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FOREWORD

This dissertation comes as the result of the author’s Ph.D. under the supervision of Professor

Georges Kaddoum from September 2018 to December 2022. It is a manuscript-based thesis

based on four published journals. This work focuses on non-orthogonal multiple access (NOMA),

which enables massive connectivity and improved spectral efficiency which are essential for

upcoming generations of wireless communications. This work studies the effect of impairments

on the viability of NOMA within different challenging scenarios, which include several defects

such as AM/PM nonlinearities and impulsive noise. We showed the effect of the studied

imperfections and proposed suitable techniques for mitigating their deleterious effects. This led

to improving the implementations of NOMA within different conditions of the network, thus

enabling better BER performance, spectral efficiency, and sum rates. This work can also be

extended for practical implementation in the fifth (5G) and sixth (6G) upcoming generations.

In this dissertation, the first chapter presents an overview of machine learning and information

theory tools that we utilized. The second chapter presents an extensive literature review on

NOMA, depicting its different categories, system models, and newly evolved applications. Then,

the following four chapters are written based on the author’s journal papers. Last but not least,

the conclusion and recommendations for future work are given in the last chapter.
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Conception et analyse des performances de nouvelles techniques de décodage pour
l’accès multiple non orthogonal des réseaux sans fil de la 5G et d’au-delà

Elie Sfeir

RÉSUMÉ
Le domaine des communications sans fil a connu plusieurs évolutions qui ont considérablement
changé notre mode de vie. Ces évolutions ont été motivées non seulement par le besoin de plus
larges débits de données, mais également par les exigences de performance toujours plus strictes
d’une pléthore de nouvelles applications technologiques. La croissance explosive continue
du nombre d’appareils connectés combinée à l’émergence de plusieurs nouvelles applications
telles que l’internet des objets (IdO), la télémédecine, la technologie des véhicules, les maisons
et appareils intelligents, poussent les ingénieurs et les chercheurs à innover et à concevoir de
nouvelles technologies d’accès multiple viables, capables de couvrir les demandes croissantes
de connectivité et de débits de données plus élevés.

L’accès multiple non orthogonal (NOMA), par opposition aux techniques traditionnelles d’accès
multiple orthogonal (OMA), permet à plusieurs utilisateurs de partager le même élément de
ressource orthogonal. Ainsi, NOMA est une technologie prometteuse et un excellent candidat
pour satisfaire la plupart des besoins des réseaux de cinquième génération (5G), notamment une
connectivité massive, une efficacité spectrale plus élevée et des débits d’utilisation plus élevés.
Les recherches en NOMA ont conduit à la mise au point de plusieurs architectures divisées en
deux catégories principales distinguées par la nature du multiplexage des utilisateurs, qui est
soit dans le domaine de puissance (PD-NOMA), soit dans le domaine de code (CD-NOMA).

Parmi les architectures multiples de CD-NOMA, l’accès multiple par code clairsemé (SCMA),
qui consiste en un mappage d’un ensemble de code pour chacun des utilisateurs du réseau, a
attiré une attention considérable pour satisfaire les besoins des prochaines générations, couvrant
spécifiquement une connectivité massive et une efficacité spectrale supérieure. Cependant,
comme toute autre nouvelle technologie, diverses dégradations de la transmission peuvent
compromettre les performances. Cette thèse met en lumière la technologie SCMA et étudie son
application dans plusieurs scénarios. Nous analysons les performances de SCMA en présence
de plusieurs dégradations qui pourraient gravement détériorer la performance du système de
communication et présentons des solutions pour atténuer les dégradations de performance.
Aussi, nous étudions PD-NOMA dans des scénarios impliquant des dégradations et proposons
des solutions pour atténuer la détérioration des performances.

Dans ce contexte, le troisième chapitre présente le modèle de simulation pour SCMA avec
une analyse détaillée sur le taux d’erreurs binaire (BER), en présence des non-linéarités de
l’amplicateur de puissance (PA). Les effets néfastes des non-linéarités sont montrés. Les
techniques de traitement du signal se sont avérées être des solutions convaincantes pour atténuer
la non-linéarité en général, en particulier les techniques basées sur les espaces de Hilbert à noyau
reproduisant (RKHS) qui jouissent d’une légère complexité et guarantissent la représentation
exacte de la fonction non linéaire. Ainsi, nous proposons une solution utilisant les caractéristiques
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de Fourier aléatoires (RFF) pour atténuer les effets de la non-linéarité, ce qui permet d’améliorer
le BER par rapport à l’algorithme de passage de message classique (MPA) fonctionnant dans
des conditions linéaires.

Dans le quatrième chapitre, nous abordons le défi demitigation du bruit impulsif qui sera commun
dans les écosystèmes du 5G, en particulier l’IdO. La présence d’interférence électromagnétique,
désignée par le bruit impulsif, dégrade les performances des applications IdO. De plus, étant
donné la superposition de mots de code dans SCMA, l’effet serait plus prononcé. Par conséquent,
nous étudions l’implémentation de la SCMA en présence de bruit impulsif. Nous étudions
l’impact du bruit impulsif sur le BER et proposons une solution basée sur la correntropie
maximale. Notre modèle transfère des gradients de potentiel d’information (IP) au lieu du
logarithme du rapport de vraisemblance (LLR) normalement utilisé dans le MPA conventionnel.
Les gains de performance obtenus montrent la viabilité de la solution même dans des scénarios
très impulsifs.

Dans le cinquième chapitre, nous proposons une autre méthode pour atténuer l’effet de non-
linéarité. Notre nouvelle méthode est basée sur la décomposition de Bussgang et présente
une complexité moindre, ce qui la rend intéressante pour une implémentation dans les réseaux
internet des objets industriels (IIoT). Nous calculons le coefficient de Bussgang et mettons à
jour les nouveaux gains de canal avec le coefficient obtenu. De plus, une analyse montrant la
convergence de la méthode proposée avec une comparaison avec la solution basée sur les RFF
est fournie. Les résultats obtenus confirment que la technique d’accès multiple SCMA est une
solution viable pour divers scénarios, même en présence de conditions non idéales.

Dans le sixième chapitre, nous considérons le PD-NOMA en présence des non-linéairités
du PA. Nous montrons l’effet néfaste des non-linéarités des PA sur le BER des utilisateurs
superposés dans PD-NOMA, en particulier pour l’utilisateur qui effectue l’annulation successive
d’interférence (SIC). En utilisant le RKHS, nous proposons un algorithme de décodage basé sur
les RFF pour atténuer ces imperfections matérielles et atteindre un BER qui se rapproche de
celui du scénario linéaire.

Mots-clés: NOMA, SCMA, non-linéarité, bruit impulsif



Design and Performance analysis of Novel Decoding Techniques for Non-Orthogonal
Multiple Access for 5G and Beyond-5G Wireless Networks

Elie Sfeir

ABSTRACT

The field of wireless communications has witnessed several evolutions which have significantly
changed our lifestyle. These evolutions were driven by not only the need of increase in data
rates, but also the ever-increasing stringent performance requirements of a plethora of novel
technological applications. The continuous explosive growth in the number of connected
devices combined with the emergence of several new applications such as Internet of Things
(IoT), telemedicine, vehicular technology, smart homes, and appliances is pushing engineers
and researchers, to innovate and conceive new viable multiple access technologies capable of
covering the increasing demands for higher connectivity and data rates.

Non-orthogonal multiple access (NOMA), as opposed to the traditional orthogonal multiple
access (OMA) techniques, allows multiple users to share the same orthogonal resource element.
Thus, NOMA is a promising technology and an excellent candidate to satisfy fifth generation
(5G) network needs, i.e., massive connectivity, higher spectral efficiency, and higher user rate.
Research in NOMA has led to the inception of several architectures for NOMA often categorized
based on the users’ multiplexing, which is either in the power domain (PD-NOMA) or the code
domain (CD-NOMA).

Among CD-NOMA architectures, sparse code multiple access (SCMA), which is based on
codebook mapping for network users, has attracted significant attention given its ability to
satisfy the massive connectivity and higher spectral efficiency requirements of next generation
networks. Like every new wireless communication technology, the implementation within
practical networks presents multiple inevitable teething challenges and impediments. This
thesis sheds light on SCMA technology and investigates its application within various scenarios.
We analyze SCMA’s performance in the presence of several impairments that could severely
deteriorate the communication performance and present solutions for mitigating the induced
performance degradation. Also, we study PD-NOMA within scenarios involving impairments
and propose solutions for mitigating performance degradation.

In this context, the third chapter presents the simulationmodel alongwith a detailed analysis of the
bit error rate (BER) performance for SCMA in the presence of power-amplifier (PA) nonlinearities.
The detrimental effects of PA nonlinearities are shown. Signal processing techniques have been
found to be compelling solutions for mitigating device nonlinearities, especially reproducing
kernel Hilbert Spaces (RKHS) based techniques that enjoy slight complexity combined with
their ability to exactly represent a nonlinear function. Thereby, we propose a Random Fourier
Features (RFF) based solution to mitigate nonlinearity hurdles, which achieves improved BER
performance compared to the classical message passing algorithm (MPA) operating in linear
conditions.
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In the fourth chapter, we tackle the challenge of mitigating impulsive noise, which will
be common within the 5G ecosystems, specifically for IoT applications. The presence of
electromagnetic interference, known as impulsive noise, degrades the performance of IoT
applications. Additionally, given the superposition of codewords in SCMA, the performance
degradation is more pronounced. Therefore, we study the implementation of SCMA in the
presence of impulsive noise. We study the impact of impulsive noise on the BER performance.
To mitigate the induced performance degradation, we propose a Maximum-Correntropy-based
solution. Our proposed model transfers information potential (IP) gradients instead of the
log-likelihood ratio (LLR) used in the conventional MPA. The achieved performance gains show
the viability of the solution, even within highly impulsive scenarios.

In the fifth chapter, we propose another method for alleviating the effect of nonlinearities. Our
new approach is based on the Bussgang decomposition and requires a relative low complexity,
making it attractive for implementation within industrial internet of things (IIoT) networks. We
compute the Bussgang coefficient and update the new channel gains with the obtained coefficient.
Additionally, an analysis is provided that shows the convergence of the proposed method along
with a comparison with the RFF based solution. The obtained results ascertained that SCMA is
a viable solution for implementation within various challenging conditions and environments.

In the sixth chapter, we consider PD-NOMA in the presence of PA nonlinearities. We show the
harmful effect of PA nonlinearities on the BER performance of superposed users in PD-NOMA,
especially for the users performing the successive interference cancellation (SIC). Using RKHS,
we propose an RFF based decoding algorithm to mitigate these hardware imperfections and
achieve a BER performance that approaches the linear scenario.

Keywords: NOMA, SCMA, nonlinearity, impulsive Noise
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INTRODUCTION

0.1 Motivation

The recent advancements in telecommunications have shaped our lives and impacted our

generations. This would not have been achieved without the tremendous and continuous

improvement in the wireless network technologies over the course of the different generations

of wireless communication systems. Wireless communication systems have witnessed several

evolutions where each generation, characterized by its distinct architecture, was conceived to

satisfy the demands for increased data rates, faster and more reliable communication. The first

generation systems (1G) of wireless networks was analog and based on frequency division

multiple access (FDMA), where the bandwidth is divided into channels, and each channel can

be assigned to only one user at a time. In the second generation (2G), instead of dividing the

frequency, a division over time was proposed, namely, time division multiple access (TDMA).

In this context, the different users are allocated different time slots for transmitting information

on the same frequency. Thus, the users transmit, one after the other, each during their assigned

time slot. The third generation (3G) was based on code division multiple access (CDMA).

CDMA is a wideband communication technology that does not use time or frequency as a

resource but codes instead. Here, each user is assigned a specific spreading code used to

multiply his information sequence. Precisely, the low bandwidth data message (voice or data) is

multiplied by a large pseudo-random noise (PN) sequence. Thus, users in CDMA can use the

same frequency simultaneously but with different codes. Besides, the information sequence can

be retrieved at the receiver by multiplying the received message by the same code used at the

transmitter. Moreover, the fourth generation (4G) of wireless communications, also known as

long-term evolution (LTE), was based on orthogonal frequency division multiplexing (OFDM).

OFDM is another wideband communication technology which, unlike CDMA, consists of a

multi-carrier modulation technique. The bandwidth B, instead of having one single carrier, is
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divided into N subcarriers that are separated by B/N. On each of these subcarriers, a different

stream of data is sent. As a result, the N subcarriers carry N streams; thus, higher data rates can

be achieved. Moreover, the orthogonality reduces the intercarrier interference (ICI), while a

cyclic prefix is added to mitigate intersymbol interference (ISI). Finally, with the emergence

and vivid tremendous expansion of new applications, such as the Internet of Things (IoT),

vehicular technologies, eHealth applications, augmented reality (AR), virtual reality (VR), and

the ever-increasing number of requested connections, the fifth generation (5G) is satisfying

higher data rates, massive connectivity, higher spectral efficiency, lower latency, and higher

reliability Dangi, Lalwani, Choudhary, You & Pau (2021).

The stringent requirements of 5G specifications are diverse. They cover several aspects of wireless

communications, including a peak data rate of 20 Gbit/s, connection density of one million

devices per square kilometer, and spectrum efficiency of three times the one of international

mobile telecommunications-Advanced (IMT-advanced). The complete diagram of 5G planned

services is shown in Fig. 0.1.

Therefore these requirements lead us to define 5G use cases tailored for specific applications.

These use cases are shown in Fig. 0.2 and summarized as follows:

• Enhanced mobile broadband (eMBB), which encompasses the applications needing higher

throughput and spectral efficiency, such as 3D videos and video calling applications.

• Massive machine-type communications (mMTC), which supports an extremely high con-

nection density of low consumption devices, such as smart metering, sensors, and IoT

devices.

• Ultra-reliable low latency communication (URLLC), which covers mission-critical applica-

tions where errors or delays are not tolerated, such as telemedicine surgery, autonomous cars,

and industrial automation.
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Figure 0.1 5G envisioned services specifications Series (2015)

That being said, much effort in research and industry all over the world is being put into

introducing new ideas, conceiving new architectures, and establishing new technologies that

will make these aspirations a reality by giving birth to a new evolved wireless mobile generation.

In this vein, many technologies have been proposed as strong candidates for the 5G standard,

including

• Massive multiple-input multiple-output systems (MIMO).

• Millimeter-wave (mmWave) communications.

• Heterogeneous networks (HetNets).

• Ultra-dense networks (UDNs).
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Figure 0.2 5G use cases Mallinson (2016)

• Non-orthogonal multiple access (NOMA).

Implementing these new technologies necessitates the development of new mathematical

models to represent the system model and study its performance. On the other hand, the QoS

requirements are no longer limited to satisfying a specific support level of data rates but to other

more complex needs, such as service coverage over high mobility scenarios, high reliability, and

massive connectivity.

0.2 Problem Statement

As the world’s population is rapidly growing and becoming increasingly urbanized, improving our

cities through enabling connectivity and automation of the different resources and operations is

a critical global necessity. In this context, massive machine-type communication is defined as an

enabler for wireless connectivity for a large number of low-complexity, low-power machine-type
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devices Bockelmann, Pratas, Nikopour, Au, Svensson, Stefanovic, Popovski & Dekorsy (2016).

Specifically, mMTC includes a wide range of nonconventional UEs, such as smart devices,

IoT devices, energy meters, sensors for air and water quality monitoring, electronic billboards,

charging stations for electric vehicles, as shown in Figure 0.3. Consequently, 5G is expected

to provide a high connection density of about one million devices per square kilometer, which

is ten times the current LTE connection density, which is about a hundred thousand devices

per square kilometer. These devices will sporadically send and receive short packets of data.

This high activity will increase the demands for more stringent requirements, including more

bandwidth, higher data rates, and more connections. Revisiting the previous generations, they

have all been based on orthogonal multiple access (OMA) techniques, where users are allocated

orthogonal resources in time, frequency, or code to avoid multiple access interference (MAI)

as much as possible. However, in OMA models, we are always bounded by the number of

resources due to the orthogonality constraint, which limits their scalability and ability to satisfy

the above-mentioned requirements. Therefore new convenient architectures tailored to fulfill

the afore-mentioned requirements are sought. In this context, NOMA was introduced as a

compelling architecture for enabling massive connectivity, higher spectral efficiency, higher

cell-edge throughput, and data rates. Meanwhile, NOMA architectures are divided into two main

categories: power domain NOMA (PD-NOMA) and code domain NOMA (CD-NOMA). The

basic idea behind NOMA is to allow more than one user to send data on the same orthogonal

resource, leading to a higher connection density and spectral efficiency, making it a potential

candidate for 5G Dai et al. (2015). However, several performance degradations are expected to

arise when it comes to realistic implementations. Therefore it is essential to study the impact

of these impairments and propose suitable mitigation techniques. Particularly the growing

density of connected devices combined with the sporadic nature of their activity give rise to

electromagnetic interference, commonly known as impulsive noise that could jeopardize the

performance of communication devices. Additionally, imperfections in hardware, such as
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nonlinear hardware, are very likely, which could also threaten the system’s performance if not

mitigated. Meanwhile, as previously stated, most newly connected devices are nonconventional

and of low complexity and hence might not be able to handle complex algorithms; therefore,

seeking low complexity mitigation algorithms is crucial.

Figure 0.3 Various mMTC devices Morocho-Cayamcela et al. (2019)

0.3 Research Objectives

In this thesis, we focus on the mMTC use case, particularly achieving massive connectivity, by

considering NOMA. In this regards, the practical implementation of NOMA presents multiple

challenges, such as power amplifier (PA) nonlinearities, impulsive noise, and some devices’

limited computational complexity. That being said, our research objectives are as follows:

• Non-ideal hardware, specifically PA nonlinearity, is a frequent defect in electronics; conse-

quently, we will study the impact of PA nonlinearities on a CD-NOMA technique, sparse

code multiple access (SCMA). We aim to propose a suitable mitigation technique for PA

nonlinearities using the theory of reproducing kernel Hilbert space (RKHS), which proved to

enable immune solutions to such flaws in various applications, such as ultraviolet communica-
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tions Bhatia, Jain, Garg & Mitra (2021), visible light communications Mitra, Miramirkhani,

Bhatia & Uysal (2018), Jain (2022), Miramirkhani, Karbalayghareh, Zeydan & Mitra (2022),

Mitra, Miramirkhani, Bhatia & Uysal (2020b), fiber communication systems Jain, Agrawal,

Bhatia & Prakash (2019a). This approach will be considered for both SCMA and PD-NOMA.

• Many of the new proposed technologies for mMTC, such as the industrial internet of things

(IIoT), give rise to electromagnetic interference, commonly known as impulsive noise. Hence

we aim to study the impact of impulsive noise on the bit error rate (BER) performance of

SCMA and propose a suitable mitigation technique.

• Among the newly deployed devices are low-power devices with limited computational

capability, where algorithms with little complexity are requested. Hence we seek to explore

less complex algorithms for message decoding at the receiver and utilize our previously

developed algorithms to benchmark their BER performance.

