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IMPROVING THE ESTIMATION, CONTINGENCY PLANNING AND TRACKING 
OF AGILE SOFTWARE DEVELOPMENT PROJECTS 

Eduardo MIRANDA 

RÉSUMÉ 

Les progrès technologiques dus aux logiciels présents dans nos maisons, nos voitures et nos 

téléphones ont également apporté des changements à la manière dont cette même technologie 

est développée. L’augmentation de la puissance des ordinateurs a permis l’émergence d’une 

nouvelle approche pour développer du logiciel. Cette approche s'appuie sur des composants, 

du prototypage et des cycles de développement courts, plutôt que sur une approche plus 

traditionnelle - mais pas si lointaine - basée sur des phases d’analyse, de conception et de 

réalisation. Cette nouvelle approche s’intitule le développement agile. Cette thèse porte sur 

trois aspects distincts, bien qu’étroitement liés, de la gestion de ce type de projets dits agiles 

de développement de logiciel, à savoir : 

- l'estimation de la taille du logiciel pour planifier un projet,

- le suivi des activités de développement et, 

- le calcul et l'administration des fonds de réserve  

La taille du logiciel constitue l’intrant principal au processus d’estimation de l'effort et de la 

durée d’un projet de développement de logiciel. En conséquence, déterminer des évaluations 

crédibles et fiables de cette taille est primordial au processus d’estimation. Cette thèse 

propose en premier l'utilisation d'une méthode modifiée de comparaison par paires pour 

appuyer le jugement des experts - méthode d’estimation la plus utilisée dans l'industrie du 

logiciel. Dans la méthode modifiée proposée, le nombre de comparaisons, un facteur limitant 

l'utilisation de la méthode à grande échelle, est réduit presque de moitié par l’emploi des 

designs cycliques incomplets (Incomplete Cyclic Design - ICD) pour choisir des paires 

appropriées d'entités à comparer. 

Cette thèse porte en deuxième sur le suivi d'un projet qui consiste en un processus de 

comparaison de l’avancement du projet anticipé selon la planification par rapport à son 

avancement réel, afin de décider, s’il y a lieu, des actions nécessaires pour le compléter tel 



V

que prévu. La thèse propose et montre l'utilisation d'un indicateur de ligne de mise à jour 

(Line of Balance - LOB) modifié en vue d'obtenir des informations non disponibles avec les 

« burn down charts » et les diagrammes de flux cumulatif (cumulative flow diagram), les 

deux indicateurs les plus fréquemment utilisés dans les projets dits agiles. La contribution de 

la thèse s’inscrit, non seulement en termes de la nouveauté de l'application de cet indicateur 

LOB aux projets de développement de logiciels, mais également dans le remplacement des 

calculs de délai provenant des plans originaux, par de l’information extraite directement d'un 

système de contrôle de versions. 

Cette thèse porte en troisième lieu sur les fonds de réserve tels que définis par le Project 

Management Institute (PMI) comme la quantité de fonds requis au-delà de l'estimation pour 

ramener le risque de dépassements à un niveau acceptable pour l'organisation. Cette thèse 

postule qu'un calcul réaliste de ces fonds devrait être basé sur le coût de maintien du projet 

dans les délais, et non sur ce qu’aurait coûté ce travail s’il avait été prévu dès le 

commencement. Cette thèse propose en outre un modèle quantitatif tenant compte de la taille 

du projet, du moment auquel la sous-estimation a été reconnue et des pertes de processus 

liées aux actions de rétablissement. Les résultats du modèle permettent l'exploration des 

coûts et des avantages de plusieurs alternatives de gestion. 

Les trois méthodes présentées s’avéreront du plus grand intérêt pour les chefs de projet, les 

ingénieurs logiciel et les autres intervenants impliqués dans la planification des projets et les 

activités de gestion des risques. Même si les exemples employés pour illustrer et expliquer 

les concepts correspondent aux projets utilisant des approches agiles telles que « Scrum » et 

« Feature Driven Development », les méthodes proposées s'appliquent aussi aux autres types 

de développement de logiciels. 

Mots-clés: estimation du logiciel, suivi des activités, ligne de mise à jour, calcul et 

administration des fonds de réserve, développement agile, comparaison par paires 
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ABSTRACT

The technological advances that have brought us computers in our homes, our cars and our 

telephones have also brought about changes to the way that very same technology is 

developed. The abundance of computer power has enabled a new way of developing software 

that relies on components, prototyping and short development cycles, rather than on the more 

traditional analysis, design and build phases of not that long ago. This new way of 

developing software is called Agile development. This research looks into three distinct, but 

related, aspects of the management of Agile projects: (1) estimating software size with the 

purpose of planning a project, (2) monitoring development activities, and (3) calculating and 

administering contingency funds, and proposes new methods for addressing them. 

Software sizing provides the foundation for estimating effort and project duration, and so the 

importance of credible and reliable size estimates cannot be overstated. To address the issue 

of estimation, the thesis proposes a modified Paired Comparison method to support expert 

judgement, the prevailing sizing method used in industry. In this method, the total number of 

comparisons, which is a factor limiting the scalability of the method, is reduced almost by 

half using incomplete cyclic designs (ICD) to select suitable pairs of entities to be compared. 

Monitoring a project, is the process of comparing how far it has come relative to where it was 

supposed to be according to its plan, for the purpose of deciding what, if any, actions are 

necessary to complete it as planned. This thesis proposes and demonstrates the use of a 

modified line of balance (LOB) indicator to gain insights into the project’s progress not 

provided by burn-down charts and cumulative flow diagrams, the two most common 

indicators used in Agile projects. The contribution of the thesis can be measured not only in 

terms of the novelty of the application of the LOB indicator to software development 
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projects, but also in the replacement of the original plan-based lead-time calculations with 

dynamic information extracted from a control version system. 

Contingency is defined by the Project Management Institute as the amount of funds needed 

above the estimate to reduce the risk of overruns to a level acceptable to the organization. 

This thesis postulates: 1)  that a realistic calculation of these funds should be based on the 

cost of keeping the project on-schedule, and not on what it would have cost had the work 

been planned from the beginning, and proposes a quantitative model which takes into 

account the size of the project, the time at which the underestimation is acknowledged and 

the process losses associated with the recovery actions, and 2) that these funds ought to be 

administered above the project level to preserve the premise that their use is probabilistic. 

The model’s outputs enable the exploration of the costs and benefits of several management 

options.

The three methods presented will be of interest to project managers, software engineers and 

others involved in planning and risk management activities. While the examples used to 

illustrate and explain the concepts correspond to projects using Agile approaches, such as 

Scrum and Feature-Driven Development, the methods proposed are applicable to other types 

of development as well. 

Key words: software estimation, project tracking, line of balance, calculation of contingency 

funds, agile development, paired comparisons 
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INTRODUCTION

Over the last ten years, the author has proposed a number of methods that address endemic 

problems in the area of software project management, such as estimation, planning and 

controlling. These methods have evolved from the author’s extensive industrial experience, 

and their usefulness has become established in many projects at Ericsson, the author’s former 

employer. The techniques in question include the Paired Comparison estimation method 

(Miranda 2001a), the statistically planned Incremental Development method (Miranda 2002), 

the Rate of Growth Monitoring method (Miranda 1998), the line-of-balance (LOB) indicator 

for tracking progress (Miranda 2006) and a project screening method (Miranda 2001b). 

Building on this foundation, this thesis proposes three new methods to support decision-

making by industry practitioners in general, and by projects using Agile approaches in 

particular.

The thesis consists of three related peer reviewed journal publications: Sizing User Stories 

Using Paired Comparisons (Miranda, Bourque et al. 2009), Protecting Software 

Development Projects Against Underestimation (Miranda and Abran 2008) and Agile 

Monitoring Using the Line of Balance (Miranda and Bourque 2010). This thesis includes also 

the complementary information necessary to ensure global comprehension and the linkage 

between the various parts. 

While the examples illustrating and explaining concepts throughout the thesis have been 

drawn from the Scrum (Rising and Janoff 2000; Schwaber and Beedle 2004; Cohn 2006) and 

Feature-Driven Development (Coad, Lefebvre et al. 1999; Palmer and Felsing 2002; 

Anderson 2004) processes, the proposed methods are applicable to other types of 

development as well. 

The thesis is organized as follows: CHAPTER 1 provides a literature review on the current 

challenges in the management of software development projects in general, and Agile 

projects in particular. CHAPTER 2 includes an overview of Agile development and its 
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underlying assumptions, as well as an introduction to Feature-Driven Development and 

Scrum to give the reader two concrete examples of Agile processes. CHAPTER 3 provides 

an overview of each publication’s findings and contributions. The CONCLUSION closes the 

thesis by summarizing the work done and proposing new topics for research. The actual 

journal publications are included as annexes in the format in which they were originally 

published in the refereed journals. 



CHAPITRE 1

CURRENT CHALLENGES IN THE MANAGEMENT OF SOFTWARE 
DEVELOPMENT PROJECTS 

1.1 A Tally of Successes and Failures 

Figure 1, constructed using the data from the Standish Group Chaos Reports cited by 

Eveleens and Verhoef (Eveleens and Verhoef 2010) shows, that since the publication of the 

first report in 1995 (Standish Group 1995), the software development community has been 

making significant progress in its ability to complete development projects on-time and on-

budget. Despite this progress, a large number of projects still finish late and over budget. A 

study by El Emam and Koru (El Emam and Koru 2008) puts the average number of 

challenged and failed projects at 50%, while the meta analysis of Jorgensen and Molokken 

(Jorgensen and Molokken 2006)  puts it at about 33% (see Table 1). 

Figure 1 Project success trends according to the Standish Group. 
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Table 1 Results of cost overrun surveys
(After Jorgensen and Molokken 2006)1

1.2 Incremental Development 

Coincident with this improvement in project predictability there has been a move away from 

the monolithic or waterfall model of development, pointed out in the 1994 CHAOS Report 

(Standish Group 1995) as one of the root causes of the high failure rate, towards an 

incremental2, fine grained development paradigm in which the goal, or the total software 

system capability, is achieved by breaking down that goal into smaller, disjoint sub-goals, 

1�Used with permission�

2�Incremental development should not be confused with iterative development. The purpose of the former is to 
break down the total scope of a project into a number of functioning, albeit incomplete, systems, while the 
purpose of the latter is to learn and refine the scope of the system through successive cycles of analysis, 
development and testing.�

Study Jenkins Phan Bergeron

Year 1984 1988 1992 

Size of the study 
23 software 

organizations

191

software

projects

89 software 

projects

Country of  

respondents
USA USA Canada 

Average cost 

overrun 
34% 33% 33% 
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and implementing them in a phased approach. This is exemplified by the recommendations 

for projects with “smaller milestones” (Standish Group 1995; Standish Group 1999),  and 

projects with  “minimized scope” (Standish Group 2001). Figure 2 compares the two types of 

development. 

By making available a critical core of functionality as early as possible, incremental 

development enables, among other things, the following (Denne and Cleland-Huang 2004; 

Erdogmus 2005): 

� Smaller projects which are easier to plan and control  
� Earlier revenue generation 
� Postponement of unclear/uncertain decisions 

Figure 2 (a) All-at-once development vs. (b) incremental development  
(After Erdogmus 2005). 
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Incremental development is not a new idea. In one form or another, it can be traced back to 

the 1970s (Larman and Basili 2003). In 1980, Mills (Mills 1980) reported the successful 

completion of the US Navy project, LAMPS, using incremental development to deliver 7 

million lines of code in 45 increments. This 200 person-year project was completed in four 

years with monthly deliveries, and completed on time and within budget. 

However, the monolithic, all-or-nothing type of approach mentioned above is by no means 

the sole cause of project failure. Among the many reasons explaining project failure in the 

studies conducted by Pinto and Mantel (Pinto and Mantel 1990), Shenhar et al. (Shenhar, 

Dvir et al. 2001) and Drew Procaccineo et al. (Drew Procaccino, Verner et al. 2002), three 

seem to be prevalent in the software engineering industry: a lack of reliable size measures 

leading to realistic schedule and effort estimates (Linberg 1999), an inability to understand 

the degree of progress (Rozenes, Vitner et al. 2006) and how ill-conceived estimates to 

recover a project based on the past consumption of resources (Lipke 1999; Defense 2003) fall 

short of what is necessary to produce the desired turnaround, and mostly result in wasted 

effort (Keil and Mann 1997). 

1.3 Estimating the Effort Required  

The negative correlation between final functionality and estimation error (see Figure 3), 

based on data from Upadhyayula (Upadhyayula 2001), shows how HP-Agilent reacted to 

over-commitment in a sample of twenty-two projects. Estimation errors are introduced early 

in a project, since estimation is one of the first activities to take place. The data, however, 

show no acknowledgment of any underestimation via a reduction in scope through the life of 

the project. Only as the committed target date for delivery approached, or was left behind, 

did schedule pressure mount and was there a cut in functionality. This behaviour, which 

results in stakeholder frustration and wasted effort, is not unique to HP-Agilent (PRTM 

1995). Part of the problem is the lack of quantitative techniques for estimating, planning and 

controlling incremental projects, as exemplified by the heuristics used at Microsoft: 
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 “divide the project in three subprojects and allocate the first 1/3 of features (the most 

critical features and shared components) to the first subproject, the second 1/3 of 

features to the second subproject and the final 1/3 of features (the least critical) to the 

third subproject” (Cusumano and Selby 1997)  

or by the “planning game” in Extreme Programming: 

 “the planning game begins when the customer starts writing stories. They write a 

card, the programmers look at the story and try to estimate it, but they come back and 

say “it’s too big.” The customer then says, “Let me split it into a few cards,” writes 

some new ones, and throws the original away” (Wake 2001) 

Figure 3 Correlation between final functionality and schedule estimation error. 
Data from HP-Agilent (After Upadhyayula 2001).

Figure 4 displays the results of two experiments on the reliability3 of size estimations 

conducted by the author while working at Ericsson4 and teaching at Carnegie Mellon 

3�The reliability of an estimate includes its accuracy (closeness of agreement between a measured quantity value 
and a true quantity value of a measure) and precision (closeness of agreement between indications or measured 
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University, comparing the results of unstructured approaches such as the one proposed by 

Wake (Wake 2001) to those of more structured methods such as Function Point Analysis 

(UKSMA 1998; NESMA 2002; IFPUG 2006 ), Planning Poker (Grenning 2002; Cohn 2006) 

and Paired Comparisons (Bozoki 1993; Shepperd and Cartwright 2001; Miranda 2001a). 

Similar findings have been reported by Sasao (Sasao 2009), and are consistent with the 

reliability of Function Point counts, published by Kemerer (Kemerer 1993). The chart clearly 

shows that, in the absence of guidelines and reference points, estimates lack reliability. The 

ad hoc estimates, labelled “Ad Hoc CMU”, “Ad Hoc E1” and “Ad Hoc E2”, exhibit greater 

variance than Function Point counting, Planning Poker and Paired Comparisons, labelled 

“FP-CMU”, “PP CMU” and “PC CMU” respectively.

If it is assumed, as in auction theory (Thaler 1988; Connolly and Dean 1997; Svendsgaard 

2004; Jorgensen and Grimstad 2005), that the average of the estimations (normalized to 

correspond to level 0 of the chart in Figure 4) represents a feasible estimate for the project, 

then approximately half the projects would have been underestimated and would have had to 

be re-planned midway through their execution, usually at a higher cost, as explained in 

(Miranda and Abran 2008), while the other half or so of the projects would have been 

overestimated. However, as explained by thanks to Parkinson’s Law (Parkinson 1955; 

Gutierrez and Kouvelis 1991; Brannon, Hershberger et al. 1999; Kujawski, Alvaro et al. 

2004), the savings would never have materialized, as work expanded until the budget was 

exhausted. This tendency of costs to increase as they move beyond the optimal level (see  

Figure 5) was also noted by Freiman  (Freiman 1983) in 1983.  

quantity values obtained by replicate measurements on the same or similar objects under specified conditions). 
ISO/IEC (2007). International vocabulary of metrology — Basic and general concepts and associated terms 
(VIM). Geneva, ISO/IEC. 

