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Gestion De La Circulation Dans Les Hôpitaux Pendant Le COVID-19

Sana Alsadat RAZAVI

RÉSUMÉ

Pendant la pandémie de COVID-19, la distanciation sociale a été mise en œuvre dans le monde
entier pour réduire le risque d’infection. Cette exigence demande une nouvelle stratégie de
gestion de déplacements dans les couloirs des hôpitaux pour éviter les croisements des passagers.
Dans ce mémoire, nous étudions le problème de routage et d’acheminement des passagers dans
l’hôpital pendant la pandémie pour deux flux de patients, COVID-19 et Non-COVID, en utilisant
autant de chemins disjoints que possible.

Nous proposons deux scénarios pour modéliser le traffic et colorer des couloirs en utilisant la
théorie des graphes, ensuite les comparer dans des simulations. Le premier scénario utilise une
méthode hors ligne pour définir des directions pour les patients lorsqu’ils n’ont pas l’accès à
un téléphone portable ou à d’autres technologies intelligentes. Le deuxième scénario est une
méthode en ligne basée sur une technologie intelligente et une localisation en temps réel. Nos
données se composent d’un ensemble de patients Non-COVID avec des rendez-vous prédéfinis
dans différentes cliniques et d’un autre ensemble de patients COVID-19/Non-COVID arrivant
aux services d’urgence avec un taux d’arrivée donné. Nous évaluons la performance de ces deux
scénarios avec de différents taux d’arrivée des patients COVID-19. Le résultat de la simulation
montre que les solutions proposées son meilleures qu’une solution qui se base sur l’algorihtme
Dĳkstra. Les résultats de ce mémoire peuvent contribuer effectivement à l’amélioration de
la sécurité en définissant des directives pour les patients COVID-19 et Non-COVID dans les
centres de santé pendant la pandémie.

Mots-clés: COVID-19, TSP, optimisation des flux, path-finding, algorithme de Christofides





Circulation Management In Hospitals During COVID-19

Sana Alsadat RAZAVI

ABSTRACT

During the COVID-19 pandemic, social distancing has been applied worldwide to reduce the
risk of infection. In hospitals, this requires a new strategy for circulation management in the
corridors to avoid cross-overs. In this thesis, we study the problem of routing and path-finding in
the hospital during the pandemic for two flows of patients, COVID-19 and Non-COVID, using
as many disjoint paths as possible.

We present two scenarios to model the routing and coloring of the hospital paths and compare
them in simulations. The first scenario uses an offline method to establish a guideline for the
patients when they do not have access to a cellphone or other smart technologies. The second
scenario is an online method based on smart technology and real-time localization. Our dataset
consists of a set of Non-COVID patients with scheduled appointments in different clinics and
COVID-19/Non-COVID patients arriving at the emergency unit with a given arrival pattern.
We evaluate the performance of the two proposed scenarios subject to different arrival rates of
COVID-19 patients.

The simulation result confirms that the proposed solutions outperform a baseline which is based
on the Dĳkstra algorithm. This thesis outcome will help increase safety by considering the
guideline for COVID-19 and Non-COVID patients in healthcare centers during the pandemic.

Keywords: COVID-19, TSP, flow optimization, path-finding, Christofides algorithm
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INTRODUCTION

Context and motivations

In response to COVID-19, hospitals needed to make swift changes to their physical environments

and usual protocols in order to minimize infection risk (Lancaster et al., 2020). Several hospitals

manage patient flow in the early days of the pandemic with a service design approach to

way-finding, i.e., the entire patient journey from finding out about their appointment to walking

out of the hospital doors. This implies behaviors that were new at the time, such as physical

distancing, mandatory hand sanitizing, universal masking, and symptom screening of large

crowds during peak hours.

Also, it requires movements in the corridors that reduce the number of crossings of people and

satisfy the requirements of social distancing. During COVID-19, even people without signs of

COVID-19 need to respect social distancing. As a result, we need to take into account social

distancing also for Non-COVID patients to reduce the risk of disease spread. As many corridors

in close environments are not wide enough, it is not easy to manage the distance between people,

so there is a need for one-way pathways as much as possible to guarantee safe distancing. It

is imperative that hospitals and other healthcare facilities improve patient flow as part of their

process management efforts.

During the COVID pandemic, a strategy adopted by many hospitals is using different colors to

present the COVID conditions of patients. This helps manage the priority of circulation in the

hospital. Therefore, in this thesis, we assume two levels of priority: Green for patients without

COVID-19 and Red for patients with COVID-19. When red and green patients are in the same

corridor, the red patients have the right to move before the green patients.

Definition 1: The patient circulation in a hospital with priority refers to the movement of patients

from one area to another based on their priority level within the hospital. We propose to reduce
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the patient circulation problem to a graph problem in which the first step is to build a graph out

of the floor map of a hospital; see Fig. 0.1 for an illustration. Nodes are two types: the first type

Figure 0.1 Example of floor map

includes the nodes associated with corridor intersections (e.g., nodes 2 and 3), and the second

type includes the nodes associated with the entrance/exit of wards/clinics where patients need to

go (e.g., black nodes, and nodes A and B). Nodes in the corridors are connected by edges.

We assume there is a waiting area with limited capacity (few patients) at every node for simplicity

(in practice, it may be the case only at some nodes). In our work, every elevator, escalator, and

stair is considered as a bridge to simplify the graph and merge the nodes. For example, the

elevator on the first floor is a destination, and the second floor is the new starting point for the

patients. We also assume each flow of patients has source and destination node pairs for their

trips through the hospital. For instance, for Non-COVID patients, typical travels are from the

general hospital entrance to a clinic, or from one clinic to another one, or from a clinic to the

general exit of the hospital. For COVID-19 patients, the possible travels are from the emergency

entrance to the emergency waiting room, or the emergency waiting room to CT-scan or X-ray, or

from the emergency unit to a COVID-19 unit.
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Definition 2: A Patient Flow refers to the physical movement, having the same priority along

the same direction in the corridors of the hospital.

In our work, based on the priority of the patients, we consider two flows: Red flow and Green

flow. In reality, a Red flow includes patients with COVID-19 symptoms, people who accompany

them, and staff working with them; and a Green flow consists of patients without symptoms,

visitors, and staff of Non-COVID wards.

Definition 3: The waiting time of a patient circulation is the sum of three components: 1) the

time the patient waits to get access to the pathways in the hospital, 2) the total time the patient

spends in the pathways, and 3) the time the patient spends in the waiting areas, from the entrance

to discharge. This waiting time does not include the time the patient spends in the wards and

being seen by the medical staff.

Patient waiting time is an important indicator of the quality of services offered by the hospi-

tal (Oche & Adamu, 2013). Also, it can be used to estimate the number of nurses required for

patient care and manage the patient flow.

A traditional approach to avoiding congestion when managing traffic in streets is to define certain

streets one-way (Robbins, 1939). Relying on the same approach, in this thesis, we examine

whether it is possible to make certain designated corridors one-way and how it can be done

while ensuring that it is possible to get from one place to another, with respect to the additional

constraint of COVID safe distance.

The problem of defining one-way corridors in the hospital can be formulated as an orientation

problem in an undirected graph theory by considering the corridor corners and the wards as

vertices and drawing edges to connect them if the graph is strongly connected. An orientation

problem can easily be defined in a graph; a graph is said to be strongly connected if every vertex

is reachable from every other vertex (Roberts, 1978).
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Therefore, the problem of COVID flow management in a hospital consists of two steps: i)

Building an undirected graph from the hospital map floor, and ii) Defining an orientation in the

graph. In the first step, the built graph should not contain a bridge. In an undirected connected

graph, a bridge is defined as an edge if removing it disconnects the graph (e.g., dead-end, where

one must return the same way).

In our work, we need tracking patients in corridors with smart technologies, which requires a

tracking method, and it can be done in several ways. A person tracking system employs unique

identifiers that are temporary, e.g., Radio Frequency Identification (RFID) tags or the real-time

location system (RTLS). The real-time location system (RTLS) identifies and tracks objects or

people in real-time, usually within a building. A wireless RTLS tag or RFID tag can be attached

to patients and report their location regularly to a server computer (Miller et al., 2006).

People also can be tracked permanently using personal identifiers (including biometric identifiers)

or national identification numbers and by sampling their positions in real-time using Global

Positioning Systems (GPS). In addition, The network-based infrastructure can be used to

determine the location of a mobile phone. The advantage of network-based techniques is that

they can be implemented non-intrusively without affecting handsets from a service provider’s

perspective. A mobile phone’s location can be determined by various means, including

handset-based, Wi-Fi, and hybrid positioning systems.

Definition 4: The patient routing involves finding a path from all sources to destinations of both

Red flow and Green flow within known built environments by considering the requirements of

each flow.

