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Amélioration des prévisions hydrologiques à plusieurs échéances pour la gestion des 
réservoirs hydroélectriques 

 
Behmard SABZIPOUR 

 
RÉSUMÉ 

 
La prévision du débit des cours d'eau est importante pour la gestion des ressources en eau dans 
des secteurs tels que l'agriculture, l'hydroélectricité, la gestion des sécheresses et la 
planification de la prévention des inondations urbaines. Notre étude examine les prévisions à 
court et à long terme afin de créer un cadre pour la prévision des débits qui peut bénéficier à la 
gestion des ressources en eau et aux secteurs connexes. 
 
Pour améliorer les prévisions de débit jusqu'à dix jours à l'avance, l'étude se concentre d'abord 
sur l'amélioration des conditions initiales en utilisant un filtre de Kalman d'ensemble comme 
méthode d'assimilation des données. L'objectif est de réguler les hyperparamètres du filtre de 
Kalman d'ensemble pour chaque saison afin de produire des prévisions plus précises. Une 
analyse de sensibilité est menée pour identifier les meilleurs ensembles d'hyperparamètres pour 
chaque saison, y compris l'incertitude de la température, des précipitations, du débit observé et 
du contenu en eau de trois variables d'état - zone vadose, zone saturée et manteau neigeux - 
provenant du modèle CEQUEAU. Les résultats indiquent que l'amélioration des conditions 
initiales avec le filtre de Kalman d'ensemble produit des prévisions plus habiles jusqu'à un 
délai de 6 jours. L'incertitude sur la température est particulièrement sensible et varie selon les 
saisons. La variable d'état de la zone vadose a été identifiée comme la variable d'état la plus 
importante et la plus sensible, et la mise à jour systématique de toutes les variables d'état n'est 
peut-être pas nécessaire pour améliorer les prévisions. 
 
Les récentes avancées en matière d'apprentissage automatique permettent d'améliorer les 
prévisions de débit à court terme. L'une de ces méthodes est le modèle LSTM (Long Short-
Term Memory). En général, les réseaux neuronaux apprennent par régression et des relations 
existent entre les entrées et les sorties. Cependant, les modèles LSTM ont une caractéristique 
appelée "porte d'oubli", qui leur permet non seulement d'apprendre la relation entre les entrées 
(par exemple, la température et les précipitations) et la sortie (le débit), mais aussi de saisir les 
dépendances temporelles dans les données. L'étude visait à comparer les performances du 
modèle LSTM (Long Short-Term Memory) avec celles des modèles hydrologiques basés sur 
l'assimilation de données et sur les processus dans la prévision à court terme du débit. Les trois 
modèles ont été testés en utilisant les mêmes prévisions météorologiques d'ensemble. Le 
modèle LSTM a démontré une bonne performance dans la prévision du débit, avec une 
efficacité de Kling-Gupta (KGE) supérieure à 0,88 pour 9 délais. Le modèle LSTM n'a pas 
incorporé d'assimilation de données, mais il a bénéficié du débit observé jusqu'au dernier jour 
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avant la prévision. Cela s'explique par le fait que le modèle LSTM a appris et intégré les 
connaissances des jours précédents tout en émettant des prévisions, de la même manière que 
l'assimilation de données met à jour les conditions initiales. Les résultats de l'étude ont 
également montré que le modèle LSTM avait de meilleures performances jusqu'au sixième 
jour de prévision par rapport aux modèles basés sur l'assimilation de données. Cependant, 
l'entraînement du modèle LSTM séparément pour chaque délai d'exécution est un processus 
long et constitue un inconvénient par rapport aux méthodes basées sur l'assimilation de 
données. Néanmoins, l'étude a démontré le potentiel des techniques d'apprentissage 
automatique pour améliorer les prévisions de débit. 
 
La prévision du débit pour de longs délais, comme un mois, implique généralement l'utilisation 
de données météorologiques historiques pour créer des scénarios futurs probables, car les 
prévisions météorologiques deviennent peu fiables au-delà de ce délai. Dans cette étude, nous 
avons proposé une nouvelle méthode de prévision du débit basée sur le filtrage des prévisions 
de débit d'ensemble (ESP), en utilisant un algorithme génétique (GA) pour filtrer les scénarios 
de prévision. Cette méthode quantifie le potentiel existant dans les données historiques pour 
chaque bassin. Ce potentiel pourrait être utilisé pour améliorer la précision des prévisions de 
débit. Nous avons trié les scénarios sélectionnés et non sélectionnés pour trouver les 
caractéristiques communes entre eux, mais les résultats n'ont pas permis de distinguer les deux 
groupes. Néanmoins, la méthode GA peut être utilisée comme référence pour de futures études 
visant à améliorer les prévisions de débit à long terme. Cette méthode peut également être 
utilisée pour comparer différentes méthodes de prévision en fonction du potentiel démontré 
par la méthode GA pour une taille spécifique de membres ESP. Par exemple, si une méthode 
utilise des signaux climatiques à grande échelle pour filtrer les membres de l'ESP, le résultat 
de la compétence de prévision pourrait être comparé au potentiel des données historiques pour 
cette taille particulière de membres de l'ESP. 
 
 
Mots-clés : prévision hydrologique ; prévision d'ensemble des débits ; LSTM ; assimilation de 

données ; incertitude et vérification des prévisions. 
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ABSTRACT 

 
Streamflow forecasting is important for managing water resources in sectors like agriculture, 
hydropower, drought management, and urban flood prevention planning. Our study examines 
short and long lead-times to create a framework for streamflow forecasting that can benefit 
water resource management and related sectors. 
 
To improve streamflow forecasts for up to ten days of lead-time, the study first focuses on 
improving initial conditions using an ensemble Kalman filter as a data assimilation method. 
The goal is to regulate the hyperparameters of the ensemble Kalman filter for each season to 
produce more accurate forecasts. A sensitivity analysis is conducted to identify the best 
hyperparameter sets for each season, including uncertainty in temperature, precipitation, 
observed streamflow, and the water content of three state variables - vadose zone, saturated 
zone, and snowpack - from the CEQUEAU model. Results indicate that improving initial 
conditions with the ensemble Kalman filter produces more skillful forecasts until a 6-day lead-
time. Temperature uncertainty is particularly sensitive and varies across seasons. The vadose 
zone state variable was identified as the most important and sensitive state variable, and 
updating all state variables systematically may not be necessary for improving forecast skill. 
 
Recent machine learning advances are improving short-term streamflow forecasting. One such 
method is the Long Short-Term Memory (LSTM) model. In general, neural networks learn 
from regression as relationships exist between input-output. However, LSTM models have a 
feature named ‘forget gate’, which enables them to learn the relationship between inputs (e.g., 
temperature and precipitation) and output (streamflow), and also to capture temporal 
dependencies in the data. The study aimed to compare the performance of the Long Short-
Term Memory (LSTM) model with data assimilation-based and process-based hydrological 
models in short-term streamflow forecasting. All three models were tested using the same 
ensemble weather forecasts. The LSTM model demonstrated good performance in forecasting 
streamflow, with a Kling-Gupta efficiency (KGE) greater than 0.88 for 9 lead-times. The 
LSTM model did not incorporate data assimilation, but it benefited from observed streamflow 
until the last day before the forecast. This is because the LSTM model learned and incorporated 
knowledge from the previous days while issuing forecasts, similar to how data assimilation 
updates initial conditions. The study results also showed that the LSTM model had better 
performance up to day 6 of lead-time compared to the data assimilation-based models. 
However, training the LSTM model separately for each lead-time is a time-consuming process 
and is a disadvantage compared to the data assimilation-based methods. Nonetheless, the study 
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demonstrated the potential of machine learning techniques in improving streamflow 
forecasting. 
The forecasting of streamflow for long lead-times such as a month usually involves the use of 
historical meteorological data to create probable future scenarios, as meteorological forecasts 
become unreliable beyond this lead-time. In this study, we proposed a novel method for 
streamflow forecasting based on ensemble streamflow forecasting (ESP) filtering, using a 
Genetic Algorithm (GA) to filter forecast scenarios. This method quantifies the potential of 
historical data for each basin. This potential could be utilized to enhance the accuracy of 
streamflow forecasts. We sorted the selected and unselected scenarios to find out the common 
features between them, but the results did not help distinguish between the two groups. 
Nonetheless, the GA method can be used as a benchmark for future studies to improve long-
term streamflow forecasting. This method can also be used to compare different forecast 
methods based on the potential shown by the GA method for a specific size of ESP members. 
For instance, if a method uses large-scale climate signals to filter ESP members, the forecast 
skill result could be compared with the potential of historical data for that particular size of 
ESP members. 
 
 
Keywords: hydrological forecasting; ensemble streamflow prediction; LSTM; data 
assimilation; forecast uncertainty and verification. 
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INTRODUCTION 

 

Human civilization first occurred along water courses and bodies, and as such, preserving and 

monitoring water resources have always been high priorities in our societies. Hydrology deals 

with water movement, from understanding the basic governing physical processes ranging 

from the very short to the very long terms. To do so, hydrologists have been using hydrological 

models (HM) to transform meteorological data into river flows. HMs mimic a watershed, 

considering its physical aspects such as soil moisture, vegetation cover, slope and other 

properties that affect the flow of water. HMs use meteorological inputs like precipitation and 

temperature to provide users (or stakeholders) the amount of runoff or streamflow at any 

desired point(s) in a watershed. However, modeling watershed hydrology is not only done 

using HMs. In recent years, data-driven (DD) methods have become a promising alternative. 

In contrast to HMs, which require many types of observational data and a good understanding 

of the fundamental hydrological processes, DD methods such as Artificial Neural Networks 

(ANNs) have demonstrated their ability to simulate streamflow without any a priori knowledge 

of physical processes (Damavandi et al., 2019), although having big data is a challenge. 

 

Accurately simulating the relationship between meteorological data and water movement 

makes it possible to forecast streamflows from weather forecasts. Reliable and accurate 

streamflow forecasts are crucial for water-dependent sectors like agriculture, hydropower 

generation, and flood management (Boucher et al., 2012; Anghileri et al., 2016; Cassagnole et 

al., 2021). Therefore, forecasting streamflows has been part of the hydrological sciences since 

the 1970s (Twedt et al., 1977; Day, 1985) and has been improving considerably ever since. 

Intrinsically, forecasting is an uncertain undertaking and as such, issuing probabilistic forecasts 

has been the norm for over fourty years to deal with this uncertainty (Krzysztofowicz, 2001).  

 

Furthermore, streamflow forecasting can be performed on multiple horizons (or lead-times), 

varying from short-term (a few hours) to long-term (a few months). Accordingly, forecasting 
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methods also vary to account for this variation in forecast lead-time, with specific methods 

tailored to each narrow lead-time window. This also means that improving the performance of 

hydrological forecasts will depend on the lead-time of interest. In the case of hydropower 

generation, multiple lead-times are of interest. First, short-term lead-times help optimize water 

resources allocation at the level of the turbines in the powerplant. Then, forecasts for up 2 

weeks are useful to allocate water between reservoirs and optimize total water allocation per 

generating station. Finally, longer-term forecasts can be useful to plan power production over 

longer periods to plan for maintenance, commit to sale-of-energy contracts and optimize long-

term reservoir levels (Cuo et al., 2011; Zhao et al., 2012; Monhart et al. 2019; Harrigan et al. 

2018). 

 

However, each of these scenarios produce streamflow forecasts that are imperfect in many 

ways. Hydrological models are simplistic simulators of the hydrological cycle, weather 

forecasts are highly uncertain, and some processes are simply absent from the modelling tools. 

(Zappa et al., 2010; Bourgin et al., 2014; Sun et al., 2018; Moradkhani and Sorooshian, 2009; 

Ajami et al., 2007; Li et al., 2009; Cloke and Pappenberger, 2009). This leads to forecasts that 

can be biased, unreliable and that do not represent the total uncertainty in an adequate manner. 

Therefore, there is a need to improve these hydrological forecasts such that water resources 

managers can make better informed decisions and optimize water usage over the multiple time 

horizons. 

 

The main objective of this thesis is to improve and further of our understanding of the 

limitations of both short-term (up to 10 days) and long-term (up to 6 months) hydrological 

forecasts for a hydropower system. To attain this main objective, the research project is divided 

into three main research areas: (1) improving long-term hydrological forecasts using 

hydrological models, (2) improving short-term hydrological model-based forecasts and (3) 

investigating the applicability of ANNs in short-term forecasting. The latter includes a specific 

type of ANN called Long Short-Term Memory (LSTM) models that can replace the structure 

of HMs without specifically being trained to do so. To address these three topics, a hydropower 
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system in Quebec, Canada, was used as the target watershed as it is owned and operated by the 

partner organization Rio Tinto for providing energy to their aluminium smelters in the 

Saguenay-Lac-St-Jean region. 

 

This thesis is divided into the six following chapters. The next chapter presents a literature 

review to contextualize efforts made by the community in this area of research as of yet. The 

development and implementation of the methods addressing each of the three secondary 

objectives are presented in Chapters 3, 4, and 5. respectively, following the thesis organization 

section in chapter 2. Finally, a general discussion is presented in chapter 6, followed by 

concluding remarks and recommendations. 

 

 





 

 

CHAPTER 1 
 
 

LITERATURE REVIEW 

 

1.1 Importance of hydrological forecast 

Hydrological forecasting is not only important for water resources management but also for 

human security. Agriculture, hydropower, urban planning, defeating natural crises like 

droughts and floods, are among the sectors that benefit and require hydrological forecasting 

for efficient operation (Clark & Hay, 2004; Gutiérrez & Dracup, 2001; Rodda, 2011). 

 

 Hydrological forecasting methods 

Hydrological forecasting comes in many different forms. The types and sources of input data 

(either historical or forecasted weather) as well as the accuracy and uncertainty are highly 

modulated by the type of forecasting system required and/or implemented. This section 

presents the multiple facets of hydrological forecasting, from the oldest (and simplest) methods 

to the state-of-the-art methods. 

 

1.1.1.1 Ensemble Streamflow Prediction 

Flood forecasting or in broader view streamflow prediction dates back to the late 1970s and 

early 1980s. Fears of floods and droughts were the incentives for issuing long-term streamflow 

forecasts in the United-States (https://hepex.inrae.fr/tracing-the-origins-of-esp/). The first 

acknowledged method that makes use of hydrological models for forecasting streamflow is the 

extended streamflow prediction (ESP) method later changed to Ensemble Streamflow 

Prediction (Day, 1985; Hirsch et al., 1977; Twedt et al., 1977). Forecasters, not privy to the 

future state of the atmosphere, would use historical weather observations as proxies to actual 
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possible future weather scenarios (Harrigan et al., 2018). This weather could then be fed to a 

hydrological model and converted to possible streamflows. The advantage of this method is 

that a hydrological model would at least have a sensible idea of the current state of the 

watershed, such that the future weather would have an impact on future streamflows, but this 

would be conditional on the actual state of the watershed. This was a breakthrough compared 

to previous methods that simply used historical observations of streamflows as possible future 

realizations, where the initial state of the watershed could be completely different than the 

current conditions. Using historical weather, however, does cause problems due to the fact that 

the current state of the atmosphere is neglected. This means that ESPs could consider a stormy, 

rainy day as a plausible forecast for the coming days whereas the actual atmospheric conditions 

could be warm and dry. Therefore, to get the best chance of covering possible outcomes, 

weather from multiple (ideally many) previous years are used and combined to create an 

ensemble of possible future streamflows, with each member of the ensemble streamflow 

forecasts being associated to a single weather forecast (i.e., one historical realization of past 

weather). 

 

At first, ESP was used for short lead-times for flood forecasting and other important water-

related issues. However, with time, it has been slowly replaced by more advanced Numerical 

Weather Prediction (NWP) systems as discussed in more details in section 1.1.1.2. Since the 

advent of NWPs meant that the atmosphere could be modeled and provide more precise 

forecasts than ESPs on shorter lead-times, the latter became obsolete, yet remained useful for 

longer lead-times only, where the former remain unskillful (Demargne et al., 2009). In essence, 

ESP is a forecasting method that can provide information on possible future streamflows but 

is limited in the prediction accuracy due to a lack of sufficient information on the state of the 

atmosphere at longer lead-times. It is still highly useful today to provide long-term 

probabilities of streamflow for cases such as hydropower reservoir management, water 

availability, flood risk and mitigation and other cases where forecasting far in advance could 

be of use (Alfieri et al., 2014; Monhart et al., 2019; Zhang et al., 2020) 
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An important factor in ESPs is the reliability and likelihood of historical events being 

representative of future events. Climate change, changes in the atmospheric patterns at various 

time scales, teleconnections and natural variability could all be predictors of the future state of 

the atmosphere and could thus provide more information on how to select the most likely 

scenarios from the past such that they represent the future weather as best as possible. For 

example, perhaps some atmospheric conditions existing today could help predict that the 

following months will be rainier than on average. This might in turn be used to select more 

rainy members from the historical dataset to condition it to expected future conditions. Thus, 

issuing forecasts with pre-processing of the ensemble members in advance could improve 

forecasting skill (Ehsan et al., 2021; Li et al., 2017; Yuan et al., 2015). Improving long-term 

forecast skill could be attainable by conditioning the selection of ensemble data using climate 

indices (Najafi et al., 2012), given similarity between climate signals in the period before the 

forecast with climate signals in the same historical period.  

 

Stastical methods to process streamflow data in such a manner are common in using 

streamflow ensembles. Conditioning on climate signals (Beckers et al., 2016; Donegan et al., 

2021), using the Euclidean distance between ensemble members’ streamflow and streamflow 

of the period before the forecast (Koutsoyiannis et al., 2008; Yao & Georgakakos, 2001), 

associating weights to ensemble members considering large-scale climate indices (Grantz et 

al., 2005; Hamlet & Lettenmaier, 1999) and utilizing hydrological persistence as an indicator 

(Svensson, 2016) are all methods that were reported in the literature to improve the quality of 

ESP. Furthermore, ESP is not limited to any temporal scale, such that forecasts can be 

performed on daily (Harrigan et al., 2018; Pagano et al., 2010), weekly (Hapuarachchi et al., 

2022), monthly (Fundel et al., 2013), seasonal (Baker et al., 2021) and even inter-annual 

(Anghileri et al., 2016) time scales.  
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1.1.1.2 NWP in streamflow forecasting 

With the development of weather forecasting models in the past decades, hydrologists gained 

a new tool to help predict streamflow. NWP systems allow modelling the current state of the 

atmosphere, and with equations of energy, mass, and momentum conservation, can predict 

changes in weather across the globe for the near future. These weather forecasts can then be 

used in hydrological models to predict streamflows. This has the advantage, compared to ESPs, 

of including the state of the atmosphere in the weather forecasts, improving their accuracy 

significantly (Cloke & Pappenberger, 2009; Schaake et al., 2006). One important study (Cloke 

& Pappenberger, 2009) discussed streamflow forecasting using NWP data for flood forecasting 

in Europe and showed that the NWP-based approach had considerable skill in predicting flood 

events. NWPs predict weather using a variety of methods, but the two most important for 

hydrological forecasting are the deterministic (single member) and probabilistic (ensemble) 

forecasts. NWP forecasts require a lot of computing power and as such, weather forecasting 

centers will typically provide one “most precise” possible forecast, using high-resolution 

models and the best possible estimates of the atmospheric variables at the time of forecast. This 

is the deterministic weather forecast and is typically the most accurate forecast for the 

operational forecasting model. However, the deterministic forecast lacks a crucial component: 

it is unable to estimate the uncertainty of the forecast since it is a single value forecast for each 

lead-time and each location on the forecasting model grid. Therefore, weather forecasting 

centers also typically issue a probabilistic forecast using a less-refined version of the 

forecasting model that is much faster to run. This probabilistic forecast can contain a variable 

number of members, typically between 10 and 50 members each, where each member is 

generated using different initial conditions of the atmosphere according to the uncertainty of 

the atmospheric state. Therefore, users can either obtain the most accurate deterministic 

forecast (but with no uncertainty assessment) and/or the less accurate probabilistic forecast 

(but allowing for uncertainty to be evaluated and considered). However, in both cases, since 

NWP models simulate the atmosphere and because the atmosphere is highly chaotic, NWPs 

are typically only skillful in the 7-to-10-day lead-time range (Stern & Davidson, 2015). After 
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this period, their forecasts are typically not better than that of the ESP forecasts. Therefore, for 

short lead-time forecasts such as those used in quick-response flood prediction, using NWP is 

dominant. 

 

The literature is rife with studies using, evaluating and improving NWP-based hydrological 

forecasts. Jasper et al. (2002) used a framework based on coupling hydrological models with 

atmospheric weather forecasts. They utilized observational data from surface monitoring 

stations and radars, for calibrating and spinning-up their hydrological model, then used NWP 

predictions to issue forecasts for several extreme flood events. Yucel et al. (2015) used NWP 

data as inputs of hydrological model to evaluate forecasting skill for flood events as well. The 

forecast was based on precipitations from the Weather Research and Forecasting (WRF) model 

and the EUMETSAT Multi-sensor Precipitation Estimates (MPEs), to force a semi-distributed 

hydraulic-hydrological model, WRF-hydro. They calibrated their model on some of the basins 

and tested it on other independent basins. Results showed the model was able to predict 

reasonably well the events regarding the volume of runoff and the behaviour of hydrographs. 

Shi et al. (2015) produced a webservice to issue flood forecasting on mountain area using NWP 

inputs. Also, there are plenty of studies which include a two-component framework, including 

numerical weather forecasts as forcing, and a hydrological model as the translator of forcings 

to produce corresponding streamflow forecasts. For example, Shi et al. (2015), Collischonn et 

al. (2005), Ming et al. (2020), Şensoy and Uysal (2012), Smiatek et al. (2012), Zhao et al. 

(2009) all implemented such methods. There is therefore a solid body of literature supporting 

this type of forecasting method and it is currently the operational standard for hydrological 

forecasting on shorter lead-times. 

 

1.1.1.3 Deterministic hydrological forecasting 

Deterministic hydrological forecasting refers to any approach that leads to the simulation of a 

single possible future realization of streamflows. If more than one realization is performed, the 

forecast will be probabilistic in nature. Deterministic forecasts are thus typically generated 
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using a single (usually the deterministic forecast but could also be a single member of a 

probabilistic weather forecast) member of a weather forecast and fed into a hydrological model 

or other type of rainfall-runoff model. These forecasts, as is the case for the deterministic 

weather forecasts, are assumed to be the most accurate that the model can produce given the 

model structure and quality of input data since they are driven by the deterministic weather 

forecasts. However, they also do not convey any information regarding the uncertainty of the 

forecast.  

 

The skill of the deterministic hydrological forecast depends on a multitude of factors, including 

the spatial resolution and scale of the watershed of interest, as well as the lead-time of the 

desired forecast. For instance, a forecast over the next 24 hours is probably going to be of 

higher accuracy than another aimed at the 10-day lead-time. This is simply due to the fact that 

hydrological model errors will compound with time, along with the fact that the input data (the 

weather forecast) will also diminish in skill at longer lead-times. This is expected; however, it 

might also provide a false sense of confidence given that there is no uncertainty associated 

with the deterministic hydrological forecast. The same reasoning can be made for watersheds 

of different sizes. Indeed, a strong rainfall event might be forecasted to pass beside a small 

catchment whereas the rainfall actually did land on the catchment. This would lead to a large 

error caused by the forecast being wrong with respect to the exact location of the event but not 

its magnitude. Conversely, for a larger basin, the spatial errors average out more evenly and 

thus lead to more stable forecasting performance (Schaake et al., 2007). 

 

However, as stated, deterministic hydrological forecasts do not provide any uncertainty 

assessment and must therefore be used with caution (Demargne et al., 2009). They will 

typically be used for shorter periods (up to a few days) since the uncertainty on very short 

periods usually remains small and the deterministic forecasts remain of high accuracy. 

However, as lead-times increase, more and more errors compound leading to the necessity of 

employing uncertainty assessment measures such as probabilistic forecasts (Fan et al., 2016) 

(see section 1.1.1.4). This is a major point of interest for applications with desired lead-times 
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of more than just a few days, such as in hydropower reservoir management. Indeed, uncertainty 

plays an important role since the decision to turbine more water, or spill excess water, and to 

generally optimize the process relies heavily on the management of risk, and thus requires a 

good estimation of uncertainty to quantify this risk efficiently and adequately (Arsenault & 

Côté, 2019; Ficchì et al., 2016). Schwanenberg et al. (2015) compared three hydrological 

forecasting methods, including single-member perfect forcasts (observed streamflow), 

deterministic and probabilistic forecasts as inputs to the stochastic optimization of a 

hydropower reservoir’s operation during flood events. They found that probabilistic forecasts 

were as skillful as perfect (observation-based) forecasts, both beating the deterministic 

forecast, showing the importance of uncertainty assessment in hydrological forecasting for 

specific applications. Boucher et al. (2011) found that probabilistic forecasts were superior to 

deterministic ones over 4-to-6-day lead-times, even if the probabilistic forecasts were 

generated using a rougher spatial resolution than the deterministic forecast. They post-

processed ensembles with a bias-corection method which was used to increase the spread and 

improve the uncertainty representation, a technique detailed in section 1.1.1.6. 

 

1.1.1.4 Probabilistic hydrological forecasts 

Probabilisitic hydrological forecasting aims to solve the problem of uncertainty assessment 

plagueing deterministic forecasts. Every element in the hydrological forecasting chain contains 

uncertainty in various forms, and these must be represented as best as possible to gain insights 

on the actual uncertainty of future hydrological forecasts. For example, NWPs are simplified 

models of the atmosphere, and thus they cannot be expected to reflect physics perfectly, leading 

to structural uncertainty. The NWP model also assimilates observations from satellites, 

gauging stations, buoys, and other probes, each containing their own measurement 

uncertainties along with the uncertainty of estimating those values at locations where gauging 

density is low. Moreover, hydrologic models contain different sources of error and uncertainty 

since they fail to capture all existing physical processes in a basin, such as soil moisture and 

channel routing. It is thus essential to make decisions while considering uncertainty and basing 
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this process on probabilistic principles. It is thus clear that every step in the forecasting chain 

contributes some level of uncertainty that should ideally be quantified to enable risk-based 

assessment and rational decision-making (Krzysztofowicz, 1999, 2001). 

 

Probabilistic hydrological forecasting provides a method to assess at least parts of the 

uncertainty chain. For example, when using a probabilistic weather forecast as input to the 

hydrological model, the resulting forecast members represent the uncertainty associated to the 

atmospheric state. Forecasters have also used hydrological multimodel forecasts, where a suite 

of hydrological models provide independent probabilistic hydrological forecasts and are 

combined into larger ensembles that also include the hydrological model structural uncertainty 

(Ajami et al., 2007; Arsenault & Brissette, 2016; Brochero et al., 2011; Devineni et al., 2008; 

Duan et al., 2007). Others include multi-NWP forecasts, where a hydrological model is fed 

with probabilistic forecasts from multiple NWP models, resulting in an ensemble forecast that 

also includes an uncertainty assessment of the weather model structure (Bao et al., 2011; 

Bogner et al., 2012; Kim et al., 2017; Troin et al., 2021).  

 

Using probabilisitic hydrological forecasts has thus been the method of choice for decision 

making in the face of uncertain hydrological forecasts (Boucher et al., 2011; Cloke & 

Pappenberger, 2009; Ramos et al., 2013; Seo et al., 2006). Komma et al. (2007) showed that 

ensemble forecasts show behaviours similar to those of deterministic forecast error, for 

example, both have a larger error with increasing lead-time. Therefore, ensemble of forecasts 

could be used as indicators of potential and/or expected deterministic forecast errors. The hit 

rate of probabilistic forecasts is also better than deterministic forecasts in issung alarms for 

flood events (Pappenberger et al., 2005). 

 

Streamflow forecasting is always done in the context of uncertainty. Nester et al. (2012) 

showed errors related to meteorological forecasts and streamflow simulations. They quantified 

these errors in various spatio-temporal scales, i.e., for different lead-times and different sizes 

of catchments. Probabilistic forecasting is not only a way to communicate, but also a way to 
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address uncertatinties associated to hydrological models and initial conditions (Dion et al., 

2021), possibly proposing a choice of hydrological models regarding more skilful forecasts 

(Devineni et al., 2008). Roy et al. (2017) presented a platform to monitor and forecast 

streamflow in saparsely-gauged catchments in the context of probabilistic forecasting using 

multimodel and multi-input methods. They used precipitation from satellite data from multiple 

sources to force a suite of hydrological models. Dion et al. (2021) utilized several hydrological 

models in a streamflow forecasting chain to address biased, under-dispersed ensemble 

forecasts. Devineni et al. (2008).considered two criteria (similarity of past and current preditor 

state regarding climate variability, besides the performance of streamflow forecasts of each 

hydrological model) to weighted models in a multimodel setting. They found the multimodel 

approach was better than the individual model in having fewer false alarms and more reliable 

forecasts. Li and Sankarasubramanian (2012) made a point about the benefits of using 

multimodel approaches on monthly streamflow forecasts. They highlighted the effect of 

multimodel approaches on addressing uncertainty due to measurement errors and structural 

deficiencies of hydrological models. Verification metrics used to evaluate forecasts affect 

decision making, and the relative performance of different multimodel structures with varying 

numbers of models, and different combination strategies (Mendoza et al., 2014). Longer 

timeseries help to better calibrate multimodel ensembles, especially when models are data-

driven (Mendoza et al., 2014).  

