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Génération de résumés extractifs orientés-requête pour l’explication de sentiments

Ahmed MOUBTAHĲ

RÉSUMÉ

L’analyse constructive des sentiments exprimés dans des commentaires de clients requiert

typiquement un résumé des causes principales de leur ressenti, et ce, à partir d’une quantité

importante de documents textuels. Afin d’automatiser de tels efforts, nous nous appuyons

sur la tâche de génération de résumés orientés-requête. Les modèles de génération existant

sont souvent entravés par la dissonance linguistique entre la requête et les documents sources.

Dans ce mémoire, nous proposons et concrétisons un cadre multi-biais pour parer au problème

de dissonance à un niveau générique et indépendant du domaine, puis nous formulons des

approches spécialisées pour l’explication du sentiment interrogé, à savoir, des stratégies de biais

et d’augmentation de requêtes. Nous obtenons des résultats expérimentaux qui surpassent les

modèles de base sur un ensemble-propriétaire de données du monde réel.

Mots-clés: génération de résumés orientés-requête, analyse de sentiment, explication de

sentiment, augmentation de requête





Query-Focused Extractive Summarization
for Sentiment Explanation

Ahmed MOUBTAHĲ

ABSTRACT

Constructive analysis of clients’ feedback often requires determining the cause of their sentiment

from a substantial amount of text documents. In order to assist and improve the productivity

of such endeavors, we leverage the task of Query-Focused Summarization (QFS). Models of

this task are often impeded by the linguistic dissonance between the query and the source

document(s). We propose and substantiate a multi-bias framework to help bridge this gap at

a domain-agnostic, generic level, then we formulate specialized approaches for the problem

of sentiment explanation through sentiment-based biases and query expansion. We achieve

experimental results outperforming baseline models on a real-world proprietary sentiment-aware

QFS dataset.

Keywords: Query-Focused Summarization, Sentiment Analysis, Sentiment Explanation, Query

Expansion
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INTRODUCTION

Sentiment analysis is the Natural Language Processing (NLP) task of predicting the affective

state of a text passage. It is generally useful for applications concerned with feedback analysis of

experiences (e.g., products, events or services). However, simply being aware of the sentiment

does not improve the experience; this purpose requires knowledge of the specific causes and

features related to the sentiment.

Given a multitude of documents, a sentiment of interest (e.g. negative or positive), and a query

regarding the targeted entities (e.g., a specific product, date, or location), our main objective is to

provide an informative summary of the input documents that justifies the queried sentiment. This

requirement describes a constrained Query-Focused Summarization (QFS) task, which we term

as Explicative Sentiment Summarization (ESS). Compared to the Question Answering task’s

factoid outputs, the QFS task is motivated by more complex and contextually rich responses.

Thus, it is a more appropriate parent task for ESS, which consists of elaborating on the cause(s)

of the queried sentiment.

A common shortcoming of the QFS task and its proposed models is the putative gap between

the source text and the input query in terms of Language Register (LR, formality level) and

Information Content (IC, from Shannon’s Information Theory). An LR gap occurs when, e.g., a

colloquial query formulation addresses source text written in formal style or in domain-specific

terminology. An IC gap is typically incurred by the generic semantic coverage of short queries

in relation to the specific semantics in detailed source text passages.

Our aforementionned main objective of explicative sentiment summarization factors in the issues

of IC and LR dissonance between the query and the source text.

Our following contributions first address the linguistic dissonance issue in QFS at a generic

level, then at a specialized level for our purpose of sentiment explanation:
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1. We introduce the Compound Bias-Focused Summarization (CBFS) (6.4.1) framework to

improve the chances of aligning the user’s intent with arbitrary and possibly heterogeneous

language registers in source documents by supporting multiple query formulations.

2. We concretize the CBFS framework with our Multi-Bias TextRank (6.4.2) model and its

Information Content Regularization (6.4.3) which guides the QFS process towards the

desired level of specificity.

3. We introduce the Explicative Sentiment Summarization (ESS) task, (6.4.4) which specializes

the QFS task by leveraging prior knowledge in a sentiment explanation setting.

4. We substantiate the ESS task with sentiment-based bias computation (6.4.4.2) and query

expansion (6.4.4.3).



CHAPTER 1

LITERATURE REVIEW

An overview of the relevant ML architectures heads the hierarchical structure of this chapter. Once

these architectures are established as the NNs underlying the NLP tasks of interest, we address

the literature of said tasks, i.e., Automatic Summarization, Query-Focused Summarization, and

Query Expansion.

Finally, we explore ways of quantitatively and qualitatively analyzing the presented models’

outputs. Such is achieved with a survey of automatic summarization evaluation metrics, as well

as with a taxonomy of errors in automatic summarization.

Note that subsections are chronologically ordered in terms of the papers’ release years.

1.1 Towards modern summarization models

The applications of the neural NLP field (e.g. translation, auto-completion, summariza-

tion. . . etc.) rely heavily on the ability to encode words. As such, the evolution of neural NLP

went hand in hand with the evolution of encoders.

The role of encoders in NLP is to encapsulate the semantics of words within a corresponding

numerical representation to enable the mathematical transformations used by a Language Model.

A Language Model’s task is predicting the next word or sequence of words, given the previous

word or sequence of words. The prediction is typically based on pre-learned occurrence

probabilities of neighboring words. It may additionally be conditioned on priors such as

semantic salience w.r.t the text and relevance w.r.t to a query. The latter priors constitute the

basis of the query-focused summarization task introduced in 1.3.
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1.1.1 Recurrent Neural Networks (RNNs)

The sequential nature of RNNs (Figure 1.1) lends itself well to predicting the next words based

on the previous words, that is, the task of a Language Model (LM).

Figure 1.1 RNN structure

Taken from https://www.youtube.com/watch?v=iWea12EAu6U

Hidden states 𝒉(𝑡) are processed at each input 𝒙 (𝑡) where 𝑡 is the time step. That is, the hidden

state mutates over time. The same weights matrix 𝑾 is shared across time steps, which ensures

a conjoint training that respects the commonalities between inputs (e.g. words from an observed

context) across time steps. �̂� (𝑡) are intermediate outputs (required for computing the loss at step

𝑡).

1.1.1.1 RNN computation

In Figure 1.2, the input embedding 𝒆(𝑡) is expressed as follows:

𝒆(𝑡) = 𝑬𝒙 (𝑡) (1.1)
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Figure 1.2 RNN Computation

Taken from https://www.youtube.com/watch?v=iWea12EAu6U

where 𝒙 (𝑡) , the one-hot encoded vector per word, is multiplied with the embedding matrix 𝑬 to

produce the input embeddings 𝒆(𝑡) . The one-hot encoding acts as a 𝑬 column selector. 𝑬 can be

learned from scratch, or pre-trained and/or fine-tuned.

𝒉(𝑡) = 𝜎(𝑾ℎ𝒉
(𝑡−1) +𝑾𝑒𝒆

(𝑡) + 𝒃1) (1.2)

The hidden state 𝒉(𝑡) (Equation 1.2) depends on the previous hidden state 𝒉(𝑡−1) and the current

input 𝒆(𝑡) . Both parameters are linearly transformed, respectively with the 𝑾ℎ and 𝑾𝑒 weights,

and biased with 𝒃1 to enable learning. The expression is wrapped in 𝜎, a non-linear function,

for more adaptive fitting.
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�̂� (𝑡) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑼𝒉(𝑡) + 𝒃2) ∈ R|𝑉 | (1.3)

The output �̂� (𝑡) (Equation 1.3) computes the probability distribution of 𝒉(𝑡) over the vocabulary

set, 𝑉 , in R|𝑉 |. 𝒉(𝑡) is linearly transformed with the 𝑼 weights and the 𝒃2 bias to enable learning

on the computed probability.

1.1.1.2 Advantages

• Independent of input length: the same weights matrix, 𝑾, is shared across all time

steps, thus, its size does not depend on the sequence length but rather on the embedding

dimensionality, which is fixed and known in advance;

Prior to RNNs, LMs relied on fixed windows when considering the previous words for next

word prediction. In fixed-window LMs, the size of 𝑾 is dependent on the sequence length;

each input has its own weights column in 𝑾, thus, 𝑾’s upper bound size can only be guessed

and not adaptive to an arbitrary sequence length;

• Better context capture: in theory, the prediction is informed by deeper past steps. Indeed,

given the improved input length capacity, long-term dependencies have a better chance of

being considered for next word prediction;

• Symmetric inputs processing: the same weights matrix 𝑾 is shared across time steps,

which ensures a conjoint training that respects the commonalities between inputs (e.g., words

from an observed context) across time steps.

1.1.1.3 Disadvantages

• Latency in recurrent computation: computing step 𝑛 requires first computing step 𝑛 − 1.

In other words, parallelization is not an option;

• Long-term memory loss: in practice, information from many steps back can be lost. This is

known as the vanishing gradient problem.



7

1.1.2 Long Short Term Memory (LSTM)

Hochreiter & Schmidhuber (1997) introduced the LSTM network (Figure 1.3) as a specialized

RNN capable of capturing long-term dependencies. Thus, the process of encoding a text passage

produces more informed outputs.

Figure 1.3 Understanding LSTM Networks

Taken from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM cells (Figure 1.4) incorporate gating logics that filter out irrelevant information and carry

over the relevant parts, thus addressing the vanishing gradient problem in basic RNNs.

Figure 1.4 Introduction to LSTM

Taken from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

A variant of LSTM, the bidirectional LSTM (Schuster & Paliwal, 1997), performs an additional

pass over the processed sequence. It has often been favored in NLP applications for its ability

to incorporate information from both past and future dependencies, allowing for a semantic

encoding stemming from a richer context.
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1.1.3 The Transformer architecture

Bahdanau, Cho & Bengio (2014) introduce the attention mechanism (Figure 1.5), which assigns

importance scores to tokens relative to other tokens in a sequence. This approach empowers

token representation with contextual awareness. The input tokens are weighted by their relevance

to a downstream task (e.g., machine translation, or language modeling), thus improving its

performance. Following this work, Vaswani et al. (2017) use the attention mechanism in an

encoder-decoder-based neural network, i.e., the Transformer deep learning model.

Figure 1.5 Attention mechanism

Taken from https://blog.floydhub.com/attention-mechanism/

Contrary to the recurrent nature of LSTM networks, Transformers are non-sequential. This

property enables parallel computation and consequently a substantial reduction in training time.

It also allows the attention mechanism in Transformers to process tokens simultaneously, thus

eliminating the long-term dependency performance issues found in LSTM networks. Indeed, as

Vaswani et al. (2017) claim, the attention mechanism allows modeling dependencies regardless

of their distance within the input or output sequences.

The original Transformer architecture (Figure 1.6) consists of a stack of encoders connected to

one of decoders. Encoders prepare a representation of the input embeddings for the decoders,

while the latter produce the desired output. The following describes the main components and

operations found in the Transformer architecture:
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Figure 1.6 The illustrated Transformer

Taken from https://jalammar.github.io/illustrated-transformer/

• Positional encoding: language is a syntactic construct, however, the parallel computation

of the attention mechanism in the Transformer model renders it permutation-invariant. To

fix this discrepancy, the input embeddings are first positionally encoded to preserve order

information. This is achieved by summing the embeddings with learned vectors whose role

is meaningful distantiation;

• Add & Normalize layers: summing the input and its transformation is reminiscent of the

residual connections in ResNet (He, Zhang, Ren & Sun, 2016) as it similarly solves the

vanishing gradient problem. Normalization is technically motivated by the improvement of

training time;

• Self-attention: the process of weighting the relative importance between token embeddings.

