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Modélisation de la performance, analyse et mise au point de réseaux de chaînes de blocs

Yahya SHAHSAVARI

RÉSUMÉ

La modélisation des performances de la chîne de blocs peut être utilisée pour nous fournir une

compréhension plus approfondie du comportement et de la dynamique au sein des réseaux pair-

à-pair chaîne de blocs. Un modèle théorique aidera les concepteurs de chaîne de blocs à mieux

comprendre la dynamique et les caractéristiques sous-jacentes de la chaîne de blocs qui ont un

impact sur les performances du réseau de chaîne de blocs. Un modèle théorique peut également

accélérer le développement d’un système chaîne de blocs en découvrant rapidement une

conception initiale théoriquement optimale, ce qui est préférable à une conception incrémentale

via un benchmarking itératif.

Dans cette recherche, nous développons des modèles théoriques pour les chaîne de blocs

publiques et privées. Nous utilisons ces modèles pour étudier l’impact de la topologie du réseau

sur trois aspects différents des réseaux chaîne de blocs en termes de performances, de sécurité

(forks) et de décentralisation.

Étant donné que le mécanisme de consensus dans la majorité des chaîne de blocs publiques est

la preuve de travail (PoW), nous développons d’abord un modèle de performance pour le réseau

de chaîne de blocs Bitcoin original et bien établi. Le modèle proposé peut être facilement adapté

à d’autres chaîne de blocs bien connues basées sur PoW telles qu’Ethereum. Les réseaux de

chaînes de blocs qui utilisent PoW dans leur mécanisme de consensus peuvent être confrontés à

des incohérences sous la forme de fourches. Dans cette recherche, nous étudions la cause et

la longueur des fourches pour le réseau Bitcoin. De plus, nous présentons une méthodologie

pour quantifier le degré de décentralisation d’un réseau chaîne de blocs. Pour atteindre ces

objectifs, nous utilisons deux modèles de graphes bien connus d’Erdös-Rény et Barabási–Albert

afin d’étudier la topologie du réseau chaîne de blocs. Nous adaptons également notre modèle

pour étudier l’impact du déploiement un réseau de relais et étudier l’effet de la taille du réseau

de relais sur les performances du réseau et la décentralisation des chaînes de blocs basées sur

PoW.Pour vérifier et valider les modèles développés, nous utilisons des données historiques

extraites du réseau Bitcoin ainsi que des résultats obtenus à partir de la simulation à l’aide

d’OMNet++ .

D’autre part, les protocoles byzantins tolérants aux pannes (BFT) sont des algorithmes classiques

qui offrent un mécanisme de consensus plus rapide et plus économe en énergie par rapport

au PoW. Hotstuff est un protocole de réplication de machine d’état BFT (SMR) partiellement

synchrone qui vise à résoudre les problèmes de performances et d’évolutivité couramment

rencontrés dans PoW. Nous proposons un cadre pour développer un modèle de performance

pour les chaîne de blocs basées sur BFT et nous nous concentrons particulièrement sur HotStuff.

Étant donné que HotStuff et d’autres chaîne de blocs basées sur BFT ont un mécanisme presque

similaire, ce modèle peut également être adapté pour d’autres variantes du consensus BFT.
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Performance Modeling, Analysis, and Tuning of Blockchain Networks

Yahya SHAHSAVARI

ABSTRACT

Blockchain performance modeling can be used to provide us with a deeper understanding of the

behaviour and dynamics within blockchain peer-to-peer networks. A theoretical model will help

the blockchain designers obtain a better understanding of the underlying blockchain dynamics

and characteristics which impact the performance of the blockchain network. A theoretical

model can also accelerate the development of a blockchain system by quickly discovering a

theoretically optimal initial design, which is preferable to an incremental design through iterative

benchmarking.

In this research, we develop theoretical models for both public and private blockchains. We

use these models to investigate the impact of the network topology on three different aspects of

blockchain networks in terms of performance, security (forks) and decentralization.

Since the consensus mechanism in the majority of public blockchains is proof-of-work (PoW),

we first develop a performance model for the original and well-established Bitcoin blockchain

network. The proposed model can be easily adapted for other well-known PoW-based blockchains

such as Ethereum. Blockchain networks that employ PoW in their consensus mechanism may

face inconsistencies in the form of forks. In this research, we investigate the cause and length

of forks for the Bitcoin network. In addition, we present a methodology for quantifying the

decentralization degree of a blockchain network. To accomplish these objectives, we use two

well-known graph models of Erdös-Rény and Barabási–Albert in order to study the blockchain

network topology. We also adapt our model to study the impact of deploying a relay network and

investigate the effect of the relay network size on the network performance and decentralization

of PoW-based blockchains. For verifying and validating the developed models, we use historical

data mined from the Bitcoin network as well as results obtained from simulation using OMNet++.

On the other hand, Byzantine Fault-Tolerant (BFT) protocols are classical algorithms that

offer a faster and more energy-efficient consensus mechanism compared to PoW. Hotstuff is

a partially synchronous BFT State Machine Replication (SMR) protocol that aims to address

the performance and scalability issues commonly found in PoW. We propose a framework for

developing a performance model for BFT-based blockchains and particularly focus on HotStuff.

Since HotStuff and other BFT-based blockchains have an almost similar mechanism, this model

can be also adapted for other variants of BFT consensus.

Keywords: Blockchain, Performance modeling, Cryptocurrency, Bitcoin, Peer-to-peer net-

work,Distributed Ledger Technologies, Relay Networks, Blockchain fork, Theoretical modeling,

Erdös-Rény graph, Barabási–Albert graph, Decentralization, Hotstuff, Byzantine Fault Tolerance,

Transaction throughput
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INTRODUCTION

As a newly emerging and disruptive technology, blockchain-based systems have now applications

far beyond cryptocurrencies (Narayanan, Bonneau, Felten, Miller & Goldfeder, 2016) in variety

of domains: decentralized applications such as cloud storage (Wilkinson et al., 2016), health

care (Gordon & Catalini, 2018; Rabah, 2017), logistic and supply chain (Perboli, Musso & Rosano,

2018), energy sector (Andoni et al., 2019), agriculture and food production (Ge et al., 2017) legal

and law enforcement (Sajjad et al., 2017; Levy, 2017; Christopher, 2016) as well as pervasive

financial services (Fanning & Centers, 2016) and Internet of Things (IoT) (Dai, Zheng & Zhang,

2019) use cases. The common goal of using blockchain technology in all aforementioned

applications is to provide a live, immutable, safe and secure operation platform.

In order to properly operate, blockchain-based systems need a set of protocols and infrastructures

referred to as Distributed Ledger Technology (DLT) (Rauchs et al., 2018). Depending on

the architecture, consensus mechanisms and data structure, blockchain-based systems may

utilize different DLTs. Blockchain-based systems may have a permissioned or permission-less

architecture (Xu et al., 2017a). Moreover, consensus mechanism is another crucial part of these

systems. Most prominent consensus mechanisms in blockchain-based systems are Proof-of work

(PoW) (Gervais et al., 2016), Proof-of-Stake (PoS) (Nguyen et al., 2019), Delegated Proof-of-

Stake (DPoS) (Yang et al., 2019a), and Practical Byzantine Fault Tolerance ( PBFT) (Castro,

Liskov et al., 1999). Furthermore, data in different DLTs can be stored in different data structures

i.e. blockchain or Directed Acyclic Graph (DAG) (Benčić & Žarko, 2018).

Depending on the use case and operational goals, each of the mentioned systems will have

different architectural design requirements. As well, each of them will also have a variety of

configurable parameters, such as block size, block time, or the number of peers. The joint

impact of various architectures and various configurations may lead to different performance and

operational characteristics such as different amounts of block processing and propagation time,
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throughput (i.e. number of processed transactions per time unit), degree of decentralization, or

consumed energy.

In light of the above, we argue that having an appropriate model of the proposed blockchain

systems seems to be necessary for blockchain developers as well as management operators in

order to choose the right architecture and properly set the configuration metrics or tune them to

maximize the performance of the system.

In addition, an analytical model will help the blockchain designers in obtaining a better

understanding of the underlying blockchain dynamics and characteristics, which impact the

performance of the blockchain network. A theoretical model can also accelerate the development

of a blockchain system by quickly discovering a theoretically optimal initial design, which is

preferable to an incremental design through iterative benchmarking. As well, analytical models

can be useful for gaining a deeper insight into accidental disorders or intentional manipulations

in the systems such as forks in blockchain-based systems.

In order to accomplish the objectives of this research, we first classify blockchain networks into

two groups public (permissionless) and private (permissioned) networks.

Thesis contributions

In this context, we aim to propose a methodology for developing analytical performance models

for public and private blockchain-based systems. We use these models to investigate the impact of

the network topology on three different aspects of blockchain networks in terms of performance,

security (forks), and decentralization. The contributions of this research are as follows.

• We develop an analytical performance model for Bitcoin as the representative of public

blockchains. This model investigated the impact of network topology and configuration

parameters in terms of block size, number of participating nodes, number of connections per

node, and relay network size on the overall performance of the Network.
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• We extend the developed model in the previous step to investigate the impact of the

aforementioned configuration parameters on the probability of a fork in the network. It

is important to study forks in blockchain-based systems since forks create inconsistencies

across the local copies of the ledger,

• We present a methodology for quantifying the decentralization degree of a blockchain

network. This model studies the impact of relay networks on the decentralization of the

blockchain network. It is important to study decentralization degree in blockchain network

since a poorly decentralized blockchain network can encounter issues such as governance

issues, being a single point of failure, or being vulnerable to DoS attacks.

• We develop an analytical performance model for Hotstuff as the representative of consensus

mechanism in private blockchains. This model investigated the impact of network size,

packet loss, and transaction processing time on the performance of the network.

Summary of publication

This section briefly presents the articles published in the course of this research. Publications

listed based on the aforementioned list of contributions, respectively.

A Theoretical Model for Block Propagation Analysis in Bitcoin Network: This article is pub-

lished in IEEE transactions on engineering management (IEEE TEM), 2020 (Shahsavari,

Zhang & Talhi, 2020). This article is the extension of a conference paper published in the IEEE

International Conference on Decentralized Applications and Infrastructures (IEEE DAPPCON),

2019 (Shahsavari, Zhang & Talhi, 2019b). This paper won the best paper award of the conference.

In this article, the theoretical model already presented in the conference version is revised and

considerably extended. The focus of this article is on the design space surrounding the original

and most well-known blockchain system, i.e., Bitcoin. A random graph model is used for

performance modeling and analysis of the inventory-based protocol for block dissemination.

This model addresses the impact of crucial blockchain parameters on the overall performance
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of Bitcoin. Furthermore, the former model is adapted to study the impact of deploying a

relay network and investigates the effect of the relay network size on network performance and

decentralization. The results show the trade-off between the default number of connections per

node, network bandwidth, and block size in order to compute the optimal block propagation

delay over the network. Another significant finding presented in this article is that a bigger relay

network can jeopardize the decentralization of the Bitcoin network with a higher probability.

A Theoretical Model for Fork Analysis in the Bitcoin Network: This paper is published in IEEE

International Conference on Blockchain (Blockchain), 2019 (Shahsavari, Zhang & Talhi, 2019a).

This paper presents a theoretical model for modeling forks in public blockchain networks such

as Bitcoin. Like the former papers mentioned above, this model is based on a random graph

for modeling the Bitcoin overlay network. This research studies the effect of key blockchain

parameters on the fork occurrence probability, such as block propagation delay, network

bandwidth, and block size. As well, it shows that Bitcoin will not benefit from increasing the

number of connections per node. In addition, this model can be leveraged to estimate the weight

of fork branches.

Toward Quantifying Decentralization of Blockchain Networks With Relay Nodes: This article

is published in Frontiers in Blockchain, 2022 (Shahsavari, Zhang & Talhi, 2022a). The aim

of this research is to present a methodology for quantifying the decentralization degree of

a blockchain network. To accomplish this goal, this paper leverages two well-known graph

models of Erdös-Rény and Barabási–Albert to model blockchains network topology. It then

quantifies the decentralization degree using the clustering coefficient of our network models.

The solution presented in this paper exposes the trade-off between the average shortest path

and the decentralization degree. As well, it shows the impact of the average shortest path on

the network speed and traffic overhead. As another result, this paper demonstrates that the
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presence of hub-like nodes such as relay gateways negatively impacts the decentralization degree

of blockchain networks.

Performance Modeling and Analysis of Hotstuff for Blockchain Consensus: This paper is pub-

lished in IEEE International Conference on Blockchain Computing and Applications (BCCA),

2022 (Shahsavari, Zhang & Talhi, 2022b). In this paper, a theoretical approach for performance

modeling and analysis of Hotstuff consensus mechanism is presented. This model can accurately

predict blockchain-related metrics such as the transaction throughput and expected confirmation

time using important networking parameters such as the number of replicas, link latency, and

packet loss. A crucial finding of this paper is that Hotstuff performance degrades drastically

when the number of replicas increases. As well, it has shown that packet loss ratio and transaction

processing time are two other factors that significantly affect the performance of Hotstuff.

The rest of this thesis is organized as follows. In Chapter 1, we present the related works to our

objectives. Chapter 2 briefly presents the background knowledge required for understanding

this thesis. Chapter 3 presents an Erdös-Rényi (ER) random graph (Erdős, Rényi et al., 1960)

model for modeling the Bitcoin network. An extension of this model is used in Chapter 4

for modeling and analysis of forks in the Bitcoin network. In Chapter 5, a methodology for

quantifying decentralization in blockchain networks is presented. To accomplish this, we

use both ER and Barabási–Albert (BA) random graph (Albert & Barabási, 2002) models for

modeling the topology of blockchain networks. Finally, an analytical performance model for

practical Byzantine fault-tolerant (PBFT) blockchains is presented in Chapter 6,





CHAPTER 1

LITERATURE REVIEW

This chapter presents some of the existing research works that are close to our subject. The

related works we discuss in this chapter are organized in line with the list of the objectives of

this research as well as published papers and follow the steps of our methodology.

1.1 Blockchain networks

To accomplish the goals of this chapter, we divided blockchain-based systems into two groups

public and private systems. We study the related works of each group separately.

1.1.1 Public blockchains

Ethereum and Bitcoin are two well-known blockchains that fall into the category of public

blockchains. The consensus mechanism in these blockchains is proof of work (PoW) that

involves a gossip protocol for block propagation over the network. Public blockchain networks

can consist of a relay network or operate without it. As well, public blockchains with a

PoW consensus may encounter inconsistencies referred to as forks. We develop a theoretical

model for the Bitcoin overlay network using an Erdös-Rény model (Erdős & Rényi, 1959)

to generate connected random graphs. Bitcoin and Ethereum have almost the same block

propagation mechanisms and this model can easily be adapted for Ethereum. As well, we use

Barabási–Albert (BA) (Barabási & Albert, 1999) model for modeling blockchains whne we

consider them with relay networks. As explained in Chapter 5, decentralization rather matters in

public blockchains. Hence, we dedicate our study of decentralization in blockchain networks to

only public blockchains.
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1.1.2 Private blockchains

Currently, the majority of operational private blockchains are based on one of the Byzantine fault

tolerance (BFT) algorithms. BFT consensus is a voting-based mechanism in which participants

vote for a proposal suggested by the leader validator. Hence, forks do not usually matter in

private blockchains. We develop a BFT performance model based on recursive equations.

1.2 Performance modeling and analysis of public blockchains

Existing research works related to performance modeling and analysis of public blockchain

networks are presented in this section.

1.2.1 Performance modeling and analysis of the Bitcoin network

To the best of our knowledge, there exist few works on performance modeling and analysis of

blockchain networks, especially from a theoretical perspective. The majority of existing works

rely on analysis based on simulation or experimental data gathered from blockchain networks.

In (Neudecker, Andelfinger & Hartenstein, 2016), a theoretical model for the propagation delay

based on the path length is presented. However, this model is not validated by realistic data.

Moreover, this model does not describe the impact of different configuration parameters such as

block size, the average number of connections per node, network bandwidth, and network size

(i.e total number of nodes) on the performance of the network.

In (Misic, Misic, Chang, Motlagh & Ali, 2019), an analytical model for the Bitcoin network

based on the Jacksonian queuing network model is presented. In this work, the data (i.e.

transactions and blocks) forwarding is modeled by branching processes in the network with a

random distribution of node connectivity, and arrival of blocks and transactions is modeled

as a non-homogeneous Poisson process. However, this work suffers in some aspects. For

example, it does not validate or verify the proposed model. Moreover, the evaluation is done for

a network size of 2500-5000 nodes which is not a realistic assumption regarding the current size
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of the Bitcoin network. Like the previous work, this paper does not address the effects of some

important configuration parameters on the overall performance of the network.

(Nagayama, Shudo & Banno, 2019) analyses the block propagation delay in the Bitcoin network

using a network simulator. The paper conducts experiments comparing the compact block

propagation protocol against the legacy block propagation protocol. According to the results,

the block propagation delay is reduced by 90.1% and 87.6% for the 50th and 90th percentile

respectively. However, this work uses unrealistic values for some of the parameters. In this

paper, we consider realistic values for the parameters.

(Donet, Pérez-Sola & Herrera-Joancomartí, 2014) presents an analysis of collected data mined

from Bitcoin. This work analyzes the network in terms of node geographic distribution, network

stability, transaction propagation time, and block propagation time. According to this work, the

Bitcoin network is homogeneously distributed all over the world, except in countries with very

low population count. The work claims that although the delay in the Bitcoin network can be

acceptable for regular nodes, nevertheless it is still too high for some miner nodes, which causes

them to continue working on a block already found.

(Decker & Wattenhofer, 2013) presents an analysis of Bitcoin from a networking perspective.

The main observation from this paper is that network delay is the main cause of forks in Bitcoin.

This work studies the delay cost based on parameters such as block size, but does not provide an

analytical approach: its results are gathered empirically from the Bitcoin network.

(Yasaweerasinghelage, Staples & Weber, 2017) demonstrates the feasibility of using architectural

performance modeling and simulation tools to predict the latency of blockchain-based systems.

VIBES is a visual simulation tool for blockchain networks Stoykov, Zhang & Jacobsen (2017).

This application can estimate performance measures with configurable blockchain parameters.

In (Fadhil, Owenson & Adda, 2016), an event-based simulation model for the Bitcoin overlay

network is presented. To parameterize this model, a large-scale measurement of the real network
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of Bitcoin is performed. However, this work does not provide any theoretical framework for

modeling the Bitcoin network.

(Nasir, Qasse, Abu Talib & Nassif, 2018) performs a performance evaluation of two versions

of Hyperledger Fabric (v0.6 and v1.0), measuring latency, execution time, and throughput,

with various workloads. The paper also studies the scalability of Hyperledger Fabric using

Hyperledger Caliper which is a benchmarking tool. Our work differs from this one as we develop

an analytical model rather than present empirical results through benchmarking.

(Thakkar, Nathan & Vishwanathan, 2018) presents an empirical study on the performance of

Hyperledger Fabric with the goal of identifying potential performance bottlenecks. This work

aims to identify the impact of different configuration parameters (e.g., block size, endorsement

policy, etc. ) on transaction throughput and delay. It puts the emphasis on optimizing

Hyperledger Fabric v1.0 in light of its results.

The majority of research works already done in the context of performance analysis of blockchain

systems are in agreement that the current Bitcoin network suffers from poor performance and

thus improvement schemes are necessary in order to scale up.

Since information propagation delay is one of the most important performance measures,

different proposals have been presented to improve it. (Decker & Wattenhofer, 2013) and

(Stathakopoulou, Decker & Wattenhofer, 2015) propose some optimizations to Bitcoin such as

pipelining, increasing locality and using content distribution networks (CDNs) in order to speed

up the network.

In (Hao et al., 2019), an optimization mechanism based on geographical proximity sensing

clustering for fast information broadcasting is proposed. In this approach, the participating

nodes are grouped into clusters based on geographical proximity. Then, strong connectivity and

minimum network diameter are ensured using node attribute classification. Finally, the parallel

spanning tree broadcast algorithm is used to broadcast the data among the participating nodes.
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The results of this paper demonstrate the lower delay of the solution compared to the current

networks of Bitcoin and Ethereum.

A similar work about forming geographical clusters is presented in (Owenson, Adda et al., 2017).

The difference between this work and the work mentioned above is the use of ping packets in

order to detect proximity with considerably high P2P link bandwidth. However, none of these

works present an analytical model which can describe the relationship between configuration

parameters (e.g., distance and bandwidth) and the information propagation delay.

Another approach to reducing the information propagation delay in blockchain networks is to

deploy a central backbone of high-speed servers with a high degree called a relay network.

The Bitcoin Relay Network (Corallo, 2016a) was the first well-known and operational relay

network that achieved a lower propagation delay by avoiding re-transmission of known trans-

actions as well as full block verification. This system was eventually upgraded as the Bitcoin

FIBRE (Corallo, 2019) which exploits cut-through routing with compact blocks and forward

error correction (Watson, Begen & Roca, 2011) over UDP.

The Falcon Relay Network (Basu, Eyal & Sirer, 2019) is another relay network that uses

cut-through routing in order to increase the block propagation speed. This relay network

is directly connected to 36.4% of the total hash power in Bitcoin (Gencer, Basu, Eyal, van

Renesse & Sirer, 2018).

(Klarman, Basu, Kuzmanovic & Sirer, 2018) presents a blockchain distribution network (BDN)

that increases throughput to thousands of transactions per second (TPS) while reducing block

propagation overhead without requiring any change to the blockchain protocol. The authors

claim that BDN enables faster and Gigabyte-size block propagation, decreases inter-block times

without increasing the risk of forks, reduces wasted miner effort, and improves fairness and

decentralization compared to the aforementioned relay networks.

None of the aforementioned works provide a theoretical approach to performance modeling

based on important configuration parameters. In contrast, we model the Bitcoin P2P network
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using a random graph model in order to derive closed-form equations for two performance

metrics: block propagation delay and network overhead. Moreover, we assess the impact of

deploying relay networks on the performance of the system. To the best of our knowledge, this

is the first work in which such a contribution is presented.

1.2.2 Performance modeling of P2P networks

Beyond blockchains, peer-to-peer networks and random graphs have been studied to some extent.

