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Compensation des mouvements cardio-respiratoires et réduction de la dose de
rayonnement pour les interventions cardiaques guidées par rayons X

Fariba AZIZMOHAMMADI

RÉSUMÉ
Les maladies des artères coronaires (MAC) affectent un grand nombre d’enfants chaque année et

constituent le type de malformations congénitales le plus courant dans le monde. Les MAC sont

dus à des anomalies du cœur avant la naissance. Il est impératif d’améliorer les techniques de

traitement pour qu’elles soient le moins invasives possible. Les procédures interventionnelles,

guidées par imagerie par rayons X, ont connu un essor considérable au cours des deux dernières

décennies. Elles constituent, à ce jour, l’un des traitements les plus populaires des MAC.

Le guidage de la navigation pendant les interventions cardiaques, telles que l’angioplastie et

principalement la pose d’endoprothèses, est généralement effectué sous fluoroscopie par rayons

X. Les patients atteints de MAC sont exposés à des quantités importantes de rayonnements

ionisants lors des procédures de diagnostic et de traitement. Ces dernières années, le nombre

d’interventions cardiaques pédiatriques complexes et de longue durée a considérablement

augmenté.

Pendant une intervention cardiaque, plusieurs organes, y compris les artères, sont en mouvement

en raison des battements du cœur, des mouvements respiratoires et parfois des mouvements du

patient. Ces mouvements dégradent l’acquisition d’images et rendent le processus de navigation

plus difficile. L’objectif principal de cette recherche était de trouver des techniques moins

invasives à appliquer pour les interventions cardiaques pédiatriques. Nous avons pour cela

proposé la réduction de la dose de radiation reçue par le patient et le personnel, ainsi que de

la quantité d’agents de contraste utilisés, en mettant en place des techniques de prédiction de

mouvement. Dans le cadre de cette recherche, nous avons développé et validé nos approches en

utilisant des ensembles des données issues de l’hôpital Sainte-Justine mêlées à des simulations

cardio-respiratoires. Nous avons d’abord étudié des séquences cardio-respiratoires simulées de

rayons X générées en utilisant le simulateur XCAT. Nous avons simulé un total de 56 patients

différents (32 hommes et 24 femmes) totalisant 112 séquences (2 séquences par patient, montrant

l’artère coronaire gauche ou droit). Toutes les séquences générées avaient une longueur de 75

images et une fréquence de15 images par seconde.

Notre ensemble de données médicales est composé de 52 patients. Chaque patient présente un

nombre différent de séquences, avec des longueurs variables. Il y a un nombre total de 340

séquences, avec une longueur minimale et maximale de 15 et 70 images respectivement. Toutes

les données ont été acquises à une fréquence de 15 images par seconde.

Dans le premier objectif, une approche basée sur l’apprentissage automatique a été proposée

pour prédire les images d’angiographie à rayons X afin de réduire l’exposition aux radiations

des patients pédiatriques et du personnel pendant les interventions cardiaques tout en préservant

la qualité de l’image.
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Dans le deuxième objectif, nous nous sommes d’abord concentrés sur l’extraction des caractéris-

tiques 2D de mouvement à partir des séquences de rayons X, puis sur la construction d’un modèle

prédictif de mouvement pour la navigation des interventions. Notre approche est capable de

prédire le signal cyclique du mouvement cardio-respiratoire bruité par les mouvements soudains

causés par les patients ou autres irrégularités. Cette approche a été développée et validée sur les

ensembles de données simulées et celles des patients.

Pour le troisième objectif, en utilisant l’ensemble de données simulées, nous avons étudié les

différents patrons de mouvement entre les hommes et les femmes. La recherche offre une

solution générale qui ne nécessite pas de modalité d’imagerie supplémentaire tout en fournissant

une prédiction, une estimation et une compensation précises.

Les méthodologies pour atteindre ces objectifs sont basées sur des algorithmes d’apprentissage

profond (réseaux neuronaux récurrents) en extrayant d’abord les caractéristiques de mouvement

des images et en suivant ces caractéristiques.

Nous pensons que les approches basées sur l’apprentissage peuvent ouvrir la voie à une meilleure

évaluation des maladies cardiovasculaires en proposant une réduction de la dose de radiation

pour les patients et le personnel. Dans cette thèse nous appliquons des méthodes d’apprentissage

profond pour les interventions cardiaques minimalement invasives.

Mots-clés: Angiographie à rayons X, mouvement cardio-respiratoire, réduction de la dose,

prédiction du mouvement



Cardio-Respiratory Motion Compensation for Radiation Dose Reduction in X-Ray Guided
Cardiac Interventions

Fariba AZIZMOHAMMADI

ABSTRACT

Cardiac diseases affect a large population and especially children, every year. Congenital Heart

Disease (CHD) is the most common type of birth malformation worldwide. CHD is caused by

abnormalities in heart structure before birth. It is imperative to advance the treatment techniques

to be as less invasive as possible. One popular treatment for CHD is X-ray image-guided

interventional procedures that have gained popularity over the past two decades.

Navigation guidance during cardiac interventions, such as balloon angioplasty and stent

placement, is generally performed under X-ray fluoroscopy. Patients with CHD are exposed

to substantial amounts of ionizing radiation from diagnostic and treatment procedures. In

recent years, the number of complex, long-duration pediatric cardiac interventions has risen

significantly.

During the cardiac intervention, several organs, including the arteries, are moving, given the

heart beating, respiratory movement, and sometimes the patient’s movements. These movements

degrade image acquisition and make the navigation process more difficult.

This research’s main goal was to develop less invasive techniques to apply for pediatric cardiac

interventions. We pursued this goal by minimizing the radiation dose the patient and staff

received and compensating for the induced motions by estimating and predicting the targets’

(arteries) movements. Moreover, while the targets’ movements are tracked in the images, the

need to inject the contrast agent to visualize the vessels will be reduced.

In the context of this research, we developed and validated our approaches using both simulated

and patient X-ray angiography datasets from Sainte-Justine Hospital. Simulated X-ray sequences

generated from realistic XCAT computational phantoms with cardio-respiratory motion were

first investigated. The simulated motion included the beating heart and respiratory motion. We

simulated 56 different patients (32 male and 24 female) and 112 sequences (2 sequences per

patient, showing either the left or the right coronary artery). All the generated sequences had

a length of 75 frames and were generated at 15 frames per second (fps). The patient X-ray

angiography dataset comprises 52 different patients with contrasted coronary arteries. Each

patient presents a different number of sequences with varying lengths. There is a total number

of 340 sequences, with a minimum and maximum length of 15 and 70 frames, respectively. All

the data were acquired at 15 fps.

In the first objective, a generative learning-based approach was proposed to predict X-ray

angiography frames to reduce the amount of radiation exposure to pediatric patients and the

staff during cardiac interventions while preserving the image quality.
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In the second objective, we focused on extracting 2D motion features from the X-ray sequences

first and then building up a "predict-ahead" motion model for navigating the interventions. Our

model-free cardio-respiratory motion estimation approach can predict cyclic cardio-respiratory

motion signals artifacted by sudden motions caused by the patients or some irregularities. This

approach was developed and validated with both simulated and patient datasets.

For the third objective, using the simulated dataset and based on our experiment on the second

objective, we investigated the different motion patterns between males and females. The research

will offer a general solution that does not require additional imaging modality while providing

an accurate motion prediction and estimation. The methodologies to achieve these objectives

are based on deep learning algorithms by first extracting motion features from the images and

tracking these features.

We believe that learning-based approaches can pave the road for better assessment of cardiovas-

cular motion and radiation dose reduction for the patients and staff. Thus, in this thesis, we have

applied deep learning methods to facilitate the desired less-invasive cardiac interventions.

Keywords: X-ray angiography, cardio-respiratory motion, dose reduction, motion prediction
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INTRODUCTION

Coronary Arteries Disease (CAD) is a leading cause of mortality in Western countries. It is

the most common cause of death in the adult population. CAD happens when the arteries are

narrowed or occluded by plaque build-up or deposited cholesterol on arteries’ inner wall (Sun,

2010). CAD mainly involves the progressive narrowing or occlusion of the arteries that nourish

the heart, which means an interruption or insufficiency of the blood circulation in the heart

muscle, thus limiting the supply of nutrients, and oxygen. It might cause chest pain or, in more

severe cases, can lead to heart failure.

In the pediatric population, Congenital Heart Disease (CHD) affects 1% of the population

and is the most common type of birth malformation worldwide. In sever cases, interventions

are required for treatment. In recent years, the number of complex, long-duration pediatric

cardiac interventions has risen significantly (Liu et al., 2019a). Image-guided interventions

for children are usually more challenging and have technical or procedural complexities due to

small size, high heart rates, and motion artifacts from cardiac pulsation, respiration, and the

patients themselves (Goo, 2015).

Minimally invasive surgeries (MICs) are image-guided interventional procedures that have

emerged over the past two decades to treat CADs and CHDs. MIC techniques are famous for

two reasons. First, the success rate of MICs is comparable to traditional interventions. Second,

the risk of complications is lower in the case of MICs. Percutaneous coronary angioplasty is

a frequent MIC that aims to treat stenosis. X-ray angiography is one the most used imaging

modality in cardiac interventions providing adequate spatial and temporal image resolution.

0.1 Problem statement and motivations

We proposed a novel radiation dose reduction approach in our first contribution by predicting

dynamic X-ray angiography sequences using a generative model. A video frame prediction
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model was developed to predict new X-ray angiography frames. We introduced a new loss

function to predict the temporal and spatial information of the arteries in angiography sequences.

Then, a predictive RNN-based motion model was trained to estimate the motion and content of

single and/or multiple future frame(s) based on previously acquired frames in an end-to-end

system. A detailed description of the proposed method and results was published in Medical

Physics (Azizmohammadi et al., 2022)

During the cardiac intervention, several organs are moving, given the heartbeat, respiratory

movement, and sometimes the patient’s movements (Shechter, Ozturk, Resar & McVeigh, 2004).

These movements cause artifacts in image acquisition and make navigation and guidance more

challenging. The cardiac motion, being distinct for each patient and hardly perceptible on the

angiographies, generates additional complexity for the cardiologists. With a precise recovery of

a patient’s cardiac motion, it becomes possible to offer sophisticated tools to help with minimally

invasive surgeries. Moreover, respiratory movement degrades the detection and quantification

capabilities of imaging modalities. The mismatches between some imaging techniques due to

respiratory motion results in additional Attenuation Correction (AC) artifacts and inaccurate

localization. Given the increasing demand for accurate image-guided treatments in CADs and

CHDs, a robust method to account for reducing the effects of respiratory, cardiac, and even

unexpected motions during cardiology interventions is needed.

0.2 Research objectives and contributions

The main goal of this research was to investigate learning-based predictive cardio-

respiratory motion models. Predictive models can facilitate less invasive cardiac intervention

processes. To pursue this goal, we proposed new techniques to compensate for the cardio-

respiratory motion artifacts and minimize the radiation used in X-ray angiography sequences.

In this research, we defined three objectives, and the described final results were our contributions.
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Figure 0.1 Research objectives to provide less invasive navigation

process for cardiac interventions

In our first contribution, we proposed a novel radiation dose reduction approach by

predicting dynamic X-ray angiography sequences using a generative model. A video frame

prediction model was developed to predict new X-ray angiography frames. We introduced a

new loss function to predict the temporal and spatial information of the arteries in angiography

sequences. Then, a predictive RNN-based motion model was trained to estimate the motion

and content of single and/or multiple future frame(s) based on previously acquired frames in an

end-to-end system. A detailed description of the proposed method and results was published in

Medical Physics (Azizmohammadi et al., 2022).

