integrated into code review and CI tools to

help developers predicting their build failure risks.

Reliability validity concerns the possibility of replicating this study. All the studies projects are

publicly available. Moreover, the Python implementation of our approach is provided in our

replication package (Saidani, 2020c).
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6.8 Conclusion

In this paper, we introduced DL-CIBuild a two-phase framework for CI build failure prediction.

In the first phase, we implement LSTM model based on the temporal information of build results.

Then, we use Genetic Algorithm (GA) for tuning the model hyper-parameters. To evaluate

the effectiveness of our approach, we conduct an empirical study on ten open-source projects

that use the popular CI host system, Travis CI, with a total of 91,330 builds. In summary, the

empirical study results show that (i) when compared to other methods for automated parameters

tuning, GA can provide better configurations, (ii) under online-validation, our approach achieves

a reasonable and better performance than the five Machine Learning techniques in terms of AUC,

F1-score and accuracy (iii) when it comes to cross-project validation, DL-CIBuild has shown a

good effectiveness to learn from cross-project training corpus which means that our approach is

readily applicable to both within-project and cross-project predictions and (iii) the sensitivity

check results reveal that our solution is more robust than ML techniques across varying the

training set size and the predictive performance is estimated to be enhanced with larger base of

CI build results.

DL-CIBuild represents an interesting case study on the effectiveness of deep learning LSTM for

CI build failures prediction. As future works, we envision to improve the performance of our

approach by considering other prominent aspects and perform the experiments on more projects.

This can help developers and researcher get more insights on the CI build failures problem, as

the next generation of software defects, and gain actionable information to improve the practice

of CI in software projects. Moreover, we plan to implement a bot based on DL-CIBuild and

conduct a user study with our industrial partner to better evaluate our approach in an industrial

setting. Additionally, the tool can allow updating the trained model with more data when the

performance degrades below a certain threshold; which could be configured by the tool users.
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Abstract

Continuous Integration (CI) consists of integrating the changes introduced by different developers

more frequently through the automation of build process. Nevertheless, the CI build process

is seen as a major barrier that causes delays in the product release dates. One of the main

reasons for such delays is that some simple changes (i.e., can be skipped) trigger the build,

which represents an unnecessary overhead and particularly painful for large projects. In order to

cut off the expenses of CI build time, we propose in this paper, SkipCI, a novel search-based

approach to automatically detect CI Skip commits based on the adaptation of Strength-Pareto

Evolutionary Algorithm (SPEA2). Our approach aims to provide the optimal trade-off between

two conflicting objectives to deal with both skipped and non-skipped commits. We evaluate

our approach and investigate the performance of both within and cross-project validations on a

benchmark of 14,294 CI commits from 15 projects that use Travis CI system. The statistical tests

revealed that our approach shows a clear advantage over the baseline approaches with average

scores of 92% and 84% in terms of AUC for cross-validation and cross-project validations

respectively. Furthermore, the features analysis reveals that documentation changes, terms

appearing in the commit message and the committer experience are the most prominent features

in CI skip detection. When it comes to the cross-project scenario, the results reveal that besides

the documentation changes, there is a strong link between current and previous commits results.
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Moreover, we deployed and evaluated the usefulness of SkipCI with our industrial partner.

Qualitative results demonstrate the effectiveness of SkipCI in providing relevant CI skip commit

recommendations to developers for two large software projects from practitioner’s point of view.

Keywords. Continuous Integration, Travis CI, Software Build, Search-Based Software Engi-

neering, Genetic Programming.

7.1 Introduction

Continuous integration (CI) is a leading edge of modern software development practices that is

widely adopted in industry and open-source environments (Vasilescu et al., 2015). CI systems,

such as Travis CI1, advocate to continuously integrate code changes, by automating the process

of building and testing (Fowler, 2006), which reduces the cost and risk of delivering defective

changes. Nevertheless, the build process is seen as a critical problem that hinders CI adoption. In

fact, in such context, the build process is typically time and resource-consuming and particularly

painful for large projects, with various dependencies, in which their builds can take hours and

even days (Ghaleb et al., 2019a). The presence of such slow builds severely affects both the

speed and cost of software development as well as the productivity of developers (Luo et al.,

2017). Such challenges motivated the research (Abdalkareem et al., 2019, 2020) on developing

techniques to speed up CI process and cut its expenses by detecting commits that do not require

the system’s build e.g., commits affecting non-source files.

The first attempt in addressing this problem (Abdalkareem et al., 2019), formulated the CI skip

detection problem with rules that were manually defined through mining the historical commit

changes. To raise the challenges related to making the manual procedure of defining the rules as

well as the high false negative rate, Abdalkareem et al. (Abdalkareem et al., 2020) proposed an

approach based on Decision Tree (DT) that achieved satisfactory results within-project validation

with 89% in terms of Area Under the ROC Curve (AUC). When it comes to cross-project

validation, the prediction performance degraded to the accuracy of random guessing with 74%

1 https://travis-ci.org/
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in terms of AUC; which challenges the applicability of this approach on projects with little or no

previous commit history. However, in practice, there is a lack of training data as the CI skip

option (e.g., adding the ‘[ci skip]’ or ‘[skip ci]’ in commit messages2 in order to explicitly skip

the commit by CI systems) is usually under-used. This suggests that the skip detection problem

is not yet resolved.

Detecting a skip commit in practice is not a trivial task as the main difficulty lies in the large and

complex search space to be explored due to exponential number of possible combinations of

features and their associated threshold values. Hence, the CI skip commits detection problem

is by nature a combinatorial optimization problem in order to find the optimal detection rules

that should maximize as much as possible the detection accuracy. Additionally, taking into

account the conflict between the minority (i.e., skipped) and majority (i.e., non-skipped) classes

accuracies (Bhowan et al., 2011), multi-objective formulation is well suited to search-based

software engineering (SBSE) (Harman & Jones, 2001; Harman et al., 2012). Recently, a number

of researchers have highlighted the successful use of Multi-Objective Genetic Programming

(MOGP) as an efficient method for developing prediction models (Harman et al., 2012;

Kessentini & Ouni, 2017; Ouni et al., 2016). This technique is particularly effective with

imbalanced problems as it allows the evolution of solutions with optimal balance between

minority and majority classes, without need to rebalance the data (Bhowan et al., 2012, 2013).

This is crucial to keep the generated models accurate to the original data (Tantithamthavorn

et al., 2018a) and hence human interpretable.

Motivated by the need for help in efficiently identifying commit changes that could be skipped in

the CI pipeline, we introduce in this paper, SkipCI, a novel approach that formulates the problem

of CI skip detection as a search-based problem to (1) maximize the probability of detection

(i.e., skipped commits that are correctly classified) and (2) minimize the false alarms (i.e., the

commits incorrectly classified as skipped). In this approach, we adapt the Strength-Pareto

Evolutionary Algorithm (SPEA2) (Zitzler et al., 2001) with a tree-based solution representation,

2 https://docs.travis-ci.com/user/customizing-the-build/#skipping-a-build
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to generate the optimal detection rules that should cover as much as possible the accurately

detected commits from the base of real world CI commits examples.

To evaluate our approach, we conducted an empirical study on a benchmark of 14,294 CI

commits from 15 projects that use Travis CI system. First, we answer the following research

question: RQ1: How effective is SkipCI compared to other existing search-based algorithms?

Our multi-objective formulation has shown its effectiveness compared to other SBSE approaches.

Then, we compare SkipCI to five ML techniques within-project validation in RQ2: How does

our approach perform compared to ML techniques? and considering cross-project validation in

RQ3: How effective is our approach when applied on cross-projects? Results show that SkipCI

achieves a better performance over various baseline approaches with average AUC scores of 92%

and 88% for cross-validation and cross-project validations, respectively. Next, we investigate

the most important features by leveraging our generated rules in RQ4: What features are most

important to detect skipped commits? The features analysis reveals that the number of previously

skipped commits, the commit purpose, and the terms appearing in the commit message are the

most influential features to indicate CI skip proneness. Moreover, we deployed SkipCI in an

industrial setting in RQ5: Are the CI skip commit recommendations provided by SkipCI useful

for developers who use CI in practice? The results of a qualitative evaluation of SkipCI with 14

developers indicate the relevance of SkipCI in practice as compared to baseline techniques.

7.1.1 Contributions

The main contributions of the paper can be summarized as follows:

1. A novel formulation of the CI skip detection as a multi-objective optimization problem to

handle imbalance nature of CI skipped commits data.

2. An evaluation of SkipCI, on a benchmark of 14,294 Travis CI commits of 15 projects that

use Travis CI, by (1) comparing our approach to search-based algorithms as well as ML

techniques and (2) performing a qualitative analysis to discover which features are the most

prominent to determine CI skipped commits using our proper rules.
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3. An industrial evaluation of SkipCI. Specifically, we deployed our tool in the CI pipeline of

two projects with our industrial partner and validated its relevance with 14 developers.

7.1.2 Replication Package

We provide our replication package containing all the materials to reproduce and extend our

study (Saidani, 2020b). In particular, we provide (1) our SkipCI tool as a lightweight command

line tool with the necessary documentation to run the tool, (2) the working data sets of our study

and (3) the validation results along with (4) examples of the built models.

7.1.3 Paper Organization

The remainder of this paper is organized as follows. In Section 7.2, we motivate the formulation

of CI skip detection with a real-world example. Then, we explain how we adapted SPEA2 to our

problem in Section 7.3. Section 7.4 describes the experimental setup of our empirical study

while Section 7.5 presents the results of this evaluation. In Section 7.6, we deploy SkipCI in an

industrial setting and evaluate it from developers’ perspectives. We discuss the implications of

our findings in Section 7.7. Section 7.8 describes the threats to validity. Section 7.9 concludes

the paper.

7.2 Motivating Example

Although the ML-based model (Abdalkareem et al., 2020) was able to improve the CI skip

detection compared to the rule-based approach (Abdalkareem et al., 2019), it still misses cases

of commits that should be skipped in CI. Figure 7.1 depicts a concrete example extracted from

SemanticMediaWiki3, a PHP framework, where the commit, despite not being a cosmetic change,

it is worth to be skipped. Looking at the commit change, the developer has modified two files:

3 https://github.com/SemanticMediaWiki/SemanticMediaWiki/commit/

8e46f76067196f5677ee88ec667daefedf611b4d
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• The first file is a source file (PHP) in which the developer added a default parameter (or

optional) called $default to the signature of get function. This parameter is the result to be

returned in case the key (a parameter called $key) is not in the list (of type SchemaList). We

clearly see that this change neither alter the function behavior nor the behavior of the caller

functions as it replaces the empty list with a parameter set by default to []. This explains

why this file was the only source file to be affected by this change, even though this function

is called in other files.

• The second file is a test file, in which the developer (i) changed the value to be tested in order

to check whether calling a non-existent key would return an empty list, and (ii) added another

assertion to verify whether calling a non-existent key would return null in case $default is set

to null. Looking at the content of this file, we see that the input list for these tests contains

only one element set to ‘Foo’, which means these tests can be skipped.