4�The author has observed similar patterns when teaching estimation courses in a variety of settings. 
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Figure 4 Size estimations of the same system using different approaches: 
Ad hoc, Function Point counting, Paired Comparisons and Planning Poker.

1.4 Determining how much has been accomplished 

Estimates, and, by extension, the plans they support, are based on assumptions that must be 

constantly monitored, so that, when deviations between what was assumed and reality 

materializes, appropriate corrective actions can be  taken to re-establish the course or at least 

bring it to the next most desirable state. 

Established project monitoring methods, such as earned value (Project Management Institute 

2004) and bug convergence (Lory, Campbell et al. 2003), are based on what has already 
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when there is still time to do something about it (Miranda 1998). 
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According to Balachandra (Balachandra 1989), early warning indicators should have the 

following characteristics: 

� They should be easily measurable; 
� They should be capable of being consistently represented and measured by different 

evaluators; 
� They should pertain to the project itself and not measure conditions that affect all the 

projects within the company. 

An implementation of these three characteristics can be found in the Practical Software and 

Systems Measurement Guide (McGarry and Jones 2004), where project issues are 

differentiated from organizational issues and used to structure a measurement plan for the 

project.

To the three characteristics of early warning indicators listed above two more could be 

added: 1) early warning indicators should minimize false alarms, and 2) they should give 

ample time to react. These two requirements conflict, however, since the longer the 

anticipatory time, the weaker the signals of trouble and the higher the chance of false 

positives. Examples of early warning indicators include the use of reliability growth models 

(Miranda 1998; Staron and Meding 2007), code churn (Towell and Denton 2006) and 

technical performance measurement indicators (Coleman, Kulick et al. 1996; INCOSE 

2004).
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Monitoring progress requires information not only information about what has been 

completed, but also about work in progress and the rate of progress (Miranda and Bourque 

2009). In this way, appropriate responses can be planned and resources directed to where 

they are needed, since nothing is gained by improving non-constraining resources in a 

process (Goldratt 2004).

1.5 The underestimation of contingency funds 

While there is no doubt that project success is a multidimensional social construct (Tishler, 

Dvir et al. 1996; Shenhar, Dvir et al. 2001; Smith-Doerr, Manev et al. 2004; Thomas and 

Fernández 2008), the survey by Agarwal and Rathod (Agarwal and Rathod 2006) of 105 

software professionals clearly shows that some dimensions (see Figure 6) are consistently 

valued more highly than others by customer managers, project managers and developers.  

The preference for maintaining scope and meeting schedule is reinforced by a passage from 

the report on the accident of the Columbia space shuttle: 

Figure 5 The Freiman curve 
(After Freiman 1983).
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Figure 6 Relative importance assigned to various project success factors 
(After Agarwal and Rathod 2006)5 . 

“During the course of this investigation, the Board received several unsolicited 

comments from NASA personnel regarding pressure to meet a schedule. These 

comments all concerned a date, more than a year after the launch of Columbia, that 

seemed etched in stone: February 19, 2004, the scheduled launch date of STS-120. 

This flight was a milestone in the minds of NASA management since it would carry a 

section of the International Space Station called “Node 2.” ... At first glance, the Core 

Complete configuration date seemed noteworthy but unrelated to the Columbia 

accident. However, as the investigation continued, it became apparent that the 

complexity and political mandates surrounding the International Space Station 

Program, as well as Shuttle Program management’s� responses to them, resulted in 

pressure to meet an increasingly ambitious launch schedule. 

5�Used with permission�
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In mid-2001, NASA adopted plans to make the over-budget and behind-schedule 

International Space Station credible to the White House and Congress. The Space 

Station Program and NASA were on probation, and had to prove they could meet 

schedules and budgets. The plan to regain credibility focused on the February 19, 

2004, date for the launch of Node 2 and the resultant Core Complete status. If this 

goal was not met, NASA would risk losing support from the White House and 

Congress for subsequent Space Station growth”. (Columbia Accident Investigation 

Board 2003) 

In a similar vein, in his book, Practical Risk Assessment for Project Management, Grey 

wrote:

“While most people are willing to accept that cost could exceed expectations, and 

might even take a perverse delight in recounting past examples, the same is not true of 

deadlines. This is probably due to the fact that cost overruns are resolved in-house, 

while schedule issues are open and visible to the customer.” (Grey 1995)

While the quotes above can be regarded as anecdotal, they contribute to generalize the 

preference of schedule over cost reported by Agarwal and Rathod (Agarwal and Rathod 

2006).

Austin (Austin 2001) and Kujawski (Kujawski, Alvaro et al. 2004) argue that the 

repercussions of project success in terms of career progression cannot be ignored in the 

modeling of real-world decision-making. This, and the fact that the cost of recovering from a 

schedule slip is higher than the cost of doing the work as originally planned (Cooper 1994; 

Hsia, Hsu et al. 1999), suggests that the size of any contingency fund must be calculated at 

recovery level, and not as the cost to perform the work had it been planned from the 

beginning.
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This chapter has presented three important challenges facing most projects: the reliability of 

the estimates, the ability to determine the state of advancement in a timely fashion and the 

need to incorporate the human and organizational considerations that heavily influence 

decision-making in the real world into the calculation of contingency funds.  The next 

chapter introduces the Agile development approach.



CHAPITRE 2

AGILE DEVELOPMENT 

2.1 A retrospective on Agile Development 

In the mid-1990s, a new paradigm for software development began to emerge. Abundant 

desktop computing power and communication bandwidth, which allowed rapid feedback 

through application composition, shorter iterations, frequent builds and continuous 

integration (Dullemond, Gameren et al. 2009), shifted software development away from 

plans and design documents as coordination mechanisms towards code and daily meetings 

(Raymond 2000).  From a business perspective, shorter product life spans, 12 to 18 months in 

the mobile device industry (Aramand 2008) and less than a year in the Internet world 

(Barksdale and Berman 2007), blurred the distinction between development and maintenance 

into something more akin to continuous development (Dalcher 2003), making difficult to 

justify the need for resilient architectures and the preparation of support documentations with 

respect to what it was at the beginning of the ‘90s, when the average application lifespan was 

9 years (Tamai and Torimitsu 1992). In this regard Beck (Beck 2000) states that 

“Maintenance is really the normal state of an XP project”. 

These technical and business conditions materialized in a number of lightweight processes 

collectively referred to as “agile”. In 2001, seventeen consultants and practitioners entered 

into a consortium and published a document, titled “The Agile Manifesto” (Beck, Beedle et 

al. 2001), setting out what they referred to as “the principles” behind the new approach:

CHAPTER 2 
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1. Our highest priority is to satisfy the customer through early and continuous delivery of 
valuable software; 

2. (we) Welcome changing requirements, even late in development. Agile processes harness 
change for the customer's competitive advantage; 

3. (we) Deliver working software frequently, from a couple of weeks to a couple of months, 
with a preference to the shorter timescale; 

4. Business people and developers must work together daily throughout the project; 
5. (we) Build projects around motivated individuals. Give them the environment and 

support they need, and trust them to get the job done; 
6. The most efficient and effective method of conveying information to and within a 

development team is face-to-face conversation; 
7. Working software is the primary measure of progress. 
8. Agile processes promote sustainable development. The sponsors, developers, and users 

should be able to maintain a constant pace indefinitely; 
9. Continuous attention to technical excellence and good design enhances agility. 
10. Simplicity - the art of maximizing the amount of work not done - is essential; 
11. The best architectures, requirements, and designs emerge from self-organizing teams; 
12. At regular intervals, the team reflects on how to become more effective, then tunes and 

adjusts its behaviour accordingly. 

A non-exhaustive list of Agile processes includes Scrum (Beedle, Devos et al. 2000; Rising 

and Janoff 2000; Schwaber and Beedle 2004; Cohn 2006), Feature-Driven Development 

(Coad, Lefebvre et al. 1999; Palmer and Felsing 2002; Anderson 2004), Extreme 

Programming (Beck 2000; Jeffries, Anderson et al. 2000; Wake 2001), the Dynamic System 

Development Method (DSDM Consortium 2009) and OpenUp (Eclipse Foundation 2009).

Agile processes are not without criticism (Boehm and Turner 2003; Stephens and Rosenberg 

2003; Turk, France et al. 2005; Berard 2008). Among the problems frequently cited are: 

reliance on tacit knowledge, lack of scalability, the concept of simplicity and the assumption 

of the flat cost of change. 

As illustrated by principle number 6 of the Agile Manifesto, Agile proponents privilege 

face-to-face meetings as coordination mechanism over documentation and plans. Critics 

point out that the focus on tacit knowledge makes projects that use Agile processes 
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dependent on experts and makes the transfer of knowledge outside the team difficult 

(McBreen 2002; Boehm 2002-a). As far as lack of scalability (Croker 2001), the Agile 

principles as originally stated were geared towards small, collocated teams. As this 

arrangement has proven to be a limitation, the Agile community has have to come up with 

concepts like the “scrum of scrum” (Sutherland 2005) and other hierarchical arrangements.  

Simplicity, one of the four XP values (Beck 2000)  and the emergence of design  instead of a 

purposeful, system design activity, focuses developers on delivering just the functionality 

needed with no attempt to plan for features that might or might not be required in the future 

(Hunt 2005).

One of the most strongly criticized assumptions of the Agile movement is that of the “flat 

cost of change” (see Figure 7), expressed as follows: 

“Under certain circumstances, the exponential rise in the cost of changing software 

over time can be flattened. If we can flatten the curve, old assumptions about the best 

way to develop software no longer hold” (Beck 2000) 

It is on the basis of this statement that many of the Agile practices, such as refactoring and 

emergent design, find their economic justification for if the cost to correct the software 

increases exponentially as we move towards delivery, as documented by Boehm (Boehm 

1981; Boehm 2002-b) and  Doolan (Doolan 1992), then developing software according to 

these principles would be economically infeasible (Favaro 2003; Lattanze 2005). 

The same aspects that could be viewed as disadvantages in certain contexts make Agile 

methodologies popular in sizeable segments of the software industry, like application 

composition, Web system development and system integration, which Boehm (Boehm, Clark 

et al. 1995) estimated as employing 1.4 million professionals in the US by 2005. The actual 

figure for the year 2008, according to the US Bureau of Labor Statistics, was 1.8 million, not 

including managers. 
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The next two sections introduce two Agile Development processes: Feature-Driven 

Development (FDD) and Scrum. The purpose of presenting these models is not to analyze 

them, but to provide the reader with concrete examples of representative processes 
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2.2 Feature-Driven Development 

FDD is a short iteration process designed to deliver frequent, tangible, client-valued 

functionality called “features”, which form the basis for planning, reporting and tracking. 

The size of a feature is defined in terms of its end-to-end implementation effort, and is 

typically set at about two to three weeks. The FDD process begins by creating an object 

model of the software system to be built and a list of the features to be developed. Then, the 

features are implemented by adding the appropriate methods to the classes making up the 

object model. The overall FDD process is illustrated in Figure 8. 

Figure 8 Feature-Driven Development process 
(After Coad, Lefebvre et al. 1999). 

During the first activity of the process, the project members, under the guidance of an 

experienced component/object modeller (chief architect), build an object model of the 

software system. The purpose of this model is twofold: to define the scope of the system and 

its context, and to provide a “placeholder” in which the methods and attributes required by 

each feature will be hosted. 

The second activity, building a features list, involves identifying the features, and then 

grouping and prioritizing them. 

Based on the grouping and the dependencies between features defined during the “build a 

features list” activity, the project management team creates the development schedule, 
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decides on the number of resources, milestones, etc. The team also sets up the processes for 

monitoring and tracking. 

For each feature identified, a design-by-feature and build-by-feature sequence is executed. 

There could be many of these sequences executing concurrently. In the design-by-feature 

activity, the chief programmer identifies the classes from the overall model likely to be 

involved in the feature, and contacts the corresponding class owners. This feature team, 

which includes the chief programmer and the class owners, works out a detailed sequence 

diagram, and the class owners write class interfaces. Finally, the team conducts a design 

inspection. Each class owner then builds his methods for the feature, extends the class-based 

test cases and performs class-level (unit) testing. The feature team inspects the code. Once 

the code is successfully implemented and inspected, the class owner checks the class(es) into 

the configuration management system. When all the classes for this feature are checked in, 

the chief programmer promotes the code to the build process. 

In FDD, work is allocated using a matrix approach (see Table 2), where one of the 

dimensions lists all the features and the other the owners of the intervening classes. 

Table 2 Work Allocation in Feature-Driven Development Projects 

         Class 
Feature Class 1 Class 2 … Class n 

Owner John Ellen  David 

Feature 1 Ellen x x   

Feature 2 Ellen  x  x 

Feature 3 David x x   
. . . . . .      

Feature n John  x  x 
An x at the intersection of a column and a row indicates that the class participates in the 

implementation of the feature 
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2.3 Scrum

Scrum (see Figure 9) is a widely adopted management process for software development 

projects initially proposed by Ken Schwaber and Jeff Sutherland (Schwaber and Beedle 

2001). Its main characteristics are the following: 

� Self-organizing teams, with only three roles specified; 
� Requirements captured as items in a “product backlog” list; 
� Product progression in a series of month-long “sprints”; 
� Requirements converted into tasks and documented in the sprint backlog at the beginning 

of each sprint; 
� Each sprint ends with a potentially shippable product, and the work performed is 

reviewed with the product owner; 
� Software effectively transferred to the user (shipped, delivered, put into production, etc.) 

is called a release, which might comprise work performed in more than one sprint; 
� No specific engineering practices prescribed; 
� Daily team meetings, the Scrum meeting, to discuss what was done, what is next and 

what obstacles have been encountered. 

Work is organized around two time boxes that are executed repeatedly (see Figure 10). The 

larger iteration is called a Sprint, and lasts two to four weeks. The smaller is called a Scrum 

and repeats daily. The Sprint iteration is used as the basis for planning and user validation of 

progress, while the Scrum is used to coordinate work by members of the team. Scrum roles, 

artifacts and management practices are listed in Appendix A. 
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Figure 9 Diffusion of various software development processes, 
as measured by the number of references returned by a Google search. 

Scrum is a minimal process, in the sense that is difficult to imagine how a team could be 

successful at developing a software system without having a “to do” list (the product and the 

sprint backlogs), some kind of coordination (the Sprint and the Scrum meetings) and some 

governance scheme (the product owner and the scrum master). 

This chapter has provided a brief introduction to Agile development and two representative 

methods. The next chapter will present an overview of the published articles, their 

contribution and position with respect to the Guide to the Software Engineering Body of 

Knowledge (Abran, Moore et al. 2004). 
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Figure 10 The Scrum process 
(After Cohn 2009).
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CHAPITRE 3

MAJOR THEMES

Three research themes pervade this thesis: the estimation of software size for the purpose of 

planning a project, the calculation and administration of contingency funds and the 

monitoring of development activities. The first theme is addressed in the article “Sizing User 

Stories Using Paired Comparisons” (Annex I), which describes a method to support 

judgement-based effort estimation. The second theme is the subject of the article “Protecting 

Software Development Projects Against Underestimation” (Annex II), which proposes a new 

method of calculating contingency funds that takes into consideration the human and 

organizational considerations that affect decision-making in a project facing overruns. The 

third theme, the monitoring of development activities, is addressed in the article “Agile

Monitoring Using the Line of Balance” (Annex III), which proposes a monitoring method 

that is almost a by-product of team activities and operations over a version control system, 

and not a heavy reporting superstructure imposed on the developers. 

This chapter provides a brief introduction to each of the publications, highlighting their 

contributions to the software project management discipline. They are then analyzed with 

respect to the Guide to the Software Engineering Body of Knowledge to demonstrate that 

they form a cohesive whole, as they all relate directly to software engineering management in 

general, and to Agile projects in particular.