The second contribution targeted cardio-respiratory motion compensation. We presented

a patient-specific model-free approach for cardiorespiratory motion prediction from X-ray

angiography time series based on Long Short-Term Memory Recurrent Neural Networks

(LSTM-RNN). Cardiorespiratory motion prediction was defined as a problem of estimating the

future displacement of the coronary arteries in the next image frames in an X-ray angiography

sequence. The displacements of the arteries were represented as a sequence of 2D affine

transformation matrices allowing successive registration in a sequence. The new displacement
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parameters from a sequence of transformation matrices are predicted using an LSTM model. This

motion prediction model was fully adaptive to any unanticipated changes or sudden movement.

The need to inject contrast iodine agents can also be reduced since the geometry of the arteries

can be predicted even if they are not contrasted. This contribution has been developed in two

steps. The preliminary results were published in IEEE Engineering in Medicine and Biology

Society (EMBC) (Azizmohammadi, Martin, Miro & Duong, 2019). The model was improved

and validated using a larger dataset. This work was submitted to Physics in Medicine and

Biology.

The third contribution was to analyze and compare the cardiac motion behavior between

men and women using simulated X-ray angiographies. To develop a general sex-specific and

non-patient-specific cardiac motion pattern that can be used for diagnostic or treatment planning

by cardiologists, we investigated the differences between cardiac motions for males and females.

0.3 Thesis outline

This document is organized as follows. Chapter 1 presents the clinical description and treatments

of patients with CHD. In addition, it provides a general description of motion compensation

prediction methods and radiation dose reduction approaches in minimally invasive interventions.

Chapter 2 describes our first contribution, a generative learning approach for radiation dose

reduction in X-ray-guided cardiac interventions. Our second contribution, cardio-respiratory

motion tracking in pediatric X-ray angiography sequences using a simple LSTM network, is

presented in Chapter 3. Chapter 4 presents our third contribution, sex-specific cardiac motion

analysis for treatment and planning the cardiac interventions.



CHAPTER 1

LITERATURE REVIEW

1.1 Minimally invasive treatments for CADs and CHDs

Image-guided interventions are currently minimally invasive treatments using different imaging

modalities. X-ray angiography is one of the most popular modalities for cardiac interventions

since it provides adequate spatial and temporal image resolution for cardiologists. This modality

is used in catheterization, balloon angioplasty, atherectomy, laser treatment, stent placement,

and other procedures. Fluoroscopy and fluorography are the two main fluoroscopically guided

intervention modes in X-ray imaging. In fluoroscopy mode, the X-ray images are generated

instantaneously and continuously to observe moving objects by capturing the motion. The

images in this mode are used to navigate the medical devices to specific locations within the

patient in real-time. Fluorography, the mode requires a higher radiation exposure to generate and

record high-resolution images for interpretation after the termination of the exposure (Dauer,

2011).

Figure 1.1 X-ray angiography system at CHU Sainte-Justine
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Figure 1.2 A summary of the related works to this study and the link of our

objectives to the literature review

1.1.1 Radiation dose reduction in X-ray angiography

In recent years, the number of complex, long-duration pediatric cardiac interventions has

increased significantly. Although most long-term sequelae of medical radiation exposure can be

attributed to the exposure, the elevated cancer risk is the most significant concern. Depending

on the radiation dose, patients are subjected to stochastic effects, such as an increased risk

of radiation-induced cancer (El-Sayed et al., 2017) (Pavlidis, Jones, Sirker, Mathur & Smith,

2016). Minimizing radiation exposure in pediatric cardiology is essential since children are

more vulnerable to the potentially harmful effects of ionizing radiation than adults (Rigsby

et al., 2018). Moreover, the same exposure can be more critical for smaller patients because

of their reduced tissue debilitation since body weight plays an essential role in determining

the required dose (Rigsby et al., 2018). In addition to pediatric patients’ radio sensitivity, any
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complex congenital pediatric heart disorders they suffer must be catheterized repeatedly, thereby

increasing their risk of radiation-induced cancer (Chida et al., 2010). Hence, radiation exposure

is a concern for the pediatric population, and determining the optimal dose is a highly relevant

research topic in pediatric cardiology.

X-ray angiography is widely accepted for minimally invasive interventions and provides

adequate spatial and temporal image resolution. The radiation dose is a function of the

required image quality, the patient’s size, and the time required to perform the procedure.

The Fluoroscopy Time (FT) in minutes is one of the most fundamental factors in choosing

the patient’s dosage and comprises all the time spent using fluoroscopy for image acquisition

(Yamagata, Aldhoon & Kautzner, 2016).

Analog X-ray devices are used to deliver X-ray energy in a continuous dose. The most common

approach used to mitigate the radiation dose involves minimizing the beam-on time for both

the fluoroscopy and cine acquisition modes (Hirshfeld et al., 2004). Recent X-ray systems

are equipped to deliver energy in pulses that can be adjusted to 1, 2, 3, 7.5, 10, 15, and 30

frames per second (fps). In pulsed fluoroscopic imaging, the X-ray beam is switched on and off

for every fluoroscopic image. Thus the pulse width, or time duration of each image, is lower

than the time required in continuous fluoroscopy imaging. The FT is reduced by replacing the

continuous exposure with a pulsed beam delivery. Accordingly, the dose rate is determined

by the required dose per frame and acquisition Frame Rate (FR). Hence, for a specific FR, the

amount of radiation exposure is reduced, given a specific Pulse Rate (PR). A sequence of pulsed

images, including moving objects, appears more continuous and less flickering at high pulse

rates or frequencies based on Critical Flicker Frequency (CFF). At low FRs, one way to avoid

flicker and minimize the unsharpness of the moving targets is to use Gap Filling. Gap Filling

consists of replicating each acquired frame multiple times. This conventional method could

be applied to keep the low FR and reduce the dose rate accordingly while having a low image

quality. Therefore, the amount of noise perception by human eyes can be reduced (Balter, 2014).
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1.1.2 Relationship between motion estimation and the dose reduction for cardiac
interventions

To keep the radiation dose as low as possible during diagnostic and interventional procedures,

motion compensation techniques are required to reduce potential misinterpretations caused by

motion while preserving the image quality. Cardio-respiratory motion prediction has always

been preferred in cardiac applications as it facilitates more accurate navigation procedures.

Deep learning architectures such as Recurrent Neural Network (RNN) models are popular in

predicting the cardio-respiratory motion in diagnostic and interventional imaging processes

for different imaging modalities(Azizmohammadi et al., 2019), (Fang et al., 2020), (Lyu et al.,

2021). Yet, there are not many learning based methods for X-ray angiography.

In these approaches, motion features (temporal and spatial) are extracted from image frames

and memorized by the RNN model to predict upcoming images. However, predicting and

generating realistic images and motion in an end-to-end system continues to present issues

using existing models. Generative adversarial networks (GANs) are the tools used for learning

deep representations. They can be used for both supervised and semisupervised learning by

implicitly modeling high-dimensional data distribution. The main structure of GANs is based on

training a pair of networks competing against each other. These two networks are generators and

discriminators. The generator is like an art forger and produces realistic synthetic samples like

images using a distribution. The discriminator acts as an art expert to distinguish the real sample

from the synthetic generated one. These two networks are trained simultaneously, allowing

them to improve their respective abilities until the discriminator is unable to tell the real and

synthetic samples apart (Creswell et al., 2018). Recently, GANs have been used for video frame

prediction (Hu & Wang, 2019). The Prediction quality has been improved considerably using

GANs, and the combination with RNNs has made it possible to predict multiple frames as well.

Reducing the PR during complex invasive cardiovascular procedures results in a considerable

reduction of the mean energy required for X-ray imaging (fluoroscopy and cine). Pyne et al.

demonstrated that reducing the PR from 15 pulses per second (pps) to 10 pps reduces the
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required dose by 34% (Pyne et al., 2014). The average required dose rate scales as the square

root of FR with an equal noise perception for the operator’s eyes in pulsed fluoroscopy imaging.

Hence, if the FR is reduced from 15 fps to 7.5 fps, the required dose rate is reduced by 30%,

while doubling the FR from 15 fps to 30 fps increases the required dose rate by about 40%

(Balter, 2014), (Aufrichtig, Xue, Thomas, Gilmore & Wilson, 1994). One recent approach

for reducing the FT for diagnostic cine acquisition involves the Last Fluoroscopy Hold (LFH)

technique. The cumulative DAP, FT, and contrast used in this approach are reduced as compared

to the cine mode by dynamically caching the last current frame of the fluoroscopy sequence.

Thus, the last acquired image is saved and displayed during percutaneous coronary interventions

(Olcay et al., 2015). Radiation dose reduction is managed in different applications. For instance,

X-ray beam filtering and anti-scatter grid removal at a given contrast-to-noise ratio were applied

for endovascular interventions (Rana, Singh, Jain, Bednarek & Rudin, 2015), and alternative

exposure is applied in mammography using a tungsten/silver (W/Ag) target-filter spectrum

(Freer et al., 2017), and dose flattening approaches are used in tumor delivery treatments (Lohse

et al., 2011). Despite these advances, current methods still carry certain limitations and costs.

1.2 Cardio-respiratory motion compensation

In recent years progression in imaging techniques has opened up numerous potential applications

for medical images for diagnosis, treatment planning, and image-guided interventions. Albeit,

given the moving organs in the abdomen and thorax, there are still some problems, such as having

artifacts in the acquired images and misalignment between the static guidance information and

the moving anatomy in image-guided interventions. These problematic restrictions are caused

by respiratory and cardiac motions as well as unexpected motions such as patient’s movements

(McClelland, Hawkes, Schaeffter & King, 2013).

One approach to overcome the problems caused by moving organs during image acquisitions

and image-guided interventions is called breath holding, in which the respiratory motion is

suppressed (Oshinski et al., 1996). However, given several restrictions, such as scan time
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constraints and poor steady breath-holding, free-breathing techniques needed to be improved

(Nehrke, Bornert, Manke & Bock, 2001) (Taylor et al., 1997).

Motion tracking is another approach to compensate for the effects of cardio-respiratory motion

during the image-guided interventions (Schweikard, Glosser, Bodduluri, Murphy & Adler, 2000)

(Kesner & Howe, 2010). Several methods have been developed to segment and track the visible

medical devices under the X-ray images in real-time. Deep convolutional neural networks

are applied as state-of-the-art approaches for real-time tracking of the segmented catheter and

guidewires in 2D X-ray fluoroscopic sequences. For the input, the network takes the current

image and the three previous ones and segments the catheter and guidewire in the current image

(Ambrosini, Ruĳters, Niessen, Moelker & Walsum, 2017). Nagata et al. (2009) implemented

markers into the region of interest to track the motion in a sequence of images based on these

markers. However, the implantation can be invasive for the patients. The motion information is

also limited to the marker points rather than the entire region of interest.

The previous motion compensation approaches are discussed in different categories in the

following sections. First, the motion prediction strategies are categorized into three groups:

model-based, model-free, and hybrid.

1.2.1 Model-based motion prediction algorithms

In model-based methods, the motion is represented using a special mathematical model like

linear prediction, Bayesian filtering (Kalman filter, Extended Kalman filter, and particle filtering),

sinusoidal model, finite state model, autoregressive moving average model, Support Vector

Machine (SVM) and Hidden Markov Model (HMM) (Gautam, Kaur & Sharma, 2019).

Motion models are usually patient-specific and take surrogate data as input and come up with a

motion estimation as output. Depending on the applications, motion models can differ in the

data used to form the models, the type of model employed, how this model is computed, the

type of surrogate data used as input to the model, and what form this output should take. A
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motion model can be predictive, estimative, and a combination of both depending on the future

prediction or current signal values.