However, using existing approaches (Abdalkareem et al., 2019, 2020), we have found that they

failed to detect this commit to be skipped. Indeed, the rule-based approach (Abdalkareem et al.,

2019) consists of five rules related mainly to non-source files (e.g., documentation) and cosmetic

changes (e.g., . source code formatting), which explains why this approach cannot detect more

sophisticated cases as this example shows. Hence, this approach is not suitable to the CI skip

problem.

The machine learning approach (Abdalkareem et al., 2020) has also failed to provide an

adequate detection. Looking at the generated model, we found that the commit is classified

as non-skipped based on three conditions including (i) having non-documentation files, (ii) a

developer experience (i.e., number of previously committed changes) greater than 1,700 and (iii)

a number of changed files greater than one, which mismatches with the characteristics of the

provided example.

This implies that solving this problem is not a trivial task and requires a more suitable approach

to generate the adequate skip detection rules that learn from both classes (1) skipped commits

and (2) non-skipped commits. In fact, when the changes are sophisticated, the problem resolution
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requires exploring a large search space composed of high number of possible combinations

of features and their associated thresholds. Hence, the CI skip detection can be formulated

as a search-based optimization problem to explore this large search space, in order to find

the optimal detection rules. Additionally, a practical tool should also provide the developers

with human explainable detection models to help them gaining insights into the CI commits

to be skipped, especially when the changes are not trivial as shown in this example. This

cannot be provided by ML techniques as re-sampling affects the interpretability of the generated

models (Tantithamthavorn et al., 2018a) since the original and the balanced training corpora

have different characteristics. Furthermore, rebalancing can also be computationally expensive

(Bhowan et al., 2009). In this paper, we advocate that a MOGP technique is more suitable

since it allows the evolution of solutions with optimal balance between minority and majority

classes, without need to rebalance the data. In this way, the generated rules can provide useful

explanations to the user.

Figure 7.1 A motivating example taken from the

SemanticMediaWiki project

In the next section, we describe SkipCI and show how we formulated the CI skip detection

problem as a multi-objective combinatorial optimization problem to address the above mentioned

problems.
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7.3 The SkipCI Approach

In this section, we describe our SkipCI approach to automate the detection of CI skipped commits

by adapting Strength-Pareto Evolutionary Algorithm (SPEA2) (Zitzler et al., 2001).

7.3.1 Approach Overview

Figure 7.2 depicts an overview of SkipCI. The first input is a set of collected examples of

commits that were annotated by their original developers as skip commits. As output, SkipCI

generate optimal rules using the SPEA2 algorithm. The search algorithm evolves toward finding

the best trade-off between two objective functions to (1) maximize the true positive rate, and (2)

minimize the false positive rate. Then, given a code change (i.e., commit) which is composed of

a number of changed files, SkipCI provides the user with an explained recommendation whether

to skip or not the submitted change in the CI pipeline, i.e., trigger the build process.

SkipCI

Best Detection Rule

CI Skip Commit Detection

Explained CI Skip Recommendation (Yes/No)

Developer

Source Code 
[Commit] 

Developer

Examples of 
CI commits

Generation of CI Skip Commits 
Detection Rule

(Multi-objective Genetic Programming)

• Objective 1: Maximize the number of 
correctly detected CI skip commits
• Objective 2: Minimize the number of 

incorrectly classified CI commits

Training data

1

2

3
Prediction input data

4

Figure 7.2 Approach overview
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7.3.2 Multi-objective Genetic Programming adaptation

This section shows how MOGP is adopted to CI skip commits detection problem using SPEA2.

Then, we present the solution encoding, the objective functions to optimize, and the employed

change operators.

7.3.2.1 Adaptation of SPEA2

To adapt SPEA2 to our problem (i.e., CI skip commit detection), we need to define (i) the

initial population (line 1 in Algorithm 2.3), (ii) the fitness assignment (line 3), (iii) the variation

operators (line 6) and (iv) the stopping criteria (line 2). The parameters setting, such as the

population size, is described later in Section 7.4.4.

i. Initialization: Before defining the initial population generation, we need first to define the

population individuals or candidate solutions. In MOGP, a candidate solution, i.e., a detection

rule, is represented as an IF – THEN rules with the following structure (Saidani et al., 2020a;

Ouni et al., 2013; Kessentini & Ouni, 2017; Ouni, Kessentini, Inoue & Cinnéide, 2015):

IF “Combination of features with their thresholds" THEN ”RESULT”.

The antecedent of the IF statement describes the conditions, i.e., pairs of features and their

threshold values connected with mathematical operators (e.g., =, >, ≥, <, ≤), under which a CI

commit is said to be skipped or not. These pairs are combined using logic operators (OR, AND

in our formulation). Figure 7.3 provides an example of a solution.

This rule, represented by a binary tree, detects a CI skip commit if it fulfills the situation where

(1) the number of added lines in the changed files (LA) is less or equals to 146, (2) the commit

does not change source files (IS_SRC), and (3) the commit is not a bug fixing commit (IS_FIX).

IF LA ≤146 AND IS_SRC =0 AND IS_FIX =0 THEN Skip commit.
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LA ≤ 146

AND

is_src = 0

AND

is_fix = 0

Figure 7.3 Example of solution representation

To generate the initial population, we start by randomly assigning a set of features and their

thresholds to the different nodes of the trees. To control for complexity, each solution size, i.e.,

the tree’s length, should vary between a lower and upper-bound limits based on the total number

of features to use within the detection rule. More precisely, for each solution, we assign:

• For each leaf node one feature and its corresponding threshold. The latter is generated

randomly between lower and upper bounds according to the values ranging of the related

feature.

• Each internal node (function) is randomly selected between AND and OR operators.

ii. Fitness assignment: Appropriate fitness function, also called objective function, should be

defined to evaluate how good is a candidate solution. For the CI skip commit problem, we seek

to optimize the two following objective functions:

1. Maximize the coverage of expected CI skipped commits over the actual list of detected

skipped commits known as the True Positive Rate (TPR), or the False Probability Detection

(PD).

TPR(𝑆) =
{Detected Skipped Commits} ∩ {Expected Skipped Commits}

{Detected Skipped Commits}

2. Minimize the coverage of actual non-skipped commits that are incorrectly classified as

skipped also known as False Positive Rate (FPR), or the probability of false alarm (FP).

FPR(𝑆) =
{Detected Skipped Commits} ∩ {Expected non-skipped Commits}

{Detected Skipped Commits}
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Additionally, since SPEA2 returns a set of optimal (i.e., non-dominated) solutions in the Pareto

front without ranking, we extract a single best solution which is the nearest to the ideal solution

known as True Pareto in which TPR value equals to 1 and FPR equals to 0. Formally, the

distance is computed in terms of Euclidean distance (Ouni et al., 2016, 2013) as follows:

BestSol =
𝑛

min
𝑖=1

√
(1 − TPR[𝑖])2 + FPR[𝑖]2

where n represents the number of solutions generated by SPEA2 TPR[i] and FPR[i] compute the

TPR and FPR of solution 𝑖 ∈ {1..𝑛}.

iii. Variation:

Mutation: In MOGP, this operator can be applied either to a terminal or a function node. It starts

by randomly selecting a node in the tree. Then, if the selected node is a terminal, it is replaced

by another terminal (other feature or other threshold value, or both); if it is a function (AND, OR

operators) node, it is replaced by a new function. Then, the node and its sub-tree are replaced by

the new randomly generated sub-tree. Figure 7.4 illustrates an example of a mutation process, in

which the terminal is replaced containing IS_FIX feature, by another terminal composed of the

condition 𝑁𝑆 ≤ 20. Thus, we obtain the new rule:

IF LA ≤146 AND IS_SRC =0 AND NS ≤20 AND LT≤5 THEN Skip Commit.

Crossover: For MOGP, we use the standard single-point crossover operator where two parents

are selected and a sub-tree is extracted from each one. Figure 7.5 depicts an example of the

crossover process. In fact, rules P1 and P2 are combined to generate two new rules. For instance,

the new rule C2 will be:

IF NUC ≤ 2 OR IS_SRC =0 THEN Skip Commit.
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Before mutation

LA ≤ 146

AND

is_src = 0 is_fix = 0

AND

AND

LT ≤ 5

After mutation

LA ≤ 146

AND

is_src = 0

AND

AND

LT ≤ 5NS ≤ 20

Figure 7.4 An example of mutation operation

same_committer = 1NUC ≤ 2

P1

P2

LA ≤ 146

AND

is_src = 0

is_fix = 0

OR

AND

same_committer = 1

NUC ≤ 2

C1

C2

LA ≤ 146

AND

is_src = 0

is_fix = 0

OR

AND

Figure 7.5 An example of crossover operator

iv. Stopping criteria: In our experiments, the algorithm stops when reaching a maximum

number of generations.

7.3.3 Features for CI Skip commits detection

Tables 7.1 lists the features, used to learn and generate our detection rules. Besides the features

used by Abdalkareem et al. (Abdalkareem et al., 2020), we also generated other features related

to the history of commits to better capture the salient characteristics of CI skip commits. Note
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that we wrote a Java script to compute the features based on their definition from the original

paper. Please refer to our replication package for more details about the implemented script.

The selected features can be categorized as follows:

Statistics about the current commit: These features give a different information about the

current commit change size (e.g., number of lines added/deleted, entropy), the importance of

terms in the commit message (i.e., CM) that has proved its efficiency to predict CI Skip commits

in the recent work of Abdalkareem et al. (Abdalkareem et al., 2020) and other general statistics

(e.g., the day of the week).

Commit purpose: These features provide insights into the commit skip proneness. For

instance, merge commits, commits containing only media or those changing documentation files

are most likely to be skipped.

Link to last to commit(s): In addition to the previously used features that are linked to last

commits (Abdalkareem et al., 2020), such as the committer experience, we add and deduce

other detailed features including the number of recently skipped commits (in the project and

by the current committer), the feature indicating whether the last commit was skipped or

not and whether the current commit is requested by the same committer of the previous one.

These features are inspired from existing works of CI build failure detection (Ni & Li, 2017;

Hassan & Wang, 2017; Xie & Li, 2018) in which the authors found that there is a strong link

between the current build and the previous ones, and it was helpful to predict the failure in

practice. In this paper, we hypothesize that likely to CI build failure, skipped commits may come

consecutively e.g., committing different changes of documentation or applying sequences of

refactoring (i.e., modifying the code structure without changing its function (Fowler, 2018)).

7.4 Experimental Study Design

In this section, we describe the design of our empirical study to evaluate our SkipCI approach.
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Table 7.1 Features used form CI Skip detection extracted from literature

Cat Feature Description Rational

St
at

ist
ic

sa
bo

ut
cu

rr
en

tc
om

m
it

Number of Sub-systems (NS) The number of changed sub-systems.
Commits that affect many subsystems are not

usually likely to be CI skipped.

Number of Directories (ND) The number of changed directories.
Commits that affect are based on many directories

are not usually likely to be CI skipped.

Number of Files (NF) The number of changed files. Usually non-trivial changes affect many files.

ENTROPY
Measures the distribution of the change

across the different files.
High entropy is an indication of complicated changes.

Lines Added (LA) The number of added lines.
Adding new lines means that the functionality

of code has changed and hence should be tested.

Lines Deleted (LD) Number of deleted lines
Many deleted lines indicate that the

change should not be CI skipped.