These -attention- weights are then used in the weighted sum of the attended token’s embedding

and its neighbors’. The result is fed to the Feed-Forward Neural Network (FFNN) layer to

produce the new representation of the attended token;
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• Encoder-decoder attention: enables an appropriate focus partition of the decoder on the

encoded input;

• Final linear layer: a projection layer of the final decoder’s output vector into a dimension

corresponding to the cardinality of the vocabulary set. This vector is then processed through a

softmax operation to transform the logits into a distributional range of probabilities summing

to one. This vector’s 𝑎𝑟𝑔𝑚𝑎𝑥 is the predicted token’s index.

Figure 1.7 Query, Key and Value vectors

Taken from https://jalammar.github.io/illustrated-transformer/

1.1.3.1 More on self-attention

The self-attention scores are computed as follows:

1. Each token embedding is projected into three vectors, namely, Query, Key, and Value

vectors, by respective multiplication with trainable matrices, WQ, WK and WV (Figure

1.7);

2. Query, Key and Value vectors are respectively aggregated into Q, K and V matrices for

batched computation;

3. Query vectors in Q are compared with key vectors in K through matrix multiplication QK�;
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4. QK� is divided by the square root of 𝑑𝑘 , the key vector’s dimensionality:
QK�
√
𝑑𝑘

. This

operation stabilizes the gradient in the backpropagation pass by normalizing the influence

of the vectors’ dimensionality;

5. 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(QK�
√
𝑑𝑘
): 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 probabilistically weighs the importance of each token in relation

to the attended one;

6. 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(QK�
√
𝑑𝑘
)V: 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 is used as weights in the weighted sum over the Value vectors.

Figure 1.8 Multi-headed attention mechanism

Adapted from https://jalammar.github.io/illustrated-transformer/

The self-attention process is executed eight times – in the original Transformer architecture – in

parallel, in what is referred to as the multi-headed attention mechanism (Figure 1.8). The eight

attention heads (Zi in the figure) are concatenated and projected with a trainable matrix WO

into a representation matrix (Z), comprising a vector representation of each word, as expected

by the final FFNN layer.
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1.1.4 Bidirectional Encoder Representations for Transformers (BERT)

Devlin, Chang, Lee & Toutanova (2019) introduce a Transformer-encoder-based model called

Bidirectional Encoder Representations from Transformers (BERT). In the original architecture,

BERT is a stack of twelve Transformer encoder layers (Figure 1.9).

Figure 1.9 BERT architecture

Taken from Khalid et al. (2021)

While the original Transformer was designed to solve sequence transduction tasks, BERT

is a Language Model for representation learning characterized by the statistical precedence

relationship between words in a language. Representation learning is achieved by its pre-training

on the Masked Language Modeling and Next Sentence Prediction tasks simultaneously.

BERT’s pre-trained state introduces the Transfer Learning method into NLP; since BERT can

be trained through self-supervision for representation learning, it can then be fine-tuned (further

trained on relatively small datasets) for specific tasks such as automatic summarization.



13

The publishing of BERT motivated new techniques in automatic summarization as well as

a re-visiting of previous ones for coupling them with the powerful encoding capabilities of

BERT.

1.2 Automatic Text Summarization

Automatic text summarization is a conditional Natural Language Generation task. Nenkova & McK-

eown (2011) define it as generating a shorter version of a document while retaining its most

important content.

The automatic summarization task can be laid on 2 axes:

• Single-document or Multi-document: the summary can be generated from an input

consisting of a single or multiple documents. This constitutes a defining criterion for a

summarization model;

• Extractive or abstractive: an extractive summary is formed from extracting and concatenat-

ing the most salient passages from the input document(s). An abstractive summary is more

akin to human-redacted summaries in that it may rephrase, use synonyms, leverage general

knowledge, etc.

1.2.1 TextRank: Bringing Order into Texts

TextRank (Mihalcea & Tarau, 2004) is a graph-based (Figure 1.10) text-ranking model based on

Pagerank Page, Brin, Motwani & Winograd (1999).

The idea of a graph-based ranking model is to assign an importance score to nodes. Nodes can

represent text units (e.g. words, tokens, sentences...etc.). A given node’s score is increased by

the connections linking to it, which can be of lexical or semantic natures.

The final iteration of the ranking algorithm assigns the true importance score to all text units.

The highest-scoring text units are selected to form the output summary.
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Figure 1.10 TextRank graph

Taken from Mihalcea & Tarau (2004)

1.2.2 LexRank: graph-based lexical centrality as salience in text summarization

Erkan & Radev (2004) propose LexRank, a multi-document extractive summarizer representing

a text with a graph where each node encodes a sentence.

Nodes are connected with undirected weighted edges; weights represent the degree of similarity

in meaning between a given pair of nodes (sentences). The similarity computation is based

on the Term Frequency-Inverse Document Frequency method, or TF-IDF (Luhn (1957) and

Sparck Jones (1972)).

LexRank differs from TextRank in that the latter computes weights as unit weights, whereas the

former’s use of degrees of similarity instead allows for more granular attribution of importance

scores.

A uniform random walk is performed to compute the centrality of each node. The centrality of a

node can be defined as the sum of all weight edges surrounding it. Therefore, a node with a
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high centrality theoretically represents a salient part of the text. The most central sentences

are then extracted to form the output summary.

1.2.3 Sentence Centrality Revisited for Unsupervised Summarization (PacSum)

The PacSum model, proposed by Zheng & Lapata (2019), is an algorithm similar to LexRank

with two main differences:

• The edges are directed to represent a precedence relationship between sentences. The authors

argue that encoding positional information into the model further enhances the quality of the

generated summary;

• BERT replaces TF-IDF for encoding sentences and calculating pairwise node affinities with

a similarity matrix.

1.2.4 Text Summarization with Pretrained Encoders (BertSum)

BertSum (Liu & Lapata, 2019) is a BERT-based model fine-tuned for the summarization task.

Figure 1.11 BertSum architecture

Taken from Liu & Lapata (2019)

Liu & Lapata (2019) provide a framework (Figure 1.11) for both extractive and abstractive

summarization:

• The abstractive BertSum, BertSumAbs, is obtained from fine-tuning BertSum on XSUM

(Narayan, Cohen & Lapata, 2018), an abstractive summarization dataset;
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• The extractive BertSum, BertSumExt, is obtained from fine-tuning BertSum on CNN/Daily-

Mail (Hermann et al., 2015), an extractive summarization dataset.

1.3 Query-Focused Automatic Summarization (QFS)

Jones (1998) introduces automatic summarization’s context factors (Figure 1.12) : input, output,

and purpose factors. Respectively, the nature of the input text, that of the output summary, and

its purpose.

Figure 1.12 Context factors in automatic summarization

Taken from Ter Hoeve et al. (2022)

Ter Hoeve et al. (2022), who ground their work in that of Jones (1998), advocate for the

usefulness of a summary with respect to the user’s needs and report that the purpose factors

receive the least attention from works in the field of automatic summarization, barring some of
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its specializations which factor in the audience and the situation; among which is the task of

Query-Focused Summarization (QFS).

The expected output of the QFS task is a summary addressing the input query based on the input

document(s).

1.3.1 The Use of MMR, Diversity-based Reranking for Reordering Documents and
Producing Summaries

Maximal Marginal Relevance (Carbonell & Goldstein, 1998) is an MDQFES algorithm that

conjointly considers diversity and query-relevance when selecting documents to retrieve salient

passages from, as formulated by the following equation:

𝑀𝑀𝑅 = 𝑎𝑟𝑔𝑚𝑎𝑥𝐷𝑖∈𝑅\𝑆 [𝜆𝑆𝑖𝑚1(𝐷𝑖, 𝑄) − (1 − 𝜆)𝑚𝑎𝑥𝐷 𝑗∈𝑆𝑆𝑖𝑚2(𝐷𝑖, 𝐷 𝑗 )] (1.4)

D: Documents in the C collection 𝝀: Control parameter for accuracy vs diversity

Q: Query S: Current result set

R: Relevant documents in C 𝑺𝒊𝒎1,2: Similarity metrics determined by the user

Thus, MMR selects the document among the collection with the 𝜆-controlled compromise

between query relevance and diversity.

1.3.2 Biased LexRank: Passage Retrieval using Random Walks with Question-Based
Priors

Otterbacher, Erkan & Radev (2009) extend LexRank by proposing the Biased LexRank algorithm.

The random walk’s originally uniform distribution is instead biased towards the similarity score

of a given sentence with respect to the input query (Figure 1.13).

The generalized form of the LexRank equation can be written as:
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𝐿𝑅(𝑢) = 𝑑

𝑁
+ (1 − 𝑑)

∑
𝑣∈𝑎𝑑𝑗 [𝑢]

𝑤(𝑣, 𝑢)∑
𝑧∈𝑎𝑑𝑗 [𝑣] 𝑤(𝑣, 𝑧) 𝐿𝑅(𝑣) (1.5)

𝑳𝑹(𝒖): LexRank value of sentence 𝑢 𝑵: Number of sentences (graph nodes)

𝒅: damping factor 𝒂𝒅 𝒋[𝒖]: Set of 𝑢’s neighboring node-sentences

𝒘(𝒗, 𝒖): Weight linking sentences 𝑣 and 𝑢 𝒘(𝒗, 𝒛): Weight linking sentences 𝑣 and 𝑧

Otterbacher et al. (2009) argue that an interesting interpretation of the LexRank value of a

sentence can be understood in terms of the concept of a random walk, that is, the process

of visiting the nodes (sentences) of the graph according to a specified transition probability

distribution.

They then introduce a 𝑏(𝑢) term to bias the random walk while computing the LexRank score of

a node (sentence):

𝐿𝑅(𝑢) = 𝑑
𝑏(𝑢)∑
𝑧∈𝐶 𝑏(𝑧) + (1 − 𝑑)

∑
𝑣∈𝑎𝑑𝑗 [𝑢]

𝑤(𝑣, 𝑢)∑
𝑧∈𝑎𝑑𝑗 [𝑣] 𝑤(𝑣, 𝑧) 𝐿𝑅(𝑣) (1.6)

*𝐶 denotes the set of all nodes in the graph

As such, the nodes’ centrality additionally incorporates the query’s information. Biased LexRank

is a multi-document query-focused extractive summarizer.

1.3.3 Improving query focused summarization using look-ahead strategy

Badrinath, Venkatasubramaniyan & Veni Madhavan (2011) augment Biased LexRank by further

biasing the random walk towards the query-relevance of the neighboring N-sentences instead of

Biased LexRank’s approach of only considering individual sentences.
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Figure 1.13 Similarity relevance

Taken from Otterbacher et al. (2009)

Badrinath et al. (2011) argue that the random walk surfer in Biased LexRank completely

ignores the neighborhood information of the destination node and that their look-ahead approach

uncovers nodes that are indirectly related to the query.