0.4 Contributions and Outline

NOMA is a potential candidate for enabling mMTC. NOMA architectures are divided into two

main categories: PD-NOMA and CD-NOMA. SCMA, a CD-NOMA technique for achieving

higher connection densities, higher cell-edge throughput, and spectral efficiency, is a potential

candidate for next generation wireless communications. On the other hand, PD-NOMA is

particularly appealing as it improves user fairness while enhancing spectral efficiency and benefits

from a simplistic successive interference cancellation (SIC) decoding at the receiver. Hence,

throughout our research, we envision implementing NOMA, precisely SCMA and PD-NOMA,

within multiple challenging scenarios and show the viability of our proposed algorithms.

In the first chapter, we present machine learning and information theory tools that were utilized

for developing our algorithms. We present the corresponding theoretical proofs and theorems

along with the motivation.
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In the second chapter, we undertake a comprehensive literature review on NOMA, where we

expose its different categories and depict the corresponding system models. We also consider

some exciting applications from the literature highlighting the potential of NOMA and its new

system developments.

Chapter 3 presents the first article where we study a frequent impairment in hardware, which is

PA nonlinearity, and investigate its impact on the performance of SCMA.We show its deleterious

effect and propose a RFF-based solution to mitigate it. We simulate the BER of our proposed

method with respect to SNR, under different types and orders of severity of PA nonlinear models

as well as for several SCMA codebooks. Our simulation results show a notable improvement in

the BER performance with the proposed approach, almost reaching the ideal linear scenario.

Additionally, we prove the optimality of our results using functional analysis and RKHS theorems

and show that RFF improves the convergence of the MPA in the presence of nonlinearities.

Chapter 4 presents the second journal where we study another frequent impairment in wireless

communications that impedes ideal wireless systems’ performance, which is impulsive noise.

We consider Gaussian-mixture based impulsive noise in downlink SCMA systems. We simulate

the BER performance for different scenarios of impulsive noise severity and show the deleterious

effect caused by impulsive noise. To mitigate this problem, we use information theoretic learning

and propose a maximum-correntropy based receiver. Our novel proposed receiver consists in

propagating information potential gradients instead of log-likelihood probabilities due to its

particular immunity to impulsive noise. We simulate the proposed receiver under different

impulsive noise scenarios. Our results show improved BER performance and are backed by

analytical proofs using theorems from information theoretic learning.

Chapter 5 presents our third work, where we propose a nonlinearity mitigation technique for

computationally lightweight devices. We use Bussgang’s decomposition to propose a low-

complexity detector, which is suitable for hardware-limited IIoT devices, where satisfying a low
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computational cost outweighs the importance of a maximum BER performance. We simulate

our new proposed Bussgang-based MPA detector in different channel conditions and benchmark

its BER performance with our RFF-based receiver. We also provide analytical proofs for the

error floor and the error complexity. The assessment of computational complexity and error

floor validates the importance of switching between the different methods for hardware-limited

IIoT systems, where reaching a particular degree of QoS at minimal computational cost is more

important than obtaining a globally ideal BER performance.

Chapter 6 presents our fourth and last work, where we consider PD-NOMA in the presence of PA

nonlinearities. We show the damage caused by the PA nonlinearities on the BER performance of

the superposed users, especially for the SIC user who has to decode the other user’s information

before his own. We propose an RFF-based decoding algorithm for mitigating this impairment.

We simulate our proposed algorithm under different PA nonlinearities, such as AM-AM and

AM-PM, and under different severity levels. Our proposed algorithm shows notable improvement

in the BER performance of the users, especially for the SIC user whose performance approaches

that of the ideal linear scenario. Additionally, we present an analytical validation for the obtained

simulation results using the theorems of functional analysis.
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CHAPTER 1

OVERVIEW OF MACHINE LEARNING AND INFORMATION THEORY TOOLS
UTILIZED IN WIRELESS COMMUNICATIONS

Wireless communication systems are continuously evolving into more heterogeneous and

complex networks with increasingly tight conditions and challenging operating environments.

Thanks to advances in computer hardware and the availability of an enormous amount of data,

machine learning solutions for various applications in wireless systems have gained increasing

traction. On the other hand, since its inception, information theory has been a powerful tool for

studying the performance limits of wireless systems and for adaptive filtering scenarios. Hence,

in our work, we envision utilizing tools from machine learning and information theory to build

our algorithms. That being said, we will, in the coming sections, depict more details on the

characteristics of these tools, which will be used later in our work.

1.1 Machine Learning in Wireless Communication

Future communications are envisioned to embrace a more dense and highly diversified network,

leading to increased interference and more frequent impairments caused by nonlinear hardware.

On the other hand, in order to meet the challenge of achieving massive connectivity and 10-100

times higher data rates compared to present generation rates, new tools are emerging. Machine

learning and deep learning tools have been actively exploited in wireless communication

problems due to their ability to address the arising challenges of enabling higher rates and

massive connectivity within the different scenarios of the evolving wireless domain. In this

context, we will present, in what follows, some of the interesting recent machine learning tools

utilized in wireless communications, while focusing more on the tools we envision utilizing

within our research work.
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1.1.1 Neural networks and Deep Learning

Neural networks have been employed in several works. A deep neural network decoding based

approach was proposed for SCMA by Lin, Feng, Zhang, Yang & Zhang (2020) to achieve

better BER performance than the conventional decoder. Another approach for blind decoding

in SCMA used convolutional neural networks (CNN) to reduce the computational complexity

while achieving better BER performance than the conventional decoder Abidi, Hizem, Ahriz,

Cherif & Bouallegue (2019). In Gui, Huang, Song & Sari (2018), a long short-term memory

(LSTM)-aided NOMA system is proposed to learn the environment and estimate channel states.

1.1.2 Reproducing Kernel Hilbert Spaces

The theory of reproducing kernel Hilbert space (RKHS) dates back to the 1950’s paper Aronszajn

(1950). RKHS is defined as a complete inner product space. In Fig. 1.1, we show its algebraic

structure diagram. Moreover, RKHS based solutions were shown to be exceptionally powerful

and have received increasing attention in various applications, such as ultraviolet communications

Bhatia et al. (2021), visible light communications Mitra et al. (2018), Jain (2022), Miramirkhani

et al. (2022), Mitra et al. (2020b), and fiber communication systems Jain et al. (2019a). The

motivation behind the use of RKHS is the result of the Riesz Representer’s theorem that

guarantees the existence of a unique representation in RKHS for a large category of nonlinear

functions Schölkopf, Herbrich & Smola (2001), Príncipe, Liu & Haykin (2011), Theodoridis

(2015). Consequently, any nonlinear function has a representation as follows

5 (·) =
∑
∀ 9
V 9 ^(x 9 , ·), (1.1)

where V 9 ∈ R. The use of RKHS is additionally motivated by the "kernel trick" through which

the kernel applied to the vectors in the original low-dimensional space returns the dot product

of the mapped vectors in the high-dimensional feature space. More formally, considering two
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vectors x, z ∈ - and a map q from the original input space - to the RKHSH , defined as

q : - →H (1.2)

then the function obtained by computing the inner product of the obtained points in the RKHS,

: (x, z) = 〈q(x), q(z)〉, (1.3)

is a kernel function Daumé III (2004). Hence no need for the explicit mapping to an RKHS

space since the kernel is ensuring the implicit map. Here we would like to note that the kernel

can be expressed in matrix form whose entries are obtained from the available data samples

x1, x2, . . . , xn, expressed as

 8 9 = 〈q(x8), q(x 9 )〉. (1.4)

This matrix is known as the Gram Matrix. RKHS based methods have various benefits discussed

in Bhatia et al. (2021), including finding globally optimal solutions. In figure 1.2, we represent

an original input space X andH , the corresponding RKHS space, which is obtained by applying

the mapping function q on the original space.

Figure 1.1 RKHS algebraic structure diagram
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Figure 1.2 Mapping from input space X to feature spaceH
Slavakis et al. (2014)

However, for large datasets, mapping to a higher dimensional space, leads to complex compu-

tations, causing slowness in the processing. In this context, another better alternative, which

was presented in Rahimi, Recht et al. (2007), consists into explicitly mapping to a randomized

low-dimensional feature space instead of maping to a higher dimensional space. RFFs allow us

to do this by enabling explicit mapping to the feature space, which is the desired RKHS space.

RFF have been used in several applications, such as VLC Mitra, Bhatia, Jain & Choi (2021),

Jain, Mitra & Bhatia (2021), Mitra, Jain & Bhatia (2020a), and massive MIMO Anand, Jain,

Mitra & Bhatia (2021), Chhangani, Mitra & Bhatia (2020).

The randomized feature mapping function, the basis for an RFF, is defined as Anand et al. (2021),

Bouboulis, Pougkakiotis & Theodoridis (2016), Mitra et al. (2020a)
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Ψ : R3 → R� , (1.5)

where � < 3. The expanded expression of Ψ is formulated as

Ψ($) =
√

2
�



cos
(
8)1$ + [1

)
cos

(
8)2$ + [2

)
...

cos
(
8)
�
$ + [�

)

, (1.6)

where each {88}�8=1 is generated from the Gaussian filter kernel Fourier transform, expressed as

Anand et al. (2021), Bouboulis et al. (2016)

 G(l) =
( f
2c

)�
4(−0.5f2‖8‖2) , (1.7)

which is equivalent to the normal distribution N
(
0� , 1

f2 I�
)
, with I� , f, and � representing

the identity matrix of dimension �, the kernel-width hyperparameter, and the number of RFFs,

respectively. Moreover, (·)) denotes the transpose operator, each {[8}�8=1 is drawn from a uniform

distribution on the interval [0, 2c] Bouboulis et al. (2016), Anand et al. (2021), and $ ∈ C

represents an independent random variable.

We would also like to note that another related technique is kernel density estimation, which is a

non-parametric tool that estimates the function through data points. However, it suffers from

being prohibitively expensive because the number of computations increases with the number of

data points.

Using the kernel density estimation (KDE), expressed in (6.24), each evaluation point re-

quires O(# ∗ 3) kernel evaluations and O(# ∗ 3) multiplications and additions Raykar,

Duraiswami & Zhao (2010b).
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5 (x) = 1
=ℎ

#∑
8=1

 

(x − xi
ℎ

)
(1.8)

Additionally, we would like to note that the RFF requires deriving the hyperplane W before

mapping the original space to the new RKHS space of dimension �. Thus, the complexity is

limited to O(� + 3) for each evaluation point Rahimi et al. (2007). This shows the decrease in

computational complexity when using RFF instead of the generic kernel density estimation.

1.1.3 Reinforcement learning

Reinforcement learning (RL) uses experience to update the policies of an agent, i.e., it learns by

trial and error. Reinforcement learning has been applied in many sequential decision making

tasks, such as robotics and natural language processing, where the agents need to optimize

their actions based on feedback from sensors or other external sources. The recent success of

reinforcement learning in many sequential decision making tasks has led to its application in

wireless communication as in Chen, González, Wang & Chen (2021).

1.2 Information theoretic learning

In adaptive filtering theory and applications, choosing the appropriate cost function (typically a

statistical measure of the error signals) is of great importance for the successful learning of the

weight parameters of the adaptive learning system, as shown in Fig. 1.3. The most common cost

function is the mean squared error (MSE) due to its appealing properties including convexity

and mathematical tractability Sayed (2011), Haykin (2008). This criterion is utilized in the

least mean square (LMS) optimization algorithm, which showed robust results in scenarios

where signals are Gaussian distributed. However, in non-Gaussian scenarios, criteria that

consider higher order statistics are required. In this context, the information theoretic learning

(ITL) framework, which is based on information theoretic quantities, like entropy and mutual

information, is particularly attractive in the context of adaptive filtering in scenarios involving

signal outliers or non-Gaussian noise. In Fig. 1.4, we show the relation between the basic
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information theoretical descriptors: joint information, marginal entropy, conditional entropy, and

mutual information. ITL, through its performance metrics, enables extracting more information

than the second order statistics based methods, from the same available data. The main goal is

to use descriptors from information theory as non-parametric cost functions when designing

adaptive systems in supervised or unsupervised learning modes. More generally, the aim is to

consider scalar descriptors of the probability density function (PDF), like entropy, for learning

and parameters’ adaptation.

Figure 1.3 Adaptive learning scheme

1.2.1 Descriptors of information theory

As previously mentioned, ITL tools, in contrast to second order statistics based descriptors, do

not restrain to the central moments of the data, such as mean and covariance. Indeed, ITL based

descriptors, are based on the PDF of the random variable, which is known, to contain the data’s

whole statistical structure information. That being said, ITL based descriptors, enable extracting

more information than second order statistics descriptors.
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ITL descriptors are based on the U-norm with U = 2, which is called the information potential

(IP) Principe (2010), given as

�- [? (G)] =
∫

?(G)?(G)3G, (1.9)

which is also referred to as quadratic information potential (QIP) in Chen, Zhu, Hu & Principe

(2013). This IP can also be viewed as the argument of the logarithm of the Renyi’s entropy,

where Renyi’s entropy is expressed as

�U (-) =
1

1 − U log
∫

?U (G)3G. (1.10)

For U = 2, the logarithm can be dropped because it is a monotonic function, and the optimal

parameters would not be affected. Hence, we obtain the expression of the IP given in (1.9).

Figure 1.4 The relationship between joint information, marginal
entropy, conditional entropy, and mutual information
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1.2.2 Error entropy criterion and minimum error entropy

LMS is a gradient-descent algorithm with the MSE as the cost function. Here we will substitute

the MSE with an information theoretical criterion that is error entropy. Since MSE considers

only the second-order moment of the error distribution, which is optimal just in the case of

Gaussian distributed errors, it makes sense to utilize alternative cost functions for adaptive

filtering in the case of non-Gaussian error distributions. Error entropy criterion (EEC) is an

information theoretical criterion. As its name indicates, the EEC is obtained by computing the

entropy of the error 4. The error entropy criterion gives rise to the minimum error entropy

(MEE) algorithm, which learns to reduce the error signal’s uncertainty as much as possible.

Hence, we calculate the entropy of the error and minimize it with respect to the free parameters

as follows

min
F
� [4] B.C.4 = I − 5 (G, F) & � [4] = 0 (1.11)

Renyi’s entropy being defined as

�2 (4) = − log+ (4) (1.12)

and the information potential (IP) as

+ (4) = � [? (4)] (1.13)

Hence minimizing the error entropy �2 (4) is identical to maximizing the information potential

+ (4). Thus the optimal results of error entropy minimization can be found by studying the

information potential
m�2 (4)
mw

→ m+ (4)
mw

= 0. (1.14)
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1.2.3 Kullback–Leibler divergence and mutual information

In this section, we shed light on another information theoretical criterion that could be utilized

as a cost function for adaptive filtering, which is divergence. The divergence between two PDFs

is defined as the dissimilarity between these two distributions and is expressed as

� ! (? ‖ @) =
∑
G

? (G) log
?(G)
@(G) = �?

[
log

? (-)
@(-)

]
. (1.15)

The mutual information can be seen as a particular case of the divergence, where ?(G) is

substituted by ?(G, H), and @(G) is replaced by the product of the marginal distributions,

?(G) ∗ @(H). Hence the mutual information is expressed as

� (-,. ) = � ! (? (-,. ) | |?(-)@(. )) (1.16)

1.2.4 Correntropy

Among the different performance metrics of ITL, cross-entropy or simply correntropy is closely

related to Renyi’s quadratic entropy Chen et al. (2013) and is defined as a measure of similarity

between two random variables induced by a kernel measure Liu, Pokharel & Principe (2006),

Panda & Nanda (2021). Hence its mathematical expression is given as

E(-,. ) = � [< Φ(-),Φ(. ) >] = � [:f (- −. )] =
∫ ∫

:f (G − H)?-,. (G, H) 3G3H, (1.17)

where Φ represents the nonlinear transformation to the feature space generated by the kernel

mapping and :f is the Gaussian kernel of bandwidth f that is obtained by using silverman’s rule.

From (1.17), we see that for :f (G − H) = GH, we have the exact expression of the correlation

between two random variables. Hence, the correntropy can be seen as a generalization of the

correlation concept. Since, in practical scenarios, the PDF is not available, we use the finite
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number of available samples {(G8, H8)}#8=1 to estimate the correntropy, formulated as

Ê(X,Y) = 1
#

#∑
8=1

:f (G8 − H8) =
1
#

#∑
8=1

:f (48) (1.18)

The properties of the correntropy were highlighted in Liu, Pokharel & Principe (2007), where

the positivity of the correntropy and the fact that it reaches its peak only if - = . are important

to note. Moreover, the correntropy considers all the even moments of the error random variable

� = - − . . The motivation behind using correntropy lies in the fact that it is simpler to derive

than the EEC Principe (2010).

1.2.5 Maximum correntropy criterion

Using the error correntropy criterion (ECC) cost function yields the maximum correntropy

criterion (MCC) algorithm, which maximizes the correntropy, i.e., max
\

⌢
E (�), where � is the

random variable accounting for the difference between the two random variables - and . , i.e.,

� = - − . , \ is the MCC’s hyperparameter, and Ê is the estimated correntropy. The PDF of the

error � is expressed as

?̂� (4) =
1
#

#∑
8=1

�f (4 − 48), (1.19)

where �f is the Parzen window function and N is the number of used sample points. For 4 = 0,

comparing with Eq. (1.18), we get

Ê (�) = Ê (-,. ) = ?̂� (0) (1.20)

Hence, according to Eq. (1.20), maximizing the correntropy, which is the aim of MCC, leads

to maximizing the error’s PDF at zero, which is increasing the similarity between the random

variables by reducing the difference’s error.

Due to the aforementioned characteristics, the MCC algorithm has shown robustness in several
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non-Gaussian noise scenarios Principe (2010), Liu et al. (2007). Additionally, the correntropy-

induced loss (C-loss) has drawn attention and utility in fighting non-Gaussian noise defects

Chen & Wang (2018). Several correntropy based methods were derived, such as kernel

maximum correntropy (KMC) Zhao, Chen & Principe (2011), correntropy kernel learning

(CKL) Liu & Chen (2013), and the kernel recursive maximum correntropy (KRMC) Wu, Shi,

Zhang, Ma, Chen & Senior Member (2015b).

1.3 Conclusion

We presented in this chapter an overview of several tools from machine learning and information

theory, and showed some of their applications in the wireless communications. We will utilize

some of these tools in the algorithms we develop in order to fulfill our objectives. We focus on

RKHS from machine learning for linearization in scenarios involving hardware nonlinearities

and we will utilize correntropy from information theory for impulsive noise mitigation.



CHAPTER 2

LITERATURE REVIEW

In this chapter, we undertake a comprehensive literature review on non-orthogonal multiple

access (NOMA), including both power-domain NOMA (PD-NOMA) and code-domain NOMA

(CD-NOMA). We show its practical implementation within the existing literature. This chapter

is organized as follows: Section 2.1 defines NOMA and unveils its novelty and the motivation

behind using it. Section 2.2 depicts the architecture and presents NOMA’s main categories,

mainly PD-NOMA and CD-NOMA, and highlights their characteristics and differences. Later,

in section 2.3, we provide a deeper study on a CD-NOMA technique, sparse code multiple

access (SCMA), where we depict its architecture, recent applications, and advantages. We would

like to note that in some of the literature, NOMA and PD-NOMA were used interchangeably

to indicate PD-NOMA. However, in our work, NOMA refers to the original non-orthogonal

multiple access concept definition, which encompasses the power-domain NOMA denoted by

PD-NOMA and the code-domain expressed by CD-NOMA.