Day of the Week (DAY_WEEK) Day of the week when the commit was performed.

Routines of developers and the battle rhythms of

projects can manifest

themselves in CI skip activity.

Commit Message (CM)
Measures the importance of terms appearing

in the commit message using TF-IDF

Commit message may contain useful

information about the type of commit.

Types of Files Changed (TFC)
The number of the changed

files’ types identified by their extension.
The type of files indicate the type of changes.

Co
m

m
it

Pu
rp

os
e

Classification (CLASSIF)

Feature Addition (1), Corrective (2), Merge (3),

Perfective (4), Preventative (5), Non-Functional (6),

None (7)

The classification of the commit can be useful

e.g., commits of category

(1) cannot generally be skipped).

Fixing Commit (IS_FIX) Whether the commit is a bug fixing commit Fixing bugs means that the code need to be tested.

Documentation Commit (IS_DOC)
Whether the commit is a documentation commit, i.e.,
contains only doc files

Commits that change documentation files

are likely to be skipped.

Building Commit (IS_BUILD) Tests whether the commits contains only build files

if the changes in a commit are mainly related

to release version, the latter is

likely to be skipped.

Meta-files Commit (IS_META)
Whether the commit a meta commit

(contains only meta files)

If a commit changes mainly meta files,

it is likely to be CI skipped.

Merging Commit (IS_MERGE) The commit is a merge commit
If the commit is a merging one,

it is likely to be CI skipped.

Media Commit (IS_MEDIA)
Whether the commit a media commit,

i.e., contains only media files like images

Commits that contain only changed media files

are likely to be CI skipped.

Source Commit (IS_SRC)
Whether the commit a source commit

i.e., contains only source code files

Commits that contain only source

files may need to be tested.

Formatting Commit (FRM) If the commit changes the formatting of the source code.
In this case, the commit is likely to be

a CI skip commit

Comments (COM) If the commit modifies only source code comments
This type of changes indicates that the commits

is likely to be skipped.

Maintenance Commit (MC) If the commit is a maintenance activity.
The type of maintenance activity may indicate

the need to test the changes.

Li
nk

to
La

st
Co

m
m

it(
s)

Project Recent Skip (PRS)
Number of recently commits that were skipped

in the 5 past commits.

All previous skipped commits can impact the

likelihood of the current commit to be skipped.Committer Recent Skip (CRS)

Number of recently commits that

were skipped in the 5 past commits by the

current committer.

Previous Commit Result (PCR) Whether previous commit was skipped or not.

Same Committer (SC) Whether it is the same committer of the last commit.

Number of Unique Changes (NUC)
The number of unique last commits

of the modified files.

Larger NUC is an indication of the commit’s

complexity which requires testing the commit.

AGE
The average time interval between the current and

the last time these files were modified.

Faster changes can introduce more

bugs and thus need to be tested.

Number of Developers (NDEV)
The number of developers that previously

changed the touched file(s) in the past.
The larger is NDEV, the more risky are the changes.

Lines Transformed (LT) Size of changed files before the commit.
Higher LT indicates the complexity of the changed

files and thus the need to be tested.

Developer Experience (EXP)
The number of commits made by the

developer before the current commit.
Indication of how much is the developer

familiar with the changed files

and thus his/her knowledge about the need

to skip the changes.Sub-system Experience (SEXP)

Subsystem experience measures the

number of commits the developer made

in the past to the subsystems

that are modified by the current commit.

Recent Experience (REXP)

Recent experience is measured as

the total experience of the developer

in terms of commits, weighted by their age.
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7.4.1 Research Questions

In this study, we define four Research Questions (RQs). In the first two RQs, we conduct a

10-fold cross validation by dividing the data of each project into 10 equal folds. We use 9 folds

to train each algorithm, and use the remaining one fold to evaluate the predictive performance.

Then, we perform cross-project validation in RQ3, and investigated the features influence in

RQ4.

RQ1. (SBSE validation) How effective is SkipCI compared to other existing search-based

algorithms?

Motivation. The aim in this question is to evaluate the SPEA2 formulation from an SBSE

perspective as recommended by Harman and Jones (Harman & Jones, 2001). First, we compare

SPEA2 against Random Search (RS) (Harman et al., 2010; Karnopp, 1963), to evaluate the need

for an intelligent method against the unguided search of solutions. Additionally, it is important to

compare our multi-objective formulation mono-objective GP (GA) since if considering separate

conflicting objectives fails to outperform aggregating them into a single objective function, then

the proposed formulation is inadequate. Then, we evaluate the performance of SPEA2 with

three widely-used multi-objective algorithms (Harman et al., 2012; Harman, 2007; Mkaouer

et al., 2015) namely Non-dominated Sorting Genetic Algorithm (NSGA-II) (Deb et al., 2002),

NSGA-III (Deb & Jain, 2013) and Indicator-Based Evolutionary Algorithm (IBEA) (di Pierro

et al., 2007) in terms of the quality of non-dominated solutions known as Pareto front in the

objective space (Hadka, 2014).

Approach. To answer RQ1, we first compute three widely used performance evaluation features

namely F1-score, Area Under the ROC Curve (AUC) and the Accuracy measures. The first

measure is defined as follows:

F1-score = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
∈ [0, 1] (7.1)



188

In our study, the recall is the percentage of correctly classified CI skip commits over the total

number of commits that are skipped, while the precision is the percentage of detected CI skip

commits that are actually skipped. These features are computed as:

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
∈ [0, 1] (7.2)

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
∈ [0, 1] (7.3)

where TP is the number of the skipped commits that are correctly classified, TN is the number

of non-skipped commits that are correctly classified while FP and FN represent the number of

incorrectly classified commits for skipped and non-skipped commits respectively.

AUC measure assesses how well a model/rule performs on the minority and majority classes

and is defined as follows (Cervantes et al., 2013):

AUC =
1 + 𝑇𝑃

𝑇𝑃+𝐹𝑁 −
𝐹𝑃

𝐹𝑃+𝑇𝑁

2
∈ [0, 1] (7.4)

The Accuracy refers to the proportion of correct predictions made by the model and defined as

follows:

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
∈ [0, 1] (7.5)

Moreover, since SPEA2, NSGA-II, NSGA-III and IBEA are Pareto-based search-based ap-

proaches, it is necessary to evaluate the quality of solution sets with respect to Pareto dominance

(Chen, Li & Yao, 2020). This evaluation is generally based on quality indicators that are

well-adopted in SBSE community. In this paper, we select three quality indicators based on

previous practical guides (Wang, Ali, Yue, Li & Liaaen, 2016a; Riquelme et al., 2015; Li & Yao,

2019).
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• Hyper-volume (HV): is the most employed measure according to a previous study by

Riquelme et al. (Riquelme et al., 2015) which calculates the space covered by the non-

dominated solutions. Note that a higher value of HV indicates a better performance of the

algorithm.

• Generational Distance (GD): occupies the second ranking of the most used measures

(Riquelme et al., 2015). GD calculates how far are the Pareto front solutions from the true

Pareto front (in our case, it is the optimal detection rule having 𝑇𝑃𝑅 = 1 and 𝐹𝑃𝑅 = 0). The

smaller is GD, the better is the algorithm

• Spacing (SP): captures another important aspect of quality i.e., uniformity of solutions

(Meng, Zhang & Liu, 2005). In a nutshell, SP measures how evenly the members of a Pareto

front are distributed. A value of 0 for SP means that all solutions are uniformly spaced i.e.,

the algorithm possess an optimal quality.

It is worth to mention that all the search-based algorithms and quality indicators used in this

study are implemented using MOEA Framework4, an open-source framework for developing

and experimenting with search-based algorithms (Hadka, 2013, 2014).

RQ2. (Within-project validation) How does our approach perform compared to ML techniques?

Motivation. After evaluating our approach in terms of SBSE performance, it is important to

evaluate its efficiency in solving the problem against the state-of-art solution i.e., the Machine

Learning (ML) based techniques used in the previous work of Abdalkareem et al. (Abdalkareem

et al., 2020). This comparison is important to motivate the need for a search-based approach to

improve the CI skip detection.

Approach. To answer RQ2, we evaluate the predictive performance of our MOGP formulation

against five ML techniques, widely used software engineering research (Xia et al., 2017a;

Ni & Li, 2018; Xia & Li, 2017; Luo et al., 2017; Hassan & Wang, 2017; Ni & Li, 2018;

Santolucito et al., 2018), namely Decision Tree (DT), Random Forest (RF), Naive Bayesian

4 http://moeaframework.org/
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(NB), Logistic Regression (LR) and Support Vector Classification (SVC). As ML models are

sensitive to the scale of the inputs, we preprocess the raw data to scale the features using the

Standard Scaler module 5.

In addition, to mitigate the issue related to the imbalanced nature of the dataset, we rely

on Synthetic Minority Oversampling Technique (SMOTE) method (Chawla et al., 2002), to

resample the training data. It is worth to mention that we only resample the training data in order

to assess these algorithms in a real-world situation. To compare the predictive performance of

SkipCI with ML techniques, we use AUC, F1-score and Accuracy that were defined previously.

RQ3.(Cross-project validation) How effective is our approach when applied on cross-projects?

Motivation. In RQ3, we investigate the extent to which CI Skip commit identifications can

be generalized through a cross-project prediction. In fact, many projects do not have sufficient

historical labeled data to build a model (Abdalkareem et al., 2020) (e.g., small or new projects),

which may prevent the project team from using a prediction tool. Cross-project validation is

the-state-of-art technique to solve the lack of training data in software engineering (Xia et al.,

2017a).

Approach. To evaluate our approach on the cross-project validation, we train the studied

approaches based on data from 14 projects and use the remaining one project to test the trained

model/rule. This experiment is repeated for all the studied project. To gain better insights into

the performance of our approach, we compare it with the ML techniques used in RQ2 based on

F1-score, AUC and Accuracy in this RQ.

RQ4. (Features analysis) What features are most important to detect skipped commits?

Motivation. The goal of RQ4 is to analyze the most influencing features to detect commits

to be skipped. The perspective is for researchers interested in understanding how CI commits

5
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
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features can be related to building activities and for developers, who might want to identify the

indications that can help them in their decisions to skip their committed changes.

Approach. We address RQ4 by exploring and interpreting the valuable knowledge provided

by our generated models, i.e., detection rules. Since we use 10-fold cross-validation and

cross-project validation, the analysis produces 11 optimal rules for each project. Additionally,

the same feature may occur multiple times in the obtained rules. Thus, to analyze the features

importance, we consider that the higher the number of occurrences of a feature in the optimal

rules, the more important is the feature in identifying CI skip commits. In addition, to give

a more general view, we aggregate the results of features occurrences for each project and

feature category (cf. Section 7.3.3). Note that as our approach produces 31 rules at each

experimentation, we choose the best rule across these repetitions based on the obtained AUC

scores.

7.4.2 Studied Projects

Our experiments are mainly based on the dataset provided by Abdalkareem et al. (Abdalkareem

et al., 2020) which comprises ten open-source Java projects using Travis CI. Moreover, we

extended this dataset based on the same filter by Abdalkareem et al. (Abdalkareem et al., 2020)

while considering different programming languages, i.e., projects that (i) use Travis CI system, a

popular CI service on GitHub (Hilton et al., 2016), and (ii) have at least 10% of skipped commits

on the master branch, which is required to feed our tool with sufficient historical CI skip records.