1.3.4 Diversity driven attention model for query-based abstractive summarization
(DDA)

The Diversity-Driven Attention model (DDA) (Nema, Khapra, Laha & Ravindran, 2017) is

motivated by the repetition problem in Attention-based decoders.

Nema et al. (2017) argue that the repetition problem occurs because two consecutive decoder

states are likely to be similar; the DDA model (Figure 1.14) approaches this issue by imposing

orthogonality (vectors dissimilarity) between the current and previous context vectors (numerical

representations of the observed word’s neighboring words). The level of orthogonality is gated

by a 𝛾 parameter.
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Figure 1.14 Diversity Driven Attention schema

Taken from Nema et al. (2017)

Nema et al. (2017) additionally introduce the DebatePedia dataset for Query-Focused Abstractive

Summarization and augments it for training.

1.3.5 Query Focused Abstractive Summarization via Incorporating Query Relevance
and Transfer Learning with Transformer Models (QR-BERTSUM-TL)

Laskar, Hoque & Huang (2020a) extend the BertSum model that was pre-trained on the XSum

dataset (Narayan et al., 2018) by 1) fine-tuning it on the DebatePedia dataset and 2) concatenating

a query to the input document.

QR-BERTSUM-TL outperforms the DDA model without augmenting training data, and the

BertSumXSUM model, which did not undergo fine-tuning. Figure 1.15 shows an output example

from an input query and document, using QR-BERTSUM-TL.
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Figure 1.15 Query-Focused Summarization example

Taken from Laskar et al. (2020a)

1.3.6 Biased TextRank: Unsupervised Graph-Based Content Extraction

Kazemi, Pérez-Rosas & Mihalcea (2020)’s approach to bias TextRank’s (Mihalcea & Tarau,

2004) summarization algorithm is reminiscent of that of Biased LexRank’s (Otterbacher et al.,

2009) with respect to LexRank (Erkan & Radev, 2004).

TextRank computes the scores of nodes (text units) in the order produced by a random walk

where each node has an equal chance of being visited. Nodes’ scores are computed using

neighboring nodes, which means that the scores of the nodes are sensitive to their visiting order.

Biased TextRank weights a node’s visiting priority by its embedding proximity to the input bias.

This ensures that the final top nodes will be bias-relevant based on their similarity to the bias.

Kazemi et al. (2020) use cosine distance between the Sentence-BERT (Reimers & Gurevych,

2019) embeddings of the node (sentence as a text unit) and the input bias (e.g. query).

Biased TextRank in its summarization application can be an MDQFES model. It operates solely

on text units (e.g. sentences) meaning that multiple documents can be concatenated into one for

the graph representation.
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1.3.7 WSL-DS: Weakly Supervised Learning with Distant Supervision for Query
Focused Multi-Document Abstractive Summarization

To address the lack of labeled Query-Focused Summarization datasets, Laskar, Hoque & Huang

(2020b) propose an approach for distant and weakly supervised learning (WSL-DS) to generate

weak (artificially generated) reference summaries from gold reference summaries through a

pre-trained, RoBERTa-based (Liu et al., 2019), sentence-similarity model.

Figure 1.16 Process of the WSL-DS model for QFAS

Adapted from Laskar et al. (2020b)

Figure 1.16 shows a process where:

1. Fine-tuned RoBERTa models are used to generate weak reference summaries from the

source documents’ sentences;

2. The BertSum model is fine-tuned using the latter step’s weak reference summaries;

3. A fine-tuned RoBERTa model is used for producing a query-focused abstractive summary.

1.3.8 Coarse-to-Fine Query Focused Multi-Document Summarization (QuerySum)

Xu & Lapata (2020) propose QuerySum, a coarse-to-fine approach (Figure 1.17) where the input

document(s) is/are first decomposed into text passages, then are sequentially fed through three

modules:

1. A relevance estimator: retrieves the top N sentences most relevant to the input query (if

any);

2. An evidence estimator: trained through distant supervision on Question-Answering datasets

and used to rerank the sentences output from the relevance estimator;
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3. A centrality estimator: An extension of LexRank modified to incorporate the evidence

estimator.

Figure 1.17 Architecture of the QuerySum model

Taken from Xu & Lapata (2020)

1.3.9 Generating Query Focused Summaries from Query-Free Resources

Xu & Lapata (2021) decompose the Multi-Document Query-Focused Summarization task into

«(1) query modeling (i.e., finding supportive evidence within a set of documents for a query)

and (2) conditional language modeling (i.e., summary generation) » (page 6096).

Xu & Lapata (2021) claim that query modeling assumes that a generic summary always contains

information relevant to potential or latent queries.

The observed latent queries are reverse-engineered from the summaries via what the authors call

a Unified Masked Representation (UMR) (Figure 1.18), which effectively renders the summaries

into proxy queries for training.

The authors further assume that answers to these queries can be found in sentences from the

document collection that score highly on ROUGE (Lin, 2004) with respect to the queries.

Their model produces queries in UMR, then ranks the input sentences by relevance. These are

fed to a conditional language model to output query-focused abstractive summaries (Figure

1.19).
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Figure 1.18 Unified Mask Representation

Adapted from Xu & Lapata (2021)

Figure 1.19 Framework of Query Focused Summarization

Adapted from Xu & Lapata (2021)

1.3.10 Text Summarization with Latent Queries

Xu & Lapata (2022)’s generative module, MARGE (Figure 1.20), is based on a dual view of the

source document: a query-agnostic view joined with a query-focused view. The query module

is optional, and not utilizing it falls back to generic summarization.
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Figure 1.20 Architecture of the MARGE model

Taken from Xu & Lapata (2022)

Latent queries are encoded from the source document. A latent query is a binary variable with

a probability distribution indicating the belief that a given token (text unit) from the source

document is query-relevant. This means that the training set can be query-free.

1.3.11 Heterogeneous GNN for Query-focused [Extractive] Summarization

Ya, Liu, Cao & Guo (2021) propose a Graph Neural Network (GNN) composed of node

representations (embeddings) of the input query and document-sentences. Query-sentence

relevance is based on their common words. The semantic gap between query and sentence

embeddings is bridged by the Mutual Information Maximization formula (Yeh & Chen, 2019).

The authors adopt the sentence-classification approach on the QFES task, where each sentence

can either belong to the summary or not. Node representations are updated to fit the classification

task. Their model estimates the relevance probability for each sentence and outputs the

top-ranking ones.

Figure 1.21 shows that the model architecture is thrice decomposed:

1. Heterogeneous graph encoder: initializes embeddings for heterogeneous nodes (document,

sentence, word, and query);

2. Graph neural layer: a Graph Attention Network updates node representations through

iterative message-passing;
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Figure 1.21 Heterogeneous GNN for QFES

Taken from Ya et al. (2021)

3. Sentence selector: Sentence-nodes are extracted to predict binary classification scores.

1.4 Query Expansion (QE)

Query expansion (QE) is the task of augmenting a query to cover the user’s intent better and

bridge the lexical and semantic gap between the query’s formulation and the target documents’

style. QE is usually ancillary to a downstream task such as information retrieval (e.g., search

engines), question-answering, or query-focused summarization.

1.4.1 A Two-Stage Masked LM Method for Term Set Expansion

Kushilevitz, Markovitch & Goldberg (2020) propose two methods for the NLP task of Term Set

Expansion (TSE), which consists of expanding members of a semantic class from a small set of

terms, and can thus be utilized for query expansion:

1. Query-terms are masked in sentences in which they occur, marked as indicative patterns. A

BERT-based Masked Language Model (MLM) predicts the masks for these sentences. The

elected sentences are those for which the best prediction matched the masked query term.

The next best predictions are selected to expand the query;
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2. Semantically similar patterns are retrieved from the corpus. The words that would fill the

mask -as predicted by the MLM- in these similar patterns are selected to expand the query.

1.4.2 Using Query Expansion in Manifold Ranking for Query-Oriented
Multi-Document Summarization

Quanye, Rui & Jianying (2021) augment TF-IDF-encoded (Luhn (1957) and Sparck Jones

(1972)) queries by combining four different transformations involving the query itself and/or the

input documents. Expansions are based on semantic similarities with Wordnet (Miller, Beckwith,

Fellbaum, Gross & Miller, 1990) synonyms, on the average and variance of Term-Frequence

Inverse Sentence Frequency values of words, and on the TextRank (Mihalcea & Tarau, 2004)

algorithm to extract query-relevant words from the documents and select the top ones with

manifold ranking.

1.4.3 BERT-QE: Contextualized Query Expansion for Document Re-ranking

BERT-QE (Zheng et al., 2020) takes a ranked list of documents as input (e.g., from an unsupervised

ranking model such as TextRank) and outputs a re-ranked list based on the expanded query

(Figure 1.22).

Figure 1.22 BERT-QE process

Taken from Zheng et al. (2020)
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BERT-QE’s objective is achieved in 3 phases:

1. Re-ranking with a BERT model, fine-tuned on MS MARCO (Bajaj et al., 2018) to extract

the top-ranked documents;

2. Chunking into fixed-length texts to be individually evaluated;

3. Assessing the relevance of a given document by scoring it based on the selected chunks and

the original query.

1.5 Automatic summarization evaluation metric

The de-facto standard metric for automatic evaluation of text summarization models was proposed

by (Lin, 2004) and is called ROUGE, or Recall-Oriented Understudy for Gist Evaluation.

ROUGE is a measure of n-gram overlaps between the generated and reference summaries. An

n-gram, in the context of ROUGE, is a contiguous sequence of n-words. ROUGE’s commonly

used variations are ROUGE-1, ROUGE-2, and ROUGE-L, respectively, unigram-overlap-based

comparison, bi-gram-overlap-based comparison, and longest common subsequence-overlap-

based comparison.

It is noteworthy that there is no unanimous accord on which variant correlates best with human

judgment:

• Lin (2004) report ROUGE-2, ROUGE-L, ROUGE-W, and ROUGE-S as the best for single-

document summarization tasks, ROUGE-1, ROUGE-L, ROUGE-W, ROUGE-SU4, and

ROUGE-SU9 for very short summaries, ROUGE-1, ROUGE-2, ROUGE-S4, ROUGE-S9,

ROUGE-SU4, and ROUGE-SU9 for multi-document summarization, and that correlations

to human judgments were generally increased by stopwords removal and using multiple

references;

• Owczarzak, Conroy, Dang & Nenkova (2012) report the metric closest to human judgment

as ROUGE-2-Recall with stemming and retaining of stopwords;

• Rankel, Conroy, Dang & Nenkova (2013) report ROUGE-3 and ROUGE-4, which are rarely

reported, as among the most accurate human-judgment-wise;
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• Graham (2015) elects ROUGE-2-Precision with stemming and stop-words removed as the

metric most faithful to human judgment.

𝑅𝑂𝑈𝐺𝐸 =
𝑐𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ (𝑔𝑟𝑎𝑚𝑛)
𝑐𝑜𝑢𝑛𝑡 (𝑔𝑟𝑎𝑚𝑛)

(1.7)

In employing the above equation, given the -non-sensical- sentence "the hello a cat dog fox

jumps" and the reference text "the fox jumps", there would be three overlap hits ("the", "fox",

and "jumps") among the seven tokens, and so a rounded 43% ROUGE-1 precision score.

