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Synchronisation de l’orchestrateur sans état dans les réseaux multicouches multidomaines

Alireza Tirehkar

RÉSUMÉ

Dans un réseau multicouche (MLN), un orchestrateur peut être déployé pour coordonner plusieurs

couches, telles que IP, OTN et DWDM. Chaque couche est un domaine administratif. Précision

de la mise à jour de la vue de l’orchestrateur est un défi pour le MLN. Dans en raison de la

structure hiérarchique des MLN, une seule panne dans une couche sous-jacente peut se propager

aux couches supérieures, générant ainsi de nombreuses alarmes dans ces couches. Ces alarmes

peuvent envoyer des mises à jour informations incorrectes de concernant la cause principale de

l’échec source de la panne, qui aboutit à des décisions incorrectes une mauvaise décision de

l’orchestrateur pour le routage et l’allocation des ressources.

Ainsi, l’ordre de mise à jour par d’envoie des mises à jour de différentes couches est cruciale

à l’orchestrateur est très important dans MLN pour éviter toute confusion de l’orchestrateur

puisque la relation. Déterminer l’ordre optimal est difficile, en raison de la cartographie

flexible n’est pas facile à calculer. Des liens entre les différentes couches est complexe, et le

temps de propagation des pannes des couches sous-jacentes aux couches supérieures. Dans ce

mémoire, nous proposons une méthode pour mettre à jour l’orchestrateur afin de, , qui permet de

garantir que la cause racine source de panne est signalée correctement, en tenant compte de la

dépendance entre les différentes couches et du temps de propagation des pannes. En particulier,

nous optimisons la fréquence d’envoi des messages de mise à jour des couches à l’orchestrateur.

Notre méthode peut être implémentée dans l’orchestrateur pour demander périodiquement des

mises à jour aux contrôleurs selon une fréquence optimisée.

Nous formulons un problème d’optimisation non linéaire de nombre entier pour la mise à jour

de l’orchestrateur, puis proposons deux algorithmes pour approximer la probabilité d’échec

optimale pour la mise à jour de l’orchestrateur solution optimale. Les résultats de simulation

expérimentaux montrent que notre algorithme MLNOU proposé peut obtenir un quasi-optimal

qui se rapproche en moyenne de 11.3 % de différence par rapport à la solution optimale, ce qui

démontre l’efficacité de notre algorithme et surpasse clairement les solutions comparatives.

Mots-clés: Orchestration, réseau multicouche multidomaine, propagation des pannes, sans état,

avec état





Stateless Orchestrator Synchronization In Multi-Layer Multi-Domain Networks

Alireza Tirehkar

ABSTRACT

In a Multi-Layer Network (MLN), an orchestrator can be deployed to coordinate multiple layers,

such as IP, OTN, and DWDM. Each layer is an administrative domain. Accurately updating

the orchestrator’s network view is challenging in MLNs. Due to the hierarchical structure of

MLNs, a single failure in an underlying layer can propagate to the upper layers, hence generating

many alarms in each of these layers. These alarms may send incorrect updates of the root cause

of the failure, which results in incorrect decisions of the orchestrator for routing and resource

allocation.

Therefore, setting up the order of updating by different layers is crucial in MLN to avoid confusion

in the orchestrator’s network view. This task is challenging, due to the flexible mapping of links

between different layers, and also to the failure propagation time from the underlying layers to

the upper layers. In this thesis, we propose a method to update the orchestrator to ensure that the

root cause is reported correctly, taking into account the dependency among different layers and

failure propagation time. In particular, we optimize the frequency of sending update messages

from layers to the orchestrator. Our proposed method can be implemented in the orchestrator to

request updates from controllers periodically at an optimized rate.

We formulate an integer nonlinear optimization problem for updating the orchestrator and

then propose two algorithms to approximate the optimal failure probability for updating

the orchestrator solution. Simulation experimental results show that our proposed MLNOU

algorithm can obtain a near-optimal which approximates on average 11.3% different from the

optimal solution, which demonstrates the significant effect of our algorithm on the orchestrator’s

performance and clearly outperforms the baselines.

Keywords: Orchestration, multi-layer multi-domain network, failure propagation, stateless,

stateful
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INTRODUCTION

Context and motivations

In general, Multi-layer networks (MLNs) consist of two or three layers, where the lower layers

(layer 0 and layer 1) are optical networks, and the upper layer is Internet Protocol/Multi-Protocol

Label Switching (IP/MPLS) network [Alzahrani & Katib (2018)]. This integrated architecture

benefits from IP traffic engineering and the high capacity of optical networks. In this thesis, each

layer is a domain, and each domain is provided by a different vendor with a different controller.

The fundamental approach to take advantage of both MLN technologies and multi-domain

network features is network orchestration [Koulougli, Nguyen & Cheriet (2020)].

An orchestrator is required to coordinate different layers and different domains through the SDN

paradigm [Szyrkowiec et al. (2018)]. The Topology Server (TS) [Muñoz et al. (2015b)] gathers

the domain topology of each SDN domain controller, and the orchestrator maintains the global

view of the network from this gathered information [Gossels, Choudhury & Rexford (2019)].

In addition, the orchestrator manages the network resources by calling services provided by

the controllers in each layer [Mirkhanzadeh et al. (2018)]. For example, the orchestrator can

use gathered information to provision end-to-end network services through multiple layers and

multiple technologies and make optimized decisions [Casellas, Martínez, Vilalta & Muñoz

(2018)].

Fig. 0.1 shows an MLN with three layers. Layer 0 is the Dense Wavelength Division Multiplexing

(DWDM) network, layer 1 is the Optical Transport Network (OTN) network, and layer 2 is the

IP network.

Except for the lowest layer, each of the other layers is composed of two different parts, a

dependent and an independent part. The independent part contains physical links and the

dependent part contains virtual links. By a given mapping function, virtual links are mapped to
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a physical link or set of physical links in the underlying layers which use different technologies

[Manzanares-Lopez, Muñoz-Gea, Malgosa-Sanahuja & Flores-de la Cruz (2019)]. For example,

in Fig. 0.2(a), the dependent part of the IP layer includes two virtual links, A-C and A-D, which

are mapped respectively to a physical link I-L and two physical links I-J-K in the DWDM layer.

𝑐0, 𝑐1, and 𝑐2 are message costs from DWDM, OTN, and IP controller to the orchestrator, and B

is the network’s available bandwidth.

A

B

C

D

E

F

G

I

J

L

K

IP controller

OTN controller

DWDM controller

H

Virtual link

Physical link

Network's
bandwidth

DWDM
message cost

OTN  
message cost

IP  
message cost

Orchestrator
TS

Figure 0.1 Hierarchical multi-layer multi-domain network with three layers
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b) Failure propagation.

Figure 0.2 Failure propagation and mapping between the layers
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Due to the hierarchical structure of MLNs, one failure in the underlying layers may cause

multiple failures in the dependent parts of the upper layers [Zhang, Wang, Jin & Song (2021a)].

Fig. 0.2(b) shows how single link failure in the underlying layers can propagate to the links in

the upper layers. For instance, if physical link I-L in the DWDM layer fails, both virtual links

A-C in the IP layer and E-H in the OTN layer will be failed. It is worth noting that both node and

link failures can happen in the physical layer, however, based on the collected data of network

operators, the probability of link failure is much higher than node failure [Gill, Jain & Nagappan

(2011)]. Therefore, in this thesis, we focus on single link failure in the underlying layers and

how it propagates to the upper layers.

The controllers update the orchestrator with the current state of their layer (e.g., available links)

by sending messages to the TS. Several protocols can be used to coordinate the controllers

and the TS. For instance, Open Network Operating System (ONOS) controller uses the Raft

protocol for coordination among controllers [Zhu et al. (2020)]. In [Mayoral, Vilalta, Muñoz,

Casellas & Martínez (2017)], they proposed ABNO architecture for multi-layer, multi-domain

network orchestration, in which topology updating is performed in a proactive manner.

The protocols for updating the TS can be classified into stateful and stateless protocols [Zhang

et al. (2021b)]. Stateful protocols maintain all the controllers synchronized at all times with the

orchestrator’s view of the network. Whenever a change happens in a layer, such as a link failure,

the controller of the layer sends a message to the TS to update. In the stateless protocol, the

controllers send messages periodically to the TS [Botelho, Ribeiro, Ferreira, Ramos & Bessani

(2016)].

Due to the unreliable nature of network communications, implementing a stateful protocol in an

MLN is very challenging [Tirehkar, Nguyen & Cheriet (2023)]. Since failures occur very often

in this kind of network stateful protocol generates remarkable overheads for updating the TS

[Qin, Poularakis, Iosifidis & Tassiulas (2018)] which may be large in some networks such as
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wireless networks with limited capacity in-band control channels [Lin, Wang, Akyildiz & Luo

(2018)]. Therefore, a stateless protocol is more practical for a complex MLN.

Figure 0.3 Different flow request and updating message times

Problem statement

Through a stateless protocol, controllers update the orchestrator periodically. Such a stateless

protocol may result in an inconsistent view of layers, in the interval of time between two

consecutive messages from controllers to the orchestrator. Inconsistency can negatively

influence the orchestrator’s performance. For example, assume the virtual link A-D in the IP

layer fails due to an outage in the physical link J-K in the DWDM, as illustrated in Fig. 0.2(b).