The projects were gathered using the Big Query Google6 to query on the GitHub data 7. Our

filters result in a total of 15 projects including the 10 projects studied in Abdalkareem et al.

(Abdalkareem et al., 2020). Note that we only consider commits from the date a given project

starts using Travis CI. After this filtering process, we end up with 16,334 commits in total.

6 https://bigquery.cloud.google.com

7 https://console.cloud.google.com/bigquery?p=bigquery-public-data&d=github_repos&page=dataset
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Noise Detection and Removal. Since the CI skip option is under-used in practice and that

developers may skip commits that cause build failure if not skipped, it is inevitable that the

collected data have noise. However, the noise can cause the deterioration of the classifier

performance (Gupta & Gupta, 2019; Frénay & Verleysen, 2013) and difficulty in identifying the

relevant features (Ekambaram, Goldgof & Hall, 2017). Therefore, we must proceed with a data

cleaning process to find and remove the mislabeled instances. To deal with the noise in skipped

commits class, we search and find the unit tests for the skipped commits to check whether those

changes can cause test failure. To identify the linked tests, we verify, for each commit, whether

the names of the changed source files appear in any of the test files (e.g., in Java, we use import

or new to call the class). Fortunately, the tested files have passed so we can consider that the

problem is handled for class "skipped" (i.e., = 1). Then, we employ the Python package cleanlab

8 which supports PU learning (Learning from Positive and Unlabeled examples). PU learning is

special case when one of the classes has no error. In fact, P stands for the positive class and is

assumed to have zero label errors (the skipped commits in our case) and U stands for unlabeled

data which we assume contains some positive examples (the non skipped commits). The goal of

PU learning is to (1) estimate the proportion of positives in the negative class, (2) find the errors,

and (3) train on clean data. Using this approach, we removed around 12% of the data which

left us with 14,294 commits. Table 7.2 provides some statistics about the studied projects and

provides information about the level of noise in each project.

7.4.3 Statistical Test methods Used

Due to the stochastic nature of search-based algorithms, DT and RF techniques, we compare the

performance of these algorithms by running them 31 independent runs for each experimentation

then we choose the rule/model with the median value as suggested in (Arcuri & Briand, 2011).

Additionally, in order to provide support for the conclusions derived from the obtained results,

we use Wilcoxon signed rank test (Wilcoxon et al., 1970), a non-parametric statistical test

method to detect significant performance differences with a 95% confidence level (𝛼 is set at

8 https://github.com/cgnorthcutt/cleanlab
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Table 7.2 Statistics of the studied projects

Project Language Study period
the number
of commits
(filtered)

CI SKIP
percentage(%)

Noise
level(%)

contextlogger Java 2014-12-12 - 2017-03-14 211 31 2

SAX Java 2015-06-20 - 2018-02-20 403 22 5

future Java 2017-02-05 - 2018-10-02 241 25 14

solr-iso639-filter Java 2013-08-20 - 2015-06-16 384 45 9

GI Java 2015-06-20 - 2018-05-27 338 12 3

grammarviz2_src Java 2014-08-22 - 2018-03-06 403 14 5

parallec Java 2015-10-28 - 2018-01-13 124 60 14

candybar-library Java 2017-02-22 - 2018-02-05 250 80 13

steve Java 2015-10-07 - 2020-04-01 770 10 5

mtsar Java 2015-05-06 - 2019-07-17 338 40 13

searchkick Ruby 2013-08-12 - 2020-03-31 1,509 30 18

groupdate Ruby 2013-04-25 - 2020-03-18 535 25 17

SemanticMediaWiki PHP 2013-06-17 - 2020-04-19 6,861 19 14

ransack Ruby 2011-07-17 - 2020-04-04 1,371 20 8

pghero Ruby 2016-02-19 - 2020-04-06 556 25 8

0.05). Vargha-Delaney A (VDA) (Vargha & Delaney, 2000) is also used to measure the effect

size. This non-parametric method is widely recommended in SBSE context (Nejati & Gay,

2019). It indicates the probability that one technique will achieve better performance than

another technique. When the A measure is 0.5, the two techniques are equal. When the A

measure is above or below 0.5, one of the techniques outperforms the other (Thomas et al.,

2014). Vargha-Delaney statistic also classifies the magnitude of the obtained effect size value

into four different levels: negligible, small, medium, and large (Scalabrino et al., 2016; Saidani

et al., 2020a).

7.4.4 Parameter Tuning and Setting

One of the most important aspects of research on SBSE is parameters tuning which has a critical

impact on the algorithm’s performance (Arcuri & Fraser, 2011). This is also compulsory when

using ML techniques (Tantithamthavorn et al., 2018a). There is no optimal parameters’ setting

to solve all problems, therefore, we used a trial-and-error method to select the hyper-parameters

(Harman et al., 2012) to handle parameter tuning for search-based algorithms which is a common

practice in SBSE (Harman et al., 2012). These parameters are fixed as follows: population size
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= 100; maximum the number of generations = 500; crossover probability =0.7; and mutation

probability = 0.1.

As for ML techniques, we employed Grid Search (Scikit-learn.org, 2006), an exhaustive search-

based tuning method widely used in practice. We report in Table 7.3, the parameters’ setting of

the ML techniques used in this study.

Table 7.3 Parameters’ settings for ML

techniques under comparison

Algorithm Parameters

RF
Max depth of the tree =10

the number of estimators = 400

DT Max depth of the tree=10

NB Used NB model= Bernoulli NB

LR
Max iterations= 200

penalty = ’l2’

SVC

C=1

kernel=’rbf’

Max iterations= 2000

7.5 Experimental Study Results

This section presents and discusses the experimental results to answer our research questions.

7.5.1 Results of SBSE validation (RQ1)

Figure 7.6 plots the predictive performance of the search-based algorithms under comparison

over 4,650 experiment instances (31 runs × 10 folds × 15 projects).

As shown in Figure 7.6, GA achieved in median 85%, 84% and 91% in terms of AUC, F1-score

and accuracy, respectively, while RS has shown a lower predictive performance of 80%, 78%

and 86% in terms of AUC, F1-score and accuracy, respectively. In comparison with the multi-

objective formulation, we clearly see that MOGP techniques (IBEA, SPEA2, NSGA-II, and

NSGA-III) outperform the mono-objective algorithm (GA) by achieving, at least, a difference of
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6%, 5% and 4% in terms of AUC, F1-score and accuracy respectively. Moreover, the statistical

tests’ results (Table 7.4) reveal that over 31 runs (of each project and each validation iteration),

MOGP techniques show significant improvement over GA and RS with large VDA effect sizes.

These findings confirm the suitability of multi-objective formulation for the detection problem as

it can provide a better compromise between TPR and FPR. Therefore, our problem formulation

passes the SBSE validation.

Figure 7.6 Results of the search algorithms for the 4,650

experiment instances (31 runs, 10 validation iterations, 15 projects)
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Table 7.4 Statistical tests results of SPEA2 compared to other

search-based techniques under cross-validation

SkipCI vs. IBEA vs. NSGA-II vs. NSGA-III vs. GA vs. RS

AUC
p-value 1 1 1 < 10−16 < 10−16

A estimate 0.52 0.52 0.53 0.76 0.79

Magnitude N N N L L

F1
p-value 1 1 1 < 10−16 < 10−16

A estimate 0.52 0.51 0.51 0.68 0.71

Magnitude N N N L L

Accuracy
p-value 1 1 1 < 10−16 < 10−16

A estimate 0.53 0.52 0.52 0.71 0.75

Magnitude N N N L L

L: Large, M: Medium, S: Small, N: Negligible

With regards to MOGP algorithms, Table 7.5 shows the results of comparison based on the

Hyper-Volume (HV), Generational Distance (GD) and Spacing (SP) as described in Section

7.4.1. As reported in the table, the best scores of HV, GD and SP were obtained by SPEA2. In

fact, SPEA2 obtained in median a HV score of 0.97, compared to 0.95 achieved by NSGA-II and

0.94 achieved by NSGA-III and IBEA respectively. In terms of GD, SPEA2 achieved a better

distance between its generated solutions and the optimal one ( i.e., Pareto front) by reaching

0.08 compared to 0.10, 0.14 and 0.13 for NSGA-II, NSGA-III and IBEA, respectively. As for

the SP, the median scores are barely distinguishable between all the algorithms, so they achieve

a similar spacing between the generated solutions, even though SPEA2 is slightly better with a

median of 0.06 as compared to 0.05 for the other algorithms under comparison.

Overall, we observe that SPEA2 provides the highest median performance among the compared

MOGP algorithms, which motivates our choice to adopt it as a search method.

Table 7.5 Results of Pareto-based comparison in terms of

hyper-volume (HV), Generational Distance (GD), and SPacing (SP)

SPEA2 NSGA-II NSGA-III IBEA
HV 0.97 0.95 0.94 0.94

GD 0.08 0.10 0.14 0.13

SP 0.07 0.05 0.05 0.05
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Summary for RQ1. Our multi-objective formulation has shown its effectiveness compared

to mono-objective and random search algorithms by reaching 93% of AUC, 88% of

F1-score and 95% of accuracy in median. SPEA2 achieved also higher optimization

performance among the studied MOGP algorithms, which motivates our choice to use it a

search-based approach.

7.5.2 Results of within project validation (RQ2)

Table 7.6 (Appendix A) reports the average (of 10 cross-validation iterations) AUC, F1-score

and accuracy scores achieved by each of the studied approaches; while Table 7.7 shows the

statistical tests’ comparison using the Wilcoxon signed rank test and Vargha-Delaney A effect

size.

With regards to AUC, we clearly see that, for all the studied projects, the best scores were

obtained by SPEA2 achieving on average 93% with an improvement of at least 4% over the best

ML algorithm (SVC). Additionally, the statistical analysis underlines the significant difference

with small to large VDA effect sizes (cf. Table 7.7). For instance, in the mtsar project, our

approach obtained an AUC score of 91% while we recorded scores of 79%, 78%, 75%, 73% and

67% for SVC, RF, LR, NB and DT respectively. Overall, the results for AUC reveal that SPEA2

can reach the best balance between both minority (skipped commit) and majority (non-skipped)

class accuracies, than all the ML techniques. It is worth noting that all ML techniques are trained

using re-sampled training sets unlike in SPEA2, which confirms that multi-objective formulation

is more suited to handle the imbalance problem (Bhowan et al., 2010; Saidani et al., 2020a).

Looking at F1-score, we also observe that SPEA2 achieved the best results for 14 out of 15

projects with an average score of 87% compared to 79% achieved by RF the best performer

among ML techniques. The statistical tests’ results reveal that SPEA2 outperforms ML with

small (compared to SVC, LR, RF), medium (compared to NB) and large (with DT) effect sizes.

Hence, F1-score results demonstrate a compelling superiority of SPEA2 to identify more CI

skip commits.
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As for the accuracy scores, the obtained results also show that SPEA2 is a better performer

than the five considered ML techniques with a significant improvement of 5% on average, and

medium to large effect sizes as shown in Table 7.7. Additionally, the accuracy scores of our

approach range from 86% to 100% while achieving in median a high score of 92%. For all the

studied projects, the accuracy values of SPEA2 exceed those of ML techniques.