(Kumar & Ross, 2006) studies the minimum achievable file distribution time in terms of basic

network parameters such as file size, number of servers, number of receiving nodes and the

upload and download capacities of participating nodes. In (Mundinger, Weber & Weiss, 2006),

the authors calculate the minimal time to fully disseminate a file of 𝑀 parts from a server to

𝑁 end users in a centralized architecture. However, none of these two above works address

the problem of average delay of file dissemination in a peer-to-peer network in decentralized

scenario.

One of the most relevant papers to this thesis is (Oikonomou & Stavrakakis, 2007). This

work investigates probabilistic flooding (randomly choosing the next neighbor node) when the

underlying network is a random graph. The distribution of diameters in Erdös-Rényi graphs is

studied in (Hartmann & Mézard, 2018). The diameter is useful to calculate the global outreach

time in a decentralized peer-to-peer network. However, this work does not give any explicit

equation for calculating these parameters.

1.2.3 Analysis of forks in Bitcoin

There exist many works in the literature which address different kinds of forks in Bitcoin. But

to the best of our knowledge, there is no comprehensive theoretical model for analyzing forks

based on their input parameters and network configurations. In addition, there exist several

works which analyze forks using empirical data.
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(Decker & Wattenhofer, 2013) analyses Bitcoin from a networking perspective. In this work, it

is shown that the main cause of forks is the block propagation delay. According to the model

presented in this network, the probability of forks is 1.78%, and an observed probability of

1.69% using their own empirical data. Our paper provides more detailed equations, which

consider block size and network conditions, to accurately calculate fork probability.

(Biais, Bisiere, Bouvard & Casamatta, 2018) presents a taxonomy of blockchain forks. Further-

more, this work studies the generation of forks based on information delays and mining software

upgrades. These two factors are orthogonal to our work.

In (Klarman et al., 2018), an equation for estimating the fork occurrence probability based on

90% block propagation delay is presented. However, this work does not provide any theoretical

proof or calculation approach for the mentioned equation.

(Nguyen & Kim, 2018) presents a comparison between Proof-of-Work (PoW), Proof-of-Stake

(PoS), and other hybrid forms. According to this work, forks are more probable in PoW-based

blockchains while in PoS-based systems, the chance is minimal. This work is orthogonal to our

own as we focus on PoW-based systems, which are most susceptible to forks.

Although the Bitcoin white paper (Nakamoto, 2009) suggests modeling the block arrivals as a

homogeneous Poisson process, authors in (Bowden, Keeler, Krzesinski & Taylor, 2018) have

claimed that the block arrival times in the Bitcoin network follow instead a non-homogeneous

Poisson process. Nevertheless, in our work, we build our model based on a homogeneous

Poisson process to simplify our equations since it still provides a good approximation over a

long period of time.

In summary, none of the works above provide a comprehensive and well-detailed theoretical

model for the analysis of forks in the Bitcoin network, which is one of the main contributions of

this thesis.
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1.3 Decentralization in blockchain networks

While the quantification of the decentralization degree at the application layer of blockchains

has been widely studied in the literature, to the best of our knowledge, there have been

little or no work on quantifying and measuring the decentralization of the network layer

of blockchain-based systems. Most of the existing works such as (Atzori, 2015; Puthal,

Malik, Mohanty, Kougianos & Yang, 2018; Swan, 2015; Cai et al., 2018) are geared towards

introducing P2P networks as a new architecture to replace traditional server-client centralized

networks. Furthermore, some of the research works have reported the tendency of blockchain

systems such as Bitcoin towards a centralized architecture due to the existence of mining

pools (Beikverdi & Song, 2015; Tschorsch & Scheuermann, 2016).

In (Wu, Peng, Xie & Huang, 2019), an information entropy-based approach for quantifying the

degree of decentralization in Bitcoin and Ethereum is proposed. Using empirical data, the work

compares the decentralization of mining and wealth in Bitcoin and Ethereum. However, it does

not consider the networking aspects and configuration metrics of blockchain networks.

In (Chu & Wang, 2018), another attempt for quantifying the decentralization degree in blockchain

systems has been carried out. In this work, decentralization is defined using the fraction of the

transactions performed by top nodes. With this definition and related analysis, Chu, et al. have

concluded that achieving full decentralization in blockchain networks is very hard due to the

skewed mining power of the nodes. As well, they have claimed that full decentralization comes

at the expense of limited scalability. Our work in this thesis is complementary as it studies the

problem of decentralization from the perspective of the network.

(Li & Palanisamy, 2020) compares the decentralization degree of consensus protocols between

Proof-of-Work (PoW) and Delegated Proof-of-Stake (DPoS). To accomplish this, the decentral-

ization degree in Bitcoin and Steem is calculated using the Shannon entropy of the distribution of

hash power and distribution of invested stake among stakeholders, respectively. According to this

research work, Bitcoin is more decentralized between top miners but is overall less decentralized
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than Steem. Unlike our work, network characteristics like topology and the average number of

connections per node are not considered.

(Gencer et al., 2018) presents a comparative measurement study on decentralization in Bitcoin

and Ethereum. To accomplish this, this work relies on the measurement of network resources

and evaluates the impact of a relay network (Falcon network). Authors of this work have reported

that Bitcoin has more clustered nodes and that mining processes are fairly centralized in both of

them. This work is purely empirical and does not propose an analytical technique unlike our

work.

(Kwon, Liu, Kim, Song & Kim, 2019) proves that it is impossible for a permissionless blockchain

to be fully decentralized using a concept known as the Sybil cost. This theoretical proof is based

on the consensus protocol and does not consider network decentralization, which is the focus of

our research.

None of the research works mentioned above have proposed an analytical technique for quantifying

and comparing the decentralization degree in the network layer of the blockchain-based systems

using the design and configuration metrics (e.g. number of selected peers, network size and etc).

1.4 Performance modeling and analysis of private blockchains

Byzantine Fault-Tolerant (BFT) protocols are classical algorithms that offer a faster and more

energy-efficient consensus mechanism compared to PoW. Hotstuff is a partially synchronous

BFT State Machine Replication (SMR) protocol that aims to address the performance and

scalability issues commonly found in PoW. In this section, we study the related works to Hotstuff,

as the representative of private blockchains.

1.4.1 Performance analysis of Hotstuff

BFT is the basis of Hotstuff. The performance of BFT and its different variants are well-

studied in literature for several decades, especially from the impact of networking metrics
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on the performance view point (Yang, 2018; Bano et al., 2019; Agrawal & Daudjee, 2016;

Momose & Ren, 2020; Distler, 2021; Berger & Reiser, 2018; Sukhwani, Martínez, Chang,

Trivedi & Rindos, 2017; Hao, Li, Dong, Fang & Chen, 2018; Meshcheryakov, Melman, Evsutin,

Morozov & Koucheryavy, 2021; Jalalzai, Busch & Richard, 2019; Li et al., 2020).

Despite BFT, the performance of Hotstuff in terms of throughput and latency is still under-

explored. Hotstuff was introduced in (Yin, Malkhi, Reiter, Gueta & Abraham, 2018). An

explanation of the basic and pipelined HotStuff protocol and its specifications are presented

in this white paper. In addition, a performance evaluation of Hotstuff in terms of throughput

and latency is presented and compared to BFT-SMaRt (Bessani, Sousa & Alchieri, 2014). All

the benchmarks are carried out versus network size (i.e. number of replicas). According to

the results, three-phase and two-phase Hotstuff consistently exhibit better throughput while

BFT-SMaRt shows considerably better latency than both Hotstuff variants. Three-phase Hotstuff

also exhibits better throughput than the two-phase variant, but no meaningful difference in

latency was seen. However, these results are based on experimental data and no theoretical

model is presented.

In (Niu, Gai, Jalalzai & Feng, 2021), a multi-metric evaluation framework for performance

analysis of pipelined Hotstuff regarding the chain quality, growth rate, and latency is presented.

As well, several attack strategies and their impact on the performance of pipelined HotStuff are

studied.

Diem, previously known as Libra, was the cryptocurrency introduced by Meta (re-branded name

of Facebook) (bau). Diem was operating based on a consensus mechanism, namely Libra-BFT.

Libra-BFT was a variant of Hotstuff with several distinguishing features. Contrary to popular

cryptocurrencies such as Bitcoin and Ethereum, Diem operated on a permissioned network

maintained by independent members of the Diem association. Libra-BFT and its performance

were studied to some extent, before shutting down by Meta due to massive regulatory pushback

in early 2022.
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An experimental study of Diem is presented in (Zhang et al., 2019). The performance and

scalability of Diem are evaluated and compared with Hyperledger Fabric. The evaluation metrics

are throughput (transactions per second, TPS) and execution time (i.e., the time taken to commit

a block of transactions in the ledger). Parameters include the number of peers and the system

workload (i.e. total number of transactions). According to the authors, the throughput of the

system decreases and execution time increases when the number of peers increases for both

platforms. As well, with respect to increasing the number of transactions, the throughput of

both systems increases at first and then decreases. A reverse trend is reported for the execution

time. Unlike our work, this paper is based only on experimental results and does not study the

performance and scalability of the system in the presence of faulty nodes.

A comparison of Bitcoin, Ethereum and Libra is presented in (Li & He, 2020). However,

it reports the results of (Zhang et al., 2019) directly and does not provide any independent

performance analysis.

In (Fu, Wang & Shi, 2021), a classification of consensus mechanisms in blockchain-based

systems is presented. In this paper, HotStuff is studied as the basis of DiemBFT. According to

this work, the advantage of Diem is its low confirmation latency. However, Diem suffers from

low network size scalability, high communication cost, and weak network synchronization.

To the best of our knowledge, there is no theoretical model for performance modeling and

analysis of Hotstuff that explains the effect of network parameters such as network size and the

number of faulty replicas on the system throughput.





CHAPTER 2

BACKGROUND

This chapter provides the background knowledge required for understanding this thesis. Main

concepts related to public and private blockchains are presented separately.

2.1 Public blockchains: background on Bitcoin

In this subsection, we study the information dissemination in Bitcoin networks, which can be

broken down into two types: (i) transactions dissemination and (ii) blocks dissemination. In

this thesis, we develop an analytical model for block propagation in the Bitcoin network and

leave transaction propagation as future work. Nevertheless, the propagation mechanism in both

systems is almost the same.

Figure 2.1 Overview of the Bitcoin network

Transactions are the atomic units of information of any blockchain system, which are then

grouped into blocks to be entered into the distributed ledger. Figure 2.1 provides an overview of

the different concepts related to Bitcoin architecture.
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Figure 2.2 Bitcoin blockchain data structure

Note that although the scope of this thesis (and thus this background section) is limited to Bitcoin,

our theoretical model can be generalized to other blockchains such as Ethereum (Buterin et al.,

2013)

Figure 2.2 illustrates the blockchain data structure. Blocks are linked together using the hash

pointer of the previous block, starting from the root block (genesis block). In Bitcoin, the

genesis block is hard-coded into the clients. These series of blocks are distributed, repli-

cated, and stored in a ledger which is located in all participating nodes. This ledger is

necessary for the verification of transactions embedded in each block. Participating nodes

run over a peer-to-peer network and there is no intermediary node between them. Any node

with access to this distributed ledger can read it and be notified about new data stored in the nodes.



21

2.1.1 Cryptocurrency transactions

In Bitcoin, transactions describe the transfer of digital coins between users. Each transaction

consists of several input and output records. Each input indicates funds to be spent from previous

transactions and output records indicate the amount transferred to the specified addresses (which

are generated from the public key of the recipient). To be valid, each transaction should be

digitally signed by the private key of the sender.

In each transaction, the sum of inputs should be equal or greater than the sum of outputs. There

exists also special transactions (called coinbase) which have no input and grant a reward to the

miner who successfully added the block.

For example, transaction 𝑚 in Figure 2.3 takes as input #1 the output #2 from transaction 𝑚 − 𝑥

and sends part of the funds to transaction 𝑚 + 𝑦.

Figure 2.3 Structure of a transaction
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2.1.2 Blocks

As depicted in Figure 2.4, each block consists of several components: a hash of the previous

block, a timestamp, and transactions arranged to form a Merkle tree Narayanan et al. (2016).

Figure 2.4 Internal structure of a block

To be entered in the distributed ledger, individual transactions have to be embedded in the blocks.

A subset of nodes in the Bitcoin network, called miners, gather transactions already propagated

by users and group them into blocks to be added to the blockchain. Grouping the transactions in

the blocks is an optimization, since a hash chain of blocks is significantly shorter than a hash

chain of transactions.

To be eligible to propagate a proposed block as the next block in the chain, each miner has

to show a Proof-of-Work (PoW). To accomplish this, miners have to find a number called the

nonce. The hash of the nonce, combined with the hash of the previous block, and the Merkle

root of the tree containing the transactions proposed by the miner, should be below a certain

target threshold. In other words,

𝐻 (𝑛𝑜𝑛𝑐𝑒‖𝐻 (𝑝𝑟𝑒𝑣_𝑏𝑙𝑜𝑐𝑘)‖𝑅𝑜𝑜𝑡{𝑇𝑋1‖...‖𝑇𝑋𝑀}) (2.1)
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while 𝐻 (𝑝𝑟𝑒𝑣_𝑏𝑙𝑜𝑐𝑘) is the hash of the previous block. This means that the result of

Equation (2.1) should start with a certain number of leading zeros. The difficulty of the

mentioned puzzle is adjusted periodically.

For a given block, the miner who first solves the PoW will broadcast his block over the network.

The nodes which receive the block must verify the incoming block and add it to the local

copy of the blockchain, thus becoming the new blockchain head. Since Bitcoin uses a very

wide peer-to-peer network, inconsistencies in this network are unavoidable. When multiple

valid blocks are solved and disseminated at the same time, we say that a fork has occurred in

the network, which is too likely to be resolved by the following block mined (Eyal, Gencer,

Sirer & Van Renesse, 2016).

In order to reduce the block propagation delay in the Bitcoin network, the compact block proposal

was introduced in Bitcoin Improvement Proposal 152 (BIP 152). According to this proposal,

compact blocks have the same metadata as legacy blocks. The main difference is that the hash

of the block transactions are disseminated instead of a full copy of the transactions.

2.1.3 Node

The term node refers to a physical device that acts as a logical entity and can have one or some

of the following functions:

Routing: This functionality is responsible for message propagation and maintaining connections

to other participating peers in the network. since the network is unstructured, each node can

potentially communicate with any other node in the system. The exception is nodes running

inside a cooperative mining pool. In this case, the pool server is responsible for routing duties.

Full blockchain storage: The node locally stores a complete and up-to-date version of the

blockchain data. Full nodes do not need an external reference for verifying transactions or blocks

and perform this duty autonomously.
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Lightweight blockchain storage: This type of node only keeps a lightweight version of the

blockchain. Lightweight nodes verify transactions using a method called Simple Payment

Verification (SPV) (Back et al., 2014).

Mining (Consensus participation): Miners participate in consensus to decide the next block to

be added to the Bitcoin blockchain. Miners are typically equipped with specialized hardware in

a competition to find the next PoW. The winner collects the coinbase transaction of the created

block.

Wallet management: Typically, wallet nodes are transaction issuer nodes and are commonly

responsible for transferring digital coins from the sender to the receiver. Most Wallet nodes,

particularly those running on resource-constrained devices, are lightweight SPV nodes.

2.1.4 Mempool

The nodes store unconfirmed transactions that are arriving from different links in a local memory

pool (mempool). These transactions will remain in the mempool until they are included in the

blockchain. Currently, the mempool can contain between 104 to 105 transactions, which a churn

rate of 1300 to 2400 transactions per block (Imtiaz, Starobinski, Trachtenberg & Younis, 2019).

2.1.5 Overlay network

Bitcoin operates on an unstructured peer-to-peer network. When a node joins the network, the

Bitcoin protocol allows the node to collaboratively maintain peer-to-peer connections with other

nodes to exchange blocks and transactions.

When a node receives a transaction or block, it verifies the transaction or block. If the transaction

or block is valid, the node relays it to other nodes. Thus, the verification process is helpful to

avoid denial of service (DoS) attacks.

When a new node joins the network, it has no knowledge of the IP addresses of active nodes

in the network. To discover this information, the new node queries a number of DNS servers
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(or DNS seeds) which are run by volunteer nodes in the Bitcoin community. Whenever a DNS

server receives such a query, it responds with a number of DNS records with the IP addresses of

bootstrap nodes that may accept the incoming requests. DNS servers can be configured to get

the IP addresses of active nodes either automatically or manually.

Once connected, peers can send 𝑎𝑑𝑑𝑟 (address) messages to other peers. This message consists

of the IP address and port number of other nodes existing in the network. Also, newly joined

nodes learn about other nodes by asking the neighboring nodes for known addresses or by

listening to occasional advertisements of new addresses which are broadcasted in the network.

Nodes may leave the network or change their IP address silently. Hence, it is possible that

new nodes may have to try several attempts before successfully connecting to a peer. This can

impose a considerable delay to a node bootstrapping time. To avoid this problem, Bitcoin can

use dynamic DNS seeds in order to get the IP addresses of nodes with a high probability to be

available.

Before a node can validate transactions and blocks, it must download and validate all the blocks

and transactions of the known longest version of the blockchain ledger. Furthermore, there is no

need to download the genesis block which is already hard-coded in the blockchain program.

This process is called initial block download (IDB), which is done only once per new node.

However, a node that was disconnected from the network for a significant amount of time may

wish to run this process again.

Each participating node in the blockchain network maintains a connection pool, with connections

to other peers active at all times. The minimum, maximum, and the average number of

connections are indicated by 𝑁𝐿 , 𝑁𝑈 , and 𝑀, respectively. If the number of connections is

below the predefined amount of 𝑁𝐿 , the node will randomly select connections from known

neighboring nodes and will attempt to establish new connections. Also, if the node accepts

incoming connections from other nodes, it can maintain these connections open. It is reported

that nodes running Bitcoin have an average of 32 connections, which far more than the default

number of connections in Bitcoin, set to 8 (Decker & Wattenhofer, 2013).
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a) Regular Bitcoin overlay network b) Relay network with centralized

topology in Bitcoin network

c) Relay network with decentralized topology in Bitcoin

network

Figure 2.5 A typical blockchain network with and without relay networks

2.1.6 Relay networks

Generally speaking, a relay network is a set of global gateways with high-velocity links which

form the backbone of the P2P network and connect to a large proportion of the network. Relay

networks can propagate blocks and transactions much faster than the regular P2P network and

thus increase the efficiency of information propagation. Relay networks can also be leveraged as a

scalability solution for increasing the transaction throughput (Klarman et al., 2018). Analytically,
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relay networks can have a centralized or decentralized architecture. In a centralized architecture,

the relay gateways interact with each other via a central orchestrator entity. But in decentralized

architecture, the gateways are connected to each other in a P2P manner. Figure 2.5 illustrates

a typical blockchain network with and without relay networks. However, relay networks are

accused of decreasing decentralization since they can censor certain nodes, wallets, and miners

or discriminate among different nodes by filtering the information they spread.

2.1.7 Information dissemination

In order to update the distributed ledger, transactions and blocks must be disseminated over

the overlay network. To accomplish this, Bitcoin and most other blockchains use a gossip

protocol (Lin & Marzullo, 1999). In order to avoid saturating the network with redundant copies

of transactions and blocks, Bitcoin employs a push-based approach to sharing data.

a) 𝑖𝑛𝑣 message b) 𝑔𝑒𝑡𝑑𝑎𝑡𝑎 message

Figure 2.6 Message structures of the inventory protocol

Currently, two kinds of block propagation protocols are being used in the Bitcoin network.

The legacy block propagation protocol and compact block propagation protocol which was

introduced with BIP-152 (Corallo, 2016b). The compact block protocol is currently being used

by more than 98% of nodes in the Bitcoin network1.

1 See the presentation by core developer Greg Maxwell: https://people.xiph.org/~{}greg/gmaxwell-sf-

prop-2017.pdf
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Legacy Block propagation protocol: Sending nodes notify neighboring nodes about the

availability of a transaction or block once they are verified. To accomplish this, a node that

wants to forward a transaction or block sends an inventory message (𝑖𝑛𝑣) to all nodes existing in

its connection pool. The structure of the 𝑖𝑛𝑣 message is depicted in Figure 2.6a. An 𝑖𝑛𝑣 message

consists of the hash of transactions or blocks that are now available and ready to be sent.

When a node receives an 𝑖𝑛𝑣 message for a block or transaction which it does not have yet, it

replies with a 𝑔𝑒𝑡𝑑𝑎𝑡𝑎 message. As depicted in Figure 2.6b, this message contains the hash of

requested transactions or blocks.

Once the sender node receives the 𝑔𝑒𝑡𝑑𝑎𝑡𝑎 message, it will send the requested block or transac-

tion to the receiver. This process is depicted in Figure 2.7a.

Compact block propagation protocol: Compact block reduces the amount of bandwidth

required for disseminating blocks in the Bitcoin network when the nodes are fairly synchronized

and have already gathered a considerable amount of similar information (i.e., transactions) in

their mempool. The main idea of this protocol is to let peers try to reconstruct entire blocks

using their mempool content and a sketch of the blocks already received from the connected

peers. In this case, transactions need to be sent over the network once only as they are not

repeated during block propagation.

This protocol consists of two modes of operations: low bandwidth mode (LBM) and high

bandwidth mode (HBM). In LBM (depicted in Figure 2.7b), node B notifies node A that it

intends to minimize bandwidth usage by sending a 𝑠𝑒𝑛𝑑𝑐𝑚𝑝(0) message. When node A receives

a new block, it fully validates it. If the block is valid, then it informs node B about the reception

of the new block using an 𝑖𝑛𝑣 message. If node B has already received this block, it will ignore

it. Otherwise, it will respond to the 𝑖𝑛𝑣 message using a 𝑔𝑒𝑡𝑑𝑎𝑡𝑎 (𝑐𝑚𝑝𝑐𝑡) message. Then node

A will send the header of the new block, hash of transactions, and transactions that B is missing

(guessed by A). If B receives all of the transactions necessary for reconstructing the new block,

the protocol stops. Otherwise, it will ask node A to send transactions that are still missing.
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a) Legacy block propagation

protocol

b) Compact block propagation

protocol (low bandwidth mode)

c) Compact block propagation

protocol (high bandwidth mode)

Figure 2.7 Block propagation protocols in Bitcoin

In HBM (depicted in Figure 2.7c), node B notifies node A that it needs to receive blocks as soon

as possible by sending a 𝑠𝑒𝑛𝑑𝑐𝑚𝑝 (1) message. When a new block arrives, node A starts to

perform some basic validation (e.g., checking the block header). Then it will send the header

of the new block, the hash of transactions, and missing transactions to node B. Then, if the

received information is adequate, node B will try to reconstruct the block. Otherwise, it will

request information about missing transactions by sending a 𝑔𝑒𝑡𝑏𝑙𝑜𝑐𝑘𝑡𝑥𝑛 message to node A.