As depicted in Fig.0.3 if the stateless orchestrator receives a request for routing a flow from A to

D before receiving updates from the controllers (e.g., Scenario 1 in Fig.0.3), it will compute a

path based on its current view of the network (A-D and J-K links are all still available), therefore

the orchestrator will choose the A-E-I-J-K-G-D path for routing the traffic. This decision will no

longer be appropriate because of the outage in the physical link J-K. However, if the orchestrator
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had been synchronized with the controllers, it would route traffic over the A-E-F-G-D path. A

stateless protocol faces the challenge of deciding at what rate each controller updates the TS.

The order of sending the updates by the controllers is substantial to keep the orchestrator

synchronized. To illustrate the effect of the ordered updates on the orchestrator’s performance,

we assume the orchestrator receives a flow request in different scenarios as in Fig. 0.3 and

compare the orchestrator’s decisions. In Scenario 2, the orchestrator is updated by the IP layer

before receiving the flow request to route a flow from A to D. In this scenario, the orchestrator

is aware of the failure in the physical path I-J-K, due to the virtual failure in the IP layer as

illustrated in Fig. 0.2(b), however, it is not obvious that failure of I-J or J-K caused failure on the

I-J-K path. Therefore, the orchestrator will choose the OTN layer to route the traffic. However,

if it was updated by the DWDM layer (e.g. correct scenario of 0.3 ), it could be aware of the

availability of the I-J link and use both OTN and DWDM layers to route the traffic.

Research questions

Using the stateless protocol to update the orchestrator periodically causes inconsistency between

the orchestrator and the controllers. In order to reduce this inconsistency we need to address the

following question:

• Research Question (RQ). What is the synchronization message frequency from controllers

to the orchestrator to minimize the inconsistency between the orchestrator and MLN’s state?

Objectives of the thesis

Our goal in this thesis is to design an efficient ordered updating mechanism to minimize the

inconsistency between the orchestrator and the controllers. We investigate the impact of the

synchronization rate from controllers to the orchestrator, on the orchestrator’s performance. In

addition, our mechanism can avoid confusion in the orchestrator and satisfy the constraints of
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the control plane in terms of bandwidth, for the case of single link failure in the MLNs. The

main objective can be divided into three sub-objectives (SO):

• SO1. Propose an approach of updating the orchestrator’s view of the network by controllers.

This approach takes into account the order of updates by controllers according to the mapping

function and the failure propagation in the MLN.

• SO2. Formulate a mathematical optimization model based on the updating approach proposed

in SO1 to minimize the inconsistency between the controllers and the orchestrator in the

MLN, taking into account bandwidth limitation and failure propagation time.

• SO3. Propose an efficient algorithm to solve this optimization problem in near real-time.

Consider the high complexity of the optimization model, and increase the scalability of the

problem.

Thesis organization

This thesis includes an Introduction, three chapters, and a conclusion.

The Introduction includes a briefing on orchestration in MLN. It also contains motivations for

this thesis followed by the thesis objectives.

In Chapter 1 we review the related work on the orchestration in MLN. We also review the

protocols that the orchestrator can get notifications from the controllers. Finally, we review the

failure propagation in hierarchical MLN.

Chapter 2 presents our methodology to achieve the thesis objectives. It contains our proposed

method, a system model based on the proposed method, and a mathematical formulation to

optimize the updating message rate from controllers to the orchestrator. In addition, it contains

two algorithms for solving the optimization problem in near real-time.
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In Chapter 3 we present the experimental setup for validating our proposed method. In addition,

we present the numerical results by using a testbed and simulations.

The conclusion summarizes the thesis findings and presents possible future work.





CHAPTER 1

LITERATURE REVIEW

In this chapter, we investigate the available solutions and techniques for updating the orchestrator

in an MLN. We also review failure propagation in a hierarchical MLN, and how it affects the

order of updating messages from controllers to the orchestrator. Table 1.1 summarizes our

literature review on updating the orchestrator in a hierarchical MLN. It contains state-of-the-art

on the topics such as SDN orchestration in MLNs, stateful and stateless protocols for updating

the orchestrator, failure propagation in an MLN, synchronization rate in a logically-centralized

network, and other related approaches.

Regarding our research question, the next section shed a light on the existing updating solutions

for MLN. We investigate the pros and cons of the existing works that lead to a pathway for our

proposal.

1.1 Failure propagation

When a failure occurs in an underlying layer of MLN, it can propagate to the upper layers based

on the network’s mapping function. In [Savi & Siracusa (2018)] the authors considered an MLN

with an IP/MPLS packet layer, a transparent (DWDM) optical layer, and an SDN orchestrator.

Links in the IP layer can be virtual by mapping to the physical links in the DWDM layer. Due to

the lack of coordination between the layers, and the lack of ability to provide the application’s

services to the optical layer, they propose a novel auxiliary-graph-based application-aware

service provisioning algorithm. Their proposed algorithm allows to reactively compute new

paths in case of failure propagation in the network by occurring a failure in the optical layers,

and failure occurrence in the IP/MPLS layer.

In [Williams & Musolesi (2016)] the authors studied spatio-temporal networks by considering

how events propagate in the network. They proposed a model of spatio-temporal paths in time-

varying spatially embedded networks. They considered a time-varying network as a time-ordered
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sequence of graphs. Time intervals have the same size. they considered failure propagation as a

function of the physical distance between two nodes and the speed of transmission.

In [Chattopadhyay, Dai et al. (2019)] the authors studied the methods to optimize the interlinking

structure of multilayer interdependent networks with cost constraints in order to increase network

robustness against node failures. Instead of using popular methods such as branching process

analysis or supra-adjacency matrix representation, this study proposes a framework that utilizes

surrogate metrics to construct interlinks that improve network robustness. The authors focused

on three failure propagation mechanisms and proposes metrics to track network robustness for

each mechanism.

In our problem, we studied failure propagation in multilayer networks in case of the occurrence

of a link failure in the underlying layers. These failures in the physical part of the network

propagate to the upper layers if there are any entities in the upper layers that are mapped to the

failed link. We take into account the time that a failure takes to propagate from an underlying

link to the links in the upper layers by considering the path between them.

The critical problem with failure occurrence and propagation in MLN is how the controllers with

failures in their domain update the orchestrator about their current state. computer networks

are a crucial component of infrastructure, and they are expected to meet high standards in

terms of accuracy, accessibility, and performance. they should also be flexible and adaptable to

allow for fast updates, such as changes in policies, traffic surges, or system failures. [Foerster,

Schmid & Vissicchio (2018)] presents a comprehensive review of mechanisms and protocols that

facilitate fast and consistent updates to computer networks. The authors discuss the desirable

consistency properties that should be ensured throughout a network update, the algorithmic

techniques required to achieve these properties, and the implications for the speed and cost of

updates.

The next sections investigate the existing protocols that controllers of MLN can use to update

the orchestrator about their domain’s current state.
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1.1.1 Stateful protocol

The stateful protocol ensures that the orchestrator has an updated view of the current state in each

domain. When a change happens in a domain, that domain’s controller updates the orchestrator

about the change immediately. In an SDN orchestration structure, the orchestrator coordinates

the resource provisioning across multiple domains and technologies based on its global view of

the network. This implies that the orchestrator should maintain the new view of the network

when a change happens in a domain [Botelho et al. (2016)]. In this regard, Botelho et. al was

motivated by the need for a stateful protocol to assure correct network policy enforcement. They

proposed an architecture, contrary to alternative designs, their central controller is consistent,

fault-tolerant, and guarantees that applications work on a consistent view. The main concern

of their approach is the overhead required to guarantee consistency on fault-tolerant, which

may limit the scalability. They proposed several optimization techniques to reduce the effect of

overheads on the application’s performance.

[Katta, Zhang, Freedman & Rexford (2015)] proposed Ravana, which is a platform for SDN

controllers that provides a fault-free centralized controller abstraction to manage applications.

Rather than simply maintaining consistency in the controller’s state, Ravana treats the entire event-

processing cycle (which includes event delivery from switches, event processing on controllers,

and command execution on switches) as a transaction. Ravana ensures that transactions are

executed as a whole, either all or none of the components and that they are ordered across

replicas and executed only once throughout the system. As a result, Ravana can handle switch

states accurately without relying on rollbacks or repeated execution of commands. Switches

update the controllers consistently. Their method makes less overhead than strongly consistent

protocol. However, in our structure, there are multiple controllers, in which each controller

controls a set of switches in its domain and updates the orchestrator of its domain’s current state.



12

1.1.2 Stateless protocol

The stateless protocol orchestrator receives updating messages from the controllers periodically.

When a change occurs in a domain, that domain’s controller updates the orchestrator about the

change by the next message that will be sent to the orchestrator at the end of the time interval. In

[Mayoral, Vilalta, Munoz, Casellas & Martánez (2015)], they proposed a multi-domain SDN

orchestration and analyzed its performance on multi-layer end-to-end services in a multi-domain

network scenario. They investigated topology recovery by both stateful and stateless protocols.

Although the stateless protocol can increase the inconsistency and blocking probability when a

change occurs between two updating messages, they chose this method to reduce the delay to

answer a service request.

