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Les services intergiciels pour des applications IdO-Chaînes de blocs

Syed Muhammad Danish

RÉSUMÉ

Dans le monde d’aujourd’hui, l’Internet des objets (IdO) a inauguré une révolution sans précédent

dans les technologies de l’information et est utilisé dans de nombreux secteurs, notamment la

vente au détail, la fabrication et la santé. Chaque application IdO individuelle est différente en

ce qui concerne les exigences fonctionnelles et non fonctionnelles, définies par le propriétaire de

l’application ou l’industrie. La sélection des fournisseurs de services dans des environnements

décentralisés est devenue un problème critique pour différentes applications IdO, en particulier

lorsque les fournisseurs de services ont des fonctionnalités similaires mais les qualités des

services (QDS) différente. Par conséquent, sélectionner un service de haute qualité qui répond le

mieux aux exigences des applications IdO parmi une longue liste de services fonctionnellement

équivalents est une tâche difficile. En outre, il est difficile de sécuriser les informations privées

et critiques de l’application IdO, car le partage des paramètres de service avec des solutions

tierces ou même avec le fournisseur de services lui-même peut créer de graves problèmes de

sécurité et de confidentialité, car les exigences de service pourraient contiennent des informations

sensibles concernant l’application, qui pourraient être utilisées à mauvais escient ou vendues par

le tiers ou le fournisseur de services. Par conséquent, des mécanismes de sélection de services

décentralisés sont nécessaires pour sélectionner le meilleur fournisseur de services pour les

applications IdO, tout en garantissant la sécurité et la confidentialité de bout en bout des données

sensibles associées.

Dans cette thèse, nous considérons d’abord un problème de sélection de stockage de données

IdO, qui se concentre sur une conception de l’intergiciel pour la sélection de stockage de données

intelligente basée sur la blockchain pour les applications IdO à grande échelle. Le cadre proposé

étend l’architecture cloud IdO actuelle et considère les solutions de stockage d’égal à égal et

basées sur la blockchain ainsi que les technologies cloud et multi-cloud. Nous modélisons

le problème de sélection de stockage de données IdO comme un problème d’optimisation de

décision et proposons deux algorithmes en temps polynomial comme solution. Nous proposons

également un protocole vérifiable de sélection de stockage basé sur la blockchain, qui permet

aux applications IoT ainsi qu’aux technologies de stockage de vérifier l’exactitude de la décision

de placement des données prise par la conception de l’intergiciel sans avoir besoin d’un tiers de

confiance. Enfin, nous proposons une stratégie de maintenance intelligente, qui prend en compte

et apprend les fonctionnalités évolutives dynamiques des exigences de service des applications

IoT pour optimiser la complexité de calcul ainsi que le stockage de la blockchain et les frais

généraux des transactions dans la conception de l’intergiciel.

Le deuxième aspect des travaux de la thèse est le développement d’un protocole de sélection de

bornes de recharge (CS) efficace et sécurisé basé sur la blockchain pour les réseaux de recharge

de véhicules électriques (VE). Nous proposons une architecture décentralisée de recharge de VE

basée sur la blockchain et modélisons théoriquement un problème d’optimisation de décision
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décentralisée, qui élimine le besoin de tout tiers de confiance et permet aux VE et aux CS de

communiquer de manière décentralisée, via les contrats intelligents, fonctionnant sur un réseau

blockchain. Il permet également aux EV de sélectionner un CS et d’effectuer une réservation

à distance avec un CS sans partager aucune information privée avec les CS ou toute entité de

gestion centrale.

La troisième partie de cette thèse prolonge le deuxième aspect de cette thèse, et concerne les

problèmes de sécurité et de confidentialité posés par la possibilité de lier les adresses publiques

de la blockchain avec l’identité physique du propriétaire du VE. Pour résoudre ce problème,

nous proposons un protocole de réservation de CS de bout en bout basé sur la blockchain, qui

permet aux VE de réserver un créneau de charge au CS sélectionné en privé, sans partager leurs

informations privées et en dissociant sa véritable identité de l’adresse blockchain, préservant

ainsi la confidentialité du véhicule électrique. Comme les informations fournies par CS ne sont

pas fiables, nous proposons un protocole de vérification des informations CS basé sur SMC

qui permet aux véhicules électriques de vérifier de manière collaborative la disponibilité des

emplacements de recharge à partir du CS en partageant en toute sécurité les réservations dans un

environnement non fiable. Enfin, nous proposons une conception de contrat intelligente basée

sur des protocoles de dépôt à verrouillage temporel, qui agrège le solde de telle sorte qu’aucun

CS ne soit en mesure de lier les paiements de service de recharge aux adresses de blockchain

des utilisateurs de VE, tout en garantissant que les CS reçoivent le paiement intégral pour les

services qu’ils fournissent.

La contribution majeure de la thèse est de fournir des mécanismes de sélection de service

sécurisés et efficaces adaptés à différentes applications IoT avec différentes exigences de service

et besoins de sécurité. Grâce à l’approche proposée, les consommateurs pourront sélectionner

en toute sécurité un fournisseur de services approprié en fonction de leurs besoins. Les résultats

expérimentaux ont montré que les approches proposées obtenaient de meilleures performances

et une meilleure efficacité par rapport à l’état de l’art.

Mots-clés: Les Chaînes de blocs, L’Internet des objets, Les véhicules électriques,Sécurité et

confidentialité, L’intergiciel



Service Selection Middleware using Blockchain for IoT Applications

Syed Muhammad Danish

ABSTRACT

In today’s world, the Internet of Things (IoT) has ushered in an unprecedented revolution in

information technology and is used in many industries, including retail, manufacturing and

healthcare. Each individual IoT application is different when it comes to functional and non-

functional requirements, defined by the application owner or industry. Service provider selection

in a decentralized environments have become a critical issue for different IoT applications, in

particular when services providers having similar functionality but different Quality of Service

(QoS). As a result, selecting a high quality service that best suits IoT application requirements

from a large list of functionally equivalent services is a challenging task. Furthermore, it is

challenging to secure the private and business-critical information of the IoT application, as the

sharing of service parameters with third-party solutions or even with the service provider itself

can create serious security and privacy concerns, since the service requirements could contain

sensitive information regarding the application, that could be misused or sold by the third-party

or service provider. Therefore, a decentralized service selection mechanisms are required to

select the best service provider for IoT applications, while ensuring end-to-end security and

privacy of the associated sensitive data.

In this thesis, we first consider an IoT data storage selection problem, which focuses on a

middleware design for blockchain-based intelligent data storage selection for large-scale IoT

applications. The proposed framework extends the current IoT cloud architecture and considers

peer-to-peer (P2P) and blockchain-based storage solutions along with cloud and multi-cloud

technologies. We model IoT data storage selection problem as a decision optimization problem

and propose two polynomial-time algorithms as a solution. We also propose a verifiable

blockchain-based storage selection protocol, which enables the IoT applications as well as

the storage technologies to verify the correctness of the data placement decision made by the

middleware design without the need of any trusted third party. Finally, we propose an intelligent

maintenance strategy, which takes into account and learns the dynamically evolving features of

the IoT applications service requirements to optimizes the computational complexity along with

the blockchain storage and transactions overhead in the middleware design.

The second aspect of the work in the thesis is the development of a blockchain-based efficient

and secure charging station (CS) selection protocol for electric vehicles (EV) charging networks.

We propose a decentralized blockchain-based EV charging architecture and theoretically model

a decentralized decision optimization problem, which eliminates the need of any trusted third

party and enables the EVs and the CSs to communicate in a decentralized manner, through the

smart contracts, running on a blockchain network. It also enables EVs to select a CS and make a

remote reservation with a CS without sharing any private information with CSs or any central

management entity.
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The third part of this thesis extends the second aspect of this thesis, and concerns the security

and privacy problems arisen by the linkability of the public blockchain addresses with the EV

owner’s physical identity. To solve this problem, we propose a blockchain-based end-to-end

privacy-preserving CS reservation protocol, which enables EVs to reserve a charging slot at

the selected CS privately, without sharing their private information and by dissociating its real

identity from the blockchain address, thereby preserving the EV’s privacy. As the information

provided by CS cannot be trusted, we propose an SMC-based CS information verification

protocol that allows EVs to collaboratively verify the availability of charging slots from the

CS by securely sharing reservations in an untrusted environment. Finally, we propose a smart

contract design based on time-lock deposit protocols, which aggregates the balance in such a

way that no CS is able to link charging service payments with EV users’ blockchain addresses,

while still ensuring that CSs receive full payment for the services they provide.

The major contribution of the thesis is providing a secure and efficient service selection

mechanisms tailored for different IoT applications with different service requirements and

security needs. With the proposed approach consumers will be able to securely select a suitable

service provider based on their requirements. Experimental results showed that proposed

approaches achieved better performance and efficiency compared to state-of-the-art.

Keywords: Internet of things, Blockchains, Electric vehicles, Security and privacy, Middleware
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INTRODUCTION

IoT (Internet of Things) is a notion that sees the world as a connected smart environment

where billions of physical objects are attached with sensors and actuators that can communicate

and interact. In today’s world, IoT has ushered in an unprecedented revolution in information

technology (Nord, Koohang & Paliszkiewicz, 2019). The potential of this disruptive technology

to improve lives, save time and money has caught the attention of the academy, society, and

industry alike. (Lee & Lee, 2015). In the Internet of Things, people are able to interact with

physical objects, such as cars, home appliances, and smartphones by sharing data, enabling

more intelligent services to be developed, and improving the quality of life and comfort of users.

(Abbate, Cesaroni, Cinici & Villari, 2019).

IoT devices possess limited computational power, memory, and/or energy availability, and its

massive deployment resulted in the production of terabytes of heterogeneous data per day. IoT

is used in many industries, including retail, manufacturing and healthcare, to enable real-time,

informed decisions by gathering and processing data in real time (Le, Le Tuan & Tuan, 2019).

One of the most notable examples of the Internet of Things in action is the Internet of Electric

Vehicles (IoEV), which is a vast network involving vehicles, humans, sensors, charging stations,

etc. These entities may interact and communicate with each other to collect and disseminate

information about vehicles and the environment (Bayram& Papapanagiotou, 2014). The primary

goal of the IoEV is to reduce accidents, improve traffic safety and efficiency, and enhance driving

experience (Fraiji, Azzouz, Trojet & Saidane, 2018).

There are a wide range of IoT applications, from pollution monitoring to smart cities to digital

health, and each individual IoT application is different when it comes to functional and non-

functional requirements. A non-functional requirement is a parameter that relates to the quality

of service (QoS), which is essential to meeting the needs of end users. Consumers as well as

industrial IoT applications are currently served by different service providers on the market.



2

Figure 0.1 Service selection scenario

A few examples include the storage of IoT data for third parties, computing data, and buying and

selling data. Additionally, although all service providers may offer the same functionality, they

differ in terms of performance, security, price, etc. (Ruiz-Alvarez & Humphrey, 2011). Because

there are a variety of different service providers, the selection of a particular service needs to

be based on the needs and preferences of the end user (Xia, Chen, Bao, Wang & Yang, 2011;

Abosaif & Hamza, 2020).

The art of selecting the most suitable service provider that fits the IoT application’s needs

has not been paid close attention given the recent advancement of IoT technology, which has

resulted in many service providers entering the market with differentiated business models and

service abstractions (Tuan, Thanh & Le Tuan, 2019). This becomes especially problematic when

there are a lot of functionally equivalent services with different quality of service standards.

Additionally, each IoT application has its own QoS parameters requirements, or different ways to

express QoS parameters, which represents a significant challenge in selecting the right service.
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This thesis is about investigating the challenges faced in service selection decisions, and

developing solutions to enable efficient and secure service selection mechanisms for consumers

as well as industrial IoT applications use cases.

Challenges in Service Selection

In some companies or organizations, making a good decision about the service they should hire

is extremely important, since it affects their business in terms of future development, security,

prices, etc. In the same vein, the IoT service selection process is also challenging, as it does not

simply entail identifying and selecting the best service providers, but instead, the challenges

associated with IoT service selection are as follows:

• In general, it may seem simple to identify and select the best service providers for an IoT

application, but not so simple to model and implement, especially when each application

has unique characteristics and needs. To make an informed decision, IoT applications’

customized requirements and conditions must be considered in terms of security, reliability,

availability, performance, and cost (Abosaif & Hamza, 2020). For example, industrial IoT

applications may consider the overall performance provided by the service provider as well

as some specific performance aspects, e.g., security and privacy of business information. On

the other hand, a consumer IoT application will tend to take the cost/price of the service into

account. Hence, an effective service selection strategy must consider the specific needs and

conditions of various consumers.

• Considering the evolving nature of large-scale IoT applications and increasing number of

competitive service providers, a highly scalable and reliable service selection solution is

required. A service selection problem is usually modeled as an optimization problem, and

the optimization problem can take a long time to solve if the input is too large or search space

too large (Moghaddam & Davis, 2014). In some time-critical IoT applications, a long time to

find a suitable service provider may not be practical, e.g., the selection of a storage provider

for a large-scale IoT real-time streaming application should be made quickly (Barnaghi et al.,



4

2014). Hence, polynomial-time solutions to the service selection problem are needed, which

can scale effectively to large numbers of IoT applications and service providers.

• Services are typically selected using broker solutions, which take service requirements from

IoT applications and match them to QoS parameters from service providers (Papaioannou,

Bonvin & Aberer, 2012; Chauhan, Pilli & Joshi, 2021). The sharing of service parameters

with third-party solutions or even with the service provider itself can create serious security

and privacy concerns, since the service requirements could contain private or business-critical

information that could be misused or sold by the third-party or service provider (Squicciarini,

Carminati & Karumanchi, 2011; Rahman, Khalil, Alabdulatif & Yi, 2019). So, it is necessary

to protect the privacy needs of IoT application owners when selecting a service.

• As discussed above, an IoT application’s security and privacy can be seriously compromised

by third-party brokerage solutions. Apart from the misuse of critical personal information,

future service providers or brokerage solutions may use this data to track the owner of an IoT

application or its decisions and developments (Celik et al., 2018; Ramnath, Javali, Narang,

Mishra & Routray, 2017). For example, an IoEV application scenario might involve an

electric vehicle (EV) sharing personal information, such as location and charging information,

with a third party or a charging station (CS) that can be used in the future for vehicle location

tracking as well as for predicting the EV user’s habits, such as working hours, workplace,

and other important patterns (Knirsch, Unterweger & Engel, 2018). Hence, it is imperative

to ensure that no private information is shared or linked to a certain service selection request

to ensure the long-term security and privacy of IoT applications.

• Lastly, we cannot trust IoT applications, service providers, and the organization responsible

for making a service selection decision, so traceability and auditability are essential for

making sure that the organization responsible for making the service selection decision is

acting appropriately. Additionally, it is imperative to verify that the responsible entity has

picked the best service by using the correct parameters during the service selection process.
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Any entity wishing to verify the accuracy and validity of the service selection decision must

have access to the QoS requirements of IoT applications, the parameters offered by service

providers, and the associated service selection decision.

We propose the use of blockchain-based distributed ledger technology (DLT) (Danish et al.,

2020a) to address the abovementioned challenges in IoT service selection. Blockchain technology

was introduced with Bitcoin (Nakamoto, 2008) to solve the double-spending problem and is

widely adopted for a large number of crypto-currencies, such as Ethereum, Ripple, EOS, Zcash

etc. (Zhang & Jacobsen, 2018). Blockchain, or distributed ledger, is a series of transaction

records that are immutable, so if one of the records is modified, the rest of the peers will

invalidate the transaction. One key emerging use case of blockchain technology involves “smart

contracts” (Rathee et al., 2019). Smart contract is a collection of code (its functions) and

data (its state) that resides at a specific address on the blockchain. Through smart contract

addresses, nodes on the blockchain network interact with smart contracts. The IoT has adopted

this technology for the major problems of security, privacy, and provenance tracking related to

the IoT based on its potential (Syed et al., 2019).

As discussed previously, auditability and traceability is important to ensure trust and confidence

while operating in an untrusted environment. The immutable and highly available transactions

record in the blockchain network ensures traceability of user data and key communication

among different entities. Similarly, blockchain eliminates the need of trusted third party, and the

interacting parties can directly communicate with each others with the help of smart contracts,

without sharing any private information thus, protecting user’s and business’s privacy. Moreover,

the transparent and tamper-proof nature of blockchain network ensure secure trading among

different parties without the need of trusted third party. Blockchain smart contracts can be used

to enforce trading and payment logic, which can be executed automatically to ensure honest
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behavior of the interacting parties. In addition, an automatic penalty logic can be programmed

in the smart contracts to impose a penalty in case of deviation from the normal behavior.

Research Motivation

In this section, a few examples are introduced to motivate our work in practice.

IoT supply chain application: Consider an IoT supply chain application, where a large amount

of data related to products and applications need to be stored. The data security and privacy

assurance are crucial to the company’s reputation as data processing and storage vulnerabilities

can result in outside attacks and leaks. Choosing a storage service provider that has a very

good reputation on data privacy and security is necessary if the supply chain company plans

to move its work to the cloud to reduce daily costs. In this example, the factors other than

security and privacy can also be considered, for instance, data availability and response time.

In order to ensure fully functional supply chain process, the company wants to ensure that the

data is available at all times with no risk of data loss. Similarly, response time can be a major

concern for the supply chain application since data can be frequently accessed and corresponding

encryption and decryption methods may be required. Finally, the company wants to reduce the

overall price associated with the storage service provider along with the other requirements.

Therefore, a service selection approach must take into account all the service requirements of

an IoT application along with the quality of service requirements of all the available service

providers to choose the best one among them accurately. Moreover, the service requirements

and service level agreements (SLA) associated with the storage service provider have to be

maintained so that if the storage service provider fails to meet the application’s requirements in

the future, these SLAs can be traced and audited. According to the regulations, this information

can later be used to issue penalties.
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Electric vehicle application: Similar to the above example, in an IoEV application, the owner

of an electric vehicle would like to select a charging station that is closest to where the vehicle

is parked. Recent developments in CS deployment with competing energy companies in a

liberalized market have led to increased dynamic pricing with respect to electricity load and

available charging levels, e.g. fast vs. slow charging. Additionally, these CSs are located in

different areas of a city in relation to the EV’s current location, and the time needed to reach

them varies with the current traffic and road conditions. The EV must wait at each CS before

it is charged, so each CS has a waiting time associated with it. Normally, EV users’ service

requirements are usually elastic; for example, some prefer shorter waiting times at a lower

charge but with more waiting and traveling time, while others prefer a lower charge but with

a longer waiting period. Considering the diversity of CSs available, EV owners can pick the

most appropriate CS based on their specific charging requirements, such as price, waiting time,

charging time, and travel time.

Thus, an EV should not choose and engage a CS randomly, but instead assess its service

requirements and match them with the services offered by CSs to select the right one. In

addition, EV should not give its personal information to the CS or any entity in the network,

and this service selection decision has to be made by EV itself in order to safeguard its private

information, for instance, its current location, the state of its battery, etc. Last but not least, the

reservation information should be stored so that it cannot be altered, and in case of a dispute, the

stored information will be used to penalize the customer service as required by the regulations.

Problem statement

The goal of this thesis is to proposes an efficient and secure service selection mechanism for

different IoT applications use cases for the purpose of improving the overall QoS, and end user

comfort and security. We argue that enabling the owners to select a service provider for their

IoT application can result in a more efficient and secure system as a whole, thus giving more
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selection power to IoT applications and removing the need of trusted third parties. The premise

of this thesis argues that giving the service selection power to individual IoT application will

help them in meeting their specific QoS needs, instead of selecting a service provider randomly.

Moreover, it will also help them in keeping their private information secure, thus enhancing the

overall security.

A second objective is to investigate the blockchain integration to eliminate the need of trusted

third party brokers, who make the service selection decision for IoT applications. Little work

exist on the blockchain-based service selection mechanism to eliminate the need of trusted third

parties, and to ensure end-to-end compelling security properties, e.g., traceability, auditability,

accountability and data privacy protection, in blockchain-based IoT service selection design.