The patient routing, aimed at finding routes for patients, can be similar to the vehicle routing

problem (VRP) (Toth et al., 2002). VRP, which is generalized to the traveling salesman problem

(TSP), involves delivering patients from one or more areas with a set of start points and guiding

them on a route network to the set of destinations. The objective is to determine a set of routes
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that will meet all patients’ needs and operating constraints while reducing global transportation

costs.

A traveling salesman problem (TSP) is a well-known routing problem in which a salesman

wishes to visit every city once and return home at a minimal cost. However, in our problem, it

might be necessary to visit a node more than once. Therefore, a more general problem called

the General Traveling Salesman Problem (GTSP) should rather be applied. The GTSP is aimed

at finding a minimum-travel-time closed tour for a salesman traversing a given part of nodes

in a network at least once (He et al., 2021). Compared to traditional TSP, GTSP has a more

significant number of real-world applications, including planning tourist routes, meter readings,

and goods distribution. An essential requirement to using the GTSP is that we need a complete

graph, in which a unique edge connects every pair of distinct vertices.

In our work, we study routing in the hospital during the pandemic, which aims to find the

maximum number of disjoint paths in the network. Because a tracking system may not be

available in a hospital, we present two scenarios to model the routing and coloring of the hospital

paths and compare them using the simulation tool. The first scenario uses an offline method

to establish a guideline for the patients when they do not have access to a cellphone or other

innovative technologies. Scenario 2 is an online method based on intelligent technology and

real-time location. Our goal is to compare two scenarios in terms of their waiting time subject

to different arrival rates for COVID-19 patients.

Challenges

In order to minimize the impact of COVID-19 on hospital visitors\patients traffic, it is challenging

to have a strategy to manage the flows in the corridors of the hospital. There are some related

challenges in terms of orientation and the patient routing problem as follows.
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• It is not always possible to have all corridors one-way in a hospital due to two flow

requirements and to maintain a safe distance between two flows of patients, so we need

to keep some corridors two-way (with undirected edges). This makes the problem more

complicated because we cannot have the same corridors for both patient flows.

• It is common for people to pass through the same paths, such as dead-end rooms, elevators,

and stairs. Therefore, it is necessary to plan and schedule the use of the common pathway

for the two flows. Due to the lack of paths connecting one end of the bridge to the other,

a graph with a bridge cannot be strongly orientable (Robbins, 1939). Therefore, dealing

with the wards with dead-ends and finding the orientation for two flows of patients will be

challenging. The existing algorithms are unsuitable for solving two flow problems; therefore,

a new algorithm should be designed to solve the problem effectively.

• The GTSP can be modeled as an undirected weighted graph, such that the desired wards

are the graph’s vertices, paths are the graph’s edges, and a path’s distance is the edge’s

weight. The model is often a complete graph (an edge connects each pair of vertices). We

need to build a graph to connect two wards when there is no direct path between them,

and completing it without affecting the optimal tour in GTSP is challenging. The way we

complete the graph must have a minimum impact on other flows in GTSP.

Research Questions

During a pandemic, current path-finding solutions cannot be used in hospitals because they do

not consider different patient flows. Although existing indoor routing methods can help with

indoor navigation based on the explicit topology of buildings, they have not been designed to

address different types of users and the distance between them. Regarding patients technological

capability, we design two routing solutions for two different scenarios: with and without

smartphone support. This requires us to answer the following research question:
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• RQ. Between the two proposed scenarios, which would be more efficient in terms of the

average waiting time for circulation management in the hospitals? In other words, can we

really take advantage of personal devices, such as smartphones, to guide patients through

hospital corridors with respect to social distancing requirements during the CoVID-19

pandemic?

Objectives of the thesis

The main objective of the thesis is to propose a new solution to model Patient Flow during

COVID-19 based on constraints caused by the pandemic. This main objective can be divided

into two sub-objectives (SO).

• SO1. Propose an efficient algorithm for path-finding and coloring for scenario 1, and then

calculate the average waiting time.

• SO2. Propose an efficient algorithm for path-finding and coloring for scenario 2, and then

calculate the average waiting time, and finally compare it to scenario 1.

Thesis organization

This thesis includes an Introduction, three chapters, and a conclusion. The Introduction includes

the general context and the challenges. It also contains motivations for this thesis, followed by

the thesis objectives.

In Chapter 1 we review the related work on path-finding and similar technologies for patient

flows. We also reviewed different resource provisioning techniques in the graph orientation,

such as TSP.

Chapter 2, we reformulate the design of an optimized patient flow in corridors as a graph

orientation problem under two different traffic scenarios. At first, we present Scenario 1 in order
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to meet different patient flows. Then we present Scenario 2, which assumes each patient uses

either a smartphone or pager to display the direction to follow at each corridor intersection.

Chapter 3 presents the simulation results of both scenarios. we also compare them in terms of

waiting time.

The Conclusion summarizes the thesis findings and presents possible future work.



CHAPTER 1

LITERATURE REVIEW

The purpose of this chapter is to review Methods for Converting a Map to a Graph, which can

use to convert the map of the hospital to the network. We also review the current solutions for the

Pedestrian Routing problem, specifically the Orientation Problem and the Travelling salesman

problem. In Table 1.1, we present a summary of current papers studied on the Travelling

Salesman Problem. Also, we review the related algorithms and the ways to evaluate and improve

strategies.

1.1 Converting a map floor to a graph

The navigation graph is considered to be the basic structure for guiding movement within indoor

spaces (Zhou et al., 2022). This graph has edges that represent routes and nodes that represent

locations where information is shared or displayed. This section reviews previous research on

how maps are transformed into graphs. It also examines different models for indoor spaces and

compares various graph-based models for navigation.

A planer graph is a type of graph in which the edges are connected in such a way that no two

edges intersect (Mahapatra et al., 2021). This means that if you were to draw the graph on paper,

you would not need to lift the pencil from the paper to draw the edges.

The hospital map could be a planer graph if it is designed in such a way that all the edges are

connected in a way that does not intersect. But it could also be a non-planer graph if the edges

intersect or if the number of edges is greater than the number of nodes.

It is also possible that the hospital map is a combination of planer and non-planer areas,

depending on the design of the hospital and the layout of the buildings and corridors. A hospital

map can be non-planar if the layout of the buildings and corridors results in edges that intersect.

For example, if a hospital has multiple buildings with multiple floors and there are corridors that

connect the different buildings and floors, the edges representing these corridors may intersect
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with one another. Another example could be if the hospital has a complex layout with multiple

interconnected buildings and multiple levels. The edges representing the paths between different

rooms or wards could intersect with one another, making it a non-planer graph.

There are several ways to transform a non-planar graph into a planar graph (Harrigan et al.,

2021). One way to embed a non-planar graph is to use a technique called "edge contraction,"

where two nodes that are connected by an edge are merged into a single node (Akiba et al.,

2013). This reduces the number of edges and can make the graph planar. However, this method

can change the structure of the graph and may not be suitable for some applications. Another

way is to use a technique called "edge deletion" where certain edges are removed from the graph

to make it planar. This method also can change the structure of the graph, but it may be more

suitable for some applications.

In summary, there are several methods to transfer non-planer graphs to planer graphs, such as

edge contraction, and edge deletion. The choice of method depends on the specific requirements

of the application and the desired properties of the planar graph. In any case, whether the

hospital map is a planer graph or not is not the most important aspect of the problem as the main

focus is on finding the most efficient path for the flow of patients through the network. Even

if the map is non-planer, the goal is still to find the best path for patients to travel through the

hospital.

Different ways of transforming a floor plan to a graph are also discussed by (Franz et al., 2005),

and shown in Figure 1.1. The place graph model is the appropriate topology for converting the

floor map to the graph in our research.

This model clearly defines rooms or labeled places for the nodes, while graph edges indicate

their connectivity. As an additional element of the justified graphs, accesses to the analyzed

spatial configurations were considered root nodes. (Jensen et al., 2009) proposed a uniform

graph model framework for indoor tracking consisting of base and deployment graphs. They

considered connectivity and accessibility, the base graph represents the topology of a possible
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Figure 1.1 Overview of map converting to graphs
Taken from Franz et al. (2005)

complex indoor space plan. As a running example, they use the floor plan in Figure 1.2 for

simplicity. The figure shows doors, walls, a staircase, a hallway, and rooms.

1.2 Graph theory

The graph is a discrete structure that is frequently used to model real-life problems, including

communication networks, social networks, and biological networks (Majeed & Rauf, 2020).

Graph theory has numerous applications, including computer science, sociology, and chemistry

since they are simple yet effective in real-life modeling phenomena. A lot of problems we

encounter every day could be paraphrased into a graph problem or a near-similar sub-problem.

So it is required to have some familiarity with different graph problems related to our work and

to discuss some algorithms associated with them.



12

Figure 1.2 Floor plan and connectivity graph

• Simple Graph: A simple graph is a mathematical representation of a set of objects (called

vertices or nodes) and the connections (or edges) between them.