In [Levin, Wundsam, Heller, Handigol & Feldmann (2012)], the authors considered a logically

centralized network and investigated the reliability and scalability of the network according

to different synchronization dissemination methods. They evaluate the performance of a load

balancer application according to an inconsistent global view of the network. In addition,

they take into account the trade-off between the application performance and network state

overhead and the complexity of application logic vs robustness to inconsistency in the underlying

distributed SDN state.

[Zhang et al. (2019)] proposed a synchronization policy design between the controllers based

on deep reinforcement learning. Many current approaches focus on resolving inconsistencies

between controllers’ network views to eliminate anomalies. They formulated the controller

synchronization problem as a Markov decision process (MDP) and leveraged reinforcement

learning techniques along with deep neural networks (DNNs) to train a sophisticated and

scalable controller synchronization policy called Multi-Armed Cooperative Synchronization

(MACS). The primary objective of MACS is to maximize the performance benefits of controller

synchronization. However, in our work, we consider the hierarchically structured network, in

which failures propagate within layers. In addition, in our proposed method we find the exact

number of updates by each controller to reduce the inconsistency.
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In [Guo et al. (2014)], the authors investigated synchronization in a multi-controller multi-domain

SDN network. They mentioned if controllers update the logical view of the network frequently

when a failure occurs in the network, the network may experience high synchronization overhead.

In addition, the state of the controllers may become desynchronized between two consecutive

synchronizations, which could lead to forwarding loops and black holes. To address this

issue, they proposed a new scheme called Load Variance-based Synchronization (LVS) that

improves load-balancing performance. Unlike existing schemes, LVS conducts effective state

synchronizations among controllers only when a load of a specific server or domain exceeds

a certain threshold. This significantly reduces the synchronization overhead of controllers.

Their simulation results demonstrate that LVS achieves loop-free forwarding and good load-

balancing performance with much less synchronization overhead than existing schemes that

use PS-based synchronization. However, their method only focused on the performance of

load-balancing applications. However, in our thesis, we consider the overhead based on our

resources, and we reduced the inconsistency between the orchestrator and controllers, which

reduced desynchronization between the orchestrator and the controllers. Moreover, our method

is not limited to one application.

In [Mirkhanzadeh et al. (2018)] the authors studied MLNs which are managed by a hierarchical

SDN orchestrator. There is a Resource Management (RM) module in their study that serves as an

interface/adapter for the orchestrator and is responsible for sending and receiving messages to and

from the controllers. It uses REST APIs provided by three SDN controllers and the RESTCONF

Optical Plug-in to communicate with both electrical packet and optical circuit domains. The

RM module periodically discovers each layer’s network topology, creates a global view of the

network for the orchestrator, and stores it in the Database. Apart from these functionalities, the

RM module also handles path setup requests originating from the service provisioning module

and uses REST APIs and RESTCONF interfaces to apply the necessary network equipment

configuration commands. Additionally, it fetches network alarms caused by fiber outages and

sends messages to the fault handler module to notify it for appropriate counteractions. However,

they did not mention if a failure occurs between two consecutive topology discoveries, how the
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orchestrator will route the traffic. In our thesis, we studied this problem and proposed a method

to reduce this inconsistency between the orchestrator and network state.

As the above studies mentioned the inconsistency between the orchestrator and the controllers

in the stateless protocol can have negative effects on the performance of the orchestrator. To

overcome this in the next step we discussed other methods which contain the dynamic protocol,

and investigated the frequency of synchronization messages.

1.1.3 Dynamic protocol

The authors of [Sakic, Sardis, Guck & Kellerer (2017)] proposed an adaptive dynamic syn-

chronization method, which is a combination of stateful and stateless protocols. This approach

is based on the severity of each failure, and the cost of its consequences. They divided the

failures into two groups, strict and not strict based on the failure’s impact on the network. When

a strict failure occurs which affects a large portion of network entities and infrastructure in a

controller’s domain, the controller has to send update messages to other controllers to inform

them about the failures. However, if the occurred failure is not strict the controller can keep

updating other controllers periodically. They showed this method improved the performance of

network applications and reduced application inefficiency, and it is scalable. However, they did

not consider the effect of the synchronization rate on the performance of the applications.

The stateless protocol can have negative impacts on the network. When a failure occurs in

a domain in an interval of time between two update messages, the orchestrator is not aware

of that until the next interval. For example, Fig.1.1 shows the time of update messages from

layer i to the orchestrator, and a failure occurred after the first update message however, the

orchestrator will be updated about that at 𝑡1. To overcome this inconsistency between the

controllers and the orchestrator some papers work on sending additional messages within each

interval by considering the resource limitations. In [Poularakis et al. (2019)], the authors

investigated synchronization in a logically-centralized network. They considered a distributed

SDN controllers architecture, in which each controller is responsible for its domain. Each
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controller disseminates synchronization messages to the other controllers when a change occurs

in its domain (i.e. link failure). Disseminated messages contain the controller’s view of the

current state of its domain (i.e. available resources). They considered that controllers disseminate

synchronization messages periodically. To reduce the inconsistency among the controllers they

investigated policies among them and focused on the synchronization frequency rate on the

performance of network applications.

-

Figure 1.1 failure occurs in layer I between two updated messages

The following section investigates protocols to apply the aforementioned methods to update the

orchestrator in MLN.

1.2 Topology discovery in MLN

In an MLN each layer is a technology with unique functionality, in which an orchestrator

is required to use all of these technologies [Mirkhanzadeh et al. (2018)]. The orchestrator

makes its decision based on the last topology gathered by TS. Orchestrator creates its network

topology by cooperation with the domain’s controllers. There are different protocols that the

orchestrator can use for this cooperation. Domain controllers can have their own RESTFUL APIs

to send their current state information to the other applications however Network Configuration

Protocol (NETCONF) is one of the protocols that controllers can use. NETCONF defines a

mechanism that controllers can be managed by the orchestrator. For instance, the controller’s

configuration data can be retrieved, uploaded, and manipulated by the orchestrator [Enns,

Bjorklund, Schoenwaelder & Bierman (2011)]. RESTCONF is NETCONF’s RESTful-based
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version, which can be applied to exchange messages. YANG (Yet Another New Language)

makes NETCONF and RESTCONF more configurable.

1.2.1 YANG modeling language

YANG is a data modeling language, designed to model configuration, operational data declara-

tions, and notifications. Due to its flexibility, and availability of tools, it has become the data

modeling language for multiple network control and management aspects [Bjorklund (2016)].

YANG language is using encapsulation of containers and lists to structure the data which is

expressive.

In [Casellas et al. (2018)], the authors proposed control, management, and orchestration systems

in multi-layer multi-domain networks. They investigated efficient methods for data collection

from different sources in a network to monitor the infrastructure. This method requires the

adoption of interfaces and development. Monitoring the status of entities in a large-scale

network, configuring programmable pipelines, and enabling performance monitoring are precise

functional requirements for the interfaces. They proposed YANG notification mechanism that

allows the network operator to receive notifications from clients, configure parameters for

filtering the notifications, and to choose the method of receiving the notifications such as strongly

consistent or eventually consistent.

There are two subscription methods for using the YANG modeling language by the orchestrator

to receive notification updates from the controllers. These methods are named periodic

subscriptions (stateless), and on-change subscriptions (stateful). By periodic subscription, the

orchestrator receives updates from each controller periodically according to some time interval.

However, by using an on-change subscription, whenever a change occurs in the domain of a

controller, it updates the orchestrator of this change and available resources of its domain (i.e.

available links, available nodes) [Mayoral et al. (2020)].

However, no prior work has investigated the rate of synchronization messages from each

controller to the orchestrator in a hierarchical multi-layer multi-domain (MLMD) network. In
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addition, We take into account the order of updating by controllers due to failure occurrence,

failure propagation, and mapping function.

Table 1.1 Literature review

Reference Feature Pros Cons

Yang data modelling
Enns et al. (2011)

Casellas et al. (2018)

Mayoral et al. (2020)

Standard

modelling

language

Configure

parameters,

filter messages

, and send

notifications

Not suitable

for every type

of applications

Sateful protocol
Botelho et al. (2016)

Katta et al. (2015)

Strongly

consistent

view of the

network

The orchestrator and

controllers are

synchronized

all the time

Limited

scalability

and generate

significant

overheads

Stateless protocol
Mayoral et al. (2015)

Levin et al. (2012)

Sakic et al. (2017)

Zhang et al. (2019)

Mirkhanzadeh et al. (2018)

Update the

orchestrator

periodically

Less overheads in

complex network

Inconsistency

between

the orchestrator

and controllers

Synchronization rate
Poularakis et al. (2019)

Sakic et al. (2017)

More update

messages in an

interval time

Reudce the

inconsistency between

the orchestrator

and controllers

Not considering

correlation

between domains





CHAPTER 2

METHODOLOGY

This chapter presents the methodology of our work. We first introduce the architecture, which

includes illustrations of MLN. Then, our proposed framework for the synchronization of the

orchestrator and controllers is presented.

2.1 Architecture

2.1.1 Multi-layer multi-domain orchestration

In this thesis, we consider a model representing a stateless MLN consisting of L layers, in which

each layer is a domain and an orchestrator. Each layer has a controller that manages that layer

and has the layer’s information (e.g., available resources, failed entities).