However, in the searchkick project, SVC is slightly better by achieving a F1-score of 85%

compared to 83% for SPEA2. But due to the black-box nature of SVC (it returns probabilities

for belonging to a certain class), we cannot have an comprehensible explanation for this result.

Table 7.7 Statistical tests’ results of SPEA2 compared to ML

techniques under cross-validation

SkipCI vs. DT vs. RF vs. LR vs. NB vs. SVC

AUC p-value < 10−16 < 10−16 < 10−16 < 10−16 < 10−16

A estimate 0.77 0.62 0.65 0.71 0.64

Magnitude L S S M S

F1 p-value < 10−16 < 10−16 < 10−16 < 10−16 < 10−16

A estimate 0.77 0.60 0.66 0.70 0.64

Magnitude L S S M S

Accuracy p-value < 10−16 < 10−16 < 10−16 < 10−16 < 10−16

A estimate 0.82 0.63 0.70 0.74 0.67

Magnitude L S M L M

L: Large, M: Medium, S: Small, N: Negligible

Summary for RQ2. SkipCI can achieve higher predictive performance than the studied

ML techniques with a statistically significant difference within-validation, with an average

of 92% and 87% in terms of AUC and F1-score, respectively, while reaching 94% of the

overall classification accuracy.
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7.5.3 Results of cross-project validation (RQ3)

In this RQ, we compare SkipCI with ML techniques under cross-project validation, using

our evaluation measures, the Area Under the ROC Curve (AUC), F1-score, and accuracy, to

measure the performance of our approach. Table 7.8 (Appendix A) presents the effectiveness

of cross-project modeling compared to ML techniques while Table 7.9 reports the statistical

tests’ results. Note that we do not include the deterministic ML algorithms (i.e., LR, NB and

SVC) for the statistical tests’ comparisons as we only recorded 15 observations for each of them,

under the cross-project validation. Recall that in cross-project validation, we train the studied

approaches based on data from 14 projects and use the remaining project’s data as a testing set

and this experiment is repeated for the 15 projects.

First, the results show that SPEA2 achieves high scores of AUC with a median of 86% while the

values range from 63-97%. We observe that 10 out of 15 projects showed high performance results

(≥ 80%). In particular, contextlogger achieves a significant AUC score of 98%. Additionally, we

observe an improvement of 2% on average over LR the best performer. Moreover, the statistical

tests’ results show that the difference is significant with large effect sizes compared to RF and

DT.

The same observations for AUC are also applied to F1-score for which we see that SPEA2 is the

best technique 11 out of 15 projects by achieving 84% on median compared to ML techniques

that achieved F1-scores of 72% for LR, 69% for NB, 43% for RF as well as SVC and 38% for

DT. The statistical analysis confirms the significant difference with RF and DT with large effect

sizes, as reported in Table 7.9.

Looking at the accuracy results, we see that the scores are significantly improved compared to

ML results, for 9 projects out of 15 by achieving in median 91% (and 87% on average) and the

accuracy values range from 61-98%. Similarly to within validation, SPEA2 obtained better

accuracy results compared to ML with significant differences compared to DT and RF and large

effect sizes.
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In some projects such as parallec and pghero, NB and LR showed a slightly better performance

than SPEA2 but again due to the black-box nature of these algorithms, it is not possible to have

an explanation for this result. This recalls the need for explainable classification in machine

learning.

However, compared to the within-project validation (RQ2), the results indicate that our approach

can achieve a less significant performance with small to medium effect sizes, which may be

explained by the fact under cross-project, the target project may have a low collinearity with the

source project features thresholds. Overall, SkipCI still be a very promising solution to mitigate

the lack of data, especially for new software projects having no enough history.

Table 7.9 Statistical tests’ results of SPEA2 under cross-projects

compared to its achieved within-project results, RF and DT (*)

SkipCI vs. Cross-Validation vs. DT vs. RF

AUC p-value < 10−16 < 10−16 < 10−16

A estimate 0.27 0.98 0.94

Magnitude M L L

F1 p-value < 10−16 < 10−16 < 10−16

A estimate 0.34 0.91 0.87

Magnitude S L L

Accuracy p-value < 10−16 < 10−16 < 10−16

A estimate 0.31 0.97 0.94

Magnitude M L L

L: Large, M: Medium, S: Small, N: Negligible

(*) LR, NB and SVC were executed once for each experiment instance since they are

deterministic techniques. Hence we cannot compare the statistical differences with

them as we only recorded 15 observation for each of them.

Summary for RQ3. Under cross-project validation, our SkipCI still outperforms state-of-

the-art ML techniques by achieving an average of 84%, 79% and 87% in terms of AUC,

F1-score and accuracy, respectively in identifying CI skip commits. While cross-project

results are lower than the within-project results (RQ2), our approach is still a promising

solution that can be practically used when little/no data is available for new projects.
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7.5.4 Results of Features analysis (RQ4)

In the following, we report the results of features analysis within and cross-project validations.

7.5.4.1 Within-project results

Tables 7.10 summarizes the ranking of the most occurring features among all the studied projects

considering the cross-validation scenario.

Link to Last Commits category has shown to be a strong indicator of the commit likelihood to

be CI skip as six out of the 12 top-features belong to this category. Additionally, theses features

appear the most in 72 out of 150 rules. For example, the committer experience i.e., EXP, the top

three feature, appears the most in 23 rules out of 150. Similarly to EXP, SEXP and REXP appear

also in the top-10 features which indicates that the experienced developers are more familiar with

CI features. We observe also that the feature CRS, i.e., number of recently skipped commits by

the committer, is the most appearing feature in 21 out of 150. A closer examination reveals that

this feature has a clear indication of whether a commit should be CI skip or not. For example, in

candybar-library project, our tool suggests that to a label a commit as skipped, it should have

at least 3 recently skipped commits. This condition covers alone 85% of the commits in this

project. A similar observation can be applied in searchkick project, in which we also observed

that having at least 2 recently commits alone would detect the CI skip commits in this project

with a F1-score of 78%. Similarly to CRS feature, PRS also seems to be relevant and appears

the most in 17 out of 150 rules. Thus, it is clear that, similar to build failures (Ni & Li, 2017),

developers tend to skip commits consecutively maybe because simple changes are generally

performed during a specific period of the development e.g., after a release. NDEV, i.e., the

number of developers that previously touched the changed files, is also a prominent feature

and appears the most in three out of 150 rules. For example, in candybar-library project, the

condition of having 𝑁𝐷𝐸𝑉 ≤ 3 would detect alone the CI skip commits in this project with a

F1-score of 89%. This indicates that less is NDEV, the less risky are the changes and thus the

commit can be safely skipped.
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Statistics about the current commit have a strong probability to indicate whether this commit

should be skipped and four of these features appear in the top-1 list and the most in 43 out

of 150 rules. First, terms appearing in the commit message can be useful as CM is the most

occurring feature in 27 out of 150 rules. For example, in contextlogger 90% of skipped commit

messages contain "Update Readme.md". This finding was previously stated by Abdalkareem

et al. (Abdalkareem et al., 2020). In addition, features providing statistics about the current

commit change size can also be useful to detect CI skip commits. For example, in the project

mtsar for which the number of added lines 𝐿𝐴 is the most important feature, 60% of skipped

commits have 𝐿𝐷 ≤ 23 which indicates that small changes are more likely to be skipped. The

same observation is applied to ENTROPY and ND.

Commit Purpose are also important in detecting CI Skip commits as they appear the most

in 35 out of 150 rules. Additionally, the top-1 feature, i.e., IS_DOC belongs to this category.

For instance, in parallec project, the condition 𝐼𝑆_𝐷𝑂𝐶 = 1 can detect alone the CI skip

commits with 95% of F1-score, and in candybar-library project 90% of the non-fixing commits,

i.e., 𝐼𝑆_𝐹𝐼𝑋 = 0, are skipped, which is consistent with the real world situation as fixing

bugs/problems should be tested. Abdalkareem et al. (Abdalkareem et al., 2020) also pointed out

that these features (i.e., CI skip rules as mentioned in the paper) can be strong indicators for CI

skip detection.

7.5.4.2 Cross-project results

The top-features analysis under cross-project validation is presented in Table 7.11. This table

clearly indicates that, similarly to within-project results, IS_DOC is the most important feature

across the studied projects. This result is in line with the observations of Abdalkareem et al.

(Abdalkareem et al., 2019) as they found that 52% of skipped commits are those that touch

documentation or non-source code files. Additionally, statistics linked to last commits are

prominent features in cross-project context. Specifically, recent skipped commits from all

developers in the project PRS are dominant in 4 out of 15 rules while the number of recently

skipped commits from the current committer CRS is dominant in 3 out of the 15 cross-project
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Table 7.10 Top-Features Analysis for all projects

(within-project validation)

TOP-1 # of rules
IS_DOC 34

CM 27

EXP 23

CRS 21

PRS 17

ENTROPY 8

LA 7

SEXP 6

NDEV 3

REXP 2

IS_FIX 1

ND 1

Total 150

rules. This strengthens our previous findings claiming that if the commit is skipped, the next

commit is more likely to be skipped as well.

Table 7.11 Top-Features Analysis for all projects

(cross-project validation)

TOP-1 the number
of rules

IS_DOC 8

PRS 4

CRS 3

Total 15

Another important observation to consider is that the statistics of the current commit is not

present in the top-features list, which indicates that these features are less likely to be generalized,

as CI skip commits depend mainly on the specific context of the project (e.g., the day of the

week when developers usually skip commits can differ from a project to another).
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Summary for RQ4. Within-project validation, the feature analysis reveals that (1)

whether the commit changes only documentation files i.e., 𝐼𝑆_𝐷𝑂𝐶, (2) terms appearing

in the commit message and (3) the committer experience are the most prominent features

in CI skip detection. When it comes to the cross-project rules, the results confirm that

𝐼𝑆_𝐷𝑂𝐶 is a dominant feature and that there is a strong link between current and

previous commits results

7.6 Industrial Case Study

While in RQ1-RQ3, we have shown the efficiency of SkipCI to detect CI Skip commits, we

aim in this section to assess the applicability of our approach in practice i.e., from developers’

perspectives. We first present the case study design then we report the obtained results.

7.6.1 Case Study Design

We designed our industrial case study to address the following research question:

RQ5.Are the CI skip commit recommendations provided by SkipCI useful for developers who

use CI in practice?

7.6.1.1 Case selection

We conducted a user study with our industrial partner, a large company producing digital

document products, services and printers. We evaluate SkipCI during a period of two weeks,

i.e., 10 working days on two large and long-lived software systems developed by our industrial

partner. We denote both projects as Project-1 and Project-2 in this paper for confidentiality

reasons. Both projects use a proprietary customized CI system that supports high configurability.

The CI system provides the CI skip option, similar to Travis CI. Both projects had 24% and 31%

of commits are skipped in project-1 and project-2, respectively, during the last 3 years. Usually,

developers working on both projects, integrate their code changes more than once per day. As
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for case study participants, we have reached out to 36 developers working full time on both

projects and invited them to participate in our experiments. A total number of 14 developers

volunteered to participate in the experiments, where 8 developers are from project-1, and 6

developers are from project-2.