2.1 What is NOMA?

Wireless communications have drastically evolved and shaped our lifestyle through the last

decades. The first generation was based on analog time division multiple access (TDMA) and

enabled the first wireless communication in the 80s. The second generation was the enabler for

data communication based on frequency division multiple access (FDMA), where the division

was done in frequency. For the 3rd generation, based on code division multiple access (CDMA),

the utilization of code division enabled higher data rates, enabling data transfer over mobiles

and mobile phone applications. The 4th generation, which was based on OFDM to mitigate

intersymbol interference (ISI), enabled video streaming and video-based applications. However,

all of the previous technologies were based on OMA, where due to the orthogonality constraint,

we are always bounded by the number of resources, which limits our goals. Hence, new multiple

access techniques are required in order to cope with the increasing demands for connectivity
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and fulfill the new requested needs for data rates. NOMA, in simple terms, enables overloading

subcarriers with multiple users, thus enabling higher spectral efficiency and high data rates. In

the coming sections, we go over a detailed study of the different NOMA categories, their system

model, and some of their advanced applications.

2.2 NOMA architectures

This sectionwill go through the available NOMA techniques and expose the different architectures

in the literature, their characteristics and associated advantages/disadvantages before delving

into a special category of that family, which is SCMA. In contrast to OMA, NOMA technologies

share the resources (either time, frequency or code) between many users. Depending on the

resource being shared, NOMA techniques can be divided into two main categories: PD-NOMA

and CD-NOMA Dai et al. (2015). We will expose each of these categories in the coming section.

2.2.1 PD-NOMA

PD-NOMA exploits the power domain to serve multiple users in the same degree of freedom

(DoF). Every user is allocated a number of subcarriers, which can be shared with other users.

Hence, if we consider the downlink with � users sharing the same subcarriers with their channel

gains ordered such that: |ℎ1 |2 ≥ |ℎ2 |2 ≥ · · · ≥
��ℎ 9 ��2. In the downlink scenario, the signal

received by user j is given by:

H 9 = ℎ 9

�∑
8=1

√
V8%B8 + = 9 (2.1)

where ℎ 9 is the channel gain between user j and the transmitter, V8 is the amount of power

allocated to user 8, % is the total amount of power, and = 9 is the receiver noise at user j. In this

context, the selection of the users sharing a resource should be made wisely in order to have the

lower possible level of interference between users. At the receiver each user’s information is

recovered by successive interference cancellation (SIC) Hojeĳ, Farah, Nour & Douillard (2015),

Farah, Sfeir, Nour & Douillard (2017). SIC consists of decoding the strongest signal while

considering the weakest signal as noise. Once the strongest signal is decoded, it is subtracted
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from the total signal and the difference is decoded to recover the weakest signal. In Hojeĳ et al.

(2015), the authors propose a NOMA resource allocation algorithm, which covers user pairing,

power distribution between allocated subbands, and the power division between paired users.

In Figure 2.1, we graphically show the difference between OMA and NOMA models where

blocks of different colors refer to different users.

Figure 2.1 Resource allocation in OMA versus PDM-NOMA

2.2.2 CD-NOMA

In CD-NOMA each user is assigned a code to be used on his subcarriers. CD-NOMA techniques

include low-density spreading (LDS) Hoshyar, Wathan & Tafazolli (2008) Razavi, Mohammed,

Imran, Hoshyar & Chen (2012), SCMA Nikopour & Baligh (2013), and pattern division multiple

access (PDMA) Dai, Chen, Sun, Kang, Wang, Shen & Xu (2014). The basic idea behind these

techniques is to introduce redundancy by code spreading to facilitate the separation of the users

at the receiver. At the receiver, multi-user detection (MUD) is performed in order to recover

each user’s signal. Usually, MUD is performed using the message passing algorithm (MPA),

which is based on the maximum a posteriori probabilities (MAP). MPA is seen as a trade-off

algorithm between high performance and low complexity and takes benefit from the sparseness
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of the network. If an extremely low bit error rate is required, the exhaustive search algorithm,

which is of exponential order and hence of high complexity, can be used.

LDS, one of the CD-NOMA schemes, is like CDMA where we have a different spreading code

for each user, and the used codes (spreading codes) are sparse (they have many zeros). The

sparsity will allow to have less interfering users on some chips and reduce decoding complexity

by enabling the use of the MPA decoder of lower complexity than the exhaustive search.

PDMA, another CD-NOMA scheme, consists in the joint design of the transmitter and the

receiver, and in following a code pattern offering a different order of transmission diversity

to reduce the error propagation of the SIC. Sparsity in PDMA is useful when applying belief

propagation algorithms Chen, Ren, Gao, Kang, Sun & Niu (2016).

SCMA is based on LDS-CDMA which consists of using LDS codes in CDMA Dai et al.

(2015). Thus the interference between users is reduced and overloading is allowed due to the

sparsity. The difference between LDS and SCMA is that codebooks in SCMA are built based on

multidimensional constellation designs. There is a constellation for each user, and its size is

equal to the number of possible signals for each user. There is no longer a single modulation

block and a single spreader but these two blocks are combined in one single block, which is

the SCMA encoder, shown in Figure 2.2. The constellation design is an optimization problem

aiming to achieve the best distance properties between the different constellations which is

necessary for the reduction of the bit error rate (BER) Taherzadeh, Nikopour, Bayesteh & Baligh

(2014).

Moreover, the MPA algorithm, which can be used given the sparsity property of the codes,

renders the decoding at the receiver easier than using MAP, which should be used if there is no

sparsity.

Thus, SCMA implementation consists of 3 steps:

• Codebook design and mapping

• Multiple access design

• Decoding at the receiver
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Figure 2.2 SCMA System Model
Taken from Wu et al. (2017)

In the following section, we go more in depth in the different parts of the SCMA scheme, which

is employed in our research work.

2.3 SCMA Design and Overview

2.3.1 SCMA codebook design

In contrast to LTE systems where the modulation and the spreading are performed in two

separate blocks, in SCMA, the modulator and spreader are merged into one block, which is a

joint multi-dimensional modulation & low-density spreading. The coded bits of an information

stream are directly mapped (i.e., without modulation) to a codeword from a codebook designed

on a multi-dimensional constellation. Figure 2.3 shows the difference between SCMA and

LDS/SCMA architectures from the transmitter side. It is noted here that at the receiver side, the

despreader and demodulator are also substituted by a single block, namely the SCMA decoder.

On the other hand, the multidimensional characteristic of SCMA codewords achieves a

system capacity benefit. In fact, in CDMA, the codebook is linear whereas in SCMA, the

codebook is multidimensional. The major difference between LDS-CDMA and SCMA lies

in the multidimensional constellation, which brings the shaping gain. This multidimensional

constellation implies also an increase in the system capacity, and hence allows higher throughputs

while sparseness enables massive connections Wu et al. (2017), Liu, Wang, Bao & Liu (2018).
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Figure 2.3 Comparison between SCMA and LDS/CDMA,
taken from Nikopour & Baligh (2013)

For example, in Figure 2.4 Wu et al. (2017), a 4-D real constellation is used instead of 2-D

Figure 2.4 Example of SCMA 8-point codebook
Taken from Wu et al. (2017)

quadrature amplitude modulation (QAM). We consider 2 entries (active subcarriers) for each

user, which lead to a 4-D real constellation. In the 4-D real constellation (or 2-D complex

constellation), we have a 2-D constellation, on each entry. It is clear from this figure that on

each entry we have 4 projection points because, on each entry there is a superposition of 2
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different points of the 4-D constellation. However, if we have a 2-D constellation with one

entry, we would have obtained 8 projection points on the same entry for the 8-QAM. A general

formula for SCMA constellation is that if we have 3E active subcarriers per user, then we have

a 2 ∗ 3E-D real constellation or 3E-D complex constellation Vameghestahbanati, Marsland,

Gohary & Yanikomeroglu (2019). In our previous example, we have 3E = 2, the size of the

constellation M=8 (since it is 8-QAM), N=4 (the dimension is 4), the number of users that are

using a subcarrier 3 5 = 3.

This feature of reducing the number of projection points has also an important effect on reducing

the decoding complexity. Additionally, the multilayer combination through N-dimensional

codes allows us to increase the capacity of the system by overloading, and leads to a more

energy-efficient transmission with less complexity. It allows the superposition of many symbols

from different users on each resource element (RE). Thus, it allows massive connections since

the number of allowed users is no longer strictly limited to the number of available resources as

it was in the case of OMA.

On the other hand, the sparse spreading characteristic of SCMA reduces symbol collisions.

Furthermore, the multidimensional benefit can be expressed by two metrics: coding gain and

shaping gain. For the coding gain, each increase of 0.4 dB leads to doubling the decoding

complexity at the receiver side as the constellations becomes denser Forney & Wei (1989).

Hence, we are more interested in increasing the shaping gain, despite being limited to 1.53 dB

Forney & Wei (1989). The shaping gain is 0 for a cube region and is maximum for a sphere

Forney & Wei (1989).

Equation (2.2) shows the most used codebook in the literature Sergienko & Klimentyev (2017).

Another codebook conceived in the aim of maximizing the sum-rate, is shown in equation (2.3)

Zhang, Xiao, Xiao, Chen, Xia, Chen & Ma (2016).
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CB1 =



0 −0.1815 − 0.1318 9 0 0.7851

0 −0.6351 − 0.4615 9 0 −0.2243

0 0.6351 + 0.4615 9 0 0.2243

0 0.1815 + 0.1318 9 0 −0.7851



T

CB2 =



0.7851 0 −0.1815 − 0.1318 9 0

−0.2243 0 −0.6351 − 0.4615 9 0

0.2243 0 0.6351 + 0.4615 9 0

−0.7851 0 0.1815 + 0.1318 9 0



T

CB3 =



−0.6351 + 0.4615 9 0.1392 − 0.1759 9 0 0

0.1815 − 0.1318 9 0.4873 − 0.6156 9 0 0

−0.1815 + 0.1318 9 −0.4873 + 0.6156 9 0 0

0.6351 − 0.4615 9 −0.1392 + 0.1759 9 0 0



T

CB4 =



0 0 0.7851 −0.0055 − 0.2242 9

0 0 −0.2243 −0.0193 − 0.7848 9

0 0 0.2243 0.0193 + 0.7848 9

0 0 −0.7851 0.0055 + 0.2242 9



T

CB5 =



−0.0055 − 0.2242 9 0 0 −0.6351 + 0.4615 9

−0.0193 − 0.7848 9 0 0 0.1815 − 0.1318 9

0.0193 + 0.7848 9 0 0 −0.1815 + 0.1318 9

0.0055 + 0.2242 9 0 0 0.6351 − 0.4615 9



T

CB6 =



0 0.7851 0.1392 − 0.1759 9 0

0 −0.2243 0.4873 − 0.6156 9 0

0 0.2243 −0.4873 + 0.6156 9 0

0 −0.7851 −0.1392 + 0.1759 9 0



T

(2.2)
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I1 =



−1.3498 −0.4218 0.4218 1.3498

0 0 0 0

−0.1980 − 0.37248 0.6337 + 1.19188 −0.6337 − 1.19188 0.1980 + 0.37248

0 0 0 0


,

I2 =



0 0 0 0

−0.1980 − 0.37248 0.6337 + 1.19188 −0.6337 − 1.19188 0.1980 + 0.37248

0 0 0 0

−1.3498 −0.4218 0.4218 1.3498


,

�3 =



−0.6337 − 1.19188 −0.1980 − 0.37248 0.1980 + 0.37248 0.6337 + 1.19188

0.2109 − 0.36538 −0.6749 + 1.16908 0.6749 − 1.16908 −0.2109 + 0.36538

0 0 0 0

0 0 0 0


,

�4 =



0 0 0 0

0 0 0 0

−1.3498 −0.4218 0.4218 1.3498

0.2109 − 0.3653i −0.6749 + 1.1690i 0.6749 − 1.1690i −0.2109 + 0.3653i


,

�5 =



0.2109 − 0.36538 −0.6749 + 1.16908 0.6749 − 1.16908 −0.2109 + 0.36538

0 0 0 0

0 0 0 0

−0.6337 − 1.1918i −0.1980 − 0.3724i 0.1980 + 0.3724i 0.6337 + 1.1918i


,

I6 =



0 0 0 0

−1.3498 −0.4218 0.4218 1.3498

0.2109 − 0.3653i −0.6749 + 1.1690i 0.6749 − 1.1690i −0.2109 + 0.3653i

0 0 0 0


.

(2.3)
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Figure 2.5 SCMA Encoding and Multiplexing,
taken from Dai et al. (2015)

2.3.2 SCMA Encoding And Multiplexing

In Figure 2.5, we show a model for SCMA encoding and multiplexing where we have 6

codebooks, each corresponding to one user (total of 6 users). Each codebook consists of 4

codewords that correspond to the 4 possible data information of each user i.e. 00, 01, 10, 11.

Each codeword consists of 4 bits, 2 sparse bits and 2 data bits. For Example, the first codebook

of user 1 contains four codewords, namely 0000, 1000, 0100, 1100, which correspond to the

data bits 00, 10, 01, 11, respectively. Note that within the same codebook, the position of the

sparse bits is always the same and differs from a codebook to another (for codebook 1, the sparse

bits are the last bits). Moreover, each bit is mapped to a subcarrier; therefore, since we have 4

bits, we need 4 subcarriers. Consequently, since the number of users is 6, the overloading is of

150%. Finally, since the sparse bits should differ from a codebook to another, we can get the

limiting number of layers J in a SCMA block as � =
( 
#

)
, where each user usually has one layer.

Here,  is the number of subcarriers (4 in our case) and # denotes the number of data bits (2 in

this case); therefore, the limit for � is
(
4
2

)
= 6.

The SCMA encoder is modelled by the following mapping function: 5 : B;>62 (") → X

where X ⊂ C with cardinality X = " , " being the modulation order. Then, x = 5 (b), where
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x is a sparse vector with # <  non-zero entries. This encoding function 5 can be considered

as a composition of two functions where the first is a constellation mapping 6 : B;>62 (") → C,

C ⊂ C while the second function is a binary mapping V ∈ B ∗# . Thus, we have 5 = V6

where V maps the #-dimensional codeword to a  -dimensional one. In order to satisfy the

sparsity condition for x, V must contain  − # all-zero rows. The mapping matrix V can be

constructed by taking the # ∗ # identity matrix I# and adding  − # columns of zeros to it.

A SCMA system is defined by a set of layers S([V 9 ]�9=1, [6 9 ]
�
9=1, �, ", #,  ). The received

signal is given by

y =
�∑
9=1

diag(h 9 )x 9 + n

=

�∑
9=1

diag(h 9 )V 96 9 (b 9 ) + n.

(2.4)

Where x 9 = (G1 9 , ..., G: 9 )) is the SCMA codeword of the 9 Cℎ layer with size  > # , where

 − # are zeros, h 9 = (ℎ1 9 , ..., ℎ: 9 )) is the channel vector of layer 9 , and n ∼ CN(0, #0I) is

the complex Gaussian noise.

The structure of SCMA is conveyed through a factor graph representation. Let F ∈ B ∗# be the

factor graph matrix, each element [F]: 9 is set to 1 if there is transmission on resource : . F is

obtained from {V 9 }�9=1 as F = (f1, ..., f�) where f 9 = diag(V 9V 9
) ). The number of layers for

each user is given by the vector d = (31, ..., 3 )) =
�∑
9=1

f 9 .

In Yuan (2016), an SCMA model, where data streams are directly mapped to codewords is

proposed as an enhanced version of LDS, illustrated in Figure 2.3. Each of the 6 users has

his codebook and each codebook has its codewords that contain zeros in the same dimensions.

The position of the zeros differs from a codebook to another to avoid collision and interference

between different users. In Figure 2.5, each user has its two bits that are mapped to a complex

codeword. Codewords for all users are then multiplexed over four OFDM subcarriers (orthogonal
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subcarriers). The SCMA codebook design is a challenging problem since different layers are

being multiplexed with different codebooks to achieve multiple access.

2.3.3 SCMA Receiver

For MUD, the MPA algorithm is used with relatively low complexity due to the sparsity property

of SCMA. The MPA is optimal in terms of performance and complexity and is based on the

MAP. One would use the exhaustive search over all possible combinations of codewords to

recover each user data, which is of exponential complexity; however, with MPA, the complexity

is reduced due to the sparseness.

In order to represent the evolution of the MPA, we use the factor graph which helps us represent

the evolution of the messages through the different stages of MPA,Wu et al. (2017). In Figure 2.6

we see an example of a factor graph, which aims to provide an original graphical description of

the factorization of a global function into a product of local functions. In the factor graph of

Figure 2.6, the four squares are the function nodes which represent the set of subcarriers. The

six circles that are connected to the squares, are the variable nodes which represent the layers,

i.e. the set of users.

In Alizadeh, Bélanger, Savaria & Boyer (2016), the SCMA decoding algorithm was analyzed

and 4 solutions were considered to optimize it from the perspective of latency and hardware

resource utilization. The best solution was the one that minimizes the product of the decoding

area by the time analysis. In Wei & Chen (2016), a decoding algorithm based on list sphere

decoding is presented. It achieves the near maximum likelihood performance and reduces the

complexity of the original MPA detection. The simulation results showed a good trade-off

between the BER performance and computational complexity.

Using MPA instead of MAP reduces the complexity from the order of O("�) to O("3 5 ),

where J is the number of users and 3 5 the number of degrees of freedom which is the number of

users connected to a single subcarrier.

The MPA consists of 3 steps:
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Figure 2.6 Factor graph schematic of an SCMA system with 6
layers, 4 users, 2 subcarriers and 3 degrees of freedom

• Initialization and computation of the initial conditional probabilities

• Iterative message transfer between the variables and the function nodes

• Calculation of the log-likelihood ratio (LLR) at the output

The network is usually initialized with equiprobable values for all codewords on each function

node, where each layer is assumed to be assigned to a user : out of the total  users. Moreover,

since each user has his codebook consisting of " codewords, each codeword has a probability of

1/" as shown in Figure 2.7. Hence, the first messages that have to be sent from the variable nodes

to the corresponding connected function nodes. The messages, denoted by �, are transferred

between the variable nodes, denoted by E8, and the function node, denoted by 5 , as shown below.

�8=8CE1→ 5 (<1) = �8=8CE2→ 5 (<2) = �8=8CE3→ 5 (<3) = 1
"

(2.5)

The 2nd step of the MPA consists of two phases that are repeated iteratively until convergence or

until we reach a certain number of predefined iterations.

The first phase consists of computing messages at the function nodes using equation (2.6) given

the known or estimated channel ℎ=,: and the possible transmitted codeword �:,= (<: ).
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Figure 2.7 Message Passing Part 1

Figure 2.8 Message Passing Part 2-a

I=
(
H=, <1, <2, <3, #0,=, �=

)
=
−1
#0,=

H= − (
ℎ=,1�1,= (<1) + ℎ=,2�2,= (<2)

) (2.6)
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q=
(
H=, <1, <2, <3, #0,# , �=

)
= 4G?

