
Empirical Evaluation of the Impact of Mobile Development

Frameworks on the Application Source Code Quality

by

Parsa Karami

THESIS PRESENTED TO ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
IN PARTIAL FULFILLMENT OF A MASTER’S DEGREE

WITH THESIS IN SOFTWARE ENGINEERING
M.A.Sc.

MONTREAL, FEBRUARY 22ND, 2023

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

Parsa Karami, 2023

This Creative Commons license allows readers to download this work and share it with others as long as the

author is credited. The content of this work cannot be modified in any way or used commercially.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mrs. Ghizlane El Boussaidi, Thesis supervisor

Department of Software and IT Engineering, École de technologie supérieure

Mr. Sègla Kpodjedo, Chair, Board of Examiners

Department of Software and IT Engineering, École de technologie supérieure

Mrs. Imen Benzarti, External Examiner

Department of Software and IT Engineering, École de technologie supérieure

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

ON FEBRUARY 7TH, 2023

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

ACKNOWLEDGEMENTS

I would like to sincerely thank my supervisor, Mrs. Ghizlane El Boussaidi, for the research

opportunity and for her kind and great support throughout accomplishing my master’s. It was a

great experience to work with her, and every meeting we had was an opportunity for me to learn

from her. This is an opportunity I will never forget.

I would like to thank the members of the jury to accept to judge my work.

I would like to thank my family, especially my lovely mom, my dad, my brother, and my dear

sister for their endless support and unconditional kindness throughout my life. I would also like

to thank my amazing cousin Sara, her husband Farhad, and her son Pakan for their welcoming

support when I came to Canada. Also, I would like to thank my friends Ehsan, Vahid, and Javad

for their support during the fulfillment of my master’s.

Finally, I would like to thank all my teachers and every person who supported me and encouraged

me in this journey.

Évaluation empirique de l’impact des frameworks de développement mobile sur la qualité
du code source

Parsa Karami

RÉSUMÉ

Cette thèse a examiné expérimentalement si les frameworks de développement mobile affectent

la qualité du code source. Dans un premier temps, une revue systématique de la littérature

a été menée dans cette étude pour trouver les frameworks, les perspectives d’évaluation, les

paramètres, les méthodes et les lacunes de recherche les plus étudiés dans les études existantes.

Nous avons observé qu’aucune des études survolées n’utilisait un grand nombre d’applications

mobiles dans leur évaluation et que les critères d’évaluation n’incluaient pas de critères sur la

qualité du code source. En conséquence, nous avons conçu une étude empirique qui utilise un

grand nombre d’applications mobiles pour évaluer l’impact des frameworks sur la qualité des

applications. En particulier, nous avons comparé un certain nombre de métriques d’applications

mobiles développées à l’aide du framework Android à celles d’applications mobiles développées

à l’aide du framework React Native. Notre enquête empirique indique que le choix d’un

framework mobile peut avoir un impact sur la qualité du code source.

Mots-clés: Développement mobile, Analyse d’applications mobiles, Framework mobile,

Développement natif, Framework multiplateforme, Qualité du code source

Empirical Evaluation of the Impact of Mobile Development Frameworks on the
Application Source Code Quality

Parsa Karami

ABSTRACT

This thesis examined experimentally whether mobile development frameworks affect the source

code quality. As a first step, a systematic literature review was conducted in this study to find

the most studied frameworks, evaluation perspectives, metrics, methods, and research gaps

in existing studies. We observed that none of the surveyed studies used a large set of mobile

applications in their evaluation and that the evaluation criteria did not include criteria about

source code quality. As a result, we designed an empirical study that uses a large set of mobile

applications to evaluate the impact of mobile frameworks on the quality of the applications.

In particular, we compared a number of metrics of mobile applications developed using the

Android Native framework to metrics of mobile applications developed using the React Native

framework. Our empirical investigation indicates that choosing a mobile framework can impact

the application source code quality.

Keywords: Mobile Development, Mobile application analysis, Mobile Framework, Native

development, Cross-platform framework, Source code quality

TABLE OF CONTENTS

Page

INTRODUCTION .1

0.1 Research Context .1

0.1.1 Mobile development framework . 2

0.1.2 Native development . 3

0.1.3 Cross-platform development . 3

0.1.3.1 Hybrid . 4

0.1.3.2 Interpreted . 4

0.1.3.3 Cross-compiled . 5

0.1.3.4 Progressive Web Apps (PWA) . 5

0.2 Statement of the Problem . 6

0.3 Goal of the thesis . 7

0.4 Research Methodology . 7

0.5 Organization of the Thesis . 9

CHAPTER 1 A SYSTEMATIC LITERATURE REVIEW OF WORK ON THE

COMPARISON OF MOBILE DEVELOPMENT FRAMEWORKS 11

1.1 Research questions . 11

1.2 Search strategy . 12

1.3 Study selection . 13

1.4 Data Extraction . 14

1.4.1 StackOverflow Data . 15

1.5 Results . 15

1.5.1 RQ1 Results. What are the most studied mobile application

development frameworks? . 15

1.5.2 RQ2 Results. What are the goals of existing studies on mobile

framework? . 19

1.5.3 RQ3 Results. How did existing studies carry out the evaluation of

the frameworks? . 24

1.5.4 RQ4 Results. What is the gap between the literature on mobile

frameworks and the practice? . 27

1.6 Limitations of the SLR . 30

1.7 Discussion and Conclusion . 31

CHAPTER 2 AN EMPIRICAL STUDY ON THE IMPACT OF A MOBILE

DEVELOPMENT FRAMEWORK ON THE APPLICATION

SOURCE CODE QUALITY . 33

2.1 The methodology and the scope of the study . 33

2.1.1 The selection of the mobile frameworks . 35

2.1.2 The selection of a source code analyzer . 36

2.1.3 The selection of mobile apps . 42

XII

2.2 The GitToSonar tool . 43

2.3 The study execution . 50

2.3.1 The Searching for mobile apps . 51

2.3.2 Filtering the results from GitHub search . 53

2.3.3 Excluding the third-party libraries from the analysis . 55

2.3.4 Importing mobile applications in SonarCloud . 57

2.3.5 Generating reports . 59

2.4 Results and Discussion . 62

2.4.1 Qualitative analysis . 63

2.4.2 Quantitative analysis . 69

2.5 Limitations of the Study . 72

2.6 Conclusion . 73

CONCLUSION AND RECOMMENDATIONS . 75

APPENDIX I SELECTED PAPERS . 77

APPENDIX II CRITERIA . 87

APPENDIX III CRITERIA DISTRIBUTION IN SURVEYED PAPERS (USERS’

POINT OF VIEW) . 91

APPENDIX IV CRITERIA DISTRIBUTION IN SURVEYED PAPERS

(DEVELOPERS’ POINT OF VIEW) . 93

LIST OF REFERENCES . 95

LIST OF TABLES

Page

Table 1.1 Inclusion and exclusion criteria to filter out the studies . 13

Table 1.2 Occurrences of studied cross-platform approaches in papers 17

Table 1.3 The performance criterion sub-items . 22

Table 1.4 Functionality sub-criterion . 24

Table 1.5 Distribution of evaluation methods in papers . 25

Table 2.1 Source code quality metrics definition . 35

Table 2.2 Size classes of mobile application source code . 42

Table 2.3 Search criteria for finding mobile application repositories in GitHub 52

Table 2.4 Most frequent bugs in mobile applications developed using Android

native framework . 63

Table 2.5 Most frequent bugs in mobile applications developed using React

Native framework . 64

Table 2.6 Most frequent code smells in mobile applications developed using

Android native framework . 64

Table 2.7 Most frequent code smells in mobile applications developed using

React Native framework . 65

Table 2.8 The reason for occurrences of the most frequent bugs in mobile

applications developed using the Android native framework 66

Table 2.9 The reason for occurrences of the most frequent bugs in mobile

applications developed using the React Native framework . 66

Table 2.10 The reason for occurrences of the most frequent code smells in mobile

applications developed using the Android native framework 67

Table 2.11 The reason for occurrences of the most frequent code smells in mobile

applications developed using the React Native framework . 67

Table 2.12 A small sample of projects and their metrics . 69

XIV

Table 2.13 The descriptive statistical of the dataset . 70

Table 2.14 The result of the Mann-Whitney test . 71

LIST OF FIGURES

Page

Figure 0.1 Research methodology . 9

Figure 1.1 Overview of the selection process and its results . 14

Figure 1.2 Top ten most studied mobile frameworks . 16

Figure 1.3 Comparison of the selected frameworks in studies over a period of

five years . 18

Figure 1.4 Distribution of the targeted OS in the studies . 18

Figure 1.5 Distribution of criteria in studies . 19

Figure 1.6 Distribution of studies POVs by papers . 20

Figure 1.7 Distribution of the number of used criteria in reviewed papers 21

Figure 1.8 Number of criteria occurrences from end user’s point of view 22

Figure 1.9 Number of criteria occurrences from developer’s point of view 23

Figure 1.10 Distribution of evaluation methods in reviewed papers . 25

Figure 1.11 Occurrences of criteria by evaluation methods . 26

Figure 1.12 Most used mobile frameworks in practice . 28

Figure 1.13 Numbers of questions for cross-platform frameworks in the Stack

Overflow . 29

Figure 1.14 Most studied cross-platform mobile frameworks from 2016 to 2020

in surveyed studies . 30

Figure 2.1 Overview of the steps of the empirical study . 34

Figure 2.2 The brief analysis results of a source code in SonarCloud 38

Figure 2.3 The overview analysis results of a source code in SonarCloud 38

Figure 2.4 The summary of analysis results of a source code in SonarCloud 39

Figure 2.5 The details of finding issues of a source code in SonarCloud 40

XVI

Figure 2.6 The detail of Reliability and Maintainability metrics in SonarCloud 41

Figure 2.7 The detail of Duplication, Size and Complexity metrics in

SonarCloud . 41

Figure 2.8 The GitToSonar tool main page . 44

Figure 2.9 The GitToSonar tool login page . 45

Figure 2.10 The GitToSonar tool main page after successful login . 46

Figure 2.11 The GitToSonar tool main page after selecting the organization 46

Figure 2.12 The GitToSonar tool main page after fetching current user’s

repositories . 47

Figure 2.13 The GitToSonar tool search page . 48

Figure 2.14 The GitToSonar tool feature to search files within a repository 49

Figure 2.15 The GitToSonar tool report feature . 49

Figure 2.16 Overview of the empirical study execution steps and workflow 51

Figure 2.17 The GitToSonar tool search results using criteria . 53

Figure 2.18 The GitToSonar tool validation by file name . 54

Figure 2.19 The GitToSonar tool validation results . 55

Figure 2.20 Example of SonarCloud exclusion/inclusion file . 56

Figure 2.21 The GitToSonar tool SonarCloud configuration page . 57

Figure 2.22 Selecting GitHub organization in SonarCloud . 58

Figure 2.23 Importing GitHub repositories to SonarCloud . 58

Figure 2.24 The measure API description in SonarCloud . 59

Figure 2.25 The response example of the measure API in SonarCloud 60

Figure 2.26 The generating report in GitToSonar . 61

Figure 2.27 The number of collected issues using the GitToSonar tool 62

Figure 2.28 Descriptive statistical - Number of bugs box plot . 72

XVII

Figure 2.29 Descriptive statistical - Number of code smells box plot . 72

LIST OF ABBREVIATIONS

API Application Programming Interface

CPDT Cross-Platform Development Tool

ETS École de Technologie Supérieure

IDE Integrated Development Environment

JSON JavaScript Object Notation

LOC Lines of Code

POV Point of View

PWA Progressive Web Application

RS Research Question

SAAS Software As A Service

SDK Software Development Kit

SLOC Source Lines of Code

SLR Systematic Literature Review

INTRODUCTION

0.1 Research Context

Mobile applications have become very popular in recent years, and smartphone users continue

to increase yearly (Bankmycell (2022)). Based on the information from the Statista website,

the number of smartphones users reached 6.56 billion in 2022 (Statista (2022b)). This number

indicates a high potential market for developing mobile applications. A total of 230 billion

mobile applications have been downloaded by 2021 (Statista (2022a)). The smartphone’s market

has had several operating systems in the last decade, like BlackBerry, Symbian, Windows

Mobile, Windows Phone, Android, and iOS. Some of those, including Symbian and Microsoft

Windows Mobile, are discontinued. Apple’s iOS and Google’s Android dominate the mobile

operating systems market share, with over 99 percent of the global market in the last decade

(Statista (2022c)). According to the StatCounter website, the market share is split into two

operating systems. Android, with 71.85% of the market share, is first, and iOS, with 27.5%,

is the second most used smartphone platform (StatCounter (2022)). Thus, developers need to

develop their mobile applications targeting both platforms to reach a maximum number of users.

In addition to the mobile platform fragmentation1, we face more fragmentation in mobile

application development even if developers target only one mobile platform to develop an

application, fragmentation is still a problem. (Joorabchi, Mesbah & Kruchten (2013)) identified

two types of fragmentation in the mobile development field, fragmentation within the same

platform and fragmentation across platforms. Although developers target a single platform to

develop mobile applications, they face various device types, including smartphones, tablets,

smart watches, smart TVs, cars, and more. Each of these device types has its own set of hardware,

1 Mobile platform fragmentation refers to when users are running different mobile operating systems

(or different versions of an OS).

2

screen size, and support of operating system functionality. Therefore, this fragmentation is a

challenge for mobile developers aiming to reach all potential users in the market.

0.1.1 Mobile development framework

Mobile frameworks are software frameworks that provide fundamental structures for developing

mobile applications (Wikipedia (2022)). Mobile frameworks enable developers to overcome

fragmentation and access platform features. Operating systems vendors and other software com-

panies have introduced a variety of mobile frameworks since the advent of mobile development.

Some frameworks are more used in practice and popular among developers, and some are used

only in academia to produce experimental prototypes. In addition, the frameworks differ in

terms of performance, access to hardware and software features on platforms, and the ability

to develop cross-platform applications (Humayoun, Ehrhart & Ebert (2013)). The number of

mobile frameworks has increased significantly in recent years. Each framework is based on a set

of technologies (e.g., programming languages) and has specific advantages. For example, the

Android Native framework delivers the best overall performance (Willocx, Vossaert & Naessens

(2015)), while ReactNative reduces development time. To create mobile applications, mobile

developers need to choose the appropriate mobile framework, and finding the proper framework

to meet their needs can be challenging.

Typically, there are two approaches to developing mobile applications. The first approach is

called Native. It uses programming languages, development tools, and environments specific to

a mobile operating system (Biørn-Hansen, Grønli & Ghinea (2018)). For instance, to create

a native application for the iOS platform, developers use Swift or Objective-C programming

languages inside XCode IDE. The second technique is Cross-Platform development. These

frameworks let you develop an application that can be installed and executed on more than one

mobile platform. These frameworks usually use general-purpose programming languages like

JavaScript or Dart. As opposed to native frameworks, programming languages, and development

3

tools for the cross-platform approach are not typically provided by mobile operating system

vendors. The following sections will explain the characteristics of the different categories of

development frameworks that we identified.

0.1.2 Native development

A native framework uses a software development kit (SDK) and specific development tools to

create a mobile application. The operating system vendor provides the SDK. Native applications

have full access to platform functionalities. These applications deliver the highest performance

and user experience (Jia, Ebone & Tan (2018)). However, native frameworks do not support

code reuse because the developed code targets a unique platform. Consequently, it increases the

development costs and time compared to a cross-platform framework (Jia et al. (2018)).