• Complete Graph: A complete graph is a simple graph in which an edge connects every pair

of distinct vertices. The complete graph on 𝑛 vertices has 𝑛 vertices and 𝑛(𝑛 − 1)/2 edges.

In a complete graph, each pair of distinct vertices is connected by an edge.

• Shortest Path: A path, denoted as 𝑃𝑢𝑣, from vertex 𝑢 to vertex 𝑣 in a graph 𝐺 means that

vertex 𝑣 is reachable from 𝑢, and vertex 𝑢 is traceable back from 𝑣. All vertices that can be

reached from 𝑢, including 𝑢 itself, in 𝐺 are considered to be descendants of 𝑢, represented

as 𝑑𝑒𝑠(𝑢). Similarly, all vertices that can be traced back to 𝑣, including 𝑣 itself, in 𝐺 are

considered to be ancestors of 𝑣, represented as 𝑎𝑛𝑐(𝑣).

A path, denoted as 𝑃𝑢𝑣, is considered the shortest path, represented as 𝑆𝑃𝑢𝑣, if it is shorter

than any other possible path 𝑃∗𝑢𝑣. For any vertex 𝑣 in the set of vertices 𝑉 , there could be
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more than one shortest path from a source 𝑠 in the graph 𝐺, and all the shortest paths from 𝑠

to 𝑣 will have the same shortest distance. The shortest distance from vertex 𝑢 to vertex 𝑣 in

𝐺 is denoted as 𝑑𝑢𝑣.

• Shortest-Path Tree (SPT): In a directed graph 𝐺 = (𝑉, 𝐸, 𝑤), a tree rooted at a source vertex

𝑠, represented as 𝑇𝑠, is considered a shortest path tree (SPT) if, for all vertices 𝑣 that are not

equal to 𝑠 and are descendants of 𝑠 in 𝑇𝑠, the tree contains the shortest path 𝑆𝑃𝑠𝑣 from 𝑠 to 𝑣.

Because of this structure, 𝑇𝑠 only contains one shortest path 𝑆𝑃𝑠𝑣 for each vertex 𝑣.

• Minimum Spanning Tree (MST): Given a digraph 𝐺 = (𝑉, 𝐸, 𝑤), an acyclic subset 𝑇 ⊆ 𝐸 is

a minimum spanning tree (MST) if it connects all of the vertices and whose total weight

𝑤(𝑇) = Σ(𝑢,𝑣)∈𝑇𝑤(𝑢, 𝑣) is minimized. Since 𝑇 is acyclic and connects all of the vertices, it

must form a tree.

• Hamiltonian Cycle: A Hamiltonian cycle is a cycle in a graph that passes through every

vertex exactly once, visiting each vertex only once before returning to the starting point.

1.3 Pedestrian routing problem

The pedestrian routing problem is an important and active area of research in the field of

transportation and network science (Tong & Bode, 2022). It involves finding the most efficient

or shortest path for pedestrians to travel between two points in a network, taking into account

various factors such as sidewalk availability, crossing signals, terrain, and accessibility for

individuals with disabilities.

One approach to solving the pedestrian routing problem is to use traditional graph-based

algorithms such as Dĳkstra’s algorithm or A* search (Dib, Manier & Caminada, 2015). These

algorithms work by considering the nodes and edges in a network as a graph and then searching

for the shortest path between two points by traversing the edges and accumulating a cost based

on various factors, such as distance or travel time.
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Another approach is to use heuristic-based methods, which are designed to find near-optimal

solutions quickly. Examples of heuristic methods include genetic algorithms, simulated annealing,

and ant colony optimization (Liu, Yi & Ni, 2013).

Recent research has also explored using machine learning techniques to improve pedestrian

routing. For example, using deep neural networks to predict pedestrian behavior and traffic

flow or using reinforcement learning to adapt routing strategies in real time based on traffic

conditions.

Additionally, there are some studies that have proposed using GIS data to enhance the pedestrian

routing problem (Trindade et al., 2018). These studies have used data such as building

information, elevation, and land use to improve the accuracy and efficiency of routing algorithms.

Overall, the pedestrian routing problem is a complex and multi-disciplinary problem that requires

a combination of techniques from transportation engineering, computer science, and GIS.

1.4 Orientation problem

The graph orientation problem is the task of assigning orientations (i.e., directions) to the edges

of an undirected graph such that certain properties are satisfied. This problem has been studied

in various contexts, including algorithms for solving it, complexity and computational hardness

results, and applications in areas such as computer science, operations research, and electrical

engineering.

One of the most well-known algorithms for solving the graph orientation problem is the maximum

acyclic subgraph (MAS) algorithm, which aims to orient the edges of the graph such that the

resulting directed graph is acyclic and has the maximum number of edges (Dutta & Subramanian,

2016). This algorithm has been widely studied and has been shown to have polynomial time

complexity for certain classes of graphs.

Another commonly studied algorithm is the maximum feedback arc set (MFAS) algorithm, which

aims to orient the edges of the graph such that the resulting directed graph has the minimum
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number of directed cycles, or feedback arc sets (Kudelić & Ivković, 2019). This algorithm has

been shown to be NP-hard in the general case, but polynomial-time algorithms exist for certain

classes of graphs.

The graph orientation problem has been applied in many areas, including scheduling and

resource allocation, social networks, and constraint satisfaction. In scheduling and resource

allocation, the problem of orienting the edges of a graph is used to model a set of tasks that

need to be completed, with edges representing dependencies between tasks. In social networks,

graph orientation is used to model the flow of information or influence between individuals. In

constraint satisfaction, the problem is used to model the relationships between variables and

constraints in a problem.

The Orienteering Problem with Random Weights (OPSW) was studied in (Sniedovich, 2010) to

find the optimal path or loop by taking into account the total weight of the arc with capacity

constraints. A two-stage stochastic model was developed to solve large instances of the problem.

Heuristics were also used to address uncertainty based on the OPSW structure, which allows for

the addition of additional nodes during runtime.

(Duraj, 2010) research focused on graph orientation problems in order to provide the best

reachability1. The goal is to maximize the number of pairs of vertices connected by a directed

path (also called simply connected pairs). Figure 1.3 presents an example graph with two

orientations.

In the first orientation, some pairs of vertices are left unconnected; in the second orientation, all

pairs of vertices are connected. The characterization of graphs with an orientation connecting

all vertices was the unsolved question. (Robbins, 1939) provided a solution that is now known as

Robbin’s Theorem: such orientation exists only when there are no bridges in the graph. Since

algorithms and complexity were unknown at that time, Robbins’ construction can be easily

1 reachability refers to the ability to get from one vertex to another within a graph.
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Figure 1.3 Orientation examples of graphs

adapted to obtain a linear-time algorithm, and Robbins formulated this question as a traffic

control problem.

Bleichrodt et al. (2022) investigates The Edge Orientation Problem with Origin-Destination

Pairs (EOPODP). There are two vertices in every OD pair, one representing the origin and the

other representing the destination. The objective is to transform each undirected edge into a

directed arc so that a direct path exists between the origin and the destination for each OD

pair, and the shortest directed OD paths have the shortest total distance. They implement a

polynomial-time algorithm to examine the feasibility of any particular EOP-ODP instance.

The researchers compare the performance of a MIP formulation, a simple heuristic, and an

Ant Colony Optimization algorithm, concluding that the Ant Colony Optimization algorithm

outperforms the other algorithms.

1.5 Travelling salesman problem

A traveling salesman problem (TSP) is a well-known problem in which a salesman wishes to

visit every city and return home at minimal cost, and in his route visits each city exactly once,

which means the path between two cities can not be traversed twice (Hoffman et al., 2013).

Input: A set of nodes � ≥ 3 cities. To each pair of cities (�, �) we associate a weight (cost,

distance, etc.).
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Output: A closed path (that starts at the same vertex and ends there) or a tour of minimum cost,

where the cost of the tour is defined as the sum of the weights of the edges.

The travelling salesman problem (TSP) is a classic problem in computational mathematics and

operations research. The TSP is an NP-hard problem, which means that no known polynomial

time algorithm can solve it for all cases, but it is a problem with a lot of practical importance in

various fields like logistics and transportation.

There are several methods for solving TSP, each with its own advantages and disadvantages.

Some common methods include:

• Exact methods: These methods guarantee to find the exact optimal solution, but they can be

computationally expensive for large instances of the problem. Examples of exact methods

include branch-and-bound, branch-and-cut, and dynamic programming.

• Heuristic methods: These methods aim to find a good solution quickly, rather than the

optimal solution. Examples of heuristic methods include greedy algorithms, simulated

annealing, and genetic algorithms.

• Approximation algorithms: These methods aim to find a solution that is close to optimal, but

they do not guarantee finding the optimal solution. Examples of approximation algorithms

include the Christofides algorithm, the 2-opt algorithm, and the Lin-Kernighan algorithm.

• Metaheuristics: These methods are a family of heuristic optimization algorithms, inspired

by nature-inspired processes, like genetic algorithm, simulated annealing, ant colony

optimization, etc.