(
I=

(
H=, <1, <2, <3, #0,# , �=

) )
(2.7)

The message passing takes place from all function nodes (that represent subcarriers) to their

respective connected variable nodes (that represent layers, i.e. users) as shown in Figure 2.8.

Meanwhile, the second phase consists of calculating the response messages at the variable nodes

before passing them back to function nodes as shown in Figure 2.9.

Figure 2.9 Message Passing Part 2-b

The beliefs at each variable node are computed as:

� 5→E1 (<1) =
"∑

<2=1

"∑
<3=1

q=
(
H=, <1, <2, <3, #0,# , �=

)
�8=8CE2→ 5 (<2) �8=8CE3→ 5 (<3) <1 = 1, ..., "

(2.8)

� 5→E2 (<2) =
"∑

<1=1

"∑
<3=1

q=
(
H=, <1, <2, <3, #0,# , �=

)
�8=8CE1→ 5 (<1) �8=8CE3→ 5 (<3) <2 = 1, ..., "

(2.9)

� 5→E3 (<3) =
"∑

<1=1

"∑
<2=1

q=
(
H=, <1, <2, <3, #0,# , �=

)
�8=8CE1→ 5 (<1) �8=8CE2→ 5 (<2) <3 = 1, ..., "

(2.10)

After receiving messages from the function nodes, the variable nodes update their beliefs about

each of the M codewords using:
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�E→ 51 (<) = =>A<0;8I4(0?E (<)� 52→E (<)), < = 1, ..., " (2.11)

�E→ 52 (<) = =>A<0;8I4(0?E (<)� 51→E (<)), < = 1, ..., " (2.12)

When the number of fixed iterations is reached, we can compute the guess on each codeword at

each variable node E using:

�E (<) = 0?E (<)� 51→E (<)� 52→E (<), < = 1, ..., " (2.13)

Figure 2.10 Message Passing Part 3

After guessing the codeword we compute the LLRs (i.e., Figure 2.10) to determine the bit at

each position 8:

!!'8 = ;>6

(
%(18 = 0)
%(18 = 1)

)
(2.14)

!!'8 = ;>6

©«
<∑

<:1<,8=0
�+ (<)

<∑
<:1<,8=1

�+ (<)

ª®®®®¬
= ;>6

©«
<∑

<:1<,8=0
�+ (<)

ª®¬ − ;>6 ©«
<∑

<:1<,8=1
�+ (<)

ª®¬ (2.15)
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2.3.4 Advanced SCMA applications and architectures

In Nikopour & Baligh (2013), a SCMA scheme based on LDS is proposed where:

• The modulator and spreading are replaced by a single block, which is the SCMA encoder

that directly encodes binary data to multidimensional complex domain codewords.

• Multiple access is achievable by multiple layers for each user.

• Sparse codewords are used and the MPA is implemented with moderate complexity.

In Nikopour & Baligh (2013), the authors proposed a systematic sub-optimal algorithm, based

on a multi-stage optimization approach, for SCMA codebook design. The simulation results

show that SCMA has lower block error rate (BLER) than LDS. In Taherzadeh et al. (2014), a new

approach to design SCMA codebooks is derived from the design basics of lattice constellations.

In this work, a sub-optimal solution for the codebook design challenge following a multi-stage

optimization approach, is employed. Here, the codebook design consists of three main steps.

The first step is to select the mapping matrix and aims to determine the number of layers

interfering at each OFDM tone (frequency), which also leads to an estimation of the complexity

of the MPA decoder. It is noted that the complexity of SCMA codebook design increases with

the number of layers that are multiplexed with diverse codebooks (as they belong to different

users). The second step consists in defining the constellations of the users, that are expressed as

functions of a mother constellation and layer-specific operators. Here the mother constellation

and the operators are determined separately. Finally, the last step is an optimization over the

layer-specific operators, which may include phase rotation and low power offset. The authors in

Taherzadeh et al. (2014) showed a performance gain achieved by SCMA compared to LDS and

orthogonal frequency division multiple access (OFDMA). SCMA takes all the advantages of

LDS while avoiding the poor link performance of LDS systems.

In Li & Yang (2009), a coalitional game for blind group decoding in a multi-cell CDMA system

was devised. First, a study of the effect of the coalition size on the system level was conducted

by using models of transferable payoffs. Second, the study sought to find the best coalition

from the individual nodes’ side using a non-transferable payoff model. Results showed that

for transferable-payoffs scenarios, the grand coalition was the most stable. However, from the
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individual nodes’ side, the grand coalition is not guaranteed to be the best choice. Another

interesting application for cooperative game theory in SCMA was in Yang & Sun (2019), which

aimed to maximize the system rate considering the user fairness in massive machine-type

communications. This was achieved in two steps where, in the first step, the optimal coalitions

to be formed are determined, while codebook assignment is performed in the second step. The

results showed a small difference in rates between users, which is a clear indication of fairness

achievement.

The first SCMA model to make use of Deep Neural Networks (DNNs) was proposed in Kim,

Kim, Lee & Cho (2018). Precisely, a DNNwas used for codebook generation and in the decoding

of the received signal. The results showed less computational complexity and a lower BER than

the conventional MPA-based SCMA decoder. In Lu, Xu, Shen, Zhang & You (2018), a new idea

of converting the sparse design of the MPA to a neural network with sparseness applied as the

weights of that network was proposed. Here, instead of MPA iterations, we have network layers.

The neural network design showed better performance than the MPA, especially for the high

signal-to-noise-ratio (SNR) regime.

In Wu, Zhang & Chen (2015a), an iterative multiuser receiver, that explores the coding and

shaping gains of SCMA, is studied. In that work, the computation of the soft decision, i.e. the a

posteriori LLRs, was expressed as the sum of the priori LLRs obtained from the previous iteration

and the extrinsic LLRs. The iterative decoder showed a better result than the non-iterative one,

with a BLER that does not degrade much when we go from a load of 100% to 300%. In Qin,

Qin, Wang & Wang (2018), the effect of multipath is considered in recovering the SCMA signal.

Here, the equalization is done at the transmitter instead of the receiver for less design complexity.

This semi-blind receiver leads to a lower BER.

2.3.5 SCMA in Grant-Free Multiple Access

A usual request for transmission consists of sending a request and waiting for an accept to

send data. This leads to delays in wireless communications. A new model of communication

that overcomes this delay is the grant-free model where a user can transmit without asking for



41

permission. Grant-free is very important especially in mMTC where we have a high number of

low rate transmissions Evangelista, Sattar & Kaddoum (2019a), Evangelista, Sattar, Kaddoum,

Selim & Sarraf (2021b). Also, grant-free is important for scenarios with stringent latency

requirements Evangelista, Kaddoum & Sattar (2021a). In this context, SCMA is a promising

technology since it can accommodate a higher number of users and enables massive connections

due to its overloading capabilities, mostly with codebook reusability possibility. In Figure 2.11,

we show two types of grant-free scenario.

Figure 2.11 Types of grant-free multiple access Li et al. (2018b)

In OFDM, a Resource Block (RB) is the smallest amount of resources that can be allocated to a

user. A RB is defined in frequency as a set of 12 subcarriers with a separation of 15 kHz between

consecutive frequencies, i.e. a total of 180 kHz in frequency. Meanwhile, in time, it is the

equivalent of 7 timeslots Au, Zhang, Nikopour, Yi, Bayesteh, Vilaipornsawai, Ma & Zhu (2014).

In SCMA, the basic resource for UL grant-free is the contention transmission unit (CTU). A
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CTU is a combination of time, frequency, codebook, and pilot sequence where multiple users

are contending for the same resource Au et al. (2014). Each user has a different pilot sequence.

An example of a CTU is shown in Figure 2.12.

Figure 2.12 The relationship among time-frequency resources,
codebooks, CTUs and UEs Sun et al. (2018)

Many works have studied the use of SCMA for grant-free scenarios, especially when we need to

recover the actual active UEs at the receiver Sun et al. (2018),Bayesteh, Yi, Nikopour & Baligh

(2014),Liu, Wu, Li & Tirkkonen (2017a).

2.3.6 MIMO-SCMA

As multiple-input multiple-output (MIMO) multiplexes in space and SCMA multiplexes in code,

a joint study of the benefits of combining the two technologies was conducted in Liu, Li & Qiu

(2015b). The study, showed that the capacity of the combined system is increased compared

to MU-SCMA, and the sum rate is higher than that of MIMO MU-OFDMA. Moreover, in

Yuan, Wu, Guo, Li, Xing & Kuang (2018), another combination of MIMO with SCMA was

proposed for downlink transmission over frequency-selective channels. In that work, a hybrid
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belief propagation (BP) and expectation propagation (EP) receiver was proposed to guarantee

convergence.

2.3.7 Optimizations for SCMA scheme

As the case for every other resource allocation technique, optimizations can be employed in

order to maximize the overall sum rate of the network, maximize the fairness which is achieved

by maximizing the minimum rate, or reduce the energy consumption in SCMA. Optimizing

all these aspects in the same scheme is impossible; however we can depict some trade-offs

for many scenarios. In Evangelista, Sattar, Kaddoum & Chaaban (2019b), two algorithms are

proposed, one for the overall sum-rate maximization, while the other is for the minimum rate

maximization, which leads to higher fairness. Another study on energy saving in downlink and

uplink was conducted in Zhai (2017). In Klimentyev & Sergienko (2017), the authors proposed

a method based on genetic algorithm to maximize the minimum euclidean distance of the SCMA

signal set. The obtained codebook presented a gain of 0.8 dB with respect to other codebooks.

Another optimization study for the codebook design is proposed in Dong, Gao, Niu & Lin

(2018). This codebook optimization is based on the maximization of the mutual information

between the discrete input and continuous output. The optimization uses Karush-Kuhn-Tucker

(KKT) conditions. The authors showed that in AWGN conditions the obtained codebook can

approach the gaussian capacity upper bound.

2.3.8 Impairments in SCMA

As with every new technology, numerous inevitable obstacles and hurdles emerge during

its implementation within practical wireless communications ecosystems. Additionally, the

proliferation of the number of connected devices and the increased need for higher data

rates will lead to growing interference levels, which need mitigation solutions to prevent

performance degradation. Impairments, such as frequency offset Chen, Yin & Wei (2018),

in-phase/quadrature-phase imbalance (IQI) Selim, Muhaidat, Sofotasios, Sharif, Stouraitis,

Karagiannidis & Al-Dhahir (2018), impulsive noise Selim, Alam, Kaddoum & Agba (2020b),
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hardware nonlinearity Mitra & Bhatia (2017b) imperfect channel estimation and mobility Jain,

Mitra & Bhatia (2020) have been studied in several wireless communication technologies.

As for SCMA, the studies on impairments available in the literature are still limited. In Liu,

Zhang & Xin (2015a), the authors considered frequency offset impairment, where they studied

filter bank-based multicarrier (FBMC) with SCMA and showed that it is more robust against the

residual frequency offset (RFO). In Li, Li, Mathiopoulos, Zhang, Li & Jin (2018a), the authors

studied the impact of hardware impairments and imperfect channel state information (ICSI) on

the performance of energy harvesting (EH) cooperative NOMA multi-relay systems. On the

other hand, SCMA is being studied for implementation within new use cases, such as visible

light communication (VLC) Mitra & Bhatia (2017b) and reconfigurable intelligent surface (RIS)

Al-Nahhal, Dobre & Basar (2021). Therefore, there is an imminent and undeniable need for

studying and considering the effects of possible inevitable impairments and proposing solutions

to mitigate their effect.
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3.1 Abstract

The next-generation of communication systems must be capable of serving a significantly higher

traffic generated by a large number of devices. To support massive connectivity over limited

time-frequency resources, several non-orthogonal multiple access (NOMA) paradigms have

emerged. In this context, sparse code multiple access (SCMA) based NOMA is particularly

attractive due to its robustness to error-propagation, and its potentially high coding-gain with

appropriate codebook design. However, the performance of SCMA based systems is severely

degraded by distortions introduced by non-ideal hardware, e.g. power-amplifier (PA) nonlinearity.

To mitigate such artefacts, in this letter, a random Fourier feature (RFF) based hybrid message

passing algorithm (MPA) is proposed, and validated through computer simulations. Lastly,

an analytical proof is presented that indicates that the use of RFFs significantly improves the

convergence of the MPA in the presence of impairments, and renders error-rate performance

equivalent to that of a linear Gaussian channel under approximate MPA.

Index Terms— Hardware impairments, SCMA, random Fourier features.

3.2 Introduction

THE next-generation of communication systems will experience a spectrum crunch due to

significantly higher traffic caused by massive connectivity triggered by upcoming internet of
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things (IoT) ecosystems, tactical environments, and healthcare applications Giordani, Polese,

Mezzavilla, Rangan & Zorzi (2020). To enhance the capacity of next-generation communication

systems and serve a multitude of devices, non-orthogonal multiple access (NOMA) has emerged

as a disruptive multiple-access paradigm which supports several users over limited time-

frequency resources Liu, Qin, Elkashlan, Ding, Nallanathan & Hanzo (2017b), Evangelista et al.

(2019b). NOMA can be broadly classified as: a) power-domain NOMA(PD-NOMA), and b)

code-domain NOMA Vaezi, Ding & Poor (2019). Though computationally simple, PD-NOMA

is well known to be impaired by error-propagation due to imperfect successive interference

cancellation (SIC) Liu et al. (2017b), as well as for its dependence on suitable power-allocation

techniques and knowledge of channel-state information. On the other hand, the paradigm of

sparse code multiple access (SCMA) (a kind of code-domain NOMA) Nikopour, Yi, Bayesteh,

Au, Hawryluck, Baligh & Ma (2014) has been found to be particularly useful for supporting

numerous users with high throughput by exploiting coding/shaping gains of the SCMA-codebook

Moltafet, Yamchi, Javan & Azmi (2017). Here, by exploiting sparsity in the SCMA-codewords,

the symbols are detected at the receiver using message passing algorithm (MPA) Sharma,

Deka, Bhatia & Gupta (2019b). Though promising, the performance of SCMA is severely

impaired by the non-ideal device characteristics such as the power-amplifier (PA) nonlinearity,

which affects convergence of the MPA and are also known to be a serious impairment in

upcoming communication systems Gharaibeh (2011), Rajasekaran, Vameghestahbanati, Farsi,

Yanikomeroglu & Saeedi (2019). While some recent works explore iterative detection for the

mitigation of PA nonlinearities Yang, Lin, Ma & Li (2018), these approaches rely on explicit

knowledge of the PA characteristics at the receiver. Among several available signal processing

solutions for mitigation of device nonlinearity, reproducing kernel Hilbert spaces (RKHS)based

signal-processing has emerged as viable in the context of several nonlinear and non-Gaussian

signal-processing applications Mitra & Bhatia (2017a), Mitra & Bhatia (2018a) and Mitra et al.

(2018). RKHS based approaches are well-known for their computational simplicity, guarantee

of exact representation of a wide-class of nonlinear functions, and generalization to changes

in the nonlinear characteristics Schölkopf et al. (2001). These advantages of RKHS based

solutions have enabled their application in the context of PD-NOMA systems Awan, Cavalcante,
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Yukawa & Stanczak (2018). However, such existing detection methods for PD-NOMA primarily

rely on dictionary based methods. In-general, the dictionary based RKHS algorithms are prone

to noisy observations (particularly in the initial adaptive iterations), and incur non-negligible

computational overhead in evaluation of appropriate criterion for selectively adding observations.

This drawback is mitigated by using explicit approximations (also called random Fourier

Features (RFF)) of the feature-map obtained by Monte-Carlo sampling of an RKHS Bouboulis,

Chouvardas & Theodoridis (2017), Bouboulis et al. (2017).1

Contributions: In this letter, we propose an RFF based SCMA-detection technique which

unwarps/recovers the received observations prior to the MPA based detection to mitigate the

impairments caused by PA nonlinearity. Simulation results are presented which indicate that

using the unwarped observations using RFF, theMPA delivers a bit error-rate (BER) performance

comparable to that of an ideal linear Gaussian channel. Further, the proposed approach achieves

several orders of BER gain as compared to performing MPA directly on the impaired codewords.

Lastly,an optimality-proof of the proposed RFF based detection technique is outlined.

3.3 System Model

Considering a downlink scenario, where the information bits of the users are mapped to

K-dimensional codeword, x 9 ∈ C for the 9 Cℎ user, which is drawn from the corresponding

codebook C9 . The channel gain vector h ∈ C is modelled as a quasi-static Rayleigh fading

channel, and the noise vector n ∼ CN(0, f2
= I × ) (where I × denotes an identity matrix of

size  ×  ) is modelled as an additive white Gaussian noise (AWGN). Using this terminology,

the received observation y ∈ C can be rewritten as

y = diag(h) 5 ©«
�∑
9=1

x 9
ª®¬ + n, (3.1)

where diag (·) is a diagonal matrix with (·) as its diagonal elements, � denotes the number of

overlapped users. Denoting Gsat as the saturation voltage, and ? as the severity/slope of the PA

1 Note that in Mitra et al. (2020a), it is proved than an RFF delivers significantly lower approximation
error than any polynomial based solution under a fixed implementation budget.
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nonlinearity. The PA nonlinearity 5 (·) is either modelled as an AM-AM type Rapp nonlinearity

Gharaibeh (2011), which is expressed as

5 (G) = G(
1 +

��� GGsat ���2?) 1
2?

(3.2)

or as a Modified (AM-PM) Rapp nonlinearity Dudak & Kahyaoglu (2012) which is expressed as

| 5 (G) | = |G |(
1 +

��� GGsat

���2?) 1
2?
,

∠ 5 (G) = ∠G + n |G |@1

1 +
(
|G |
W

)@2
,

(3.3)

where n = 0.0747, W = 0.1281, @1 = −0.03462, @2 = −1.758, |·| denotes the absolute value, and

∠(·) denotes the angle of (·).

3.4 Proposed Detection Algorithm

In this section, we outline a supervised technique for recovering/unwarping the distorted received

signal, and proceed to performing MPA to recover the users’ bits.

3.4.1 RFF Based Unwarping

In this section, we outline the technique of unwarping y using the pilots p 9 in each user’s

transmission frame for each coherence-time. It is further assumed that the pilot-sequences are

commonly agreed upon between the transmitter and the receiver Tse & Viswanath (2005), and

that there is no interference between the users’ pilots (or pilot contamination). Using these pilots,

the reference signal, yref, is formed as follows
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yref = diag(h)
�∑
9=1

p 9 . (3.4)

Next, to mitigate nonlinearity, the received signal during the training-phase, denoted by ytr , is

mapped to an approximate RKHS using an RFF map 	 : R2 → R=� as follows

	(/) =

√
2
=�


cos(8)1 z + 11)

...

cos(8)=�z + 1=� )


(3.5)

where / ∈ C denotes an independent variable, the variable z ∈ R2 is defined as follows:

z = (real[/], imag[/])) ,

and each {88}
=
�

8=1 is a Gaussian vector, with zero mean and covariance 1
f2 I=� , with I=� , f , and

=� denoting the identity matrix of size =� , the kernel-width, and the number of RFF-dimensions

respectively. Finally, (·)) denotes the transpose operation.