A motion model consists of four components. The first component is the input signal(s) to the

model or surrogate data (single signal, respiratory phase, single signal, gradient, etc.). The

second component is the internal representation of the model, such as rigid/affine transformation

coefficients and control points, and the third component is the correspondence of motion

representation and surrogate signals (Polynomial, B-spline, Neural networks, Fourier series,

etc.). The fourth one is the proper method to match the correspondence model to training data

(Linear least squares, rigid registration, principal component regression, etc.).

In a predictive motion model, the future values for the motion signal depend on the past and

current motion signal information. Motion estimation models estimate the current motion signal

values based on some other simple available signals (surrogate signals).

Many model-based approaches are available for predicting and tracking moving arteries and com-

pensating the cardio-respiratory motion in X-ray angiography (King, Rhode, Razavi & Schaeffter,

2009), (Baka, Lelieveldt, Schultz, Niessen & van Walsum, 2015b), (M’hiri et al., 2016).

Extended Kalman filters (EKF) based on the Local Circular Motion (LCM) Model were applied

in (Jung, Kim & Hong, 2013) for predicting respiratory motion. Based on this approach, the first

and second-order Kalman filters were implemented based on LCM. Based on LCM, the target

location is predicted by evaluating the local dynamic model equations at the required prediction

length. Kalman filter estimates the unknown variables by measuring statistical noise over time

for predicting respiratory motion, and the LMC characterizes the local circular respiratory

motion in an augmented plane.

An auto-adaptive motion model was also introduced in (Baumgartner, Kolbitsch, McClelland,

Rueckert & King, 2017) for estimating respiratory motion. This method is based on an extension

of the Simultaneous Group-wise Manifold Alignment (SGMA) technique. The adaptive motion

model is generated from multiple 2D motion fields derived from sagittal 2D MR slices acquired
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at different anatomical positions. Then to estimate the 3D motion, the 2D motion fields are

combined. To extend the SGMA, they (1) applied the manifold alignment on motion fields. (2)

a combination of coronal and sagittal slices was used. (3) The missing sampled respiratory

motion 2D points are estimated using K-nearest neighbors as an interpolation scheme on the

manifold. This method is automatically adapted to breathing patterns.

In the auto-adaptive motion model, the correspondence is between data acquired from different

anatomical positions slide-by-slide of motion fields but with similar respiratory phases. This

approach has some limitations in estimating the motion in the direction orthogonal to slides

since they assumed the Left-Right movement is negligible compared to Sagittal-Lateral and

Anterior-Posterior motion direction. The manifold learning used in this approach is based

on Locally Linear Embedding (LLE) for dimensionality reduction. In LLE approaches, the

k-nearest neighbor graph of data (motion fields) is based on the shortest distance between data

points. K-nearest neighbor algorithm is considered an instance-learning method where the

function is only approximated locally, and all computation is deferred until classification. Hence,

in this work, each point is reconstructed as a linear combination of its nearest neighbors. Thus,

the non-linear regression in 3D for motion fields is reconstructed by considering having linear

relocation of any point in 2D slides. This assumption could reduce the accuracy of the work

since R-L motion is neglected.

Ha et al. introduced a novel approach that targets real-time imaging modalities by employing

contrast-invariant feature descriptors. This work combined an image-based real-time, sparsely

distributed feature point tracking with a dense patient-specific motion model. In this combination,

a unified optimization framework was introduced based on sparse-to-dense interpolation. This

model-based sparse-to-dense image registration method achieved a 2 mm prediction error for

respiratory motion estimation (Ha, Wilms, Handels & Heinrich, 2018).

Another novel model-based approach was developed for calibrating a robotic C-arm system for

X-ray imaging. According to this method, it can be possible to calibrate a mechanical C-arm

system using X-ray images. By reorientating the C-arm system, a static model of the system is
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required to achieve the desired accuracy (1.5 mm) for 2D/3D overlays. Thus, apart from 2D

X-ray images, C-arm systems can perform 2D/3D overlays to provide additional information to

the clinician (Thürauf et al., 2018).

1.2.2 Model-free motion prediction algorithms

Model-free methods are heuristic learning-based algorithms that find a pattern for the cardio-

respiratory motion. Linear adaptive filters and neural network variables are examples of

model-free heuristic learning methods to compensate for the impaired breathing signal with

various breathing patterns. The following section explains the adaptive filters and artificial neural

networks in more detail. Adaptive filters can update their coefficients and adjust themselves based

on the prediction errors with their optimizer over time. Usually, the motion prediction using

adaptive filters is calculated using the combination of previous respiratory motion multiplied by

its coefficient values. It has been proved by (Vedam et al., 2004) that the prediction accuracy of

adaptive filtering can be less than 2mm, which is robust enough to outperform some model-based

methods, such as sinusoidal models. However, there are some restrictions for adaptive filters in

one-dimensional predictions. Thus, they are extended to multidimensional adaptive filters and

adjusted to update the weights of neural networks. Artificial neural networks are mathematical

function structures in three sections (input, hidden layers, and outputs). The sections are

interconnected with some weights (M.J. Murphy, 2009).

Gao et al. (2019) intruded a learning-based approach to compensate for the effects of the patient

movement during imaging for digital subtraction angiography using a single live image. Based

on the obtained results, the digital subtraction images can be done with fewer artifacts and have

more quality for diagnosis. A supervised generative adversarial network strategy achieved better

vesselness details.

Lossau et al. (2019) also presented a motion estimation and correction method for CT angiography

imaging using a CNN model. This work showed supervised learning for coronary motion

estimation by patch analysis in CT data. The data for supervised learning was simulated by
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the coronary motion forward artifact model for CT data, including the simulated motion to 19

artifact-free clinical CT cases with a step-and-shoot acquisition protocol. Then, CNN models

were trained to estimate underlying 2D motion vectors from 2.5D image patches based on

the coronary artifact appearance. The motion direction and the magnitude with average test

accuracies of 13.37 degrees and 0.77 mm, respectively.

One other recent model-free approach introduced a novel real-time dynamic coronary road-

mapping method for X-ray fluoroscopy that provides dynamic vessel visualization without using

a contrast agent. An accurate catheter trip tracking based on deep learning-based Bayesian

filtering was applied to compensate for the respiratory motion. In this method, the posterior

of the catheter tip was tracked via a particle filter, for which a likelihood probability map was

computed for updating the particle weights using CNN model (Ma, Smal, Daemen & van

Walsum, 2020).

Deep Recurrent Neural Network (RNN) models have demonstrated outstanding potential in

cardiac imaging and in predicting the cardio-respiratory motion in diagnostic and interventional

imaging processes (Azizmohammadi et al., 2019), (Fang et al., 2020), (Lyu et al., 2021). Based

on these approaches, motion features (temporal and spatial motion features) are extracted from

image frames and memorized by the RNN model to predict the future dynamic behavior of the

structures. Nevertheless, it should be noted that predicting and generating realistic future images

and motion in an end-to-end system continues to present issues using existing models.

Vernikouskaya et al. represented a novel learning-based method to extract motion features from X-

ray images using CNN. The motion features extraction was applied to update the overlay of a static

model concerning respiratory and cardiac motion. The automatic motion compensation presented

in this work during the fusion of 3D anatomic models with XR fluoroscopy appears to improve

robust augmentation during catheter interventions Vernikouskaya, Bertsche, Rottbauer & Rasche

(2022).
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1.2.3 Hybrid motion prediction algorithms

Hybrid motion prediction algorithms are a combination of model-based and model-free methods

while benefiting from both algorithms and could outperform the others. This approach is also

categorized in adaptive neuro-fuzzy interference systems, a hybrid model with adaptive filter

and nonlinear model and interacting multiple model filter ((2005), ANFIS) (L. Ma,C. Herrmann,

2007).

In Suhermi, Prastyo, Ali et al. (2018), a deep artificial neural network model with multiple

hidden layers was combined with the Autoregressive Integrated Moving Average (ARIMA) as

a hybrid model to capture the nonlinear and linear patterns for the prediction of roll motion.

Based on their experiments, the results of this hybrid model prediction outperformed every other

available forecast of the roll motion.

1.3 Cardiovascular motion estimation and its effects on dose reduction for cardiac
interventions

During fluoroscopy imaging, many factors may influence image quality. These include the

patient size, the clinical task, the imaging geometry, the contrast, the signal-to-noise ratio, and

the anatomical target movements. Cardiologists must choose an optimized fluoroscopic dose

rate that counterbalances these factors (Balter, 2014). If the image quality is not high enough and

the image is not sufficiently detailed, the cardiologist’s clinical confidence might be impacted.

Nevertheless, acquiring better quality images could still increase the radiation rate without

necessarily improving clinical outcomes (Balter, 2014).

To keep the radiation dose as low as possible during long-term interventions and short-term

acquisitions, motion compensation, and prediction techniques are required to reduce potential

misinterpretations caused by motion while keeping decent image quality.



CHAPTER 2

CONTRIBUTION #1: GENERATIVE LEARNING APPROACH FOR RADIATION
DOSE REDUCTION IN X-RAY GUIDED CARDIAC INTERVENTIONS

2.1 Proposed contribution

The goal of this study is to predict dynamic X-ray angiography sequences using a generative

model. A video frame prediction model is introduced to predict new X-ray angiography frames.

We introduced a new loss function to predict the temporal and spatial information of the

arteries in angiography sequences. To minimize the vesselness structure differences between the

predicted and ground truth images, a multi-scale Hessian-based loss term is added to the loss

function presented by Mathieu et al. (Mathieu, Couprie & LeCun, 2016). Then, a predictive

RNN-based motion model is trained to estimate the motion and content of single and multiple

future frame(s) based on previously acquired frames in an end-to-end system. This contribution

was published in Medical Physics (Azizmohammadi et al., 2022)

2.2 Materials and methods

2.2.1 Data description

We developed and validated our method using simulated and patient X-ray angiography datasets

from Sainte-Justine Hospital. Simulated X-ray sequences generated from realistic XCAT compu-

tational phantoms with cardio-respiratory motion (Segars, Sturgeon, Mendonca, Grimes & Tsui,

2010) were first investigated. The simulated motion included the beating heart and respiratory

motions. The simulated dataset included 56 patients (32 male and 24 female) and 112 sequences

(2 sequences per patient, showing either the left or right coronary artery). All the generated

sequences had a length of 75 frames capturing multiple heart and respiratory cycles, and were

acquired at 15 fps. The patient database comprises 52 patients with contrasted coronary arteries.

This study was reviewed and approved by the Institutional Review Board of Sainte-Justine

Hospital. Each patient presents a different number of sequences with varying lengths. There are
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340 sequences, respectively, with a minimum and maximum length of 15 and 70 frames. All the

data was acquired at 15 fps. Fig 2.1 shows samples of simulated and patient data for coronary

artery branches.

Figure 2.1 (a): Simulated RCA (left) and LCA (right) coronary artery branches. (b):

Contrasted LCA branch for patient data.

2.2.2 X-ray angiography frame predictions

In this section, the effects of frame predictions on dose reduction are assessed regarding the

required dose rate and the total fluoroscopy time. The quantitative results of this assessment

illustrate that reducing the total fluoroscopy time can considerably impact cumulative radiation

exposure reduction.

2.2.2.1 Assessment of the impact of pulse rate reduction on the total radiation dose
reduction

In our approach, we assumed that for any specific frame rate (7, 15, 30, 60 fps), the number

of pulses required could be reduced during an X-ray imaging process such that the predicted

frames can replace the real X-ray frames. Depending on the X-ray manufacturers, the dose for a

given exposure duration is directly related to the pulse rate (Kobayashi & Hirshfeld Jr, 2017)

(Mahesh, 2001), or it can scale as the square root of the frame rate for uniform noise perceived



18

by the operator’s eyes (Balter, 2014) (Aufrichtig et al., 1994). In this work, we considered the

square root model.