Despite incorporating Wordnet (Miller et al., 1990) for synonymous hits in ROUGE implemen-

tations, this example highlights the semantic agnosticism of ROUGE and the motivation for

works in richer automatic evaluation metrics.

No other metric has yet been established as the new standard for the automatic evaluation of

summaries, as the current trend in works prioritizes enabling comparison with previous works.

1.5.1 METEOR

Banerjee & Lavie (2005) propose METEOR, a method for evaluating generated -or extracted-

text with respect to reference texts based on exact word matches in terms of precision and recall

scores. Matching of synonyms, stemmed words, and paraphrases are also factored in.

Denkowski & Lavie (2014) propose METEOR 1.5, which assigns different weights to functions,

content words, and distinct matching categories.

Guo & Hu (2019) propose METEOR++ 2.0, which extends METEOR by 1) integrating an

external paraphrasing resource and 2) using BERT (Devlin et al., 2019) embeddings.
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1.5.2 Evaluating the Factual Consistency of Abstractive Text Summarization

Kryściński, McCann, Xiong & Socher (2020) propose FactCC, a BERT-based weakly supervised

model for assessing factuality in model-generated summaries. Training data comprises textual

transformations (e.g. paraphrasing through back-translation, noise injection, and sentence

negation) on spans from the source documents. FactCC functions by:

1. Predicting the factual consistency of summary sentences;

2. Extracting source-document spans to support the prediction;

3. Extracting inconsistent spans from summary sentences deemed inconsistent.

The authors define a factually consistent summary as a summary containing only declarations

logically implied by the source document.

1.5.3 FEQA: A Question Answering Evaluation Framework for Faithfulness
Assessment in Abstractive Summarization

Durmus, He & Diab (2020)’s model, FEQA (Figure 1.23), utilizes a Question-Answering (QA)

model to evaluate the factual faithfulness in abstractive summaries. This model is unsupervised

and does not require reference summaries. A summary is considered unfaithful if it contains

errors of contradiction or hallucination. The authors also provide a method for evaluating the

degree of abstraction of a summary.

Figure 1.23 Overview of FEQA’s process

Taken from Durmus et al. (2020).
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The following steps describe FEQA’s architecture:

1. The summary’s entities are detected through Named Entity Recognition (NER) and masked.

A BART model (Lewis et al., 2019) fine-tuned on the QA2D dataset (Demszky, Guu & Liang,

2018) is used to generate questions, e.g., "<MASK> was built" → "What was built?". The

answer is the item that was originally masked;

2. The generated questions and the source document are provided to a QA model, i.e., BERT

(Devlin et al., 2019) fine-tuned on the SQuAD dataset (Rajpurkar, Zhang, Lopyrev & Liang

(2016) and Rajpurkar, Jia & Liang (2018)) to generate answers. These are then compared

with the masked ground truths to estimate faithfulness.

1.5.4 Fact-based Content Weighting for Evaluating Abstractive Summarisation

Xu, Dušek, Li, Rieser & Ioannis Konstas (2020) propose Corr-F/A, an unsupervised evaluation

model where facts/arguments from the generated summary are extracted and compared against

facts/arguments from the input document. The latter are weighted by correspondence with

facts/arguments from the reference summary. Such weights are calculated based on the following:

• Semantic similarity between the vector embeddings of the input document’s facts and the

reference summary’s facts;

• Distance within a meaning representation tree based on Semantic Role Labeling (Palmer,

Gildea & Kingsbury, 2005).

Thus, Corr-F/A indicates how much the output summary’s facts/arguments agree with those that

the reference summary deems important in the input document.

1.5.5 SUPERT: Towards New Frontiers in Unsupervised Evaluation Metrics for
Multi-Document Summarization

Gao, Zhao & Eger (2020) propose SUPERT (Figure 1.24), an unsupervised model to evaluate

model-generated summaries by comparing them with pseudo-reference summaries. Their Salient
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Sentence Extractor generates the latter, and the comparison consists of semantic similarity

computation between SBERT embeddings (Reimers & Gurevych, 2019).

Figure 1.24 Workflow of SUPERT

Taken from Gao et al. (2020).

1.5.6 Factual Error Correction for Abstractive Summarization Models

Cao, Dong, Wu & Chi Kit Cheung (2020) propose a BART-based (Lewis et al., 2019) corrector

model trained on artificial examples generated from the reference summaries. The corrector

model could be used to evaluate the factual consistency of generated summaries, assuming that

a generated summary is inconsistent if the corrector had to edit it.

Cao et al. (2020) incorporate entity transformations from FactCC (Kryściński et al., 2020) and

apply their future work suggestions by adding transformations on numbers, dates, and pronouns

to train the corrector model on these error types.

The objective of the corrector model is to produce a corrected summary based on the source

document and the transformed reference summary.
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1.5.7 BERTScore: Evaluating Text Generation with BERT

Zhang, Kishore, Wu, Weinberger & Artzi (2020) propose BERTscore (Figure 1.25), a BERT-

based model for automatic evaluation of text generation. BERTscore computes cosine similarity

between contextual embeddings of the generated tokens and the reference ones. The similarity

is optionally weighted with inverse document frequency scores.

Figure 1.25 BERTSCORE process

Taken from Zhang et al. (2020)

1.5.8 BLEURT: Learning Robust Metrics for Text Generation

Sellam, Das & Parikh (2020) propose BLEURT, a BERT-based model for automatically evaluating

text generation tasks. The aim is to predict human ratings on the correspondence between the

generated tokens and the reference ones. BLEURT is pre-trained on standard sentence-pair

datasets. Contrary to the latter, the input data might not be cleaned and structured at the

inference time of an arbitrary Natural Language Generation (NLG) task. To remedy this issue,

the authors inject noisy data into their pre-training by utilizing techniques such as mask-filling,

back-translation, and random dropping of words.

BLEURT is pre-trained on a variety of NLG task signals:

• Automatic metrics: BLEU (Papineni, Roukos, Ward & Zhu, 2001), ROUGE (Lin, 2004) and

BERTscore (Zhang et al., 2020);

• Backtranslation likelihood;

• Textual entailment;
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• Backtranslation flag.

1.6 Taxonomy of errors in automatic summarization

Table 1.1 Error types in automatic summarization. Bold represents extracted text.

Error types Description
Erroneous anaphoric ref-

erences

“ [De Long and his crew sailed with the ship Jeannette through
the Bearing sea 1879.] [...] Fridtjof Nansen immediately got the

idea to test the theory of an open sea filled with drift ice. [He
let build a powerful ship strong enough to drift unharmed
with the thick pack ice for a long time.] ” (Kaspersson, Smith,

Danielsson & Jönsson, 2012)

The preceding antecedent was not extracted; "He" refers to "Fridtjof

Nansen", but since this part was not extracted, the anaphoric

pronominal reference is erroneously attributed to "De Long".

Broken anaphoric refer-

ences

“ The free man had, however, official duty. [Such official duty was
the guesting, the obligation to receive and support the king and
his escort when they traveled]”. (Kaspersson et al., 2012)

The pronoun "such" in the extracted text has no antecedent. The

anaphoric reference is therefore broken.

Cohesion and context Extracted phrases that lack the necessary cohesion or context to

understand their meaning.

Smith, Danielsson & Jönsson (2012) measure cohesion by the

number of co-references in the text and how intact it is after

summarization.

Grammar Whether the set of phrases follows the rules of the language.

Focus The extracted text should only contain information relevant to the

rest of the summary. (Over, Dang & Harman, 2007)

The query relevance should also be considered in the case of

query-focused summarization.

Structure and coherence Over et al. (2007) state that the summary should not be a pile of

disordered information but rather a sentence-by-sentence construc-

tion towards a coherent set of information on the subject.

Redundancy Repetition of sentences with similar meanings. Especially occur-

rent in multi-document summarization.

Temporal & spatial rela-

tionships

When/Where an event took place.

More prominent in multi-document summarization. (Kaspersson

et al., 2012)
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Table 1.1 presents the most prominent error types in automatic summarization found in literature,

paired with concrete examples or detailed explanations for each.

1.6.1 DUC in Context

Over et al. (2007) study the Document Understanding Conference (DUC) dataset in the context

of automatic summarization. They report and utilize DUC 2005 and 2006’s set of linguistic

quality in their study. This set numbers five error types, among which are grammaticality,

redundancy, focus and structure & coherence (see Table 1.1 for details) as well as referential

clarity, which is analogous to anaphoric references.

1.6.2 This also affects the context - Errors in extraction-based summaries

Kaspersson et al. (2012) attempted to address several summarization error types by varying

the degree of summarization (summary length). They found that this approach mitigates some

error types and exacerbates others. They report absent cohesion, absent context, and broken

anaphoric references as the most common error types.

The authors observe that some error types are directly proportional to the degree of summarization,

while U-shaped or cut-off linear relations describe others.

1.6.3 Cohesion in Automatically Created Summaries

Smith et al. (2012) report results of cohesion studies in extractive summaries. They measure it

by the number of co-references in the text and its intactness in the summary. They conclude that

taking previous sentences in extraction slightly improves cohesion but does not significantly

improve quality, despite the assumed tradeoff between the amount of information included in

the summary and its cohesion.





CHAPTER 2

OBJECTIVES

Chapter 1 explored the literary landscape of automatic summarization models, starting from

text-encoding models, leading to query-focused summarization and query-expansion models,

then ending with how they can be evaluated.

With the awareness of the state-of-the-art permitting assessment of reasonable goals and potential

areas of improvement, this chapter presents the main objective of this work and its sub-objectives.

2.1 Explicative Sentiment Summarization

Given a multitude of documents, a sentiment of interest, and a query regarding the targeted

entities (e.g. a specific product, date, or location), the main objective is to provide an informative

summary explaining the cause(s) of the queried sentiment. This requirement describes a

constrained Query-Focused Summarization (QFS) task, which we term as Explicative

Sentiment Summarization (ESS).

2.1.1 Qualitative study of prominent error types in output summaries

Section 1.6 presented a taxonomy of errors in automatic summarization. Following this, we

perform a qualitative study of existing models’ output summaries to identify the most frequent

error types (1.1) and thus prioritize the problems to solve in Query-Focused Summarization,

and by extension, our purpose task of Explicative Sentiment Summarization.

2.1.2 Propose and evaluate solutions at the QFS level

Following findings in 2.1.1, we approach the identified prominent problems with solution

proposals and evaluations at the scope of Query-Focused Summarization.
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2.1.3 Propose and evaluate solutions at the ESS level

Following findings in 2.1.1 and 2.1.2, we propose and evaluate solutions at the specialized scope

of Explicative Sentiment Summarization.

2.2 Quantitative study of MDQFES models

The Recall-Oriented Understudy for Gisting Evaluation (ROUGE) (Lin (2004)) metric will be

used as it is the de-facto standard in automatic summarization. See section 4.2 in chapter 6.



CHAPTER 3

METHODOLOGY

Chapter 2 presented this work’s main objective and its transversal and sub-objectives. This

chapter reports the methodologies involved in achieving the declared goals.

3.1 Quantitative study of MDQFES models

ROUGE uses various strategies to quantify n-gram overlap between the output text and its

reference(s). We heuristically elect the F1 score of ROUGE-SU4 as the most relevant ROUGE

variant for our problem space. We also report F1 scores of the ROUGE-1, ROUGE-2 and

ROUGE-L variants. Refer to section 4.2, "Evaluation Metric for Automatic Summarization," in

chapter 6 for the justification of these choices.