 

1.1.1.5 Recent innovations in hydrological forecasting 

Hydrological forecasting is a deeply integrated process using a multitude of subprocesses from 

weather forecasting to streamflow postprocessing. This section presents methods that cannot 

be cleanly categorized in the abovementionned sections.  

 

Araghinejad et al. (2006) constructed a probabilistic framework with a geostatistical approach 

to figure out the nonlinearity between streamflow or rainfall variation with large-scale climate 

indices. It included local regression method using ocean-atmospheric signal and hydrological 
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condition of the catchment to predict seasonal streamflow. Zhao et al. (2011) compared three 

types of streamflow forecasting methods (deterministic forecast, deterministic-base 

probabilistic forecast, and probabilistic forecast) for real-time hydropower reservoir 

operations. They found that using probabilistic forecasts brought more efficiency for reservoir 

operations; however, the size of the reservoir storage and the streamflow variability affected 

the skill of these forecasts.  

 

Madadgar and Moradkhani (2013) compared a Bayesian framework with ESP and found more 

reliable results using the Bayesian framework. Their framework included copula functions to 

estimate hydrological drought, i.e., defining correlations between spring runoff and either 

previous winter runoff, or previous fall runoff. 

 

Finally, Prudhomme et al. (2017) presented an operational setting for streamflow forecasting 

in multi-temporal scales. They combined three methods, including two basin-scale methods 

(ensemble streamflow forecasting using historical meteorological data; extracting important, 

frequent hydrological event on basin-scale) and one regional-scale method (modelling 

streamflow and groundwater level) to assimilate hydrological conditions and maintain a 

constant skill. They used different sources of data, including daily rainfall and 

evapotranspiration observations, daily streamflow, groundwater level observation data from 

all over the region and ensemble rainfall forecasts. 

 

1.1.1.6 Statistical pre-/post-processing in hydrological forecasting 

Using pre- and post-processing methods are essential for addressing errors in model structure 

and the hydrological model’s initial states. Typically pre-processing refers to the act of 

correcting the characteristics of weather forecasts prior to hydrological forecasting, whereas 

post-processing refers to the the application of algorithms to correct the statistics of the 

hydrological forecasts themselves (Lucatero et al., 2018; Troin et al., 2021; Wu et al., 2009). 

Pre- and post-processing improves forecasts by comparing past forecasts (also known as 
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hindcasts) to the observations in the past and evaluating the forecast error. This error can be 

used to condition the operational forecast and improve (i.e., reduce) systematic and conditional 

biases. It is typically recommended to process the raw forecast data (metorological and 

streamflow data) (Li et al., 2017) as this can help improve forecast skill. Post-processing 

methods also were used to choose models in a multimodel setting and constructing ensembles 

of forecasts while respecting spatio-temporal structures and inter-variable dependencies (Li et 

al., 2017). Non-stationarity of data could also be addressed using post-processing methods 

(Ceola et al., 2014). Statistical post-processing faces difficulty while dealing with forecasting 

extremes; it is a broad issue that needs more investigations (Friederichs & Hense, 2007). 

(Bellier et al., 2017) also showed that it is possible to implement pre- and post-processing 

simultaneously, correcting biases in the weather forecasts and resulting hydrological forecasts. 

Crochemore et al. (2017) bias-corrected precipitation forecasts used for issuing ensemble 

streamflow forecasts, in order to achieve higher forecasting skill, and Hashino et al. (2007) 

used a bias-correction method as post-processing for streamflow volume forecasting in 

monthly and seasonal scales. The scientific literature is rife with examples of pre-processing 

of inputs used to force hydrological models (Kang et al., 2010) and post-processing of 

streamflow forecast ensembles (Bellier et al., 2017; Bellier et al., 2018; Verkade et al., 2013; 

Zalachori et al., 2012).  

 

However, forecast pre- and post-processing requires having access to a large historical 

database to train the bias-correction algorithms, and can provide forecasts that are not 

physically possible in some cases (Hamill, 2018; Vannitsem et al., 2020). Furthermore, the 

application of processing methods can improve forecasts for the wrong reasons, in that the 

physical forecasting process is not improved and can generate poor results that are masked by 

the processing step. Therefore, there is also a case to be made in which processing schemes 

should not be implemented when attempting to improve the core of streamflow forecasting 

systems as to not mask any deficiencies (Arsenault & Côté, 2019; Troin et al., 2021).  
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1.1.1.7 Sub-Seasonal to Seasonal (S2S) forecasting 

As mentioned previously, different forecast lead-times rely on different sources of inputs (i.e., 

NWPs for short term forecasts and ESP for long-term forecasts). However, the definition of 

short, medium and long-term forecasts is blurry and depends on the user and application. Short-

term can be seen as below 2 weeks and long-term as above one or two months (Harrigan et al., 

2018). Due to the disappearance of the persistence of initial conditions in the atmosphere, there 

are serious doubts about the possibility of NWP’s skill improvement in lead-times beyond two-

weeks, even when considering advancement in computing power that led to an enhancement 

of model prediction skill up to these time frames (Shrestha et al., 2013). This leaves a gap 

between the short and long-term forecasts that are both too far in the future for the NWPs to 

have any significant skill, and too close to the present for the initial conditions not to have any 

impacts such as for ESPs (McInerney et al., 2022). This is known as the weather-climate gap 

(Bennett et al., 2014; Doblas‐Reyes et al., 2013; Mariotti et al., 2019; Vitart & Robertson, 

2018). There are studies about improving the quality of streamflow forecasts at these durations, 

but this necessitates more complicated steps to generate seamless streamflow forecasts (i.e., 

from short to medium to long-term forecasts) (Hudson et al., 2017; (Hudson et al., 2017; 

Woldemeskel et al., 2018). A forecasting method designed specifically for these timelines has 

recently emerged. This approach uses coupled atmosphere-ocean-land general circulation 

models (CGCMs), and in some cases weather forecasting models, to generate called 

‘subseasonal-to-seasonal’ (S2S) weather forecasts (Yuan et al., 2015) which can be fed to 

hydrological models to generate S2S streamflow forecasts (Arnal et al., 2018). The primary 

goal of S2S was to improve the forecast skill in terms of a couple of weeks to better deal with 

upcoming extremes. This can be done by running a NWP for a longer time period than usual 

(e.g., multiple weeks) and then driving hydrological models with those, and then exploring the 

statistics of the hydrological forecasts. It is expected that these methods might provide 

information on upcoming weather patterns and systems but that the timing of events could be 

off up to a couple of days for long lead-times. S2S is thus a specific forecasting technique that 

aims to improve upon ESP for medium-range forecasts. In addition, recent studies point out 
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incorporating climate information and improvements in the estimation of initial hydrologic 

conditions as the two main paths to improve seasonal predictability (Mendoza et al., 2017), for 

which the S2S project can help achieve. For more detail on the S2S project, readers are referred 

to Vitart and Robertson (2018) and Quedi and Fan (2020).  
 
1.1.1.8 Teleconnections and relations between climate indices and streamflow regime 

Climate indices are calculated values used to describe the state of the climate and changes in 

climate systems. Calculating climate indices requires long-term data time series data, which 

can come from various sources such as sea surface temperature, precipitation, air pressure, and 

air temperature. Each climate index corresponds to specific data, region, and period of time, 

and there are many well-defined climate indices in the literature. Because climate changes 

much more slowly than weather, tracking climate indices can provide useful information about 

the state of a region's climate, including trends and potential changes in temperature and/or 

rainfall (Hurrell et al., 2008; Pappenberger et al., 2015; Wang et al., 2013; Zhang et al., 1997). 

 

Climate indices showed good performance on predictibility of seasonal streamflow forecasts 

in certain regions which have dominant climate mode(s) and strong teleconnections (Mendoza 

et al., 2017; Najafi et al., 2012). For example, MacLachlan et al. (2015) reported improvements 

of seasonal forecast system over the Tropics and West Pacific because of the El Nino–Southern 

Oscillation (ENSO), and extratropics because of the Arctic Oscillation (AO) and North 

Atlantic Oscillation (NAO). 

 

Hudson et al. (2017) compared the operational meteorological forecasting system of Australia 

(POAMA) with a model called ACCESS-S1 (the Australian Community Climate and Earth-

System Simulator-Seasonal prediction system version 1). ACCESS-S1 was based on the UK 

office Glo-Sea5-GC2 (Global Seasonal forecast system version 5 using the Global Coupled 

model configuration 2; MacLachlan et al. (2015)). ACCESS-S1 had higher resolution and a 

more recent physics parameterization. They compared both on multi-week to seasonal time 
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scales, using 23 years of hindcast datasets. ACCESS-S1 reduced spatial biases of the average 

state of the climate, both globally and regionally. It was capable of capturing important large-

scale climate indices over Autralia better than POAMA. It was better in forecasting 

precipitation, maximum and minimum temperatures on multi-week time scales, though in the 

seasonal scale results were not very different. 

 

In other words, new methods for improving meteorological forecasts showed improvements 

on seasonal time scales, but the effectiveness of these methods depends on the variable of 

interest and the spatio-temporal features (such as the location of the basin and the lead-time). 

Sohrabi et al. (2021) provided insights for enhancing long-term spring flood forecasting, 

specifically by examining volumetric bias and peak flows. They utilized a conditioned weather 

generator based on large-scale climate indices and constructed a linear model to characterize 

temperature and precipitation anomalies in order to perturb the weather generator at the 

watershed scale. The study found a strong correlation between large climate indices and 

temperatures, but a weaker correlation for precipitation. Zhao and Brissette (2022) investigated 

the effects of three important large-scale climate indices - ENSO, Atlantic Multi-decadal 

Oscillation (AMO), and the Pacific Decadal Oscillation (PDO) - on temperature and 

precipitation over North America. They showed the importance of understanding internal 

climate variability in understanding internal hydroclimatic variability and used the output of 

the Canadian Earth System Model large ensemble (CanESM2-LE) to do so. They found that 

ENSO is linked to annual precipitation and AMO is linked to temperature, both over most of 

North America. PDO showed fewer impacts on both variables. 

 

1.1.1.9 Transitions between short-term and long-term hydrological forecasts  

An issue arising when combining both short-term and long-term forecasts is that of the 

transition. Indeed, an ESP forecast will provide data for every time step between the forecast 

issue date and the end of the forecast period. If a user also wants to improve the initial portion 

of the forecast (e.g., the first few days), then a method must be devised to “overwrite” the first 
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days with those of the NWP. However, mismatches between both products can arise due to 

different numbers of members and because of differing objectives. For example, short-term 

forecasts need the timing of impactful events to be correct, whereas for longer lead-times the 

probabilities of occurrence of events might be the important objective. Combining these multi-

timestep according to their objectives requires processing to generate useful forecasts.  

 

Some methods have been devised to provide seamless forecasts over all time steps while 

incorporating data from all sources. McInerney et al. (2022) proposed a post-processing 

method to have seamless daily streamflow forecasts without losing performance until the 

monthly scale. They compared their post-processing method with a non-seamless monthly one. 

The new post-processing method formulated a residual error model on the daily scale while 

the old one did it on a monthly scale. Results were comparable, and the new method provided 

similar forecasts but that were sharper and more reliable than the older one. Therefore, they 

believed using a method which gives seamless daily streamflow forecast is better than a non-

seamless one. McInerney et al. (2020) proposed a multi temporal hydrological residual error 

(MuTHRE) to improve streamflow forecasts and provide seamless forecasts. They considered 

three types of errors, seasonality, dynamic biases (to consider the fact that hydrological models 

are not able to capture changes in hydrological process over very long periods like interannual 

climate variability), and non-Gaussian. Considering these three errors resulted in 

improvements in forecasts in three temporal scales, i.e., daily (due to non-Gaussian), monthly 

(due to seasonality), and yearly (due to dynamic biases). Monhart et al. (2019) improved 

subseasonal (up-to one month) streamflow forecasts using a mix of NWP and ESP. Arnal et 

al. (2018) compared two seasonal forecast methods on lead-times longer than one month. They 

forced hydrological model once with histolrical meteorological observations, and once with 

the European flood awareness system seasonal streamflow forecasts. Results were comparable, 

and none of the proposed methods was objectively better than the other one.  

 

Given the above approaches to tackle seamless forecasting, this research project focuses on 

probabilistic forecasts to explain and convey uncertainties and uses both NWP weather 
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predictions for short-term forecasts and ESP for long-term forecasts. These forecasting 

approaches can be used in either of the forecasting frameworks to transform weather forecasts 

into streamflow forecasts presented in the next section. 

 

1.2 Streamflow forecasting methods 

Streamflow forecasts requires transforming weather forecasts into streamflow forecasts by 

simulating the impacts of the weather on the watershed of interest considering the hydrologic 

cycle and the hydrologic state of the watershed. This section presents two families of methods 

used to perform this process: hydrological models and artificial neural networks (ANNs). 

 

 Streamflow forecasting using hydrological models 

The most common way of performing hydrological forecasting is using a hydrological model. 

To do so, the hydrological forecaster runs an already calibrated hydrological model over a 

period of time preceding the forecast issue date, using observed meteorological data as inputs 

to the model. This allows warming up the model to a hydrological state that is representative 

of the actual watershed conditions. This aims to provide a solid foundation for the forecast, 

ensuring that the forecast is not biased due to an incorrect representation of the watershed state, 

including soil moisture, snowpack water equivalent and groundwater saturation depth (Kim et 

al., 2018; Mai et al., 2020). The model is then fed the weather forecast data (from an NWP or 

from ESPs) one at a time from the same initial conditions such that the only variation between 

the ensemble hydrological forecast members stems from differences in the weather forecast 

members. The resulting hydrological forecast can then be used to assess probabilities of 

attaining a certain streamflow threshold, or to estimate the likelihood of a drought over the 

course of the forecast period. Forecast skill can be evaluated either in an operational context 

(with initial state errors that are more representative of actual forecasting conditions, or using 

pseudo-observations as observed streamflows, which are generated using simulated 

streamflow instead of using observed streamflow (Harrigan et al., 2018). This forecasting 
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method removes the need for data assimilation (DA) since the model states are always exactly 

aligned with the pseudo-observed (i.e., simulated) streamflow. Alternatively, performing 

operational forecasting using real observed streamflow as the target provides more realism and 

is more in-line with actual forecasting conditions, at the expense of a more complex error 

structure since many uncertainty sources combine to alter the forecast performance. Thus, the 

streamflow forecaster needs to deal with uncertainty originating from initial states to minimize 

errors when forecasting in an operational context (Sun et al., 2018), as seen in section 1.2.1.1.  

 

The hydrological model-based forecasting approach is the most commonly used one due to the 

fact that hydrological models are typically easy to understand and represent the physics (or at 

least attempt to represent the processes in a simplified manner) such that the model responds 

to various weather inputs during the forecasting process. Hydrological models range in 

complexity from very simple lumped and conceptual models that provide an estimate of 

streamflow at the outlet only using simple conceptual process representation (Anctil et al., 

2003), to complex physically-based and distributed models that attempt to reproduce the entire 

hydrological cycle as accurately as possible (Chen et al., 2016). In all cases, hydrological 

models are imperfect representations of the watershed and of the hydrologic cycle, meaning 

that they also provide a fair amount of uncertainty and error in the process. Therefore, a 

hydrological model that is used to perform forecasting might still deviate from the observed 

streamflow at the time of forecast, even following a spin-up period, which would lead to 

erroneous and biased forecasts due to the errors in the initial conditions. This drawback from 

hydrological models can be improved to a certain extent using methods to correct the initial 

states. These methods are known as data assimilation (DA) methods and are presented in the 

following section. 

 

1.2.1.1 Data assimilation 

DA aims to find the best possible initial state of the hydrological model (e.g., snowpack water 

equivalent, soil saturation, groundwater levels, etc.) such that the hydrological model 
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represents the watershed’s hydrological conditions as accurately as possible (Wood et al., 

2016). This is done by comparing the simulations from the hydrological model as well as the 

observed streamflows, and, while also considering their respective uncertainty bounds, 

modifying the model states such that they reduce the error between the modelled and observed 

flows. This is an important step especially for short-term forecasting because errors in initial 

conditions strongly affect short-term forecast skill. As an example, we can imagine a scenario 

where the observed streamflow for a given day is 100 m3/s, whereas the model simulates (i.e., 

expects) 50 m3/s. Forecasts would therefore be performed with a hydrological model that is 

underestimating the amount of water in the watershed from the start, leading to streamflow 

forecasts that are too dry compared to what could reasonably be expected. DA aims to reduce 

this error and provide the most realistic hydrological states. It can also be a method to assess 

the uncertainty related to the initial states as most DA methods are probabilistic in nature and 

provide a distribution of likely initial states that can be used in a probabilistic forecasting 

framework (Abbaszadeh et al., 2018; DeChant & Moradkhani, 2014; Liu et al., 2012). This in 

turn leads to more accurate as well as more reliable forecasts. DA updates the initial states 

sequentially using streamflow observations as targets and progressively bringing the model 

states closer and closer to the optimal values at each time step. DA methods range from simple 

to advanced methods (Liu et al., 2012; Troin et al., 2021), which will be highlighted in more 

details in this section due to the importance it plays in this research.  

 

DA methods are categorized as simple to complex according to their approach towards the 

filtering problem. The filtering problem includes the state space mapping problem, in which a 

forecaster tries to decrease errors between the model’s image of the hydrological system and 

the observed image of said system. Errors between the model and observations are caused by 

input data errors, model structural error and observation error of streamflows. This filtering 

problem was alleviated by different DA methods (Liu et al., 2012; Madsen, 2003; Sun et al., 

2016; Troin et al., 2021). The Kalman Filter is among the most widley used and robust methods 

(Madsen, 2003; Sun et al., 2016; Troin et al., 2021). The Kalman Filter has been the basis of 

multiple derivative methods such as the Extended Kalman Filter (EKF; Muluye (2011)), the 
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Ensemble Kalman Filter (EnKF; Rakovec et al. (2012)), and the Recrusive Ensemble Kalman 

Filter (REnKF; McMillan et al. (2013)). In Kalman Filter approaches, probabilities of possible 

states are updated at each time step based on the prior knowledge of the hydrologic state (from 

the hydrological model) and the measurement (from the hydrometric station). This has the 

advantage of being robust to outliers and sporadic errors in the measurements or simulations 

as the next time steps will automatically reconverge to the observations after a certain period. 

This is a strength for operational settings as well as for research applications where initial states 

must be generated for long periods of time in a historical time series.  

 

Another DA method that is gaining in popularity is the Particle Filter (PF), which is based on 

the weighting of “particles” that represent hydrological model states (Weerts & El Serafy, 

2006). Each particle thus represents a set of states that perfectly describes the state of the 

hydrological model. By evaluating the streamflow simulated by each of these “particles”, a 

weight can be given as a function of the error between the observation and the modelled 

stremflow. Then, particles that are more accurate (i.e., display less error compared to the 

observation) are weighted more heavily than those that provide poorer simulation accuracy. 

The worst particles are discarded, and new particles are inserted according to the weighted 

distribution of the “good particles”. These states are then updated by running the hydrological 

model for another time step using each of these particles as a starting point. The process is then 

repeated for this time step. The idea is that in time, the better particles will filter to the top and 

be heavily weighted and represent the initial states distribution very well, while the poorer 

states are systematically removed and replaced with better ones, leading to a high-quality 

distribution of initial states. However, this also comes at the cost of robustness. Indeed, particle 

divergence may happen in some cases where the particles are all of poor quality and cannot be 

replaced by good quality particles. The opposite situation is also likely to occur in longer 

simulations, where the entire distribution collapses into a single point, where all particles are 

identical, leading to numerical instability and the failure of the method to proceed. 
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Kalman Filter methods have typically been used more than PF as they are more robust and 

tend to provide excellent results (Mazzoleni et al., 2018). In addition, EnKF have the ability to 

treat uncertainties explicitly because of their ensemble nature which considers equal weighting 

for each member (Abaza et al., 2017; Khaki et al., 2017; Moradkhani et al., 2018; Thiboult et 

al., 2016). Thus, the EnKF is widley used as the DA method for probabilistic hydrological 

forecasting (Samuel et al., 2019).  

 

Despite the popularity of EnKF methods, they are not strightforward to implement. Some of 

the challenges hydrologists face include: (1) error determination (Sun et al., 2016), (2) joint 

state and parameter estimation (Hendricks Franssen & Kinzelbach, 2008; Moradkhani et al., 

2005), (3) timing errors (Clark et al., 2008), (4) multi-observational and (5) large-scale 

applications (Sun et al., 2016; Troin et al., 2021). Calculating hyper-parameters of the EnKF 

method and selecting which of the hydrological model’s internal states to update are other 

challenges that must be resolved (Moradkhani et al., 2005), because it has been shown that 

letting the EnKF update all model states at all times is a suboptimal approach (Thiboult & 

Anctil, 2015). Furthermore, the selection of hyperparameters affects the accuracy and 

reliability of streamflow forecasts (Bergeron et al., 2021). There is evidence in the literature 

that EnKF-based DA method is more effective for shorter lead-times (Reichle, 2008; Thiboult 

et al., 2020; Vergara et al., 2014) since it can update state variables to improve initial 

conditions, but this can come at the expense of the mass balance of water in the model, leading 

to poorer long-term forecasts in the process (e.g., removing water from the soil layers for short-

term improvements but then underestimating flood volumes at a later time due to this missing 

water) (Mai et al., 2020). Considering all these challenges, EnKF-based methods still improve 

forecasts more reliably than PF and others, such as emprical ones (Jiménez et al., 2019) and 

sequential ensemble-based DA methods (Piazzi et al., 2021). 
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 Streamflow forecasting using data-driven methods 

Data-driven methods, including regression-based, articifial neural networks or other statistical 

methods have been used for a long time to predict streamflow on various lead-times 

(Solomatine et al., 2009; Z. Zhang et al., 2018). However, they often share a similar problem 

based on the fact that they do not represent the initial state of the catchment accurately and are 

therefore dependent on streamflow observations of the previous timesteps to condition the 

forecast. For example, autoregressive models use observed streamflow of previous timesteps 

in order to forecast the next, but this does not allow including information from weather 

forecasts or from hydrological processes that are much slower than a few days. For example, 

a forecast in the spring months will require knowing how much snow is present on the 

catchment in order to condition the forecasts on the snowmelt if temperatures rise above the 

melting point. Even classical articifical neural networks (ANNs) were unable to provide much 

in terms of long-term forecasts for this reason. While they could forecast flows using observed 

weather and recently observed streamflow and other hydrological variables, they lacked the 

memory of long-term processes that is required for many hydrological processes, dooming 

these methods to fail for forecasts of any significant length. 

 

Then, a new type of neural network called Recurrent Neural Networks (RNN) were developed, 

that were able to hold variables in memory for long periods of time, therefore imitating the 

hydrologic states of hydrological models (Troin et al., 2021). One such type of RNN is LSTM 

model (Hochreiter & Schmidhuber, 1997), that can be trained on long sequences of historical 

data and learn patterns such as snow accumulation and melt, baseflow from saturated 

groundwater stores and so forth (Shen & Lawson, 2021; J. Zhang et al., 2018). LSTM models 

have memory cells in their architecture. Memory cells have self-recurrent connections with 

three gates to manage weights and biases on inputs (input gate), outputs (output gate) and to 

stop tracking a variable in time (forget gate). In particular, the forget gate enables LSTM 

models to understand and reflect better on long dependencies that exist in hydrological 
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processes. LSTMs thus manage to overcome the challenges of short-term memory and 

vanishing gradients during training which exists in traditional ANNs (Xu et al., 2020). 

 

Furthermore, as opposed to hydrological models, these LSTMs learn the physical processes 

from the data directly and do not need any information regarding the hydrological processes. 

Instead, the LSTMs will learn from the input time series and seek patterns that it can represent 

using a system of weights and biases for nodes that are computed at each time step. While 

these methods have the ability to be very flexible and learn complex structures from the data, 

they need large amounts of high-quality data to be implemented (Damavandi et al., 2019). It 

has been recently showed by multiple authors that using LSTM networks provides realistic 

simulations of streamflow, oftentimes of higher quality than that of traditional hydrological 

models (Arsenault et al., 2023; Kratzert et al., 2018; Kratzert et al., 2019). LSTM models have 

recently been applied in various sub-fields of hydrology (Arsenault et al., 2023; Hu et al., 2018; 

Hunt et al., 2022; Kratzert et al., 2018; J. Zhang et al., 2018). Potential benefits of using LSTM 

in hydrology were demonstrated by many researchers in the past few years. For example, J. 

Zhang et al. (2018) showed the advantage of using LSTM over other RNNs without cell 

memory for simulating water levels. LSTMs showed better performance than the hydrological 

model “Sacramento Soil Moisture Accounting Model” (SAC-SMA) in long-term streamflow 

simulation over more than 200 basins (Kratzert et al., 2018). It was also showed that LSTMs 

could provide skill in estimating streamflow at ungauged sites (Arsenault et al., 2023); Kratzert 

et al. (2018); (Kratzert et al., 2019; Le et al., 2019). They tested LSTMs over other regions 

than they were trained on and showed that they displayed ‘spatial-durability of forecast skill’. 

Comparing LSTM with Global Flood Awareness system (GloFAS) was done by Hunt et al. 

(2022) over different climatology regions. They showed better forecast skill for LSTMs up 

until 5 days lead-time. Also in this context, Hu et al. (2018) showed the better performance of 

LSTMs over hydrological models, both lumped and process-based, were because of the 

existence of the forget gate in the LSTM architecture. However, other studies highlighted the 

drawbacks of LSTMs, such as predicting streamflow during extreme events, which is a 

challenging undertaking for LSTMs if they were not exposed to such events during their 
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training. Indeed, LSTMs are excellent when applied to problems they are trained on but are 

sensitive in extrapolation problems. They therefore cannot be used to replace hydrological 

models where complex situations that are difficult or impossible to predict by data alone, such 

as in complex groundwater-river interactions and when human interaction alters the data, such 

as in dam operation (Khoshkalam et al., 2023; Kratzert et al., 2018; Lees et al., 2021). 

 

1.3 Forecast verification 

The evaluation of forecasts is done by using different types of metrics and methods. First and 

foremost, it is important to note that forecasts are typically evaluated in hindcasting mode, 

whereby the forecasts are evaluated after the forecast period has passed (Oreskes et al., 1994). 

This allows evaluating the accuracy of the forecast compared to the actual observed 

streamflows for the forecasted period. In research applications, hindcasts are performed on the 

historical dataset with archived weather datasets, allowing immediate feedback by comparing 

the forecasts to the observations on long records at once (Troin et al., 2021). This allows 

evaluating forecast skill over long periods and thus evaluating forecasting methods by 

comparing their skill on the same historical periods. Forecast verification is done through a 

series of metrics, each evaluating a specific aspect of the forecast skill. They are used to 

communicate and evaluate the forecast performance in a quantitive way (Thielen-del Pozo & 

Bruen, 2019). Tracking the quality of forecasts over time, evaluating different sources of 

uncertainties, comparing the quality of different forecast methods, improving the decision-

making process and enhacing forecast skill of specific types of events are other important 

reasons for using forecast verification methods (Alfieri et al., 2014; Demargne et al., 2009). 

 

Verification methods are used to address two main concerns users typically have about their 

forecasting systems. First, they should quantify the goodness-of-fit between the forecasted 

flows and the actual observations, known as the forecast accuracy. Second, they should 

quantify the reliability of forecasts over a long period, i.e., how often is the forecast generally 

correct and how often does it perform poorly (He et al., 2016). Metrics to do so are numerous, 
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but one of the most often used is the Mean Absolute Error (MAE) for deterministic forecasts 

and its probabilistic counterpart, the Continuous Ranked Probability Score (CRPS) (Matheson 

& Winkler, 1976). The MAE represents the absolute difference between the estimation (or 

forecast) and the reference/target (i.e., observation), as described in equation 1.1. 