According to this approach, for the same frame rate, a smaller pulse rate (i.e., dose rate) is

required since 𝑇 frames are predicted (Fig. 2.2 (a)). Considering 𝐾 as the number of previously

generated and visited frames and𝑇 as the number of predicted frames at each prediction mode, for

every 𝐾 +𝑇 frames, 𝑇 frames are predicted. Thus, the number of pulses required at every second

can be reduced by 𝐹𝑅 × ( 𝑇
𝐾+𝑇 ). Hence, the Required Dose Rate (RDR) scales proportionally as:

𝑅𝐷𝑅 ∝

√
𝐹𝑅 ×

𝐾

𝐾 + 𝑇
(2.1)

where the 𝐹𝑅 is the selected frame rate for the intervention or acquisition (7, 15, 30, 60 fps).

Figure 2.2 An example of different fluoroscopy techniques. Less fluoroscopy time is

required for pulsed discrete fluoroscopy by pausing the radiation beam after 𝐾 acquired

images for a prediction time 𝑡𝑇 in each time window 𝑡𝑤 compared to other methods

(𝐹𝑇 < 𝐹𝑇𝑝)

Given the parameter 𝐾, which is the number of previously generated and visited frames

contributing to the prediction of the new frame/s, the X-ray exposure can pause at each predicting

mode and resume in acquisition mode. Assuming 𝑡𝑇 as the required time for 𝑇 frames prediction,

𝑡𝑤 as the required time window for 𝐾 +𝑇 acquisitions, and 𝐹𝑇𝑝 as the entire required fluoroscopy
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time (in seconds), the 𝐹𝑇 is the reduced fluoroscopy time:

𝐹𝑇 = 𝐹𝑇𝑝 − (�
𝐹𝑇𝑝

𝑡𝑤
� × 𝑡𝑇 ) + 𝑡𝑟 (2.2)

In any time window (𝑡𝑤), the exposure time is reduced by the amount of time that is required to

acquire 𝑇 frames (𝑡𝑇 ). The 𝑡𝑟 is the remaining time in the X-ray angiography sequence.

Fig. 2.2 (b) shows the difference between conventional continuous fluoroscopy, pulsed fluo-

roscopy, and our method in terms of fluoroscopy time. For the pulsed fluoroscopy with frame

prediction the 𝐹𝑇 = Σ(𝑡𝑤 − 𝑡𝑇 ) + 𝑡𝑟 = Σ 𝑓 𝑡𝑖. In pulsed fluoroscopy, less energy is exposed as

compared to continuous fluoroscopy. In our approach, the X-ray device is supposed to pause at

each prediction mode and resume in each acquisition mode. Thus, the total fluoroscopy required

in an X-ray imaging process is reduced.

2.2.2.2 Cardio-respiratory motion and content estimation in X-ray sequences

The prediction of upcoming frames of a video sequence requires two components, namely, the

visual content and pixel displacement through time or motion. Thus, the proposed network

learns the internal representation of image evolution through the sequence based on its content

and motion. The model in this work consists of two different encoders, one for the visual content

and a second one for the motion of the image sequence. These two key components must be

decomposed among the images and predicted separately. The motion features are extracted by an

RNN-based encoder with Long Short Term Memory (LSTM) and CNN, while the visible content

features are only extracted from the last visited image with a CNN-based model. Deep learning

methods have been applied successfully for video frame prediction in the literature (Villegas,

Yang, Hong, Lin & Lee, 2017), (Hsieh, Liu, Huang, Fei-Fei & Niebles, 2018), (Tulyakov, Liu,

Yang & Kautz, 2018).
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2.2.3 Model architecture

A generative model is built on an Encoder-Decoder framework. To extract the motion and

content features of the images in sequences, a CNN model is used in combination with an LSTM

network. The LSTM cells memorize the complex non-periodic cardio-respiratory motion in the

angiography sequences. According to our previous work (Azizmohammadi et al., 2019), the

LSTM structure is robust enough to deal with different motion patterns in the cardio-respiratory

motion signals during prediction. Therefore, an LSTM-CNN combination is used for a general

motion estimator. To effectively handle the complex evolution of pixels in sequences, the

motion and content are predicted independently using two encoders. Thus while the motion

encoder captures the temporal dynamics of a sequence, the content encoder extracts the spatial

information from the most recent image. Hence, the X-ray images’ spatial and temporal

dynamic features are extracted and encoded separately. The model architecture also includes a

concatenating section that combines the outputs of these encoders and a multi-scale residual

used to avoid information loss before pooling in the network. The last part is the decoder, which

reconstructs the predicted images. Fig. 2.3 shows the complete structure of the model.

Figure 2.3 The motion-content model structure. Two encoders extract the

motion and content features separately (𝑀𝐸 and 𝐶𝐸). The input for the

motion encoder is a sub-sequence of the previous filtered frames filtered. The

input for the content encoder is the last seen frame. The motion and content

residuals are added to avoid information loss.
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2.2.3.1 Motion encoder

A Convolutional LSTM (ConvLSTM) extracts the dynamic features in X-ray sequences. While

the pixel-level features are extracted by a Convolutional Neural Network (CNN), the sequential

information is provided by the LSTM cells in the motion encoder. The motion encoder captures

the local motions from one frame to the next in X-ray sequences. The cardio-respiratory

movements of the objects (arteries, devices, catheters, wires, stents, etc.) are predicted directly

(without using a surrogate object) and independently in the sequences. The original presented

motion encoder in (Villegas et al., 2017) takes the element-wise image subtraction between

(𝑥𝑡 and 𝑥𝑡+1) as an input. Since there are background movements in angiography images, the

subtraction of original frames includes a lot of artifacts. In our approach, we filtered the

input images by vesselness filter first and then subtracted the filtered input images to overcome

the artifact caused by the background movement. Thus, the motion encoder tracks only the

contrasted arteries’ movement to encode the temporal dynamics of transformed images through

the sequence (𝑑𝑡). Considering 𝑑𝑡 = 𝑥𝑣(𝑡) − 𝑥𝑣(𝑡−1) as the element-wise subtraction between

frames at time 𝑡 and 𝑡 − 1 that were filtered with vesselness filter, and 𝑑𝑡−1 as the feature tensor

encoding the motion across the observed difference filtered image inputs and 𝑐𝑡−1 as the memory

cell retains information of the dynamics observed through time, then the 𝑓 𝑚𝑜𝑡𝑖𝑜𝑛 (.) is a fully

convolutional function that allows the model to identify the local dynamics of consequent frames.

The output of the motion encoder is as follow:

𝑀𝐸 = [𝑑𝑡, 𝑐𝑡] = 𝑓 𝑚𝑜𝑡𝑖𝑜𝑛 (𝑥𝑣(𝑡) − 𝑥𝑣(𝑡−1) , 𝑑𝑡−1, 𝑐𝑡−1) (2.3)

2.2.3.2 Content encoder

The content encoder extracts the essential spatial features from the visible contents, such as

contrasted moving objects (arteries) and the background (ribs, bones, and devices) in the images.

It takes the last observed frame 𝑥𝑡 as input and encodes the spatial information in the image (𝐶𝐸𝑡)

using a CNN network. The last observed frame has the most recent and essential information
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required for predicting the future frame(s). Thus, 𝐶𝐸 is the feature encoding the spatial content

of the last observed image, and 𝑓 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (.) is a CNN model that extracts content features from

one single image 𝑥𝑡 . The output of the content encoder is as follow:

𝐶𝐸 = 𝑓 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (𝑥𝑡) (2.4)

2.2.3.3 Final prediction using the content and motion encoders’ outputs

A multi-scale encoder residual is used to compute the residual 𝑅𝑒𝑠𝑡 at each scale or layer just

before the pooling layers of both motion and content encoders. The outputs of both encoders are

concatenated and combined with the residual outputs (𝑀𝐸𝑡 , 𝐶𝐸𝑡 , 𝑅𝑒𝑠𝑡) to perform pixel-level

predictions in the decoder. These predictions can represent one or more frames in the future.

The output of the model (Villegas et al., 2017) is as follows:

𝑅𝑒𝑠ℎ𝑡 = 𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 ( [𝑀𝐸ℎ, 𝐶𝐸ℎ]) (2.5)

𝑂𝑢𝑡𝑝𝑢𝑡𝑡 = 𝑓 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ( [𝑀𝐸,𝐶𝐸]) (2.6)

𝑥𝑡+1 = 𝑓 𝑑𝑒𝑐𝑜𝑑𝑒𝑟 (𝑂𝑢𝑡𝑝𝑢𝑡𝑡 , 𝑅𝑒𝑠𝑡) (2.7)

Where 𝑅𝑒𝑠ℎ is the residual link at layer ℎ being used to avoid information loss after pooling for

each layer, 𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 (.) is the residual function implemented as consecutive convolution layers,

and rectification with a final linear layer. The 𝑂𝑢𝑡𝑝𝑢𝑡𝑡 represents the combination layer that

concatenates the outputs of both motion and content encoders (𝑀𝐸 and 𝐶𝐸). The new frame is

generated as the output of the decoder going through a 𝑡𝑎𝑛ℎ(.) activation function.

2.2.3.4 Loss function

A combination of terms (image space and generator loss terms) is minimized in this approach.

We adjusted this loss function to predict the cardiac angiography sequences, given that the targets

to track and predict are contrasted arteries. The total loss function combines the image loss
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(𝐿𝐼𝑀) and generator loss (𝐿𝐺𝐴𝑁) in adversarial training. Considering the 𝛼 and 𝛽 as constant

weights:

𝐿𝑇𝑜𝑡𝑎𝑙 = 𝛼𝐿𝐼𝑀 + 𝛽𝐿𝐺𝐴𝑁 (2.8)

𝐿𝐼𝑀 = 𝛼𝐿𝑔𝑑𝑙 + 𝛽𝐿𝑃 + 𝛾𝐿𝑉𝑠𝑠 (2.9)

Where 𝐿𝐼𝑀 represents the image space loss as a combination of terms that match the average

pixel intensities with 𝐿𝑃, gradient difference to sharpen the predictions, and the newly added

sub-loss called vesselness difference 𝐿𝑉𝑠𝑠.

We penalized the difference between the second derivative of the Gaussian filter applied on the

predicted and ground truth images with six different scales (vesselness 𝜎 range: 0.5 - 3 with step

size: 0.5 ). The output of the vesselness filter on the images is the vesselness response image.

The second derivatives encode the shape information, and the eigenvector corresponding to the

smallest eigenvalue is the direction of the blood vessel locally. Hence, the 𝐿𝑉𝑠𝑠 is applied to

minimize the local differences between the predicted and ground truth images, which refer to

the shape of the arteries.

The gradient difference term 𝐿𝑔𝑑𝑙 (Mathieu et al., 2016) (Villegas et al., 2017) is applied to

sharpen the generated images. This term directly assesses the gradient discrepancy between the

ground truth and the predictions. The gradient difference between the ground truth image 𝑌 and

the prediction 𝑌 is given by:

𝐿𝑔𝑑𝑙 (𝑌,𝑌 ) = Σ𝑖, 𝑗 ( | |𝑌𝑖, 𝑗 − 𝑌𝑖−1, 𝑗 | − |𝑌𝑖, 𝑗 − 𝑌𝑖−1, 𝑗 | |
𝜆 + ||𝑌𝑖, 𝑗−1 − 𝑌𝑖, 𝑗 | − |𝑌𝑖, 𝑗−1 − 𝑌𝑖, 𝑗 | |

𝜆) (2.10)

Where 𝜆 is an integer greater or equal to 1 (here, the 𝜆 = 1 ) and |.| is the absolute value

function (Mathieu et al., 2016). The new vesselness difference term 𝐿𝑉𝑠𝑠 matches the vesselness

responses of the predicted and ground truth images. The vesselness difference between the

ground truth image 𝑌 and the prediction 𝑌 is given by:
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𝐿𝑉𝑠𝑠 (𝑌,𝑌 ) = Σ𝑖, 𝑗 |𝐼 (𝑌 ) − 𝐼 (𝑌 ) | (2.11)

Where 𝐼 (𝑌 ) represents the ground truth image filtered by vesselness, 𝐼 (𝑌 ) is the predicted image

filtered by vesselness, and 𝐼 (𝑌 ) − 𝐼 (𝑌 ) is the element-wise subtraction of filtered ground truth

and prediction frames. We only considered pixel intensity differences for the vesselness filter,

not direction differences. To generate images correctly and avoid blurred images, the generator

loss in adversarial training 𝐿𝐺𝐴𝑁 is added to solve the blurriness problem. It induces realism in

the image sequences and sharpens the images (Mathieu et al., 2016).