Using the aforementioned ROUGE variants, we evaluate MDQFES models on the Document

Understanding Conference (DUC) datasets (from 2005, 2006, and 2007), and on our proprietary

Explicative Sentiment Summarization (ESS) dataset, of which only metadata is disclosable.

The ESS dataset spans 950 ESS units, each containing:

• The name of the targeted entity;

• The sentiment of interest;

• 1 to 576 documents with a mean of 17 and variance of 38, with each document spanning 2 to

771 sentences with a mean of 24 and variance of 36;

• A single-sentence abstractive reference summary explaining the sentiment.

The DUC datasets cover a wide range of topics such as politics, science & technology, health,

sports & entertainment, etc. They are a historically prominent standard for evaluating Multi-

Document Query-Focused Summarization models. Table 3.1 presents an overview of the

metadata concerning the used DUC datasets.

For simplification purposes, in our experiments, we concatenate the DUC2005, DUC2006, and

DUC2007 datasets as one and hereafter refer to the group as DUC.
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Table 3.1 DUC 2005-2007 statistics

DUC 2005 2006 2007
Clusters 50 59 30

Sentences 45,931 34,560 24,282

Words limit 250 250 250

Avg. queries/cluster 2.18 2.10 1.62

Avg. query length 3.55 12.53 15.11

3.2 Qualitative study of prominent error types in system summaries

To identify the error types (table 1.1) with the most negative impact on summary quality, we

conduct a qualitative analysis on the worst output summaries in terms of ROUGE-SU4-F1

scores, as determined in section 3.1. The studied summaries are from the MMR, QuerySum,

and Biased TextRank models for MDQFES, executed on the DUC and ESS datasets.

Appendix I presents examples of the methodology involved in the qualitative study.

3.3 Propose and evaluate solutions at the QFS level

In section 3.2, we identified "focus" as the most prominent error type. Thus, following sub-

objective 2.1.1, the problem with the highest yield upon resolution is to be considered the

problem. The focus error type, re-iterated from table 1.1, pertains to extractive summaries

whose text passages lack intra-relevance and query-relevance in the case of Query-Focused

Summarization.

The query-focus of text units is typically determined by a similarity computation on their

embeddings and sentence encodings in the case of QFS. The underlying assumption is that

the encodings are correctly distributed in semantic space regardless of the linguistic domain

of the s ource (query) and the target (input documents). This state of affairs mainly involves

the sentence encoder in use and the formulation of the input query. Thus, we deem these QFS

components most likely to impact the query-focus of a summary and address our methodologies

for approaching them in the following subsections.
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3.3.1 Sentence Encoders

Using Biased TextRank, we fix the input query and vary sentence encoders on the test split of the

ESS dataset. In addition to the SBERT-based (Reimers & Gurevych, 2019) sentence encoders,

we test asymmetric semantic search encoders1. The latter are pre-trained on Question Answering

datasets, which are theoretically more appropriate for the length asymmetry involved in retrieving

long text passages with a short query. Section 4.3 reports a sample of the best-performing

experimental results.

3.3.2 Query Formulation

See sections 3.1, 3.2, and 3.3 in chapter 6.

In particular, section 3.2 from chapter 6 introduces Multi-Bias TextRank (MBTR), a Compound

Bias-Focused Summarization model (chapter 6, 3.1) which relies on the reduction of biases

from multiple input queries. To determine the best folding operation for combining the biases,

we perform experiments on the following reduction strategies, paired with their motive intuition:

1. Summation: amplification of the relevance-score of a desired sentence that might not

have been effectively addressed by a single bias. Conversely, a low score denotes more

confidence in the rejection of a sentence, given the implication that none of the biases were

relevant to it;

2. Max: optimistic selection of the highest bias to nullify the contribution of the lesser relevant

biases. A low score reinforces rejection confidence, akin to the summation effect;

3. Mean: uniform scaling of their summed contributions;

4. Median: lesser sensitivity to outlier biases;

5. Conjoint probabilities: framing of relevance-scores as independent salience likelihoods,

thus enabling the conjunction of their influences;

1 https://www.sbert.net/examples/applications/semantic-search/#symmetric-vs-asymmetric-semantic-

search
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6. Negative variance: favoring the sentence with the least volatile scores across biases, i.e.

the most accord on relevance.

3.4 Propose and evaluate solutions at the ESS level

For sentiment explanation, we can disregard open-domain queries and specialize the QFS task

for biases and queries that align with this objective. Additionally, we can leverage the prior

knowledge of queries in a sentiment explanation setting. We introduce the task of Explicative

Sentiment Summarization (ESS) in section 6.4.4.



CHAPTER 4

EXPERIMENTAL RESULTS

Chapter 3 presented the experimental methodologies whose results we present in this chapter.

4.1 Experimental protocol

Section 4.2 reports the qualitative study of DUC summaries across three summarizers: Maximal

Marginal Relevance (MMR, implemented locally), QuerySum2 and BiasedTextRank (BTR,

implemented locally). For these experiments, hyperparameters for all three were preserved as

recommended by their authors. This choice is justified by the proof-of-concept nature of this

work. Hyperparameter optimization is relegated to a potential production phase.

Section 4.3 varies node representations in BTR with multiple sentence encoders, evaluating

each with ROUGE scores using the pythonrouge3 implementation.

Section 4.4 reports ROUGE scores for MultiBiasTextRank (MBTR) with query expansion (with

detailed protocol in section 6.5.3 and in the footnotes of table 6.1). Section 4.4 also varies

implementations of the reduction operator in 6.3, as reported in its table 4.2. The 𝛼 and 𝛽

choices are justified in section 6.6 and in table 6.1.

Section 4.5 refers to the manuscript article’s sections 6.5.3, 6.5.4, and to its table 6.1 for the

protocols leading to ROUGE scores of sentiment-aware MBTR in the context of the Explicative

Sentiment Summarization task.

4.2 Qualitative study of prominent error types in system summaries

The x-axis in Figure 4.1 comprises error types regarding pronominal references, nominal

references, query-focus, cohesion & context, and redundancy. The y-axis presents the total count

for each error type on the DUC dataset across three QFMDES models: MMR, QuerySum, and

2 https://github.com/yumoxu/querysum

3 https://github.com/tagucci/pythonrouge
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BTR. Results show a consistent prominence of the focus error type across all tested MDQFES

models on the DUC dataset. This result also holds for the proprietary ESS dataset.

Figure 4.1 Qualitative study of prominent error types in system summaries

MMR stands for Maximal Marginal Relevance, QSM for QuerySum,

and BTR for Biased TextRank.

4.3 Sentence Encoders

Table 4.1 presents ROUGE scores for the BTR model on the ESS dataset across various sentence

encoders from HuggingFace4. The first subtable reports scores for the encoder used in the

original BTR implementation, the 2nd subtable for SBERT-based sentence encoders, and the last

for asymmetric semantic search encoders. Bold font indicates the top score for each ROUGE

variant.

Table 4.1 ROUGE scores for BTR on ESS across sentence encoders

Sentence encoder R-1 R-2 R-L R-SU4
bert-base-nli-mean-tokens 22.91 0.07 19.06 10.02

xlm-r-distilroberta-base-paraphrase-v1 34.95 19.28 31.42 18.78
paraphrase-xlm-r-multilingual-v1 34.90 19.24 31.37 18.74

distilroberta-base-paraphrase-v1 33.97 18.30 30.24 17.93

paraphrase-distilroberta-base-v1 34.00 18.34 30.27 17.95

msmarco-distilroberta-base-v2 33.52 18.16 30.28 17.44

msmarco-roberta-base-v3 34.56 19.10 31.25 18.44

4 https://huggingface.co/
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4.4 Query Formulation

See sections 6.5.3 and table 6.1, respectively, for the experiment report of Multi-Bias TextRank

(MBTR) with query expansion and its results.

Table 4.2 presents ROUGE scores for the varied reductions experiment on the MBTR model.

Section 6.6 and table 6.1 motivate the 𝛼 and 𝛽 choices.

Table 4.2 ROUGE scores for various reductions on Multi-Bias TextRank (MBTR).

Bold font denotes the top scores in each subtable

Experiment Reduction strategy R-1 R-2 R-L R-SU4

ERTa→ MBTR|𝛼=0.1,𝛽=0.1

Summation 45.51 28.22 41.61 28.11
Max 39.86 23.23 36.22 22.57

Mean 40.95 24.09 37.17 23.81

Median 40.24 23.70 36.35 23.54

Conjoint probabilities 45.42 28.15 41.53 28.05

Negative variance 23.16 9.75 19.96 10.48

SBb→ MBTR|𝛼=0.1,𝛽=0.2

Summation 44.11 25.77 39.58 25.64

Max 41.73 23.81 36.84 24.17

Mean 41.87 24.04 36.97 24.27

Median 42.07 24.12 37.18 24.38

Conjoint probabilities 44.13 25.80 39.61 25.67
Negative variance 31.63 16.33 27.64 16.58

a ERT is an input compound bias and stands for Expanded Reference-Terms (6.5.3)
b SB is an input compound bias and stands for Sentiment Biases (6.5.4)

4.5 Solutions at the ESS level

Sections 6.5.3, 6.5.4, and table 6.1 respectively present: a use of Multi-Bias TextRank (MBTR)

with ESS-specific query expansion; a use of MBTR with sentiment biases and sentiment-based

query expansion; ROUGE scores of the conducted experiments over MBTR and baseline

models.





CHAPTER 5

DISCUSSION

Chapter 4 presented the experimental results, which we discuss and interpret in this chapter.

5.1 Qualitative study of prominent error types in system summaries

The finding of "focus" as the most impactful error type in Query-Focused Summarization is

intuitive; a non-query-focused summary will have an almost null overlap with its reference

and thus produce extremely low ROUGE scores. Other error types (e.g. redundancy, broken

anaphoric references, cohesion) partially impact the summary’s quality, which contrasts with

the comprehensive influence of focus errors.

5.2 Sentence Encoders

The hypothesis of asymmetric semantic search encoders being more appropriate for our QFS

task failed. This is possibly due to our problem space of short summaries, given that our ESS

dataset presents single-sentence reference summaries (see sections 4.1 and 4.2 in chapter 6). In

the conclusion section of chapter 6, we suggest re-testing such encoders in use cases with longer

reference summaries.

The xlm-r-distilroberta-base-paraphrase-v1 encoder performed best across all ROUGE scores.

We surmise this to be the case due to its powerful combination of a distilled RoBERTa (Liu

et al., 2019) language model and its cross-lingual pre-training on the paraphrasing task enabling

a deep understanding of language patterns.

5.3 Query Formulation

See section 6.6 for results and discussion of the query formulation experiments.

Regarding the reduction experiments, we re-iterate ROUGE-SU4 (6, section 4.2) as our variant

of choice for performance comparison of the results in table 4.2. It is noteworthy as anecdotal
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evidence that all ROUGE variants followed ROUGE-SU4 regarding best scores across all of our

experiments.

For the ERT experiment, mean and median reductions present a 1.14% relative difference in

performance and 0.45% in the case of the SB experiment. These marginal differences between

the mean and median indicate low outlier biases in our query combinations. This is an intuitive

finding, given that queries in the ESS task are expected to have a common objective rather than

divergent ones.

