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Une étude sur les modèles de feux de circulation et les mesures de performance tenant
compte des flux de piétons et de véhicules

Farzaneh Montazeri

RÉSUMÉ

Les systèmes de contrôle de la circulation sont cruciaux pour gérer les flux de circulation. Leur

fonction principale est de réduire les conflits entre utilisateurs pour des raisons de sécurité tout

en minimisant les temps de voyage. L’optimisation du cycle des feux de circulation concerne

principalement la détermination de la longueur du cycle et de la configuration des phases

composant le cycle. Les chercheurs se concentrent souvent sur la durée du cycle, dont l’impact

sur les temps de déplacement est directement mesurable. Cependant, la configuration des phases

composant le cycle présente également un grand potentiel de réduction des temps de trajet et du

nombre de situations accidentogènes. Ce potentiel doit encore être étudié en profondeur.

Dans ce travail, nous nous intéressons à la comparaison de différents cycles en termes de

nombre de conflits potentiels et de retard pour les conducteurs et les piétons. À cette fin, nous

sélectionnons d’abord trois types de cycles couramment utilisés, à savoir le phasage exclusif

(EPP – Exclusive Pedestrian Phase), le phase protégé (LTI - Leading Through Interval) et

le phasage concurrent (TWC - Two-Way Crossing). Nous généralisons ensuite les méthodes

existantes pour mesurer le retard et la sécurité de l’utilisateur pour ces trois modèles de feux. De

plus, nous étudions un cycle hybride hypothétique obtenu en adaptant dynamiquement le cycle

aux données de circulation en temps réel.

La méthodologie proposée est appliquée à l’étude d’un carrefour isolé à Montréal, Canada.

Nous effectuons des simulations visant à déterminer le meilleur cycle en fonction d’indicateurs

de performance ad hoc et des flux d’utilisateurs.

Les résultats montrent que les cycle EPP et LTI fonctionnent généralement mieux que TWC. EPP

surpasse LTI lorsqu’il s’agit de mesurer le nombre de conflits potentiels, tandis que LTI surpasse

EPP lorsqu’il s’agit de prendre en compte les délais. De plus, le cycle hybride hypothétique a un

impact positif mais globalement limité.

Mots-clés: Feux de circulations,piétons, Sécurité, Temps de retard





A study on traffic signal patterns and performance measures accounting for pedestrian
and vehicle flows

Farzaneh Montazeri

ABSTRACT

Traffic control systems are crucial for managing traffic flows. Their main function is to reduce

interactions among users for safety reasons while minimizing travel times. Traffic signal control

optimization is primarily concerned with determining the cycle length and the signal pattern.

Researchers often concentrate on the cycle length, whose impact on travel times is directly

measurable. However, the choice of signal pattern may also have a great potential to reduce

travel times and unsafe situations. This potential is yet to be thoroughly investigated. In this

work, we are interested in comparing different signal patterns in terms of the number of potential

conflicts and delay time for both drivers and pedestrians. To this end, we first select three

commonly adopted signal patterns, namely the Exclusive Pedestrian Phase (EPP), the Leading

Through Interval (LTI), and the Two-Way Crossing (TWC). We then generalize existing methods

for measuring user delay and safety for these three signal patterns. Moreover, we investigate a

hypothetical hybrid pattern obtained by dynamically adapting the signal pattern to real-time data.

The proposed methodology is applied to a case study considering an isolated intersection in

Montreal, Canada. We perform computational experiments geared towards determining the best

pattern according to ad hoc performance indicators and user flows. Results show that the EPP

and LTI patterns generally perform better than TWC. EPP outperforms LTI when measuring

the number of potential conflicts, while LTI outperforms EPP when considering delay times.

Furthermore, the hypothetical hybrid pattern shows a positive but overall limited impact.

Keywords: Traffic signal optimization, pedestrian, delay time, safety, Exclusive Pedestrian

Phase (EPP), Leading Through Interval (LTI), Two-Way Crossing (TWC), hybrid signal pattern
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INTRODUCTION

The current development of the transportation system intends to have a positive effect on

travel time, safety, and environmental emissions while they provide highway, rail, air, water,

transit, pipeline, freight movement, and personal mobility. How to balance this development

to provide the best trade-off between these impacts is a crucial question in today’s researchers’

discussions. The urban transportation system includes three general components: infrastructure

(roads, intersections, and bridges), users (vehicles, pedestrians, bicycles, and drivers), and

operation tools (signs, traffic signals, management, and control systems). Intersections are

significant components of urban transportation infrastructures since they cause interactions

between different users. This interaction directly affects travel time and safety at the intersection.

The main components of an intersection related to traffic management are control tools (hardware

and software), geometry, and users that determine the traffic characteristics of the intersection

(such as delay time, capacity, and level of service). The development and enhancement of

control tools can improve the performance of the intersection.

Traffic signal control features different approaches in terms of methods, technologies (hardware

and software), and objectives to regulate traffic flows in urban areas. (Li, Alhajyaseen & Naka-

mura, 2010). The traffic signal’s most common objectives are to maximize vehicle throughput

and intersection safety while minimizing travel time. The inability of the traffic signal to respond

to current traffic flows can cause congestion at an intersection.

Traffic signal control is a complex process since it involves many interrelated factors such as

safety, capacity, delay time, queue length, intersection geometries, heterogeneous users, and

uncertain environmental conditions. Two main features of the traffic signal operation are the

cycle length (the time a traffic signal requires to complete the sequence of signal phases) and

signal pattern (the set of user movements allowed at each phase of the signal cycle). Most

traffic agencies are nowadays interested in the concept of an adaptive control system that applies
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real-time traffic data to operate dynamic modifications of the cycle length and phase sequences

(Transportation Research Board, 2016). Moreover, connected vehicle technologies, such as

mobile data platforms enabling real-time data exchange among vehicles and between vehicles

and infrastructure, facilitate the employment of adaptive traffic control systems to respond to

real-time traffic data (Jing, Huang & Chen, 2017).

In the literature, only simple forms of traffic signal phase sequences and patterns have been

studied (such as a two-phase traffic signal). Even those researchers who simulated optimal

cycle length models for different signal patterns (Ishaque & Noland, 2007; Li & Sun, 2019a;

Zhang & Su, 2018) have simplified the intersection conditions by assuming a fixed traffic flow or

one-way streets (Ma, Liao, Liu & Lo, 2015; Zhang & Su, 2018), while, in the real world, traffic

flow or intersection movements are complex. Similarly, one specific signal pattern is typically

applied for the whole day while traffic flows largely change during the day, with a potential

increase of delay time and travel times at the intersection (Zhang & Su, 2018).

Traffic signal control optimization is mainly geared towards optimizing the cycle length and

improving other dependent measures, such as traffic capacity, travel time, system throughput,

vehicle-to-vehicle conflict, and vehicle emissions which mainly quantify vehicle-related perfor-

mances (Stevanovic, Stevanovic, So & Ostojic, 2015; Jia, Lin, Luo, Li & Miao, 2019; Builenko,

Pakhomova & Pakhomov, 2018; Chen, Osorio & Santos, 2019; Li, Shahidehpour, Bahrami-

rad & Khodaei, 2017; Li & Sun, 2019a). Some researchers have also studied pedestrian-related

performance indicators (Wong & Wong, 2003; Ishaque & Noland, 2007; Builenko et al., 2018).

However, they have not explicitly considered interactions between pedestrians and vehicles.

Urban transportation management systems aim to control and improve the quality of travel

experience for motorized and non-motorized users. However, due to the fact that collecting

real-time pedestrian data is costly or time-consuming (Transportation Research Board, 2016),

even Intelligent Transportation Services (ITS) tools such as an adaptive traffic control system
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are mostly overlooked the non-motorized users. This issue can affect pedestrian travel time, or

increasing pedestrian disobedience will reduce intersection safety.

The most common signal patterns that explicitly consider interactions between motorized and

non-motorized users are the two-way crossing phase (TWC), exclusive pedestrian plan (EPP),

leading pedestrian interval (LPI), and leading through interval (LTI).

In the literature, a trade-off between safety and delay (the difference in travel times through

the intersection with and without conflicting movement) has been considered to measure each

signal pattern’s efficiency (Ma et al., 2015). Generally, to investigate intersection safety, the

literature considered as a measure of the number of accidents or predicted crash data (Alavi,

Charlton & Newstead, 2013; Torbic et al., 2010; Sayed & Zein, 1999; Li, Yan, Li & Wang,

2012; Frankish, Green, Ratner, Chomik & Larsen, 2001); also, to estimate the intersection delay,

several researchers have used Highway Capacity Manual (HCM) delay model. However, their

delay and safety models usually fail to consider the effect of signal patterns or pedestrian data.

This research aims to improve traffic safety and decrease traffic delays at urban intersections by

allowing traffic signals to dynamically control pedestrians and vehicles.

The rest of the study is organized as follows. Chapter 1 reviews the literature to identify the

relevant signal patterns and performance indicator models. Chapter 3 reports the scientific

manuscript that has been recently published in the journal Sustainability, where we develop

pedestrian-sensitive performance indicators and generate the delay and potential conflict models

for each signal pattern of the study. Then, an experimental setting is applied to a case study for

a specific intersection in Montreal, to verify the hybrid signal pattern’s impact on the level of

service at the intersection. Finally, the research is concluded in the last section.





CHAPTER 1

LITERATURE REVIEW

1.1 Introduction

This part of the study identifies the traffic characteristic parameters and performance indicators

related to current research and investigates how the literature deals with these performances. It

also describes a variety of signal patterns and their performances. Finally, it investigates how the

literature compares performance indicators of signal patterns. The current development of the

transportation system intends to have a positive effect on time (such as travel time), safety (such

as crash frequency and intensity), and environmental impact (such as emissions). At the same

time, they provide highway, rail, air, water, transit, pipeline, freight movement, and personal

mobility. Combining this development to provide the best trade-off between these impacts is

crucial in today’s researchers’ discussions. Most transportation research has focused on safety,

travel time, and air pollutants as primary objectives.

Transportation Research Board (2016) defines the traffic condition, roadway condition, and

signalization condition to perform the significant parameter and performances to analyze the

intersection level of service. Traffic conditions include volumes on each approach, the distribution

of vehicles by movement (left, through, and right), the vehicle type distribution within each

movement, the location and use of bus stops within the intersection area, pedestrian crossing

flows, and parking movements on approaches to the intersection. Roadway conditions include

the basic geometric of the intersection, including the number and width of lanes, grades, and

lane use allocations (including parking lanes). Signalization conditions include a full definition

of the signal phasing, timing, and type of control, and an evaluation of signal progression for

each lane group.

According to the National Transportation Operations Coalition (NTOC) (2012), delay time at

a traffic signal is estimated to amount to 295 million vehicles-hour or 10 percent of all traffic

waiting time. This amount of lost time causes an increase in social costs and adversely affects
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emissions and road safety. The 2011 Urban Mobility Report studied the effect of traffic signal

coordination on reduced travel time and this report leads to the idea of improving travel time by

optimizing the traffic signal plan. (National Transportation Operations Coalition, 2012)

The emissions of air pollutants such as 𝑆𝑂𝑋 (Sulfur oxides), 𝑁𝑂𝑋 (nitrogen oxides), 𝑉𝑂𝐶𝑠

(volatile organic compounds),𝐶𝑂2 (carbon dioxide), and 𝑃𝑀2.5 (fine particulate matter) that are

produced by vehicles are major contributors to climate change and air pollution. Li & Shimamoto

(2011) investigates the direct relation between waiting time at traffic signals and emissions

produced by vehicles.

La Société de l’assurance automobile du Québec in 2015 reported 55% of accidents with at

least one pedestrian victim occurring at intersections (less than 5 meters from an intersection),

which is due to the frequent interaction of pedestrians and motorists at these locations (Société

de l’assurance automobile du Québec, 2017).

In urban transportation, the intersection is a significant part of the infrastructure and the

performance and efficiency of this part are directly related to transportation missions (saving

time, increasing safety, and decreasing emissions).

The development and enhancement of controlling tools such as traffic signals can improve the

performance of the intersection, while the modification of some other components is generally

not possible or costly and time-consuming. For example, it is not easy to change the driver’s

behavior at the intersection. Similarly, changing the intersection geometry to prevent an unsafe

situation is very costly.

The traffic signal controls the movements by considering the user’s travel time and safety to

increase the efficiency of the intersection. There are some performance measures that we’ve

known as traffic characteristics that help us to measure the level of safety and service at the

intersection. Some critical parameters in traffic characteristics fields for measuring the safety

and efficiency of intersections are capacity, delay time, queue length, intersection geometry, and

environmental emissions.
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Figure 1.1 Traffic signal control components

Figure 1.1 provides the traffic signal control components that can affect an intersection efficiency.

Then, in this section, the current study investigates each component to verify how traffic signal

control systems can improve user quality of travel experience.

On the other hand, new technology such as an adaptive traffic control system at the intersection

affects vehicular traffic flow and travel time by changing traffic signal cycle length dynamically.

However, these systems are mostly not sensitive to non-motorized and motorized users, which

influences non-motorized user safety and waiting time at the intersection. This research aims

to generalize the traffic signal control method to optimize the multi-objective model for all

intersection users.
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1.2 Traffic characteristic

The traffic characteristics include any characteristics related to road users and vehicles.

1.2.1 Volume and flow rate

Volume and flow rate are two measures that quantify the number of users passing a point on a

lane or roadway or crosswalk during a given time interval. Volume refers to the total number of

users that pass over a given point during a given time interval; volumes are typically expressed

in terms of annual, daily, hourly, or sub-hourly periods. Flow rate is the equivalent hourly rate at

which users pass over a given point during a given time interval of less than 1 h, usually 15 min.

1.2.2 Infrastructure capacity

Infrastructure vehicle capacity is the maximum number of vehicles that can pass specific

points during a specific period under prevailing roadway, traffic, and control conditions without

considering the influence of downstream traffic during the operation. Infrastructure pedestrians

capacity is the maximum number of persons that can pass a given point during a specified period

under prevailing conditions.

The capacity is an independent parameter of traffic demand at the intersection. Under real-world

traffic conditions, capacity cannot easily be measured for an existing intersection. The capacity

of a signalized intersection depends on existing geometric control tools, weather, and other

conditions. The capacity directly relates to travel time, queue length, traffic performance, and

quality of service at the signalized intersections (Wu & Giuliani, 2016). For example, in the work

area, lane closures have a significant effect on the capacity of the road and the mobility of road

users. The geometry of the intersection, distance from the intersection, and green-to-cycle length

(g/C) ratio are the major factors affecting capacity in a construction zone (Alshabibi & Prassas,

2018). Capacity also is related to the saturation flow rate that indicates the number of passenger

car units (PCU) for a specific intersection lane group, and queue length. In a situation where the
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traffic flow is going more than the intersection capacity, we have an over-saturated condition at

the intersection.

Figure 1.2 Typical flow rates at a signalized movement 1

Figure 1.3 Volume and capacity of a signalized movement2

Figure 1.2 and 1.3 indicate the relation between the capacity, flow rate (passenger car unit per

hour), and traffic signal green time, while the shaded area presents the capacity of the intersection.

1 Urbanik et al. (2015)

2 Urbanik et al. (2015)
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1.2.3 Level of service

The Level of Service (LOS) is a qualitative measure of the traffic signal control system

performance based on the delay time of vehicles or pedestrians. It can be characterized for the

entire intersection, each intersection approach, and each lane group. Delay alone is used to

characterize LOS for the entire intersection or an approach for each group of users. Delay and

volume-to-capacity ratio (The volume-to-capacity ratio quantifies the degree to which a phase’s

capacity is utilized by a lane group) are used to define LOS for a lane group. The literature

describes LOS as:

• LOS A: Describe operations with a control delay of 10 s/veh or less and a volume-to-capacity

ratio no greater than 1.0. It means most vehicles arrive during the green indication and travel

through the intersection without stopping.

• LOS B: Describe operations with control delay between 10 and 20 s/veh and a volume-to-

capacity ratio no greater than 1.0 and more vehicles stop than with LOS A.

• LOS C: Describe operations with control delay between 20 and 35 s/veh and a volume-to-

capacity ratio no greater than 1.0. One or more queued vehicles are not able to depart as a

result of insufficient capacity during the cycle at this level. The number of vehicles stopping

is significant, and many vehicles still pass through the intersection without stopping.

• LOS D: Describe operations with control delay between 35 and 55 s/veh and a volume-to-

capacity ratio no greater than 1.0. This level is typically assigned when the cycle length is

long and many vehicles stop.

• LOS E: Describe operations with control delay between 55 and 80 s/veh and a volume-to-

capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity

ratio is high, and the cycle length is long.

• LOS F: Describe operations with control delay exceeding 80 s/veh or a volume-to-capacity

ratio greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is

very high, progression is very poor, and the cycle length is long. Most cycles fail to clear the

queue (Transportation Research Board, 2016).
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Pedestrian level of service (PLOS) is an important measure of performance in the analysis of

existing pedestrian crosswalk conditions. Many researchers have developed PLOS models based

on pedestrian delay, turning vehicle effect, and more (Marisamynathan & Vedagiri, 2013).

Figure 1.4 Pedestrian Level Of Service3

Figure 1.4 describes the pedestrian level of service related to the delay and flow rate of the

pedestrian while flow rate provides the number of pedestrians per minute that pass a specific

length of the crosswalk.

The level of service (LOS) defines the traffic service quality of roads at a given traffic flow rate,

but the capacity gives the quantitative measure of traffic in the same area. The capacity is a fixed

amount for each intersection, but LOS change is related to traffic conditions such as user volume,

intersection geometry, weather conditions, and more. The level of service at the intersection

refers to users and can be defined for each user at the intersection. The level of service and

the intersection delay are related and regarding the LOS diagram, the increasing delay at the

intersection affects the LOS by decreasing the quality of traffic service at the intersection.

3 Marisamynathan & Vedagiri (2013)
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1.2.4 Delay and travel time

Travel time is the time elapsed when a traveler displaces between two places in a network and

it depends on user characteristics, traffic regulations, traffic control systems, user interaction,

conflict, and environmental conditions.

Delay quantifies the increase in travel time due to traffic control tools. It is also a surrogate

measure of driver discomfort and fuel consumption. The delay time is a most specific parameter

that can be measured easily at the intersection, and today, the control system uses this item

to improve the traffic signal plan. The delay time can be defined for each kind of road and

intersection user.

The delay is defined by the difference in travel times through the intersection with and without

conflict movement. Vehicle delay has been measured as a total of stopped time delay, approach

delay, travel time delay, time-in-queue delay, and control delay. Control delay (the delay because

of the traffic control device) is the principal service measure in the HCM for evaluating LOS at

signalized and un-signalized intersections.

Control delay includes delay associated with vehicles slowing in advance of an intersection, the

time spent stopped on an intersection approach, the time spent as vehicles move up in the queue,

and the time needed for vehicles to accelerate to their desired speed.

There are other types of delay such as Geometric delay caused by geometric features causing

vehicles to reduce their speed, Incident delay is the additional travel time experienced as a result

of an incident, compared with the no-incident condition, Traffic delay is resulting from the

interaction of vehicles, causing drivers to reduce their speed. The sum of these delays defines as a

total vehicular delay. But, as we mentioned delay can be defined for each user at the intersection.

Besides the vehicles, pedestrians are the most important users of the intersection, and pedestrian

delay is defined as an additional travel time experienced by pedestrians because of the control

device or vehicle interaction. The pedestrian model comprises three parts; the first part is the

signal delay, defined as the waiting time of pedestrians stopping at the intersection because of
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the traffic light. The second part is conflict delay, defined as the additional experienced delay

time due to conflicts between pedestrians and turning vehicles. The third part is the detour delay

because pedestrians willing to cross the intersection diagonally must perform a detour if the

considered signal pattern does not allow diagonal crossing (Transportation Research Board,

2016).

1.2.5 Number of Stops

Traffic control devices separate users on conflicting paths by requiring one user to stop or yield

to the other. The stop causes delay and has an associated cost in terms of fuel consumption.

For this reason, information about the number of stops is useful in evaluating performance and

calculating user costs. The stop rate counts the number of vehicles that stop divided by the total

number of vehicles that pass the intersection for the specific time interval. A number of stops is

generally expected by motorists arriving at an intersection as a minor movement (e.g., a turning

movement, or a through movement on the minor street). However, drivers on major streets

expect to arrive at each signal while it is displaying a green interval for the through movement.

For this reason, the stop rate is a useful performance measure for evaluating coordinated signal

systems (Minnesota Department of Transportation, 2017).

1.2.6 Headway, Spacing, and Gap

Spacing is the physical distance, usually reported in feet or meters, between the front bumper of

the leading vehicle and the front bumper of the following vehicle (from the same point on each

vehicle). Spacing is the product of speed and headway. Headway is the time between successive

vehicles as they pass a point on a lane or roadway, also measured from the same point on each

vehicle.

You can measure the headway between two vehicles by starting a chronograph when the front

bumper of the first vehicle crosses the selected point and subsequently recording the time that the
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second vehicle’s front bumper crosses over the designated point. Headway is usually reported in

units of seconds.

A gap is very similar to headway, except that it is a measure of the time that elapses between the

departure of the first vehicle and the arrival of the second at the designated test point. A gap is a

measure of the time between the rear bumper of the first vehicle and the front bumper of the

second vehicle, whereas headway focuses on front-to-front times. A gap is usually reported in

units of seconds (Transportation Research Board, 2016).

Figure 1.5 Gap, Headway and Spacing4

1.2.7 Safety and conflict

Intersection safety is defined as the number of potential vehicle-to-vehicle and vehicle-to-

pedestrian conflict situations at the intersection. A conflict is any possible unsafe situation or

4 Tyne Guevara (2019)
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interaction between users’ movements at the intersection. A conflict with high severity usually

is known as a collision and crash (Brow, 2011).

According to Société de l’assurance automobile du Québec report, in 2015, 55% of accidents

causing bodily injury involving at least one pedestrian victim occurred at intersections, where

pedestrians and motorists interact most often; and Only 13% of accidents causing bodily injury

involving at least one pedestrian victim has occurred between intersections (at more than 100

meters from an intersection) (Société de l’assurance automobile du Québec, 2017).