3.1 Sizing User Stories Using Paired Comparisons 

To estimate the amount of work required in a project, Agile development relies on the 

judgement of the participating developers combined through a number of mechanisms, which 

include Ad Hoc consultations, Delphi-like techniques and statistical groups (Molokken, 

Haugen et al. 2008). The Paired Comparison method for software estimation (Bozoki 1993; 

Miranda 1999; Miranda 2000; Shepperd and Cartwright 2001; Miranda 2001a; Hihn and 

Lum 2004) is designed to support expert estimation by comparing the relative size of the 

features that drive the planning of the development project, which improves both the 

CHAPTER 3
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accuracy and the precision of estimates (Sasao 2009) compared to Ad Hoc estimates and to 

Planning Poker  (Grenning 2002; Cohn 2006), a popular variation of the wideband Delphi 

method described by Boehm (Boehm 1981). The major drawback of the Paired Comparison 

method is the large number of judgements required to arrive to an accurate estimate. 

The method proposed in this thesis (Miranda, Bourque et al. 2009) and described in detail in 

Annex I, uses incomplete cyclic designs (Spence and Domoney 1974; Spence 1982; Burton 

2003) to select which comparisons to make. The contribution of the redesigned method rests 

in the reduction of the number of comparisons required, up to 35% relative to the full 

factorial model, without a corresponding loss in the reliability of the estimates. This redesign 

allows the method to be applied to larger sets, or, conversely, to estimate a set of a given size 

with less effort. 

Software estimation using Paired Comparisons is especially well suited to the early stages of 

a development project, when the knowledge available to project team members is mostly 

qualitative. The relevance of the method has been established by Jørgensen and Shepperd’s 

writing (Jorgensen and Shepperd 2007), calling for the development of techniques that 

support rather than replace expert judgment, the prevailing practice in industry. 

3.2 Protecting Software Development Projects against Underestimation 

Agile projects are not immune to overruns, delays and bad business decisions based on poor 

estimates. The promise of trying their best and setting the scope, budget and/or schedule as 

the project progresses (Sutherland and Schwaber 2007) would not be enough for stakeholders 

requiring a fixed scope and schedule to formulate their own plans and budgets. For this, it is 

necessary to calculate contingencies to bring the risk associated with any project to levels 

acceptable to them. 

In “Protecting Software Development Projects Against Underestimation” (Miranda and 

Abran 2008), an algorithm is proposed to do this. The contribution of the article, included as 
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Annex II of this thesis, is threefold. First, the author postulates that a realistic calculation of 

contingency funds should be based on the cost of keeping the project on schedule, and not on 

what it would have cost had the work been planned from the beginning. Second, the model 

uses a new communication model derived by the author based on his working experience 

(Miranda 2001b), and which he later found corroborated by the data collected by Allen at 

MIT (Allen 1984). Third, it demonstrates the need to administer the contingency funds above 

the project level to take advantage of cost savings achieved by projects which are under cost, 

so that they are passed on to elements requiring additional resources. 

As part of the analysis, the author also qualifies Brook’s old adage that “adding a person to a 

late project makes it later” (Brooks 1995), by demonstrating that, while adding a person to a 

late project is more expensive than adding it at the beginning of the project, only under very 

extreme circumstances, e.g. gross underestimations acknowledged late in the development 

life cycle, does the addition of the extra resource result in process losses so severe that the 

project is delayed.
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3.3 Agile Monitoring Using the Line of Balance 

Progress monitoring and reporting is a basic function during the execution of any project. 

Progress needs to be monitored so that potential problems can be avoided before they 

materialize. Besides being required to steer the project, timely and accurate reporting is 

essential to keep stakeholder support and funds flowing.  Agile projects are no different. 

In the article, “Agile Monitoring Using the Line of Balance” (Miranda and Bourque 2009) 

(see  Annex III), the authors propose the use of line-of-balance calculations (Office of Naval 

Material 1962; Al Sarraj 1990; Arditi, Tokdemir et al. 2002; Harroff 2008) to track progress 

and to balance resources in Agile projects. 

The contribution of this article resides in the novel application of an old method to software 

development. In keeping with the idea of using actual data for planning, the authors replaced 

the target or standardized times used in the original method with data captured by a version 

control system.

The line-of-balance (LOB) technique was devised by the members of a group headed by 

George E. Fouch during the 1940s to monitor production at the Goodyear Tire & Rubber 

Company which the author has successfully used to monitor the progress of fixing the trouble 

reports while working at Ericsson . The LOB method comprises the designation of a number 

of control points, together with their lead times, and a target plan displaying the cumulative 

production schedule as planned by the project manager. The control points’ leadtimes are 

used to calculate how many units should have passed through each of them as of a given date 

vs. how many actually passed. By comparing these two numbers, it is possible to assess the 

project progress and any unbalance that might exist in the allocation of resources. The latter 

is an important advantage of the proposed method over other tracking approaches used in 

Agile projects, since unbalanced operations result both in inefficient utilization of resources 

and in throughput losses.
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3.4 The Articles in Context 

The underlying theme of the three articles is the improvement of the management of software 

development projects in general and Agile projects in particular. To better understand this 

connection, the articles are analyzed here against the knowledge taxonomy proposed in the 

Guide to the Software Engineering Body of Knowledge (Abran, Moore et al. 2004). 

3.4.1 The Guide to the Software Engineering Body of Knowledge 

The Guide to the Software Engineering Body of Knowledge (SWEBOK) is a comprehensive 

collection of generally accepted knowledge within the academic and industrial software 

engineering communities. The phrase “generally accepted” is taken to have the same 

meaning as the phrase “generally recognized” in the Project Management Body of 

Knowledge (Project Management Institute 2004), which states: “Generally recognized” 

means that the knowledge and practices described are applicable to most projects most of the 

time, and that there is widespread consensus about their value and usefulness” 

The content of the SWEBOK is organized into the following 10 knowledge areas:

� Software requirements, 
� Software design, 
� Software construction, 
� Software testing, 
� Software maintenance, 
� Software configuration management, 
� Software engineering management, 
� Software engineering process, 
� Software engineering tools and methods, 
� Software quality, 

Each of the areas is further decomposed into sub-areas, topics and subtopics. Figure 11 

shows the structure of the Software Engineering Management Knowledge Area, into which 

all the topics addressed in this thesis fall.  
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3.4.2 Traceability between the Publications and the SWEBOK 

Table 3 traces each of the publications to the corresponding topic or subtopic in the 

SWEBOK. The presence of two marks on a given row of the traceability table, e.g. the 

Effort, Schedule and Cost Estimation row, which contains two x’s, one corresponding to the 

Sizing User Stories Using Paired Comparisons publication and the other to the Protecting 

Software Development Projects Against Underestimation publication, denotes a connection 

between the corresponding themes addressed by them, e.g. in order to estimate the amount of 

contingency necessary for a budget, I first need to know the budget. 

The correspondence between topics and subtopics in the SWEBOK and each article was 

established by comparing their respective content. The corresponding definition for the 

SWEBOK topics and subtopics is provided in Appendix B for the sake of completeness. 

Figure 11 Software Engineering Management Knowledge Area topics 
(Abran, Moore et al. 2004). Copyright © 2004 by The Institute of Electrical and 

Electronics. Engineers, Inc. All rights reserved.
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Table 3 SWEBOK – Publications Traceability Matrix 

Knowledge 

Areas
SWEBOK’s Topics 

Sizing User 

Stories Using 

Paired

Comparisons 

Protecting 

Software 

Development 

Projects Against 

Underestimation 

Agile

Monitoring

Using the 

Line Of 

Balance

Initiation and 

Scope

Definition

Determination and Negotiation of Requirements    

Feasibility Analysis (Technical, Operational, Financial, 

Social) 

X   

Process for the Review and Revision of Requirements    

Software 

Project

Planning 

Process Planning    

Determine Deliverables    

Effort, Schedule and Cost Estimation X X  

Resource Allocation    

Risk Management  X  

Quality Management    

Plan Management    

Software 

Project

Enactment 

Implementation of Plans    

Supplier Contract Management    

Implementation of Measurement Process    

Monitor Process   X 

Control Process  X X 

Reporting   X 

Review and 

Evaluation 

Determining Satisfaction of Requirements    

Reviewing and Evaluating Performance    

Closure Determining Closure    

Closure Activities    

Software 

Engineering 

Measurement 

Establish and Sustain Measurement Commitment    

Plan the Measurement Process    

Perform the Measurement Process    

Evaluate Measurement    



CONCLUSION 

The publications that make up the core of this thesis present three novel methods that can be 

employed by practitioners in the Agile and other communities to plan and monitor their 

software development projects. Their relevance and correctness has been established by a 

peer review process implemented by three different journals: Information and Software 

Technology, the Project Management Journal and the Journal of Systems and Software. 

The main results of this research are: 

� The development of a scalable and reliable method to support the estimation of Agile 

development projects. An empirical verification of the method was conducted using two 

datasets, showing that the proposed method produces good estimates, even when the 

number of comparisons is reduced by half those required by the original formulation of 

the Paired Comparison method. 

� The development of a model to calculate contingency funds that takes into account the 

human and organizational considerations that govern decision making in real projects and 

the verification of the need to administer these funds above the project level. This last 

point was verified by studying a number of different scenarios using Monte Carlo 

simulations. 

� The development of a technique to effectively and efficiently track progress on Agile 

projects. The method is effective and efficient in the sense that it not only summarizes 

information currently dispersed in a number of project artifacts, but also provides new 

insights into balancing the workload and combines this with the overall project plan. 

While the methods proposed constitute a contribution to the software engineering body of 

knowledge, there is still research work to be carried out. 

A current limitation of the Paired Comparison method is that it includes, in one judgement, at 

least two dimensions that are correlated with the effort to program a certain feature: its length 
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and its complexity. In other words, a given piece of software can be longer, i.e. more lines of 

code than another, but its logic can be simpler, and it is up to the estimator to balance them 

when comparing one entity to another. 

Any model is a compromise between fidelity and analytical tractability. The geometric model 

used to calculate contingency funds is no exception. For example, the original distribution of 

effort is assumed to be uniform when for some type of projects a more realistic 

representation would be based on a back loaded curve. Similarly, the probability distribution 

of the time to acknowledge the underestimation is a simple arithmetic progression. Other 

possibilities that ought to be researched include the use of conditional probabilities to model 

the effect of the underestimation, e.g., larger underestimations will be easier to notice than 

smaller ones and right skewed distribution that will emphasize the effect of procrastination in 

deciding whether to re-plan a project or not. 

Implicit in the current version of the LOB method is the assumption that the production rate 

remains constant throughout the project. However, years of study of work in industrial plants 

has demonstrated the existence of learning curves that result in productivity increases as 

workers become more proficient in the production process.  It is not too radical a speculation 

that, as the development team becomes more familiar with itself and with the product under 

development, productivity will go up as well. Employing a straight line, as in the current 

method, instead of a curve reflecting learning will result in an underestimation of the 

progress achieved so far. 

In addition to the two points mentioned above, future research work includes the substitution 

and evaluation of the current imputation method and the revision of the calculations 

concerning the propagation of errors associated with individual judgements. 

The current version of the Paired Comparison method utilizes the mean value of the row of 

judgements to assign values to the comparison skipped by virtue of the design. The rationale 

for the selection of this method is that, since the comparisons included in a particular ICD 
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share no particular order, the values missing do so at random. This choice however affects 

the value of the inconsistency index, and the question is whether an imputation technique that 

exploits the ij jk ika a a� � relationship of a perfectly consistent matrix could be a better one. 

With regard to the propagation of errors to individual judgements, the current version of the 

method assumes that every individual judgement contributes in the same proportion to the 

total error represented by the inconsistency index. If this were not the case, i.e. judgements 

between entities further apart yielded larger, or smaller, errors, then the current method 

would underestimate, or overestimate, the prediction intervals. 
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1. Introduction

Agile estimation approaches typically comprise three steps: (1)
comparison of the user stories to be developed to one another for
the purpose of establishing their relative size; (2) conversion of
the size estimates to lead times using an assumed team productiv-
ity; and (3) re-estimation of the project lead times using the team’s
actual productivity, once this becomes known after two or three
iterations.

User story comparisons take the following form: ‘‘This story is
like that story, so its size must be roughly the same,” or ‘‘This story
is a little bit bigger than that story which was estimated at 4, so its
size should be around 5.” The numbers 4 and 5 in the previous sen-
tence are called ‘‘story points”, which are numbers in ratio scale
purportedly proportional to the effort it would take to develop
each story based on its perceived size and complexity [1]. A 6-point
user story is expected to require about twice as much effort as a 3-
point user story. The degree of structure in the comparison process
ranges from the ad hoc comparison of any two user stories, to tri-
angulation – the comparison of a user story with two others, to a
number of Delphi [2] like techniques such as the planning poker
[3]. To avoid wasting time discussing insignificant differences be-
tween user stories, the use of a Fibonacci or power series is some-
times recommended, such as if the difference between two user

stories is not as large as a following term in the series, the two user
stories are assumed to be of the same size [4].

The project lead time is calculated using the concept of velocity,
which is a proxy for the productivity of the team. At first, velocity is
estimated or taken from a previous project, but, as work
progresses, it is measured by tallying the number of story points
completed during the counting period. Velocity is measured in
story points per iteration, or story points per month. As an exam-
ple, if the current team velocity is 30 story points per month, it will
take the team 2 months to deliver 60 story points-worth of user
stories.

As will be shown later, comparing one user story to another, or
to two others, is not good enough to produce reliable estimates.
The first reaction to this is to increase the number of comparisons,
but this creates some problems of its own. As even the most de-
voted estimator gets tired after making a large number of compar-
isons, the question of how many comparisons to make becomes
really important, as does the problem of dealing with the inconsis-
tencies inherent to the judging process.

To address these problems, we propose the use of incomplete
cyclic designs to identify which user stories to compare with which
to reach a desired accuracy, and the use of the paired comparison
method [5–7] to deal with judgment inconsistencies.

The rest of the paper is organized as follows: Section 2 formal-
izes the triangulation concept, Section 3 explains the basic paired
comparison method, Section 4 presents the modified process using
incomplete cyclic designs, Section 5 discusses the accuracy and
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precision of the resulting estimates, and Section 6 provides a sum-
mary of the article.

2. Agile estimation and triangulation

Triangulation is defined in the Agile literature as the process of
establishing the size of a user story relative to two other user sto-
ries with the purpose of increasing the reliability1 of the estimate
[3]. When using triangulation, the comparisons sound something
like this: ‘‘I’m giving user story B 2 points, because it feels like its
implementation will take somewhat more effort than user story A,
which I already rated at 1 story point, and somewhat less effort than
user story C, which I rated as a 4-point story.” Despite its intuitive
appeal, triangulation is not as simple as the sentence above makes
it appear. First, there is the problem of consistency, which can be
mathematically expressed as:

aij � ajk ¼ aik 8i; j; k 2 n ð1Þ
Eq. (1) reads as follows: if user storyi is aij times bigger2 than

user storyj, and user storyj is ajk times bigger than user storyk, then
user storyi must be aij � ajk times bigger than user storyk. This is
important, because lack of consistency among triangulations leads
to inaccurate estimates.

Second, which two user stories should you choose as reference
points? Does the choice affect the result?

The triangulation process can be visualized by arranging the
user stories in a circular pattern and linking those being compared
(see Fig. 1). Given n user stories to be estimated, there are
nðn� 1Þðn� 2Þ=2 possible configurations or designs which can be
evaluated, but not all are equally good. A good design must have
two properties: balance and connectedness [8–10]. A design is con-
sidered balanced when every user story appears in as many com-
parisons as any other user story. This ensures that one user story
does not overly influence the estimation, while others are under-
represented. Connectedness implies that any user story is com-
pared, directly or indirectly, to every other user story. An uncon-
nected graph is undesirable, because the size of some user
stories relative to others would be completely indeterminate.
Fig. 1b illustrates the problem: the user stories in the lower subset
are never compared against those in the upper subset, so each sub-
set could be accurately sized in itself but completely offset with re-
spect to the other.

The number of times a user story appears in a comparison is
called the replication factor (r) of the design. In all the designs
shown in Fig. 1, r is 2.

Balance and connectedness are necessary, but not sufficient
conditions for a good estimation. As shown by Burton [8], a low
r, such as that used in the triangulation approach (r ¼ 2) is very
sensitive to errors in judgment, and thus tends to produce unreli-
able results. In his experiments, Burton found that the correlation
(q) between the actual and the estimated values using triangula-
tion ranged from a low of 0.46 to a high of 0.92, with a mean value
of 0.79. Similar variability was found by the authors using two sets
of data, this is discussed later.