The orchestrator is aware of the whole network’s state until the last update that TS received

from all layers. The orchestrator can decide how to coordinate multiple layers and how to

send the traffic through different layers from a source to a destination based on the network’s

available resources (e.g., available links) provided by TS. Table 2.1 summarizes the notations

and variables used in this thesis.

2.1.2 Failure propagation

Due to the hierarchical architecture of MLN, a failure in an underlying layer can cause failures

in upper layers, which is called failure propagation. Therefore, we classify the failures into two

categories. The first category includes the failures that happen independently of the other failures

in the lower layers. The second category contains the failures that happen as a result of other

failures in the lower layers, which means these failures happen in the dependent part of the layer.

Let the mapping function 𝑚𝑘,𝑖, denotes the mapping relation between upper layer k and lower

layer i. If layer k is mapped to layer i, 𝑚𝑘,𝑖 = 1, otherwise 𝑚𝑘,𝑖 = 0. And,𝑈 (𝑖) = {𝑘 |𝑚𝑘,𝑖 = 1}

shows a set of layers that are mapped to layer i. So, when a failure happens in a link in an
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Table 2.1 Notations

Notation Description
𝜆𝑖 State change rate of the independent part of controller i.

𝑡 Time window length.

𝑅𝑖 Represents the maximum number of additional messages from controller

i, to the TS.

𝑐𝑖 Resource cost of sending a message from controller i to the TS.

𝐵 The available network resource (Bandwidth).

𝑤𝑖 𝑗 Percentage of links in the independent part of layer j (lower layer), that

links from layer i (upper layer) are mapped to them.

𝑝𝑖 (𝑎, 𝑛) Failure probability in layer i, in the interval with length n after the 𝑎𝑡ℎ
message and before (𝑎 + 1)𝑡ℎ message to the TS.

𝑚𝑘,𝑖 Shows the mapping relation between layer k and layer i.

𝑈 (𝑖) Set of layers that are mapped to layer i.

𝑙 (𝑖) Set of links of layer i.

𝑠𝑏𝑜𝑢𝑛𝑑𝑖𝑘 Failure propagation speed in the boundary link between layer i and layer

k.

𝑡𝑖 (𝑎) Time of the 𝑎𝑡ℎ update from layer i to the TS.

𝑇𝑘𝑖 (𝑎, 𝑏) Failure propagation time from link 𝑎 ∈ 𝑙 (𝑖) to the link 𝑏 ∈ 𝑙 (𝑘).
𝑇𝑝𝑟𝑜𝑝 (𝑖, 𝑘) Failure propagation time from layer i to layer k.

Variables Description
𝑥𝑖 The number of additional messages within each time window, between

controller i and the TS.

underlying layer, by finding the distance between the failed link and the virtual links that are

mapped to it, we can calculate the failure time at each of those links.

The failure propagation time is the time that takes a link failure in the underlying layer propagates

to the links in the upper layers [Salama, Ezzeldin, El-Dakhakhni & Tait (2022)], which are

mapped to the failed link. We calculate the propagation time from an underlying layer to the

upper layers by considering the Spatio-temporal effect [Williams & Musolesi (2016)]. Let 𝑙 (𝑖)

represent a set of links of layer i, we assume the failure propagation speed in all links of each

layer is the same and denote this link propagation speed of layer i by 𝑠𝑖. In addition, we denote

the propagation speed of the boundary link, between layer i and layer k by 𝑠𝑏𝑜𝑢𝑛𝑑𝑖𝑘 . We calculate

the shortest path from the physical link 𝑎 ∈ 𝑙 (𝑖), to the virtual link 𝑏 ∈ 𝑙 (𝑘) by using Dijkstra’s

algorithm, and show the time of this propagation by 𝑇𝑘𝑖 (𝑎, 𝑏) Salama et al. (2022).
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Figure 2.1 Propagation time between layers

We define the failure propagation time between layer i and layer k, as the maximum link propaga-

tion time between layer i and layer k, which is denoted by: 𝑇𝑝𝑟𝑜𝑝 (𝑖, 𝑘)=𝑚𝑎𝑥{𝑇
𝑘
𝑖 (𝑎, 𝑏) |∀𝑎 ∈ 𝑙 (𝑖), 𝑏 ∈ 𝑙 (𝑘)}.

For instance, in Fig. 2.1, virtual link A-B(2) is mapped to the physical link D-E(1), and virtual

link A-C(3) is mapped to the set of physical links D-E-F, the failure propagation time between

these two layer is: 𝑇𝑝𝑟𝑜𝑝 (0, 1)=𝑚𝑎𝑥{𝑇
1
0
(1, 2), 𝑇1

0
(1, 3)}.

2.2 System modeling

We denote the state change rate of the independent part of the controller i by 𝜆𝑖. In addition,

changing network conditions in the independent part of each layer can be modeled by an

independent Poisson process with a state change rate 𝜆𝑖. We consider a period T, which is

then divided into time windows. Each time window is denoted by t. Moreover, assume that

all controllers are sending messages to the orchestrator at the beginning of each time window.

According to the Poisson process model, the probability that the state of the independent part of
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the controller i does not change is 𝑒−𝜆𝑖𝑡 , where t is the time window length. The probability of

failure occurrence independently in layer i is 1−(𝑒−𝜆𝑖𝑡). The probability of independent failure

occurrence in all the layers is given by:

𝐿−1∑
𝑖=0

(1 − 𝑒−𝜆𝑖𝑡)

We define the weight of mapped entities from layer i (upper layer) to layer j (lower layer), by the

percentage of independent entities in layer j that corresponds to a mapping from layer i. Such

weight is denoted by:

𝑤𝑖 𝑗 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 < 𝑤𝑖 𝑗 ≤ 1 if layer 𝑖 is mapped to layer j

0 otherwise

(2.1)

In addition, the probability of failure occurrence in the dependent part of layer i due to the

occurrence of a failure in layer j, which is one of the i’s lower layers, is: (1− 𝑒−𝜆 𝑗 )𝑤𝑖 𝑗 . Therefore,

the probability of failure occurrence in the dependent part of layer i due to the propagation of

failures in the underlying layers is:

𝑖−1∑
𝑗=0

(1 − 𝑒−𝜆 𝑗 𝑡)𝑤𝑖 𝑗

Because only a higher layer can be mapped to a lower layer, this failure probability can be

written as follows:
𝑖−1∑
𝑗=0

(1 − 𝑒−𝜆 𝑗 𝑡)𝑤𝑖 𝑗 =
𝐿−1∑
𝑗=0

(1 − 𝑒−𝜆 𝑗 𝑡)𝑤𝑖 𝑗 (2.2)

To update the orchestrator’s view of the network, the controllers have the option to send additional

messages to the orchestrator within each time window. We denote these extra messages that are

sent from controller i to the orchestrator by 𝑥𝑖 (e.g., Fig. 2.2). And we denote the maximum
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number of messages that controller i (∀𝑖 ∈ {0, 1, 2, ..., 𝐿 − 1}) can send to the orchestrator by

𝑅𝑖.

𝑥 = (𝑥0, 𝑥1, ..., 𝑥𝐿−1) (2.3)

0 ≤ 𝑥𝑖 ≤ 𝑅𝑖 : ∀𝑖 ∈ {0, 1, ..., 𝐿 − 1} (2.4)

a) Update the orchestrator sooner than upper layers, to avoid confusion in case of

occurrence of a failure in an underlying layer.

b) Update the orchestrator after the required time for failure propagation to convey correct

information about the layer’s state.

Figure 2.2 Failure propagation and mapping between the layers

Sending a message from each controller to the orchestrator consumes the network’s bandwidth.

Bandwidth consumption can be significant in resource-constrained environments [Huang, Cui,

Zhang, Chu & Lin (2020)]. We define 𝑐𝑖 as the resource cost (e.g., bandwidth consumption) of
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sending each message from controller i to the orchestrator. Let B denote the network’s available

bandwidth, the total bandwidth consumed to send the update message to the orchestrator cannot

exceed the total available bandwidth B:

𝐿−1∑
𝑖=0

𝑥𝑖𝑐𝑖 ≤ 𝐵 (2.5)

Therefore, the time interval between two consecutive additional messages that are sent from

layer i to the orchestrator is 𝑡
𝑥𝑖+1

as depicted in Fig. 2.2(a). We call the first physical link failure

the main failure and the consequent failures as virtual failures. If one of the layers with virtual

failure sends a message to the orchestrator sooner than the layer with the main failure, the

orchestrator will get confused, and cannot build a correct view of the available resources.