The traffic signal’s main objective is to increase the safety of the intersection; however, some

research indicates that a stop sign at an intersection with low traffic flow is more efficient than the

traffic signal (Persaud, Hauer, Retting, Vallurupalli & Mucsi, 1997). In the literature, it’s been

investigated that an up-to-date and well-maintained traffic signal can positively affect intersection

safety by reducing conflict at the intersection. Besides the conflict or crush, there is another item

that is known as a near-miss accident. We cannot have accurate data from near-miss accidents

because they are unplanned incidents that have not resulted in injury, illness, or damage but have

the potential to do so. The research mentioned that 70% of pedestrians at intersections or on the

roads have experienced near-miss accidents. The situation of the near-miss crash is predictable

(Matsui, Takahashi, Imaizumi & Ando, 2011).

The traffic signal could reduce conflict situations and violate behavior that can cause near-miss

accidents. The pedestrian and vehicle volume and turning flow at the intersection can predict the

probability of a near-miss accident. The following figure shows 20% of the total unsafe act can

cause a near-miss accident, while the probability of fatality is 3 ∗ 10−6 of the total unsafe act.
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Figure 1.6 Probability of crash frequency, the safety triangle5

According to the Florida Department of Transportation (FDOT), a crash analysis reporting

system considers the factors influencing crash frequency by modes including macroscopic factors

(such as population and economic characteristics, land use characteristics, and travel behaviors),

road features, and traffic and individual characteristics (such as gender, age, education, alcohol

consumption, and driver or pedestrian behaviors) (Wang, Huang & Zeng, 2017).

Different factors are used to predict or analyze the safety level of intersections based on crash

history data, such as:

• The classification of severity: The categorization of road traffic crashes according to the level

of injury or damage sustained by the people and vehicles involved,

• The post-encroachment time: The duration from when the encroaching vehicle leaves the

conflict point until the vehicle with the right-of-way reaches the same point.,

• The time-to-collision: The amount of time it will take for two objects, such as vehicles, to

collide if they continue moving at their current speeds and directions.,

• The average daily traffic: The total traffic volume during a given time period

• Accident modification factor: a factor used to compute the expected number of crashes after

implementing a given countermeasure at a specific site,

5 Matsui et al. (2011)
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• The time to collision: the time that remains until a collision between two vehicles would

have occurred if the collision course and speed difference are maintained,

• The annual average daily traffic: the total vehicle volume for a year divided by 365 days,

• The average hourly conflict,

• The square root of the users’ volume at the intersection: A mathematical calculation that

involves finding the square root of the total number of vehicles, pedestrians, or other users

that pass through a given point within a specified period of time,

• The intersection conflict index: the probability of a collision to occur (Lord, 1996; Torbic et al.,

2010; Matsui et al., 2011; Alavi et al., 2013; Abdul Majeed & Ewadh, 2019; Sayed & Zein,

1999).

Most of these factors are more suitable for measuring vehicle–to–vehicle conflict.

Then, to measure the pedestrian-vehicle conflict, some of the literature applied other indices

such as:

• Pedestrian level of comfort,

• Pedestrian level of stress,

• Pedestrian intersection index,

All of these measures are related to the pedestrian facility at the intersection, intersection

geometry, daily users volume, and the speed of users (Chang & Rodriguez, 2019). These indices

have been used to compare the level of pedestrian safety between different intersections while our

study intends to investigate the number of conflict situations between pedestrians and vehicles at

one specific intersection under different signal patterns.

Zhang & Prevedouros (2003), based on HCM, formulated the potential user conflict (PC)

that provides the intersection degree of safety and indicates the frequency of unsafe (conflict)

situations. This factor can be applied to pedestrian and vehicle conflicts for an individual

intersection according to the traffic flow and signal pattern (Zhang & Prevedouros, 2003).
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1.2.8 Emissions and air pollutant

The transportation system has a major part in producing air pollutants, which includes the

emissions produced by rail, roads, air, and freight transportation system. In urban areas, traffic

management solutions are providing various strategies to reduce the noise and air pollutant

emissions caused by traffic signals. One of these ways is coordinated traffic signals that can

cause the reduction of noise and air pollutants (De Coensel, Can, Degraeuwe, De Vlieger & Bot-

teldooren, 2012). The emissions produced by vehicles such as 𝑆𝑂𝑋 (Sulfur Oxides), 𝑁𝑂𝑋

(Nitrogen Oxides), VOCs (Volatile Organic Compounds), 𝐶𝑂2 (Carbon Dioxide), and PM2.5

(fine particulate matter) are major contributors to climate change. In particular, coordinated

traffic lights create green waves (when a series of coordinated traffic lights allow continuous

traffic flow over several intersections in one main direction) and reduce travel times. Although it

is mentioned that an improvement in traffic flow can result in lower vehicle emissions.

Also, sound pressure levels were found to decrease by up to 1 dB(A) near traffic signals but

to increase by up to 1.5 dB(A) in between intersections. Moreover, the coordination of traffic

signals can increase the total emitted noise by up to 0.6 dB (De Coensel et al., 2012). De Coensel

et al. (2012) demonstrates that there is not any relationship between the cycle time of traffic

signals and emissions, but the green split and traffic flow influence vehicle air pollution at the

intersection.

Li & Shimamoto (2011) compares the fixed traffic signal with the traffic signal controlled by

the electronic toll system. The results show that the proposed system reduces 𝐶𝑂2 emissions

by 26.9% by decreasing the number of stops and waiting times at the toll system. The relation

between traffic flow, 𝐶𝑂2 emissions, and average waiting time are shown in figures 1.7 and1.8:



19

Figure 1.7 𝐶𝑂2 emissions at the intersection6

Figure 1.8 Average waiting time at the intersection7

6 Lin, De Schutter, Xi & Hellendoorn (2011)

7 Lin et al. (2011)
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Figures 1.7 and 1.8 present between 29% to 60% of 𝐶𝑂2 reduction when the traffic signal

controls changing caused the reduction in travel time. Then, one of the suitable ways to reduce

𝐶𝑂2 emissions is to reschedule the traffic signal plan. And, optimizing the traffic signal plan

affects air pollutant emissions by changing the travel time (Lin et al., 2011).

1.2.9 Intersection infrastructure

Transport infrastructure is the precise framework that supports the transport system, and generally,

the government is responsible for the construction, development, control, and maintenance of

them, such as traffic signals at intersections, the data collection systems, and the geometry of

intersections. Several features affect the performance of the intersection:

• Location: One of the primary factors that affect signal timing is the environment. Urban

environments are characterized by lower speeds and higher degrees of congestion and a

higher number of pedestrians, cyclists, and transit. Rural environments are at higher speeds

but with fewer pedestrians, cyclists, and transit vehicles.

• Transport network characteristic: The form of intersection, the distance between intersec-

tions, and the characteristic of the arterial streets between intersections that can affect the

performance of the intersection.

• Intersection geometry: The skew of the intersection affects the length of the crosswalk and

pedestrian clearance time. The geometry of an intersection determines its ability to efficiently

and safely serve user demand (Minnesota Department of Transportation, 2017). Intersection

geometry is generally presented in a diagrammatic form that includes all of the relevant

information such as approach grades, exclusive left- or right-turn lanes, the number and

width of lanes, and parking conditions (Transportation Research Board, 2016).

• User characteristic: The variety of the users, the demand of users, and users’ behavior are

the most important characteristic of the user.

• Controlling tools: The intersection can control by signal control such as traffic signals, or

they are not signalized such as roundabout and stop sign control system.
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We discussed in this section the traffic characteristic parameters that are significant elements

in planning and controlling the traffic signal. To increase the efficiency of traffic signals most

traffic agencies try to optimize the delay, safety, travel time, and emissions; however, all these

parameters are related, and changing one item can affect the others. Then, it’s necessary to define

the main objective of each traffic signal and provide the best performance measure related to that

objective. For example, if the traffic signal targets to minimize the crash and increase safety at

the intersection, it is necessary to give the priority to safety measures even if it’s increasing the

delay at the intersection. Then, it’s important to know the traffic signal controlling and planning

component to verify the role of each component in optimizing the traffic signals.

1.3 Traffic signal

The capacity of an urban street is related to the traffic signal and the geometric characteristics of

the street. The geometric part of the intersections is a fixed element, While other parameters

may vary over time.

The traffic signal controllers lead to prioritize traffic movements, coordinate the neighboring

controllers, and at the same time avoid conflicting movements that cause the stop-and-go

command at the intersection (Mirheli, Hajibabai & Hajbabaie, 2018).

The traffic signal provides at least one of these purposes:

• Arrange the movement of users.

• Improve the efficiency of the intersection by increasing the volume of vehicles that passed

the intersection.

• Decrease the frequency and intensity of the crash.

• Provide accessibility for pedestrian and non-vehicle users (Minnesota Department of Trans-

portation, 2017).

Generally, we can initiate the traffic signals for each intersection user, such as vehicles, pedestrians,

bikes, and public transportation signals. Moreover, they have different operation and control

commands, like fixed time, pre-timed, actuated, isolated, and coordinated.
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• Fixed time signal allocates fixed cycle length and green split to the traffic light for the whole

day.

• Pre-timed control is appropriate for any intersection with constant traffic volume and

traffic pattern. Pre-timed control consists of a series of intervals that are fixed in duration.

Collectively, the preset green, yellow, and red intervals result in a deterministic sequence and

fixed cycle length for the intersection. For example, we can have different fixed cycles for

each day of the week or period of the day.

• Semi-actuated traffic signal control uses detectors on minor movement at the intersection.

Semi-actuated control uses detection only for minor movements at an intersection. The

phases associated with the major road-through movements are operated as "non-actuated."

• Fully actuated control uses detection for all traffic movement. This controller is situated at an

isolated intersection where the traffic volume and pattern are inconstant during the day. This

method has some advantages; for example, real-time data allocating the effective cycle time

reduces delay. Despite the pre-timed signal, the actuated signal cycle length varies during

the day. In contrast to pre-timed control, actuated control consists of intervals that are called

and extended in response to vehicle detectors. Detection is used to provide information about

traffic demand to the controller. The duration of each phase is determined by detector input

and corresponding controller parameters (Urbanik et al., 2015). Calling and extension are

two commonly used procedures in actuated control. When a vehicle is stopped in a detection

zone of the intersection, then the calling of signal phase occurs. When detectors confirm

that traffic is still present on the movement controlled by the phase, then the extension of the

green indicator occurs (Yang, Wood & Wang, 2021).

• Coordinated signal coordinates the phases between close-by intersections and provides a

continuous vehicular green interval in one direction and reduces the number of stops, delays,

and travel time.
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1.3.1 Traffic signal users

Generally, we have different traffic signals depending on intersection users: vehicle, pedestrian,

bike, and public transportation signals. Each intersection with a traffic signal is planned to

control vehicular movements and reduce the interaction between vehicles while optimizing

travel time. In some situations with high traffic demands of pedestrians, bicycles, and public

transportation, traffic agencies control intersection movements with a different traffic signal for

each group of movements. Then, the traffic signals control the interactions between intersection

users, and they are defined and planned for each user, such as vehicle traffic signals, pedestrian

traffic signals, and more.

1.3.2 Traffic signal characteristics

The traffic signal has three significant parts: cycle (the time allowed for all approaches), split

(the percentage of the cycle time allocated to each phase), and offsets (the start of a stage at one

intersection relative to the start of a stage at another intersection). For planning each traffic

signal, it is necessary to identify the traffic parameters at the intersection, such as flow rate,

gap time, capacity, and more. Cycle length and phase pattern represent essential elements in

traffic signal investigation. The traffic signal control system, pre-timed, or activated, adapts to

the traffic flow’s actual situation. The traffic signal cycle length is the most critical part of the

traffic signal control system. Optimizing cycle length can cause a reduction in intersection delay

(Li et al., 2017; Yu, Ma, Han & Yang, 2017; Li & Sun, 2019a). However, the signal pattern is

another parameter that affects intersection delay (Wong & Heydecker, 2011; Ma et al., 2015).

1.3.2.1 Signal cycle

Cycle length is the time a traffic signal requires to complete the sequence of signal phases.

Phase pattern is the set of user movements allowed at each phase of the signal cycle. A large

part of the literature focuses on multi-objective optimization methods of cycle length to reduce

the travel time, number of stops, and intersection queue length for intersection users (mostly
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vehicles). Mostly, the literature worked on the algorithm to optimize the cycle length of traffic

signals based on the performance measure such as the delay, traffic capacity, travel time, system

throughput, vehicle-to-vehicle conflict, and emissions of the vehicle (Stevanovic et al., 2015; Jia

et al., 2019; Builenko et al., 2018; Chen et al., 2019; Li et al., 2017; Li & Sun, 2019b).

Each traffic signal cycle has a sequence of splits. A split determines how much time each

movement gets in a cycle. The split includes the green time and the clearance interval, or the

time to clear the intersection, which includes the yellow and red lights.

To plan a traffic signal, traffic guidelines define some parameters such as:

• The effective green time: It is the time during which a given traffic movement or set of

movements may proceed at the intersection.

• The minimum green time: It represents the least amount of time that a driver needs to react

to the start of the green interval and pass the intersection. A minimum green that is too

long may result in wasted time at the intersection, and one that is too short may violate

driver expectations or (in some cases) pedestrian safety. The amount for the minimum green

can be between 2 to 15 seconds depending on the type of street (Minnesota Department of

Transportation, 2017).

• The maximum green parameter represents the maximum amount of time that a green signal

indication can be displayed in the presence of conflicting demands. Maximum green is used

to limit the delay to any other movement at the intersection and to keep the cycle length to a

maximum amount. Maximum green time can be between 15 to 70 seconds regarding the

type of road.

• Yellow interval: The yellow change interval is intended to alert a driver to the impending

presentation of a red indication. The duration of the yellow change interval is typically based

on driver perception-reaction time, plus the distance needed to safely stop or to travel safely

through the intersection. The yellow duration should be sufficiently long to allow drivers the

time needed to clear the intersection if they determine that it is not possible to safely stop. It

ranges from 3 to 6 s, with longer values in this range used with phases serving high-speed

movements.
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• The red clearance interval: It can be used to allow a brief time to elapse after the yellow

indication, during which the signal heads associated with the ending phase and all conflicting

phases display a red indication. If used, the red clearance interval is typically 1 or 2 s

(Transportation Research Board, 2016; Minnesota Department of Transportation, 2017).

On the other hand, the pedestrian phase consists of three intervals:

• walk: The walk interval should provide pedestrians with time to perceive the WALK indication

and depart the curb before the pedestrian clearance interval begins. Some controllers have

a mechanism to specify that the walk interval begins before, or even after, the onset of the

green interval. The minimum walk duration should be at least 7 seconds.

• pedestrian clearance or flashing don’t walk (FDW): The pedestrian clearance interval follows

the walk interval. During the clearance interval, pedestrians should either complete their

crossing if already in the intersection; or refrain from entering the intersection until the next

pedestrian walk interval. Depending on crosswalk length and pedestrian speed, it can be

from 10 to 30 seconds (Minnesota Department of Transportation, 2017).

• solid don’t walk: Pedestrians are not allowed to cross the intersection.

Crosswalks assist pedestrians in crossing the street and affect pedestrian mobility and the safety

performance of signalized intersections. Crosswalk characteristics such as the position and

width of the crosswalk describe the vehicle stop line position. Also, their position influences

cycle length and delay time at the intersection. The HCM mentioned that the pedestrian crossing

time depends on average walking speed (4.0 ft. /s) and crosswalk length (Li et al., 2010).

The pedestrian has the right of way over all vehicles while they are at the curb of the intersection

or in a crosswalk. The three basic types of crosswalks are defined:

• Crosswalks controlled by "walk" and "do not walk" electronic signs;

• Crosswalks controlled by other traffic signals (such as traffic lights or stop signs) or police

officers;

• Crosswalks recognize by devices or (vertical or/and horizontal) signs on the road.
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Nowadays, the fundamental strategy based on the transportation system leads to increased

walking and cycling and focuses on balancing all users’ facilities at the intersections. A signalized

intersection considers the green phase, the clearance phase, and the red phase. Pedestrians can

walk during the green phase, stop during the red phase, and not walk in the crosswalk during the

clearance phase. Traditional pedestrian control strategies, such as a leading pedestrian interval

(LPI) and exclusive pedestrian phase (EPP), lead to improved safety rather than efficiency.

1.3.2.2 Signal patterns

The signal timing has centralized on vehicle improvement by minimizing vehicular delay and

stops, or both, and this system causes the delay, unsafe feeling, and anxiety for pedestrians and

another mode (Sobie et al., 2016). Regarding the literature, most traffic signal optimization

models optimize the cycle length, offset, or split of a traffic signal. Other parameters significantly

affect the quality of the travel experience at the intersection. The most effective one is traffic

signal patterns, which are usually chosen by experts. We are interested in comparing the behavior

of different signal patterns. Generally, a signal pattern dictates the possible user movements

that are allowed to be performed during the green interval of a phase (i.e., consisting of a set

of green, red, and clearance intervals assigned to specified traffic movement(s) during each

cycle) (Urbanik et al., 2015). The signal phase is either actuated or non-actuated and it may be

coordinated with neighboring signals on the same route, or they may function in an isolated

mode without influence from other signals (Transportation Research Board, 2016).

Signal phasing can provide for protected, permitted, or not opposed turning movements. A

permitted turning movement made a permit for a movement while there is a conflict with

pedestrian or bicycle flow or opposing vehicle flow; such as a left-turn movement permitted with

the opposing through movement or a right-turn movement permitted with pedestrian crossings

in a conflicting crosswalk. Protected turns are those made without these conflicts, and they need

the exclusive phase for the movements with the conflicts. For example, a right-turn phase in

which conflicting pedestrian movements are prohibited. Either permitted or protected turning

phases depend on the turning and through volume and intersection geometry may be more
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efficient in a given situation. Then regarding the permitted, protected, or free phase, in a typical

four-leg (two-phase) intersection, we have four possible signal pattern types:

• Free pattern: there are no movement restrictions applied to any phases during the green

interval.

• Exclusive pattern: the green interval is partitioned into mutually exclusive (groups of)

movements.

• Leading pattern: a group of movements is permitted for the complete green interval duration,

while a second restricted group of movements is only permitted after a specific time interval.

• Lagging pattern: this pattern is similar to the leading ones, but the restricted movement

group is only allowed before a specific time interval.

Those patterns can be applied to each user category’s movements, but current research focuses on

pedestrian signal patterns. The most common signal patterns that address the pedestrian interval

are EPP (exclusive pedestrian phase), LPI (leading/lagging pedestrian interval), LTI (leading/lag-

ging through interval), and TWC (two-way crossing) (Urbanik et al., 2015; Furth & Saeidi Razavi,

2019). These patterns affect pedestrian safety and delay time at the intersection. Recently, TWC

(two-way crossing) has appeared on most traffic signals, and it provides pedestrians with the

possibility of crossing the street on the green interval of parallel vehicular movement. The TWC

(two-way crosswalk) is the regular signal pattern that prioritizes vehicles at the intersection,

and pedestrians use the green time for parallel vehicular movement. Pedestrian flow rates and

pedestrian-vehicle conflict at the intersection do not affect this pattern.

The EPP (exclusive pedestrian phase) protects and excludes the pedestrian phase from all

vehicular movements, and it is usually used at downtown intersections with a high probability of

conflict between pedestrians and vehicles at the intersection. This method reduces conflict and

safety issues but depends on pedestrian flow rate and turning vehicle flow rate, increasing the

total intersection delay. Some research mentioned, increasing the delay time at an intersection

can cause incompliant behavior of pedestrians and reduce the safety at the intersection. The

LPI (leading/lagging pedestrian interval) leads or lags the green pedestrian interval and, at

the same time, vehicles are not permitted to cross. Similarly, LTI (leading through interval)
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leads or lags the pedestrian interval; however, only vehicular turning movements are prohibited

on a pedestrian green interval of this pattern. Therefore, LTI is commonly preferred to LPI

since LPI affects all vehicular movements (Furth & Saeidi Razavi, 2019). Furthermore, LTI is

implemented in most of Montreal’s intersections (the effectiveness of this system has not been

investigated in Montreal yet). The LTI gives priority to pedestrians crossing the street before

the vehicles start to turn. In this situation, the turning lane and through lane must be separated

on each intersection approach. Otherwise, the vehicle delay increases at the intersection. This

method minimizes the conflict between pedestrians and vehicles without having an impact on

significant vehicular movement.

For these reasons, the present study focuses on the LTI, TWC, and EPP patterns, and it will

not further consider the LPI. These methods are adequate for the specific situation at a specific

intersection. The leading, lagging, or separating interval improves the quality of the travel

experience at the intersection. This improvement does not happen for the complete daytime and

the efficiency of these patterns regarding the performance indicators depends on some traffic

characteristics of the intersection, such as user volume, turning flow rate, user behaviors, and

more. In this situation, maybe changing the signal pattern can improve the total delay time at

the intersection.

1.3.3 Traffic signal control systems

Section 1.3.2.1 identified the traffic signal control as a fixed, pre-timed, and actuated system.

Recently, traffic agencies aim to improve the traffic signal control system by using intelligent

transportation systems (ITS) which enhance the safety and efficiency of vehicles and roadway

systems. ITS includes any technology that allows drivers and traffic control system operators to

gather and use real-time information to improve vehicle navigation, roadway system control, or

both. Technology has recommended the ITS (intelligent transportation system) tools that link

today’s technology and infrastructure, vehicles, and users to improve underdeveloped urban,

transport, and region efficiency and effectiveness in the last two decades. It affects the economy

and the environment. This system is expected to improve traffic flow, public transport service,
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accessibility, safety, cost of freight transport, knowledge of travelers from a peripheral condition,

travel data collection, and reduced environmental impact, noise, and emissions. For signal

operation control, the ITS can improve the allocation of green time and increase the capacity of

the intersection (Transportation Research Board, 2016).