𝐿𝐺𝐴𝑁 = − log 𝐷 ( [𝑥1:𝑡 , 𝐺 (𝑥1:𝑡)]) (2.12)

while 𝐷 (.) represents the discriminator in adversarial training, and 𝑥1:𝑡 is the input image

concatenation. The adversarial discriminator loss (𝐿𝑑) is defined by:

𝐿𝑑 = − log 𝐷 ( [𝑥1:𝑡 , 𝑥𝑡+1:𝑡+𝑇 )]) − log(1 − 𝐷 [𝑥1:𝑡 , 𝐺 (𝑥1:𝑡)]) (2.13)

the concatenation of future ground truth images and all of the predictions are represented as

𝑥𝑡+1:𝑡+𝑇 and 𝐺 (𝑥1:𝑡) = 𝑥𝑡+1:𝑡+𝑇 respectively (Mathieu et al., 2016) (Villegas et al., 2017).

2.3 Results and validations

The parameters for the X-ray angiography sequences were optimized for both the simulated and

patient datasets. The number of iterations was evaluated between 1000 to 1500 for the simulated

dataset and between 2000 and 2500 for the patient datasets. We divided the dataset into two parts:

80% of the dataset for training and 20% for testing. The model was evaluated on each dataset

separately. Each sequence was divided into time slots or time windows of minimum (𝐾 + 𝑇)

frames. A single frame was repeatedly predicted at a time, and the prediction was included

through the time slot while the previous predicted frame(s) contributed to new predictions. The
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number of previously generated and visited frames (𝐾 = 7 to 10) contributing to predicting the

future frame(s) for the motion encoder was set based on capturing a complete heart cycle in

time (0.8𝑠 to 1𝑠) and on the length of the shortest sequences in our dataset. All the parameters

and hyperparameters were selected based on different experiments. The hyper-parameters

controlling the effect of each sub loss function represented as 𝛼, 𝛽, and 𝛾 were set to 1, 0.02,

and 0.01, respectively, based on the experiments. The quality of the predicted images was

reduced by increasing the number of predictions. The visual quality of the predicted images

using our method (the vesselness-based MCnet) was assessed as compared to the original MCnet

in terms of certain similarity measurement metrics such as Peak Signal-to-Noise Ratio (PSNR)

and Structural SIMilarity (SSIM) (Table 2.1 and Table 2.2). We used PSNT and SSIM as two

baselines to compare our method with the original MCnet and then evaluated the quality results

in terms of motion and content prediction based on other approaches as well. In our experiments,

we predicted up to 3 frames with over 0.6 SSIM for both the original and vesselness-based

MCnets (Table 2.1 and Table 2.2).

Table 2.1 Average similarity measurements of the predicted images over the testing

data on three predicted images for the simulated dataset

Frame Vss PSNR Original MCnet PSNR Vss SSIM Original MCnet SSIM
Simulated data K=7, T=1,2,3

Frame 1 28.28 27.98 0.94 0.89

Frame 2 25.47 24.85 0.92 0.85

Frame 3 23.90 23.01 0.88 0.82

Simulated data K=10, T=1,2,3

Frame 1 29.13 28.82 0.97 0.86

Frame 2 27.65 25.10 0.93 0.83

Frame 3 24.14 23.12 0.87 0.81

According to the experiments, the quality of the predicted images is reduced by increasing

the number of predictions. With the simulated data, the first three frames were well-predicted

with 0.87 to 0.97 SSIM (Table 2.1). For the patient dataset, the best results refer to K = 10,

in which the first three predicted frames reach between 0.68 and 0.82 SSIM (Table 2.2). Our

experiments show that the parameter 𝐾 must be equal to or greater than the frames required to
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Table 2.2 Average similarity measurements of the predicted images over the testing

data on three predicted images for patient dataset

Frame Vss PSNR Original MCnet PSNR Vss SSIM Original MCnet SSIM
Patient data K=7, T=1,2,3

Frame 1 27.10 26.75 0.79 0.80

Frame 2 24.42 23.59 0.68 0.70

Frame 3 23.10 21.54 0.61 0.61

Patient data K=10, T=1,2,3

Frame 1 27.97 26.80 0.82 0.78

Frame 2 25.65 24.62 0.74 0.69

Frame 3 24.14 23.32 0.68 0.63

cover a cardio-respiratory cycle. Moreover, the values for the parameter 𝐾 in our experiments

depend on the length of the shortest sequences in our patient dataset such that the 𝐾 +𝑇 must be

equal to or less than the length of the shortest sequence in our dataset (13 frames). Based on

the overall experiments with patient and simulated datasets (Table 2.1 and 2.2), the first three

predicted frames have over 0.6 SSIM, and the vesselness structure is visible. Thus, at each

second during the X-ray imaging process, the patients can be exposed to 3 fewer pulses while

keeping the same frame rate (15 fps). The required frame acquisition (i.e., pulses) for a 15 fps

sequence can drop by 23% to 30% (for K = 10 and K = 7 respectively), and according to (2.1),

the average required dose rate for 15 fps imaging on every second can be reduced by 0.63 to

0.47, as compared to real acquisition. Fig. 2.4 (a) and (b) show the samples of prediction with

K = 7 and 10, respectively and Fig. 2.6 shows the overlay of the manually segmented ground

truth arteries (in green) and the predictions.

Table 2.3 Euclidean distance between the centrelines of arteries in the predicted

frames and ground truth for the frame prediction and Gap-Filling

Frames Euclidean distance (mm)
Frame prediction Gap-filling

Mean Max SD Mean Max SD

Frame 1 0.28 mm 0.76 mm (+/-) 0.19 mm 0.33 mm 0.79 mm (+/-) 0.22 mm

Frame 2 0.30 mm 0.78 mm (+/-) 0.20 mm 0.39 mm 0.85 mm (+/-) 0.31 mm

Frame 3 0.32 mm 0.84 mm (+/-) 0.21 mm 0.51 mm 0.93 mm (+/-) 0.35 mm
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To evaluate the motion prediction, we applied optical flow to estimate the motion between

consecutive predicted and ground truth frames. Optical flow is one common approach for

detecting moving objects’ motion in an image sequence. It is defined as the distribution of

visible velocities of moving objects in an image.

Fig. 2.5 shows the estimated movements between the four consecutive frames with optical flow.

The first row extracts the motion arrows from the ground truth sequence. In the second and third

rows, the motion arrows are extracted from the predicted images using the vesselness MCnet

and the original MCnet, respectively. The optical flow fields between each moving frame and

the previous (source) frame are overlaid by moving frames (F = 7,8,9). The motion vectors in

the frames predicted using the vesselness MCnet have the same directions and intensities in

the region of interest (arteries) as the ground truth in all frames. In contrast, the intensities and

directions of the detected motion vectors are different in the predicted frames using the original

MCnet.

We randomly selected 30% of the sequences from the test dataset to evaluate the predicted

content of the generated images with K = 7 (visited frames) and T = 3 (predicted frames).

Coronary arteries were segmented in three consecutive frames of each selected sequence in both

groups (ground truth and predictions) by a trained operator. We computed the DICE coefficients

and Euclidean distances between the ground truth and the predicted images from the resultant

masks.

Euclidean distance was calculated between the extracted centrelines of the segmented masks.

Additionally, we reported the results of a conventional Gap-Filling method (baseline) in the

selected dataset (Table 2.3).

The Gap-Filling method copied the last visited frame multiple times instead of being predicted.

The Euclidean distance and DICE coefficients of the predicted images in our method and the

ground truth were computed and compared with the Euclidean distance and DICE coefficients

of the ground truth and the copied frames used as the Gap-Filling.
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The average computed DICE coefficients (between the ground truth and predicted images)

over three predictions using our method was 0.78 ± 0.07 while this value for the conventional

Gap-Filling was 0.63 ± 0.05. Table 2.3 shows the comparison of our approach and Gap-Filling

in terms of the computed Euclidean distances between the centerlines of the ground truth and the

predictions. Based on these evaluations, for three consecutive frames, the results of the frame

prediction with our approach outperform the baseline method (Gap-Filling).

Figure 2.4 The ground truth sequence (first row). The results of vesselness-MCnet

and original MCnet (second and third rows). The predicted images in red outline, and

the last visited frame is in green outline
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Figure 2.5 Optical flow estimated motion fields of the ground truth

sequence are shown in white arrows overlaid with consecutive ground truth

frames (F7, F8, and F9) on the top row. The generated frames with

vesselness-based MCnet on the second row and the original MCnet on the

third row are shown with yellow arrows. The optical flow fields are overlaid

to the predicted frames F7, F8, F9
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Figure 2.6 An overlay of the manual segmentation masks for the ground truth in

green and predicted sequences in red

2.4 Discussion

This work presents a novel radiation dose management approach for pediatric interventional

cardiology using a generative learning-based video frame prediction approach. This study

can also facilitate the navigation of X-ray-guided interventions, given its intrinsic motion
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compensation strategy in the frame predictions. Our approach has introduced a predictive model

rather than an interpolation approach since interpolation methods require both future and former

information.

In frame prediction using this model, the idea is to extract the cyclic cardio-respiratory motion

features from the previous frames and combine them with the visual content of the last visited

frame. The correlations between spatial and temporal features extracted from the previous

frames allow self-supervision of the prediction of single or multiple frame(s) in an end-to-end

system. This model can be transferable to adult patients by training on clinical data from adults.

The presented model can fully adapt to different patients with distinct respiratory and cardiac

motion patterns.

Compared to other video frame applications, X-ray sequences have less inherent uncertainty and

variety when estimating upcoming frames since their grayscale images include limited objects

for tracking, and the cardio-respiratory motion is periodic. However, the main challenge with

X-ray sequence prediction compared to natural video prediction lies in the moving background,

which makes motion prediction more complex in the former. In this work, we applied a new loss

function and changed the input of the motion encoder using a vesselness filter to overcome the

artifacts caused by the moving background. Obtaining a minimum required image quality in

X-ray angiography is challenging since different types of interventions may require different

image qualities. Our results show the potential of our method for reducing the fluoroscopy time

for pediatric cardiac interventions.

This work only focused on the pulse rate and fluoroscopy time reduction since our dataset was

retrospective. Other dose indicators, such as cumulative air kerma, should be considered along

with fluoroscopy time in our future work. Significant efforts have been invested in improving

the new generation of X-ray devices, given the importance of radiation dose reduction not only

for pediatric patients with high potential risks of cancer but also for adult patients, cardiologists,

and medical staff (Gislason-Lee et al., 2016) (Gislason-Lee et al., 2017) (McNeice et al., 2018).



32

This study can thus pave the way for the next generation of X-ray imaging devices, it allows for

optimization of the induced radiation dose for patients and staff.

Future work will consider incorporating the heart cycle information using the ECG signal for

more accurate motion estimation. Other model-based or hybrid approaches can be investigated

to improve motion prediction accuracy. Additionally, video super-resolution methods can be

included in the content predictor to improve the image quality of predictions.