Node A will respond to this message with a 𝑏𝑙𝑜𝑐𝑘𝑡𝑥𝑛 message.
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Figure 2.8 Fork with two competing branches 𝑁1 and 𝑁2

In both LBM and HBM modes, node A follows a simple approach to guess missing transactions

in node B: It checks the recently arrived block and sees which transactions were in the block

but not in its mempool. These transactions are the transactions that will be missing in the

neighboring peers with high probability.

2.1.8 Forks

Bitcoin is a blockchain system operating over a vast P2P network around the globe. In such a

large-scale network, inconsistencies in blockchain data may occasionally occur. The term fork

refers to a situation in which different nodes have a different perspective of the blockchain. We

can represent a fork as a directed tree of blocks. This concept is depicted in Figure 2.8 where

two different sets of nodes have different states for the blockchain. In this case, the directed tree

contains two separate branches. Generally, a fork can occur in one of the following cases:

Network isolation: Due to a poor connection between different nodes in the network, the

network may become temporarily partitioned. This can occur if there are some very weak links

acting as bottlenecks, or if there are not enough network connections in the system. As discussed

in our previous work (Shahsavari et al., 2019b), for a network with N participating nodes, to

prevent this situation with high probability, it is sufficient:
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𝑀 ≥ �
𝑁 − 1

𝑁
𝑙𝑜𝑔(𝑁)� (2.2)

Where M is the average number of connections between participating peers. This kind of fork

will prolong until the network becomes connected again.

Changes in core components of the blockchain protocol: Any change in core components of

the protocol such as the format of a valid block or transaction, difficulty retargeting function, or

any upgrade in the mining software can cause a fork in the system. Changes that are incompatible

with previous versions cause a hard fork, as opposed to soft fork.

Miners deviation from the standard protocol: The most well-known fork caused by deviating

miners is the double-spending attack. Other examples of this kind of attack are temporary block

withholding, selfish mining, feather forking attacks (Narayanan et al., 2016), etc.

Block propagation delay: In practice, two or more different miners may find a valid block

almost at the same time. If the first miner has not fully disseminated its block due to propagation

delay, a fork occurs if a second miner starts gossiping its own proposed block. Increasing the

block size to include more transactions has the drawback of raising the propagation delay, which

increases the probability of fork occurrence. Therefore, we consider the trade-off between the

block size and fork occurrence probability.

According to the Nakamoto consensus, this type of inconsistency is usually solved at the next

block if miners select the longest chain (Nakamoto, 2009).

2.1.9 Traffic handling overhead

In blockchain networks, a traffic handling protocol is required in order to efficiently disseminate

information (i.e. transactions and blocks) over the network. In most public blockchains

such as Bitcoin and Ethereum, an inventory-based protocol is implemented in order to avoid

overwhelming the network with redundant messages (Corallo, 2016b; Lange, Ballet & Toulme,
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2016). According to these protocols, every node has to notify its neighbors that it has a new

block/transaction to forward. The inventory message can be either a special message or hash

of the block/transaction. If the targeted node does not have the new item, it will inform the

inventory message sender, which will transfer the requested data. Therefore, each link in the

network will transfer at least one inventory message to notify its neighbor about its content.

Figure 2.7 depicts the inventory-based gossiping protocol of Bitcoin. The number of links

is a good parameter to count the minimum number of inventory messages required for the

block/transaction dissemination over the blockchain network. Note that the number of links

indicates the lower bound of the number of inventory messages and it can be more than this

amount in practice.

2.1.10 Erdös-Rény model

The Erdös-Rény model (ER) is a random graph model for generating random graphs. In this

model, in a network of 𝑁 participants, two arbitrary nodes are connected to each other with the

same probability of 𝑝 in such a way that the average degree of nodes equals 𝑀 . Hence,

𝑝 =
𝑀

𝑁 − 1
(2.3)

In other words, this graph is chosen uniformly at random from the set of all possible graphs with

𝑁 nodes and 𝑀 links per node on average. This model can be suitable for modeling blockchain

networks with no hubs or relay networks. As well it can be suitable for modeling large-scale

public blockchains such as Bitcoin when the relay networks are not taken into account and

instead, the average values of the network (e.g. average number of connections per node) are

considered (Shahsavari et al., 2019b).

The ER model does not exhibit a power-law degree distribution or preferential attachment.

Instead, degree distribution in this model follows a Poisson distribution. A sample network

generated with the ER model is depicted in Figure 2.9a.
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Figure 2.9 ER and BA graphs

2.1.11 Barabási–Albert model

Barabási–Albert (BA) is a random graph model with two defining features: preferential

attachment and power law degree distribution. Networks with power-law degree distribution are

also referred to as scale-free networks. Preferential attachment is also called the rich gets richer.

This is because it is more likely for newly joining nodes to select peers with more connections,

thereby increasing their already high number of connections. Hence, this peer selection strategy

tends to produce networks where a limited number of hubs with a high degree can be found.

A complete description of preferential attachment networks is presented in (Van Der Hofstad,

2016).

As a more formal definition, assume there exist 𝑁0 initial nodes in the gradually growing network.

Initially, these nodes are connected together as a complete graph with a degree of 𝑀0. Suppose

a new incoming node intends to establish 𝑚 (𝑚 ≤ 𝑁0) connections to the existing nodes. The

probability that this node will select node 𝑖 as a peer can be estimated as follows:

𝑝𝑖 =
𝑚𝑖∑
𝑗 𝑚 𝑗

(2.4)
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where 𝑚𝑖 is the degree of the node 𝑖. In this model, nodes with the highest degree are themselves

more likely to be connected to each other according to Equation 2.4. We propose BA graphs as

a good model for public blockchain networks such as Bitcoin and Ethereum which employ a

limited number of relay gateways, which use a high-speed backbone to efficiently transfer new

blocks and transactions from one part of the network to another. A sample network generated

using the Barabási–Albert model is depicted in Figure 2.9b.

2.2 Private blockchains: background on Hotstaff and BFT

In this section, we briefly introduce basic Hotstuff and present the the required background that

is necessary to understand it. We study the Hotstuff protocol in order to develop a theoretical

model for the performance analysis of the system.

Assume a network of connected nodes consists of two entities: Clients and Replicas. Replicas

are the set of geographically distributed governor nodes that form the set of validators. Consider

replicas are connected together in a fully connected P2P manner (i.e. every node is directly and

independently connected to other 𝑁 − 1 nodes). As well assume each client is connected to all

of the replicas according to (Yin et al., 2018) and can deliver its request (e.g. transaction) to

the network of the replicas. Then, the client will wait for getting a response from at least 𝑓 + 1

replicas. We assume replicas use a shared memory pool and can gossip received transactions

together. Such a network is illustrated in Figure 2.10. Validators are responsible for maintaining

the distributed ledger of programmable resources. Hence, each validator keeps a full copy of the

ledger, while this is optional for clients. In some variants of Hotstuff such as Diem, validators

can form a consortium consisting of a set of founding members (e.g. well-reputed central banks

and large companies) which back the blockchain resources (e.g. cryptocurrency) with treasuries

and cash deposits (bau).

The protocol operates in a succession of steps referred to as 𝑣𝑖𝑒𝑤𝑠. Views are numbered

monotonically and increasingly. At the beginning of each view, one of the replicas is designated

as the leader. The leader is known to all. Every replica store received requests in its local
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memory. Normally, a consensus happens in one view. Each view consists of a sequence of

phases: 𝑝𝑟𝑒𝑝𝑎𝑟𝑒, 𝑝𝑟𝑒 − 𝑐𝑜𝑚𝑚𝑖𝑡, 𝑐𝑜𝑚𝑚𝑖𝑡, and 𝑑𝑒𝑐𝑖𝑑𝑒.

Prepare: protocol execution gets started with sending new-view message from the replicas

together. The selected leader needs to gather 𝑁 − 𝑓 new-view messages in order to ensure that

it has been selected as the leader of this view. This threshold of 𝑁 − 𝑓 is referred to as a quorum

certificate (𝑄𝐶). Then the newly elected leader embeds its proposal in a Prepare message and

broadcasts it to the replicas. Once the replicas receive the Prepare message, they execute it and

prepare a Prepare vote and send it to the leader.

Pre-commit: after gathering 𝑄𝐶 prepare votes for the proposal, the leader prepares a

Pre-commit message and broadcasts it to the replicas. This message also contains a prepare

QC message and informs the replicas that 𝑄𝐶 Prepare votes are gathered. Replicas that receive

this message, sign the digest of the proposal and embed it in a Pre-commit vote and send it to

the leader.

Commit: similar to the previous phase, the leader needs to receive at least 𝑄𝐶 Pre-commit

votes. Then, it prepares a commit message and broadcasts it to the replicas. This message

contains a Pre-commit QCmessage and lets the replicas know that that 𝑄𝐶 Pre-commit votes

are gathered. Once the replicas receive this message, they execute it and reply to the leader with

a Commit vote.

Decide: this phase is quite similar to the two previous phases. In this phase, the leader waits

until receives𝑄𝐶 Commit votes. Then it generates a Commit QC and combines it with a Decide

message and broadcasts it to the replicas. Once a replica receives this message, it assumes

that the proposal is committed and executes the request(s) embedded in it. Then, every replica

broadcasts a final Decide vote to the clients and increases view number by one.
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Figure 2.10 Overview of the proposed blockchain network

validators are peers belonging to a set of replicas and can form an association.

Each validator maintains a full copy of the blockchain distributed ledger



CHAPTER 3

A THEORETICAL MODEL FOR BLOCK PROPAGATION ANALYSIS IN BITCOIN
NETWORK

In this chapter, we focus on the original and well-established Bitcoin blockchain network and

propose a random graph model for performance modeling and analysis of the inventory-based

protocol for block dissemination. This model addresses the impact of key blockchain parameters

on the overall performance of Bitcoin. We derive some explicit and closed-form equations

for block propagation delay and traffic overhead in the Bitcoin network. We also adapt our

model to study the impact of deploying a relay network and investigate the effect of the relay

network size on network performance and decentralization. We implement our model using

the popular network simulator OMNet++. We validate the accuracy of our theoretical model

and its implementation with our dataset mined from the Bitcoin network. Our results show the

trade-off between the default number of connections per node, network bandwidth, and block

size in order to compute the optimal block propagation delay over the network. As well, we

found that bigger relay networks can jeopardize the decentralization of the Bitcoin network.

3.1 Introduction

Bitcoin suffers from a lack of scalability which may endanger the longevity of the cryptocurrency.

In particular, the performance of Bitcoin is greatly impacted by P2P network parameters, such

as throughput and information propagation delay.

In recent years, there have been many proposals to address the performance inefficiency of

blockchain networks. From selecting nodes located in the geographical proximity of the miners

as the next logical hop (Hao et al., 2019; Owenson et al., 2017), to implementing global relay

networks (Corallo, 2019; Basu et al., 2019; Klarman et al., 2018) as well as efforts for optimizing

the block propagation mechanism such as BIP 152 (Corallo, 2016b) and Graphene (Ozisik,

Andresen, Bissias, Houmansadr & Levine, 2017), these solutions attempt to reduce information
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propagation delay in the Bitcoin network. Therefore, a performance model would allow us to

calculate the anticipated benefit of such solutions.

In this chapter, we focus on exploring the design space surrounding the original and most

well-known blockchain system, Bitcoin (Nakamoto, 2009). We present a model for estimating

compact block propagation delay and message exchanging traffic overhead for the Bitcoin data

exchange protocol using inventory vectors. The contributions of this chapter are as follows:

1. We model the Bitcoin overlay network using an Erdös-Rény model (Erdős & Rényi, 1959)

to generate connected random graphs. We take into account both legacy block propagation

protocol and Bitcoin Improvement Proposal 152 (BIP 152).

2. We derive explicit mathematical equations to estimate important performance metrics,

namely, block propagation delay and traffic overhead. Our extended model considers the

long tail in the block outreach model.

3. We identify two important Bitcoin configuration parameters which impact performance:

the average number of connections per node, and the block size.

4. We implement our theoretical model using the network simulator OMNet++, as a discrete

event simulator.

5. We validate our model and our simulation using our dataset mined from the Bitcoin network.

Our results show the sensitivity of block propagation delay with various Bitcoin parameters.

6. We estimate the probability density function (PDF) of the rate at which the participating

nodes receive the propagating block.

7. We investigate the impact of deploying relay networks on the aforementioned performance

metrics.

The rest of this chapter is organized as follows. In Section 3.2, we present our analytical model

using a random graph network and capture the Bitcoin network behavior and dynamics. In

Section 3.3, we compare the results of our analytical model with simulation results as well as

empirical amounts mined from the Bitcoin network in order to validate the accuracy of the

model. In Section 3.3.2, we leverage our theoretical model for performance analysis of the
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Bitcoin network. In Section 3.4, we discuss the managerial implications of this work. Finally,

Section 3.5 concludes this chapter.

3.2 Analytical Model

In this section, we propose a random graph model for performance modeling and analysis of the

Bitcoin network. To accomplish this, we use a graph model which was introduced by Erdös and

Rényi. This graph has properties suitable for modeling peer-to-peer overlay networks used by

blockchain systems.

In this work, we define an overlay network as a graph 𝐺 (𝑉, 𝐿) where 𝑉 is the set of vertices and

𝐿 is the set of links between nodes. For example, if there is a link between node 𝑖 and node 𝑗 ,

then (𝑖, 𝑗) ∈ 𝐿.

Furthermore, we represent a random graph using 𝐺𝑝 (𝑁), where 𝑁 is the total number of nodes

and 𝑝 is the independent probability that there exists a link between any two selected nodes in

the peer-to-peer overlay network. In this work, we assume that 𝑁 is significantly large, as it is in

the Bitcoin network (𝑁 ≈ 10000).

3.2.1 Random graph construction

To construct our random graph representation of the overlay network, we first start with a single

node, which we call the initiator node, denoted by 𝑛0. Then, a second node 𝑛1 enters the system

and establishes a link with 𝑛0 with probability 𝑝. Naturally, this means the probability of not

having a link is 1− 𝑝. After this, a third node 𝑛2 enters and can potentially connect 𝑛0 or 𝑛1, both

with probability 𝑝. This process continues until node 𝑛𝑁−1 enters the system and potentially

establishes links to the 𝑁 − 1 existing nodes under the same probability 𝑝.

However, the random graph construction is an artificial mechanism to generate a topology of a

fixed size and does not reflect how the P2P system evolves in reality. Another way to interpret

the random graph construction is as follows: first generate the total number of nodes (e.g., 10000
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nodes) as vertices in the graphs. Then, generate the set of all possible edges between any pair of

vertices (called 𝐹). Finally, choose a subset of edges to be included in 𝐸 , such that
|𝐸 |
|𝐹 | = 𝑝. In

this way, we can obtain a random graph with the desired number of nodes and the correct link

probability p. In other words, our model only calculates performance values for the steady state

(when the graph is fully constructed), and not the transient state of nodes joining.

It is obvious that for 𝑝 = 0, we have an empty graph (all nodes are isolated with no edges) and

that for 𝑝 = 1 we have a complete graph with a degree of 𝑁 − 1 for each node. In general, our

random graph model has several characteristics: (i) if 𝑝 > 1
𝑁 then a giant component exists with

high probability (w.h.p.). (ii) for 𝑝 ≥
log(𝑁)
𝑁 all nodes become a part of the giant component and

𝐺𝑝 (𝑁) becomes a connected graph.

These connectedness properties are vital for a blockchain network to operate properly. With

a sufficient 𝑝 value, each node has likely more than one path to reach any other node, using

different outgoing links. In such a network, removing one link does not cause a network

partitioning as the entire system stays connected. Network partitions are important to avoid in a

blockchain network, since they guarantee that blockchain forks cannot resolve as long as the

partitions stay isolated, thus compromising the integrity of the data on the ledger.

3.2.2 Achieving the connectedness properties

We now show how we can satisfy the above connectedness properties (i.e., obtaining a sufficiently

high value of 𝑝) by appropriately configuring blockchain parameters.

Consider a connected blockchain network consisting of a set N={𝑛0,𝑛1,...,𝑛𝑁−1} of 𝑁 participat-

ing nodes. For convenience, assume that all links between nodes have the same point-to-point

bandwidth of 𝐵. Each node maintains on average 𝑀 open connections to other nodes. Since the

network is connected, the average number of links between nodes can be calculated as follows:

𝐿 =
𝑝𝑁 (𝑁 − 1)

2
(3.1)
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Figure 3.1 Minimum number of connections for connectedness

As well, in a connected random graph, the average degree of each node equals to 𝑝(𝑁 − 1) (i.e.,

𝑀 = 𝑝(𝑁 − 1)). Hence,

𝑝 =
𝑀

𝑁 − 1
(3.2)

The above equation enables us to approximate 𝑝 when we have the average number of default

connections for each node. As well, according to Equation (4.5), given the total number of

participating nodes in a random graph, we can calculate the minimum degree or the number of

connections per node in order to have a connected graph with high probability as follows:

𝑀 >
𝑁 − 1

𝑁
𝑙𝑜𝑔(𝑁) (3.3)

In other words, to form a connected graph with high probability, it is sufficient that:

𝑀 ≥ �
𝑁 − 1

𝑁
𝑙𝑜𝑔(𝑁)� (3.4)
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Figure 3.1 illustrates the relationship between the total number of participating nodes in the

graph and the minimum number of connections required to form a connected graph. According

to this figure, since the Bitcoin network has approximately 10,000 participating nodes, if each

individual node maintains at least 5 connections to other nodes, the network should be connected

with high probability.

3.2.3 Legacy protocol block dissemination analysis

In this section, we present a theoretical model for block propagation delay in the legacy

propagation protocol. Although this protocol is deprecated for the current Bitcoin network, we

include this analysis for the sake of completeness and to demonstrate that this model serves as a

foundation that can be generalized for other blockchain protocols.

Assume a P2P overlay network that consists of 𝑁 participating nodes. Suppose one miner node

mines a block at time 𝑡 = 0. We denote this initial node by 𝑛0. According to Section 2.1.7, node

𝑛0 sends an 𝑖𝑛𝑣 message to the set W1 = {𝑛1
1
, 𝑛1

2
, ..., 𝑛1

𝑀} of neighboring nodes in its connection

pool. We assume the sending node sends the 𝑖𝑛𝑣 message to its neighbors in succession with a

very small delay 𝜖 between each message. Since this is the first time that the 𝑖𝑛𝑣 message is

being sent for this block, none of the W1 neighboring nodes have the block and will respond

the 𝑖𝑛𝑣 message with the 𝑔𝑒𝑡𝑑𝑎𝑡𝑎 message. Then, the node 𝑛0 will send the complete block to

the requesting neighbors. We call this first step of the block dissemination process𝑊𝑎𝑣𝑒 1, as

illustrated by Figure 3.2a.

Upon completion of 𝑊𝑎𝑣𝑒 1, all involved nodes during this initial wave (i.e., nodes which

received the block during the first wave) validate the block and send an 𝑖𝑛𝑣 message to the

neighboring nodes in each of their own connection pool. We call this𝑊𝑎𝑣𝑒 2, as illustrated by

Figure 3.2b. For convenience, we assume nodes do not know or remember the initial node 𝑛0,

but they do remember the node which they received the block from and will not send an 𝑖𝑛𝑣

message back to the sender.
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a) Wave 1 b) Wave 2

c) Wave 𝑘

Figure 3.2 Different waves of block dissemination in the proposed blockchain network

Colored nodes are the nodes which have already received the block. Blue arrows show

successful block transfers. Red arrows show timed out 𝑖𝑛𝑣 messages

We observe that some of the nodes receiving an 𝑖𝑛𝑣 message during𝑊𝑎𝑣𝑒 2 may have already

received the block in𝑊𝑎𝑣𝑒 1 and will not respond to the 𝑖𝑛𝑣 message with a 𝑔𝑒𝑡𝑑𝑎𝑡𝑎 message.

Therefore, the forwarding probability, that is the probability that a node replies affirmatively to
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the 𝑖𝑛𝑣 message with a 𝑔𝑒𝑡𝑑𝑎𝑡𝑎 message immediately after ending the𝑊𝑎𝑣𝑒 1, can be calculated

as follows:

𝑝 𝑓 2 = 𝛼
𝑁 − 1 − |W1 |

𝑁 − 1
(3.5)

Where 0 ≤ 𝛼 ≤ 1 is the reachability factor of the nodes in the network. We use this factor to

take into account the connections lost during the three-way message exchange mentioned in

Section 2.1.7 or due to message loss (e.g., congestion, link outage, and etc.). For instance, if

𝛼 = 0.95, this means that 95% of the messages on average will reach the destinations during the

three-way inventory message exchange.

Accordingly, the set of receiver nodes which send back a 𝑔𝑒𝑡𝑑𝑎𝑡𝑎 message can be represented

as: W2 = {𝑛2
1
, 𝑛2

2
, ..., 𝑛2

|W2 |
}, where |W2 | = �𝑝 𝑓 1𝑝 𝑓 2𝑀

2�.

Each subsequent wave will follow the same pattern as𝑊𝑎𝑣𝑒 2. Figure 3.2c shows an example

for some𝑊𝑎𝑣𝑒 𝑘 , where only the nodes who received the block during the previous𝑊𝑎𝑣𝑒 𝑘 − 1

will send 𝑖𝑛𝑣 messages during the current wave.