In the concept of intelligent transportation systems, the adaptive traffic control system (ATCS) is

defined as controlling traffic signals based on demand prediction to improve vehicular throughput

or reduce vehicular delay. It is a concept where vehicles in a network are detected, at upstream

or (and) downstream points, and an algorithm to be used to predict when and where traffic will

be changed by optimization of signal timing that adjusts the three fundamental parameters: cycle

length, phase split, and offset. They are three components of the system that causes the variety

of ATCS:

• Searching through as many possible alternatives as quickly as possible.

• Evaluating each alternative with defined parameters.

• Improvement at an individual intersection with consideration of system-wide performance

(Urbanik et al., 2015).

There are different companies that provide adaptive traffic control system software, such as :

• Sydney coordinated adaptive traffic system (SCATS) uses a library of fixed-time plans, which

have been developed to work in specific scenarios. It operates at the upper level that considers

the offset plan selected, and the lower level involves optimizing split and cycle times. SCATS

operates in real-time, and the intersection plan is adjusted based on the critical intersection

in each region. SCATS can specify a priority for buses and trams at high, medium, and low

levels. SCATS uses stop line detection; then there is not any prediction of the queue length.

• Urban traffic optimization by integrating automation, UTOPIA is a hierarchically decentral-

ized traffic signal control strategy. The reference plan and historical signal timing minimize

the total vehicle stop or delay time. It aims to optimize the local signal plan for a 120-second

time horizon (repeated every three seconds) and a network plan for building dynamic signal

coordination with neighboring intersections. UTOPIA works on three hierarchical levels: 1-

local level uses the characteristic traffic parameters (saturation flows, delay) for microscopic
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modeling at an intersection. 2- Area level uses historical data to monitor the specific network

in a mesoscopic model. 3- The town supervisor level leads to a macroscopic model to collect

the information from different sources in a city, then integrate and manage these data.

• Traffic network study tool (TRANSYT) calculates the timings offline, using historical,

measured traffic data to propose the optimum plans for the specific time of day, any day of

the week for isolated junctions but can be used to coordinate junctions. The traffic model

and the signal optimizer are two essential elements of TRANSYT. Due to traffic behaviors,

the system predicts the performance index (PI) for a specific time plan and flow rate. Then,

the system measures the total delay and the number of vehicles stopping at an intersection.

The signal timings continue on the model until the optimum PI is achieved.

• SCOOT is a dynamic urban traffic control system, which uses real-time traffic data to

determine an optimum signal plan at an intersection. SCOOT uses inductive loop detectors at

the upstream end of links to monitor traffic flow and measure demand in real-time. SCOOT

optimizes the split, cycle, and offset times. SCOOT requires every second of information

to keep its plan updated; SCOOT has flexibility in the system to consider values and set

parameters for different regions at different times, such as providing strategies to protect only

one area from bus priority measures.

• Real-time hierarchical optimized distributed and effective system (RHODES) is similar to

UTOPIA and has a three-tiered hierarchy level: 1- the highest level considers the traffic

demand and network geometry to determine the level of traffic in the network. 2- Predicted

platoon arrival patterns to determine signal timing. 3- Model the individual movement at an

intersection. RHODES processes in two parts: "estimation and prediction" to collect the

upstream data and "the decision system" to optimize the given objective (delay time, queue

length) by selecting the split and cycle times.

• The method for optimizing traffic signals in online controlled networks (MOTION) has two

levels: MOTION Central and MOTION Local. The system provides (1) data acquisition; (2)

a dynamic traffic model; (3) optimizing control variables (cycle time and split time at the

intersection and offset time in the network), (4) decision (comparison between new and old
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signal plan and improve the new green time, but if the improvement is not significant, the

signal doesn’t change) (Hamilton, Waterson, Cherrett, Robinson & Snell, 2013).

Adaptive control systems aim to adjust the signal timing plan by using different strategies. The

literature used the terminology of “generations” introduced in the Urban Traffic Control System

(UTCS) project of the 1970s by introducing adaptive traffic control systems in three generations:

• First generation: traffic-responsive control system that measures traffic volumes and detector

occupancy rates at different locations across the system, and selects a pattern based on the

information.

• second generation: By using measurements of traffic flow fluctuation, detector occupancy,

and other make adjustments to a traffic signal (cycle, offset, and splits).

• Third generation: the real-time traffic information uses to determine the start and end time of

greens for phases. Usually, a real-time control system tries to optimize an objective function

such as delay by changing the green time of a traffic signal. Real-time control is generally

considered the most advanced method of control (Yang et al., 2021).

The adaptive traffic control systems receive the real-time traffic data, and the data is sent to a

computer by the controller, and the computer changes the signal timing second by second. The

detectors sense each vehicle in this system and send the data to a local or central controller

directly. And according to the time of horizon related to ATCS, the pedestrian flow rate, and

priority at the intersection, the pedestrian data can be converted periodically or offline to the

control system (Mirchandani & Head, 2001).

1.4 Performances indicators

In the literature several indicators are developed to assess the performances of traffic signals,

such as the delay time (Jia et al., 2019; Li & Sun, 2019a), the traffic capacity (Jia et al., 2019),

the system throughput (Jia et al., 2019; Li & Sun, 2019a), the intersection safety (Stevanovic

et al., 2015; Builenko et al., 2018), the GHG emission count (Stevanovic et al., 2015), the
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queue length (Chen et al., 2019), the travel time (Chen et al., 2019; Li et al., 2017) and others.

However, all these indicators are driven by two fundamental measures: the delay time (i.e.,

the additional travel time experienced by users) and the intersection safety (i.e., any conflict

situations or possible interactions between vehicle and vehicle or pedestrian movements at the

intersection). Therefore, our literature review focuses on these measures. We also review a third

performance indicator called the delay and safety index that provides the level of service of

users at a signalized intersection by combining both pedestrian and vehicle delay and safety

(represented by the number of users with potential conflicts). The three performance indicators

considered in this study are delay time, safety, and delay and safety index. They are presented in

Sections 1.4.1, 1.4.2 and 1.4.3, respectively.

1.4.1 Delay time

The delay time at the intersection is the additional travel time experienced by users. In other

words, any interaction between users, any command to control the movements of users, and any

cause of users’ deceleration are known as delay time (Transportation Research Board, 2016).

Since the delay is related to users’ experience, the delay can be categorized as vehicular delay,

pedestrian delay, and other user delays. Generally, intersection delay is estimated as an average

pedestrian and vehicular delay. The literature mainly focuses on vehicular delay, but some

studies also consider a pedestrian delay.

Delay can be estimated by different models. As reported by Tom V. Mathew (2014), there are

four primary methods to estimate delay time: Akcelik (Li, Rouphail & Akcelik, 1994), HCM

(Transportation Research Board, 2016), Webster (Wagner, Gartner, Lu, Oertel & Washington,

2014), and HSL (Roshandeh, Li, Zhang, Levinson & Lu, 2016; Tom V. Mathew, 2014).

Among the models mentioned above, the HCM is reputed to be more accurate even in situations

with under or over-saturated intersections (Hadiuzzaman, Rahman, Hasan & Karim, 2014). As

we mentioned, one part of an intersection delay is a vehicular delay. HCM defines delay control

as a vehicle delay related to the control device. Equation (1.1) describes the vehicle delay model
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of HCM:

𝑑𝑣𝑒ℎ = 𝑑𝑈 + 𝑑𝐼 + 𝑑𝑄, (𝑠/𝑣𝑒ℎ) (1.1)

where 𝑑𝑈 defines the uniform delay based on the assumption of uniform arrivals and stable flow of

vehicles; 𝑑𝐼 defines the incremental delay due to the effect of random, cycle-by-cycle fluctuations

in demand that occasionally exceed capacity and are issued by a sustained over-saturation during

the analysis period; and 𝑑𝑄 defines the initial queue delay as a result of unmet demand in the

previous period. HCM refers to the saturation flow rate to compute 𝑑𝑣𝑒ℎ for different signal

patterns, and it can be calculated for each approach, lane, and movement group of the intersection

(Transportation Research Board, 2016). The delay time is a most specific parameter that can be

measured easily at the intersection, and today the control system used this item to improve the

traffic signal plan. The delay time can be defined for each kind of road and intersection user.

Figure 1.9 Illustration of vehicle delay measures8

According to figure1.9, the delay has been measured as a total of stopped time, approach, travel,

delay, and-in-queue, and control delay.

• The stopped-time delay refers to when a vehicle stops in the queue while waiting to pass

through the intersection.

8 Siddiqui (2015)
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• Approach delay includes stopped-time delay and the time lost for deceleration to stop and

re-acceleration to the desired speed.

• Travel time delay is the difference between the expected travel time through the intersection

and the actual time taken.

• The time-in-queue delay is the total time from a vehicle joining an intersection queue until

crossing the intersection.

• The delay related to a control device is a Control delay, such as a delay at a traffic signal or a

STOP sign. It is considering the time-in-queue delay and the approach delay.

The other part of the intersection delay in our study is a pedestrian delay. Different studies

modify the HCM model to include the pedestrian flow rate, pedestrian violation behavior, and

traffic signal pattern (Ma et al., 2015; Ma, Liu & Head, 2014; Yang, 2010). The model proposed

by Ma et al. (2014) and Ma et al. (2015) modifies the HCM to account for the pedestrian delay in

TWC and EPP. This model comprises three parts. The first part is the signal delay (𝑑𝑠𝑖𝑔), defined

as the waiting time of pedestrians stopping at the intersection because of the traffic lights. The

second part is the conflict delay (𝑑𝑐𝑜𝑛), defined as the additional experienced delay time due to

conflicts between pedestrians and turning vehicles. The third part is the detour delay (𝑑𝑑𝑒𝑡) due

to the fact that pedestrians willing to cross the intersection diagonally must perform a detour if

the considered signal pattern does not allow diagonal crossing. As a consequence, Ma et al.

(2015) determine the average pedestrian delay time as:

𝑑𝑝𝑒𝑑 = 𝑑𝑠𝑖𝑔 + 𝑑𝑐𝑜𝑛 + 𝑑𝑑𝑒𝑡 .(𝑠/𝑝𝑒𝑑) (1.2)

While 𝑑𝑝𝑒𝑑 and 𝑑𝑣𝑒ℎ are the average per-user delay of pedestrians and vehicles, respectively, Ma

et al. (2014) recommend adapting the weighted delay as the intersection delay (s/user):

𝐷 =
𝑑𝑣𝑒ℎ𝑉𝑣𝑒ℎ + 𝑑𝑝𝑒𝑑𝑉 𝑝𝑒𝑑

𝑉𝑣𝑒ℎ +𝑉𝑝𝑒𝑑
, (𝑠/𝑢𝑠𝑒𝑟) (1.3)
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where 𝑉𝑣𝑒ℎ and 𝑉𝑝𝑒𝑑 refer to the vehicle volume and pedestrian volume of the intersection,

respectively.

We observe that expressions of both the vehicle delay in the HCM model and the pedestrian delay

proposed in Ma et al. (2014) depends on the specific pattern to which the measure is applied.

For this reason, in the rest of the research, we add a superscript 𝑝 with 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃}

to underline such a dependence when needed. For example, we use 𝐷𝑝 to denote the weighted

intersection delay time for pattern 𝑝; similarly, we use 𝑑𝑣𝑒ℎ−𝑝 and 𝑑𝑝𝑒𝑑−𝑝, for the vehicle delay

and pedestrian delay for pattern 𝑝.

The HCM model of the vehicle delay is based on the saturation flow rate of each movement group.

Therefore, Equation (1.1) will be applied for computing 𝑑𝑣𝑒ℎ−𝑝 for 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃} in

our study. However, 𝑑𝑝𝑒𝑑−𝑝 has not been fully investigated in the literature. We will address this

gap in Section 3.4 of this study.

1.4.2 Safety

Intersection safety is defined as the number of potential vehicle-to-vehicle and vehicle-to-

pedestrian conflict situations at the intersection while conflict is a result of an interaction between

users’ movements at the intersection. A conflict with high severity usually is known as a collision

and crash (Brow, 2011).

Different factors are used to predict or analyze the safety level of intersections based on crash

history data, such as the classification of severity, the post-encroachment time, the time-to-

collision (Lord, 1996), the average daily traffic and accident modification factor (Torbic et al.,

2010), the time to collision (Matsui et al., 2011)), the annual average daily traffic (Alavi et al.,

2013), the average hourly conflict, the square root of users volume at the intersection, and the

intersection conflict index (Abdul Majeed & Ewadh, 2019; Sayed & Zein, 1999). Most of

these factors are more suitable for measuring vehicle–to–vehicle conflict. Then, to measure the

pedestrian-vehicle conflict, some of the literature applied other indices such as pedestrian level

of comfort, pedestrian level of stress, and pedestrian intersection index, which are related to



36

the pedestrian facility at the intersection, intersection geometry, daily users volume, and the

speed of users (Chang & Rodriguez, 2019). These indices have been used to compare the level

of pedestrian safety between different intersections. However, this study intends to investigate

the number of conflict situations for pedestrians and vehicles at one specific intersection under

different signal patterns.

Zhang & Prevedouros (2003), based on HCM, formulated the potential user conflict (PC)

that provides the intersection degree of safety and indicates the frequency of unsafe (conflict)

situations. This factor can be applied to pedestrian and vehicle conflicts for an individual

intersection according to the traffic flow and signal pattern (Zhang & Prevedouros, 2003). They

studied the intersection with shared, permitted, and protected left-turn movement scenarios

based on HCM. Equation (1.4) defines the potential conflict (number of users in conflict/interval)

as provided by Zhang & Prevedouros (2003):

𝑃𝐶 = 𝑝𝑐𝑣2𝑣 + 𝑝𝑐𝑣2𝑝, (𝑢𝑠𝑒𝑟 𝑤𝑖𝑡ℎ 𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡 /𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) (1.4)

where 𝑝𝑐𝑣2𝑣 represents the total number of vehicles with the potential conflict (v2v) for each

time interval; and 𝑝𝑐𝑣2𝑝 is the total number of pedestrians with the potential conflict with a

vehicle (v2p) for each time interval. The PC model of Zhang & Prevedouros (2003) computes

the number of conflicts for each group of movements based on their interaction with another

group of movements for a specific period. Therefore, the PC model can be defined for each

pattern of study. In the rest of the research, we use the sum of the number of vehicles with the

potential conflict of vehicle-to-vehicle 𝑝𝑐𝑣2𝑣−𝑝, and the number of pedestrians with the potential

conflict with the vehicle. 𝑝𝑐𝑣2𝑝−𝑝 for each pattern 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃} with 𝑃𝐶𝑝 to denote

the total number of users with potential conflicts for each time interval.

1.4.3 Delay and safety index

Zhang & Prevedouros (2003) introduced an indicator to compare different patterns called delay

and safety index (𝐷𝑆). The 𝐷𝑆 (s) indicator reflects the combined effects of delay and potential
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conflict situations for pedestrians and vehicles. Equations (1.5) and (1.6) define the vehicle

delay and safety index (𝐷𝑆𝑣𝑒ℎ) and the pedestrian delay and safety index (𝐷𝑆𝑝𝑒𝑑), respectively.

𝐷𝑆𝑣𝑒ℎ = 𝑑𝑣𝑒ℎ (1 + 𝑝𝑐𝑣2𝑣/𝑉𝑣𝑒ℎ ), (𝑠) (1.5)

𝐷𝑆𝑝𝑒𝑑 = 𝑑𝑝𝑒𝑑 (1 + 𝑝𝑐𝑣2𝑝/𝑉𝑝𝑒𝑑 ), (𝑠) (1.6)

where 𝑑𝑣𝑒ℎ and 𝑑𝑝𝑒𝑑 refer to an average vehicle and pedestrian delay, respectively, and 𝑉𝑣𝑒ℎ and

𝑉𝑝𝑒𝑑 refer to the vehicle volume and pedestrian volume of the intersection for each time interval,

respectively.

The 𝐷𝑆 index follows the current HCM level of service (LOS) indicator for signalized

intersections. It considers the combination of delay and safety to get a comprehensive measure

of LOS (Zhang & Prevedouros, 2003). Their research has used the pedestrian and vehicle

volumes to estimate the delay and safety index as a weighted sum of potential conflicts, and

delays (Transportation Research Board, 2016). 𝐷𝑆 has referred to HCM and considered the

delay as an inconvenient perception and conflict as a risk. Then, they define the DS as the

weighted average of 𝐷𝑆𝑣𝑒ℎ and 𝐷𝑆𝑝𝑒𝑑 for each period of the study. Equation (1.7) provides the

intersection 𝐷𝑆 as:

𝐷𝑆 =
𝐷𝑆𝑝𝑒𝑑 𝑉 𝑝𝑒𝑑 + 𝐷𝑆𝑣𝑒ℎ 𝑉𝑣𝑒ℎ

𝑉 𝑝𝑒𝑑 +𝑉𝑣𝑒ℎ
(𝑠) (1.7)

Their model is based on the number of users with the potential conflict and average user

delay and is compatible with each signal pattern. Therefore, we can modify the DS model

for pattern 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃} and we define 𝐷𝑆𝑝, 𝐷𝑆𝑣𝑒ℎ−𝑝 and 𝐷𝑆𝑝𝑒𝑑−𝑝 as delay and

safety index, vehicle delay and safety index, and pedestrian delay and safety index for pattern

𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃}, respectively.

The traffic signal is mostly investigated towards improving the relevant factors, such as traffic

capacity, delay time, system throughput, safety, emissions, queue length, and other related factors

(Stevanovic et al., 2015; Jia et al., 2019; Builenko et al., 2018; Li & Sun, 2019a; Chen et al.,

2019; Li et al., 2017). However, most of these criteria are driven by two fundamental measures:
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the delay time (i.e., an additional travel time experienced by users) and safety (i.e., any conflict

situations or possible interactions between vehicle and vehicle or pedestrian movements at the

intersection). Therefore, our literature review focuses on these measures. We observe that these

two measures are not entirely independent as a lower level of safety corresponds to a higher level

of potential conflict, and this can, in turn, impact delay time. For this reason, we also review a

third performance measure called the delay and safety index which provides the level of service

of users at a signalized intersection by combining the pedestrians’ and vehicles’ delay and safety

(represented by the number of potential conflicts). The delay time, safety, and delay and safety

index, as performance measures of our study, are treated in Sections 3.2.2.1, 3.2.2.2, and 3.2.2.3,

respectively.

1.4.4 Comparison of signal patterns based on the performances indicators

We defined in Section 1.3.2.2 the signal pattern as a set of movements that users are allowed to

perform during the green interval of a phase in each cycle. Literature has reported that the signal

pattern with leading, lagging, or separating intervals can improve travel experience quality at

the intersection by influencing both delay and safety (Furth & Saeidi Razavi, 2019; Li & Sun,

2019c; Wong & Heydecker, 2011; Lam, Poon & Mung, 1997). Some studies have compared

these patterns in terms of their cycle length, delay time, and safety (Zhang & Su, 2018; Li & Sun,

2019a). As mentioned in Section 3.2.2, we consider the delay, PC, and DS as reliable and

measurable performances that can be used to compare each signal pattern level of service for the

specific intersection.

Section 3.2.1 considers the most common signal patterns that account for both vehicles and

pedestrians as EPP (exclusive pedestrian phase), TWC (two-way crossing), and LTI (leading

through interval). The literature compared these patterns by analyzing how they affect delay time

and safety under various user volumes. For example, the comparison between EPP and TWC

using different traffic data shows that EPP in the intersection with a low volume of pedestrian

increases the delay at the intersection and causes violation behavior of pedestrians, which

consequently leads to reduced intersection safety (Ishaque & Noland, 2007; Ma et al., 2015;
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Zhang & Su, 2018). TWC with a high volume of pedestrians and the (right or left) turning

vehicles can increase the conflict situations (Zhang & Su, 2018).

LTI minimizes the conflict between pedestrians and vehicles without impacting significant

vehicular movement. However, separating the turning lane and through lanes on each approach

is necessary; otherwise, the vehicle delay increases at the intersection (Saneinejad & Lo, 2015).

Also, patterns with exclusive intervals (LTI and EPP) at the intersection with low pedestrian

volume can increase the delay. However, it is expected the EPP with more increase the delay since

it stops vehicular movements and forces pedestrian movement for the exclusive interval, and it

will increase cycle length to reduce the capacity ratio of the intersection.(Furth & Saeidi Razavi,

2019).

1.5 Simulation methods

Traffic simulation is a widely used method applied in the research on traffic modeling, planning,

and development of traffic networks and systems to estimate the current state of the traffic. The

major types of traffic models are macroscopic, mesoscopic, and microscopic. Macroscopic

models consider the aggregate behavior of traffic flow, while microscopic models consider the

interaction of individual vehicles. These models include parameters such as driver behavior,

vehicle locations, distance headway, time headway, and the velocity and acceleration of individual

vehicles. Mesoscopic models share the properties of macroscopic and microscopic traffic models

(Imran, Khan, Aaron Gulliver, Khattak & Nasir, 2020). Therefore, macroscopic and mesoscopic

models are most suitable for modeling large networks, while microscopic models are usually

applied to smaller areas. The microscopic model generally is useful to adjust signal timing

(Stevanovic et al., 2015).

A mixed-flow simulation model is expected to address the real-time demands of pedestrians and

vehicles; consider any possible movements and potential conflicts of pedestrians and vehicles,

and make a dynamic response to users’ behaviors. The primary traffic simulation softwares

are PARAMICS, RANSIMS, CORSIM, VISSIM, Synchro, and TRANSMODELER, but the
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available simulation software for this project are Synchro, HCS, and SIDRA. The Highway

Capacity Software (HCS) is a user-friendly procedure to estimate intersection capacity and level

of service (LOS) based on Transportation Research Board (2016) and includes operational,

design, and planning analyses. The software analysis determines and maintains the level of

service based on speed, existing traffic volumes, and roadway geometry. The software uses

intersection configuration data and traffic flows, signal phasing, and timing as input and gives

the stopped delay, V/C ratio, and LOS for output. The HCS application work with up to four

legs of the intersection. Signalized and Un-signalized Intersection Design, and Research Aid

(SIDRA) is an intersection-based program that analyzes the capacity, timing, and performance of

isolated intersections. Signalized intersections, roundabouts, and yield two-way stops or all-way

stop-controlled intersections with up to eight approaches can be planned with SIDRA. The

software should optimize phase sequences, splits, and cycle lengths by considering intersection

geometry, including the number of lanes, movements, and turning lanes. Compared with HCS,

SIDRA can perform the best cycle length, and phase sequence includes minimizing the number

of stops and delay time, queue length, vehicle emissions, and fuel consumption. SIDRA offers

MOEs (measures of effectiveness) parameters such as total and average delay, v/c ratios, queue

length, number of stops, speed, fuel consumption, and emissions. It is the only program that

calculates capacity-based MOEs parameters per lane for all approaches. SIDRA is designed for

fixed-time, pre-timed, and actuated signals.