For instance, in Fig. 2.2(a), a failure happens within an interval with length n, after the 𝑎𝑡ℎ

update from layer i, if upper layers (blue and orange arrows) update the orchestrator after the

failure and sooner than (𝑎 + 1)𝑡ℎ update from layer i, the orchestrator will not find the correct

state of layer i. So, as the red dashed arrow shows, layer i should send (𝑎 + 1)𝑡ℎ message to the

orchestrator before its upper layers which are mapped to it. We denote the probability of the

occurrence of an independent failure in layer i, in an interval with length n after 𝑎𝑡ℎ message and

before (𝑎 + 1)𝑡ℎ message to the orchestrator by 𝑝𝑖 (𝑎, 𝑛), which can be calculated as:

𝑝𝑖 (𝑎, 𝑛) = (1 − 𝑒
−𝜆𝑖 𝑡
𝑥𝑖+1 ) ×

𝑛
𝑡

𝑥𝑖+1

(2.6)

Let 𝑡𝑖 (𝑎) denotes the time of the 𝑎𝑡ℎ message from layer i to the orchestrator, it can be calculated

as:

𝑡𝑖 (𝑎) = 𝑎(
𝑡

𝑥𝑖 + 1
) (2.7)

Let H(k), ∀𝑘 ∈ 𝑈 (𝑖), shows all the messages from layer k that have been sent to the orchestrator

after the failure and before the layer i’s (𝑎 + 1)𝑡ℎ message. The inequality (2.8) states that after

sending the 𝑎𝑡ℎ message to the orchestrator by layer i, if a failure happens in that layer, its
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controller must send the next message ((𝑎 + 1)𝑡ℎ message) to the orchestrator before its upper

layers that are mapped to it.

𝑝𝑖 (𝑎, 𝑛) × 𝑡𝑖 (𝑎 + 1) ≤ 𝑡𝑘 (𝑏)

∀𝑎 ∈ {0, 1, ..., 𝑥𝑖 − 1},∀𝑘 ∈ 𝑈 (𝑖),∀𝑏 ∈ 𝐻 (𝑘)
(2.8)

When a failure occurs in layer i, it takes 𝑇𝑝𝑟𝑜𝑝 (𝑖, 𝑘) to propagate from layer i to layer k. So, if

layer k updates the orchestrator before the failure propagation time, its controller is not aware

of the failure that will occur in the virtual link and will not send the correct information to the

orchestrator. For example, in Fig. 2.2(b), the time of updating the orchestrator by the upper layer

(blue arrow) is not correct due to the propagation time. However, as the dashed red arrow shows,

if layer k sends the updating message to the orchestrator after the propagation time, it can convey

correct information to the orchestrator. Therefore, constraint 2.9 indicates that if a failure occurs

in an interval with length n after the 𝑎𝑡ℎ update from layer i, the upper layers that are mapped to

layer i, must update the orchestrator after the propagation time.

𝑝𝑖 (𝑎, 𝑛) × 𝑡𝑖 (𝑎) + 𝑛 + 𝑇𝑝𝑟𝑜𝑝 (𝑖, 𝑘) ≤ 𝑡𝑘 (𝑏)

∀𝑎 ∈ {0, 1, ..., 𝑥𝑖 − 1},∀𝑘 ∈ 𝑈 (𝑖),∀𝑏 ∈ 𝐻 (𝑘)
(2.9)

By sending more messages in each time window, in case of occurrence a failure we can inform

the orchestrator sooner, and the orchestrator can make better decisions. We can effectively

reduce the time window by a factor of the number of additional messages. As we showed in

Fig. 2.2(a), we can reduce the inconsistency time between the controllers and the orchestrator

from 𝑡 to 𝑡
𝑥𝑖+1

. Therefore, the probability of occurrence of a failure decreases from 1 − 𝑒−𝜆𝑖 to:

1 − 𝑒
−𝜆𝑖 𝑡
𝑥𝑖+1
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So, the probability of occurrence of failures in layer i is the sum of the failure probability in the

dependent and independent part of layer i, namely:

Ω (𝑥𝑖) = (1 − 𝑒
−𝜆𝑖 𝑡
𝑥𝑖+1 ) +

𝑖−1∑
𝑗=0

(1 − 𝑒
−𝜆 𝑗 𝑡

𝑥 𝑗+1 )𝑤𝑖 𝑗 (2.10)

By considering equation (2.2) we can rewrite equation (2.10) as:

Ω (𝑥𝑖) = (1 − 𝑒
−𝜆𝑖 𝑡
𝑥𝑖+1 ) +

𝐿−1∑
𝑗=0

(1 − 𝑒
−𝜆 𝑗 𝑡

𝑥 𝑗+1 )𝑤𝑖 𝑗 (2.11)

Finally, the probability of failure occurrence in the network between two consecutive messages

from each layer to the orchestrator is:

Ω (𝑥) =
𝐿−1∑
𝑖=0

(1 − 𝑒
−𝜆𝑖 𝑡
𝑥𝑖+1 ) +

𝐿−1∑
𝑖=0

𝐿−1∑
𝑗=0

(1 − 𝑒
−𝜆 𝑗 𝑡

𝑥 𝑗+1 )𝑤𝑖 𝑗 (2.12)

Our goal is to minimize this objective function which is showing the failure probability in

inconsistency time between the orchestrator and controllers. Therefore, the optimization model

for updating the orchestrator’s view of the network can be formulated as follows:

min
𝑥

Ω (𝑥) (2.13)

s. t. (2.4), (2.5), (2.8), (2.9)

0 ≤ 𝑤𝑖 𝑗 ≤ 1,∀𝑖, 𝑗 ∈ {0, 1, ..., 𝐿 − 1} (2.14)

2.3 Algorithmic Solution

The objective of our optimization problem is Ω(𝑥), which is the summation of exponential

functions. According to the convexity of exponential functions, and the summation of convex

functions is convex, therefore Ω(𝑥) is a convex function. We can show that this problem is
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NP-Hard by reducing it to the Knapsack problem (which is NP-Hard), specifically our object is

reducible to Multiple-Choice Knapsack (MCK) problem [Poularakis et al. (2019)].

To solve this problem in a timely fashion, we propose two algorithms in this section. Algorithm

1, named Multi-Layer Network Orchestrator Updating (MLNOU), to approximates the optimal

solution of the aforementioned optimization problem in (2.13). The MLNOU algorithm is based

on the Simulated Annealing algorithm which uses stochastic global search.

Using randomness for the search process makes this algorithm a good candidate for our problem

because the nonlinear objective function does not allow other local search algorithms to work

appropriately.

We set the number of Iterations and 𝑇 as the input for Algorithm 1, and it generates vector 𝑥𝑜𝑝𝑡

and Ω𝑜𝑝𝑡 as the output. In the third line of Algorithm 1, the initial function randomly generates

a feasible vector x, and then we calculate the objective function Ω(𝑥) for this vector. In addition,

we set the optimal value Ω in line 6, then we update the optimal vector and optimal value in

the next steps. For each iteration in line 7, use the 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒() and 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 () functions to

compute respectively a new 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and a new 𝑥𝑡𝑒𝑠𝑡 , then calculate the objective function Ω𝑡𝑒𝑠𝑡 .

If the objective function is improved by a new vector, we accept the new vector and then update

x and Ω in lines 12 and 13. If the objective is smaller than the optimized one, we replace the

optimized objective with the new objective and vector x with the new vector in line 15 and line

16.

On the other hand, if the objective function gets worse, in line 18 we calculate the acceptance

probability which is the difference of 𝜔 and 𝜔𝑡𝑒𝑠𝑡 divided by 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and then call the 𝑟𝑎𝑛𝑑 ()

function to generate a random number between 0 and 1. If the acceptance probability is greater

than this random number, the new vector and its objective function are accepted, and we update x

and Ω with new values in line 19 and line 20. We keep doing this for a sufficiently large number

of iterations.
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Algorithm 2.1 MLNOU

1: Input:Iterations, T

2: Output: 𝑥𝑜𝑝𝑡 and Ω𝑜𝑝𝑡

3: 𝑥 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 ()

4: Ω ← Ω(𝑥)

5: 𝑥𝑜𝑝𝑡 ← 𝑥

6: Ω𝑜𝑝𝑡 ← Ω(𝑥)

7: for 𝑖 = 1, 2, . . . , 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do

8: 𝑥𝑡𝑒𝑠𝑡 ← 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑥)

9: 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒(𝑖, 𝑇)

10: Ω𝑡𝑒𝑠𝑡 ← Ω(𝑥𝑖)

11: if Ω𝑡𝑒𝑠𝑡 ≤ Ω then

12: 𝑥 ← 𝑥𝑡𝑒𝑠𝑡

13: Ω ← Ω𝑡𝑒𝑠𝑡

14: if Ω𝑡𝑒𝑠𝑡 ≤ Ω𝑜𝑝𝑡 then

15: 𝑥𝑜𝑝𝑡 ← 𝑥𝑡𝑒𝑠𝑡

16: Ω𝑜𝑝𝑡 ← Ω𝑡𝑒𝑠𝑡

17: end if

18: else if 𝑒𝑥𝑝(Ω−Ω𝑡𝑒𝑠𝑡

𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡
) ≥ 𝑟𝑎𝑛𝑑 () then

19: 𝑥 ← 𝑥𝑡𝑒𝑠𝑡

20: Ω ← Ω𝑡𝑒𝑠𝑡

21: end if

22: end for

We refer to the second algorithm as Multi-Layer Network Stochastic Greedy (MLN-SG) and

summarize it in Algorithm 2. MLN-SG is based on the stochastic greedy algorithm. In each

iteration, the algorithm randomly chooses a subset of solutions and finds the best solution within

the subset. In this process, we generate solutions and the number of solutions is a function of

the size of samples (𝑡) from 𝑋 , and then by comparing these solutions with the optimal one,
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update the Ω𝑜𝑝𝑡 and 𝑋𝑜𝑝𝑡 . In the end, this algorithm generates the best Ω𝑜𝑝𝑡 and 𝑋𝑜𝑝𝑡 as outputs.