The negative variance reduction produced the worst results for both the ERT and the SB

experiments. This disproves the hypothesis of bias accordance being a good criterion for

query-relevance scoring.

Summation performed 21.86% better than the max reduction in the ERT experiment, and

5.9% in the SB experiment. This finding highlights the importance of combining all biased

contributions rather than selecting one and nullifying the contributions of the rest.

Summation performed best in the ERT experiment. In the SB experiment, summation performed

0.12% worst than conjoint probabilities. We elect to trade off this marginal difference for

the uniform choice of reduction strategy across query combinations, i.e. summation, and for

the lower computational cost compared to the sum of logarithms implementation of conjoint

probabilities.

5.4 Solutions at the ESS level

See section 6.6 for results and discussion of the experimental solutions at the ESS level.
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6.1 Abstract

Constructive analysis of feedback from clients often requires determining the cause of their

sentiment from a substantial amount of text documents. To assist and improve the productivity

of such endeavors, we leverage the task of Query-Focused Summarization (QFS). Models of

this task are often impeded by the linguistic dissonance between the query and the source

documents. We propose and substantiate a multi-bias framework to help bridge this gap at

a domain-agnostic, generic level; we then formulate specialized approaches for the problem

of sentiment explanation through sentiment-based biases and query expansion. We achieve

experimental results outperforming baseline models on a real-world proprietary sentiment-aware

QFS dataset.

6.2 Introduction

Sentiment analysis is the Natural Language Processing (NLP) task of predicting the affective

state of a text passage. It is generally useful for applications concerned with feedback analysis of

experiences (e.g., products, events, or services). However, simply being aware of the sentiment

does not enable improvement of the experience; this purpose requires knowledge of the specific

causes and features related to the sentiment.
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Given a multitude of documents, a sentiment of interest (e.g., negative or positive), and a query

regarding the targeted entities (e.g., a specific product, date, or location), our main objective

is to provide an informative summary of the input documents that explains the cause(s) of the

queried sentiment. This goal falls under a constrained QFS task, which we term Explicative

Sentiment Summarization (ESS). See Figure 6.2 for a depiction of this process.

Compared to the Question Answering task’s factoid outputs, the QFS task is motivated by more

complex and contextually rich responses. It is thus a more appropriate parent task for ESS,

which consists of elaborating on the cause(s) of the queried sentiment. The problem space of

ESS is marginally akin to that of the Aspect-Based Sentiment Analysis (ABSA) task. ABSA

associates sentiments with specific aspects (categories, features, or topics). Such aspects are

predefined or extracted by a pipeline component, and the sentiment of each is a prediction

objective. ESS concerns use cases where the target sentiment is prior knowledge and is thus

an input item. Leveraging the latter allows simplifications such as computing the strength of

the targeted sentiment for each text passage, thus inherently circumventing aspect identification.

Additionally, ABSA produces sentiment associations for each aspect, whereas ESS outputs a

natural language summary explaining the cause of the queried sentiment.

A common shortcoming of the QFS task and its proposed models is the putative gap between

the source text and the input query in terms of Language Register (LR, formality level) and

Information Content (IC, from Shannon’s Information Theory). An LR gap occurs when, for

example, a colloquial query formulation addresses source text written in formal style or in

domain-specific terminology. An IC gap is typically incurred by the generic semantic coverage

of short queries in relation to the specific semantics in detailed source text passages.

Our following contributions first address this issue at a generic level, then at a specialized level

for our purpose of sentiment explanation:

1. We introduce the Compound Bias-Focused Summarization (CBFS) (6.4.1) framework to

improve the chances of aligning the user’s intent with arbitrary and possibly heterogeneous

language registers in source documents by supporting multiple query formulations;
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2. We concretize the CBFS framework with our Multi-Bias TextRank (MBTR) (6.4.2) model

and its Information Content Regularization (6.4.3) which guides the QFS process towards

the desired level of specificity;

3. We introduce the Explicative Sentiment Summarization (ESS) task, (6.4.4) which specializes

the QFS task by leveraging prior knowledge in a sentiment explanation setting;

4. We substantiate the ESS task with sentiment-based bias computation (6.4.4.2) and query

expansion (6.4.4.3).

6.3 Related Work

The following is an overview of the literature relevant to our task and contributions, spanning

works in query-focused extractive summarization and query expansion.

6.3.1 Query-Focused Extractive Summarization

The NLP task of automatic summarization aims to compress a document or collection of

documents into a salient and concise summary. Jones (1998) introduces three context factors

concerned with automatic summarization and its evaluation: the nature of the input text (e.g., its

domain and structure); the nature of the output summary; the purpose of the summary. Ter Hoeve

et al. (2022), who ground their work in that of Jones (1998), advocate for the usefulness of

a summary concerning the user’s needs. They report that the purpose factors receive the

least attention from works in automatic summarization, barring the latter’s specializations

which consider the audience and the situation. Among the latter is the task of Query-Focused

Summarization, of which the expected output is a summary of the input document(s) that focuses

on the query.

Automatic summarization can be achieved either by a semantic abstraction of the source text’s

salient information, or by a verbatim extraction of it.

While human-level summarization is abstractive, in practice, recent works (Ladhak, Dur-

mus & Hashimoto (2022a); Ladhak, Durmus, He, Cardie & McKeown (2022b); Balachandran,
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Hajishirzi, Cohen & Tsvetkov (2022); Fischer, Remus & Biemann (2022)) are still attempting

to solve text generation errors such as factuality and hallucination. These shortcomings make

abstractive summarization models currently unreliable in applications with tangible stakes.

Extractive summarization selects and concatenates salient text spans. This approach potentially

hinders the cohesion of the summary as a whole. Indeed, text cohesion is a generally desired

attribute and yet one of the most common error types in extractive summaries (Kaspersson et al.

(2012); Smith et al. (2012)). However, it may be an optional attribute for critical applications

prioritizing content reliability, output traceability, and fact-checking, all facilitated in extractive

summarization.

Numeric representation of text is ancillary to the automatic summarization task, since it enables

arithmetic transformations from the task’s input space to its output space. Given the importance

of pragmatics in natural language, the usefulness of such representations is greatly improved

by their sensitivity to context. BERT Devlin et al. (2019), a pre-trained transformer Vaswani

et al. (2017) encoder-based architecture, has seen widespread use as a Pre-trained Language

Model (PLM) across recent text summarization systems (Liu & Lapata (2019); Laskar et al.

(2020a); Kazemi et al. (2020); Laskar et al. (2020b); Xu & Lapata (2020); Xu & Lapata (2021);

Xu & Lapata (2022); Laskar, Hoque & Huang (2022)). These models’ State-Of-The-Art (SOTA)

performance motivated us to adopt BERT-based models for text representation in automatic

summarization.

Maximal Marginal Relevance (MMR) Carbonell & Goldstein (1998) is a Multi-Document Query-

Focused Extractive Summarization (MDQFES algorithm that conjointly considers diversity and

query relevance when retrieving salient passages from a collection of documents.

Liu & Lapata (2019) propose BertSum, a BERT-based model fine-tuned for both abstractive

and extractive summarization, respectively, on the XSUM Narayan et al. (2018) dataset as

BertSumAbs, and on the CNN/DailyMail Hermann et al. (2015) dataset as BertSumExt. Laskar

et al. (2020a) pre-train BertSum similarly to BertSumAbs, then fine-tune it on the DebatePedia

dataset Nema et al. (2017) for Query-Focused Extractive Summarization (QFAS).
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Motivated by the success of BERT contextual embeddings, Kazemi et al. (2020)’s unsupervised

Biased TextRank (BTR) model represents nodes from TextRank Mihalcea & Tarau (2004),

a complete graph, as SBERT Reimers & Gurevych (2019) sentence encodings. BTR then

subjects the underlying PageRank Page et al. (1999) centrality computation to a lower bound

similarity, and to a query-bias for every sentence-node. Thereby ranking the input sentences by

a conjunction of their centrality and query-bias.

Xu & Lapata (2020) argue that disjoining intra-document salience and query-relevance allows for

separate modeling of the query and for summaries to address specific questions; this motivates

their coarse-to-fine model, QuerySum, where text passages from the input documents are

sequentially processed through query-relevant retrieval, followed by evidence estimation based

on the Question-Answering (QA) task, and then by centrality-based re-ranking, i.e., salience for

the surrounding text passages.

Laskar et al. (2020b), Xu & Lapata (2021), Xu & Lapata (2022) and Laskar et al. (2022) propose

different approaches to address the prominent issue of lack of labeled QFS datasets.

Laskar et al. (2020b) opt for a distant and weakly supervised approach for generating weak

(artificially generated) reference summaries from gold reference summaries through a pre-trained,

RoBerta-based Liu et al. (2019) sentence-similarity model.

Assuming that generic (non-query-focused) summaries contain information on latent queries,

Xu & Lapata (2021)’s MARGE model uses selective masking to reverse-engineer proxy queries,

then pairs them with input sentences scoring high on ROUGE Lin (2004) (see 6.5.2). Thus,

enabling weak supervision for ranking query-relevant sentences that are subsequently fed to a

length-controllable QFAS model with optional user-query.

The LQSum model (Xu & Lapata, 2022), unlike MARGE, does not assume the target queries’

length and content, nor does it require a development set. It achieve this by discarding the

sequential query modeling approach, and replacing it with a zero-shot-capable alignment
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between the source tokens and discrete latent variables. The latter are expressed by a binomial

distribution indicating the query relevance belief of a source token.

6.3.2 Query Expansion

The dissonance between query and object signals motivates the NLP task of Query Expansion

(QE), which is ancillary to downstream tasks such as QA, Information Retrieval (IR), or QFS.

QE generally employs techniques such as re-weighting query terms and/or augmenting them with

semantically related terms (Riezler, Vasserman, Tsochantaridis, Mittal & Liu (2007); Ganu & P.

(2018); Zheng et al. (2020)).

Riezler et al. (2007)’s query expansion methods leverage Statistical Machine Translation (SMT)

for paraphrasing and mapping to answer terms. While such back translation methods might

somewhat preserve semantics, they are liable to lose the domain property of language, which

disqualifies it from our need to bridge the language register gap between user-query and domain-

specific documents. This particular discrepancy is observed by Ganu & P. (2018) in the search

feature of their accounting software, in which users employ colloquial language to query the

formal and financial text in their knowledge base. They address this problem with strategies for

synonym substitution and expansion to nearest neighbor-embeddings, based on vocabulary from

their hand-curated proprietary dataset. Albeit a valid approach for aligning the domain of query

language, crafting a problem-specific lexicon requires seldom available human resources and

expertise.

Zheng et al. (2020) further the motivation of QE with the issue of noisy query expansion, for

which they propose BERT-QE, a three-step QE model in which initially ranked documents are:

1. Re-ranked on query-relevance with a BERT model pre-trained on the MS MARCO Bajaj

et al. (2018) QA dataset;

2. Chunked into passages for relevance scoring with the model fine-tuned on a target dataset;

3. Re-ranked based on passage document-relevance and query-relevance.
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Zheng et al. (2020)’s QE approach is restricted to IR as a downstream task by considering

retrieval objects as entire documents, which does not directly accommodate our target task of

QFES since it retrieves sentences.