SYNCHRO is a macroscopic traffic signal timing tool that can be used to optimize signal timing

parameters for isolated and coordinated intersections. It can analyze multi-legged signalized

intersections with up to six approaches per intersection. SYNCHRO is designed to optimize

cycle lengths, splits, offsets, and phase sequences. SYNCHRO calculates intersection and

approach delays based on the HCM for calculating delays and LOS. SYNCHRO requires traffic

flow and geometric data. The program can evaluate existing traffic signal timing or optimize

the settings for individual intersections, arteries, or a network. SYNCHRO has user-specified

reports, including capacity analysis, LOS, delay, stops, fuel consumption, blocking analysis, and



41

signal timing settings. SYNCHRO has unique visual displays, including an interactive platoon

dispersion diagram (Sabra, Wallace & Lin, 2000).

1.6 Data collection

Data collection is a costly and time-intensive part of signal timing. The traffic data might be

related to the traffic control devices, traffic characteristics, intersection geometry, and crash

history (Urbanik et al., 2015). Generally, we have three types of data collected: hourly, daily,

and yearly. The data is preferably collected during the time with a minimum effect of climatic

conditions and for which the data is measurable. Traffic Data can be collected both (1) manually

and (2) automatically. There is a different kind of automatic data collection procedures such as

Manual/Video which is performed by a person or video imaging located in a special position to

count the requested data; Pneumatic tubes detect wheeled vehicles that pass over rubber tubes;

Microwave uses radio waves to detect bicycles and pedestrians; Inductive loop sense metal

objects that pass over the in-ground loop; Infrared use invisible radiant energy to detect bicycles

and pedestrians; and Inductive loop paired with Infrared is a dual technology approach that a

short duration or permanent loop is paired with infrared technology to detect both bicycles and

pedestrians. These systems detect and collect pedestrian and bike data and are comparable in

cost, accuracy, technical requirement, function (cover only pedestrian data or cover the bike,

pedestrian, and vehicles at the same time), and the possibility of permanent use (it is not possible

to use the manual data collection system permanently). Regarding this comparison, the video

imaging automatic system, pressure sensor, and inductive loops are recommended for collecting

multi-functional data over a long to permanent period.(Erik Minge, Courtney Falero, Greg

Lindsey, Michael Petesch & Tohr Vorvick, 2017) The main techniques for pedestrian data

collection are similar to vehicle data collection and may be categorized in:

• Manual field observation (expensive, error-prone, time-consuming)

• Manual observation of a video (error-prone, time-consuming)

• Semi-automated video analysis (the analytic data are limited in comparison to an automated

method)
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• Automated video analysis (accurate data, cover a variety of data, easy to use)

The video processing is easy to install, provides more information, and has a reasonable price

(Ismail, Sayed, Saunier & Lim, 2009). The video imaging system is currently used to collect

vehicle data. Due to the accessibility to the system and the saving time and cost with this

system, the semi-automated and automated video imaging system is recommended to collect

pedestrian data. The video imaging system is a significant method to achieve real-time data

from pedestrians and vehicles.



CHAPTER 2

METHODOLOGY

This research investigates whether continuously changing the pattern configuration throughout

the day to adapt to real-time traffic flow fluctuations improves the level of service at an intersection.

It hypothesizes that considering both the delay time and the number of conflict situations in the

design of such patterns will decrease travel time and increase safety. This research is articulated

around the following three objectives:

• To specify the methods for measuring real-time delay and the number of conflict situations

for the relevant signal patterns (TWC, EPP, and LTI).

• To develop a case study to assess the impact of the different traffic signal patterns on delay

time and safety using real-time traffic data.

• To investigate the effectiveness of dynamically changing signal patterns in improving traffic

signal performance (i.e., decreased travel time and increased safety) while identifying the

best-performing pattern for each individual period of the case study.

Unlike what has been done in a large part of the literature to measure traffic signal performances

based on exclusive vehicle-related indicators, the current study includes pedestrian-related

performance indicators. Also, we take into account major performance indicators such as delay

time, potential conflicts, and their combination to investigate our study regarding both time and

safety-related measures. Traffic signals investigation can involve components related to traffic

characteristics of roads, infrastructure, controlling tools, and users. Figure Intro.1 is designed

based on these traffic signal components to categorize what has been neglected by the literature

related to traffic signal optimization. In our research, we focus on the one with the green borders,

the remaining parts are not accessible or applicable in our study since we don’t have access to

the ITS system to manage the adaptive traffic control system.



44

Figure Intro.1 Problem description

The methodological approach for this study differs from existing methods in several ways since,

in this research, we discuss considering the time and safety-related performances indicator, using

real-time traffic data, and taking into account both pedestrians and vehicles while we investigate

the traffic signal pattern for an individual intersection. Figure Intro.2 shows the methodology

steps and their relations with the objectives of our study.
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Figure Intro.2 Methodological approach

The equations used in this study were developed based on the HCM. The first stage of our

methodology consists in modifying those equations for each studied signal pattern and making

sure the performance indicator is pedestrian-sensitive by using the HCM approach. The second

stage of the methodological approach is to investigate a case study. This study focuses on an

isolated intersection with an average volume of 3660 users per hour for the day of the study.

The case study is selected by choosing a signalized intersection with 1) characteristics of a single

and isolated intersection; 2) demand volume varying throughout the typical working day, and 3)

for which real-time traffic data can be extracted. Following the HCM approach, the demand data

are obtained at regular intervals (15 minutes) for all users.

Then, Synchro version 10 is selected to simulate the traffic data because 1) it allows calculations

based on the 6th edition of HCM; 2) it is flexible enough to simulate the signal patterns

investigated in this study, and 3) it is available to the authors. Synchro simulates each study

period based on the real-time data of the case-study intersection to provide the optimum cycle
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length, green time, and vehicle delay for each pattern. Then, pedestrian delay and conflict

situations are calculated for each studied pattern. Two fixed cycle lengths are tested.

We also investigated the optimum cycle length for each signal pattern. However, the optimum

cycle length of Synchro seeks to minimize the delay time and does not consider safety in the

objective function. Thus, we only investigated the hybrid pattern optimum cycle related to delay

time, and the results are reported in Appendix A.

In the next step, the three studied patterns are compared based on their performance measures

and the best-performing pattern is verified for each period of the study. Based on the best-

performing pattern, the hybrid pattern is defined for the day of the study as the integration of the

best-performing pattern for each period of the study. A final step in the methodology approach,

the performance measures of the hybrid patterns are compared with the best-performing pattern

performance measure to verify the research hypothesis, which indicates the effect of the hybrid

pattern on delay time and safety of the intersection.

The following chapter aims to articulate a detailed and comprehensive account of the methodology

employed in this study. As a published article, this chapter explicates the process and outcomes

of the research, contributing to the advancement of knowledge in this domain.
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3.1 Introduction

With the increasing use of vehicles globally, transportation management and control systems

have been developed to facilitate access by motorized users to roads and infrastructures and

consequently increase the quality of the travel experience. The urban transportation system

includes three general components: the infrastructure (roads, intersections, and bridges), users

(vehicles, pedestrians, bicycles, and drivers), and operation tools (signs, traffic signals, and

management and control systems). As a tool for traffic management in urban areas, traffic signals

feature different control approaches in terms of methods, technologies (hardware and software),

and objectives. The common objectives of the traffic signal are to maximize vehicle throughput

and intersection safety while minimizing travel time.

This paper focuses on how traffic signal control techniques may be adapted to consider pedestrian-

related performance indicators to improve safety and travel time for an intersection. The control

of traffic signals is a complex process since it involves many interrelated elements, such as

safety, capacity, delay time, queue length, intersection geometries, heterogeneous users, and

environmental conditions. All these elements affect the cycle length (the time a traffic signal

requires to complete the sequence of signal phases) and signal pattern (the set of user movements

1 Montazeri, Errico & Pellecuer (2022)
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allowed at each phase of the signal cycle). The cycle length and the signal pattern represent

essential elements in traffic signal investigation. Most traffic agencies nowadays are interested in

the concept of an adaptive control system that applies real-time traffic data to change the cycle

length and the pattern of a traffic signal dynamically (Transportation Research Board, 2016).

In the literature, traffic signal control optimization is mainly geared towards minimizing the

cycle length and improving measures that are directly or indirectly influenced by the cycle length.

These measures include traffic capacity, travel time, system throughput, vehicle-to-vehicle

conflict, and vehicle emissions (Stevanovic et al., 2015; Jia et al., 2019; Builenko et al., 2018;

Chen et al., 2019; Li et al., 2017; Li & Sun, 2019a). All these measures mainly quantify

vehicle-related performance. Pedestrian-related performance indicators have also been studied

in the literature (Wong & Wong, 2003; Ishaque & Noland, 2007; Builenko et al., 2018), but in

most related works, interactions between pedestrians and vehicles were not explicitly considered.

In real-world intersections, traffic signal control may feature rather complex configurations of

signal patterns. The literature, however, mostly focuses only on simple forms of traffic signal

phase sequences and patterns (such as a two-phase traffic signal). Even works that focus on

optimal cycle length models applied to different signal patterns (Ishaque & Noland, 2007;

Li & Sun, 2019a; Zhang & Su, 2018), assume simplified intersection conditions with fixed traffic

flow or one-way streets (Ma et al., 2015; Zhang & Su, 2018). Similarly, one specific signal

pattern is typically applied for the whole day whereas traffic flows largely change during the day,

with a potential increase of delay time and travel time at the intersection (Zhang & Su, 2018).

Furthermore, since collecting pedestrian data has traditionally been costly and time-consuming,

even advanced traffic control systems capable of dynamically adapting the cycle length to

real-time data have not considered pedestrian users (Transportation Research Board, 2016).

However, recent development in information technology allows more easily collection and

process real-time traffic data, thus enabling more complex signal control policies to see (Feng,

Duives, Daamen & Hoogendoorn, 2021), for example.
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The most common signal patterns that explicitly consider interactions between motorized and

non-motorized users are: Two-Way Crossing (TWC), Exclusive Pedestrian Phase (EPP), Leading

Pedestrian Interval (LPI), and Leading Through Interval (LTI). In the literature, a trade-off

between safety and delay time has been considered to measure the efficiency of each signal

pattern (Ma et al., 2015). Generally, to investigate the safety of intersections, the literature

considers the number of accidents or predicted crash data (Alavi et al., 2013; Torbic et al.,

2010; Sayed & Zein, 1999; Li et al., 2012; Frankish et al., 2001). Moreover, to estimate the

intersection delay, several researchers have used the HCM delay model. However, their delay

and safety models have usually failed to consider the effect of signal patterns or pedestrian data.

This paper aims to investigate whether continuously changing the pattern configuration throughout

the day to adapt to real-time traffic flow fluctuations could improve the level of service at an

intersection. This paper hypothesizes that considering both the delay time and the number of

conflict situations in the design of such a hybrid pattern will decrease travel time and increase

safety. This research is articulated around the following three objectives:

• To specify the methods for measuring real-time delay and a number of conflict situations for

relevant signal patterns (TWC, EPP, and LTI).

• To develop a case study to assess the impact of the different traffic signal patterns on delay

time and safety using real-time traffic data.

• To investigate the effectiveness of dynamically changing signal patterns in improving traffic

signal performance (i.e., decreased travel time and increased safety) while identifying the

best-performing pattern for each individual period of the case study.

The rest of the paper is organized as follows. Section 3.2 reviews the literature to identify the

relevant signal patterns and performance indicator models. Section 3.3 details the methodological

approach used in this study. Section 3.4 develops pedestrian-sensitive performance indicators

and generates the delay time and potential conflict models for each signal pattern of the study.

In Section 3.5, the results and limitations are discussed as the experimental setting is applied

to a case study for a specific intersection in Montreal, using real-time traffic data and Synchro

software in the simulation phase to verify the impact of the hybrid signal pattern on the level of
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service at the intersection. In section 3.6, the results and limitations of the study are presented

and discussed. Finally, Section 3.7 draws conclusions based on the case study.

3.2 Literature Review

This section identifies the critical parameters related to this paper and discusses how these

parameters are dealt with in the literature. A variety of signal patterns and their performance

are also described. Furthermore, this section reviews how the performances of signal patterns

are compared in the literature. In particular, Section 3.2.1 reviews the literature related to

signal patterns while Section 3.2.2 reviews performance indicators such as Delay time, Potential

Conflict, and Delay and Safety index. Finally, Section 3.2.3 focuses on the literature comparing

signal pattern performance.

3.2.1 Signal Patterns

As previously mentioned, our aim in this paper is to perform comparisons of several signal

patterns. Formally, a signal pattern dictates the possible user movements that are permitted

during the green interval of a phase (a phase consists of a set of green, red, and clearance

intervals assigned to specified traffic movement (s) during each cycle) (Urbanik et al., 2015). In

a typical four-leg (two-phase) intersection, we have four possible signal pattern types:

• Free pattern: no movement restrictions are applied to any phases during the green interval.

• Exclusive pattern: the green interval is partitioned into mutually exclusive (groups of) move-

ments.

• Leading pattern: a group of movements is permitted for the complete green interval duration,

while a second restricted group of movements is only permitted after a specific time interval.

• Lagging pattern: this pattern is similar to the leading ones, but the restricted movement

group is only allowed before a specific time interval.

These patterns can be applied to the movements of each user category, but this study focuses on

signal patterns that also explicitly account for pedestrian movements. The most common signal
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patterns that address the pedestrian interval are (Urbanik et al., 2015; Furth & Saeidi Razavi,

2019):

• TWC (Two-Way Crossing): allows pedestrians to cross the intersection during the full

duration of the green interval of the adjacent vehicular movement;

• EPP (Exclusive Pedestrian Phase): protects and excludes the pedestrian phase from all

vehicular movements;

• LPI (Leading/Lagging Pedestrian Interval): leads or lags the green pedestrian interval, during

which vehicles are not permitted to cross;

• LTI (Leading/Lagging Through Interval): Similar to LPI, it leads or lags the pedestrian

interval; however, only vehicular turning movements are prohibited on a pedestrian green

interval.

Given that LTI allows vehicles to cross the intersection during the green pedestrian interval, it is

commonly preferred to LPI. For this reason, the present study focuses on the LTI, TWC, and

EPP patterns, and it will not investigate the LPI pattern in depth.

3.2.2 Performance Indicators

In the literature, several indicators are developed to assess the performance of traffic signals;

these indicators include the delay time (Jia et al., 2019; Li & Sun, 2019a), the traffic capacity (Jia

et al., 2019), the system throughput (Jia et al., 2019; Li & Sun, 2019a), the intersection

safety (Stevanovic et al., 2015; Builenko et al., 2018), the GHG emission count (Stevanovic

et al., 2015), the queue length (Chen et al., 2019), the travel time (Chen et al., 2019; Li et al.,

2017), etc. However, all these indicators are driven by two fundamental measures: the delay

time (i.e., the additional travel time experienced by users compared to free movement through

the intersection) and intersection safety (i.e., events to do with any conflict situations or possible

interactions between vehicle and vehicle or pedestrian movements at the intersection). Therefore,

our literature review focuses on these measures. We observe that these two measures are not

entirely independent since a lower level of safety corresponds to a higher level of potential

conflict, and this can in turn impact the delay time. For this reason, we also review a third
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performance indicator called the Delay and Safety index, which provides the level of service of

users at a signalized intersection by combining both pedestrian and vehicle delay and safety

(represented by the number of users with potential conflicts). These three performance indicators

are presented in Sections 3.2.2.1, 3.2.2.2 and 3.2.2.3, respectively.

3.2.2.1 Delay Time

As previously mentioned, the delay time at the intersection represents additional travel time

experienced by users because of the traffic control system, changes in speed due to geometric

conditions, incidents, and interactions with other road users versus free movement through the

intersection (Transportation Research Board, 2016). While the delay time can generally account

for several types of users, such as private vehicles, pedestrians, bikes, and transits, we focus

here on two aggregate user types: vehicles (including private and transit vehicles and bikes) and

pedestrians.

Delay can be estimated using different models. As reported by Tom V. Mathew (2014), there are

four primary methods for estimating the delay time: Akcelik (Li et al., 1994), HCM (Transporta-

tion Research Board, 2016), Webster (Wagner et al., 2014), and HSL (Roshandeh et al., 2016;

Tom V. Mathew, 2014). Among these models, the HCM is reputed to be more accurate even in

situations with under or over-saturated intersections (Hadiuzzaman et al., 2014). As mentioned

earlier, one component of intersection delay is a vehicular delay. Equation (1.1) describes the

vehicle delay model of HCM:

𝑑𝑣𝑒ℎ = 𝑑𝑈 + 𝑑𝐼 + 𝑑𝑄 (𝑠/𝑣𝑒ℎ) (3.1)

where 𝑑𝑈 defines the uniform delay based on the assumption of uniform arrivals and stable

flow of vehicles; 𝑑𝐼 defines the incremental delay due to the effect of random, cycle-by-cycle

fluctuations in demand, which occasionally exceed capacity and are caused by a sustained

oversaturation during the analysis period; and 𝑑𝑄 defines the initial queue delay resulting from

unmet demand in the previous period. HCM refers to the saturation flow rate used to compute
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𝑑𝑣𝑒ℎ for different signal patterns and can be calculated for each approach, lane, and movement

group of the intersection (Transportation Research Board, 2016).

The other component of the intersection delay is the pedestrian delay. Different studies modify

the HCM model to include the pedestrian flow rate, pedestrian violation behavior, and traffic

signal pattern (Ma et al., 2015, 2014; Yang, 2010). The model proposed by Ma et al. (2014,

2015) modifies the HCM to account for the pedestrian delay in TWC and EPP. This model

comprises three parts. The first part is the signal delay (𝑑𝑠𝑖𝑔), defined as the waiting time of

pedestrians stopping at the intersection because of the traffic light. The second part is the

conflict delay (𝑑𝑐𝑜𝑛), defined as the additional experienced delay time due to conflicts between

pedestrians and turning vehicles. The third part is the detour delay (𝑑𝑑𝑒𝑡) due to the fact that

pedestrians willing to cross the intersection diagonally must perform a detour if the considered

signal pattern does not allow diagonal crossing. As a consequence, Ma et al. (2015) determine

the average pedestrian delay time as:

𝑑𝑝𝑒𝑑 = 𝑑𝑠𝑖𝑔 + 𝑑𝑐𝑜𝑛 + 𝑑𝑑𝑒𝑡 (𝑠/𝑝𝑒𝑑) (3.2)

where 𝑑𝑝𝑒𝑑 and 𝑑𝑣𝑒ℎ are the average per-user delay of pedestrians and vehicles, respectively. Ma

et al. (2014) recommend adapting the weighted delay as the intersection delay (s/user):

𝐷 =
𝑑𝑣𝑒ℎ𝑉𝑣𝑒ℎ + 𝑑𝑝𝑒𝑑𝑉 𝑝𝑒𝑑

𝑉𝑣𝑒ℎ +𝑉𝑝𝑒𝑑
(𝑠/𝑢𝑠𝑒𝑟) (3.3)

where 𝑉𝑣𝑒ℎ and 𝑉𝑝𝑒𝑑 refer to the vehicle volume and pedestrian volume of the intersection, re-

spectively.

We observe that expressions of both the vehicle delay in the HCM model and the pedestrian delay

proposed in Ma et al. (2014) depends on the specific pattern to which the measure is applied.

For this reason, in the rest of the paper, we add a superscript 𝑝 with 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃} to

underline such a dependence when needed. For example, we use 𝐷𝑝 to denote the weighted

intersection delay time for pattern 𝑝; similarly, we use 𝑑𝑣𝑒ℎ−𝑝 and 𝑑𝑝𝑒𝑑−𝑝, for the vehicle delay

and pedestrian delay for pattern 𝑝.
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The vehicle delay HCM model is based on the saturation flow rate of each movement group.

Therefore, Equation (1.1) will be applied for computing 𝑑𝑣𝑒ℎ−𝑝 for 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇𝐼, 𝐸𝑃𝑃} in our

study. However, 𝑑𝑝𝑒𝑑−𝑝 has not been fully investigated in the literature. We will address this gap

in Section 3.4 of this study.

3.2.2.2 Potential Conflict

Intersection safety is defined as the number of potential vehicle-to-vehicle and vehicle-to-

pedestrian conflict situations at the intersection. A conflict is any possible unsafe situation or

interaction between user movements at the intersection. A conflict with high severity is usually

known as a collision and crash (Brow, 2011).

Different elements are used to predict or analyze the safety level of intersections based on

crash history data. These factors include the severity classification, the post-encroachment

time, the time-to-collision (Lord, 1996), the average daily traffic and accident modification

factor (Torbic et al., 2010), the time to collision (Matsui et al., 2011)), the annual average daily

traffic (Alavi et al., 2013), the average hourly conflict, the square root of users volume at the

intersection, and the intersection conflict index (Abdul Majeed & Ewadh, 2019; Sayed & Zein,

1999). Most of these factors are suitable for measuring vehicle-to-vehicle conflict. To quantify

pedestrian-to-vehicle conflict risk, some authors applied indices such as pedestrian level of

comfort, pedestrian level of stress, and pedestrian intersection index, which are related to the

pedestrian comfort at the intersection, intersection geometry, daily user volume, and the user

speed (Chang & Rodriguez, 2019). These indices are useful for comparing the level of pedestrian

safety at different intersections. However, the value of these indices would not change with the

signal pattern of the intersection. Therefore, to grasp the influence of the traffic signal pattern

on pedestrian safety, another index needs to be developed.