In general, for each wave, we define forwarding probability 𝑝 𝑓 𝑖 as follows:

𝑝 𝑓 𝑖 = 𝛼
𝑁 − 1 −

∑𝑖−1
𝑗=0 |W𝑗 |

𝑁 − 1
(𝑖 ≥ 1 𝑎𝑛𝑑 |W0 | = 0) (3.6)

where |W𝑗 | = �𝑀 𝑗 ∏ 𝑗
𝑘=1

𝑝 𝑓 𝑘�. The numerator of the equation above gives the number of nodes

which have not received the block at the beginning of𝑊𝑎𝑣𝑒 𝑖. This means during𝑊𝑎𝑣𝑒 𝑖, the

nodes which receive the 𝑖𝑛𝑣 message will respond to it with a 𝑔𝑒𝑡𝑑𝑎𝑡𝑎 message with probability

𝑝 𝑓 𝑖. Accordingly, the 𝑖𝑛𝑣 message will be timed out with probability 1 − 𝑝 𝑓𝑖 . Note that 𝑝 𝑓 1 = 1

since all the nodes which are connected to the initial node 𝑛0 will receive the block during the

first wave.
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We define parameter 𝐶𝑖 as the partial coverage which means the coverage of nodes during the

𝑊𝑎𝑣𝑒 𝑖 (i.e., the number of nodes which receive the block during𝑊𝑎𝑣𝑒 𝑖) as

𝐶𝑖 = |W𝑖 | = �𝑀𝑖
𝑖∏
𝑗=1

𝑝 𝑓 𝑗� (3.7)

As well, we define cumulative coverage as follows:

𝐶𝑇𝑖 =
𝑖∑
𝑗=1

|W𝑗 | =
𝑖∑
𝑗=1

�𝑀 𝑗
𝑖∏
𝑗=1

𝑝 𝑓 𝑗� (3.8)

Where 𝐶𝑇𝑖 is the total number of nodes that have received the block at the end of𝑊𝑎𝑣𝑒 𝑖.

The set of receiver nodes which send back 𝑔𝑒𝑡𝑑𝑎𝑡𝑎 message after receiving 𝑖𝑛𝑣 message during

𝑊𝑎𝑣𝑒 𝑖 can be represented as W𝑖 = {𝑛𝑖1, 𝑛
𝑖
2
, ..., 𝑛𝑖

|W𝑖 |
}. According to Equation (4.7), 𝑝 𝑓 𝑖 can be

calculated as follows:

𝑝 𝑓 𝑖 = 𝛼
(𝑁 − 1) −

∑𝑖−1
𝑗=1 𝑀

𝑗 ∏ 𝑗
𝑘=1

𝑝 𝑓 𝑘

𝑁 − 1
(1 < 𝑖 ≤ 𝐾) (3.9)

Where 𝐾 is the total number of waves needed for a block to be distributed among all nodes

in a connected peer-to-peer overlay network. Note that the above equation is valid as long as

𝐶𝑇𝑖 ≤ 𝑁 − 1. For the case where 𝐶𝑇𝑖 > 𝑁 − 1, we need to adapt and reform Equation (4.8) as

follows:

𝑝 𝑓 𝑖 = 𝛽𝛼
(𝑁 − 1) −

∑𝑖−1
𝑗=1 𝑀

𝑗 ∏ 𝑗
𝑘=1

𝑝 𝑓 𝑘

𝑁 − 1
(1 < 𝑖 ≤ 𝐾) (3.10)

where 𝛽 is the adaptation factor. In fact, Equation (3.10) can be used for calculating all forwarding

probabilities where 𝛽 is expressed as follows:
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𝛽 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 𝐶𝑇𝑖 ≤ 𝑁 − 1

𝑁−1−𝐶𝑇
𝑖−1

𝐶𝑖
𝐶𝑇𝑖 > 𝑁 − 1

(3.11)

The Equation (3.10) is recursive and enables us to calculate the number of waves required for

global outreach of a block (𝑥% block propagation):

𝐾∑
𝑖=1

𝑀𝑖
𝑖−1∏
𝑗=1

𝑝 𝑓 𝑗 = 𝑥(𝑁 − 1) (3.12)

After the calculated number of waves have occurred, if no conflicting blocks were found during

the entire dissemination process of the current block, we can guarantee that forks resulting from

network delays or partitions cannot occur for this block. Note that malicious attacks (such as

51% attacks) to intentionally introduce forks in the blockchain are out of the scope of this model.

Algorithm 5.1 shows how we can obtain the number of required waves for fully disseminating

a block, as well as the forwarding probability in each wave (Equation (3.10)). This algorithm

computes forwarding probabilities in a recursive manner.

Consequently, key features and performance measures can be derived in terms of block

dissemination delay and traffic overhead. We calculate block dissemination delay as follows:

𝐷 = 𝐾 (𝐷𝑣 + 𝑋𝐼 + 𝑌𝐼 + 𝐷𝑔 + 𝑋𝐺 + 𝑌𝐺 + 𝐷𝑏 + 𝑋𝐵 + 𝑌𝐵) (3.13)

3.2.4 Performance metrics analysis of the legacy protocol

where 𝐷𝑣 is the block validation time, 𝑋𝐼 is the transmission delay, and 𝑌𝐼 is the signal

propagation delay of 𝑖𝑛𝑣 messages. 𝐷𝑔 is the time interval taken by a node to process an 𝑖𝑛𝑣

message (i.e., lookup if the content of the message are present locally or not) before replying to

the 𝑖𝑛𝑣 message. As well, 𝑋𝐺 and 𝑌𝐺 are the transmission delay and propagation delay of the
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𝑔𝑒𝑡𝑑𝑎𝑡𝑎 message. Similarly, 𝐷𝑏 is the time interval taken to process a 𝑔𝑒𝑡𝑑𝑎𝑡𝑎 message before

replying with the requested block. Similar to previous ones, 𝑋𝐵 and 𝑌𝐵 are the transmission

delay and average propagation delay of the sent block, respectively. For convenience, we assume

that 𝑌𝐼=𝑌𝐺=𝑌𝐵.

Given the bandwidth 𝐵 for each link of the random graph, we can rewrite Equation (4.10) as

follows:

𝐷 = 𝐾 (𝐷𝑣 +
𝑆𝑖
𝐵
+ 𝑌𝐼 + 𝐷𝑔 +

𝑆𝑔

𝐵
+ 𝑌𝐺 + 𝐷𝑏 +

𝑆𝑏
𝐵
+ 𝑌𝐵) (3.14)

where 𝑆𝑖, 𝑆𝑔, and 𝑆𝑏 are the sizes of 𝑖𝑛𝑣 message, 𝑔𝑒𝑡𝑑𝑎𝑡𝑎 message, and the transmitted block,

respectively.

Moreover, the network traffic overhead for𝑊𝑎𝑣𝑒 𝑖 can be calculated as follows:

𝐻𝑖 =
(1 − 𝑝 𝑓 𝑖)𝑀

𝑖∏𝑖−1
𝑗=1 𝑝 𝑓 𝑗

𝑁 − 1
(1 ≤ 𝑖 ≤ 𝐾) (3.15)

The overall packet exchanging traffic overhead is the sum of the traffic overheads in each wave.

𝐻 =
1

𝑁 − 1

𝐾∑
𝑖=1

[(1 − 𝑝 𝑓 𝑖)𝑀
𝑖
𝑖−1∏
𝑗=1

𝑝 𝑓 𝑗 ] (3.16)

Note that the packet exchanging traffic overhead reveals the burden of sending redundant 𝑖𝑛𝑣

messages in later waves to nodes that have already previously received the block. Since Bitcoin is

an unstructured and decentralized P2P network that relies on gossiping, there is no coordination

that allows nodes to efficiently decide which neighbors are likely to have received the block

already without at least contacting them with an 𝑖𝑛𝑣 message.

Also note that for this model, we focus principally on the dissemination of a single block at a

time. An 𝑖𝑛𝑣 message can also be used to exchange multiple blocks at the same time. However,

we argue that the single block use case, as discussed here, is much more common in Bitcoin due
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to the long block time of 10 minutes, which diminishes the chance of requiring multiple blocks

to be disseminated in the same 𝑖𝑛𝑣 message.

Algorithm 3.1 Calculating the number of waves

Input :The values of 𝑁 , 𝑀
Output
:

𝐾 and Matrix P[𝑝 𝑓 1...𝑝 𝑓𝐾 ]

1 P[1] ← 1

2 𝐾 ← 2 ; /* We assume M<N-1 and hence K≥ 2 ∗ /

3 C[1] ← 𝑀
4 𝐶𝑡𝑟𝑙 ← 1 ; /* Controller */
5 while 𝐶𝑡𝑙𝑟 = 1 do
6 for 𝑖 = 2 to 𝐾 do
7 P[𝑖]=

(𝑁−1)−
∑𝑖−1
𝑗=1 𝑀

𝑗 ∏ 𝑗
𝑘=1

P[𝑘]

𝑁−1

8 C[𝑖]= 𝑀𝑖∏𝑖
𝑗=1P[ 𝑗]

9 if ∑𝑖
𝑗=1 C[ 𝑗] ≤ 𝑁 − 1 then

10 𝐾 = 𝐾 + 1

11 else
12 P[𝑖]=

𝑁−1−
∑𝑖−1
𝑗=1 C[ 𝑗]

C[ 𝑗] ×
(𝑁−1)−

∑𝑖−1
𝑗=1 𝑀

𝑗 ∏ 𝑗
𝑘=1

P[𝑘]

𝑁−1

13 if P[𝑖] ≥ 0 then
14 𝐾 = 𝐾 + 1

15 C[𝑖]= 𝑀𝑖∏𝑖
𝑗=1P[ 𝑗]

16 else
17 𝐶𝑡𝑟𝑙 ← 0

18 end if
19 end if
20 end for
21 end while
22 return 𝐾 and P

3.2.5 Compact block protocol and block propagation analysis

In this section, we present an analytical model for block propagation delay using the compact

block propagation protocol of Bitcoin. As already shown in Figure 3.3, the compact block

protocol operates in two modes of operation: low bandwidth (LBM) and high bandwidth (HBM).
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Figure 3.3 An example to show the block propagation time in different modes of operation

Node A has established LBM connection to node B as well as an HBM connection to node

C. In the same way, node C has established an HBM connection to node D, and node D has

established an HBM connection to node E. Nodes B and E receive the block at almost the

same time

Each node in the network establishes regular connections to some peers in its connection

pool using LBM and tells a subset of the remaining nodes to push newly arrived blocks (i.e.,

by sending 𝑖𝑛𝑣 message). Thus, LBM operates similarly to the legacy protocol. The main

differences are the size of full blocks compared to the compact ones and the two additional

messages exchanged in case of block reconstruction failure (𝑔𝑒𝑡𝑏𝑙𝑜𝑐𝑘𝑡𝑥𝑛 and 𝑏𝑙𝑜𝑐𝑘𝑡𝑥𝑛). In

this section, we assume the block reconstruction failure rate is very low and negligible1.

Given a P2P overlay network with 𝑁 participating nodes, suppose each node has established on

average 𝑀 LBM connections and 𝑚 HBM connections (i.e., 𝑚 peer nodes will push compact

blocks using a 𝑠𝑒𝑛𝑑𝑐𝑚𝑝 message). We assume that all links between nodes have the same

P2P bandwidth of 𝐵. Since block dissemination using LBM is similar to block dissemination

in the legacy protocol, we can use the concept of waves for LBM as we did in Section 3.2.3.

1 See the presentation by core developer Greg Maxwell: https://people.xiph.org/~{}greg/gmaxwell-sf-

prop-2017.pdf
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Figure 3.4 Long waves and short waves in block propagation

Each long wave equivalents three short waves. Red links are the links operated in HBM and

black ones are the links operated in LBM

But for HBM, we adapt our model by introducing the concepts of long waves and short waves.

Each long wave involves three message transfer as required to deliver the compact block as

shown in the Figure 3.3. As well, each short wave involves just a compact block transmission.

Therefore, each long wave time duration is essentially three times the duration of a short wave as

depicted in Figure 3.3. In other words, one block transfer in LBM equals three block transfers

in HBM, since the size of the transferred packets is comparatively small and has a negligible

transmission delay compared to the signal propagation delay. Since we have assumed an equal

signal propagation delay for all links, this assumption is reasonable.

Suppose 𝑛0 is the initiator node that intends to disseminate a newly mined block. It will send

the compact block to 𝑀 peers in LBM and to 𝑚 nodes in HBM. At the end of the first short
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wave, 𝑚 nodes will receive the compact block and immediately will start sending the compact

block to 𝑚 of their already selected peers in HBM and to 𝑀 of the remaining peers in LBM.

According to Figure 3.4, at the end of the second short wave, at most 2𝑚 nodes will have the

new block. We call the number of nodes that receive a block during a short wave 𝑖 as the wave

coverage and denote it by 𝐶𝑖. Also, we use the term total coverage for the total number of nodes

that have received the block at the end of short wave 𝑖 and denote it by 𝑁𝑖. At the end of the

third short wave, the first set of the nodes which are connected to the initiator node in LBM will

receive the compact block (𝑀 nodes). As well, 𝑚 more nodes operating in HBM will receive

the block at the end of the third short wave (See Figure 3.4). Therefore, the coverage of the third

wave and total coverage of the third wave will be at most 𝑚 +𝑀 and 3𝑚 +𝑀 nodes, respectively.

According to the above, the coverage of each wave is calculated as follows:

𝐶𝑖 = 𝑋𝑖𝑚 + 𝑌𝑖𝑀 (3.17)

𝑋𝑖 and 𝑌𝑖 are non-negative integers and can be calculated as follows:

𝑋1 = 1

𝑋𝑖 = 𝑋𝑖−1 + 𝑌𝑖−1 𝑖 ≥ 2
(3.18)

and

𝑌𝑖 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 1 ≤ 𝑖 ≤ 2

1 𝑖 = 3

𝑋𝑖−3 + 𝑌𝑖−3 𝑖 ≥ 4

(3.19)

According to the above, 𝐶1 = 𝑁1 = 𝑚. Thus, we can estimate the total coverage at the end of the

second short wave as follows:
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𝑁2 = 𝑁1 + (1 −
𝑁1

𝑁 − 1
𝛼)𝑚 (3.20)

where 𝑁1

𝑁−1
is the fraction of the nodes that have received the block so far. Accordingly, 1 − 𝑁1

𝑁−1

yields the probability that receiving nodes have not already received the block and therefore will

accept it. Consequently,

𝑁𝑘 = 𝑁𝑘−1 + [(1 −
𝑁𝑘−1

𝑁 − 1
𝛼𝛽) (𝑋𝑘𝑚 + 𝑌𝑘𝑀)] (3.21)

where 𝑁𝑘 is the total coverage at the end of the short wave 𝑘 . Finding the maximum amount

of 𝑁𝑘 that satisfies the condition 𝑁𝑘 ≤ 𝑁 − 1 will give an estimation of the block propagation

delay based on the number of short waves.

𝛽 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 𝑁𝑘 ≤ 𝑁 − 1

𝑁−1−𝑁𝑘−1

𝑁𝑘
𝑁𝑘 > 𝑁 − 1

(3.22)

The number of short waves required for global outreach of the compact block can be estimated

as follows

𝐾 = {𝑚𝑖𝑛 𝑘 |𝑁𝑘 ≥ 𝑁 − 1} (3.23)

3.2.6 Performance metrics analysis of BIP152

The compact block dissemination delay can be estimated as follows:

𝐷 = �
𝐾

3
 (𝐷𝑝 + 𝑋𝐼 + 𝑌𝐼 + 𝑋𝐺 + 𝑌𝐺 + 𝑋𝐵 + 𝑌𝐵) + (𝐾 − 3�

𝐾

3
)(𝑋𝐼 + 𝑌𝐼) (3.24)
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Where 𝐷𝑝 is the processing delay of the compact block and consists of block validation time

and internal processing delay in nodes.

3.2.7 Assumptions

Our analytical solution models block propagation in several waves. This means all nodes receive

and release blocks from/to their neighbors at the same time. As well, it assumes the latency

numbers for each pair of nodes. In reality, the latency between peers depends on different factors

such as geographical distance between peers and the bandwidth of the links. Moreover, block

validation time varies in different nodes depending on their computational power. Although

the network is overall asynchronous, we argue that the propagation of a single new block can

be approximated as a synchronous process. Furthermore, Bitcoin has only been proven to be

correct in a partially asynchronous system (Pass, Seeman & Shelat, 2017), which supports our

assumption. Note that in a real system, different configuration parameters are tightly tangled

together such that a theoretical model of the system becomes intractable. Hence, our model

aims to simplify to a certain degree while still providing approximate, yet accurate results. Thus,

we mostly rely on the average values of the metrics. Despite of these assumptions, the results of

our model closely match the results of the data mined from the real network of Bitcoin.

3.3 Evaluation

In this section, we first validate our theoretical model by comparing the theoretical results with

simulation results as well as the values of the empirical data mined from the real Bitcoin network.

We then conduct a performance analysis to assess the impact of various parameters on the

performance of the Bitcoin network. We study the impact of the average number of connections

per node, the network size and the network bandwidth, and the reachability factor on the

performance of the Bitcoin network. We also measure the network traffic overhead for different

number of connections per node. Finally, we investigate the impact of deploying a relay network



54

on the system performance and study the overall performance of the network when modifying

other parameters.

Algorithm 3.2 Calculating the number of short waves

Input :The values of 𝑁 , 𝑀 , 𝑚
Output
:

𝐾 and Matrix N [𝑁1,..., 𝑁𝐾]

1 N [1] ← 𝑚
2 X[1] ← 1

3 Y[1] ← 0, Y[2] ← 0, Y[3] ← 1

4 C[1] ← 𝑚 ; /* We define this matrix for the coverage of each short
wave */

5 while N[𝑖]≤ 0.9𝑁 do
6 X[i+1]= X[i]+Y[i]

7 Y[i+3]= X[i]+Y[i]

8 C[i+1]= 𝑚X[i+1]+𝑀Y[i+1]

9 N [i+1]= N [i]+ C[i+1](
Y[𝑖+1]
𝑁−1

)

10 𝑖 = 𝐾
11 end while
12 return 𝐾 and N

3.3.1 Settings and implementation

Implementation: We implemented a discrete event-based simulation using𝑂𝑚𝑛𝑒𝑡 ++ (OmNet).

We developed a 𝐶# code to automatically get the data from the provided application program

interface (API). We also used 𝑀𝑎𝑡𝑙𝑎𝑏 for theoretical analysis.

Dataset: We compare numerical values of our theoretical model and simulation results to

real empirical measurements provided by (bit, 2018). In this data set, 90% denotes 90% of

inv messages for a block were observed within the given time from the first 1000 nodes. We

extracted the data of almost 15000 Bitcoin blocks from block number 507016 through 522429

in the main chain. These block numbers correspond to blocks generated from February 1, 2018,

until June 12, 2018. These blocks comprise different number of transactions embedded in them

and hence have different sizes.
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Parameters: The block processing time (i.e, block validation time plus other internal processing

delays) depends on the block size. After observing the block propagation delay data reported

by (bit, 2018), we infer that the average block propagation delay increases sub-linearly with the

increase of block size. Since the impact of increasing the compact block size on the propagation

delay (𝑋𝐵 or compact block transmission delay) is negligible, we can conclude that the processing

delay increases sub-linearly with increasing the block size. Hence, we estimated an average time

of 4𝑚𝑠 for processing of a block (around 1𝑚𝑠 for block validation) with a size of 0.1 MB (1800

KB size of the compact block) and extrapolated it for other blocks with different sizes.

Although different nodes in Bitcoin use different links with various bandwidths, it has been

shown in (Gencer et al., 2018) that the median provisioned bandwidth of nodes in the Bitcoin

network was 33 𝑀𝑏𝑝𝑠 and 56 𝑀𝑏𝑝𝑠 for early 2016 and early 2017, respectively. The latter is

thus 1.7 times the first one. Accordingly, the average bandwidth for nodes that use IPv4, IPv6,

and Tor addresses are reported as 73.1 𝑀𝑏𝑝𝑠, 86.5 𝑀𝑏𝑝𝑠, and 4.7 𝑀𝑏𝑝𝑠, respectively. We also

observed that almost 83%, 13%, and 4% of nodes in the Bitcoin network during the time interval

related to our data set used IPv4, IPv6, and Tor addresses, respectively. Using a weighted mean

and multiplying it by 1.7 in order to scale to early 2018, we estimated provisioned bandwidth

as 123 𝑀𝑏𝑝𝑠 in early 2018. However, due to the small size of compact block, this parameter

becomes less important and the compact block transmission delay can be neglected.

In (Decker & Wattenhofer, 2013), it has been stated that a 𝑏𝑖𝑡𝑐𝑜𝑖𝑛𝑑 node which accepts incoming

connections, has an average of 32 connections which is much more than the default number of 8

connections for each node. In this experiment, we thus considered 𝑀=32 for theoretical analysis

and simulation.

To estimate the average signal propagation delay in the Bitcoin network, we consider blocks

with the smallest size in the data set (𝑆𝑏 < 1𝑘𝐵) and obtained 20 𝑚𝑠 as the average value for

signal propagation delay.

We also consider the same size of 37 bytes for 𝑖𝑛𝑣 and 𝑔𝑒𝑡𝑑𝑎𝑡𝑎 messages according to (Biryukov,

Khovratovich & Pustogarov, 2014). Also, in the theoretical analysis and simulation, we assume
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that there is no packet loss and consequently, no packet re-transmission. In all of the experiments,

we consider a network size of 10,000 nodes, which is near the Bitcoin network size.

To generate an Erdös-Renyi random graph with the two parameters of 𝑁 and 𝑝, we used the

network description (NED) language in𝑂𝑚𝑛𝑒𝑡 ++. To fix the average number of connections per

node, we counted the number of 𝑖𝑛𝑣 messages in the simulation log file using 𝑎𝑤𝑘 and divided

them by 𝑁 . This approach is sound because each node sends 𝑖𝑛𝑣 messages to 𝑀 neighboring

nodes in his connection pool.

The results of the simulation and theoretical analysis are depicted in Figure 3.5. In this figure,

the horizontal axis indicates the block size where each point on this axis represents a range

of block sizes with a length of 0.1 𝑀𝐵. For instance, block size = 0.2 represents the interval

between 0.1 𝑀𝐵 and 0.2 𝑀𝐵. The box plot shows the propagation delay of blocks in the real

Bitcoin network versus block sizes. We removed outliers to clean up the graph. Bitcoin Core

with BIP 152 recommends peers establish their last three connections in HBM. Therefore, we

did the experiments with this value (𝑚 = 3). However, we have also tested other values, such as

the case with no HBM connections (𝑚 = 0). For 𝑚 = 1, 2, results fall between the results of

the mentioned experiments. As it can be seen, the results of simulation and theoretical values

are almost identical with high accuracy with respect to empirical results. By calculating the

slope of the graph (Figure 3.5) at different points, the results show that block propagation delay

increases sub-linearly with respect to block size. For the smaller blocks, the size of the quartiles

are comparatively smaller. The main reason is that in small block sizes, the delay stems from the

signal propagation delay. But for big blocks, the delay originates from the block processing time.