• Deep Learning: In recent years, the TSP problem has also been studied in the context of

deep learning and how to use neural networks to model TSP problem.

In addition to the traditional TSP, there are also variants of the problem, such as the asymmetric

TSP, in which the distance between two cities can be different in each direction, and the

multi-objective TSP, in which there are multiple competing objectives, such as minimizing

distance and maximizing profits.
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In recent years, researchers have not only extended the classic TSP in several important aspects

but also extended it in many parts to accommodate various real-life situations, as summarized in

Table 1.1.

Table 1.1 Literature review of TSP

Reference Extensions of the classic TSP
(Cacchiani et al., 2020) The TSP with time windows
(Baniasadi et al., 2020) The clustered traveling salesman problem
(Elgesem et al., 2018), TSP with pickups and deliveries
(Pandiri et al., 2018) K-traveling salesman problem
(Pedro et al., 2013) The prize collecting TSP
(de Moraes et al., 2019) The moving target TSP
(Kaspi et al., 2019) TSP to maximize the profit per unit time
(Wang et al., 2019) The close-enough TSP
(Wang et al., 2020) The energy minimization TSP
(Mosayebi et al., 2021) TSP with job-times
(Gencel et al., 2019) TSP with hotel selection

Due to the NP-hard property of most of the extensions of TSP, researchers have made great efforts

to search and design better solution methods for these variants of TSP. Some exact algorithms

have been tried, e.g. the branch-and-cut algorithm (Bleichrodt et al., 2022). Among the heuristic

algorithms, the ant colony optimization algorithm (Ottoni et al., 2022) and (Ebadinezhad, 2020)

attracted the attention of more researchers than other heuristics. Many researchers also adopted

the genetic algorithms (Dong et al., 2019) in their studies. The combination of the genetic

algorithm and ant colony algorithm was considered by (Jiang et al., 2020). (Kucukoglu et al.,

2019) designed a hybrid simulated annealing and tabu search method to solve the TSP with time

windows.

Except for the above heuristics, many others have been proposed in the field of TSP research. They

include the artificial bee colony algorithm (Pandiri et al., 2018), harmony search algorithm (Bo-

ryczka et al., 2019), discrete differential evolution (Ali et al., 2020), discrete symbiotic organism

search (Wang et al., 2019), multi-agent reinforcement learning (Hu, Yao & Lee, 2020), discrete

crow-inspired algorithms (Al-Gaphari et al., 2021), discrete bat algorithm (Saji & Barkatou,

2021), etc.
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The classic TSP and its variants have many applications in real life. In recent years, researchers

have applied the theory of TSP to some new areas. For example, (Defryn et al., 2018) applied

TSP theory to dealing with a horizontal logistics cooperation in which multiple companies

jointly solve their logistics optimization problem. (Bock & Klamroth, 2019) addressed the

classical conflict between cost minimization (represented by the TSP) and customer waiting time

minimization (represented by the Traveling Repairman Problem). Except the above development,

one new trend in the applications of TSP showed up in recent years. The trend is to consider the

use of drones in collaboration with a delivery truck. The related problems are usually formulated

into some variants of the classic TSP (Boccia et al., 2021); (Pina-Pardo et al., 2021). Except

for the above application of drones in the last mile delivery, drones were also used to surveil

wildlife (Chowdhury et al., 2019).

In summary, the traveling salesman problem is a well-known and widely studied problem

in operations research and computational mathematics, with many important applications in

various fields like logistics and transportation. There are many different methods for solving

TSP, each with its own strengths and weaknesses, including exact methods, heuristic methods,

approximation algorithms and metaheuristics.

1.5.1 Christofides Algorithm

The Christofides algorithm is an approximation algorithm for solving the travelling salesman

problem (TSP). The algorithm was proposed by Nicholas Christofides (Chekuri & Quanrud,

2018), and it has a worst-case performance guarantee of 3/2 times the optimal solution. This

means that for any instance of the TSP, the Christofides algorithm will return a solution that is at

most 1.5 times longer than the optimal solution.

The Christofides algorithm consists of two main steps:

• Finding a minimum spanning tree (MST) of the given graph: An MST is a tree that spans all

the vertices of the graph, and has the minimum possible total edge weight. This step can be

done efficiently using algorithms like Kruskal’s algorithm or Prim’s algorithm.
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• Finding an Eulerian tour of the MST: An Eulerian tour is a path that visits every edge of the

graph exactly once. Once we find an Eulerian tour, we can obtain a Hamiltonian cycle (a

cycle that visits every vertex exactly once) by skipping some of the edges.

• Finding the minimum weight perfect matching between the odd-degree nodes in the MST:

Perfect matching is a matching that matches all nodes in the graph. This step can be done

efficiently using algorithms such as the Blossom algorithm.

• Combining the Eulerian tour and the minimum weight perfect matching to form a Hamiltonian

cycle.

The algorithm is based on a combination of graph theory and linear programming and has a

strong theoretical foundation. The Christofides algorithm is known to produce near-optimal

solutions for TSP instances with symmetric distances, and it is an efficient algorithm that can be

implemented using standard graph algorithms.

1.5.2 Asadpour Algorithm

The Asadpour algorithm is an approximation algorithm for solving the traveling salesman

problem (TSP) that was proposed by (Asadpour et al., 2017). The algorithm is based on the idea

of solving the TSP by formulating it as a linear programming (LP) problem and then using a

technique called randomized rounding to obtain a solution.

The algorithm starts by formulating the TSP as an LP problem by introducing a set of variables

that represent whether or not a particular edge is included in the solution. The LP is then relaxed

to a fractional solution, which is a solution where the variables can take on fractional values

instead of just 0 or 1.

The next step is to use randomized rounding to obtain an integral solution (i.e., a solution where

the variables take on only 0 or 1 value) from the fractional solution. The randomized rounding

procedure works by randomly rounding the fractional values of the variables to either 0 or 1,

with a probability determined by the value of the variable.
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The Asadpour algorithm has a performance guarantee of 2-approximation, which means that

it will return a solution that is at most twice as long as the optimal solution. The algorithm is

based on the linear programming relaxation of the TSP problem and the randomized rounding

technique, which is a well-known technique in the field of approximation algorithms.

The algorithm has been shown to work well in practice, and it has been used to obtain near-optimal

solutions for large-scale TSP instances. It is also relatively simple to implement, as it only

requires solving an LP problem and applying a randomized rounding procedure.

In summary, the Asadpour algorithm is an approximation algorithm for solving the travelling

salesman problem (TSP) that has a performance guarantee of 2-approximation. The algorithm

starts by formulating the TSP as a linear programming problem and then uses randomized

rounding to obtain an integral solution from the fractional solution obtained from linear

programming relaxation. The algorithm is relatively simple to implement and has been shown

to work well in practice for large-scale TSP instances.

1.6 General Travelling Salesman Problem

In some real problems, sometimes we need to visit each node more than once, so the general

traveling salesman problem (GTSP) is defined by (He et al., 2021), in which GTSP is to search

a minimum-travel-time closed tour for a salesman traversing certain nodes in a network at

least once. This problem is an extension of the standard TSP and can be classified as NP-hard

problems. GTSP has more real-world applications than standard TSP, such as goods distribution,

meter reading, and tourist route planning. GTSP is a NP-hard combinatorial optimization

problem, which is an extension of the well-known Traveling Salesman Problem (TSP) that

allows a salesman to visit certain nodes of a network more than once. The GTSP has been

widely studied in the literature and various solution methods have been proposed, such as:

• Exact Methods: Branch-and-bound, branch-and-cut, branch-and-price, and branch-and-cut-

and-price methods are exact methods that have been used to solve GTSP.
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• Heuristic methods: Genetic algorithms, simulated annealing, tabu search, variable neigh-

borhood search, and scatter search are heuristic methods that have been used to solve

GTSP.

• Metaheuristic methods: Ant colony optimization, particle swarm optimization, and bee

algorithm are metaheuristic methods that have been used to solve GTSP.

• Hybrid methods: Hybrid methods that combine exact and heuristic methods have also been

proposed in the literature to solve GTSP.

In addition to solving the problem, researchers have also proposed various formulations and

variations of the GTSP to model different types of problems, such as the Multi-Depot GTSP, the

Prize Collecting GTSP, the Asymmetric GTSP, the Dynamic GTSP, and the Stochastic GTSP.

Overall, the GTSP is a well-studied problem in the literature, with various solution methods and

formulations proposed to tackle different variations of the problem. However, solving GTSP

problem instances in practice is still challenging and requires more research.

To determine if a TSP has a feasible solution sometimes is very hard. In some cases, there is

no feasible solution to a TSP. Different from the standard TSP, GTSP defined on a connected

network is always solvable. In other words, we can always find out a feasible solution to a GTSP.