Zhang & Prevedouros (2003), based on HCM, proposed the Potential user Conflict (PC) metric,

which is intended to provide a measure of the degree of safety at the intersection and indicates

the frequency of unsafe (conflict) situations. This measure can be applied to pedestrian and
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vehicle conflicts for an individual intersection based on the traffic flow and signal pattern

(Zhang & Prevedouros, 2003). They focused on an intersection with shared, permitted, and

protected left-turn movement scenarios. Equation (1.4) defines the potential conflict (number of

users in conflict/interval) as provided by Zhang & Prevedouros (2003):

𝑃𝐶 = 𝑝𝑐𝑣2𝑣 + 𝑝𝑐𝑣2𝑝 (𝑢𝑠𝑒𝑟 𝑤𝑖𝑡ℎ 𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡 /𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) (3.4)

where 𝑝𝑐𝑣2𝑣 represents the total number of vehicles with a potential conflict (v2v) for each

time interval and 𝑝𝑐𝑣2𝑝 is the total number of pedestrians with a potential conflict with a

vehicle (v2p) for each time interval. PC model of Zhang & Prevedouros (2003) computes the

number of conflicts for each group of movements based on their interaction with another group

of movements for the specific period. Therefore, the model can be defined for each pattern

studied. In the rest of the paper, we use the sum of the number of vehicles with a potential

vehicle-to-vehicle conflict 𝑝𝑐𝑣2𝑣−𝑝, and the number of pedestrians with a potential conflict with

vehicle 𝑝𝑐𝑣2𝑝−𝑝 for each pattern 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃} with 𝑃𝐶𝑝 to denote the total number

of users with potential conflicts for each time interval.

3.2.2.3 Delay and Safety Index

Zhang & Prevedouros (2003) introduced an indicator called the Delay and Safety index (𝐷𝑆) for

use in comparing different patterns. 𝐷𝑆 (s/user) indicator reflects the combined effects of delay

and potential conflict situations for pedestrians and vehicles. Equations (1.5) and (1.6) define

the vehicle Delay and Safety index (𝐷𝑆𝑣𝑒ℎ) and the pedestrian Delay and Safety index (𝐷𝑆𝑝𝑒𝑑),

respectively.

𝐷𝑆𝑣𝑒ℎ = 𝑑𝑣𝑒ℎ (1 + 𝑝𝑐𝑣2𝑣/𝑉𝑣𝑒ℎ ) (𝑠/𝑣𝑒ℎ) (3.5)

𝐷𝑆𝑝𝑒𝑑 = 𝑑𝑝𝑒𝑑 (1 + 𝑝𝑐𝑣2𝑝/𝑉𝑝𝑒𝑑 ) (𝑠/𝑝𝑒𝑑) (3.6)

where 𝑑𝑣𝑒ℎ and 𝑑𝑝𝑒𝑑 denote the average vehicle and pedestrian delay, respectively, and 𝑉𝑣𝑒ℎ and

𝑉𝑝𝑒𝑑 denote the vehicle and pedestrian volumes of the intersection for a given reference time

interval, respectively. We observe that the 𝐷𝑆 index is a measure of the level of service at the
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intersection that accounts for both delay time and potential conflicts. Zhang & Prevedouros

(2003) proposed to integrate Equations (1.5) and (1.6) into a single weighted expression as:

𝐷𝑆 =
𝐷𝑆𝑣𝑒ℎ 𝑉𝑣𝑒ℎ + 𝐷𝑆𝑝𝑒𝑑 𝑉 𝑝𝑒𝑑

𝑉𝑣𝑒ℎ +𝑉𝑝𝑒𝑑
(𝑠/𝑢𝑠𝑒𝑟). (3.7)

This model is based on the number of users with potential conflicts and the average user delay

and can be specified for each signal pattern. Therefore, we can modify the 𝐷𝑆 model for pattern

𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃} and we define 𝐷𝑆𝑝, 𝐷𝑆𝑣𝑒ℎ−𝑝 and 𝐷𝑆𝑝𝑒𝑑−𝑝 as the Delay and Safety

index, the vehicle Delay and Safety index, and the pedestrian Delay and Safety index for patterns

𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃}, respectively.

3.2.3 Comparison of Signal Patterns

In Section 3.2.1, we defined the signal pattern as a set of movements that users are allowed

to perform during the green interval of a phase in each cycle. The literature reports that the

signal pattern with leading, lagging, or separating intervals can improve the travel experience

quality at the intersection by influencing both the delay and safety (Furth & Saeidi Razavi, 2019;

Li & Sun, 2019c; Wong & Heydecker, 2011; Lam et al., 1997). Some studies have compared

these patterns in terms of their cycle length, delay time, and safety (Zhang & Su, 2018; Li & Sun,

2019a). As mentioned in Section 3.2.2, we consider 𝐷, 𝑃𝐶, and 𝐷𝑆 as reliable and measurable

performance indicators that can be used to compare the level of service of each signal pattern

for a specific intersection.

Section 3.2.1 considers that the most common signal patterns accounting for both vehicles and

pedestrians are EPP (Exclusive Pedestrian Phase), TWC (Two-Way Crossing), and LTI (Leading

Through Interval). The literature compares these patterns by analyzing how they affect delay

time and safety under various user volumes. For example, a comparison between EPP and

TWC using different traffic data shows that EPP in an intersection with a low pedestrian volume

increases the delay at the intersection and causes violation behavior among pedestrians, which

consequently leads to reduced intersection safety (Ishaque & Noland, 2007; Ma et al., 2015;
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Zhang & Su, 2018). TWC with a high volume of pedestrians and (right or left) turning vehicles

can increase the number of conflict situations (Zhang & Su, 2018).

LTI minimizes conflicts between pedestrians and vehicles without significantly impacting

vehicular movement. However, separating the turning and through lanes at each approach

is necessary; otherwise, vehicle delay increases at the intersection (Saneinejad & Lo, 2015).

Furthermore, patterns with exclusive intervals (LTI and EPP) at an intersection with low

pedestrian volumes can increase delays. However, it is expected that EPP will increase the

delay significantly since it stops vehicular movements and forces pedestrian movements for

exclusive intervals, and will increase the cycle length to reduce the capacity ratio of the

intersection (Furth & Saeidi Razavi, 2019).

Besides looking at the literature that compares the results of different patterns while the traffic

signal performs the fixed pattern for the entire period covered by the study, we aim to study how

allowing the signal pattern to change dynamically during operations according to observed traffic

demand can potentially impact the traffic signal performance. Unlike what is largely observed in

the literature, with traffic signal performance based exclusively on vehicle-related measures, this

study aims to include pedestrian-related parameters. Delay time, potential conflicts, and their

combination are among the most widely adapted performance indicators in the literature. Section

3.3 provides the methodology of our study which investigates how traffic signal efficiency is

affected by dynamically changing signal patterns.

3.3 Materials and Methods

The methodological approach adopted for the present study differs from existing methods

in several ways. First, the study focuses on adapting a performance indicator model to suit

different pedestrian-related signal patterns. Second, it simulates real-time data of pedestrians and

vehicles throughout the day. Thirdly, it compares different signal patterns based on performance

indicators to provide the best-performing pattern for each study period. Moreover, it investigates

how dynamic signal patterns (hybrid patterns) can improve service levels.
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To address the three research objectives identified in Section 3.1, we proceed in three stages:

• First, delay and potential conflict parameters of each studied pattern are modified in Section

3.4 (see Table 3.3).

• Then, the studied patterns are investigated through a case study. They are simulated based on

observed demand, and 𝐷, 𝑃𝐶, and 𝐷𝑆 are computed for each pattern in Section 3.5.

• Finally, the performance of each pattern in the case study is compared for every time step.

Following this comparison, a hybrid pattern maximizing the service level over the entire

study period is developed and its performance is compared to that of other patterns in Section

3.5.

As discussed in Section 3.2, the equations used in this study are developed based on the HCM. The

first stage of our methodology consists in modifying the equations for each studied signal pattern

and using the HCM approach to ensure that the performance indicator is pedestrian-sensitive.

Therefore, 𝐷, 𝑃𝐶, and 𝐷𝑆 equations developed in Sections 3.4.1, 3.4.2 and 3.4.3, respectively,

comply with the HCM 6th edition.

In the second stage of the approach, a case study is developed and focuses on an isolated

intersection with an average volume of 3660 users per hour for the day of study. The case study

is selected by choosing a signalized intersection: (1) having the characteristics of a single and

isolated intersection, (2) with a demand volume varying throughout a typical working day, and

(3) for which real-time traffic data can be extracted. Following the HCM approach, demand data

are obtained at regular intervals (15 min) for all users.

In this second stage, Synchro version 10 is selected to simulate the traffic data because: (1) it

allows calculations based on the 6th edition of HCM, (2) it is flexible enough to simulate the

signal patterns investigated in this study, and (3) it is freely available to the authors. According to

Cubic (2019), “Synchro Software and its suite of associated applications is a traffic signal timing

software that assists engineers and transportation planners design, model, optimize, simulate

and animate signalized and unsignalized intersections” (Cubic Corporation, 2019). Synchro

simulates each study period based on the real-time data of the case study intersection to provide
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the optimum cycle length, green time, and vehicle delay for each pattern. Synchro’s ring-barrier

option enables the user to define the traffic pattern to be simulated, while Synchro optimizes the

length of each phase. Moreover, the performance, in terms of factors such as vehicle delay, traffic

signal cycle length, and green time, is extracted directly from simulation results. The HCM and

Synchro consider the saturation flow rate of the movement group in computing the vehicular

delay for each signal pattern. Therefore, we use Synchro’s estimation of vehicular delay in our

study. Following HCM 6th edition, and to ensure results accuracy, Synchro simulates the traffic

signal for each 15-min interval.

To assess the impact of the cycle length on the performance of each signal pattern, two sets of

simulations are run. First, the green phase and vehicular delay are extracted from Synchro for

different fixed cycle length values, and second, the cycle length, green time of each phase, and

vehicular delay are optimized by Synchro, from which they are then extracted. For each studied

pattern, the pedestrian delay and conflict situations are then calculated based on the equations in

Section 3.4.

The next methodological stage consists of a comparison of the performance indicator values

obtained from the signal patterns according to the equations in Section 3.4 to identify the

best-performing pattern (the pattern that most improve the level of service) for every 15 min. We

investigate and simulate three patterns (LTI, TWC, EPP) and build a hybrid pattern, consisting

of a pooling of the best-performing pattern for each interval. Finally, for each performance

indicator, we compare the performance of the hybrid pattern to that of the three regular patterns

(LTI, TWC, EPP) to verify whether the hybrid pattern improves the performance indicators.

3.4 Development of Pedestrian-Sensitive Performance Indicators

The performance indicators mentioned in Section 3.2 are not available for all patterns and do

not generally consider signal patterns with both pedestrian- and vehicle-sensitive indicators.

The performance indicators used in this paper adapt the state-of-the-art indicators to all signal
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patterns considered (i.e., TWC, EPP, LTI) and generalize the indicators to account for pedestrians

and vehicles.

This paper proposes a new delay measure by building on the model of Ma et al. (2015), introduced

in Section 3.2.2.1, which suitably accounts for pedestrians. It also modifies the potential conflict

and delay and safety models proposed by Zhang & Prevedouros (2003) to cover all signal

patterns of our study. These models are introduced in Sections 3.2.2.2 and 3.2.2.3, respectively.

The resulting pedestrian models, namely, the conflict model and the delay and safety model, are

presented in Sections 3.4.1, 3.4.2, and 3.4.3, respectively.

3.4.1 Computation of the Delay Time for Each Signal Pattern

In this study, the intersection delay is considered as a weighted average of pedestrian and vehicle

delays. Since the pedestrian delay of Ma et al. (2015) only considered TWC and EPP, we further

develop their delay model to also consider the LTI pattern by modifying the delay time model

described by Equation (1.2) for the regular four-arm intersection. Figure 3.1 illustrates the

four-arm intersection layout as a reference intersection model for this study. The set, parameters,

and variables used to compute the pedestrian delay are described in Table 3.1.
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Figure 3.1 Reference intersection layout with key parameters used in the simulation
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Table 3.1 Sets, parameters and descriptions

Sets, parameters, variables Description Value obtained from

𝑖 ∈ 𝐼 = {1, 2, 3, 4} Set of arms and corresponding corners at an intersection –

𝑗𝑖 ∈ 𝐼 Arm and corner following 𝑖 ∈ 𝐼

𝑗𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑖 + 1 𝑖 ≤ 3

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, ∀𝑖 ∈ 𝐼

–

𝑘𝑖 ∈ 𝐼 Diagonal corner from corner 𝑖 ∈ 𝐼,

𝑘𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑖 + 2 𝑖 + 2 ≤ 4

(𝑖 + 2) − 4 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, ∀𝑖 ∈ 𝐼

–

𝑔𝑣𝑒ℎ𝑖 Duration of green for vehicles from arm 𝑖 ∈ 𝐼, (s) Simulation (Synchro)

𝑔
𝑝𝑒𝑑
𝑖 Duration of green for pedestrian crossing arm 𝑖 ∈ 𝐼, (s) Simulation (Synchro)

𝑙𝑖 𝑗𝑖 Length of crosswalk from corner i to corner 𝑗𝑖, (m) Observation

𝑠𝑝𝑒𝑑 Average walking speed of pedestrians, (m/s) Observation

𝛼𝑖𝑘𝑖 Portion of pedestrian volume from corner i to corner 𝑘𝑖 in total pedestrian

demand of corner 𝑖 ∈ 𝐼

Observation

𝑡 Acceptable gap: time between vehicles when the vehicle confidently

does (a) lane change(s)

Computation

𝜇𝑖 Flow rate of vehicles turning on corner 𝑖 ∈ 𝐼 (veh/h) Observation

𝐶 Cycle length,(s) Simulation (Synchro)

𝑑𝑝𝑒𝑑 Pedestrian delay at intersection(s) Computation

𝑑𝑠𝑖𝑔 Pedestrian delay due to traffic signal at crosswalk(s) Computation

𝑑𝑐𝑜𝑛 Pedestrian delay due to conflicts with turning vehicles(s) Computation

𝑣𝑙𝑡𝑖 Number of left turning vehicles on approach 𝑖 ∈ 𝐼 during green interval

of 𝑔𝑞

Observation

𝑣𝑜𝑡𝑖 Number of vehicles moving in the opposite direction on approach i during

a green interval of 𝑔𝑢

Observation

𝑑𝑑𝑒𝑡 Pedestrian delay due to detour distance(s) Computation

As mentioned in Section 3.2.2.1, the three parts constituting the pedestrian delay in Equation

(1.2) are calculated by Equations (3.8) to (3.10) (Ma et al., 2015):

𝑑𝑝𝑒𝑑 = 𝑑𝑠𝑖𝑔 + 𝑑𝑐𝑜𝑛 + 𝑑𝑑𝑒𝑡 (𝑠/𝑝𝑒𝑑) (1.2)
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where 𝑑𝑝𝑒𝑑 is the average pedestrian delay at the intersection; 𝑑𝑠𝑖𝑔 is the pedestrian delay due

to the traffic signal at the crosswalk; 𝑑𝑐𝑜𝑛 is the pedestrian delay due to conflicts with turning

vehicles; and 𝑑𝑑𝑒𝑡 is the pedestrian delay due to detour distance, which is defined as the difference

between the time needed by pedestrians to cross diagonally to corner 𝑘𝑖 and the time to cross

conventionally from corner 𝑖 to 𝑗𝑖 and then from 𝑗𝑖 to 𝑘𝑖.

The pedestrian signal delay is defined as a waiting time due to the red interval of a traffic signal,

and was introduced by Ma et al. (2015) as Equation (3.8):

𝑑𝑠𝑖𝑔 =
∑
𝑖∈𝐼

(
(𝐶 − 𝑔

𝑝𝑒𝑑
𝑖 )2

2𝐶
+𝛼𝑖𝑘𝑖

(𝑔𝑣𝑒ℎ𝑖 − 𝑙𝑖
𝑠
𝑝𝑒𝑑
𝑖

) (𝐶 − 𝑔
𝑝𝑒𝑑
𝑖 ) + 0.5𝑔

𝑝𝑒𝑑
𝑗𝑖

(𝑔𝑣𝑒ℎ𝑗𝑖
−

𝑙 𝑗𝑖
𝑠
𝑝𝑒𝑑
𝑗𝑖

)

𝐶

)
(𝑠/𝑝𝑒𝑑)

(3.8)

The first part of Equation (3.8) calculates the pedestrian signal delay for a pedestrian intending

to cross from arm 𝑖 to arm 𝑗𝑖 (conventionally). The second part of Equation (3.8) measures the

pedestrian waiting time to cross diagonally from corner 𝑖 to corner 𝑘𝑖. However, because of

traffic light patterns, pedestrians have to cross from corner 𝑖 to 𝑗𝑖 and stop for the pedestrian

green interval of arm 𝑖 + 1, and then cross from corner 𝑗𝑖 to 𝑘𝑖.

The pedestrian conflict delay was defined in the model of Ma et al. (2015) as Equation (3.9):

𝑑𝑐𝑜𝑛 =
∑
𝑖∈𝐼

(
𝑒𝜇𝑖𝑡 − 𝜇𝑖𝑡 − 1

𝜇𝑖
+ 𝑎𝑖𝑘𝑖

𝑒𝜇 𝑗𝑖 𝑡 − 𝜇 𝑗𝑖 𝑡 − 1

𝜇 𝑗𝑖

) (𝑠/𝑝𝑒𝑑) (3.9)

where 𝑑𝑐𝑜𝑛 is recalculated as a result of the interaction between pedestrians and vehicles, related

to the volume of turning vehicles and gap time between vehicles at arm 𝑖. Equation (3.9) is also

divided into two parts. The first covers pedestrians crossing from corner 𝑖 to corner 𝑗𝑖, and the

second is related to pedestrians intending to cross from corner 𝑖 to 𝑘𝑖. The latter may experience

interactions with vehicles at corner 𝑗𝑖.
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The last part of the pedestrian delay in the model of Ma et al. (2015) is the detour delay. This

delay is related to the length of the crosswalk and the pedestrian speed. It is the difference

between the time required for a pedestrian intending to cross the intersection diagonally to cross

the intersection conventionally (i.e., one approach after the other) as compared to diagonally.

The detour delay is defined as follows:

𝑑𝑑𝑒𝑡 =
∑
𝑖∈𝐼

𝑙𝑖 𝑗𝑖 + 𝑙 𝑗𝑖𝑘𝑖 − 𝑙𝑖𝑘𝑖
𝑠𝑝𝑒𝑑

(𝑠/𝑝𝑒𝑑) (3.10)

We adapt Equations (3.8)–(3.10) to define the pedestrian delay for TWC, EPP, and LTI. User

movements under a typical TWC phase at a four-approach intersection are shown in Figure 3.2.

In TWC, pedestrians cannot cross the intersection directly from corner 𝑖 to corner 𝑘𝑖. First, they

have to cross from corner 𝑖 to 𝑗𝑖, and then from corner 𝑗𝑖 to 𝑘𝑖. Therefore, the pedestrian delay

for TWC includes a detour delay and both the first and second parts of a signal delay and a

conflict delay. The pedestrian delay in TWC is defined as follows:

𝑑𝑝𝑒𝑑−𝑇𝑊𝐶 = 𝑑𝑠𝑖𝑔 + 𝑑𝑐𝑜𝑛 + 𝑑𝑑𝑒𝑡 (𝑠/𝑝𝑒𝑑), (3.11)

where 𝑑𝑝𝑒𝑑−𝑇𝑊𝐶 is calculated with Equation (1.2).

Figure 3.2 Typical TWC phase diagram for a four-arm intersection



65

The EPP pattern allows pedestrians to cross the intersection conventionally or diagonally without

interaction with turning vehicles. Therefore, the study only expects the first part of 𝑑𝑠𝑖𝑔 in

Equation (3.8) to be applied for pedestrians coming to the intersection during the “do not walk”

or “stop” intervals of the pedestrian light. Figure 3.3 shows that all vehicle movements are

stopped at the intersection under the EPP pattern; therefore, the conflict delay and the detour

delay are not applied to this pattern. Equation (3.12) defines the EPP pedestrian delay as:

𝑑𝑝𝑒𝑑−𝐸𝑃𝑃 = 𝑑𝑠𝑖𝑔−𝐸𝑃𝑃 (𝑠/𝑝𝑒𝑑) (3.12)

where the pedestrian delay of the exclusive pedestrian pattern (𝑑𝑝𝑒𝑑−𝐸𝑃𝑃) only includes the

signal delay defined as:

𝑑𝑠𝑖𝑔−𝐸𝑃𝑃 =
∑
𝑖∈𝐼

(𝐶 − 𝑔
𝑝𝑒𝑑
𝑖 )2

2 𝐶
(𝑠/𝑝𝑒𝑑) (3.13)

Figure 3.3 Typical EPP phase diagram for a four-arm intersection

Figure 3.4 presents the typical LTI phase diagram at the intersection with four approaches:
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Figure 3.4 Typical LTI phase diagram for a four-arm intersection

LTI assumes that pedestrians cross the street only during the “walk” interval and does not

consider any pedestrian violation behavior. In the LTI pattern, the green interval for turning

vehicles starts while pedestrians are in the “do not walk” interval. Therefore, the study does not

expect any pedestrian conflict delay for this pattern; as well, 𝑑𝑠𝑖𝑔 and 𝑑𝑑𝑒𝑡 are calculated with

Equations (3.8) and (3.10), respectively. The LTI pedestrian delay is then defined as follows:

𝑑𝑝𝑒𝑑−𝐿𝑇 𝐼 = 𝑑𝑠𝑖𝑔 + 𝑑𝑑𝑒𝑡 (𝑠/𝑝𝑒𝑑) (3.14)

Therefore, we modified 𝑑𝑝𝑒𝑑 according to each signal pattern of the study; in the next section, we

modify the conflict-related equations for each signal pattern. As we discussed in Section 3.2.2.1,

we respect the HCM vehicular delay model since it reflects each pattern by considering the

saturation flow rate of the group of movements for each lane. Then, we compute the intersection

delay (𝐷) according to Equation (1.3) for each study pattern.