3.3.2 Performance analysis of the Bitcoin network

To study the effect of the default number of connections on block propagation delay, we conduct

an experiment using our theoretical model for different values of 𝑀 (𝑀 = 8, 16, 32, 64). As

well we assume no connection is set in HBM (𝑚=0). 𝑀 = 8 refers to the default number of

connections in the original protocol whereas 𝑀 = 32 refers to the average number of connections
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per node observed in practice. 𝑀 = 64 and 𝑀 = 16 can be considered proposals for doubling or

halving the average number of connections per node in the current Bitcoin network. Like in the

previous experiment, we use 𝑁=10000. Figure 3.7 depicts the results of this experiment. The

network with 𝑀 = 8 is significantly slower than others and takes five waves to fully disseminate

the block. While the network with 𝑀 = 64 is considerably faster than networks with 𝑀 = 16

and 𝑀 = 8, there is no significant differences between the networks with 𝑀 = 64 and 𝑀 = 32,

since both fully disseminate the block in two waves. This means that increasing the average

number of connections in the Bitcoin network from 8 to 32 significantly increases the block

propagation speed. In all settings evaluated, the block does not reach a majority of nodes (5100

nodes) before the last wave. Dividing the values obtained in this experiment by the total number

of nodes in the network will yield similar curves for the cumulative distribution function (CDF)

of the block outreach.

Figure 3.5 90% Block propagation delay vs. block size

To study the impact of the average number of connections per node on the traffic overhead,

we carry out another set of experiments for 𝑁=7500, 10000, and 12500. The results of this

experiment are depicted in Figure 3.6. As can be seen in the figure, the optimal traffic overhead

is for 𝑀=32. This means that this configuration achieves a minimal number of redundant 𝑖𝑛𝑣

messages (𝑖𝑛𝑣 messages which timed out). This can be explained by the fact that in a network
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with a lower 𝑀 , each node sends fewer messages to neighbors and according to Equation (4.8), a

bigger forwarding probability is achieved. On the other hand, an increased number of connections

creates a faster network with a lower number of waves, which leads to an increase in total traffic

overhead. Therefore, there is a trade-off between block propagation delay and network overhead.

According to Figure 3.6, the other choice for low traffic overhead can be 𝑀 = 8. But according

to Figure 3.7, this will create a slow network. Thus, we claim that 𝑀 = 32 is the best choice for

the current Bitcoin network.

Figure 3.6 Network traffic overhead (90%)

Another point of interest is the impact of network size or the number of participating nodes on

the average block propagation delay. To study this, we conduct another experiment and calculate

the average block propagation delay (90%) for a different number of nodes (intervals of 1000

nodes) and repeat it for different number of connections. The results are depicted in Figure 3.8.

Increasing the number of connections will not always lead to a faster network. For the current

size of Bitcoin, we expect roughly the same propagation delay when 𝑀 = 16, 32, 64 but with

different costs of traffic overhead. For smaller sizes, 𝑀 = 64 is significantly faster while there is

no considerable change for the networks with 𝑚 = 16 and 𝑀 = 32. For sizes bigger than that of

the current network, 𝑀 = 32 and 𝑀 = 64 will have the same impact on the block propagation
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delay with different amounts of traffic overhead. It is unlikely to have less than 5000 or more than

13000 nodes in the Bitcoin network. Therefore, we limit the evaluated intervals to 4000 − 5000.

Figure 3.7 Block outreach vs. number of waves (90%)

Figure 3.8 90% block propagation delay vs. network size

It is useful to study the Bitcoin network when it operates in non-ideal conditions. To model such

a situation, we decrease the reachability factor 𝛼 which corresponds to a decrease in forwarding

probability. As mentioned in Section 3.2.3, a decrease in forwarding probability implies that
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some of the blocks have not reached their destinations or are rejected by the candidate receiver

nodes.

Dividing the coverage of different block propagation waves (i.e., the number of nodes that

receive the block during a wave) by the network size (i.e., the total number of participating

nodes) will yield the probability density function (PDF) of the rate at which the nodes receive

the block. Figure 3.9a plots this function for the ideal conditions (i.e. 𝛼 = 1.0). We repeated

this experiment for different number of connections per node. For all values of 𝑀 , the block is

fully propagated over the network without any long tail in the PDF. If we slightly decrease 𝛼, a

long tail appears on the PDF curve as depicted in Figure 3.9b. This means that more waves are

needed for 100% block propagation. Nevertheless, more than 95% of the nodes still receive the

block as they would in an ideal network. Lowering 𝛼 will lead to longer tails, which means a

slower 100% propagation delay (see Figures 3.9c and 3.9d). Moreover, as plotted in Figure 3.9d,

when 𝛼 = 0.85, less than 90% of nodes will receive the block during the time required for 100%

propagation under ideal conditions.

3.3.3 Sensitivity analysis of the relay network

When a relay network is present, interested miners can maintain a link to one of the gateways and

send any mined block directly to the relay network. The relay network will then relay copies of

the block to the rest of the network using high-speed links thus increasing the block propagation

speed.

Consider an ideal relay network deployed in the network, where gateways are homogeneous

with infinite bandwidth (see Figure 2.5) with very low latency. To model this network, we adapt

our basic analytical model aforementioned in Section 3.2.3 as follows. Since a node which

maintains a high-speed link to the relay network does not need to exchange inventory messages

with the relay gateways, it can immediately send the newly mined block to the gateway. As

well, since the relay network do not need to validate the blocks multiple times, we assume

the internal block propagation between relay gateways is almost instantaneous: the latency
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from the moment the miner sends the block to the relay gateway until the time at which the

relay network starts to propagate the block over the network is almost zero. We define the

parameter relay network size as the percentage of the nodes in the network which are directly

connected to the relay network and denote it by 𝛾. For instance, if 100 nodes of the Bitcoin

network are connected to the relay network, then 𝛾 = 1% (for a total size of 10,000 nodes).

Consequently, we can consider the relay network as an initiator node with 𝛾(𝑁 − 1) connections

to other neighboring nodes. We will treat with all non-gateway nodes as described in Section 3.3.1.
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d) 𝛼 = 0.85

Figure 3.9 Probability density function for waves at which Bitcoin nodes receive the

block

We carry out a set of experiments in order to study the impact of the relay network size on the

performance of the Bitcoin network with different configurations for the average number of

connections per node as well as reachability. In this set of experiments, we employ three values

for the relay network size (𝛾 = 1%, 2.5% 𝑎𝑛𝑑 5%). Simultaneously, we change the value of 𝛼
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and decrease it gradually to study the effect of message loss on the network performance. We

repeat these experiments for different numbers of connections per node. The results are plotted

in Figures 3.10, 3.11, and 3.12.
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Figure 3.10 Probability density function for waves at which Bitcoin nodes receive the

block with a 1% relay network

As depicted in Figure 3.10a, when 𝛾 = 1% almost all of the nodes will receive the block in three

(when 𝑀 = 16, 32, 64) or four waves (when 𝑀 = 8). Compared to the configuration when the

relay network is not deployed, there is not much difference for 100% block propagation when

𝑀 = 64, 32 but for the cases where 𝑀 = 16, 8, the relay network accelerates the 100% block

propagation for one wave (see Figure 3.9a). According to the results depicted in Figure 3.10b,

when reachability is decreased, the long tail of PDF manifests itself even in the presence of the

relay network. More reduction in reachability leads to longer tails as shown in Figure 3.10c and

Figure 3.10d.
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To assess the impact of 𝛾, we conduct another experiment where 𝛾 is increased to 2.5%. The

results are depicted in Figure 3.11. Figure 3.11a shows the results for the ideal conditions where

𝛾 = 2.5%. It takes two waves for 100% block propagation when 𝑀 = 32 𝑎𝑛𝑑 64. Also, 100%

block propagation needs three propagation waves when 𝑀 = 8 𝑎𝑛𝑑 16. According to these

observations, we can claim that the network has a noticeable improvement over the case where

𝛾 = 1%. Note that although for 𝑀 = 16 the 100% block propagation takes place in three waves,

but when 𝛾 = 2.5%, the block coverage is a bit more than 45% in the second wave when it is

around 15% when 𝛾 = 1%. Also, in Figure 3.11b, Figure 3.11c and Figure 3.11d, we observe

that decreasing the reachability causes the long tails to appear on the PDF again. Another effect

of decreasing the reachability factor is that the block coverage decreases in all waves.
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Figure 3.11 Probability density function for waves at which Bitcoin nodes receive the

block with a 2.5% relay network

If we keep increasing the relay network size, the network will become faster as expected. For
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𝛾 = 5% and 𝑀 = 16, 32 and 64, the maximum coverage of the block takes place in the second

wave as can be seen in Figure 3.12. The interesting point is that by increasing the relay network

size, the behavior of the network with different values of 𝑀 becomes similar. This implies

that with a bigger relay network, the default configuration of the non-relay nodes becomes less

important which may endanger the decentralization of the Bitcoin network.

3.4 Managerial Implications

Performance models can provide us with extensive insight into blockchain network dynamics

and behaviors. The analytical model proposed in this work contains an approach for predicting

and evaluating the performance of Bitcoin-based blockchains (i.e., hard forks of Bitcoin) with

controllable input parameters such as block size, number of HBM and LBM connections,

network size, and network speed.

From the perspective of a system architect, our performance model can help blockchain developers

achieve a good first-cut design that will meet the application requirements, alleviating the need

for trial-and-error tuning of parameters, and thus saving on capital expenses. Furthermore,

our performance model can be used to conduct What-if analyses and anticipate the impact of

proposed changes, such as doubling the block size of Bitcoin. The model can therefore inform

the manager when taking operational decisions. From the perspective of a cryptocurrency

investment manager, our performance model can be used to compare existing Bitcoin-based

cryptocurrencies (also called altcoins) by quickly calculating important metrics (such as block

propagation delay) using collected measurements from the network. These metrics are indicators

of the stability and security of the network, which in turn can be used to assess the viability and

volatility of a given cryptocurrency.

3.5 Conclusion

In this chapter, we proposed an analytical model for modeling the delay and traffic overhead in a

Bitcoin network based on an Erdös-Renyi random graph and derived key features of performance
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Figure 3.12 Probability density function for waves at which Bitcoin nodes receive the

block with a 5% relay network

measures of the Bitcoin network. We validated our analytical model through simulation and

compared to real data measured from the Bitcoin network. We also investigated the effect of

the default number of connections on the performance of the Bitcoin network. Although the

throughput of Bitcoin can be increased by choosing a bigger size for blocks, this can cause a

significant increase in the block propagation time. The delay can be reduced by increasing the

average default number of connections per node but this has the drawback of increased traffic

overhead in the network.

We used our model to estimate the PDF of the times at which a portion of the Bitcoin nodes

receive a propagated block at the end of each wave. We adapted our model to analyze the Bitcoin

network in the presence of the relay networks. We observe that bigger relay networks (i.e., relay

networks with more miners connected to) can significantly improve block propagation delay,
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and make the network less sensitive to the parameters of non-relay nodes, which can endanger

the decentralization of the network.



CHAPTER 4

A THEORETICAL MODEL FOR FORK ANALYSIS IN THE BITCOIN NETWORK

Blockchain networks that employ Proof-of-Work in their consensus mechanism may face

inconsistencies in the form of forks. These forks are usually resolved through the application of

block selection rules (such as the Nakamoto consensus). In this chapter, we investigate the cause

and length of forks for the Bitcoin network. We develop theoretical formulas which model the

Bitcoin consensus and network protocols, based on an Erdös-Rényi random graph construction

of the overlay network of peers. Our theoretical model addresses the effect of key parameters

on the fork occurrence probability, such as block propagation delay, network bandwidth, and

block size. We also leverage this model to estimate the weight of fork branches. Our model is

implemented using the network simulator OMNET++ and validated by historical Bitcoin data.

We show that under current conditions, Bitcoin will not benefit from increasing the number of

connections per node.

4.1 Introduction

A cryptocurrency network may face some inconsistencies that arise from its decentralized

nature. For instance, Bitcoin uses a large and unstructured peer-to-peer (P2P) network, which is

susceptible to fork-related inconsistencies when propagating blocks (Narayanan et al., 2016).

Forks can occur either due to propagation delay (Antonopoulos, 2017; Decker & Wattenhofer,

2013) or poor connectivity leading to networking partitions (Shahsavari et al., 2019b; Yao,

Wang, Leonard & Loguinov, 2009). We differentiate between these types of natural forks (which

are the focus of this chapter), and intentional forks occurring from miners deviating from the

protocol (Kwon, Kim, Son, Vasserman & Kim, 2017; Conti, Kumar, Lal & Ruj, 2018b), or

changes in the code or protocol, which create a new independent network (which are outside the

scope of this chapter) (Tschorsch & Scheuermann, 2016).

Forks are undesirable since they create inconsistencies across the local copies of the ledger, which

reduce the reliability of responses to queries about the blockchain data. Thus, the occurrence
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of forks implies that blockchain networks are eventually consistent and disturb the notion of

immutability in blockchains. As a consequence, users have to wait for an amount of time (usually

measured in block confirmations) to be reasonably certain that a transaction is finally committed

to the blockchain (Bonneau et al., 2015). For the current Bitcoin network, users typically wait

for 6 confirmations (BitcoinWiki), but each user is free to choose its own threshold. Forks

caused by malicious manipulations such as Goldfinger attacks can destabilize a cryptocurrency

with a significant loss of confidence and destroy its exchange rate (Narayanan et al., 2016). As

well, forks can be exploited by malicious entities such as dishonest miners to gain unfair profits

by disturbing the normal operation of the system (Conti et al., 2018b).

In light of the above, we can argue that it is imperative for blockchain designers and cryptocurrency

analysts to have a comprehensive understanding of the causes and factors related to the formation

of forks and have the ability to predict the occurrence of disruptive forks in order to apply

countermeasures. To accomplish this, we propose a theoretical model for the analysis of forks in

blockchain networks, particularly for Bitcoin. Our model can be useful to predict the long-term

impact of proposed changes to Bitcoin, as well as assess the health of altcoins networks based

on hard forks of the Bitcoin code.

In this chapter, we extend our previous work presented in the previous chapter, which presents

a theoretical model for performance modeling and analysis of the Bitcoin network using an

Erdös-Rényi random graph model (Erdős & Rényi, 1959). However, the previous chapter was

concerned with the propagation of a single block at a time through different gossiping waves,

using the Bitcoin inventory protocol, and assumes that no forks can occur. For the current

chapter, the main contributions are as follows:

1. We extend our wave-based model to consider the simultaneous propagation of concurrent

blocks (forks).

2. We present equations to estimate the fork occurrence probability in the network, and the

number of participating nodes in different fork branches (branch weight).

3. We implement our theoretical model using the network simulator OMNET++ and compare

to historical Bitcoin data.
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4. We provide a sensitivity analysis of various blockchain network parameters for forks, such

as the number of connections per node and block propagation delay.

The chapter continues with Section 4.2 in which we present our analytical model to capture

the dynamics of forks in the Bitcoin network. Section 4.3 is dedicated to the theoretical and

simulation results of our model. Finally, Section 4.4 concludes this chapter. Although the scope

of this chapter and the background section is focused exclusively on Bitcoin, the theoretical model

presented for analysis of the forks in the Bitcoin network can be adapted to other blockchains

such as Ethereum (Buterin et al., 2013).

4.2 Analytical Model

In this section, we first define the notion of natural fork caused by propagation delay in a

blockchain network. Then, we propose a random graph model for theoretical modeling and

analysis of block propagation in the Bitcoin blockchain when a fork occurs. To accomplish this,

we use a graph model which was introduced by Erdös and Rényi. This graph has properties

suitable for modeling peer-to-peer overlay networks used by blockchain systems.

4.2.1 Fork model

Suppose a block 𝑏 is the tip of a blockchain B. We call the height ℎ𝑏 of block 𝑏 as the number

of blocks preceding this block in the blockchain starting from the genesis block. In other words,

the height of a block is the length of the blockchain to reach it. For the genesis block, ℎ𝑔 is 0.

As previously mentioned, the blockchain for Bitcoin is replicated to the full nodes connected

together in a very wide P2P network. A fork occurs when there are at least two blocks 𝑏 and 𝑏′

that have the same height. Precisely, a fork caused by propagation delay exists when:

∃ 𝑏, 𝑏′ ∈ B 𝑎𝑛𝑑 𝑏 ≠ 𝑏′ | ℎ𝑏 = ℎ𝑏′ (4.1)
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Assume a node with a blockchain of height of ℎ𝑏 receives block 𝑏′ with height of ℎ𝑏′ where

ℎ𝑏′ > ℎ𝑏. Because of the longest chain selection rule, it will switch its blockchain tip to block

𝑏′. Blocks 𝑏 and 𝑏′ can be either in the same branch (then block 𝑏 is the ancestor of block 𝑏′) or

in different branches. In the prior case, the node will retrieve the intermediate blocks from the

network, and in the latter case, block 𝑏 will become orphaned (removed from the main branch).

After this process, the local state of the blockchain maintained by the node should be consistent

with that of the rest of the network, assuming this is the longest chain known.

4.2.2 Fork probability analysis

PoW mining for the Bitcoin network can be modeled as a Poisson process and the inter-block time

(the time difference between two consecutive mined blocks) follows an exponential distribution.

We calculate the probability density function (PDF) of a block to be mined as follows:

𝑓 (𝑡;𝜆) = 𝜆𝑒−𝜆𝑡 (4.2)

where 𝜆 is obtained from the following equation:

𝜆 =
1

𝐸 [𝑇]
=

1

𝑡𝐵
(4.3)

where 𝑡𝐵 is referred to as the inter-block time and is the average time required to mine a new

block. This process is memoryless (i.e., the probability distribution is independent of its history)

and the probability that another block is mined before the currently proposed block is fully

disseminated over the network can be obtained as follows:

𝐹 (𝑡) = 𝑃(𝑇 ≤ 𝑡𝑝𝑟𝑜𝑝) =
∫ 𝑡𝑝𝑟𝑜𝑝

0

𝑓 (𝑡) 𝑑𝑡 = 1 − 𝑒
−
𝑡𝑝𝑟𝑜𝑝
𝑡𝐵 (4.4)
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where 𝑡𝑝𝑟𝑜𝑝 is the time needed for a block to fully propagate over the network. Equation (4.4)

expresses the probability of forks as a function of block propagation time and inter-block time.

However, block propagation time itself is derived using several parameters, e.g., block size,

bandwidth, the average number of connections per node, the total number of participating nodes,

which are already discussed in our previous paper (Shahsavari et al., 2019b).

4.2.3 Block propagation model

To model the P2P overlay network, we use an Erdös-Rényi graph 𝐺 (𝑉, 𝐿) where 𝑉 and 𝐿 are

the set of vertices and the set of links between participating nodes respectively. For example, if

there is a link between node 𝑖 and node 𝑗 , then (𝑖, 𝑗) ∈ 𝐿.

Moreover, we represent our random graph using 𝐺𝑝 (𝑁), where 𝑁 is the total number of

participating nodes and 𝑝 is the independent probability that there exists a link between any

two arbitrarily selected nodes in the P2P overlay network. In this chapter, we assume that 𝑁 is

significantly large (e.g., 𝑁 ≈ 10000 in the current Bitcoin network (bit, 2018).

Consider a P2P overlay network that consists of 𝑁 participating nodes: suppose a node mines a

block 𝑏 with height ℎ𝑏 at time 𝑡. We refer to this initial node as 𝑛0.

As already mentioned in Chapter 2, node 𝑛0 sends an 𝑖𝑛𝑣message to the setW1 = {𝑛1
1
, 𝑛1

2
, ..., 𝑛1

𝑀}

of neighboring nodes in its connection pool. For simplicity, we assume all nodes are connected

to 𝑀 nodes in their connection pool. We assume the sending node sends the 𝑖𝑛𝑣 message to its

neighbors in succession with a very small negligible delay 𝜖 between each message.

Since this is the first time that an 𝑖𝑛𝑣 message is being sent for this block, none of the W1

neighboring nodes have the block and will respond the 𝑖𝑛𝑣 message with the 𝑔𝑒𝑡𝑑𝑎𝑡𝑎 message

with 100% certainty. Upon receiving the 𝑔𝑒𝑡𝑑𝑎𝑡𝑎 response, 𝑛0 will send the complete block to

the requesting neighbors. We call this the first step of the block dissemination process wave

𝑊1 (depicted in Figure 4.1a). The time taken from sending the 𝑖𝑛𝑣 message until receiving the

block by the neighboring nodes is called the wave length and denoted by 𝑇 .
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a) Wave 1 b) Wave 2

c) Wave 𝑘

Figure 4.1 Different waves of block dissemination in the proposed blockchain network

A fork occurs when node 𝑛′
0

starts to propagate its block (𝑏′) while the block from 𝑛0 (𝑏)

is not fully disseminated. Blue nodes are the nodes that have already received the block

𝑏 and green nodes are the nodes that have already received the block 𝑏′. Accordingly,

blue and green arrows indicate successful block transfer. Red arrows show timed-out 𝑖𝑛𝑣
messages

For this wave 𝑊1, we define a random variable called the forwarding probability 𝑝 𝑓1 . The

forwarding probability is the probability that an 𝑖𝑛𝑣 message, containing the information about

the newly mined block, will be accepted by the neighboring nodes contacted by a sender node.

For wave 1, it is clear that 𝑝 𝑓1 = 1, as the sender node is the block creator 𝑛0.

Suppose another miner node in the network which is not a member of W1, finds block 𝑏′

with height ℎ𝑏′ at time 𝑡′, where 𝑡 < 𝑡′ < 𝑡 + 𝑇 and ℎ𝑏 = ℎ𝑏′ . We denote this second initiator
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node as 𝑛′
0
. Similarly to 𝑛0, node 𝑛′

0
sends an 𝑖𝑛𝑣 message to the set W′

1
= {𝑛′1

1
, 𝑛′1

2
, ..., 𝑛′1𝑀}

of neighboring nodes in its connection pool. Again, we assume the sending node sends the

𝑖𝑛𝑣 message to its neighbors in succession with a very small negligible delay 𝜖′ between each

message. We call this process wave𝑊′
1

(depicted in Figure 4.1b).