The above statement can be proved easily based on the fact that we can always transform a GTSP

into an equivalent TSP. The TSP resulting from the above transformation is always solvable

because there is a directed connector between any given pair of required cities. In view of the

above observation, the feasible application fields of GTSP are more than that of TSP. As an

extension of the classic TSP, GTSP can be applied to modeling many real-world situations. For

example, to plan the route for a rider working for a delivery company.

In view of the NP-hard property, it is still a challenge to obtain the optimal or near-optimal

solution of a medium or large-scale GTSP in a reasonable time.



23

1.6.1 Bridge finding algorithms

Bridge-finding algorithms are a class of algorithms used to identify important edges, called

bridges, in a graph (Gould, 2012). A bridge is an edge whose removal increases the number of

connected components in the graph. These edges are considered important because they play a

significant role in graph connectivity and can be used to identify key structural properties in the

graph.

There are several algorithms for finding bridges in a graph, each with its own advantages and

disadvantages. Some common algorithms include:

• Depth-first search (DFS): DFS is a classic algorithm for traversing a graph, and it can be

used to identify bridges by keeping track of the discovery and finish times of each vertex

during the traversal. If an edge connects a vertex with an earlier discovery time to a vertex

with a later finish time, it is considered a bridge.

• Tarjan’s algorithm: Tarjan’s algorithm is an efficient algorithm for identifying bridges in a

graph, based on DFS. The algorithm uses a data structure called a stack to keep track of the

discovery and finish times of each vertex, and it can identify bridges in linear time.

• The Decomposition algorithm: This algorithm is a computational method used to identify

bridges in a graph through decomposition, which is the process of breaking down the graph

into smaller parts. The algorithm seeks to locate the edges that, if removed, would increase

the number of connected components in the graph(bridges).

• Kosaraju’s algorithm: Kosaraju’s algorithm is a linear-time algorithm for finding bridges in a

directed graph. The algorithm uses two DFS traversals, one on the original graph and one on

its transpose, to identify strongly connected components and bridges.

• Bridges in linear time: There is another linear-time algorithm called "Biconnected Compo-

nents Algorithm" that can identify the bi-connected components and bridges at the same

time.

Bridges in linear time with using DSU: There is another linear-time algorithm called "Bridge

Finding using DSU" that can identify the bridges using DSU (Disjoint Set Union) data

structure.
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In addition to identifying bridges, many of these algorithms also compute other important graph

properties such as connected components, bi-connected components, and articulation points.

In summary, bridge-finding algorithms are a class of algorithms used to identify important edges,

called bridges, in a graph. There are several algorithms for finding bridges in a graph, each with

its own advantages and disadvantages. Some common algorithms include depth-first search,

Tarjan’s algorithm, Kosaraju’s algorithm, "Bi-connected Components Algorithm" and "Bridge

Finding using DSU". These algorithms can also compute other important graph properties such

as connected components, bi-connected components, and articulation points.

1.6.2 Completing the graph

A common assumption in the literature when solving the Traveling Salesman Problem (TSP)

is that the graph is complete (Schermer, Moeini & Wendt, 2020). However, constructing a

complete graph for a large number of cities can be a time-consuming process.

The problem of completing a graph, also known as the graph completion problem, is the task of

adding edges to an incomplete graph such that certain properties are satisfied. The problem can

be formalized as follows: Given a graph 𝐺 = (𝑉, 𝐸), find the most likely set of missing edges

consistent with the observed edges.

One of the main approaches to solving the graph completion problem is through matrix

completion, which involves using techniques from linear algebra to fill in missing entries in a

matrix that represents the graph. One popular algorithm in this category is the Nuclear Norm

Minimization (NNM) algorithm, which is based on the idea of minimizing the nuclear norm (i.e.,

the sum of the singular values) of the matrix. This algorithm has been shown to be effective for

completing low-rank matrices and has been applied to various types of graphs, including social

networks, collaborative filtering, and protein-protein interaction networks (Huang & Wolkowicz,

2018).
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Another popular approach to solving the graph completion problem is through the use of

probabilistic models, such as the probabilistic matrix factorization (PMF) algorithm. PMF

models the graph as a product of two low-rank matrices and uses probabilistic techniques to

infer the missing entries. This algorithm has been applied to various types of graphs, including

recommendation systems, image processing, and natural language processing (Zhou et al., 2012).

A third approach is the use of graph neural networks, which is a type of neural network designed

to operate on graph-structured data. Graph neural networks have been used to model graph

completion problem and have been shown to be effective in various applications such as social

network analysis (Wang et al., 2021).

The graph completion problem has also been studied in the context of computational complexity

and hardness. It has been shown that the problem is NP-hard in the general case, but polynomial-

time algorithms exist for certain classes of graphs.

In recent years, the problem of graph completion has been studied in the context of large-scale

and dynamic graphs, as well as in the context of graph embedding, which is the problem of

representing graphs in low-dimensional vector spaces. The graph completion problem is also

related to the problem of link prediction, which is the task of predicting missing edges in a graph

based on the existing edges.

Before completing the graph, we need to be sure our graph is bridgeless. In a graph, a bridge is

an edge whose removal causes the number of components connected to increase. Alternatively,

a bridge can be defined as an edge that does not belong to any cycle. Bridges are also known

as cut edges, isthmuses, or cut arcs. A graph is considered bridgeless if it does not have

any bridges. This is equivalent to stating that all connected components within the graph are

2-edge-connected, or according to Robbin’s theorem, every connected component has a strong

orientation.
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1.6.2.1 Floyd-Warshall algorithm

The Floyd-Warshall algorithm is an algorithm for finding the shortest paths between all pairs

of vertices in a weighted graph. The algorithm is a classic algorithm for solving the all-pairs

shortest path problem (Cormen, 2022).

The algorithm dynamically updates the shortest path between each pair of vertices by considering

all possible intermediate vertices. The algorithm maintains a distance matrix, where the entry

𝑑 [𝑖] [ 𝑗] represents the shortest distance between vertex 𝑖 and vertex 𝑗 . The algorithm then

repeatedly updates this matrix by considering each vertex 𝑘 as an intermediate vertex and updating

the distance between each pair of vertices 𝑖 and 𝑗 as 𝑑 [𝑖] [ 𝑗] = 𝑚𝑖𝑛(𝑑 [𝑖] [ 𝑗], 𝑑 [𝑖] [𝑘] + 𝑑 [𝑘] [ 𝑗]).

The algorithm repeats this process for each vertex k, and the final distance matrix 𝑑 [𝑖] [ 𝑗] will

contain the shortest path between each pair of vertices 𝑖 and 𝑗 .

The time complexity of the Floyd-Warshall algorithm is 𝑂 (𝑉3), where 𝑉 is the number of

vertices in the graph. This makes the algorithm quite efficient for dense graphs, but it can be

quite slow for sparse graphs with a large number of vertices. However, the algorithm can detect

negative cycles, and if the final matrix 𝐷 [𝑖] [𝑖] is negative, the graph contains a negative cycle.

The Floyd-Warshall algorithm can also be used to solve other problems, such as transitive closure

and reachability, and it can be modified to handle directed graphs as well as undirected graphs.

In summary, The Floyd-Warshall algorithm is an algorithm for finding the shortest paths between

all pairs of vertices in a weighted graph. The algorithm works by maintaining a distance matrix

and repeatedly updating it by considering each vertex as an intermediate vertex. The time

complexity of the Floyd-Warshall algorithm is 𝑂 (𝑉3), where 𝑉 is the number of vertices in

the graph. The algorithm is quite efficient for dense graphs but can be slow for sparse graphs.

The algorithm can also be used to detect negative cycles and other problems, such as transitive

closure and reachability, and it can be modified to handle directed graphs.
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1.6.2.2 Seidel’s algorithm

According to (Seidel, 1995), Seidel’s algorithm solves the all-pairs-shortest-path problem for

connected, undirected graphs.

The mathematical foundations of Seidel’s Algorithm are based on matrix theory and linear

algebra. The method works by iteratively updating the approximations of the solution, using the

values from the previous iteration, until the solution converges to a sufficient degree of accuracy.

The convergence of Seidel’s Algorithm can be accelerated by using a suitable relaxation factor,

which adjusts the rate at which the approximations are updated.

Seidel’s Algorithm has been applied in a wide range of fields, including numerical analysis,

engineering, physics, and computer science. In numerical analysis, the method is used to solve

systems of non-linear equations and to approximate solutions to partial differential equations. In

engineering, Seidel’s Algorithm is used to design and analyze control systems, power systems,

and other complex systems. In physics, the method is used to simulate the behavior of physical

systems, such as heat transfer and fluid flow. In computer science, Seidel’s Algorithm is used in

graph algorithms, such as finding the shortest path in a graph, and in machine learning, where it

is used to train neural networks.

In conclusion, Seidel’s Algorithm is a widely used iterative method for solving systems of linear

equations and has a rich history and a wide range of applications in various fields. Despite its

efficiency, the method can be sensitive to the choice of initial approximations and can converge

slowly for certain systems of equations, making it necessary to choose appropriate stopping

criteria and to monitor the convergence of the solution.