In the third line of Algorithm 2, we set the Ω𝑜𝑝𝑡 equal to infinity, and in lines 4 and line 5 set

𝑋𝑜𝑝𝑡 and 𝐸 equal to the empty set. In addition, for each iteration, we generate a set of feasible

solutions named X (line 7). When this set 𝑋 is not empty, we randomly select a subset 𝐸 of

these feasible solutions by sampling 𝑡 random items from 𝑋 (line 10). Moreover, in line 15, we

choose 𝑎𝑟𝑔𝑚𝑖𝑛 of the selected subset and add it to the set S.

Algorithm 2.2 MLN-SG

1: Input: 𝑡, 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

2: Output: 𝑋𝑜𝑝𝑡,Ω𝑜𝑝𝑡

3: Ω𝑜𝑝𝑡 ← ∞

4: 𝑋𝑜𝑝𝑡 ← ∅

5: 𝐸 ← ∅

6: for 𝑖 = 1, . . . , 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do

7: 𝑋 ← set of feasible solutions

8: 𝑆 ← ∅

9: while 𝑋 is not empty do

10: 𝐸 ← a random subset of feasible solutions by sampling 𝑡 random items from 𝑋

11: 𝑋 ← 𝑋\𝐸

12: 𝑘 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑠∈𝐸Ω(𝑠)

13: 𝑆 ← 𝑆 ∪ 𝑘

14: end while

15: 𝑠𝑖 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑠∈𝑆Ω(𝑠)

16: if Ω(𝑠𝑖) ≤ Ω𝑜𝑝𝑡 then

17: Ω𝑜𝑝𝑡 ← Ω(𝑠𝑖)

18: 𝑋𝑜𝑝𝑡 ← 𝑠𝑖

19: end if

20: end for
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2.4 Discussion

In the Introduction, we mentioned the main principles of orchestration in an MLN: synchro-

nization protocols, and failure propagation. Here we explain how inconsistency between the

orchestrator and controllers can make problems and affect the orchestrator’s performance. In

addition, we explained how failure propagation can affect multiple layers and it has negative

effects on the orchestrator’s performance.

In this chapter, we have presented the research methodology. We explained the architecture of

MLN, and how a failure propagates in the hierarchical MLN. In addition, we showed sending

more messages in an interval of time between two update messages reduces the inconsistency

between the orchestrator and the controllers.

In our method, we investigated different methods of updating and the order of updating and

showed how a wrong update can affect the orchestrator’s performance.

Then, we proposed an approach to update the orchestrator by each domain’s controller, according

to the bandwidth limitation and failure propagation in the MLN. We formulated a mathematical

optimization model based on our approach. Moreover, we proposed algorithms to solve this

problem.



CHAPTER 3

NUMERICAL RESULTS

In this section, we present the experimental results carried out in a national-wide MLN testbed

and in a large-scale simulation network, the Coronet network. We compare the proposed

MLNOU algorithm with three baselines that have been tested on different network topologies,

but by considering their characteristics, comparing MLNOU with them shows how well MLNOU

works: 1) MLN-SG which is based on the stochastic greedy algorithm to generate an approximate

of the optimal solution, this method is reaching a close to optimal solution in a timely manner, 2)

the optimal solution of our problem (2.13) which is obtained by a mathematical solver (CVXPY

[Diamond & Boyd (2016)]), and 3) a Homogeneous algorithm in which all the layers update the

TS at equal rate [Poularakis et al. (2019)].

The metrics used for comparison include: i) the failure probability obtained by the baselines, ii)

the bandwidth required for the updates, iii) the state change rate (𝜆), and iv) the time required

(Run Time) to obtain the solution. To avoid randomness in the MLNOU algorithm we calculate

the result 100 times and then get the average value taking into account different numbers of

iterations and different T. We tried numbers less than and more than 100, but for reducing the

effect of outliers and the run-time of the algorithm, 100 is a good trade-off. In addition, we

provide an emulation study that will illustrate the impact of updating rate on the performance of

the shortest path routing application.

3.0.1 Testbed protocol

We evaluate the performance of the proposed MLNOU and MLN-SG on a nationwide testbed.

Our MLN at Telus-Ciena Lab in Edmonton, AB, is a packet-optical network with SDN capabilities

as depicted in Fig. 3.1. Our testbed consists of three (IP/OTN/DWDM) layers, and each layer

is managed by a controller: MCP for L0 (DWDM), Virtuora for L1 (OTN), and Northstar for

L2 (IP). All of these three controllers are connected to an orchestrator (named Synchromedia).
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Figure 3.1 The MLN Testbed at Telus-Ciena Laboratory

Layer 0 (DWDM) has three Ciena 6500 DWDM platforms, layer 1 (OTN) has four Fujitsu

optical switches, and layer 2 (IP) has four Juniper routers [Koulougli et al. (2020)].

3.0.2 Results obtained in the testbed

Based on the topology of our testbed if there is an underlying path between two nodes in the IP

layer, we assume there is a virtual link between them and is mapped to the underlying path, and

failures propagate from underlying links to the upper layer’s links. We evaluate the probability

of occurrence of a failure in the inconsistency time between the controllers and the orchestrator,

achieved by MLNOU, MLN-SG, and the optimal solution by considering different bandwidth

constraints. Fig. 3.2 shows the effect of updating rate on the orchestrator’s routing performance.

We evaluate the minimum failure probability that each algorithm can achieve by using the

equation (2.12), according to different bandwidths (B), and different state change rates (𝜆) of the

independent parts of the network. As depicted in Fig. 3.2(a), by increasing the bandwidth, the
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a) Performance comparison of the proposed algorithms on the testbed

b) Run Time comparison

Figure 3.2 Performance comparison of the proposed algorithms on the testbed
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failure probability decreases for all the baselines, which is caused by sending more messages by

the controllers to the orchestrator. In all scenarios, MLNOU is closer to the optimal solution

and performs better than the MLN-SG algorithm and in the case of using MLNOU, failure

probability is about 10% better than the MLN-SG algorithm. We compare the results up to 40

Mbps bandwidth because it shows how the optimal solution’s run time is getting further from

other algorithms, and in failure probability comparison after 40 Mbps the differences get less.

As depicted in Fig. 3.2(b), the runtime of all of the baselines increases along with the bandwidth.

However, the runtime of the optimal algorithm increases much faster than the other algorithms.

The runtime of both MLNOU and MLN-SG algorithms is quite similar and very steady, which

shows these algorithms are scalable.

3.0.3 Results obtained in simulations

For the simulated topology, we use the Coronet network, its topology is depicted in Fig.

3.3 [Von Lehmen et al. (2015)] with three layers and 60 nodes. We generate a three-layers

hierarchical network from this topology as shown in Fig. 3.3, by randomly choosing nodes for

each layer (depicted in Fig. 3.4. There are 15 nodes in layer 2, 10 nodes in layer 1, and 35 nodes

in layer 0.

In Fig. 3.5, we evaluate the performance of Optimal, MLNOU, MLN-SG, and Homogeneous

algorithms according to four different bandwidth scenarios. Increasing the bandwidth from

10 to 40 as it shows is reducing the failure probability of all the algorithms, which is caused

by sending more update messages from each controller to the orchestrator. The results show

MLNOU algorithm is closest to the optimal in all four scenarios. The Homogeneous algorithm

achieves the lowest performance. The evaluation shows MLNOU achieves a failure probability

that is 7% less than Homogeneous and 4% less than MLN-SG.

As shown in Fig. 3.6, We increase the number of nodes and links to test the scalability of the

algorithm in terms of network size. By increasing the number of links and nodes of a layer in

an MLN, the state change rate and message cost of that layer increase. For instance, if we add
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Figure 3.3 Coronet network [Von Lehmen et al. (2015)]

10 nodes to a layer and each node sends 1000 reports to its controller every second, in which

each report cost is 1 Kbps, the controller message cost to the orchestrator will be increased

1Mbps. Besides, a higher state change rate causes a higher failure probability in the network. To

overcome this, by increasing the orchestrator’s bandwidth, controllers can update the TS earlier

which reduces inconsistency between the orchestrator and the controllers. The runtime increases

along with the bandwidth. However, Fig. 3.6 shows the runtime of the optimal algorithm

increases much more rapidly than others, which shows the other algorithms are more scalable.