However, some of the nodes may have already received a block with a height of ℎ𝑏 in wave

𝑊1 and thus will not accept the block propagated in the wave 𝑊′
1
. Hence, we calculate the

forwarding probability for the wave𝑊′
1

as follows:

𝑝 𝑓 ′
1
=
𝑁 − 1 − |W1 |

𝑁 − 1
=
𝑁 − 1 − 𝑀𝑝 𝑓1

𝑁 − 1
(4.5)

Subsequently, the nodes which have received block 𝑏 will send 𝑖𝑛𝑣 messages for that block to

the neighbors in their connection pool. We call this process wave𝑊2. Some of the receiving

nodes may not accept the block, if they have already received blocks 𝑏 or 𝑏′ and will not send a

𝑔𝑒𝑡𝑑𝑎𝑡𝑎 message. Hence, the forwarding probability for wave𝑊2 can be calculated as follows:

𝑝 𝑓2 =
𝑁 − 1 − |W1 | − |W

′
1
|

𝑁 − 1
=
𝑁 − 1 − 𝑀𝑝 𝑓1 − 𝑀𝑝 𝑓 ′1

𝑁 − 1
(4.6)

The set of nodes that will reply positively with a 𝑔𝑒𝑡𝑑𝑎𝑡𝑎 message in wave𝑊2 can be expressed

as: W2 = {𝑛2
1
, 𝑛2

2
, ..., 𝑛2

|W2 |
} where |W2 | = �𝑝 𝑓1 𝑝 𝑓2𝑀

2�.

The forwarding probability for wave𝑊2 is:

𝑝 𝑓 ′
2
=
𝑁 − 1 − |W1 | − |W

′
1
| − |W2 |

𝑁 − 1
=
𝑁 − 1 − 𝑀𝑝 𝑓1 − 𝑀𝑝 𝑓 ′1 − 𝑝 𝑓1 𝑝 𝑓2𝑀

2

𝑁 − 1
(4.7)

Each subsequent wave of both blocks will follow a similar pattern as above. In general, we

express the forwarding probability of wave𝑊𝑖 as follows:
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𝑝 𝑓𝑖 =
(𝑁 − 1) −

∑𝑖−1
𝑗=1 𝑀

𝑗 ∏ 𝑗
𝑘=1

𝑝 𝑓𝑘 −
∑𝑖−1
𝑗=1 𝑀

𝑗 ∏ 𝑗
𝑘=1

𝑝 𝑓 ′
𝑘

𝑁 − 1

(1 < 𝑖 ≤ 𝐾)

(4.8)

where 𝐾 is the total number of waves needed for the block 𝑏 to be propagated over the blockchain

network. Note that some nodes in the network may never accept the block (if it has received

block 𝑏′ first). Concerning block 𝑏′, the forwarding probability of wave𝑊′
𝑖 can be calculated as

follows:

𝑝 𝑓 ′𝑖 =
(𝑁 − 1) −

∑𝑖
𝑗=1 𝑀

𝑗 ∏ 𝑗
𝑘=1

𝑝 𝑓𝑘 −
∑𝑖−1
𝑗=1 𝑀

𝑗 ∏ 𝑗
𝑘=1

𝑝 𝑓 ′
𝑘

𝑁 − 1

(1 < 𝑖 ≤ 𝐾′)

(4.9)

where 𝐾′ is the total number of waves needed for block 𝑏′ to be propagated over the blockchain

network.

For values of 𝑡 other than 𝑡 < 𝑡′ < 𝑡 + 𝑇 , Equations (4.8) and (4.9) can be generalized for

𝑡 + 𝑚𝑇 < 𝑡′ < 𝑡 + (𝑚 + 1)𝑇 where 𝑚 = 0, 1, 2, ...:

𝑝 𝑓𝑖 =
(𝑁 − 1) −

∑𝑖−1
𝑗=1 𝑀

𝑗 ∏ 𝑗
𝑘=1

𝑝 𝑓𝑘 −
∑𝑖−1−𝑚
𝑗=1 𝑀 𝑗 ∏ 𝑗

𝑘=1
𝑝 𝑓 ′

𝑘

𝑁 − 1

(1 < 𝑖 ≤ 𝐾)

(4.10)

and



75

𝑝 𝑓 ′𝑖 =
(𝑁 − 1) −

∑𝑖
𝑗=1 𝑀

𝑗 ∏ 𝑗
𝑘=1

𝑝 𝑓𝑘 −
∑𝑖−𝑚−1
𝑗=1 𝑀 𝑗 ∏ 𝑗

𝑘=1
𝑝 𝑓 ′

𝑘

𝑁 − 1

(1 < 𝑖 − 𝑚 ≤ 𝐾′)

(4.11)

Equations (4.10) and (4.11) are recursive equations and enable us to calculate the number of

waves required for all participating nodes to receive either one of the blocks 𝑏 or 𝑏′:

𝐾∑
𝑖=1

𝑀𝑖
𝑖−1∏
𝑗=1

𝑝 𝑓 𝑗 +
𝐾 ′∑
𝑖=1

𝑀𝑖
𝑖−1∏
𝑗=1

𝑝 𝑓 ′𝑗 = 𝑁 − 1 (4.12)

Figure 4.1c illustrates the process of block dissemination during waves𝑊𝑘 and𝑊′
𝑘 . To calculate

𝐾 and 𝐾′, we follow an iterative approach using Algorithm 5.1. In the first iteration, 𝑝 𝑓1 = 1.

Then, we calculate 𝑝 𝑓 ′
1
. We substitute them into Equation (4.12). If the equality is satisfied, the

algorithm stops and returns 𝐾 and 𝐾′. Otherwise, we start the second iteration and calculate 𝑝 𝑓2

using 𝑝 𝑓1 and 𝑝 𝑓 ′
1
. Then again substitute in the Equation (4.12). If it is now satisfied, we stop

and take the 𝐾 and 𝐾′. Otherwise, we continue to find 𝑝 𝑓 ′
2
. This process continues until it finds

the appropriate values of 𝐾 and 𝐾′.

The first term in Equation (4.12) indicates the total number of nodes that accept block 𝑏 as the

blockchain head and the second term indicates the nodes which accept the block 𝑏′. We call

these terms the weight of each branch. The branch weight allows determining if the fork is

carried over beyond 𝑏 and 𝑏′. If there is a skew towards one branch, the total hash rate working

behind that branch is likely to be greater than the other branch, resulting in a greater difference

in block mining time, which increases the probability that the next block of the faster branch

will fully propagate and orphan the slower branch. Conversely, if both branches have similar

weights, the expected block time will be similar and the likelihood of competing blocks being

propagated simultaneously increases.
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Algorithm 4.1 Calculating number of waves 𝐾 and 𝐾′

Input :The values of 𝑁 , 𝑚, 𝑀
Output
:

𝐾 , 𝐾′, Matrix P[𝑝 𝑓 1...𝑝 𝑓𝐾 ], and P′[𝑝 𝑓 ′1...𝑝 𝑓 ′𝐾 ]

1 P[1] ← 0

2 P′[1] ← 0

3 𝐾 ← 1

4 𝐾′ ← 0

5 𝐶 ← 0 ; /* Controller */
6 while C=0 do
7 for 𝑖 = 1 to 𝐾 do
8 if 𝑖 − 𝑚 > 0 then

9 P[𝑖]=
(𝑁−1)−

∑𝑖−1
𝑗=1 𝑀

𝑗 ∏ 𝑗
𝑘=1

𝑝 𝑓𝑘−
∑𝑖−1−𝑚
𝑗=1 𝑀 𝑗 ∏ 𝑗

𝑘=1
𝑝 𝑓 ′
𝑘

𝑁−1

10 if P [𝑖] ≥ 0 then
11 𝐾 = 𝐾 + 1

12 P′[𝑖 − 𝑚] =
(𝑁−1)−

∑𝑖
𝑗=1 𝑀

𝑗 ∏ 𝑗
𝑘=1

𝑝 𝑓𝑘−
∑𝑖−1−𝑚
𝑗=1 𝑀 𝑗 ∏ 𝑗

𝑘=1
𝑝 𝑓 ′
𝑘

𝑁−1

13 if P′ [𝑖 − 𝑚] ≥ 0 then
14 𝐾′ = 𝐾′ + 1

15 else
16 𝐶 ← 1

17 end if
18 else
19 𝐶 ← 1

20 end if
21 else
22 P[𝑖]=

(𝑁−1)−
∑𝑖−1
𝑗=1 𝑀

𝑗 ∏ 𝑗
𝑘=1

𝑝 𝑓𝑘
𝑁−1

23 if P [𝑖] ≥ 0 then
24 𝐾 = 𝐾 + 1

25 else
26 𝐶 ← 1

27 end if
28 end if
29 end for
30 end while
31 return 𝐾 , 𝐾′, P, and P′
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a) Impact of block size b) Impact of P2P bandwidth

c) Impact of the average number of connections

Figure 4.2 Fork probability analysis based on network parameters

4.3 Results and Analysis

In this section, we first present the results of fork probability analysis in the Bitcoin network

based on the following parameters: the block size, the average P2P bandwidth, and the average

number of connections per node (see Figure 4.2). Then, we present the results of a fork branch

weight analysis based on the difference in the time at which the two blocks are mined (see

Figure 4.3).

4.3.1 Settings and implementation

Parameters: To assess the impact of block size on the fork occurrence probability, we use

the empirical data provided by (bit, 2018). We extract ∼1500 Bitcoin blocks (blocks 504016

through 522429) with reported propagation delay values and block sizes. We consider median

values for block size intervals of 100 𝑘𝐵. For all other experiments in this chapter, we consider

the average block size as 1MB. For the network settings, we set all parameters the same as the
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settings in our previous paper (Shahsavari et al., 2019b).

a) Weight when 𝑡 < 𝑡′ < 𝑡 + 𝑇 b) Weight when 𝑡 + 𝑇 < 𝑡′ < 𝑡 + 2𝑇

c) Weight when 𝑡 + 2𝑇 < 𝑡′ < 𝑡 + 3𝑇

Figure 4.3 Branch weight analysis based on 𝑡′

Implementation: We implement our model using a discrete event-based simulator called

OMNET++ (OmNet). Simulation results are calculated using the event log files generated by

the simulation. We also used 𝑀𝑎𝑡𝑙𝑎𝑏 for theoretical analysis.

Fork probability experiments: To study the impact of different parameters on the probability of

fork occurrence in the Bitcoin blockchain, we conduct three experiments. In the first experiment,

we estimate the fork probability in the current Bitcoin blockchain as a function of the block size.

We carry out this experiment for three different values of inter-block time (𝑡𝐵 = 9, 10, 11 𝑚𝑖𝑛𝑠)

where 𝑡𝐵 = 10 𝑚𝑖𝑛𝑠 is the average inter-block time in Bitcoin and 𝑡𝐵 = 9, 11 𝑚𝑖𝑛𝑠 are 1-minute

deviations from the current average. The results of this experiment are depicted in Figure 4.2a.

The fork occurrence probability increases proportionally to the block size. Also, note that

decreasing the block time (𝑡𝐵) increases the fork probability and vice versa. Therefore, the

probability of a fork can be manipulated by adjusting the mining difficulty.
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To validate the above results, we extract the historical data of 99,120 Bitcoin blocks (blocks

90392 through 189512). During that period, we observe that 90 forks happened, for a reported

rate of fork occurrence of 0.09% in the Bitcoin network. Our model results of 0.1% at the block

size of 1MB are therefore very close to the empirical result.

In another set of experiments, we study the joint impact of the bandwidth and the average number

of connections per node 𝑀 . As depicted in Figure 4.2b, the probability of fork decreases when

the bandwidth or the number of connections increases. For 𝑀 = 32 and 𝑀 = 64, since the block

propagation delay is the same for both (shown in (Shahsavari et al., 2019b)), the curves are

almost identical. This corroborates the fact that forks are caused by network delay.

Figure 4.2c shows a detailed sensitivity analysis for the average number of connections per node

𝑀 . There is no significant difference in the probability of fork occurrence when 22 ≤ 𝑀 ≤ 99,

which is a significant margin. Since 𝑀 is around 32 for the real network, we can therefore claim

that Bitcoin is not sensitive to the value of 𝑀, currently centered around 32. This experiment

also confirms that a lower value of 𝑡𝐵 increases the chance of having a fork.

Branch weight experiments: We conduct another set of experiments based on the time instant

at which the competitor node begins to propagate its block while another node has already

started propagating its proposed block. For this set of experiments, we study the sensitivity of

the network with respect to the average number of connections 𝑀 .

In the first experiment, we set 𝑚 = 0 (see Equation (4.11)). This means that the second miner

finds and starts to propagate its block (we call it 𝑏𝑙𝑜𝑐𝑘 2) during the first wave of dissemination

for 𝑏𝑙𝑜𝑐𝑘 1. Figure 4.3a shows the results of this experiment. The simulation results closely

match our theoretical results. Generally, increasing 𝑀 yields a heavier weight for the first branch.

In particular, note the special case of 𝑀 = 32 where the difference between the two branches

is maximal. This is justified by the fact that the Bitcoin network experiences minimal traffic

overhead when 𝑀 = 32 (as shown in our previous paper (Shahsavari et al., 2019b)): the first

block is disseminated much more efficiently during each wave.
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In the next experiments, we set𝑚 = 1 and𝑚 = 2, which means the second miner starts propagation

its block during the second and third waves of dissemination for 𝑏𝑙𝑜𝑐𝑘 1, respectively. The

results of these experiments are shown in Figures 4.3b and 4.3c. Again, the simulation results

and the theoretical results are almost the same. Increasing the 𝑀 or 𝑚 will increase the weight of

the first branch. When both 𝑀 and 𝑚 have high values, the weight of the second branch is near

zero and we can thus claim that the impact of this fork is almost negligible on the consistency of

the Bitcoin network: 𝑏𝑙𝑜𝑐𝑘 2 will quickly be orphaned.

4.4 Conclusion

In this chapter, we present an analytical model to estimate the probability of fork occurrence in the

Bitcoin network, using a random graph to model the Bitcoin overlay network and dissemination

waves to model the inventory-based block propagation protocol. We investigate the effect of

several blockchains and network parameters on the probability of forks. Our results show that

reducing the block time compromises the security of the blockchain by increasing the probability

of a fork. The average number of connections per node currently has no impact on the probability

of forks, since Bitcoin currently operates within a stable range of 22-99 connections. In addition,

we investigate the impact of the time difference between two concurrent blocks and the average

number of connections per node on the weight of fork branches. If the later miner starts to

propagate its block too late and the number of connections per node is sufficiently high, the

impact of the fork on the network is almost negligible.



CHAPTER 5

TOWARD QUANTIFYING DECENTRALIZATION OF BLOCKCHAIN NETWORKS
WITH RELAY NODES

In this chapter, we present a methodology for quantifying the decentralization degree of a

blockchain network. To accomplish this, we use two well-known graph models of Erdös-Rény

and Barabási–Albert in order to study the blockchain network topology. We then quantify the

decentralization degree using the clustering coefficient of our network models. We validate our

approach through extensive simulations and analyze the decentralization degree with respect to

network parameters such as the number of connections per node and the peer selection algorithm.

Our results expose the trade-off between the average shortest path and the decentralization

degree. Furthermore, we observe the impact of the average shortest path on the network speed

and traffic overhead. Finally, we demonstrate that the presence of hub-like nodes such as relay

gateways negatively impacts the decentralization degree of blockchain networks.

5.1 Introduction

The first public blockchain was Bitcoin and was introduced by Nakamoto in 2008 (Nakamoto,

2009) since then, DLT has continued to evolve through many more advanced public and private

blockchains such as Ethereum (Wood et al., 2014) and Hyperledger Fabric (Androulaki et al.,

2018). Despite vast differences in design, operation, and application, the fundamental properties

of DLT remain network decentralization and data immutability.

In computer networks, decentralization comprises shifting from the traditional client-server

architecture to a peer-to-peer (P2P) network in which all nodes have the same role. In blockchain

networks, decentralization is usually expressed at the application layer as the execution and

storage of transactions without a trusted third party, or at the consensus layer through a byzantine

fault-tolerant protocol. However, an overlooked aspect is the decentralization of the public

blockchain network itself, which is sensitive to the peer selection strategy and network protocol.

In other words, even in a permission-less blockchain network where nodes can freely join and
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connect, the network can be more or less decentralized depending on how each node selects its

neighbors to maintain connections to within the P2P network since these connections affect how

transactions and blocks propagate throughout the system.

In practice, blockchain-based systems have encountered scalability and performance issues

(Eyal & Sirer, 2014; Atzei, Bartoletti & Cimoli, 2017; Brandenburger, Cachin, Kapitza & Sorniotti,

2018). Thus, there have been proposals for performance improvements, which range from

attempts at speeding up the blockchain overlay networks (e.g. (Corallo, 2016b, 2019; Ozisik

et al., 2017; Basu et al., 2019; Klarman et al., 2018; Fadhil, Owenson & Adda, 2017)) to

proposals for increasing the throughput of the system (e.g. (Croman et al., 2016; Gueta et al.,

2019; Yang et al., 2019b; Yu, Nikolic, Hou & Saxena, 2018)). While it is clear that these

proposals are beneficial to the blockchain systems in terms of performance, it is not yet known

what impact (positive or negative) they have on the other fundamental property of blockchain,

which is network decentralization. In this chapter, we seek to address this gap by formally

studying decentralization as a property of the P2P network graph.

Network decentralization is also overlooked in other common aspects of blockchain systems.

For instance, Bitcoin uses a bootstrapping stage where participating nodes connect to seed nodes.

This bootstrapping phase prevents blockchains from having a completely random topology,

particularly, if the nodes remain connected to the seed nodes for a long time. This is important

since a full decentralization network should have a completely random topology where nodes

have no preference when selecting a peer to maintain a connection. Relay nodes, which are

the focus of this chapter, can have the same impact on the network topology. As well, uneven

geographical distribution is another cause of centrality if peers use proximity-aware connections.

While the main aim of blockchain-based systems is to remove the need for a trusted third party

(TTP), a poorly decentralized blockchain network can be prone to be a single point of failure

(network partitions) or vulnerable to denial of service (DoS) attacks. Furthermore, poor network

decentralization can lead to governance issues, as a minority of central nodes can enforce

a certain protocol version by limiting communication among nodes that support a different
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version. Therefore, a methodology for quantifying network decentralization is crucial in order to

analyze these proposals deeply and ensure they do not have unintended side effects on network

decentralization. Furthermore, our proposed criterion for analytical and numerical analysis of

network decentralization will help blockchain designers compare multiple systems along that

dimension.

In this chapter, we focus our attention on studying the impact of relay networks on decentralization.

Relay networks are sub-networks that consist of powerful nodes which maintain many connections

simultaneously in order to reduce block and transaction propagation times (Corallo, 2019; Basu

et al., 2019). Relay networks affect the peer selection strategy of the entire P2P network, which

will preferentially connect to the relay nodes. To do so, we propose an analytical approach based

on the random graph models of Barabási–Albert (BA) (Barabási & Albert, 1999) and Erdös-Rény

(ER) (Erdős & Rényi, 1959), which are suitable for modeling permissionless blockchains with

and without a relay network, respectively.

The contributions of this chapter are as follows:

1. We present an analytical approach for quantifying the decentralization degree in blockchain

networks based on the peer selection strategy (random vs. prioritizing relays) for blockchain

networks with different architectures.

2. We verify our approach by implementing a complex network generator and running extensive

simulations. Furthermore, we validate our model using an experimental dataset mined from

the Bitcoin network.

3. We present simulation results and analysis of decentralization based on several important

metrics such as the average shortest path and the average number of connections.

4. We provide a detailed comparison between blockchain networks with varying architectures

and topologies with respect to decentralization and network speed.

5. We study the impact of the relay networks on the decentralization degree of the blockchain

network.
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The rest of this chapter is organized as follows. In Section 5.2, we describe the system and

graph models applied in our paper. In Section 5.3, we verify our complex network generator and

validate our simulation with the real Bitcoin network. Simulation results and related discussions

are presented in Section 5.4. Finally, Section 5.5 concludes this chapter.

5.2 System model and analysis

In this section, we first perform a decentralization analysis of permissionless blockchains

using the clustering coefficient. Then we propose the average shortest path as an indicator of

the network speed. These two metrics represent the trade-off between decentralization and

performance, respectively.

The clustering coefficient is a metric that captures the tendency of nodes in a graph to form a

cluster. For a simple graph, the clustering coefficient is bounded between zero and one and is

defined as local clustering coefficient (LCC) and global clustering coefficient (GCC).

Local clustering coefficient: this measure is also known as Watts—Strogatz (Watts & Strogatz,

1998) clustering coefficient and for any arbitrary node 𝑖 in the network, the local clustering

coefficient can be calculated as follows:

𝑐𝑖 =
2𝐿𝑖

𝑘𝑖 (𝑘𝑖 − 1)
(5.1)

where 𝐿𝑖 denotes the number of edges between the 𝑘𝑖 neighbors of the node 𝑖. Consequently, the

average network clustering coefficient can be calculated as follows:

𝐶 =
1

𝑁

𝑁∑
𝑖=1

𝑐𝑖 (5.2)

where 𝑁 is the number of participating nodes.

Global clustering coefficient: this measure is defined as follows:
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𝐶 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑐𝑙𝑜𝑠𝑒𝑑 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠
(5.3)

where the triplet is an ordered set of three nodes that are connected together by either two (in

open triplets) or three (in closed triplets) edges.

Note that the average clustering coefficient defined in Equation 5.2 and the global clustering

coefficient defined in Equation 5.3 are not equivalent. The local clustering coefficient reflects the

fraction of pairs of neighbors of a given individual node that are connected together, and hence

the average value of the tendency of the individual nodes to form a cluster, while the global

clustering coefficient reflects the overall structure of the nodes in the network. Although both

may exhibit the same behavior in most cases, nevertheless those can diverge in some extreme

networks (Bollobás & Riordan, 2003; Estrada, 2016) which are out of the scope of this chapter.