 

 𝑀𝐴𝐸 =  ∑ 𝐹 − 𝑂𝑁  
(1.1) 

 

 

where t is the time index of forecast streamflow F, O is the observed streamflow, m represents 

the member from the ensemble of size N. 

  

The CRPS is a probabilistic generalization of the Mean Absolute Error (Gneiting et al., 2007) 

and represents the quadratic error between the cumulative distribution function (CDF) of the 

ensemble forecasts and the unique observation (Alfieri et al., 2014). The CRPS is defined in 

equation 1.2.  

 

 𝐶𝑅𝑃𝑆 =  1𝑇 𝐹 𝑥 − 𝐹 𝑦 𝑑𝑥 
(1.2) 

 

where T is the total amount of time steps. The CRPS ranges from 0 to + ∞, zero being a perfect 

forecast. For streamflow, the CRPS unit is m3/s. 

 

A CRPS value can be computed for each lead-time and forecast issue date, therefore it is often 

represented as the mean CRPS of all forecast issue dates. Typically, CRPS will be unique to 

each lead-time, meaning that for a 10-day forecast, 10 CRPS values will be provided (each 

representing the mean of the CRPS values for all forecast issue dates at that lead-time) 

(Hersbach, 2000). For a probabilistic distribution, the best CRPS is zero (all members have the 

exact same value as the observation, thus perfect accuracy and no uncertainty) and units are 

the same as the modeled variable (m3/s for hydrological forecasts). The CRPS contains 
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information on the accuracy and also the reliability of the forecasts (Hersbach, 2000). 

Therefore, probabilistic forecasts with lower CRPS values are more reliable on average than 

those with higher CRPS values. Other metrics and tools, such as the Brier Score and Rank 

Histograms, can also be used to help evaluate forecasts where appropriate (Troin et al., 2021), 

but the MAE and CRPS are the two main metrics used in this thesis. Others will be introduced, 

when necessary, in the following chapters.  

 

1.4 Value of streamflow forecasts in hydropower management  

Given that this thesis largely focuses on a hydropower generating watershed, the value of 

hydrological forecasts in hydropower management must be considered. Indeed, the value of 

forecasts (and improvements made to them) will vary in space and time. For example, a 

hydropower system that has a full reservoir and is currently spilling excess water from the 

snowmelt period will not benefit from a more accurate short-term hydrological forecast since 

all incoming water will be spilled anyways. Therefore, the value of hydrological forecasts is 

dynamic and related to the hydropower system state (Arsenault & Côté, 2019; Caillouet et al., 

2022; Harou et al., 2009; Ramos et al., 2016; Roulin, 2007). 

 

Forecast lead-time also affects their value depending on the situation. For events like flood 

prediction, or for small reservoirs or drier-than-usual reservoirs, short-term forecasts are more 

valuable (Saavedra Valeriano et al., 2010). For large, stable reservoirs with long-term 

objectives, long-term forecasts are more impactful (Maurer & Lettenmaier, 2004). For 

example, Arsenault and Côté (2019) evaluated the value of long-term ESP forecasts to a 

hydropower system and found that adding a small positive bias to the ensemble forecasts was 

favorable as it forced the reservoir operation to be more aggressive, which counteracted the 

tendency of the optimisation model to underestimate spilling risks. Boucher et al. (2012) did 

similar study, where the gains of using ESP were quantified in terms of fewer unproductive 

spills, more hydropower generation and lowering flood. They used a stochastic decision-

making tool and mentioned the positive effects of post-processing the hydrological forecasts 
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on electricity production. Alemu et al. (2011) presented a decision support system to provide 

recommendations for sequences and volumes of releasing water. They simulated the operation 

of a water release procedure from a reservoir and used ESP to optimize the process. They 

considered optimizing generated electricity while respecting security issues related to flood 

prevention, as well as environmental and supply concerns. (Anghileri et al., 2016) proposed a 

framework to quantitatively present the value of ESP forecasts for hydropower management. 

They studied streamflow ensemble scenarios to optimize water release on a daily basis using 

synthetic scenarios. 

 

The value of hydrological forecasts therefore requires access to a water release decision 

support system to quantify. Only through this type of tool, that can estimate energy production 

and other variables related to the reservoir management, can the value of forecasts and any 

proposed improvement be quantified. However, this is a difficult process as it requires making 

drawdown decisions at each time step using complex optimization models. Therefore, in this 

research, forecasts are evaluated using metrics as described in section 1.3 and their value is not 

quantified for a specific system. Instead, results are presented in terms of improvement over a 

reference method and thus the methods presented herein can be applied in any hydropower 

system. 



 

 

CHAPTER 2 
 
 

OBJECTIVES AND THESIS ORGANIZATION 

2.1 Research objectives 

The literature review highlighted that forecasting flows is a non-trivial task that requires that 

many processes be implemented and coordinated such that each part of the forecasting process 

contributes as much as possible to reliable and accurate forecasts. These forecasts can be used 

for multiple lead-times, going from short-term forecasts for decisions requiring immediate 

decisions (such as flood forecasting and evacuation), up to long-term forecasts needed for 

strategic planning (such as for hydropower management). The main objective of this research 

project is improving the quality of hydrological forecasts on multiple lead-times, such that they 

can be more useful to stakeholders and water resources managers. To attain the main objective, 

the following secondary objectives were defined:  

 

1) Improving long-term hydrological forecasts using climate indices and other filtering 

mechanisms to better select members from ESP ensembles. 

2) Improving short-term forecasts by developing a large-scale DA implementation for a 

distributed hydrological model. 

3) Improving short-term hydrological forecasts and evaluating the impacts of DA using 

LSTM models. 

4) Quantifying the uncertainty of streamflow forecasts such that the uncertainty can be 

communicated more efficiently. 

 

2.2 Thesis organization 

This thesis is based on three scientific papers either published or submitted to internationally 

recognized and peer-reviewed journals, each targeting one of the secondary objectives and, the 
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main objective in their aggregate. Each of these papers is presented as a chapter in this thesis, 

as follows. 

 

Chapter 3 presents the first paper titled Evaluation of the potential of using subsets of historical 

climatological data for ensemble streamflow prediction (ESP) forecasting. It was published in 

the Journal of Hydrology in April 2021. This study aimed to improve streamflow forecasts on 

long lead-times using the ESP methodology. To do so, methods to process and select members 

from ensembles of scenarios were explored. Optimizing the selection of forecast scenarios 

considering the potential within the histroical climatological data was investigated. A novel 

way of calculating the potential skill of ESP-based forecasts for long-term (e.g., more than one 

month) was proposed. The significant contribution of this paper to the literature is the 

development of a novel method to evaluate the maximum possible skill that can be extracted 

from an ESP forecast, thus setting bounds on possible expected performance of ESP-based 

forecasts. It also allowed exploring some of the relationships between climate 

indices/teleconnections and long-term streamflow forecasts, to better understand and predict 

streamflow using the natural, low-frequency, and internal variability of the climate system. 

 

Chapter 4 presents the second paper titled Sensitivity analysis of the hyperparameters of an 

Ensemble Kalman Filter application on a semi-distributed hydrological model for streamflow 

forecasting. It was submitted to the Journal of Hydrology in May 2022. The aim of this study 

was to improve forecasts in shorter lead-times by implementing an EnKF DA strategy on a 

semi-distributed hydrological model. It allowed improving hydrological forecasts on multiple 

time steps up to 9 days by implementing a hyperparameter selection algorithm developed in 

this study. A sensitivity analysis was used to find the best state variables to update for each 

season along with the specific uncertainty assessments to implement. This paper’s significant 

contribution is the implementation of a spatially distributed DA method and sensitivity-based 

state variable selection method. 
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Finally, Chapter 5 of this thesis presents the third paper titled Comparing a long short-term 

memory (LSTM) neural network with a physically-based hydrological model for streamflow 

forecasting over a Canadian catchment, which was submitted to the Journal of Hydrology in 

December 2022. In this paper, short-term forecasts are once again targeted but they are 

performed using an LSTM neural network model. The LSTM model is compared to a 

traditional semi-distributed hydrological model for forecasting. The main contribution of this 

paper is the fact that the initial states for forecasting are fed to the LSTM as inputs in the form 

of the observed streamflow at the time of forecast. This model therefore does not require DA 

as it uses the observed streamflow at the time of forecast to adjust the forecast amplitude. The 

LSTM model is compared to the hydrological model, both with and without DA 

implementations, and the LSTM is shown to outperform the hydrological model in most lead-

times.  
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Abstract 
 
Streamflow forecasting is a crucial task for hydropower operations, flood forecasting and water 

resource use optimization. Ensemble Streamflow Prediction (ESP) is commonly used in the 

case of long-term lead-times (a few months or seasons ahead). ESP covers the use of historical 

meteorological scenarios in driving a hydrological model to generate an ensemble of possible 

future streamflows. Many studies have evaluated methods for selecting optimal subsets of 

scenarios to improve forecasting skill, and indeed, this is still an ongoing area of research. In 

this study, we propose a procedure that calculates the maximum potential skill of a classic ESP 

forecast. A genetic algorithm (GA) is used to determine the best possible set of climatological 

scenarios given any ensemble size. Along with providing a direct estimate of the ESP 

forecasting potential in hindcast experiments, the method can be used as a reference for 

comparing other methods to ESP. The procedure is also used to compare classical ESP, a well-

established forecasting method, with two new methods, namely, the Analogue method and the 

Contingency Table (CT) approach. A discriminant analysis is finally implemented to attempt 

to identify key features of ESP members that performed well as compared to their counterparts 

using historic climatology and climate indices. It is shown while there exists a potential for 

improvement, a lot of research must still be realized to exploit this potential. The procedure 
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was tested over two basins in Canada. In general, results showed that for any forecast date, 

decreasing the ensemble size led to a higher potential for better forecasting skills. However, 

the method does not yet allow identifying the subset of the entire climatology to be used to 

maximize the ESP forecast performance.  

 

Keywords: 

Ensemble Streamflow Prediction; Genetic Algorithm; Potential skill; CRPS 

 

3.1 Introduction 

Hydrological forecasting is important for enhancing the efficiency of water infrastructure 

management and agriculture, as well as for expanding the hydropower sector (Clark & Hay, 

2004; Gutiérrez & Dracup, 2001), and decreasing losses due to hydrological phenomena, such 

as droughts and floods (WMO, 2009). Typically, hydrological forecasts are generated by 

driving a hydrological model with one or multiple weather forecasts for the upcoming days or 

weeks (for short- and medium-term forecasting) to months, seasons, and even years, for long-

term forecasting using historical weather scenarios. If a single meteorological scenario is used 

to drive the hydrological model, the outcome is a deterministic forecast streamflow event. 

However, this does not allow assessing the uncertainty brought upon the decision-making 

process by the deterministic forecast. Therefore, driving the hydrological model with multiple 

meteorological scenarios is a preferred alternative, and returns a probabilistic ensemble of 

possible future streamflow scenarios, even though in some instances, probabilistic forecasts 

are more difficult to interpret. It has been almost two decades since (Krzysztofowicz, 2001) 

mentioned the benefits of probabilistic forecasts over deterministic forecasts. For instance, 

probabilistic forecasts are able to express uncertainty, make risk-based decisions, and better 

communicate this information to end-users. In addition, since hydrological forecasts inherently 

deal with unknown future events, it makes more sense to convey forecasts in a probabilistic 

manner rather than in a deterministic one. Another issue relating to hydrological forecasting is 

the presence of different sources of uncertainty, including hydrological model structure and 
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parameterization, forcings, and initial conditions (Moradkhani & Sorooshian, 2009). All these 

sources are accompanied by the nonlinearity and complexity of the atmospheric system, thus, 

making it imperative to implement probabilistic forecasts (Cloke & Pappenberger, 2009). 

 

 Options for hydrological forecasting 

For short-term streamflow forecasting, numerical weather prediction (NWP) can be used, as 

weather models are known to be skillful to up to approximately 10 days, depending on the 

region (Cuo et al., 2011; Zhao et al., 2012). For longer periods, NWP becomes unreliable and 

ESP method provides a baseline for further hydrological forecasting lead-times (Monhart et 

al., 2019). The simplest method for use in generating ensemble streamflow involves sampling 

historical streamflow timeseries directly from the historical record. However, this method 

disregards the impacts of the initial hydrologic state. To overcome this limitation, ESP using 

climatology for streamflow forecasting was introduced by Hirsch et al. (1977) and (Day, 1985). 

In this framework, a hydrological model, initialized with observed meteorological data, is 

forced with historical climatological data to produce streamflow scenarios for the desired 

forecast period, with each scenario being referred to as a member, and an ensemble consisting 

of multiple members (Harrigan et al., 2018). In this study, the ESP method is implemented, 

and the term “ensemble” is used to describe the multitude of climate scenarios, as well as the 

resulting possible streamflow scenarios. In ESP, forecasts are bounded by historical weather 

measurements, and therefore, any extreme weather event that is not already present in the 

historical database cannot be forecasted adequately. However, they do provide information 

where none would be available otherwise. 

 

 ESP strengths and limitations 

ESP is widely used in different forecasting centers throughout the world (Buizza et al., 2018), 

and has been considered as constituting the baseline for future forecasting techniques. 

(Harrigan et al., 2018) showed the high streamflow forecasting skill of ESP over 314 basins in 
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the UK, issued for lead-times varying from one to six months, although its performance varies 

by catchment, and is a function of various factors, such as the amount of base flow and the 

initialization month.  

 

While ESP is the reference method for seasonal forecasting (Monhart et al., 2019), its skill is 

still relatively limited for longer-term forecasts (Lucatero et al., 2018). It also contains biases 

and inconsistencies in its skill (Harrigan et al., 2018; Mendoza et al., 2017). These limitations 

are mostly attributable to the fact that ESP does not consider any information other than 

historical climatology, nor does it allow conditioning of the forecast on expected weather in 

the near future. While ESP assigns the same probability of occurrence to all members, it is 

clear that both wet and dry scenarios cannot occur simultaneously, and therefore, the 

forecasting skill could potentially be improved by including the current state of the atmosphere 

in ESP forecasts. In addition, the ESP method cannot take into account climate variability, 

either internal or anthropogenically forced (which is a drawback in terms of climate change), 

nor can it forecast extreme events that were not in the historical climatology.  

 

Other methods have been proposed in the literature to provide more reliability and accuracy 

than ESP. For instance, Arnal et al. (2018) employed seasonal climate forecasts for seasonal 

streamflow forecasting rather than using historical meteorological scenarios. They concluded 

that, on average, in the first month of lead-time, their method was more skilled than ESP. The 

method’s performance varied depending on the region and forecast issue time, and the authors 

concluded that a better understanding is needed in terms of the link between hydrological and 

meteorological variables. Moreover, Emerton et al. (2018) presented GloFAS (global-scale 

operational seasonal hydro-meteorological forecasting system) as a worldwide streamflow 

forecasting system. This system is most suitable for cases where no other forecasting method 

is applicable, such as in ungauged basins. However, notwithstanding some promising results 

for lead-times up to 4 months, it showed an over-prediction tendency and, in some cases, was 

less skillful than ESP. 
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 Methods proposed to improve ESP forecasting skill 

It is generally expected that adding information (i.e., either adding members or subsetting 

higher-quality members) to ESP forecasts should enable improvements over the basic ESP 

framework, as the probabilistic nature of the method then has more information allowing it to 

adequately determine the uncertainty of future streamflow. For further improvements, both 

pre-processing (processing of inputs to the hydrological model; Kang et al. (2010)) and post-

processing (direct adjustment of the streamflow ensembles; Zalachori et al. (2012), Verkade et 

al. (2013)) have been proposed, but they typically rely on all members, including those that 

could possibly be considered non-realistic depending on the hydrometeorological conditions 

prevalent on the forecast issue date. Furthermore, some challenges are encountered when 

trying to rebuild meteorological and hydrological scenarios after processing the forecast 

distributions. Nonetheless, some headway is being made in rebuilding appropriate scenarios 

from distributions (Bellier et al., 2017; Bellier et al., 2018), whereas ESP is de facto a scenario-

based method.  

 

Finding appropriate transfer functions between expected future climate states (probability of 

being in a wet or dry period, amount of precipitations, etc.) and ESP member weighting is a 

challenging task. For example, the natural climate variability induces a great deal of 

uncertainty in the prediction of future streamflows. One way climate variability can be 

considered in ESP is by taking into account large-scale climate indices, such as the El Nino–

Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) (Grantz et al., 2005; 

Hamlet & Lettenmaier, 1999). Studies have been conducted that point to a correlation between 

some climate indices and streamflow, or with other related factors, such as the Snow Water 

Equivalent (SWE) and precipitation. For instance, ENSO is one of the factors that influences 

precipitation patterns over western North America. In the case of Western North America, 

wetter winters in the south and drier winters in the north occur more frequently during El 

Niño’s warming phase (Dettinger et al., 1998; Trenberth, 1997; Zhang et al., 2010). In addition, 

McCabe et al. (2004) showed that PDO and the Atlantic Multi decadal Oscillation (AMO) 
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account for 52% of the total variance of drought frequency in the U.S. Such correlations and 

connections convincingly lead to the conclusion that climate indices can be considered as 

uncertainty-reducing sources for streamflow forecasting. Therefore, some studies have 

proposed methods that take advantage of teleconnections and large-scale climate indices to 

improve climatological forecasting through ESP. 

 

In their case study, Najafi et al. (2012) considered correlations between climate signals and 

streamflow as predictive factors. They considered different weights for ESP members, and for 

each forecast date, they chose different sets of climatological scenarios. Their results were 

promising for predicting spring runoff. Beckers et al. (2016) considered ENSO to distinguish 

between different ESP traces. They selected historical scenarios according to the similarities 

between the ENSO index in the forecast year and the historic year. They then generated more 

scenarios stochastically by conditioning on ENSO to compensate for data removed in the 

previous phase. They found a 5-10% skill improvement in two of three case studies. While 

both of these studies showed improvements in long-range forecasting, neither could evaluate 

how much skill could have been gained if an ideal method were to be used and how close their 

methods got to achieving this target, with an ideal method being one that would return the best 

possible forecast skill given the ESP members on hand. Simpler methods, such as in Yao and 

Georgakakos (2001), were also considered. The authors introduced the Analogue method, 

involving selections from historical traces. In this method, traces are ranked according to the 

Euclidean distance between past and inflows at forecast date. Based on this proximity method, 

they selected the most similar historical traces as probable realizations of future streamflow. 

Results for March-June were especially satisfying in terms of forecasting biases. 

Koutsoyiannis et al. (2008) also used the analogue method in a trial-and-error procedure to 

determine the best length of the backward-looking predictor period and the number of 

historical traces used in the ensemble. Similarly to this study, Svensson (2016) proposed river 

flow forecasting using hydrological persistence and historical analogues, and found that the 

analogue method performed better for longer lead-times. The analogue method was cited as a 

possible benchmarking method for further studies. 
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 Study novelty and objectives 

The current literature includes many studies which address methods to improve ESP, and 

results are often compared to classic ESP results to determine improvements brought by 

proposed methods. In this study, ‘classic ESP’ refers to the ESP method, without any 

modification, and considering that all historical scenarios have an equiprobable chance of 

occurring in the forecast period. However, to our knowledge, no study has attempted to 

determine the theoretical maximum skill that could be achieved through ESP methods, either 

quantitatively or qualitatively. 

 

This so-called theoretical maximum skill is an equivalent of maximum forecast skill which 

could be gained by using historical scenarios in ESP. This information could help extract as 

much forecasting accuracy as possible from ESP forecasts, as well as to identify some member 

properties that could be useful for differentiating members that will lead to better predictions 

from the rest. Thus, the aim of this study is to quantify the theoretical maximum skill present 

in historical meteorological scenarios for long-term streamflow forecasting, given any 

ensemble size. A secondary objective is to determine how to best identify a subset of available 

members to produce a skillful ensemble for ESP forecasting. 

 

3.2 Data and case studies 

This study was performed on two catchments in Canada, one in the province of Quebec (QC) 

(Matawin River, hereafter referred to as the ‘QC catchment’) and the other in the province of 

British Columbia (BC) (Chilko River, hereafter referred to as the ‘BC catchment’). Both 

catchments are snowmelt-dominated and have warm and cold seasons with similar 

precipitation patterns, as shown in Figure 3.1. 
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The hydrometeorological data were taken from the CANOPEX hydrological database, which 

contains hydrometeorological data for 698 catchments across Canada (Arsenault & Brissette, 

2016). The observed weather data (daily precipitation, maximum and minimum temperatures) 

in CANOPEX are sourced from the Natural Resources Canada gridded climate database 

(Hutchinson et al., 2009). Hydrometric data in CANOPEX comes from Environment and 

Climate Change Canada’s Water Survey Canada (WSC) hydrometric database. Climate data 

covers the 1950-2010 period, while hydrometric data includes all available observations over 

the same period. For this study, given the need to generate ensembles based on historical 

meteorological data, two catchments were selected covering the complete 61-year study period 

1950-2010. 

 

Four climate indices were also employed to attempt to estimate future flow and precipitation. 

These are the Pacific-North American (PNA), Multivariate El Niño/Southern Oscillation Index 

(MEI), Pacific Decadal Oscillation (PDO), and Southern Oscillation Index (SOI). These data 

are publicly available from the National Oceanic and Atmospheric Administration’s (NOAA) 

website: https://psl.noaa.gov/data/climateindices/list/).  
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Figure 3.1 Catchments used in this study are shown in panel a). The left-hand 

panels (b, d, and f) represent the average temperatures, precipitation, and 
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streamflow in the BC catchment. The right-side panels represent the same variables 
but for the QC catchment. 

3.3 Material and methods 

 Hydrological models  

For this study, a hydrological model was employed to generate ensemble streamflow forecasts 

from historical climate data. The hydrological model selected for this purpose was HMETS 

(Hydrological Model École de Technologie Supérieure) (Martel, 2017), a lumped conceptual 

model that has been shown to perform well in a wide range of hydroclimatic conditions, 

including in snowmelt-dominated regions (for instance, it was used by Troin et al. (2015) for 

North American catchments). HMETS has 21 free parameters, 10 of which are related to the 

snowpack melting and refreezing processes, 6 to horizontal water routing, 4 to vertical water 

balance, and 1 to evapotranspiration scaling. 

 

As inputs, HMETS needs daily maximum and minimum temperature data, as well as daily 

solid and liquid precipitation and potential evapotranspiration, which has been estimated by 

the Oudin formula (Oudin et al., 2005).  

 

 Meteorological data processing 

Precipitation data was first divided into snow and rain using a linear interpolation based on the 

mean daily temperature. For days with mean temperature above 3°C, the precipitation was 

considered as rainfall, while precipitation during days with mean air temperature below -1°C 

was considered entirely as snow. For days when air temperature averaged between -1°C and 

3°C, the fractions of liquid and solid precipitations were linearly interpolated according to that 

same scale.  
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 HMETS calibration 

For both catchments, HMETS was calibrated on the entire hydrometeorological time series 

using the Covariance Matrix Adaptation – Evolution Strategy (CMAES, Hansen et al., 2003). 

The full available period was used as it allows maximizing the information content in the 

parameter set (Arsenault et al., 2018). CMAES was given a budget of 15,000 model evaluations 

to converge to an acceptable solution, and the Nash-Sutcliffe Efficiency (NSE) calibration was 

0.60 for the BC catchment, and 0.80, for the QC catchment.  

 

 Synthetic streamflow 

HMETS was first driven by the historical meteorological data to generate a long-term 

simulated streamflow series. This synthetic streamflow was considered as a proxy for the 

observed streamflow to remove errors in the hydrological model initial conditions. Many 

studies have used this method to overcome the need to compensate for model drift (Alfieri et 

al., 2014; Arsenault & Côté, 2019; Harrigan et al., 2018; Pappenberger et al., 2015). The first 

year of simulated discharge was removed as the results were unstable due to the hydrological 

model warm-up. 

 

 Forecast verification 

In the present study, CRPS (Hersbach, 2000) was used to evaluate the forecast skill against the 

corresponding pseudo-observed streamflow. CRPS is one of the recommended skill scores for 

forecast verification (Pappenberger et al., 2015), which provides information on the forecast 

reliability and resolution (Hersbach, 2000). We focus on the accumulated inflows on long 

horizons, as this is an important criterion when evaluating reservoir drawdown rates and long-

term production capacity in hydropower systems. CRPS is a quantitative technique that 

measures the accuracy of the forecast by calculating the area between the prediction CDF and 

the CDF of observations (Zamo & Naveau, 2018). It is important to note that the ensemble size 
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can thus play a role on the CRPS value, with larger ensembles providing lower CRPS values, 

given the ensembles have the same statistics (Ferro et al., 2008). Lower values of CRPS signify 

that the ensemble members are closer to the target value (in this case, the accumulated 

streamflow). 

 

 Proposed procedure to calculate the potential of using climatological data in 
ESP 

In the ESP method, all members are considered equiprobable. This consideration is simplistic, 

but in the face of uncertainty, if no other discriminating factor is available, it becomes difficult 

to provide a means of weighting or selecting members. However, as some previous studies 

suggest (Bojariu & Gimeno, 2003; Mudelsee et al., 2003), it could be possible to extract 

information on various scales from autocorrelations in inflow structures, which could then be 

used to inform on future streamflow characteristics. This would allow weighting some 

members higher than others, based on a probabilistic view. In this step of the study, the aim is 

to maximize the benefits of using particular subsets of the ESP forecast members for 

hydrological forecasting. We seek to obtain the best possible performance, i.e., the smallest 

CRPS value, for any ensemble size m. The target of the hydrological forecasting in this study 

is to predict the cumulative amount of inflows (CI) at the end of the forecast period. An 

experiment was designed to evaluate the possible gains in performance based on the available 

members. In other words, for each possible ensemble size m, a series of possible combinations 

of m members without replacement were generated and the CRPS computed. This allowed 

estimating the shape of the ESP forecast response domain.  

 

It is worth noting that the ensemble size must have at least one member less than the Full-ESP 

ensemble to allow sampling of possible combinations of ESP subsets for comparison with the 

Full-ESP basic scenario. The objective here is to verify the possibility of obtaining a better 

CRPS by using a better selection of members than by using the full ensemble.  
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To find the best set of m members, it was necessary to compare different combinations of 

members from the full set of n members and compare their resulting CRPS. The study was 

hence performed in hindcast mode to allow retroactive verification of the forecast skill. Finding 

the best combination of m members from an ensemble of size n may be considered to be a 

deterministic binary optimization problem, where each member is attributed a value of 1 if it 

is selected and 0 otherwise. A black-box optimization tool using the Genetic Algorithm (GA) 

(Whitley, 1994) was used to find the best combinations of members for all values of m. The 

optimization aims to minimize the CRPS using a binary selection, i.e., each parameter can be 

set to either 1 (select the given member) or 0 (do not include the member in the ensemble), 

with one parameter per available member. The only constraint was to force the GA to select a 

given number of members in order to determine the best combination of members if one were 

to use 1, 2, 3,… n members in the reduced ensemble. The algorithm was run independently for 

each value of m, as opposed to a single, multi-objective optimization, which would have 

provided the multi-objective Pareto front. The mono-objective approach was chosen in order 

to better characterize the response landscape and not omit any points that could be dominated 

from an objectively “better” score in the multi-objective space. The main caveat to this 

approach is that the results are dependent on the convergence skill of the algorithm in the high-

dimensional parameter space (e.g., selecting 25 out of 45 possible members means there are 

more than 3x1012 possible combinations). Therefore, GA can help converge towards the 

optimum solution, but the actual optimum might be left undiscovered (Wu and Chau, 2006). 

Nonetheless, this method provides a more targeted approach than a brute-force one. The 

potential of an m-member ESP ensemble forecast would be calculated as follows: 

 

 ∆𝐶𝑅𝑃𝑆 =  𝐶𝑅𝑃𝑆  − 𝐶𝑅𝑃𝑆  
(3.1) 

 

 

where 𝐶𝑅𝑃𝑆   denotes a CRPS value corresponding to considering all members in the 

forecast, and 𝐶𝑅𝑃𝑆  denotes the smallest CRPS while considering m-members as 

determined by the GA algorithm. A positive value of ΔCRPSm (‘Delta’) indicates that there is 
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potential for improving the forecast by selecting a subset of ESP members rather than including 

all the scenarios. For example, in Figure 3.2, the skill of the Full-ESP ensemble is compared 

to that of the best performing combination of m-members with m ∈ (1, 2, …, n) in terms of 

CRPS for the QC catchment and any lead-time and forecast date for illustrative purposes. The 

red star indicates the CRPS for the Full-ESP, while the blue circles show the CRPS for different 

ensemble sizes obtained by the GA method. The horizontal red line indicates the potential to 

improve the forecast skill for each ensemble size. The difference between the Full-ESP and the 

GA-derived ensemble with the lowest CRPS is the potential improvement which could be 

obtained with the available members.  