0.1.3 Cross-platform development

Cross-platform frameworks enable developers to build mobile applications that target multiple

mobile platforms with the same or at least similar structured code. Using a shared codebase

increases reusability and decreases the time and cost of development(Jia et al. (2018)). Never-

theless, the cross-platform frameworks have noteworthy shortcomings. From the user’s point of

view, cross-platform applications generally deliver lower performance in comparison to native

applications (Willocx et al. (2015)). In addition, cross-platform mobile frameworks affect

energy consumption. Regardless of how a cross-platform framework generates an application,

the application leads to consuming more energy (Ciman & Gaggi (2017)). Existing cross-

platform approaches can be classified into different categories depending on the techniques

they use ((Xanthopoulos & Xinogalos (2013)), (Majchrzak, Biørn-Hansen & Grønli (2017)),

(Biørn-Hansen et al. (2018)), and (El-Kassas et al. (2015))). We briefly discuss here the major

cross-platform approaches.

4

0.1.3.1 Hybrid

The Hybrid approach uses standard Web technologies to produce cross-platform mobile

applications. The Hybrid strategy allows Web developers to create a mobile application using

their knowledge in Web development. This approach internally uses a browser engine that

renders Web contents inside a native Web container (UIWebView in iOS and WebView in

Android) on the device (Latif, Lakhrissi, Nfaoui & Es-Sbai (2016)). This, developers are able

to package developers package a project written using HTML5, CSS, and JavaScript into a

mobile application installation file. The Hybrid technique allows developers to access devices’

sensors and platform APIs. For instance, functionalities like GPS, contact lists, and Bluetooth

are accessible. A drawback of this approach is the user interface behavior. Since it renders the

user interface from the HTML elements inside a WebView component, the user interface and

controls are not similar to native ones. The most popular Hybrid framework is PhoneGap2. The

Hybrid approach is also referred to as a Web-To-Native wrapper. A native Web container is used

to run Web application files and access device features (Willocx, Vossaert & Naessens (2016)).

0.1.3.2 Interpreted

The Interpreted approach utilizes the JavaScript programming language to let developers produce

applications. The Interpreted applications render platform-native user interfaces via an on-device

JavaScript interpreter (Majchrzak et al. (2017)). The JavaScriptCore3 in iOS and the V84 in the

Android operating system are the two most used engines for interpreting JavaScript code. The

main difference between the Hybrid and Interpreted approaches is the execution environment.

The Hybrid approach uses the WebView component to render the user interface element, and

2 https://experienceleague.adobe.com/docs/experience-manager-64/mobile/developphonegap/developing-

in-phonegap.html

3 https://developer.apple.com/documentation/javascriptcore

4 https://v8.dev

5

the user interface elements are HTML and CSS. The Interpreted approach uses an on-device

JavaScript interpreter engine to render user interface elements. In addition, the JavaScript

interpreter is an abstraction layer that allows the application to communicate with the device and

platform’s native APIs. One of the most famous framework in this approach is React Native5.

0.1.3.3 Cross-compiled

The Cross-Compiled is more similar to the native approach in terms of performance and user

interface (Willocx et al. (2015)). In this approach, the project source code is compiled into

native byte code. Hence, the compiled file executes on the target platform as a native application.

Unlike the interpreted and hybrid approaches, there is no abstraction layer to communicate

with the device and platform APIs (Biørn-Hansen et al. (2018)). Thus, the performance of

this approach seems to be higher than the aforementioned cross-platform approaches, and the

approach is preferred for developing CPU-intensive applications (Willocx et al. (2016)). The

Xamarin6 is one of the most used frameworks among cross-compiled frameworks. It compiles

project source code (C#) to native byte code instead of a common language. This compilation

technique lets developers use all platform and device features like native frameworks. Moreover,

the native compilation method generates user interfaces that are rendered as the native interface

components (Willocx et al. (2016)). However, the size of the application installation file

developed using frameworks of this approach is larger than the application developed using

native frameworks. (Willocx et al. (2016)).

0.1.3.4 Progressive Web Apps (PWA)

The progressive Web application (PWA) is a type of mobile Web application. It uses the

same technologies and programming languages used to develop Web applications. PWAs are

5 https://reactnative.dev

6 https://dotnet.microsoft.com/en-us/apps/xamarin

6

executing in the platform’s Web browser. There are some differences compared to a simple Web

application that you run using a mobile browser. For instance, users can run it from the home

screen and the address bar at the top is hidden when running a PWA (Biørn-Hansen et al. (2018)).

In addition, the application is available offline. The PWA development frameworks also support

APIs like device storage, handling push notifications, and location. These features improve

the application’s user experience. However, a PWA implementation cannot access all native

hardware and platform APIs. Angular7 is one of the most used frameworks to build PWAs.

0.2 Statement of the Problem

Developers use different mobile frameworks to develop mobile applications. Each framework

has pros and cons that can impact the application design quality. For instance, one of the

problems of mobile developers, designers, and engineers encounter is selecting the appropriate

framework to develop applications (Biørn-Hansen et al. (2018)). This choice might impact

different aspects of application quality. For example, using cross-platform frameworks over

native frameworks increases energy consumption (Ciman & Gaggi (2017)) and negatively

impacts the overall performance (Biørn-Hansen, Rieger, Grønli, Majchrzak & Ghinea (2020)).

Using a cross-platform framework also limits using the full capabilities of the platform’s feature

(Joorabchi et al. (2013)).

Some studies compared the impact of choosing mobile frameworks on application quality (e.g.,

(Jia et al. (2018)), (Ciman, Gaggi & Gonzo (2014)), (Humayoun et al. (2013)) , (Corbalan et al.

(2018)), (Sommer & Krusche (2013))). The purpose of most of these studies is to evaluate this

impact from the end user perspective. None of these studies has analyzed the impact of the

frameworks on the quality of the application’s source code. Moreover, all experimental studies

used prototype applications, and none of these used a large number of real mobile applications

7 https://angular.io

7

to evaluate the studied frameworks. Thus, to fill these gaps, this thesis aims to examine the

impact of mobile frameworks on application source code quality through the analysis of a large

set of real mobile applications.

0.3 Goal of the thesis

The main goal of this thesis is to investigate the impact of choosing a mobile development

framework on application source code quality. We divided our main goal into two subgoals.

The first sub-goal is reviewing how other researchers compared mobile frameworks and what

are their evaluation results. The motivation of this sub-goal is to find out what are the most

studied frameworks and the evaluation perspectives, comparison metrics, and methods used by

researchers.

The second sub-goal is to design and execute an empirical investigation to evaluate the impact

of choosing mobile development frameworks on application source code quality. In particular,

we are interested in the evaluation of the impact of mobile frameworks on the bugs and the code

smells found in mobile applications. By performing the empirical study, we aim to address the

thesis’s main goal.

0.4 Research Methodology

To achieve the thesis goal, we follow the research methodology depicted in the figure 0.1.

Phase-1: Understanding the Research Context

In the first phase, we studied relevant papers on mobile development to gain a better understanding

of the research context. During this stage, we learned about mobile development frameworks in

general. Afterward, we studied both approaches for developing mobile applications, the native

approach and cross-platform approach to understand the differences between approaches. Then

8

we examined the different types of cross-platform mobile frameworks to understand the pros

and cons of each type.

Phase-2: Systematic Literature Review

In the second phase we carried out a systematic literature review (SLR) to find the research gaps

in the comparison studies of mobile development frameworks. The findings from the SLR will

help us to identify the gaps in existing work.

Phase-3: Empirical study

In this phase, we carried out an empirical study on a large set of real mobile applications to

achieve the thesis main goal. We conducted the empirical study considering the research gaps

identified by SLR.

9

Understanding the

Research Context

 Understanding the concept of mobile
development framework
 Understanding approaches that are used in
mobile development
 Understanding different types of cross-
platform mobile frameworks

Systematic Literature Review

on existing studies that

compared mobile frameworks

 Finding the evaluation perspectives,
metrics, and methods in comparisons.

 Observing the results and research
outcomes
 Finding the research gaps in the existing
studies

Designing and executing the

Empirical study
 Interpret the results
 Limitations of the empirical investigation

Figure 0.1 Research methodology

0.5 Organization of the Thesis

This thesis is organized as follows. Chapter 1 presents the SLR on studies that compared mobile

development frameworks, and discusses its results. Chapter II presents the empirical study we

carried out, as well as its results. Finally, we conclude and discuss the limitations of the research,

and recommendations for future research.

CHAPTER 1

A SYSTEMATIC LITERATURE REVIEW OF WORK ON THE COMPARISON OF
MOBILE DEVELOPMENT FRAMEWORKS

To conduct our systematic literature review, we adopted the approach proposed by (Kitchenham

(2004)). Our SLR’s methodology included the following steps:

1. Identifying the research questions

2. Defining the search strategy for primary studies

3. Selecting the studies

4. Extracting data from the selected studies

5. Synthesizing and interpreting the results

We present each step in the following subsections.

1.1 Research questions

The goal of our systematic literature review is to collect information and characterize the existing

works on the comparison of mobile frameworks. Our SLR aims at answering the following

research questions:

• RQ1. What are the most studied mobile application development frameworks?

• RQ2. What are the goals of existing studies on mobile frameworks?

- RQ2.1. What are the criteria used to evaluate the studied frameworks?

- RQ2.2. Which of the end-user or developer’s perspectives are targeted by existing studies?

• RQ3. How did existing studies carry out the evaluation of the frameworks?

• RQ4. What is the gap between the literature on mobile frameworks and the practice?

- RQ4.1. What are the frameworks that are currently used by mobile developers?

- RQ4.2. Do existing studies target the frameworks used in practice?

To answer research questions 1, 2, and 3, we will rely on information extracted from existing

studies on mobile development frameworks. To answer research question 4, we hypothesized

12

that the frameworks used in practice are those for which developers frequently ask questions on

StackOverflow. We decided to use StackOverflow1 data since it is the largest question-based

community for developers. Thus, we compare information extracted from Stackoverflow to the

information extracted from the reviewed literature.

1.2 Search strategy

To identify and select the primary studies for our SLR, we used our research questions to define

a series of search strings. Afterward, we executed the search string on selected digital libraries.

In particular, we used Engineering Village2 for finding the relevant papers. Engineering Village

indexes papers from prevalent digital libraries that provide peer-reviewed software engineering

articles (e.g., ACM, IEEE, Scopus, etc.). For the search string, we extracted keywords from

the research questions. We built multiple search strings with different combinations of these

keywords and tried these search strings in order to reach a comprehensive collection of papers in

this context. We used the search string that yielded the most relevant results:

(mobile) AND (application) AND (development) AND (framework OR frameworks OR

approach OR approaches) AND ("cross-platform" OR "crossplatform" OR "cross platform"

OR "multiplatform" OR "multi-platform" OR "multi platform")

The result of the search included a large number of papers. Thus, we defined inclusion and

exclusion criteria to narrow the search to relevant studies. Table 1.1 lists the inclusion and

exclusion criteria that we used.

1 https://stackoverflow.com

2 https://www.engineeringvillage.com

13

Table 1.1 Inclusion and exclusion criteria to filter out the studies

Inclusion criteria Exclusion criteria
Papers that provide analysis and

comparison of mobile frameworks

The studies that did not compare

mobile frameworks

Publication year must be between

2001 and 2021

Papers that were not published in

the English language

1.3 Study selection

The study selection procedure was carried out according to the search strategy. The following

items show the study selection steps:

• Searching using the search string on the engineering village digital libraries. We performed

our search query between 5th April 2021 and 20th April 2021.

• Filtering the papers that were published in the english language.

• Selecting the articles that were published between 2001 and 2021.

• Excluding duplicate records

• Filtering the articles based on the title and abstract by reading manually. We identified forty

nine (49) relevant papers at the end of the manual screening.

• Carrying out a snowballing process which allowed us to identify twelve additional studies.

•

The final number of primary studies for our SLR was sixty one (61). The primary studies are

listed in Appendix I. Figure 1.1 shows the process and the resulting number of studies for each

step.

14

Figure 1.1 Overview of the selection process and its results

1.4 Data Extraction

The selected studies have gone through a full-text review. Relevant information was extracted

and recorded in a predefined form to get a general perception of the studies. We created a

guideline document defining each of the classification terms and a spreadsheet to collect the

classification information. For each study, the spreadsheet contained the following data fields:

• Criteria that were used in the evaluation such as performance, usability, etc

• The definition for each criterion

• Source of the criteria, for example some studies extracted the criteria from some quality

model (e.g. FURPS).

15

• The points of view or perspectives from which the criteria were analysed. The point of view

could be the end user or developer’s point of view for instance

• The mobile operating systems that are targeted

• The evaluation method used by the study to compare the studied frameworks. The method

can be based on some practical development experience or just on documentation of the

frameworks

• The features of the prototype application used for evaluation if the evaluation method is

experimental.

• The targeted mobile application development frameworks

• The results of comparison for each criterion

1.4.1 StackOverflow Data

To answer our fourth research question, we need to find out the popular mobile frameworks

in practice. To do so, we hypothesized that the frameworks used in practice are those for

which developers frequently ask questions on StackOverflow. Hence, the number of questions

should indicate which frameworks are used in practice. Thus, we extracted questions asked on

StackOverflow that had a tag referring to a mobile development framework. Each question has

tags that identified the category and the related programming language or software framework to

that question. We recovered the number of questions attached to those tags from 2016 to 2020

for the mobile frameworks. For instance, we found the total number of questions attached to the

"xamarin" tag for the Xamarin framework.

1.5 Results

1.5.1 RQ1 Results. What are the most studied mobile application development
frameworks?

Figure 1.2 shows the top ten most analyzed mobile application development frameworks in the

surveyed studies. Based on the results the PhoneGap is the most studied mobile application

16

development framework. Android Native framework is in the second position. According to the

data we extracted from the surveyed studies, thirty one from all sixty one papers (more than

50%) studied at least a native framework or approach in their comparative analysis.

Figure 1.2 Top ten most studied mobile frameworks

Since the native frameworks can deliver applications with the highest compliance with platform

vendors, the native frameworks were used as a baseline in some comparisons like (Ciman & Gaggi

(2017)) and (Fahlesson & Johansson (2013)). If we only want to focus on cross-platform

frameworks, we need to look at targeted cross-platform approaches by surveyed papers. The

hybrid approach with 49 occurrences in papers has the highest focus among cross-platform

approaches. 80.3% of papers use at least one hybrid framework in their studies. After that, The

Interpreted approach, with 36 occurrences and 59% is in second place. Table 1.2 indicates the

percentage and number of occurrences of each cross-platform approach among all the reviewed

papers.

17

Table 1.2 Occurrences of studied cross-platform approaches in papers

Cross-Platform approach Number of occurrences Percentage

Hybrid 49 80.3%

Interpreted 36 59%

Cross-Compiled 33 54%

Web 24 39.3%

PWAs 5 8.1%

Model Driven 5 8.1%

When we reviewed studies, we also analyzed the evolution of the focus of the surveyed studies

over the years. Analyzing this evolution also helps to compare our findings in using the mobile

frameworks by developers. Hence, we performed a trend analysis to find out if a pattern exists.

The number of published papers in a specific year can be higher than in other years, which might

affect the trend analysis result. Therefore, we divided studies into two groups: the first group

contains papers published from 2011 to 2015, and the second group covers studies published

from 2016 to 2020. Figure 1.3 shows each framework the number of studies for the two periods

(from 2011 to 2015, and from 2016 to 2020). The number of studies in the first group is 32, and

in the second group we have 29 papers.