CHAPTER 3

CONTRIBUTION #2: PATIENT-SPECIFIC CARDIO-RESPIRATORY MOTION
PREDICTION IN X-RAY ANGIOGRAPHY USING LSTM NETWORKS

3.1 Proposed contribution

We present a novel patient-specific cardio-respiratory motion prediction approach using a simple

supervised LSTM network for angiography sequences. The 2D displacements of the moving

objects in an angiography sequence are extracted from the images and represented through

2D affine transformation matrices. Then, a many-to-many LSTM model is trained for every

sequence to predict the next geometrical transformation of the arteries in the future sequence

frames from previous ones.

3.2 Materials and methods

2D transformation parameters (translation, rotation, scaling, and shearing) are extracted from

the X-ray angiography sequences representing the motion features in matrix form. Thus, a

sequence of affine transformation matrices resulting from frame-by-frame image registrations of

the original X-ray sequence is fed into the sequential LSTM model for training. Then, the future

displacements of the moving targets (contrasted arteries and medical devices) in the upcoming

frames are predicted.

3.2.1 Data description

This approach was developed with a simulated X-ray angiography dataset using a realistic XCAT

computational phantom simulatorSegars et al. (2013); Segars et al. (2010). It was validated with

real patient X-ray angiography sequences from Sainte-Justine Hospital.

Computerized phantoms play a major role in medical imaging research today. They are very help-

ful in providing a practical means for evaluating and improving imaging techniques and devices.
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In this study, we employed realistic XCAT computational phantoms with the cardio-respiratory

motion for adult and pediatric patients. Initially, our experiments were done on three different

adult patients Azizmohammadi et al. (2022). The length of the sequences used to capture at

least two to five heart and/or respiratory cycles varied between 75 and 150 frames. For each

patient, three different types of motions (only cardiac, only respiratory, and both motions) were

generated. Respiratory motion is not gated with cardiac motion, and the misalignment between

the motions makes the motion estimation more complicated. Fig.3.1 shows the mismatching

of the ECG signal and the respiratory motion signal. The corresponding acquisition cardiac

phase is expressed using a percentage interval between two consecutive R-wave (R-R interval).

Therefore, in this method, we simulated different motion modes to assess the predictions based

on the motion complexity.

Figure 3.1 Gating the ECG signal and breathing motion. The end of each heart cycle

(R-R interval) is synchronized with different breathing phases.

Simulations were also carried out for different circumstances, with the patient having normal

and abnormal respiratory and heartbeat cycles. A normal heartbeat cycle is 1 a second long,

while the respiratory cycle is 5 seconds. These values can vary between patients and change

if the patient is under stress or not breathing normally. We then simulated 64 pediatric and

adult patients (36 male and 28 female) falling within the 8-month newborn to 85-year age range,

including the left and right coronary arteries. The pediatric simulated dataset included 112
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sequences (2 sequences per patient, showing either the left or right coronary artery), while our

adult simulated dataset included 12 sequences.

For the real patient dataset, we selected 10 different sequences with lengths ranging between 84

and 166 frames and having visible moving objects (contrasted arteries and/or medical devices

such as catheters and guide wires).

3.2.2 Segmentation and centerline extraction of the simulated and patient X-rays
sequences

To track the motion signal in an X-ray sequence, pre-processing steps were applied to segment and

extract the centerlines of the moving targets. Using the Frangi filter and the connected components,

we segmented the arteries and skeletonized the segmentation to extract the centerlines. The 2D

motion features were extracted by registering the X-ray images frame-by-frame in the sequence.

For the simulated data, the vascular structures were extracted from the image frames for each

sequence and segmented by applying image processing filters and connected components to

remove the small objects. Fig. 2.2 and Fig.2.3 show the vessel structures extracted from the

original X-rays (simulated and patient data, respectively). The Frangi filter parameters were set

based on the diameter of the coronary arteries. For sigmas, an interval of [1, 6] was considered

with a step size of 0.1. We applied the same segmentation steps for the patient data, although

the segmentation was noisy in the background as compared to the simulated images. Moreover,

since the arteries’ structures were not continuously contrasted in all the image frames of a given

sequence, we segmented medical devices as moving objects, where the arteries were not visible

or faded in some frames. We changed the Frangi filter parameters as a function of the visible

objects in the patient sequences.
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3.2.2.1 Coherent Point Drift (CPD) registration

The point set registration algorithm is widely used in computer vision problems such as image

registration. The registration can be rigid or non-rigid. Given two point sets (centerlines of two

consequent frames), we applied CPD as a non-rigid registration to map one point set to the other,

yielding a non-rigid transformation. Non-rigid transformations include affine transformations

such as scaling and shear, as well as translation and rotation.

The CPD algorithm is a Gaussian Mixture Model (GMM) based algorithm that assigns

correspondence points between two sets of point clouds. It retrieves the transformations for

mapping each point cloud to the other using a specified registration Myronenko & Song (2010).

The alignment of the two point clouds is a probability density estimation problem. The first

point set is centered on the second one by fitting the GMM algorithm and maximizing the

likelihood. The GMM moves coherently and retains the topological structure of the point

Figure 3.2 Pre-processing steps (segmentation, denoising, and

centerline extraction) on simulated data. The first row is a Right

Coronary Artery (RCA) branch and the second row shows the Left

Coronary Artery (LCA).
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Figure 3.3 Pre-processing steps on patient data (segmentation,

denoising, and centerline extraction)

sets Myronenko & Song (2010). A coherence constraint is imposed for affine registration by

re-parametrizing the GMM centroid locations with affine transformation parameters (translation,

rotation, shearing, scaling). These parameters are concatenated to build the Affine Transformation

(AT) matrix as follows:

𝐴𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑠𝑥𝑐𝑜𝑠(𝜃) 𝑠𝑦𝑠𝑖𝑛(𝜃) 𝑥 − 𝑐𝑥𝑠𝑥𝑐𝑜𝑠(𝜃) − 𝑐𝑦𝑠𝑦𝑠𝑖𝑛(𝜃)

−𝑠𝑥𝑠𝑖𝑛(𝜃) 𝑠𝑦𝑐𝑜𝑠(𝜃) 𝑦 + 𝑐𝑥𝑠𝑥𝑠𝑖𝑛(𝜃) − 𝑐𝑦𝑠𝑦𝑐𝑜𝑠(𝜃)

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.1)

𝐴𝑇𝑀 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐴00 𝐴01 𝑇𝑥

𝐴10 𝐴11 𝑇𝑦

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.2)

While 𝐴00 = 𝑠𝑥𝑐𝑜𝑠(𝜃), 𝐴01 = 𝑠𝑦𝑠𝑖𝑛(𝜃), 𝐴10 = −𝑠𝑥𝑠𝑖𝑛(𝜃), 𝐴11 = 𝑠𝑦𝑐𝑜𝑠(𝜃), 𝑇𝑥 = 𝑥 −

𝑐𝑥𝑠𝑥𝑐𝑜𝑠(𝜃) − 𝑐𝑦𝑠𝑦𝑠𝑖𝑛(𝜃) and 𝑇𝑦 = 𝑦 + 𝑐𝑥𝑠𝑥𝑠𝑖𝑛(𝜃) − 𝑐𝑦𝑠𝑦𝑐𝑜𝑠(𝜃). We used notations 𝐴00,

𝐴01, 𝐴10, 𝐴11, 𝑇𝑥 , 𝑇𝑦 for the predicted parameters. The extracted centerlines of the arteries are

considered bright point sets. Every centerline point set in each frame is registered to the previous

frame in a sequence using the CPD algorithm.
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3.2.3 LSTM models for sequence prediction

Long Short-Term Memory (LSTM) is a Recurrent Neural Network (RNN)-based architecture

with optimized memory, which can solve the vanishing and exploding gradient problem in

conventional RNNs. LSTM structures have memory blocks which include memory cells that

can store the temporal information of sequential data as well as specific multiplicative units,

called gates, to control the flow of information. Each memory block contains an input gate to

control the flow of input activations into the memory cell, an output gate to control the output

flow of cell activations into the rest of the network, and a forgetting gate Azzouni & Pujolle

(2017). Therefore, an LSTM network can keep only the necessary information from the past and

forget the rest, thus optimizing its memory.

Initially, the model could predict the transformation matrix for a single future frame given the

previous frames using a many-to-one LSTM structure such that given a sequence of frames as

an input, we were expecting one single frame as output. The new proposed model can forecast

multiple values in the future after receiving multiple inputs to improve time complexity. Fig.3.4

and 3.5 show the structures of many-to-one and many-to-many frame prediction, respectively.

Figure 3.4 The many-to-one structure of the sequential

prediction

In both models, the input for the model is a sequence of transformation matrices extracted from

the X-ray images by registering the consequent frames in pairs, and the LSTM network is trained

to predict the arteries’ transformation in the next frame/s from the previous ones.
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Figure 3.5 The many-to-many structure of the sequential

prediction

Considering 𝑁 = 6 as the number of 2D affine transformation parameters representing trans-

lation, rotation, shearing, and scaling (𝑇𝑥, 𝑇𝑦, 𝐴00, 𝐴01, 𝐴10, 𝐴11), and 𝑇 as the number of

transformation matrices. To effectively feed the models, we sort the parameters in a vector 𝑋𝑡 of

size 𝑁 ∗ 𝑇 . This vector is called the transformation parameter vector (TP). Then, the values in

the TP vector are normalized to be fed into the network. The normalization was required since

the range of values for some parameters is so small or big, and in that case, the network can not

learn or converges slowly. Then, at the end of the prediction, they can be de-normalized to have

real values. Now, the prediction problem is defined as solving the predictor of 𝑋𝑡 (denoted by

𝑋̂𝑡) via a series of previously measured TP vectors.

Compared to a many-to-one model, a many-to-many model was developed to predict all of the

𝑁 = 6 transformation parameters at the same time for multiple matrices in the future. To feed

the input matrix sequences to the model, a fixed number of previous frames (matrices) was

considered as a time window to learn from to predict the new TPs in the future (Fig.3.6).

Fig.3.7 shows the deep LSTM model structure. First, the input image sequence is pre-processed,

the TP vectors are extracted, and then the deep LSTM model is fed by multiple TP vectors. ,A

linear regression layer passes the output of the N-layer LSTM model and the model’s output is

multiple future TP vectors.
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3.2.3.1 Assessing metric

We used Mean Absolute Error (MAE) between the ground truth and predicted values for

transformation parameters to assess the quality of the predictions because this metric is not overly

sensitive to outliers and can simply evaluate the overall error. Given that the segmentation is not

perfect, some parts of vessel centerlines in the frames may be lost or extended by noise. Hence,

we had to choose a metric to be less sensitive to this problem while we compare the predicted

values to the ground truth resulting in CPD registrations. Additionally, we first calculated the

distance transform of the original centerlines image to evaluate the overall error of predicted

transformed centerlines. For each pixel of the background, we obtained its distance to the

closest centerline point. The distance transform or distance field for each white pixel on the

extracted centerline assigns a number that is the distance between that pixel and the nearest

nonzero pixel of the vessels. Thus, to calculate the final distance, we projected the predicted

transformed centerline on the distance transform matrix and averaged the obtained values as an

overall prediction error.