3.4.2 Computation of the Potential Conflict for Each Signal Pattern

Table 3.2 lists the parameters and variables for the intersection depicted in Figure 3.1 that are

needed to compute 𝑝𝑐𝑣2𝑣 and 𝑝𝑐𝑣2𝑝.
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The number of potential conflicts between vehicles caused by left-turning vehicles at the

intersection is defined as follows (Zhang & Prevedouros, 2003):

𝑝𝑐𝑣2𝑣 =
∑
𝑖∈𝐼

(𝑝𝑐 𝑙𝑡
𝑖 + 𝑝𝑐 𝑜𝑡

𝑖 ) (𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑤𝑖𝑡ℎ 𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡/𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) (3.15)

where 𝑝𝑐𝑙𝑡𝑖 is equal to 𝑝𝑐𝑜𝑡𝑖 if the conditions of Equation (3.16) are valid:

𝑝𝑐 𝑙𝑡
𝑖 = 𝑝𝑐 𝑜𝑡

𝑖 =

⎧⎪⎪⎨⎪⎪⎩
𝑣 𝑙𝑡

𝑖 𝑝
𝑝𝑐
𝑖 𝑖 𝑓 𝑣 𝑙𝑡

𝑖 ≤ 𝑣 𝑜𝑡
𝑖

𝑣 𝑜𝑡
𝑖 𝑝

𝑝𝑐
𝑖 𝑖 𝑓 𝑣 𝑙𝑡

𝑖 > 𝑣 𝑜𝑡
𝑖

∀ 𝑖 ∈ {1, 2, 3, 4} (3.16)

Equation (3.16) considers that 𝑝𝑐 𝑙𝑡
𝑖 = 𝑝𝑐 𝑜𝑡

𝑖 at the specific condition related to 𝑣 𝑜𝑡 and 𝑣 𝑙𝑡 on

the green interval of 𝑔𝑢, while 𝑔𝑢 is defined as Equation (3.17):

𝑔𝑢 =

⎧⎪⎪⎨⎪⎪⎩
𝑔 − 𝑔𝑜 𝑖 𝑓 𝑔𝑜 ≥ 𝑔 𝑓

𝑔 − 𝑔 𝑓 𝑖 𝑓 𝑔𝑜 < 𝑔 𝑓
∀ 𝑖 ∈ {1, 2, 3, 4} (3.17)

where 𝑔 𝑓 is part of the green time (𝑔) before the first turning vehicle arrives at the intersection

and 𝑔𝑜 is part of the green time while left-turning vehicles have to stop until opposing through a

queue of vehicles is cleared up.
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Table 3.2 Sets, parameters, variables and descriptions

Sets, parameters, variables Description Value obtained from

𝑖 ∈ 𝐼 = {1, 2, 3, 4} Set of approaches at intersection –

𝑣𝑙𝑡𝑖 Number of left-turning vehicles on approach 𝑖 ∈ 𝐼 during the green

interval of 𝑔𝑞

Observation

𝑣𝑜𝑡𝑖 Number of vehicles moving in the opposite direction on approach i during

the green interval of 𝑔𝑢

Observation

𝑝
𝑝𝑐
𝑖 Probability of potential left turn conflict on approach 𝑖 ∈ 𝐼 Computation

𝑣𝑝𝑒𝑑 Pedestrian flow rate in the subject crossing (walking in both directions)

(ped/h)

Observation

𝑔𝑝𝑒𝑑 Pedestrian service time(s) Simulation(Synchro)

𝑔𝑣𝑒ℎ Vehicle service time(s) Simulation(Synchro)

𝑔𝑞 Amount of permitted green time that is not blocked by (an) opposing

lane(s)

Observation

𝑜𝑐𝑐𝑙 Relevant conflict zone occupancy for conflicts between permitted or

protected left-turning vehicles and pedestrians

Computation

𝑣𝑜 Opposing demand flow rate (veh/h) Observation

𝑔𝑝𝑙 Effective green time for permitted left turn operation(s) Observation

𝑡𝑐 Critical gap(s) Computation

𝑉𝑣𝑒ℎ Total vehicle volume (veh/h) Observation

𝑉𝑝𝑒𝑑 Total pedestrian volume (ped/h) Observation

𝑝𝑐𝑣2𝑣 Total expected number of vehicles with potential conflicts (veh/interval) Computation

𝑝𝑐𝑣2𝑝 Total expected number of vehicles with potential conflicts (veh/time

interval)

Computation

𝑝𝑐𝑙𝑡𝑖 Number of left-turning vehicles with potential conflicts on approach 𝑖 ∈ 𝐼 Computation

𝑝𝑐𝑜𝑡𝑖 Potential conflicts of opposing vehicles resulting from left turn on

approach 𝑖 ∈ 𝐼

Computation

𝑜𝑐𝑐𝑝𝑒𝑑−𝑔 Pedestrian occupancy Computation

𝑜𝑐𝑐𝑟 Relevant conflict zone occupancy for conflicts between right-turning

vehicles and pedestrians

Computation

𝑔 𝑓 Part of green time (𝑔) before the first turning vehicle arrives at the

intersection(s)

Observation

𝑔𝑜 Part of the green time while left-turning vehicles stop to opposing through

a queue of vehicles get clear(s)

Observation

𝑔𝑢 Portion of green time during which there is no potential conflict between

left-turning and through the vehicle(s)

Observation

𝑣𝑝𝑒𝑑−𝑔 Pedestrian flow rate during pedestrian service time Computation

𝑜𝑐𝑐𝑝𝑒𝑑−𝑢 Pedestrian occupancy when the opposing queue is clear Computation
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Zhang & Prevedouros (2003) considered that left-turning vehicles do not get into conflict with

vehicles moving through in the following circumstances:

• At the beginning of the green interval, when the turning vehicle has to stop for the through

vehicles, and then there is no conflict.

• When the gap between the vehicles in through movement is less than 4 s, the driver cannot

make a left turn.

• When the gap between vehicles’ through movement is more than 8 s, the driver has enough

time to make a left turn, and there is no conflict.

For left turn situations that are not included above, Zhang & Prevedouros (2003) defines the

probability of a potential left turn conflict (𝑝𝑝𝑐) on each approach based on the turning time and

turning distance for left-turning vehicles when the gap time for through vehicles is between 4

and 8 s. In the case of the LTI pattern, 𝑔 𝑓 is zero because there is already an accumulation of

left-turning vehicles during the late start of the green interval. Then, 𝑔𝑢 of LTI is defined as:

𝑔𝑢 = 𝑔 − 𝑔𝑜 ∀ 𝑖 ∈ {1, 2, 3, 4} (3.18)

Regarding Equations (3.15) and (3.17), 𝑝𝑐𝑣2𝑣 is related to the number of vehicles and the

effective green interval for the left-turning vehicles.

Besides Equation (3.15), which computes 𝑝𝑐𝑣2𝑣 based on the traffic flow rate and to estimate

𝑝𝑐𝑣2𝑣, Zhang & Prevedouros (2003) proposed the following model based on the conflict zone

occupancy at the intersection for pedestrian and turning vehicles:

𝑣𝑝𝑒𝑑−𝑔 = 𝑣𝑝𝑒𝑑
(
𝐶/𝑔𝑝𝑒𝑑

)
(3.19)

where 𝑣𝑝𝑒𝑑−𝑔 is the pedestrian flow rate during the pedestrian service time. The authors used

Equation (3.19) to define the pedestrian occupancy at the intersection based on the pedestrian

flow rate, as shown in Equations (3.20) and (3.21):
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𝑜𝑐𝑐 𝑝𝑒𝑑−𝑔 = 𝑣 𝑝𝑒𝑑−𝑔/2000 𝐼 𝑓 𝑣 𝑝𝑒𝑑−𝑔 ≤ 1000 (𝑝𝑒𝑑/ℎ) (3.20)

𝑜𝑐𝑐 𝑝𝑒𝑑−𝑔 = 0.4 + (𝑣 𝑝𝑒𝑑−𝑔/10000 ) 𝐼 𝑓 𝑣 𝑝𝑒𝑑−𝑔 > 1000 (𝑝𝑒𝑑/ℎ) (3.21)

Depending on the pedestrian flow rate, 𝑜𝑐𝑐 𝑝𝑒𝑑−𝑔 is calculated by Equations (3.20) or (3.21),

and then the number of conflict situations between pedestrians and right-turning vehicles at the

intersections is introduced in the literature as Equation (3.22):

𝑜𝑐𝑐𝑟 =
𝑔𝑝𝑒𝑑

𝑔𝑣𝑒ℎ
𝑜𝑐𝑐 𝑝𝑒𝑑−𝑔, (3.22)

where 𝑜𝑐𝑐𝑟 defines the number of pedestrian conflicts with right-turning vehicles related to

pedestrian occupancy and the green interval of the traffic signal.

To compute the number of pedestrian conflicts with left-turning vehicles, the previous literature

presented the pedestrian occupancy when the opposing queue is clear:

𝑜𝑐𝑐 𝑝𝑒𝑑−𝑢 = (1 −
0.5 𝑔𝑞

𝑔𝑝𝑒𝑑
) 𝑜𝑐𝑐 𝑝𝑒𝑑−𝑔 (3.23)

If 𝑔𝑞 < 𝑔𝑝𝑒𝑑, then Equation (3.23) is applied to calculate 𝑜𝑐𝑐 𝑝𝑒𝑑−𝑢; otherwise, 𝑜𝑐𝑐 𝑝𝑒𝑑−𝑢 = 0.

Equations (3.24) or (3.25) define the conflict between pedestrians and left-turning vehicles.

𝑜𝑐𝑐𝑙 =
𝑔𝑝𝑒𝑑 − 𝑔𝑞

𝑔𝑝𝑙 − 𝑔𝑞
𝑜𝑐𝑐 𝑝𝑒𝑑−𝑔 𝑒−𝑡𝑐 (𝑣𝑜/3600) (3.24)

Then, Zhang & Prevedouros (2003) defined 𝑝𝑐𝑣2𝑝 as:

𝑝𝑐𝑣2𝑝 =
∑
𝑖∈𝐼

(𝑣
𝑝𝑒𝑑
𝑖 𝑜𝑐𝑐 𝑟

𝑖 ) (𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛 𝑤𝑖𝑡ℎ 𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡/𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) (3.25)
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They also considered 𝑃𝐶 at the intersection as a sum of 𝑝𝑐𝑣2𝑣 and 𝑝𝑐𝑣2𝑝 for each period of the

study, as presented in Equation (3.26):

𝑃𝐶 = 𝑝𝑐𝑣2𝑣 + 𝑝𝑐𝑣2𝑝 (𝑢𝑠𝑒𝑟 𝑤𝑖𝑡ℎ 𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡/𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) (3.26)

Zhang & Prevedouros (2003) did not provide the 𝑃𝐶 models for the specific pattern of our

study, but only investigated the effect of shared, protected, and the permitted vehicle left turn

movements. For the present study, 𝑃𝐶 models of Zhang & Prevedouros (2003) as presented

in Equation (3.15) to Equation (3.26) were modified for each signal pattern, considering the

logic of relevant conflict movements. For example, 𝑝𝑐𝑣2𝑝 is not applied to the EPP pattern since

there is no vehicle-pedestrian interaction in this pattern. Therefore, Equations (3.27) and (3.28)

describe the potential pedestrian conflict for TWC and LTI patterns based on pedestrian conflict

with left- and right-turning vehicles (Equations (3.22) and (3.24)):

𝑝𝑐𝑣2𝑝−𝑇𝑊𝐶 =
∑
𝑖∈𝐼

(𝑣
𝑝𝑒𝑑
𝑖 𝑜𝑐𝑐 𝑟

𝑖 +𝑣
𝑝𝑒𝑑
𝑖 𝑜𝑐𝑐

𝑝𝑒𝑑−𝑢
𝑖 ) ( 𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛 𝑤𝑖𝑡ℎ 𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡/𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙)

(3.27)

𝑝𝑐𝑣2𝑝−𝐿𝑇 𝐼 =
∑
𝑖∈𝐼

(𝑣
𝑝𝑒𝑑
𝑖 𝑜𝑐𝑐𝑟𝑖 + 𝑣

𝑝𝑒𝑑
𝑖 𝑜𝑐𝑐𝑙) (𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛 𝑤𝑖𝑡ℎ 𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡/𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) (3.28)

The only difference between these two equations is related to pedestrian interference with left-

turning vehicles. Following Equation (1.4), Equations (3.29)–(3.31) define the total expected

potential conflicts at the intersection for each pattern as the sum of the total expected number of

potential conflicts between vehicles (𝑝𝑐𝑣2𝑣) (Equation (3.15)), and the total expected potential



72

pedestrian conflicts (𝑝𝑐𝑣2𝑝−𝑝) (Equation (3.27) or (3.28)).

𝑃𝐶𝑇𝑊𝐶 = 𝑝𝑐𝑣2𝑣 + 𝑝𝑐𝑣2𝑝−𝑇𝑊𝐶 (𝑢𝑠𝑒𝑟 𝑤𝑖𝑡ℎ 𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡/𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) (3.29)

𝑃𝐶𝐿𝑇𝐼 = 𝑝𝑐𝑣2𝑣 + 𝑝𝑐𝑣2𝑝−𝐿𝑇 𝐼 (𝑢𝑠𝑒𝑟 𝑤𝑖𝑡ℎ 𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡/𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) (3.30)

𝑃𝐶𝐸𝑃𝑃 = 𝑝𝑐𝑣2𝑣 (𝑢𝑠𝑒𝑟 𝑤𝑖𝑡ℎ 𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡/𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) (3.31)

It should be noted that the value of the potential conflict related to each signal pattern

(𝑃𝐶𝑝) depends on 𝑝𝑐𝑣2𝑝−𝑝 only since 𝑝𝑐𝑣2𝑣 does not vary with the traffic signal pattern.

Zhang & Prevedouros (2003) computed𝑃𝐶 as an hourly number of potential conflicts, considering

the hourly volume and green interval of the traffic signal. The models used in the present study

are based on 15-minute intervals, and therefore, 𝑃𝐶 refers to the number of potential conflicts

for every 15 min herein.

3.4.3 Computation of the Delay and Safety Index for Each Signal Pattern

Delay and safety index (𝐷𝑆) values show the effect of different signal patterns on the level of ser-

vice. 𝐷𝑆, as defined in Equation (1.7), must be adapted for signal pattern 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃}

by considering 𝑝𝑐𝑣2𝑣−𝑝, 𝑝𝑐𝑣2𝑝−𝑝, 𝑑𝑣𝑒ℎ−𝑝 and 𝑑𝑝𝑒𝑑−𝑝. Equation (3.32) describes 𝐷𝑆𝑝:

𝐷𝑆𝑝 =
𝐷𝑆𝑣𝑒ℎ−𝑝 𝑉𝑣𝑒ℎ + 𝐷𝑆𝑝𝑒𝑑−𝑝 𝑉 𝑝𝑒𝑑

𝑉𝑣𝑒ℎ +𝑉𝑝𝑒𝑑
(𝑠/𝑢𝑠𝑒𝑟) (3.32)

where 𝐷𝑆𝑣𝑒ℎ−𝑝 and 𝐷𝑆𝑝𝑒𝑑−𝑝 define 𝐷𝑆 of the vehicle and 𝐷𝑆 of pedestrian for pattern

𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃}.

As mentioned in Section 3.4.2, 𝑝𝑐𝑣2𝑣 is not dependent on the signal pattern, whereas the vehicle

delay varies for each signal pattern. Since Zhang & Prevedouros (2003) do not investigated



73

𝐷𝑆 according to the signal pattern, we modify Equations (1.5) and (1.6) to take into account

𝐷𝑆𝑣𝑒ℎ−𝑝 and 𝐷𝑆𝑝𝑒𝑑−𝑝 in Equations (3.33) and (3.34):

𝐷𝑆𝑣𝑒ℎ−𝑝 = 𝑑𝑣𝑒ℎ−𝑝 (1 +
𝑝𝑐𝑣2𝑣

𝑉𝑣𝑒ℎ
) (𝑠/𝑣𝑒ℎ) (3.33)

𝐷𝑆𝑝𝑒𝑑−𝑝 = 𝑑𝑝𝑒𝑑−𝑝 (1 +
𝑝𝑐𝑣2𝑝−𝑝

𝑉 𝑝𝑒𝑑
) (𝑠/𝑝𝑒𝑑) (3.34)

where 𝐷𝑆𝑣𝑒ℎ−𝑝 and 𝐷𝑆𝑝𝑒𝑑−𝑝 respectively describe the level of service and safety for vehicles

and pedestrians for each period of the study under each signal pattern 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃}.

𝑑𝑣𝑒ℎ−𝑝 is extracted from Synchro based on Equation (1.7). 𝑑𝑝𝑒𝑑−𝑝 are computed based on

Equations (3.11), (3.12) and (3.14). 𝑝𝑐𝑣2𝑣 is computed based on Equation (3.15) and 𝑝𝑐𝑣2𝑝−𝑝

is computing based on Equations (3.27) and (3.28). One of the goals of the present study is to

identify the pattern with the minimum 𝐷𝑆 value that represents the best service and safety level

for an intersection. Table 3.3 summarizes the equations related to the methods used to measure

the delay and conflict developed in this section.

Table 3.3 Equations related to each pattern

Pattern 𝐷 (s/user) 𝑃𝐶 (user with conflict/interval) 𝐷𝑆 (s/user)

TWC
𝑑𝑣𝑒ℎ𝑉𝑣𝑒ℎ+(𝑑𝑠𝑖𝑔+𝑑𝑐𝑜𝑛 +𝑑𝑑𝑒𝑡 )𝑉 𝑝𝑒𝑑

𝑉𝑣𝑒ℎ+𝑉 𝑝𝑒𝑑 𝑝𝑐𝑣2𝑣 + 𝑝𝑐𝑣2𝑝−𝑇𝑊𝐶

EPP
𝑑𝑣𝑒ℎ𝑉𝑣𝑒ℎ+(𝑑𝑠𝑖𝑔−𝐸𝑃𝑃)𝑉 𝑝𝑒𝑑

𝑉𝑣𝑒ℎ+𝑉 𝑝𝑒𝑑 𝑝𝑐𝑣2𝑣 𝐷𝑆𝑣𝑒ℎ−𝑝 𝑉𝑣𝑒ℎ+𝐷𝑆𝑝𝑒𝑑−𝑝 𝑉 𝑝𝑒𝑑

𝑉𝑣𝑒ℎ+𝑉 𝑝𝑒𝑑

LTI
𝑑𝑣𝑒ℎ𝑉𝑣𝑒ℎ+(𝑑𝑠𝑖𝑔 +𝑑𝑑𝑒𝑡 )𝑉 𝑝𝑒𝑑

𝑉𝑣𝑒ℎ+𝑉 𝑝𝑒𝑑 𝑝𝑐𝑣2𝑣 + 𝑝𝑐𝑣2𝑝−𝐿𝑇 𝐼

In the following section, we investigate our performance for each pattern and look into whether

it can be affected by dynamically changing the pattern during the course of the day.
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3.5 Case Study

This section describes the experimental campaign developed to dynamically assess the potential

impact of allowing traffic system controls to change the pattern according to real-time traffic

conditions. The experiment consists mainly of a computational case study where an existing

traffic signal is selected and its performance is simulated under real-life traffic conditions. First,

three patterns, namely, TWC, EPP, and LTI are simulated. Then, a hypothetical hybrid pattern is

created by choosing, for each time interval, the best-performing pattern associated with each

performance indicator. For those simulations, two pre-defined cycle lengths are tested. We

also investigate the optimum cycle length for each signal pattern. However, the optimum cycle

length in Synchro seeks to minimize the delay time and does not consider safety in its objective

function. Thus, we exclude the investigation of the signal patterns with the optimum cycle length

from our study.

Section 3.5.1 describes the case study and the demand collection mechanism. Section 3.6

presents the computational results for the fixed cycle length experiments. Finally, Section 3.6.5

provides an in-depth discussion to validate the proposed model.

3.5.1 Description of the Case Study

The considered intersection is close to downtown Montreal (Notre-Dame and Peel Streets),

with École de Technologie supérieure (ÉTS) situated on both sides of its southern arm, and

with one full day of data being available. In the present study, the intersection is considered

isolated (not coordinated with other intersections), and therefore, the target traffic signal runs

in an uncoordinated semi-actuated mode. It is assumed that vehicles cannot turn right on red

traffic signals, based on Montreal traffic rules.

Real traffic data are collected from the ÉTS security camera system on a regular day (Wednesday,

8 October 2018, from 8 a.m. to 8 p.m.). A video camera is installed on top of the ÉTS building

to capture a full view of the intersection. A manual video imaging process is applied to manage

the data collected from Notre-Dame and Peel (Figure 3.5). Detailed data on pedestrian and
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vehicle volumes and the traffic signal configuration associated with the intersection are also

collected. The average pedestrian/vehicle flow rate at this intersection is approximately 900

users /15 min. The pattern currently applied to this intersection is the LTI.

Figure 3.5 Aerial view of the case study site–Notre-Dame and Peel intersection

Figure 3.6 demonstrates the pedestrian and vehicle flow during the day. It shows that pedestrian

traffic at the intersection experiences is at a peak at 8:45 a.m. (748 pedestrians/ 15 min), while

for vehicles, it is at 5:30 p.m. (633 vehicles/15 min). Furthermore, pedestrians outnumber

vehicles on three occasions during the day (8:30 a.m., 1:00 p.m., and 5:30 p.m.).
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Figure 3.6 Pedestrian and vehicle volumes during the course of the day for every 15 min

The following section investigates the results for performance indicators when two fixed cycle

lengths are applied to the case study data.