 

 
Figure 3.2 The red star is the CRPS value of ESP result for 1st of June 2000, 90 days 

lead-time, for QC catchment. The blue circles are theoretical optimum CRPS values for 
different sizes of ensembles. The red horizontal line is ΔCRPSm 

 

Figure 3.2 shows an example of the GA optimization for different numbers of members in the 

ensembles. There is a clear trend as the the size of the ensemble is decreased that the best 

possible CRPS values improves as well. The results of the GA approach in Figure 3.2 are 

somewhat unsurprising, as it is expected that selecting members with full knowledge of the 

target during optimization should lead to better results. The question then becomes how much 

of the ΔCRPSm value can be extracted by using information available to the modeler at the 

time of forecast. Essentially, how can this information be used to translate the potential into 
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real forecasting skill? One possible approach would be to attempt to identify the factors that 

discriminate desirable members from undesirable ones. Here, we implemented two methods to 

refine the member selection based on information available to the hydrologist during the 

forecast. 

 

 Contingency Table (CT) 

In this method, we assumed that the status of the precipitation or discharge tested over a period 

preceding the initial date of forecast is the most important factor for selecting ESP members 

(climatological scenarios). The method is based on a historically-driven contingency table 

(CT). It then goes on to propose considering a certain period of variable length prior to the 

forecast date, and then using the period’s hydrometeorological conditions as predictors for the 

forecast period, as was done in Hwang and Carbone (2009), Svensson (2016) and Madrigal et 

al. (2018). The method was implemented as follows: 

1- Choose two periods: the first is the period before the forecast date, which will serve as 

the predictor period; the second is the forecast duration, simply called the forward 

period. 

2- Choose the variable which is going to be forecasted (precipitation, streamflow, or 

other) at a daily time-step. 

3- Calculate a representative value of the chosen variable over the predictor period (for 

example, average precipitation), which serves as the predictor to the model, for all years 

except for the year of the forecast date. 

4- Discretize the predictor values from the previous step into p categories. We classify the 

data into three categories (p=3): 

a. Wet, if the value is in the top tercile, 

b. Normal, if the value is located in the second tercile, 

c. Dry, if the value is located in the third tercile. 

5- For each value in step 3, also compute and categorize the historical observed inflows 

during the forward period following the predictor period. For example, for a given year, 
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the predictor could be categorized as Wet and the forward period that immediately 

follows, which corresponds to the forecast duration of the forecast date, could be 

categorized as Dry. These are the targets that will be used to define and populate the 

different cells of the CT. Note that the target values are computed on the same initial 

date of forecast, but on all the other available years in the dataset. 

6- Build the CT by classifying the data into a 1st-order 3-by-3 conditional transition matrix 

between the predictor period state and the forward period state. This will allow 

identifying probabilistic transitions from the state in the predictor period to the forward 

period. For example, what would be the chance of having a Wet period after a Dry 

period? 

 

7- Estimate and classify the predictor period value for the forecast date (the period right 

before the initial forecast date).  

 

8- From the CT, establish the probabilities of having a wet/normal/dry forecast period 

based on the predictor period state.   

 

After these steps,  it is possible to select a subset of members of the Full-ESP ensemble that 

best represent the probabilities of the future states by random sampling from the appropriate 

classes. For example, if CT predicts a 60% chance of the forecast being wet, then build a new 

ensemble that contains 60% of wet scenarios from the available set through random sampling 

of the wet years and dry years independently. 

 

 Reassemble ESP with ‘Perfect’ information about the forecast period 

In the last method, we hypothesized that characterizing the predictor and forward periods 

according to their relative average precipitation (or discharge) would improve the forecast skill 

over using the entire set due to the resulting improved probability representation. To test this 

claim, in this section, we introduce a variant we name the CT-Perfect Information ESP (CT-
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Perfect). CT-Perfect refers to the idea that the exact state of the forecast period is assumed to 

be known, so only the members that are from the same category (wet/dry/normal) are used in 

the forecasting step, without considering the predictor period state. Consequently, this method 

is an extension of the CT method, but which does not require a probabilistic assessment of the 

future state, as the method uses otherwise unknowable information for its discrete and perfect 

classification (i.e., the future period, based on the precipitation variable, is going to be Wet 

with complete certainty). We introduce this method as a benchmark to evaluate the capabilities 

of the CT method under uncertainty.  

 

 Analogue method 

The analogue method assumes that the best predictor of the forecast period is the predictor 

period immediately preceding the forecast. In this case, the best ESP member to select as the 

future realization is the one whose predictor period hydrometeorological properties are most 

similar to those of the forecast date. This scenario is then selected as a member of the improved 

and reduced-size ESP. Members can be added to the forecast predictor period in descending 

order of similarity. The similarity can be measured using a so-called “analogy factor” that 

consists of two features: 1) hydrometeorological properties (precipitation or discharge), and 2) 

a statistical aggregation metric of the hydrometeorological variable (i.e., the sum, average or 

maximum value). The process can be implemented following these steps: 

1- Define a predictor period as for step 1 of the CT method. 

2- Choose a predictor variable (precipitation, discharge or other). In this study, the 

discharge was selected for this step. 

3- Calculate the accumulated value of the chosen variable (discharge) over the predictor 

period, for all years serving as predictors to the analogue method.  

4- Calculate the absolute difference between the accumulated simulated discharge for all 

predictor periods (except for the year of the forecast date), and the accumulated 

simulated discharge for the period before the actual forecast date (∆ , with i indicating 

the corresponding ensemble member). 
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5- Rank ∆  (𝑖=1: n) in ascending order. 

 

Choose the first m members from the ordered set from step 5 and use the climate data from 

their forecast periods as inputs to the hydrological model to generate the new ESP for the real-

time forecast. 

 

 Random selection of ESP forecast members 

A random sampling from the available members was also investigated as a baseline method. 

For each value of m ∈ (1, 2, …, n-1), with n being the number of available years to select 

from, we sampled m members randomly to compose the ESP forecast. This process was 

repeated 1000 times for each value of m. The choice was made to select 1000 random samples 

for each value of m as the distribution of the results obtained always converged before that 

value. Therefore, the sample size was sufficient to explore the response space. 

 

 Exploration of member characteristics based on forecasting performance 

The results obtained through the GA method were analyzed to attempt to determine whether 

there were any characteristics they shared in common that could help identify the members to 

select when sampling in an ESP forecasting framework. This analysis is similar to a 

discriminant analysis, where the members composing the optimal ensemble (hereafter referred 

to as ‘best members’) are compared to ensembles of the same size containing the worst 

members (i.e., the ones that generate an ensemble that provides the worst CRPS), according to 

a set of hydrometeorological characteristics. For this analysis, the combinations of five 

members (out of all available members) that returned (1) the best and (2) the worst results in 

terms of CRPS were identified and investigated to determine how they differed, in hopes of 

shedding light on the reasons behind their opposite behaviors in forecasting. The best members 

were selected from the five-member GA optimization solution, while the five worst were taken 
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from the random sampling that returned the worst CRPS, and that did not include members 

that were in the best five-member ensemble. The comparison between the two groups was 

performed based on the following four indices over the predictor periods: 

 

1. The relative difference between mean values of temperature and precipitation of the 

forward period and predictor periods of each of the best (worst) members. 

 

 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑒𝑙𝑡𝑎 𝑓𝑜𝑟 𝑴𝒆𝒂𝒏 𝛼 =  𝛼 − 𝛼𝛼  
(3.2) 

 

 

where α denotes the daily temperature or precipitation, either during the forward period (mean 

value: 𝛼 ) or during the period denoted by the best (or worst) member i (mean value: 𝛼 ). 

 

2. The same as (1), but using the standard deviation instead of the mean of variable α. 

3. The correlation between temperature and precipitation data of the forward period and 

each of the best (worst) members. 

4. The relative difference between the average of the climate indices (average and 

standard deviation of both precipitation and temperature) during the forward period and 

that of the best (worst) members.  

 

This methodology was developed to attempt to reverse-engineer the characteristics of the 

members that lead to good and bad forecasts, rather than attempting to determine the 

explanatory variables a priori. 

 

3.4 Results 

The results in this section are first presented for a single forecast case and are then extended to 

integrate the notion of reliability of the ESP forecasting methods and to analyze their statistics. 
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In the first case, forecasts were issued on July 1st, 1990, with a 90-day lead-time. The predictor 

period was also set to the 90-day window ending on the forecast date of July 1st. Different 

methods implemented in this study were then analyzed and compared according to CRPS, as 

can be seen in Figure 3.3 (QC catchment) and Figure 3.4 (BC catchment). The x-axis shows 

forecast CRPS values and the y-axis shows the ensemble size. Theoretical optimums 

correspond to results of subsets selected by the GA method, for different ensemble sizes. The 

Full-ESP corresponds to results of considering all historical scenarios, as is usually 

implemented in ESP studies. CT-Q and CT-P correspond to the CT method, considering the 

streamflow and precipitation as predictor variables, respectively. ‘CT-Q Perfect’ and ‘CT-P 

Perfect’ correspond to results of CT-Q and CT-P while having access to the actual state of the 

forecast period. The analogue markers identify the CRPS skill using the Analogue method 

considering streamflow as the predictor variable. 

 

 

 
Figure 3.3 CRPS values for different combinations of members in the ESP forecast as a 

function the ensemble size for the QC catchment. The boxplots represent the values 
obtained with the 1000 random samplings for the July 1st, 1990, forecast date. 
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Figure 3.4 CRPS values for different combinations of members in the ESP forecast as a 

function the ensemble size for the BC catchment. The boxplots represent the values 
obtained with the 1000 random samplings for the July 1st, 1990. forecast date. 

 

Multiple interesting patterns emerge from Figure 3.3 and Figure 3.4. First, random sampling 

either does not improve (in the best case), or indeed deteriorates (in the worse case) the CRPS 

versus using the whole ensemble. The fewer the members, the worse the median value. The 

pattern seen in Figure 3.3  and Figure 3.4 was reproduced in essentially all tests performed, i.e. 

for each of the 12 initial forecast start dates matching the 1st of each month) and various lengths 

of predictor and forecast windows (not shown). This observation is in agreement with the 

findings of Ferro et al. (2008). Some member combinations perform better than others, but 

without any other discriminating information, adding more members seems to be the correct 

approach. It can also be seen that the best combinations found by the GA algorithm (the 

theoretical optimal points) progressively improve as the number of members decreases, except 
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for the single member case. This indicates that the information is present in the ESP ensemble, 

but we must find a way to extract it adequately. This can be seen as the potential improvement 

for the forecast date, i.e., the maximum improvement that could be possible to gain from 

selecting members perfectly. As for the conditional methods (CT) and their variants, both with 

Discharge (Q) and precipitation (P), the results vary by catchment. The CT using available 

information performs better than Full-ESP in the QC catchment, but the opposite was observed 

in the BC catchment. Comparing CT results with and without having access to perfect 

information shows that merely having access to this information does not automatically 

improve the results. This could be due to the fact that CT is probabilistic, and therefore contains 

a certain amount of uncertainty. Hence, knowing the future state will not automatically mean 

that the ensemble members that are selected will perform better. A more thorough investigation 

is presented in section 4.1. The analogue method performs similarly, if not slightly worse, to 

that of the Full-ESP, albeit with a certain variability based on the ensemble size. None of the 

tested methods come close to systematically matching the GA-optimal forecast skill. This may 

be seen as an inability of the proposed methods to properly describe the uncertainty in the 

forecasting process and in the future forecast state. In other words, the factors that have been 

used to help identify future forecast states in the proposed methods do not provide enough 

insight to improve upon the Full-ESP in a reliable way. 

 

These results have to be interpreted carefully as they represent a single snapshot of the forecast 

performance for a single day, and cover a single set of predictor and forecast periods. The 

process was then repeated for each year in the dataset, providing results for the years 1955 to 

2004 for the BC catchment, as shown in Figure 3.5. 
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Figure 3.5 CRPS value for three ESP-based methods: (1) Full-ESP, (2) CT using 

precipitation as a predictor and (3) CT with precipitation and with perfect knowledge of 
the future state for the BC catchment. The predictor and forward periods are 90 days each 

for all July 1st forecast dates in the dataset from 1955 to 2004 inclusively 
 

Figure 3.5 shows CRPS values for the 50 initial dates of forecast starting on July 1st of each 

available year for three ESP sampling methods, using a 90-day predictor period, and a forward 

period of the same duration for the BC catchment (A) and QC catchment (B). In Figure 3.5, 

the Full-ESP method is compared to (1) the CT with precipitation as a predictor variable and 
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(2) the CT with precipitation as a predictor but with perfect knowledge of the future 

precipitation classification. For the BC catchment, in 37 cases out of 50, the perfect information 

method scored the lowest CRPS values, indicating its better forecast skill versus the other 

methods. In the remaining cases, the Full-ESP method performed slightly better than the 

perfect information method. Results are similar for the QC catchment. The 74% success rate 

seen with the perfect information method here may be the result of knowledge of the true future 

state in a categorical sense (i.e., knowing if it will be wetter or dryer than average), without 

actually specifying the precipitation amounts. In other words, improving long-term 

precipitation forecast trends could significantly improve the ESP performance. However, since 

the method is not systematically better, even in the case of perfect knowledge, there would still 

be some untapped potential that could perhaps be accessed by using other variables and 

predictors. It is important to note that the results shown in Figure 3.3, Figure 3.4, and Figure 

3.5 point to the Full-ESP method being similar or slightly better than the analogue and CT 

methods, depending on the number of ensemble members. A series of tests on other forecast 

periods, lead-times and predictor period lengths showed similar results, and the CRPS was 

typically better for Full-ESP than for reduced-size ensembles implementing the analogue or 

CT methods (results not shown). 
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Figure 3.6 Comparison between desirable and undesirable members, as selected by the 
GA method, with respect to their hydrometeorological properties in the predictor period 
for the BC catchment. Left-hand histograms correspond to temperature data, and right-

hand histograms represent precipitation data. 
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Figure 3.7 Comparison between desirable and undesirable members, as selected by the 
GA method, with respect to their large-scale climate indices in the predictor period for 

the BC catchment. Left-hand histograms correspond to temperature data, and right-hand 
histograms represent precipitation data. Climate indices represent the Pacific-North 
American (PNA); Multivariate El Niño/Southern Oscillation Index (MEI); Pacific 

Decadal Oscillation (PDO) and Southern Oscillation Index (SOI). 
 

Figure 3.6 and Figure 3.7 show the results of the analysis of the ensemble member 

characteristics on forecasting performance for the BC catchment, for the four previously 

defined indices. These analyses were done for July 1st as the forecast issue date and were 

repeated 40 times (from 1966 to 2005), considering 90 days before the forecast date, and 90 

days following the forecast date. Results are similar for the QC catchment, which are not 

shown.  
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In Figure 3.6 , the histograms each include 200 values, i.e., 40 years x 5 members per year. 

The x-axis represents the relative difference between the predictor period of the selected ESP 

member and the forward period. The predictive variables are the temperature (left column) and 

precipitation (right column), and the three rows show the results when comparing the 

difference in means (top row), standard deviations (center row) and correlations (bottom row). 

The blue and red histograms show the results for the best and worst members, respectively. It 

can be seen that the distributions of both histograms are very similar, and that none of the 

selected variables allowed generating a clear pathway to separate good members from bad 

ones. Figure 3.7 shows the distributions of the relative difference between (1) the averages of 

climate indices in the predictor period of each of five best (worst) members for the 40 forecast 

years, and (2) the values of the associated forward period indices. 

 

The results show that while there seems to be some minor differences in some of the 

distributions, especially in the variability of the PDO and SOI distributions, these differences 

are not statistically significant, and do not allow for efficient discrimination between the 

desirable and undesirable members. The analyses in Figure 3.6 and Figure 3.7 were performed 

on a multitude of forecast dates, predictor period durations and forecast lead-times with similar 

results, which are not shown. These predictor variables thus seem insufficient to allow the 

identification of members that maximize the forecast skill. 

 

3.5 Analysis and discussion 

In this study, we proposed a procedure to quantify the theoretical potential of using historical 

weather observations as probable scenarios in an ESP approach for long-term discharge 

forecasting. Typically, all members in ESP forecasting are considered as equally probable. 

However, in this study, we used a procedure to determine the best possible combinations of 

members for different ESP ensemble sizes. The GA approach allowed finding these 

combinations in hindcasting mode, with perfect knowledge about the hydrometeorological 

states to be forecasted. While this approach is not available to the forecaster in real time, the 
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rationale, however, was to use it to quantify the theoretical limit that could be achieved using 

the historical climatology on hand. 

 

Various ESP member selection techniques were tested to analyze their ranking as compared to 

the theoretical optimum and the Full-ESP ensemble. Each method was tested with a range of 

parameters, such as the initial date of forecast, the duration of the predictor period, and the 

lead-time. In almost all tests, lower CRPS values could be obtained with smaller ensemble 

sizes, but at the same time, expected CRPS values increased if the members of the subset were 

selected randomly. 

 

One important message obtained from this study is that when performing an ESP forecast using 

climatology, there is a strong chance that some members present in the dataset could possibly 

be excluded in order to improve the forecast skill. In that sense, decreasing the ensemble size 

can improve the forecast skill through the elimination of improbable scenarios. This selection 

also carries a risk because a desirable member may be removed instead of an undesirable one, 

in which case the forecast skill will degrade. Therefore, research efforts should focus on 

increasing the ability to probabilistically categorize the future hydrological regime (wetter or 

dryer than average) and condition the ESP member selection on those probabilities. As noted 

previously, many studies have investigated this very subject, either through climate indices, 

long-term NWP forecasts, or other means, and the present study will help quantify the potential 

skill attainable with those methods. 

 

As shown in Figure 3.3 and Figure 3.4, and from the numerous results obtained during the tests 

performed in this study, the results of the CT and the analogue methods were highly variable, 

and depended on the lead-time, the predictor period length, the predictor variable, the initial 

date of forecast and the catchment characteristics. In the case of CT, the method was not 

reliable enough to be recommended for use when the predictor was the streamflow or the 

precipitation.  
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CT-Perfect variants were implemented to better test the potential of the CT method. As such, 

it was conducted under conditions without uncertainty regarding precipitation during the 

forecast period. On average, CT-Perfect results were much better than those obtained using the 

Full-ESP, meaning that improving the overall forecasted precipitation category (wet or dry) 

accounts for a significant portion of the ability of the methods to select desirable members. 

The skill could probably be further increased by finding better predictors than the average 

previous precipitation or streamflow. For example, in a multivariate setting, adding 

information from climate indices and combinations thereof to the precipitation and temperature 

could be envisioned; as well, consideration could also be given to using other statistics than 

those used in this study. The analogue method was generally less skillful than the Full-ESP, 

and this could be attributed to the same problem encountered with the CT method, i.e., the 

predictor period variables are not good enough predictors for future inflows or precipitation. 

Although the results of the member selection methods shown herein did lead to forecast skill 

improvements, the methods presented could be useful to researchers in ESP forecasting and 

water resource management, for two reasons. First, before implementing an ESP forecasting 

system, the procedure could be used in hindcasting mode to determine how much potential the 

forecast may yield, given its specific parameters (initial date, predictor period duration and 

lead-time, available observation record). This could serve as a reference to help manage any 

expectations and determine the limits of the approach before any more efforts are deployed. 

Second, the procedure could be used to benchmark, analyze and improve existing methods that 

are currently being used in practice to generate ESP forecasts. This would allow quantifying 

improvements on a relative scale, with a known baseline value. This type of evaluation could 

be repeated as many times as needed in order to obtain a more comprehensive view of the 

method’s performance. 

 

The proposed method to investigate relationships and correlations between desirable members 

and hydroclimatic indicators could also be used to help develop member selection methods. In 

the general tests performed in this study, no strong relationship was found. In other words, 

simply considering the average value of precipitation or temperature during the predictor 
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period was not enough to indicate the forward period characteristics. More complex predictors 

could potentially allow such a relationship to be exposed. There are many other metrics and 

combinations of metrics that could be investigated, including, for instance those in Feng et al. 

(2016), Hossain et al. (2018), Hossain et al. (2020) and Konapala et al. (2018). Non-linear 

combination methods could also be tested with this approach, which was out of the scope of 

this paper. 

 

This study proposes a method to quantify the skill of an ESP forecast using reduced ensemble 

sizes by selecting fewer, but more desirable members. However, there are some general 

limitations to using this approach. First, the historical dataset must be long enough to represent 

multiple climatological states over the catchment in order to have a realistic chance of 

portraying the climatological uncertainty. Selecting a subset of an already small ensemble 

would prove difficult as the transition probabilities would be ill-defined. Second, the fact that 

the ensemble size changes during the subsetting process induces a bias in the CRPS calculation, 

as shown in (Ferro et al., 2008). This effect was not explicitly accounted for in this study, but 

the impact should be minimal because (1) the response is similar to what would be expected 

with the corrections and (2) even with our best methods and attempts, we were unsuccessful at 

identifying which of the members in the reduced ensemble should be selected. Therefore, even 

for a given size ensemble we were unable to improve the method. Also, climate change signals 

could be present in the observed dataset used to define the ESP members. There is a legitimate 

claim that ESP members from multiple decades ago could be unrepresentative of the current 

climatological state. In such cases, while care should be taken when building the ESP 

ensemble, determining how to do so is a challenge in itself. It is possible that by weighting the 

members differently – or by excluding some entirely – a more reliable ensemble could be built. 

Another limitation relates to the selection of catchments used in this study. The two catchments 

are snowmelt dominated and thus have somewhat similar hydrological regimes. Perhaps this 

method could provide different results in contrasting climate regimes, although the 

identification of the maximum potential skill would probably be similar. Finally, it is important 

to note that this study did not make use of pre- or post-processing of ensemble members, but 



65 

 

rather, used historical data directly. The pre-processing step could conceivably use the 

quantification and selection methods in this study to improve the accuracy of processed 

ensembles for long-term streamflow forecasting. 

 

3.6 Conclusion  

This study presents a procedure to quantify the potential skill of ESP using historical 

climatological data. In typical implementations of ESP, all available members are used to add 

diversity to the ensemble, and all members are considered equally likely to occur in the future. 

However, knowing some information about the future state can help focus the ESP member 

selection on the expected conditions. One way of doing so is by removing members that are 

unlikely to be realized in the future. This study describes a method to determine the best 

possible members for any ensemble size and to weigh the risk and potential benefit of using a 

member selection approach. Three approaches were tested, and while two (CT and analogue) 

did not lead to skill improvement, the CT-Perfect procedure allowed to determine that 

classifying the climatological state of the forecast period could improve long-term forecasting 

accuracy. 

 

The maximum potential improvement was quantified using a GA method to find the best 

combination of members for any ensemble size. It provides a means of comparison between 

results of various methods, such as the random selection of members and the theoretical 

optimum to the Full-ESP ensemble. This quantification could help improve ESP forecasting 

by providing a more consistent baseline than relative reductions in CRPS, as is typically done 

in the literature. 

 

Finally, a method was proposed to help differentiate desirable from the undesirable members, 

in a consistent manner, for ESP forecasting using the theoretically optimal ESP members’ 

properties and correlating them to hydroclimatological indices in hindcasting mode. Although 

the results show that the selected variables are not good predictors of this relationship, the 
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method could be employed in future research to attempt to determine the most efficient 

predictors and quantify their levels of success.
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Abstract 
 

Data Assimilation (DA) is an important step for improving prediction accuracy and real-time 

correction of hydrological models for operational forecasting purposes. The Ensemble Kalman 

filter (EnKF) is one of the most popular techniques used to address the issues of updating the 

model states and parameters by creating a novel set of initial conditions in real-time. This study 

aims at identifying optimal seasonal EnKF parametrizations to reduce the uncertainty 

associated with the initial conditions in a semi-distributed hydrological model of a snow-

dominated catchment in Canada. Sensitivity analysis is performed to evaluate the effects of the 

EnKF individual hyperparameters (temperature, precipitation and inflow uncertainties) and the 

updating of the water content of three state variables (vadose zone, saturated zone and 

snowpack) on the skill of short-term (up to 9 days lead-time) forecasts. Results show that the 

performance of the forecasts is sensitive to the individual hyperparameters and particularly so 

to the temperature uncertainty, which varies between seasons. Additionally, the forecast skill 

is related to the choice of the state variables to be updated depending on the season. The vadose 

zone state variable displays higher importance and sensitivity than the other states, and the 
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results indicate that all state variables should not be systematically updated. Finally, combining 

the best hyperparameter values with the optimal combination of state variables to update, 

insight is provided on the success of the DA scheme that is evaluated on a rolling horizon using 

a set of seasonal rules to gain forecast performance over the span of multiple years. 

 
Highlights 

● Reducing initial forecasting errors using the EnKF DA technique. 

● Improving real-time streamflow forecasts by an optimal EnKF implementation. 

● A seasonal adjustment of the EnKF hyperparameters improves forecast accuracy. 

● The vadose zone state variable is the most impactful and should be prioritized. 

● Data assimilation is most sensitive to temperature uncertainty for forecasting  

 
Keywords:  
Data Assimilation; Sensitivity Analysis; Ensemble Kalman filter; Ensemble Streamflow 

Prediction; CRPS. 

 

4.1 Introduction 

Characterizing and communicating predictive uncertainty in hydrological forecasting is critical 

to effectively support water planning and management decisions. In recent years, much 

progress has been made in forecasting research, and additional efforts introduced towards 

uncertainty quantification and reduction in hydrological forecasting (Roundy et al., 2019). 

Uncertainty in hydrological forecasts originates from three sources: 1) initial conditions of the 

atmosphere derived from observations and numerical weather forecasts (Sun et al., 2018), 2) 

numerical weather prediction (NWP) model uncertainty (Zappa et al., 2010), and 3) 

hydrological model uncertainty (Bourgin et al., 2014). Hydrological predictive uncertainty 

includes errors in model structure, parameters, initial conditions, and calibration (Ajami et al., 

2007; Li et al., 2009). Over the last two decades, DA has attracted attention as a relevant 

method for increasing the skill of hydrological forecasts by improving initial model states, 
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model parameters and structures, while accounting for all predictive uncertainties (Abbaszadeh 

et al., 2018; DeChant & Moradkhani, 2014; Liu et al., 2012). 

 

The purpose of DA is to integrate various observations (i.e., weather forcings, streamflow, soil 

moisture, snow cover), which allows the updating of the model state in time for keeping the 

forecasted streamflow in line with their observed counterparts at the moment of producing a 

forecast. DA ranges from simple rule-based, direct insertion methods to more advanced 

methods (Abbasnezhadi et al., 2021; Liu et al., 2012). The advanced DA methods are usually 

classified according to their tractability approximations: linear (e.g., Kalman filter (KF)) versus 

nonlinear (e.g., EKF), filters (e.g., PF) versus smoothers (e.g., variational DA method), and 

deterministic (e.g., KF and EKF) versus ensemble (e.g., EnKF DA) (Moradkhani et al., 2018). 

Among the popular advanced DA methods listed in Troin et al. (2021), the KF approach is one 

of the most widely used methods, because of its efficiency, simplicity of application, flexibility 

for coupling with hydrological models and low computation demand (Sun et al., 2016). The 

KF variants include, for instance, the EKF, the EnKF, the Asynchronous EnKF (AEnKF) and 

REnKF. The EKF relies on a Taylor extension scheme for linearizing the nonlinear system, 

while the ensemble KF techniques avoid direct linearization by statistically analyzing the 

ensemble members (Sun et al., 2016). KF techniques outperform other DA approaches for 

distributed hydrological models showing the advantage of the KF approaches in updating 

distributed states through error covariance modelling (Abaza et al., 2017; Khaki et al., 2017; 

Mazzoleni et al., 2018; Moradkhani et al., 2018; Thiboult et al., 2016). Even though they 

increase the computational cost, the ensemble KF techniques have the advantage of explicitly 

treating uncertainties due to the ensemble nature with equal weighting of each member (Abaza 

et al., 2017; Khaki et al., 2017; Mazzoleni et al., 2018; Moradkhani et al., 2018; Thiboult et 

al., 2016). Therefore, the EnKF still remains the most widely used hydrological DA method.  