Next, the unwarping weights W are estimated using zero-forcing in RKHS as

W = 	(ytr)
) †

(1:P)yref(1:P) (3.6)

where (·)† denotes the pseudo-inverse operation, P denotes the number of pilots, and (·)1:P

denotes a matrix consisting of the vectors (·) sampled/indexed by the pilots 1 : P. Finally, after

estimating W during the training interval, the refined unwarped observations are obtained as

y′ = 	(y))W. (3.7)



50

3.4.2 Message Passing Algorithm

Using the recovered unwarped observation y′ , the MPA is performed assuming an AWGN

channel to recover the users’ bits. We denote the set of variable nodes (VN) corresponding to user-

symbols asJ = {1, 2, · · · , �} , and function nodes (FN) corresponding to y asF = {1, 2, · · · ,  }.

Further, in the context of message-passing, we denote the graph-neighborhood of a vertex 8 as

B8 . Let � 9 : be the message between the 9 Cℎ vertex to the : Cℎ vertex, the users’ bits are detected

using MPA as outlined in Algorithm 3.1, where
�∑
9=1

x 9 and (·) [:] denotes the : Cℎ component of

(·) .

Algorithm 3.1 Message-Passing using RFF

1 Recover y′ from y as per (3.7)

2 Initialize �: 9 = ?(G 9 ) as a uniform distribution.

3 Initialize:

4 � 9 : = ? (y′ [:] |X)

5 = 1
2cf2

=
exp

©«−
�����H′[:]−ℎ[:] ∑

9∈�:
G 9 [:]

�����2
f2
=

ª®®®¬
6 Initialize MAXITER.

7 while c < MAXITER do

8 � 9 : := log(?(x 9 )) +
∑
9∈B:

�: 9 .

9 �: 9 : = max
∀x 9∈C9 ,:∈B 9

log(?(H′[:] |X)) + ∑
:∈B 9

� 9 :

10 c := c + 1

11 end while

12 Using the converged messages � 9 : and codebook C9 detect the user-symbols as in [Vaezi

et al. (2019), eq. (12.12)]

In Algorithm 3.1, the received observations y are unwarped using an RFF for mitigating the PA

nonlinearity in Step 1. Next, the a-priori messages are initialized in Step 2 and Step 3, and the
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number of MPA iterations is fixed in Step 4. Consequently generic MPA is performed on the

unwarped observations y′ as detailed in Step 5, and the symbols are detected using the converged

LLRs in Step 6.

3.5 Optimality of the Proposed Detection Algorithm

In this section, we attempt to explore optimality of the above mentioned algorithm. Revisiting

the system model in (3.1), and invoking the Representer Theorem Schölkopf et al. (2001), we

can alternatively write (3.1) as follows in RKHSH 2

y = diag(h) < :G ,X >H +n, (3.8)

where :G is the evaluation functional for 5 (·) , and < ·, · >H denotes an inner-product over

RKHS H . Further, using the closure property of RKHS, one can state that there exists an

operator :H on y such that

< :H, y >H= diag(h)X+ < :H, n >H , (3.9)

Hence, it can be inferred from the above equation that the application of MPA on < :H, y >H ,

achieves a BER performance equivalent to an AWGN channel.

Although, < :H, y >H is difficult to evaluate in general, it can be conveniently expressed

using Gaussian kernels (or other Mercer kernels). Additionally, this inner product may also be

approximated using RFFs Rahimi et al. (2007), i.e., we can write

y′ ≈< :H, y >H= diag(h)X+ < :H, n >H . (3.10)

2 Notably, we never utlize any explicit knowledge of the nature of 5 (·) for detection. Also, 5 (·) can
change from one deployment scenario to the other;however, we would still be guaranteed a unique
representation in RKHS.
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Hence, it is concluded that in the presence of arbitrary PA nonlinearity, applying MPA on the

unwarped observations y′ delivers a detection-performance asymptotically equivalent to a linear

AWGN channel.3

3.6 Effect of Unmitigated Nonlinearities

In this section, we investigate the deleterious effect on the convergence of the MPA in the

hypothetical scenario where the nonlinear device characteristics remain unmitigated. By

Bussgang’s theorem Price (1958), another alternative expression of (3.1) can be written as

y = diag(h)ZX + diag(h)v + n, (3.11)

where 0 < Z < 1 denotes the statistical correlation coefficient between G and 5 (G) , and v denotes

the distortion noise (whose exact probability density function is difficult to quantify in general and

depends on the nonlinearity type). In the scenario where a hypothetical “naive” receiver makes

an assumption of a linear Gaussian channel, it can be readily inferred that the incorrect choice

of likelihood (i.e. hypothetically assuming a Gaussian likelihood as in Step-3 of Algorithm 1

without mapping to RFF) presents an irreducible error-floor in messages, which leads to error

propagation in the MPA (in the terms � 9 : and �: 9 ), which lead to convergences to a suboptimal

solution, or even possible divergence depending on the dynamics of the error-propagation.

3.7 Simulations

In this section, computer simulations are presented to validate the presented analytical results.

Without loss of generality, two complex codebooks are considered, with  = 4 and � = 6,

to demonstrate the applicability of the proposed algorithm: i) a complex codebook from

Klimentyev & Sergienko (2016) (denoted by CB1), and ii) a mutual information based codebook

3 It can also be noted that the additive noise variance is conserved if a Gaussian kernel is used/approxi-
mated. This is due to the fact that

:H2
H = 1 for a Gaussian kernel.
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Zhang et al. (2016) (denoted by CB2).4 In addition, another codebook (denoted by CB3) that

supports 9 users Sharma, Deka, Bhatia & Gupta (2018) was also considered with  = 6 , and

� = 9 .

Without loss of generality number of RFF dimensions, =� , was set to 50.5 Furthermore, the

kernel-width was estimated using the Silverman’s rule of thumb. The nonlinearity was modeled

using a Rapp nonlinearity (where we consider here both the AM-AM and AM-PM cases defined

in (3.2) and (3.3) respectively) with a saturation voltage of 2.86 and results are presented for

? = 0.5, 1, 2 (i.e. decreasing order of severity). The training is performed over temporal

coherence-blocks, with pilots being transmitted in the beginning of each coherence-interval

Zou, Kim, Ding, Wichman, Hamalainen, Lin & Chiang (2019). For the current treatment,

orthogonal-pilots using pseudo-random bit sequences are utilized, which are widely deployed

in LTE based systems Korowajczuk (2011). For the presented simulations, 50 pilots were

utilized, which is in the same order as the number used in Klimentyev & Sergienko (2016). The

slightly higher of pilots needed is understandable given the severity of the AM-AM and AM-PM

nonlinearities. From the BER results depicted for the AM-AM nonlinearity in Fig. 3.1 and

AM-PM nonlinearity in Fig. 3.2, it can be noted that for the unmitigated scenario, the effect

of the nonlinearity on generic message-passing and the dynamics of the distortion over MPA

iterations is quite unpredictable. Indeed, one can observe artefacts such as degradation in the

BER upon reducing the AWGN variance and saturation of the BER at values of the order of

10−1. In addition, it is also observed that the proposed RFF based MPA delivers improved BER

performance compared to the MPA under the unmitigated scenario, and closely approaches the

performance corresponding to MPA based detection for SCMA over an “ideal” linear channel

4 Optimal codebook design remains out of the scope of the current study, as we primarily aim to mitigate
the impairments using appropriate signal processing techniques.

5 While =� can be chosen arbitrarily high, since there is a monotonously decreasing dependence of the
approximation error energy with increasing =� Mitra et al. (2020a); however increasing =� arbitrarily
increases the computational complexity which necessitates truncation of =� to a value that meets a
sufficient level of performance/QoS.

6 Choice of the saturation voltage is arbitrary; however it should be chosen lesser than the dynamic
range of the input symbols to model sufficient degradation/impairment due to nonlinearity.
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without any PA distortion. This renders the proposed approach attractive for practical SCMA

based systems impaired by PA nonlinearities.

Figure 3.1 BER vs SNR comparison for SCMA in presence
of AM-AM Rapp nonlinearity

Figure 3.2 BER vs SNR comparison for SCMA in presence
of AM-PM Rapp nonlinearity

3.8 Conclusion

In this letter an RFF based MPA detection technique for SCMA is proposed for mitigating PA

nonlinearity. Analytical proofs are outlined that guarantee convergence of the proposed detection

technique to the ideal linear AWGN channel in the presence of arbitrary PA nonlinearities and
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the deleterious impact of unmitigated nonlinearities on the classical MPA based detection is

highlighted. Furthermore, computer simulations are presented over Rayleigh fading channels,

validating the above analytical results. Lastly, the presented simulations reveal that the proposed

RFF basedMPA detection technique delivers significantly improved BER performance compared

to the classical MPA in the presence of PA nonlinearities, which makes the proposed algorithm

viable for practical deployments.
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4.1 Abstract

Non-orthogonal multiple access (NOMA) has emerged as a promising multiple-access technique

capable of accommodating many users over limited time-frequency resources. Among several

NOMA techniques, sparse code multiple access (SCMA) has emerged as viable due to its

promise of high coding-gain by appropriate codebook-design and simplistic detection using

message-passing algorithm (MPA). However,the performance of classic SCMA based systems

are severely impaired by impulsive noise (IN), which causes outages and therefore non-negligible

degradations to the bit-error-rate (BER)performance. Exploiting the robustness of the maximum

correntropy criterion (MCC) to non-Gaussian noise processes, an MPA based detector is

formulated with message-functions derived from the MCC criterion. Based on the said MCC

criterion, concurrent-adaptation of the MCC’s spread-parameter is proposed in this letter. Lastly,

analytical results for the proposed approach’s BER performance are presented with corresponding

validation by computer-simulations.

Index Terms— Impulsive noise, sparse code multiple access,information theoretic learning,

maximum correntropy criterion.
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4.2 Introduction

THE next-generation of communication systems must be able to service numerous users/devices

with a reasonable quality-of-service over massively-connected ecosystems such as the industrial

internet of things (IIoT) and several applications in industry 4.0 Dai, Wang, Ding, Wang,

Chen & Hanzo (2018). In this regard,non-orthogonal multiple access (NOMA) has emerged as

a disruptive solution for accommodating multiple users over limited time-frequency resources.

NOMA can be broadly classified into Dai et al. (2018), Ding, Lei, Karagiannidis, Schober,

Yuan & Bhargava (2017), Makki, Chitti, Behravan & Alouini (2020) and Vaezi et al. (2019): a)

Power-domain NOMA (PD-NOMA), and b) Code-domain NOMA. PD-NOMA overlaps the

users using superposition-coding, and detection is commonly done using successive interference

cancellation (SIC) or message-passing algorithms (MPA) at the receivers. However, the number

of users that can be supported by PD-NOMA is limited due to error-propagation across user-layers

and dependence on power-diversity Bhatia, Swami, Sharma & Mitra (2020), Mitra & Bhatia

(2017b) and Mitra & Bhatia (2018b). On the other hand, sparse code multiple access (SCMA)

has emerged as a specific genre of code-domain NOMA Nikopour & Baligh (2013), Moltafet

et al. (2017), Sharma et al. (2019b) and Sergienko & Klimentyev (2017), which enables

coding/shaping-gains offered by codebook-design, the possibility of near-optimal detection

using MPA, and robustness to error-propagation. However, most existing analyses of SCMA

are performed assuming idealistic additive distortions, such as additive white Gaussian noise

(AWGN). Notably, several of the beyond 5G ecosystems, such as IIoT, smart grid, and Industry

4.0, are significantly impaired by instantaneous outages in the signal to noise ratio caused by

impulsive noise (IN) Lampe (2011), Yin, Zhu, Huang & Jiang (2018), Sharma, Bhatia & Mishra

(2019a) and Selim, Alam, Evangelista, Kaddoum & Agba (2020a). Several models exist

in the literature for various IN-distributions such as Middleton-Class A,Middleton-Class B,

and Middleton Class C, which are further classified into either memoryless/memory-based

approaches Spaulding & Middleton (1977), Bhatia, Mulgrew & Georgiadis (2006), Ndo,

Labeau & Kassouf (2013) and Alam, Selim, Kaddoum & Agba (2020). From generic analytical

studies on the achievable information-limits under these noise-models, and also from studies
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specific to NOMA, a saturation in bit-error-rate(BER)/sum-rate is observed under these IN

models due to the intermittent signal-to-noise ratio (SNR)-outages induced by the IN processes

Wiklundh, Stenumgaard & Tullberg (2009).In the specific context of log-likelihood ratio (LLR)

based message-passing algorithm (MPA) for SCMA-detection, to the best of our knowledge and

belief, there is no existing work providing a generic solution for the mitigation of the effect of

IN processes (though there is literature which rigorously addresses PD-NOMA in Selim et al.

(2020b)). Additionally, specific works in the context of detection under IN suggest LLR-clipping

to reject the IN-induced outliers Alam et al. (2020), Mestrah (2019). However, it is noteworthy

that a poor choice of the thresholds causes these clipping methods to adversely affect the shape

of the LLR for the samples that are not affected by IN, which in turn affects the performance of

LLR-based detection.

Contributions: Motivated by notions of information-potentials (IP) Chen et al. (2013) in

information-theoretic learning (ITL),a maximum-correntropy criterion (MCC) based detection

method (which can be motivated as an online estimate of the Renyi-U information-potential with

U = 2) is formulated in this letter. The proposed method counters the IN-induced outliers by

propagating these IP-gradients across the MPA iterations, whose robustness to IN is established

through the presented analytical proofs. In addition, a concurrent online method of estimating

the spread-parameter of the MCC criterion is derived. Using the notion of generalized SNR

(GSNR) Polcari (2013), the converged LLR is linked to the BER performance to quantify the

achieved performance gains analytically. Lastly, the presented analysis is validated by relevant

computer-simulations over various fading channel distributions.

4.3 System Model

In this section, the considered system model is outlined for IN-impaired downlink SCMA. In this

regard, a binary independent and identically distributed (i.i.d) bit-stream is considered, which is

grouped and consequently mapped to respective codewords
{
x( 9) ∈ C ( 9)

}�
9=1, where x( 9) ∈ C+ ,

and the number of codewords in each codebook is denoted as Card[C (D)] = " , with " denoting

the modulation-order and Card [·] denotes the number of vectors in the codebook. Consequently,
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the codewords are overlapped to form the overall superposition X and transmitted through the

wireless channel.The observations at the receiver, denoted as y, is expressed as[Vaezi et al.

(2019), Eq. (12.3)]:

y = diag(h)
�∑
9=1

x( 9)︸  ︷︷  ︸
X

+n, (4.1)

where diag(·) denotes a diagonal matrix consisting of the elements of (·) , and h denotes the

channel-gains drawn from a distribution with probability denisty function (p.d.f) ?(ℎ) . In

this letter, no a-priori assumptions are enforced on the distribution of h. Furthermore, the

complex noise vector, denoted as n = [=1, =2, · · · , =+ ]) , where each =8 ∼ ?(=) is drawn from a

two-component memoryless approximation of the Middleton Class A noise-model (which is

widely followed due to its tractability Selim et al. (2020b)), which can be expressed as:

?� (=) =
U

2cf2
=

exp
(
− |=|

2

2f2
=

)
+ V

2cf2
�

exp

(
− |=|

2

2f2
�

)
, (4.2)

where U, V < 1 are probabilistic weights (i.e, U + V = 1) for the Gaussian-mixture in the above

equation and f2
= and f2

�
denotes the variances of the AWGN and the IN-components, respectively.

In the sequel, quantities corresponding to AWGN are denoted using the suffix (·)= , and quantities

corresponding to IN by the suffix (·) � . Notably, the ratio between these components, denoted as

Γ =
f2
�

f2
=
, is a measure for severity of the additive noise.

4.4 Proposed Max-Correntropy Receiver

In this section, the proposed detection technique is outlined based on the system-model derived

above. In this regard, an MCC Chen et al. (2013) based message-passing algorithm is formulated,

which provides robustness to outliers introduced by IN. This technique may be physically

interpreted as a “flow of IP”, which has roots in statistical physics, and is thus guaranteed to

achieve “thermal-equilibrium” at convergence. In this regard, it can also be noted that the MCC

can be treated as an online estimate of the Renyi-U information potential with U = 2 .
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In general, the MPA based detection is performed by propagating the log (·) of the conditional

p.d.f between the function-nodes 9 = 1, 2, · · · , + and the variable nodes : = 1, 2, · · · , � [Vaezi

et al. (2019), pp. 377]. In what follows, B: denotes a graph-theoretic neighborhood of a node :

of the resulting Tanner-graph between the function nodes and variable nodes [Vaezi et al. (2019),

Sec. 12.1.1.3].

Under AWGN, The conditional p.d.f of H conditioned on X is denoted as:

?(H[:] |X) = 1
2cf2

=

exp
©«
−

���H[:] − ℎ[:] ∑
∀ 9∈B:

G [:]
���2

f2
=

ª®®®®¬
.

In the context of the log-max MPA for generic AWGN channels, the propagated messages < 9 :

are log[?(H[:] |X)] , which for the AWGN case is denoted as:

< 9 : =

−
���H[:] − ℎ[:] ∑

∀ 9∈B:
G [:]

���2
f2
=

. (4.3)

However, in the case of IN there are instantaneous outages in the detection due to the errors in

the messages < 9 : . In the considered two-component Gaussian-mixture IN, the expected value

of the error in the messages for the classical MPA, Δ< 9 : , is expressed as follows using the

expression for the Kullback-Leibler divergence between two zero-mean Gaussians Cover (1999):

E[Δ< 9 : ] = − E? [< 9 : ] + E?� [< 9 : ]

= V(Γ − 1)︸    ︷︷    ︸
Ω

(4.4)

where E[·] denotes statistical expectation. It can be noted that these IN-induced transients occur

with probability V, which is small in general; however the energy of these transients is large

which makes Ω non-negligible.
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To mitigate the effect of these erroneous messages in MPA, and to suppress outliers, it is proposed

to propagate the energy of the gradients of MCC, which is more robust to IN-induced outliers as

a learning criterion. Mathematically, this is re-expressed as:

b 9 : =

−
���H[:] − ℎ[:] ∑

∀ 9∈B:
G [:]

���2
f2
=

× exp ©«−\
���H[:] − ℎ[:] ∑

∀ 9∈B:
G [:]

���2ª®¬ ,
(4.5)

with \ denoting the hyperparameter of the MCC. Using the definition of < 9 : in (4.3), (4.5) is

re-expressed as:

b 9 : = < 9 : exp(\f2
=< 9 : ). (4.6)

Thus, the instantaneous error in the derived message is expressed as:

Δb 9 : = Δ< 9 : exp(\f2
=< 9 : ) (1 + \f2

=< 9 : ). (4.7)

From the above expression for the instantaneous error in the message, the corresponding expected

value under the two-component Gaussian-mixture p.d.f can be written as:

E[Δb 9 : ] = UΩE4[:]∼N (0,f2
=) [exp(−\ |4[:] |2) (1 − \ |4[:] |2)]

+ VΩE4[:]∼N (0,f2
�
) [exp(−\ |4[:] |2) (1 − \ |4[:] |2)] .