3.6 Results

We perform the case study using different fixed cycle lengths and investigate whether performance

indicators can be improved by dynamically changing signal patterns. The current operational

cycle length at the considered intersection is approximately 80 s. For this reason, we compare

the patterns by assigning an 80-s fixed cycle length in the first experiment. Moreover, when the

cycle lengths are 45 (minimum acceptable cycle length by Synchro) and 60 s, we simulate the

data with Synchro. The case of a 45-s cycle length resulted in an over-saturated intersection and,

as a result, we only focus on 60- and 80-s fixed cycle lengths. Synchro’s ring-barrier option

enables the simulation of different signal patterns, while the lane setting remains the same for all

signal patterns. The input data are the pedestrian and vehicle volumes, lane group movements,

and possibly turning movements for each intersection approach. All other parameters are set at

their Synchro default values. Figure 3.7 shows the Synchro interface while it displays the results

for the TWC pattern at 7:45 p.m., including the cycle length, delay, and phase duration.
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Figure 3.7 Screenshot of the Synchro interface for the TWC pattern

We compare the three patterns for 60- and 80-s cycle lengths according to the performance

measures 𝐷, 𝑃𝐶, and 𝐷𝑆 in Section 3.6.1, 3.6.2, and 3.6.3, respectively.

3.6.1 Comparison Based on the Delay Time

In this section, we compare the vehicle and pedestrian delays for signal patterns, TWC, LTI, and

EPP. We first analyze the 80-s cycle length case. Figures 3.8 and 3.9 present the vehicle and

pedestrian delay, respectively.
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Figure 3.8 𝑑𝑣𝑒ℎ−𝑝 for 80-s cycle length, with 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃}

Figure 3.8 presents the average vehicle delay for different signal patterns for each study period,

𝑑𝑣𝑒ℎ−𝑝 for 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃}, during the day as returned by Synchro. We observe that

EPP has the minimum vehicular delay during the day. This is due to the fact that, differently

from the other patterns, the EPP vehicle green interval does not overlap with the pedestrian walk

interval, while the cycle length is fixed for all patterns.
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Figure 3.9 𝑑𝑝𝑒𝑑−𝑝 for 80-s cycle length, with 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃}
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Figure 3.9 depicts the average pedestrian delay of different patterns for each study period, 𝑑𝑝𝑒𝑑−𝑝

for 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃}, computed according to Equations (3.20)–(3.22) in Section 3.4.1.

According to this figure, the LTI pattern presents a minimum average pedestrian delay during

the day.

Figure 3.10 shows the values of the weighted intersection delay 𝐷𝑝 for 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇𝐼, 𝐸𝑃𝑃}

during the day as computed by Equation (1.3), and reflects the average waiting time of each user at

the intersection. We observe that LTI is the overall best-performing pattern, with an average

delay of 18.17 s/user, followed by EPP. TWC is the least-performing pattern in terms of 𝐷𝑝. It

is worth noting that this is in contrast with what is reported in Ishaque & Noland (2007) and

Zhang & Su (2018), where a greater delay for the EPP in comparison with the TWC is expected

when pedestrian demand is low (such as 10:15, 14:15, and 19:00 in our case study). This

discordance is due to the fact that this study modifies the pedestrian delay model by taking into

account the detour delay and the conflict delay (Section 3.4.1). Figure 3.10 leads us to choose a

combination of EPP and LTI as a hybrid pattern with the minimum delay for the day of study.
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Figure 3.10 𝐷𝑝 for 80-s cycle length, with 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃}

According to the definition of the hybrid pattern in Section 3.3, this combination of LTI and

EPP is called 𝐻𝐷80 (hybrid delay pattern for 80-s cycle length) in our study, and it performs the

traffic signal with 87.50% of LTI and 12.50% of EPP for the day of study.
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Table 3.4 reports the delay’s improvement for the day of study when comparing the hybrid delay

with the best-performing single pattern. The table reports the pattern in the first column and

the weighted intersection’s delay in the second column. We observe a 0.49% improvement for

𝐻𝐷80 as compared to LTI, which is the best-performing pattern.

Table 3.4 Hybrid improvement in comparison with the best performing

pattern

Pattern 𝐷 (s/user)

LTI 18.17

𝐻𝐷80 18.08

Improvement 0.49%

We repeated all the computations for the scenario with a fixed cycle length of 60 s. Figures 3.11

and 3.12 present the vehicle and pedestrian delays during the day for this scenario.
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Figure 3.11 𝑑𝑣𝑒ℎ−𝑝 for 60-s cycle length, with 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃}

Figure 3.11 reports the comparison of 𝑑𝑣𝑒ℎ−𝑝 for 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃}. We observe that EPP

is the best-performing pattern in terms of vehicle delay time. We also observe that the maximum

vehicle delay for EPP is reached at the vehicle peak hour volume.
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Figure 3.12 𝑑𝑝𝑒𝑑−𝑝 for 60-s cycle length, with 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃}

Figure 3.12 reports a comparison of the pedestrian delay times for different patterns and for the

60-s cycle length. It shows that LTI has the smallest pedestrian delay during the day. This is due

to the fact that the pedestrian green interval for the LTI is larger than that for the EPP.

Figure 3.13 presents the average weighted delay time during the day for the 60-s cycle length.

We see that there is close competition between the EPP and LTI delay charts. This is in contrast

with what was reported in Furth & Saeidi Razavi (2019), where LTI was assessed superior to

EPP.
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Figure 3.13 𝐷𝑝 with 60-s cycle length, with 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃}
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In the case of the 60-second cycle length, the hybrid delay 60 (𝐻𝐷60) has a portion consisting of

47.90% of EPP and 52.10% of LTI for the day of study. Table 3.5 compares the 𝐻𝐷60 and the

pattern with minimum delay. The first column presents the pattern, and the second one shows

the average weighted delay.

Table 3.5 Hybrid improvement in comparison with the best performing

pattern

Pattern 𝐷 (s/user)

LTI 15.78

𝐻𝐷 60 15.39

Improvement 2.47%

Table 3.5 reports the exact information of Table 3.4, but for a cycle length of 60 seconds and

shows a 2.47% improvement in the intersection’s delay when we run the 𝐻𝐷60 as a pattern for

the day of study. The 𝐻𝐷60 reduces the delay for each user by 2.47% on our day of study.

To summarize, the results in this section show that the EPP and LTI patterns perform best in

terms of vehicle and pedestrian delay, respectively. LTI is the best-performing single pattern

according to the weighted delay time. Furthermore, we have seen that the hybrid patterns

𝐻𝐷 (80) and 𝐻𝐷 (60) can potentially be improved over LTI.

3.6.2 Comparison Based on Potential Conflicts

Section 3.2.2.2 of this study investigates the performance indicators related to intersection safety.

Potential user conflict represents a significant measure of unsafe situations for pedestrians and

vehicles at the intersection. We compare the 𝑃𝐶 of patterns with 60- and 80-s cycle lengths.

Figures 3.14 and 3.15 present 𝑝𝑐𝑣2𝑣 and 𝑝𝑐𝑣2𝑝 when the cycle length is 80 s for the case study

intersection.
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Figure 3.14 shows 𝑝𝑐𝑣2𝑣 during the day. According to Equations (3.15)–(3.17), 𝑝𝑐𝑣2𝑣 is related

to the effective turning time. Therefore, it is similar for all three patterns since it is based on

vehicle flow for every hour of study, and is not related to the cycle length or signal pattern.
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Figure 3.14 𝑝𝑐𝑣2𝑣 during the day
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Figure 3.15 𝑝𝑐𝑣2𝑝−𝑝 for 80-s cycle length, with 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃}

Figure 3.15 compares 𝑝𝑐𝑣2𝑝−𝑝 values during the day for 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃} when Equations

(3.27) and (3.28) are applied to compute 𝑝𝑐𝑣2𝑝−𝑝. Since it is assumed that the pedestrian always
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respects traffic signal rules, 𝑝𝑐𝑣2𝑝 for EPP is considered zero. In comparison with TWC, LTI in

Figure 3.15 shows fewer pedestrian conflicts, specifically at peak pedestrian periods.

Figure 3.16 compares the total number of potential conflicts at the intersection for 𝑝 ∈

{𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃} based on Equations (3.29)–(3.31), for each study period and shows that EPP

has the minimum number of conflicts during the day. The figure shows three periods of the day

in which LTI and EPP have the same number of potential conflicts; these pedestrian volume

values for these periods are in the order of fewer than 250 pedestrians per 15 min.
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Figure 3.16 𝑃𝐶𝑝 for 80-s cycle length, with 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃}

Table 3.6 compares the best-performing pattern in terms of the numbers of potential conflicts

(𝑃𝐶), with the hybrid pattern 𝐻𝑃𝐶80. 𝐻𝑃𝐶80 has no improvement since EPP is the only pattern

composing the 𝐻𝑃𝐶80. We performed the same computational experiment for a 60-s cycle

length, and the results are discussed next.
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Table 3.6 Hybrid improvement in comparison with the

best performing pattern

Pattern PC (users with conflict/15 min)

EPP 23.09

𝐻𝑃𝐶 80 23.09

Improvement 0%

Similar to Figure 3.15, Figure 3.17 compares 𝑝𝑐𝑣2𝑝 for 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃}, but with a 60-s

cycle length. In both the 60-s cycle length 𝑝𝑐𝑣2𝑣 and 𝑝𝑐𝑣2𝑝, the EPP presents the minimum

potential conflict during the day.
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Figure 3.17 𝑝𝑐𝑣2𝑝−𝑝 for 60-s cycle length, with 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃}

Figure 3.18 presents the same information as Figure 3.16, but with a 60-s cycle length, and

reports the EPP as the minimum number of potential conflicts for our study period. Table 3.7

presents the same information as Table 3.6, but for a 60-s cycle length setting.
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Figure 3.18 𝑃𝐶𝑝 for 60-s cycle length, with 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃}

Table 3.7 Hybrid improvement in comparison with the

best performing pattern

Pattern PC (users with conflict/15 min)

EPP 23.09

𝐻𝑃𝐶 60 23.09

Improvement 0%

Table 3.7 reports the same information as Table 3.6 when the cycle length is 60 s. As for the

previous case, also 𝐻𝑃𝐶60 does not improve over the best performing EPP pattern. We observe

that 𝐻𝑃𝐶 reports the same amount of conflicts for 60- and 80-s cycle lengths, since for the EPP

pattern, 𝑝𝑐𝑣2𝑝 = 0 and 𝑃𝐶𝐸𝑃𝑃 score the same as 𝑝𝑐𝑣2𝑣 for both cycle lengths.

3.6.3 Comparison Based on the Delay and Safety Index

Section 3.4.3 of this study investigates 𝐷𝑆 (Delay and Safety index) as a combination of delays

and a potential number of conflicts related to the user volume at the intersection.
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In this section, we compare the 𝐷𝑆𝑣𝑒ℎ−𝑝 and 𝐷𝑆𝑝𝑒𝑑−𝑝 computed according to

Equations (3.33) and (3.34), respectively. The first experiment compares 𝐷𝑆 for different

patterns with 80-s cycle lengths. Figure 3.19 compares 𝐷𝑆𝑣𝑒ℎ−𝑝 for 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇𝐼, 𝐸𝑃𝑃}, with

an 80-s cycle length. It shows that the EPP pattern provides the most acceptable 𝐷𝑆 during the

day when only vehicles are considered in our study.

Figure 3.20 presents a comparison of 𝐷𝑆𝑝𝑒𝑑−𝑝 for 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃} for the day of study.

It reports LTI as the best-performing pattern in terms of 𝐷𝑆𝑝𝑒𝑑 .
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Figure 3.19 𝐷𝑆𝑣𝑒ℎ−𝑝 for 80-s cycle length, with 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃}
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Figure 3.20 𝐷𝑆𝑝𝑒𝑑−𝑝 for 80-s cycle length, with 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃}
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Figure 3.21 presents a comparison of 𝐷𝑆 for 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃} for the study day when

both user delay and conflict are taken into account to calculate 𝐷𝑆, according to Equation (3.32).

Figure 3.21 proposes the hybrid pattern as a more efficient pattern during the day of study. The

hybrid 𝐷𝑆 (80) (𝐻𝐷𝑆80) leads mainly to the LTI pattern (87.50%), and occasionally to EPP

(12.50%) during the day.
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Figure 3.21 𝐷𝑆𝑝 comparison for 80-s cycle length, with 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃}

Table 3.8 presents a comparison of 𝐻𝐷𝑆80 with the best performing pattern, where the first

column shows the pattern and the second column presents the average 𝐷𝑆 for that pattern for the

study day. The 𝐻𝐷𝑆80 reduces the average Delay and Safety index of each user for the study day

by 0.64%, marking an improvement in the level of service and of safety for each user.

Table 3.8 Hybrid improvement in comparison with the best performing

pattern

Pattern DS(s/user)

LTI 18.77

𝐻𝐷𝑆 80 18.65

Improvement 0.64%
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In the next section, we repeat the computation of 𝐷𝑆𝑣𝑒ℎ−𝑝 and 𝐷𝑆𝑝𝑒𝑑−𝑝 with a 60-s cycle length.

Figure 3.22 compares 𝐷𝑆𝑣𝑒ℎ−𝑝 for different patterns and presents the EPP as the pattern with

the minimum 𝐷𝑆, but not for all periods of study. In this investigation, the hybrid pattern is

presented as a combination of two patterns; however, the figure mainly is mainly comprised of

the EPP.
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Figure 3.22 𝐷𝑆𝑣𝑒ℎ−𝑝 for 60-s cycle length, with 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃}

Figure 3.23 presents a comparison of 𝐷𝑆𝑝𝑒𝑑−𝑝 for 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃} during the day of

study. Here, LTI is the more efficient pattern since both pedestrian delay and conflict are included

in our investigation.
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Figure 3.23 𝐷𝑆𝑝𝑒𝑑−𝑝 for 60-s cycle length, with 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃}

Figure 3.24 compares the intersection 𝐷𝑆 for all three study patterns. From this comparison,

we get the hybrid 𝐷𝑆 60 (𝐻𝐷𝑆60), which does not show any dominant pattern, with 𝐻𝐷𝑆60

constantly fluctuating between LTI and EPP during the day. In fact, on the day of study, the

composition of 𝐻𝐷60 breaks down to 50.00% EPP and 50.00% LTI. Table 3.9 contains the same

information as Table 3.7, but with a 60-s cycle length setting.
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Figure 3.24 𝐷𝑆𝑝 for 60-s cycle length, with 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃}
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Table 3.9 Hybrid improvement in comparison with the best performing

pattern

Pattern DS (s/user)

LTI 16.42

𝐻𝐷𝑆 60 15.85

Improvement 3.47%

Table 3.9 presents a comparison of 𝐻𝐷𝑆60 and the best-performing pattern and shows a 3.47%

improvement of 𝐷𝑆 when we choose 𝐻𝐷𝑆60 over the LTI as the pattern with the minimum 𝐷𝑆.

It improves the average Delay and Safety index for each user by 3.47%.

The study reports the LTI as the single pattern with the minimum 𝐷𝑆 for the cycle length of 80

and 60, while the hybrid pattern shows slight improvement over both fixed cycle lengths.

3.6.4 Analysis of Performance Measures Related to Hybrid Patterns

In the last section, we obtained the hybrid pattern for each performance measure (𝐷, 𝑃𝐶, and

𝐷𝑆). This section compares the performance of hybrid patterns when considering 60 and 80-s

cycle lengths. Results are reported in Tables 3.10 and 3.11, which compare the performance of

the hybrid patterns. In each case, the first and second columns identify the considered pattern

and its unit of measure. The third, fourth, and fifth columns report 𝐷, 𝑃𝐶, and 𝐷𝑆 averages

over the operating day for each hybrid pattern.

Table 3.10 Comparison of 80-second cycle length

hybrid patterns in terms of delay, conflict, and 𝐷𝑆

Pattern Unit of measure 𝐻𝐷 80 𝐻𝑃𝐶 80 𝐻𝐷𝑆 80

𝐷 s/user 18.08 19.83 18.08

𝑃𝐶 user with conflict/15 min 28.98 23.09 28.96

𝐷𝑆 s/user 18.90 20.22 18.65
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From Table 3.10, we infer that 𝐻𝐷80 is the best-performing pattern in terms of delay time.

This result is not surprising considering that the patterns composing 𝐻𝐷80 have been chosen

to minimize the delay time. However, we also observe that 𝐻𝐷80 is the worst-performing

algorithm in terms of potential conflict. In other terms, patterns minimizing the delay time

generally expose users to higher risks of conflict. The situation is inverted for 𝐻𝑃𝐶80 as the

best-performing pattern in potential conflict but the worst pattern in terms of delay time. Again,

potential conflict and delay time are conflicting objectives, and minimizing one results in a

deteriorated performance for the other. In this sense, Table 3.10 suggests that 𝐻𝐷𝑆80 provides

an excellent compromise in terms of delay time and potential conflicts. It scores a delay time of

18.08 s, which is similar to a delay time of 𝐻𝐷80, and the number of potential conflicts of 28.96,

against 23.09 of 𝐻𝑃𝐶80. In the second case, we compare the performance of each 60-s cycle

length hybrid pattern in Table 3.11.

Table 3.11 Comparison of 60-second cycle length

hybrid patterns in terms of delay, conflict, and DS

Pattern Unit of measure 𝐻𝐷 60 𝐻𝑃𝐶 60 𝐻𝐷𝑆 60

𝐷 s/user 15.39 16.07 15.41

𝑃𝐶 user with conflict/15 min 29.91 23.09 29.31

𝐷𝑆 s/user 15.98 16.41 15.85

Similar to the previous case, Table 3.11 shows that the 𝐻𝐷60 pattern with a minimum delay

and 𝐻𝑃𝐶 60 patterns with a minimum conflict. Table 3.11 also suggests that 𝐻𝐷𝑆60 provides

an excellent compromise in terms of delay time and potential conflicts. It scores a delay time

of 15.41 s, against the 15.39 s of 𝐻𝐷60, and the number of potential conflicts of 29.31 against

23.09 of 𝐻𝑃𝐶60.

From Tables 3.10 and 3.11 it can be seen that the 60-s cycle length improves for all three

performance indicators versus the 80-s cycle length case, suggesting that the current configuration

(80 s) is sub-optimal.
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Table 3.12 presents improvements of the hypothetical hybrid pattern obtained by dynamically

adapting the signal pattern to real-time data, over the best-performing single pattern measured by

the three performance indicators (𝐷, 𝑃𝐶, 𝐷𝑆). Results show that the hybrid pattern 𝐻𝐷 was able

to improve the 𝐷 by 0.49% and 2.47%, for the 60 and 80-s cycle lengths, respectively. Similarly,

𝐻𝐷𝑆 improved the 𝐷𝑆 by 0.64% and 3.47%, for the 60 and 80 cycle lengths, respectively.

However, 𝐻𝑃𝐶 did not improve versus the best-performing single pattern. The improvements

of 𝐻𝐷 and 𝐻𝐷𝑆 are explained by the fact that both these hybrid patterns are composed of a

combination of LTI and EPP. On the contrary, 𝐻𝑃𝐶 is entirely composed of EPP, and thus there

is no advantage in adopting a hybrid pattern. Further analyzing Table 3.12, we also observe that

hybrid patterns provide greater improvements for the 60-s cycle length. We argue that this is due

to the fact that the best-performing single pattern constitutes a smaller portion of the hybrid

patterns for the 60-s cycle length relative to the 80-s case. For example, the best-performing

single-pattern makes up 50.00% of the hybrid 𝐻𝐷𝑆60, whereas, for the hybrid 𝐻𝐷𝑆80, this

portion becomes 87.5%. A more detailed discussion of this can be found in the next section,

where we propose several sensitivity analyses.

Table 3.12 Improvement of hybrid patterns in

comparison with best-performing patterns

Cycle length Percentage of improvement

𝐻𝐷 𝐻𝑃𝐶 𝐻𝐷𝑆

80 0.49 0 0.64

60 2.47 0 3.47

3.6.5 Sensitivity Analyses

To enrich our computational study, in this section, we perform several sensitivity analyses on the

variation of two important elements: (1) the passenger occupancy rate (the average number of

passengers carried by vehicles), and (2) the relative weight of the potential vehicle-to-pedestrian

conflict (𝑝𝑐𝑣2𝑝) to the potential vehicle-to-vehicle conflict (𝑝𝑐𝑣2𝑣). Both these analyses require
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parameterizing some of the equations involved in the performance indicator evaluations, together

with performing extensive computational experiments. Given that the previous section showed

that the 60-s cycle length case consistently outperformed the 80-s case, we only focus on the

60-s case in this section.

The first analysis focuses on the impact of the passenger occupancy rate (we denote it 𝛼) on the

performance of the hybrid patterns. Variations of 𝛼 will require parametrizing the weights in the

weighted averages in Equations (1.3) and (3.32). These equations are modified by substituting

𝑉𝑣𝑒ℎ by 𝛼𝑉𝑣𝑒ℎ as follows:

𝐷𝑝 =
𝑑𝑣𝑒ℎ−𝑝𝛼𝑉𝑣𝑒ℎ + 𝑑𝑝𝑒𝑑−𝑝𝑉 𝑝𝑒𝑑

𝛼𝑉𝑣𝑒ℎ +𝑉𝑝𝑒𝑑
𝛼 ≥ 1 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃} (𝑠/𝑢𝑠𝑒𝑟) (3.35)

and

𝐷𝑆𝑝 =
𝐷𝑆𝑣𝑒ℎ−𝑝 𝛼𝑉𝑣𝑒ℎ + 𝐷𝑆𝑝𝑒𝑑−𝑝 𝑉 𝑝𝑒𝑑

𝛼𝑉𝑣𝑒ℎ +𝑉𝑝𝑒𝑑
𝛼 ≥ 1 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃} (𝑠/𝑢𝑠𝑒𝑟) (3.36)

Note that 𝛼 does not affect 𝑃𝐶 measure, and therefore, 𝑃𝐶 is not considered in the proposed anal-

ysis.

The European Environment Agency and The US Office of Energy Efficiency and Renewable

Energy have reported that the average passenger occupancy rate is approximately 1.45 (European

Environment Agency, 2010) and 1.59 (Office of Energy Efficiency & Renewable Energy,

2018) per vehicle (including the driver), respectively. Thus, in our study, we let 𝛼 vary in

{1, 1.2, 1.4, 1.6, 1.8, 2}. For each of these values, we recompute the measures 𝐷 and 𝐷𝑆 and

determine the best-performing single pattern and the hybrid pattern.