 

The EnKF techniques enhance forecasting skill, however, some challenges still remain 

regarding their effective implementation: this includes the aspects of joint parameter 

estimation, state/error updating, timing errors, multi-observational and large-scale DA (Sun et 
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al., 2016; Troin et al., 2021). The performance of the EnKF DA procedure depends on the 

specification of the hyperparameters (input/output perturbations) and the selection of updated 

state variables (Moradkhani et al., 2005), as not all state variables can (or should) be updated 

(Thiboult & Anctil, 2015; Thiboult et al., 2016). However, most studies rely on an arbitrary 

selection of the hyperparameters and updated states for the EnKF implementation, which are 

mostly defined on an annual basis (Thiboult et al., 2016), without accounting for the 

importance of seasonal effects for an operational streamflow forecasting system. The 

calibration of the hyperparameters is also an important issue where the calibration metric can 

influence the reliability of streamflow forecasts (Bergeron et al., 2021). Several studies show 

that EnKF provides ensemble streamflow forecasts with higher performance, skill and 

reliability for real time and short lead-times compared to longer lead-times (Reichle, 2008; 

Thiboult et al., 2020; Vergara et al., 2014). Nevertheless, in terms of efficiency and temporal 

persistence of the updating effect, EnKF-based forecasts appear to provide more benefit 

compared to other empirical (Jiménez et al., 2019) and sequential ensemble-based DA methods 

(Piazzi et al., 2021) for increasing lead-times. 

 

Considering the above-mentioned challenges regarding the application of EnKF, this study 

aims at identifying the optimal EnKF parametrization at a seasonal scale to quantify and reduce 

the predictive uncertainties related to initial conditions (state variables) in an operational 

forecast mode. The seasonal scale was selected as a compromise between the yearly scale 

(which could not pick up intra-annual changes in the hydrological processes) and the monthly 

scale (which would have required more data to evaluate correctly). A second objective of the 

study is to assess the EnKF performance regarding the efficiency of the season-based updating 

rules for increasing lead-times. The experiment is conducted through the CEQUEAU semi-

distributed hydrological model (Morin & Paquet, 2007) over the Lac-Saint-Jean catchment in 

Canada. The catchment and the hydropower system it contains are operated by Rio Tinto 

Power operations, a subsidiary of Rio Tinto, one of the largest mining and metals companies 

in the world that uses this hydropower system to generate electricity required in their aluminum 

smelters in the region. Section 4.2 presents the experimental design of the study. Section 4.3 
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depicts the key results of the sensitivity analysis related to the EnKF parametrization followed 

by a discussion in Section 4.4. Concluding statements are provided in Section 4.5. 

 

4.2 Materials and methods 

 Study site 

The case study is applied to the Lac-Saint-Jean catchment in central Quebec, Canada, which 

contains a large hydropower reservoir managed by Rio Tinto to provide energy for their 

aluminum smelters (see Figure 4.1). The drainage area is 45 000 km2 and the hydrological 

regime is strongly influenced by snow accumulation and melt (Sabzipour et al. 2021). Rio 

Tinto must therefore plan water resources management under varying conditions throughout 

the year, including more reactive summer and fall seasons, the long low-flow conditions of 

winter and the large inflows caused by snowmelt during the spring. Furthermore, precipitation 

falls mostly in summer (336 mm on average over the months of June, July and August) and 

fall (287 mm over September, October and November). Winter and spring see lower 

precipitation amounts (239 mm over December, January, February and March for winter, and 

145 mm for April and May in spring). The reservoir has an area of approximately 1000 km2 

and can store up to 4550 hm3 of water (Arsenault & Côté, 2019). The generating station can 

turbine 1600 m3/s and spillways can release as much as 6000 m3/s during flood events, 

depending on the reservoir hydraulic head. This gives flexibility to the water resources 

managers, but optimizing the water usage requires high-quality hydrological forecasts over 

various lead-times. Rio Tinto therefore uses the CEQUEAU semi-distributed hydrological 

model driven by operational NWP forecasts as inputs for short-term hydrological forecasting 

and then adding climatological weather to extend the forecasts beyond 10 days for longer-term 

forecasts. These forecasts depend on the initial states of the hydrological model, which need 

to reflect the initial conditions of the catchment prior to issuing the hydrological forecast. 

Therefore, a DA process is typically performed manually by Rio Tinto’s hydrologists. This 

leads to a problem of repeatability for studying the forecasting skill over longer periods, which 
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paves the way for this study, where automatic DA is implemented on the semi-distributed 

CEQUEAU model over the Lac-Saint-Jean catchment. This study therefore requires various 

types of data, as described in the following section. 

 

 
Figure 4.1 The Lac St-Jean (LSJ) catchment and its ten contributing sub-catchments, 

including the “other tributaries” which are the sum of all smaller ungauged rivers flowing 
into the LSJ reservoir. The eleven gamma ray snow sensors (GMON) are represented by 

green crosses, and the Thiessen polygons they generate are also shown. The intersection of 
the ten sub-catchments and the eleven Thiessen polygons represent the 28 hydrological 
units of the CEQUEAU semi-distributed hydrological model used in this study and are 

represented by red circles. Arrows show the drainage direction between the sub-catchments 
as well as the location of the basin outlet. 

 



73 

 

4.2.1.1 Datasets 

Three types of data are required to perform this study: observed inflows at the hydropower 

reservoir, observed meteorological data for model simulation and DA, and forecast data from 

a NWP model to provide the weather forecasts. Inflow data is provided by Rio Tinto and covers 

the 1954-2019 period inclusively. The daily inflow data is computed through mass balance, 

using measured reservoir levels and known water releases to estimate the actual inflows to the 

reservoir. Evaporation is not directly estimated but is included in the daily water level 

fluctuations, which can lead to some hot summer days having small underestimations of 

inflows. This method can lead to noisy inflow patterns, therefore a 3-day moving window 

average is performed to smooth out inconsistencies caused by wind, waves or other small 

temporary changes in water levels during inflow computation. 

 

Meteorological data is also provided by Rio Tinto for the same period as the inflows (1954-

2019). This data is a spatially interpolated grid from Rio Tinto’s 20 weather stations on the 

catchment, as well as approximately 18 stations positioned outside the catchment boundaries. 

The result is a 48-cell grid of precipitation and temperatures over the catchment for the entire 

period. Daily meteorological values include total precipitation and average daily temperature, 

which are the only meteorological inputs required by CEQUEAU. 

 

Finally, the operational weather forecast data are provided by the European Center for 

Medium-range Weather Forecasts (ECMWF). 6-hourly precipitation, minimum and maximum 

temperatures are downloaded for the period ranging between May 20, 2015, and December 31, 

2019. Prior data are not considered since the ECMWF Integrated Forecasting System (IFS) 

was upgraded considerably in May 2015, which would have changed the forecast statistics 

significantly. Total daily precipitation data are computed from the 6-hourly periods, as is the 

average daily temperature. The ECMWF forecasts used in this study are the 50-member 

perturbed forecasts for 1 to 9 days of lead-time to reflect the operational implementation of 
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these forecasts at Rio Tinto. The data are available from the ECMWF MARS archive on the 

ECMWF website: https://www.ecmwf.int/en/forecasts/dataset/operational-archive. 

 

 Methodology 

This section details the methodology used to generate ensemble streamflow forecasts (Figure 

2). The methodology can be broken down into three parts: 1) the generation of an ensemble of 

initial hydrological model states through perturbed meteorological inputs, 2) the DA step 

where the initial conditions are optimized, and 3) the forecasting step using the assimilated 

initial conditions. The process then evolves for the next day, allowing to evaluate the method 

over a period of 4.5 years. The forecast skill is then compared to that obtained in an open loop 

run where no DA is performed. The data assimilation loop is presented in figure 2. The open-

loop forecast is not shown as it is the classical approach without any data assimilation, using 

previous model states to perform the next step’s forecast. 
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Figure 4.2 Flowchart demonstrating the preparation of perturbed weather data, the 
assimilation process and the generation of flow forecasts. Weather forecasts used in 

this study are the operational ECMWF ensemble (perturbed) forecasts over the 
historical period. The process shown in the flowchart is repeated for every 

combination of UP, UT and combination of model states to adjust. 
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4.2.2.1 Hydrological model  

The CEQUEAU hydrological model is used in this study (Morin & Paquet, 2007). CEQUEAU 

is a semi-distributed model with three reservoirs to represent key hydrologic processes: a 

surface reservoir to simulate near-surface processes (i.e., evapotranspiration and infiltration), 

a deeper reservoir to simulate groundwater and base flows, and the ability to accumulate and 

melt snow (snowpack modelling). Evapotranspiration is estimated with the Oudin method 

(Oudin et al., 2005) and snow processes are simulated with the degree-day CEMANEIGE 

model (Valéry, 2010). The watershed was divided into 28 hydrological units, corresponding to 

the intersection of the 10 sub-catchments of approximately similar hydrological conditions (for 

semi-distributed hydrological modeling) shown in Figure 4.1 and the region of influence of 

snow sensor (gamma ray monitors; GMON) stations. The 28 hydrological units are also shown 

in Figure 4.1, where red circles identify the hydrological unit centroids. Each hydrological unit 

receives uniform precipitation and computes vertical fluxes independently before being routed 

to the outlet. CEQUEAU only requires daily precipitation and daily average temperature as 

meteorological inputs, and 23 parameters need to be calibrated. The calibration of the 

CEQUEAU model was performed by Rio Tinto, who provided the pre-calibrated operational 

model of the entire system for this study.     

 

4.2.2.2 EnKF  

The DA method used in this study is the EnKF, which is a Monte Carlo approach dedicated 

for nonlinear filtering issues (Bergeron et al., 2021; Evensen, 1994; Piazzi et al., 2021). The 

EnKF is extensively used in hydrological sciences and forecasting applications (Bergeron et 

al., 2021; Evensen, 1994; Piazzi et al., 2021). The EnKF relies on the approximation of the 

conditional probability densities of the state error covariance by a finite large number of 

randomly generated model realizations. It produces an ensemble of members which are 
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independently propagated through the model operator. A priori state error covariance is derived 

from the statistical analysis of the ensemble (Evensen, 1994). 

 

The two phases of EnKF are the following: (1) a prior estimation - a priori state ensemble is 

first created by adding some random perturbations to the best estimated initial model state. The 

matrices of a prior error covariance are estimated from the state and model output ensemble 

error matrices; (2) a posterior estimation - the state ensemble is integrated forward in parallel 

based on the original model. The observations are perturbed by adding Gaussian (i.e., for 

temperature and streamflow) or Gamma (i.e., for precipitation) noise from the error distribution 

(sampling errors). Then, the a posteriori error covariance matrix is estimated from the 

ensemble error matrix of the a posteriori states. The Kalman gain is then computed from the 

forecast error covariance matrices. During this recursive process, EnKF tries to minimize the 

differences between the estimated model state (i.e., the simulated streamflow ensemble) and 

the observed streamflow (which also includes uncertainty) (Clark et al., 2008; Liu & Gupta, 

2007; Moradkhani et al., 2005). 

 

4.2.2.3 DA experiment  

The experiments considered in this study are based on the assimilation of streamflow at the 

catchment outlet into the CEQUEAU model. The details related to the procedure used to 

assimilate the observations are presented hereafter. 

 

The CEQUEAU model uncertainties are evaluated by the EnKF through the probabilistic 

distribution of the ensemble members of simulated streamflow. Observed meteorological 

forcing data (temperature and precipitation) are perturbed to provide a distribution of inputs 

for each day, which are then transformed into a distribution of simulated flows by CEQUEAU. 

Observed streamflow uncertainty is also accounted for by introducing an error sampled from 

a Gaussian distribution. All uncertainty quantities are defined by sampling values within 

probable bounds, testing various combinations and evaluating their impacts on forecast skill. 
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Equations (4.1) to (4.5) show how the perturbed meteorological and hydrological timeseries 

are computed.  

 

 𝑇 , = 𝑁 𝑇  ,𝑈  
(4.1) 

 

 𝑘 = 𝑃𝑃 ×  𝑈  (4.2) 

 

 𝜃 = 𝑃  ×  𝑈𝑃  (4.3) 

 

 𝑃 , = 𝛤(𝑘 , 𝜃 ) (4.4) 

 

 𝑄 , = 𝑁 𝑄  ,𝑄  × 𝑈  (4.5) 

 

 
Where:  

- Tpert,t, Ppert,t and Qpert,t are the perturbed temperature, precipitation and streamflow for 

timestep t, respectively.  

- Tt, Pt and Qt are the observed temperature, precipitation and streamflow for timestep t, 

respectively.  

- UT, UP and UQ are the uncertainty hyperparameters for temperature, precipitation and 

streamflow, respectively.   

- kt and θt are the scale and shape parameters for the gamma distribution Γ(∙) for day t; 

- N(∙) is the Normal distribution with parameters of mean and standard deviation; and 

- t is the forecast day which covers all days from 1 to T, the total number of days for 

which a forecast is generated. 

 

In this study, 25 samplings are taken for each variable, each day, and each sub-catchment to 

obtain an empirical distribution of the observed variables including the uncertainty as specified 
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by the respective hyperparameters. Special care is taken to ensure that negative streamflow 

values, which could theoretically occur during the perturbation process, are set to zero. 

 

A one-year warm-up period is implemented to dissipate the initialisation errors. Ensembles are 

initialized with a perturbation of the state variables of the CEQUEAU model. Then, a first 

ensemble streamflow simulation of three days is produced by using the generated ensemble of 

perturbed temperature and precipitation, and the ensemble of model states. This allows the 

CEQUEAU model to generate an ensemble of simulated streamflows (Qsim), which are 

compared to the ensemble of perturbed observed streamflows (Qobs). The state variables of the 

CEQUEAU model are updated according to prior estimation of initial state (Qsim) and posterior 

estimation (Qobs and the added error Qobs error).  

The selection of the best hyperparameter sets is conducted as follows: 

 

1. Multiple independent DA runs are conducted from 2015-01-01 to 2019-06-04, by 

varying the uncertainty bounds of the precipitation and temperature inputs. The 

uncertainty values are modified by increments of 0.5°C from 0.5°C to 10°C, and the 

precipitation uncertainty values are modified by increments of 5% from 5% to 100%. 

Therefore, the search space is divided into [20 temperature x 20 precipitation = ] 400 

possible uncertainty combinations, and DA is performed on the entire time series for 

each combination. It is important to note that these values (400 possible uncertainty 

combinations) represent the uncertainty added around the observed value, and thus the 

distribution is centered around the observation but has larger variance the higher the 

value of the hyperparameter. It also means that even if the uncertainty values are 

positive (e.g., 3°C), the errors sampled from the distribution can be negative as the 

uncertainty value refers to the standard deviation of the temperature adjustment 

distribution. Furthermore, multiple values of observed streamflow uncertainty were 

evaluated but the DA method was found to be only marginally sensitive to this 

uncertainty. Therefore, a single fixed value of 5% was selected for this part of the study, 
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to allow for numerical stability in the development of the observed streamflow 

distribution. 

2. The three model state variables selected for the update are the contents of the vadose 

zone reservoir, the saturated zone reservoir and the snowpack. The states are varied for 

each of the sub-catchments independently, therefore when changing one state variable, 

a total of 28 cells are modified. The model state variables are updated both individually 

and in various combinations. This is done to first show the isolated effect of adjusting 

each state variable according to the season, and then to do the same in the context that 

multiple variables are allowed to change simultaneously. This is repeated for each of 

the 400 combinations as described in (1). 

3. The hyperparameter set leading to the best forecast skill (as described in the next 

section) for each season (winter; DJFM, spring; AM, summer; JJA and fall; SON) is 

selected. An additional test is performed to identify if the combination of the state 

variables during state updating can improve the forecast skill. Thus, besides selecting 

the optimum hyperparameter set for each season, we also provide insights regarding 

which state variables need to be updated for each season. 

 

4.2.2.4 Performance evaluation 

The performance of the different streamflow forecasts is assessed using the CRPS (Hersbach, 

2000) at different lead-times (from day 1 to day 9) during the forecast. CRPS is a suitable 

metric for probabilistic forecasts. CRPS measures the average distance between the observed 

(𝐹(𝑞 )), and the ensemble forecast (𝐹(𝑞 )) probability density function, given by equation 

(4.6): 

 𝐶𝑅𝑃𝑆 =  1𝑇 𝐹(𝑞 ) − 𝐹(𝑞 ) 𝑑𝑥 (4.6) 
 

where T is the total amount of time steps. The CRPS ranges from 0 to + ∞, zero being a perfect 

forecast. For streamflow, the CRPS unit is m3/s. 
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Finally, the CRPSS (Continuous ranked probability skill score) is used to compare two 

forecasts: 

 𝐶𝑅𝑃𝑆𝑆 = 1 −  𝐶𝑅𝑃𝑆𝐶𝑅𝑃𝑆  (4.7) 
 

 

where CRPSforecast is the CRPS of the new tested forecast, and CRPSreference is the CRPS of the 

reference forecast, namely the open loop forecast in this study. 

 

4.3 Results  

 Effects of meteorological data uncertainty on hydrological forecasting skill 

This section provides insights on the hyperparameters defining observational uncertainty and 

how they affect the reliability of the ensemble forecasts. This is done by evaluating the effect 

of gradually increasing the individual temperature and precipitation uncertainty 

hyperparameters (Figure 4.3). The ensemble forecasts following the DA step are compared to 

the reference open loop ensemble scenario, which did not implement assimilated data. Results 

in Figure 4.3 are thus shown in relative terms compared to the open loop forecasts. It is 

important to recall that the presented results are for short- to medium-term forecasts (up to nine 

days) whereas some processes are active on much longer periods, such as the snow 

accumulation and melt processes. In such cases, adjusting state variables might not have an 

impact on shorter periods. For example, adjusting the snowpack during winter will adjust the 

amount of snow available in future months, but unless temperatures cross the melting point, 

they will not have an impact on the resulting short-term hydrological forecasts. 
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The results show that the DA performs better than the reference open loop ensemble scenario 

when updating the vadose zone state variable for each of the four seasons when certain 

combinations of precipitation and temperature uncertainty are applied. It can be seen that lower 

CRPS values (negative relative values) are attainable mainly by varying the temperature 

uncertainty within specific ranges during data assimilation. Precipitation uncertainty also plays 

a role, but it is less sensitive than the temperatures for all seasons during data assimilation for 

short-term forecasting. A short summary of results is presented here for each state variable. 

 

Vadose zone: The vadose zone state variable is particularly sensitive to the variation in winter 

temperature. Indeed, a rising temperature will modify the precipitation type and melting when 

the temperatures are near the melting point, giving more flexibility to find better initial states. 

In summer, temperatures play an important role due to evapotranspiration rates which lead to 

a reduction of summer streamflow. Allowing for more uncertainty in the observed temperature 

values thus allows the model to explore wider variations of simulated flows, leading to better 

assimilated states. Summer is the season for which the precipitation uncertainty 

hyperparameter has the largest impact. The interactions between various combinations of 

precipitation and temperature uncertainty hyperparameters are also the most complex in 

summer for the vadose zone.  

 

Saturated zone: As for the saturated zone state variable, a good performance of the forecast 

scenario is seen in winter and fall, with better CRPS values compared to the open loop 

ensemble scenario for specific combinations of uncertainty hyperparameters. However, for 

winter, after a certain temperature threshold is attained (here about 6°C), the forecast skill 

begins to worsen. These findings are not noticeable in summer and spring, where for the 

saturated zone state variable a variation in temperature leads to no improvement of the 

ensemble forecasts with a performance similar or slightly better than that of the open loop 

scenario, even with very large temperature uncertainty of 10°C.  
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Snowpack: For the snow state variable, the forecast scenarios perform well for small values of 

temperature in winter, between 2 and 5 °C. After a specific threshold temperature value, the 

ensemble forecasts diverge until exceeding the CRPS open loop ensemble scenario, probably 

due to the excessive temperature uncertainty which is no longer realistic, and which forces the 

model to modify the mass balance too much to minimize the initial error. No clear 

improvement of the forecast skill is observed in fall for this state variable. The high sensitivity 

of the ensemble forecasts to temperature in winter and spring for the snow state variable can 

be explained by the snowpack dynamics, where a small variation in temperature has a direct 

impact on generating snow melt flows and apportionment of precipitation into rain and snow. 

This winter influence extends to the saturated zone. In fall, variations in temperature for the 

snow state variable have little impact on ensemble forecasts because snowmelt flow 

contributes little to the total streamflow in that season.  

 

 
Figure 4.3 CRPSS of the streamflow ensemble forecasts by season when considering 
variations in temperature from 0.5 ℃ to 10 ℃, precipitation from 5 to 100% and a 

constant uncertainty value of 5% for streamflow. Values represent relative differences 
between the assimilated forecasts and the open loop forecasts. Red (blue) values 

indicate worse (better) performance than the open loop run for the season 
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The particularly weak sensitivity to precipitation uncertainty in winter can be explained by the 

fact that the study catchment is snow-dominated with cold climate conditions in winter. In 

winter, until the beginning of spring, precipitation falls as snow which accumulates over many 

months prior to generating melting flows at the end of the spring. As spring precipitation is a 

mix of solid and liquid phases, the forecasts show more variability. In summer and fall, 

precipitation is in its liquid form and streamflow forecasts are slightly more affected by 

precipitation uncertainty.  

 

From Figure 4.3, we select a precipitation uncertainty value of 10% for all seasons as it either 

has no impact beyond that level or is better than larger values in most cases. Furthermore, using 

larger values unnecessarily generates initial states that could impact longer-term forecasts. 

Given the threshold values observed for temperature, a temperature value with a seasonal 

standard deviation of 3, 5, 7 and 8°C is selected for winter, spring, summer and fall, 

respectively, for further analysis. 

 

 Influence of the choice of state variables to update in EnKF DA 

To further examine the influence of updating state variables on the streamflow forecast skill, 

all combinations of state variables are evaluated for use in DA for each season using the 

hyperparameters that were found to be optimal in the previous section.The ensemble forecasts 

generated with the DA experiments are compared to the ensemble forecasts generated with the 

individual state variables as in Figure 4.3, as well as in the open loop scenario, as seen in Figure 

4.4. 

 

The results reveal that, in winter, the three combinations that include the vadose zone perform 

well, with CRPS values better than the open loop ensemble scenario. However, choosing to 

update two or three state variables in winter does not have a clear impact on the accuracy of 

the ensemble forecasts which are not improved against the DA experiment with one updated 
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state variable (e.g., vadose zone). In spring, the overall skill of the ensemble forecasts is not 

improved by adding more state variables. The best case still remains the sole use of the vadose 

zone as the updated state variable. In summer, the combination of vadose and saturated state 

variables has similar performance to the single vadose zone results. In the interest of simplicity, 

the rest of the results are shown using only the vadose zone for summer as well. Similarly to 

winter, considering a combination of updated state variables in fall does not provide large gains 

in performance since the ensemble forecasts generated with a single updated state variable are 

already of relatively good quality. However, using a combination of vadose zone and snowpack 

state variables does provide a slight increase in forecast skill, thus this combination was 

preserved for the rest of the study. 

 

Therefore, the results show that the performance of the ensemble forecasts are also related to 

the choice of the updated state variables for each season and all state variables should not be 

systematically updated for every season. According to these results, the state variables to 

update in order to get the best performance of the ensemble forecasts with a low CRPS are:  

 

1. Winter: either the vadose zone on its own, or any combination that includes the vadose 

zone. But for simplicity, the vadose zone taken individually is recommended; 

2. Spring: the vadose zone on its own or in combination with the saturated zone; 

3. Summer: the vadose zone on its own or in combination with the saturated zone; 

4. Fall: any combination that includes the vadose zone, with a small preference for the 

combination of the vadose zone and the snowpack. 

 

To keep things as simple as possible, a user could preserve almost all the skill by focusing only 

on the vadose zone during the updating of state variables. These best sets of state variables to 

update in DA are considered for further analysis in the next section. 
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Figure 4.4 CRPSS score of the streamflow ensemble forecasts by season when 

considering different combinations of state variables with constant seasonal values of 
the precipitation (10%) and streamflow (5%) with varying temperature uncertainty 
hyperparameters. [Abbreviations in this figure = vad.: vadose zone; sat.: saturated 

zone; sno.: snowpack] 
 

 Insights on the best hyperparameter and state variable combinations per 
season 

Using the best hyperparameter values and the best combinations of updating state variables 

applied for each season, we are able to provide a DA recipe (Table 4.1) in order to gain as 

much forecast skill as possible.  

 

Figure 4.5 and Figure 4.6 present the skill of ensemble forecasts generated after application of 

DA using the recommended recipe at the forecast lead-time of day 1 and day 9, respectively. 

Boxplots contain the results of all forecast days for each season (see Table 4.1). The lower the 
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CRPS value, the better the forecast skill for the given lead-time. As expected, the ensemble 

forecasts are clearly improved with the recommended recipe at the lead time of day 1, 

particularly in winter, summer, and fall, with a low ensemble spread and uncertainty compared 

to the open loop ensemble scenario and for which the results are statistically significant at the 

5% level using a Wilcoxon non-parametric test. For spring, the CRPS variability is lower 

overall with the application of the DA recipe, but the median is similar to the open loop run. It 

is also clear that for some seasons, such as spring and summer, the forecasting skill quickly 

falls to open loop levels or worse for the longer lead times, as seen in Figure 4.6. In Figure 4.6, 

at the 9th day of lead-time, only the winter season shows significant differences between both 

scenarios. This shows the benefits of using a DA recipe for each season in order to prolong the 

performance of the ensemble forecasts for larger lead times for the more responsive seasons. 

The improvement over the open loop ensemble scenario can be quantified using the CRPSS 

metric for each day of lead-time. This is presented in Figure 4.7, with CRPSS values for each 

lead-time and for each season. 

 

Finally, by pooling all forecast events together, it is possible to investigate the added value of 

the DA scheme for streamflow forecasts for each of the lead times from 1 to 9 days, but over 

the entire multi-year period. In this case, the DA recipe is followed by changing the 

hyperparameters for each new season according to the recommendations in Table 4.1. These 

results are shown in Figure 4.8. 

 

It can be seen that the median and lower quantile forecast CRPS values are better than those 

using an open loop approach for all lead-times. Much of these gains are due to the winter 

period, which responds very well to the DA. However, even the 75th quantile seems to be 

slightly better using DA over the entire year, although starting at day 6, these results start to be 

less significant or indifferent.  
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Table 4.1 Summary of the recommended DA recipe for each season 
 

 Winter Spring Summer Fall 

H
yp

er
pa

ra
m

et
er

 

Temperature uncertainty 3°C 5°C 7°C 8°C 

Precipitation uncertainty 10% 10% 10% 10% 

Streamflow uncertainty 5% 5% 5% 5% 

Combination of updated state 
variables 

vadose 
zone 

vadose 
zone 

vadose 
zone 

vadose zone 
snowpack 

Number of forecast days in the 
period 191 101 122 122 

 

 

 

Figure 4.5 CRPS values of the streamflow ensemble forecasts for data assimilation 
(DA; blue) and open loop ensemble (OL; orange) by season at day 1 when 
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considering the best combination of state variables and the optimal hyper-parameter 
values by season 

 

 

Figure 4.6 CRPS values of the ensemble for data assimilation (DA; blue) 
and open loop ensemble (OL; orange) streamflow forecasts by season at day 
9 when considering the best combination of state variables and the optimal 

hyper-parameter values by season. 
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Figure 4.7 CRPSS results. An overview of seasonal comparative 
performance of forecasts using DA and open loop initial states. Positive 

values indicate better forecasts than the open loop forecast 
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Figure 4.8 CRPS values of the annual ensemble streamflow forecasts during the entire 
lead-time when considering the best combination of state variables and the optimal 

hyper-parameter values for each season 
 

 Forecast performance evaluation  

To assess the performance of the EnKF DA method, the ensemble streamflow forecasts 

generated with the DA scheme and the open loop approach are compared to the observed 

streamflow for a 9-day forecast (Figure 4.9), which is the maximum lead-time available in our 

weather forecast data. The results show the general added value of the DA recipe to the overall 

quality of ensemble forecasts in winter for lead-times up to 9 days, which surpasses that of the 

open loop ensemble. In spring, this is true for shorter lead-times (below 5 days) after which 

the performance of the ensemble forecasts decreases with increasing lead-time to get closer to 

that of the open loop ensemble. The summer DA scheme increases the spread of the ensemble 

forecasts for shorter lead-times (below 6 or 7 days) which allow it to get closer to the observed 

streamflow compared to the open loop ensemble. The comparison of DA-ensemble forecasts 

with the open loop ensemble in fall shows that the DA generates skillful forecasts for lead-
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times between days 2 to 9 days depending on the day and hydrometeorological conditions. 

However, as seen in Figure 4.7, after about 5 days the effects of DA become marginal, 

consistent with the findings of (Samuel et al., 2019). 