3. Paired comparison method basics

3.1. Overview

The idea behind the paired comparison method is to estimate
the size of n user stories by asking one or more developers to judge

their relative largeness rather than to provide absolute size values.
After this is done, one of the n user stories is assigned an arbitrary
number of story points. Using this story as reference, the sizes in
story points, of all the other user stories are calculated. The process
is called Full Factorial Pairwise Comparison because it compares all
user stories (factors) against one another, see Fig. 2.

Although the selection of the user story to be used as reference
and the allocation of story points to it is arbitrary to a certain
point,3 a consistent selection and allocation, i.e. two comparable
user stories are not allocated 4 story points in one project and 10
in other, is useful for the developers to develop an intuition or sense
for the effort required in the realization of a user story with so many
story points.

It is also possible to use the method to estimate the effort re-
quired by each user story instead of their story points. In this case,
a user story whose development effort, from either a previous pro-
ject or a spike,4 is known will be brought in as reference story. For a
more detailed description of the method, refer to [5,6].

In the rest of the document we will work with story points to
remain true to the title of the essay but all the same concepts apply
to the calculations using effort.

3.2. The pairwise comparison of user stories

Developers start the process by judging the relative size (aij) of
each user story against every other user story, and recording these
values in a matrix called the judgment matrix (2).

Anxn ¼

aij ¼ spi
spj

How much biggerðsmallerÞuser storyi

is with respect to user storyj

aii ¼ 1 Every user story has the same size as itself
aji ¼ 1

aij
If user storyi is aij times bigger ðsmallerÞ
than user storyj; then user storyj

is 1=aij times smallerðbiggerÞthan user storyi

8>>>>>>>>><
>>>>>>>>>:

ð2Þ
spi and spj are the as yet unknown numbers of story points for user
storyi and user storyj to be derived from the aij judgments. Note that
only the comparisons corresponding to the upper diagonal matrix
have to be made, since the aji are the reciprocals of the aij.

3.3. Calculating the size, the Inconsistency Index, and the standard
deviation

Once all the aij judgments have been recorded in the judgment
matrix, the mean relative size (mrsi) of user storyi is calculated as
the geometric mean [11,12] of the ith row (3) of the judgment ma-
trix. The size in story points of each user story is then computed by
multiplying its mrsi by the normalized size of the reference user
story (4). For a more detailed description of the method, refer to
[5,6].

mrsi ¼
Yn
j¼1

aij

 !1
n

ð3Þ

spi ¼
spreference

mrsreference
�mrsi ð4Þ

As inconsistencies are inherent to the judgment process, Crawford
and Williams [12] and Aguaron and Moreno-Jimenez [13] suggest

1 A reliable sizing method will yield estimates that are accurate, that is, close to
their true value, and precise, that is estimates must be consistent across repeated
observations in the same circumstances.

2 The comparison can go both ways, i.e. replacing bigger for smaller.

3 The number zero must be reserved for ‘‘stories” with not content to preserve the
properties of a ratio scale.

4 In the Agile terminology a spike is an experiment that is performed to learn
something. In this case the spike would consist on developing a user story tracking
how much effort it required.
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the use of (5) as an unbiased estimator of the variance of the incon-
sistencies of the judgment matrix An�n. The larger the inconsisten-
cies between comparisons, the larger the variance will be. The
square root of (5) is called the Inconsistency Index (6) of the judg-
ment matrix.

r2
A ¼

Pn
i<j ln aij � lnmrsi

mrsj

� �2
nðn�1Þ

2 � ðn� 1Þ ð5Þ

InconsistencyIndex ¼
ffiffiffiffiffiffi
r2

A

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
Pn

i<j ln aij � lnmrsi
mrsj

� �2
ðn� 1Þðn� 2Þ

vuut ð6Þ

While the Inconsistency Index gives an overall idea of the quality of
the judgments, it is a quantity that is difficult to interpret. A much
better alternative is to present the estimator with a range estimate
– an interval within which the estimate will likely fall for a given
degree of inconsistency.

To calculate the extremes of the interval, we start by assuming
that each user story contributes equally to r2

A. This assumption al-
lows us to write Eq. (7), where r2

A is shown to result from the sum

of n individual inconsistencies r2
i contributed by each user story.5

The standard deviation of the size of each user story could then be
calculated as the product of its estimated size and its individual
inconsistency (8). The range estimate is given by (9).

r2
A ¼

Xn�1

i¼1

r2
i ¼ nr2

i

therefore ri ¼
ffiffiffiffiffiffi
r2

A

n

r
� InconsistencyIndexffiffiffi

n
p ð7Þ

rspi ¼ spi �
InconsistencyIndexffiffiffi

n
p ð8Þ

RangeEstimate ¼ ½spi � ri; spi þ ri� ð9Þ
Other approaches to calculating the standard deviation of the size
exist. Hihn and Lum [14] proposes the use of a triangular distribu-
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E 
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User story 
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(c) 
Fig. 1. Three triangulation designs out of the nðn� 1Þðn� 2Þ=2 possible ones. Note 1: ‘a’ and ‘c’ are good designs, but ‘b’ is not, as it consists of two disjoint subgraphs.

5 If the reference story is brought in from another project or from a spike the
denominator in Eqs. (7) and (8) needs to be replaced by n � 1 instead of to account for
inclusion of the known parameter.
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tion, where the developer or estimator judges the relation between
two user stories in terms of the best case, the most likely case, and
the worst-case scenarios, but, given the rather large number of user
stories included in a typical project, we found this to be too taxing.

3.4. Reviewing inconsistencies

At this point, the estimator will use the Inconsistency Index or
the estimates’ range as a guide to decide whether or not these

are good enough and stop, or revise all or some of his judgments
with the objective of reducing the inconsistencies.

By simulating a large number of judgment matrices and com-
paring them to perfectly consistent ones, Aguaron and Moreno-
Jimenez [13] determined that, for sets with four or more data
points, an Inconsistency Index less than or equal to 0.35 would
produce satisfactory results in most cases. To give the reader an
idea of its meaning, an Inconsistency Index of 0.35 with 15 user
stories being estimated would, under the assumption that all user

Fig. 3. Tool interface for detecting the most inconsistent judgments. Note 1: Each time the ‘‘Analyze” button is pressed, a new triad is displayed. Note 2: The ‘‘spinner” is used
to specify the amount over which a given triad is considered inconsistent . Note 3: The values in the matrix and the estimated value are rounded to the nearest digit for
display purposes.

Review
 Inconsistencies

A3

Calculate Size,
 Standard
 Deviation and
 Inconsistency
 Index

A2

Compare User
 Stories Pairwise

A1

inconsistent judgments

inconsistency index

user stories' std. dev.

user stories' size

user stories judgment matrix

verbal scale (optional)
reference user story

tool
developer

Fig. 2. In the Full Factorial paired comparison process. Each user story is compared to every other user story. Note 1: The optional verbal scale allows the user stories to be
compared using an ordinal scale by labeling the comparison of two user stories with adjectives such as ‘‘equal”, ‘‘a little bigger”, ‘‘much bigger”, etc.
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stories contribute equally to it, result in a size range of ±9% for each
story. If fewer user stories are compared, the size range will be
wider. If more user stories are compared, the interval will be
narrower.

3.5. A numerical example

Suppose we wanted to estimate the story points of four user
stories called A, B, C and D. If we judge the size of A to be three
times that of B, five times that of C, and twice that of D, and then
we assess B to be roughly a quarter of C and one-and-a-half times
D, and C as being five times bigger than D, the resulting matrix is:

4 4

1 3.0 5.0 2.0

.33 1 .25 1.5

0.2 4.0 1 5.0

.50 .67 .20 1

A B C D

A

A B

C

D

× =

Only the relative size of the upper diagonal elements of the ma-
trix needs to be judged, as all the other values can be derived using
the definitions in (2). Applying Eq. (3), the mean relative size of
each user story is:

mrsi ¼

2:34
0:59
1:41
0:50

8>>><
>>>:

By designating D as the reference user story and assigning it 5 story
points we anchor the scale above and are able to calculate the size
of the other user stories using Eq. (4)

spi ¼

23:02
5:85
13:91
5:0

8>>><
>>>:

The total size for the project is 47.78 story points, with an Inconsis-
tency Index of 0.94 which yields a size range of ±47% for each user
story (8).

As the estimator is not happy with such a range, he decides to
review his judgments. To do this, he resorts to Eq. (1), which states
that, in a perfectly consistent matrix aij � ajk ¼ aik, that is, the rela-
tive size of user storyi with respect to user storyj multiplied by the
relative size of user storyj with respect to user storyk must be equal
to the relative size of user storyi with respect to user storyk. To

Table 1
Results of the Burton experiments.

Number of comparisons
in which each concept
was included (r)

Number of
comparisons
with respect to the
complete design (%)

Number of
comparisons in
the Full Factorial
design

Number of
comparisons
in the ICD

Lowest correlation
with results from
the complete
design

Mean correlation
with results from
the complete design

Comments

2 10 210 21 0.46 0.79 Mean correlation is acceptable,
but worst-case correlation is too low4 20 42 0.58 0.95

6 30 63 0.80 0.96 Mean correlation and worst-case
correlation are acceptable

8 40 84 0.97 0.98 Almost as good as the complete design

Review
 Inconsistencies

A5

Calculate Size,
 Standard
 Deviation and
 Inconsistency
 Index

A4

Impute Missing
 Values

A3

Compare
 Selected User
 Stories
 Pairwise

A2

Generate
 Incomplete
 Cyclic Design

A1

inconsistent judgments

inconsistency index

user stories' size

user stories std. dev.

judgment matrix

user stories

incomplete judgment matrix (A)

selected comparisons number of replications (r)

number of user stories (n)

verbal scale (optional)
reference user story

developertool

Fig. 4. The Fractional Paired Comparison method. Each user story is only compared to those indicated by the ICD.
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operationalize this concept, we divide Eq. (1) by aik and obtain (10).
The amount by which Eq. (10) differs from 1 when the actual judg-
ments are plugged in is used to identify the largest inconsistent
judgments (see Fig. 3).

aij � ajk
aik

¼ 1 ð10Þ

After reviewing the estimates, the estimator decides that A is half
the size of C and not five times larger as previously stated. So, he re-
cords the new judgment in the judgment matrix (11).

4 4

1 3.0 2.0

.33 1

.50

2.0

.25 1.5

4.0 1 5.0

.50 .67 .20 1

A B C D

A

A B

C

D

× = ð11Þ

This change results in the reduction of the Inconsistency Index from
0.94 to 0.27. The lower value indicates a more consistent evaluation
of the relative size of the user stories. The new Inconsistency Index
yields a size range for each user story of ±14%, and the estimator de-
cides to accept the results.

The new total size for the project is 48.7 story points, with indi-
vidual sizes and standard deviations of:

spi ¼

13:1� 1:83
5:9� 0:83
24:7� 3:46
5:0� 0:70

8>>><
>>>:

4. Reducing the number of comparisons with Incomplete Cyclic
Designs (ICD)

4.1. Overview

The Full Factorial Paired Comparison method provides a solu-
tion to the problem of dealing with inconsistent judgments. The
problem is that the method does not scale up as the number of
comparisons required grows with the square of the number of user
stories being estimated.

To solve it, several authors [9,10,15] had proposed the use of
Incomplete Cyclic Designs (ICDs) to select a subset of the
nðn� 1Þ=2 comparisons required by the Full Factorial method.
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(a) r = 2, s = 1 (b) r = 2, s = 2 

(c) r = 2, s = 3 
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User story 
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(d) r = 4, s = 1 

Fig. 5. Four different Incomplete Cyclic Designs. Note 1: Designs a, b, and c are created by increasing the distance (s) between user stories. Note 2: Design d is the result of
merging designs a and c.
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Such designs are called fractional designs because they contain
only a fraction of all possible comparisons. The ICD technique is
used to select which stories are to be compared. Starting with
one user story, successive comparisons are selected in a cyclical
fashion using the arithmetic modulo n. This method is further
developed in the following sections.

Table 1 shows the results of a series of experiments conducted
by Burton [8] to evaluate the impact of a reduced number of com-
parisons in the reliability of the estimates. The experiment con-
sisted of evaluating the correlation between the results of a Full
Factorial estimation with the results of a number of fractional
(ICD) designs, each with a different r for two groups with multiple
respondents.

The closer to 1 the correlation between the Full Factorial and
the fractional designs and the lower the spread between the lowest
and the mean correlations, the more accurate and precise the val-
ues estimated using the ICD were.

The dataset used in the experiment consisted of 21 different
concepts for which the test subjects needed to quantify their
semantic similarity. The Full Factorial design required 210 compar-
isons. The experiment showed that a fractional design with only 63
comparisons displayed a high correlation (0.80–0.96) between the
similarities estimated by the two methods.

4.2. The Fractional Paired Comparison method

The Fractional Paired Comparison method requires that: (1) we
decide which comparisons to make and (2) we compensate for the

missing values. This adds two new activities to the original pro-
cess: Generate Incomplete Cyclic Designs and Impute Missing Val-
ues (see Fig. 4), which are explained in later sections.

4.3. Generating Incomplete Cyclic Designs (ICD)

The proposed Incomplete Design Cycle (ICD) construction pro-
cess starts by arranging, in a random order, the user stories along
a circle, and joining adjacent user stories with a line. Each line cor-
responds to a comparison.

The design generated in this way (see Fig. 5a) consists of a total
of 7 comparisons, with each user story appearing in two compari-
sons, one with the user story to its left and the other with the one
to its right. The design’s distance s is the minimum number of hops
along the circle needed to reach the stories being compared. In
Fig. 5a, r ¼ 2 and s ¼ 1.

Additional designs (see Fig. 5b and c) are generated by increas-
ing the distance between the user stories compared. ICDs with a
higher r are obtained by merging simpler designs, as shown in
Fig. 5d, which results from the juxtaposition of the designs in
Fig. 5a and c.

To operationalize the generation of ICD, we use an adjacency
matrix Gn�n and the algorithm in Fig. 6. Table 2 shows the matrix
representation of the designs in Fig. 5.

4.4. Imputing missing values

Before we can calculate the size of the user stories, we need to
impute the missing values of the judgment matrix, that is, those
corresponding to the comparisons that were skipped by the design,
with a representative value. Note that the assignments aii ¼ 1 and
aji ¼ 1=aij, the elements on the principal diagonal and the recipro-
cal of the judgments, respectively, are not missing values and
should be made before the imputing calculations are performed.

As the comparisons to be skipped were selected at random by
the ICD construction procedure, we can impute them with the
mean value [16,17] of the row to which they would have belonged
using the algorithm in Fig. 7.

Because the number of judgments made in an ICD with replica-
tion factor r is lower than in the case of the Full Factorial design, we
need to change the formula for the Inconsistency Index to reflect

Fig. 6. ICD-generating algorithm.

Table 2
Matrix representation of the designs in Fig. 5.

User story A C F D G B E

A a, d b c, d
C a, d b c, d
F a, d b c, d
D a, d b c, d
G c, d a, d b
B b c, d a, d
E a, d b c, d

(a) r = 2, s = 1; (b) r = 2, s = 2; (c) r = 2, s = 3; and (d) r = 4.
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the reduced number of degrees of freedom. To do this, we substi-
tute in the denominator in (5) the number of judgments required
by the Full Factorial – (nðn� 1Þ=2) – with the number of judgments
required by an ICD with a replication factor of r � ðr � n=2Þ.

InconsistencyIndex ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
Pn

i<j ln aij � lnmrsi
mrsj

� �2
rn� 2nþ 2

vuut
ð12Þ

The computation of the standard deviation of the size of the user
stories (8) remains unchanged.

5. Empirical verification

In this section, we compare the performance of the Fractional
Paired Comparison method with the results generated by the Full
Factorial method using a set of 15 user stories (see Table 3) derived

Fig. 7. Imputation algorithm.

Table 3
User stories derived from the job board [18].