Figure 3.25 shows the composition of the hybrid pattern in terms of proportions of the basic

patterns when optimizing the delay time. We observe that TWC is never chosen, and the hybrid

pattern is composed of varying portions of LTI and EPP. In particular, the portion of EPP

increases from 45.84% for 𝛼 = 1.2 to 68.75% for 𝛼 = 2. This might be due to the fact that EPP

generally provides better performance in terms of vehicle delays (see Figure 3.11).
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Figure 3.25 Portion of signal pattern in 𝐻𝐷60 by varying values of 𝛼

To understand how the improvements of the hybrid pattern change with 𝛼, we compared the

delay time of 𝐻𝐷60 with the best performing single pattern in Table 3.13, where the first column

refers to 𝛼 and the following columns present 𝐷 for the 𝐻𝐷60, the best performing pattern

for each value of 𝛼 and the improvement percentage, while we choose 𝐻𝐷60 over the best

performing pattern, respectively. We observe that the improvements range from 2.12% to 3.23%.

We cannot, however, identify a monotonic relation between improvements and values of 𝛼.

Table 3.13 Comparison of 𝐷 for 𝐻𝑑60 and the best

performing pattern

𝛼 𝐷 for 𝐻𝑑60 𝐷 for the best performing pattern Percentage of improvement

1 15.39 15.78 2.47

1.2 15.26 15.77 3.23

1.4 15.08 15.55 3.02

1.6 14.95 15.36 2.66

1.8 14.84 15.20 2.36

2 14.74 15.06 2.12
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We repeat the methodology of the previous experiment to study the impact of 𝛼 on 𝐷𝑆. Figure

3.26 shows the composition of the hybrid pattern in terms of the proportion of the basic patterns

when optimizing 𝐷𝑆. Similar to the Delay Time case, we observe that TWC is never chosen in

the hybrid pattern. Furthermore, following a similar pattern as in the previous experiment, the

portion of EPP in the hybrid pattern increases with 𝛼, and in particular, ranges from 50.00% to

77.08%. This tendency might still be due to the fact that EPP performed particularly well in

terms of Vehicle Delay Time.
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Figure 3.26 Portion of signal pattern in 𝐻𝐷𝑆60 by varying values of 𝛼

Table 3.14 shows improvements of the hybrid pattern 𝐻𝐷𝑆60 relative to the best-performing

single pattern. The meaning of each column is similar to what is provided in Table 3.13, but

in Table 3.14, instead of 𝐷, 𝐷𝑆 is investigated. We observe that the improvements of 𝐻𝐷𝑆60

range from 1.07% to 3.47%. Differently from the previous case, here, we identify a monotonous

relation between the improvements and 𝛼. In particular, we observe that by increasing the value

of 𝛼, the efficiency of the hybrid pattern over the best-performing pattern decreases. This is

due to the fact that when 𝛼 increases, the performance of the EPP pattern in terms of DS also

increases, and consequently, the portion of EPP composing the hybrid 𝐻𝐷𝑆60 also increases

by up to 77.08%. We also observe that LTI still outperforms EPP for time periods with high

pedestrian volumes.
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Table 3.14 Comparison of 𝐷𝑆 for 𝐻𝐷𝑆60 and the best

performing pattern

𝛼 DS of 𝐻𝐷𝑆60 DS of the best performing pattern Percentage of improvement

1 15.85 16.42 3.47

1.2 17.53 17.96 2.39

1.4 19.42 19.75 1.67

1.6 21.41 21.72 1.42

1.8 23.55 23.81 1.09

2 25.73 26.01 1.07

The second sensitivity analysis focuses on the impact of changing the relative weight of 𝑝𝑐𝑣2𝑝

to 𝑝𝑐𝑣2𝑣. This mostly requires parametrizing Equation (3.26) by substituting 𝑝𝑐𝑣2𝑝−𝑝 with

𝜎𝑝𝑐𝑣2𝑝−𝑝, where 𝜎 is a suitable weighting factor:

𝑃𝐶𝑝 = 𝑝𝑐𝑣2𝑣 + 𝜎𝑝𝑐𝑣2𝑝−𝑝 𝑠𝑖𝑔𝑚𝑎 ≥ 1 (𝑢𝑠𝑒𝑟 𝑤𝑖𝑡ℎ 𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡 /𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) (3.37)

We observe that changes in 𝜎 do not have any impact on the Delay Time, which is consequently

excluded from further analysis. Concerning the Delay and Safety index, we need to modify

Equation (3.34) as follows:

𝐷𝑆𝑝𝑒𝑑−𝑝 = 𝑑𝑝𝑒𝑑−𝑝 (1 +
𝜎𝑝𝑐𝑣2𝑝−𝑝

𝑉 𝑝𝑒𝑑
) 𝑠𝑖𝑔𝑚𝑎 ≥ 1 (𝑠/𝑢𝑠𝑒𝑟) (3.38)

To the best of our knowledge, the literature does not provide a methodology to assign suitable

values to 𝜎 or to estimate the impacts of a given value in terms of fatalities, injuries, etc.

(Roshandeh, Levinson, Li, Patel & Zhou, 2014). However, when comparing the fatality, major

injury, and minor injury counts due to a given value of 𝑝𝑐𝑣2𝑣, Zhang & Prevedouros (2003)

estimates that the corresponding count for the same value of 𝑝𝑐𝑣2𝑝−𝑝 is about 12, 6 and 1.7
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times higher, respectively. In practice, traffic agencies set the value of 𝜎 for 𝑝𝑐𝑣2𝑝−𝑝 by rules of

thumb (Roshandeh et al., 2014). In this study, we let 𝜎 vary in {1, 2, 3, 4, 5, 6}.

As shown in Figure 3.17, EPP scores a value of 𝑝𝑐𝑣2𝑝 = 0. Furthermore, 𝐻𝑃𝐶60 is completely

composed of EPP, and therefore, the PC will not change, even by varying 𝜎; as well, EPP will

remain the best-performing pattern in terms of 𝑃𝐶. Therefore, we will now concentrate on

studying the performance of 𝐻𝐷𝑆60.

Figure 3.27 presents the composition of the hybrid pattern in terms of the proportion of basic

patterns when optimizing the 𝐷𝑆. We observe that, as in all previous experiments, TWC is

never chosen as part of the hybrid pattern. This pattern is only composed of LTI and EPP, with

EPP increasing from 50.00% to 66.66%. This increase is due to the fact that 𝑝𝑐𝑣2𝑝 = 0 for EPP,

and thus, increasing 𝜎 has no impact on EPP, while it deteriorates the performance of the other

patterns.
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Figure 3.27 Portion of the signal pattern in 𝐻𝐷𝑆60 by varying values of 𝜎

Table 3.15 presents the improvements seen in the hybrid patterns 𝐻𝐷𝑆60 relative to the best-

performing single pattern when varying 𝜎. The meaning of each column is similar to what is

provided in Table 3.14, but, instead of 𝛼, we now vary the parameter 𝜎 in the first column. We

observe that improvements range from 0.73% to 3.41%. We also observe the existence of a
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monotonic relation between 𝜎 and the improvements. Specifically, the improvements decrease

as 𝜎 increases. This is probably due to the fact that EPP constitutes a larger portion of the

hybrid 𝐻𝐷𝑆60 when 𝜎 increases. In fact, larger values of 𝜎 imply a larger penalization of

pedestrian-to-vehicle conflicts, and EPP performs particularly well in terms of this performance

measure. We note that LTI is still competitive in time periods with low pedestrian volumes.

Table 3.15 Comparison of 𝐷𝑆 for 𝐻𝐷𝑆60 and the best

performing pattern

𝜎 𝐷𝑆 of 𝐻𝐷𝑆60 𝐷𝑆 of the best performing pattern Percentage of improvement

1 15.85 16.41 3.41

2 15.95 16.41 2.80

3 16.05 16.41 2.19

4 16.15 16.41 1.58

5 16.22 16.41 1.15

6 16.29 16.41 0.73

3.6.6 Limitations and Recommendations

This research is naturally subject to limitations that need to be investigated. Below are

recommendations for future research paths. The result of our study only applies to one specific

intersection on one specific day. This study should be performed on other intersections and

for different time periods to account for a variety of user flow rates as this should provide

reliable results regarding how traffic signal performance indicators are impacted by dynamically

changing signal patterns.

In this study, because of the limitations of the software used, the effects of signal patterns

on the intersection’s performance indicators were investigated using only a fixed cycle length.

Therefore, it is recommended to investigate the effect of changing or optimizing both the cycle

length and the signal pattern on the performance indicators.
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In our study, we made the hypothesis that the Peel-Notre-Dame intersection is isolated. In reality,

some interaction with close-by intersections may exist. It is then recommended to investigate

the coordination between intersections.

According to general observations, 20.00% of pedestrians cross the intersection during the

flashing or red intervals. However, in this study, we considered that all pedestrians were crossing

during the green interval. Therefore, further research is needed to assess the impact of pedestrian

behavior on the performance of traffic signal patterns.

Finally, it is recommended that future studies investigate how users deal with the signal pattern

changing dynamically as this may affect users’ behavior and, in turn, the effectiveness of

dynamically changing the signal patterns.

3.7 Conclusions

This study investigates how dynamically changing the traffic signal pattern configuration allows

to better accommodate traffic flow variation throughout the day. More specifically, this research

aims to determine whether an optimized hybrid pattern can decrease travel time and increase safety

at the intersection for both vehicles and pedestrians.

To investigate the impact of a hybrid pattern on traffic flow and safety performance, methods

used to measure the delay (𝐷), conflict situations (𝑃𝐶), and Delay and Safety index (𝐷𝑆) were

adapted to include both vehicles and pedestrians for different signal patterns (TWC, EPP, and

LTI). The methods were applied to the Notre-Dame and Peel intersection in Montreal. The traffic

data of the intersection was collected and simulated. Video data were collected on Wednesday,

8 October 2018, from 8 a.m. to 8 p.m. Then, traffic data was simulated on Synchro. Finally,

performance indicators (𝐷, 𝑃𝐶, 𝐷𝑆) were computed based on the real-time traffic data and

Synchro outputs.

The case study results show the effect of each signal pattern considered by the study on the

performance indicators. EPP is shown to be the best-performing pattern, for a fixed cycle length
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of 80 and 60 s, regarding 𝑃𝐶, while LTI is shown to be the best-performing single pattern

regarding 𝐷 and 𝐷𝑆. A dynamic hybrid pattern is developed by combining LTI and EPP when

considering 𝐷𝑆 or 𝐷 as performance indicators. However, for 𝑃𝐶, the dynamic hybrid pattern

consists of EPP only as it is the best-performing pattern.

Among the three hybrid patterns formulated in the study, 𝐻𝐷𝑆 was the best-performing one,

improving the average intersection 𝐷𝑆. A comparison of the 𝐻𝐷𝑆80 and 𝐻𝐷𝑆60 with the best

performing non-hybrid pattern shows a 0.64% and 3.47% improvement in 𝐷𝑆, respectively.

Therefore, the hybrid pattern has a favorable but limited impact on the quality of travel at the

intersection for the one day of data used in this study. However, further research based on

additional observations made on different days is needed to verify whether the hybrid pattern

significantly improves the quality of travel.





CONCLUSION AND RECOMMENDATIONS

As we discussed in 3.1, traffic signals are the main part of the traffic control system that directly

affects the delay time and safety, which are the two main objectives of the transportation system.

Traffic signal optimization appeared in most of the studies related to urban areas. A traffic

signal plan is made based on cycle length and phase sequences. Mostly, the literature focused

on how optimizing the traffic signal cycle length can affect the quality of travel experience

by considering various objectives (delay time, safety, emissions, queue length, etc) and users

(vehicles. pedestrians, bicycles, transit, etc). However, phase sequences of the traffic signal or a

signal pattern can be optimized to identify the best sequences of users’ movements for each cycle

length. This study investigates how dynamically changing the traffic signal pattern configuration

allows to better accommodate traffic flow variation throughout the day. Specifically, this research

aims to determine whether an optimized hybrid pattern can reduce travel time and increase safety

at the intersection for both vehicles and pedestrians while maintaining a fixed cycle length.

To compute delay and safety for each signal pattern, this research focused on the performance

measures defined based on the group of user movements. We adapted each performance measure

for each user by considering the signal pattern as a sequence of a phase related to a group of

users’ movements.

To investigate the impact of a signal pattern on traffic flow and safety performance, we measure

Delay (𝐷), Potential Conflict situations (𝑃𝐶), and Delay and Safety index (𝐷𝑆) of different

signal patterns (TWC, EPP, and LTI) for both vehicles and pedestrians.

The methods were applied to the Notre-Dame and Peel intersection in Montreal. The traffic

data of the intersection was collected and simulated. Video data were collected on Wednesday,

October 8, 2018, from 8 a.m. to 8 p.m. Then, traffic data was simulated on Synchro. Finally,

performance indicators (𝐷, 𝑃𝐶, 𝐷𝑆) were computed based on real-time traffic data and Synchro

outputs.
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The case study results show the effect of each signal pattern considered by the study on

performance indicators. EPP is shown to be the best-performing pattern regarding 𝑃𝐶, for a

fixed cycle length of 80 and 60 seconds while LTI mostly is shown to be the best-performing

pattern regarding 𝐷 and 𝐷𝑆. A dynamic hybrid pattern is developed by combining LTI and EPP

when considering 𝐷𝑆 or 𝐷 as performance indicators. However, for 𝑃𝐶, the dynamic hybrid

pattern consists of EPP only as it is the best-performing pattern. The EPP signal pattern is

mostly used for intersections with high pedestrian demand to increase the quality of travel by

pedestrians. However, as shown in the results, this signal pattern is not the best option for the

whole day when we consider a pedestrian delay. It may cause an unacceptable amount of delay

for the pedestrians, and as a result, it increases the violating behavior of pedestrians to cross the

street at the red pedestrian light and it can increase the potential of conflict between pedestrians

and vehicles at the intersection. However, choosing the EPP for the period of the day when the

intersection has a significant amount of left or right-turn vehicles and high pedestrian demand

can reduce the potential conflicts and delay for both pedestrians and vehicles.

Based on the users’ flow rate at the studied intersection, LTI(80) is resulting as the best performing

for 87.50% of the day, while LTI(60) has a portion of 52.10% of the day as the best performing

pattern. However, the best-performing pattern related to a number of conflicts is always EPP.

Then, as we defined 𝐷𝑆 as a combination of Delay and Safety, LTI(80) performs 87.50% of the

day as the best-performing pattern while LTI(60) performs 50% of the day. This suggests that

using a fixed signal pattern for the whole day could affect the performance measures of the study.

Therefore, it is recommended to modify both the signal pattern and cycle length based on the

traffic data throughout the day to optimize the traffic signal plan and increase its efficiency.

Among the three hybrid patterns formulated in the study for fixed cycle length, 𝐻𝐷𝑆 was the

best performing one, improving the average intersection 𝐷𝑆. A comparison of the 𝐻𝐷𝑆 80 and

𝐻𝐷𝑆 60 with the best-performing non-hybrid pattern shows a 0.64% and 3.47% improvement in
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𝐷𝑆, respectively. Therefore, the hybrid pattern has a favorable but limited impact on the quality

of travel experienced by users at the intersection.

The 𝐻𝑑60 shows a 2.47% delay improvement compared with LTI(60) while we had approximately

43926 users (vehicles and pedestrians) that passed the intersection on the day of the study. The

improvement in user delay with a hybrid signal pattern is expected to save at least 4.75 hours of

travel time at the intersection on the day of our study which increases the quality of travel and

improves the level of service for both pedestrians and vehicles.

Due to the high cost and time required for data collection, we only studied the hybrid pattern

for one day. However, we recommend utilizing advanced traffic data collection systems to

incorporate both pedestrian and vehicle data to optimize the traffic control system’s performance

for both user groups. Additionally, further research can investigate the use of qualitative

pedestrian data for traffic signal optimization in place of quantitative pedestrian data.

Naturally, this research has limitations that require further investigation. As such, we suggest the

following areas of focus for future research. It should be noted that the findings of this study

pertain only to a single intersection on a particular day. To account for varying user flow rates

and obtain reliable results regarding the impact of dynamically changing signal patterns on

traffic signal performance indicators, it is recommended to conduct similar studies on multiple

intersections and for different time periods.

As a result of limitations in the software employed, this study solely examined the impact of

signal patterns on intersection performance indicators using a fixed cycle length. Consequently,

we recommend exploring the effects of varying or optimizing both the cycle length and signal

pattern on performance indicators.
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We posited in our study that the Peel-Notre-Dame intersection operates independently. Never-

theless, it is possible that there is some interaction with an adjacent intersection. Hence, it is

advisable to explore the coordination between intersections.

Based on general observations, 20.00% of pedestrians cross the intersection while the traffic

signal is flashing or red. However, in this study, we assumed that all pedestrians cross during the

green signal interval. Therefore, further research is needed to examine the impact of pedestrian

behavior on traffic signal pattern performance.

Finally, future investigations should explore how users respond to dynamically changing signal

patterns, as this could affect user behavior and consequently, the efficacy of dynamically changing

signal patterns.



APPENDIX I

OPTIMUM CYCLE LENGTH

This section compares the effect of fixed cycle length and optimum cycle length on the hybrid

pattern; we redo all the experiments of Section 3.6 to compare the patterns with the optimum

cycle length. To optimize the cycle length, we use Synchro 10 to simulate our data for each

period, and we relax the fixed cycle length assumption by optimizing it for any 15 minutes for

each pattern.

Figure-A I-1 Optimum cycle for each pattern during the day

Figure I-1 presents the optimum cycle length during the day for each pattern when Synchro

simulates the same users’ data for each period. According to the optimum cycle length on

each time interval, we have to compute the performance measures for our patterns. Synchro’s

objective function is based on delay or/ and the number of stops at an intersection, and it is not

specified how Synchro considers the number of conflicts in its optimization of cycle length.

Therefore, we decide to investigate the optimum cycle length scenario regarding only the delay

criteria.
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1. Comparison of delay time for optimum cycle length

In this section, the intersection delay time is compared for various signal patterns with the

optimum cycle length. The following figures show the pedestrian and vehicle delay for three

signal patterns (TWC, EPP, LTI) during the day. As we discussed in Sections 3.2.2.1 and 3.3,

the vehicle delay has been computed by Synchro, when the pedestrian delay has been estimated

according to the method introduced in Section 3.4.1.

Figure-A I-2 𝑑𝑣𝑒ℎ−𝑝 for optimum cycle length with 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃}

Figure I-2 presents the comparison of 𝑑𝑣𝑒ℎ−𝑝 for 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃} during the day of

study. In this case, TWC provides the minimum vehicle delay (13.28 veh/sec), which is different

from the fixed cycle length that provides the EPP with minimum vehicle delay during the day.

Also, the 𝐻
𝑑−𝑝𝑒𝑑
𝑜 (hybrid pedestrian delay with optimum cycle length) provides a combination

of 91.66% of the LTI, 6.25% of the TWC, and 2.09% of the EPP as a pattern for the day of the

study.

Figure I-3 presents the comparison of 𝑑𝑝𝑒𝑑−𝑝 for each signal pattern. Like the pedestrian delay

of fixed cycle length, the pedestrian delay of optimum cycle length has also resulted in the LTI

pattern as minimum pedestrian delay (an average of 15.86 sec/ped).

Figure I-4 shows the comparison of 𝐷 for each pattern with the optimum cycle length. Comparing

average delays over the day leads us to LTI with the minimum delay (15.45 sec/per). However,
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Figure-A I-3 𝑑𝑝𝑒𝑑−𝑝 for the optimum cycle length with 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃}

Figure-A I-4 𝐷𝑝 for optimum cycle length with 𝑝 ∈ {𝑇𝑊𝐶, 𝐿𝑇 𝐼, 𝐸𝑃𝑃}

partially during the day, EPP shows the minimum total delay. Also, it demonstrates EPP pattern

cannot improve the intersection delay or even pedestrian delay, but LTI has decreased the

pedestrian delay and improved the intersection efficiency. It indicates the LTI and EPP as a

hybrid delay of the optimum cycle (𝐻𝑑
𝑜 ).

Table I-1 compares 𝐻𝑑
𝑜 with the best performing pattern (LTI), and it presents a 0.26%

improvement of the hybrid pattern in comparison with LTI when LTI has the lowest intersection

delay among the other patterns. To specify the effect of hybrid pattern on a performance measure,
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Table-A I-1 Hybrid improvement in comparison with the best performing pattern

pattern 𝐷(s)

LTI 15.37

𝐻𝑑
𝑜 15.33

Improvement 0.26%

we compare the delay (since PC is not applicable for optimum pattern) related hybrid patterns of

our study in Table I-2 that the first row indicates the patterns and the second row presents the 𝐷 :

Table-A I-2 Delay per user for the day of the study

pattern (𝐻𝑑
𝑜 ) 𝐻𝑑60 𝐻𝑑80 Existing pattern (LTI 80) 𝐻𝐷𝑆80 𝐻𝐷𝑆60

𝐷 (s) 15.33 15.38 18.06 18.16 20.76 16.08

Table I-2 reports the comparison of delay-related hybrid patterns of our study with LTI as a

current pattern of the intersection, and it shows 𝐻𝑑
𝑜 as a pattern with minimum user delay during

the day. As we expect, it clarifies that optimizing the cycle length can reduce the average delay

of users and increases traffic signal efficiency. Also, the idea of a hybrid pattern shows the

improvement of performance measures in our study. The result indicates that the optimization of

the cycle length or signal pattern alone cannot lead to an intersection signal plan with maximum

efficiency, just as the delay alone cannot evaluate the effectiveness of an intersection signal

plan. Then, it is recommended to optimize both cycle length and signal pattern according to the

real-time traffic data to improve the quality of the travel experience for the user at the intersection.

The next part investigates how changing the weight of performance measures can affect the

hybrid pattern.
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