 

 
Figure 4.9 Examples of forecasts before and after application of DA for each season, 

including observed (red) and forecasted (gray) streamflow ensembles during over the 9-
day lead-time when considering the best seasonal DA recipe (hyperparameter set and 

state variables) 
  

4.4 Discussion 

This work has provided insights regarding the seasonal forecasting accuracy of streamflow 

when the EnKF-based assimilation of input (precipitation and temperature) and output 

(streamflow observations) is performed within the operational CEQUEAU hydrological model 

over the Lac-Saint-Jean catchment (Canada). The focus is placed on the estimation of forecast 

improvement for multiple lead-times, and how the different EnKF hyperparameters and state 

variables need to be seasonally perturbed to construct a more accurate forecasting platform.   
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In general, the DA scheme has a positive impact on the streamflow forecasts for lead-times 

shorter than 6 days. The effect of DA decreases with longer lead-times, except in winter where 

Figure 4.3 the benefit of the DA extends until the end of the forecast window at day 9 (Figure 

4.8). The ensemble forecasts after the 6-day lead-time depict little difference compared to the 

reference open loop scenario, which indicates that the DA approach has little effect when the 

lead-time is longer than the concentration time of the catchment, which is of about 5 days on 

the Lac-Saint-Jean catchment depending on the season and hydrological conditions. Chen et 

al. (2013) indicate that the DA leads to no improvement on streamflow forecasting when the 

lead-time exceeds the flow routing time of the catchment, which represents a physical limit of 

the forecasting process. Patil and Ramsankaran (2017) show that the persistence of streamflow 

forecast improvements is longer when the subsurface flow component is updated for their 

model. Our results corroborate these findings as the vadose zone state variable is the most 

sensitive and impactful in all our tests and is deemed the most important for all seasons. 

 

The results show the general added value of a season-conditioned DA approach to the overall 

quality of ensemble forecasts. When evaluating the quality of ensemble forecasts with the 

CRPS and CRPSS values, the benefits in terms of skill depend first on the hyperparameter sets. 

Accuracy of ensemble forecasts is achieved by using important perturbations of the 

temperature hyperparameter, with up to 9 °C uncertainty on the observations. Precipitation and 

streamflow play very limited roles in this regard, which is somewhat surprising given that 

precipitation is typically more difficult to measure than temperature. Nonetheless, larger values 

of precipitation uncertainty are detrimental to forecast skill in summer. This illustrates the level 

of uncertainty associated with the meteorological input data, but could also be a means to 

compensate for other biases and flaws present in the rest of the hydrological model and 

forecasting chain. A fundamental limitation is the representativeness of such observation 

perturbations which can be somewhat unrealistic. However, a hyperparameter set with low 

input temperature perturbations does not provide ensemble forecasts that are as skillful (Figure 

4.3). In most cases, the efficiency of the DA scheme is seen right after the model spins up and 
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the duration of efficiency for longer lead-times varies between seasons. This shows that other 

predictive uncertainties need to be considered to obtain a reliable forecasting system. Some 

studies address the issue of the estimation of the ensemble size (not explored here), as the 

efficiency of the DA procedure through the tuning of the hyperparameters is linked to the 

ensemble size (Moradkhani et al., 2005; Thiboult & Anctil, 2015). The authors show that an 

ensemble size of at least 40 members allows sampling error to be limited. Most hydrological 

forecasting studies rely on a 50-member ensemble as a compromise between stochastic errors 

and computational cost during the sampling of the distributions of the state variables (Valdez 

et al., 2022). Here, a 50-member ensemble is considered for seasonal streamflow forecasting 

over the Lac-Saint-Jean catchment. 

 

We also show that the selection of state variables to update plays a role in the forecast skill 

improvement. As the chosen state variables (vadose zone, saturated zone, and snowpack) are 

representative of reservoirs located at different depths in the CEQUEAU model, who interacts 

with them differently according to the seasons, the combined or individual updating of these 

state variables can influence the seasonal ensemble forecasts of streamflow in a different 

manner. As shown in (McMillan et al., 2013) and (Rakovec et al., 2015), the issue of the 

number of state variables to update is challenging since updating all model state variables does 

not systematically imply the best findings in terms of reliability of streamflow forecasts. It is 

also shown that applying DA techniques such as EnKF could improve short-term forecast skill 

at the cost of long-term water balance disruptions, which could lead to much worse long-term 

forecasts (Mai et al., 2020). This is in agreement with our results, in which we can see that the 

spring CRPS values become worse than that of the open loop over a span of 9 days (Figure 4.5 

and Figure 4.6). In that particular case, it is likely that the DA modifies the states in such a way 

that the short-term error is minimized but introduces new errors in the mass balance that affect 

longer-term forecasts. 

  



95 

 

4.5 Conclusion 

In this study, an EnKF-based assimilation of inputs (temperature and precipitation) and output 

(streamflow) is applied to the operational CEQUEAU hydrological model to improve short-

term streamflow forecasting performance over the Lac-Saint-Jean catchment (Canada). In 

order to enhance the efficiency of the assimilation, a new ensemble is created by perturbing 

the EnKF hyperparameters and by selecting the most relevant model state variables to update 

for each of the four seasons. This work compares the 50-member ensemble of streamflow 

simulations obtained through perturbed values of the EnKF hyperparameters and state 

variables with the reference open loop scenario without assimilation. A sensitivity analysis is 

conducted to evaluate the influence of the   hyperparameters and model state variables on the 

reliability of the seasonal forecasting performance. 

 

The results indicate that the use of a seasonal DA scheme with fixed hyperparameters (P: 

precipitation, T: temperature, Q: streamflow) and best state variables combination (vadose 

zone and/or saturated zone and/or snowpack) by season leads to the overall improvement of 

ensemble streamflow forecasts. Ensemble forecast skill decreases with longer lead-times as 

the effects of the DA wear off after the first six days. Despite this, the gain provided by EnKF 

over the open loop scenario is substantial, especially in winter. These results imply that 

conducting a detailed testing of all possible combinations to identify the best seasonal 

performing EnKF implementation could help operational forecasters better target the 

assimilation hyperparameters for their specific need. For future forecasting studies, we 

encourage performing a detailed sensitivity analysis which addresses the issues of the seasonal 

selection of the EnKF hyperparameter and state variable selection of the forecasting system to 

ensure the EnKF relevance.  

 

Overall, the findings of this study show the strong seasonal sensitivity of the EnKF 

hyperparameters and the model state variables. A judicious seasonal implementation of the 
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EnKF assimilation scheme has significant potential to improve streamflow forecasts for 

operational forecasting centers and water resources system managers. 
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Abstract 
 

Streamflow forecasting is crucial in water planning and management. Physically-based 

hydrological models have been used for a long time in these fields, but improving forecast 

quality is still an active area of research. Recently, some artificial neural networks have been 

found to be effective in simulating and predicting short-term streamflow. In this study, we 

examine the reliability of Long Short-Term Memory (LSTM) deep learning model in 

predicting streamflow for lead-times of up to ten days over a Canadian catchment. The 

performance of the LSTM model is compared to that of a process-based semi-distributed 

hydrological model, with both models using the same weather ensemble forecasts. 

Furthermore, the LSTM’s ability to integrate observed streamflow on the forecast issue date is 

compared to the DA process required for the hydrological model to reduce initial state biases. 

Results indicate that the LSTM model forecasted streamflows are more reliable and accurate 
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for lead-times up to 7 and 9 days, respectively. Additionally, it is shown that the LSTM model 

using recent observed flows as a predictor can forecast flows with little error in the first 

forecasting days without requiring an explicit DA step, resulting in improved skill compared 

to both the open-loop and assimilated distributed hydrological model. 

  

Keywords: Long short-term memory (LSTM); hydrological forecasting; data assimilation; 

ensemble forecasting; deep learning. 

 

5.1 Introduction 

Accurate, reliable, and easily understandable hydrological forecasts are crucial for a wide range 

of users in water- dependent sectors, such as agriculture, hydropower, and floodplain 

management (Anghileri et al., 2016; Boucher et al., 2012; Cassagnole et al., 2021). As a result, 

forecasting streamflow has been the focus of numerous studies since the mid-1970s (Day, 

1985; Twedt et al., 1977), and has seen an increasing amount of attention in recent decades 

(Troin et al., 2021) as demands for water resource management and natural disaster mitigation 

have risen substantially. 

 

There are two main methods used to forecast streamflow: the first is the use of dynamical (or 

process-driven) hydrological models, which range from conceptual and lumped to physically-

based and distributed models; the second is the use of data-driven statistical models such as 

machine learning (ML), artificial neural networks (ANNs) and autoregressive models 

(Rajagopalan et al., 2010). These approaches can provide an ESP system when ensemble 

weather forecasts are used as inputs. However, dynamical hydrological models are often 

limited by the availability of data required for their implementation, such as soil type and depth; 

or by their simplistic process representations (Damavandi et al., 2019). These issues can be 

overcome using deep learning approaches, which can lead to reliable simulations of hydrologic 

systems even when the underlying physical processes are not explicitly taken into account 

(Maier et al., 2010). A particular type of ANNs that has become increasingly popular in the 
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last years in the field of hydrology, is long short-term memory (LSTM) network, due to its 

ability to process sequential data and time series (Shen & Lawson, 2021; J. Zhang et al., 2018). 

 

LSTMs, introduced by Hochreiter and Schmidhuber (1997), are an advanced type of recursive 

neural networks (RNNs) designed to learn sequence (temporal) data and their long-term 

dependencies outperforming the latter (Kratzert et al., 2018). An LSTM consists of a memory 

cell, which is a neuron with a self-recurrent connection, and three nonlinear gates that control 

the movement of information within and outside the cell. The forget gate, or cell memory, 

preserves information for a long time, allowing the LSTM to learn long-term dependencies 

that other RNNs cannot. As a result, LSTMs can overcome the issues of short-term memory 

and vanishing gradients that traditional RNNs face (Xu et al., 2020).  

 

The potential use and benefits of LSTMs in the field of hydrology have recently begun to be 

explored (Arsenault et al., 2023; Hu et al., 2018; Hunt et al., 2022; Khoshkalam et al., 2023; 

Kratzert et al., 2018; Sahoo et al., 2019; J. Zhang et al., 2018). For example,J. Zhang et al. 

(2018) evaluated the performance of various RNNs architectures in simulating water levels in 

Norway and found that the LSTM is better suited for multi-step-ahead forecasts than other 

architectures without cell memory. Kratzert et al. (2018) compared the performance of the 

LSTM and the SAC-SMA hydrological model (Sorooshian et al., 1993) for simulating long-

term streamflow over 241 catchments in North America and found that the former 

outperformed the latter, highlighting the potential of LSTMs as regional hydrological models. 

Kratzert et al. (2018) and Lees et al. (2021) also noted the possibility of applying LSTMs in 

regions other than the one used for training. Hunt et al. (2022) evaluated the performance of 

the LSTM in predicting streamflow in various climate regions of the United States and 

compared it to the Copernicus Emergency Management Service (CEMS) physics-based 

GloFAS. The authors reported that LSTM generated skillful forecasts that outperformed the 

raw and bias-corrected GloFAS forecasts up to a 5-day lead-time. In this context, Hu et al. 

(2018) attributed the better performance of LSTM compared to conceptual and physical-based 

hydrological models to the feature of the forget gate. However, other studies have reported the 
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difficulty using LSTMs for predicting streamflow during extreme conditions, as well as for 

catchments with complex groundwater-river interactions and human abstractions (Kratzert et 

al., 2018; Lees et al., 2021). Arsenault et al. (2023) showed that LSTMs systematically 

outperformed traditional hydrological models in a regionalization experiment performed over 

148 North American catchments. Nevo et al. (2022) developed a flood forecasting model using 

LSTMs and found that it was significantly better than more traditional multiple linear 

regression models in forecasting river water stages in India and Bangladesh.  

 

Recently, some studies have begun investigating the use of encoder-decoder (ED) LSTMs, also 

known as sequence-to-sequence or Autoencoder (AE) LSTMs. Kao et al. (2020) found LSTM-

EDs are reliable in converting rainfall sequences to runoff sequences and suitable for 

forecasting hourly floods. Zhang et al. (2022) showed that LSTM-EDs perform better than a 

conceptual model for predicting floods in ungauged catchments. These consist of two RNNs, 

an encoder and a decoder. The encoder converts a variable-length sequence to a fixed-length 

vector , and the decoder converts the fixed-length vector back to a variable-length sequence 

(Ghimire et al., 2022). There is a hidden layer between these two steps that processes the 

encoded data (Cho et al., 2014; Wang et al., 2016), allowing the sequences of observed data to 

be used directly to predict multiple timesteps at a time and using previous states for a given 

forecast. AEs have recently been applied to streamflow forecasting, by(Kao et al., 2021) using 

an LSTM autoencoder for flood inundation forecasts to generate multistep-ahead regional 

inundation maps; Ponnoprat (2021) using a seasonally integrated autoencoder combined with 

a LSTM for predicting short term dynamics and seasonality of daily precipitation; and 

(Girihagama et al., 2022) using an attention-based Encoder-Decoder LSTM to improve 

forecasting skill over ten catchments in Canada. These methods should also be considered in 

future research on LSTM-based forecasting (Provotar et al., 2019), although they remain 

complex and more difficult to implement than simpler LSTM models for forecasting. 

 

Incorporating and integrating observational data is important for better performance of 

hydrological forecasting, as it helps adjust model states such that the model represents actual 
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hydrological conditions as best as possible. This is done by applying methods such as data 

assimilation (DA) and regressions for state updating (Brajard et al., 2020; Fang & Shen, 2020; 

Nearing et al., 2022). Nearing et al. (2022) discussed ways of integrating data in LSTMs to 

represent missing streamflow data for gauged and ungauged basins. They used a regression 

method and variational DA method. The integration part was added to the cell state of LSTM, 

i.e., the one which is the recursive state of LSTM, in order to over-train observed streamflow 

data which are spared. They found DA has advantages over autoregression, since it is able to 

deal with up to 50% of missing data. They reported DA worked better when used for 

catchments including both gauged and ungauged basins. (Brajard et al., 2020) reported 

successful results for combining the EnKF with a surrogate model of a neural network. Fang 

and Shen (2020) used LSTMs to forecast soil moisture using satellite data using a Data 

Integration kernel to assimilate and update models with the most recent available observations 

showing that it was effective to reflect unseen processes in inputs, such as floods. 

 

This study aims to evaluate the potential of LSTM to simulate and forecast daily streamflow 

over the Lac-Saint-Jean (LSJ) catchment, located in the province of Quebec, Canada. In this 

region, a large portion of the streamflow comes from snowmelt, making it an ideal environment 

for testing LSTM forecasts in snowmelt-dominated catchments. As there are only a few 

applications of LSTM forecasting in Nordic regions, the architecture and reliability of this deep 

learning technique needs to be investigated to identify the benefits for streamflow forecasting 

as an operational deployment in this region. The strong snowpack dynamics and the importance 

of capturing such long-term hydrological processes make it more challenging than in regions 

with more uniform weather. (Girihagama et al., 2022) used an ED LSTM with an attention 

mechanism to provide streamflow forecasts in ten river catchments in the Great Lakes region 

in Canada. Their study concluded that this variant of LSTM was able to provide excellent 

forecasting results for up to five days of lead-time. (Khoshkalam et al., 2023) employed 

transfer learning with LSTM, leveraging meteolorogical and physiographic data, to enhance 

forecast skill in snow-dominated regions. By training the model on data-rich regions and 
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emphasizing the inclusion of recent streamflow data, the study underscored the significance of 

integrating multiple data sources for improved predictions. 

 

In particular, this study seeks to address the following research questions: 

● How well do LSTM-based models forecast streamflow over a catchment where the 

hydrologic response is dominated by snowmelt? 

● How does LSTM-based model performance compare with the operational forecasting 

system (a semi-distributed hydrological model combined with a DA scheme) used as a 

benchmark? 

 

The experimental design, including the study area and data used to train and evaluate the 

models, is described in section 5.2. The method, including a description of the LSTM and the 

semi-distributed hydrological model, is presented in Section 5.3. The results are analyzed in 

Section 5.4 followed by a discussion in Section 5.5. Concluding remarks appear in Section 

5.5.2. 

 

5.2 Experimental design  
 

 Study area  

This study was conducted on the LSJ catchment in the province of Quebec, Canada (Figure 

5.1). The catchment has an area of 45000 km2 and is used for hydropower generation by the 

Rio Tinto corporation for aluminum smelting. The catchment is made up of nine monitored 

sub-catchments, which drain into the reservoir, as shown in Figure 5.1a. The figure also shows 

the catchment location (Figure 5.1d). The sub-catchment “other tributaries” is made up of a 

series of small rivers and streams that all flow to the reservoir but are ungauged. The annual 

average precipitation on the LSJ catchment is 1000 mm, of which 34% falls as snow, as 

measured by Rio Tinto’s weather monitoring network stations. This provides substantial 

inflows to the Lac-St-Jean reservoir, a 1000 km2 reservoir that can store up to 4550 hm3 of 
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water for the hydropower generating station (Arsenault & Côté, 2019). Spring peak flows are 

associated with snowmelt events, while high flows in summer and fall are related to 

precipitation events. Mean annual streamflow is about 900 m3s-1 (Bergeron et al., 2021). 

 

 
Figure 5.1 LSJ catchment and its ten contributing sub-catchments, including the “other 

tributaries” which are the sum of all smaller ungauged rivers flowing into the LSJ 
reservoir (a). Hydrometric stations are represented by stars (a). The eleven gamma ray 

monitors (GMON) are represented by red crosses over the Thiessen polygons they 
generate (b). The intersection of the ten sub-catchments and the eleven Thiessen 

polygons represent the 28 hydrological response units (HRU) of the CEQUEAU semi-
distributed hydrological model used in this study, represented by a blue circle (c). The 

location of the LSJ catchment in Quebec, Canada, is shown within Eastern North 
America (d) 
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 Datasets 

In this study, multiple datasets were used, including streamflow data as well as observed and 

forecasted weather data. This section describes all datasets and their pre-processed 

methodology. 

 

5.2.2.1 Observed hydrometeorological data (used for calibration of hydrologic model) 

The observed hydrometeorological data were provided by Rio Tinto, the operator of the 

hydropower generating station and owner of water rights for the LSJ system. The data covered 

the period from January 1954 to December 2019 and included daily minimum and maximum 

temperatures and precipitation from a network containing 16 weather stations distributed 

throughout the catchment.  

 

In addition to the weather data, Rio Tinto also provided inflows to the main reservoir, which 

were derived through mass balance calculations by evaluating changes in the reservoir level at 

various locations along with known outflows from turbines and spillways. This was necessary 

as multiple rivers and tributaries flow into the reservoir, making a significant portion of the 

flows ungauged. However, the mass-balance derived inflows can be noisy at times due to wind 

displacing the water surface, which can bias storage volumes over short periods (Loiselle et 

al., 2021). To address this, a three-day moving average was applied to smooth out variations 

in inflows, which did not change the total water balance over longer horizons, or the timing of 

events in a significant manner. The inflows to the reservoir are the target of the forecasting 

procedure in this study. 
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5.2.2.2 Ensemble weather forecast (used for forecasting with hydrologic and LSTM 
model) 

To assess the performance of the semi-distributed hydrological model and the LSTM model in 

forecasting mode, the 50-member operational ensemble weather forecast data was obtained 

from ECMWF IFS using the Meteorological Archival and Retrieval System (MARS) archive 

(https://www.ecmwf.int/en/forecasts/dataset/operational-archive; Grawinkel et al., 2015). The 

variables of total precipitation, maximum and minimum temperature were available at a spatial 

resolution of 0.2° x 0.2° on a 6-hourly time step twice per day (0Z and 12Z). For this study, 

only the 0Z forecasts were utilized and aggregated to a daily time step. The forecast lead-times 

from one to ten days were downloaded, but the last day was truncated due to the five-to-six-

hour time zone offset that made the tenth day unavailable for the entire period for the study 

location, resulting in an effective nine-day ensemble weather forecast. The forecasts were 

downloaded for the period of January 2015 to December 2019. Data prior to 2015 were not 

included due to a major update of the ECMWF integrated forecasting system in 2015, which 

caused a change in weather forecast statistics that would not be representative of the more 

recent model versions. The ensemble forecasts of precipitation and temperature were then 

spatially aggregated to the scale of the 28 distributed hydrological model sub-regions for the 

hydrological model and over the entire catchment as input to the LSTM model. Note that the 

raw forecasts were used, and no bias-correction was implemented at this stage. 

 

5.2.2.3 Reanalysis data (used for training of LSTM model) 

In this study, a second set of pseudo-observed meteorological data, known as reanalysis data, 

was used to train the LSTM model. This data is from the ECMWF fifth generation reanalysis 

(ERA5; Hersbach et al. (2020)). The reanalysis data used to provide observations on the 

historical period, so that the LSTM model could be used to forecast data with the same 

variables in the forecasting period. The station-based observations provided by Rio Tinto 

(Section 5.2.2.1) did not contain the desired spatial and temporal coverage of wind, solar 
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radiation, and pressure variables for this training, thus ERA5 data was used instead. The 

variables used from ERA5 are the same as for the forecast data, but at an hourly time step on 

a 0.25° x 0.25° resolution. The ERA5 data was aggregated at the daily scale and was spatially 

aggregated over the entire catchment, to maintain consistency with the spatial and temporal 

scales of the ensemble weather forecast data. The data is available from January 1979 to the 

present day with a latency of approximately five days, which was deemed sufficient for training 

the LSTM model in this study. 

 

5.3 Methods 
 

This study aims to evaluate the ability of the LSTM neural network model to forecast 

streamflows on a large, snowmelt-dominated catchment. A traditional semi-distributed 

hydrological model is also used as a comparison over the same catchment and time periods. 

The methods used to achieve the study objectives are described in detail in this section, 

including the forecast evaluation metrics (Section 5.3.1), the traditional hydrological modeling 

and forecasting (Section 5.3.2), and the LSTM model training and forecast testing (Section 

5.3.3). 

 

 Performance evaluation criteria 

The performance of the different streamflow forecasts is evaluated using the Kling-Gupta 

Efficiency (KGE; Gupta et al. (2009), Continuous Ranked Probability Score 

(CRPS;(Hersbach, 2000) and Mean Absolute Error (MAE; (Mather & Johnson, 2016) at 

different lead-times (from days one to nine) during the forecast.  

 

The KGE, which is unit less, is defined as: 

 

 𝐾𝐺𝐸 = 1 − (𝑟 − 1) (𝛽 − 1) (𝛾 − 1)  (5.1) 
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where r is the Pearson correlation coefficient; β is the bias ratio (𝜇 /𝜇 ); and γ is the 

variability ratio (𝜎 /𝜎 ) where 𝜇  and 𝜎  are the mean and standard deviation of the 

forecasted (simulated) streamflow and 𝜇  and 𝜎  are the equivalent for the observed 

streamflow. A perfect forecast would have a KGE of 1, while suboptimal forecasts show KGE 

values lower than 1. 

The CRPS is a suitable metric for probabilistic forecasts. It measures the average distance 

between the observed probability density function (𝐹(𝑞 )), and the ensemble forecast 

probability density function (𝐹(𝑞 )), given by: 

 

 𝐶𝑅𝑃𝑆 = 1𝑇 𝐹(𝑞 ) − 𝐹(𝑞 )  𝑑𝑞 (5.2) 

 

where T is the total amount of time steps. The CRPS ranges from 0 to + ∞, with zero being a 

perfect forecast. For streamflow, the units of CRPS are m3s-1. CRPS has the same dimension 

as q (dq). 

 

Finally, CRPSS is used to compare two forecasts: 

 

 CRPSS = 1- (CRPSforecast / CRPSreference) (5.3) 

 

where CRPSforecast is the CRPS of the new tested forecast and CRPSreference is the CRPS of a 

reference forecast. A CRPSS (unitless) of 1 indicates that the forecast has perfect skill, a value 

of 0 indicates that the forecast has no benefit over the reference, and a negative value indicates 

that the forecast is less accurate than the reference. 

 

MAE measures the difference between the observed and forecasted results but in a 

deterministic (rather than ensemble) setting. The MAE is the equivalent of the CRPS when a 

single member is used, and therefore the CRPS can be seen as an extension of MAE to 

ensembles. MAE is an average of the absolute error, as:  
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 𝑀𝐴𝐸( )= 
∑  ( )  ( )  (5.4) 

 

where 𝑞  is the observed streamflow, 𝑞  is the simulated streamflow (which also means 

pseudo-forecasted as well) for the 𝑖-th member of the ensemble of size N at lead-time 𝑡. The 

optimal value for MAE is 0. 

 
 The CEQUEAU hydrological model 

The CEQUEAU hydrological model is used as a benchmark for evaluating model performance 

statistics in this study. CEQUEAU is a semi-distributed model that incorporates two conceptual 

reservoirs to simulate key hydrologic processes: a surface snowpack reservoir to simulate snow 

accumulation and melt processes, an unsaturated zone reservoir that describes the soil 

infiltration and interflow processes, and groundwater storage and base flows (Morin & Paquet, 

2007). Evapotranspiration is estimated using the Oudin method (Oudin et al., 2005) and snow 

processes are modeled with the degree-day CEMANEIGE model (Valéry, 2010).  

The schematic for the CEQUEAU model is provided in Appendix I. 

 

The catchment is divided into 28 hydrologic response units, which correspond to the 

intersection of the influence area of GMON snow monitoring stations and the 10 hydrologic 

sub-catchments (Figure 5.1a-c). The simulation of vertical fluxes is independently performed 

on each of the 28 sub-regions, as described in Mai et al. (2020). Unit hydrographs are then 

employed to route flows to the downstream sub-catchments until they reach the outlet. 

CEQUEAU only requires daily precipitation and average daily temperature as meteorological 

inputs. The model was manually adjusted and calibrated by Rio Tinto, which provided their 

operational streamflow forecasting model for this study. The model was set up using data from 

January 1954 to December 2014 and has been their primary hydrological forecasting tool since.  
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CEQUEAU was then employed to generate streamflow forecasts for the period of January 

2015 to December 2019, both in open-loop mode (i.e., without DA) and using an 

implementation of EnKF Evensen (1994) DA procedure. The EnKF used in this study was 

optimized for forecasting performance on the LSJ catchment and was implemented according 

to the procedure described in CHAPTER 4, which is summarized in the supplementary material 

(Section 5.8.1). CEQUEAU was forced with observed meteorological variables (Section 

5.2.2.1) until the forecast date using the EnKF to maintain robust state variables up to the day 

the forecast was issued. At this point, the hydrological model was run using the ECMWF 

ensemble weather forecasts (Section 5.2.2.2) as meteorological input to generate the ensemble 

streamflow forecasts. DA was performed every three days to increase computation efficiency 

and to prevent the model’s initial states from drifting too far away from the observations. 

Streamflow forecasts generated by CEQUEAU (with and without DA) were only generated on 

the dates that DA was performed to ensure the best possible initial states while allowing a small 

temporal gap between streamflow forecasts to prevent strong autocorrelations between 

successive forecast dates.  

 

 LSTM network 

In this study, a single-layer LSTM model with a variable number of units was chosen as the 

model structure. The setup details and hyperparameters of the LSTM are summarized in Table 

5.1. Different hyperparameters and model structures were considered for each lead-time during 

the model training and were tested to obtain the best results as measured by the KGE metric. 

The dropout rate, number of epochs, batch size, and number of LSTM units hyperparameters 

were modified and optimized for each lead-time through trial-and-error to improve 

performance on the validation period. The dropout rate was included to randomly turn off a 

certain percentage of LSTM units during training, in order to reduce overfitting and improve 

modeling performance during forecasting. The number of epochs, or the number of times the 

model sees the full dataset during the training, and batch size, or the size of the dataset sub-
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sample used to estimate the gradient descent, were adjusted to speed up the training and ensure 

its convergence. This led to a larger number of epochs for longer lead-times. 