Dataset (1 or 2) Role Action Benefit

1 Job seeker Login I can use the system capabilities reserved for registered job seekers
1 Logout . . .to end a session and protect my data from being accessed by unauthorized people
1, 2 Register I can make my data available to headhunters and use the system capabilities reserved for registered job

seekers
1 Search job

announcements
I can find selected postings based on keywords or criteria, such as job category, location, industry, and
city

1 Create career alert I will get email notifications whenever a new announcement matching the search criteria is first posted
2 Suspend career alert I will not receive notifications without deleting the career alert
2 Delete career alert I will not receive further notifications
1 Upload resume It can be searched and read by recruiters
2 Delete resume It is not longer available to recruiters
2 Recruiter Login I can use the system capabilities reserved for registered recruiters
2 Logout . . .to end a session and protect my data from being accessed by unauthorized people
2 Post I can post a new job announcement
2 Edit I can modify an existing job announcement
2 Delete I can delete an existing job announcement
1, 2 System owner Notify I can email all job seekers re new postings, according to their career alert status
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from a popular Canadian job board [18]. The user stories are de-
scribed in Table 3 using the template: ‘‘As <role> I would like to
<action> so that <benefit>”.

For an evaluation of the paired comparison method against
actuals, refer to [7,19,20].

5.1. Method set-up

The verification was conducted using two subsets of different
sizes to explore the impact of the number of user stories in the reli-
ability of the fractional method. As we only obtained 15 user sto-
ries from the website, two of them were included in both sets.
The same user story was used as a reference to avoid differences
originating from the use of different references. In Table 3, the
numbers in the left-hand column indicate which user stories were
included in which dataset (1 or 2, or both).

First, a Full Factorial estimation was performed on each dataset
by a senior software developer. From these two datasets, the frac-
tional designs were generated by excluding from the calculations
those values that would have been skipped by the ICDs. This ap-
proach allowed us to control for the judgment errors associated
with repeated questioning.

Fig. 8 shows the data and the comparisons included in the
first dataset for three different designs with r ¼ 6 (full factorial –
100% of the comparisons), r ¼ 4 (66% of the comparison), and
r ¼ 2 (33% of the comparisons). In Fig. 8, only the shaded values
need to be provided by the estimator. The user story ‘Notification’
is the reference user story, and its predetermined size is 10 story
points.

The Full Factorial design required 21 comparisons, while the
first and second ICDs required 14 and 7, respectively. The results
are shown in Table 4.

Story 
Points User Story Registration Notification Create Alert Search jobs Login (job 

seeker) 
Upload 
resume 

Logout (job 
seeker) 

 Registration 1.5 2 3 

10 Notification 1.5 2 3 

 Create alert 1.5 2 5 

 Search jobs  1.5 3 4.0 

 Login job seeker 0.25 2.0 2.5 

 Upload resume 0.11 0.17 1.2 

 Logout job seeker 0.10 0.14 0.17 

(a) Full Factorial design – r = 6 
Story 
Points User Story Registration Notification Create Alert Search jobs Login (job 

seeker) 
Upload 
resume 

Logout (job 
seeker) 

 Registration 1.5 2 

10 Notification 1.5 2 

 Create alert 1.5 2 

 Search jobs  1.5 3 

 Login job seeker 2.0 2.5 

 Upload resume 0.11   1.2 

 Logout job seeker 0.10 0.14  

(b) Fractional design – r = 4 
Story 
Points User Story Registration Notification Create Alert Search jobs Login (job 

seeker) 
Upload 
resume 

Logout (job 
seeker) 

 Registration 1.5  

10 Notification 1.5 

 Create alert 1.5 

 Search jobs  1.5   

 Login job seeker 2.0 

 Upload resume 1.2 

 Logout job seeker 0.10 

(c) Fractional design -– r = 2

Fig. 8. Empirical verification using three different designs for dataset 1. Note 1: Fig. 8a design with r = 6 (full factorial – 100% of the comparisons). Note 2: Fig. 8b design with
r = 4 (66% of the comparisons). Note 3: Fig. 8c design with r = 2 (33% of the comparisons).
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The second dataset consisted of 10 user stories, which were
estimated using a Full Factorial design and 4 different ICDs. The re-
sults are shown in Table 5.

Note that, for both datasets, the minimal replication ICDs, r ¼ 2,
correspond to the simple triangulation procedure proposed in the
Agile literature.

5.2. Discussion of results

Each ICD’s performance was evaluated using the Mean Magni-
tude Relative Error (MMRE) and the Predictive Quality Indicator
(Pred) at the user story level and at the project levels. At the user
story level, MMRE and Pred were calculated by comparing the esti-
mated size of the user stories for a given replication against the va-
lue estimated by the Full Factorial method, and, at the project level,
we compared the sum of the sizes of all the user stories in the
project.

Evaluating the method on these two levels was important, be-
cause the planning of each iteration requires not only that the
overall project size be reliable, but also that the estimation of each
user story be acceptable.

The results were considered acceptable when their MMRE was
less than or equal to 0.25 and their Pred(0.25) was greater than
or equal to 0.75 [6,21].

Tables 6 and 7 summarize the performance for the estimation
results presented in Tables 4 and 5. The values obtained show that
the fractional designs produce acceptable results at the project le-
vel with very low r (r =4), but that good estimates at the user story
level required higher degrees of replication or lower Inconsistency
Index values. As expected, the influence of inconsistent judgments
increased with a reduction in the number of comparisons, and this
resulted in higher MMREs and lower Pred(0.25)s in the experimen-
tal situation.

Table 6
Method evaluation at the user story level.

Replication factor ðrÞ Inconsistency Index MMREa Predð0:25Þa Comments

First dataset – 7 user stories
4 0.70 0.45 0.33 MMRE and PRED do not meet the established criteria

Reducing the Inconsistency Index would help improve both measures, but,
under the stated conditions, the method does not produce acceptable results
at the user story level
Notice that the experiment with r = 2 corresponds to the triangulation approach
recommended in the Agile literature

2 1.73 2.10 0.17

Second dataset – 10 user stories
8 0.35 0.09 1 Estimates for individual user stories are acceptable
6 0.60 0.34 0.56 As the number of comparisons is reduced, the MMRE and PRED for individual

user story estimates start to deteriorate4 0.81 0.84 0.33
2 1.91 2.85 0.11 Estimates for individual user stories are not acceptable. Note that this is the case

for triangulation against 2 other user stories

aThe denominator used in both calculations is the number of user stories – 1, to account for the reference element.

MMRE ¼
P

absðxi � x̂iÞ=xi
n� 1

Predð0:25Þ ¼ k=ðn� 1Þ is the proportion of observations (k) that fall within 25% of the actual.

Table 4
Dataset 1: estimation results of 7 user stories for 3 different replication factors.

User story r ¼ 6 (Full
Factorial)

r ¼ 4 r ¼ 2

21 Comparisons 14 Comparisons 7 Comparisons

Estimated
story
points

Std.
dev.

Estimated
story
points

Std.
dev.

Estimated
story
points

Std.
Dev.

Registration 14.4 0.3 18.8 4.97 31.9 20.86
Notification

(reference)
10.0 0.2 10.0 2.65 10.0 6.54

Create Alert 7.4 0.17 5.7 1.51 6.8 4.45
Search jobs 5.0 0.11 4.8 1.27 7.5 4.9
Login job seeker 3.4 0.08 4.5 1.19 9.0 5.88
Upload resume 1.6 0.04 3.0 0.79 8.6 5.62
Log out job seeker 1.3 0.0 2.7 0.71 8.0 5.23

Project total 43.1 49.4 81.7
Inconsistency Index 0.06 0.70 1.73

Table 5
Dataset 2: estimation results of 10 user stories for 5 different replication factors.

User story r ¼ 9 (Full Factorial) r ¼ 8 r ¼ 6 r ¼ 4 r ¼ 2
90 Comparisons 40 Comparisons 30 Comparisons 20 Comparisons 10 Comparisons

Estimated story
points

Std. dev. Estimated story
points

Std. dev. Estimated story
points

Std. dev. Estimated story
points

Std. dev. Estimated story
points

Std. dev.

Registration 13.0 0.74 13.5 1.49 14.2 2.69 16.4 4.20 29.7 17.94
Notification (reference) 10.0 0.57 10.0 1.11 10.0 1.90 10.0 2.56 10.0 6.04
Post announcement 6.1 0.35 6.0 0.66 5.2 0.99 4.1 1.05 5.4 3.26
Edit announcement 4.4 0.25 4.3 0.48 3.7 0.70 3.6 0.92 6.7 4.05
Login recruiter 3.0 0.17 2.8 0.31 2.7 0.51 3.1 0.79 7.0 4.23
Suspend alert 2.3 0.13 2.5 0.28 2.5 0.47 3.3 0.85 7.8 4.71
Delete alert 1.9 0.11 2.1 0.23 2.7 0.51 3.8 0.97 8.5 5.13
Delete announcement 1.5 0.09 1.7 0.19 2.4 0.46 3.8 0.97 8.4 5.07
Delete resume 1.3 0.07 1.5 0.17 2.2 0.42 3.7 0.95 8.7 5.25
Logout recruiter 1.0 0.06 1.2 0.13 1.8 0.34 3.1 0.79 7.5 4.53

Project total 44.6 45.7 47.5 54.9 99.7
Inconsistency Index 0.18 0.35 0.60 0.81 1.91
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Note that, as a consequence of retaining the values from the Full
Factorial design to control for judgment error in the experiment
design, we did not correct any values to obtain an Inconsistency In-
dex closer to the recommended 0.35. Had we allowed ourselves to
perform one or two amendments, as we would normally do in
practice, we would have brought the index down and improved
theMMREs and Pred(0.25)s in the low-replication estimations. Rea-
soning along this line, triangulating against two other user stories
(r = 2) would require almost perfect consistency on the judgments
rendered for the extra comparisons to increase the estimate’s
reliability.

6. Summary

Agile estimation approaches usually start by sizing the user sto-
ries to be developed by comparing them to one another. Various
techniques, with varying degrees of formality, have been proposed
by the Agile community to conduct the comparisons – plain con-
trasts, triangulation, planning poker, and voting. This article adds
to these techniques by proposing the use of a modified paired com-
parison method, in which a reduced number of comparisons is se-
lected according to an Incomplete Cyclic Design.

An empirical verification of this proposal was conducted using
two datasets, showing that the proposed method produces good
estimates, even when the number of comparisons is reduced by
half those required by the original formulation of the paired com-
parison method. A byproduct of the evaluation is the conclusion
that the simple triangulation advocated in the Agile literature does
not to automatically result in more reliable estimates. Low-replica-
tion comparisons require a high degree of consistency among
judgments.

To confirm these results the authors plan to conduct follow-up
studies in their respective organizations.

Although we have used story points to illustrate the article, the
techniques described could be equally applied using different size
units such as lines of code or to the estimation of durations using
ideal days or effort.

Those seeking to introduce the method in their organizations
must be aware that, while people readily buy into the idea of
comparing user stories to one another, they tend to become dis-
couraged by the underlying mathematics. Therefore, two things
are required for a successful deployment of the method: first, the
careful selection of the number of details to be included in training
presentations and process documentation; and second, the devel-
opment of a simple spreadsheet to support these calculations.
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INTRODUCTION ■

According to the Project Management Institute (PMI), a “contingency
reserve” is “the amount of funds, budget, or time needed above the
estimate to reduce the risk of overruns of project objectives to a level
acceptable to the organization” (PMI, 2004, p. 355). Contingency

funds are meant to cover a variety of possible events and problems that are
not specifically identified or to account for a lack of project definition during
the preparation of planning estimates. When the authority for the use of the
funds is above the project management level, it receives the name of man-
agement reserve.

In practice, contingencies are added to projects using heuristics such as
the 10% or 20% of the project budget or by accruing percentage points on the
basis of responses given to a risk questionnaire. More mature organizations
might even run Monte Carlo simulations to calculate expected values.
Whatever the approach chosen, in deciding how much and how to adminis-
ter the contingency funds, one cannot ignore the human and organizational
considerations that dictate decision making in real-world projects.
Specifically, one needs to consider management preference of schedule over
cost, time preferences, and the money-allocated-is-money-spent behavior
(Kujawski, Alvaro, & Edwards, 2004).

A good example of the preference for schedule over cost is given by
Stephen Grey (1995): “While most people will be willing to accept that cost
could exceed expectations, and might even take a perverse delight in
recounting past examples, the same is not true for deadlines. This is proba-
bly due to the fact that cost overruns are resolved in-house, while schedule
issues are open and visible to the customer” (p. 108). In other words, project
delays and scope cuts are not great career builders, so when faced with a
schedule overrun, management’s preferred course of action is not to replan
to achieve the best economic outcome but to attempt to keep the schedule
by adding people, despite the fact that adding resources midway through a
project will result in one or more of the following (Sim & Holt, 1998):
• need to break down the work into additional segments, so that they can be

allocated to the newcomers;
• need to coach the new staff;
• additional integration work; and
• additional coordination effort.

This means that if we know that contingency funds will be used first and
foremost to maintain a schedule and not just to pay for underestimated
work, we should acknowledge in their calculation the extra cost incurred by
the above activities.

Wishful thinking (Babad & Katz, 1991) and inaction inertia (Tykocinki,
Pittman, & Tuttle, 1995) are examples of time preferences that result in post-
poning the acknowledgment of a delay until the last possible moment. Todd
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Little (2006) commented on the unwill-
ingness to acknowledge project delays:
“This is the result of the project manag-
er holding on to a deadline in hopes that
a miracle will occur and the software
will release. Finally the day of reckoning
occurs, with no miracle in sight. At this
point, the project estimate is usually
reset. In many cases, this cycle repeats
until the software releases” (p. 52).

The tendency to procrastinate
should also be factored into the calcu-
lation of contingency funds because,
other things being equal, the later the
underestimation is acknowledged, the
higher the number of people required
and, consequently, the higher the cost.

These two premises led us to postu-
late that:

ContingencyFunds �

��RecoveryCost(u, t)P(t )p(u)dtdu (1)

Equation 1 ascertains that contin-
gency funds must equal the expected
recovery cost of a project—that is, the

effort necessary to recover from an
underestimation of magnitude u upon
which we act at time t by the probabili-
ty of u and the probability of t.

Having considered management
predilection for schedule over budget
and the time preferences, it is time
now to look at the third behavior that
affects the use of contingency funds:
the money-allocated-is-money-spent
(MAIMS) (Gordon, 1997; Kujawski 
et al., 2004) behavior. The MAIMS
behavior implies that, for a variety of
reasons, once a budget is allocated it
will tend to be spent in its entirety,
and, as a consequence, cost underruns
are seldom available to offset overruns.
This negates the basic premise that
contingency usage is probabilistic and
so, managing the funds above the
project level becomes the obvious and
mathematically valid solution for its
effective and efficient administration.

The remainder of the article 
defines and provides a rationale for
RecoveryCost(u, t), P(t ) and P(u) and

explains how these functions can be
calculated in practice. We also present a
numerical solution to Equation 1 and
explain why contingency funds should
be administered above the project
level.

The Recovery Effort
Figure 1 illustrates the effort makeup of
a project under recovery assuming that
the objective is to preserve the original
scope and the delivery date to which a
commitment has been made:
• The budgeted effort (Eb) is the

amount of effort originally allocated
to the project and is the product of
the time budgeted (Tb) and the origi-
nal staff (FTEb).

• t is the time at which the underesti-
mation is acknowledged and a deci-
sion to do something about it is finally
made.

• Ta is the mean time between when
the decision to bring in new people
was made and the time at which the
new staff arrives.

Time

Overtime Effort (Eob)

Tb

t

Ta

Tl

FT
E

Budgeted Effort (Eb)

Overtime contributed
by the additional resources (Eoa)

Process Losses (Pl)

Additional Effort (Ea)

Figure 1: Recovery cost of an underestimated project (adapted from Grey, 1995).
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• The additional effort (Eb) is the effort
that will be contributed by the
resources brought in to help recover
from the delay. The sloped left side of
the quadrilateral models the fact that
there will be a certain time interval
(Tl) before the new staff becomes
fully productive.