Concretely, this thesis studies the above research questions in three IoT application use-cases:

large-scale IoT data storage selection (conference paper published IEEE Dapps (Danish & et al.,

2020), and journal paper published in IEEE transactions on mobile computing (Danish,

Zhang& Jacobsen, 2021)), charging station selection by electric vehicles (paper published in IEEE

transactions on intelligent transportation systems (Danish, Zhang, Jacobsen, Ashraf & Qureshi,

2020c)), and privacy-preserving charging station selection, reservation and payment by electric

vehicles (paper submitted to IEEE Transactions on Systems, Man, and Cybernetics: Systems)

Large-scale IoT data storage selection: Traditionally, IoT applications infrastructure relies

only on a single cloud storage technology, which limits the possible service requirements of

IoT applications. In addition, relying on a single cloud storage technology increases the risk

of technology or vendor lock-in and places limits on the application and SLA requirements

(Rafique & et al, 2017). Considering the large variety of cloud and decentralized storage

options available and their underlying heterogeneous storage systems, as well as their different

promised Service Level Agreement (SLA) guarantees (Rafique & et al, 2019), we develop and

implement a middleware design, which is responsible for the selection of an effective storage
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technology to fulfill the service requirements and parameters of a particular IoT application by

jointly considering cloud and decentralized storage. We theoretically formulated a data storage

selection problem as a decision optimization problem, which runs on the proposed middleware

and finds the storage solution based on the captured cost functions of storage technologies and

service requirements of IoT applications. We also integrate blockchain technology to ensure

traceability, auditability and data placement decision correctness verifiability by IoT applications

as well as storage technology. We performed experiments by considering cloud, multi-cloud

and blockchain-based storage technologies and our results show that our middleware effectively

reduces the price of IoT data storage while maintaining service requirements

Charging station selection by electric vehicles: Currently, industry standard protocols are

enabling communication between EVs and CSs in the charging network, e.g., ISO 15118 and

Open Charge Point Protocol (OCPP) (Antoun, Kabir, Moussa, Atallah & Assi, 2020). However,

these industry standard protocols suffer from severe security and privacy threats. The ISO 15118

protocol involves a trusted intermediary mobility operator, which keeps the private information

(EV identity, location, state of charge, charging parameters, availability and payment information)

of EVs to authenticate and identify them (Eiza, Shi, Marnerides, Owens & Ni, 2018; Bao, Valev,

Wagner & Schmeck, 2018). As the private information of the EVs is handled by a trusted

centralized intermediary, the collection of such private data and tracking of an EV raise serious

privacy and security concerns. To address these problems, we propose the use of blockchain

technology, which enables the EVs to communicate with the CSs without sharing their private

information. It aims to ensure the trust, privacy, auditability and traceability and enforces EVs

and CSs to honestly honor the energy trading protocol. we also propose an efficient decentralized

CS selection mechanism for the EVs, which allows EVs to select the CS themselves with high

QoS and enhanced EV user comfort, while keeping EV’s private information secure. Finally, we

conduct an experimental evaluation and perform sensitivity analysis to demonstrate that our
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proposed protocol is scalable and incurs significantly low blockchain transaction and storage

overhead compared to state-of-the-art.

Privacy-preserving charging station selection, reservation and payment: Although, the

previous work (Danish et al., 2020c) solves the problem securing EV’s private information

however, at the CS premises, the linkability of the blockchain addresses to the physical identities

can pose a serious risk to EV’s privacy, as EV owners’ charging histories and payment information

are associated with their wallet address on the blockchain network. To solve the problem, we

propose a blockchain-based private CS reservation protocol that allows EV owners to reserve a

charging slot privately, without sharing their personal information or exposing their blockchain

addresses at the CS. Unlike our previous work, the proposed solution ensures end-to-end privacy

preservation for EV owners, i.e., the blockchain address of EV owner cannot be linked to its

physical identity at the time of reservation and payment for the charging service. We conduct an

experimental evaluation and perform sensitivity analysis to demonstrate that our solution ensures

end-to-end EV owners’ privacy with low blockchain transaction and computation overhead.

Contributions

In a nutshell, the core contribution of the thesis is to proposes an efficient and secure service

selection mechanism for different IoT applications use cases with the specific needs and

preferences defined by the end-users/businesses to improve overall QoS and protection of user’s

private information. In order to address the significant and challenging issues introduced above,

this thesis makes contributions:

1. The first contribution to the project is BlockAIM, which focuses on a middleware design for

blockchain-based intelligent data storage selection for large-scale IoT applications. We first

proposed the framework, which extends the current IoT cloud architecture, and considers

P2P and blockchain-based storage solutions along with cloud and multi-cloud technologies.

We model IoT data storage selection problem as a decision optimization problem and
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propose two polynomial-time algorithms as a solution. Then, we propose a verifiable

blockchain-based storage selection protocol, which enables the IoT applications as well

as the storage technologies to verify the correctness of the data placement decision made

by the middleware design without the need of any trusted third party. Finally, we propose

an intelligent maintenance strategy, which takes into account and learns the dynamically

evolving features of the IoT applications service requirements to optimizes the computational

complexity along with the blockchain storage and transactions overhead in the middleware

design.

2. The second core contribution is BlockEV, which is a blockchain-based efficient and

secure CS selection protocol for EV charging networks. First, we propose a decentralized

blockchain-based EV charging architecture, which eliminates the need of any trusted third

party and enables the EVs and the CSs to communicate in a decentralized manner. Then,

we propose a blockchain-based EV charging protocol, which enables EVs to select a CS

and make a remote reservation with a CS without the need of any trusted intermediary

central management system. Finally, we theoretically model the decentralized CS selection

mechanism as a decision optimization problem, where a EV selects a CS without sharing

any private information.

3. An EV charging network reservation and payment scheme on the blockchain based on

privacy-preserving CS would be the third contribution. First, we propose a blockchain-based

end-to-end privacy-preserving CS reservation protocol, which enables EVs to reserve a

charging slot at the selected CS privately, without sharing their private information and

by dissociating its real identity from the blockchain address, thereby preserving the EV’s

privacy. Then, we propose an SMC-based CS information verification protocol that allows

EVs to collaboratively verify the availability of charging slots from the CS by securely

sharing reservations in an untrusted environment. Finally, we propose a smart contract

design based on time-lock deposit protocols, which aggregates the balance in such a way
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that no CS is able to link charging service payments with EV users’ blockchain addresses,

while still ensuring that CSs receive full payment for the services they provide.

Thesis Organization

The rest of this document is organized as follows. First, we provide the related work for

each contribution in Chapter 1. Second, we provide in Chapter 2, a review of background

knowledge, concepts, and techniques required for proper understanding of all aspects of this

thesis. Then, each of the core sections focuses on one of the aforementioned contributions:

Chapter 3 for blockchain-based intelligent data storage selection for IoT applications, Chapter 4

for blockchain-based charging station selection for EVs, and Chapter 5 for privacy-preserving

CS reservation for EVs. In each section, we provide additional background material necessary

for understanding that particular work. Each chapter also provides experimental evaluation.

Finally, the conclusion chapter summarizes our findings and provides an outlook on current and

future work.



CHAPTER 1

RELATED WORK

We now provide a detailed analysis of the state-of-the-art related work. We structure this chapter

by listing the relevant literature for each of our contributions.

1.1 Blockchain-based middleware for iot data storage selection

This section reviews the state-of-the-art related studies onmulti-cloud storage systems (Wu& et al,

2013; AlZain & et al, 2011; Dobre & et al, 2014; Cachin, Haas & Vukolic, 2010; Bowers & et al,

2009; Rafique & et al, 2019, 2017), blockchain-based IoT data storage (Shafagh & et al, 2017;

Li et al., 2018; Dorri & et al, 2017; Karlsson & et al, 2018) and draws a comparison between

these studies and our work.

1.1.1 Blockchain-based storage

In recent times, Blockchain technology has been emerged as a promising solution to solve the

IoT privacy and security issues. To store IoT data off-chain, a blockchain-based framework is

proposed in (Li et al., 2018). In the proposed blockchain-based framework, Distributed Hash

Tables (DHTs) are employed to store large-scale IoT data: pointers to this data are written in the

blockchain network. To store time series IoT data, authors in (Shafagh & et al, 2017) proposed a

blockchain-based data storage framework. They also proposed an off-chain storage mechanism

based on DHTs to store IoT data. Moreover, authors in (Dorri & et al, 2017) considered a smart

home IoT application and proposed a blockchain-based architecture, which utilized cloud storage

technologies to store IoT data from smart homes. Authors in (Karlsson & et al, 2018) proposed

a partition-tolerant blockchain ,i.e., Vegvisir, which aims to target the IoT devices with limited

power and limited network connectivity. In order to solve the problem of low storage capability

of IoT devices, the authors integrated a support blockchain in their architecture to store the IoT

data.
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Compared to our work, a single storage solution has been considered in all these proposed

blockchain-based frameworks for all the IoT applications. These frameworks lack auditable data

provenance for large-scale IoT data and ignores distinct service requirements of different IoT

applications. Moreover, all these works lack a traceable and accountable middleware design to

dynamically assess and adapt the correct storage solution. Our proposed middleware solution

BlockAM addresses all of the above issues.

1.1.2 Multi-cloud storage

In recent times, a lot of work has been done for multi-cloud storage system (Wu & et al,

2013; AlZain & et al, 2011; Dobre & et al, 2014; Cachin et al., 2010; Bowers & et al, 2009),

which considers the application service requirements in order to decide the storage solution.

SPANStore (Wu & et al, 2013) minimizes the cost, while placing multiple replicas across

multi-cloud to distribute the trust over multiple storage providers along with enhancing security

and availability. In order to maximize the security of user data, authors in (AlZain & et al, 2011)

propose a multi-cloud database model, i.e., MCDB. Hybris (Dobre & et al, 2014) maximizes

the confidentiality of the customer’s data by spreading the encrypted data of the customer over

multi-clouds. However, these multi-cloud systems often target single objective optimization,

i.e., every system focus on specific application requirement at a time rather than considering

multiple requirements. Moreover, these multi-cloud systems do not consider recent decentralized

storage technologies, which significantly differ from traditional cloud storage systems in term

of performance and privacy. These multi-cloud systems focus on the dynamic behaviour of

cloud systems and do not consider the dynamic behaviour of applications itself. Finally, these

multi-cloud architectures do not provide traceability, accountability and auditability to clients

and storage technologies.

However, there exists a small number of multi-cloud papers which do consider applications

with multiple requirements optimization goal (Rafique & et al, 2019, 2017). In particular,

(Rafique & et al, 2019) proposes a middleware design which only considers cloud storage

technologies, while ignoring decentralized storage. Furthermore, the authors only consider the
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dynamic behaviour of cloud storage, while ignoring the dynamic behaviour of IoT application

service requirements. In addition, the solution lacks a theoretical formulation for data storage

selection. Lastly, the proposed framework lacks traceability, accountability and middleware’s

decision correctness verifiability for the IoT applications as well as storage technologies. Our

proposed middleware BlockAM addresses all the above issues.

1.1.3 Decentralized storage technologies

Storj: Storj (Wilkinson, Boshevski, Brandoff & Buterin, 2014) is a cryptocurrency and a

decentralized storage technology. The Storj network consists of clients, storage nodes and

satellites. Storj is a partially decentralized network in which satellite nodes control the storage

nodes and clients. Storj provides end-to-end encryption to the client’s data and use erasure

coding to add redundancy to ensure high availability. Storj creates chunks of client’s data and

distribute these chunks to the storage nodes all around the world. In order to compete with cloud

solutions, to increase the scalability and performance of the network, Storj does not employ

blockchain and byzantine distributed consensus and everything is controlled by Satellites.

Filecoin: Filecoin (Psaras & Dias, 2020) is a decentralized storage network and works as an

incentive layer over the InterPlanetary File System (IPFS) protocol. Filecoin operates using a

blockchain with Filecoin tokens, which are paid to the miners in return of providing storage to

clients. Similarly, clients use Filecoin to hire storage nodes to store their data. Unlike Storj,

the Filecoin network works without a trusted third party. Storage nodes publish their storage

capacity as well as the price on the Filecoin blockchain network and the interested client can bid

on this information. Once the client and the storage node agree on a deal, this deal is then saved

in the Filecoin blockchain. Filecoin also provides end-to-end data encryption and can distribute

the data to multiple storage nodes. Filecoin network has two markets: the storage market and

the retrieval market. In the storage market, the Filecoin network adds two transactions to the

blockchain network: the storage information publication by storage node and the signed deal.

The retrieval market works using the gossip protocol to retrieve the client’s data.
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Safe Network: The Safe network (Lambert & Bollen, 2014) aims to provide a decentralized

peer-to-peer World Wide Web. Decentralized storage is therefore a major aspect of this network.

Similar to Storj and Filecoin, Safe network also employs the free space of the storage nodes to

store client data, using end-to-end encryption. The data is first converted to chunks and these

chunks are then distributed to multiple storage nodes worldwide. Safe network has its own

cryptocurrency called Safecoin, which is required to use applications on the decentralized Safe

network. Safecoin does not use blockchain and has its own transaction verification mechanism

to reach consensus. Safe network has different client managers which are chosen randomly to

manage client data. Upon reaching consensus that a client has enough safecoins to save the data,

these client managers will distribute the client data to multiple storage nodes.

Table 1.1 provides the comparison between cloud, Storj, Filecoin and Safe network in terms of

decentralization, support for blockchain and smart contracts, storage price control, anonymity

and the data location control.

Table 1.1 Comparison of storage technologies

Storage Decentralization Smart Contract Blockchain Price Decision Anonymity Data Location
Cloud Centralized No No Cloud No Cloud server

Storj Partially centralized No No Storj No Multiple storage nodes worldwide

Filecoin Fully decentralized Yes Yes Storage nodes No One or more storage nodes

Safe network Fully decentralized No No Safe network Yes Multiple storage nodes worldwide

1.2 Blockchain-based middleware for CS selection

In this section, we review the related studies based on EVs scheduling and selection mechanisms

(Jin, Tang & Ghosh, 2013; Tsaousoglou, Steriotis & Varvarigos, 2019; Mukherjee & Gupta,

2014; He, Bai & Zhu, 2016; Nejad, Mashayekhy, Chinnam & Grosu, 2017; Yang & Yang, 2014;

Goyal, Sharma, Vyas & Kumar, 2016; He, Zhu, Zhang & Zheng, 2018; Shi & Wong, 2011;

Cao et al., 2011; Patil & Kalkhambkar, 2019; Wen, Linde, Ropke, Mirchandani & Larsen;

del Razo & , 2016; Schmidt, Saucke & Spengler, 2018; Sweda & Klabjan, 2012; Pourazarm,

Cassandras & Malikopoulos, 2014; Said, Cherkaoui & Khoukhi, 2013; Yang, Cheng, Hsu,

Gan & Lin, 2013; Bodet, Schülke, Erickson & Jabłonowski, 2012; Qin & Zhang, 2011;
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Gusrialdi, Qu & Simaan, 2017) and blockchain-based EV frameworks (Knirsch et al., 2018;

Kirpes & Becker, 2018; Jin et al., 2019; Kim et al.; Pustišek, Kos & Sedlar, 2016; Kamuni,

Asfia, Sutavani, Sheikh & Patel, 2019; Su et al., 2018; Jeong, Dao, Lee, Lee & Cho, 2018; Radi,

Lasla, Bakiras & Mahmoud, 2019; Gao et al., 2018; Samuel et al., 2019), followed by a detailed

comparison with existing studies.

1.2.1 Scheduling EV charging

In the literature, studies propose different methods for optimal scheduling of EVs at the CSs to

optimize the overall cost of charging for EVs and CSs. In (Jin et al., 2013; Goyal et al., 2016)

authors propose the scheduling of the EVs by jointly considering the EVs as well as aggregator’s

revenue. Authors in (Tsaousoglou et al., 2019) provide a method for stochastic approximation of

shadowed prices of CSs to schedule the price-elastic EVs. Work in (Mukherjee & Gupta, 2014)

proposed a scheduling mechanism for EVs that maximize the number of EVs being charged at

a time, while minimizing overall charging cost. In (He et al., 2016; Yang & Yang, 2014; He

et al., 2018; Shi & Wong, 2011; Cao et al., 2011; Patil & Kalkhambkar, 2019), authors proposed

an optimal charging scheme to schedule the EVs based on their requirements to minimize the

cost of EV owners. Work in (Nejad et al., 2017) proposed an online scheduling and pricing

mechanism for EV charging in an auction-based platform to incentivize both CSs and EVs.

Several works have also been proposed to minimize the travelling time for the EVs. Authors in

(Wen et al.), formulated the EVs scheduling problem to firstly minimize the number of vehicles

needed to cover all the timetabled trips, and secondly to minimize the total traveling distance. In

(del Razo & , 2016), authors propose a distributed scheduling approach based on A* algorithm

and that makes use of charging station reservation system aimed at minimizing the total travel

time for each EV. Authors in (Schmidt et al., 2018) proposed a scheduling mechanism for police

EVs, which aims to minimize the total cost, which consists of the cost of travel and the cost

of delay. Authors in (Sweda & Klabjan, 2012) introduced a recharging plan for EVs to find

a charging station with the shortest path based on the minimum travel time only. Similarly,
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authors in (Pourazarm et al., 2014) studied the routing problem for EVs in order to minimize the

travelling time and recharging time.

Studies also propose different EVs scheduling methods to minimize the overall waiting time

at the CSs. An algorithm of directing EV flows to charging stations is proposed in (Said

et al., 2013) to distribute the charging load and to minimize queuing time by having the EVs

communicate with the transportation network. Authors in (Yang et al., 2013) selects the best CS

with minimum queuing time by estimating the queuing time of all the CSs. In (Bodet et al.,

2012), authors proposed a scheduling mechanism to optimize the CSs utilization by minimizing

the EVs waiting time. Authors in (Qin & Zhang, 2011) investigated the EV charging scheduling

activities by minimizing the waiting time at the CSs. In (Gusrialdi et al., 2017), authors proposed

a scheduling strategy, which allows the CSs coordination to minimize the waiting time at the

CSs. However, in all these works the decision has been taken by the central aggregator and CSs

excluding the EVs. Moreover, the decision for EVs is taken by communicating the information

with central aggregator and CSs, which could lead to leakage of private information of EVs. To

the best of our knowledge, no previous work consider the decentralized CS selection problem

from EV’s perspective without sharing its private information to other entities in electric vehicle

charging network. Therefore, a decentralized mechanism for efficient selection of CSs by EVs is

needed, where each EV is capable of selecting a CS in a distributed manner, based on its service

requirements without sharing their private information to central aggregator and CSs.

1.2.2 Blockchain-based EV frameworks

Several works have been proposed to integrate blockchain with the EVs network. Authors in

(Kirpes & Becker, 2018; Jeong et al., 2018), proposed a blockchain and smart contract based

payment transaction verification mechanism for EVs and CSs charging records on blockchain.

Work in (Jin et al., 2019) focuses on the allocation and trading of EV charging right among

CSs through the blockchain network. Authors in (Kim et al.) proposed a blockchain-based

EV charging system to improve security, efficiency and key management. A blockchain-based

framework is proposed to optimally allocate CSs to EVs through smart contract infrastructure
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(Pustišek et al., 2016). In (Kamuni et al., 2019), authors proposed blockchain-based framework

to trade energy between EVs and CSs, while storing cost of CSs on the blockchain network.

Authors proposed a blockchain-based dynamic optimal contract assignment and energy allocation

algorithm for EVs charging scenario in (Su et al., 2018). However, in all these works, there is no

mechanism which provides security to EV’s private information as the EVs are communicating

with the central aggregator or CSs. Moreover, these blockchain systems incur high blockchain

storage and transaction fee overheads.

Authors in (Radi et al., 2019) proposed a blockchain-based energy trading mechanism for

EVs along with anonymous payment mechanism however their work considers a consortium

blockchain with an assumption of trusted third parties. In (Gao et al., 2018), authors proposed

a blockchain-based data sharing framework with anonymous payments however, their work

is focused on private payment mechanism and ignores the selection of CSs by EVs. Work in

(Samuel et al., 2019) proposed a blockchain-based energy trading mechanism for EVs and CSs

however, in their framework the EVs are sharing private information with a central aggregator

which could lead to serious privacy concerns. To the best of our knowledge, only the work

in (Knirsch et al., 2018) is related to our proposed framework. Unlike (Knirsch et al., 2018)

our proposed framework not only ensures the same level of privacy for the EV users, but also

ensures the availability of reserved time slot and trusted payment with selected CS. Work in

(Knirsch et al., 2018) lacks theoretical formulation of selection of CSs however, in this work we

propose a mathematical formulation for efficient selection of CSs based on the EVs requirements.