Despite of the above-mentioned algorithms, (Emami Taba, 2010), six different methods

for generating non-complete graphs (XNN, TSXP, MST, HVC, LHVC, and RSPT) were

introduced. These developments in generating non-complete graphs for TSP have led to

significant advancements in solution methods for generating non-complete graphs for other
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types of the Vehicle Routing Problem. Among the six algorithms, XNN was found to be the

most efficient in terms of both the quality of the tour and the time required to generate it.

In our literature review, we found that existing works on hospital routing and path-finding mainly

focus on optimizing patient flow in the emergency department. While these are important

considerations, they do not adequately address the unique challenges posed by the COVID-19

pandemic, such as the need to minimize physical contact and exposure between patients, staff,

and visitors. Additionally, many existing works do not consider the dynamic nature of the

pandemic, which requires frequent updates to routing and path-finding strategies.

Routing and path-finding in the corridors of hospitals during the COVID-19 pandemic is a critical

issue that requires urgent attention. Although there have been some attempts to address the

problem, it is clear that more comprehensive and efficient solutions are needed. By building on

existing algorithms studied in the literature review, we can potentially improve their performance.

To successfully adapt an algorithm, it’s crucial to have a deep understanding of the specific

problem and the data that will be used. Additionally, it’s important to thoroughly analyze the

original algorithm, identifying its strengths and weaknesses to identify areas for improvement.

In this thesis, we aim to fill this gap by proposing a novel approach that takes into account the

specific challenges posed by the COVID-19 pandemic.



CHAPTER 2

METHODOLOGY

The input for this problem is a graph represented by 𝐺 = (𝑉, 𝐸), where 𝑉 is the set of nodes and

𝐸 is the set of edges. Additionally, the input includes two sets of nodes, in the case of COVID-19

and Non-COVID patients, and a weight matrix 𝑊𝑒, which are explained in detail next section.

The output is an oriented graph, which means that the edges have a direction for both the flow of

patients. Each edge in the graph is labeled with its type.

The graph represents a network, such as a transportation network or a hospital network, and the

flow of patients refers to the movement of patients through the network. The sets SDco and

SDnco represent specific nodes in the network that are designated for the patients. The weight

matrix 𝑊𝑒 contains information about the weight associated with each edge in the network.

The output graph takes into account all of this information and represents the most efficient path

for the flow of patients through the network, considering the SDco and SDnco nodes, as well

as the edge weights.

The labeled edges provide additional information about the edges in the graph, such as the type

of edge it is (e.g., one-way, two-way) and the type of patient that can be transported through the

edge (e.g., Red patients, Green patients).

2.1 Building a floor graph

In graph theory, a planer graph is a graph with edges intersecting only at their endpoints on the

plane (Trudeau, 2013). We consider the case in which a planer graph is derived from the floor

map of the hospital and then used for pathway description. To model the hospital map, we first

create a physical topology as graph 𝐺 (𝑉, 𝐸), where 𝑉 denotes the set of all vertices, and 𝐸

denotes the set of unidirectional edges. Each vertex 𝑛 ∈ 𝑉 represents an intersection, wards, and

doors. All pairs of source and destination for COVID-19 and Non-COVID patients denote by

SDco and SDnco. The requirement for each flow of patients is to find disjoint paths and keep
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a safe distance as much as possible to minimize encounters. The set of nodes 𝑉 is defined as

follows.

• Each door is a node, and if two doors face each other in a corridor, we use a single node to

represent them.

• Each intersection of corridors is a node.

For any two nodes 𝑚, 𝑛 ∈ 𝑉 associated with doors, which are adjacent along the same corridors,

are linked by multiple edges corresponding to the number of lanes in the corridor. If the corridor

is wide enough, then more than one lane can be defined.

The edge from node 𝑚 to node 𝑛 is denoted by 𝑒𝑚𝑛 ∈ 𝐸 , and each edge is labeled as follows.

𝐿 (𝑒𝑚𝑛) =

𝑅 if 𝑒𝑚𝑛 belong to a COVID-19 path;

𝐺 if 𝑒𝑚𝑛 belong to a Non-COVID path.
(2.1)

In which 𝑅 represents red color for COVID-19 patients and 𝐺 represents green color for

Non-COVID patients. We study the problem of orienting edges in 𝐸 to guarantee the reachability

for all SDco and SDnco. The goal is to obtain a directed graph that meets certain connectivity

requirements. So our objective is to find an orientation of planar graph 𝐺 = (𝑉, 𝐸) → 𝐺′ =

(𝑉, 𝐸, 𝐴, 𝐿), in which 𝑉 is vertex, 𝐸 is the edges, 𝐴 is the arc, and 𝐿 is the label (green or red),

to minimize the number of two-way and shared edges/links such that all pairs are connected

with the COVID-19/Non-COVID patients requirements.

2.2 Offline scenario

In the first scenario, we address the graph orientation and labeling problem, where some of the

edges will be directed and colored i.e., labeled as either COVID-19 or Non-COVID or bi-colored

edges/links, in such a way as to fulfill the path requirements of sets SDco and SDnco. In other

words, it is a generalization of the one-way street problem, using mixed graphs (see, e.g., (Arkin

et al., 2002)), i.e., graphs with both edges and links, in order to guarantee paths for each node
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pair. For a given source/destination, patients follow a pre-determined route. In this way, first, we

Figure 2.1 Proposed offline scenario

divide corridors into one or several lanes, label them, and then use the color/direction to travel

in the hospital. Fig. 2.1 illustrates the proposed offline scenario.

2.2.1 Graph orientation and labeling problem

The idea is to assign circulation direction in each corridor lane as either a one-way lane or

alternating lanes, with respect to COVID-19 and Non-COVID patient flows. In our problem, as

we are looking for two general paths for red and green patients, it is not always possible to find

the 2-disjoint path for these two flows of patients, so we will define the strategy based on the

different types of edges to guarantee the reachability in the hospital. More precisely, we have

four types of lanes (see Figure 2.2 for an illustration):

• Type 1. one-way lane dedicated to a unique flow of patients, either COVID or Non-COVID

• Type 2. mixed one-way lane, with alternate usage for COVID-19 and Non-COVID patients

• Type 3. two-way lanes dedicated to a unique flow of patients, either COVID-19 or Non-

COVID, with alternate usage of each lane direction

• Type 4. mixed two-way lanes, with alternate usage for both ways and an alternate usage for

at least one way between COVID-19 and Non-COVID patients.
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Figure 2.2 Lane types

The objective is to assign directions to as many edges as possible so as to minimize the number of

shared lanes, minimizing first the number of shared lanes between COVID-19 and Non-COVID

patients.

2.2.2 Graph orientation and labeling algorithm

In the first scenario, the idea is to define routes for all trips of interest from one place to another

in the hospital for both COVID-19 and Non-COVID patients. In order to do so, we start from

the graph associated with the floor map of the hospital and define a graph orientation in order to

minimize the number of shared lanes while ensuring travels are as short as possible. Fig. 2.3

illustrates the associated graph of Fig. 0.1.

Pre-processing steps. The idea is to take care of corridors for which we cannot avoid sharing,

i.e., corridors corresponding to the dead-ends (see nodes A and B in Figure 2.3). Indeed, if one

of the nodes of the dead-end corridor belongs to SDco, then the edges of the dead-end edges

become links of type 4; otherwise, they are type 3, with assuming that at least one door is an

exit/entrance door. Otherwise, some edges could be of type 1 or 2 links.
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Figure 2.3 Graph associated with example floor

The second pre-processing has to do with some nodes, i.e., nodes associated with corridor

intersections. We can eliminate the nodes of degree 2 (which is not source or destination), such

as node 1 in Figure 0.1, and reconnect the two neighbor nodes directly. These nodes play no role

in terms of patient flow bifurcation.

Figure 2.4 Removing the dead-ends and determining SDnco

Identification of bridges among the edges. As our problem is a generalization of the one-way

street problem: this problem has a solution if and only if the graph has no bridge (Robbins,

1939), i.e., no edge such that their removal breaks the graph into two components. While this



34

condition is no more an if-and-only-if component in our context, it remains interesting to identify

the bridges insofar as they remain obligatory passages for the destinations which are not on the

same side of the bridge as their sources. Bridges can be identified in an undirected graph using

chain decompositions bridge-finding algorithm (Schmidt, 2013). Once bridges are identified, a

search of paths can be handled either in a mixed graph as in (Arkin et al., 2002) where bridges

remain as edges (i.e., of links of type 3 or 4) or in each connected component of the graph

followed by a phase of connecting the identified sub-paths in each connected component so as

to define the paths for the requested node pairs of SDco and SDnco. Fig. 2.4 illustrates the

removal of bridges (in this example, we remove the dead-end as a bridge).