• The overtime efforts (Eob and Eoa) are
the efforts contributed through over-
time by both the original and the
additional resources. Overtime
efforts are affected by fatigue, as
modeled by the dark triangles on the
upper-right corners of the correspon-
ding rectangles.

• The process losses (Pl) include all the
extra effort: ramp-up, coaching, and
communication overhead imposed
on the original staff by newcomers.

The simplicity of this makeup is
deliberate. While other effort break-
downs are certainly possible, these
would come at the expense of more com-
plicated expressions, perhaps based on
hypothesized parameters, which would
make the model harder to explain. A
complete list of the model’s parameters
is provided in the Appendix

Calculating the Number of 
Additional People—FTEa(t, u)
Mathematically, the effort required to
recover from an underestimation (u)
would be equal to the effort that could be
contributed through the overtime of the
original staff (Eob), plus the effort of those
brought in to help (Ea) and their over-
time (Eoa), less the effort necessary to
compensate for the process losses (Pl).

u � Ea � Eob � Eoa � Pl (2)

The effort contributed by the addi-
tional staff would then be:

(3)

The term accounts for the
learning effort of the new staff.

The effort available through over-
time is modeled as the percentage 
of the overall available effort less a 
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productivity loss due to fatigue arising at a lag time after the decision to utilize over-
time has been made:

(4)

(5)

The constants C0 and Cd stand for the maximum amount of overtime to be used
in the project and the rate of productivity decay after lag weeks of working overtime,
respectively.

The process losses will be modeled as:

(6)

The constants Cr, Cc, and Ci stand for the ramp-up, coaching, and interaction 
factors, respectively. Teams is the number of groups into which the work is organ-
ized. Justification for these choices, together with that for Cd, will be given later.

Substituting the terms Ea, Eob, Eoa, and Pl in Equation 2 by Equations 3–6 we
obtain:

(7)
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This is the number of additional
resources required to recover from an
underestimation of magnitude u
acknowledged at time t.

Project Example

The solution space for Equation 8 is
illustrated in Figure 2. The vertical axis,
FTEa(t, u), is the number of resources to
be added to the project, the lower axis, t,
corresponds to the time at which the
underestimation is acknowledged, and
the third axis, u, is the magnitude of 
the underestimation in man-months. The
upper plane in the figure reflects the
number of additional resources needed
to recover from the underestimation
while keeping the original project’s 
completion date fixed or constant. If we
did not apply this constraint, the upper
plane surface could have a totally differ-
ent shape. The lower plane shows the
number of additional resources required
had the underestimated work been
included in the original plan. All project
parameters are listed on the right-hand
side of the figure.

The function is valid only if addi-
tional resources are required, that is (a),
if the underestimation is greater than
the extra effort that can be provided
through the use of overtime alone and
if the decision to bring in the additional
resources is made on time and (b) if 
the process losses are greater than the
effort that could be generated in 
the remaining time (Tb � t � Ta). Then 
the equation has no real solution: it is
an imaginary number, indicatiing that
under the circumstances it would be
impossible to maintain the schedule, no
matter how many people are added.

Process Losses

Frederick Brooks (1995) coined the
well-known admonition that adding
an extra person to a late project made
it later, which even if a little extreme,
has some element of truth. Adding
people midway through a project
creates additional work (the process
losses) that would have not existed

otherwise. The process losses are modeled by Equation 6. Its first two terms:

correspond, respectively, to the ramp-up process leading to the incorporation of
the newcomers and to the effort expended by the original staff coaching them.
Both efforts are modeled as triangular areas.

The third term:

captures the extra effort expended coordinating the activities of the extended
team. The equation1 is derived from the findings of Thomas Allen (1984) while
studying communications patterns in research and development teams (see Figure
3) and from a previous work by Miranda (2001).

Allowing for Temporary and Permanent Staff Rates
The cost of recovery comprises the cost incurred through the overtime of the origi-
nal staff and the cost, if needed, of additional resources and their overtime.
Sometimes the additional staff is temporary, so for costing purposes, they might
need to be considered at a different hourly rate from that of the permanent staff. The

C FTE FTE FTE Teams T t T

Teams
i a a p b a� � � � � �

�

( )( )2

2

r a l c a lC FTE T C FTE T
&

2 2
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100

50
FTEa

0

2

4

6

8 0

50

100

150

200

t (months)

u

Project Parameters

Tb = 12 months

Ta = 1 month

Tl = 1 month

FTEb = 20 people

Teams = 4

Lag = 2 months

Ci = 0.025

Cr = 0.1

Cc = 0.1

Cd = 0.1

Co = 0.0 

Budgeted Effort 240mm

Figure 2: The cost of recovering from an underestimation.

1Notice that this equation yields a lower, but more realistic number of communication paths than the better-known 

n(n � 1)�2.

Note. Additional resources FTEa required to recover from an underestimation of magnitude u
acknowledged at time t. The lower front edge of the plane corresponds to a project that has not
been underestimated (u � 0) and the lower left edge (t � 1) to a project that had been under-
estimated by u, but the underestimation was rectified when the project began. The truncation of
the plane at the upper right corner indicates that the equation has no solution, meaning that the
project cannot be recovered, no matter how many resources are added.
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parameter temp in Equation 9 refers to
the proportion of consultants or tempo-
rary workers employed in the project.

Allowing for Liabilities and
Opportunity Costs
Sometimes it may not be possible to
recover from an underestimation within
the original schedule. For example, if the
decision to bring additional staff is made
too close to the delivery date, the
process losses incurred might be higher
than the effort contributed in the time
left and, as a result, the project cannot
be recovered. By not being able to deliv-
er on time, the project could incur liabil-
ities and/or opportunity costs. These
costs are accounted for in Equation 9 by
the parameter penalty.

Probabilities of Underestimation
and Its Acknowledgment
Project cost and lead-time estimates
based on the limited information avail-
able in tendering documents are noto-
riously unreliable. They are typically
based on the partial results of basic
design and many assumptions about
its execution. The best we can do in
these circumstances is to identify a
range of values (see Figure 4) within
which the organization believes it is
possible to achieve the objectives of
the project with a defined probability.
The range would typically be specified
though three values:
1. best-case scenario, which is the low-

est amount of effort, but with a cor-
responding low probability of occur-
rence;

2. most likely scenario of some effort
with the largest probability of occur-
ing; and

3. worst-case scenario with the highest
amount of effort, but again with a
low probability of occurrence.

Different budgets will lead to differ-
ent project approaches and different
behaviors. Choosing the best-case sce-
nario will almost certainly lead to a
cost overrun and to people taking
shortcuts (Austin, 2001), while choos-
ing the worst-case scenario might
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2
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Figure 3: Communications in R&D teams.
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(9)

Note. (a) Patterns of communications in R&D teams, T. Allen (1984); (b) Stylized graph 
mimicking Allen’s observations: everybody talks to everybody within a subsystem team while
communications across subsystems are carried out by a few individuals; (c) Mathematical
equation to calculate the number of communication paths.
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result in failure to get the job and
almost certain overspending (Miranda,
2003).

Probability of Underestimation—p(u)
The probability distribution of the
underestimation u is identical to the
effort distribution in Figure 1 shifted by
the project budget. The selection of a
right-skewed triangular distribution is

justified for three reasons: (1) the fact that
while the number of things that can go
right in a project is limited and in most
cases has already been factored into the
estimate, the number of things that can
go wrong is virtually unlimited; (2) its
simplicity; and (3) since the actual distri-
bution is not known, this choice is as
sensible as any other. Equation 10 gives
the cumulative probabilities for p(u).

Probability of Acknowledging the 
Underestimation on a Given 
Month—p(t)
Figure 5 shows the ratio of the actual
remaining duration to the current esti-
mated remaining duration plotted as a
function of relative time (the ratio of
elapsed time over total actual time) for
each project at each week. Under a
schedule overrun condition, the esti-
mated remaining duration will be
smaller than the actual duration, and as
time passes by, the estimated remain-
ing duration will grow toward zero and
the ratio will grow toward infinity. The
convex pattern proves that project
managers, or at least these ones, waited
until the last possible minute to update
the impaired schedule.

The implication of this finding for
our model is that p(t) must be an
increasing function of t. One such
function is Equation 11 (see Figure 6).

This, of course, is not the only pos-
sibility, but it resembles the patterns in
Figure 6 and it is simple. Other possi-
bilities for the probability function
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would include the use of Bayesian
probabilities to model the effect of the
underestimation (e.g., larger underes-
timations will be easier to notice than
smaller ones), but this treatment is
outside the scope of the present work.

(11)

Numerical Solution
Equation 1 postulates That the amount
of contingency funds to budget for
should be equal to the expected cost of
revoery.

Although the integral could be
resolved analytically, the resulting
expression is complex because of the
piecewise continuity of the two trian-
gular probability distributions and the
need to decompose the function in
order to consider whether or not the
project could be recovered through the
use of overtime alone or if additional
resources need to be added. Conse-
quently, the integral will be approximated
by a sum of its parts according to the
following algorithm.

Figure 7 shows the contingency
amounts required by each level of
funding for a project with an opti-
mistic estimate of 200 man-months, 
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a most likely estimate of 240 man-
months, and a pessimistic one of 
480 man-months with a penalty of 600
man-months. As expected, when the
project is budgeted at its most opti-
mistic estimate, the contingency is at its
maximum, and when the project is
budgeted at its most pessimistic level,

the contingency is zero. In the example,
the minimum total cost is achieved for
a budget allocation of 320 man-
months. The location of the minimum
would depend on the amount and the
cost of overtime, temporary resources
that might be employed on the recovery
actions, and the penalty associated with
the late delivery of the project.

Managing the Contingency 
Funds
The MAIMS behavior could be exp-
lained by Parkinson’s Law (Parkinson,
1958) and budget games like expending
the entire budget to avoid setting prece-
dents (Churchill, 1984; Flyvbjerg, 2005).
If the MAIMS behavior is prevalent in
an organization, all the budget allocat-
ed to a project will be spent irrespective
of whether was needed or not, and as a
consequence, there are never cost
underruns, only cost overruns. This
negates the basic premise that contin-
gency usage is probabilistic. The obvi-
ous and mathematically valid solution
for the effective and efficient manage-
ment of the funds is to maintain them
at the portfolio level, distributing 
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them to the individual projects on an
as-needed basis. This is explored in the
following paragraphs by means of a
Monte Carlo simulation of a portfolio
consisting of three projects identical to
the one in the example in Figure 7 under
four different budget allocation policies.

Figure 8 shows the probability of
delivering on time and the expected
portfolio cost for each scenario. The
portfolio cost includes the allocated
budget for the three projects plus their
recovery costs or, whenever it is not
possible to recover from the underesti-
mation, the penalty cost.

Scenario 1 shows the result of the
simulation when projects are allocated
a budget equal to the most optimistic
estimate (200 man-months). This is
probably the worst policy of all. Not
only does it yield the second-highest
portfolio cost, but it also has the most
late projects. Despite the projects being
allocated the minimum budget, recov-
ery costs and penalties drive the cost up.

Scenario 2 corresponds to a budget
allocation equal to the most likely esti-
mate (240 man-months). In this case,
the portfolio cost is lower than in the
previous scenario and the probability of
delivering on time is higher. Scenario 3
corresponds to a budget allocation that
minimizes the expected recovery cost
(contingency) as shown in Figure 7.

With a total cost of 1,088 man-
months, this scenario offers the lowest
expected total cost with a high probabil-
ity of delivering the three projects on
time. The budget allocation for Scenario
4 is set at 455 man-months, the 99%
quartile of the estimate distribution. In
this scenario, all projects are completed
on time, but the cost is the highest.

Figure 9 shows the distribution of
portfolio costs for each of the scenarios.
What is important to look at here is the
steepness of the curve. Steeper curves 
are the result of a smaller variance of the
portfolio costs for a given scenario.
Scenario 4 has the lowest variance since
the large budgets allocated to the projects
preclude underestimations. Scenario 1 is
the opposite. It has the largest variance as
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a result of each project being underesti-
mated at one simulation iteration or
another. The importance of the curves’
steepness is that the steeper the curve,
the higher the safety per dollar or man-
month added to the project budget.

The results of the discussion are
summarized in Table 1.

The most efficient policy is thus the
one corresponding to Scenario 3, which
guarantees a 71% probability of being
on budget for an expected portfolio
budget of 1,125 man-months. It is
important to emphasize that, since we
did not include, for simplicity reasons,
the use of temporary personnel and
overtime for extended periods in the
examples, the recovery costs are not as
high as they would be if it was neces-
sary to resort to any of these two
sources of additional effort.

Summary
In this article, we postulate that a project
estimate is a range of values, within
which an organization believes it is pos-
sible to achieve the project’s objectives
with a defined probability. A budget is 
a political decision that results on the
allocation to the project of an amount
the estimated range. A low budget will
have a large probability of underesti-
mating the actual effort required. A
large budget will almost certainly result
in gold-plating and overengineering. As
organizations tend to privilege schedule
over cost, when projects are underesti-

mated management’s first course of
action will be to maintain the delivery
date by adding resources to the project.
This requires that project reflect what it
would cost to recover from the underes-
timation and not what it would have
cost to do the underestimated work had
this been included from the project
onset.

The proposed model takes into
account the magnitude of the underes-
timation, the time at which the under-
estimation is acknowledged, and the
consequences of not delivering on
time, and can be used to either calcu-
late contingencies in actual projects or
for education purposes.
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Appendix: Model Parameters
Ci  � Effort expended attending to one interaction (%)
Co � Maximum overtime to be employed (%)
Cr � Effort to be expended in preparation for the arrival of the newcomers (%)
Cc � Effort expended in coaching a newcomer (%)
Cd � Decline in performance due to fatigue (%)
FTEb � Budgeted full-time equivalents
lag � Time after which overtime productivity starts to decline due to fatigue
Ta � Average time for newcomers to arrive
Tl � Average time for newcomers to get up to speed
Tb � Budgeted project duration
Teams � The number of teams (subsystems) into which the project is organized
Penalty � The amount to be used as cost of recovery when the project cannot deliver on time
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There is a need to collect, measure, and present progress information in all projects, and Agile projects are
no exception. In this article, the authors show how the line of balance, a relatively obscure indicator, can
be used to gain insights into the progress of projects not provided by burn down charts or cumulative
flow diagrams, two of the most common indicators used to track and report progress in Agile projects.
The authors also propose to replace the original plan-based control point lead-time calculations with
dynamic information extracted from a version control system and introduce the concept of the ideal plan
to measure progress relative to both, end of iteration milestones and project completion date.
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1. Introduction

Progress monitoring and reporting is a basic function during the
execution of any project. Progress needs to be monitored so poten-
tial problems can be adverted before they materialize. Besides
being required to steer the project, timely and accurate reporting
is essential to keep stakeholder support and funds flowing.

With the exception of earned value reporting (Project Manage-
ment Institute, 2004), which is almost mandatory in most large
government-sponsored projects (GAO, 2007), few, if any, tracking
and reporting mechanisms have been standardized. Despite this,
certain practices have emerged as preferred within some Agile
communities and not in others. For example, burn down charts
(Schwaber and Beedle, 2004) are favored by the Scrum community,
cumulative flow diagrams (Anderson, 2004a,b; Microsoft, 2006) by
feature driven development (FDD) practitioners, and stories com-
pleted and tests passed (Wake, 2001) by Xp adepts.

While simple to produce and easy to understand, these charts
do not communicate the whole picture. Burn down charts, stories
completed and tests passed report how much work is left and pro-
vide some indication of where the project ought to be, had it pro-
gressed at a constant rate. None of them report work in progress.
Cumulative flow diagrams on the other hand, report work in

progress but fail to relate it to how much should have been accom-
plished if the project is to meet its commitments.

The reason why it is important to consider work in progress vs.
any commitments made, is that this information allows the team
to focus its resources where they are needed the most. For exam-
ple, should the work in progress indicators point to a bottleneck
in the testing activities the team could redirect its efforts from cod-
ing to testing. By helping balance the different activities in the pro-
duction chain, the added visibility allows the team to deliver at its
maximum velocity. Reporting work in progress also helps commu-
nicate to outside stakeholders that the team is advancing, even if
user stories are not being completed daily.