Participants were first asked to fill out a pre-study questionnaire that consists of seven control

questions. The questionnaire helped us to collect background and demographic information

such as their role within the company and within the project, their experience with the studied

project, their academic degree, their proficiency in CI practice, their familiarity with the CI skip

commit feature, and their experience with software quality assurance. The list of questionnaires

and the obtained results can be found in our online replication package. All the participants had

a minimum of 6 years experience post-graduation and were working as active programmers with

strong backgrounds in CI practices, and software quality assurance. All participants are familiar

with the studied projects (71% have over 3 years, and 29% have over 2 years experience with

the concerned projects). Moreover, all of our participants hold an academic degree related to

computer science and/or software engineering (50% Bachelor, 35.7% Masters, 14.3% Ph.D.).

7.6.1.2 Study setup and analysis method

As a first step to prepare and integrate the SkipCI tool into the CI pipeline, we collected data

about the history of commits and builds for both projects, from the last 3 years from the version

control system and the CI tool. Such data allowed us to generate the set of required features to

train our model to generate the CI skip detection rules for both studied projects. Thereafter, we

deployed SkipCI and integrated it into the CI service pipeline for both projects. The SkipCI

tool is triggered whenever a new commit is pushed and shows a pop-up notification message

recommending whether the current commit could be (1) skipped or (2) not skipped. To keep

track of the developers’ decisions for our evaluation, we integrated a routine in our SkipCI tool

to record the commit ID, the recommended action, the developer decision, and her/his comments

(if any).
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With the sake of comparing the results of our tool with a baseline approach, and better

understanding the participants behavior, we also considered a random recommender tool (that

we refer to as Random in this paper) that generates CI skip commits at a random way. Then, for

each project, we split the concerned participants into two groups (A and B) of equal sizes (i.e., 7

developers each), in such a way that each group will use one of the tools, SkipCI or Random.

Hence, in total, we had four groups (2 groups per project) as shown in Table 7.12.

Table 7.12 Participants partition statistics

Project Tool Group the number
of developers

the number
of commits

Project-1
SkipCI A1 4 61

Random B1 4 52

Project-2
SkipCI A2 3 43

Random B2 3 48

During the study period, for each commit, the developer receives a recommendation from

either SkipCI or Random (depending on her/his group) indicating to skip the commit or not.

The developer can either “accept" or “decline" the skip recommendations. Moreover, we

configured both tools to show a pop-up notification asking the developer to optionally leave

her/his justification about his accept/decline decision, immediately after she/he makes a decision.

To avoid potential biases in our experiments, the individual developers were not aware of the

specific tools being compared (i.e., SkipCI and Random).

In total, the 14 participants performed 204 commits (113 for Project-1 and 91 commits for

Project-2) during the study period of 10 business days. The number of performed commits by

each group for each project are reported in Table 7.12. After the study period, we collected the

experiments records of the accepted and declined recommendations for each developer for both

tools. To analyze the collected data and answer RQ5, we compute for each project, and each

group, the ratio of both accepted and declined recommendations by the developers, with respect

to the total number of recommendations provided from each tool.
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Moreover, to further understand how to improve SkipCI, we performed an online interview with

four developers from both groups A1 and A2 who assessed the SkipCI bot (2 developers from

each project). The interview consists of a structured discussion guided by three main questions:

• Q1: How important is the CI Skip option in CI practice?

• Q2: How efficient is our CI skip recommendation bot in the context of your project?

• Q3: What additional features or improvements do you recommend to further improve SkipCI?

In the next subsection, we present and discuss the obtained results for our user case study.

7.6.2 Case study results and discussion

Table 7.13 summarizes the results of deploying SkipCI during 10 working days with our

industrial partner on both projects. We observe that developers accepted most of the “Skip"

recommendations provided by SkipCI in both projects (i.e., groups A1 and A2), with 88.9%

and 90.9% in project-1 and project-2, respectively. We also observe that SkipCI recommended

to skip 18 out of the 61 commits from project 1 (29.5%), and 11 out of the 48 commits

from project-2 (25.6%). On the other side, developers tend to accept only a small number

of “Skip" recommendations provided by Random, with 17.9% and 13.6% of the total skip

recommendations from project-1 and project-2, respectively.

As for the “Non-skip" recommendations, we also observe SkipCI recommended not to skip

43 out of 61 commits (70.4%) for project-1, and not to skip 32 out 43 commits (74.4%) for

project-2, that were accepted by developers with over 90% for both projects. Looking at the

Random recommendations, we found that developers accepted 66.7% and 65.4% of non-skip

recommendations from project-1 and project-2, respectively. While the results of random

recommendations may seem quite high, their results could be justified by the fact that developers

tend to generally run the build after each commit in the context of CI.

By looking at the comments left by the SkipCI participants when justifying their decisions,

developers of both projects highlighted in their comments that they found the CI skip commit
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relevant because it can save time for trivial changes that do not need to build the entire system.

For instance, one developer wrote in a comment in response to our recommendation:

� “I agree! So I actually do not see benefit of starting the CI build immediately, there are only

non-code changes were made in my last commit"

Another developer mentioned in his comment:

� “[...] of course this commit and my previous one should be skipped, my changes are only on

markdown and JSON files. It’s bad for this commit to wastefully use server time"

Furthermore, another developer who declined a CI skip recommendation from SkipCI commented:

� “I am fine with skipping this commit, but this time I want to merge my changes to the master

branch. My changes can only be merged when the CI build has successfully run [...] this

will never happen if I skip the CI build".

In another declined CI skip recommendation, the developer left the following comment:

� “Well I don’t agree, even very few lines have been changed related to my function call

redirection and my variable rename changes, I am inclined to run the build to be on the safe

side anyway"

Furthermore, to gain insights and better understand how to improve SkipCI, we interviewed

four developers (2 developers from each project) who assessed SkipCI within the two-week

study period, as described in Section 7.6.1.2. The four developers highly appreciated the CI skip

feature provided by the CI systems given the waste of time of resources for unnecessary builds.

The four developers were also very positive on the relevance of our SkipCI bot in the context of

their projects. In response to possible improvement of SkipCI, one of the interviewees indicated

that:

� “[...] I found the bot very useful to me, basically what I used to do is to skip the entire build

pipeline if certain condition is met based on my “safe list". I manually defined a basic, yet

simple, script to check my conditions like “if the changed files are in a given directory, then

trigger the CI build, else skip it". However, I have to manually go through the change diff to
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look at each individual file [...] and I often ignore or change my defined conditions. I wish

to have more control over the proposed CI skip recommendation tool, based on what I’m

doing and based on how the project evolves"

Two other developers pointed out the importance of providing more details by SkipCI to justify

the recommended decisions along with a summary of the changes in either a textual manner

or in a user-friendly visualization to help them taking the right decision while giving more

trust and transparency to our tool. Another developer also recommended to add a user-friendly

configuration layer on top of the tool that allows the developer to customize the current conditions

and add her/his own conditions to the tool.

Table 7.13 Case study results

Project Group Tool Total commits Recommendation # commits Results∗

Project-1

A1 SkipCI 61
Skip 18 11.1% 88.9%

Non-skip 43 9.3% 90.7%

B1 Random 52
Skip 28 82.1% 17.9%

Non-skip 24 33.3% 66.7%

Project-2

A2 SkipCI 43
Skip 11 9.1% 90.9%

Non-skip 32 9.4% 90.6%

B2 Random 48
Skip 22 86.4% 13.6%

Non-skip 26 34.6% 65.4%

∗ Accepted, Declined

Overall, the outcomes of this survey are aligned with the motivations of this paper advocating

for using interpretable rule-based recommendations based on various features that could be

learned from the CI build and project history considering both (1) skipped and (2) non-skipped

CI commits (i.e., the minority and majority classes).

From this user study, we learn that to improve SkipCI, we have to include three aspects. First,

we need to deploy along with the tool, a set of interpretable and configurable rules so that

developers can understand and customize the tool based on their preferences/experience on what

should or should not be skipped. Second, the tool needs to provide more details along with the

recommended skip decisions to justify whether the commit should be skipped or not. Third, the

rules should be re-trained and updated regularly as the project evolves through learning from the
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recent decisions taken by the developers. Moreover, based on our interactions with developers

in this industrial case study, we advocate that the CI skip feature should be used wisely and with

caution. The developer needs to make the necessary verification based on her/his current code

changes in the commit, before taking the decision to skip or not. This is indeed an important

aspect, as it remains to some extent hard to understand the semantics of source code changes.

7.7 Discussion and Implications

7.7.1 For CI developers

Developers can efficiently identify the CI Skip commits. The usefulness of our SkipCI

approach has been shown through its achieved results within and cross-project validations as well

as our industrial case study. Nevertheless, we believe that the key innovation of our approach

is its ability to provide the user with a comprehensible justification for the detection of CI

skip commits especially when the changes made in the commit are non-trivial. For instance,

Figure 7.7 illustrates an example of a detection rule generated by SkipCI to detect CI Skip

commits in the Semantic MediaWiki9 project with a high AUC score of 80%. Using this rule,

we can detect the CI commit described early in Section 7.2 as CI skip since its characteristics

satisfy the conditions of the rule, e.g., having a number of changed files 𝑁𝑆 ≤ 2, 𝐿𝐷 ≤ 93 and

𝐼𝑆_𝐹𝐼𝑋 = 0. Moreover, it is worth noting that, thanks to the flexibility of MOGP techniques, it

may be possible to reduce the complexity of the generated detection rules (e.g., tree size and/or

depth) in order to generate more comprehensible justification by considering this objective in

the fitness function (or as a constraint in the solution encoding), but at the cost of scarifying the

accuracy as these objectives are in conflict (Saidani et al., 2020a, 2021a).

9 https://github.com/SemanticMediaWiki/SemanticMediaWiki
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NS <= 2

CRS <= 2

PRS >= 2

IS_DOC = 1

CFT = 0

TFC <= 4

COM = 1

IS_FIX = 0

IS_MERGE = 0

LD <= 93

NUC <= 59

LT >= 12
OR

CRS <= 2

NS <= 2

AGE <= 637
AND

AND

AND

OR

AND

ND <= 59
AND

AND

AND

OR

AND

AND

AND

AND

OR

Figure 7.7 An illustrative example of CI skip detection rule for

the Semantic MediaWiki project

7.7.2 For researchers

Can the predictive performance be improved with the use of SMOTE? So far, we showed

that SkipCI provides an effective improvement over the state-of-the-art without rebalancing.

However, one can argue that the use of resampling can further improve the identification of CI

Skip commits of SkipCI, even though the latter has shown less sensitivity to the class imbalance

problem as pointed out in prior research (Bhowan et al., 2013, 2012, 2010, 2009). Thus, we

conduct a set of additional experiments to rebalance the input data prepared in Section 7.4.2(10
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cross-validation) using SMOTE and re-run the MOGP learning process on the new balanced data.

We use the same approach described in Section 7.3 to generate our detection rules. To provide

a comprehensive comparison, we compute the F1-score, AUC score and the overall accuracy.