In addition, we investigate the impact of state change rate (𝜆) on the failure probability, as

depicted in Fig. 3.7, by increasing the state change rate, the failure probability increases for all

algorithms. Optimal has the lowest probability however, MLNOU achieves the closest results to

the optimal, and Homogeneous is the worst. The failure probability achieved by MLNOU is

13.4% less than Homogeneous, and 5.1% less than MLN-SG.
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Figure 3.4 Layered Coronet network

3.0.4 Shortest Path Routing

In this section, we describe the experiment settings that we use to evaluate the performance of

the shortest path routing application. This application routes packets from their source to their

destination through the path of minimum hop count. We use Disjkstra’s algorithm [Waleed,

Faizan, Iqbal & Anis (2017)] to find the shortest path between a random source and a random

destination in our MLN.
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Figure 3.5 Failure Probability comparison

3.0.4.1 Experiment settings

In this experiment, we use the Coronet network with the same topology as in Fig. 3.4. We

randomly generate one source and one destination in the IP layer and calculate the shortest path

between them by using Dijkstra’s algorithm to route the traffic from the source to the destination

through multiple layers. We assume links fail or recover randomly every second, and physical

link failure in the underlying layers propagates to the virtual links in the upper layers based

on a mapping function. There are some studies that investigated the probability of link failure

in different layers, for instance [Lee, Lee & Modiano (2011)] studied network reliability in

layered networks, where random link failures occur in the lower layer. In such networks, a

single failure in the lower layer can result in multiple failures in the upper layer. They extend the

traditional polynomial expression for network reliability to the multilayer context and propose

approximation algorithms for the failure polynomial using random sampling techniques that

operate in polynomial time. Their results show that the probability of a physical link failure in
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Figure 3.6 Run Time comparison

the DWDM and the OTN layer is very small however, physical link failure in the IP layer occurs

more frequently. Therefore, we assume the link failure probability in both the DWDM and OTN

layers is 0.001, and this probability in the IP layer is 0.005.

3.0.4.2 Experiment Results

We evaluate the performance of shortest path routing, through the percentage of packets that

successfully reach the destination. We implemented this experiment by modeling our network in

Python and generating source and destination to route the traffic and fail a link randomly. Then,

by using Dijkstra’s algorithm we found the shortest path between the source and destination, if

the failed link belongs to the paths packets will not reach the destination otherwise they will

reach the destination. To generate a better visualization of the effect of updating rate on the

orchestrator’s performance, we assume that all the controllers update the TS at the same rate.
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Figure 3.7 State Change Rate comparison

Through this experiment, we show how the updating rate from controllers to the orchestrator

affects the orchestrator’s performance.

We emulate the performance of the routing algorithm for four different scenarios where all the

layers update the orchestrator every 8, 16, 32, and 64 seconds, which means they send 0.125,

0.062, 0.031, and 0.015 messages per second to the orchestrator. We only chose these updating

rates to show the correlation between more updating rates and the orchestrator’s performance.

To avoid randomness, we repeat the experiment for 10 minutes for each of the updating rates.

10 minutes is big enough interval of time to eliminate the effect of randomness. Through

these 10 minutes, we choose a random source and destination and route the traffic from the

source to the destination, and update the orchestrator based on the specified updating rate, then

we calculate the performance of the orchestrator by the percentage of packets that reached

the destination. The simulation results that are depicted in Fig. 3.8 show the percentage of

successfully routed packets in different updating rate scenarios. As shown, by sending more



40

Figure 3.8 Updating rate effect on the normalized value of

successfully routed packets

messages per second, the percentage of successfully routed packets increases. For example, by

increasing the updating rate from 0.015 to 0.125, the percentage of successfully routed packets

increases 10%. In addition, a higher updating rate, results in a decrease in the interquartile

range, and in a wider region near the median, which means the distribution of successfully

routed packets is more frequent in that region. In Fig. 3.9, we calculate the average number of

successfully routed packets and failed packets in different updating rate scenarios. Moreover, by

increasing the updating rate from 0.015 to 0.125 the percentage of successfully routed packets

increases 9.8%, and the percentage of failed packets decreases. Therefore, the orchestrator has a

better performance by receiving a higher number of messages.
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Figure 3.9 Updating rate effect on the successfully routed

and failed packets





CHAPTER 4

CONCLUSION AND RECOMMENDATIONS

We can conclude this thesis by stating that we achieved all the objectives that we mentioned

in the Introduction of the thesis. In this thesis, we have presented the problem of how often

to update the orchestrator in an MLN to reduce the inconsistency in the network, taking into

account the bandwidth limitation, the order of updates, and failure propagation time in the

network. Our proposed algorithm finds the solution for this non-linear integer optimization

problem to minimize the inconsistency between the orchestrator and the controllers in a timely

manner. The simulation results show our method outperforms the baselines and approaches the

optimal solution, and it is scalable.

We briefly explain how we met the sub-objectives that we mentioned earlier:

• We propose a new updating solution that controllers update the orchestrator in a stateless

MLN. Our approach deals with the failure propagation and network limitations such as

bandwidth and each controller’s maximum message rate (SO1).

• We model the system and formulated it as a non-linear integer optimization problem to

minimize the inconsistency between the controllers and the orchestrator while taking into

account the updating order, network limitation, and failure propagation (SO2).

• We propose MLNOU algorithm, which is based on the simulated annealing algorithm to

solve this NP-hard problem in near real-time. Simulated results show that our proposed

solution outperforms the baselines (SO3).

In the future, each layer will include distributed domains that are connected to the layer’s

controller to increase the complexity of the problem. In addition, in this problem, we assume

that failure occurrence probability is based on Poisson distribution, however, in the future, we

can gather data from the network, extract the failure distribution out of the data, and define the

failure probability based on this distribution instead of using the Poisson distribution.





APPENDIX I

ARTICLE PUBLISHED IN CONFERENCES

This thesis is related to the following paper:

• Optimized Synchronization of the Orchestrator In Hierarchical Multi-layer Networks accepted

in IEEE ICC 2023 and will be published in May 2023 [Tirehkar et al. (2023)].





BIBLIOGRAPHY

Aguado, A., López, V., Marhuenda, J., de Dios, Ó. G. & Fernández-Palacios, J. P. (2015).

ABNO: A feasible SDN approach for multivendor IP and optical networks. Journal of
Optical Communications and Networking, 7(2), A356–A362.

Alzahrani, S. A. & Katib, I. A. (2018). Impact of varying IP/MPLS capacity module’s size in

three-layer networks. 2018 IEEE 8th Annual Computing and Communication Workshop
and Conference (CCWC), pp. 959–964.

Baranda, J., Mangues-Bafalluy, J., Pascual, I., Nunez-Martinez, J., De La Cruz, J. L., Casellas,

R., Vilalta, R., Salvat, J. X. & Turyagyenda, C. (2018). Orchestration of end-to-end

network services in the 5G-crosshaul multi-domain multi-technology transport network.

IEEE Communications Magazine, 56(7), 184–191.

Bjorklund, M. (2016). The YANG 1.1 data modeling language.

Botelho, F., Ribeiro, T. A., Ferreira, P., Ramos, F. M. & Bessani, A. (2016). Design and

implementation of a consistent data store for a distributed SDN control plane. 2016 12th
European Dependable Computing Conference (EDCC), pp. 169–180.

Casellas, R., Muñoz, R., Martínez, R., Vilalta, R., Liu, L., Tsuritani, T., Morita, I., López, V.,

de Dios, O. G. & Fernández-Palacios, J. P. (2015). SDN orchestration of OpenFlow

and GMPLS flexi-grid networks with a stateful hierarchical PCE. Journal of Optical
Communications and Networking, 7(1), A106–A117.

Casellas, R., Martínez, R., Vilalta, R. & Muñoz, R. (2018). Control, management, and

orchestration of optical networks: evolution, trends, and challenges. Journal of Lightwave
Technology, 36(7), 1390–1402.

Chattopadhyay, S., Dai, H. et al. (2019). Maximization of robustness of interdependent networks

under budget constraints. IEEE Transactions on Network Science and Engineering, 7(3),

1441–1452.

Diamond, S. & Boyd, S. (2016). CVXPY: A Python-embedded modeling language for convex

optimization. Journal of Machine Learning Research, 17(83), 1–5.

Enns, R., Bjorklund, M., Schoenwaelder, J. & Bierman, A. (2011). Network configuration
protocol (NETCONF).

Foerster, K.-T., Schmid, S. & Vissicchio, S. (2018). Survey of consistent software-defined

network updates. IEEE Communications Surveys & Tutorials, 21(2), 1435–1461.



48

Gill, P., Jain, N. & Nagappan, N. (2011). Understanding network failures in data centers:

measurement, analysis, and implications. Proceedings of the ACM SIGCOMM 2011
Conference, pp. 350–361.

Gossels, J., Choudhury, G. & Rexford, J. (2019). Robust Network Design for Software-Defined

IP/Optical Backbones. arXiv preprint arXiv:1904.06574.

Guo, Z., Su, M., Xu, Y., Duan, Z., Wang, L., Hui, S. & Chao, H. J. (2014). Improving the

performance of load balancing in software-defined networks through load variance-based

synchronization. Computer Networks, 68, 95–109.

Huang, D., Cui, M., Zhang, G., Chu, X. & Lin, F. (2020). Trajectory optimization and resource

allocation for UAV base stations under in-band backhaul constraint. EURASIP Journal
on Wireless Communications and Networking, 2020(1), 1–17.

Kantor, M., Biernacka, E., Boryło, P., Domżał, J., Jurkiewicz, P., Stypiński, M. & Wójcik, R.

(2019). A survey on multi-layer IP and optical Software-Defined Networks. Computer
Networks, 162, 106844.