The time frames show a meaningful change in targeting mobile frameworks in the studies

published between the two-time frames. Newly released frameworks are coming in front of

the old ones. It also shows, the targeting of the Ionic framework and React Native in studies

significantly increased in recent years. Since the initial release of these frameworks was in recent

years, no paper selected them as targeted frameworks. The PhoneGap was the most studied

framework in all surveyed studies, targeted more from 2011 to 2015. This decremented trend

also applies to the additional older frameworks like Titanium, Sencha Touch, jQuery Mobile,

standard Web languages (HTML, CSS, and JavaScript) which are used to develop mobile Web

18

Figure 1.3 Comparison of the selected frameworks in studies over

a period of five years

applications, and the Rhodes frameworks. The main reason for this notable drop in Rhodes is a

large margin in the release cycle for the framework. It leads to losing the developers’ tendency to

use the framework. On the other hand, we think rising of Progressive Web applications (PWAs)

which are web apps with enhanced capabilities (Biørn-Hansen et al. (2018)), causes less use of

the traditional mobile website.

Figure 1.4 shows the number of studies per targeted operating system (OS). The trend is consistent

with the fact Android and iOS are the dominant OS in the market.

Figure 1.4 Distribution of the targeted OS in the studies

19

1.5.2 RQ2 Results. What are the goals of existing studies on mobile framework?

The main motivation of this research question is to find out what criteria were used in the

reviewed studies and from which perspective (user, developer).

RQ2.1 The first sub-question is about the criteria used to analyze frameworks. Figure 1.5

indicates the number of criteria occurrences in the reviewed studies. According to this figure,

the performance criterion with 37 occurrences (60%) is the most considered in all reviewed

studies. After the performance, the platform’s APIs accessibility and the hardware and sensors

accessibility with 36 occurrences (59%) are in the second place of most analyzed criteria. The

criteria definition are given in Appendix II.

Figure 1.5 Distribution of criteria in studies

20

RQ2.2 The motivation of the second sub-question is to find out which perspectives (end-user

or developer) are targeted in the comparison studies. We divided the criteria into two groups.

The criteria in the first group are used to analyze the mobile frameworks from the end users’

perspective. The criteria in the second group are used in order to evaluate frameworks from

the developer’s perspective. The blue bobbles in Figure 1.5 show the criteria from the user’s

perspective, and the orange bobbles indicate the criteria from the developer’s perspective. As

shown by Figure 1.5, most of studies focused on criteria related to the developer’s perspective.

Figure 1.6 indicates the studies’ points of view distribution by papers. 51%(31 papers from

a total of 61) have used criteria from users’ and developers’ points of view. Then, 26% have

used only criteria from developers’ points of view in their comparison. And Finally, 23% have

analyzed frameworks using criteria from users’ points of view.

Figure 1.6 Distribution of studies POVs by papers

Most of the time to compare mobile frameworks, the reviewed papers used more than one

criterion. Figure 1.7 indicates the distribution of number of the criteria used in studies. The

primary study P6 with the 24 criteria used the largest set of criteria in its analysis. These 24

criteria contain two criteria from end user’s perspectives and 22 criteria from developer’s point

21

of view. Another insight that the result indicates is that most of the studies used a small set of

criteria in their comparison. It indicates fifty papers from the total(81%) used less than ten

criteria for comparing mobile frameworks.

Figure 1.7 Distribution of the number of used criteria in reviewed

papers

Figure 1.8 shows the number of occurrences of criteria from end user’s points of view. In

Appendix II, Table III-1 provides a list of the papers that use these criteria of this group in their

comparison.

22

Figure 1.8 Number of criteria occurrences from end user’s point

of view

The performance criterion with 37 is the most analyzed criteria in comparison. The performance

in most cases refers to the application speed, application installation size, and resource usage.

Table 1.3 shows the sub-criteria of the performance criterion and the primary studies that used

them.

Table 1.3 The performance criterion sub-items

Sub-criterion Paper IDs
Application speed P3 - P5 - P6 - P7 - P8 - P9 - P12 -

P13 - P35 - P41 - P42 - P43 - P44 -

P49 - P51 - P52 - P54 - P55 - P56 -

P61

Overall performance P16 - P23 - P30 - P32 - P37 - P40 -

P46 - P48 - P57 - P60 - P61

Application size P5 - P7 - P9 - P13 - P14 - P28 - P51

- P52 - P55 - P56

RAM usage P5 - P7 - P9 - P10 - P27 - P35 - P45

- P51 - P52

Energy consumption P10 - P27 - P29 - P42 - P47 - P49

CPU usage P10 - P27 - P35 - P42 - P45 - P51

Resources consumption P28 - P49 - P60

Smoothness of animation running P8 - P45

GPU usage P45

23

Figure 1.9 shows the number of occurrences of criteria from developer’s point of view. The

platform API accessibility and hardware and sensors accessibility with the same number of

occurrences are the most analyzed criteria in this group. In Appendix IV, Table A provides a list

of the papers that used developers’ criteria in their evaluation.

Figure 1.9 Number of criteria occurrences from developer’s point

of view

The functionality criterion regroups different sub-criteria in the developer’s perspective. Table 1.4

lists the functionality sub-criterion and the primary studies that used them.

24

Table 1.4 Functionality sub-criterion

Sub-criterion Paper IDs
Intra/Inter application communication P6 - P13 - P41

Internationalization P6 - P13

Input/Output device connectivity P6 - P41

Supporting multi threading P6 - P41

Offline running P39 - P57

Biometric or voice authentication P6

Support instant-on experience P6

Support in-app browser P38

Support the implementation of PWA P43

1.5.3 RQ3 Results. How did existing studies carry out the evaluation of the
frameworks?

The goal of this research question is to analyze the evaluation methods used in reviewed papers.

We identified four evaluation methods in the primary studies. The first evaluation method is

experiment based. In this type of evaluation, the authors of the paper developed prototype

applications with the frameworks. Then, they analyzed the frameworks according to some

metrics using the prototype applications. The second type of evaluation is documentation

based. In this type, the comparison of development frameworks is done using frameworks’

documentation. The third evaluation method is a combination of the first and second methods.

In this case, authors take advantage of using both prototype applications and frameworks’

documentation. The last evaluation method is based on questionnaire and user reviews. In this

case, the comparison of frameworks and developed applications is usually done based on the

users’ or developers’ thoughts, opinions, and preferences. Questionnaires and users’ comments

in application stores are the two primary data sources in this evaluation method.

Table 1.5 indicates the number and percentage of evaluation methods in the studies, and

figure 1.10 shows the distribution of the evaluation methods by the reviewed papers. The most

used evaluation method is the Experiment based. Thirty-seven (37) out of 61 surveyed studies use

25

this method. The least used evaluation method is the questionnaire and user reviews. Applying

the experimental evaluation method needs developing prototype applications to compare mobile

frameworks. However, in most cases, the prototype applications are simple. Since this method

compares mobile development frameworks in practice, it is the most reliable evaluation method.

Table 1.5 Distribution of evaluation methods in papers

Evaluation Method Number of occurrences Percentage

Experiment based 37 61%

Documentation based 17 28%

Combination of Experiment and Documentation 4 6%

Questionnaire and User Review based 3 5%

Total 61 100%

Moreover, Figure 1.10 shows the distribution use of evaluation methods by the reviewed papers.

Figure 1.10 Distribution of evaluation methods in reviewed papers

26

We also observed that studies with a fewer number of criteria use experimental methods like

P10 and P42. Moreover, in most cases, these studies use performance as the criterion for

comparison. Figure 1.11 shows the distribution of the evaluation methods per criteria. Except

for performance, there isn’t a correlation between the criterion and the evaluation method.

Figure 1.11 Occurrences of criteria by evaluation methods

27

1.5.4 RQ4 Results. What is the gap between the literature on mobile frameworks and
the practice?

As stated in section 1.1, this question was further refined into two sub-questions:

• RQ4.1. What are the frameworks that are currently used by mobile developers?

• RQ4.2. Do existing studies target the frameworks used in practice?

To answer these questions, we used data extracted from StackOverflow. We extracted questions

asked on StackOverflow that had a tag referring to a mobile development framework. We

recovered the number of questions attached to those tags from 2016 to 2020.

RQ4.1. The first sub-research question addresses the most used mobile frameworks in practice.

Figure 1.12 denotes the number of questions for the most used cross-platform mobile frameworks

from 2016 to 2020. According to the figure, based on the number of questions for each framework,

Flutter with the 41384 questions is the most used cross-platform mobile framework in practice

in 2020. The React Native with 28462 questions placed in the second rank. Following these two

frameworks, the Ionic with 6428 and the Xamarin with 5395 questions are the third and fourth

frameworks respectively in the ranking. There is a meaningful difference between the question

numbers of React Native and Ionic in terms of number of questions. The difference indicates

that Flutter and React Native are the major cross-platform mobile frameworks in practice today.

According to the figure, React Native was the most used framework in 2019. In 2020, the

Flutter passed the React Native and became the first framework. On the other hand, The Ionic

frameworks and the Xamarin were very close in these two years and still had a large margin

when comparing to the first two frameworks.

28

Figure 1.12 Most used mobile frameworks in practice, based on

the number of questions in the stack overflow

The number of questions for each framework in Stack Overflow has changed over the years.

This evolution over the years can show the tendency of developers to use the frameworks in

real-world projects.

Figure 1.13 depicts the trend of asking questions for cross-platform frameworks. The figure

indicates the number of asked questions for Flutter increased exponentially from 2016 to 2020.

In 2017 which was the initial alpha release year of the framework, the stack overflow users

asked 777 questions. After four years, in 2020, the number of questions boosted to 41384. This

considerable jump shows the high popularity of the framework in practice. A similar rising

pattern with a lower acceleration applies to the React Native framework. In 2016 the number of

questions for the framework was 6795. After five years, in 2020, the number increased to 28462.

The question numbers for Xamarin and the Ionic frameworks decreased over these five years

similarly. This might indicate that these two frameworks are used less in practice.

As a result, we can conclude that Flutter, followed by React Native, Ionic and Xamarin are the

most used cross-platform mobile frameworks.

29

Figure 1.13 Numbers of questions for cross-platform frameworks

in the Stack Overflow over the last five years

RQ4.2. This question aims at identifying the gap between the surveyed studies and the practice.

In particular, we wanted to check if the frameworks analyzed by academia are actually those used

in practice. Previously in our first research question, we identified the most studied frameworks

in the primary studies of our SLR. Figure 1.14 shows the top five most studied cross-platform

mobile frameworks in the last five years in the literature, which are Ionic, Xamarin, React Native,

Appcelerator Titanium, and PhoneGap.

Based on the result of the previous sub-question, Flutter is the most used mobile framework

practically. On the other hand, in academia, Flutter is not among the top five targeted cross-

platform frameworks in the surveyed studies in the last five years. This might be explained by

the fact that Flutter has been the most recently introduced framework compared to the others.

According to Figure 1.14, the React Native framework was targeted by only 11 papers in the last

five years. However, it was the most-used cross-platform mobile framework in 2019 and the

second one in 2020.

In conclusion, we observe a meaningful discrepancy between the surveyed studies and the actual

mobile frameworks used in practice.

30

Figure 1.14 Most studied cross-platform mobile frameworks from

2016 to 2020 in surveyed studies

1.6 Limitations of the SLR

In this section, I discuss the limitations of my systematic literature review. The first limitation is

in the search strategy step. We limited our search strategy to papers published after 2001. In fact,

most of the mobile frameworks were introduced in the last decade. The search strategy may also

be biased by the search string. Nevertheless, we tried to use a large combination of keywords to

mitigate the risk of missing relevant studies. We also carried out a snowballing process.

The second limitation is the study selection process. Selection bias is one of the common risks

in the systematic literature review. I selected studies based on the title, abstract, and content. To

reduce the risk of selection bias, the selection process was carried out by another researcher

(my supervisor in this case) and we cross-validated the results. Moreover, the data extraction

from studies might affect the results of the research questions. In this step, two researchers

counter-checked the information I extracted to mitigate the risks.

Finally, to answer the fourth research question, we use the number of asked questions for a

mobile framework on the Stackoverflow website. We hypothesized this number shows the usage

31

and popularity of the framework in practice. Our hypothesis might affect the results of this

research question.

1.7 Discussion and Conclusion

In this SLR, we surveyed sixty one primary studies that analyze mobile development frameworks.

We went through each research question and answered them according to our findings. In the

first research question, we wanted to find the most studied mobile frameworks in the literature.

We saw that PhoneGap is the most studied framework in the literature. However, the trend in

literature considerably changed over the last five years, and fewer studies considered PhoneGap

in their comparisons. In this research question, we also observed that Ionic was the most studied

cross-platform mobile framework from 2015 to 2020 in the surveyed studies.

The second research question looked at the goals of the surveyed studies. We reviewed the studies

to find out the evaluation perspectives, comparison metrics, and methods that they considered.

The results show studies considered more criteria from the developer’s perspective than the

end-user perspective in the comparison. These studies usually compared mobile frameworks in

terms of framework features. These criteria include platform API accessibility, hardware/sensor

accessibility, framework maturity, development tools, and framework documentation. Only a

few studies used software quality metrics, including maintainability, code reusability, reliability,

and testing. But, none of those compare the impact of a mobile framework on the application

source code’s quality, such as the increasing number of bugs or code smell in the source code by

using a mobile framework.

Through the third research question, we gained a detailed understanding of the evaluation

methods used in the studies. The result indicates most studies compared mobile frameworks

based on experiments or frameworks’ documentation. However, few studies combined both

methods, and a small group of studies only used the questionnaire and user opinions to compare

mobile frameworks. Among the papers that used the experimental method, all studies used

one or more prototype applications to compare their targeted mobile frameworks using their

32

defined criteria. Prototype applications, in all cases, are simple applications developed merely

for the comparison study. None of the studies compared mobile frameworks using real mobile

applications.

The fourth research question provided valuable insights into the gaps between the most studied

mobile frameworks in academia and the most used in practice. To answer this research question,

we utilized the results of the first research question and the data obtained from the Stackoverflow

website. We observed a meaningful discrepancy between the frameworks studied by academia

and those currently used in practice. Flutter’s popularity has grown among developers over the

past couple of years. Aside from Flutter, ReactNative is gaining popularity among developers,

however, Ionic and Xamarin are losing ground. This trend analysis might be helpful, especially

for new developers who aim to learn a cross-platform mobile framework.

An essential reason for conducting the SLR before designing an empirical study is to find research

gaps in the existing literature that analyzes mobile development frameworks. We observed that:

1) all the studies that used experiments to analyze the frameworks, used a prototype application

to do so; 2) none of these studies used a large set of mobile applications in their analysis; and 3)

the evaluation criteria didn’t include criteria about the impact of a mobile framework on the

application source code’s quality (e.g., bugs or code smell, etc.). As a result, we designed an

empirical study that uses a large set of mobile applications to evaluate the impact of mobile

frameworks on the application source code quality.

CHAPTER 2

AN EMPIRICAL STUDY ON THE IMPACT OF A MOBILE DEVELOPMENT
FRAMEWORK ON THE APPLICATION SOURCE CODE QUALITY

This chapter presents an empirical study that we carried out to investigate the impact of a mobile

development framework on the application source code quality. As stated earlier in the SLR

chapter, we could not find any evaluation study in mobile development frameworks executed on

a large set of mobile applications. Therefore, we decided to select a large number of mobile

applications for our empirical investigation and analyze the impact of a mobile framework on

application source code quality. In this chapter, we first discuss the methodology and the study

scope. Then, we present the tool we developed to automate the execution phase. Afterward, we

detail the data collection and execution phase. Before concluding, we discuss the results of the

study. Finally, we conclude our investigation and summarize the insights.