It should be noted that this work solves the CS selection problem for an individual EV in a

decentralized manner and no EV scheduling is done in this paper. Furthermore, our proposed

framework incurs less storage and transaction overhead in the blockchain network. Compared to

the work in (Knirsch et al., 2018), our proposed framework ensures the profitability of the CSs,

since the selected CS will take part in the blockchain interaction with EV and other CSs do not

need to spend money in blockchain transactions. Finally, in contrast to (Knirsch et al., 2018),

our work considers user based reputation mechanism for CSs, which is used as a feedback to

select the future CS by EVs.
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1.3 Privacy-preserving EV charging slot reservation and payment

Being related to the above work, the relevant literature is also similar, especially with regards to

EV charging slot reservation. The work presented in Chapter 4 is also related to CS selection and

reservation, but unlike the work in Chapter 4, its focus more on end-to-end privacy-preserving

CS reservation and payment mechanism. As the literature is similar and is already presented in

the above section, we just present the state-of-the-art literature on privacy-preserving energy

trading.

1.3.1 Privacy-preserving energy trading

Several works have proposed privacy-preserving energy trading based on blockchain. Authors

in (Samy, Yu, Zhang & Zhang, 2021) proposed a private blockchain-based secure energy

transactions between energy sellers and buyers without a third-party. Authors in (Son, Im,

Kwon, Jeon & Lee, 2020) proposed a P2P energy trading system on a blockchain where all

bids are encrypted and peer matching is performed on the encrypted bids by a functional

encryption-based smart contract. Authors in (Lu et al., 2019) proposed a blockchain based

privacy-preserving distributed transaction scheme for energy trading to maximize the protection

of user privacy. Authors in (Radi et al., 2019) proposed an anonymous payment system that

cannot link individual owners to specific charging locations. Authors in (Baza & et al, 2021)

proposed a privacy-preserving CS2V scheme to enable energy trading between CSs and EVs.

They also proposed a privacy-preserving V2V energy trading scheme to enable EVs to charge

other EVs. Authors in (Jiang, Zhang, Li, Yue & Zhou, 2020) proposed a privacy-preserving

stealth transmission approach based on blockchain to ensure data privacy and break the linkage

between consumers and providers in the energy trading process. Authors in (Long, Chen, Ren,

Dou & Xiong, 2020) proposed a decentralized blockchain-enabled energy trading scheme which

preserves the privacy of EV owners, by adopting the k-anonymity method in constructing a

united request to hide the location information and creating a clocking area based on undirected

graphs. Authors in (Hassan, Rehmani & Chen, 2021) proposed an energy trading mechanisms,

which allows buyers and sellers to trade electricity without the risk of losing or compromising
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their private data along with enhancing trust in the network. Authors in (Yang et al., 2020) use

the Ciphertext Policy Attribute-Based Encryption (CP-ABE) scheme to establish a blockchain

based P2P energy trading approach with privacy preservation, which allows buyers and sellers,

to manage and verify the transactions autonomously without needing third party intermediaries.

However, all the aforementioned work including the state-of-the-art work explained in previous

section do not address end-to-end privacy-preserving slot reservations at CSs, i.e., they do not

provide a mechanism to secure EVs’ private information or the dissociation of physical identity

at CS with blockchain addresses, which poses a serious threat to EVs’ privacy and can expose

complete charging history of a certain EV.

Solving this problem by just encrypting the data will not be useful as the data needs to be

processed in the smart contract and those operations cannot be performed on encrypted data.

Therefore, in Chapter 5, we extend the work in Chapter 4 and focus primarily on end-to-end

privacy preservation for EVs at the time of charging slot reservation or payment for the charging

services. More importantly, we enable EVs to reserve a charging slot at the selected CS privately,

without sharing their private information with other entities in the network. Also, the proposed

protocol protects the EV’s privacy by dissociating its real identity from the blockchain address,

thereby preserving the EV’s privacy.





CHAPTER 2

BACKGROUND

We now provide a review of background knowledge, concepts, and techniques required for

proper understanding of all aspects of this thesis.

2.1 Blockchain

Using the peer-to-peer (P2P) protocol, a network of machines called miners manage the

chain of blocks that makes up a blockchain. According to a predefined consensus algorithm,

each block contains a set of transactions committed by networking peers (Kosba, Miller, Shi,

Wen&Papamanthou, 2016). At its inception, blockchainwas used as a distributed cryptocurrency

that allowed electronic payments to be made without the help of banks. Over the years, it has

evolved to support the deployment of more general-purpose distributed applications. Vitalik

Buterin introduced the concept of smart-contracts or decentralized autonomous organizations.

(Wood et al., 2014). In simple terms, a smart-contract is an autonomous computer program

that runs on the blockchain network. Programs like this one are contracts whose terms can

be pre-programmed with the ability to self-execute and self-enforce themselves without the

intervention of trusted authorities (Christidis & Devetsikiotis, 2016).

Blockchain systems are typically composed of multiple nodes that do not fully trust each other.

Each node maintains a set of global states, and each node performs transactions that may

modify those states. Block chains are special data structures that store historical states and

transactions. Each node in the system agrees on the order of transactions. Fig. 2.1 demonstrates

how a transaction is verified and added to the blocks according to the blockchain protocol,

in a P2P setting. As a result, blockchain is often referred to as a distributed ledger. The

block contains the roothash (or Merkle root), which is the sum of all the transaction hashes

(Christidis & Devetsikiotis, 2016). Miner needs to find the correct nonce for the block header in

order to add the block to the chain.
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Figure 2.1 Illustration of how blockchain works

2.1.1 Features of blockchain

Blockchain offers several key features (Masood, Qureshi, Danish & Lestas, 2019) such as:

1. Decentralized data management. There is no one user in the system who owns the system

more than any other, because each peer can add information to the ledger, which means that

transactions can be made.

2. Distributed ledger and transparency. Every peer in the network has access to every

transaction made with the help of a shared public list of transactions (the exchange of data).

3. No central point of failure. Due to the lack of a centralized storage system, there is no risk

of losing data when a node is compromised.

4. Data security, tamper-proof, anti-forgery and data integrity. The blockchain architecture

stores data in a way that is immutable and tamper-proof. As blockchains are decentralized,

it is exceedingly difficult for attackers to modify ledgers.
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2.1.2 Private vs public blockchains

From a high level, a blockchain system can be categorized into either public or private. With

the former, any node can join and leave the system, so the blockchain is truly decentralized,

similar to a peer-to-peer network. In the latter, the blockchain enforces strict membership. More

specifically, the access control mechanism used to determine who may join the system is an

authentication process, so that every node is known by the other nodes and their identities are

known.

Private blockchain: Hyperledger (Aggarwal & Kumar, 2021) is among the popular private

blockchains. Since node identities are known in the private settings, most blockchains adopt one

of the protocols from the vast literature on distributed consensus. Zab (Junqueira, Reed&Serafini,

2011), Raft (Ongaro & Ousterhout, 2014), and PBFT (Castro, Liskov et al., 1999) are popular

consensus protocols that are widely used nowadays. Hyperledger directly uses PBFT consensus

that has three-phases. In the pre-prepare phase, a leader broadcasts a value for other nodes to

commit. The nodes then broadcast values they are going to commit in the prepare phase. In the

final phase of the process, the committed value is confirmed when two thirds or more of the

nodes agree with the previous value.

Public blockchain: Bitcoin is the most well known example of public blockchains. During

a Bitcoin transaction, the states are digital coins (cryptocurrencies), and the coins are moved

from one set of addresses to another. In this system, each node broadcasts a set of transactions

it wants to execute. In the blockchain, special nodes, called miners, collect transactions into

blocks, verify their validity, and start a consensus protocol to add them to the chain. The Bitcoin

blockchain is based on a consensus mechanism known as proof-of-work (PoW), where only

those miners who solved a computationally hard puzzle (finding the right nonce for the block

header) are allowed to add new blocks to it. Additionally, Ethereum has established itself as one

of the most well-known, public blockchains and is the second-largest cryptocurrency platform

after bitcoin. It has its own cryptocurrency that is Ether.
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Figure 2.2 An example of smart contract written in solidity

In this work, we are using a smart contract based public blockchain network in our architecture as it

ensures pseudo-anonymity of the participating parties. The application users are communicating

with the untrusted service providers on the blockchain network with trade related private

information. Therefore, anonymity must be ensured to secure user’s private information by using

public blockchain network. Moreover, considering the anonymous payment feature of the public

blockchain network, we also propose an anonymous payment mechanism. In this thesis, we

have employed Ethereum blockchain to run the experiments. However, any public blockchain

with smart contract functionality can be employed in the proposed system architectures.

2.1.3 Smart contracts

An smart contract is simply a program that executes whenever an electronic transaction is

performed. In essence, it is a stored procedure that is invoked when a transaction occurs. Every

node agrees to the inputs, outputs and states affected by the smart contract execution. All

blockchains have built-in smart contracts that implement their transaction logics. A smart contract

built into crypto-currencies verifies transactions by checking the signatures on transaction inputs.

In the next step, it checks that the output addresses match the input addresses. Finally, it applies
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changes to the states. One way to classify smart contracts is by its language. Fig. 2.2 shows an

example of a smart contract written in Solidity that runs on Ethereum blockchain.

2.2 Machine learning and neural networks

Artificial Intelligence (AI)/Machine Learning (ML) allows computers to learn from experience.

Algorithms for machine learning are designed to extract natural patterns and patterns from data

by using computational methods and analyzing the process for extracting features. The two main

types of machine learning techniques are supervised learning (SL) and unsupervised learning

(UL) (Kumar & Selvakumar, 2011). The main difference between various types of machines is

that supervised learning (SL) algorithms require input and output for them to learn a function.

However, in unsupervised learning (UL), the algorithm uses only the input vector to learn about

relationships between data (Kumar & Selvakumar, 2011).

2.2.1 Neural networks

Neural networks (NNs) are models of machine learning inspired by the structure and functioning

of biological brains. A neural network consists of nodes, or neurons, which are simple

computational units. An input is received at the edges of a neuron, multiplied by edge weights,

and then subjected to a non-linear function called their activation function in order to achieve

an output. Using a vector equation, a neuron’s working can be modeled mathematically as in

Eqn. 2.1, where x, w, b, �, f, y represent input vector, weight vector, neuron bias, element-wise

multiplication, activation function, and neuron output respectively.

𝑦(𝑥) = 𝑓 (𝑤 � 𝑥 + 𝑏) (2.1)

Typical activation functions include: logistic sigmoid (𝜎), tanh, and rectified linear units

(ReLU) (Saied, Overill & Radzik, 2016). The functions are defined by equations 2.2, 2.3, and
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2.4 respectively. For regression problems which require predicting continuous values, linear

activation is used. Linear activation applies the identity function shown in equation 2.5.

𝜎(𝑧) =
1

1 + 𝑒−𝑧
(2.2)

𝑡𝑎𝑛ℎ(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
(2.3)

𝑅𝑒𝐿𝑈 (𝑧) = 𝑚𝑎𝑥(0, 𝑧) (2.4)

𝑎(𝑧) = 𝑧 (2.5)

Figure 2.3 A simple neural network

The basic feed-forward network is shown in Fig. 2.3 and comprises of several neurons, also

called units, organized in layers to form a network. A set of directed edges connects every

neuron in each layer to every neuron in the previous layer, and a weight is assigned to each edge.

The input layer is the first layer that receives the input. NN’s output is produced by the last layer,

called the output layer. We refer to the remaining layers collectively as hidden layers. Layer

structure implies a hierarchy because information flows from the input layer to the output layer.



29

A layer’s input and output are also called the bottom and top layers, respectively. A neuron’s

output is calculated as it moves upwards from the bottom layer to the top layer.

2.2.2 Recurrent neural networks

In NNs and, in fact, many other machine learning models, sample independence is one of the

major assumptions. Data that is sequential, however, does not conform to this assumption.

All of these elements exhibit interdependence across time, whether they are speech, language,

time series, video, etc. Each sample of data is treated individually by NNs, so they lose the

opportunity to exploit sequence information.

RNNs are a special type of NN that process sequential data. RNNs have a state vector (in the

hidden units) that stores the memories of all previous elements of a sequence. The most simple

RNN is shown in Fig. 2.3. As can be seen, the hidden neurons in an RNN are connected via a

feedback connection. They maintain a hidden state vector as a memory for past information as

they process the input sequence one element at a time. By learning to selectively retain relevant

information, they can capture dependencies across multiple time steps. When making future

predictions, they can use both current input and past information. In RNN training, the model

is unfolded and a copy is created for each time step. RNNs that have been unfolded can be

treated as NNs with multiple layers and trained the same way as back-propagation. BPTT, or

back-propagation through time, is the method used to train RNNs (Larson, 2016).

2.3 Ring signatures

The ring signatures concept was first introduced in (Rivest, Shamir & Tauman, 2001) by Rivest,

Shamir, and Tauman. With the help of a ring signature, a signer from a set of possible members

convinces the verifier that the signer belongs to the group without disclosing his identity. A

verifier can verify the correctness of the ring signature, i.e., the signature comes from some

member of the group, but it cannot tell exactly who the signer is thus, the signer’s anonymity is

ensured.
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Figure 2.4 Illustration of how ring signatures work

Ring signatures use public key cryptography, i.e., a public key and a corresponding private

key to securely transmit messages. The public key is used to encrypt a message, while the

corresponding private key is used to decrypt a message. These public and private key pairs are

generated using ECC, and the public key is shared among all the parties. A ring signature is

defined with two procedures:

• Ring Sign(Message, 𝑁 user’s public keys, signer’s private key) - Generate a ring signature

with message 𝑀 , public keys of ring members, and signer’s private key.

• Ring Verify(𝑀 , 𝜎) - Verify ring signature with message 𝑀 and ring signature 𝜎 and return 1

if a signature is valid.

Fig. 2.4 shows how signatures are generated in the form of ring and sent to the verifier. We

argue in favor of ring signatures to ensure EVs anonymity because ring signatures hide EVs’

identity from the RSU as well as the CS. Moreover, ring signature is implemented off-chain

between EVs and RSUs, therefore, EVs do not need to communicate with CSs directly, thus

ensuring privacy.
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Figure 2.5 Additive homomorphic encryption example

2.4 Homomorphic encryption

SMC is a cryptographic problem in which multiple parties jointly compute a value based on

individually held private data, without sharing the data. A more general representation of

SMC is: for different number of parties 𝑃1,...,𝑃𝑛 with an initial inputs 𝑚1,...,𝑚𝑛, SMC securely

computes a function 𝑓 (𝑥1, ..., 𝑥𝑛) = 𝑘1,...,𝑘𝑛, where 𝑘1,...,𝑘𝑛 is the output of the function, which

is received by each party, while keeping each party’s input private.

In this work, we use homomorphic encryption based on the Paillier cryptosystem (Paillier, 1999),

a standard approach to SMC, which enables direct arithmetic operations on encrypted values.

The encrypted information of multiple parties can be added up without having to know the

actual value of each party. One simple illustrative example would be: Let n = 𝑝𝑞, and 𝑝 and 𝑞

be distinctive large prime numbers, where (𝑝, 𝑞) is the private key and 𝑛 is the public key. The

encryption properties of Paillier-based homomorphic encryption makes it possible to add two

encrypted messages, i.e., given two encrypted messages m1 and m2, and a constant number

n, one can calculate 𝐸𝑛𝑐(𝑚1 + 𝑚2) = 𝐸𝑛𝑐(𝑚1).𝐸𝑛𝑐(𝑚2) and 𝐸𝑛𝑐(𝑚1)𝑚2 = 𝐸𝑛𝑐(𝑚1𝑚2). As

shown in Fig. 2.5, two numbers, 0 and 1 are encrypted before, and the addition functionality is

implemented on the encrypted numbers. Thus, the homomorphic encryption will output the

correct answer given the encrypted inputs.
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We argue in favor of homomorphic encryption based SMC to CS charging slot information

because our main goal is to add encrypted information in a decentralized way. With the help of

homomorphic encryption, EVs encrypt and share information with each other to calculate the

available and occupied charging slots without the need of trusted third party.

2.5 Trusted execution environment

We propose a conflict resolution mechanism based on TEE that protects the confidentiality

and integrity of computations, and can issue proofs, known as attestations, of computation

correctness. Intel SGX is a specific TEE technology, which is used in our proposed framework.

Intel SGX provides a CPU-based implementation of TEEs—known as enclaves in SGX. A

host can instantiate an enclave which is isolated from the host itself. The enclave provides a

protected address space to the code running inside a TEE. When data from a TEE moves off

the processor to memory, it is transparently encrypted with keys only available to the processor.

Thus the operating system, hypervisor, and other users cannot access the enclave’s memory. The

SGX memory encryption engine also guarantees data integrity. Moreover, Intel SGX supports

attested execution, i.e., it is able to prove the correct execution of a program, by issuing a

remote attestation, a digital signature, using a private key known only to the hardware, over the

program and an execution output. Assuming trust in the hardware, and Intel, which authenticates

attestation keys, it is infeasible for any entity other than an SGX platform to generate any

attestation, i.e., attestations are existentially unforgeable.

We argue in favor of TEE based conflict resolution mechanism because smart contract directly

takes input from the smart meters of EVs and CSs and process it without the need of a trusted

third party. TEE ensures that the correct input is coming from the smart meters of EVs and CSs

with the help of remote attestation.
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The content of this chapter concerns a blockchain-based middleware for large-scale IoT data

storage selection. Section 3.1 presents various motivating use cases for this work. Section

3.2 explains the proposed middleware based IoT fog architecture. Section 3.3 explains the

blockchain-based data placement protocol and theoretical problem formulation of the proposed

middleware design. Section 3.4 explains the proposed neural network based maintenance

strategy and reconfiguration. Section 3.5 presents the theoretical formulation of the aggregation

rate feedback. Section 3.6 presents the middleware design evaluation. Finally, a conclusion is

offered in Section 3.7.

3.1 Introduction

Cloud technology has emerged as a promising and scalable solution to store and manage

large-scale IoT data (Khaled, Helal, Lindquist & Lee, 2018; Sun, Yin, Sun, Tian & Du, 2020).

Normally, the raw heterogeneous data is generated by the IoT devices, which needs to be

preprocessed first to remove the redundant information and extract meaningful insights before

storing. A fog/edge server (Debe & et al., 2019) performs the filtering and aggregation of the

raw IoT data and operates near to the IoT end devices. The time-critical IoT data is processed by

the fog nodes and the archived data is sent to the cloud premises for retrieval and storage in the

future, as shown in Fig. 3.1 (Mollah & et al, 2017).
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Unfortunately, the current centralized cloud storage technologies suffer from significant privacy,

security and trust issues (Li et al., 2018). As IoT devices create huge volumes of data, much of

it is sensitive data belonging to individuals and companies can easily be leaked from the cloud

servers (Li et al., 2018). In addition, data errors can be concealed by the cloud storage providers

intentionally, which directly affects the integrity of the large-scale IoT data (Wang & et al, 2009).

Thus, it is necessary to assure the IoT application owners that the data has been maintained

correctly throughout the period of data storage (Kumar & Saxena, 2011). Moreover, while

dealing with untrusted storage technologies, accountability, traceability and auditability of

the data storage decisions, data failures, data provenance and access records are important to

ensure confidence and trust (Ko, Lee & Pearson, 2011). Currently, a Third-Party Auditor (TPA)

performs the data integrity verification and auditing on the behalf of users and are assumed to

be honest. However, in practice, TPAs are not reliable and can be compromised (Zhang, Xu,

Lin & Shen, 2019), which poses serious threat to the user’s data privacy (Bai & Hao, 2019).