In this chapter, we study both of the mentioned measures in blockchain networks.

According to the above, a higher clustering coefficient indicates a higher degree of decentralization

due to the higher number of closed loops in the graph. Closed loops are trios of nodes that

are fully connected together (i.e. to form a triangle). This kind of formation is beneficial

for decentralization since the fully connected nodes can directly communicate without an

intermediate node. In contrast, low values of the clustering coefficient signify that there are

fewer alternative paths in the system, hence, there exist some centralized nodes through which

the traffic must necessarily flow.

Figure 5.1 Importance of the average shortest path
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5.2.1 Performance analysis

The shortest path 𝑑𝑖 𝑗 is the path between node 𝑖 and node 𝑗 with the least number of steps. The

average shortest path length can be obtained from the following equation:

𝐷 =
1

𝑛(𝑛 − 1)

∑
𝑖≠ 𝑗

𝑑𝑖 𝑗 (5.4)

In blockchain networks with a gossip protocol, the average shortest path plays a very important

role in the speed of information propagation. Figure 5.1 demonstrates this fact by comparing

three different networks together. in all of the networks above, the colored node is the initiator

node that intends to disseminate its information using a gossip protocol. The initiator node in

the network (a) is able to disseminate the information in only one gossip round. In network (b),

the initiator node will need two gossip rounds to disseminate the information. In network (c)

more than two gossip rounds are needed.

Figure 5.2 Degree distribution of nodes with 𝑀 and 𝑀0 set to 4 for ER network

with a network size of 𝑁 = 1000
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5.3 Verification and validation

In this section, we first verify our complex network generator which can be used for generating

P2P networks with a given size and known average number of connections per node as well

as specific conditions imposed by the blockchain protocol. Then, we validate our model by

comparing it with the real Bitcoin network.

5.3.1 Simulation Model and Verification

We now provide details on our methodology to generate networks that will satisfy the properties

required to be considered a BA or ER graph. Our generator is very important for our analysis

which requires many networks to be generated and studied in order to understand the impact

of several network characteristics on decentralization. We show that the graph generated by

our generator has the same features as expected in theory We verify that our implementation

is correct by running over 1000 trials for each simulation with different initial random seeds.

Furthermore, we carefully controlled the generated networks in order to ensure each generated

network is unique.

Figure 5.3 Degree distribution of nodes with 𝑀 and 𝑀0 set to 4 for BA network

with a network size of 𝑁 = 1000
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ER Network: The methodology for generating the ER network is presented in Algorithm 5.1.

This algorithm starts with an initiator node. The rest of the nodes join the network respectively

and get connected to existing nodes with a probability of 𝑝. We used this algorithm to generate an

ER network of 1000 nodes with a connection probability of 𝑝 = 0.004. Regarding these values

and the Equation 2.3, we expect the average degree of the nodes to be around 4 with a Poisson

distribution. In fact, the majority of the nodes should have around 4 connections to other nodes.

The degree distribution of nodes in 1000 repeats of this algorithm is depicted in Figure 5.2, which

validates our expectations. As mentioned, this model is suitable for blockchains with no relay

networks deployed and nodes periodically refresh their connection pool and forget the initial seeds.

Algorithm 5.1 Erdös-Rény model generation algorithm

Input :The values of 𝑁 and 𝑝
Output
:

E-R adjacency matrix A

1 A=0𝑁×𝑁
2 𝐸 ← 0

3 𝐶𝑡𝑟𝑙 ← 0

4 for 𝑖 = 2 to 𝑁 do
5 for 𝑗 = 1 to 𝑖 − 1 do
6 r ← 𝑅𝑎𝑛𝑑 (1)

; /* r is a random number uniformly selected from the
interval (0, 1) */

7 if 𝑝 > 𝑟 then
8 A[𝑖, 𝑗] ←1

9 A[ 𝑗 ,𝑖] ←1

10 end if
11 end for
12 end for
13 return A

BA Network: Algorithm 5.2 briefly describes the methodology we used to generate a power-law

scale-free network. This algorithm starts with 𝑀0 initiator nodes connected together via 𝑀0 − 1

links as a complete graph. Then, the rest of the nodes join the network respectively and one

by one and get connected to each of the existing nodes with a probability of 𝑝𝑖 as defined in
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equation (2.4). During the attachments, the algorithm controls the average degree of the nodes

in order to keep it around 𝑀 . In order to ensure that the generated network has the mentioned

features, we conducted a simulation with 1000 nodes. As shown in Figure 5.3, our generated

network is a BA network according to (Barabási & Albert, 1999). This simulation is conducted

for 𝑀 = 𝑀0 = 4. A few nodes appear with a high degree of connections and are labeled as hubs.

In our experiments, we expect to observe a few hubs around the initial seed size. Furthermore,

the majority of the nodes have a degree around the average 𝑀 .

5.3.2 Model validation

We validate our generator against a simulation of the Bitcoin network. We set the maximum

number of outgoing connections to 8 and the maximum number of incoming connections to

117, in accordance to the Bitcoin protocol. The average degree is set to 32 connections per

node(Decker & Wattenhofer, 2013). We conduct the simulation for 10,000 nodes, which is the

real size of the Bitcoin network (Bit, 2021). A schematic of the generated network can be seen in

Figure 5.4. The output result contains GCC, LCC, and the average shortest path length (ASPL)

in each network as presented in Table 5.1. In order to compare our results with the experimental

data mined from the Bitcoin network, we use the concept of dissemination waves (Shahsavari

et al., 2019b). Block propagation is modeled using a set of subsequent waves, each of which

covers one hop in the Bitcoin P2P network. In this model, LBM is modeled as a set of long

waves, and HBM is modeled as a set of short waves. Each block transfer in LBM is equivalent

to roughly three block transfers in HBM. This concept is depicted in Figure 5.5. Our simulation

results show the ASPL amounts of 3.05 and 3.22 for ER and BA models respectively. According

to results reported in (Shahsavari et al., 2019b), 100% of block propagation takes 3.33 waves

(i.e. three long waves plus one short wave) which is almost the same as BA algorithm results.

But the ER algorithm underestimates it to 1
3

of a wave. Thus, the BA algorithm is a better choice

for simulating the Bitcoin network.
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Algorithm 5.2 Barabási–Albert model generation algorithm

Input :The values of 𝑁 , 𝑀 and 𝑀0

Output
:

B-A adjacency matrix A

1 A=0𝑁×𝑁
2 𝐸 ← 0; 𝐶𝑡𝑟𝑙 ← 0

3 for 𝑖 = 1 to 𝑀0 do
4 for 𝑗 = 1 to 𝑀0 do
5 A[𝑖, 𝑗] ←1

6 A[ 𝑗 ,𝑖] ←1

7 E ← (𝐸 + 2)

8 end for
9 end for

10 for 𝑖 = 𝑀0 + 1 to 𝑁 do
11 𝐷𝑒𝑔𝑟𝑒𝑒← 0

12 for 𝑗 = 1 to 𝑖 − 1 do
13 while 𝐷𝑒𝑔𝑟𝑒𝑒 < 𝑀

2
do

14 𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑡𝑎𝑟𝑔𝑒𝑡 𝑜𝑛𝑒 𝑜 𝑓 𝑛𝑜𝑑𝑒𝑠 (𝑒𝑥𝑐𝑒𝑝𝑡 𝑛𝑜𝑑𝑒 i)

15 a ← 𝐷𝑒𝑔𝑟𝑒𝑒𝑜 𝑓 𝑛𝑜𝑑𝑒 i/𝐸
16 r ← 𝑅𝑎𝑛𝑑 (1)
17 // r is a random number uniformly selected from the interval (0, 1)
18 if 𝑎 > 𝑟 then
19 A[𝑖, 𝑗] ←1

20 A[ 𝑗 ,𝑖] ←1

21 E ← (𝐸 + 2)

22 else
23 𝐶𝑡𝑟𝑙 ← 1

24 while 𝐶𝑡𝑟𝑙 = 1 do
25 𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑡𝑎𝑟𝑔𝑒𝑡 𝑜𝑛𝑒 𝑜 𝑓
26 𝑛𝑜𝑑𝑒𝑠 (𝑒𝑥𝑐𝑒𝑝𝑡 𝑛𝑜𝑑𝑒 i)

27 a ← 𝐷𝑒𝑔𝑟𝑒𝑒𝑜 𝑓 𝑛𝑜𝑑𝑒 i/𝐸
28 r ← 𝑅𝑎𝑛𝑑 (1)
29 // r is a random number uniformly selected from the interval (0, 1)
30 if 𝑎 > 𝑟 then
31 A[𝑖, 𝑗] ←1;A[j,i] ←1; 𝐸 ← (𝐸 + 2);Ctrl ← 0;

32 end if
33 end while
34 end if
35 end while
36 end for
37 end for
38 return A
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Figure 5.4 Schematic of a generated network for Bitcoin

Generation Algorithm ASPL GCC LCC Achieved 𝑀
ER 3.05 0.033 0.032 32

BA 3.32 0.0228 0.0637 31.99

Table 5.1 Simulation results for Bitcoin. Targeted 𝑀 was 32.

5.4 Results and analysis

In this section, we present simulation results and analysis of network decentralization. We study

the impact of several network parameters, such as the average number of connections per node,

peer selection strategy, and relay network size over the decentralization degree of the network,

which is expressed in clustering coefficients.

Methodology: We conducted extensive simulations in order to study the impact of the network

architecture and peer selection strategy including the average number of connections per node

on the overall decentralization and speed of the blockchain networks. Simulations are carried

out for a network with a size of 10,000 nodes.
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Figure 5.5 Concept of dissemination waves in the Bitcoin network

𝑛0 is the miner of the block and𝑊1,𝑊2, and𝑊3 are the first, second,

and third dissemination waves

5.4.1 Peer selection strategy

We first study the effect of the peer selection strategy and the average degree of the nodes on

the decentralization degree of the blockchain networks. The ER network employs a uniformly

random peer selection strategy, while the BA network employs preferential attachment to the

relay nodes. The clustering coefficient measures the degree of decentralization of the system

and has a value between 0 and 1. With a value of 0, the network is completely centralized

with a tree-like structure. With a value of 1, the network is a complete graph which is fully

decentralized, since each node can communicate with any other node without any intermediary.

As seen in Figure 5.6, both GCC and LCC are decreased in a BA network with the increase

of the average number of connections per node and then tend to a constant amount. For

𝑀 = 32, GCC reaches the minimum amount. The network tends to form fewer closed loops and
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instead, more star-like nodes with a higher degree of connections appear. This situation in the

blockchain networks can be referred to as the appearance of hub-like nodes such as relay gateways.

Figure 5.6 Local and global clustering coefficient of BA network for

𝑁 = 10000

In another test, we repeated the experiment above for an ER network. As can be seen in

Figure 5.7, the decentralization degree increases linearly with the increase in the metric 𝑝 (hence

the average number of connections per node). However, at the low values of 𝑀 shown here, the

ER networks have a worse absolute decentralization degree than the BA network counterpart

at the same value of 𝑀. This is because at these low values of 𝑀, the ER network is sparsely

connected, and thus the paths between nodes contain a lot of redundancy.

At higher values of 𝑀 , ER networks eventually outperform the BA networks. The reason is that

in an ER graph, it tends to a complete graph with an increase of 𝑝. This means, in the absence of

hubs and relay networks, when every node selects its peers randomly with the same probability,

the degree of decentralization will increase.

In light of the above, we claim that relay networks hamper the decentralization degree in

blockchain networks with a sufficiently high average number of connections per node.
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Figure 5.7 Local and global clustering coefficient of ER network for

𝑁 = 10000

5.4.2 Shortest Path Analysis

In the next experiment, we study the trade-off between decentralization and performance by

analyzing the shortest path length of the ER and BA networks. As depicted in Figure 5.8 for both

the BA and ER networks, increasing the average degree of the network decreases the average

shortest path length. Note that there are no results for 𝑀 < 8 for an ER network because such

networks are not fully connected. Partitioned networks returned an amount of infinite for the

shortest path length and it led to the amount of infinite for the average after extensive simulations.

However, these networks contain a partition and cannot achieve consensus. Due to the gossiping

protocol, a smaller average for the shortest path means faster information propagation. In

particular, the result from the BA network experiment indicates that the growing presence of

a relay network will improve performance, at the expense of decentralization (as seen in the

previous graph Figure 5.6). In the ER network, an increase in the number of connections has a

limited impact on the average shortest path, as the uniform random peer selection strategy does

not efficiently leverage those additional connections to reduce the path length.

Note that we assume that all P2P connections have the same bandwidth and geographical dis-

tance. However, we can generalize our results by taking into account both additional parameters.
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Nevertheless, increasing the network speed by increasing the average number of connections per

node is not a good idea since it comes at the cost of increased overheads such as traffic overhead

in the network (Shahsavari et al., 2019b).

Figure 5.8 Average shortest path for ER and BA networks for 𝑁 = 10000

Figure 5.9 Total number of links (traffic overhead) for N=10000
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Figure 5.10 Local and global clustering coefficient for a BA network with

𝑁 = 10000

5.4.3 Traffic Overhead Analysis

As mentioned in Section 2.1.9, the total number of links represents the lower bound of the traffic

handling overhead. As shown in Figure 5.9, in both BA and ER networks, the total number of

links increases with the increase of the average degree as a step-like and sub-linear function. The

overall consequence is that in a BA network, the presence of a growing relay network (i.e., an

increase in the average degree of the network) will lead to a faster network but it comes at the cost

of decentralization and minimum traffic handling overhead. But in an ER network, the trade-off

is different as increasing the average number of connections improves the decentralization and

network speed but increases the minimum traffic overhead.

5.4.4 Relay Network Size

We also wish to understand the effect of the relay network size on the overall decentralization

degree of the network. To accomplish this goal, we conducted another set of experiments in

which the overall size of the network was kept constant (at 𝑁 = 10000), while varying the

percentage of nodes participating in the relay network. We repeated the experiment for different

amounts of the average degree of the network. The results are depicted in Figure 5.10. As
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it can be seen, for a constant network size, when the size of the relay network tends to 50%,

the network tends to be fully decentralized. For 𝑀 = 4, for a relay network size of 15%, the

decentralization degree is around 70%. For 𝑀 = 8 and 𝑀 = 10, this amount is around 55% and

45% respectively. As well, for 𝑀 = 16 and 𝑀 = 32, this amount goes down to around 40% and

30% respectively.

As a clear consequence, for a constant size of a blockchain network, a bigger percentage of the

nodes participating as a relay node means a more decentralized network that is fairer.

5.5 Conclusion and Future works

In this chapter, we presented an analytical methodology for quantifying the decentralization

degree in blockchain networks based on the peer selection strategy. To accomplish this, we

implemented a complex blockchain network generator using two graph models: Barabási–Albert

and Erdös-Rény. We analyzed and compared decentralization, the average shortest path as

an indicator of the network speed, and the number of links as an indicator of minimum

traffic handling overhead in blockchain networks with different architectures through extensive

simulations. The obtained results disclosed that the decentralization degree of the network

extremely depends on the topology and the architecture of the network. We have proven that the

use of hubs and relay networks drastically reduces the decentralization degree of the network.

Although increasing the number of connections per node can decrease the average shortest path

and consequently decrease the block propagation delay, nevertheless in networks with deployed

relay nodes it comes at cost of a reduced amount of decentralization.





CHAPTER 6

PERFORMANCE MODELING AND ANALYSIS OF HOTSTUFF FOR BLOCKCHAIN
CONSENSUS

Byzantine Fault-Tolerant (BFT) protocols are classical algorithms that offer a faster and more

energy-efficient consensus mechanism compared to Proof-of-Work (PoW), which is typically

used by cryptocurrencies such as Bitcoin. Synchronous BFT systems are hard to implement and

vulnerable to attacks that aim to disrupt the synchrony of the system. Practical BFT (PBFT),

which is a partially synchronous protocol, is a high-performance consensus algorithm that

provides strong safety in the presence of a bounded number of faulty participants. Hotstuff

is one such partially synchronous BFT State Machine Replication (SMR) protocol that aims

to address the aforementioned issues. PBFT is becoming a popular choice for blockchain

consensus, especially in permissioned systems (e.g. Ripple, Stellar, etc). However, it is not well

understood how Hotstuff, and PBFT consensus in general, behave under varying conditions that

are commonly found in blockchain networks.

In this chapter, we present a theoretical model for the Hotstuff consensus mechanism which

accurately predicts blockchain-related metrics such as the transaction throughput and expected

confirmation time using important networking parameters such as the number of replicas, link

latency, and packet loss. Furthermore, we validate our model through extensive simulations

carried out using OMNeT++.

6.1 Introduction

Byzantine Fault-Tolerant (BFT) protocols are classical algorithms that offer a faster and more

scalable consensus mechanism compared to PoW. The first BFT was introduced and formulated

as the Byzantine generals problem by Lamport 𝑒𝑡 𝑎𝑙. (Lamport, Shostak & Pease, 1982). But

the first synchronous solution was proposed in (Pease, Shostak & Lamport, 1980). Practical

Byzantine Fault Tolerance (PBFT), which is a partially synchronous protocol, provides a high-

performance consensus algorithm and was proposed by Liskov 𝑒𝑡 𝑎𝑙. in (Castro et al., 1999). It
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provides strong safety in the presence of a bounded number of faulty participants and is robust

against Sybil attacks. The number of tolerable faulty replicas quite depends on the synchrony

situation of the system. A synchronous protocol can guarantee safety when up to one-half of

total replicas are faulty (Fitzi, 2002) while in asynchronous and partially synchronous protocols,

safety is provided when up to one-third of total replicas are faulty (Dwork, Lynch & Stockmeyer,

1988). In practice, synchronous BFT systems are hard to implement since most of them need a

large number of operation rounds with exactly synchronized participants (i.e. all the replicas

must start each round and finish it at exactly the same time). As well these protocols are

extremely vulnerable to attacks that aim to disrupt the synchrony of the system.

Hotstuff is one of the partially synchronous BFT State Machine Replication (SMR) protocols (Yin

et al., 2018) that aims to address the issues mentioned above. Hotstuff is capable of achieving

both linear (and hence fast) view change as well as responsiveness (i.e. achieving the consensus

at the speed of wire). To accomplish this, Hotstuff uses threshold signatures in a three-chain

commit rule. Hotstuff can pipeline proposals in order to reach higher throughput. This means

any leader can propose its own block without waiting for the parent block to get committed.

Hotstuff operates over a reliable and secure Peer-to-Peer (P2P) network of 𝑁 = 3 𝑓 + 1 replicas

where 𝑓 is the number of faulty replicas. The leader gets selected and proposes its own proposal

and collects data from the replicas during an algorithm known as view change. Although a

stable leader can drive the protocol to consensus in two phases of message exchanges (the first

round for guaranteeing the proposal uniqueness and the second round for convincing replicas

for voting for a proposal), nevertheless it is bug-prone (Abraham et al., 2017) and far from

simple (Mickens, 2014). Instead, Hotstuff can operate on three phases (excluding decide phase)

that allow the leader to simply pick the highest Quorum Certificate (QC) that it knows (Yin

et al., 2018).

There are some researchers that study Hotstuff and its performance. A few of them introduce

improved variants of Hotstuff from the performance view point (Abraham, Malkhi, Nayak,

Ren & Yin, 2020; Cheng, 2022; bau; Jalalzai, Niu, Feng & Gai). But to the best of our knowledge,
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there is no analytical performance model that can explain the relationship between the throughput

of Hotstuff and architecture design and setup, especially, the number of replicas in the systems.

In this chapter, we seek to address the aforementioned research gap by modeling the performance

of the original HotStuff algorithm. As it is the principal component of a relatively new consensus

system, it is imperative to analyze its performance in order to gain insights into the behavior and

dynamics of the system, thereby facilitating the optimal configuration of the network without

requiring iterative benchmarking. In this chapter, we present a theoretical model for the Hotstuff

consensus mechanism and derive explicit mathematical equations to describe the dynamics

and behavior of the system and identify the relationship between different metrics affecting the

performance of the Hotstuff blockchain. we validate our theoretical model through extensive

simulations using the network simulator OMNeT++, which is a discrete event simulator. As

well, We estimate the throughput or the number of transactions per second (TPS) in Hotstuff.

Furthermore, we identify the most effective parameters which impact its performance (e.g.,

network size, number of nodes, and transaction processing time) and show how the performance

of Hotstuff is affected by the mentioned metrics.

The rest of this chapter is organized as follows: In Section 6.2, we present our proposed analytical

approach for modeling the performance of Hotstuff. In Section 6.3, we validate our developed

model through extensive simulations and study the performance of Hotstuff. Finally, Section 6.4

concludes chapter.

6.2 Proposed Analytical Model

This section presents the system model and the relationship between entities in the system. We

derive explicit equations that explain the relationship between transaction throughput, latency,

and network specifications.
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6.2.1 System model

Network model: we assume a system of 𝑁 = 3 𝑓 + 1 replicas with the same processing power

operating over a fully connected P2P network in which replicas are directly connected pairwise

(i.e., each replica is directly connected to 𝑁 − 1 replicas). Any replica with a missing connection

should be considered a Byzantine node or a faulty replica. We assume transmission delay has

an exponential distribution in P2P links with a mean of 1/𝜇. Although in reality, the latency

of the links does not necessarily follow an exponential distribution, nevertheless developing

a theoretical model without simplification assumptions will not be a trivial job since the

relationship between parameters will become intractable. The exponential distribution is fully

described in (Papoulis & Pillai, 2002) and has frequently been used for modeling asynchronous

networks in literature (e.g. (Fukś, Lawniczak & Volkov, 2001; Sukhov, Astrakhantseva, Pervitsky,

Boldyrev & Bukatov, 2016)). As well, we assume all of the messages reach to destination with a

constant probability of 1 − 𝜌 (or get lost or dropped with a constant probability of 𝜌). When a

client submits a request to the network, it sets a timer with the amount of 𝜏𝑜 and waits. If it does

not receive at least 𝑓 + 1 Decide message for that request before the timer expires, it will abort

and cancel the request. Note that replicas also set a timer in each phase, and can give up a certain

phase if they do not receive the related messages within a predetermined interval of time. Hence,

although the Hotstuff-based blockchain system can utilize TCP, (and thus all of the packets are

expected to be delivered to the destination eventually) the packets should also arrive at their

destination within a maximum delay of 𝛿. Otherwise, they will be considered lost messages.