2.1 The methodology and the scope of the study

We designed and executed an empirical study to answer the thesis’s question, which is what is

the impact of the mobile framework on the application source code quality. This empirical study

was performed on a large set of open-source mobile applications’ source code. Figure 2.1 shows

an overview of our study design and the steps we followed to perform our empirical study.

To conduct our empirical study, we followed these three steps. First, we set the study scope

and the tools to be used. The targeted mobile development frameworks, source code analyzer,

and the criteria on how to find mobile applications’ source code will be identified in this step.

Second, we proceed with the study execution and data collection phase. We want to collect 3000

mobile applications’ source codes per targeted mobile framework in our study. Finally, based on

the results we will interpret the results and conclusions.

34

Step 1
Setting the scope of the study and

identifying the tools to be used.

Step 2
Executing the study and collecting data.

Step 3

Analyzing and interpreting the results.

 Selecting mobile frameworks to be studied.
 Selecting the source code analyzer tool.

GitHub

Analysis using
SonarCloud

Extraction of
mobile apps

Figure 2.1 Overview of the steps of the empirical study

In the empirical study, our focus is to analyze mobile application source codes and find the

framework impact on the source code quality. Hence, we analyze mobile application source

codes from developers’ points of view. Table 2.1 represents the source code quality metrics we

used in our study and their definition.

35

Table 2.1 Source code quality metrics definition

Metric Definition
Bugs The total number of bugs in source code. A bug is a coding error

that will break your code and needs to be fixed immediately.

Code Smells The total count of code smells in source code. A code smell

is a maintainability issue that makes your code confusing and

difficult to maintain.

2.1.1 The selection of the mobile frameworks

We chose the frameworks to cover two approaches in mobile development: Native and Cross-

Platform in our study. Developers can select between a large set of mobile development

frameworks to develop mobile applications. Due to time and resource limitations, targeting all

mobile frameworks in our investigation is impossible. Therefore we defined two criteria to select

mobile frameworks to be targeted in our study:

• The programming languages used in the mobile framework must be supported by the

source code analyzer tool to be used.

• The mobile frameworks must be among the most popular frameworks in practice and

must not be introduced in recent years. As long as a mobile framework is more popular in

practice and is mature enough, we are more likely to find open-source projects.

To narrow the scope of our study and make it feasible to perform, we targeted two mobile

development frameworks: Android Native framework and React Native. Since Android has

more open-source projects than iOS, we targeted Android Native framework as our native

mobile framework. The second framework should be cross-platform. Earlier in the SLR, we

examined the current popularity of mobile frameworks in practice. We identified the top five

most popular cross-platform mobile frameworks based on StackOverflow questions. According

to the results, Flutter is the most popular cross-platform mobile framework among other mobile

frameworks. But, Flutter is a new cross-platform framework and is not supported by some of the

36

current source code analyzers. Since it is a new mobile development framework, finding mobile

applications’ source codes would be challenging. As a result, we decided to choose the second

most popular cross-platform mobile framework after Flutter which is React Native. React Native

is a cross-platform mobile application development framework created by Facebook. It uses

JavaScript and TypeScript as programming languages to develop mobile applications.

2.1.2 The selection of a source code analyzer

Our main goal is to compare these quality metrics in projects that were developed using different

mobile frameworks to answer the thesis’s question. During the evaluation process, it is crucial

to use the same quality metrics to reduce the threat to the validity of our study’s results. Hence,

We must select and use a single source code analyzer tool. In the next step, we must choose a

static source code analyzer to evaluate the quality of the mobile application source codes. There

are some criteria we need to consider when selecting the tool for our study. First, the analyzer

must evaluate the projects using the same source code quality metrics.

Second, due to this high number of applications’ source codes, it is impossible to evaluate

each application’s source code manually. Therefore, the analysis tool must let us work with it

programmatically and by using APIs. Moreover, It must let us read and extract the analysis

result after generating reports by APIs.

Third, the source code analyzer must let us narrow the scope of analysis. One of the differences

between mobile applications and traditional desktop applications is that mobile software heavily

depends on third-party libraries and APIs (Nagappan & Shihab (2016)). And there is no need to

analyze this specific part of the source code in our investigation. Hence, the tool must give the

ability to define the scope of the analysis to avoid including unnecessary components.

Fourth, we chose GitHub to collect our mobile applications’ source codes. GitHub is the most

popular version control system and hosts many open-source projects. We chose GitHub and

expect the source code analyzer tool to work closely with GitHub. The source code analyzer tool

37

must be capable of importing mobile applications’ source codes directly from GitHub. In other

words, it should provide GitHub integration to make this process automatic and systematic.

Finally, and in addition to all the mentioned features, it would be better if the analyzer tool is

well documented and widely used in practice.

Based on our criteria for the tool selection, we chose SonarCloud1 source code analyzer.

SonarCloud is a cloud-based static code analysis service. It is a product of the SonarSource2

company which owns the well-known SonarQube source code analyzer that can be used for

. SonarSource has more than 6,000 customers, including eBay, Bank of America, and BMW

(Wikipedia contributors (2022)), and its products are widely used in practice. The tool supports

more than 20 programming languages. Moreover, lets you define inclusion and exclusion rules

to narrow the analysis scope of the source code to have more precise results. Integrating with

GitHub is made easy in SonarCloud by connecting a GitHub account and importing projects. It

also can get the latest changes to repositories automatically. There are no fees associated with

using SonarCloud to analyze public open-source projects. The free version of the tool lets us

do infinite analysis for unlimited lines and does not limit the access to tool features. Moreover,

its cloud-based service does not oblige you to keep the source code on a local machine. By

accessing the SonarCloud APIs, we can collect the analysis results pragmatically (API (2022b)).

The integration with GitHub allows users to log in with their GitHub account and import

their accounts or organizations and their repositories directly to SonarCloud. SonarCloud

automatically analyzes all imported repositories as soon as they are imported. Additionally,

SonarCloud re-analyses the source code immediately after each change is made in repositories.

Depending on the size of the project, the analysis process would be different. It can take up to 30

minutes. Upon analysis completion, the user will receive the analysis results of the repository for

the first and the five most recent active pull requests. Moreover, each new commit and push on

1 https://www.sonarcloud.io

2 https://www.sonarsource.com

38

the default branch or a pull request will trigger an analysis automatically. Figure 2.2 represents

the results for a sample mobile application source code.

Figure 2.2 The brief analysis results of a source code in SonarCloud

By selecting the project and clicking on it, SonarCloud shows an overview of the analysis results.

Figure 2.3 represents this overview for a sample mobile application source code. The overview

section in SonarCloud also shows the historical analysis data of a repository. Moreover, it shows

the number of findings issues, code duplication, and total lines of code.

Figure 2.3 The overview analysis results of a source code in SonarCloud

39

By clicking on the Main Branch item in the left menu, users will see the summary of the analysis

result. Figure 2.4 shows the summary view of results.

Figure 2.4 The summary of analysis results of a source code in SonarCloud

Another view to see the analysis results appears at the top of this window. Users can see the

analysis results in detail by selecting the tabs from the top section. Figure 2.5 shows the details

of finding issues in a project. According to SonarCloud documentation, the tool can identify

three issue types in source code. The following list shows the issue types in SonarCloud:

• Bug – A coding mistake that can lead to an error or unexpected behaviour at runtime.

• Vulnerability – A point in the code that’s open to attack.

• Code Smell – A maintainability issue that makes the code confusing and difficult to

maintain.

40

In addition to issue types, SonarCloud also classifies five severity levels for issues in its platform.

The following list shows these five severity levels for issues in SonarCloud:

• BLOCKER

Bug with a high probability to impact the behaviour of the application in production like a

memory leak or unclosed JDBC connection.

• CRITICAL

Either a bug with a low probability to impact the behaviour of the application in production

or an issue that represents a security flaw, like an empty catch block or a SQL injection.

• MAJOR

The quality flaw that can highly impact the developer’s productivity, like an uncovered piece

of code, duplicated blocks, or unused parameters.

• MINOR

The quality flaw that can slightly impact the developer productivity, like lines should not be

too long or “switch” statements should have at least 3 cases.

• INFO

Neither a bug nor a quality flaw, just a finding issue.

Figure 2.5 The details of finding issues of a source code in SonarCloud

41

The Measures tab in the SonarCloud tool provides the results of a set of usable quality metrics

after analysis. In this tab, SonarCloud represents the values of source code quality metrics

graphically in detail. Figure 2.6 shows the analysis results of the Reliability and Maintainability

of a project in SonarCloud. In addition to numeric reports, SonarCloud also provides bobble

graphs. The graphs show the quality metrics value of each file. Moreover, Figure 2.7 represents

the bobble graph with analysis results for Duplication, Size, and Complexity metrics.

Figure 2.6 The detail of Reliability and Maintainability metrics in SonarCloud

Figure 2.7 The detail of Duplication, Size and Complexity metrics in SonarCloud

42

2.1.3 The selection of mobile apps

To perform our study, we must extract and analyze a collection of mobile applications developed

using the two targeted frameworks: Android native framework and ReactNative. Here, we

explain where and how we select mobile applications for our empirical study.

Selecting a large number of mobile applications is challenging. We must choose similar

mobile application source codes regarding targeted frameworks to analyze them equitably. To

overcome this challenge, we must search and find mobile application repositories with the same

characteristics on GitHub. For instance, the size of the mobile application should be in the same

range. Due to the fact that the size of the project might affect the quality metrics values and the

results, we need to take this into account. Hence, we define a size classification for repositories

in order to have similar mobile applications by source code size.

For the input size, we targeted to analyze 3000 mobile applications’ source codes in each

framework. Based on our size calcification, we will select 600 applications from each size class

to collect our target number for each framework. Table 2.2 represents the size definition of each

size class.

Table 2.2 Size classes of mobile application source code

Size class Size(kilobytes)

Tiny 5000 - 8000

Small 8001 - 12000

Medium 12001 - 20000

Large 20000 - 35000

Extra large 35001 - Max

As we stated earlier, we want to execute our investigation on a large number of mobile applications.

But, it is impossible to extract and analyze all applications manually. Hence, we needed a tool

43

that automates the execution phase of the study. This tool must be responsible for finding and

extracting mobile applications on Github regarding our targeted frameworks. After that, it must

filter the findings to ensure that only real mobile applications will be extracted. Then, it should

help us in the process of exporting the applications to the source code analyzer. It must enable

us to collect the analysis results from the analyzer tool. Accordingly, we developed this tool,

called GitToSonar, to automate the execution phase of our empirical study.

2.2 The GitToSonar tool

In this section, we talk about the GitToSonar tool and explain its features. Additionally, we

display some screenshots of the GitToSonar and explain which information is needed to use the

tool. The following list shows the main features of the GitToSonar tool.

1. Managing operations in repositories include Fork, retrieve, search, and remove

2. Searching and finding repositories in GitHub using search criteria

3. Searching and finding files within repositories

4. Creating exclusion/inclusion configuration files

5. Pushing files into repositories

6. Collecting generated reports

7. Creating report files

The GitToSonar tool helps us search GitHub repositories to find mobile applications’ source

codes. It enables us to validate the mobile application repositories by searching framework-

specific files in repositories. It also helps us to fork the finding results to our GitHub account

connected and used by the SonarCloud tool. SonarCloud provides integration with GitHub. It

enables SonarCloud to import repositories directly from GitHub and analyze them initially and

after each change (commit) automatically. GitToSonar also helps us create the configuration file

required by SonarCloud, for each mobile application source code to narrow the analysis scope

and exclude third-party libraries and plugins. Then it pushes the file to the GitHub account

44

again. Finally, after finishing the analysis, the tool fetches the results from SonarCloud and

generates the report.

The GitToSonar tool uses the GitHub and SonarCloud APIs. We developed it using Microsoft

.Net framework and C# programming language. We published the application source code

on GitHub3, so other developers can add features based on their needs. Figure 2.8 shows a

screenshot of the application’s main page.

Figure 2.8 The GitToSonar tool main page

In order to use GitToSonar, we need to log in using the GitHub account information. This

information includes the GitHub username, password, and personal access token4. The requested

information is used to access the GitHub APIs (GitHubAPI (2022)). After logging in, we can

access the application’s features. Figure 2.9 shows a screenshot of the application’s login page

and the required information to login into the application.

3 https://github.com/Parsakarami/GithubTool

4 https://docs.github.com/en/enterprise-server@3.4/authentication/keeping-your-account-and-data-

secure/creating-a-personal-access-token

45

Figure 2.9 The GitToSonar tool login page

After successfully logging in, the user will have access to the application’s main features.

They are visible on the left-hand side of the application. The first feature of the application is

organization and repository management. They can retrieve repositories from their account in

the right-hand list and apply the management operation to the selected repositories. Users can

use those operations in their organizations as well. They can do it by loading the organizations

and selecting from the list. Figure 2.10 shows a screenshot of the application’s main page after

login. The green label at the top left hand of the application indicates the username of the

current user.

The ”Get My Organization” button fetches the current user’s organizations, and the user can

select the target organization from the box behind it. After choosing the target organization, it

will be added inside the parenthesis in front of the username. Figure 2.11 shows a screenshot of

the application after selecting the organization.

46

Figure 2.10 The GitToSonar tool main page after successful login

Figure 2.11 The GitToSonar tool main page after selecting the organization

The ”Get All My Repositories” button fetches all of the current user’s repositories from GitHub.

Following the retrieval of repositories from GitHub, they will be added to the list on the right

47

side of the application’s main page. The user can also fetch the organization’s repositories by

pressing the “Get My Organization Repositories” button. Figure 2.12 shows a screenshot of the

application’s main page after fetching the user’s repositories.

Figure 2.12 The GitToSonar tool main page after fetching current user’s

repositories

The user can select among the repositories in the list and remove their selections from the

account or account’s organization permanently. The user also can export and import repositories

from or into the list. Moreover, the tool provides the ability to search within the list and find the

repositories inside the list.

GitHub enables us to search and manage repositories by providing an API. Developers can

use GitHub’s API using REST or GraphQL standards. To search and manage repositories, we

employ the REST API in GitToSonar. Figure 2.13 shows a screenshot of the search feature in

the GitToSonar tool. Users can create the search query employing the search properties in UI to

optimize their search results over GitHub repositories.

48

Figure 2.13 The GitToSonar tool search page

The third tab in GitToSonar helps us to search for a specific file within the selected repositories.

Figure 2.14 shows this feature in the tool. By choosing the "other" option in the drop-down

menu, we can determine whether the searched file is present in the selected repositories. The

feature can be used to find framework-specific files within mobile application repositories.

Moreover, we developed another feature to collect and generate reports from SonarCloud in our

GitToSonar tool. We can collect analysis results from SonarCloud and generate report files. In

addition, this feature enables users to obtain and filter project issues based on the issue types.

Figure 2.15 shows the report tab in our tool.

49

Figure 2.14 The GitToSonar tool feature to search files within a repository

Figure 2.15 The GitToSonar tool report feature

In addition to the systematic literature review and the empirical study, the GitToSonar tool is

one of the main contributions of this thesis. It provides a set of features to manage GitHub’s

50

repositories systematically. Moreover, it helps us collect the analysis results from SonarCloud.