Akin to the QE task, the Term Set Expansion (TSE) task consists of expanding members

of a semantic class from a small seed set of terms. Kushilevitz et al. (2020) propose two

TSE methods based on BERT used directly as a Masked Language Model (MLM): In MPB1

(MLM-Pattern-Based), seed-terms are masked in sentences in which they occur (indicative

patterns), then an MLM predicts the masks in their contexts, at which point the correctly

predicted masks have their next best predictions elected for query expansion; MPB2 circumvents

out-of-vocabulary masked terms in indicative patterns by collecting single- and multi-token

terms from similar patterns.

Kushilevitz et al. (2020)’s methods leverage an MLM’s vocabulary for expanding seed terms in

the context of the input text, which does not require a handcrafted lexicon, and helps align the

source documents’ language register with that of the expanded seed-terms. In our work, we need

only consider seed terms as query terms to utilize these TSE methods for query expansion.

6.4 Methodology

We establish a framework for combining multiple queries, concretize it with our MBTR model,

then subject the latter to information content regularization. We introduce the ESS task

for sentiment explanation and employ corresponding techniques with reference-based query

formulation, sentiment bias, and query expansion.

6.4.1 Compound Bias-Focused Summarization

To the best of our knowledge, all current QFS models consider a single input query. This design

burdens the query’s formulation by concisely targeting all information of interest at various

scopes of variance and depth. Presented with such a challenge, all query formats (Xu & Lapata,

2021) face the following difficulties: natural language articulation must encompass the full
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intent; keywords circumvent the syntactic constraints of natural language at the cost of its

expressive flexibility (e.g., contextual disambiguation); albeit concise, the typical brevity of

a title might limit the specificity of attainable information; a composite of the latter formats

allows for trade-off balancing but incurs a non-trivial choice of representation to accommodate

its syntactic heterogeneity effectively.

To tackle the aforementioned challenge, we propose Compound Bias-Focused Summarization

(CBFS) (Figure 6.1). In this framework, the effects of multiple biases are combined through a

reduction strategy5 and input to a QFS model. We use the term "bias" as a generalization over

query formats and non-query biases (e.g., 6.4.4.2). Providing multiple bias channels alleviates

the burden in query formulation by partitioning the compromises mentioned above, instead

of imposing them on a single query. Intuitively, this is analogous to humans reformulating

questions from multiple perspectives or through various language registers for a wider coverage

of their audience. Audience consideration is a heading of the advocated summarization purpose

factor (Jones (1998); Ter Hoeve et al. (2022)).

6.4.2 Multi-Bias TextRank

Given its simplicity and flexibility, we extend Kazemi et al. (2020)’s BTR model to Multi-Bias

TextRank (MBTR) to demonstrate the proposed CBFS framework.

Let 𝑛 sentence encodings, 𝑑 the embedding dimension, b ∈ R𝑑 , S ∈ R𝑛×𝑑 , 𝛼 a control parameter,

𝜃 the similarity threshold and Ã ∈ R𝑛×𝑛 a lower-bounded normalization of the weighted adjacency

matrix A = 𝑠𝑖𝑚(S, S) such that:

Ã𝑖 𝑗 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
A𝑖 𝑗
𝑛∑
𝑗=1

A𝑖 𝑗

, if
𝑛∑
𝑗=1

A𝑖 𝑗 ≠ 0 and
A𝑖 𝑗
𝑛∑
𝑗=1

A𝑖 𝑗

≥ 𝜃

0, otherwise

(6.1)

5 (weighted) summation, max, conjoint probabilities, median, inverse variance, etc.
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Figure 6.1 Compound Bias-Focused Summarization framework

The contributions of multiple biases are folded into a compound bias,

which is then integrated into a Query-Focused Summarization model.

Then the PageRank vector in the Biased TextRank model can be recursively computed as follows:

𝑅 = 𝛼Ã𝑅 + (1 − 𝛼)𝑠𝑖𝑚(b, S) (6.2)

Let 𝑞 the number of query encodings, B ∈ R𝑞×𝑑 and 𝜇 a normalization function such as

𝜇 : R𝑛 \ {u : 1�u = 0} → R𝑛 : u ↦→ u/(1�u). Then the PageRank vector in our Multi-Bias

TextRank model is expressed as follows:

𝑅 = 𝛼Ã𝑅 + (1 − 𝛼)𝜇
(

𝑞⊕
𝑖=1

𝑠𝑖𝑚(B, S)𝑖∗
)

(6.3)
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We implement the ⊕ reduction operator as a summation, and the similarity function 𝑠𝑖𝑚 :

R
𝑚×𝑘 × R𝑛×𝑘 → R𝑚×𝑛 as matrical cosine similarity:

𝑠𝑖𝑚(U,V)𝑖 𝑗 �
(UV�)𝑖 𝑗

| |𝑈𝑖∗| | · | |𝑉𝑗∗| |
(6.4)

where � denotes "defined as", and the 𝑖∗ and 𝑗∗ subscripts denote a row-vector of a matrix. The

𝜇 normalization of the cumulative bias vector scales it comparably to the centrality vector Ã𝑅.

While a single query formulation might not effectively address a desired sentence, folding the

bias vectors of multiple queries increases its relevance score. Conjointly, a low score denotes

more confidence in rejecting a sentence, given the implication that none of the query formulations

neighbor it in semantic space.

The PageRank recursive term, 𝑅, in equations 6.2 and 6.3, computes centrality through the

repeated transformation of itself by the weighted adjacency matrix Ã. Thus, 𝑅 is essentially

converging towards the eigenvector of Ã with an eigenvalue of 1, i.e., the stationary probability

distribution of the salience likelihoods of each sentence. Intuitively, this process simulates the

broadcasting of sentence salience throughout the TextRank graph. In other words, it iteratively

amplifies the scores of sentences similar to important sentences until convergence6. Once Ã’s

equilibrium distribution is sufficiently stable, the sentences associated with the top probabilities

are selected as the output summary.

6.4.3 Information Content Regularization

Amigó, Ariza-Casabona, Fresno & Martí (2022) call attention to the formal properties of text

embeddings, based on the notion of Information Content (IC) from Shannon’s Information

Theory. One such property is the correspondence of IC with the vector norm of a text unit’s

embedding. We leverage this feature to disfavor candidate sentences by their distance from the

targeted level of specificity.

6 A set number of iterations and/or an 𝜖 error tolerance.
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Let G ∈ R𝑚×𝑑 a matrix of 𝑚 sentence-encodings from a guiding example summary, and 𝚫IC ∈ R𝑛

the observed-to-target IC distances:

𝚫IC𝑖 � | | |S𝑖∗| | − 𝑎𝑣𝑔( ( | |𝐺 𝑗∗| |) 𝑗 ) | (6.5)

where 𝑎𝑣𝑔 : R𝑛 → R denotes a statistical average, which we define as the arithmetic mean

𝑎𝑣𝑔(u) � ū. Then, with 𝛽 as a control parameter7, we penalize every bias vector 𝑠𝑖𝑚(B, S)𝑖∗ in

Equation 6.3 by its distance from the target IC (Equation 6.5):

𝑅 = 𝛼Ã𝑅 + (1 − 𝛼)𝜇
(

𝑞⊕
𝑖=1

(𝑠𝑖𝑚(B, S)𝑖∗ − 𝛽𝚫IC)
)

(6.6)

The sentences associated with G can be provided by application-specific prior knowledge (see

6.5.3), in which case the target IC, i.e., 𝑎𝑣𝑔( ( | |𝐺 𝑗∗| |) 𝑗 ) is embedded in the system, or by a

user’s example text to guide the desired level of specificity.

6.4.4 Explicative Sentiment Summarization

For sentiment explanation, we can disregard open-domain queries and specialize the QFS task

for biases and queries that align with this objective. Additionally, we can leverage the prior

knowledge of queries in a sentiment explanation setting. We introduce the task of Explicative

Sentiment Summarization (ESS).

6.4.4.1 Reference-based Query Formulation

For any sentiment-aware QFS dataset, its summary references are expected to explain the queried

sentiments. We leverage this expectation to dispense users of query formulation by automating

7 Note that BTR ≡ MBTR|𝑞=1,𝛽=0
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it in the ESS model, thus reducing the user query’s burden to merely mentioning the specific

entities of interest, such as product names or dates, which can then be appended to the automated

query or considered a separate query as per 6.4.1.

A simple heuristic for automating query formulation in an ESS setting would be selecting the

Frequent Reference-Words (FRW) or Frequent Reference-Phrases (FRP) from the development

split of the ESS dataset. This approach has the advantage of embedding common answer signals

directly into the QFS bias.

6.4.4.2 Sentiment Bias

Unlike the QFS task, ESS can make assumptions about the query, such as the user’s prior

knowledge regarding the sentiment of interest. This allows an ESS model to adapt its query-

relevance computation consequently.

Sentiment classifiers are trained to predict the perceived polarity of a text passage. The use

case of sentiment explanation assumes prior knowledge of the sentiment of interest; we can

thus utilize the prediction probability of this sentiment for every input sentence to construct a

sentiment bias vector. However, the latter is potentially insufficient for the ESS task since it

does not encode information regarding the targeted entities (e.g., product name) and should thus

be used in combination with complementary query-biases (6.4.1), as exemplified in Figure 6.2.

This ESS-specific approach demonstrates a novel bias method that contrasts with the conventional

query-sentence similarity computation in QFS.

6.4.4.3 Sentiment-based Query Expansion

In addition to enabling a sentiment bias vector (6.4.4.2), the prior knowledge in ESS can also be

utilized for sentiment-based query expansion.

We propose using a hyperparameter pair of small sentiment phrases to select from for expansion,

for example, "excellent service" and "poor experience". The suggested brevity is motivated by its
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correlation with low Information Content (6.4.3), i.e., less specificity, which should broaden the

reach for expansion in semantic space. We use phrases as text units instead of words to leverage

the collocational properties of PLMs and thus enhance representation in semantic space.

Figure 6.2 depicts the ESS system, which, given an input sentiment:

1. Selects the corresponding integrated sentiment phrase;

2. Decomposes the input document(s) into phrases (see 6.5.4);

3. Retrieves the top 𝐾 document-phrases8 with the most cosine-similar encodings to the

sentiment phrases. These encodings are produced with an asymmetric semantic search

encoder 9 given the brevity of the sentiment-phrase.

This QE method does not require an external lexicon or knowledge base and inherently

circumvents the typical linguistic dissonance between the query and the source document(s).

6.5 Experiments

We present the used dataset and the evaluation metric, then apply our proposed methods in two

main experiments: MBTR with query expansion, which requires a development set, and MBTR

with sentiment, which does not.

6.5.1 Dataset

We use a proprietary ESS dataset of which only metadata is disclosable. This dataset spans 950

ESS units, each containing:

• The name of the targeted entity;

• The sentiment of interest;

• 1 to 576 documents with a mean of 17 and variance of 38, with each document spanning 2 to

771 sentences with a mean of 24 and variance of 36;

8 We use K=30

9 https://www.sbert.net/examples/applications/semantic-search/README.html
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• A single-sentence abstractive reference summary explaining the sentiment.

We conduct experiments using 75% of examples as a development set, and 25% as a test set.