General Hamiltonian tour in each connected component. While we do not need to connect

all node pairs, the identification of a Hamiltonian tour going through all the black nodes in every

connected component generates paths for every requested node pair. However, as the sub-graph

associated with each connected component is incomplete, we may need to go through each

node more than once. However, a reduction to the classical TSP can be easily made: calculate

the shortest path distance between every two non-direct nodes and set that to be the distance

between the two nodes. After solving the TSP, we also remembered the shortest paths, so then

we could transform it back into a solution to the original problem using the computed shortest

paths using the all-pairs shortest paths algorithm. Once we have obtained a Hamiltonian tour,

we can identify an orientation of edges upon deciding on an orientation of the Hamiltonian tour.

For a simple graph, after pre-processing, dead ends are eliminated, and after building a complete

subgraph from the source and destination, we find a Hamiltonian cycle, and then we find the

corresponding path in the pre-processed graph. Fig. 2.5 and Fig. 2.6 illustrates the steps involved

in finding the Hamiltonian tour for SDnco and determining the SDco for COVID patients.

In order to solve the TSP problem, we can either use an exact algorithm (see, e.g., (Applegate et al.,

2007)) or a heuristic. In our case, we use the approximate algorithm of Christofides (Christofides,

1976; Toth et al., 2002).



35

Figure 2.5 First tour for SDnco

Figure 2.6 Determining the SDco

With the Christofides algorithm, we find the shortest tour, and each selected edge increases the

weight. In fact, we set a specific weight for each type of edge, which after solving the problem

for flow of patients SDnco, the edges that are selected change to one of the types (the type 1

and 3). And then, we solve the problem for the other flow of patients SDco (with the updated

graph). We specify a weight for each type. In the beginning, all edges have a weight equal to
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Figure 2.7 Final tours for SDnco and SDco

Figure 2.8 The procedure in the offline scenario

1, except for virtual edges (added edges to complete the graph), which weight is equal to the

sum of the actual equivalent edges. After solving the problem for each flow of patients, we

change the weight of the edges that are selected. Whatever the weight of each type depends on

our graph. We assign different weights (𝑊𝑒) to the edges for each type based on priority. For

example, for types 3 and 4, the weight should be higher, and for type 1 (which is our priority),
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Algorithm 2.1 Orientation algorithm for offline Scenario

Input: 𝐺 = (𝑉, 𝐸), SDco, SDnco, 𝑊𝑒

Output: oriented graph for both flow of patients, Labeled edge: 𝑡𝑦𝑝𝑒1, ..., 4
1 Run 𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚
2 if 𝑛, 𝑚 ∈ SDnco & 𝑛, 𝑚 ∈ SDco then
3 𝑒𝑛𝑚 → 𝑡𝑦𝑝𝑒4
4 end if
5 else
6 𝑒𝑛𝑚 → 𝑡𝑦𝑝𝑒3
7 end if
8 Remove all bridges
9 Run 𝑎𝑙𝑙𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ_𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

10 Run 𝐶ℎ𝑟𝑖𝑠𝑡𝑜 𝑓 𝑖𝑑𝑒𝑠_𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 for all SDnco
11 for 𝑒𝑛𝑚 ∈ 𝐻𝑎𝑚𝑖𝑙𝑡𝑜𝑛𝑖𝑎𝑛𝑇𝑜𝑢𝑟SDnco do
12 𝑒𝑛𝑚 → 𝑡𝑦𝑝𝑒1, 3
13 𝑊𝑒 ← 𝑊𝑒 + 𝛼𝑁𝐶𝑂;
14 end for
15 Run 𝑎𝑙𝑙𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ_𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚
16 Run 𝐶ℎ𝑟𝑖𝑠𝑡𝑜 𝑓 𝑖𝑑𝑒𝑠_𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 for all SDco
17 for 𝑒𝑛𝑚 ∈ 𝐻𝑎𝑚𝑖𝑙𝑡𝑜𝑛𝑖𝑎𝑛𝑇𝑜𝑢𝑟SDco do
18 𝑒𝑛𝑚 → 𝑡𝑦𝑝𝑒1, 2, 3, 4
19 𝑊𝑒 ← 𝑊𝑒 + 𝛼𝐶𝑂;
20 end for
21 return 𝑡𝑦𝑝𝑒𝑠

we choose a weight equal to or around the weight of the virtual edge (in other words, the cost of

the shortest path between two vertices).

Reducing link and edge-sharing. After the prepossessing step, we use the Christofides

algorithm to find the first tour for SDnco and update the weight of edges for the next step. To

find the tour for SDco, we run the christofides algorithm for the second time on the updated

graph and called the tour as Ambulance Mode, in which the tour consists of the corridors that

have minimum shared corridors with the Non-COVID paths. Also, to increase the accessibility

for SDnco, we run the christofides algorithm at the end again. Fig. 2.7 illustrates the Final tours

for SDnco and SDco, and Fig. 2.8 illustrates the general steps involved in scenario one. Our

proposed algorithm for offline scenario is presented in Algorithm 2.1.
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2.3 Online scenario

At the outset, we compute a set of potential uncolored paths for each pair of sources/destinations.

At any time, when a patient moves, paths are dynamically re-evaluated (check for the first

path that is available when reaching a corridor intersection) based on their availability at each

corridor intersection. For a green patient, if a green path is selected, only social distancing is

required. Otherwise, the green patient has to wait until the path is free (and recolored green).

For a red patient, the path has to be cleared first, labeled red, before he can go. Color is

removed when a link becomes empty. In this scenario, we have a smartphone, and it gives the

direction (at any time, it looks for the shortest available path, refreshing its calculation at every

corridor intersection). In Scenario 2, the idea is to dynamically decide which way to go at

Figure 2.9 Patient flow navigation system in the online scenario

each intersection based on the real-time information of the corridor occupancy (Fig. 2.9 shows

the patient flow navigation system). Indeed, at each corridor intersection, we check with the

monitoring system which path towards the patient’s destination has the least meets with other

patients and the minimum occupancy. We consider different options to define both the least

number of patient encounters and the least occupancy.

Non-COVID patients path: The least number of patient encounters refers to the minimum

estimate of the number of Non-COVID patients encountered while traveling to the destination
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because we allow having several Non-COVID patients simultaneously in the corridors (based on

the social distance). As travel paths are dynamically decided, estimation of meets is not easy.

Therefore an alternative is to only estimate the meets in the next 1 or 2 corridors along the path

towards the destination.

COVID-19 patients path: We use a similar strategy to select the path towards the destination,

with the difference that we wait at the entrance of each corridor until the corridor is free.

COVID-19 patients will have dedicated corridors, and Non-COVID patients will wait in the

corner of the entrance corridor.

In scenario 1, paths are precomputed and are colored, but in Scenario 2 paths are precomputed

and are uncolored at the outset. In the second scenario, we assume that everybody has a cell

phone, and we have their location. We dynamically allocate the safest and shortest routes to

patients who have a smartphone. In this case, simply we can send a notification to users in order

to warn them that they must change their location. The corridors are colored at the time of

their selection if no patient is already on the path (with social distancing). Color is removed

when a link becomes empty. In the prepossessing step, for every corridor intersection, ward,

exit, and the entrance of the hospital, we compute the k shortest paths. When a patient reaches

a corridor intersection: identify the "shortest path" (including the waiting time/queuing) to

their destination, so that determine which way the patient go next, and then stop at the first

encountered corridor intersection.

Paths intersection constraints: We always consider the path for red patients as one way, and

we can have just one red patient at a time. The green patients must not intersect with red patients

and satisfy the required social distancing (2 meters) with other patients. Although green patients

have less priority than red patients, they have more freedom to allocate different routes.

Definition of the priorities: We define the priority of different patients group in the hospital as

red is always our priority over the green, and considering social distancing for green patients.

The green can consist of patients, medical staff, and security guards, accompanied by a patient.
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In the green paths, we could have many people while keeping a safe distance. If the shortest

path does not have the capacity, it checks the next corridor. The patient can wait at the side of

the intersection (waiting area) until one of the corridors becomes available (priority with the

first corridor). Our proposed algorithm for the online scenario is presented in Algorithm 2.2.

Algorithm 2.2 routine algorithm for online Scenario

Input: 𝐺 = (𝑉, 𝐸), SDco, SDnco, 𝑊𝑒

Output: path for each patient with SDco, SDnco
1 if patient ∈ SDnco then
2 for 𝑛, 𝑚 ∈ SDnco do
3 Run 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ_𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚
4 𝑊𝑒 ← 𝑊𝑒 + 𝛼𝑁𝐶𝑂;
5 end for
6 end if
7 else
8 for 𝑛, 𝑚 ∈ SDco do
9 Run 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ_𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

10 𝑊𝑒 ← 𝑊𝑒 + 𝛼𝐶𝑂;
11 end for
12 end if
13 return



CHAPTER 3

SIMULATION RESULTS

In this section, we first discuss the generation of the required data and hospital map; then we

compare two proposed scenarios. We read the CSV file of the hospital map floor, create our

graph, and then implement our proposed algorithms using NetworkX library (Hagberg et al.,

2008).