We specifically developed the GitToSonar tool for this empirical study. The tool’s features

help us answer the thesis’s question. However, we believe GitToSonar will be helpful for other

researchers, especially those who do similar empirical studies in this context. In order to achieve

this, they must be able to extend the tool’s features based on their needs. Because of this, we

decided to publish GitToSonar on GitHub as an open-source project. In the next section, we

discuss how GitToSonar helps us in the study execution phase.

2.3 The study execution

In this section, we explain the steps of the execution phase of our empirical study and obtain the

results. The following list shows the execution steps.

1. Searching and finding mobile application repositories in GitHub.

2. Filtering repositories to verify extracting only real mobile applications regarding our

targeted mobile framework.

3. Forking repositories to keep them in a single account to export them into SonarCloud.

4. Creating an exclusion/inclusion configuration file for SonarCloud to narrow the

analysis scope.

5. Pushing the created configuration file into collected repositories.

6. Import the repositories into SonarCloud using the integration feature of SonarCloud.

7. Collecting analysis results from SonarCloud and creating report files.

In addition, we present these steps in Figure 2.16. Moreover, the figure highlights the steps

supported by GitToSonar. In the figure, arrows indicate the execution steps and the color of the

arrow represents which tool performed that step.

51

Figure 2.16 Overview of the empirical study execution steps and workflow

2.3.1 The Searching for mobile apps

The first step in the execution phase is finding and extracting the mobile applications’ source

codes. Earlier in table 2.2, we defined a size classification of mobile applications in our study. In

this section, we use the defined size classes to find mobile applications in each targeted mobile

framework by determining the size.

The search API lets developers search for specific items on GitHub. These items can be the

repositories, codes, files, commits, labels, and users. However, there are some limitations in

using GitHub’s APIs. According to its documentation, the search API provides only up to 1,000

52

results for each search (API (2022a)). In other words, we need to change the search query to get

more repositories. However, our size classification enables us to overcome this limitation.

GitHub enables us to narrow our search results using criteria in search queries. We defined

criteria to find mobile applications for the study using the GitToSonar tool. First, we use

keywords for our search that we choose according to the targeted framework. Second, we select

the programming language of the framework. Third, we add text to search within a repository

including the repository name, description, and contents inside the README file. Fourth, we

put our determined size to have a mobile application with a similar size in our investigation.

Fifth, we use a flag in the search query to filter out the archive repositories and only find the

active mobile application repositories. Finally, we specified in the query to sort based on the

most recently updated repositories. To achieve this, we set the sort parameter when creating the

search query.

We used the same search criteria to retrieve similar mobile applications’ source codes in each

targeted mobile framework. Then, we searched for each size category to collect our target

number. Table 2.3 shows our search criteria in each development framework.

Table 2.3 Search criteria for finding mobile application repositories in GitHub

Criterion Values (Android native) Values (React-Native)

Search Keyword "android" "react-native"

Programming language "Java" "JavaScript"

containing words in the name,

description, or README file

of the repository

"application" "application"

Minimum Size Lower limit in the clas-

sification

Lower limit in the clas-

sification

Maximum Size Upper limit in the classi-

fication

Upper limit in the classi-

fication

Archived false false

Sort update date-time update date-time

Order asc asc

53

In the GitToSonar tool, we have this feature to use GitHub’s search API. We searched on GitHub

and found the mobile application repositories. We can narrow the scope of the search by adding

search criteria. Figure 2.17 indicates search results for the first size class of mobile applications’

source code developed using the Android native framework. We used the search criteria inside

the figures to find mobile applications for the first size category.

Figure 2.17 The GitToSonar tool search results using criteria

2.3.2 Filtering the results from GitHub search

The next step is to filter the findings repositories before starting the analysis phase. During

our search process, we found out some repositories had been extracted using our search query,

but they are not real mobile applications. There is no straightforward way to find only actual

mobile application source code using GitHub search API. Prior to importing the source codes

into SonarCloud, we must ensure that the repositories are real mobile applications’ source codes.

To overcome this limitation, we decided to filter repositories after the search.

54

Each mobile application source code has some mandatory files regarding the development

framework. These files must be included in the source code path in order to build and run

the source code without a problem. Our knowledge of this fact enables us to validate the

searched results. Our method is to find this mandatory file within the searched results regarding

the targeted mobile framework. In this case, the presence of the file indicates it is an actual

application.

For the mobile applications developed using the Android native framework, we search for finding

AndroidManifest file. Every Android application developed using the Android native framework

must have an AndroidManifest.xml file (exactly that name) at the root of the project source set.

The manifest file describes essential information about an application to the Android build tools,

the Android operating system, and Google Play. For the mobile applications developed using the

react-native framework, we search for finding the Package.json file. It is a file created by NPM

(Node Package Manager). It contains all the metadata, dependencies, and scripts for the app.

Figure 2.18 shows how to validate the search results. After selecting the target mobile framework

from the box, the FileName field automatically gets filled based on the targeted framework.

Figure 2.18 The GitToSonar tool validation by file name

55

GitToSonar validates selected repositories and indicates that using a check or cross mark. A

validation feature examines each repository individually to see if the files are present inside.

Depending on the selection number, this process might take a long time. Figure 2.19 indicates

the validation results of sample repositories.

Figure 2.19 The GitToSonar tool validation results

After finding the mobile applications and validating the results, we fork them into a GitHub

account to continue our execution phase.

2.3.3 Excluding the third-party libraries from the analysis

Mobile applications heavily depend on third-party libraries and plugins. A mobile application

usually contains generated code and source code for the third-party libraries or plugins used by

the app. Hence, to analyze the application source code in our study, we need to consider only

the source code related to the application, not to the libraries and plugins.

56

As stated, SonarCloud allows us to add specific exclusion and inclusion criteria to narrow the

analysis scope. In this step, we exclude the third-party libraries and plugins from the analysis

scope in SonarCloud. Moreover, we include the source code files written in the programming

language of the targeted framework. For instance, in the Android native framework, we added

an inclusion criterion that makes SonarCloud only analyze Java files.

We can define these exclusion and inclusion criteria by adding a file in the project’s root path.

This SonarCloud feature enables us to restrict the analysis scope by file type and file path. We

must add the ".sonarcloud.properties" file (precisely that name) in each repository to define

the analysis scope. If the file name is incorrect or the file content is not in a proper format, it

will not change the analysis scope. In our study, this file consists of two parts, inclusion and

exclusion. In the first line, we defined the exclusion criterion. We exclude certain file types and

paths from our analysis based on exclusion criteria. In the second line, we determine the scope

of the source code we want to analyze by SonarCloud. Figure 2.20 shows an example of the

".sonarcloud.properties" file.

Figure 2.20 Example of SonarCloud exclusion/inclusion file

After finding the root path of the source code within each repository, we create the exclu-

sion/inclusion configuration file according to the root path and the targeted framework. Then,

GitToSonar creates the exclusion/inclusion configuration file. Finally, we push the file into

57

each repository using our tool. Figure 2.21 shows the Sonar tab in the GitToSonar, which is

responsible for creating and pushing exclusion/inclusion configuration files to every GitHub

repository.

Figure 2.21 The GitToSonar tool SonarCloud configuration page

2.3.4 Importing mobile applications in SonarCloud

After preparing the prerequisites, it is time to start the analysis of the mobile applications. In

this step, we only used one of the built-in features in SonarCloud. This feature enables us to log

in using the GitHub account and import the mobile application repositories to SonarCloud. We

created a GitHub account for our empirical study in order to fork mobile application repositories

after the filtering step. This GitHub account has a total of 10 GitHub organizations. We

created these organizations based on the targeted mobile frameworks and mobile application

size category we defined earlier in the study design section. These organizations allow us to

keep the mobile application repositories separately. Then, we import them into SonarCloud for

analysis. Figure 2.22 shows the selection of the organization in the SonarCloud.

58

Figure 2.22 Selecting GitHub organization in SonarCloud

After selecting the organization, we select all the and import them into SonarCloud. Figure 2.23

indicates how we import the mobile application source codes in SonarCloud. Soon as the import

process is finished, SonarCloud starts to analyze the projects.

Figure 2.23 Importing GitHub repositories to SonarCloud

59

2.3.5 Generating reports

After the analysis is completed, we use the GitToSonar tool to collect the metrics values of the

mobile applications. In GitToSonar, we used SonarCloud’s Rest Web APIs to send requests

and retrieve information. After collecting source code metric values, we generate the report

files. Later, we will use these files to interpret the analysis results in the next phase. SonarCloud

automatically assigns a unique identifier key to each project after importing source codes. We

request accessing each project analysis result by passing this key and utilizing SonarCloud’s rest

APIs. This step is done using our GitToSonar tool.

Figure 2.24 shows the details of the measure API in SonarCloud. The figure also indicates API’s

parameter. Among these available parameters, we use two of them. The first is the component

key which is the unique key for each project. The second is the comma-separated list of metric

keys we want to obtain the values.

Figure 2.24 The measure API description in SonarCloud

60

Figure 2.25 illustrates the measures API response example. In response to this API call,

SonarCloud returns the requested metric values of the component. The return results are

provided in JSON format.

Figure 2.25 The response example of the measure API in SonarCloud

To generate the report file, we followed these three steps. First, the GitToSonar tool retrieves all

the keys of the projects imported into SonarCloud. Second, GitToSonar calls measure API for

61

each project iteratively and collects metric values. And finally, the tool generates the two report

files for each targeted framework.

Figure 2.26 shows the results for the first category of the mobile app’ source codes. GitToSonar

collects the values. Then the tool generates the report files and saves them in the specified path.

Figure 2.26 The generating report in GitToSonar

In addition, to generate reports, the GitToSonar enables us to obtain the project’s issues in detail.

It helps us identify the most commonly encountered bugs and code smells in mobile applications

developed using each targeted framework. The occurring reason for these issues leads us to

proceed with our qualitative analysis. An overview of the number of projects’ issues, including

bugs and code smells, is shown in Figure 2.29. The tool saves the report file to the specified

path when you click the Bug or Code Smell buttons.

62

Figure 2.27 The number of collected issues using the GitToSonar tool

2.4 Results and Discussion

Here, we address the thesis’s primary question using Qualitative and Quantitative analysis of

our empirical study and discuss the results. First, we begin with a qualitative assessment of

mobile application source code quality based on two issue types identified by SonarCloud.

These two types are bugs and code smells. We conduct qualitative analysis to examine the

impact of using mobile frameworks on generating bugs and code smells in source code. We

scrutinize the five most frequently encountered bugs and code smells in mobile applications

in each targeted framework. After analyzing and interpreting qualitative data, we move on

to quantitative analysis. There, we apply descriptive statistics methods to answer the thesis’s

question. Finally, we interpret the results and discuss using statistical values of quality metrics.

63

2.4.1 Qualitative analysis

A qualitative analysis of issues is necessary to answer the thesis’s question. We use this analysis

to evaluate the impact of choosing a mobile application development framework on the design

quality. The bugs and code smells are the two source code quality factors that impact the

application design. The fewer bugs and code smells in a source code enhances the quality of

source code and improves maintainability. We can collect source code analysis results from

SonarCloud through our GitToSonar tool. GitToSonar also helps us to generate an inclusive

report file for the bugs and code smells. The generated report file by the tool gives us the list of

bugs and code smells for each targeted framework. Then, we ordered and filtered the results to

find the most frequent bugs and code smells in each mobile framework. Analyzing the most

frequent bugs and code smells in mobile applications’ source codes is necessary to answer the

thesis’s question. Examining the causes of these bugs and code smells can provide insight into

the impact of mobile frameworks on design quality. The following tables (2.4, 2.5, 2.6, and 2.7)

show the most frequent bugs and code smells in mobile applications’ source code that were

developed using each targeted mobile framework.

Table 2.4 Most frequent bugs in mobile applications developed using Android native

framework

Bug Description Number of occurrences
Cast one of the operands of this "type A"

to a "type B"

9744

Either re-interrupt this method or re-throw

the "InterruptedException" that can be

caught here

8299

Do something with the "type A" value

returned by "method name"

3071

Use another way to initialize this instance 1947

Strings and Boxed types should be com-

pared using "equals()"

1632

64

Table 2.5 Most frequent bugs in mobile applications developed using React Native

framework

Bug Description Number of occurrences
Expected an assignment or function call

and instead saw an expression

7553

Consider using "forEach" instead of "map"

as its return value is not being used here

1454

This function expects [#N] argument, but

[#M] were provided

1419

Unreachable code 1031

Add a "return" statement to this callback 865

Table 2.6 Most frequent code smells in mobile applications developed using Android

native framework

Code Smell Description Number of occurrences
Rename this [local variable, constant,

method, package, ...] to match the regular

expression " [̂a-z][a-zA-Z0-9] * $"

421436

This block of commented-out lines of code

should be removed

150324

Make "A" a static final constant or non

public and provide accessors if needed

103138

#N duplicated blocks of code must be re-

moved

93994

Refactor this method to reduce its Cog-

nitive Complexity from [#N] to the [#M]

allowed

63119

To perform a qualitative analysis, we must identify the source of bugs and code smells on each

targeted framework. Some code smells and bugs in source code may be caused by developers.

Developers can cause issues by using bad practices in coding. These bad practices include typos

in code, hard-coding parts of code, naming conventions, etc. In these cases, the bugs and smells

are unrelated to the framework’s choice. But in other cases, the issues can be produced by the

65

Table 2.7 Most frequent code smells in mobile applications developed using React Native

framework

Code Smell Description Number of occurrences
Remove the unused function parameter

"A" or rename it to "B" to make intention

explicit

88326

Remove this unused import of "A" 76577

"property A" is already declared in the

upper scope

69882

Remove this commented out code 47361

Unexpected empty [block, function,

method, ...]

24773

framework. If a bug or code smell is generated by the framework, consider it as an impact of

choosing the framework on design quality.

To investigate the source of each issue, we selected the top 5 most frequent bugs and code smells

from each targeted development framework. In order to determine the cause of each bug or code

smell, we selected ten projects randomly. A key goal is identifying whether the development

framework or the developer causes the issues in these projects. We proceeded in the following

manner to randomly select the ten projects. First, we picked two projects in each size category

in each targeted development framework. We choose projects of different sizes to ensure our

samples cover all scopes. Second, we check if the project has that specific bug or code smell.

Then, we investigate the reason for the occurrences. If the selected project does not have that

bug or code smell, we choose another project from the same size category. This process allowed

us to choose ten projects for each bug or code smell. Finally, we check the issue’s origin to

find out its occurrence. The following tables present the investigation results of bugs and code

smells in the targeted framework. The first column in the tables indicates the bug or code smell

in each development framework. The second column shows the number of occurrences for each

issue in total. The rest of the columns show each project ID we took in our evaluation. In order

to indicate the reason for each bug or code smell in these projects, we used two letters. If the

66

development framework generates an issue, we use the letter "F" to indicate that and we use the

letter "D" to demonstrate the developer produces that bug or code smell.