In recent times, decentralized storage solutions, based on a combination of the blockchain

technology (Zhang & et al, 2018; Jiang, Fang &Wang, 2018) and peer-to-peer (P2P) networking

(R & et al, 2019) have gained attraction as an alternative to cloud storage technologies. These

decentralized storage technologies aim to give more control to the clients over their data.

Examples of emerging decentralized storage solutions include Storj, Filecoin, Safecoin (L & et al,

2015), and Sia (Vorick & Champine, 2014) etc. Blockchains eliminate the need of trusted third

party as the ledger is maintained by all the nodes in the network instead of a centralized server.

Moreover, it offers transparency, immutability, availability and verifiability in an untrusted

environment (Chen & et al., 2019) as the information stored on the network cannot be changed

and is visible to all the nodes in the network. Moreover, the data cannot be modified or deleted

once it is stored in the blockchain network (Danish et al., 2020a). Therefore, in the light of

the above benefits, blockchain solution can be leveraged to provide accountability, auditability

and data integrity to the IoT application without the need of trusted third parties or TPAs

(Masood & et al., 2019).
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Selecting the right data storage technology for the given requirements is a key design decision.

IoT application developers now face a challenge in selecting the best storage candidate for

their service requirements, considering the large variety of cloud and decentralized storage

options available and their underlying heterogeneous storage systems, as well as their different

promised Service Level Agreement (SLA) guarantees (Rafique & et al, 2019). Traditionally,

IoT applications infrastructure relies only on a single cloud storage technology, which limits

the possible service requirements of IoT applications. In addition, relying on a single cloud

storage technology increases the risk of technology or vendor lock-in and places limits on

the application and SLA requirements (Rafique & et al, 2017). Multi-cloud heterogeneous

architecture (Wu & et al, 2013; AlZain & et al, 2011; Dobre & et al, 2014; Cachin et al., 2010;

Bowers & et al, 2009) has recently been proposed, but with limited impact due to the lack of

differentiation between competing cloud solutions. In contrast, decentralized storage solutions’

architecture differs significantly from cloud technologies and possess distinct characteristics

in terms of security, privacy, performance, price and availability (Benisi, Aminian & Javadi,

2020). Relying on a single storage technology may lead to sub-optimal data placement decisions

in highly dynamic environments (Rafique & et al, 2017). Hence, there is a need to take these

parameters into account while selecting the storage technology for IoT applications.

In this paper, we study the problem of data placement decision, which is the selection of an

effective storage technology to fulfill the service requirements and parameters of a particular IoT

application by jointly considering cloud and decentralized storage. Important factors include the

volume of data generated, privacy requirements, and price considerations.

Existing works have employed the blockchain-based solutions to address the large-scale IoT

data storage problem (Shafagh & et al, 2017; Dai & et al., 2019; Li et al., 2018; Dorri & et al,

2017; Karlsson & et al, 2018). However, these works focus on the IoT data management

aspect and consider a single off-chain solution to store the IoT data. Therefore, the problem of

considering multiple storage solutions to select the best-suited storage technology for large-scale

IoT data based on the IoT application’s service requirements simultaneously with the auditable

data provenance has been largely ignored in blockchain-based solutions. Furthermore, the
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current middleware storage selection solutions only consider cloud storage technology. Also,

the previous works lack the theoretical formulation of IoT data placement problem and ignore

the captivating properties of the middleware, e.g., accountability, auditability, traceability and

decision verifiability for both the storage technologies as well as IoT applications. Finally,

the current middleware solutions constantly monitor the storage technologies to retrieve the

parameters and lack adaptability, which leads to high computation and communication cost.

In our previous work (Danish & et al., 2020), we proposed an extended fog architecture for IoT

application with a blockchain network. We theoretically formulated a data storage selection

problem as a decision optimization problem that finds the storage solution based on the captured

cost functions of storage technologies and service requirements of IoT applications, and proposed

two polynomial-time heuristic algorithms to approximate a solution to the formulated problem.

Compared to our previous work (Danish & et al., 2020), BlockAIM ensures the data placement

decision correctness verifiability by IoT applications as well as storage technology. Data

placement decision verification is important from storage technology as well as IoT application’s

perspective, i.e., to make sure that the middleware has used the correct parameters to select a

storage technology. Moreover, it leverages neural network to learn and predict the dynamic

behaviour of the IoT applications and storage technologies due to its effectiveness against

conventional regression and statistical models, and its ability to deal with large volumes of IoT

data (Al-Hawawreh, Moustafa, Garg & Hossain, 2020). Neural network enables the middleware

design to adapt itself intelligently to make the data placement decisions for the IoT applications.

First, the middleware design predicts IoT service requirements and the next re-evaluation period

with the help of a neural network-based LSTM network. Second, the middleware decides

whether to re-evaluate the data placement decision, based on the predicted parameters. Finally,

the proposed middleware design intelligently tunes the aggregation rate for the raw IoT data to

optimize the data quality and precision defined by the IoT application owner.

Our main contributions in this work are:

• We propose BlockAIM: a neural network-based middleware IoT fog architecture for data

placement decisions of IoT applications. We model the optimal data placement problem
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as the NP-hard Uncapacitated Facility Location problem (UFL) and provide two heuristics:

dynamic programming-based (DP) and greedy-style heuristic (GS).

• We propose a verifiable blockchain-based storage selection protocol, which enables the IoT

applications as well as the storage technologies to verify the correctness of the data placement

decision made by the middleware design without the need of any trusted third party. The

proposed smart contract protocol ensures accountability, traceability and data integrity for

IoT applications as well as storage technologies.

• We propose an intelligent maintenance strategy combining neural networks and Long Short-

TermMemory (LSTM), which takes into account and learns the dynamically evolving features

of the IoT applications service requirements to enable maintenance reconfiguration and

optimizes the computational complexity along with the blockchain storage and transaction

overhead in the middleware design.

• We propose a feedback mechanism to control the data aggregation rate, and tune data quality

and precision. We model the aggregation rate feedback problem as a linear optimization

problem, which optimizes the price of the data storage, while maximizing the data quality

and precision of the specified IoT application.

• We perform extensive experiments to evaluate the proposed middleware design along with

the proposed heuristics’ performance. Our results show that our middleware effectively

reduces the price of IoT data storage while maintaining service requirements.

3.2 Proposed middleware architecture

In this section, we propose a neural network-based adaptive middleware design, which jointly

considers decentralized storage technologies along with cloud storage. Compared to the

traditional IoT fog architecture, the proposed architecture includes an adaptive middleware

module to intelligently select the storage technology for IoT applications and to learn the dynamic

behaviour of parameters for future data placement decision predictions. The proposed design is

shown in Figure 3.2.

Network Entities Definition:
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Figure 3.1 Traditional cloud architecture for iot applications

1. Fog Nodes: Fog nodes operate near IoT devices, at the network edge, to extract time-sensitive

information and perform real-time computation on the raw IoT data. In this work, we

assume the fog nodes to be honest, and the communication between the IoT devices and the

fog node is assumed to be secure because it resides in the local network of IoT applications

(Vaquero & Rodero-Merino, 2014). Moreover, fog nodes also operate in hierarchical

architecture with multiple levels to process time-sensitive data. The fog node has three

main responsibilities: First, it performs aggregation and filtering on the IoT data. Second, it

writes the data hash and application ID on the blockchain network to provide data integrity.

Third, it keeps track of up-to-date service requirements.

2. Blockchain Network: Fog nodes publish the IoT application’s service requirements, while the

storage technologies publish their service parameters on the blockchain network. BlockAIM

utilizes these parameters for storage selection and publishes the data placement decision on

the blockchain network, thus ensuring trust and verifiability for both the IoT applications

and the storage technologies. In order to achieve these goals, we employ public blockchain

smart contracts functionality. It should be noted that the blockchain module in our proposed

architecture in Figure 3.2 is a separate entity and working independently from the blockchain

network of decentralized storage technologies.
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Figure 3.2 Middleware architecture (Danish, 2019)

3. Storage Technologies: Each storage technology handles the read and write requests in

accordance to the decision made by BlockAIM. A representative list of available storage

technologies is shown in the Figure 3.2.

4. Adaptive Middleware: The middleware module of our proposed architecture is a piece of

software, running on the fog nodes and is directly connected to the blockchain network and

the storage technologies. The middleware has three main responsibilities: First, it makes

the blockchain-based data placement decisions based on the IoT service requirements and

service parameters of storage technologies. Second, it learns the dynamic behaviour of IoT

applications as well as storage technologies with the help of neural network algorithms and

adapts itself to intelligently schedule the data placement decisions. Third, it provides the

feedback to IoT applications to control data quality and precision. These responsibilities are

described in detail in Sections 3.3-3.5.

3.3 Blockchain-based storage selection protocol

In this section, we propose a blockchain-based data placement protocol for IoT applications,

which selects the storage technology for the IoT applications, based on their service requirements.



40

3.3.1 Overview of the storage selection protocol

We first provide an overview of the entire storage selection protocol. Details about important

steps, i.e., the decision optimization problem and the re-evaluation interval will be given in

the following sections. A blockchain network is employed to store the IoT applications service

requirements, service parameters of the storage technologies and the data placement decisions

by interacting with the smart contract. Thus, the blockchain network is used as a storage and

decision verification layer to provide traceability, auditability and accountability to the IoT

applications as well as storage technologies. Data placement decision verification is important

from storage technology as well as IoT application’s perspective, i.e., to make sure that the

middleware has used the correct parameters to select a storage technology. More details about

the blockchain-based storage selection protocol are given below:

Storage technology registration: First, all of the storage technologies including decentralized

storage technologies and public cloud infrastructures, will register themselves to the middleware

by providing a valid blockchain address and ID, namely,

𝑆𝑇𝑚 → 𝑀𝑊 : 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 = {𝐼𝐷 | |𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑏𝑐}

where ST represents the storage technology, while middleware is represented by MW. Once the

request has been received, the middleware will register the new storage technology in the list of

available storage solutions.

Blockchain-based protocol:

• Step 1: All the storage technologies will periodically write their service parameters infor-

mation on the blockchain network at time 𝑡. These service parameters include the storage,

retrieval and bandwidth price, latency, availability and privacy, namely,

𝑆𝑇𝑚 → 𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛 : 𝑖𝑛𝑝𝑢𝑡 = {𝑝𝑟𝑖𝑐𝑒 | |𝑙𝑎𝑡𝑒𝑛𝑐𝑦 | |𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 | |𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ| |𝑝𝑟𝑖𝑣𝑎𝑐𝑦}.

The information update at the time 𝑡 + 1 will replace the service parameters information

at the time 𝑡. Therefore, the middleware will always utilize up-to-date service parameters
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for data placement decisions. 𝐸𝑣𝑒𝑛𝑡𝑠 functionality in the smart contracts can be utilized

to notify middleware about the parameters update. It should be noted that the new service

parameters related to the storage technologies can also be identified and incorporated in the

current problem.

• Step 2: Similarly, the fog nodes periodically update the service requirements of multiple IoT

applications on the blockchain network at time 𝑡. These service requirements include the

data size, data retrieval frequency price and performance requirements, and are specific to

the individual IoT application, namely,

𝐹𝑜𝑔 → 𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛 : 𝑖𝑛𝑝𝑢𝑡 = {𝑑𝑎𝑡𝑎𝑠𝑖𝑧𝑒 | |𝑝𝑟𝑖𝑐𝑒 | |𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 𝑓 𝑟𝑒𝑞 | |𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒}.

Similar to step 1, the service requirements updation at time 𝑡 + 1 will replace the requirements

at time 𝑡.

• Step 3: In order to select the storage technology for a given IoT application, middleware will

take the up-to-date parameters of IoT applications as well as storage technologies and solve a

decision optimization problem. We formally formulate the storage selection optimization

problem in the following Section 3.3.2. Once the middleware has made the data placement

decision, it will notify the fog nodes and storage technology of the decision as well as write

on the blockchain network as:

𝑀𝑊 → 𝐹𝑜𝑔, 𝑆𝑇 : 𝑛𝑜𝑡𝑖 𝑓 𝑦 = {𝐼𝐷𝐼𝑜𝑇 | |𝑆𝑇}

𝑀𝑊 → 𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛 : 𝑖𝑛𝑝𝑢𝑡 = {𝐼𝐷𝐼𝑜𝑇 | |𝑆𝑇 | |𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝},

where 𝐼𝐷𝐼𝑜𝑇 represents IoT application ID. It should be noted that the solution to the

optimization problem will be approximated off-chain by the middleware as the data placement

decisions need to be made in real time. A significant delay as well as high storage and

transaction cost will be incurred if this problem is solved in the smart contract on public

blockchain.

• Step 4: Once the data placement decision has been taken, the IoT applications and the storage

technologies can verify the correctness of the decision by retrieving the corresponding

parameters from the blockchain network as follows:
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𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛 → 𝐹𝑜𝑔 : 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑆𝑇 =

{𝑝𝑟𝑖𝑐𝑒 | |𝑙𝑎𝑡𝑒𝑛𝑐𝑦 | |𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 | |𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ| |𝑝𝑟𝑖𝑣𝑎𝑐𝑦}.

𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛 → 𝑆𝑇 : 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝐼𝑜𝑇 = {𝑑𝑎𝑡𝑎𝑠𝑖𝑧𝑒 | |𝑝𝑟𝑖𝑐𝑒 | |𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒}.

It must be noted that the decisions of the middleware design cannot be verified in the real

time, and can only be verified in future. It is possible that the middleware makes the wrong

decision in the real-time, and there is no way to verify it in real-time. However, this decision

can be audited in the future using the storage and application parameters stored in the smart

contract.

• Step 5: Once the storage technology has been selected at time 𝑡, based on the service

requirements of IoT applications and service parameters of storage technologies, BlockAIM

will predict the time 𝑡 + 1, i.e., when to re-make the data placement decision. Details of these

predictions are given in Section 3.4.

3.3.2 Storage selection problem formulation

System Model: We consider an IoT network consisting of D IoT applications, which continuously

generate large-scale data with different data types 𝐼 independently. The generated data is first pre-

processed at the fog node and the aggregated data is then stored in different storage technologies.

We consider J storage technologies to store the large scale IoT data, including public clouds,

decentralized storage technologies and multi-cloud as shown in Figure 3.2. After pre-processing

of raw IoT data, fog node produces 𝐹𝑑,𝑖 bytes of data with data type 𝑖 ∈ 𝐼.

Decision Variable: We define a binary decision variable 𝑦 𝑗 , indicating whether the storage

solution 𝑗 is selected (𝑦 𝑗 = 1) or not (𝑦 𝑗 = 0) for IoT application 𝑑 ∈ 𝐷 with data type 𝑖 ∈ 𝐼. Let

𝑦 = (𝑦 𝑗 )∀ 𝑗 ∈ 𝐽 represents the set of all the storage variables and is given by:

Y={ 𝑦 |
∑

𝑗∈𝐽 𝑦 𝑗 ≤ 𝐽 and 𝑦 𝑗 ∈ {0, 1} , ∀ 𝑗 ∈ 𝐽 }

Overall Cost: We define the total cost Ct, which consists of five components: bandwidth cost,

availability cost, retrieval and storage cost, latency cost, and privacy cost.
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(1) The bandwidth cost denotes the price for downloading and uploading the data for a specific

storage technology. If 𝑃𝑗 is the bandwidth price of 𝑗
𝑡ℎ storage technology and

∑
𝑖∈𝐼 (𝐹𝑑,𝑖) is the

total amount of data generated by an IoT application, we can represent the overall bandwidth

cost as Equation (3.1):

𝐶𝐵𝑊 (𝑦)
∑
𝑗∈𝐽

∑
𝑖∈𝐼

𝑦 𝑗 𝑃 𝑗𝐹𝑑,𝑖𝑥𝑖,∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽,∀ 𝑗 ∈ 𝐽∃!𝑖 : 𝑥𝑖 (3.1)

where 𝑥𝑖 ∈ {0, 1} represents whether the selected data type 𝑖 is considered for the storage

technology 𝑗 , while the condition ∀ 𝑗 ∈ 𝐽∃!𝑖 : 𝑥𝑖 states that only one storage solution must be

selected for one data type 𝐼 of an IoT application.

(2) The retrieval and storage cost represent the monetary cost for storage and retrieval of the

IoT data. Let
∑

𝑖∈𝐼 (𝐹𝑑,𝑖) and
∑

𝑖∈𝐼 (𝑅𝑑,𝑖) be the total amount of data that needs to be stored and

retrieved respectively. Let 𝐻 𝑗 and 𝐺 𝑗 represent the per byte retrieval and storage cost for 𝑗 𝑡ℎ

storage technology respectively. Equation (3.2) represents the overall storage cost as:

𝐶𝐶𝑆 (𝑦)
∑
𝑗∈𝐽

∑
𝑖∈𝐼

𝑦 𝑗 (𝐺 𝑗𝐹𝑑,𝑖 + 𝐻 𝑗𝑅𝑑,𝑖)𝑥𝑖, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽,∀ 𝑗 ∈ 𝐽∃!𝑖 : 𝑥𝑖 (3.2)

(3) The latency cost denotes the latency to store or retrieve the data from storage technology. 𝑇𝑏

and 𝑙 𝑗 represent the block time and link latency respectively. We can denote the incurred latency

cost for uploading the overall data
∑

𝑖∈𝐼 (𝐹𝑑,𝑖) as Equation (3.3):

𝐶𝐿𝑇 (𝑦)
∑
𝑗∈𝐽

∑
𝑖∈𝐼

𝑊𝐿 (
𝐹𝑑,𝑖

𝐵𝑊 𝑗
𝑦 𝑗𝑥𝑖 + 𝑙 𝑗 + 𝑇𝑏), ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽,

∀ 𝑗 ∈ 𝐽∃!𝑖 : 𝑥𝑖

(3.3)

where 𝐵𝑊𝑗 is the bandwidth provided by 𝑗 𝑡ℎ storage technology. Since, the latency cost is not

represented in monetary unit, we define a parameter𝑊𝐿 , which represents the monetary cost

weight associated to 𝐶𝐿𝑇 .
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(4) The availability cost represents the probability for the data to be online during the retrieval
requests. Equation (3.4) represents the overall availability cost as:

𝐶𝐴𝑉 (𝑦)
∑
𝑗∈𝐽

𝑊𝐴𝑦 𝑗𝛼 𝑗 , ∀ 𝑗 ∈ 𝐽 (3.4)

where 𝛼𝑗 represents the availability of 𝑗 𝑡ℎ storage technology, i.e., 0 ≤ 𝛼𝑗 ≤ 1. Since, the

availability cost is not represented in monetary unit, we define a parameter𝑊𝐴, which represents

the monetary cost weight associated to 𝐶𝐴𝑉 .

(5) The privacy cost denotes whether the user privacy is offered by the required storage technology
or not. Let the privacy parameter associated with the 𝑗 𝑡ℎ storage technology is 𝛽𝑗 ∈ {0, 1}, i.e.,

𝛽𝑗 = 1 if the storage technology offers privacy, and 0 otherwise. Equation (3.5) represents the

overall privacy cost as:

𝐶𝑃𝑅 (𝑦)
∑
𝑗∈𝐽

𝑊𝑃𝑦 𝑗 𝛽 𝑗 , ∀ 𝑗 ∈ 𝐽 (3.5)

Since, the privacy cost is not represented in monetary unit, we define a parameter𝑊𝑃, which

represents the monetary cost weight associated to 𝐶𝑃𝑅.