 

The LSTM models were trained and tested using multiple meteorological variables from the 

ERA5 reanalysis dataset, including precipitation, temperature, wind, surface pressure, net solar 

radiation and dewpoint temperature, (Section 5.2.2.3) and daily observed streamflow provided 

by Rio Tinto (Section 5.2.2.1) for the period from January 1979 to December 2014. The LSTM 

models were trained on sequences of [365-k] days of hydrometeorological data prior to a single 

observed streamflow target, where k is the lead-time for which the model will be used to 

forecast flows (see Figure 5.2a). Additionally, streamflow data up to the forecast date were 

used as inputs to the LSTM model, allowing the network to access recent information about 

the current hydrological state at the time of forecast, similar to how CEQUEAU has access to 

assimilated initial states. However, this also means that for each forecast lead-time, the LSTM 

model needs to be retrained with streamflow observations being lagged by the same number 

of days as the forecast lead-time. For example, for a 3-day lead-time forecast, the LSTM inputs 

would be a combination of 362 days of observed weather data prior to the forecast day as well 

as 362 days of streamflow observations lagged by 3 days (see Figure 5.2a for an example of 

data and periods used to train a 1-day and a 3-day lead-time forecasting model). This ensures 

that no observed streamflow from the forecast period is used during model training. To train 

these models, observed data (both weather and hydrometric) are used for all time steps; 

however, in forecasting, the forecast lead-time days are replaced with actual forecast data and 

the observed streamflow time series ends on the day of the forecast issue (see Figure 5.2b for 

an example of application of a 1-day and a 3-day forecasting model). Nine different LSTM 

models were thus trained, corresponding to each lead-time (one to nine days) of the forecast. 
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Figure 5.2 Example implementation of a training sample for a 1-day and a 3-day lead-time 
forecasting model (a) and an example implementation of such forecasting models for 1-day 

and 3-day lead-time streamflow forecasts (b). Panel (a) presents a single sample, but the 
process is repeated on the entire dataset available for the training period and the same 

process is repeated on the validation and testing periods. Panel (b) shows an example for a 
single issue date, but the process is repeated for other forecast issue dates, combining the 

outputs of the 1-day to 9-day forecasts for each forecast issue date 
 

The network weights were optimized to maximize model performance over all training 

sequences. The training set was composed of 70% of the years selected at random from the 

training period, 15% of the years were kept as the validation dataset to prevent the LSTM from 



114 

 

overfitting during training, and the remaining 15% of the dataset is used as testing data which 

are used to evaluate the LSTM’s robustness on an independent period prior to forecasting.  

 

Data normalization (i.e., scaling of data to ensure data values are within bounds of [0-1]) was 

applied to all hydrometeorological data using a scaling model calibrated on the training period 

data only, to ensure no contamination of the training dataset was accidentally introduced. 

Training and validation were performed using the Tensorflow and Keras libraries in Python, 

with the Adam optimizer and the KGE metric as the objective function. The model was trained 

by generating one streamflow value for each [365-k]-day window of training data, and repeated 

for all days in the dataset, generating a hydrograph one day at a time in multiple batches. The 

trained model was then used to perform forecasts for the period from January 2015 to 

December 2019 by combining historical (ERA5 reanalysis dataset) and forecast (ECMWF) 

data into sequences of [365-k] days, ending on the desired lead-time’s meteorological data. 

One LSTM model was trained for each forecast lead-time due to lagged streamflow 

observations. The LSTM forecasts were also generated every three days and on the same dates 

as the CEQUEAU-DA, DA- and OL-forecasts were performed and compared with those of the 

LSTM. 

 

5.4 Results 
 

This section presents the performance assessment of the LSTM model in simulation (Section 

5.4.1), the results of the LSTM-based and CEQUEAU-based forecasting for lead-times varying 

from one to nine days (Section 5.4.2), as well as the results of the DA aspect of forecasting 

between both approaches (Section 5.4.3). 

 

 Performance of the LSTM model in simulation 

Table 5.1 presents the statistics of the LSTM performance over the training and testing periods.  

Overall, the LSTM model performs well in simulating daily streamflow as suggested with 
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KGE values above 0.90 for all lead-times over the training period and above 0.89 for the testing 

period.  

 

 

Table 5.1 Description of the LSTM models hyperparameters used for each of the forecast 
lead-times and training results 

 

Lead-
times 
(days) 

Nb. of 
LSTM 
units 

Dropout 
rate 

Nb. of 
training 
epochs 

Batch 
size 

Training 
KGE 

Validation 
KGE 

Testing 
KGE 

1 128 0.2 100 128 0.97 0.99 0.98 
2 128 0.2 200 128 0.98 0.99 0.98 
3 128 0.2 200 128 0.95 0.95 0.95 
4 128 0.2 250 128 0.95 0.91 0.94 
5 128 0.2 250 128 0.92 0.94 0.91 
6 128 0.2 300 128 0.93 0.91 0.92 
7 64 0.1 1000 64 0.94 0.94 0.93 
8 64 0.1 1000 64 0.95 0.93 0.92 
9 64 0.1 1000 64 0.90 0.92 0.88 

 

 

According to the daily hydrograph (Figure 5.3a), although the LSTM model captures the 

lowest peak flows, a slight underestimation of the highest peak flows is observed, ranging from 

5 to 10%. The timing of all peak flows is successfully captured during the training period. As 

for the testing period, the KGE values are slightly better than those obtained over the training 

period for day one, and the performance is comparable until day three (Table 5.1). However, 

for lead-times beyond day four, the LSTM performance over the testing period is slightly 

lower, even though the KGE values remain very good (KGE ≥ 0.88).  
 

In the testing period, the LSTM model slightly underestimates the highest peak flows (3 % on 

average) while the timing of peak flows is generally well simulated. These results can be seen 
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in Figure 5.3b for the 1-day lead-time LSTM model. Results for longer lead-times (from 2- to 

9-day) show similar skill levels.  

 

Figure 5.4 shows a quantile-quantile plot of the observed and simulated streamflows for each 

of the nine lead-times during the testing period. A general underestimation of peak flows is 

seen in most lead-times. Additionally, a small overestimation of the lowest flows can be noted 

for most lead-times, which can be seen in more detail in the supplementary materials (Figure 

S5.10).  

 

 
Figure 5.3 Comparison between observed and simulated streamflow from the LSTM models 
over the 1953-1996 training period (a) and the 2005-2015 testing period (b), using a 1-day 

lead-time 
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Figure 5.4 Quantile-quantile plot showing observed streamflow against simulated values 

from the nine LSTM models over the testing period, from 1 to 9 days in lead-time from a) 
to i). The 1:1 slope (dashed red line) is added for comparison purposes, representing a 
perfect match between observed and simulated streamflow. Each panel contains 3341 

points, i.e., the 10 years of testing data. 
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 LSTM and CEQUEAU comparison in forecasting 

The main focus of this section is to compare the performance of the LSTM and the CEQUEAU 

models with data assimilation (CEQUEAU-DA) and without (open-loop, CEQUEAU-OL) 

when simulating streamflow over the LSJ catchment at the annual and seasonal scales during 

the testing period.  

 

The skill of ensemble forecasts for one to nine days of lead time is analyzed in Figure 5.5 and 

Figure 5.6 and Figure 5.7. Figure 5.5 presents the CRPS and MAE scores using data from all 

years and all seasons as a first step to assess overall model performance. Figure 5.6 and Figure 

5.7 present the forecast skill metrics for forecasts issued for each season (i.e., winter:  

December to March - DJFM; spring: April and May - AM; summer: June, July, and August - 

JJA; and fall: September, October, and November- SON) for both the CRPS and MAE, 

respectively. These figures include the results of all forecast issue days within their respective 

periods (i.e., all forecasts generated during the summer days - 122 initial dates of forecast - are 

represented in the summer boxplots in Figure 5.6 and Figure 5.7). Lower CRPS and MAE 

values indicate more accurate forecasts. 
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Figure 5.5 CRPS (a) and MAE (b) of the annual streamflow ensemble forecasts for the 

LSTM model (orange), CEQUEAU-DA (DA; green), and CEQUEAU-OL (OL; purple) over 
the 2015-2019 forecasting period. Each boxplot contains 536 forecasts, corresponding to one 

forecast every three days over the study period. The center horizontal line in each boxplot 
represents the median, box edges represent the 25th and 75th percentiles, and whiskers 

represent the extreme values not considered as outliers. Dots outside of the whiskers are 
outliers 
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Figure 5.6 CRPS of the seasonal streamflow ensemble forecasts for the LSTM model 

(orange), CEQUEAU-DA (green), and CEQUEAU-OL (orange) over each season of the 
2015-2019 forecasting period:  winter: (December to March; DJFM - a), spring (April and 
May; AM - b) summer (June to August; JJA - c), and fall (September to November; SON - 
d). The number of points in each boxplot represents the number of issued forecasts for that 
season, equal to 191, 101, 122, and 122 for Winter, Spring, Summer, and Fall, respectively. 
Note that the y-axis ranges are different in all panels due to the large differences between 

seasons and some outliers are not shown for clarity’s sake 
 

 



121 

 

 
Figure 5.7 MAE of the seasonal streamflow ensemble forecasts for the LSTM model 

(orange), CEQUEAU-DA (green), and CEQUEAU-OL (purple) over each season of the 
2015-2019 forecasting period: winter: (December to March; DJFM - a), spring (April and 
May; AM - b) summer (June to August; JJA - c), and fall (September to November; SON - 
d). The number of points in each boxplot represents the number of issued forecasts for that 
season, equal to 191, 101, 122, and 122 for Winter, Spring, Summer, and Fall, respectively. 
Note that the y-axis ranges are different in all panels due to the large differences between 

seasons and some outliers are not shown, for clarity’s sake 
 

The annual results indicate that LSTM performs better than both CEQUEAU-DA and 

CEQUEAU-OL for both CRPS and MAE values up to the 8-day lead-time (Figure 5.5). On 

average, the median LSTM performance is 22% (42%) better for CRPS (MAE) compared to 

CEQUEAU-DA, and 37% (37%) better for CRPS (MAE) compared to CEQUEAU-OL across 

all lead-times.  

 

The LSTM model outperforms CEQUEAU during the first three days of the forecast, as seen 

in the third quartile of the LSTM CRPS which is inferior (better) to the median CRPS of the 

CEQUEAU forecasts for the first two days, and a similar trend can be observed for MAE. This 

is supported by a non-parametric Wilcoxon test for median equality, which shows the results 

on an annual basis for both skill scores, as depicted in Table 5.2a. 
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For days 4-9, the LSTM model still performs better than CEQUEAU, but by a smaller margin. 

The MAE results, on an annual scale, show that LSTM has significantly lower MAE values 

than CEQUEAU (using both DA and OL methods) for the nine lead-times (Table 5.2b). The 

CRPS results also support these findings, as shown in Figure 5.4. However, after the 3-day 

lead-time, there is no significant difference between LSTM and CEQUEAU-DA for the CRPS. 

 

Additionally, CEQUEAU-DA generally provides better CRPS and MAE values than the OL 

scenario when looking at forecast quality over the entire year, which is expected. It should also 

be noted that the LSTM displays progressively wider spread (i.e. wider interquartile range) in 

CRPS and MAE as lead-time increases (for example, interquartile ranges of CRPS for days 1, 

3, 5 are 39, 82, and 119 m3/s, respectively). This is likely attributed to the fact that the LSTM 

model has the exact same starting conditions for every member of the ensemble during a 

forecast, and only the forecast weather can contribute to the variability, as will be discussed 

further.  
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Table 5.2 Results of a Wilcoxon rank sum statistical test with a significance level of 1% 
for CRPS (a) and MAE (b) results between the forecasts generated by the three models 

used in this study (LSTM, CEQUEAU-DA and CEQUEAU-OL). A value of H=0 
indicates equal medians between the forecasts of the groups defined in each column, 

whereas a value of H=1 indicates that the null hypothesis is rejected, indicating different 
medians for the two groups. Performance is evaluated per lead-time 

 

(a)     CRPS 
  H - Result of the hypothesis test 
  Winter  Spring  Summer  Fall  Annual 

Lead-
time 

 LSTM 
vs. DA 

 LSTM 
vs. OL 

 LSTM 
vs. DA 

 LSTM 
vs. OL 

 LSTM 
vs. DA 

 LSTM 
vs. OL 

 LSTM 
vs. DA 

 LSTM 
vs. OL 

 LSTM 
vs. DA 

 LSTM 
vs. OL 

1  1  1  1  1  1  1  1  1  1  1 
2  1  1  1  1  1  1  1  1  1  1 
3  0  1  1  1  1  1  1  1  1  1 
4  0  1  0  0  0  1  0  0  0  1 
5  0  1  0  0  1  1  0  0  0  1 
6  0  1  0  0  0  1  0  0  0  1 
7  0  1  0  0  1  1  0  0  0  1 
8  1  0  0  0  1  1  0  0  0  1 
9   1   1   0   1   0   0   0   0   0   1 

 
(b)    MAE 

  H - Result of the hypothesis test 
  Winter  Spring  Summer  Fall  Annual 

Lead-
time 

 LSTM 
vs. DA 

 LSTM 
vs. OL 

 LSTM 
vs. DA 

 LSTM 
vs. OL 

 LSTM 
vs. DA 

 LSTM 
vs. OL 

 LSTM 
vs. DA 

 LSTM 
vs. OL 

 LSTM 
vs. DA 

 LSTM 
vs. OL 

1  1  1  1  1  1  1  1  1  1  1 
2  1  1  1  1  1  1  1  1  1  1 
3  1  1  1  1  1  1  1  1  1  1 
4  1  1  1  1  1  1  1  0  1  1 
5  1  1  1  0  1  1  1  0  1  1 
6  1  1  1  0  1  1  1  0  1  1 
7  1  1  1  0  1  1  1  1  1  1 
8  0  1  0  0  1  1  1  0  1  1 
9   1   1   0   0   0   0   0   0   1   1 
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 Forecast performance evaluation 

To evaluate the performance of the LSTM model in comparison to traditional hydrological 

models, ensemble streamflow forecasts generated with the LSTM model are compared to those 

produced by CEQUEAU-DA and CEQUEAU-OL models for a 9-day lead-time, the maximum 

available in the weather forecast data used in this study. The performance is evaluated for each 

season by selecting a typical forecast event and using the forecast issue date with the median 

streamflow observation of that season to ensure representativeness (Figure 5.8). Ensemble 

forecasts using the three methods (LSTM, CEQUEAU-DA and CEQUEAU-OL) are then 

evaluated for these selected events.  

 

 
Figure 5.8 Forecasted streamflow ensembles for each season (winter: a, b, c; spring: d, e, 
f; summer: g, h, i; fall: j, k, l) as generated by the LSTM model (left column; a, d, g, j), 

CEQUEAU-DA (middle column; b, e, h, k), and CEQUEAU-OL (right column; c, f, i, l) 
over a 9-day lead-time. For each row (i.e., season), the forecast date chosen for display is 

that which corresponds to the day where the observed flow is the median value of all 
observations for that season. The exact dates are Jan-26-2016 (Winter), Apr-26-2017 

(Spring), Jul-30-2016 (Summer) and Nov-21- 2015 (Fall) 
 

The results in Figure 5.8 indicate the added value of the LSTM model to the overall quality of 

ensemble forecasts in different seasons for various lead-times. In winter, LSTM provides an 
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almost unbiased forecast up to approximately the 6-day lead-time, compared to the CEQUEAU 

forecasts. The CRPS for the LSTM forecast is also lower than that of the CEQUEAU forecasts 

over the entire period due to the ensemble having a lower spread. The initial states are well 

simulated by all three forecasting models and are not a factor in the bias related to initial 

conditions. 

 

In spring, forecasts vary significantly depending on the forecast model. The LSTM has much 

less variability than the CEQUEAU-OL forecast, which is in turn less variable than the 

CEQUEAU-DA implementation. The latter has more variability primarily due to the 

assimilation of initial states, making it more sensitive to input meteorological data variations. 

Additionally, the LSTM forecasts for the first days display less bias than the hydrological 

model counterparts, owing to the integration of recent streamflow as inputs. It can also be seen 

that up to a lead-time of approximately five days, the LSTM forecast shows better skill (smaller 

ensemble error) than the other models. However, in the following days, the small spread and 

increasing bias of the LSTM ensemble members heavily penalized the CRPS score, making it 

worse overall than the CEQUEAU implementations. This is also seen in Figure 5.6b, where 

the LSTM generally produces better forecasts for shorter lead-times only. In summer, LSTM 

decreases the spread of the ensemble forecasts over the 9-day lead-time, allowing it to get 

closer to the observed streamflow compared to both the CEQUEAU-DA and CEQUEAU-OL 

ensembles except during the last forecast days, contributing to the improvements in CRPS (see 

Figure 5.6c). In fall, the comparison of LSTM-ensemble forecasts with the CEQUEAU-DA 

and CEQUEAU-OL ensembles shows that LSTM generates reliable forecasts that encompass 

the observation with very little spread for the entire forecast duration. The CEQUEAU-DA, 

however, has initial conditions that are more representative of the current state and are more 

saturated (i.e., more reactive) than CEQUEAU-OL for that given period.  

 

Overall, the main difference between the LSTM and CEQUEAU-based forecasts is that the 

LSTM is more confident in its forecasting, generating forecasts with less spread. When the 

forecast is unbiased, the forecast skill is better than that of the hydrological models. However, 
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when the LSTM model generates a biased forecast, the low spread makes all 50 members 

biased, thus increasing the CRPS and MAE error metric values. 

 

 
Figure 5.9 Hydrographs generated from successive 1- to 3-day lead-time streamflow 

forecasts averaged over the 50 members for the LSTM (orange), CEQUEAU-DA (green), 
and CEQUEAU-OL (purple) models and observations (black) over the period between 
January 2015 and May 2019 (a). The focus is placed on the individual seasons of spring 

(b), summer (c), fall (d) and winter (e) 
 

The forecasted hydrographs of each model are compared in Figure 5.9. The results illustrate 

that the LSTM is more accurate at shorter lead-times (1-day to 3-day) than the CEQUEAU-

DA and CEQUEAU-OL forecasts throughout the year. Similar results are found for the 4- to 

6-day and 7- to 9-day forecasts presented in the supplementary materials Figure S5.11 and 

Figure S5.12. The longer lead-times demonstrate that the LSTM errors are primarily caused 

by temporal shifts, while the CEQUEAU errors are mainly attributed to amplitude errors, but 

with better timing. 
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5.5 Discussion 
 

The following section presents a comparison of the development and performance of the 

CEQUEAU (DA and OL) and LSTM models for forecasting streamflow (Section 5.5.1 ). The 

importance of DA and its effect on model performance is then discussed (Section 5.5.2). 

Finally, an evaluation of the impact of using observed streamflow as a predictor on the LSTM 

model performance is made (Section 5.5.3).  

 
 Comparison between CEQUEAU and LSTM 

 

The CEQUEAU and LSTM models have some similarities and key differences when it comes 

to forecasting streamflow. CEQUEAU-DA initiates forecasts with an improved estimate of 

initial states, resulting in a more sensitive model from the first lead-time. On the other hand, 

the LSTM model is initialized deterministically using past weather and streamflow 

observations, resulting in a lack of uncertainty in the 1-day lead-time (Figure 5.8). Both models 

are trained on historical data, but CEQUEAU is calibrated over a historical time period and 

used to generate forecasts based on incoming weather forecasts, while the LSTM model is 

trained on a set of two inputs (precipitation and temperature) and one output (streamflow). The 

length of the training is always 365 minus the lead-time duration (i.e., 364 days descending to 

356 days). For forecasting, the same size and data standardization are used, so the very end 

data of the inputs (i.e., the same as the desired lead-time) is used as input for the weather 

forecast, while the streamflow forecast is generated for the desired lead-time. 

 

CEQUEAU-DA produces a wider spread of forecast results compared to the LSTM model. 

Both LSTM and CEQUEAU (both DA and OL) display CRPS and MAE errors worsening 

with increasing lead-times. This is likely due to the decreasing reliability of weather forecasts 

as lead-times increase, resulting in less skillful streamflow forecasts from both LSTM and 

CEQUEAU. Overall, the results indicate that LSTM provided better forecast results compared 
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to the CEQUEAU model, while also requiring simpler implementation and no DA. However, 

the LSTM model has the limitation of needing to be trained with multiple times for different 

lead-times. Furthermore, while the LSTM model may perform well on a single catchment as 

seen with the LSJ, it might also benefit from training over several basins to be robust and 

efficient at capturing extreme events, such as in Kratzert et al. (2018). In this study, LSTM is 

only evaluated for one catchment, which limits the generalizability of the findings. Finally, it 

is important to note that the LSTM trained in this study used a wide array of combinations of 

ERA5 meteorological time series. However, the most robust model tested only made use of 

precipitation and temperature. Adding more variables made the training more difficult and 

either converge to worse values or not converge at all. It could be possible to improve on these 

results by adding more types of data (such as snowpack depth, more complex meteorological 

variables and other lagged variables such as climate indices data) and finding LSTM model 

structures and hyperparameters that can make use of the extra input data, however this was not 

successfully implemented in this study. 

 

 On the necessity of performing DA 

Hydrological models have evolving states that can drift from the real hydrologic state if left 

unchecked during long simulations. To correct this drift and ensure the hydrological model is 

as close as possible to the real hydrological state, DA can be performed. The impact of DA on 

forecasting performance can be evaluated by comparing the results of a model setup without 

performing DA (i.e, OL) to a setup that constantly assimilates newly available data. DA 

typically improves forecast skill (i.e., in terms of accuracy and reliability), particularly on 

shorter lead-times.  

 

Although LSTMs do not typically implement DA directly, they do have a recurrent state that 

allows for the ingestion of near real-time observations (Nearing et al., 2022). In this study, DA 

was not performed directly. Instead, the integration of observed streamflow at the forecast issue 

date was used as a proxy. This means that the result of the previous simulation has no impact 
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on the current forecast and the LSTM breaks continuity in the forecasting stage. Hydrological 

models, on the other hand, ensure the forecast is done in one single run, which is an advantage. 

The LSTM used in this study therefore trades continuity for not having to resort to the complex 

step of DA given the number of memory states in the LSTM. By providing observed 

streamflow in the training and forecasting steps, the LSTM can learn to minimize initial state 

errors, similar to the DA step in a hydrological model using observed streamflow to adjust its 

initial states.  

 

Both the hydrological model with DA and the LSTM model provided skilled streamflow 

simulations and forecasts. This study found that for the catchment studied, the LSTM 

outperforms the hydrological model for short-term forecasts (up to 5-9 days lead-time 

depending on the season) when using the CRPS and MAE metrics. Figure 5.4a and Figure 5.4b 

showed that the LSTM performed better than the CEQUEAU-DA and CEQUEAU-OL models 

for all lead-times with a significant improvement in forecast skill. One advantage of the LSTM 

is that it does not require a DA scheme, which can lead to less computational effort and easier 

implementation. 

 

 Impacts of using observed streamflow as a predictor 

In this study, the LSTM used observed streamflow up to the forecast issue date to provide 

information on the current hydrological state. The use of observed streamflow as a predictor is 

not a new concept in hydrology; in fact, it has been a useful proxy for short-term forecasts over 

the last decade (Cloke & Pappenberger, 2009). Different studies have applied various methods 

such as using historical streamflow observations directly to estimate future outcomes (e.g., 

Rajagopalan et al. (2010)), applying regression models (Bogner et al., 2016; Hopson & 

Webster, 2010; Seo et al., 2006), using autoregressive models (e.g., ARMA, ARMAX, 

GARCH (Amiri, 2015; Zhang et al., 2015) and using artificial neural networks (Coulibaly et 

al., 2000; Machado et al., 2011).  
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Recent studies have focused on using LSTM for its ability to simulate hydrological processes 

and provide high-quality streamflow simulations and forecasts from historical weather data. In 

this study, streamflow was added as an input to the LSTM. By training the model to combine 

the information from observed streamflow and weather up to the forecast issue date, as well as 

forecasted weather, the LSTM is able to make accurate streamflow forecasts for shorter 

periods. However, as the lead-time increases, the impact of observed streamflow diminishes 

because the streamflow observations are not available past the forecast issue date. This is 

reflected in the progressive widening of the CRPS and MAE values as lead-times increase (see 

Figure 5.4 to Figure 5.6). To improve performance for longer lead-times, the LSTM must be 

trained independently for each lead-time, with the observed streamflow lagged by the 

appropriate number of days. This makes the training process more labor-intensive and the 

model is less able to rely on the observed streamflow for predicting the forecasted streamflow, 

which results in progressively worse CRPS and MAE scores, similar to the forecasts issued 

using the hydrological model.  

 

Additional tests were conducted to overcome the need for training one LSTM per lead-time in 

order to improve forecasting performance. One test involved training the LSTM using only 

historical weather data as the input, rather than incorporating observed streamflow data. This 

approach was found to provide good results for only two days of lead-time. However, for 

longer lead-times, the LSTM performed worse than the hydrological models (CEQUEAU-DA 

and CEQUEAU-OL). This could be due to the fact that the forecast data from the ECMWF 

could have different statistical properties than the observations used to train the LSTM, leading 

to a bias in the forecast. Incorporating observed streamflow data may help to minimize this 

effect by reducing the weight of the weather component in the forecasting chain. 

 

Another test involved using an LSTM trained on a 1-day ahead forecast to simulate flows for 

the next day, and then applying the model sequentially to obtain flows that are always lagged 

by only 1 day for each forecast lead-times. This approach also resulted in poor performance 

for lead-times longer than two days. This could be due to errors propagating with each iteration, 
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as small errors in the streamflow for day 1 are then used as input for the second day and so on. 

Training an LSTM for each timestep individually helps to prevent these errors by addressing 

any systematic biases at longer lead-times during the training process and from within the 

weather forecast itself. 

 

5.6 Conclusion 
 

This study evaluates the potential of the LSTM in simulating and forecasting streamflow of 

the Lac-Saint-Jean catchment in Canada. It compares the LSTM to the operational CEQUEAU 

model used by Rio Tinto for this catchment, which is set up in open-loop mode (CEQUEAU-

OL) and with a DA scheme (CEQUEAU-DA), which is used as a benchmark. The main 

findings of this study are as follows: 

(1) The LSTM achieves good performance in the training and testing periods for lead-times 

up to 9 days with a KGE higher than 0.88.  

(2) The LSTM provides more skillful ensemble forecasts compared to CEQUEAU-OL and 

CEQUEAU-DA, as CRPS and MAE results show lower values for the LSTM, all 

percentiles considered.  

(3) The LSTM forecasts display tighter spreads than the CEQUEAU-based forecasts, 

likely due to the strong influence of the observed streamflow from the previous days 

used as a predictor, as opposed to the DA implementation that contains uncertainty.  

(4) The LSTM eliminates the need for integrating a DA process, typically required by 

traditional hydrological models, while still providing high-quality forecasts. 

 

The findings of this study have highlighted the advantages, limitations, and specific evaluation 

of the LSTM performance in streamflow forecasting for all seasons. Overall, this study shows 

that LSTM is a promising model for forecasting short-term streamflow, and confirms previous 

findings in other regions and catchments. It is likely that more advanced neural networks and 

data integration strategies will lead to even more significant improvements. However, this 

study demonstrates that, in this snow-dominated North American catchment, LSTM models 
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can provide short-term streamflow forecasts with better accuracy than those generated by more 

complex distributed hydrological models. 
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5.8 Supplementary material 
 

 Supplementary Materials – S1  

 

5.8.1.1 DA procedure for CEQUEAU  

 

Sabzipour et al. (2022) (underreview article – CHAPTER 4 of this document) performed a DA 

study to evaluate the best hyperparameters for implementing DA on the LSJ catchment. They 



133 

 

used EnKF as the assimilation method, identical to the one used in this study. DA was done 

seasonally, so hyperparameters (two inputs: mean daily temperature uncertainty, total daily 

precipitation uncertainty, and one output: observed daily streamflow uncertainty) and ‘selected 

state variables’ (vadose zone, saturated zone, snowpack) were recommended for each season 

of the year. Seasons were divided according to the months of December to March for winter, 

April and May for spring, June to August for summer, and September to November for fall. 

Table S5.3 presents recommended recipes for hyperparameter and state variables. It shows the 

hyperparameters in terms of hydrometeorological variable uncertainty should be chosen for 

inputs and outputs, and which state variable(s) should be updated to extend the forecast skill 

further.  

 

 

 

 

 

Table S5.3 Summary of the recommended DA recipe for each season (adapted from 
Sabzipour et al., 2022). The observations are perturbed by adding Gaussian (i.e., for 
temperature and streamflow) or Gamma (i.e., for precipitation) noise from the error 

distribution (sampling errors). Uncertainty value (Hyperparameter) was used as the mean of 
an error distribution (Gaussian for temperature and streamflow, Gamma for precipitation) for 

sampling errors 
 

 Winter Spring Summer Fall 

H
yp

er
pa

ra
m

et
er

 

Temperature uncertainty (standard 
deviation of the gaussian error 
distribution during sampling) 

3°C 5°C 7°C 8°C 

Precipitation uncertainty (percentage 
of the observed precipitation value 

used to scale the 𝛼 and 𝛽 parameters of 
the gamma error distribution) 

10% 10% 10% 10% 

Streamflow uncertainty (percentage of 
the observed streamflow value used as 
the standard deviation of the gaussian 

error distribution) 

5% 5% 5% 5% 
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State variables to be updated vadose 
zone 

vadose 
zone 

vadose 
zone 

vadose 
zone, 

snowpack 
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 Supplementary Materials – S2 

 

5.8.2.1 Quantile-quantile plots of low-flow simulations 

 

Figure 5.4 showed the entire distribution of simulated and observed streamflow data for the 

entire period. To better show the lower end of the distribution, where there is a high density of 

data points, Figure S5.10 shows more details on the lower end of the distribution, i.e., only for 

observed flows below 1000 m3/s. Overestimation of low flows is better displayed here, namely 

for lead-times 3 to 6 days. 
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Figure S5.10 Quantile-quantile plot showing the testing period performance of 

the 9 LSTM models (black markers), labeled 1-9 according to the lead-time 
used in training. The 1-1 line (dashed red line) is added to ease comparison. 
This figure shows the lower portion of the distribution shown in Figure 5.4 

 

 Supplementary Materials – S3 

 

Figure S5.11 and Figure S5.12 represent simulated hydrographs for longer lead-times than 

those in Figure 5.9. They are constructed from the 4- to 6-day and 7- to 9-day lead-time 

streamflow forecasts, respectively. The hydrographs consist of successive 3-day forecasts, 
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generated every 3 days, at the same time as the CEQUEAU forecast is issued after its 

assimilation. The inserts show subsets of the hydrographs for spring (b), summer (c), fall (d), 

and winter (e). These hydrographs represent the mean of the 50-member ensemble forecasts 

generated by CEQUEAU in open-loop (OL) mode, CEQUEAU in DA (DA) mode, and the 

LSTM. 