Table 2.8 The reason for occurrences of the most frequent bugs in mobile applications

developed using the Android native framework

Description Total 1 2 3 4 5 6 7 8 9 10
Cast one of the operands of

this "type A" to a "type B"

9744 D D D D D D D D D D

Either re-interrupt this method

or re-throw the "InterruptedEx-

ception" that can be caught

here

8299 D D D D D D D D D D

Do something with the "type

A" value returned by "method

name"

3071 D D D D D D D D D D

Use another way to initialize

this instance

1947 D D D D D D D D D D

Strings and Boxed types

should be compared using

"equals()"

1632 D D D D D D D D D D

Table 2.9 The reason for occurrences of the most frequent bugs in mobile applications

developed using the React Native framework

Description Total 1 2 3 4 5 6 7 8 9 10
Expected an assignment or

function call and instead saw

an expression

7553 F F F F F F F F F F

Consider using "forEach" in-

stead of "map" as its return

value is not being used here

1454 D D D D D D D D D D

This function expects [#N] ar-

gument, but [#M] were pro-

vided

1419 D F D F F F D D F D

Unreachable code 1031 D D D D D D D D D D

Add a "return" statement to

this callback

865 D D D D D D D D D D

67

Table 2.10 The reason for occurrences of the most frequent code smells in mobile

applications developed using the Android native framework

Description Total 1 2 3 4 5 6 7 8 9 10
Rename this [local variable,

constant, method, package, ...]

to match the regular expres-

sion " [̂a-z][a-zA-Z0-9] * $"

421436 D D D D D D D D D D

This block of commented-out

lines of code should be re-

moved

150324 D D D D D D D D D D

Make "A" a static final con-

stant or non public and provide

accessors if needed

103138 D D D D D D D D D D

#N duplicated blocks of code

must be removed

93994 D D D D D D D D D D

Refactor this method to reduce

its Cognitive Complexity from

[#N] to the [#M] allowed

63119 D D D D D D D D D D

Table 2.11 The reason for occurrences of the most frequent code smells in mobile

applications developed using the React Native framework

Description Total 1 2 3 4 5 6 7 8 9 10
Remove the unused function

parameter "A" or rename it to

"B" to make intention explicit

88326 D D D D D D D D D D

Remove this unused import of

"A"

76577 D D D D D D D D D D

"property A" is already de-

clared in the upper scope

69882 D D D D D D D D D D

Remove this commented out

code

47361 D D D D D D D D D D

Unexpected empty [block,

function, method, ...]

24773 D D D D D D D D D D

68

According to our examination, developers caused the bugs and code smells in most cases. But

in some cases, we found out bugs are generated by the chosen mobile framework. Based on

the results, developers are the main reason for causing the top five most frequent bugs in the

Android native framework. The results also indicate the same fact for the code smells in this

framework. As a result, we can conclude that developers are the primary source of issues in

mobile applications’ source codes written with the Android native framework in our investigation.

In other words, choosing an Android native framework as a mobile application development

framework does not directly impact the design quality of applications.

We also investigated the mobile applications developed using React Native development

framework. The results are not quite the same in React Native compared to the Android native

framework. In the case of code smells, both frameworks have the same results. We found the

most frequent code smells caused by developers among the randomly selected projects. As a

result, we can state choosing a mobile framework can increase the number of code smells in

source codes. In the case of bugs, sometimes the framework generated the bug, specifically the

React Native framework. In our experiment, the most common bug in the projects developed

using the React Native framework is "Expected an assignment or function call and instead saw

an expression.". In JavaScript functions, it is not mandatory to use a return statement explicitly.

Hence, it is not a bug from a JavaScript developer’s point of view. However, in the React

Native framework, all the component generator functions must return a value, and SonarCloud

considered this a bug. Therefore, this difference might confuse the developers, and we marked

"F" for this bug.

Another example is the third most frequent bug in React Native (see Table 2.9). By looking

into the analyzed projects, we found that in some cases, this bug is related to the developer

and, in others React framework causes the bug, as shown in Table 2.9. This bug happens when

developers pass fewer or more arguments than the actual number of parameters defined in the

function signature. In some projects, we found out it happened because of the developer’s

mistake and more parameters passed by the developer in a function call. If developers pass

fewer parameters in a function call, this is not considered a bug in the JavaScript programming

69

language. But, React Native framework considers this as an error. In some projects, we found

developers passed more parameters in function calls.

To summarize, we identified two frequent bugs related to the React Native framework. Since

these two bugs are not bugs in JavaScript, developers might be confused about them, and we

consider this as the impact of the development framework on source code quality. So, we can

state a cross-platform mobile framework can impact some quality metrics.

2.4.2 Quantitative analysis

Here, we use a statistical analysis method to determine the impact of choosing a mobile

application development framework on source code quality. The GitToSonar tool collects

the analysis results from SonarCloud and generates a report file that includes the two quality

metrics presented in table 2.1. Then, we analyze the results quantitatively to find if meaningful

similarities or differences happened between metrics in our two sets of applications’ source

codes. Projects developed using the Android native framework are included in the first set. The

second set of applications’ source code contains those developed using React Native.

Table 2.12 reports the metrics for a sample of projects for both Android and React Native

frameworks. The name of the project, and the framework used to develop the project, are given

in the first row. The projects in this table were selected randomly.

Table 2.12 A small sample of projects and their metrics

App Name
(framework)

yemmsg

(Android)

litho

(Android)

musicm

(Android)

EDX

(Android)

Lupa

(React)

meala

(React)

accApp

(React)

elektra

(React)

Number of
Bugs 107 42 165 24 41 23 21 53

Number of
Code Smells 9602 3139 5165 1997 2960 655 874 548

We use statistical hypothesis testing to address the thesis’s question. We define our hypothesis to

prove whether using mobile frameworks impacts source code quality. Our null hypothesis (H0)

70

is that using a mobile framework does not negatively impact source code quality, specifically by

adding bugs and code smells in source code. This hypothesis indicates the sum of the number of

bugs and code smells in the two groups does not meaningfully differ. On the other hand, our

alternative hypothesis (Ha) stated using a mobile framework impacts the source code quality or

that choosing a framework increases the number of bugs and code smells in source code.

Table 2.13 shows the results of the descriptive analysis for each code metric besides the data

distribution in our dataset. The "Normal_dist" column determines if the data is distributed

normally or not. Moreover, the table also displays mean, median, and standard deviation (SD)

values for the code metrics for each framework.

Table 2.13 The descriptive statistical of the dataset

Variable Framework Normal_dist Mean SD Median
Bugs Android SDK No 8.76 23.85 2

Bugs React Native No 7.18 38.58 1

CodeSmell Android SDK No 501.48 1549.8 165

CodeSmell React Native No 197.56 714.73 45

According to the results of the descriptive statistics, none of the variables in our dataset

followed a normal distribution. The distribution of our variables leads us to select our analysis

method. In the case of non-normally distributed data, the Mann-Whitney U-test is recommended

(Ramachandran & Tsokos (2021)).

We hypothesized that using a mobile framework does not impact code quality and does not

cause more bugs and code smells in source code. According to the boxplots in 2.28 and 2.29,

the number of bugs (box plot a in Group A) is not meaningfully different among frameworks.

But for code smells (box plot a Group B), it shows the number of code smells in android is

meaningfully higher than in React Native on average. According to the descriptive statistical

table, the median value for the Android native framework is about four times bigger than its

value in the react native framework. As a result, the boxplots cannot support our null hypothesis.

71

In other words, it indicates using a mobile framework impacts some source code quality metrics.

Table 2.14 reports the Mann-Whitney test results.

Table 2.14 The result of the Mann-Whitney test

variable mw.p.value mw.estimate effect_size
Bugs < 0.05 0.999996653898586 0.272 (small)

CodeSmell < 0.05 82.9999447657932 0.712 (large)

To do so, we assessed the P-value of the Mann-Whitney test to support or reject our null

hypothesis. The p-value (probability value) indicates whether the null hypothesis is true. A

low P-value (less than 0.05) rejects the null hypothesis and supports the alternative hypothesis.

Based on table 2.14, the null hypothesis is rejected since the P-value for bug and code smell are

less than the significant level (0.05). In other words, it indicates a mobile framework can impact

the source code quality by increasing the bugs or code smells.

In addition, we drew a box plot for each metric for the targeted mobile frameworks. Drawing

the box plot chart for each code metric helps us to find the possible similarities and differences.

Figures 2.28 and 2.29 show the box plots for each code metric for each targeted framework. Figure

2.28 shows the number of bugs metric has similar values distributions between the two targeted

frameworks. Figure 2.29 displays the number of code smells does not have similar distributions

in the two frameworks. The average value for the number of code smells meaningfully is lower

in mobile applications developed using React Native framework. As a result, it seems the React

Native development framework enhances the quality of mobile application source codes.

72

0.0

2.5

5.0

7.5

10.0

12.5

An
dr

oi
d

R
ea

ct

Bugs

Figure 2.28 Descriptive statistical - Number of bugs box plot

0

200

400

600

An
dr

oi
d

R
ea

ct

CodeSmell

Figure 2.29 Descriptive statistical - Number of code smells box plot

2.5 Limitations of the Study

In this section, I discuss the limitations of the empirical investigation in my thesis. The first

limitation of the empirical study is related to the code analyzer used in the study, which is

SonarCloud. The results of the study are dependent on the SonarCloud metrics evaluations.

This dependency can be considered a threat to the validity of the outcomes of our empirical

investigation.

The selection of mobile applications’ source code is the second limitation of our study. The

size of the mobile application is a factor that might affect the results. To reduce this effect,

we defined a size classification to collect mobile applications with various sizes. Moreover,

73

mobile applications have been developed in various domains like Gaming, Online shopping,

etc. Mobile frameworks might affect the application source code quality differently in various

domains. In our investigation, we did not target a specific domain to find mobile applications.

Hence, the validity of the results can be compromised by comparing mobile applications in

different domains. A workaround to mitigate this effect is to use GitHub tags to find mobile

applications from a similar domain.

Another limitation in our study is related to the heuristics we used to exclude third-party libraries

and plugins from the analysis scope of the SonarCloud. There is a possibility that our approach

does not completely exclude all third-party libraries and plugins. Therefore, it again can impact

the analysis phase and final results. This should be tackled in future works.

Finally, our study was limited to two development frameworks. Future work should analyze

more frameworks and more applications.

2.6 Conclusion

Following finding research gaps in our SLR, we designed and conducted the empirical study. In

this study, we targeted two mobile frameworks and evaluated two sets of mobile application

source codes to find whether selecting a mobile framework impacts code quality.

The empirical study consisted of three phases. In the first phase, we set the study scope and

the tools to be used. We selected two mobile frameworks (Android native framework and

ReactNative) and the source code analyzer tool. Moreover, we defined the mobile application

size classification we wanted to analyze. In the second phase, we executed the study and collected

data. We developed a tool called GitToSonar, to automate the execution phase. Our execution

phase had seven steps. First, we searched for mobile applications from GitHub based on our

criteria. In the second step, we validated our findings and filtered out real mobile application

repositories. Third, we keep the filtered results in one account. In the fourth step, we excluded

the third-party and plugin source codes from our analysis by creating SonarCloud exclusion

inclusion configuration files. Fifth, we pushed those configuration files to each mobile application

74

repository accordingly. Sixth, we imported all mobile applications to SonarCloud in order to

analyze them. Finally, after SonarCloud completed the analysis, we collected the results and

generated report files. In the last phase of the empirical study, we interpreted the results.

We used both qualitative and quantitative analysis to answer the question of the study. In the

qualitative part, we found some mobile applications’ source code in which a mobile development

framework impacts the source code quality. We figured out this result by looking into the most

frequent bugs and code smells in mobile application source codes. In the quantitative analysis,

we hypothesized a mobile framework does not impact the source code quality. Specifically, it

does not add bugs or code smells to the source code. We used the Mann-Whitney U test since

the data distribution was not normal. The p-values (probability values) of the code metrics in

two groups of mobile applications are less than the significance level (less than 0.05). Hence, we

rejected our hypothesis. Quantitative and qualitative analysis results led us to conclude a mobile

framework can impact the source code quality in some metrics. In the qualitative analysis, we

saw a mobile framework can generate some bugs and reduce the source code quality of a mobile

application. In the quantitative analysis, we saw the average value for the number of code smells

in React Native framework is lower than the Android native framework. In other words, it

seems the React Native framework enhances source code quality compared to Android native

framework.

CONCLUSION AND RECOMMENDATIONS

This thesis’s goal was to investigate the impact of mobile development frameworks on the

quality of the applications. To achieve this goal, we first carried out a systematic literature

review of existing studies that evaluated mobile development frameworks. For this purpose, we

followed the approach outlined in (Kitchenham (2004)). In the SLR, we reviewed sixty-one

existing studies that compared mobile frameworks. The SLR identified the most studied mobile

frameworks. The SLR also revealed the gaps between the most researched and most used mobile

frameworks in practice. The SLR enabled us to identify the evaluation criteria, perspectives,

and methodologies used by other researchers. We observed that: 1) all the studies that used

experiments to analyze the mobile frameworks used a prototype application to do so; 2) none

of these studies used a large set of mobile applications in their analysis, and 3) the evaluation

criteria did not include criteria about the source code quality. As a result, we designed an

empirical study that uses a large set of mobile applications to evaluate the impact of mobile

frameworks on the quality of the applications.

In our empirical study, we selected two popular mobile frameworks to investigate the possible

impact of choosing a framework on design quality. We targeted native and cross-platform

frameworks to compare source codes. Then, we collected six thousand mobile applications’

source codes (three thousand for each targeted framework) from GitHub. Then, we imported

those source codes to the SonarCloud source code analyzer tool to analyze them. Since the

number of our dataset is large enough, we developed a tool to do the tasks systematically. Our

GitToSonar tool handles every step of our empirical study, from finding mobile source codes in

GitHub to generating reports after analysis.

We found that choosing a mobile application development framework can affect the quality

of the source code in terms of producing bugs or code smells. In our qualitative analysis, we

analyzed the top five most frequent bugs and code smells in both targeted frameworks in more

76

depth. We saw a mobile framework can generate some bugs and reduce the source code quality

of a mobile application. The qualitative analysis results show the average value for the number

of code smells in mobile applications’ source code developed using the React Native framework

is lower than this value in mobile applications developed using the Android native framework.

It led us to figure out that a mobile framework can impact the source code quality of mobile

applications. The qualitative analysis shows the React Native framework enhances source code

quality compared to the Android native framework.

Moreover, we made our GitToSonar tool open-source in order to make it accessible to all

researchers. The tool’s source is available on GitHub at the following address:

https://github.com/Parsakarami/GithubTool.

This study touched the surface of analyzing mobile application development and mobile

frameworks. We believe there is potential for extending this work in different directions. The

first direction would be to use more source code quality metrics and employ other source code

analyzer tools. The second direction is targeting more mobile frameworks in the study. Finally,

the third direction would be to collect more mobile applications’ source codes for the empirical

investigation.

APPENDIX I

SELECTED PAPERS

P1 F.Botella, P. Escribano, A.P. Benavent. "Selecting the best mobile framework for

developing Web and hybrid mobile apps" Moreno L., de la Rubia Cuestas E.J., Penichet

V.M.R., García-Peñalvo F.J. (Eds.), Proceedings of the XVII International Conference on Human

Computer Interaction, Interacción 2016, Salamanca, Spain, September 13, - 16, 2016, ACM

(2016), pp. 40:1-40:4.

P2 M.Palmieri, I. Singh, and A. Cicchetti, “Comparison of Cross-Platform Mobile

Development Tools” 16th International Conference on Intelligence in Next Generation Networks,

2012, pp. 179–186.

P3 H.Heitkötter, S. Hanschke, T.A. Majchrzak "Evaluating Cross-platform Development

Approaches for Mobile Applications" LNBIP, 140, Springer (2013), pp. 120-138.

P4 S.Dhillon and Q. H. Mahmoud, “An Evaluation Framework for Cross-Platform Mobile

Application Development Tools,” Softw. Pract. Exp., vol. 45, no. 10, pp. 1331–1357, Oct.