In this paper, we propose the use of the line of balance (LOB)
(Office of Naval Material, 1962) method as an alternative to over-
come the deficiencies noted above. In keeping with the idea of
using the team’s actual performance, we also propose to derive
the lead-times for the so called ‘‘control points”, not from an activ-
ity network as in the original LOB formulation, but from the team’s
velocity.

To illustrate the concepts presented, we have chosen artifacts
and processes from Scrum (Schwaber and Beedle, 2004) and FDD
(Coad et al., 1999) as examples. The reader, however, should have
no problem extending them to other contexts.

Section 2 discusses current approaches to progress monitoring
and reporting in Agile projects. In Section 3 we describe the
LOB method and we then pursue to explain how LOB outputs are
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interpreted, Section 4, dealing with changes, Section 5, the exten-
sion of LOB methods to teams of teams, Section 6, extending the
LOB to portfolio management, Section 7 and implementation of
the method, Section 8.

2. Progress monitoring and reporting in Agile projects

Agile methods are characterized by the recurring end-to-end
development of discrete software system capabilities. That is, in-
stead of evolving the whole software, or large chunks of it, through
the stages of the development life cycle (Fig. 1a), following a brief
up-front analysis phase, they break down the total effort into small
self-contained pieces of value called user stories or features; and
each of them is evolved through the entire life cycle, and with
the exception of technical dependencies, mostly independently of
the others. The sequence design build test integrate (DBTI) is re-
peated over the life of the project as many times as user stories
are, generating partial versions of the complete software system
along the way (Fig. 1b).

In a project using Scrum, progress is tracked and reported by
means of a release burn down chart, an iteration burn down chart
and a task board (Cohn, 2006). The charts are called ‘‘burn down”
because they show what work remains to be done rather than
what work has been completed.

The release burn down chart (Fig. 2a) is used to monitor and re-
port the overall progress of the project to both sponsors and team
members. The release burn down chart shows two key indicators:
the overall rate of progress and the amount of work remaining. By
extrapolating the rate of progress, it is possible to forecast the time
of completion. If work is added to the project, the curve is adjusted
upwards, if work is dropped it is adjusted downwards.

Iteration burns down charts (Fig. 2b) are derived from the task
board information (Fig. 3), and its audience is the team members.
The purpose of the chart is to show the number of hours of work
left vs. the number of days left on the current iteration. The devel-

opment team uses this information to conclude whether all the
work of the iteration can be completed at the current pace or
whether a couple of extra hours would be needed or some work
would have to be rescheduled.

The task board adds a great deal of information by showing the
breakdown of a user story into tasks. Tasks are embodied in task
cards. At a minimum, the task cards identify the type of task, e.g.
coding, writing test cases, integrating, etc. and the number of hours
estimated for its execution. As work progresses, team members
move task cards from one state (pending, assigned, in progress,
completed) to another. The board provides the means to coordi-
nate work among team members and the raw data, i.e. hours of
work left, to produce the iteration burn down chart. Other informa-
tion on the board, such as how many user stories are being coded
or how many are being tested, is not exploited – at least in a struc-
tured way, under the assumption that all that counts is work com-
pleted and work remaining.

The cumulative flow chart (Jackson, 1991; Anderson, 2004a,b),
is constructed by counting the number of user stories that have
reached a certain state of development at a given time. Compared
to the burn down chart, the cumulative flow diagram favored by
FDD practitioners, offers a wealth of information: rate of flow,
quantity in process and time in process (Fig. 4). Unlike the line of
balance status chart, to be presented later, cumulative flow dia-
grams do not show target information.

Of special interest is the use of earned value techniques in Agile
projects which has been more in response to reporting require-
ments (Alleman et al., 2003; Rusk, 2009) than a choice of the devel-
opment teams and which has required some tweaking or
reinterpretation of some fundamental concepts to be applicable
(Cabri and Griffiths, 2006; Sulaiman et al., 2006). When used at
the project level, earned value is more a reporting mechanism be-
tween the project sponsor and the team doing the work than a
diagnostic tool. It lacks the visibility required to take any decision.
To be used as a diagnostic tool, earned value requires the identifi-

Fig. 1. Software life cycles: (a) coarse grain development, and (b) fine grain development – lightly shaded squares represent partial versions of the system.
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cation of deliverables and their contributing tasks by means of a
WBS or similar arrangement, the definition of their start and end
dates, the allocation of a budget, and a time reporting system capa-
ble of tracking data at the same level of granularity. Because these
conditions are rarely found in Agile projects it usefulness is limited
to that of a burn down chart with the addition of spending
reporting.

3. The line of balance method

The purpose of the LOB method is to ensure that the many
activities of a repetitive production process stay ‘‘in balance” that
is, they are producing at a pace which allows an even flow of the
items produced through a process and at a speed compatible with
the goals set forth in a plan. The method does this by calculating

Fig. 2. Burn down charts: (a) release chart; (b) iteration chart.

Fig. 3. Scrum task board showing the status of all the tasks included in the iteration.
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how many items should have passed through a given operation or
control point, and showing these figures alongside the number that
actually did (Al Sarraj, 1990; Arditi et al., 2002) (Fig. 5). In the con-
text of Scrum an item would be user story and in the case of FDD, a
feature.

The LOB method was devised by the members of a group
headed by George E. Fouch during the 1940s to monitor production
at the Goodyear Tire & Rubber Company, and it was also success-
fully applied to the production planning of the huge US Navy mobi-
lization program of World War ll and during the Korean hostilities.
Today, the LOB method is applied to a wide spectrum of scheduling
activities, including research and development, construction flow
planning, and tracking the progress of responses to trouble reports
(Miranda, 2006; Harroff, 2008).

The LOB Status Chart in Fig. 5 shows the project progress as of
December 28th. The plan for the project is to deliver a total of
123 user stories. This is shown by the control point labeled ‘‘Back-
log”, which shows the total amount of work the team is currently

committed to deliver. For the other control points, the chart dis-
plays two columns: the ‘‘Planned” column showing how many
items should have passed through the control point according to
the proposed production or release plan and the ‘‘Actual” column
showing how many did actually pass through it.

By comparing the number of planned items to the number of
actual items, we can see, for example, that the activities leading
to the ‘‘Started” and ‘‘Designed” control points are on track with re-
spect to the delivery plan, and that the testing activities are a little
ahead of schedule. In contrast, the activities leading to the ‘‘Ac-
cepted” and ‘‘Released” control points are behind schedule. Accord-
ing to the plan, there should have been around 50 user stories
accepted by this time, but in fact there are only 20, and, since
the testing activities are ahead of schedule, the problem must lie
with the activities leading to acceptance. The chart does not show
the cause of the problem; however it is clear that whatever the rea-
son, the slow pace of the acceptance activities is jeopardizing the
next release.

The advantages of the LOB method over burn down charts and
cumulative flow diagrams are that the LOB:

o Shows not only what has been achieved, but also what was sup-
posed to be achieved in a single chart.

o Shows work in progress, permitting a more accurate assess-
ment of the project status.

o Exposes process bottlenecks, allowing the team and the project
sponsor to focus on the points causing slippages.

Knowing howmany user stories are in a given state allows us to
answer the question: Where are we today? But leaves unanswered
the more fundamental one of: Where are we in relation to where
we planned to be? To answer this question the LOB method iden-
tifies (College, 2001):

o A number of control points at which progress is to be
monitored.

o A delivery plan specifying the number of user stories to be pro-
duced in each iteration.

o A status chart, showing the number of user stories that have
passed through each control point vs. the number that should
have passed through according to the delivery plan.

Fig. 4. Cumulative flow chart the upper series (backlog) shows the total amount of work to be done. The ups and down correspond to work added or dropped, respectively.
The horizontal line (a) measures the average time in state for each user story. The vertical line (b) reports the number of user stories in a given state at a particular time. The
inclined line (c) represents the rate at which user stories reach a particular state.

Fig. 5. A line of balance status chart showing the number of items that should have
passed through a given control points vs. how many actually did.
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3.1. Control points

In LOB terminology, a control point is a point in the develop-
ment process with a well defined exit criterion at which work in
progress and work completed are measured. In the context of
tracking user stories, control points would correspond to all or
some of the states comprising the user story’s life cycle (Fig. 6).
Knowing the status of the project at any given time requires know-
ing the state of each and every user story.

A control point’s lead-time (Fig. 7) is the average time it takes a
user story to move from that point to the point at which the user
story is considered completed. In the original LOB method, these
times are derived from an activity network comprising the activi-
ties involved in producing a user story while in our proposal they
are calculated by measuring the average time a user story spends
in each state (Fig. 8).

The time each user story spends in each state is calculated using
expression (1). The average time in a state for a given state could be
calculated as either themedian, the arithmetic mean or themode of
the individual times in state (2). The data required by these calcula-
tions is readily available frommost version control systems.

TimeInStateqi

¼

if TransitionDateðqþ1Þi exists then
TransitionDateðqþ1Þi � TransitionDateqi

otherwise
CurrentDate� TransitionDateqi

8>>><
>>>:

ð1Þ

q ¼ 1;2; . . . ;n is a control point mapped to one of the user
story’s lifecycle states.
i ¼ 1;2; . . . ;v is used to denote an individual user story.

TimeInStateq

¼

MedianðTimeInStateq1;TimeInStateq2; . . . ;TimeInStateqv ;Þ
or
ArithmeticMeanðTimeInStateq1;TimeInStateq2; . . . ;TimeInStateqv;Þ
or
ModeðTimeInStateq1;TimeInStateq2; . . . ;TimeInStateqv;Þ

8>>>>><
>>>>>:

ð2Þ
The median is preferred over the arithmetic mean to prevent

rare but very complex, or very simple, user stories from skewing
the value of the statistic. This can be observed, for example, in
Fig. 8 by noting that the arithmetic mean for ‘‘Accepted” lies out-
side its interquartile range, meaning that, while most user stories
were accepted in one-day, a few of them took longer, driving its va-
lue up to 2.31 days. The use of this value in the calculations instead
of the far more common one-day median, will inflate the number
of user stories reported in the planned column of the ‘‘Accepted”
control point signaling that a higher number of them should
passed through it than they actually needed to.

Moving from times in a state to lead-times (3) is straightfor-
ward. Since the mean time spent in the ‘‘Accepted” state (Fig. 7)
is the typical time it takes a user story to go from the ‘‘Accepted”
to the ‘‘Released” control point, the lead-time for ‘‘Accepted” is 1
day. In the case of the lead-time for the ‘‘Tested” control point, a
user story typically spends 5 days in the ‘‘Tested” state and then
1 more in the ‘‘Accepted” state. This is equivalent to saying that
it takes 5 days to move from ‘‘Tested” to ‘‘Accepted” plus 1 day
in moving from ‘‘Accepted” to ‘‘Released”. Consequently, the
lead-time for the ‘‘Tested” control point is 6 days. Table 1 shows
the lead-time calculations for the control points in Fig. 6.

LeadTimen ¼0

LeadTimeq2n�1;n�2;...;1 ¼ LeadTimeqþ1þTimeInStateq
ð3Þ

Although different user stories will require different efforts to
implement them, we will treat them as being of equal size, as most
teams strive to achieve this goal when breaking down the total ef-
fort, and that it is very unlikely that in planning an iteration, a team
will include all the large stories in one and all the small ones in an-
other. Should the assumption of equal size prove inappropriate,
user stories should be normalized, i.e. reduced to a common
denominator, using story points, function points, man-hours, or
any other measure that accounts for the relative development ef-
fort required by them.

3.2. The delivery plan

The delivery plan (Fig. 9) comprises two sub plans, the Release
plan (RP) and the Ideal Plan (IP). The RP specifies how much capa-

Fig. 6. A user story’s typical life cycle.

Fig. 7. Control points and lead-times. Note that not all the states mentioned in the
user story’s life cycle have been included for control. The decision to do this was
based on the amount of visibility desired or requested. After the user story is
released, it is not longer tracked.

E. Miranda, P. Bourque / The Journal of Systems and Software xxx (2010) xxx–xxx 5

ARTICLE IN PRESS

Please cite this article in press as: Miranda, E., Bourque, P. Agile monitoring using the line of balance. J. Syst. Software (2010), doi:10.1016/j.jss.2010.01.043



bility will be delivered at the end of each iteration, as agreed be-
tween the team and the project sponsor while the IP shows the
proportion of capability that should have been delivered at any gi-
ven time, assuming constant work progress throughout the project.

The RP is prepared by the project team based on its own estima-
tion, the team’s velocity and their resource availability. The plan
can be adjusted later, with the agreement of the sponsor, to reflect
the team’s actual performance and changes to the product backlog.
The RP in Fig. 9 shows that the software system to be delivered
consists of 150 user stories that must be delivered by March. Based
on their previous experience and business needs, the team breaks
down the total delivery into five releases. The first release, due by
the beginning of November, consists of 25 user stories; the second
release, due by the beginning of December, includes 35 user sto-
ries, the increase in velocity accounts for the learning effects, i.e.
the team becoming more proficient with the application. In
December, because of the holiday period, the team’s availability
is reduced and the team only commits to the delivery of 15 user
stories. For the last two months, the team expects to bring some
additional experienced resources on board, which will help them
increase the delivery rate to 35 and 40 user stories, respectively.

The IP is built by joining the start and the expected end of the
project with a straight line. The slope of the line is the average pro-
ductivity that the team will need to exhibit to deliver what has
been agreed with the project sponsor in the time the team has
committed to. The IP helps keep the plan honest by raising the fol-
lowing questions: Is the average productivity reasonable, e.g. has it
been observed before in like projects? Are there any periods in

which the team is counting on heroic productivity levels? Are there
any periods in which productivity is well below par? Why?

While the RP plan enables tracking progress against current and
past iterations, the IP facilitates the assessment of delays against
the total project schedule.

3.3. The status chart

In the original formulation of the LOB, the status chart (SC) only
provided quantitative information about the work in progress and
the work completed relative to the end of iteration milestones in
the RP. To these, the authors added a third indicator showing the
progress to be achieved relative to the IP, in order to provide a stra-
tegic view that could prevent overreactions to missed deadlines
and provide early warnings to unfavorable trends. The use of this
indicator will be exemplified in the section of interpreting the sta-
tus chart.

To calculate the number of user stories that should have been
ready at a time t relative to the RP, we need first to mathematically

Started Designed Tested Accepted
25% 2.00 1.50 4.00 1.00
Min 1.00 1.00 3.00 1.00
Mean 4.42 3.17 5.59 2.31
Median 3.00 2.00 5.00 1.00
Max 14.00 11.00 12.00 9.00
75% 7.00 4.00 7.00 2.00

N = 48

N = 35 N = 17

N = 13
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Fig. 8. Box-plot chart showing the distribution of times spent in each state by the user stories developed so far. The 25 and 75% quartiles delimit the range within which the
middle 50% of the values are included. N denotes the number of user stories included in the statistic.

Table 1
Lead-time calculations.

Control point Time in a state (days) Lead-time (days)

Released 0
Accepted 1 0 + 1 = 1
Tested 5 1 + 5 = 6
Designed 2 6 + 2 = 8
Started 3 8 + 3 = 11

Fig. 9. Delivery plan proposed by the development team. The RP curve is used to
calculate progress relative to the end of the iterations while the IP provides a
baseline against which to compare the promised deliveries to an average produc-
tivity over the life of the project.

6 E. Miranda, P. Bourque / The Journal of Systems and Software xxx (2010) xxx–xxx

ARTICLE IN PRESS

Please cite this article in press as: Miranda, E., Bourque, P. Agile monitoring using the line of balance. J. Syst. Software (2010), doi:10.1016/j.jss.2010.01.043



express it (4) as a series of straight lines, each valid in the
[ti, ti+1[range.

RPt ¼

a1 þ b1t t0 � t < t1
a2 þ b2t t1 � t < t2

..

.

ar þ brt tr�1 � t < tr

8>>>><
>>>>:

bi¼1;2;...;r ¼ UserStoriesi � UserStoriesi�1

ti � ti�1

ai¼1;2;...;r ¼ UserStoriesi�1

r ¼ number of planned releases

ð4Þ

Similarly, to calculate the planned quantities with respect to the
IP we need first to find the Eq. (5) of the line that passes through
{(0, 0), (tr, UserStoriesr)}.