Katta, N., Zhang, H., Freedman, M. & Rexford, J. (2015). Ravana: Controller fault-tolerance in

software-defined networking. Proceedings of the 1st ACM SIGCOMM symposium on
software defined networking research, pp. 1–12.

Koulougli, D., Nguyen, K. K. & Cheriet, M. (2020). Hierarchical path computation with flexible

ethernet in multi-layer multi-domain networks. 2020 IEEE Symposium on Computers
and Communications (ISCC), pp. 1–6.

Kreutz, D., Ramos, F. M., Verissimo, P. E., Rothenberg, C. E., Azodolmolky, S. & Uhlig, S.

(2014). Software-defined networking: A comprehensive survey. Proceedings of the
IEEE, 103(1), 14–76.

Le, G., Ferdousi, S., Marotta, A., Xu, S., Hirota, Y., Awaji, Y., Tornatore, M. & Mukherjee,

B. (2020). Survivable virtual network mapping with content connectivity against

multiple link failures in optical metro networks. Journal of Optical Communications
and Networking, 12(11), 301–311.

Lee, K., Lee, H.-W. & Modiano, E. (2011). Reliability in layered networks with random link

failures. IEEE/ACM Transactions on Networking, 19(6), 1835–1848.

Levin, D., Wundsam, A., Heller, B., Handigol, N. & Feldmann, A. (2012). Logically

centralized? State distribution trade-offs in software defined networks. Proceedings of
the first workshop on Hot topics in software defined networks, pp. 1–6.



49

Lin, S.-C., Wang, P., Akyildiz, I. F. & Luo, M. (2018). Towards optimal network planning

for software-defined networks. IEEE Transactions on Mobile Computing, 17(12),

2953–2967.

Liu, S., Lu, W. & Zhu, Z. (2018). On the cross-layer orchestration to address IP router

outages with cost-efficient multilayer restoration in IP-over-EONs. Journal of Optical
Communications and Networking, 10(1), A122–A132.

Manzanares-Lopez, P., Muñoz-Gea, J. P., Malgosa-Sanahuja, J. & Flores-de la Cruz, A. (2019).

A virtualized infrastructure to offer network mapping functionality in SDN networks.

International Journal of Communication Systems, 32(10), e3961.

Mayoral, A., Vilalta, R., Munoz, R., Casellas, R. & Martánez, R. (2015). Performance analysis

of SDN orchestration in the cloud computing platform and transport network of the

ADRENALINE testbed. 2015 17th International Conference on Transparent Optical
Networks (ICTON), pp. 1–4.

Mayoral, A., Vilalta, R., Muñoz, R., Casellas, R. & Martínez, R. (2017). SDN orchestration

architectures and their integration with cloud computing applications. Optical Switching
and Networking, 26, 2–13.

Mayoral, A., Lopez, V., Fernández-Palacios, J. P., Yufeng, Y., Lifen, Z., Wenjun, H., Mingfeng,

Z. & Changlong, Y. (2020). First demonstration of YANG push notifications in Open

Terminals. 2020 International Conference on Optical Network Design and Modeling
(ONDM), pp. 1–3.

Mirkhanzadeh, B., Shakeri, A., Shao, C., Razo, M., Tacca, M., Galimberti, G. M., Martinelli,

G., Cardani, M. & Fumagalli, A. (2018). An SDN-enabled multi-layer protection and

restoration mechanism. Optical Switching and Networking, 30, 23–32.

Muñoz, R., Vilalta, R., Casellas, R. & Martínez, R. (2015a). SDN orchestration and virtualization

of heterogeneous multi-domain and multi-layer transport networks: The STRAUSS

approach. 2015 IEEE International Black Sea Conference on Communications and
Networking (BlackSeaCom), pp. 142–146.

Muñoz, R., Vilalta, R., Casellas, R., Martínez, R., Francois, F., Channegowda, M., Hammad,

A., Peng, S., Nejabati, R., Simeonidou, D. et al. (2015b). Transport network orchestra-

tion for end-to-end multilayer provisioning across heterogeneous SDN/OpenFlow and

GMPLS/PCE control domains. Journal of Lightwave Technology, 33(8), 1540–1548.

Muqaddas, A. S., Giaccone, P., Bianco, A. & Maier, G. (2017). Inter-controller traffic to support

consistency in ONOS clusters. IEEE Transactions on Network and Service Management,
14(4), 1018–1031.



50

Oktian, Y. E., Lee, S., Lee, H. & Lam, J. (2017). Distributed SDN controller system: A survey

on design choice. computer networks, 121, 100–111.

Poularakis, K., Qin, Q., Ma, L., Kompella, S., Leung, K. K. & Tassiulas, L. (2019). Learning the

optimal synchronization rates in distributed SDN control architectures. IEEE INFOCOM
2019-IEEE Conference on Computer Communications, pp. 1099–1107.

Qin, Q., Poularakis, K., Iosifidis, G. & Tassiulas, L. (2018). SDN Controller Placement at the

Edge: Optimizing Delay and Overheads. IEEE INFOCOM 2018 - IEEE Conference on
Computer Communications, pp. 684-692. doi: 10.1109/INFOCOM.2018.8485963.

Sakic, E., Sardis, F., Guck, J. W. & Kellerer, W. (2017). Towards adaptive state consistency in

distributed SDN control plane. 2017 IEEE International Conference on Communications
(ICC), pp. 1–7.

Salama, M., Ezzeldin, M., El-Dakhakhni, W. & Tait, M. (2022). Temporal networks: A review

and opportunities for infrastructure simulation. Sustainable and resilient infrastructure,

7(1), 40–55.

Savi, M. & Siracusa, D. (2018). Application-aware service provisioning and restoration in

SDN-based multi-layer transport networks. Optical Switching and Networking, 30,

71–84.

Srinivasan, S. M., Truong-Huu, T. & Gurusamy, M. (2018). TE-based machine learning

techniques for link fault localization in complex networks. 2018 IEEE 6th International
conference on future internet of things and cloud (FiCloud), pp. 25–32.

Szyrkowiec, T., Santuari, M., Chamania, M., Siracusa, D., Autenrieth, A., Lopez, V., Cho,

J. & Kellerer, W. (2018). Automatic intent-based secure service creation through

a multilayer SDN network orchestration. Journal of Optical Communications and
Networking, 10(4), 289–297.

Tirehkar, A., Nguyen, K. K. & Cheriet, M. (2023). Optimized Synchronization of the

Orchestrator In Hierarchical Multi-layer Networks. 2023 IEEE International Conference
on Communications (ICC), pp. 1–6.

Tsai, P.-W., Tsai, C.-W., Hsu, C.-W. & Yang, C.-S. (2018). Network monitoring in software-

defined networking: A review. IEEE Systems Journal, 12(4), 3958–3969.

Von Lehmen, A., Doverspike, R., Clapp, G., Freimuth, D. M., Gannett, J., Kolarov, A.,

Kobrinski, H., Makaya, C., Mavrogiorgis, E., Pastor, J. et al. (2015). CORONET:

Testbeds, demonstration, and lessons learned. Journal of Optical Communications and
Networking, 7(3), A447–A458.



51

Waleed, S., Faizan, M., Iqbal, M. & Anis, M. I. (2017). Demonstration of single link failure

recovery using Bellman Ford and Dijikstra algorithm in SDN. 2017 International
Conference on Innovations in Electrical Engineering and Computational Technologies
(ICIEECT), pp. 1–4.

Wazirali, R., Ahmad, R. & Alhiyari, S. (2021). SDN-openflow topology discovery: an overview

of performance issues. Applied Sciences, 11(15), 6999.

Williams, M. J. & Musolesi, M. (2016). Spatio-temporal networks: reachability, centrality and

robustness. Royal Society open science, 3(6), 160196.

Yan, S., Aguado, A., Ou, Y., Wang, R., Nejabati, R. & Simeonidou, D. (2017). Multilayer network

analytics with SDN-based monitoring framework. Journal of Optical Communications
and Networking, 9(2), A271–A279.

Yu, T., Hong, Y., Cui, H. & Jiang, H. (2018). A survey of Multi-controllers Consistency on

SDN. 2018 4th International Conference on Universal Village (UV), pp. 1–6.

Zhang, B., Wang, X. & Huang, M. (2018). Adaptive consistency strategy of multiple controllers

in SDN. IEEE Access, 6, 78640–78649.

Zhang, M., Wang, X., Jin, L. & Song, M. (2021a). Cascade phenomenon in multilayer networks

with dependence groups and hierarchical structure. Physica A: Statistical Mechanics
and its Applications, 581, 126201.

Zhang, X., Cui, L., Wei, K., Tso, F. P., Ji, Y. & Jia, W. (2021b). A survey on stateful data plane

in software defined networks. Computer Networks, 184, 107597.

Zhang, Z., Ma, L., Poularakis, K., Leung, K. K., Tucker, J. & Swami, A. (2019). Macs: Deep

reinforcement learning based sdn controller synchronization policy design. 2019 IEEE
27th International Conference on Network Protocols (ICNP), pp. 1–11.

Zhu, L., Karim, M. M., Sharif, K., Xu, C., Li, F., Du, X. & Guizani, M. (2020). SDN controllers:

A comprehensive analysis and performance evaluation study. ACM Computing Surveys
(CSUR), 53(6), 1–40.