Figure 3.6 The many-to-many LSTM model. All TP elements are

predicted at the same time. 𝑊 = 15 is the window size and the number

of outputs or predictions is 𝑃 = 5
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Figure 3.7 The deep LSTM model structure for multiple TP predictions

3.3 Experiments and results

We used 64 patients (pediatric and adult) simulated in normal and abnormal modes for different

motions (cardiac only, respiratory only, and both motions). The sequences simulated with both

motions were 75 frames in length, while other sequences having only cardiac or only respiratory

motion were generated using a 150 frame length. Additionally, 10 sequences from the patient

dataset with between 84 and 166 frames in length were selected based on the visibility of

contrasted arteries or medical devices through the sequences. The motion features extracted from

the centerlines of the segmented arteries were represented as 6 affine transformation parameters

collectively called the TP vector (translations Tx, Ty, and rotation, shearing, scaling A00, A01,

A10, A11). For each sequence, the LSTM model was trained separately with a sequence of TP

vectors, while 80 percent of each sequence was considered as the training set and 20 percent as

the testing set. TP vectors were normalized by dividing by the maximum value in each TP vector.

Since the prediction is considered a regression problem, we used a linear activation function for

our model and the RMSProp as an optimizer for compilation. Based on the experiments, the

optimal number of epochs within the 100 to 1000 range was 500 for the simulated data with a

length of 150 frames and 200 for sequences with 75 frames. We trained the patient data sets

with 500 epochs as well.
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Keras library was used to build and train the model. The accuracy of the method was evaluated

by computing the Mean Absolute Error (MAE) between the predicted values using our model

and the results of the CPD registration as the ground truth (Table. 3.1, Table. 3.2). Fig.3.9

and Fig.3.8 depict the predictions of TP for a simulated data sample, and Fig.3.10 and Fig.3.12

show a patient data TP prediction sample. To evaluate the overall error of predicted transformed

centerlines, we first calculated the distance transform of the original centerline images. For each

background pixel, we obtained its distance to the closest centerline point. The distance transform

or distance field for each white pixel on the extracted centerline assigns a number, the distance

between that pixel, and the nearest nonzero pixel of the vessels. Thus, to calculate the final

distance, we projected the predicted transformed centerline on the distance transform matrix and

averaged the obtained values as the overall prediction error. We applied the predicted parameters

in matrix form to transform the arteries’ centerlines and overlaid the transformed centerlines

with predicted parameters on the distance transform of the extracted centerlines from the original

images. Fig.3.13, Fig.3.14, and Fig.3.15 show the overlay of the transformed segmented vessels

with predicted transformation parameters and the original transformed images for simulated

and patient data, respectively. Therefore, we first evaluated our results by computing the Mean

Absolute Error between the predicted TP values and the ground truth TP (resulting from CPD

registration) (Tables 3.1 and 3.2), and then we compared our results to the original images by

applying for the CPD registration on the originally extracted and predicted centerlines (Table

3.3). Apart from the simulated data, we validated our results by applying the method on 10 real

patients, with a more realistic and noisy segmentation of the moving objects. As shown in the

results presented in Table 3.3, we obtained a low accumulated error for the prediction of the

transformation matrix using the distance transform of the original segmented arteries for both

simulated data with different motions as well as the patient data samples.
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Figure 3.8 Prediction of 2D translation parameters for only cardiac motion

(simulated). The ground truth values are shown in purple, while the yellow

dashed lines show the predictions.

Figure 3.9 Transformation parameters predictions (simulated only

cardiac motion). The ground truth values are in purple, and the

predicted values are in yellow dashed lines.
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Figure 3.10 Transformation parameters predictions (patient data). The

ground truth values are in purple, and the predicted values are in yellow

dashed lines.

Figure 3.11 Transformation parameters predictions (patient data). The

ground truth values are in purple, and the predicted values are in yellow

dashed lines.
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Figure 3.12 Transformation parameters predictions (patient data). The

ground truth values are in purple, and the predicted values are in yellow

dashed lines.

Figure 3.13 Simulated data example for overlaying the transformed

LCA and RCA arteries with predicted transformation parameters (blue

colored center-lines) with the original transformed images
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Figure 3.14 Simulated data example for overlaying the transformed arteries

in 6 consecutive frames with predicted transformation parameters (blue

colored center-lines) and the original transformed images

Figure 3.15 Two different Patient data samples for overlaying the

transformed vessels with predicted transformation parameters (in blue) with

the original transformed images
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Table 3.1 The average overall simulated data MAE

between the ground truth and predicted values

Both motions
MAE (pixel) Tx Ty a00 a01 a10 a11

Mean 0.24 0.21 0.32 0.35 0.32 0.32

Max 0.41 0.42 0.40 0.51 0.52 0.51

Min 0.0012 0.0084 0.06 0.074 0.029 0.064

Only cardiac motion
Mean 0.13 0.11 0.14 0.12 0.13 0.13

Max 0.35 0.43 0.42 0.42 0.44 0.45

Min 0.0002 0.004 0.003 0.06 0.001 0.05

Only Respiratory motion
Mean 0.10 0.13 0.11 0.14 0.11 0.15

Max 0.21 0.43 0.37 0.50 0.41 0.45

Min 0.0001 0.0001 0.002 0.0012 0.005 0.004

Table 3.2 The average overall patient data MAE

between the ground truth and predicted values.

Patient data
MAE (pixel) Tx Ty a00 a01 a10 a11

Mean 0.19 0.20 0.20 0.20 0.18 0.17

Max 0.55 0.45 0.54 0.55 0.39 0.47

Min 0.025 0.03 0.01 0.00 0.02 0.01

3.4 Discussion

We have presented a learning-based patient-specific cardio-respiratory motion prediction method

using a simple LSTM model. This model can predict the temporal and spatial changes for moving

objects (contrasted arteries and/or medical devices) in a sequence. The model is computationally

efficient, simple to implement, and fast to train.

Table 3.3 The average over all samples distance transform error of the

original centerline image to the predicted transformed one in mm.

Mean DT Error(mm) Cardaic Respiratory Both Patient data (Both)
0.33 mm 0.47 mm 0.39 mm 0.58 mm
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The proposed motion prediction method was validated on a wide range of simulated cardiac and

respiratory rates for pediatric and adult phantoms and a patient dataset. According to our results,

the transformation parameters for moving objects, including medical devices in a sequence, are

predicted well, with a very low amount of error (mostly less than a few pixels in the images).

Medical devices such as guide wires or catheters were considered moving objects in a sequence

for the patient data since they are continuously visible and contrasted under the X-ray images.

Hence, the visible devices can represent the movement of arteries, while the contrasted arteries

gradually become fade through a sequence as they lose their contrast. Motion prediction is thus

not completely dependent on the visibility of the contrasted arteries with the contrast agent. As

a robust prediction algorithm, the motion tracking approach can be applied to estimate future

heart trajectories in robotic-assisted operations on a free-beating heart. This method is less

sensitive to low X-ray dosage and image quality than other motion-tracking methods that track

the heart edges.

Moreover, this approach requires no additional imaging modality and preoperative information

for motion tracking. Not only this model-free cardio-respiratory motion prediction approach can

facilitate the navigation process of cardiac interventions but also potentially aids in reducing the

required amount of contrast agent and radiation dose for cardiac interventions.

The accuracy of the prediction indirectly depends on the accuracy of the segmentation and

registration algorithms in the pre-processing steps. Future work will include investigating a

non-parametric and accurate method for automatizing the segmentation in our pre-processing

steps. Moreover, we are planning to integrate this motion prediction approach into an End-to-End

system for X-ray image prediction.



CHAPTER 4

CONTRIBUTION #3: SEX-SPECIFIC CARDIAC MOTION BEHAVIOR ANALYSIS
BASED ON XCAT SIMULATED ANGIOGRAPHY

4.1 Proposed contribution

A general comprehension of the differences between males and females for cardiovascular

diseases is still missing. It has been proved that sex-specific cardiac and vascular aging patterns

are significant issues that need to be considered for diagnosing and treating cardiovascular

diseases (Merz & Cheng, 2016). In general, the female heart is smaller than the male heart

(usually one-fourth of the men’s heart). Accordingly, the number of heartbeats per minute (bpm)

for adult men is between 70 to 72 bpm, while for adult women is between 78 to 82 bpm. Hence,

the heart cycle is shorter for women (average 0.75 sec) compared to men (average 0.85 sec).

Apart from size differences, there are geometric differences such as heart mass, left and right

ventricular mass, and wall thickness (Pierre, Peirlinck & Kuhl, 2022).

Ischaemic Heart Disease (IHD) is one of the most common cardiovascular diseases and is

the cause of death in men and women nowadays. Based on many pieces of research, the

risk for IHD is significantly lower for premenopausal women compared to their counterparts

men. However, the risk of IHD for women increases after menopause. Moreover, it has

been experimentally confirmed that there are sex-specific differences in cardiac tolerance to

ischemia (Ostadal & Ostadal, 2014). In the past 20 years, clinical and experimental research on

investigating sex-related differences has grown significantly. This incremental interest reflects

the significance of this topic and the extreme necessity for comprehending the sex determinants

of outcomes and minimizing the bias in the management and treatment of IHD in women

(Ostadal & Ostadal, 2014).

Compared to men, there is a greater prevalence of heart failure with preserved ejection fraction

for female patients, and this is why the differences between males and females are important for

age-related cardiac remodeling. Moreover, how coronary artery disease appears and develops



50

typically or atypically over the life course mainly depends on sex variation. Hormonal and

non-hormonal factors underlay the sex variance for cardiovascular aging (Merz & Cheng, 2016).

Different factors affect the risk for cardiovascular diseases, such as aging, gender, frailty, obesity,

and diabetes. Among these factors, age and gender are the most fundamental factors to be

considered. The elderly population is usually at more risk of being exposed to cardiac disease.

Based on pieces of evidence, older females are more exposed to cardiovascular problems than

age-matched males, and for both males and females, the risks associated with cardiovascular

disease enhance with age. This fact corresponds to an overall decrease in sex hormones, primarily

estrogen and testosterone (Rodgers et al., 2019).

This research investigated the general male and female heart motion differences represented by

transformation parameters in simulated X-ray sequences. This study’s motivation is to develop

a general sex-specific motion prediction model. Previously we introduced a patient-specific

motion perdition approach for facilitating the navigation process of the cardiac intervention.

This research was focused on considering the sex diversity in cardiac motion behaviors and was

submitted to ĲCARS 2022.

4.2 Methodology

4.3 Sex specific population simulation using 4D XCAT phantom

The 4D XCAT phantom was developed to provide virtual patients for medical imaging research.

It provides detailed whole-body anatomies for males and females using a nonuniform rational

B-spline. Visible Male and Female anatomical datasets were segmented and used to generate

subdivisions of highly flexible surfaces. The visible human anatomies were matched to the

body measurements and organ volumes of adult males and females. Thousands of anatomical

structures and cardiac and respiratory motion models can be simulated in a series of computerized

phantoms for adult and pediatric patients. For each phantom, there is a parameterized model

and anatomy. Pediatric and adult reference models were used to generate the pediatric and adult
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phantoms, including females and males of various ages (1 to 78 years old), heights, body masses,

and ethnicity.

High-resolution Computed Tomography (CT) positrons were selected and validated by an

experienced radiologist regarding anatomic regularity. The target model using nonuniform

rational B-spline surfaces was formed by segmenting the CT portions. The cardiac and

respiratory motions were defined for the targets based on the calculated transformation for

matching the pediatric XCAT reference phantom and the patient target using a Multichannel

Large Deformation Diffeomorphic Metric Mapping (MC-LDDM) algorithm. The complete

phantoms were then manually inspected for anatomical precision. The mass for each main

tissue was computed and evaluated for different ages. The generated pediatric phantoms were as

detailed as the original XCAT reference phantoms, and the cardiac and respiratory motions were

simulated with parameterized models. Male and female anatomies differed by including both

sets of reproductive organs for the phantoms that were 10 yr old and younger (cut-off age). The

phantom models include wide anatomical variation in organ shape and size for models of the

same age and sex. One limitation of the pediatric phantoms generated by XCAT is that not every

structure is defined by segmenting the patient data. The MC-LDDMM algorithm estimated the

structures that were not visible in the patient data by deforming a pediatric template to match the

segmented patient framework (Segars et al., 2015) (Segars et al., 2010) (Segars et al., 2013).