Optimization Problem: The objective function that needs to be maximized consists of privacy

and availability cost, i.e., 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒(𝐶𝐴𝑉 + 𝐶𝑃𝑅), while latency cost, retrieval and storage cost

and bandwidth cost need to be minimized, i.e., 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝐶𝐿𝑇 +𝐶𝐶𝑆 +𝐶𝐵𝑊 ). we can denote the

overall cost as Equation (3.6):

C(𝑦) = 𝐶𝐵𝑊 (𝑦) + 𝐶𝐶𝑆 (𝑦) + 𝐶𝐿𝑇 (𝑦) − 𝐶𝐴𝑉 (𝑦) − 𝐶𝑃𝑅 (𝑦) (3.6)

Thus, the optimization problem is formulated as Equation (3.7a):
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min C (3.7a)

subject to 𝑦 ∈ Y. (3.7b)∑
𝑗∈𝐽

𝑃 𝑗

∑
𝑖∈𝐼

𝐹𝑑,𝑖 ≤ B,∀𝑖 ∈ 𝐼,∀ 𝑗 ∈ 𝐽 (3.7c)

∑
𝑗∈𝐽

(𝐺 𝑗 + 𝐻 𝑗)
∑
𝑖∈𝐼

𝐹𝑑,𝑖 ≤ M,∀𝑖 ∈ 𝐼,∀ 𝑗 ∈ 𝐽 (3.7d)

𝑙 𝑗 ≤ L,∀ 𝑗 ∈ 𝐽 (3.7e)

𝛼𝑗 ≥ A,∀ 𝑗 ∈ 𝐽, (3.7f)

𝛽𝑗 ≥ B,∀ 𝑗 ∈ 𝐽, (3.7g)

where, B, A and L represent the maximum defined value for price, availability and latency,

respectively. Constraint (3.7c) states that 𝐶𝐵𝑊 should not exceed B, i.e., the bandwidth budget.

Moreover, (3.7d) states that 𝐶𝐶𝑆 should not exceedM, i.e., the monetary budget. Constraints

(3.7e), (3.7f) and (3.7g) ensure that 𝐶𝐴𝑉 , 𝐶𝐿𝑇 and 𝐶𝑃𝑅 should be less than the thresholds defined

by the owner, i.e., A, L and B respectively.

The data centers selection and placement problems have been shown to be related to the Facility

Location Problem (FLP) (B & et al, 2008; Z & et al, 2019). In a basic FLP problem, clients

demands and set of facilities are used as an input, to find and open the facilities with minimum

overall cost, based on different demands of clients. This is proven to be a well-known NP-hard

problem (Guha & Khuller, 1999). Our formulated optimization problem in Eqn. (3.7a) is similar

to the FLP variant problem, i.e., metric uncapacitated facility location problem (UFL) problem,

in which the IoT applications’ service requirements correspond to the clients demands and the

storage technologies represent the available facilities.

Theorem 1. The optimization problem formulated in Equation. (3.7a) is NP-hard.
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Proof: A proof can be found in our previous work (Danish & et al., 2020). Motivated by

(G& et al, 2019), we construct a polynomial-time reduction to our cost minimization optimization

problem (3.7a) from the UFL problem, a well known NP-hard problem (Guha & Khuller, 1999):

min

𝑛∑
𝑖=1

𝑓𝑖𝑧𝑖 +
𝑚∑
𝑖=1

𝑛∑
𝑖=1

𝑐𝑖, 𝑗𝑢𝑖, 𝑗 (3.8a)

subject to

𝑛∑
𝑖=1

𝑢𝑖, 𝑗 = 1,∀𝑖 ∈ 𝐼 (3.8b)

𝑢𝑖, 𝑗 ≤ 𝑧𝑖,∀𝑖 ∈ 𝐼,∀ 𝑗 ∈ 𝐽 (3.8c)

𝑧𝑖, 𝑢𝑖, 𝑗 ∈ {0, 1},∀𝑖 ∈ 𝐼,∀ 𝑗 ∈ 𝐽 (3.8d)

Our optimization problem consist of variable and fixed elements, similar to UFL problem.

The fixed cost component are comprised of 𝐶𝑃𝑅, 𝐶𝐴𝑉 and can be represented as 𝐶𝑓 𝑖𝑥𝑒𝑑 =

(
∑

𝑗∈𝐽 𝑊𝐴𝛼𝑗 +𝑊𝑃𝛽𝑗 )𝑦 𝑗 , while variable cost is represented as𝐶𝐶𝑆, 𝐶𝐵𝑊, 𝐶𝐿𝑇 and can be written

as 𝐶𝑣𝑎𝑟 =
∑

𝑗∈𝐽

∑
𝑖∈𝐼 (𝑃𝑗𝐹𝑑,𝑖𝑥𝑖 + (𝐺 𝑗 + 𝐻 𝑗)𝐹𝑑,𝑖𝑥𝑖 +𝑊𝐿𝑙 𝑗𝐹𝑑,𝑖𝑥𝑖)𝑦 𝑗 . However, our optimization

problem maximizes the fixed cost, compared to the minimization in UFL problem. Thus, we

introduce two new parameters, i.e., ˆ𝐶𝐴𝑉, ˆ𝐶𝑃𝑅 to modify our optimization problem in Equation.

(3.7a). ˆ𝐶𝑃𝑅 represents the cost of 𝑛𝑜 − 𝑝𝑟𝑖𝑣𝑎𝑐𝑦 as compared to Equation (3.5) and represented

as ˆ𝐶𝑃𝑅 (𝑦)
∑

𝑗∈𝐽 𝑊𝑃𝑦 𝑗 𝛽 𝑗 , ∀ 𝑗 ∈ 𝐽, where 𝛽𝑗 represents no-privacy value, i.e., 𝛽𝑗 = 1 - 𝛽𝑗 .

Similarly, ˆ𝐶𝐴𝑉 states the 𝑛𝑜𝑛 − 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 cost and represented as ˆ𝐶𝐴𝑉 (𝑦)
∑

𝑗∈𝐽 𝑊𝐴𝑦 𝑗𝛼𝑗 ,

∀ 𝑗 ∈ 𝐽, where 𝛼𝑗 represents non-availability, i.e., 𝛼𝑗 = 1 - 𝛼𝑗 . Unlike fixed costs, ˆ𝐶𝐴𝑉, ˆ𝐶𝑃𝑅

need to be minimized. Thus, the optimization problem can be re-written as as Equation (3.9a):



47

min
∑
𝑗∈𝐽

( ˆ𝐶𝐴𝑉 + ˆ𝐶𝑃𝑅) +
∑
𝑗∈𝐽

∑
𝑖∈𝐼

(𝐶𝐵𝑊 + 𝐶𝐶𝑆 + 𝐶𝐿𝑇 ) (3.9a)

subject to 𝑦 ∈ Y. (3.9b)∑
𝑗∈𝐽

𝑃 𝑗

∑
𝑖∈𝐼

𝐹𝑑,𝑖 ≤ B,∀𝑖 ∈ 𝐼,∀ 𝑗 ∈ 𝐽 (3.9c)

∑
𝑗∈𝐽

(𝐺 𝑗 + 𝐻 𝑗)
∑
𝑖∈𝐼

𝐹𝑑,𝑖 ≤ M,∀𝑖 ∈ 𝐼,∀ 𝑗 ∈ 𝐽 (3.9d)

𝑙 𝑗 ≤ L,∀ 𝑗 ∈ 𝐽 (3.9e)

𝛼𝑗 ≤ A,∀ 𝑗 ∈ 𝐽, (3.9f)

𝛽𝑗 ≤ B,∀ 𝑗 ∈ 𝐽, (3.9g)

Given an instance 𝐼 of the UFL problem, where 𝐼 = (𝑚, 𝑛, 𝑐𝑖 𝑗 , 𝑓𝑖), we map it to a problem

instance of our cost minimization optimization problem (3.9a) with 𝐼 = ( |𝐽 | = 𝑛, |𝐼 | = 𝑚,𝐶𝑣𝑎𝑟 =

𝑐𝑖 𝑗 , 𝐶 𝑓 𝑖𝑥𝑒𝑑 = 𝑓𝑖, 𝑦𝑖 = 𝑢𝑖, 𝑗 ). It can be seen that the mapping of problem instance 𝐼 to 𝐼 can

easily be done in polynomial time (G & et al, 2019). Thus, if some algorithm solves the cost

minimization optimization problem (3.7a) with problem instance 𝐼, it also solves the related

UFL problem with problem instance 𝐼 as well. Thus, we can consider the UFL problem as a

special case of our cost minimization optimization problem. As the UFL problem is NP-hard,

our cost minimization optimization problem must be NP-hard as well.

In this work, we considered the service parameters of storage technologies taken from state-of-

the-art research work. The QoS service parameters list considered in this work is not complete,

and in future, there is a possibility for the identification of more service parameters of the

storage technologies. These parameters can easily be integrated with the optimization problem

as a subject to conditions. Moreover, the proposed problem formulation is not limited to the

decentralized storage technologies. One can simply add or remove the decentralized storage

technologies, or introduce a new type of storage technology with associated parameters in the

proposed model. However, increasing the number of storage technologies and introduction of
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more service parameters in the optimization problem will increase the complexity of the problem.

This could lead to the optimization of proposed algorithms or to introduce new algorithms to

solve the problem in polynomial-time.

Algorithm 3.1 DP-heuristic

1 Initialize 𝑦, 𝑇 (𝑦 𝑗 , 𝐶𝑗 (𝑦))
2 𝑦 ← 0

3 𝑇 (𝑦 𝑗 , 𝐶𝑗 (𝑦)) ← 0

4 for 𝑥 ← 1 to 𝑖 do
5 for 𝑦 ← 1 to 𝑗 do
6 Find all the parameters costs associated with 𝑦 𝑗 if 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑐𝑜𝑠𝑡 < 𝐸𝑞𝑛

(3.7𝑐) − (3.7𝑔) then
7 Assign 𝑦 𝑗 storage technology to 𝑥𝑖 IoT application

8 Store the parameters cost value in 𝑇 (𝑦 𝑗 , 𝐶𝑗 (𝑦))
9 𝑏𝑟𝑒𝑎𝑘

10 end if
11 end for
12 end for
13 Find min∀𝑦∈Y 𝑇 (𝑦 𝑗 , 𝐶𝑗 (𝑦)) s.t. 𝐸𝑞𝑛 (3.7𝑐) − (3.7𝑔)
14 if 𝑛𝑜 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑓 𝑜𝑢𝑛𝑑 then
15 Go to step 5

16 end if

3.3.3 Proposed solution

To approximate a solution to the NP-hard optimization problem formulated in Section 3.3.2, in

this section, we propose two polynomial-time heuristic algorithms: dynamic programming-based

(DP) heuristic and greedy style-based (GS) heuristic.

DP-based heuristic: The DP-based algorithm computes the corresponding parameters cost

(Equation. (3.1) - (3.5)) for different storage technologies and use first fit strategy to select 𝑦.

A 2-D table is constructed 𝑇 (𝑦 𝑗 , 𝐶𝑗 (𝑦), containing the service parameters for different storage

technologies. The idea behind the DP approach is that, the optimization problem defined in Eqn.

(3.7a) is divided into independent sub-problems, where for each IoT application, the storage
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technology is chosen separately and the filled 2-D table is used to solve the future sub-problems

(HC & et al, 2009). With the increase in the table entries, algorithm leads to efficient decisions.

Algorithm 16 summarizes the heuristic design to approximate a solution to the optimization

problem formulated in Equation. (3.7a). The algorithm starts with 𝑦 = 0 and 𝑇 (𝑦 𝑗 , 𝐶𝑗 (𝑦)) = 0,

and iteratively chooses the storage technology for 𝑚 IoT applications data types. The algorithm

calculates the dynamic parameters cost for 𝑗 𝑡ℎ storage technology at line 5. Given the IoT

application service requirements, algorithm checks on line 7 if it matches with the calculated

cost parameters. In case of match, at line 8, the same storage solution is assigned to the current

IoT application data type. Once the storage is selected, the cost parameters are stored in the

table for future use. Then, for the next IoT application, the algorithm checks the table at line 11,

if any storage technology fulfills the current service requirements.

Time Complexity: For the time complexity of Algorithm. 16, the loop in line 4 runs at most

𝑖 times for all the IoT applications. Similarly, the loop in line 5 runs 𝑗 times in a worst case

scenario for all the storage technologies. In addition, the line 6 runs for the 𝑘 number of service

requirements. Thus, the time complexity of Algorithm. 16 is 𝑂 (𝑖 𝑗 𝑘), which is polynomial-time.

Greedy-style (GS) heuristic: In some IoT applications scenarios, the owner may only be

interested in few important service requirements. For instance, privacy may be the only service

requirement in IoT health application. Therefore, in this case, calculating all the cost parameters

of storage technologies is not feasible. Therefore, the proposed algorithm only calculates

the service parameters of the storage technology associated with the IoT application service

requirement. The main rationale behind the GS heuristic is that the algorithm selects the storage

technology using first fit strategy, as soon as certain number of defined optimization conditions

(Equation (3.7𝑐) − (3.7𝑔)) are fulfilled. Algorithm 3.2 summarizes the GS heuristic algorithm.

In this algorithm, we define 𝛾, which corresponds to the service requirements of the IoT

applications, as the conditions (Equation (3.7𝑐) − (3.7𝑔)), that needs to be fulfilled before

selecting a storage technology. For instance, if the owner has only defined availability and

price requirements, the 𝛾 would be defined as a 2 parameters tuple, i.e., <𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑝𝑟𝑖𝑐𝑒>.
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At line 6, the associated cost parameters of storage technologies are calculated for each IoT

application data type 𝑚. Line 7 matches these cost parameters with the 𝛾 service requirements

of IoT application data type 𝑚. At line 8, the storage solution is selected for IoT application 𝑚 in

line 9, if the 𝛾 conditions meet.

Algorithm 3.2 Greedy-style heuristic

1 Initialize 𝑀
2 Initialize 𝑚 ← 1

3 Initialize 𝛾 ← 𝛾1, 𝛾2, ..., 𝛾𝑚
4 while 𝑚 ≠ 𝑀 do
5 for 𝑦 ← 1 to 𝑛 do
6 Find 𝛾𝑚 parameters costs associated with 𝑦𝑛 Match parameters costs with 𝛾𝑚

Equation (3.7𝑐) − (3.7𝑔)
7 if 𝛾𝑚 conditions are fulfilled then
8 Assign 𝑦𝑛 storage technology to 𝑚𝑡ℎ IoT application

9 𝑏𝑟𝑒𝑎𝑘

10 end if
11 end for
12 m = m + 1

13 end while

Time Complexity: For the time complexity of Algorithm. 3.2, while loop runs for 𝑚 times,

while the for loop runs for n times in the worst-case scenario. In steps 7, 8, and 9, the calculation

takes O(1) time. Thus, the worst-case overall computational complexity of Algorithm 3.2 is

𝑂 (𝑚𝑛), which is polynomial-time.

Temporal dependencies: The parameters that are fed in themiddleware, e.g., price, performance,

etc., are calculated based on the information provided by the storage technologies. Any uncertainty

in these parameters can lead to SLA violations. The problem of SLA violation identification and

compensation can be solved in future. Moreover, the application and storage parameters can be

changed with time, and our proposed algorithms do not consider these temporal dependencies.

It might be possible that a storage technology is selected for an IoT application but after a certain

time, it violates the QoS parameters. This problem can be considered in future to accommodate

the time dependency factors in the proposed algorithms.
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Discussion: To decide the storage solution, it is not mandatory to consider all the service

requirement for a particular IoT application and the storage selection depends on the service

requirements associated with the IoT application. For instance, if the minimum budget

requirement is specified by the owner, only constraints (3.7c) and (3.7d) will be considered in

the optimization problem (3.7a). We argue in the favor of GS heuristic in this case because

the algorithm allows the individual IoT applications to specify their own service requirements.

However, in case of all service requirements, it is recommended to use the DP-based heuristic

to find a storage technology for IoT applications because of its accuracy and performance as

described in Section 3.6. It should be noted that this work does not improve the performance of

the proposed design presented in (Danish & et al., 2020). This work extends our previous studies

with the technical details of neural network based intelligence and adaptive aggregation rate.

In this work, we propose the use of blockchain-based middleware, however the economic model

of the middleware design has not been explored, i.e., who is going to pay for the blockchain

transaction cost. We consider the middleware design as a third-party solution running on fog

node. The blockchain transaction cost can be incorporated in the subscription fee however, we

consider the economic model of middleware design as an open problem which we will address

in future work.

3.4 Neural network-based maintenance strategy

Our proposed middleware design is shown in Figure 3.2, which consists of a core middleware

module with three sub-modules, i.e., decision module, neural network module and feedback

module. In the decision module, we are making the storage selection decisions with the help

of blockchain-based data placement decision protocol, by solving the decision optimization

problem formulated in Equation (3.7a), subject to IoT application’s service requirements. Once

the decision has been taken by decision module and a storage technology has been selected

for IoT applications at time 𝑡, the middleware has now entered in the dynamic phase, i.e., the

service requirements of IoT applications and service parameters of storage technologies are

changing dynamically according to a certain pattern. Selecting the storage technology again
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for the next time continuously would incur significantly high computation and communication

overhead. Moreover, as the parameters are published on the blockchain network before making

a data placement decision, therefore, continuously publishing the storage and IoT parameters

would result in high blockchain transaction and storage overhead. Thus, there is a need to

intelligently select the time 𝑡 + 1, i.e., when to re-make the data placement decision to select the

storage technology, by taking into consideration the dynamic service requirements and service

parameters of the storage technologies. Therefore, the main question is, what should be the

maintenance strategy for the specific IoT application, i.e., when to re-run the blockchain-based

data placement protocol again to decide the new storage solution for the IoT application?

To answer this question, we introduce a neural network module in our architecture, which learns

the dynamically evolving characteristics of the IoT applications and storage technologies to

intelligently define the maintenance strategy. The module considers the conclusions drawn from

the set of available features and enables automatic maintenance configuration for the large-scale

IoT data through neural network algorithms. Our neural network approach accomplishes the

following task:

• The module employs long short-term memory (LSTM) to predict future IoT data patterns and

schedule at what the time the middleware should re-evaluate the data placement decision.

The neural network module requires a set of features in order to train and predict a target, which

is the maintenance configuration in our case. To decide when to re-evaluate the data placement

decision depends on multiple factors, including the IoT applications service requirements, i.e.,

amount of data generated, number of sensors, data retrieval pattern etc. and service parameters

of storage technologies. Based on these samples, a neural network model is built to classify the

maintenance configuration of the data placement decision.

3.4.1 Features extraction

We now explain the features considered in our proposed model.
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• Performance: We construct a feature vector 𝑓𝑝𝑒𝑟 = (𝑙𝑎𝑡, 𝑎𝑣𝑎) from the storage technology

parameters, where 𝑙𝑎𝑡 and 𝑎𝑣𝑎 are the latency and availability of the storage technologies.

These set of features dynamically change for a given storage technology.

• Pricing: We construct a feature vector 𝑓𝑝𝑟𝑖 = (𝑠𝑡𝑜𝑟𝑒𝑡, 𝑏𝑤𝑝𝑟𝑖) from the storage technology

parameters, where 𝑠𝑡𝑜𝑟𝑒𝑡 and 𝑏𝑤𝑝𝑟𝑖 are the storage/retrieval price and bandwidth price

requirement for given IoT application’s data sample respectively.

• Data generation: We consider a feature vector 𝑓𝑠𝑑𝑎𝑡𝑎 = (𝑠𝑖𝑧𝑒, 𝑑𝑒𝑣𝑖𝑐𝑒𝑠, 𝑑𝑢𝑟), which

corresponds to the data size, number of devices and duration respectively. These set of

features are changed dynamically for different IoT applications with a given data sample. As

these features are highly correlated with each other, we consider data size as a feature in our

proposed model.

• Data retrieval: We consider a feature vector 𝑓𝑟𝑑𝑎𝑡𝑎 = (𝑠𝑖𝑧𝑒, 𝑓 𝑟𝑒𝑞), which corresponds to the

retrieval data size and frequency respectively. These set of features are different for different

IoT applications with a given data sample. We consider this feature for our model because

few storage technologies also incur data retrieval cost.

We now explain the proposed neural network-based maintenance strategy for our proposed

middleware design.

3.4.2 Pred-ms: lstm-based maintenance strategy

The maintenance strategy decisions can be made on-the-fly after a certain time period however,

storing the IoT applications service requirements and storage technologies parameters after every

time sample 𝑡 can result in high transaction and storage overhead on the blockchain network.