2015.

P5 Ville Ahti, Sami Hyrynsalmi, and Olli Nevalainen. 2016. "An Evaluation Framework

for Cross-Platform Mobile App Development Tools: A case analysis of Adobe PhoneGap

framework". In Proceedings of the 17th International Conference on Computer Systems and

Technologies 2016 (CompSysTech ’16). Association for Computing Machinery, New York, NY,

USA, 41–48. DOI: https://doi.org/10.1145/2983468.2983484

P6 Christoph Rieger, Tim A. Majchrzak, "Towards the definitive evaluation framework for

cross-platform app development approaches", Journal of Systems and Software, Volume 153,

2019, Pages 175-199, ISSN 0164-1212, https://doi.org/10.1016/j.jss.2019.04.001.

78

P7 Michael Gonsalves, "Evaluating the mobile development frameworks Apache Cordova

and Flutter and their impact on the development process and application characteristics", Master

thesis, 2018.

P8 Henning Heitk¨otter, Tim A. Majchrzak, Benjamin Ruland and Till Weber. "Evaluating

Frameworks for Creating MobileWeb Apps", WEBIST 2013 - 9th International Conference on

Web Information Systems and Technologies, 2013.

P9 Xiaoping Jia, Aline Ebone, Yongshan Tan. "A Performance Evaluation of Cross-Platform

Mobile Application Development Approaches", ACM/IEEE 5th International Conference on

Mobile Software Engineering and Systems, 2018.

P10 Dalmasso, Isabelle; Datta, Soumya Kanti; Bonnet, Christian; Nikaein, Navid. "Survey,

Comparison and Evaluation of Cross Platform Mobile Application Development Tools", 9th

International Wireless Communications and Mobile Computing Conference, IWCMC, 2013.

P11 Andreas BIØRN-HANSEN, Tor-Morten GRØNLI, Gheorghita GHINEA. “A Survey and

Taxonomy of Core Concepts and Research Challenges in Cross-Platform Mobile Development” ,

ACM Computing Surveys, Vol. 51, No. 5, Article 108, 2019.

P12 Humayoun, Shah Rukh; Ehrhart, Stefan; Ebert, Achim. "Developing mobile apps

using cross-platform frameworks: A case study", Human-Centred Design Approaches, Methods,

Tools, and Environments - 15th International Conference, HCI International 2013

P13 Sommer, Andreas ; Krusche, Stephan. "Evaluation of cross-platform frameworks for

mobile applications", Multi-Conference on Software Engineering, 2013

P14 Xanthopoulos, Spyros; Xinogalos, Stelios. "A Comparative Analysis of Cross-platform

Development Approaches for Mobile Applications", 6th Balkan Conference in Informatics, 2013

P15 Granlund, Daniel; Johansson, Dan; Andersson, Karl; Brännström, Robert. "A Case

Study of Application Development for Mobile and Location-Based Services", 15th International

Conference on Information Integration and Web-Based Applications and Services, iiWAS, 2013

79

P16 Peixin Que, Xiao Guo, Maokun Zhu. "A Comprehensive Comparison Between Hybrid

and Native App Paradigms", 2016 8th International Conference on Computational Intelligence

and Communication Networks, CICN 2016.

P17 Ng Moon Hui, Liu Ban Chieng, Wen Yin Ting, Hasimah Hj Mohamed, Muhammad

Rafie Hj Mohd Arshad. "Cross-Platform Mobile Applications for Android and iOS", 2013 6th

Joint IFIP Wireless and Mobile Networking Conference, 2013.

P18 Song Sun, Sanxing Cao. "The Web development technology research of Cross platform

mobile application", International Conference on Machine Tool Technology and Mechatronics

Engineering, ICMTTME, 2014.

P19 Matteo Ciman, Ombretta Gaggi, Nicola Gonzo. "Cross-Platform Mobile Development:

A Study on Apps with Animations", 29th Annual ACM Symposium on Applied Computing,

SAC, 2014.

P20 Ribeiro, André, Da Silva, Alberto Rodrigues. "Survey on cross-platforms and

languages for mobile apps", 8th International Conference on the Quality of Information and

Communications Technology, QUATIC, 2012.

P21 Vishal Kumar, Kushwaha, Ajay Shriram. "Mobile Application Development Research

Based on Xamarin Platform", 4th International Conference on Computing Sciences, ICCS, 2018.

P22 Salma Charkaoui, Zakaria Adraoui, El Habib Benlahmar. "Cross-platform mobile

development approaches", 3rd IEEE International Colloquium in Information Science and

Technology, CIST, 2014.

P23 Delia Lisandro, Galdamez Nicolas, Thomas Pablo, Corbalan Leonardo, Pesado Patricia.

"Multi-Platform Mobile Application Development Analysis", IEEE RCIS 2015 - 9th International

Conference on Research Challenges in Information Science, Proceedings 2015.

80

P24 Mounaim LATIF, Younes LAKHRISSI, El Habib NFAOUI, Najia ES-SBAI. "Review

of mobile cross platform and research orientations". International Conference on Wireless

Technologies, Embedded and Intelligent Systems (WITS), 2017.

P25 Robin Nunkesser. "BeyondWeb/Native/Hybrid: A New Taxonomy for Mobile App

Development", ACM/IEEE 5th International Conference on Mobile Software Engineering and

Systems, 2018.

P26 Rahul Raj C.P, Seshu Babu Tolety, "A study on approaches to build cross-platform

mobile applications and criteria to select appropriate approach", Annual IEEE India Conference,

2012.

P27 Lamia Gaouar, Abdelkrim Benamar, Fethi Tarik Bendimerad. "Desirable Requirements

of Cross Platform Mobile Development Tools", International Journal of Computer & Information

Science, v 16, n 4, p 11-19, Oct.-Dec. 2015.

P28 Pavel Smutný. "Mobile development tools and cross-platform solutions", 13th

International Carpathian Control Conference (ICCC 2012), p 653-6, 2012.

P29 Matteo Ciman and Ombretta Gaggi. "Measuring Energy Consumption of Cross-

Platform Frameworks for Mobile Applications", Lecture Notes in Business Information Process-

ing, v 226, p 331-346, 2015, Web Information Systems and Technologies - 10th International

Conference, WEBIST 2014.

P30 Nabil Litayem, Bhawna Dhupia, Sadia Rubab. "Review of Cross-Platforms for Mobile

Learning Application Development", (ĲACSA) International Journal of Advanced Computer

Science and Applications,Vol. 6, No. 1, 2015.

P31 Darwin Mena and Marco Santorum. "Maintainability and Portability Evaluation of the

React Native Framework Applying the ISO/IEC 25010", Systems and Information Sciences.

ICCIS 2020, 27-29 July 2020.

81

P32 Esteban Angulo and Xavier Ferre. "A Case Study on Cross-Platform Development

Frameworks for Mobile Applications and UX", Proceedings of the XV International Conference

on Human Computer Interaction, Article No.: 27, Pages 1–8. 2014

P33 Paulo Meirelles, Carla S. R. Aguiar, Felipe Assis, Rodrigo Siqueira, Alfredo Goldman.

"A Students’ Perspective of Native and Cross-Platform Approaches for Mobile Application

Development", International Conference on Computational Science and Its Applications ICCSA

2019: Computational Science and Its Applications – ICCSA 2019 pp 586-601. 2019

P34 LACHGAR Mohamed, ABDALI Abdelmounaïm. "Decision Framework for Mobile

Development Methods", (ĲACSA) International Journal of Advanced Computer Science and

Applications, Vol. 8, No. 2, 2017.

P35 Andreas Biørn-Hansen, Christoph Rieger, Tor-Morten Grønli, Tim A. Majchrzak,

Gheorghita Ghinea. "An empirical investigation of performance overhead in cross-platform

mobile development frameworks" , Empirical Software Engineering, v 25, n 4, p 2997-3040,

2020.

P36 Rui Oliveira, Gabriel Pontes, José Machado, António Abelha. "Analysis of Cross-

Platform Development Frameworks for a Smartphone Pediatric Application" , 2013 IEEE

International Conference on Industrial Engineering and Engineering Management, 2013.

P37 Paulo R. M. de Andrade, Adriano B. Albuquerque. "Cross platform app a comparative

study", International Journal of Computer Science & Information Technology (ĲCSIT) Vol 7,

No 1, February 2015.

P38 Arvind Hudli, Shrinidhi Hudli, Raghu Hudli. "An Evaluation Framework for Selection

of Mobile App Development Platform", MobileDeLi 2015 - Proceedings of the 3rd International

Workshop on Mobile Development Lifecycle, p 13-16, 2015.

P39 AlexanderZibula and TimA.Majchrzak. "Developing A Cross-platform Mobile Smart

Meter Application Using Html5,jquery Mobile And Phonegap", In Proceedings of the 8th

82

International Conference on Web Information Systems and Technologies (WEBIST-2012),

pages13-23, 2012.

P40 Iván Tactuk Mercado, Nuthan Munaiah, Andrew Meneely. "The Impact of Cross-

Platform Development Approaches for Mobile Applications from the User’s Perspective",

WAMA 2016 - Proceedings of the International Workshop on App Market Analytics, co-located

with FSE 2016, p 43-49, 2016.

P41 Rieger, Christoph; Majchrzak, Tim A. "Weighted evaluation framework for cross-

platform app development approaches" , 9th EuroSymposiumon Information Systems: Develop-

ment, Research, Applications, Education, SIGSAND/PLAIS, 2016.

P42 Leonardo Corbalan, Juan Fernandez, Alfonso Cuitiño, Lisandro Delia, Germán Cáseres,

Pablo Thomas, Patricia Pesado. "Development Frameworks for Mobile Devices: A Comparative

Study about Energy Consumption" , 2018 ACM/IEEE 5th International Conference on Mobile

Software Engineering and Systems, 2018.

P43 Carlos Manso Pinto, Carlos Coutinho . "From Native to Cross-Platform Hybrid

Development" , 2018 International Conference on Intelligent Systems (IS), 2018.

P44 Andreas Biørn-Hansen, Gheorghita Ghinea. "Bridging the Gap: Investigating Device-

Feature Exposure in Cross-Platform Development" , Hawaii International Conference on System

Sciences, 2018.

P45 Andreas Biørn-Hansen, Tor-Morten Grønli, Gheorghita Ghinea. "Animations in

Cross-Platform Mobile Applications: An Evaluation of Tools, Metrics and Performance" ,

Sensors (Switzerland), v 19, n 9, May 1, 2019; ISSN: 14248220; DOI: 10.3390/s19092081,

2019.

P46 Andreas Biørn-Hansen, Tor-Morten Grønli, Gheorghita Ghinea, and Sahel Alouneh.

"An Empirical Study of Cross-Platform Mobile Development in Industry". Hindawi Wire-

83

less Communications and Mobile Computing Volume 2019, Article ID 5743892, 12 pages

https://doi.org/10.1155/2019/5743892. 2019

P47 Matteo Ciman, Ombretta Gaggi. "An empirical analysis of energy consumption of

cross-platform frameworks for mobile development" Pervasive and Mobile Computing, v 39,

214-30, Aug. 2017.

P48 Mia ČARAPINAa, Igor MEKTEROVIĆ, Tomislav JAGUŠT, Neven DRLJEVIĆ,

Jelena BAKSA, Petar KOVAČEVIĆ, Ivica BOTIČKI. "Developing a multiplatform solution for

mobile learning". Proceedings of the 23rd International Conference on Computers in Education.

2015

P49 Taneja Kavita,Taneja Harmunish, Bhullar Rohit K. "Cross-platform application

development for smartphones: Approaches and implications". 3rd International Conference on

Computing for Sustainable Global Development, INDIACom 2016, p 1752-1758, October 27,

2016.

P50 Tim A. Majchrzak, Andreas Biørn-Hansen, Tor-Morten Grønli. "Comprehensive

Analysis of Innovative Cross-Platform App Development Frameworks", Proceedings of the 50th

Hawaii International Conference on System Sciences | 2017.

P51 Michiel Willocx, Jan Vossaert, Vincent Naessens. "A Quantitative Assessment of

Performance in Mobile App Development Tools", 2015 IEEE International Conference on

Mobile Services, 2015.

P52 Hyung Jin Kim, Sudara Karunaratne, Holger Regenbrecht, Ian Warren, Burkhard

Claus Wunsche. "Evaluation of Cross-platform Development Tools for Patient Self-Reporting

on Mobile Devices", Proceedings of the 8th Australasian Workshop on Health Informatics and

Knowledge Management (HIKM 2015), Sydney, Australia, 27 - 30 January 2015.

84

P53 Sarah Fahlesson, Dan Johansson. "A Case Study of Cross-Platform Web Application

Capability", IIMC International Information Management Corporation, 2013 ISBN: 978-1-

905824-36-6.

P54 Lisandro Delía, Nicolás Galdamez, Leonardo Corbalan, Patricia Pesado, Pablo

Thomas. "Approaches to Mobile Application Development: Comparative Performance Analysis".

Computing Conference 2017, 18-20 July 2017 | London, UK, 2017.

P55 Andreas Biørn-Hansen, Tim A. Majchrzak, Tor-Morten Grønli. "Progressive Web

Apps: The Possible Web-native Unifier for Mobile Development". In Proceedings of the 13th

International Conference on Web Information Systems and Technologies (WEBIST 2017), pages

344-351 ISBN: 978-989-758-246-2, 2017.

P56 Andreas Biørn-Hansen, Tim A. Majchrzak, Tor-Morten Grønli. "Progressive Web

Apps for the Unified Development of Mobile Applications". WEBIST 2017, LNBIP 322, pp.

64–86, 2018.

P57 Ngu Phuc Huy, Do vanThanh. "Evaluation of mobile app paradigms". ACM

International Conference Proceeding Series, p 25-30, 2012.

P58 Tena Vilček, Tomislav Jakopec. "Comparative analysis of tools for development of

native and hybrid mobile applications". 2017 40th International Convention on Information and

Communication Technology, Electronics and Microelectronics, MIPRO 2017.

P59 Gatis Vitols, Ingus Smits, Oleg Bogdanov. "Cross-platform Solution for Development

of Mobile Applications". In Proceedings of the 15th International Conference Enterprise

Information Systems, pages273-277, ICEIS 2013.

P60 William Jobe. "Native Apps vs. Mobile Web Apps". iJIM – Volume 7, Issue 4,

October 2013.

P61 Yousuf Hasan, Mustafa Zaidi, Najmi Haider, W.U.Hasan, I.Amin. "Smart Phones

Application development using HTML5 and related technologies: A tradeoff between cost and

85

quality". ĲCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May

2012.

APPENDIX II

CRITERIA

Here is the list of all criteria that were applied in the surveyed studies. The list also contains

the definition for each. In the following catalog, we divided items into two groups. The first is

for the criteria used to evaluate mobile frameworks from users’ points of view, and the second

is from the developers’ point of view. Moreover, Table III-1 in appendix III and table A in

appendix IV show the criteria distribution from each point of view.

1. Performance: The performance criterion is used to evaluate and compare the applica-

tion resource utilization and execution speed.

2. User Interface: The feel during working with the application and the looking

compliance of the rendered elements based on the native platform components is

considered in this criterion. The smoothness of animations running and the reaction

to the user’s interaction evaluate using this criterion.

3. Usability: The usability elaborates on the learnability and understandability of the

developed applications. The application should be easy to use, and users should learn

how to use the application easily.