Figure 7.8 shows the obtained results with (in red) and without (in blue) using SMOTE.
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Figure 7.8 Comparison of SkipCI results with (red) and without

(blue) using SMOTE

We observe that by using SMOTE, SkipCI can achieve in median 94%, 93% and 96% in terms

of AUC, F1-score and accuracy respectively, which represents an improvement of 1%, 5% and

1%, respectively with negligible (for AUC and accuracy) to small (for F1-score) effect sizes.

This suggests that using an external approach to artificially rebalance the dataset can slightly

improve the classification performance of SkipCI. However, the sampling techniques have their

own drawbacks. In fact, sampling can lead to over-fitting and affect the interpretability of the

generated rules (Tantithamthavorn et al., 2018a) as the original and the balanced training corpora

have different characteristics. Furthermore, rebalancing can also be computationally expensive

(Bhowan et al., 2009). For these reasons, in this paper, we advocate that using MOGP alone is a

better classification strategy when the data is imbalanced.

Researchers can investigate periodicity in CI skipped commits. Our features analysis results

(RQ4) reveal that many CI skip commits occurred consecutively and features related to historical

statistics about the commits are strong indicators of the current commit outcome. Hence, we

encourage researchers to investigate what software engineering activities may link with such

skip periods, e.g., automated refactoring etc.
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7.7.3 For tool builders

Further tool support in CI. Our industrial case study reveals the importance of the SkipCI tool

from developers’ perspectives. As discussed in Section 7.6.2, one of the developers indicates

that he is using his own simplified defined conditions to help him decide whether to run or skip

the build for a given commit. This recalls the importance of providing efficient, lightweight and

practical tool support to further improve the CI pipeline. Indeed, the current CI practice is still

in its infancy, as CI technologies are experiencing an exponential growth in both open-source

and commercial projects. Further support from tool builders is needed to adequately respond to

the developers’ needs and cut with the expenses of CI build in modern software engineering.

7.8 Threats to validity

Threats to internal validity are concerned with the factors that could have affected the validity

of our results. The main concern could be related to the stochastic nature of search-based

algorithms, RF and DT. To address this issue, we repeated each experimentation 31 times and

considered the median scores values used to evaluate the predictive performance. Threats to

internal validity could also be related to our industrial case study that aimed at deploying and

evaluating our SkipCI approach in practice. The opinions/decisions of the practitioners involved

in our study may be divergent or influenced by the used tool when it comes to accepting or

declining a CI skip commit recommendation, which can impact our results. To mitigate this

threat, we compared the results of our tool to a baseline tool with random recommendations.

Threats to construct validity are mainly related to the rigor of the study design. First, one

possible threat is related to the selected performance metrics as there exist many other metrics.

We basically used standard performance metrics namely F1-score, AUC and accuracy that are

widely employed in predictive models comparison (Hastie et al., 2009) and also considered three

performance measures, i.e., hyper-volume (HV), generational distance (GD) and spacing (SP) in

order to compare multi-objective algorithms from SBSE perspective. Second, although we used

different search-based and ML algorithms, there exist other techniques. As a future work, we



216

plan to extend our empirical study with other baseline techniques. Another threat to construct

validity is related to our industrial validation since we considered the random search algorithm

as baseline. We plan as a future work to extend this validation with other baseline approaches.

Third, a threat to construct validity could be related to the annotated set of skipped commits used

in our dataset. To mitigate this issue, we ran unit tests that are linked to the skipped commits

and checked that none of those tests would fail. Second, to deal with the noise of the negative

class, we employed the python package cleanlab which helped us to detect about 12% of the

data as noise. We also checked manually the precision of the detected labels by verifying that

at least those non skipped commits are not correlated with a build failure. We found that the

precision of this tool ranges from 80% to 100%. Nevertheless, it may misses other commits that

should have been skipped (i.e., the recall). Another threat to construct validity could be related

to parameters’ tuning as setting different parameters can lead to different results for search-based

as well as ML techniques. We mitigated this issue by applying several trial and error iterations

to tune search-based algorithms and relied on Grid Search (Scikit-learn.org, 2006) method to

find the optimal settings of ML techniques.

Threats to external validity are concerned with the generalizability of results since the

experiments were based on 15 open-source projects that use Travis CI, and two projects from

our industrial partner. However, it is worth to recall that CI skip option is generally under-used

in practice and hence labeled training data is not always available. Additionally, while in our

approach we focus on Travis CI, a popular CI system (Hilton et al., 2016), our approach can

be applied to other CI systems. Future replications of this study are necessary to confirm our

findings.

7.9 Conclusions and Future Work

This paper proposed a novel search-based approach for CI Skip detection, SkipCI, in which

we adapted SPEA2 to generate optimal detection rules with a tree-like representation in order
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to find the best trade-off between two conflicting objective functions to (1) maximize the true

positive rate, and (2) minimize the false positive rate.

An empirical study conducted on a benchmark of 14,294 Travis CI commits of 15 projects

that use Travis CI shows that SkipCI outperforms Random Search, mono-objective Genetic

Algorithm and three other multi-objective algorithms which indicates that our adaptation is more

suited than other search-based techniques. Considering two validations namely cross-validation

and cross-project validation, the statistical analysis of the obtained results reveals that SkipCI is

advantageous over five Machine Learning (ML) techniques confirming that our formulation is

better to solve the problem. Moreover, our experience with the industrial partner demonstrates

the effectiveness of SkipCI in providing relevant recommendations to developers from two

different projects. Regarding the features analysis, we found that documentation changes,terms

appearing in the commit message and the committer experience are the most prominent features

in CI skip detection. When it comes to the cross-project scenario, the results reveal that besides

the documentation changes, there is a strong link between current and previous commits results.

Our future research agenda includes performing a larger empirical study with other open-source

projects while considering other features. For instance, one can measure the code similarity

before and after the commit to identify whether the changes do probability preserve the code

functionality and hence can be skipped. The tool can also detect whether the developer performed

a code refactoring (Fowler, 2018) such as renaming. This would allow the tool to detect other CI

skip opportunities that may have not been detected yet using the current features.





CONCLUSION AND RECOMMENDATIONS

The core goal of this thesis is to support the adoption of Continuous Integration (CI), the leading

edge of modern software engineering. As a first step towards this support, this thesis is focused

on gaining insights into CI adoption by conducting empirical studies to understand its impacts

and challenges. Then, we proposed novel approaches to address its major issue: the build

process.

In Chapter 3, we presented the first empirical study on the challenges of CI based on the

discussion of Stack Overflow (S0), a popular Q&A website leveraged by developers to seek help

with development issues. We analyzed SO posts related to CI through a mixed-method with

quantitative and qualitative analyzes. To study the trends of CI discussions, we investigated the

metadata of CI questions, users and tags. Then, we extracted the CI main topics using Latent

Dirichlet Allocation (LDA) tuned with Genetic Algorithm (GA). Finally, we investigated the

most popular and difficult topics faced by developers and perform a qualitative analysis based on

a statistical sample of unanswered questions to get further insights into CI challenges. The LDA

clustering revealed that developers face challenges with six main topics namely Build, Testing,

Version Control, Configuration, Deployment and CI Culture. Particularly, we found that the

build topic is the most popular among the studied topics and that version control and testing

topics are the most difficult for SO community.

In Chapter 4, we conducted the first empirical study to emphasize the role of CI process in

changing the way code Refactoring (software changes that aim to ensure/improve the code

quality) is applied. Indeed, we investigated the evolution of Refactoring practices, in terms of

frequency, size and involved developers, after the switch to CI. We collected a corpus of 99,545

commits and 89,926 Refactoring operations extracted from 39 open-source GitHub projects

and analyzed the changes using Multiple Regression Analysis (MRA). Our study revealed that

the adoption of CI is associated with a drop in the Refactoring size as recommended, while
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Refactoring frequency as well as the number (and its related rate) of developers that perform

Refactoring are estimated to decrease after the shift to CI, indicating that Refactoring is less

likely to be applied in CI context.

Motivated by the fact that CI builds discussions represent more than 40% of developers

discussions on SO (as revealed in Chapter 3). We proposed in this thesis, two novel approaches

to address the build failure detection:

• First in Chapter 5, we proposed an approach based on Multi-Objective Genetic Programming

(MOGP) to automatically generate the prediction rules. Our approach aims at finding the

best combination of CI built features and their appropriate threshold values, based on two

conflicting objective functions to deal with both failed and passed builds, which allows

to tackle the imbalanced nature of CI builds. This approach supports also an explanation

mechanism that helps the developers in the resolution process. This approach was empirically

validated and implemented as a standalone Java tool called BF-Detector (Saidani et al.,

2021a). Additionally, we have improved the predictive performance of our tool by considering

the code smells related information (Saidani & Ouni, 2021).

• In 6, we introduced DL-CIBuild a novel approach that uses Long Short-Term Memory

(LSTM)-based Recurrent Neural Networks (RNN) to construct prediction models for CI build

outcome prediction. The problem was comprised of a single series of CI build outcomes

and a model is required to learn from the series of past observations to predict the next CI

build outcome in the sequence. In addition, we tailored Genetic Algorithm (GA) to tune the

hyper-parameters for our LSTM model. Through an empirical validation, we showed that

DL-CIBuild outperforms traditional approaches, has less sensitivity to the training set size

and an effective robustness to the concept drift.

Build duration is also a potential concern for CI developers. To address this problem, we

proposed in Chapter 7, a novel search-based approach to automatically detect CI Skip commits



221

based on the adaptation of Strength-Pareto Evolutionary Algorithm (SPEA2). Our approach

aims to provide the optimal trade-off between two conflicting objectives to deal with both skipped

and non-skipped commits. We evaluated our approach on a benchmark of 14,294 CI commits

from 15 projects. The statistical tests revealed that our approach shows a clear advantage over the

baseline approaches. Furthermore, we deployed and evaluated the usefulness of our approach as

standalone tool called SkipCI, with our industrial partner. The qualitative results demonstrated

the effectiveness of SkipCI in providing relevant CI skip commit recommendations to developers

for two large software projects from practitioner’s point of view.

Perspectives

Although this Ph.D. work has made many significant contributions towards supporting the

adoption of CI, many different avenues for future work remain unexplored. We summarize some

of the main directions for future research on CI.

Short-Term

Improve SkipCI. We plan to improve SkipCI by considering other features e.g., the semantics

of source code changes. Such features would allow detecting the changes that do alter the

behaviour of the code i.e., refactoring.

Test DL-CIBuild and BF-Detector in an industrial environment. Although we showed

through empirical validation that our tools are effective in detecting CI build failure, we believe

that an industrial validation is needed in order to confirm their effectiveness from developers’

perspective.

Compare DL-CIBuild vs BF-Detector. We plan in the near future to conduct an additional

empirical study in order to compare the predictive performance of these two tools using the

same dataset and set of evaluation metrics.
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Collect data of other CI services. First, it is essential to mention that our empirical study in

Chapter 4 and validations in Chapters 5, 6 and 7 are mainly based on TravisTorrent (Beller

et al., 2017), the only available dataset that contains information of builds considering Travis

CI service. Hence, there still many other CI services, such as Jenkins (Jenkins, 2019), are not

yet studied. Hence, future work is required to first collect data of other CI services and then

investigate the generalizability of our results based on that data.