Therefore, instead of deciding the maintenance strategy on-the-fly, the IoT data sample and

service parameters can be predicted ahead of time to schedule the maintenance strategy decisions

intelligently. Thus, we propose Pred-MS, which schedules the maintenance strategy ahead of

time by predicting the future IoT data sample and service parameters.
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Figure 3.3 Lstm-based binary classification (pred-ms)

We consider the IoT data sample and associated service parameters as a time series data and

propose a Long Short TermMemory (LSTM)-based Recurrent Neural Network (RNN) to predict

the IoT data sample and service requirements. The results are fed as an input to the binary

classification model to schedule the maintenance strategy, i.e., to schedule the re-evaluation of

the data placement decision for the predicted IoT data samples. This model is different from

the previous model in the sense that model decides the maintenance strategy on the fly based

on the input parameters however, Pred-MS first predicts the IoT data samples with associated

parameters and schedule the maintenance strategy decision in advance. To sum up, the problem

can be formally defined as follows.

Given:

• A collection of different IoT applications service requirements over a period of time.

• A collection of storage technologies service parameters.

Goals:

• We first aim to predict the IoT data samples and service requirements in the future based on

the current information. The binary classifier then predicts the probability of the selection of a

better storage technology for each predicted IoT data samples and their service requirements.
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The selection of LSTM based-RNN network for the considered problem is because of its ability

to hold long-term memory. As we considered IoT data sample and associated service parameters

as a time series data therefore, it is possible that 𝑛𝑡ℎ sample in the sequence can be influenced by

an input that was given many time steps before. Thus, we argue in the favour of LSTM based

RNN as they are good for holding long-term memory. Figure 3.3 shows the overview of the

proposed model with the LSTM-based RNN and binary classifier. First, the already available

IoT data samples and service requirements are fed into the LSTM to predict future data samples

and service requirements. Let the time series data is represented by x = {𝑥1, 𝑥2,..., 𝑥𝑛}. The

LSTM has an input gate 𝑖𝑛, which decides what new information needs to be stored by the LSTM

in the new cell state. Input gate can be represented as:

𝑖𝑛 = 𝜑(𝑏𝑖 + 𝑢𝑇𝑖 𝑥𝑛 + 𝑤𝑇
𝑖 ℎ𝑛−1) (3.10)

where 𝑥𝑛 is the input sequence of IoT data samples and service requirements, where ℎ𝑛−1 is the

output vector at previous time step. Also, 𝑤𝑖, 𝑢𝑖, 𝑤 𝑓 and 𝑢 𝑓 are the recurrent and input weights,

respectively. Moreover, forget gate 𝑓𝑛 decides what information needs to be kept or thrown away.

Forget gate can be represented as:

𝑓𝑛 = 𝜑(𝑏 𝑓 + 𝑢𝑇𝑓 𝑥𝑛 + 𝑤𝑇
𝑓 ℎ𝑛−1) (3.11)

where 𝑓𝑛 ∈ [0, 1], i.e., the value of 1 allows the LSTM to keep the last state, while the LSTM

forgets the previous state for 𝑓𝑛 = 0. The memory of the LSTM 𝐶𝑛 is updated by adding new

memory content 𝐶𝑛 and by forgetting current memory by the factor 𝑓𝑛 as shown in Equation

(3.12):

𝐶𝑛 = 𝑓𝑛𝐶𝑛−1 + 𝑖𝑛𝐶𝑛 (3.12)

𝐶𝑛 = tanh(𝑢𝑇𝑣 𝑥𝑛 + 𝑤𝑇
𝑐 ℎ𝑛−1 + 𝑏𝑐) (3.13)
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where tanh is the activation function. Finally the output of LSTM ℎ𝑛 is given by:

ℎ𝑛 = 𝑜𝑛tanh(𝐶𝑛) (3.14)

𝑜𝑛 = 𝜑(𝑏𝑜 + 𝑤𝑇
𝑜𝑥𝑛 + 𝑢𝑇𝑜 ℎ𝑛−1) (3.15)

where 𝑜𝑛 is the output gate, while ℎ𝑛 signifies the predicted IoT data samples and the associated

parameters. Once the IoT data samples and service requirements are predicted, they need to

be fed as an input to the binary classifier to predict when is the next time, there is a need to

re-evaluate the data placement decision.

We also consider a neural network based binary classification model, which decides whether to

re-evaluate the data placement decision for current IoT data sample.

The problem is defined as follows:

Given: A collection of different IoT applications service requirements and storage technologies

service parameters predicted by LSTM-based RNN network over a period of time.

Goal: We aim to learn a classifier to determine whether to re-evaluate the data placement

decision for the given IoT applications service requirements. Thus, based on the new IoT data

sample and the previously used storage technology, the classifier predicts the probability of

selection of a better storage technology for the given IoT data sample and its service requirements.

In our work, we employ supervised learning technique by manually labeling the data offline,

where X = {𝑥1, ..., 𝑥𝑛} and V = {0, 1} are the input and output spaces, respectively. X is

a feature representation for the 𝑖𝑡ℎ current IoT data sample, while 𝑣𝑖 ∈ V is the class label.

𝑣𝑖 = 1 if there is a need to re-evaluate a data placement decision and 𝑣𝑖 = 0 otherwise. We

provide the detailed description of the dataset in the next subsection. Mathematically, the binary

classification problem can be formulated as Equation (3.16):
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Algorithm 3.3 Pred-ms lstm-Based binary classification model

1 Initialize 𝑀𝑜𝑑𝑒𝑙
2 Initialize the time series IoT dataset

3 Train the binary classification model
4 while 𝑡𝑟𝑢𝑒 do
5 Predict ℎ𝑛 for 𝑘 samples in the future for each 𝑘 do
6 Input ℎ𝑛 in binary classification model trained at line 3
7 if 𝑣𝑖 == 1 then
8 Re-make the data placement decision for 𝑘𝑡ℎ sample
9 end if

10 if 𝑣𝑖 == 0 then
11 Pass

12 end if
13 end for
14 Go back to step 5

15 end while

𝑣𝑖 =

⎧⎪⎪⎨
⎪⎪⎩
1 𝑖 𝑓 𝑝(𝑣𝑖 |X, 𝑀𝑜𝑑𝑒𝑙) ≥ 𝑇

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3.16)

where 𝑇 is the probability threshold and represents the trade-off between the number of false

positives and false negatives.

Algorithm 3.3 summarizes the LSTM-based maintenance strategy model. In this model, a

binary classification model is first trained with the data samples obtained by solving the decision

optimization problem, formulated in Eqn. 3.7a. At line 5, the LSTM-based RNN is used to

predict 𝑘 IoT data samples along with the service requirements in the future. Once, the 𝑘 data

samples are predicted, the output of the LSTM model at line 5 is fed to the binary classification

model one by one at line 7. The binary classification model makes the prediction about these

input data sample ℎ𝑛 at line 7.
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3.4.3 Dataset description

In this work, we have used the TimeScaleDB bench-marking tool1 to generate the large-scale

IoT data. This tool is meant to simulate the data load in an IoT environment. It considers the

supply chain IoT applications and simulates the data streaming from a set of trucks belonging to

a trucking company. The tool allows to generate the IoT data with different number of trucks,

sensors, generation time interval etc. By utilizing these parameters, we generated a time series

data with a time sample 𝑡 of 1 hour. These generated data parameters include the number of

trucks, the data generation time and the total amount of data generated for the period of 1 hour.

Moreover, the IoT applications service requirements are generated randomly for each instance 𝑡

(Danish & et al., 2020). Our compiled dataset consists of 16000 𝑡 instances without duplicates.

Each row indicates the number of trucks, the generation time interval, total amount of data

generated along with the IoT applications service requirements, storage parameters and the

previously selected storage at instance 𝑡 − 1.

Data Labels: In this work, we employ supervised learning technique to manually label each

data sample offline. Based on these IoT application service requirements and the data sample

information at time 𝑡, we first approximate a solution to the decision optimization problem

formulated in Section 3.3 to find the storage technology and label the first row as 1. Now, for

the next data sample, we use new data sample to find the storage technology and compare the

result with previous one. If the selected storage technology at 𝑡 is different from the one at 𝑡 − 1,

we label the instance as 1 and 0 otherwise. This labelled data is then used to train the neural

network model explained in this section before.

3.5 Adaptive aggregation rate

The IoT sensor nodes generate a large amount of raw data which is pre-processed and aggregated

by the fog nodes before storing it in the selected storage technology. Fog nodes extract the

time-critical IoT data and forward the archived data to cloud or multi-cloud premises for future

1 https://github.com/timescale/tsbs
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Figure 3.4 Hierarchical fog architecture

storage and retrieval. A fog node is a smart edge computing device, which is context-aware and

can smartly tune itself based on application feedback (Aazam & Huh, 2016).

BlockAIM exploits this feature by providing aggregation rate feedback to the fog node to

optimize the overall price of the data storage while maintaining sufficient data quality for a

given IoT application. Once BlockAIM has performed its selection, the feedback loop adapts

the aggregation rate of the IoT application to minimize the overall price of IoT data storage.

Our proposed solution operates in a hierarchical fog architecture with multiple levels as shown

in Figure 3.4, where level 0 (L0) is comprised of the IoT nodes (Imai & et al., 2018). We

denote the set of IoT nodes 𝑁 = {𝑛1, 𝑛2, 𝑛3,..., 𝑛𝑀}, where M is the total number of IoT devices,

which send sensed data to the level 1 (L1) gateway fog node for aggregation and pre-processing.

Let 𝑌 𝑗 denotes the set of hierarchical logical fog nodes at level 𝑙 and 𝑌 𝑗 = {𝑦 𝑗 | 𝑗 = 𝑙} for 𝑙

= 1,2,...,𝐿, where 𝑦 𝑗 denotes the 𝑗 𝑡ℎ logical node at level 𝑙. We denote the aggregation and

compression capability of hierarchical fog nodes by 𝐴𝑟 = {𝐴1𝑟 , 𝐴
2
𝑟 , 𝐴

3
𝑟 , ... , 𝐴

𝑙
𝑟}, where 𝐴𝑙

𝑟

denotes the aggregation rate of 𝑙𝑡ℎ level hierarchical fog node. It should be noted that one level of

hierarchical fog node processes the IoT application data at a time, and thus the next hierarchical

fog node level will start aggregating the same data after it has been finished by the previous level

of hierarchical fog node.
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Let 𝑑 (𝑦0) denotes the raw data generated by the set of 𝑁 level 0 IoT nodes and is sent to level 1

gateway fog node for aggregation. Level 1 gateway fog node aggregates the data with aggregation

rate 𝐴1𝑟 and forwards the data 𝑑 (𝑦
0) = (1− 𝐴1𝑟 ) 𝑑 (𝑦

0) to level 2 fog nodes, where 𝐴1𝑟 ∈ {0, 1}. A

hierarchical fog node 𝑦 𝑗 at some level 𝑙 receives the data 𝑑 (𝑦𝑙−1) from lower level hierarchical

fog nodes. When the hierarchical level is 1, i.e., 𝑙 = 1, the gateway fog node receives raw IoT

data from IoT devices at level 0. When 𝑙 >1, it receives the aggregated data from its precedent

fog node 𝑦𝑙−1. When the hierarchical fog node at level 𝑙 receives the data from its precedent

fog node 𝑙 − 1, it aggregates the data with the rate 𝐴𝑙
𝑟 and forwards it to the hierarchical fog

node at level 𝑙 + 1. The total amount of data received by hierarchical fog node at level 𝑙 can be

represented as Equation 3.17:

𝑑 (𝑦𝑙) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝑑 (𝑦0), for 𝑙 = 1

𝑙∏
𝑖=1

(1 − 𝐴𝑖
𝑟)𝑑 (𝑦

𝑙−1), otherwise,
(3.17)

where 𝑑 (𝑦𝑙) is the total IoT data received from level 𝑙 − 1 fog node. Moreover, the total

aggregation rate can be derived from the individual aggregation rates of all the hierarchical fog

nodes and can be represented as Equation 3.18:

𝐴𝑡𝑜𝑡𝑎𝑙
𝑟 =

𝑙∏
𝑖=1

𝐴𝑖
𝑟 , (3.18)

As the data will be aggregated on multiple hierarchical fog nodes before reaching the final level

𝑙 fog node, the total amount of data generated by the level 𝑙 fog node can be represented as

Equation 3.19:

𝑑𝑡𝑜𝑡𝑎𝑙 = 𝑑 (𝑦0)
𝑙∏

𝑖=1

(1 − 𝐴𝑖
𝑟), (3.19)

If 𝑃 is the price to store the aggregated data in the current storage technology, the overall cost C

can be represented as:

C = 𝑃𝑑 (𝑦𝑡𝑜𝑡𝑎𝑙), (3.20)
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It can be seen from Equation (3.17) and (3.20) that the total aggregated data size 𝑑 (𝑦𝑡𝑜𝑡𝑎𝑙)

decreases by increasing the value of 𝐴𝑡𝑜𝑡𝑎𝑙
𝑟 , results in small data size and low overall cost.

However, the increased aggregation rate results in low data precision and quality. In contrast,

the data quality increases by decreasing the value of 𝐴𝑡𝑜𝑡𝑎𝑙
𝑟 , which results in increased data size

and consequently high storage cost. Therefore, the overall storage cost and the data quality of

the aggregated data depends on the aggregation rate. If 𝑃 is given, there is a need to find an

optimal value of aggregation rate 𝐴𝑡𝑜𝑡𝑎𝑙
𝑟 such that the overall cost is minimized. More formally,

min
𝐴𝑟∈[0,1]

C (3.21a)

subject to 𝐴𝑡𝑜𝑡𝑎𝑙
𝑟 ≤ 𝑇𝑞, 0 ≤ 𝐴𝑟 ≤ 1. (3.21b)

C ≤ 𝐶𝑚𝑎𝑥. (3.21c)

𝑑 (𝑦𝑡𝑜𝑡𝑎𝑙), 𝑃, 𝑙 > 0. (3.21d)

The constraint (3.21b) states that the aggregation rate should not exceed the predefined data

quality threshold 𝑇𝑞, while the constraint (3.21c) states that the overall cost should not exceed

the current cost 𝐶𝑚𝑎𝑥 of the storage technology. The constraint (3.21b) is set by the application

owner for a specific IoT application and fog nodes keep track of this information in order to

aggregate the IoT data. Fog node sends the updated data quality threshold information to the

middleware’s feedback module. Moreover, the information for the constraint (3.21c) is retrieved

from the data placement module of the middleware design.

This work considers a hierarchical fog architecture with multiple virtual fog nodes in order to

generalize the formulated optimization problem. However, if we already know the data quality

threshold and the cost, it is possible to solve this optimization problem with a single fog node,

instead of considering several stages.
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3.6 Evaluation and results

In this section, we evaluate and analyze the efficiency, accuracy and viability of the proposed

middleware design. In addition, we also analyze the blockchain overhead aspect of the proposed

protocol.

3.6.1 System setup

We run our experiments on UBUNTU 16.04 desktop with Intel 𝐶𝑜𝑟𝑒𝑇𝑀 i7-8650U processor

(8𝑡ℎ generation) and 16 GB RAM. We use the same machine to label our data offline and Google

Colab is used to train the model in our work.

Simulation Parameters: Currently, the decentralized storage technologies are in their infancy

and the associated service parameters of these storage technologies are not available publicly.

Therefore, because of the public availability, in our experiments, we only employ the real service

parameters of storj and cloud. In our experiments, we have considered Google cloud with 0.026

$/GB data storage cost and 0.085 $/GB bandwidth cost. The availability cost of Google cloud is

set to 99.95%, while the privacy cost is set to 0, i.e., Google cloud offers no privacy. Similarly,

per GB data storage cost for Storj is set to 0.015 $/GB2, while the bandwidth cost is set to

0.03 $/GB3. The data retrieval cost for Storj is set to 0.05$/GB. Similar to Google cloud, the

availability cost is set to 99.95%4, while the privacy cost is set to 0. The block time is set to

0 and the link bandwidth is set to 100 Mbps for both storage technologies. Moreover, the IoT

applications service requirements are generated randomly in these experiments.

3.6.2 Results for data placement

Cost Comparison: Firstly, we compare the middleware data placement decision for two

proposed heuristic algorithms with baseline. The IoT applications service requirements are

2 https://storj.io/

3 https://storj.io/storage-node-estimator/

4 https://storj.io/blog/2019/08/the-role-of-qualification-gates-in-getting-to-beta-and-beyond/
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a) GS heuristic cost comparison b) DP Heuristic Comparison

c) GS Heuristic Comparison d) Accuracy Comparison

Figure 3.5 Heuristics comparison

generated randomly and the solution to the decision optimization problem is approximated

through the real-world service parameters of multi-cloud, cloud and storj. To generate acceptable

average comparison results, each simulation is repeated for at least 1000 times. A normalized

cost function (
𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ∗ 100) is used to compare the performance of heuristics.

Figure 3.5a compares the GS heuristic cost with the baseline for ten IoT applications. It can

be seen that, considering all the service requirements, the overall normalized cost is close to

optimum. However, decreasing the considered service requirements increases the GS heuristic

algorithm cost. This is because, for few service requirements, the decision will be taken by the

algorithm once the required IoT application’s service requirements are fulfilled thus, resulting
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a) Best Runtime Comparison b) Worst Runtime Comparison

c) GS Heuristic Service Requirements Runtime d) GS Heuristic IoT Data Type Runtime

Figure 3.6 Heuristics comparison

in more cost. It can be observed in Figure 3.5b and Figure 3.5c that the cost incurred by DP

heuristic outperforms the GS heuristic and is close-to-optimum exact solution. This is due to the

fact that, after the completion of the cost table, the storage technology with minimum associated

cost will be selected by the DP heuristic, compared to random selection of storage technology in

GS heuristic.

Accuracy Comparison: We now evaluate the accuracy, i.e., the exact decisions made by the

heuristics, for the two proposed heuristic algorithms in Figure 3.5d. We calculate the algorithms’

accuracy by comparing the data placement decisions for the given service requirements with

the optimal placement decision. Experimental evaluation demonstrates that the DP heuristic
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a) DP Heuristic Runtime b) Accuracy Comparison

c) Cost Comparison d) Accuracy Comparison

Figure 3.7 Heuristics comparison

provides almost 92% accuracy compared to the GS heuristic, which achieves almost 80%

accuracy. For fewer service requirements, the accuracy of greedy-style heuristic is low. However,

the IoT applications’ service requirements are always fulfilled by the algorithm, even with the

low accuracy.

Algorithms Runtime: We further compare the algorithms runtime in terms of best and worst

case performance with the baseline exact solution in Figure 3.6a and 3.6b respectively. The

baseline solution is an exhaustive search solution, which chooses the optimal storage technology

by going through all the possible solutions to the optimization problem defined in Eqn. 3.7a.

For the best case scenario, we consider 10 IoT applications in the proposed algorithms, while we
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a) Detection Rate b) False Alarm Rate

c) Test Data Comparison d) Accuracy Comparison

Figure 3.8 Maintenance strategy analysis

consider 50 IoT applications to perform the algorithm comparisons for the worst case scenario.

In both best and worst case scenario, the GS heuristic algorithm gives better performance

and outperforms the DP heuristic algorithm. However, it achieves poor accuracy compared

to DP heuristic as shown in Figure 3.5d. Furthermore, compared to the exact solution to the

optimization problem, the runtime is significantly reduced for the proposed algorithms.

Cost Comparison: In order to investigate the worst case performance of the proposed algorithms,

we perform the sensitivity analysis for high workload. To perform these experiments, we generate

the storage technologies parameters randomly between the maximum and minimum values of

the real world parameters of multi-cloud, storj and cloud. We perform these experiments many
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a) Precision Comparison b) Recall Comparison

c) F1 Score Comparison d) Runtime Analysis

Figure 3.9 Maintenance strategy analysis

times to average out the results. Figure 3.7c compares the cost of optimization for the proposed

algorithms against the baseline exact solution. This is because, the probability of the selection

of a sub-optimal storage increases with the increase in storage technologies, while fulfilling the

IoT application requirements.

Accuracy Comparison: Figure 3.7b compares the two proposed heuristic algorithm in terms

of accuracy for different IoT application data types. we can see that the accuracy is not affected

with increase in the number of IoT applications. This is because, for each IoT applications

data type, the storage decision is taken individually. However, the runtime of the proposed

algorithms increases with the increase in the number of IoT applications. Figure 3.7d illustrates
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a) Transactions Comparison b) Transactions Comparison

c) Gas Cost Comparison

Figure 3.10 Blockchain analysis

the algorithms accuracy for large number of storage technologies with randomly generated

service parameters. It can be seen that the accuracy of proposed heuristics decreases for large

number of storage technologies. This is because, the probability of selection of a sub-optimal

storage with associated high cost increases with the increasing number of storage technologies,

while fulfilling the IoT application requirements.