6.5.2 Evaluation Metric for Automatic Summarization

We use the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) (Lin, 2004) metric as

it is the de-facto standard in automatic summarization. ROUGE varies strategies to quantify the

n-gram overlap of the output text with its reference(s). Our ESS dataset presents single-sentence

summaries of multiple documents; Lin (2004) report the ROUGE-{1, L, SU4, SU9} variants

as most correlating with human judgment in the problem space of short summaries. However,

Owczarzak et al. (2012) advocate for ROUGE-2-R, Rankel et al. (2013) for ROUGE-{3, 4}, and

Graham (2015) for ROUGE-2-P.

Given the above discordance, we heuristically elect ROUGE-SU4 by the criterion of top variance

through numerous experimental runs on our dataset, hypothesizing that high variance denotes

reactivity to summary quality and low variance insensitivity to it; thus, we report ROUGE-SU4.

We find its F1 score is also reported in recent works (Xu & Lapata (2020); Xu & Lapata (2021);

Xu & Lapata (2022); Laskar et al. (2022)) in combination with ROUGE-1, ROUGE-2 and

ROUGE-L F1-scores (Laskar et al. (2020a); Kazemi et al. (2020)), which we also report using

the pythonrouge10 implementation.

6.5.3 Multi-Bias TextRank with Query Expansion

We use the NLTK11 library to decompose the input documents into sentences, and an SBERT12

encoder to represent them and the following expanded queries in MBTR|𝛼=𝛽=0.1 (Equation 6.6):

10 https://github.com/tagucci/pythonrouge

11 https://www.nltk.org/

12 https://huggingface.co/sentence-transformers/xlm-r-distilroberta-base-paraphrase-v1
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1. FRW-MPB2: we construct an FRW query with the top 20 frequent non-stopwords from the

development set, then expand it with MPB2 (6.3.2), using its authors’ (Kushilevitz et al.,

2020) reported hyperparameters;

2. FRP-MPB2: we redefine text units in FRW-MPB2 as noun phrases, which we obtain using

the spaCy library’s noun chunks feature13;

3. FRP-BTR: we expand the FRP query using BTR (Kazemi et al., 2020) with phrases as text

units14, then re-rank its output by descending frequency in the input documents and retrieve

the top 20 phrases.

Before concatenating the individual terms (words or phrases) for each of the above query

expansions, we remove duplicates, terms entirely composed of stopwords, and mentions of

specific entities such as dates or organization names – using spaCy’s NER15 feature – to avoid

spurious skewing towards a subset of the input sentences. We preserve Kazemi et al. (2020)’s

recommended 𝜃=0.65 for the similarity threshold (Equation 6.1) in all (M)BTR experiments.

The FRW-MPB2 + FRP-MPB2 + FRP-BTR query combination will hereafter be referred to as

Expanded Reference-Terms (ERT).

In the ESS task, we prepend the targeted entity’s name to each query before and after expansion.

Doing so produces deliberate skewing towards entity-relevant sentences. Additionally, we

construct the G encodings matrix in Equation 6.5 from reference sentences in the development

set.

6.5.4 Sentiment-aware Multi-Bias TextRank

Given input documents, a queried entity and sentiment, Figure 6.2 depicts the following process:

1. We use a sentiment classifier to predict the probability of the given sentiment for every input

sentence, thus producing a sentiment bias vector;

13 https://spacy.io/usage/linguistic-features#noun-chunks

14 https://github.com/DerwenAI/pytextrank

15 https://spacy.io/usage/linguistic-features#named-entities
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Figure 6.2 Explicative Sentiment Summarization system: integration of query

expansion and sentiment bias into Multi-Bias TextRank.

2. We select the sentiment-corresponding query from a hyperparameter pair of sentiment

phrases, then expand it to its top K16 most cosine-similar document phrases in the space of

an asymmetric semantic search encoder17. The resulting expanded queries are prepended

with the queried entity;

3. We combine the sentiment bias vector with the expanded queries’ bias vectors in MBTR|𝛼=0.1,𝛽=0.2

(Equation 6.6).

In the second step above, phrases are noun phrases (NP) and verb phrases (VP). NPs are extracted

with spaCy’s noun chunking feature, as declared in 6.5.3. We specialize VP patterns for the ESS

task using spaCy’s rule-based matching18 such as:

0. vp_pattern = [

1. {},

2. {’POS’: ’AUX’, ’OP’: ’?’},

16 We use K=30

17 msmarco-distilbert-base-v4

18 https://spacy.io/usage/rule-based-matching
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3. {’DEP’: ’neg’, ’OP’: ’?’},

4. {’POS’: ’VERB’, ’OP’: ’+’},

5. {’POS’: ’ADV’, ’OP’: ’*’},

6. {’POS’: ’ADJ’, ’OP’: ’+’},

7.]

The numbered lines respectively describe: 1) a wildcard representing any token; 2) an optional

auxiliary such as "is", "was", "could", or "should"; 3) an optional negation such as "not"; 4)

at least one verb such as "trend", "trending", or "react"; 5) none or multiple adverbs such as

"significantly"; 6) at least one adjective such as "worse" or "better". Thus, an example VP

matching these rules could present as "[entity] is trending significantly worse".

The combination of the sentiment bias vector and the sentiment-based query expansion will

hereafter be referred to as Sentiment Biases (SB).

6.6 Results and discussion

Table 6.1 presents ROUGE scores of experiments partitioned across the following list of

subtables:

1. The upper bound expresses the maximum achievable scores given that the references are

abstractive summaries;

2. MMR, QuerySum, and BTR are used as baseline MDQFES models for comparison.

BTR|𝛼=0.1 performs best among baselines across all reported ROUGE variants;

3. Each query expansion from ERT (6.5.3) is tested individually on BTR|𝛼={0.1,0.85}. The

FRW-MPB2 query performs best across all reported ROUGE variants;

4. MBTR|𝛼={0,0.1}×𝛽={0,0.1} is tested with ERT as input. MBTR|𝛼=0.1,𝛽=0.1 performs best across

all reported ROUGE variants. It also outperforms BTR with each ERT query (subtable 3),

thus demonstrating the benefit of CBFS; this holds even with ablation of the ICR component

(6.4.3) with MBTR|𝛼=0.1,𝛽=0;
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Table 6.1 ROUGE scores of our 6.5.3 and 6.5.4 experiments.

Bold font denotes each subtable’s top ROUGE variant score.

𝜶 𝜷 Experiments R-1 R-2 R-L R-SU4
- - Upper bounda 72.86 48.60 72.05 49.63

- - BQb→cMMRd 25.13 8.59 - 10.29

- - BQ→QuerySum 27.03 12.03 - 12.86

0.85 -
BQ→BTRe 31.98 16.91 28.61 16.69

0.1 - 34.15 17.50 30.35 17.41
0.85 -

FRW-MPB2→BTR
32.73 17.48 29.06 17.37

0.1 - 41.67 24.50 37.69 24.35
0.85 -

FRP-BTR→BTR
33.20 17.70 29.48 17.48

0.1 - 37.79 21.18 34.21 20.77

0.85 -
FRP-MPB2→BTR

31.97 17.12 28.50 16.78

0.1 - 38.57 22.32 34.98 21.76

0.1 0.1

ERT→MBTR

45.51 28.22 41.61 28.11
0 0.1 44.21 27.02 40.03 26.96

0.1 0 44.82 27.84 41.01 27.67

0.1 0.1

SB→MBTR

43.58 25.45 39.10 25.36

0.1 0 42.51 24.89 38.44 25.01

0.1 0.2 44.11 25.77 39.58 25.64
0 0.2 43.42 25.18 38.93 25.02

a Upper bound is computed by selecting the source sentence with the highest ROUGE-SU4

score (6.5.2).
b BQ denotes our baseline query: "Why did {queried entity}’s receive {positive, negative}

feedback".
c We use the left-hand side of → to denote the query combination inputs.
d In MMR, sentence similarity is computed with spaCy’s en_core_web_lg model.
e We use the same SBERT encoder (6.5.3) for BTR and MBTR

5. MBTR|𝛼={0,0.1}×𝛽={0,0.1,0.2} is tested with SB (6.5.4) as input. MBTR|𝛼=0.1,𝛽=0.2 performs

best across all reported ROUGE variants.

Only the best-performing combinations of 𝛼 and 𝛽 are reported, in addition to combinations

relevant to ablation studies.

Throughout all BTR and MBTR experiments, we observe that 𝛼 = 0.1 performs consistently

better than Kazemi et al. (2020)’s recommended 0.85 and than the ablation of the centrality
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component with 𝛼=0. This suggests that the solution space of ESS with short summaries (6.5.2)

highly prioritizes query focus, without dropping the intra-document salience component since it

helps elect the most central sentence among the most bias-relevant.

Dampening ICR performs best at 𝛽 = 0.1 for the ERT experiments and at 𝛽 = 0.2 for the SB

experiments. Thus, for the problem space of ESS with short summaries, we recommend 𝛽=0.1

when a development set is available for constructing the ERT queries, and 𝛽 = 0.2 with SB

otherwise. We interpret ERT’s lesser regularization requirement as benefiting from its inherent

proximity with the target specificity given its embedded answer signals (6.4.4.1).





CONCLUSION AND RECOMMENDATIONS

We approach the putative linguistic dissonance in the QFS task with the CBFS framework, which

we concretize with the MBTR model. We then specifically address our purpose of sentiment

explanation by introducing the ESS task and its system comprising sentiment-based biases and

query expansions.

We find that the MBTR model significantly outperforms baseline QFES models and the BTR

model it extends. In particular, given that we input the same queries individually to BTR,

outperforming it substantiates the CBFS hypothesis of favoring desired sentences through

multiple query formulations. Our results also indicate that the ESS task is more suitable than

QFS when the query involves a known sentiment.

This work is limited by its focus on the problem space of single-sentence reference summaries

and by its lack of testing on other ESS datasets. In future works, we plan on:

1. Adapting Aspect-Based Sentiment Analysis (ABSA) datasets to the ESS task. ABSA

datasets consists of texts with sentiment-annotated aspects, thus, they are sentiment-aware

and can be utilized to construct an ESS dataset. That is, an input sentiment and entity-query

with the goal of identifying said aspects and their context as sentiment explanations;

2. Integrating other QFS models into the CBFS framework. Generally QFS models quantify

the relevance of a text passage with respect to a single query. Whichever query-relevance

mechanism they use, it can be compounded with other biases, as opposed to a single query’s;

3. Asymmetric semantic search encoders, such as those we used for query expansion in ESS

(6.5.4), might be better suited for the QFES process when the desired summaries are longer

than one sentence;

4. Adapting re-ranking models such as BERT-QE (Zheng et al., 2020) to sentences for

integration into MBTR.





APPENDIX I

QUALITATIVE STUDY OF PROMINENT ERROR TYPES IN SYSTEM SUMMARIES

Table-A I-1 Summarization error types indices

For example, [0, 0, 4, 0, 3] signifies:

4 focus errors and 3 redundancy errors.

0 Broken pronominal anaphoric reference

1 Broken noun anaphoric reference

2 Focus

3 Lack of cohesion or context

4 Redundancy
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1. DUC - MMR worst summaries sample
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2. DUC - QuerySum worst summaries sample
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3. DUC - Biased TextRank worst summaries sample
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