If a replica’s timer expires, it will send a time-out message instead of a positive/negative vote

and will give up the phase. If a leader gathers time-out messages from a quorum of replicas, it

will broadcast a time-out certificate (TC) instead of a quorum certificate and the round will be

aborted. In this chapter, we treat a timed-out replica as a faulty node. Also, we assume all the

replicas are acting independently.

Replica model: we assume a normal or honest replica always sends a valid response to any valid

request. In contrast, we assume a faulty replica never sends a valid response to a valid request.
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Figure 6.1 Bernoulli loss model

In this model, a certain packet gets lost with a probability of

𝑝 and reaches its destination with a probability of 𝑞

Loss model: We assume the packet loss over all the links follows the Bernoulli loss model (Yajnik,

Moon, Kurose & Towsley, 1999; Blanc, Avrachenkov & Collange, 2009) with a probability of

𝑝. This model is illustrated in Figure 6.1. Bernoulli’s model is also a geometric distribution,

which is a two-state model. In this model, one state (i.e. OK) is the state in which a certain

packet reaches its destination with a probability of 𝑞, without getting lost or corrupted. The

other state (i.e. Loss) represents a packet loss. In this state, a certain packet does not reach the

destination due to a reason such as a packet drop or getting corrupted. Packet loss can either

happen due to a packet drop in the queue or due to excessive delay. Therefore, the overall packet

loss probability can be estimated as follows:

𝜌 = 𝑝 + (1 − 𝑝)𝑃{𝛿(𝑘) ≥ 𝜏} (6.1)

Where 𝛿(𝑘) is the network delay for packet 𝑘 , and 𝜏 is the maximum tolerable network delay for

this packet.



104

6.2.2 Analytical model

In order to consider the proposal as committed, the requester client needs to receive at least 𝑓 + 1

Decide messages for the proposal that consists of that request (see Figure 6.2). The probability

mass function of receiving at least 𝑑 Decide messages by the client can be calculated as follows.

P{𝑌𝐷 = 𝑑} =
𝑁 − 𝑓 − 1

𝑁 − 1

𝑁∑
𝑑′=𝑑

P{𝑌𝐷 = 𝑑 |𝑋𝐷 = 𝑑′}P{𝑋𝐷 = 𝑑′} (6.2)

Where P{𝑋𝐷 = 𝑑′} is the probability mass function that 𝑑′ replicas receive a Decide message

for a certain view number. We use factor
𝑁− 𝑓−1
𝑁−1

since apart from the leader, only 𝑁 − 𝑓 − 1

replicas send honest votes. P{𝑋𝐷 = 𝑑′} can be computed as follows

P{𝑋𝐷 = 𝑑′} =
𝑁∑

𝑐= 𝑓 +1

P{𝑋𝐷 = 𝑑′|𝑌𝐶 = 𝑐}P{𝑌𝐶 = 𝑐} (6.3)

Where P{𝑌𝐶 = 𝑐} is the probability mass function that the leader receives 𝑐 positive Commit

votes at the end of the commit phase. In order to finish the commit phase successfully, 𝑐 must be

equal to or greater than 2 𝑓 + 1 and can be computed as follows.

P{𝑌𝐶 = 𝑐} =
𝑁 − 𝑓 − 1

𝑁 − 1

𝑁∑
𝑐′=2 𝑓

P{𝑌𝐶 = 𝑐 |𝑋𝐶 = 𝑐′}P{𝑋𝐶 = 𝑐′} (6.4)

In the equation above, P{𝑋𝐶 = 𝑐′} is the probability mass function that 𝑐′ replicas receive

Commit message from the leader during the commit phase for the same view number as above

and can be computed as follows. It is to be noted that we assume the replicas always receive a

self-message without any loss or corruption.

P{𝑋𝐶 = 𝑐′} =
𝑁∑

𝑝𝑐=2 𝑓

P{𝑋𝐶 = 𝑐′|𝑌𝑃𝐶 = 𝑝𝑐}P{𝑌𝑃𝐶 = 𝑝𝑐} (6.5)
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Where, P{𝑌𝑃𝐶 = 𝑝𝑐} is the probability mass function of receiving 𝑝𝑐 Pre-commit votes by the

leader and in the same way can be computed as below

P{𝑌𝑃𝐶 = 𝑝𝑐} =
𝑁 − 𝑓 − 1

𝑁 − 1

𝑁∑
𝑝′𝑐′=𝑝𝑐

P{𝑌𝑃𝐶 = 𝑝𝑐 |𝑋𝑃𝐶 = 𝑝′𝑐′}P{𝑋𝑃𝐶 = 𝑝′𝑐′} (6.6)

Where, P{𝑋𝑃𝐶 = 𝑝′𝑐′} is the probability mass function that 𝑝′𝑐′ replicas receive the Pre-commit

message from the leader during the same view number as above and can be computed as follows.

P{𝑋𝑃𝐶 = 𝑝′𝑐′} =
𝑁∑

𝑝=2 𝑓

P{𝑋𝑃𝐶 = 𝑝′𝑐′|𝑌𝑃 = 𝑝}P{𝑌𝑃 = 𝑝} (6.7)

Similarly, P{𝑌𝑃 = 𝑝} is the probability mass function of receiving 𝑝 Prepare votes by the

leader at the end of prepare phase. It can be calculated as follows.

P{𝑌𝑃 = 𝑝} =
𝑁 − 𝑓 − 1

𝑁 − 1

𝑁∑
𝑝′=𝑝

P{𝑌𝑃 = 𝑝 |𝑋𝑃 = 𝑝′}P{𝑋𝑃 = 𝑝′} (6.8)

Where P{𝑋𝑃 = 𝑝′} is the probability mass function that 𝑝′ replicas receive the Prepare

messages from the leader during the prepare phase and can be calculated as follows

P{𝑋𝑃 = 𝑝′} =
𝑁 − 𝑓 − 1

𝑁 − 1

(
𝑁 − 1

𝑝′

)
(1 − 𝜌)𝑝

′+1𝜌𝑁−𝑝
′−1 (6.9)

Where 𝜌 is calculated from the Equation 6.1. It is to be noted that in the equation above,

𝑁− 𝑓−1
𝑁−1

(1 − 𝜌) is the probability that the leader is selected from the honest nodes and receives

the request from the client successfully via a P2P link.

In Equation 6.2, P{𝑌𝐷 = 𝑑 |𝑋𝐷 = 𝑑′} can be rewritten as follows.
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P{𝑌𝐷 = 𝑑 |𝑋𝐷 = 𝑑′} =

(
𝑑′

𝑑

)
(1 − 𝜌)𝑑 𝜌𝑑

′−𝑑 (6.10)

In the same way in Equation 6.4

P{𝑌𝐶 = 𝑐 |𝑋𝐶 = 𝑐′} =

(
𝑐′

𝑐

)
(1 − 𝜌)𝑐𝜌𝑐

′−𝑐 (6.11)

Similarly in Equation 6.6

P{𝑌𝑃𝐶 = 𝑝𝑐 |𝑋𝑃𝐶 = 𝑝′𝑐′} =

(
𝑝′𝑐′

𝑝𝑐

)
(1 − 𝜌)𝑝𝑐𝜌𝑝

′𝑐′−𝑝𝑐 (6.12)

And in Equation 6.8

P{𝑌𝑃 = 𝑝 |𝑋𝑃 = 𝑝′} =

(
𝑝′

𝑝

)
(1 − 𝜌)𝑝𝜌𝑝

′−𝑝 (6.13)

So far, we are able to calculate the probability of reaching a consensus successfully (denoted as

𝑃𝑠). Consensus happens when the client receives 𝑓 + 1 or more Decide votes from the replicas.

Therefore,

𝑃𝑠 =
𝑁∑

𝑖= 𝑓 +1

P{𝑌𝐷 = 𝑖} (6.14)

For estimating the transaction throughput, we need to calculate the mean time of reaching a

consensus as follows:

E[𝑇𝑐] = E[𝑇𝑠] + (1 − 𝑝𝑠)𝜏𝑜 (6.15)
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where E[𝑇𝑐] and E[𝑇𝑠] are the expected values of time for reaching a consensus (consist of

all successful and unsuccessful attempts) and the expected value of the time for a successful

consensus attempt, respectively. As well, 𝜏𝑜 is the value of the timer set by the clients as a

time-out value. We assume all the clients always set the same amount for the timer.

Assume 𝑛𝑝, 𝑛𝑝𝑐, 𝑛𝑐 and 𝑛𝑑 are the number of replicas that receive Prepare, Pre-commit,

Commit, Decide messages from the leader of a certain view during phases prepare, pre-commit,

commit, and decide respectively (see the Figure 6.2).

Figure 6.2 Overview of the Hotstuff protocol: Block proposals require 4 consecutive

phases to be committed

The process of sending the proposal from the leader to replicas in each round can be considered

as an asynchronous process since leaders broadcast the proposal to validators at almost the same

time. Clearly,

𝑛𝑝 =
𝑁 − 𝑓 − 1

𝑁 − 1
(1 − 𝜌) (𝑁 − 1) = (𝑁 − 𝑓 − 1) (1 − 𝜌) (6.16)
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In the equation above,
𝑁− 𝑓−1
𝑁−1

is the probability that the leader gets selected from honest nodes.

As well,

𝑛𝑝𝑐 = 𝑛𝑐 = 𝑛𝑑 = (𝑁 − 1) (1 − 𝜌) (6.17)

Assume 𝑀 nodes are sending messages to the same destination with an exponentially distributed

delay. The expected time to receive 𝑖 messages at the destination can be calculated as

follows (Papoulis & Pillai, 2002):

E[𝑇𝑀] =
1

𝜇

𝑖−1∑
𝑗=0

1

𝑀 − 𝑗
(6.18)

where 𝜇 is the parameter of the exponential distribution (e.g. 𝜇−1= mean P2P delay between the

nodes). Hence,

E[𝑇𝑛𝑝 ] =
1

𝜇

2 𝑓−1∑
𝑖=0

1

𝑛𝑝 − 𝑖
(6.19)

where E[𝑇𝑛𝑝 ] is the expected time takes for the leader to receive 2 𝑓 valid Prepare votes from

the 𝑛𝑝 replicas at the end of prepare phase. It is to be noted that we assume the leader receives

his vote to himself in a very small and negligible amount of time. In the same way we can write:

E[𝑇𝑛𝑝𝑐 ] =
1

𝜇

2 𝑓−1∑
𝑖=0

1

𝑛𝑝𝑐 − 𝑖
(6.20)

E[𝑇𝑛𝑐 ] =
1

𝜇

2 𝑓−1∑
𝑖=0

1

𝑛𝑐 − 𝑖
(6.21)



109

E[𝑇𝑛𝑑 ] =
1

𝜇

𝑓−1∑
𝑖=0

1

𝑛𝑑 − 𝑖
(6.22)

we are now able to calculate E[𝑇𝑠] as follows:

E[𝑇𝑠] =
3

𝜇
+ E[𝑇𝑝] +

1

𝜇
(

2 𝑓−1∑
𝑖=0

1

𝑛𝑝 − 𝑖

2 𝑓−1∑
𝑖=0

1

𝑛𝑝𝑐 − 𝑖
+

2 𝑓−1∑
𝑖=0

1

𝑛𝑐 − 𝑖
) (6.23)

where E[𝑇𝑝] is the mean proposal (i.e. block) processing time and is the time each replica spends

to check the proposal and prepare a vote. Now we can calculate E[𝑇𝑐] from Equation (6.15).

The throughput of the system can be calculated simply as follows:

𝛾 =
1

E[𝑇𝑐]
(6.24)

It is to be noted that in order to calculate E[𝑇𝑠], we only considered the time interval from the

instant the leader starts the prepare phase until it receives 2 𝑓 + 1 commit votes from the replicas.

However, the latency experienced by the client to get the response from the network of replicas

can be calculated as follows.

E[𝑇𝐷] = E[𝑇𝑠] +
1

𝜇
(2 +

𝑓−1∑
𝑖=0

1

𝑛𝑑 − 𝑖
) (6.25)

The throughput of the system from the client’s view point can be calculated simply as follows.

𝛾𝑐 =
1

E[𝑇𝐷]
(6.26)
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6.3 Model Validation and Analysis

In this section, we validate our theoretical model by comparing it with simulation results and

explain the configuration we set up for simulation. We then discuss the results and the impact on

the expected performance of the basic Hotstuff network, as well as potential trade-offs.

Implementation: We used 𝑂𝑀𝑁𝑒𝑇 + + (OmNet) as a discrete event-based simulator of the

network. As well, we used 𝑀𝑎𝑡𝑙𝑎𝑏 for the calculation and analysis of the theoretical model. We

used 𝑁𝐸𝐷 language for describing the network topology and assigning values to networking

parameters (e.g. p2p latency, network size, etc). We implemented the basic Hotstuff mechanism

in each module using 𝐶 + +. For each experiment, we changed random number seeds using an

𝑖𝑛𝑖 file.

Settings: In this chapter, we carry out the experiments for a variety of network sizes but limit our

experiments to 127 replicas since for bigger networks throughput becomes very low and as we

will see, in some conditions, it tends to zero. In each experiment, we considered a network with a

size of 𝑁 as 𝑁 = 3 𝑓 + 1 (therefore 𝑁 − 1 is divisible by 3). We started with the smallest possible

network (𝑁 = 4 and 𝑓 = 1) and doubled the network size in each of the next experiments.

For all experiments, we assumed each proposal consists of only one transaction. Block

processing time for blocks with more than one transaction may not necessarily increase linearly

with increasing the number of transactions embedded in the block since it depends on the code,

the number of threads, and the size of the block header. Moreover, we assumed all the replicas

have the same processing power and consequently the same processing delay as validators. In

OMNeT++, a processing delay can be simulated using a self message scheduled for a certain

event.

We set a direct P2P link between any two arbitrary validators. Hence, the network is a complete

graph. We set a random P2P link delay for each experiment with an exponential distribution

with a mean amount of 1/𝜇 = 1𝑚𝑠. Assuming an exponential distribution for link delay is

common and adequate for many use cases (Hassan & Jain, 2003). In OMNeT++, one can create
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a channel between two arbitrary modules in the Ned file with an exponential distribution and

assign the mean value.

In order to simulate parameter 𝜌, we implemented all the links as ideal links without any packet

loss, drop, or corruption. Instead, in the receiver module, packets get deleted upon arrival with a

probability of 𝜌 or go to the next level with a probability of 1 − 𝜌. Finally, we assumed that

Byzantine or faulty nodes can either send invalid responses or do not send any vote to Prepare,

Pre-commit, and Commit messages. In addition, we assumed that receivers always delete

invalid messages. In the simulation code, faulty nodes always send an invalid response that gets

deleted in the destination node. Furthermore, the replicas whose valid votes get deleted due to

packet loss are also treated as faulty nodes.

a) Throughput vs. network size for different values

of packet loss

b) Latency vs. network size for different values of

packet loss

Figure 6.3 Theoretical vs. simulation results

Results and discussion: In Figure 6.3a and Figure 6.3b, we depict the results of our experiments

for transaction throughput and latency versus the network size (i.e. the number of replicas)

for different amounts of packet loss percentage. For this experiment, we kept the transaction

processing time equal to 1𝑚𝑠. We started with a loss-less network in which 𝜌 = 0 and therefore

every packet reaches to its destination without getting lost or corrupted. We increased the amount

of packet lost by one percent in each of the next experiments while keeping every other metric

constant. First, as we can see, the simulation results closely follow the theoretical amounts.

Second, as is expected, when increasing the number of replicas, throughput goes down and
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a) Throughput vs. network size for different values

of transaction processing time

b) Throughput vs. network size for different values

of transaction processing time

Figure 6.4 Theoretical vs. simulation results

latency time goes up. As it can be seen, with a higher packet loss probability, throughput and

latency get worse faster when increasing the number of replicas. When 𝜌 = 3% and 𝑁 = 127,

the throughput tends to zero, and the latency tends to infinite. This means that the consensus

never happens and the client aborts the request since the timer is expired.

In the next set of experiments, we kept 𝜌 = 3% and changed the transaction processing time in

each replica from 1𝑚𝑠 to 4𝑚𝑠. Results are depicted in Figure 6.4a and Figure 6.4b. Obviously,

increasing the transaction processing time has a negative impact on both throughput and latency.

Increasing the transaction processing time has a stronger effect on the throughput of smaller

networks while in the larger networks the effect of increased transaction processing time can be

negligible. In addition, when 𝑁 = 127, the latency tends to the infinite. This implies that the

consensus attempt failed and the client aborted the request.

6.4 Conclusion

In this chapter, we proposed a theoretical performance model for the basic Hotstuff consensus

algorithm and validated it with a set of simulations carried out using OMNeT++. As well, we

presented a performance analysis and studied the system throughput for a variety of network sizes

with different amounts of the packet loss ratio and transaction processing time. We observed
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that the throughput is highly dependent on the number of replicas, transaction processing time,

and packet loss ratio in the network.

Setting a too low amount of time-out in clients can lead them to frequently abort their queries

while setting a too high amount of time-out may slow down the network and consequently reduce

the throughput. Moreover, setting an inappropriate time-out amount in validators can slow down

the network in another way. Our future work is to leverage this model to dynamically determine

the optimal timeout value for the clients and validators in order to maximize the throughput.

Our future work is to estimate the optimal value of the time-out set in the clients regarding the

network specifications. As well, we will extend our existing performance model to the pipelined

Hotstuff.





CONCLUSION AND RECOMMENDATIONS

In this chapter, we conclude and summarize the findings of this research and present future

works.

7.1 Summary

In this thesis, we developed analytical models for the analysis of blockchain networks. To

accomplish this, we studied blockchain networks in two separate categories of the public

(permission-less) and private (permissioned) blockchains. We exploited these models to

investigate the impact of network topology and key blockchain parameters on three different

aspects of blockchain networks in terms of performance, security (forks), and decentralization.

In Chapter 3, we presented a performance model for Bitcoin as the representative of public

PoW-based blockchains, We proposed a random graph model for performance modeling and

analysis of the inventory-based protocol for block dissemination in the Bitcoin network. This

model addresses the impact of key blockchain parameters on the overall performance of Bitcoin.

We derived some explicit and closed-form equations for block propagation delay and traffic

overhead in the Bitcoin network. We also adapted our model to study the impact of deploying a

relay network and investigate the effect of the relay network size on the network performance

and decentralization of PoW-based blockchains. We implemented our model using the popular

network simulator OMNet++. We validated the accuracy of the proposed theoretical model

and its implementation with the dataset mined from the Bitcoin network. Our results show the

trade-off between the default number of connections per node, network bandwidth, and block

size in order to compute the optimal block propagation delay over the network. Although the

throughput of Bitcoin can be increased by choosing a bigger size for blocks, this can cause a

significant increase in the block propagation time. The delay can be reduced by increasing the

average default number of connections per node but this has the drawback of increased traffic
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overhead in the network. As well, we found and proved that bigger relay networks can jeopardize

the decentralization of the Bitcoin network.

In Chapter 4, we investigated the cause and length of forks for the Bitcoin network. We developed

theoretical formulas which model the Bitcoin consensus and formation of forks in the network,

based on an Erdös-Rényi random graph construction of the overlay network of peers. This

model was also validated with simulation and historical data gathered from the Bitcoin network.

We implemented this model using the popular network simulator OMNet++. We validated

the accuracy of the proposed theoretical model and its implementation with the dataset mined

from the Bitcoin network. We leveraged this model to estimate the weight of fork branches.

We showed that under current conditions, Bitcoin will not benefit from increasing the number

of connections per node. furthermore, we showed that reducing the block time compromises

the security of the blockchain by increasing the probability of a fork. The average number of

connections per node currently has no impact on the probability of forks, since Bitcoin currently

operates within a stable range of 22-99 connections. In addition, we investigate the impact of

the time difference between two concurrent blocks and the average number of connections per

node on the weight of fork branches. If the later miner starts to propagate its block too late and

the number of connections per node is sufficiently high, the impact of the fork on the network is

almost negligible.

In Chapter 5, we presented a methodology for quantifying the decentralization degree of a

blockchain network. To accomplish this, we used two well-known graph models of Erdös-Rény

and Barabási–Albert in order to study the blockchain network topology. We then used the

clustering coefficient of the network models to quantify the decentralization degree. We analyzed

and compared decentralization, the average shortest path as an indicator of the network speed,

and the number of links as an indicator of minimum traffic handling overhead in blockchain

networks with different architectures through extensive simulations. The obtained results
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disclosed that the decentralization degree of the network extremely depends on the topology

and the architecture of the network. We have proven that the use of hubs and relay networks

drastically reduces the decentralization degree of the network. Although increasing the number

of connections per node can decrease the average shortest path and consequently decrease the

block propagation delay, nevertheless in networks with deployed relay nodes it comes at cost of

a reduced amount of decentralization.

In Chapter 6, we presented a theoretical model for the Hotstuff consensus mechanism as the

representative of private blockchains. This model was able to accurately predict blockchain-

related metrics such as the transaction throughput and expected confirmation time using important

networking parameters such as the number of replicas, link latency, and packet loss. In this

chapter we found setting a too low amount of time-out in clients can lead them to frequently

abort their queries while setting a too high amount of time-out may slow down the network

and consequently reduce the throughput. Moreover, we showed that setting an inappropriate

time-out amount in validators can slow down the network in another way.

7.2 Future works

In this thesis, we presented significant contributions in the performance modeling and analysis

of blockchain networks. Nevertheless, there exist several research gaps as well as possible

extensions from our previous works.

Bitcoin and Ethereum have almost the same information propagation mechanism. Nevertheless,

they have still considerable differences. In future work, the presented model for Bitcoin can

be adopted for Ethereum and it will not be a trivial job. Another possible future work is to

extend our fork model for the analysis of eclipse attacks in blockchain networks. As well, the

mentioned model can be leveraged jointly with our methodology for quantifying decentralization
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in blockchain networks to study the impact of decentralization of the blockchain networks on

the fork probability.

Our future work in the context of private blockchains is to leverage the developed model for

Hotstuff to dynamically determine the optimal timeout value for the clients and validators in

order to maximize the throughput. In addition, it can be adapted for other BFT-based protocols.
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