Computation Time: We investigate the sensitivity analysis for the average runtime, i.e., the

algorithm runtime for large input instances. Figure 3.6c and 3.6d illustrate the time consumed

by CPU for GS heuristic for deciding the storage technologies for different IoT application data

types. We can see that increasing the number of IoT application data types and associated service
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requirements, the runtime of GS heuristic increases. This is due to the fact that for large input,

the algorithm is required to search through a large solution space, thus leading to high runtime.

Similarly, we can see large runtime for DP heuristic algorithm in Figure 3.7a for multiple IoT

data types.

3.6.3 Results for the maintenance strategy

In this section, we first analyze the binary classification of the IoT data sample along with its

service requirements. Our module uses a neural network-based binary classification model

to accomplish this task. We use 𝑘𝑒𝑟𝑎𝑠 library with 𝑡𝑒𝑛𝑠𝑜𝑟 𝑓 𝑙𝑜𝑤 as a backend to run our

experiments. We use the following metrices in order to evaluate the performance of the proposed

model: Accuracy, F-Score, Recall and Precision. Moreover, we also compare the performance

of our proposed binary classification model with other traditional machine learning classification

models: Logistic Regression (LR), Support Vector Machines (SVM), Random Forest (RF),

Gaussian Naive Bayes (Gaus), K-Nearest-Neighbours (KNN).

Parameters Settings: We split our dataset randomly with a ratio 75:25, resulting in 75% training

data and 25% testing data. We consider a two layer neural network model with 10 neurons each.

Moreover, we run the model several time independently to achieve the average performance

metrics. The objective function is minimized by using the Adam optimizer and the batch size is

set to 32. Finally, we use k-fold cross validation scheme in our experiments to avoid over-fitting

of the neural network model with k=5.

Figure 3.8a and 3.8b show the comparison of the proposed algorithmwith traditional classifiers in

terms of detection rate and false alarm rate, respectively. It can be seen in the Figure 3.8a that the

proposed neural network based binary classification algorithm outperforms other classification

algorithms and achieves almost 96% detection rate. Furthermore, we can see that the proposed

algorithm achieves minimal false alarm rate among all the classifiers. Figure 3.8c shows the

accuracy comparison of the proposed algorithm with the traditional classifiers with varying test

data set. It can be seen that for the 50% test data and 50% training data, the accuracy of the



70

proposed algorithm is low. However, decreasing the test data to 10% yield better accuracy. This

is because the model learn better with more training data to perform well on the test dataset.

Figure 3.8d, 3.9a, 3.9b and 3.9c show the comparison of the proposed algorithm with traditional

classifiers in terms of accuracy, precision, recall and f1 score, respectively. It can be seen that the

proposed classification algorithm outperforms all the traditional classifier. This is because the

structure of the neural network captures the nonlinear relations among the features in the dataset,

thus leading to better performance. Furthermore, it can be seen that in traditional classifiers,

KNN performs better. Moreover, the proposed algorithm predicts the maintenance configuration

to store the large-scale IoT data with 95.87% accuracy.

We also perform the model complexity analysis of the proposed neural network model in terms

of time complexity as shown in Figure 3.9d. The experiments are performed for different number

of data instances, and model training and testing time is measured. It can be seen from the

result that increasing the number of data instances results in an increased runtime of algorithm.

The obtained results indicate that the proposed models execute in a reasonable amount of time

for different instances of dataset. The obtained results show that the proposed approach is

reasonably fast and its performance does not fluctuate much with the change in datasets.

Table 3.1 Pred-ms comparison

Model RMSE MAPE

LSTM 0.0699 0.0528

Bidirectional LSTM 0.0448 0.0349

We now evaluate the performance of a LSTM-based time series prediction model by using the

LSTM module in the 𝑘𝑒𝑟𝑎𝑠 library, with 𝑡𝑒𝑛𝑠𝑜𝑟 𝑓 𝑙𝑜𝑤 as a backend, to predict time series data.

Parameters Settings: We split our dataset randomly in the training and testing dataset. We also

use min-max scaler in order to scale the data. Because of the existing temporal dependencies in

the model, Back propagation (BP) method cannot be applied directly to the proposed model

therefore, to train our LSTM-based model, we utilize back propagation through time (BPTT)

model. The training data is split into several batches and processed sequentially. The weights
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are updated upon completion of every batch. This process is repeated for all the defined batches.

Moreover, we run the model several times independently to achieve the average performance

metrics. The objective function is minimized by using the Adam optimizer.

We use two criteria to evaluate the performance of the proposed : Root Mean Square Error

(RMSE) and Mean Absolute Percentage Error (MAPE). RMSE is calculated by squaring the

difference between the actual and predicted values, while MAPE calculates the percentage of

the absolute residual between the actual and predicted value. MAPE and RMSE are given by

100%
𝑛

∑𝑛
𝑖=1

|𝑦𝑖−�̂�𝑖 |
|𝑦𝑖 | and

√
( 1𝑛 )

∑𝑛
𝑖=1(𝑦𝑖 − �̂�𝑖)2 respectively.

In our proposed LSTM based model, we use LSTM as well as bidirectional LSTM in order to

compare the performance of both models in terms of RMSE and MAPE. Table 3.1 shows the

performance comparison of LSTM and bidirectional LSTM based model. It can be seen that

bidirectional LSTM achieves better forecasting performance in terms of RMSE and MAPE,

compared to LSTM-based model. Similarly, Table 3.2 shows the lower and upper bound of

RMSE and MAPE values for LSTM and bidirectional LSTM network. The IoT data sample and

service requirements time series data is not-stationary and non-periodic, and randomly changes

with time. Using bidirectional LSTM, the learning algorithm is fed with the original training

data once from beginning to the end and once from end to beginning. These two inputs in

the bidirectional LSTM allow the model to capture the data trends better than single LSTM,

where the model is fed with one input, i.e., from beginning to the end, thus leading to better

performance.

Table 3.2 Lstm-based rnn model comparison

Model RMSE MAPE

Lower Bound Upper Bound Lower Bound Upper Bound

LSTM 0.0694 0.0702 0.0523 0.0530

Bidirectional LSTM 0.0439 0.0452 0.0342 0.0354
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3.6.4 Blockchain cost analysis

In this subsection, we analyze the blockchain transaction and storage overhead. We employ

Ethereum blockchain to implement the smart contract functionality of our proposed design

however, any blockchain system with smart contract functionality can be used in our proposed

design.

Transaction Overhead: We further investigate the transaction overhead of the proposed

protocol over a period of 30 days in Figure 3.10a, in order to compare the total number of

transactions with the baseline (our previous work in (Danish & et al., 2020)). Our proposed

protocol incurs an average of 23 transactions per day, compared to an average of 12 transactions in

the baseline solution. Different data generation pattern results in different number of transactions

per day and transaction will only be recorded on the blockchain after the selection of new storage

technology. The baseline solution incurs less transactions than the proposed blockchain-based

solution however, the baseline solution doesn’t provide traceability, auditability and decision

verifiability to the storage technologies as well as IoT applications. Our proposed solution

provides traceability, auditability and verifiability for the middleware design at the cost of extra

transactions thus, the increased transaction overhead is justified.

We then perform a comparison in terms of transaction overhead per day, over a period of 30 days.

We provide a comparison of two neural network models, i.e., binary classifier (baseline) and

LSTM-based RNN network in Figure 3.10b. It can be seen that the proposed LSTM-based RNN

network incurs less transaction overhead per day compared to the binary classifier baseline most

of the days. Moreover, we can see that LSTM-based RNN network incurs almost 18 transaction

per day on average compared to almost 23 on-average transactions of the baseline.

Smart Contract Analysis: We provide the gas cost estimation of the functions in Figure 3.10c.

Gas cost is a unit that measures the amount of computational effort that smart contract will

put to execute certain operations. In our work, the smart contract has four main functions:

First, 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝐼𝑜𝑇 is used by the fog nodes to publish the IoT applications service requirements.

Second, 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑆𝑡𝑜 is used by storage technologies to store their service parameters. Third,
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𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝐷𝑒𝑐 is used by middleware to write decision in the blockchain network. Finally, with

the help of 𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛 function, the storage technologies register themselves in the middleware

design. The 𝑟𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛 function is executed once for every storage technology in order

to register itself with the middleware. We provide the detailed gas cost estimation for these

functions in Table 3.3.

Table 3.3 Gas cost analysis

Operation Gas usage Safe Low Fast

Gas price

(in Gwei)

Gas cost

(in ethers)

Confirmation time

(in seconds)

Gas price

(in Gwei)

Gas cost

(in ethers)

Confirmation time

(in seconds)

PublishIoT 141546 80 0.0127 86 127 0.0179 36

PublishSto 162124 80 0.0145 86 127 0.020 36

PublishDec 141419 80 0.0127 86 127 0.0179 36

Registration 60900 80 0.005 86 127 0.007 36

3.7 Conclusion

In this work, we introduce BlockAIM, which jointly considers cloud and decentralized storage

solutions. BlockAIM offers traceability, accountability, auditability and data integrity through

a blockchain-based data placement protocol. In this protocol, we model the storage selection

problem as a decision optimization problem and propose two heuristic algorithms: Dynamic

Programming (DP)-based algorithm and Greedy Style (GS) algorithm. We then propose a

neural network-based maintenance reconfiguration, which aims to optimize the computational

complexity of the middleware design as well as the blockchain transaction and storage overhead

by learning and predicting the associated parameters. We also propose aggregation rate feedback

control for fog nodes and model it as a linear optimization problem, which optimizes for data

quality and precision. Results show that the DP heuristic and GS heuristic achieves up to

92% and 80% accuracy respectively. Moreover, the proposed neural network-based binary

classification model achieves accuracy up to 95.87%.
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This core chapter provides the details of our blockchain-based CS selection in EV charging

network. Section 4.1 provides an introduction and motivation for the considered research

problem. Section 4.2 proposes a blockchain-based EV charging framework. Section 4.3 and

4.4 present the smart contract design and blockchain-based EV charging protocol, respectively.

Section 4.5 formulates a CS selection decision optimization problem. Section 4.6 and 4.7

provides the security analysis and numerical results for the proposed protocol, respectively. The

key conclusion are offered in section 4.8.

4.1 Introduction

Electric Vehicles (EVs) are emerging future Intelligent Transportation System (ITS) (Goli & Es-

kandarian, 2014; Zhou, Xiong, Xu, He &Mumtaz, 2017) application in smart cities (Blum & Es-

kandarian, 2007) and EVs have been recognized as a promising solution to reduce CO2 emissions

compared to traditional gasoline vehicles (Pajic, Rivera, Zhang & Jacobsen, 2018). The number

of EVs are growing at a significant pace, and according to the national targets the availability of

over 250 million EVs annually has been predicted annually by 2030 (Liu et al., 2019). This

dramatic growth will bring new challenges in managing the EV charging, therefore, to ensure

long-term practicability of the EV industry, there is a need to manage EV charging efficiently to
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provide vital comfort to the EV drivers. Previous works on EV charging management focus

mainly on charging scheduling for EVs parked at charging stations (CSs) or homes to decide

when EVs should be charged to optimize the efficiency of CSs (Rivera, Goebel & Jacobsen,

2016). Recently, with the increased deployment of public CSs with competing energy operators

in a liberalized market, different CS providers offer dynamic pricing based on the electricity load

and available charging level, i.e., slow or fast charging (Knirsch et al., 2018). Also, peak pricing

schemes might be in effect to shift load therefore, the research trend is now shifting towards

which CS should be selected to charge a given EV (Cao et al., 2019), as each energy provider

offers different prices based on the current load, availability of energy and waiting time (Knirsch

et al., 2018). The International Renewable Energy Agency (IREA) considers smart charging and

user incentives, like dynamic pricing, to be two key factors for unlocking the flexibility potential

from EVs, which is required for a successful grid integration of EVs and renewable energy in

the future. Moreover, the trend is currently moving towards dynamic pricing among competing

charging networks in making EV public charging a viable business (Yu, Song, Su, Tang & Han,

2019), e.g., in United States, many charging station network operators (Electrify America, Tesla,

Blink, ChargePoint, eVgo) are entering the market, which offer different charging prices per

minute or per kilowatt hour (kWH) 1.

In the light of above mentioned dynamic electric charging network, in this paper, we address the

first problem: which CS should be selected based on the service requirements of each charging

EV while maintaining privacy for the EV’s user. Specifically, we aim to transfer the decision

making capabilities from the central management and the CSs to the EVs themselves in order to

provide better privacy to the EV users. We consider a network of EVs and deployed CSs, where

each travelling EV has varying service requirements in terms of price, charging time, travelling

time and waiting time, and each EV is capable of selecting a CS in a distributed manner, based

on its service requirements, while considering multiple CSs in its vicinity. Moreover, service

requirements of some EV users are elastic, e.g., some users are willing to charge their EV for a

lower price with more waiting and traveling time, while other EVs prefer short waiting time

1 https://afdc.energy.gov/fuels/electricity_locations.html
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but with a higher charging price. This CS selection mechanism by individual EVs will have

important and long-term impact on the viability of a CS network, as it will alleviate congestion

at certain CSs, i.e., CSs use pre-reservation for different time slots. Moreover, it will increase

EV user comfort with an optimized price and better quality of service (QoS) to the EV users.

Finally, the EV will be able to make a decentralized CS selection decision without sharing its

private information to a CS or other network entities.

Currently, industry standard protocols are enabling communication between EVs and CSs in

the charging network, e.g., ISO 15118 and Open Charge Point Protocol (OCPP) (Antoun et al.,

2020). However, these industry standard protocols suffer from severe security and privacy

threats. The ISO 15118 protocol involves a trusted intermediary mobility operator, which keeps

the private information (EV identity, location, state of charge, charging parameters, availability

and payment information) of EVs to authenticate and identify them (Eiza et al., 2018; Bao et al.,

2018). Moreover, it also tracks mobile EVs to route them to a suitable CS for charging, which

raises serious concerns if the mobility operator leaks the EV’s private information, intentionally

or unintentionally (Bao et al., 2018). Furthermore, this protocol offers no traceability and

accountability mechanism in case the EV or the CS misbehaves in the charging protocol (Bao

et al., 2018). The OCPP charging protocol suffers from the same security and privacy issues

(Antoun et al., 2020; Khodari, Rawat, Asplund & Gurtov, 2019). In order to reserve a charging

slot at a CS, the EV sends its private information to the trusted central management entity and

then the central entity sends this information to a CS to reserve a charging slot for the EV (Antoun

et al., 2020). Furthermore, even in the presence of Transport Layer Security (TLS), OCPP is

vulnerable to impersonation attacks where an attacker can pretend to be a CS or the central

entity, to request or acquire the EV’s private data regarding the charging transactions(Antoun

et al., 2020).

As the private information of the EVs is handled by a trusted centralized intermediary, the

collection of such private data and tracking of an EV raise serious privacy and security concerns

(Knirsch et al., 2018; Au et al., 2013). It has been identified that the private information of

EVs has been used for position tracking of the vehicle as well as to predict the EV user’s
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habits, such as working hours, workplace and other important patterns (Knirsch et al., 2018;

Clarke &Wigan, 2011). Similarly, malicious businesses can perform targeted advertising against

the EVs by using their location information (Knirsch et al., 2018; Cao, Wang, Kamel & Kim,

2015). Furthermore, these centralized decision mechanisms are also vulnerable as they constitute

a single point of failure. Finally, the centralized EV charging scheduling suffers from scalability

issues, i.e., large number of EVs in the network leads to high communication and computational

requirements (Nimalsiri et al., 2019). Since, centralized EV charging protocols raise serious

privacy and security concerns along with high communication cost, there is a need to remove

trusted intermediaries and propose a decentralized EV charging protocol. Therefore, in the light

of the above security and privacy concerns, we address the following problem: how the EVs

can communicate with the CSs without sharing their private information, while keeping their

identities secure.

Moreover, in the current EV charging protocol, the EV reserves a charging time slot at a CS

by sharing its private information to trusted central management and the CS, which makes the

reservation decision for the EV. Therefore, existing solutions require CS selection mechanism

to be decided by the EV in a decentralized manner, without sharing the private information to

other entities in the network. In addition to privacy concerns, the correct transaction logic of

a charging reservation is often not properly implemented (Knirsch et al., 2018). For instance,

a CS can promise a certain price for a remote reservation of a specific time slot, which then

changes when the EV eventually arrives. Conversely, an EV can make a remote reservation with

a CS, but does not arrive on time. Thus, in the light of these trust issues among the EVs and the

CSs, we address the following problem: how to enforce the EVs and the CSs to honestly honor

the reservation once it has been made and make them accountable and auditable for their actions

and misbehaviour’s in the charging protocol (Bao et al., 2018).

In order to address the above mentioned privacy and security problems, we propose the use

of blockchain-based distributed ledger technology (DLT) (Pajic et al., 2018; Li et al., 2019).

Existing works address the problems of EV charging protocols by employing blockchain-based

solutions. However, they assume trusted third parties/central aggregators in their design, which
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handle EV’s private information thus, the privacy of EV has been largely ignored. Moreover,

authors in (Knirsch et al., 2018) propose privacy-preserving EV charging protocol however, the

work lacks traceability, accountability and availability in case the EV or the CS misbehaves in

charging protocol. Moreover, the work lacks theoretical formulation and technical details for

privacy-preserving CS selection by the EV without disclosing its private information. Finally,

the proposed design in (Knirsch et al., 2018) incurs large transaction and storage overhead in

the blockchain network. Hence, we address two main research challenges in this paper. The

first research challenge is how an EV can make a reservation privately at a CS without sharing

its private information to the CS or central entity with guaranteed availability of the CS, while

enforcing interacting entities (EV and CS) to honour reservation and payment mechanism in an

untrusted environment. The other research challenge is how an individual EV could make an

efficient CS selection decision in a decentralized manner without leaking its private information

to a CS and other network entities.

To address the first research challenge, we propose BlockEV, a blockchain-based EV charging

protocol, which enables the EVs to communicate with the CSs without sharing their private

information. It aims to ensure the trust, privacy, auditability and traceability and enforces

EVs and CSs to honestly honor the energy trading protocol. Blockchains offer immutability,

transparency, anonymity, availability and ensure trust in an untrusted environment without any

trusted third party intermediary, which enables transparent, tamper-proof and secure energy

trading between CSs and EVs, where an EV can make a reservation at a CS without sharing

its private information to trusted intermediaries or CSs. The proposed BlockEV ensures the

privacy of the EV users while interacting with CS to remotely reserve the charging slots at CS

premises. Moreover, BlockEV also ensures the availability of the reserved charging slots at

the CS, i.e., no charging reservation conflict among multiple EVs. Our proposed protocol also

utilizes smart contract to enforce the charging reservation and payment logic between EVs and

CSs to ensure honest behavior and to impose a penalty in case of deviation from normal behavior,

while maintaining the privacy of the EV users with low transaction and storage overhead.
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To address the second research challenge, in this work, we propose an efficient decentralized CS

selection mechanism for the EVs, which allows EVs to select the CS themselves with high QoS

and enhanced EV user comfort, while keeping EV’s private information secure. We consider the

decentralized charging framework in which CSs just broadcast their parameters such as price,

charging slots, waiting time etc. and the decision is entirely made by EVs individually based on

broadcast parameters. We theoretically formulate a decision optimization problem, which aims

at minimizing the total cost to select the CS based on the service requirements of the EV. The

paper makes the following key contributions:

• Unlike the previous centralized architectures, we propose a decentralized blockchain-based

EV charging architecture, which eliminates the need of any trusted third party and enables

the EVs and the CSs to communicate in a decentralized manner.

• We propose a blockchain-based EV charging protocol, which enables EVs to select a CS and

make a remote reservation with a CS without the need of any trusted intermediary central

management system. The proposed protocol enables EVs to reserve a charging slot at a CS

remotely, thus preserving EV’s privacy. Unlike previous works, the proposed protocol allows

EVs to privately select a CS and remotely reserves a charging slot while ensuring the EV’s

privacy, security and guarantees availability of the CS (after reservation) at the same time.