4.3.1 Data simulation with XCAT

Using the XCAT simulator, we generated two sets of datasets. First, we have simulated X-ray

angiography sequences for 33 patients (17 females and 16 males) older than the cut-off age,

which is 10 yr and ranges between 11 to 45 yr, including the contrasted left and right coronary

arteries. This dataset was generated based on the default parameter setting for the heart cycle.

The default parameter setting for a normal length of beating heart cycle in males and females

and all ranges of ages is equal to 1 second. A general blood pressure heart curve is defined by

two heart geometries (End Diastole (ED) and End Systole (ES)). Starting with the ED phase and

four other parameters, including ES (Fig 4.1), the heart curve is generated for motion simulation
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in all phantoms while the time duration to complete the heart curve is considered as 1 second.

The second simulated dataset included only 20 patients (10 females and 10 males) over 50 years

old with different heart curves for males and females. All of the generated sequences had a

length of 150 frames. Then we investigated the cardiac motion behavior represented by 2D

affine transformation matrices resulting from the frame-by-frame sequence registration. The

respiratory motion was removed, and only the cardiac motion was simulated in X-ray sequences.

The arteries were segmented and registered in pairs using point cloud registration for all of

the frames in each sequence. The registration matrices, including the affine transformation

parameters, were saved for each sequence.

Figure 4.1 The default XCAT heart curve (ventricle (LV) volume). ED and ES

are the two main parameters (heart geometries) for defining the heart curve.

We generate sex-specific heart curves for adult males and females based on the differences in

heart rates between men and women. The average heart rate for adult men is 75 bpm and for

adult women is 80 bpm; accordingly, the amount of time to complete a heart curve is 0.84 sec

and 0.75 sec for males and females, respectively. Fig. 4.2 shows the difference between the

default heart curve for XCAT and new sex-specific heart curves.
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Figure 4.2 The default XCAT parameters setting for the heart curve is in blue.

The women’s heart curve is in red, and the males’ heart curve is in green.

4.3.2 Data analysis and results

For the first dataset, according to our previous work, the 2D affine transformation parameters

of visible arteries in the X-ray images through a sequence represent cardiovascular motion.

To obtain the arteries displacements from frame to frame in a sequence, we first segmented

the arteries, extracted the center lines for each frame, and applied Coherent Point Drift (CPD)

algorithm to register the center-lines frame by frame through the sequence. The results of the

registration with CPD are sequences of 2D affine transformation matrices. The transformation

metrics contain information about translation in 2D (𝑇𝑥 and 𝑇𝑦), rotation, scaling and shearing

(𝐴00, 𝐴01, 𝐴10, 𝐴11). We compared the heart motion behavior of male and female patients

using the 2D transformation matrices. In Tables (4.1) and (4.2), we averaged the transformation

parameters’ values over patients for males and females and computed the average range of

displacements in 2D for both groups.

The range of motion for the male group is approximately 20 pixels in 𝑥 direction and 68 pixels

in 𝑦 direction, while for the female group, the range of motion in 𝑥 direction is about 54 pixels
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and 60 pixels in 𝑦 direction (Table (4.1) and Table (4.2)). Thus, according to these results,

the range of motion for female patients in 𝑥 is more than for male patients. For the other

transformation parameters (𝐴00, 𝐴01, 𝐴10, 𝐴11), the values for males and females are slightly

different (approximately a pixel).

Fig.4.3, Fig.4.4, and Fig.4.5 show the comparisons between the average values for transformation

parameters over the male and female patients. Although there are outliers in both females

and males, each category has a specific pattern associated with each transformation parameter.

Moreover, it can be seen that for female patients, the irregularity for the motion parameters is

seen more than for men patients (A00 and A10), and for females, the range of values is bigger

than for males. Regarding translation parameter differences between males and females, there is

more visible diversity between different sexes in the 𝑥 direction compared to the 𝑦 direction.

Table 4.1 The average range of values for 2D

translation of the arteries in a sequence for both

males and females

Mean Tx
pixel

Mean Ty
pixel

Max Min Max Min
Males 6.918 -13.725 26.300 -41.937

Range 20 pixels 68 pixels
Females 9.400 -44.580 26.600 -33.915

Range 53.98 pixels 60.515 pixes

Table 4.2 The average range of values for 2D transformations (A00, A01,

A10, A11) of the arteries in a sequence for both males and females

Mean A00
pixel

Mean A01
pixel

Mean A10
pixel

Mean A11
pixel

Max Min Max Min Max Min Max Min
Males 1.020 0.984 0.017 -0.016 1.012 -0.005 0.029 0.983

Range 0.036 pixels 0.033 pixels 1.017 pixels 1.063 pixels
Females 1.070 0.991 0.009 -0.005 0.014 -0.013 1.068 1.002

Range 2.061 pixels 1.05 pixels 0.027 pixels 2.07 pixels

In our first experiments, we included male and female patients of different ranges of ages (12 yr

to 45 yr). We considered all patients older than the cuff of age (10 years old). Thus for each



55

group of men and women, there exist different ages, patient body weights, heights, and ethnicity.

There are outliers for both categories with a bigger range of values for the motion. One reason

for having these outliers can be the effects of other mentioned parameters (age, weight, height,

ethnicity). The other reason for having these values for each group can be the registration failure

using the CPD algorithm.

Complementary to our previous work on predicting the 2D affine transformation of coronary

arteries in the X-ray angiography sequences, we investigated the differences between females

and males in our predictions. The parameter predictions for affine transformation with our

LSTM model worked well for patient-specific motion prediction. To develop a more general

(sex-specific) model, we compared the parameters prediction errors in different groups (male and

female). Based on the presented results in Table. 4.3, the transformation parameter prediction

errors for females were slightly bigger than the prediction error for men.

Table 4.3 Comparison of transformation parameters

prediction error (MAE) between the average of 17 females

and 16 males with a range of 12 to 45 yr ages

Females
MAE (pixel) Tx Ty a00 a01 a10 a11

Mean 0.17 0.26 0.26 0.16 0.19 0.15

Max 0.57 0.53 0.54 0.58 0.71 0.55

Min 0.005 0.023 0.021 0.012 0.003 0.004

Males
Mean 0.13 0.12 0.10 0.12 0.11 0.11

Max 0.49 0.47 0.51 0.51 0.46 0.44

Min 0.002 0.004 0.005 0.007 0.006 0.005
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Figure 4.3 Average overall females and males for 2D translation parameters

in pixel

Figure 4.4 Average overall females and males for 2D transformation

parameters (A00 and A01) in pixel

In the second experiment with the second simulated data, we differentiated the heart curves for

males and females for 50 yr. Figs. 4.6 and 4.7 show the average overall females and males over
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50 yr for 2D transformation parameters in pixels. Our results show that for the population over

50 yr, there is not much difference between males and females for transformation parameters

in a sequence. However, there is a shift between male and female transformation parameter

values because of different heart curves. Based on Figs. 4.6 and 4.7, the pattern for the motion

features for males and females can be almost the same while having a faster heartbeat for females

compared to males.

4.4 Discussion and conclusion

In this chapter, we investigated the differences between males and females in cardiac motion

behavior based on two datasets. Cardiac motion in a sequence was represented as the 2D

registration matrices, including translation, rotation, scaling, and shearing information. Our

results show that not only are these parameters different between men and women, but the

prediction error for predicting the future frames of angiography sequences is slightly higher

for women than men. This fact can be considered for developing a general sex-specific cardiac

motion model.

Figure 4.5 Average overall females and males for 2D transformation

parameters (A10 and A11) in pixel
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The sequences of 2D registration matrices resulted from the CPD algorithm. There were

pre-processing steps to remove the background noises, segment the arteries, extract the center

lines of the arteries, and finally register the consequent frames of a sequence in pairs. Therefore,

other pre-processing steps might include errors in the resulting transformation parameters apart

from the registration error.

In the first experiments, we simulated our X-ray angiographies based on the XCAT default

parameters for the heart curve. Except for the different geometries (ES and ED) for all of the

patients of any age and sex, the same interpolation method was used to create the heart curve,

and the time to complete the heart cycle was considered as 1 second. We compared different

genders, and based on the results, for males and females, there are differences in the cardiac

motion behavior represented by transformation parameters. However, given the fundamental

differences between males’ and females’ hearts, including the size of the heart, the heart cycle,

etc., the differences can be more significant if considering the different heart curves for males

and females in our simulations.

Figure 4.6 Average overall females and males over 50 yr for 2D transformation

parameters (A00, A01, A10 and A11) in pixel
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Figure 4.7 Average overall females and males over 50 yr for 2D translation

parameters (Tx and Ty) in pixel

The second experiment included patients over 50 yr and with different heart curves for males

and females. Based on the results, the heart motion pattern can differ between populations based

on different sexes and age groups. Therefore, a more general motion prediction model can be

developed considering some parameters such as sex and age group.



CONCLUSION AND RECOMMENDATIONS

Cardio-respiratory motion affects the acquisition of X-ray images during image-based cardiac

interventions. Due to the potential risks of ionizing radiation, reducing the pulse rate or X-ray

dose would be beneficial for patients and the staff during cardiovascular interventions. A high

amount of images per second will produce high-quality sequences for cardiologists at the cost of

higher radiation exposure to the patients and staff. The insufficient number of image per second

provide poor navigation information.

Our first contribution was to reduce the required radiation dose for the patient and staff while

preserving the image quality for the pediatric interventions by developing an end-to-end deep

learning model. The learning-based model can predict realistic image frames, including motion

and content in an X-ray sequence. Hence, the required number of frames per second (frame rate)

and, consequently, the required number of pulses per second in X-ray image acquisitions can be

reduced by predicting and generating multiple new frames.

Our second contribution was to estimate and predict the cardio-respiratory motion while

considering the sudden and unexpected motions during the interventions. We developed a

simple patient-specific LSTM model that tracks the motion signal in 2D X-ray images in a

sequence accurately without sensitivity to irregularity in the motion signal. This model-free

cardio-respiratory motion prediction approach can facilitate the navigation process but also

potentially aids in reducing the required amount of contrast agent and radiation dose for cardiac

interventions.

Our last contribution was complementary to the second objective and aimed to find a sex-specific

cardiac motion pattern. A more general motion model based on patients’ genders can aid the

navigation guidance of cardiac interventions. We investigated male and female motion patterns

using the simulated dataset with XCAT. We analyzed our previous experiments to find a general

solution that provides an accurate sex-specific motion prediction and estimation.
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Non-invasive imaging techniques in diagnosing, monitoring, and treating cardiac diseases

are essential nowadays. Manufacturers are designing their X-ray systems to minimize the

dose. The next generation of X-ray systems might be equipped to expose less radiation dose

to the patients and staff and a more accurate navigation process with a predict-ahead X-ray

acquisition system. Radiation dose management based on realistic X-ray frame prediction can

be a breakthrough improvement for X-ray device technology. Using the predicted images can

reduce the required pulses without affecting the image quality. The average required acquisition

can drop dramatically by generating new images without radiation exposure. Moreover, an

accurate cardio-respiratory motion prediction approach not sensitive to motion irregularities can

assist the interventional navigation process and play a key role in radiation dose reduction. For

future work, the inclusion and analysis of other radiation dose parameters, such as air kerma

at the reference point (KAP) and DAP in dose reduction measurements, must be considered.

Second is the exploration of a precise automatic segmentation of the visible objects (arteries

and medical devices) for better extracting the motion features that affect the accuracy of the

prediction. The third is investigating how the arteries’ movements can be different with a medical

device like a catheter or guide wire inside the arteries. Forth, video super-resolution methods

can be included in the content predictor to improve the image quality of the predictions.
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