 

 
Figure S5.11 Hydrographs constructed from the 4- to 6-day lead-time streamflow 

forecasts generated every 3 days which are the days where CEQUEAU-DA assimilates 
data. The hydrographs are thus composed of successive 3-day forecasts, generated every 

3 days. Inserts represent subsets of the hydrograph (a) for spring (b), summer (c), fall 
(d) and winter (e). All hydrographs represent the mean hydrographs from the 50-

member ensembles generated with CEQUEAU-OL, CEQUEAU-DA and the LSTM. 
This figure is the same as Figure 5.9 but using lead-times of 4 to 6 days concatenated to 

generate a daily hydrograph 
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Figure S5.12 Hydrographs constructed from the 7- to 9-day lead-time streamflow 

forecasts generated every 3 days which are the days where CEQUEAU-DA assimilates 
data. The hydrographs are thus composed of successive 3-day forecasts, generated every 

3 days. Inserts represent the mean hydrographs from the 50-member ensembles 
generated with CEQUEAU-OL, CEQUEAU-DA and the LSTM. This figure is the same 

as Figure 5.9 but using lead-times of 7 to 9 days concatenated to generate a daily 
hydrograph 

 

  



 

 

CHAPTER 6 
 
 

GENERAL DISCUSSION 

The main objective of this research was improving streamflow prediction quality, namely in 

terms of accuracy and reliability, over multiple lead-times. Methods were proposed to tackle 

this objective in separate sub-objectives. As a reminder, the secondary objectives are as follow: 

1) Improving long-term forecasts (i.e., multiple months lead-time) using ESP member 

filtering. 

2) Improving short-term forecasts (i.e., up to 10 days) using distributed hydrological 

model DA. 

3) Evaluating the ability of data-driven models (LSTM) on short-term forecasting 

while using proxies of DA. 

 

This section summarizes the findings of the studies on these three sub-objectives (sections 6.1, 

6.2, 6.3 ) and presents an overall analysis on how these objectives were attained and what has 

been learned through this research (section 6.46.4). Following this, some limitations of this 

work and some recommendations for further research are highlighted (section 6.5) 

 

6.1 Improving long-term forecasts using ESP member filtering 
 

The accuracy and reliability of streamflow forecasting for periods ranging from weeks to 

months largely depend on our understanding of the phenomena that govern weather patterns 

in a region over longer periods than just a few days or weeks. Generating a long-term 

streamflow forecast, which spans a period of approximately more than two weeks, is a 

challenging task. The key to success in this task is identifying predictors, such as climate 

indices, that can provide insight into weather patterns during the forecast period (Devineni et 

al., 2008). The problem of long-term streamflow forecasting has been approached in several 

ways in the literature, including filtering and dressing ensemble scenarios (Li et al., 2017; Troin 

et al., 2021), post-processing (Seo et al., 2006; Verkade et al., 2013), and the use of predictors 
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such as large-scale climate indices or conditioning on the period prior to the forecast date 

(Bradley et al., 2015; Hao et al., 2018; Sohrabi et al., 2021). 

 

The first part of this study examined filtering techniques as a way to improve long-term 

streamflow forecasts. Filtered ensembles are streamflow forecasts that are more likely to occur 

based on the similarity of hydroclimate conditions before the forecasting date and during the 

same period in historical data. Filtering techniques can remove unwanted ensemble members 

by selecting members based on climate indices (Lamb et al., 2011; Najafi et al., 2012; Soukup 

et al., 2009). Other studies have investigated the use of predictor periods and large-scale 

climate indices as important factors in predicting streamflow (Shams et al., 2018; Sohrabi et 

al., 2021; Werner et al., 2004; Zhao & Brissette, 2022). There are several statistical methods 

that can be used to predict streamflow, such as Bayesian methods (Bradley et al., 2015; 

Robertson & Wang, 2012), regression methods (Kroll et al., 2004), and analog methods (Hemri 

& Klein, 2017; Yang et al., 2020). CTs and simple analog methods can be used to test why 

some ensemble members are selected while others are not. 

 

Reducing the ensemble size can improve forecast skill, but identifying which members to 

remove optimally is a challenge (Ferro et al., 2008). In this study, we aimed to measure the 

forecast skill in hydrometeorological historical data for long-term streamflow forecasting using 

a proposed GA-based method. We tested the CT method (Chandimala & Zubair, 2007; Habets 

et al., 2004; Jeong & Kim, 2005; Maity & Nagesh Kumar, 2008) and the analogy method 

(Bellier et al., 2016; Koutsoyiannis et al., 2008; Svensson, 2016; Yao & Georgakakos, 2001) 

to determine if they could improve streamflow prediction by reliably removing less useful 

scenarios. We compared more probable scenarios with less probable ones to identify possible 

indices and find significant differences. However, the statistical characteristic used for these 

methods was the average streamflow in the predictor period, which was not representative 

enough to confidently determine which ensemble members lead to lower forecast skill when 

compared to using all ensemble members (see Figure 3.6 and Figure 3.7). While the CT and 

analogue methods showed some skill, they did not consistently improve the forecasts. 
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Unfortunately, we did not achieve our objective of identifying which ensemble members to 

remove optimally. While the GA method proved to be valuable in determining the highest 

potential forecast skill that can be achieved using an ESP ensemble, the subsequent analysis 

did not reveal any reliable patterns to identify or predict which members should be used in 

actual forecasting situations. 

 

Despite limitations, the proposed GA filtering method has several potential applications for the 

hydrological forecasting community. Firstly, it can quantify the unrealized skill in the 

historical data, helping identify the potential of the data in forecasting future streamflow. 

Secondly, it can sort out basins according to their unrealized potential, and highlight more 

complex basins with greater potential, as seen in Figure 3.3 and Figure 3.4. For example, the 

BC catchment loses more members than the QC catchment for the same decrease in CRPS 

(200 m3/sec), indicating that BC's climate is more predictable than QC's. This is compounded 

by the fact that the BC catchment has higher overall flows and should thus need a smaller 

reduction of the ensemble members to achieve this same drop in CRPS. Lastly, it is possible 

to improve forecast skill beyond the potential of historical data using methods such as neural 

networks (like LSTM), and the GA method could serve as a benchmark for evaluating these 

methods. Therefore, the proposed GA method can provide valuable insights and help in 

improving long-term streamflow forecasting. 

 

However, it is recommended to test the GA filtering method with other statistical 

characteristics and more complex (multivariate, non-linear, etc.) relationships in order to more 

accurately categorize the ensemble and predictor periods. 

 

6.2 Improving Short-term Forecasts using distributed hydrological 
model DA 

 

Streamflow forecasting from a few days to approximately ten days is very sensitive to initial 

conditions, or 'boundaries' of the system, i.e., 'how good we can be at the starting point' 

(DeChant & Moradkhani, 2011; Li et al., 2009). Thus, issuing a forecast with a minimum error 
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or having the most accurate possible initial conditions is requested by streamflow forecasters 

since it improves forecast skill (Andreadis & Lettenmaier, 2006) 

 

DA is a method that can improve the accuracy of initial conditions used in streamflow 

forecasting. It is a means to achieve "seamless" and "accurate" forecasts. Seamless in the sense 

that it integrates past information into a more coherent initial condition, and accurate because 

less error in the initial condition leads to more skillful streamflow forecasts (Clark et al., 2006; 

DeChant & Moradkhani, 2014). 

 

In the second paper, it was noted that having a reasonable starting point is crucial for a seamless 

streamflow forecasting model. This means that the initial conditions should represent the real 

world, including factors such as soil moisture or any amount of water at different levels of the 

ground, which directly affect the performance of the forecasting model (Jadidoleslam et al., 

2021; Prakash & Mishra, 2022). One method for achieving this is through EnKF (McMillan et 

al., 2013; Xie & Zhang, 2010). Applying the EnKF is not a straightforward task and comes 

with challenges, especially in tuning hyperparameters (Thiboult & Anctil, 2015). Adjusting 

hyperparameters is a delicate and extensive task (Clark et al., 2008). In addition, since 

performing DA can yield similar results for multiple hydrological models by correcting their 

errors, it might also limit the impact of using more or better hydrological models to a small 

extent (Bergeron et al., 2021). 

 

In this study, we proposed a detailed procedure for seasonally tuning hyperparameters in a 

distributed operational hydrological model using the EnKF DA method. These 

hyperparameters include the uncertainties associated with inputs (e.g., temperature and 

precipitation), outputs (e.g., streamflow), and the choice of state variable. To address these 

uncertainties, we performed tests over a wide range of hyperparameters. We implemented the 

EnKF DA method for an operational distributed hydrological model and observed that certain 

hyperparameter sets showed good performance. Our evaluation revealed that the EnKF method 
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exhibited favorable performance and could be integrated into a probabilistic forecast 

framework.   

 

Various factors were tested to optimize the application of the EnKF, and it was found that DA 

improved forecast skill in all seasons, with longer-lasting skill observed in the winter period. 

However, more difficulties were encountered in seasons with greater hydrological dynamics, 

such as spring (during melting runoff), or summer/fall (due to rainfall, evapotranspiration, and 

faster reaction vadose zone). Adjusting certain hyperparameters is required to apply the EnKF. 

These hyperparameters include the uncertainty of the hydrological model's inputs (e.g., 

temperature and precipitation), outputs (e.g., observed streamflow), and state variables. 

Changing these hyperparameters can affect the forecast skill. 

 

The EnKF assimilation approach is ensemble-based and requires an ensemble of states to 

evolve over time from one time step to the next. In this study, a 50-member ensemble was 

chosen, which is more than the minimum of 40 members recommended by (Valdez et al., 2022) 

to balance stochastic error and computational costs. The perturbations or uncertainty of 

temperature were found to be the most dominant factor among the hydro-meteorological 

variables. In order to update the EnKF, high values of uncertainty for temperature data were 

necessary as lower values of uncertainty resulted in poor performance, as shown in Figure 4.3. 

This can be attributed to the effects of temperature on snow accumulation and melt (from the 

end of fall to the end of spring), as well as on the evapotranspiration rate (in summer). The 

uncertainty values for streamflow and precipitation were surprisingly lower, despite 

precipitation being typically harder to measure than temperature. However, even small changes 

in precipitation could have a larger impact on the model outputs, making temperature 

uncertainty more critical for providing the model with the flexibility it needs to match the 

observed streamflow. 

 

The second paper demonstrated that significant levels of precipitation uncertainty can still 

yield good results in certain cases. This suggests that models may need to be pushed to their 
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limits to achieve optimal performance. However, we chose not to adopt these high-value results 

to avoid potential forecasting difficulties. Over-correcting the system may lead to penalties in 

forecasting accuracy. This highlights the need for supervision of the results. It is crucial to 

consider the realism of the results as adjusting the hyperparameters solely to improve the 

forecast skill can lead to unrealistic results, such as considering very high levels of uncertainty 

for precipitation. The results show that the DA had an impact for a maximum of six days before 

the model would start drifting again, which is similar to the catchment concentration time. The 

physical limitations of the modeling and forecast chain restrict the improvement of DA beyond 

lead-times longer than the concentration time, as shown by Chen et al. (2013). Patil and 

Ramsankaran (2017) demonstrated the importance of subsurface water in updating initial 

states, which is consistent with our findings as the vadose zone was the most sensitive state 

variable in the updating process. Updating the vadose zone is considered or proposed as the 

most important state variable, which underscores the significance of comprehending water in 

the unsaturated zone, subsurface waters, and groundwater (Drécourt et al., 2006; Noh et al., 

2018). 

 

6.3 Ability of neural network (LSTM) on short-term forecasting, while 
using proxies of DA  

 

In the third part of our study, we compared the use of a RNN method with a hydrological model 

with DA. We then presented the results for streamflow modeling and forecasting. To simulate 

and forecast, we used a popular method called LSTM, which is a type of artificial neural 

network (Ghimire et al., 2021). We chose LSTM because its structure includes a "forget gate," 

which enables it to capture longer dependencies that are often neglected when using other types 

of artificial neural networks without this feature (Hunt et al., 2022; Mehedi et al., 2022; 

Schmidhuber & Hochreiter, 1997; Xu et al., 2020). 

 

The use of observed streamflow as a predictor has been explored in previous literature (Cloke 

& Pappenberger, 2009). Historical streamflow has been used directly as a forecast scenario 

(e.g., Rajagopalan et al. (2010), as well as more complex methods (Bogner et al., 2016; Hopson 
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& Webster, 2010; Seo et al., 2006), and autoregressive methods (Amiri, 2015; Zhang et al., 

2015). Artificial neural networks have also been investigated (Coulibaly et al., 2000; Machado 

et al., 2011). Recently, LSTM has received attention for its ability to simulate and predict 

streamflow. LSTM uses observed streamflow as a component to build a structure that functions 

like a process-based hydrological model. 

 

Compared to DA, the new method shows lower dispersion of results at the beginning of the 

forecasts. The wider dispersion of DA results is a compensation for forecast uncertainty 

(Granata et al., 2022). Both methods were trained on historical data, and both results worsen 

with increasing lead-times, which is in line with the degradation of weather forecasts as well 

(Le et al., 2019). 

 

The LSTM model used in this study was trained on historical observations of temperature, 

precipitation, and streamflow and used for forecasting lead-times ranging from one day to nine 

days. Since streamflow was included in the training phase, it was considered equivalent to the 

DA phase. One of the advantages of the LSTM model is that it does not require a separate DA 

step, making it more suitable for operational use. However, it does require separate training 

for each lead-time, which adds to the computational cost of forecasts. Like other methods, the 

LSTM model has difficulty in capturing extreme events and requires longer timeseries to 

"learn" more about unprecedented events (Zhu et al., 2020). Despite these limitations, the 

LSTM model showed relatively better performance compared to CEQUEAU-DA. Both 

methods showed a degradation of forecast skill as the lead-time increased, but while DA is 

limited to improving initial conditions, the LSTM model learns from hidden relationships 

between precipitation, temperature, and streamflow. This difference partially explains why the 

LSTM forecast results were better than DA forecast results. However, there are differences 

between the two methods, as the distribution of initial conditions is only available with DA. 

Additionally, while the LSTM model does not technically assimilate past data to improve 

initial states, it uses streamflow data along with temperature and precipitation. The lack of DA 

is an advantage of using the LSTM model, but the need for a trained model for each lead-time 
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is a limitation. The LSTM model's limitation in predicting extremes comes from not having 

enough data, which is why it requires a very long timeseries in which extreme events were 

recorded. 

 

The LSTM results show less continuity compared to CEQUEAU-DA. This is because each 

lead-time is trained separately (see Figure 5.8). The discontinuity is also due to the fact that 

DA, by its nature, adds continuity to forecasts. However, it is worth noting that DA is not 

completely absent in LSTM. In fact, during the training of the LSTM model, observed 

streamflows are always used, so adaptation to real streamflow is always considered by the 

LSTM model. The equivalents to hydrological states in hydrological modeling are also 

updated.  

 

Limitations in training LSTM models for specific lead-times can increase the amount of time 

and computations required. To address this limitation, one could include more variables to 

provide a more complete representation of the data. However, our results showed that this 

approach did not improve forecasts beyond a two-day lead-time. One possible explanation for 

this is the difference in sources between the historical data and the forecast data. Another option 

that we considered was to use forecasts from the previous day(s) as input, such as using the 

forecasts from the preceding three days for a four-day lead-time. However, this method also 

failed to improve the accuracy of forecasts beyond two days because errors in each forecast 

can propagate and accumulate when using multiple forecasts. 

 

6.4 Seamless streamflow forecasting 
 

This section discusses the efforts to improve the quality of streamflow forecasting in terms of 

accuracy and reliability for multiple lead-times. The study proposes various methods to achieve 

this objective, with three sub-objectives identified: improving long-term forecasts (i.e., 

multiple months lead-time) using ESP member filtering, improving short-term forecasts (i.e., 
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up to 10 days) using distributed hydrological model DA, and evaluating the ability of data-

driven models (LSTM) on short-term forecasting while using proxies of DA. 

 

Improving streamflow forecasting is a challenging task due to the gap between short-term and 

long-term lead-times. The accuracy of meteorological forecasts decreases after a few days, and 

historical data are not always the best approach for long-term forecasting. In this regard, 

Sohrabi and Brissette (2021) and Sohrabi et al. (2021) proposed using a weather generator 

calibrated considering the correlation between large-scale indices to forecast streamflow 

seamlessly. 

 

On the other hand, McInerney et al. (2020) and McInerney et al. (2022) suggested reflecting 

seasonal and inter-annual variability of precipitation and/or streamflow, modeling temporal 

characteristics, and using different ways of modeling errors to improve streamflow forecasting. 

In addition, Yuan et al. (2014) proposed combining forecasts from different sources to improve 

the accuracy and reliability of streamflow forecasts. 

 

To achieve a comprehensive streamflow forecast, it is crucial to use DA to ensure that the 

starting point is as accurate as possible. This involves using a hydrological model that has been 

calibrated with meteorological forecasts and historical data. For short-term forecasts, recent 

information should be utilized to provide a more accurate representation of initial states and 

boundary conditions, which can be achieved through DA. However, care must be taken to 

ensure that initial state correction does not introduce new errors in the longer-term forecasts, 

as in Mai et al. (2020).  

 

For subseasonal to seasonal forecasts, forecasts specifically issued for this period should be 

used. In contrast, for longer periods, historical data can serve as a baseline, but modifications 

should be made to account for current conditions. However, as climate conditions can change 

rapidly, even long-term forecasts may need to be updated after a period of time, and it is 

essential to address the need for the user. For instance, users may require information on large-
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scale climate indices or the historical probability of having periods with specific amounts of 

water to filter scenarios and test their accuracy over hindcasts. To account for natural 

variability and improve streamflow forecasting accuracy, forecasters often use ensemble 

forecasting methods, which involve running multiple simulations with slightly different initial 

conditions or model parameters to generate a range of possible outcomes. This approach allows 

forecasters to assess the likelihood of different scenarios and provide more reliable forecasts 

in the face of inherent variability (Demaria et al., 2016; Fatichi et al., 2014; Seiller & Anctil, 

2014; Wood et al., 2016; Zhao & Brissette, 2022). 

 

Improving the accuracy and reliability of streamflow forecasts requires a combination of 

different approaches such as using calibrated hydrological models, DA, and combining 

forecasts from different sources while accounting for historical and current conditions. It is 

essential to consider the specific lead-time and user's needs to achieve a comprehensive 

streamflow forecast. Overall, improving streamflow forecasting is critical for effective water 

resources management and decision-making. 

 

6.5 Limitations   
 

The objective of this study was to improve both short-term and long-term streamflow forecasts. 

Short-term improvements were more attainable due to a good understanding of the weather 

over short time periods. However, this revealed limitations, such as the need to study multiple 

sites and sources of data to develop more robust forecasting methods. Long-term streamflow 

forecasting requires incorporation of the natural variability that exists in precipitation and 

temperature time series. This has been explored in previous studies, such as Kalra et al. (2013), 

Sagarika et al. (2014), Sohrabi et al. (2021), and Zhao and Brissette (2022). In addition, using 

LSTM models is an alternative since they have shown the ability to capture long-term temporal 

dependencies and can "learn" from the natural variability of temperature, precipitation, and 

other climate variables (Cheng et al., 2020; Herbert et al., 2021). Therefore, it is recommended 

to further investigate all lead-times using LSTM models, despite the challenges of learning 
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long-term dependencies (Hochreiter et al., 2001). This could be done with temperature and 

precipitation or with additional variables, such as soil moisture, cloud cover, and wind speed. 

It is important to note that using different variables sometimes requires different data sources, 

which highlights the need for bias correction and pre-processing as a first step. 

 

On the other hand, the accuracy of long-term forecasts depends on the choice of the study 

region, which is another limitation of this study. The limited number of regions studied could 

be addressed in future studies by using the same setting as in chapter 4 but applying it to other 

regions to better evaluate the streamflow forecasting chain.  

 

One limitation of DA for hydrological modeling is that it often relies on only one model, which 

may not capture the full complexity of the system. It could be beneficial to explore the use of 

multiple models to better capture uncertainty and improve accuracy, but this approach would 

require careful consideration of practical and computational challenges. 

 

Another limitation is that while we have conducted both short-term and long-term forecasts, 

we have yet to issue seamless forecasts that cover a full range of lead-times. For example, it 

would be valuable to develop forecasts that span from 1-day to 365-day lead-times in a 

continuous manner, allowing for a more comprehensive understanding of the system dynamics 

and uncertainties over time. 

  





 

 

CONCLUSION 

 

This study aimed to evaluate different methods for improving the accuracy of streamflow 

forecasting in Canadian catchments, which are snow-dominated catchments with spring floods. 

Depending on the lead-time of interest, there are generally two approaches. One approach is 

to use ensemble meteorological forecasts, such as precipitation and temperature, which 

perform well for up to ten days. In this study, an EnKF-based assimilation method was applied 

to improve the accuracy of forecasts for this ten-day period. The regulation of hyperparameters 

was addressed in seasonal settings. The results indicate that the seasonal DA scheme with fixed 

hyperparameters and the best state variables combination leads to an improvement in ensemble 

streamflow forecasts, especially in winter. However, the skill of the ensemble forecast 

decreases with longer lead-times. A sensitivity analysis was conducted to evaluate the 

influence of the hyperparameters and model state variables, and the results show strong 

seasonal sensitivity of the EnKF hyperparameters and model state variables. The study 

suggests that a detailed testing of all possible combinations could help forecasters better target 

the assimilation hyperparameters for their specific needs. The EnKF assimilation scheme has 

significant potential to improve streamflow forecasts for operational forecasting centers and 

water resources system managers. 

 

The benchmark dataset was used to evaluate the performance of LSTM models for forecasting 

short-term streamflow. The LSTM model provided more skillful ensemble forecasts and 

displayed tighter spreads compared to CEQUEAU. It eliminated the need for a DA process 

and still provided high-quality forecasts for lead-times up to 9 days, with a KGE higher than 

0.88. The study concludes that LSTM is a promising model for short-term streamflow 

forecasting, and it can provide better accuracy than more complex distributed hydrological 

models in this North American catchment. The results showed that LSTM outperformed the 

use of DA until a lead-time of 5 days. 
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The other part of the study aimed to improve long-term streamflow forecasting using historical 

meteorological data as possible forecast scenarios. These scenarios needed to be processed to 

obtain better forecasts by considering the characteristics of the period before the forecast date. 

Therefore, a GA-based method was used to quantify the maximum potential improvement and 

provide a means of comparison between various methods. The study proposed a method to 

differentiate desirable and undesirable members by correlating hydroclimatological indices 

with the theoretically optimal ESP member properties. However, the selected variables were 

not found to be good predictors of this relationship. The findings could help improve ESP 

forecasting by providing a more consistent baseline for comparison and determining the 

potential of streamflow forecasting using historical data. Additionally, indexing historical 

scenarios could help select the optimal set and use it as a proxy to filter scenarios, thereby 

improving the data pre-processing. 

 

The study showed that various methods could be used to improve streamflow forecasting 

accuracy. The ESP member selection approach was useful for long-term forecasting, while the 

EnKF and LSTM models were effective for short-term forecasting. The study emphasized the 

importance of conducting detailed sensitivity analyses to identify the best-performing 

implementation of the EnKF model, its hyperparameters, and state variable selection for the 

specific needs of operational forecasters and water resources system managers. 

  



 

 

RECOMMENDATIONS 

The purpose of this study is to increase the precision of short-term and long-term streamflow 

forecasts. Short-term improvements are more achievable due to a comprehensive grasp of local 

weather patterns. However, limitations such as the need to gather data from various locations 

and sources to develop stronger methods have been identified. The accuracy of long-term 

forecasts heavily depends on the climate and meteorological characteristics of the area in 

question and thus requires further examination, including the incorporation of additional 

climatic variables. These limitations underscore the importance of further research to 

incorporate data from multiple sources to establish more robust forecasting methods. 

 

In this study, we have demonstrated that LSTM models are as effective, if not more so, than 

hydrological models based on physical processes. Furthermore, LSTM models can capture the 

temporal relationship between precipitation and streamflow. There is significant potential for 

enhancing LSTM models through techniques such as bias correction, conditioning, and 

weighting during pre-processing, as well as applying LSTMs at different temporal resolutions 

or improving their structures (Li et al., 2021a, 2021b). Further research is required to assess 

the utility of LSTM models in streamflow forecasting, including variations in model structure, 

input parameters, lead-times, and training in various regions. An objective of this study should 

be to compare and enhance the performance of LSTM models in comparison to the commonly 

used physical process-based hydrological models for streamflow forecasting (Arsenault et al., 

2023; Feng et al., 2020; Liu et al., 2022). 

 

The potential of LSTMs to capture the temporal dependency of precipitation and/or streamflow 

can be evaluated by using them to forecast streamflows over extended lead-times. Further study 

is necessary in different settings. In order to improve the estimation of long-term streamflows, 

it would be interesting to explore the capability of LSTMs to predict existing climate signals 

and streamflow events and then apply that knowledge to forecasting scenarios.  
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It is recommended to utilize other sources of data in different ways for future studies. For 

instance, one may consider training LSTM on other basins, either with or without similarities. 

Also, the use of remote sensing data and other sources of information, such as social media 

and citizen science, could also be explored as potential inputs for Artificial Intelligence (AI) 

and Machine Learning (ML) models. By combining data from various sources, it may be 

possible to develop more accurate and robust forecasting models, particularly for areas with 

limited ground-based monitoring networks. However, further research is needed to assess the 

quality and usefulness of these data sources for streamflow forecasting and to develop methods 

for integrating them with traditional data sources. 

 

The coupling of drought studies and streamflow predictions is crucial for meeting the need for 

long-term streamflow forecasting in dry regions. Accurate forecasting is important for 

preventing the human costs of water scarcity, and advance notice can provide a clearer picture 

of water resources, which is especially valuable in regions facing both water scarcity and 

political conflicts. 
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APPENDIX I CEQUEAU MODEL 

This schematic and parameter sets were adopted and translated from the documentation 

provided by Rio Tinto (Développements du nouveau CEQUEAU). 

 

Figure A I Production diagram of the Cequeau model. 
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Table A I CEQUEAU parameters 
Parameters   
Snow melt parameters (CemaNeige) 
Kf Melting rate (mm/°C) 
Tf Melting temperature (°C) 
CTg Thermal state weighting coefficient (%) 
Gseuil Minimum snow stock (mm) 
Vmin Minimum melting of potential melting (%) 
strne Snow-to-water transformation threshold (°C) 
Evapotranspiration parameters (Oudin) 
K1 Scaling factor for adjusting the ETP volume 
K2 Temperature threshold (°C) 
XLA Average latitude of the partial tile (in degree-minute) 
Production parameters: water in unsaturated zone and water in saturated zone 
Cin Infiltration coefficient from the unsaturated zone to the saturated zone 
Cvnb Low drainage coefficient of the saturated zone 
Cvsi Intermediate drainage coefficient of the unsaturated zone 
Cvsb Low drainage coefficient of the unsaturated zone 
Hinf Infiltration height from from the unsaturated zone to the saturated zone 
Hint Intermediate drainage height of the unsaturated zone 
Hsol Height of the unsaturated zone (in mm) 
Xinfma Maximum infiltration per day 
Vidintmax Maximum threshold for intermediate drainage of the unsaturated zone 
Transfer parameters 
HUDebit Unit hydrograph for flow transfer 

HUProd Unit hydrograph for flow attenuation from its outlet to the downstream 
basin outlet 
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