(4.8)

Denoting 4[:] = H[:] − ℎ[:] ∑
∀ 9∈B:

G [:] , the expected value of Δb 9 : can therefore be expressed

as:

E[Δb 9 : ] =
U(1 + \f2

= )Ω
(1 + 2f2

= \)
3
2
+
V(1 + \f2

�
)Ω

(1 + 2f2
�
\) 3

2
. (4.9)
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To counter IN, it is essential to derive an appropriate value of \ which ensures an improvement

over the unmitigated scenario, i.e.,

U(1 + \f2
= )Ω

(1 + 2f2
= \)

3
2
+
V(1 + \f2

�
)Ω

(1 + 2f2
�
\) 3

2
≤ aΩ, (4.10)

for 0 < a < 1 . Denoting constants q1 = log(1+ \f2
= ), q2 =

3
2 log(1+ 2\f2

= ), q3 = log(1+ \f2
�
),

and q4 =
3
2 log(1 + 2\f2

�
). Using these variables, and assuming f2

= → 0 at high SNR, from

(4.10) the following approximation is derived:

a ≈ U exp
(
−

2\f2
=

1 + 2\f2
=

)
+ V

√
1

2f2
�
\
. (4.11)

From inspection of the above equation, a is guaranteed to be less than one, which guarantees the

existence of a “rich” range of values of \ for which 0 < a < 1. It should be additionally noted

that achieving a = 0 is infeasible for any value of \, which implies that there is always a (though

a significantly reduced) gap between the performance of the proposed MCC based MPA and the

MPA under AWGN.

Though the central theme of this letter aligns with the formulation of an MCC based MPA for

IN impaired SCMA, an analytical result is presented below, which holds for generic noises

which may/may not be drawn from a Middleton Class-A distribution. To simplify the following

exposition, an error-term, 4[:], is defined below as:

4[:] = H[:] − ℎ[:]
∑
∀ 9∈B:

G [:] . (4.12)

Using a batch of � error samples denoted as {48}�8=1 with arbitrary statistics, the p.d.f of 4 is

expressed by a non-parametric Parzen window representation as follows Bhatia et al. (2006),
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Bhatia & Mulgrew (2007):

?NP(4) =
1
�

�∑
8=1

^W (4 − 48), (4.13)

where ^W (·) is a Gaussian function denoted as:

^W (·) =
1√

2cW2
exp

(
− (·)

2

2W2

)
. (4.14)

(4.3) is simplified as follows under the distribution ?(4) :

E?NP [Δ< 9 : ] =

�∑
8=1
(42
8
+ W2)

�f2
=

. (4.15)

Notably, E[Δ< 9 : ] derived above for the classical MPA is not guaranteed to converge since the

error-energy is not guaranteed to be bounded in general for the U-stable noise distribution. On

the other hand, (4.5) is expressed as:

E?NP [Δb 9 : ] = E?NP [Δ< 9 : exp(\f2
=< 9 : ) (1 + \f2

=< 9 : )] . (4.16)

Assuming independence of Δ< 9 : and < 9 : , the following simplification is achieved:

E?NP [Δb 9 : ] =

�∑
8=1
(42
8
+ W2)

�f2
=

E?NP [exp(−\42) (1 − \42)], (4.17)

which is further simplified as:
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E?NP [Δb 9 : ]

=


�∑
8=1
(42
8
+ W2)

�f2
=

√
2W2\ + 1

−
\
�∑
8=1

�∑
9=1
(42
9
+ W2)

(
42
8
+ W2

2W2\+1

)
�2f2

=


.

(4.18)

From (4.15) and (4.18) it is directly concluded that for appropriately chosen \ , E?NP [Δb 9 : ] <

E?NP [Δ< 9 : ] which leads us to the following theorem:

Theorem 1: As compared to the classical MPA which is ML-optimal for AWGN, the proposed

MCC based MPA offers higher robustness to errors in the messages caused by generic non-

Gaussian noise processes.

4.5 Recursive Information-Theoretic Estimation of \

In this section, a recursive information-theoretic estimation technique is proposed for tracking \.

Under the considered two-component Middleton Class-A model for the additive noise =, the

difference in the messages is given by:

Δb 9 : ∝ log< − log ?� exp(\f2
= log ?�), (4.19)

where log ? corresponds to the potential under AWGN, and log ?� corresponds to the potential

under the considered Middleton class A model for the additive noise vector n. Here, (4.19) is be

factorized as:

Δb 9 : ∝ log ?�
[

log ?
log ?�

− ?\ (C)f
2
=

�

]
. (4.20)
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The above equation is re-expressed as:

Δb 9 : = −
U |4 |2

Γf2
=

(1 − ?\ (C)f
2
=

�
) + V

(
|4 |2(Γ − 1)
Γf2

=

)
. (4.21)

Assuming f2
= → 0 , U ≈ 1 , and letting Δb 9 : → 0 , \ is expressed as follows:

\ =
VΓf2

=

|4 |2 [1 + V(Γ − 1)]
. (4.22)

Therefore, one arrives at the following moving-average update for \ :

\ := Ξ\ + (1 − Ξ)
Γf2

=

|4 |2 [1 + V(Γ − 1)]
, (4.23)
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where 0 < Ξ < 1 denotes the forgetting factor. Based on the presented MCC based MPA in

the previous section and the hyperparameter-estimation/tracking outlined in this section, the

proposed algorithm is summarized in Algorithm 4.1.

Algorithm 4.1 MCC Based MPA

1 Initialize �: 9 = ?(G 9 ) as a uniform distribution.

2 Initialize: � 9 : := |Δ�"�� |2

3 where, |Δ�"�� |2 is calculated as per (4.5).

4 Initialize MAXITER.

5 while c < MAXITER do

6 � 9 : := log(?(x 9 )) +
∑
9∈B:

�: 9 .

7 �: 9 : = max
∀x 9∈C9 ,:∈B 9

log(?(H′[:] |X)) + ∑
:∈B 9

� 9 :

8 Adapt \ as per (4.23). c := c + 1

9 end while

10 Using the converged messages � 9 : and codebook C9 detect the user-symbols as in [Vaezi

et al. (2019), eq. (12.12)]

4.6 BER Analysis

In this section, analytical results are presented to link the error-rate performance of the proposed

approaches, with the expression for the errors in messages. For this purpose, the concept of

GSNR, which links the converged LLR to the BER is invoked. Under AWGN, the generalized

SNR is proportional to the converged LLR upto a scaling factor.

Hence, the error in the message floor can be directly converted to a corresponding SNR floor as

mentioned next. First, a given channel h with arbitrary statistics is assumed and the converged
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GSNR is denoted as SNR∗ , under which the BER achieved under AWGN, BERAWGN , is denoted

as a function that depends on the statistics of the channel-gain, say k?(ℎ) (SNR∗)1

BERAWGN = k?(ℎ) (SNR∗). (4.24)

Using the definition of generalized SNR, and from (4.4), one can re-write the above BER-

expression for the unmitigated IN-impaired scenario as follows:

BERIN ≈ k?(ℎ) (SNR∗) + |k′(SNR∗) |E[Δ< 9 : ] . (4.25)

Further, the BER expression for the MCC based MPA is quantified as:

BERIN ≈ k?(ℎ) (SNR∗) + |k′?(ℎ) (SNR
∗) |E[Δb 9 : ] . (4.26)

In the next section, the validity of these BER expressions is verified and the robustness of our

approach to varying IN-levels is demonstrated using computer simulations.

4.7 Results and Discussion

In this section, computer-simulations are presented to validate the proposed MCC based MPA.

The simulated and analytical results are depicted in Fig. 4.1 for one-sided Gaussian fading

and Fig. 4.2 for Rayleigh fading, where, [S] and [A] denote simulated and analytical curves,

respectively. From Figs. 4.1 and 4.2, it is observed that the proposed MCC based MPA

successfully mitigates the IN. Moreover, it is noticed from Fig. 4.1, that MCC based MPA

does not fully nullify the effect of IN, which is in line with the analysis presented in Section V.

1 k? (ℎ) arises as expectation of Q-function under the distribution for the channel-gain of h.Some specific
works in the context of the Rayleigh channel are found in [Vaezi et al. (2019), Sec. 12.2.1], Bao, Ma,
Xiao, Ding & Zhu (2017), and for VLC systems with random waypoint mobility model Mitra, Sharma,
Kaddoum & Bhatia (2020c).
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However, one can observe that the extent of degradation caused by increasing magnitudes of

IN is significantly lower for the proposed MCC-based MPA as compared to the unmitigated

scenario. In this regard, one can observe from Figs. 4.1 and 4.2 that the performance of the

MCC based MPA is almost invariant across varying IN levels and gives performance gains

ranging from half a decade to a full decade of BER as Γ increases from 100 to 1000 at SNR

above an SNR of 20 dB. Furthermore, in Figs. 4.1 and 4.2, the corresponding simulated BER

plots are validated using analytical results obtained using (4.25) and (4.26). To implement (4.25)

and (4.26) by obtaining the analytical coordinates corresponding to the unmitigated scenario and

for the MCC based MPA, the BER-coordinates corresponding to the AWGN performance, k(·) ,

are used. Additionally, for substitution in (4.25) and (4.26), k′(·) is estimated by performing

numerical-differences on the BER curve corresponding to the AWGN scenario. Furthermore,

one can observe a close agreement between the simulated and the analytical plots, which,

together with the BER performance gains and achieved robustness to IN, ratifies the presented

analysis and makes the proposed algorithm viable for IN-impaired scenarios.

Computational Complexity: The classical MPA has a computational complexity O("�+ 3 5 )

Vaezi et al. (2019), Vameghestahbanati, Bedeer, Marsland, Gohary & Yanikomeroglu (2017),

Al-Nahhal, Dobre, Basar & Ikki (2019), Al-Nahhal, Dobre & Ikki (2020), where 3 5 denotes

the number of layers occupying each resource. It is noted that the proposed MPA based

approach has similar complexity since the only difference lies in calculation of the messages

as in (4.5). For the proposed approach, one more multiplication and an extra exponentiation

is required for each message-calculation, and in that it has slightly higher implementation

complexity than the classical MPA. However, the order of complexity for the proposed approach

is not affected by the extra computations, and is still O("�+ 3 5 ). Furthermore,2 the proposed

MCC based MPA offers significantly higher robustness to IN and independence across various

deployment-scenarios/IN-parameter-values, which offsets the slight increase in the computational

complexity.

2 Notably, this makes our analytical framework independent of channel statistics; one can directly
“measure" the IN-induced degradation in BER by benchmarking with the AWGN performance.
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4.8 Conclusion

In this letter, anMCC basedMPAwas proposed for SCMAdetection that relies on the propagation

of IP-gradients rather than classical LLR-based approaches. The proposed MCC based method

was analytically found to deliver improved BER performance and offer improved robustness to

different IN levels. Furthermore, BER-expressions were derived for the proposed MCC based

MPA and the unmitigated scenario. For both scenarios, a close agreement is observed between

the corresponding analytical and simulated BER values. The achieved performance-gains, and

the robustness to IN offered by the MCC based MPA make the proposed approach viable for

practical SCMA systems over IN-impaired scenarios.
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5.1 Abstract

Non-orthogonal multiple access (NOMA) has emerged as a promising technology that allows

for multiplexing several users over limited time-frequency resources. Among existing NOMA

methods, sparse code multiple access (SCMA) is especially attractive; not only for its coding

gain using suitable codebook design methodologies, but also for the guarantee of optimal

detection using message passing algorithm (MPA). Despite SCMA’s benefits, the bit error rate

(BER) performance of SCMA systems is known to degrade due to nonlinear power amplifiers

at the transmitter. To mitigate this degradation, two types of detectors have recently emerged,

namely, the Bussgang-based approaches and the reproducing kernel Hilbert space (RKHS)-based

approaches. This paper presents analytical results on the error-floor of the Bussgang-based MPA,

and compares it with a universally optimal RKHS-based MPA using random Fourier features

(RFF). Although the Bussgang-based MPA is computationally simpler, it attains a higher BER

floor compared to its RKHS-based counterpart. This error floor and the BER’s performance gap

are quantified analytically and validated via computer simulations.

Keywords: PA nonlinearity; Bussgang-based approach; SCMA; RKHS
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5.2 Introduction

Next-generation communication systems must be capable of providing several users/ devices

with appropriate service levels for the industrial internet of things (IIoT) and Industry 4.0 Dai

et al. (2018). In the context of multiple-access techniques for these ecosystems, non-orthogonal

multiple access (NOMA) has emerged as a promising solution that has the potential to support

several users over a finite number of temporal/spectral resources. NOMA-based approaches are

broadly categorized into the following types Dai et al. (2018); Vaezi et al. (2019): (a) power

domain NOMA (PD-NOMA), and (b) code domain NOMA. PD-NOMA uses superposition

coding to overlap multiple users and detects corresponding user symbols on the receiver side by

successive interference cancellation (SIC) or message passing algorithms (MPAs). However,

PD-NOMA is known to support a limited number of users due to inter-layer error propagation,

and its reliance on power diversity Bhatia et al. (2020); Mitra & Bhatia (2017b, 2018b). Apart

from PD-NOMA, specific code-domain NOMA-based approaches, like sparse code multiple

access (SCMA) have recently been found to be particularly promising Nikopour & Baligh (2013);

Moltafet et al. (2017); Sharma et al. (2019b); Sergienko & Klimentyev (2017), as they not only

allow for potential coding/shaping gains through codebook design, but also enable near-optimal

detection using MPAs. Besides, SCMA is also known for its robustness to error propagation.

However, transmit-side power amplifier (PA) nonlinearities have been found to degrade the

performance of generic SCMA systems. From Bussgang’s theorem Price (1958), transmit-side

PA nonlinearity is known to add an independent equivalent distortion noise term that lowers the

overall signal-to-noise ratio. Two types of competing MPA-based detection methods exist to

mitigate this degradation: (a) Bussgang decomposition-based MPA detectors Yang et al. (2018)

and (b) random Fourier feature (RFF)-based detectors Sfeir, Mitra, Kaddoum & Bhatia (2020b).

While decomposition-based approaches achieve commendable performance under a limited

implementation budget, the RFF based approaches offer benefits like universal approximation

and generalization across various types of nonlinear PA characteristics. However, RFF-based

approaches have slightly more computational overhead, and in certain hardware limited IIoT

ecosystems, the implementation complexity of algorithms outweighs the error-floor reached
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subject to the achievement of a minimum level of quality of service (QoS) Samie, Tsoutsouras,

Xydis, Bauer, Soudris & Henkel (2016); Baek & Kaddoum (2020); Evangelista et al. (2019b).

Therefore, it is compelling to compare and derive analytical insights/comparisons on the error

floors of the Bussgang-based MPA methods and to decide on the suitability of a detector for

a given bit error rate (BER)-based on the QoS. Several works in the literature have studied

the nonlinearity effect not only in SCMA but also in other environments, such as Guerreiro,

Dinis, Montezuma & Campos (2020), where a Bussgang-based receiver design was proposed

for nonlinear PD-NOMA. Moreover, in Sfeir et al. (2020b), a nonlinear SCMA system model

was studied, and a RFF-based solution was proposed to improve BER performance as equivalent

to that obtained in the presence of a linear AWGN channel, whereas an iterative method based

on clipping noise was proposed in Yang et al. (2018). Additionally, in Anand et al. (2021),

RFF-KLMS based algorithm was proposed to mitigate nonlinearity in MIMO-VLC channels.

Contributions: In this paper, we present rigorous analytical studies and insights on the optimality

of the Bussgang-based MPA for downlink SCMA with PA impairments. From our analysis, the

Bussgang-based MPA detector is found to reach a non-negligible BER floor compared to the

universally optimal RFF-based MPA, and the analytical results are presented to quantify the

BER floor. Next, these results are validated using computer simulations under different fading

distributions. The quantification of this error floor could potentially allow for switching between

detection methods in hardware-constrained IIoT environments, where meeting a specific QoS

constraint with minimal computations is of paramount importance.

5.3 System Model

In this section, we describe the system model considered. We consider a downlink SCMA

scenario, in which the users’ bitstreams (considered binary, independent and identically

distributed) are grouped and mapped to respective codewords from a codebook
{
x( 9) ∈ C ( 9)

}�
9=1,

where each codeword, x( 9) ∈ C+ . Furthermore,the number of codewords in each codebook is

denoted by Card[CD] = ", with " denoting the modulation order, and Card[·] denoting the

number of vectors in a codebook. In this paper, we consider a downlink SCMA system as
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in (Vaezi et al. (2019) Equation (12.3)), where the users’ codewords are overlapped and the

superposition, x, is broadcast through the channel h. At the receiver, the received vector, y, is

used for MPA-based detection. This is in contrast with the possible uplink scenario presented in

(Vaezi et al. (2019) Equation (12.1)) where the users’ codewords could arrive asynchronously.

For this hypothetical case, there is indeed a possibility of interference between the codewords that

could impair their sparsity/algebraic-structure; however, this issue does not arise for downlink

SCMA.

For + non-interfering resources, the observation at the receiver, y ∈ C+ , is given as Vaezi et al.

(2019), (Sfeir et al. (2020b) Equation (12.3)):

y = diag(h) 5 (
�∑
9=1

x( 9)︸  ︷︷  ︸
X

) + n, (5.1)

where 5 (·) denotes the PA nonlinearity, x denotes the instantaneous superposition of the users’

codewords, diag(·) is a diagonal matrix that contains elements of (·) in its diagonal, and h ∈ C+

is a vector of channel gains sampled according to a probability density function (PDF) ?(ℎ). The

contribution in this work is not constrained by prior statistical assumptions on h. Furthermore,

the complex additive white Gaussian noise (AWGN) vector is given by n = [=1, =2, · · · , =+ ]) ,

with each =8 ∼ ?(=). Without sacrificing generality, we consider AM-AM Rapp nonlinearity for

the PA model, 5 (G), which is expressed as follows Gharaibeh (2011):

5 (G) = G(
1 +

��� GGsat

���2?) 1
2?
,

(5.2)

where ? denotes the parameter that controls the severity of the nonlinearity, and GB0C is the PA

saturation voltage. It is noted that the RFF-based detectors’ performance is not dependent on the

nonlinear PA characteristics or their knowledge at the receiver, and existing works show their

generalization across different PA characteristics Sfeir et al. (2020b).
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The components of the system model are pictorially depicted in Figures 5.1–5.3. The transmitter

model described mathematically in (5.1) is shown pictorially in Figure 5.1. Figure 5.2 pictorially

depicts the overlap of the codewords from each users’ dictionary. Finally, the dependence on the

user-resources and the variable-nodes is shown by a Tanner graph in Figure 5.3.