Provide a generic GUI-based tool. As a way to combine all the proposed approaches, we plan

to develop a GUI-based tool in which we allow users to interact and provide feedback about our

recommendations as this would help improving the tools.

Long-Term

Automated tools to support quality assurance efforts. We have shown through our study

in Chapter 4, that the application of code Refactoring is even harder after the switch to CI.

This finding would encourage us to propose novel approaches to support developers on this

matter. We therefore plan to develop a new approach to recommend the appropriate refactorings

dedicated to CI context i.e., these recommendation should be simple (as the guidelines propose

to commit small changes) and frequent to cope with the agile nature of CI.

Tools for resolving CI build failures. Once the build failure is detected, developers may follow

a tedious process to localize the cause of the failure and resolve it. Hence, a future work is

needed to supply development teams with tools to identify potential files in order to accelerate

the build fixing process. We believe that the explainable prediction of build failures proposed

in Chapter 5 can provide a valuable support on how to proceed with failure localization and

resolution based on the violated rules.

Need for further effort to speed-up CI process. In Chapter 7, we proposed an effective

solution to partially address the problem of CI long process, by detecting the changes that can
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be skipped during the build. Nevertheless, we believe that more effort is need to speed up the

time need for changes that cannot be skipped.





APPENDIX I

OPTIMAL PARAMETERS FOR EACH RQ (DL-CIBUILD PAPER)

1. Optimal Parameters for online validation (RQ1 and RQ2)

Table-A I-1 Optimal Parameters for RQ1 and RQ2

Project Experiment nb_epochs nb_batch time_step drop_proba nb_layers nb_units optimizer

cloudify

1 7 38 38 0.11 3 72 adam

2 6 26 36 0.07 3 50 rmsprop

3 7 14 36 0.02 2 94 adam

4 7 22 44 0.12 3 76 adam

5 7 23 60 0.03 3 64 adam

graylog2-server

1 7 27 31 0.06 2 44 adam

2 6 16 54 0.19 4 76 adam

3 7 64 39 0.05 2 52 rmsprop

4 4 22 33 0.16 2 54 adam

5 4 24 39 0.05 4 63 rmsprop

jackrabbit-oak

1 7 14 34 0.12 4 60 adam

2 7 45 36 0.14 2 92 adam

3 7 11 30 0.16 4 72 adam

4 7 14 45 0.18 2 57 rmsprop

5 7 15 49 0.15 3 94 adam

jruby

1 7 21 38 0.12 2 47 adam

2 6 22 48 0.08 2 52 adam

3 6 5 30 0.05 4 49 adam

4 5 12 31 0.05 2 82 adam

5 6 16 40 0.06 4 39 rmsprop

metasploit-framework

1 5 52 56 0.19 2 96 rmsprop

2 6 24 50 0.15 2 45 adam

3 4 16 45 0.19 2 61 rmsprop

4 5 16 49 0.04 2 79 rmsprop

5 6 56 34 0.07 3 53 adam
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Table-A I-2 Optimal Parameters for RQ1 and RQ2 (continued)

Project Experiment nb_epochs nb_batch time_step drop_proba nb_layers nb_units optimizer

open-build-service

1 6 28 32 0.07 2 68 adam

2 5 52 33 0.03 3 78 rmsprop

3 5 63 42 0.08 2 92 adam

4 6 13 39 0.07 3 95 adam

5 6 26 31 0.10 2 40 adam

openproject

1 7 12 37 0.14 2 94 adam

2 7 30 40 0.16 2 65 rmsprop

3 5 20 60 0.13 4 46 rmsprop

4 5 18 35 0.13 2 45 adam

5 7 28 38 0.11 3 46 adam

rails

1 5 58 36 0.05 2 45 adam

2 7 49 33 0.20 3 67 rmsprop

3 5 43 47 0.11 3 68 rmsprop

4 6 63 50 0.14 3 68 adam

5 4 62 55 0.11 3 55 adam

ruby

1 6 22 38 0.08 2 82 adam

2 7 10 48 0.05 4 83 adam

3 7 26 58 0.18 3 67 adam

4 6 55 50 0.06 3 73 adam

5 4 4 30 0.06 4 48 adam

sonarqube

1 6 7 55 0.06 4 79 rmsprop

2 6 8 51 0.18 4 87 rmsprop

3 5 4 31 0.01 2 58 rmsprop

4 6 16 51 0.02 2 86 rmsprop

5 5 43 43 0.12 2 90 adam
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2. Optimal Parameters for cross-project validation (RQ3)

Table-A I-3 Optimal Parameters for cross-project validation

(Jruby is the training project)

Parameter Optimal value

nb_epochs 5

nb_batch 16

time_step 60

drop_proba 0.2

nb_layers 4

nb_units 32

optimizer "adam"
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3. Optimal Parameters for RQ4

Table-A I-4 Optimal Parameters for RQ4

Project Experiment nb_epochs nb_batch time_step drop_proba nb_layers nb_units optimizer

cloudify

1 4 42 58 0.11 2 81 adam

2 6 10 50 0.11 3 76 adam

3 3 5 46 0.02 3 72 adam

graylog2-server

1 5 45 46 0.16 2 60 adam

2 5 45 49 0.06 2 91 adam

3 4 17 35 0.08 2 86 adam

jackrabbit-oak

1 6 25 59 0.20 2 76 adam

2 2 29 52 0.02 3 90 adam

3 5 62 55 0.09 2 73 adam

jruby

1 3 44 45 0.07 2 74 adam

2 5 20 53 0.14 2 69 adam

3 5 23 42 0.04 2 81 adam

metasploit-framework

1 4 5 55 0.06 3 33 adam

2 5 24 46 0.09 3 34 adam

3 5 34 31 0.01 2 40 adam

open-build-service

1 4 34 30 0.16 2 37 adam

2 6 54 56 0.14 2 73 adam

3 6 54 54 0.19 3 78 adam

openproject

1 2 17 50 0.07 2 70 adam

2 6 36 37 0.06 2 84 adam

3 4 57 53 0.02 2 42 adam

rails

1 4 5 59 0.03 2 38 adam

2 3 11 53 0.14 2 51 adam

3 5 49 38 0.11 3 61 adam

ruby

1 3 55 50 0.09 3 88 adam

2 3 35 37 0.15 2 66 adam

3 5 32 41 0.03 3 86 adam

sonarqube

1 5 18 48 0.07 3 62 adam

2 4 15 52 0.19 3 48 adam

3 3 45 59 0.18 3 74 adam
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4. Optimal Parameters for RQ5
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Table-A I-5 Optimal Parameters for RQ5 (old data)

Project Experiment nb_epochs nb_batch time_step nb_units optimizer drop_proba nb_layers

cloudify

1 6 4 41 32 rmsprop 0.15 4

2 5 4 37 32 rmsprop 0.17 3

3 5 16 44 32 adam 0.07 1

4 5 16 33 32 adam 0.03 2

graylog2-server

1 4 32 31 32 rmsprop 0.03 1

2 5 32 48 32 adam 0.19 1

3 6 8 59 32 rmsprop 0.09 1

4 6 16 50 32 rmsprop 0.03 3

jackrabbit-oak

1 4 4 32 32 rmsprop 0.03 4

2 5 32 55 32 rmsprop 0.1 4

3 6 8 44 32 adam 0.12 4

4 4 8 57 32 adam 0.19 3

jruby

1 6 4 44 32 adam 0.05 2

2 5 32 42 32 adam 0.06 4

3 5 4 49 32 adam 0.07 4

4 6 32 45 32 adam 0.2 3

metasploit-framework

1 5 8 59 32 adam 0.1 1

2 4 4 30 32 adam 0.04 1

3 6 16 60 32 rmsprop 0.07 1

4 6 32 46 32 rmsprop 0.17 1

open-build-service

1 4 8 54 32 adam 0.02 1

2 6 4 33 32 rmsprop 0.17 3

3 4 8 37 32 rmsprop 0.07 1

4 6 8 42 32 rmsprop 0.06 3

openproject

1 6 8 54 32 rmsprop 0.08 1

2 4 16 35 32 rmsprop 0.1 2

3 6 16 36 32 rmsprop 0.07 1

4 6 8 57 32 rmsprop 0.11 4

rails

1 6 16 59 32 adam 0.14 4

2 6 4 51 32 adam 0.16 4

3 5 8 35 32 adam 0.01 4

4 6 8 38 32 adam 0.01 4

ruby

1 5 4 51 32 adam 0.19 1

2 5 4 39 32 rmsprop 0.09 4

3 5 4 42 32 rmsprop 0.2 3

4 5 8 53 32 adam 0.14 2

sonarqube

1 6 32 39 32 rmsprop 0.1 1

2 6 16 32 32 adam 0.14 1

3 6 32 48 32 rmsprop 0.04 3

4 6 4 56 32 rmsprop 0.1 1
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Table-A I-6 Optimal Parameters for RQ5 (recent data)

Project Experiment nb_epochs nb_batch time_step nb_units optimizer drop_proba nb_layers

cloudify

1 5 8 52 32 rmsprop 0.1 1

2 4 8 38 32 adam 0.19 4

3 5 32 45 32 rmsprop 0.04 1

4 4 4 41 32 rmsprop 0.17 4

graylog2-server

1 5 8 60 32 adam 0.05 2

2 6 4 39 32 adam 0.09 2

3 5 16 32 32 adam 0.11 1

4 5 8 60 32 adam 0.05 2

jackrabbit-oak

1 4 32 43 32 rmsprop 0.2 1

2 4 16 51 32 adam 0.02 4

3 4 32 43 32 rmsprop 0.2 1

4 4 16 51 32 adam 0.02 4

jruby

1 4 8 43 32 adam 0.1 2

2 6 8 59 32 adam 0.17 4

3 5 4 30 32 adam 0.04 2

4 4 8 43 32 adam 0.1 2

metasploit-framework

1 6 8 52 32 rmsprop 0.1 2

2 4 4 37 32 rmsprop 0.02 1

3 6 4 41 32 rmsprop 0.14 3

4 4 32 54 32 rmsprop 0.19 2

open-build-service

1 4 4 32 32 rmsprop 0.13 3

2 6 32 35 32 adam 0.15 4

3 4 4 32 32 rmsprop 0.13 3

4 6 64 38 32 rmsprop 0.19 2

openproject

1 6 8 45 32 adam 0.1 1

2 6 16 47 32 rmsprop 0.03 3

3 6 32 37 32 adam 0.04 2

4 6 32 37 32 adam 0.04 2

rails

1 4 16 32 32 adam 0.03 2

2 6 32 31 32 rmsprop 0.02 4

3 6 32 31 32 rmsprop 0.02 4

4 4 16 32 32 adam 0.03 2

ruby

1 4 8 51 32 rmsprop 0.2 3

2 6 32 33 32 rmsprop 0.14 3

3 5 4 46 32 rmsprop 0.02 1

4 4 8 51 32 rmsprop 0.2 3

sonarqube

1 5 16 42 32 rmsprop 0.03 1

2 6 8 30 32 rmsprop 0.18 4

3 5 8 42 32 adam 0.18 4

4 5 16 42 32 rmsprop 0.03 1
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