4. Platform API Accessibility: Assessing the access to platform APIs is the goal of

defining this criterion. It analyzes the quality and the support of accessing platform

APIs. The platform APIs in mobile applications contain the following items: access

to local storage to save and restore data, the ability to send and receive notifications,

access to the gallery, contacts, etc.

5. Hardware and Sensors Accessibility: This criterion evaluates the ability of the mobile

frameworks to access the device hardware APIs. These APIs include GPS, camera,

accelerometer, compass, etc.

6. Framework maturity: The maturity of a development framework includes the following

items: framework popularity in practice, community size, the shortness of release

88

cycles, and the speed of fixing bugs. This criterion is used to compare the framework

maturity.

7. Development Tools: Each framework provides tools to let programmers develop the

application faster and easier. The development environment, the debugging features,

the emulators for running applications, and code auto-completion during programming

are development tool features that make using a framework easier. The development

tools criterion considers the mentioned items to analyze the mobile frameworks.

8. Documentation: The completeness and updated documentation of a software frame-

work let framework consumer find their way faster with more peace of mind. This

criterion looks into the documentation of the mobile frameworks.

9. Targeted operating systems: Unlike native frameworks, cross-platform mobile frame-

works publish applications for more than one operating system. The criterion assesses

the available targeted platform for a mobile framework.

10. User interface Design : The user interface design assesses the easiness of designing

the user interface elements in mobile frameworks. Some frameworks provide UI

builder tools to see the application design before running. Moreover, these tools

make user interface maintenance more manageable. Implementing a user interface

according to device screen size is another item in this criterion.

11. Distribution: After developing applications is crucial to deliver to the audience. The

possibility of publishing the application in the application stores (e.g., Apple’s app

store and Google’s play store) in a framework is analyzed using this criterion.

12. License: Mobile frameworks have a different license for use by developers. License

is a factor that should be considered before selecting a framework for developing an

application. The License criterion looks into the license of the mobile frameworks.

13. Learning Curve: The criterion compares the hardness of learning a new framework.

It contains the costs, time, and skills a developer needs to develop an application using

the framework.

89

14. Reusability: Reusing the same codes and components in different projects can reduce

the time and cost of the development team significantly. The criterion evaluates both

code and developers’ knowledge reusability of a framework.

15. Architectural pattern implementation: Developers use different architectural patterns

in order to develop maintainable mobile applications. The possibility of implementing

different architectural patterns (e.g., MVC, MVVM, MVP, etc.) in mobile frameworks

is considered by this criterion.

16. Maintainability: Maintainability is a requirement for every mobile application. This

criterion evaluates the comprehensibility of the source code and modularity of projects

in frameworks. Supporting powerful modularity in a mobile framework leads to the

maintainability level.

17. Extensibility: The criterion refers to access to third-party libraries, UI widgets,

open-source custom components, etc. The higher level of extensibility helps develop

applications faster in a framework.

18. Reliability: Mobile applications must work reliably under different circumstances.

The reliability criterion assesses mobile frameworks’ fault tolerance mechanism and

how that framework acts to errors. The error prevention technique in the framework

leads the application to be more reliable and makes the users satisfied with to use.

19. Testing: The testing criterion in the mobile framework assesses the facilities that a

framework provides to developers to ease them to deliver high-quality applications

to users. This criterion analyzes frameworks in terms of the easiness and quality of

implementing different tests in mobile projects.

20. Security: Each mobile application may use the sensitive and personal information of

the users. The framework features should help developers to keep the application’s data

safe and confidential. Encrypting and decryption of sensitive data, having compliance

with the platform security policies, possibility of using source code obfuscation are

analyzed under this criterion.

90

21. Development Cost: The cost of the development can be varied when using different

platforms. The development cost includes human resources, office, license of the

tools, registering for learning courses of a framework, etc. This criterion assesses the

mobile frameworks for these costs.

22. Development Speed: The speed of development is an essential factor in selecting

mobile frameworks. The higher pace in the development phase leads to a shorter time

to market, which is vital in converting an idea into a product. The criterion uses to

compare frameworks in development speed.

23. Functionality: The functionality indicates features that improve the application’s

suitability for the end-users. These features include the application running when

the device is offline, supporting the implementation of multithread, intra-application

communication, in-app browser, implementing internationalization, etc.

24. Monetization: The criterion analyzes the mobile frameworks in terms of the possibility

of providing payment facilities and supporting application store features to ease the

monetization process.

25. Scalability: The level of modularity provided by frameworks is considered scalability.

This criterion assesses the possibility of using modularity in the development phase

of mobile frameworks.

26. Adaptability: This criterion assesses the adaptability level of the developed application

by a framework to different versions of operating systems. Moreover, it evaluates

adaptability to hardware environments in mobile frameworks.

27. Portability: Portability refers to the ability to port the application to multiple platforms.

The criterion assesses the possibility and how we port a project from one operating

system to another without requiring major and massive rework.

APPENDIX III

CRITERIA DISTRIBUTION IN SURVEYED PAPERS (USERS’ POINT OF VIEW)

Table-A III-1 Criteria (users’ point of view) distribution in reviewed papers

Criterion Numbers Paper(s)

Performance 37 P3 - P5 - P6 - P7 - P8 - P9 - P10 - P12 -

P13 - P14 - P16 - P23 - P27 - P28 - P29 -

P30 - P32 - P35 - P37 - P40 - P41 - P42 -

P43 - P44 - P45 - P46 - P47 - P48 - P49 -

P51 - P52 - P54 - P55 - P56 - P57 - P60 -

P61

User interface 27 P1 - P3 - P4 - P5 - P6 - P7 - P8 - P9 - P11 -

P12 - P14 - P16 - P18 - P25 - P27 - P32 -

P33 - P34 - P37 - P38 - P41 - P45 - P46 -

P48 - P53 - P57 - P61

Usability 1 P40

APPENDIX IV

CRITERIA DISTRIBUTION IN SURVEYED PAPERS (DEVELOPERS’ POINT OF
VIEW)

Table-A IV-1 Criteria (developers’ point of view) distribution in reviewed papers

Criterion Numbers Paper(s)

Hardware and Sensors

Accessibility

36 P1 - P2 - P3 - P4 - P6 - P7 - P11 - P13 - P14 -

P15 - P16 - P17 - P19 - P20 - P22 - P23 - P24 -

P25 - P26 - P27 - P30 - P31 - P33 - P36 - P37 -

P38 - P39 - P41 - P43 - P44 - P50 - P53 - P57 -

P59 - P60 - P61

Platform API Accessi-

bility

36 P1 - P2 - P3 - P4 - P6 - P7 - P8 - P11 - P14 - P15

- P16 - P17 - P19 - P20 - P22 - P23 - P24 - P25 -

P26 - P27 - P30 - P31 - P33 - P36 - P37 - P38 -

P39 - P41 - P43 - P44 - P50 - P53 - P57 - P59 -

P60 - P61

Development Tools 26 P1 - P2 - P3 - P4 - P5 - P6 - P7 - P8 - P13 - P14 -

P16 - P18 - P19 - P21 - P27 - P28 - P30 - P31 -

P37 - P38 - P41 - P43 - P46 - P50 - P57 - P58

Framework maturity 26 P3 - P5 - P6 - P7 - P8 - P13 - P19 - P20 - P21 -

P22 - P23 - P24 - P33 - P34 - P36 - P38 - P41 -

P44 - P46 - P48 - P50 - P57 - P58 - P59 - P60 -

P61

Documentation 21 P1 - P3 - P5 - P6 - P7 - P8 - P13 - P16 - P19 -

P21 - P27 - P33 - P34 - P36 - P38 - P41 - P43 -

P48 - P50 - P58 - P59

94

Targeted operating sys-

tems

19 P2 - P3 - P4 - P6 - P13 - P15 - P17 - P19 - P20 -

P21 - P27 - P28 - P41 - P43 - P48 - P50 - P58 -

P59 - P61

User Interface Design 17 P3 - P4 - P6 - P7 - P8 - P11 - P13 - P19 - P23 -

P24 - P28 - P34 - P41 - P46 - P50 - P57 - P60

Distribution 16 P3 - P6 - P13 - P14 - P16 - P18 - P23 - P25 - P27

- P31 - P38 - P39 - P41 - P43 - P48 - P57

License 14 P2 - P3 - P4 - P6 - P7 - P8 - P19 - P21 - P36 -

P38 - P41 - P43 - P48 - P59

Learning Curve 11 P3 - P6 - P7 - P8 - P13 - P19 - P21 - P34 - P37 -

P41 - P43

Reusability 10 P1 - P3 - P6 - P7 - P8 - P23 - P25 - P31 - P41 -

P50

Maintainability 9 P3 - P6 - P8 - P18 - P25 - P27 - P31 - P41 - P61

Architectural pattern im-

plementation

9 P2 - P4 - P6 - P17 - P21 - P24 - P26 - P38 - P41

Extensibility 8 P6 - P7 - P8 - P21 - P38 - P41 - P57 - P59

Functionality 7 P6 - P13 - P38 - P39 - P41 - P43 - P57

Development Speed 7 P3 - P6 - P8 - P9 - P18 - P34 - P41

Development Cost 7 P3 - P6 - P8 - P13 - P18 - P33 - P43

Security 7 P4 - P6 - P11 - P27 - P38 - P40 - P41

Testing 7 P6 - P13 - P16 - P31 - P38 - P41 - P57

Reliability 7 P6 - P13 - P31 - P40 - P41 - P49 - P61

Monetization 5 P4 - P6 - P41 - P57 - P60

Portability 3 P31 - P39 - P61

Adaptability 3 P1 - P3 - P15

Scalability 3 P3 - P6 - P41

LIST OF REFERENCES

API, G. S. (2022a). GitHub search API. Retrieved from: https://docs.github.com/en/rest/search.

API, S. (2022b). SonarCloud API. Retrieved from: https://sonarcloud.io/web_api/api/project_

analyses.

Bankmycell. (2022). Number of smartphone users worldwide [Report]. Retrieved from: https:

//www.bankmycell.com/blog/how-many-phones-are-in-the-world.

Biørn-Hansen, A., Grønli, T.-M. & Ghinea, G. (2018). A Survey and Taxonomy of Core Concepts

and Research Challenges in Cross-Platform Mobile Development. ACM Comput. Surv.,
51(5). doi: 10.1145/3241739.

Biørn-Hansen, A., Rieger, C., Grønli, T.-M., Majchrzak, T. A. & Ghinea, G. (2020). An empirical

investigation of performance overhead in cross-platform mobile development frameworks.

Empirical Software Engineering, 25(4), 2997–3040. doi: 10.1007/s10664-020-09827-6.

Ciman, M. & Gaggi, O. (2017). An empirical analysis of energy consumption of cross-platform

frameworks for mobile development. Pervasive Mob. Comput., 39, 214-230.

Ciman, M., Gaggi, O. & Gonzo, N. (2014, 03). Cross-Platform Mobile Development: A Study

on Apps with Animations. doi: 10.1145/2554850.2555104.

Corbalan, L., Fernandez, J., Cuitiño, A., Delia, L., Cáseres, G., Thomas, P. & Pesado, P. (2018).

Development Frameworks for Mobile Devices: A Comparative Study about Energy

Consumption. Proceedings of the 5th International Conference on Mobile Software
Engineering and Systems, (MOBILESoft ’18), 191–201. doi: 10.1145/3197231.3197242.

El-Kassas et al., W. (2015). Taxonomy of Cross-Platform Mobile Applications Development

Approaches. Ain Shams Engineering Journal, 8. doi: 10.1016/j.asej.2015.08.004.

Fahlesson, S. & Johansson, D. (2013, 07). A case study of cross-platform web application

capability.

GitHubAPI. (2022). GitHub personal access token. Retrieved from: https:

//docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-

a-personal-access-token.

Humayoun, S. R., Ehrhart, S. & Ebert, A. (2013). Developing Mobile Apps Using Cross-Platform

Frameworks: A Case Study. pp. 371–380.

96

Jia, X., Ebone, A. & Tan, Y. (2018, 05). A performance evaluation of cross-platform mobile

application development approaches. pp. 92-93. doi: 10.1145/3197231.3197252.

Joorabchi, M. E., Mesbah, A. & Kruchten, P. (2013). Real Challenges in Mobile App

Development. 2013 ACM / IEEE International Symposium on Empirical Software
Engineering and Measurement, pp. 15-24. doi: 10.1109/ESEM.2013.9.

Kitchenham, B. (2004). Procedures for Performing Systematic Reviews. Keele, UK, Keele
Univ., 33.

Latif, M., Lakhrissi, Y., Nfaoui, E. H. & Es-Sbai, N. (2016, 03). Cross platform approach for

mobile application development: A survey. pp. 1-5. doi: 10.1109/IT4OD.2016.7479278.

Majchrzak, T. A., Biørn-Hansen, A. & Grønli, T.-M. (2017, 01). Comprehensive Analysis of Inno-

vative Cross-Platform App Development Frameworks. doi: 10.24251/HICSS.2017.745.

Nagappan, M. & Shihab, E. (2016). Future Trends in Software Engineering Research for Mobile

Apps. 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), 5, 21-32. doi: 10.1109/SANER.2016.88.

Ramachandran, K. M. & Tsokos, C. P. (2021). Chapter 12 - Nonparametric Statistics.

In Ramachandran, K. M. & Tsokos, C. P. (Eds.), Mathematical Statistics with Ap-
plications in R (Third Edition) (ed. Third Edition, pp. 491-530). Academic Press.

doi: https://doi.org/10.1016/B978-0-12-817815-7.00012-9.

Sommer, A. & Krusche, S. (2013, 03). Evaluation of cross-platform frameworks for mobile

applications.

StatCounter. (2022). Mobile Operating System Market Share Worldwide [Report]. Re-

trieved from: https://gs.statcounter.com/os-market-share/mobile/worldwide.

Statista. (2022a). Number of mobile app downloads worldwide from 2016 to 2021 [Report].

Retrieved from: https://www.statista.com/statistics/271644/worldwide-free-and-paid-

mobile-app-store-downloads/.

Statista. (2022b). Number of smartphone subscriptions worldwide from 2016 to

2027 [Report]. Retrieved from: https://www.statista.com/statistics/330695/number-

of-smartphone-users-worldwide/.

Statista. (2022c). Mobile operating systems market share [Report]. Re-

trieved from: https://www.statista.com/statistics/272698/global-market-share-held-by-

mobile-operating-systems-since-2009/.

97

Mobile development framework. (2022). In Wikipedia. Retrieved from: https://en.wikipedia.

org/w/index.php?title=Mobile%20development%20framework&oldid=1138209189.

Wikipedia contributors. [[Online; accessed 23-June-2022]]. (2022). SonarSource — Wikipedia,

The Free Encyclopedia. Retrieved from: https://en.wikipedia.org/w/index.php?title=

SonarSource&oldid=1073207132.

Willocx, M., Vossaert, J. & Naessens, V. (2015). A Quantitative Assessment of Performance

in Mobile App Development Tools. 2015 IEEE International Conference on Mobile
Services, pp. 454-461. doi: 10.1109/MobServ.2015.68.

Willocx, M., Vossaert, J. & Naessens, V. (2016, 05). Comparing performance parameters of

mobile app development strategies. pp. 38-47. doi: 10.1145/2897073.2897092.

Xanthopoulos, S. & Xinogalos, S. (2013, 09). A Comparative Analysis of Cross-platform

Development Approaches for Mobile Applications. doi: 10.1145/2490257.2490292.