+ + + + +

Multiplexed codeword
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       Channelf(.) AWGN

Bussgang
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Figure 5.1 Depiction of the System Model for SCMA
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Figure 5.2 Depiction of the overlapping of codewords for different users
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Figure 5.3 Depiction of the Tanner Graph

5.4 Bussgang Decomposition-Based MPA

In this section, we elaborate on the Bussgang decomposition-based MPA detector. The MPA

detector iteratively exchanges the log(·) of the conditional likelihood as messages across the

function nodes, indexed as 9 = 1, 2, · · · , + , and the variable nodes, indexed as : = 1, 2, · · · , �.

Also, for the resulting Tanner graph of the function nodes and variable nodes (Vaezi et al. (2019)

Section 12.1.1.3), the graph neighborhood of node : is denoted as B: . In this regard, we invoke

the Bussgang theorem Price (1958), and re-express (5.1) as:

y = Udiag(h)x + v + n, (5.3)

where U denotes a correlation-coefficient and v denotes an independent distortion term with

variance f2
E . Using this equivalent form, we obtain the following expression for the conditional
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PDF, ?(H[:] |x):

?(H[:] |x) = 1
2cf2

=

exp


−

�����H[:] − Uℎ[:] ∑
∀ 9∈�:

G [:]
�����2

f2
= + f2

E


. (5.4)

Generally, classical MPA-based detection propagates the log(·) of the conditional PDF across

the function nodes, 9 , and variable nodes, : (Vaezi et al. (2019) p. 377). For AWGN channels,

the conditional PDF of H[:] given x is provided below:

log ?(H[:] |x) = − log
(
2cf2

=

)
−

�����H[:] − Uℎ[:] ∑
∀ 9∈�:

G [:]
�����2

f2
E + f2

=

.
(5.5)

The parameters U and f2
E are estimated using the available pilots and the channel estimates h

from (5.1) as follows:

U =
E

[
y)diag(h)x

]
E

[
‖diag(h)x‖2

] ,
f2
E = (1 − U)2E

[
‖diag(h)x‖2

]
.

(5.6)

For the log-max MPA approaches over AWGN channels, the messages, < 9 : , are essentially

given by the log likelihood log [?(H[:] |x)]. Considering the Bussgang representation of (5.1)

in (5.3), < 9 : is explicitly written as:

< 9 : =

−
�����H[:] − Uℎ[:] ∑

∀ 9∈B:
G [:]

�����2
f2
= + f2

E

. (5.7)
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The difference between the value of this message and its corresponding ideal value is expressed

as follows:

Δ< 9 : =

������H[:] − ℎ[:] ∑
∀ 9∈B:

G [:]

������
2 (
f2
= + f2

E

)
︸                                          ︷︷                                          ︸

P

−

������H[:] − Uℎ[:] ∑
∀ 9∈B:

G [:]

������
2

f2
=︸                                 ︷︷                                 ︸

Q

f2
=

(
f2
= + f2

E

) . (5.8)

If the appropriate expression for the Kullback–Leibler divergence between Gaussian PDFs

having zero mean and variances f2
= and f2

= + f2
3
is invoked, the difference between < 9 : and its

corresponding ideal value, E
[
Δ< 9 :

]
(with U = 1 and f2

E = 0), is given by Cover (1999):

E
[
Δ< 9 :

]
=

1
2

log

[
f2
= + (1 − U)2 f2

ℎ
f2
G + f2

=

f2
=

]
+

f2
=

2
(
f2
= + (1 − U)2 f2

ℎ
f2
G

) − 1
2
, (5.9)

where

f2
ℎ = E

[
ℎ2 [:]

]
,

f2
G = E

©«
∑
∀ 9∈B:

G [:]ª®¬
2 .

(5.10)

Next, we directly link the converged log likelihood ratio for the ideal linear channel to the

generalized signal-to-noise ratio (GSNR) Sfeir, Mitra, Kaddoum & Bhatia (2020a), ref. Polcari

(2013) achieved at convergence, SNR*, which is in turn a function of k?(ℎ) (the PDF of the

channel gain) Sfeir et al. (2020a):

BERLinear = k?(ℎ) (SNR∗) . (5.11)
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From the expression for the message error derived in (5.9), the BER of the proposed Bussgang

detector, BERBussgang, is approximately expressed as:

BERBussgang = k?(ℎ) (SNR∗) + k′
?(ℎ) (SNR∗) × E

[
Δ< 9 :

]
, (5.12)

where the E
[
Δ< 9 :

]
is derived in (5.9). The following insights are drawn from the above

analytical result:

• Notably, (5.12) quantifies the gap between the BER of the proposed approach and that of a

universally optimal MPA (the RFF-based MPA in Sfeir et al. (2020b)). As mentioned before,

this quantification helps when trading off computational complexity with BER performance

subject to achieving a given BER-based level of QoS.

• It is further noted that the above deviation is independent of the fading distribution. In

this context, it is indeed worth mentioning that the ideal BER, k?(ℎ) (SNR∗), is mostly an

integral of a Q-function over the concerned PDF ?(ℎ) Vaezi et al. (2019). However, when

k?(ℎ) (SNR∗) (and hence its derivative k′
?(ℎ)) are known, the optimality gap is found to be

independent of the underlying distribution.

• It is possible to further improve the error approximation in (5.12) as follows:

BERBussgang =

∞∑
;=0

k
(;)
?(ℎ) (SNR∗)

;!
E

[
Δ<;9 :

]
, (5.13)

where k (;)
?(ℎ) (·) represents the ;

Cℎ derivative of k?(ℎ) (·). To simplify, we note from (5.7)

that P,Q ∼ Exp
[
f2
=

(
f2
= + f2

E

) ]
are even powers of normal random variables with average

energy f2
=

(
f2
= + f2

E

)
. Therefore, we obtain the following for E

[
Δ<;

9 :

]
:

E
[
Δ<;9 :

]
=

;∑
B=0

(
;

B

)
E

[
PBQ;−B

]
. (5.14)
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From (Kan (2008) p. 546), this is simplified as:

E
[
Δ<;9 :

]
=

;∑
B=0

min[B,(;−B)]∑
D=0

(
;

B

) 2B! [2 (; − B)!]
(
Uf2

ℎ
f2
G

)2D

2; [(B − D)!] [(; − B − D)!] 2D!
, (5.15)

which yields the final expression:

BERBussgang =

∞∑
;=0

k
(;)
?(ℎ) (SNR∗)

;!
E

[
Δ<;9 :

]
. (5.16)

A summary of the proposed Bussgang-based MPA is provided in Algorithm 5.1.

Algorithm 5.1 Bussgang based MPA

1 1: Initialization:

2 �: 9 = ?
(
x 9

)
according to a uniform distribution.

3 2: Initialization:

4 � 9 : := 1
2cf2

=
exp

−
�����H[:]−Uℎ[:] ∑

∀ 9∈�:
G [:]

�����2
f2
E+f2

=


5 U =

E[y) diag(h)x]
E[‖diag(h)x‖2] ,

6 f2
E = (1 − U)2E

[
‖diag(h)x‖2

]
.

7 3: Initialize the maximum number of iterations, ITER.

8 4: while c < ITER do

9 � 9 : := log
(
?

(
x 9

) )
+ ∑
9∈B:

�: 9 .

10 �: 9 : = max
∀x 9∈C9 ,:∈B 9

log(?(H[:] |x)) + ∑
:∈B 9

� 9 :

11 2 := 2 + 1

12 end while

13 5: Detect user-symbols as per (Vaezi et al. (2019) eq. (12.12)) using the steady-state

message-values � 9 : and codebook C9
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5.5 Simulations

In this section, we present the simulation results to validate the Bussgang decomposition-based

MPA. Without sacrificing generality, a simplistic codebook from Klimentyev & Sergienko

(2016) is considered in our simulations. We set ? = 1 and GB0C to be equal to the maximum

dynamic range of x. Furthermore, the BER simulations are performed over 107 bits, and 15 MPA

iterations are used. The simulation results for a Rayleigh channel are depicted in Figure 5.4.

The simulation parameters are summarized in Table 5.1.
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RFF-based MPA [220 Pilots]

RFF-based MPA [440 Pilots]

RFF-based MPA [880 Pilots]

Figure 5.4 BER vs. SNR comparison of the Bussgang-based detector
with RFF-based detector for a Rayleigh Channel by

varying the number of pilots
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Table 5.1 Simulation Parameters

Codebook Section II.A
Klimentyev & Sergienko (2016)

Modulation OOK
Value of p 1

Kernel-width assignment Silverman’s rule Silverman (2018)
Number of MPA iterations 15
Number of transmitted bits 107

Parameter values for Rayleigh distribution f2
ℎ
= 1

Parameter values for the Nakagami-< distribution Shape: < = 0.5,
Spread parameter: 1

=� 110

In Figure 5.4, saturation is observed in Bussgang-based MPA’s BER performance. In addition,

we observe no significant change in Bussgang-based MPA’s BER floor when the number of

pilots is increased from 137 to 880. However, for the RFF-based MPA detection in Sfeir et al.

(2020b), its BER performance is found to improve as the number of pilots increases, and

the saturation due to the BER floor is completely invisible at 880 pilots. Furthermore, the

analytical expression for the BER of the Bussgang-based detector derived in (5.12) is validated

in Figure 5.5, which illustrates close agreement between the analytical BER (denoted by [A])

and the simulated BER (denoted by [S]). Figure 5.6 shows a similar validation of the analytical

result derived in (5.12) assuming a Nakagami-< distributed h, with < = 0.5. Since the mode of

the Nakagami-< distribution (with < = 0.5) is zero, we observe degraded BER performance for

Nakagami-< fading as compared to the BER performance for the Rayleigh channel presented in

Figure 5.5. However, due to the distribution-independent quantification of the performance gap

presented in (5.12), a close match is observed between the simulated BER and the analytical

BER for the Bussgang-based detector in Figure 5.6. This quantification of the BER floor helps

when predetermining the viability of using a lightweight Bussgang-based MPA (which has a

complexity of O() "3 5 ), where 3 5 denotes the free distance) over a complex RFF-based

detector (which has a complexity of O() "3 5 + =2
�
), where =� denotes the number of RFFs)

subject to achieving a BER-based level of QoS.
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Figure 5.5 BER vs. SNR validation for the Bussgang-based detector
for a Rayleigh channel



86

10 20 30 40 50

SNR (dB)

10
-3

10
-2

10
-1

10
0

B
ER

RFF-based Detector

Bussgang MPA [S]

Bussgang MPA [A]

Figure 5.6 BER vs. SNR validation for the Bussgang-based detector
for a Nakagami-< channel with < = 0.5

5.6 Conclusions

In this paper, a low-complexity detector, the Bussgang-based MPA, was derived, and its

BER performance was quantified. The proposed detector was found to present a BER floor

comparable to that of existing RFF-based approaches. The BER floor was quantified analytically

relative to the optimal RFF-based MPA without specific assumptions about the nature of the

PA nonlinearity or the fading distribution. Additionally, the analytical results were validated

by computer simulations considering different channel distributions. The detector is attractive
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despite its error floor due to its simplicity and suitability for hardware-limited IIoT systems,

wherein achieving a certain level of QoS with low computational cost outweighs the requirement

of obtaining a universally optimal BER performance.
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6.1 Abstract

Non-orthogonal multiple access (NOMA) has been proposed as a potential enabler for massive

connectivity. Among the different NOMA schemes, power-domain (PD-NOMA) is particularly

appealing as it improves user fairness while enhancing spectral efficiency. However, the practical

implementation of NOMA faces several challenges, including radio frequency impairments,

such as power-amplifier (PA) nonlinearity, which can limit its performance. In this paper, we

study the impact of PA nonlinearity on the detection performance of PD-NOMA, and propose

a random Fourier feature (RFF) based solution to mitigate the effects of such imperfections.

Computer simulations carried out assuming different PA nonlinearity types demonstrate that

the proposed RFF based algorithm considerably improves the BER performance and achieves

results that are close to the ideal case. Lastly, the analytical proof of our proposed algorithm’s

performance is provided to support our simulation results.

Index Terms—Hardware impairments, PD-NOMA, nonlinearity, RFF.

6.2 Introduction

Multiple access techniques have been the cornerstone of every new wireless generation.

Nowadays, the continuous increase in the number of connected devices and the explosive growth
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in the data rate requirements is pushing researchers to conceive new multiple access techniques

that enable massive connectivity, and achieve higher spectral efficiency and throughput Giordani,

Polese, Mezzavilla, Rangan & Zorzi (2020). In this context, traditional orthogonal multiple

access (OMA) techniques, used in previous generations of mobile communications, have been

found ill-equipped toward accommodating the overwhelming traffic that will be required by the

upcoming beyond fifth generation (B5G) and sixth generation (6G) communication systems.

In this regard, non-orthogonal multiple access (NOMA) has emerged as a potential candidate

for supporting massive connectivity, increasing spectral efficiency and achieving fairness, in

upcoming generations of wireless networks Liu et al. (2017b). In contrast to OMA techniques,

NOMA offers higher spectral efficiency by enabling the allocation of multiple users on the

same resource block (RB). In general, NOMA is classified into two broad categories: Power

domain NOMA (PD-NOMA), where multiplexing is performed in the power domain, and code

domain NOMA (CD-NOMA), where multiplexing is achieved in the code domain. CD-NOMA,

seen as an extension of code division multiple access (CDMA), has multiple variants such as

low density spreading sequence-based CDMA (LDS-CDMA) and sparse code multiple access

(SCMA) Vaezi et al. (2019),Wang, Zhang, Yang & Hanzo (2018). In CD-NOMA, codes are

assigned to users. For instance, for each user, SCMA, defines a multidimensional codebook

consisting of a set of codewords enabling a shaping gain in addition to the coding gain Wu et al.

(2017); Evangelista et al. (2019b); Sfeir et al. (2020a); Sfeir, Mitra, Kaddoum & Bhatia (2021).

Unlike CD-NOMA, PD-NOMA separates the users in the power domain, leveraging their channel

gain differences. Here, the users are assigned different power levels according to their channel

gain, i.e. users suffering from bad channel conditions (typically users who are far from the

transmitter) are assigned higher power levels. In contrast, those enjoying better SNRs (typically

users that are close to the transmitter) will be allocated lower amounts of powerDai et al. (2018),

Mitra & Bhatia (2017b), Farah et al. (2017). This difference in power allocation, in addition to

achieving fairness between users, facilitates decoding at the user end. Specifically, the user with

bad channel conditions is allocated more power and therefore perceives the other user’s signal

as noise while performing his decoding as normal. Meanwhile, the user with good channel

conditions is assigned less power and thus should decode the other user’s information and subtract
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that information from the received signal to recover his message. This decoding then subtracting

is known as successive interference cancellation (SIC). SIC suffers from error-propagation,

which saturates/degrades the performance of PD-NOMA systems with a large number of users

Sun, Xie, Hu & Wu (2016). Furthermore, when the number of multiplexed users on the same

resource increases, the complexity of SIC increases Islam, Avazov, Dobre & Kwak (2016),Islam,

Zeng & Dobre (2017) which is why, in most related works, only two users are multiplexed.

That being said, PD-NOMA enables fairness between unequal users while achieving massive

connectivity and integrates well with ecosystems like the internet of things (IoT) Lv, Ma,

Zeng & Mathiopoulos (2018).

However, impairments, such as nonlinearities in the power amplifier (PA), severely degrade

the performance of PD-NOMA based systems. Pitfalls of nonlinear distortion in wireless

communication were studied in Gharaibeh (2011), where system models and simulations

were provided for single and multichannel wireless communication systems. In Belkacem,

Ammari & Dinis (2020), the performance of PD-NOMA is studied in 5G with high-power

amplifiers (HPAs) nonlinearities. In Guerreiro et al. (2020), an iterative receiver design is

performed to mitigate nonlinearity.

Among several signal processing algorithms, reproducing kernel Hilbert spaces (RKHS) tools

have been found to offer practically effective solutions for recovering information in the presence

of impairments, such as intersymbol interference (ISI) and hardware nonlinearity. In Jain,

Mitra & Bhatia (2019b), a RKHS based algorithm was proposed for mitigating nonlinearity and

ISI in visible light communication (VLC). In Sfeir et al. (2020b), a technique based on random

Fourier feature (RFF) was proposed to mitigate the effect of PA nonlinearities on CD-NOMA, and

specifically SCMA. Additionally, a RFF-based detection showed attractive results for mitigating

impairments over nonlinear multi user massive multiple input multiple output (MU-m-MIMO)

Chhangani et al. (2020). Therefore, in this work, we propose a RFF-based solution for nonlinear

downlink PD-NOMA.

Contributions: In this paper, we consider the impact of the PA nonlinearities on BER performance

of PD-NOMA systems and propose a new RFF based solution that recovers the distorted NOMA
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signal before performing SIC. Our simulations show that, under different types of PA nonlinearity

and severity levels, the proposed method greatly reduces the effects of PA nonlinearities and

delivers a performance that is comparable to ideal scenarios. Further, analytical proofs and

theorems are given that support the generated results.

6.3 Preliminaries

In PD-NOMA, the same RB is shared between different users. The users are paired and assigned

different power levels based on their distinct channel gains. Because several users share the same

resources, precise pairing and power allocation strategies are essential for optimum resource

utilization, resulting in reduced interference and increased system capacity. Hence, the downlink

transmitted signal to the : Cℎ user is expressed as:

H: = ℎ:

�∑
9=1

√
% 9G 9 + =: , 9 = 1, .., � , (6.1)

where � denotes the number of multiplexed users per subcarrier, ℎ: ∈ C is the channel gain

of the : Cℎ user on subcarrier =, % 9 represents the amount of power allocated to user 9 , G 9
the information sequence corresponding to user 9 and = 9 ∼ CN(0, f2

= ) is the additive white

Gaussian noise (AWGN) with zero mean and variance f2
= . At the receiver end, SIC is performed

to identify messages for the different users from the superposed signal. Moreover, decoding at

the receiver end should follow an optimal decoding order based on the assigned power levels.

Thus, if user : has the highest power level, he perceives the other user’s information as noise,

and decodes his information. However, if the user : does not have the highest power level, the

user decodes messages of all the users whose power levels are higher than his before decoding

his own information. Hence, the recovered signal is obtained as:

Ĥ: = H: −
∑
;∈L

ℎ;
√
%; Ĝ; , (6.2)
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where L is the set of users whose power level %; is greater than the power level of user : , %: .

While there are no explicit limitations on the number of multiplexed users per subcarrier, SIC

complexity and error propagation both rise as the number of users sharing a RB increases. Thus,

in this work, we will consider a multiplexing of two users per subcarrier multiplexing scenario.