3.1 Generation of data sets

Patient flows in the Emergency Department: We consider three sequences of people in the

Emergency Department as shown in Table 3.1.

Figure 3.1 Hospital inpatient map of the first floor

Nurse assessment and doctor examination are two key steps in an emergency, possibly in addition

to examinations required by the doctor, e.g., CT-scan or other tests. In this case, the patient must

circulate in the hospital outside the emergency room: he takes different corridors of the hospital

and crosses paths with other patients.
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Table 3.1 ED Patient Sequences at the Emergency Department

Sequence Number Visiting flow
Seq1 (10%) Nurse triage, clerk registration, patient discharge.
Seq2 (60%) Nurse triage, clerk registration, nurse assessment, physician exami-

nation, patient discharge.
Seq3 (30%) Nurse triage, clerk registration, nurse assessment, physician exami-

nation, CT scan, patient discharge.

Patient flows in the wards of hospital: In this work, we consider different wards, e.g.,

Ambulatory Care, dialysis, Chemotherapy (COPS), Diagnostic Imaging, the Laboratory, etc.

Similar to Emergency Department, we consider a different sequence of patients for hospital

wards, but we suppose each destination is a new source for the next step.

Figure 3.2 The corresponding graph of the first floor

Patient Arrival Patterns: We use Poisson Distribution for the Emergency Department. For

other wards, we consider scheduled patient arrival time, in which they accept patients based on

the scheduled appointments.
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3.2 Hospital map

It is not possible to navigate directly from 2D floor plan drawings or a database. For path

computation, indoor spatial details must be processed to create an indoor graph. An indoor

graph describes the spatial connections between indoor spaces concisely and contains enough

geometrical and topological data to describe the surrounding environment. Figure 3.1, 3.2, 3.3, 3.4

are examples of two indoor floors of Saskatchewan Health Authority (Authority, 2022) including

wards, accessible and inaccessible areas, entrance and exit doors, walls, and paths. As a

Figure 3.3 Hospital inpatient map of the second floor

simplified view, a floor map is a set of rooms with a set of doors, and each door is either an

entrance only, an exit only, or a combined entrance and exit. In the COVID context, the idea

is to use as many doors as possible, including some emergency exits, in order to separate the

entrance and exit for COVID-19 and Non-COVID patients, reducing the meets between patients

commuting to the wards. We set the speed of every patient 0.5 per second, and the simulation

lasted five hours. The simulation settings are summarized in Table 3.2. We ran all experiments

for both scenarios and evaluated their performance based on the following metrics.
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Figure 3.4 The corresponding graph of the second floor

• The number of meets between patients in each scenario: refers to the count of meets where

two patients come into contact with each other. A meet can occur when patients cross paths,

are in close proximity, or share a common space, such as a waiting area or corridor.

• The maximum patient waiting time for each experiment: refers to the longest interval of time

a patient has to wait in the corridors.

• The total waiting time for each experiment: refers to the sum of the waiting times of all

patients in a single experiment. This metric represents the overall time that patients spent

waiting in corridors during their visit.

• Maximum distance between the source and destination 𝑑 (𝑠, 𝑡): refers to the longest distance

between a starting point (source) and an end point (destination) in a hospital.

Table 3.2 Simulation Parameters

Parameter Value
Number of patients 100 200 300 400 500 600
Number of Covid-19 patients 33 65 100 132 165 198
Patient speed 0.5 m/s
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Figure 3.5 Number of meets between patients

3.3 Baseline

In order to better understand the effectiveness of the two scenarios, we set a baseline using

a Dĳkstra algorithm (Samah et al., 2015). The Dĳkstra algorithm is a popular shortest-path

algorithm used to find the shortest path between two nodes in a graph. It selects the node with

the lowest cost and repeatedly updates the cost of neighboring nodes until the destination node

is reached. The algorithm is commonly used in routing, navigation, and transportation systems.

This method is frequently used in calculating the shortest route in a building and has been

modified to incorporate the next node state into route selection. The performance of the Dĳkstra

algorithm can be compared to our scenarios to understand the performance.
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3.4 Comparison between two scenarios

Fig. 3.5 compares the numbers of meets achieved respectively by offline, online scenario, and the

baseline. We can see Scenario 2 has a better result than Scenario 1 and the baseline. It is worth

noting here that all meets are the unavoidable meets, e.g., the nodes associated with a bridge.

Figure 3.6 Comparison of patient max waiting time per minute

In Fig. 3.6 although Scenario 2 reduces waiting time efficiently, finding a suitable path for each

patient becomes more challenging if the number of patients increases. Moreover, because of the

high probability of patients crossing the corridors (i.e., patients moving in opposite directions of

a corridor at the same time), the patient waiting time becomes longer.

Fig. 3.7 show the result of patient total waiting time spent in the corridors.

In Scenario 1, we define a specific tour for patients and guide them through these edges at any

time. Therefore, when the number of patients is low, the patient waiting time is longer than

in Scenario 2. In Scenario 2, the patient can access an empty corridor immediately; unlike
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Scenario 1, the patient does not need to wait for the path to be open or move away from other

patients (to respect social distancing) before reaching the next corridor.

Figure 3.7 Comparison of patient total waiting time per minute

Fig. 3.8 compares the maximum distance between the source and destination. In Scenario 2,

patients have to travel a longer distance than in Scenario 1 to reach their destination. Although

the baseline achieves the shortest distance for the patient, it has a higher risk of the meets

between patients and increases the risk of prorogation of the virus.
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Figure 3.8 Comparison of the Maximum 𝑑 (𝑠, 𝑡)



CONCLUSION AND RECOMMENDATIONS

In this thesis, we propose a new solution for path-finding in the healthcare environment during the

pandemic. We present two scenarios as offline and online path-finding, in which the requirements

of two flows of patients (COVID-19 and Non-COVID) are considered. In the first scenario, our

model consists of finding the tour for each patient flow that (i) minimizes the number of two-ways

corridors and (ii) maximize disjoint paths, while maintaining the reachability from each source

to the desired destinations. In order to obtain the optimized solution in near real-time, we

propose an algorithm based on the well-known Christofides’ algorithm. In the second scenario,

we studied an online shortest path algorithm to dynamically find a path, with a path definition

that is dynamically redefined at each corridor intersection, depending on the instantaneous flow

of patients. Both scenarios have been validated using simulation tools. Their performance may

vary depending on the floor map of each hospital and the associated patient flows. In any case,

both algorithms meet the patient flow requirements while providing the best possible circulation

paths. In particular, both algorithms can identify disjoint paths as much as possible in order to

reduce the number of patient meets.

Furthermore, this study can significantly impact the hospital sector, especially with the high

tendency for patient flows in healthcare environments. Also, it can enhance the existing intelligent

technologies in hospitals.

This study can be extended by relaxing existing assumptions in the scenarios and the simulation.

It is possible to vary the speed at which patients move through the corridors, particularly for

elderly patients. The capacity of hospital waiting rooms determines the maximum number of

patients who can access the corridors at any given time. However, hospitals can optimize their

waiting rooms to accommodate a higher number of patients. To efficiently manage patient flow,

hospitals can analyze real data to determine the source and destination of each patient.
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Further research can explore the potential of integrating the proposed algorithm with other

intelligent technologies, such as machine learning-based predictive models, to improve the

accuracy and efficiency of routing and path-finding decisions. Another area for future work is to

evaluate the feasibility and effectiveness of implementing the proposed algorithm in real-world

hospital environments. This involves conducting pilot studies in selected hospitals to assess the

practicality of the algorithm and to identify any potential challenges or limitations that need to

be addressed. The results of such studies can inform the further refinement and optimization of

the algorithm to ensure its practicality and effectiveness in real-world hospital settings.

Furthermore, there is potential for the proposed algorithm to be extended beyond the scope of

the COVID-19 pandemic. For example, it can be applied to improve routing and path-finding

decisions in hospitals during normal operations, to optimize resource allocation and improve

patient outcomes. Additionally, the algorithm can be adapted for use in other settings, such as

emergency response and disaster management, to improve the efficiency of emergency response

and evacuation operations. The proposed scenarios can also be used in other public environments

(e.g., supermarkets or manufacturing production/warehouse floors) in order to minimize the

number of customer/worker meets, which is of interest in a pandemic environment.

This research was conducted during a productive internship at MITACS and Humanitas (IT

19243), the critical link between the private sector and post-secondary institutions, where it has

gained extensive attention.



APPENDIX I

ARTICLES PUBLISHED IN CONFERENCES

We have presented the main content of this thesis in a conference paper.

• "Optimized Circulation Management In Hospitals During COVID-19" which has been

accepted in IEEE International Conference on Communications (ICC): SAC E-Health Track

2023.
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