IPt ¼ bt

b ¼ UserStoriesr
tr

ð5Þ

To calculate RPtq or IPtq , the number of user stories that should
have passed through control point q at time t, we simply look
ahead by q’s lead-time (6) and apply either (4) or (5).

tq ¼ LeadTimeq þ t ð6Þ
The idea behind the procedure is simple. If it takes 11 days on

average for a user story to go through its complete development
cycle, on any given day we should have started at least as many

user stories as we are supposed to be delivering 11 days from
now. Fig. 10 exemplifies this. The same idea applies to any other
control point.

4. Interpreting the status chart

In this section, we discus three examples and give some advice
on what to look for in the status chart. The examples have been
purposely designed to highlight the characteristic that we want
to show.

The example in Fig. 11 shows a project with a very aggressive
delivery – twice the amount of user stories – targeted for March.
Note the upward deviation of the RP line from the IP line. The sta-
tus chart shows that all activities are in balance, since there are no
abrupt falls from one state to the other. The chart also shows that
the project is slightly behind with respect to its RP. They were
probably too optimistic about their ability to deliver in March,
but a little bit ahead of schedule with respect to the IP plan. If
the team can keep the pace, it is probable that they will finish on
time.

The chart in Fig. 12 shows the same project as in Fig. 11, but this
time the project is well behind with respect to both the RP and the
IP. Note that there are as many user stories designed as started, but
there are half as many that have gone through the ‘‘Tested” control
point, which points to a bottleneck in the testing activities that
seems to be starving the rest of the production chain. Should the
team decide to act on this information, they would need to focus
their effort on testing.

In the last example (Fig. 13), the team has been very cautious
and provided some allowance for the team to climb the learning

Fig. 10. The intersection between the time now(t = January, 6th) line and the release plan yields the RPReleased value, that is, the number of user stories that should have passed
through the ‘‘Released” control point as of that date, to meet the target for the 4th release. The intersection between the release plan and the line (b) at t + LeadTimeStarted
yields the RPStarted value for the ‘‘Started” control point. The intersection of the line (c) at t + LeadTimeStarted with the ideal plan yields the IPStarted.

Fig. 11. The team has committed to a very ambitious target for the second release. Note that, except for the month of March when the team proposes to deliver 40 user
stories, the velocity is estimated at 20 or less user stories per month.
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Fig. 12. Chart showing a problem with testing.

Fig. 13. This team has included an allowance for learning in their release planning. Note how the estimated velocity increases towards the end.

Fig. 14. Control points for a project to be executed using a team of teams.
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curve. Note the concave shape of the RP curve. According to the
Status Chart, the project is ahead of schedule with respect to both
the RP and the IP.

5. Dealing with changes in scope

So far we have not discussed what happens when user stories
are added, changed or dropped from the backlog, which as every
experienced developer knows, is a constant in all projects. Adding
new user stories or changing already developed ones, pose no
problem. For each new or changed user story we will just add
one, or in its defect, the corresponding number of user points to
the backlog. If there were a need to distinguish between what
has been initially agreed and any subsequent changes in the scope
of the project, a ‘‘Baseline” column could be displayed beside the
‘‘Backlog” column to highlight the requirements churn.

For abandoned user stories, one must distinguish between
those that have been started and those which have not. In the later
case we will just subtract the corresponding quantity from the

backlog while in the case where the user story is abandoned after
being started, one would have to subtract the corresponding quan-
tity from the backlog and all the columns to which it was added to
prevent the LOB chart from reporting progress on things that are
not longer desired. This could be easily done, since we know what
control points the user story went through.

Simultaneously with this the delivery plan would need to be ad-
justed to reflect the new workload.

6. The LOB in large Agile projects

Most Agile projects are organized around small teams of 7–15
people, with larger teams organized in hierarchical fashion as
teams of teams. An example of this type of arrangement is the
Scrum of Scrums organization proposed in (Schwaber and Beedle,
2004). One of the challenges for large, distributed, or mixed in-
house outsourced teams is to keep a synchronized pace of work.

Although this could be achieved by comparing each teams’ burn
down charts, the problem is that, in addition to the previously dis-
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Fig. 15. Delivery plan and Status Chart for a team of teams.
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cussed limitations of this type of chart, doing so requires a great
deal of housekeeping. A better approach is provided by the LOB
method.

Using multiple teams requires not only more forward planning
than a small Agile project, but also replacing the practice of team
members signing for work with a centralized assignment to ensure
that interdependencies in the development are respected. Parallel
development also needs, at a minimum, a two-stage integration
approach. At the first integration point, each team integrates its
software into a local build and tests it with the software produced
by the other groups. Once the software is verified by its producer, it
is released for inclusion in the development baseline and made
available to the other teams. The development baseline is indepen-
dently tested and the delivered functionality accepted by the user.
This process suggests the control points illustrated in Fig. 14.

Lead-times for each team’s control points need to be measured
independently from one another, because what we want to do is
balance their production rates (velocity). The lead-times for the
common control points are averaged over all user stories. Each
team will have its own delivery plan derived from the project
goals. The project delivery plan is the aggregate of the individual
plans.

Fig. 15 shows a status chart for a team of teams presented side-
ways to accommodate the longer list of control points. The main
observations as of June 18th, are as follows:

� Team A is slightly ahead of schedule, i.e. the actuals are slightly
greater than the planned values.

� Team B is ahead in their design and coding, as indicated by its
‘‘Coded & Unit Tested” control point, but behind in integrating
and releasing to the common design base (Integrated in Local
Build B & Released by B). The problem might be internal to the
team or it might be caused by the lack of progress by Team C
should B need some deliveries from them.

� Team C is behind in its commitments by almost 50%.
� Overall, the project is behind, having delivered about 75% of

what it was supposed to deliver according to the plan.

7. Extending the use of the lob concepts to portfolio
management

Much on the same way as the LOB concepts were extended for
use with a team of teams, they could be extended to be used at the
program and portfolio levels. (Scotland, 2003). Managing user sto-
ries at these two levels is done by creating a hierarchy of backlogs
(Tengshe and Noble, 2007) in addition to the release and iteration
backlogs. User stories cascade from the higher to the lower level
backlogs. Within each backlog each user story will be in a given
state, for example one of the authors (Miranda, 2003) used the fol-
lowing categories: in execution, committed, planned and envi-
sioned to manage a large portfolio of telecom applications. While
planned and envisioned will likely be elemental states, execution
and committed will be supersets of the states identified for the
team of teams approach (Fig. 16).

8. Implementation

The LOB method was implemented by one of the authors at a
large telecommunication supplier to track the progress of fixing
trouble reports (Miranda, 2006) in about two weeks using the
information available from a trouble report tracking system to de-
rive the control points and the times in state and Excel for the cal-
culations and charts.

Although the artifacts tracked, trouble reports vs. user stories,
were different, the experience validated the application of the
method. The information provided by the LOB was deemed by
developers and managers more valuable than that provided by

Fig. 16. Applying the LOB at the portfolio level.
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an open-closed trouble report chart – variant of a flow chart, as it
pinpointed the areas where resources were needed to clear a size-
able defect backlog and allowed adequate tracking of progress
against a recovery plan.

In the experience described above, the adoption of the LOB
method was facilitated by the fact that the organization had an
established trouble reporting system with agreed and well under-
stood steps that could be used as control points and a wealth of
historical data to determine accurate lead-times for each control
point. Provided that there is some built-in mechanism for captur-
ing date and state information, configuring the version control sys-
tem and developing the spreadsheet to perform the calculations
and graph the results, should take about the same effort that it took
the cited author to implement the system. Less mature organiza-
tions would likely spend some extra time trying to reach consensus
on an appropriate user story lifecycle and deciding at which points
to track progress. Once the version control system and the spread-
sheet are set-up, there is nothing in the method that would suggest
that the effort to produce the LOB charts would be any different
than that required by burn down and the flow charts. This was also
the experience of the author that implemented the system for
tracking trouble reports.

Key to the quality of the predictions is the accuracy of the lead-
times of each control point. This cannot be overemphasized: the
lack of stable performance data early on the project mandates cau-
tion when making predictions during its first iterations.

9. Summary

While easy to produce and simple to understand, the cumula-
tive flow diagram, the burn down charts, and the stories completed
chart routinely recommended in the Agile literature tell little about
what is going on inside the project. Moreover, although many prac-
titioners will claim that all management should care about is com-
pleted work, many managers and sponsors will beg to differ.

The line of balance (LOB) chart proposed by the authors offers a
practical alternative, which, while aligned with the minimalist ap-
proach appreciated by Agile practitioners, provides management
with visibility and actionable information on the status of the
project.

While we have demonstrated the LOB with typical scenarios
from Agile projects, its use is not limited to this type of project.
The concepts presented here could be equally well applied to
tracking the progress of maintenance activities, the correction of
errors during testing, or the installation of software in large
deployment projects.
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APPENDIX A  

Scrum roles, artifacts and management practices6

Table 4 Scrum Roles 

 Responsibilities 

Product Owner � Defines the features of the product 
� Decides on release dates and content 
� Is responsible for benefits 
� Prioritizes the features according to market value 
� Adjusts the features and priority of every iteration, as needed 
� Accepts or rejects work results. 

Scrum Master � Ensures that the team is fully functional and productive 
� Enables close cooperation across all roles and functions, and 

removes barriers 
� Shields the team from external interference 
� Ensures that the process is followed. 
�  Invites to Daily Scrum, Sprint Review and Sprint Planning 

meetings

Team Member � Typically 5-10 people 
� Cross-functional
� Full-time membership 

6�Used under Creative Commons Attribution 3.0 License, based on the original work of M. Cohn, Mountain 
Goat Software�



Table 5 Scrum Artifacts 

 Description 

Product Backlog � A list of all desired work on the project 
� Usually a combination of 

o User story-based work (“let user search and replace”) 
o Task-based work (“improve exception handling”) 

� List prioritized by the Product Owner 

Release � Software delivered to the customer 
� Might include the work of more than one iteration 
� Normally organized around a “theme” or set of related features 

Sprint Backlog � A list of the work to be accomplished during the sprint 
� Each user story is broken down into the tasks necessary to 

develop it 
� Each entry in the backlog describes 

o What
o Who
o How much 
o By when 

Burn down charts � Sprint burn down chart 

Shows the number of hours of work planned vs. the number of 

hours of work left on the iteration 

� Release burn down chart 

Shows the amount of work remaining at the start of each 

iteration



Table 6 Scrum Management Practices 

 Description 

Sprint � Two to four week time boxes used to organize work and 
confirm direction 

� Concludes with a potentially shippable product increment, code 
word for a working system with partial functionality 

� Bugs fixed when detected. If there is not enough time, they are 
incorporated into the Product Backlog and compete for 
resources with other work 

Scrum � 24-hour period between two Scrum Meetings in which 
development work is performed 

Scrum Meetings � Daily, 15-minute stand-up meeting, not for problem-solving 
� Three questions: 

o What did you do yesterday? 
o What will you do today? 
o What obstacles are in your way? 

� Only team members may speak, however others may participate 
as observers 

Sprint Planning Meeting � Product Owner reviews the vision, the roadmap, the release 
plan and the Product Backlog with the Scrum Team 

� Team revisits the estimates for user stories in the Product 
Backlog and confirms that they are as accurate as possible 

� Team decides how much work can be done in the Sprint based 
on available hours and team velocity 

� Scrum Master leads the team in a planning session to break 
down the selected user stories into Sprint Backlog tasks and 
allocates effort to them 

� Estimates are added up, and, if there are major differences, the 
team negotiates with the Product Owner to secure the right 
amount of work 
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Sprint Review Meeting � Team presents what it accomplished during the sprint. 
Typically takes the form of a demo of new features or 
underlying architecture 

� Participants
o Customers 
o Management 
o Product Owner 
o Other engineers 

Sprint Retrospective 

Meeting

� Feedback meeting, review the current way of working 
� Three questions: 

o Start?
o Stop?
o Continue?

� …or perhaps two: 
o Keep? 
o Change?

� Scrum Team only. Sometimes the Product Owner is invited. 
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APPENDIX B  

Definition of relevant topics and subtopics in the Guide to the SWEBOK7

1) Feasibility Analysis. “Software engineers must be assured that adequate capability and 
resources are available in the form of people, expertise, facilities, infrastructure, and 
support (either internally or externally) to ensure that the project can be successfully 
completed in a timely and cost-effective manner (using, for example, a requirement-
capability matrix). This often requires some “ballpark” estimation of effort and cost 
based on appropriate methods (for example, expert-informed analogy techniques)” 

2) Effort, Schedule and Cost Estimation. “Based on the breakdown of tasks, inputs, and 
outputs, the expected effort range required for each task is determined using a calibrated 
estimation model based on historical size-effort data where available and relevant, or 
other methods like expert judgment. Task dependencies are established and potential 
bottlenecks are identified using suitable methods (for example, critical path analysis). 
Bottlenecks are resolved where possible, and the expected schedule of tasks with 
projected start times, durations, and end times is produced (for example, PERT chart). 
Resource requirements (people, tools) are translated into cost estimates. This is a highly 
iterative activity which must be negotiated and revised until consensus is reached among 
affected stakeholders (primarily engineering and management)”.  

3) Risk Management. Risk identification and analysis (what can go wrong, how and why, 
and what are the likely consequences), critical risk assessment (which are the most 
significant risks in terms of exposure, which can we do something about in terms of 
leverage), risk mitigation and contingency planning (formulating a strategy to deal with 
risks and to manage the risk profile) are all undertaken. Risk assessment methods (for 
example, decision trees and process simulations) should be used in order to highlight and 
evaluate risks. Project abandonment policies should also be determined at this point in 
discussion with all other stakeholders. Software-unique aspects of risk, such as software 
engineers’ tendency to add unwanted features or the risks attendant in software’s 
intangible nature, must influence the project’s risk management. 

4) Monitor Process. Adherence to the various plans is assessed continually and at 
predetermined intervals. Outputs and completion conditions for each task are analyzed. 
Deliverables are evaluated in terms of their required characteristics (for example, via 
reviews and audits). Effort expenditure, schedule adherence, and costs to date are 

7�Copyright�©�2004�by�The�Institute�of�Electrical�and�Electronics�Engineers,�Inc.�All�rights�reserved.��
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investigated, and resource usage is examined. The project risk profile is revisited, and 
adherence to quality requirements is evaluated. Measurement data are modeled and 
analyzed. Variance analysis based on the deviation of actual from expected outcomes and 
values is undertaken. This may be in the form of cost overruns, schedule slippage, and the 
like. Outlier identification and analysis of quality and other measurement data are 
performed (for example, defect density analysis). Risk exposure and leverage are 
recalculated, and decisions trees, simulations, and so on are rerun in the light of new data. 
These activities enable problem detection and exception identification based on exceeded 
thresholds. Outcomes are reported as needed and certainly where acceptable thresholds 
are surpassed. 

5) Control Process. The outcomes of the process monitoring activities provide the basis on 
which action decisions are taken. Where appropriate, and where the impact and 
associated risks are modeled and managed, changes can be made to the project. This may 
take the form of corrective action (for example, retesting certain components), it may 
involve the incorporation of contingencies so that similar occurrences are avoided (for 
example, the decision to use prototyping to assist in software requirements validation), 
and/or it may entail the revision of the various plans and other project documents (for 
example, requirements specification) to accommodate the unexpected outcomes and their 
implications. In some instances, it may lead to abandonment of the project. In all cases, 
change control and software configuration management procedures are adhered to (see 
also the Software Configuration Management KA), decisions are documented and 
communicated to all relevant parties, plans are revisited and revised where necessary, and 
relevant data is recorded in the central database. 

6) Reporting. At specified and agreed periods, adherence to the plans is reported, both 
within the organization (for example to the project portfolio steering committee) and to 
external stakeholders (for example, clients, users). Reports of this nature should focus on 
overall adherence as opposed to the detailed reporting required frequently within the 
project team. 
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