6.4 System Model

We consider a downlink PD-NOMA system consisting of a single base station, # subcarriers,

and * users, where * > # and perfect channel state information (CSI) is available at the

receiver. The users are separated based on their locations within the cell into two sets: users far

from the base station which are considered as weak users and users close to the base station

who are considered as strong users. In the following, we assume a two-users superposition,

where the first user is the one suffering from a low channel gain, and the second having the best

channel conditions. The transmitted signals for user 1 are generated from a binary PSK (BPSK)

modulation where S1 = {10 = 0, 11 = 1} and those of user 2 are generated from a quadrature

PSK (QPSK) where S2 = {00 = 00, 01 = 01, 02 = 10, 03 = 11}. The received signal at the : Cℎ

user’s receiver is given by:

H: = ℎ: 5

©«
�∑
9=1

√
% 9G 9︸      ︷︷      ︸

X

ª®®®®®®¬
+ =: , 9 = 1, .., � , (6.3)

where 5 represents the nonlinear distortion function of the HPA. The nonlinearities of the PA can

be modelled by the amplitude modulation–amplitude modulation (AM-AM) Rapp nonlinearity

function 5 (·) given as Gharaibeh (2011)
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5 (G) = G(
1 +

��� GGsat

���2?) 1
2?
,

(6.4)

or by the amplitude modulation–phase modulation (AM-PM) nonlinearity function given by

Dudak & Kahyaoglu (2012)

| 5 (G) | = |G |(
1 +

��� GGsat

���2?) 1
2?
,

∠ 5 (G) = ∠G + n |G |@1

1 +
(
|G |
W

)@2
,

(6.5)

where Gsat represents the saturation value, ? represents the severity of the nonlinearity, |·| denotes

the absolute value operation, @1 = −0.03462, @2 = −1.758, n = 0.0747, W = 0.1281, and ∠(·)

represents the angle of (·).

6.5 Proposed RFF based Post-distortion Algorithm for NOMA

In this section, we present our RFF based algorithm for decoding PD-NOMA messages in the

presence of hardware nonlinearities. RFF enables us to approximate the feature map space

in RKHS using randomized feature mapping Ψ : R3 → R� , defined as Anand et al. (2021),

Bouboulis et al. (2016), Mitra et al. (2020a)

Ψ($) =
√

2
�



cos
(
8)1 v + [1

)
cos

(
8)2 v + [2

)
...

cos
(
8)
�

v + [�
)

, (6.6)

where each {88}�8=1 is generated from the Gaussian filter kernel Fourier transform, expressed as

Anand et al. (2021), Bouboulis et al. (2016)
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 G(l) =
( f
2c

)�
4(−0.5f2‖8‖2) , (6.7)

which is equivalent to the normal distribution N
(
0� , 1

f2 I�
)
, with I� , f and � representing

the identity matrix of dimension �, the kernel-width hyperparameter, and the number of RFFs,

respectively. Moreover, (·)) denotes the transpose operator, each {[8}�8=1 is drawn from a uniform

distribution on the interval [0, 2c] Bouboulis et al. (2016), Anand et al. (2021), $ ∈ C represents

an independent random variable, and v ∈ R2 expressed as:

v = (real[$], imag[$])) , (6.8)

With the CSI available at the receiver, we use a supervised learning technique based on pilots to

recover the distorted signal. Pilots are assumed to be known at the transmitter, and the receiver

Tse & Viswanath (2005), with no pilot contamination. Hence, the corresponding pilot channel

response is obtained as:

Hp = ℎ

�∑
9=1

√
% 9G? 9 . (6.9)

This received pilot signal will be used to estimate the weights matrix by performing zero-forcing

in the feature space as follows:

W = 	(Htr)
) †

(1:P)Hp(1:P) , (6.10)

where (·))
†
indicates the pseudo-inverse operator and P represents the number of pilots. Lastly,

upon getting W from the training phase, the unwraped received signal is derived as:

H′ = 	(H))W. (6.11)
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The RFF based decoding is performed at each user before the SIC operation.

Algorithm 6.1 RFF-SIC based PD-NOMA decoding

1 Input: H: , ℎ, #0, ?

2 Initialization:
1. Generate {88}�8=1 from Gaussian distribution N

(
0� , 1

f2 I�
)
expressed in (6.7).

2. Generate {[8}�8=1 from the uniform distribution* [0, 2c].

Computation:
1. Compute reference signal Hp using pilots (6.9).

2. Derive RFF’s unwarping weights W using (6.10).

3. Compute the RFF vector at each user end (6.11)

y′: = 	(H))W.

4. Perform SIC at users with better channel conditions, as in (6.2).

Output: Data bits for each user Ĝ1, Ĝ2

6.6 Effect of Nonlinearities in PD-NOMA

When assessing the performance of systems with nonlinear components, the Bussgang decompo-

sition is a common approach. In sum, it reveals an accurate probabilistic link between the input

and the output of the nonlinearity, where the output is equivalent to a scaled version of the input

plus an uncorrelated distortion term. Hence, the nonlinear signal of (6.3) is represented as:

I: =ℎ: (U- + [) + =:

=Uℎ:- + ℎ:[ + =: ,
(6.12)

where U, known as Bussgang gain, is given by

U =
E

[
I)
:
ℎ:-

]
E

[
‖ℎ:- ‖2

] , (6.13)
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and [ represents the uncorrelated distortion. For user : , who has to first perform SIC and decode

the other user’s information, the decoded signal is expressed as:

Î: = I: − Uℎ:
√
%; Ĝ; (6.14)

It is clear from the above equation that errors in estimating the correct information of user :

results from:

• Wrong estimation of Ĝ; .

• Incorrectly assuming that the channel gain is ℎ: whereas it is modified to Uℎ: due to the

nonlinearity.

The combination of SIC error propagation and error in the effective channel gain due to the

nonlinearity induces degradation in performance and hence convergence to less optimal solutions

or even divergence, based on the severity of the nonlinearity.

6.7 On the analytical proofs of RFF performance

Revisiting our system model and following functional analysis theory, specifically Riesz

representer theorem Schölkopf et al. (2001), we can find an evaluation functional :G for 5 (·)

such that the nonlinearity is expressed in the RKHSH as:

5 (-) = 〈:G , -〉H , (6.15)

where 〈·, ·〉H represents the inner-product rule over RKHSH .

Following the RKHS properties, a kernel :H can be found such that

< :H, H >H= ℎ-+ < :H, = >H , (6.16)

However, since kernel computation is computationally expensive, randomization is recommended

to reduce the computation complexity and approximate the kernel computation. Hence, we
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select the RFF Rahimi et al. (2007) to approximate the kernel calculation

H′ ≈< :H, H >H= ℎ-+ < :H, = >H , (6.17)

where H′ represents the obtained RFF transform.

As a result, using RFF unwarped data, an approximately linear characteristic is generated.

Hence, the BER performance of the RFF based algorithm in the presence of nonlinear hardware,

approaches the achieved performance in the linear AWGN scenario, alleviating the degradation

revealed in section 6.6.
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Figure 6.1 BER as a function of SNR for downlink PD-NOMA in
the presence Rayleigh fading and AM-AM nonlinearity with p=1
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6.8 Bit Error rate analysis for PD-NOMA RFF based decoding algorithm

6.8.1 PD-NOMA decoding algorithm

Below we reveal the analytical expressions for the PD-NOMA scenarios of superposed users.

6.8.1.1 BER of user 1

User 1, being the far user, does not have to perform SIC at his end; therefore, following an analyti-

cal approach similar to the study inKara&Kaya (2018a),Assaf, Al-Dweik, ElMoursi &Zeineldin

(2019), the BER of user 1 is expressed as follows Kara & Kaya (2018a)
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Figure 6.2 BER as a function of SNR for downlink PD-NOMA in
the presence Rayleigh fading and AM-AM nonlinearity with p=0.5
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BER1 =
1
4

[(
1 −

√
W�

2 + W�

)
+

(
1 −

√
W�

2 + W�

)]
, (6.18)

where

W� =

(√
2%1 +

√
%2

)2

#0
�

[
|ℎ1 |2

]
,

W� =

(√
2%1 −

√
%2

)2

#0
�

[
|ℎ1 |2

]
.

(6.19)
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6.8.1.2 BER of user 2

To detect its own symbol B2, the near user should first detect B1 as in (6.2), by following a similar

approach to Kara & Kaya (2018a), the BER of the second user

BER2 =
1
2

(
1 −

√
W�

2 + W�

)
+ 1

8

[√
W�

2 + W�

−

√
W�

2 + W�
+

√
W�

2 + W�
−

√
W�

2 + W�

]
,

(6.20)

where

W� =
%2
#0
�

[
|ℎ2 |2

]
, W� =

(√
2%1 +

√
%2

)2

#0
�

[
|ℎ2 |2

]
,

W� =

(√
2%1 −

√
%2

)2

#0
�

[
|ℎ2 |2

]
.

(6.21)

6.8.2 RFF based PD-NOMA decoding algorithm

Revisiting (6.17), the RFF transform H′ is AWGN with variance Mitra & Kaddoum (2022)

f2
=̃ = var

[
< :H, y >H

]
=< :H, :H >H f2

= , (6.22)

Hence from Theodoridis (2015)

f2
=̃ =

:H2
H ∗ f

2
= (6.23)

Hence adapting the obtained equations in (6.18),(6.20) with the new noise variance, we can

derive the new BERs.
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Figure 6.4 BER as a function of SNR for downlink PD-NOMA in
the presence of AM-AM nonlinearity and Rayleigh fading for

three different levels of channel estimation errors

6.9 Computational complexity

The computational complexity study motivates the use of RFF over other kernel trick based

methods for nonlinearity approximation and mitigation.

5 (x) = 1
=ℎ

#∑
8=1

 

(x − xi
ℎ

)
(6.24)

Using kernel density estimation (KDE), expressed in (6.24), each evaluation point requires

O(# ∗ 3) kernel evaluations and O(# ∗ 3) multiplications and additions Raykar et al. (2010b).

However, RFF requires deriving the hyperplane W before mapping to the RKHS space of

dimension � as per equation (6.11). Thus, the added complexity with respect to the conventional
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PD-NOMA decoding algorithm is limited to O(� + 3) for each evaluation point Rahimi et al.

(2007). This last result shows the alleviation in computational complexity through using RFF

instead of the generic kernel density estimation. It is also worth mentioning the induced lessening

in storage.

6.10 Simulation Results

In this section, we assess the performance of our proposed method in different practical scenarios.

Perfect knowledge of the channel is assumed to be available at the receiver. Also, we consider
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two superposed users per subcarrier, where user 1, denoted by U1, is far from the base station

(i.e. user with poor channel conditions) and user 2, denoted by U2, is close to the base station (i.e.

user with good channel conditions). Without loss of generality, the number of RFF dimensions,

�, is fixed to 100 and 100 pilots were utilized. We consider both AM-AM and AM-PM Rapp

nonlinearities given in (6.4) and (6.5), respectively, with a saturation voltage Gsat of 1 and order

of severity ? of 1 and 0.5. Fig. 6.1, 6.2 show the BER as a function of the SNR in the presence

of Rayleigh fading and AM-AM nonlinearity for p=1 and p=0.5 respectively. Another scenario

considering AM-PM nonlinearity in Rayleigh fading is presented in Fig. 6.3. In Fig.6.4, we

assume imperfect CSI, and we study different levels of channel estimation error variances, using

the imperfect CSI model of Wei, Ng, Yuan & Wang (2017), for channel estimation variance,

f2
4 , ranging from 10−4 to 10−2. In Fig. 6.5, we consider three superposed users with QPSK

modulation, Rayleigh fading, and AM-AM nonlinearity with p=1. The three users are such that

U1 is the far user, U2 is the mid user, and U3 is the near user. From Fig. 6.5, it is clear that BER

performance has declined, particularly for SIC users, as a result of SIC error propagation that is

amplified by the presence of more superposed users. In all the presented scenarios, we see the

performance degradation caused to users who have to decode the other users’ information before

decoding their own and whose BER saturates at values in the order of 10−1. On the other hand,

it is shown that our proposed RFF based method mitigates the nonlinearity effects, especially for

the SIC users, and achieves a performance that is close to that obtained over a linear channel

without distortions. This makes the developed model appealing for PD-NOMA based systems

with PA nonlinearities.

6.11 Conclusion

In this paper, we considered the problem of detecting PD-NOMA symbols in the presence of PA

nonlinearities. We showed the deleterious impact of the nonlinearity on PD-NOMA systems,

specifically on the near user who has to perform SIC. We proposed a RFF based solution to

mitigate the degradations caused by this impairment. Simulations of our solution were carried

out under different types of nonlinearities and severity levels. Our proposed method was shown
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to be comparable to the performance of linear systems. Furthermore, we provided the theorems

and analytical proofs that support the achieved performance of RFF based method. Hence,

this work provides a more practical framework for PD-NOMA to mitigate PA nonlinearities in

practical imperfect environments.





CONCLUSION AND RECOMMENDATIONS

7.1 Conclusion and Learned Lessons

The field of wireless communications will continue to evolve to satisfy the increasing needs

for data coming from conventional and emerging applications, such as vehicular technologies,

IoT, and healthcare. In the presence of a scarce and limited spectrum, NOMA, through its

two categories, code domain and power domain, prevails as a powerful candidate for matching

connectivity needs and increased spectral efficiency in future networks. However, several

inevitable teething impairments, such as PA nonlinearity and impulsive noise, arise during

the practical implementation of new technology. The main goal of this thesis was to study

the effect of these impairments on the performance of SCMA and PD-NOMA and to propose

decoding algorithms for mitigating the damage caused by these impairments. As we saw in this

thesis, using machine learning, information-theoretic learning, and signal processing, NOMA

techniques can be improved and adapted to face multiple impairment scenarios, and thus were

found viable within the various ecosystems of wireless communications. To be more specific,

our contributions are further detailed as follows:

In the third chapter, we studied the impact of PA nonlinearity on the performance of SCMA.

We showed that the BER performance of SCMA in the presence of nonlinearity is severely

deteriorated. Hence, we proposed an RFF-based SCMA solution for mitigating nonlinearity.

Our algorithm was simulated, and our results showed convergence of the proposed solution

to the MPA performance of the linear scenario. Additionally, using RKHS properties and the

representer theorem, analytical proofs were provided to support our simulated results.

In the fourth chapter, we studied the impact of impulsive noise on the performance of SCMA. A

maximum-correntropy based MPA algorithm was developed, which consists in propagating the

IP instead of the LLRs. The Maximum-Correntropy based SCMA successfully mitigated the

impulsive noise and converged to the MPA without impulsive noise. Mathematical proofs were
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also provided for this approach.

In the fifth chapter, as a continuation of methods of mitigating nonlinearity in SCMA that was

studied in the first chapter, another method based on Bussgang decomposition was proposed.

The BER performance was studied under various nonlinearity severity levels as well as several

channel models. Our results were benchmarked against the results of our first work, which

was based on RFF. Due to its low computational complexity, this proposed method was found

suitable for IIoT systems with limited computational capabilities.

In the sixth chapter, we studied the impact of nonlinearity in PD-NOMA and revealed the

degradation in BER performance, especially for the user performing SIC. Hence, we proposed an

RFF based algorithm to mitigate PA nonlinearity. Our simulation results showed improvement

in the BER performance that approaches linear performance, especially for the SIC user.

Additionally, our results were validated using analytical proofs.

7.2 Future Work

Following the outcomes of this thesis and our results, new interesting research paths should be

considered.

7.2.1 Further impairments to study and propose mitigation solutions

In addition to PA nonlinearity and memoryless impulsive noise, which were studied in our

thesis, wireless communications environments are prone to other kinds of impairments, such as

memory-based impulsive noise, in-phase (I)/quadrature-phase(Q) imbalances (IQI), DC offsets,

etc. Selim, Muhaidat, Sofotasios, Al-Dweik, Sharif & Stouraitis (2019). These impairments,

which could deteriorate the BER performance as well as reduce coverage performance, should

be studied within the different NOMA categories. While memory-based impulsive noise has

been studied in Alam, Selim, Ahmed, Kaddoum & Yanikomeroglu (2021), where a two-state

Markov-Gaussian process was used, the literature on SCMA is still lacking studies considering
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scenarios with memory-based impulsive noise. Hence, an exciting work would be to model

memory-based impulsive noise within SCMA, study the impact on the BER and coverage

performance (outage probability) and propose a suitable mitigation solution. Additionally, the

presence of IQI is inevitable in some scenarios. While IQI was studied in PD-NOMA Selim

et al. (2019), the literature on SCMA is still behind in this area.

7.2.2 User and base station mobility

The sixth generation (6G) is expected to provide ubiquitous connectivity for multiple types of

mobile devices, including airplanes, UAVs, and ultra-high-speed trains You, Wang, Huang, Gao,

Zhang, Wang, Huang, Zhang, Jiang, Wang et al. (2021). Hence, 6G is expected to deal with

excessive mobility of up to 1000km/h Tataria, Shafi, Molisch, Dohler, Sjöland & Tufvesson

(2021), which is almost three times the mobility speed target level of 5G Chen, Liang, Sun,

Kang, Cheng & Peng (2020). Therefore, studying user or base station mobility scenarios

within NOMA is necessary and challenging. General mobility models were developed in many

works, where two main models were adopted: Random direction (RD) and random waypoint

model (RWP). Hyytia, Lassila & Virtamo (2006) considered the random waypoint mobility

model (RWMM). While some works studied user mobility within PD-NOMA, such as in the

recent work Miridakis, Michailidis, Michalas, Skondras, Vergados & Vergados (2022), where

closed-form expressions of the packet error rate (PER) of two-user uplink PD-NOMA system in

the short packet transmission regime with user mobility were derived, it is interesting to study

the base station mobility and derive the BER bounds as well as outage probability. Moreover,

studying the user/base station mobility BER performance, outage probability, and codebook

selection within mobility scenarios is also essential. This would also enable deriving mitigation

techniques for mobility drawbacks.
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7.2.3 New technology trends in wireless communications

New trends and technologies are emerging and drawing interest in the current and upcoming

wireless networks, such as NOMA cooperative networks (C-NOMA) and rate splitting multiple

access (RSMA), which are generating exciting research challenges and problems.

C-NOMA is interesting because integrating cooperative approaches into NOMA networks

enables greater coverage. The key idea is to provide a set of nodes between the source and

NOMA users. Hence, by combining multiple replicas from diverse pathways, a spatial diversity

gain is achieved, which improves the reliability Li & Mishra (2020). That being said, we can

have two main categories of cooperative networks. The first consists of relays distributed to

help the NOMA users communicate with the source Men & Ge (2015). The other category

consists of user cooperation, where users near the source assist far users Ding, Peng & Poor

(2015). Cooperative networks within NOMA reduce the system outage probability Li & Mishra

(2020). While BER performance with imperfect CSI has been studied in Kara & Kaya (2018b),

it is important also to study the impact of other impairments that were considered in our thesis

that could be expanded for cooperative-NOMA and develop suitable mitigation techniques.

Another emerging multiple access technique to study is RSMA which was first proposed in

Mao, Clerckx & Li (2018b) as a more general multiple access technique than NOMA and

space-division multiple access (SDMA). Precisely, RSMA treats interference as noise like in

SDMA and decodes interference entirely like in NOMA Mao et al. (2018b). Interestingly,

RSMA was shown to be more energy efficient and spectrally efficient than SDMA and NOMA

Mao, Clerckx & Li (2018a). Hence, RSMA could be a potential multiple access technique for

upcoming generations. However, RSMA is still in its beginning, and its literature lacks studies

on impairments, such as PA nonlinearity, impulsive noise, and IQI. This area could be interesting

to tackle because of the potential challenges that arise when considering practical imperfect

scenarios.
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