Moreover, the protocol also offers traceability, accountability and data integrity in case any

entity in the network misbehaves.

• We propose the smart contract design, to enable the communication between the EVs and the

CSs in an anonymous manner, in the untrusted environment. The smart contract guarantees

the availability of the CS after a remote reservation, imposes penalty if the EV or the CS

misbehaves in the charging protocol and defines reputation mechanism to rate a CS based on

the EV user’s experience.

• We analyze the detailed cost composition of EV’s service requirements and theoretically

model the decentralized CS selection mechanism as a decision optimization problem, where a

EV selects the CS, while minimizing its service requirements in terms of price, charging time,

waiting time and travelling time. Unlike previous works, EV itself is making a decentralized

CS selection decision rather than sharing its information to central entity or CS.
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• We provide security analysis and numerical results for the proposed protocol. We provide

detailed security analysis of our protocol under various security attacks and provide detailed

comparison with state-of-the-art schemes and industry standard protocols. In addition, we

perform extensive simulations on real world dataset to demonstrate the effectiveness of the

proposed blockchain-based framework by comparing with other conventional schemes.

4.2 Blockchain-enabled EV charging

In this section, we propose a blockchain-based EV charging framework for CS selection by

individual EVs. Fig. 4.1 shows the proposed BlockEV system architecture with EVs, CSs, Road

Side Units (RSUs) and blockchain network. Moreover, this section also explains the privacy

requirement and threat model considered for the proposed protocol.

Network Entities Definition: The role of each entity in the architecture proposed in Fig. 4.1 is

given below.

1. Electric Vehicles: The electric motors in the EVs are powered by rechargeable batteries.

When the State of Charge (SoC) of EV reaches its threshold limit, EV makes a charging

reservation with a CS based on its requirement. Each EV has a built-in smart meter

(Saghezchi et al., 2017) that records the traded energy amount in real time and is used to pay

charging cost to CSs (Al-Rubaye, Rodriguez, Al-Dulaimi, Mumtaz & Rodrigues, 2019b).

2. Charging Stations: CSs are deployed geographically from different competitive operators

throughout the city. Each CS has multiple charging slots i.e., it can charge multiple EVs in

parallel. Moreover, CSs broadcast their charging information (price, waiting time, available

charging slots, location and charging power) to RSUs through reliable communication

channel.

3. Road Side Units: RSUs (Al-Rubaye, Al-Dulaimi & Ni, 2019a) are deployed on the sides of

the road at fixed locations which disseminate the charging information of CSs to the EVs in

their vicinity.
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4. Blockchain Network: EVs and CSs performs reservation and payment through smart contract

on the public blockchain network. Moreover, this blockchain network is also used as a

storage layer to store reservation and payment information.

4.2.1 System model

We consider a network of M number of CSs from different competitive operators, deployed

geographically in a city, where 𝑚 ∈ M represents an arbitrary CS. TheseM CSs broadcast their

charging information to R RSUs deployed geographically in a city, where 𝑟 ∈ R represents an

arbitrary RSU. A set of G EVs are operating in the city either in parking or on-the-move mode,

where each EV has varying charging requirements, e.g., some EV users are willing to charge

their EV for a lower price with more waiting and traveling time, while other EVs prefer short

waiting time but with a higher charging price, where 𝑔 ∈ G represents an arbitrary EV. These

EVs receive the broadcast charging information of CSs through the 𝑟𝑡ℎ RSU in their vicinity

and solve a decision optimization problem to decide via which CS they need to recharge their

batteries such that the total monetary as well time cost to reach and charge itself at selected CS,

are jointly minimized. A public blockchain network is directly connected to the EVs and CSs,

where each entity inM and G has a public account to interact with the smart contract and other

entities in public blockchain network.

Assumptions: To broadcast the CSs information, two modes of communication can be used.

RSUs can either use the cellular network or a Vehicular ad hoc network (VANET) to broadcast

the information (Eskandarian, Chaoxian & Chuanyang, 2019; Yi et al., 2019). However, in this

work, we only consider VANET communication technology to disseminate the information from

CSs to EVs through RSUs. A Publisher/Subscriber (P/S) push model can be used, where EVs

as subscribers, passively receive the CSs broadcast information from a nearby RSU without any

explicit query. EV will receive the CS broadcast information from RSU when the EV is within

the radio coverage of that RSU. We assume a reliable communication channel in our model

and as this is not the focus of this work, readers are referred to (Cao et al., 2015) for detailed

information of P/S VANET dissemination model. Moreover, each EV has a Global Positioning
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Figure 4.1 Blockchain-based EV architecture (Danish et al.,
2020b)

System (GPS) service, which provides information about speed and current location. Each EV

in G also knows the location information of R RSUs andM CSs.

4.2.2 CS information broadcast scenario

In this work, we assume a smart city scenario where multiple CSs from different competitive

operators are deployed geographically. Moreover, the CSs location information is publicly

available for all the RSUs and EVs. RSUs are deployed across the city to handle control

information between CSs and EVs. It is assumed that each CS is connected to all the RSUs

through a reliable communication channel, e.g., authorized cellular network communication

(Cao et al., 2015). It takes the charging information from all the CSs connected to it and

broadcast it periodically to all the EVs within its range. Each CS offers the charging service to

the EVs in the available time slots with a certain charging price. Each individual EV takes a
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Figure 4.2 CS parameters broadcast scenario

decision in such a way that the selected CS fulfills all of its service requirements. The broadcast

information of CS is defined as follows:

Definition: Each CS is characterized by < ID, loc, 𝑇𝑠, 𝑇𝑒, 𝛼, 𝑇𝑤 , 𝐶𝑚, 𝐶𝑝, 𝑅𝐶𝑆 >, which defines

the ID of CS, location of CS, start time of available charging slot, end time of available charging

slot, charging power, estimated waiting time, charging cost per unit time, parking cost per unit

time and reputation respectively.

Considering a charging time slot of one hour, the time between 𝑇𝑠 and 𝑇𝑒 is the available time

period at CS to charge EV users and this time can have multiple time slots which can be selected

by EV users based on their preference. Example. 1 explains a typical broadcast scenario of CS

charging information to EVs through RSUs.

Example 1. Fig. 4.2 shows a typical broadcast scenario of charging parameters of different

CSs. Three CSs broadcast their charging parameters including the available time slots and price

to the connected RSUs through reliable communication channel for example, CS 1 broadcast

the charging information characterized by < CS1, (51.49, -0.55), 8:00, 12:00, 50kW, 3 min, 2$,
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1$ >. The RSUs then broadcast this information along with CS reputation, retrieved from the

blockchain network to the EVs within their range characterized by < CS1, (51.49, -0.55), 8:00,

12:00, 50kW, 3 min, 2$, 1$, 7★ >. Now, as EVs have offers from different CSs, individual EV

will use this information to solve the optimization problem derived in (4.21a) to select the CS

which fulfills its requirements.

It must be noted that a CS can advertise different time slots at the same time. These offers can

be considered simultaneously considering virtual CSs. For example, if CS 1 has two different

charging slots available, it can be characterized by < CS1, (51.49, -0.55), 8:00, 9:00, 50kW, 3

min, 2$, 1$ > and < CS1, (51.49, -0.55), 10:00, 12:00, 50kW, 3 min, 2$, 1$ >.

4.2.3 Privacy and security requirements

The main objective of this protocol is to ensure the privacy as well as trust environment between

EVs and CSs, where an EV can select the best suited CS based on its requirements among all

the possible CSs within the range. These CSs include the vacant private and public CSs at the

time of reservation. However, none of the involved parties should learn the customer’s position

and energy need during this phase. In order to preserve the private information of the EV users

while selecting the CS to charge itself, the following requirements needs to be fulfilled in the

protocol.

• No entity taking part in the protocol gets information about the EV’s exact position.

• No entity taking part in the protocol gets information about the EV’s current SoC and required

energy.

• No participant in the protocol gets information about the purchased energy price except

selected CS.

• No entity in the protocol gets information to track EV vehicle over time i.e., after leaving the

CS premises, CS gets no information about EV.

• No participant in the protocol learns the decision parameters of corresponding EV except EV

itself.
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Except these privacy requirements, another objective of this protocol is to ensure the trust

environment among the protocol participants i.e., the CSs or EVs should follow the normal

protocol and deviating from normal behavior incurs a monetary as well as reputation penalty.

Threat Model: In this work, we consider malicious participants in the EV charging market

which may threaten EV’s privacy and security. We assume that the government has deployed the

RSUs geographically in the city and are operating normally and honestly. We consider RSUs to

be an honest entity because the government defines the security specification for the deployment

of RSUs. For example in United States, the security requirement for the deployment of RSUs

is defined in the official document by the US department of Transportation 2. As these RSUs

are deployed under United States department of Transportation vigilance, we assume that these

RSUs are honest and government controls physical access to these RSUs. However, we define

malicious adversaries as:

• Malicious Charging Station: A malicious CS can broadcast fraudulent charging parameters

without enough time slots availability, charging power 𝛼 etc. Moreover, some CSs may not

fulfill the charging requirements of EVs, made at the time of reservation. They can also try

to use different charging parameters at the time of reservation and try to make a reservation

with different parameters.

• Malicious Electric Vehicle: A malicious EV may agree for charging services from selected

CS and later refuse to pay the incurred charging cost to CS. Moreover, EV can also reserve

the charging slot with a certain CS and never appears at the reserved slots.

Furthermore, it is assumed that all the cryptographic primitives and security protocols are secure

and cannot be compromised.

4.3 Smart contract design

In this section, we present the smart contract design of the proposed BlockEV protocol. Smart

contracts are deployed within the blockchain network with digital commitments among the

2 https://rosap.ntl.bts.gov/view/dot/3600
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protocol participants. Smart contract is a piece of code which is executed automatically when a

node triggers it by sending transaction without the involvement of third parties (Zhang & et al,

2018). In BlockEV smart contract enables secure and verifiable communication between EVs

and CSs to enforce honest reservation and payment mechanism in an untrusted environment.

The four main smart contract functions associated with the proposed protocol are 𝑟𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛,

𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 and 𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 as shown in Algorithm 4.1. It has been assumed

that the EVs and CSs will be able to exchange money in terms of cryptocurrencies.

4.3.1 Reservation

When the EV has selected the CS based on its service requirements (step 3), the EV needs to

make a remote reservation with the selected CS. This reservation is made through the smart

contract in the blockchain network to make sure:

• CS is available for the charging request at reserved time and does not change the price for the

charging request after arrival of EV at the CS.

• EV should not make a fake reservation at the CS for the selected charging time slots.

The 𝑟𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 function will take input from the EV and CS and compare the information

before sending as a transaction to blockchain network to make sure the EVs gets the same cost

parameters which were used to select the CS in (step 3). The EV and CS will send the following

information as an input to reservation function.

EV, CS→ 𝑆𝐶𝑟𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛:
{
𝑇𝐴 | |𝑆𝑜𝐶𝑐𝑢𝑟𝑟 | |𝑆𝑜𝐶𝑑𝑒𝑠 | |𝐶𝑚 | |𝐶𝑝 | |𝑇𝑠 | |𝑑𝑒𝑝𝑜𝑠𝑖𝑡

}
𝐸𝑉

⋃
{
𝐶𝑚 | |𝐶𝑝 | |𝑇𝑠 | | (𝑟𝑎𝑛𝑑𝑜𝑚𝑛𝑢𝑚𝑏𝑒𝑟)𝑝𝑘𝐸𝑉

}
𝐶𝑆
.

The 𝑟𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 function will make sure that the EV has enough coins to pay for the deposit as

well as charging cost. Moreover, the function will also compare the charging price and time slot

information from EV and CS as follow.

𝑆𝐶𝑟𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 : compare =
{
𝐶𝑚𝐸𝑉 | |𝐶𝑚𝐶𝑆 , 𝐶𝑝𝐸𝑉 | |𝐶𝑝𝐶𝑆 , 𝑇𝑠𝐸𝑉 | |𝑇𝑠𝐶𝑆 )

}
.
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Algorithm 4.1 Smart contract design

1 Reservation:
2 Input: 𝑇𝐴, 𝑆𝑜𝐶𝑐𝑢𝑟𝑟 , 𝑆𝑜𝐶𝑑𝑒𝑠 , 𝐶𝑚, 𝐶𝑝, 𝑇𝑠, 𝑑𝑒𝑝𝑜𝑠𝑖𝑡, (𝑅𝑁)𝑝𝑘𝐸𝑉

3 Compare(𝐶𝑚𝐸𝑉 | |𝐶𝑚𝐶𝑆 , 𝐶𝑝𝐸𝑉 | |𝐶𝑝𝐶𝑆 , 𝑇𝑠𝐸𝑉 | |𝑇𝑠𝐶𝑆 )

4 if 𝐶𝑚𝐸𝑉 = 𝐶𝑚𝐶𝑆 , 𝐶𝑝𝐸𝑉 = 𝐶𝑝𝐶𝑆 , 𝑇𝑠𝐸𝑉 = 𝑇𝑠𝐶𝑆 then
5 if 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝐸𝑉 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
6 make reservation and execute on blockchain
7 end if
8 end if
9 Authentication:

10 Input: 𝑑𝑒𝑐𝑠𝑘𝐸𝑉 ((𝑅𝑁)𝑝𝑘𝐸𝑉 , (𝑅𝑁)𝐶𝑆
11 if 𝑑𝑒𝑐𝑠𝑘𝐸𝑉 ((𝑅𝑁)𝑝𝑘𝐸𝑉 == (𝑅𝑁)𝐶𝑆 then
12 Authenticate EV
13 end if
14 Payment: Input: 𝐼𝐷, 𝑇𝑡𝑜𝑡𝑎𝑙 , 𝐶𝑚, 𝐶𝑝, 𝑆𝑜𝐶𝑑𝑒𝑠, 𝑆𝑜𝐶𝑐𝑢𝑟𝑟 , 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑛𝑖𝑡
15 if charging is ended then
16 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝐸𝑉→𝐶𝑆 (𝑇𝑡𝑜𝑡𝑎𝑙 (𝐶𝑚𝐶𝑆 + 𝐶𝑝𝐶𝑆 ) − 𝑑𝑒𝑝𝑖𝑛𝑖𝑡).
17 end if
18 if 𝑆𝑜𝐶𝑐ℎ𝑎𝑟 ≤ 𝑆𝑜𝐶𝑑𝑒𝑠 then
19 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝐶𝑆→𝐸𝑉 (𝐶𝑜𝑠𝑡

𝐸𝑉
𝑝𝑒𝑛).

20 end if
21 if 𝑇𝑠𝑎 ≥ 𝑇𝑎𝑎 then
22 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝐸𝑉→𝐶𝑆(𝐶𝑜𝑠𝑡

𝐶𝑆
𝑝𝑒𝑛).

23 end if
24 Reputation:
25 if charging is completed then
26 rate CS.
27 end if

If the required information matches, then the function will execute and a transaction will be

sent to the blockchain network thus, reservation will be written on the immutable distributed

ledger. It should be noted that if the deposit functionality is implemented without the blockchain

network to prevent malicious EVs to make fake reservation, the privacy of EV would not be

preserved as the EV can be linked with its credit card information either by trusted third party or

CSs.
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Reservation Significance: As the electricity price is dynamic and depends on the current load,

it is necessary to agree on a price during the reservation, so that even at the EV’s reserved

charging time slot if the electricity price changes, EV should pay the same amount as agreed in

the remote reservation. Smart contract ensures that once the price is fixed at reservation, neither

CS nor EV can change it later, thus ensuring trust in untrusted environment.

4.3.2 Authentication

Once the reservation has been made between EV and CS, EV will reach the CS premises on the

reserved time. CS needs to authenticate the EV before starting the vehicle charging to make

sure it is the same vehicle who made the remote reservation. EV already has a random number

at this point so it will decrypt the random number through its 𝑠𝑘𝐸𝑉 and sends as an input to the

authentication function. The authentication function will then retrieve the random number from

the blockchain network which was added in the previous transaction of reservation function.

The 𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 function will then compare the two random numbers as follows.

𝑆𝐶𝑎𝑢𝑡ℎ : 𝑐𝑜𝑚𝑝𝑎𝑟𝑒 ={
𝑑𝑒𝑐𝑠𝑘𝐸𝑉 ((𝑟𝑎𝑛𝑑𝑜𝑚𝑛𝑢𝑚𝑏𝑒𝑟)𝑝𝑘𝐸𝑉 ) | | (𝑟𝑎𝑛𝑑𝑜𝑚𝑛𝑢𝑚𝑏𝑒𝑟)𝑝𝑘𝐸𝑉

}
.

If the random numbers match, the CS will authenticate and start charging the EV for available

time slot.

4.3.3 Payment

The 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 function handles the payment between the EVs and CSs once the charging of

the EV has been finished at the charging station based on the time taken to reach 𝑆𝑜𝐶𝑑𝑒𝑠. The

function will take the initial time to charge at the start and automatically reads the charging end

time and 𝑆𝑜𝐶𝑐𝑢𝑟𝑟 from the smart meter of EV and CS in order to verify if there is an actual

exchange of mentioned amount of transferred energy. Afterwards, the 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 function will
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transfer the total cost from EV’s account to CS’s account with deduction of deposit amount EV

made during the reservation as follows.

𝐸𝑉 → 𝑆𝐶𝑝𝑎𝑦𝑚𝑒𝑛𝑡 → 𝐶𝑆: 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 =
{
𝑇𝑡𝑜𝑡𝑎𝑙 (𝐶𝑚𝐶𝑆 + 𝐶𝑝𝐶𝑆 ) − 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑛𝑖𝑡

}
.

Moreover, the 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 function is responsible for calculating the penalty for EVs and CSs in

case of not fulfilling the conditions set in the reservation function. If EV does not arrive with in

some threshold time, the CS is going to charge some penalty 𝐶𝑜𝑠𝑡𝐶𝑆𝑝𝑒𝑛 as given in Eqn. (4.1) and

(4.2),

𝑑 = 𝑡𝑎𝑎 − 𝑡𝑠𝑎 ≤ 𝑡𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, (4.1)

𝐶𝑜𝑠𝑡𝐶𝑆𝑝𝑒𝑛 = 𝑃𝑡 × 𝑑. (4.2)

where 𝑃𝑡 is some penalty factor, while 𝑡𝑠𝑎 and 𝑡𝑎𝑎 are the reserved arrival time and actual arrival

time respectively. Similarly, if the CS doesn’t fulfill the desired SoC requirement of EV (i.e.,

𝑆𝑜𝐶𝑙 = 𝑆𝑜𝐶𝑑𝑒𝑠 - 𝑆𝑜𝐶𝑐ℎ𝑎𝑟), EV needs to impose some penalty 𝐶𝑜𝑠𝑡𝐸𝑉𝑝𝑒𝑛 on CS as given in Eqn.

(4.3) and (4.4),

𝑆𝑜𝐶𝑙 = 𝑆𝑜𝐶𝑑𝑒𝑠 − 𝑆𝑜𝐶𝑐ℎ𝑎𝑟 , (4.3)

𝐶𝑜𝑠𝑡𝐸𝑉𝑝𝑒𝑛 = 𝑃𝑆𝑜𝐶 × 𝑆𝑜𝐶𝑙 . (4.4)

where 𝑃𝑆𝑜𝐶 is some penalty factor for 𝑆𝑜𝐶. This function will be called automatically after the

payment function execution and it will take the 𝑆𝑜𝐶𝑑𝑒𝑠 and 𝑡𝑎𝑎 from the blockchain network,

while 𝑆𝑜𝐶𝑐ℎ𝑎𝑟 value will be retrieved from EV’s smart meter, to calculate penalty amounts.

Payment Significance: The payment mechanism can be implemented in our design simply

without blockchain however, in the current industry standards EV charging protocol, false

pricing information can be injected in the system, which affects the payment mechanism (Rubio,

Alcaraz & Lopez, 2018). Moreover, through EV impersonation, an attacker can use EV’s private

information for public charging billing purpose (Rubio et al., 2018). Therefore, we implement

the payment functionality in blockchain to make sure no false information can be injected in the

system and EV should securely pay only for the provided service.
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4.3.4 Reputation

The EV user will rate the CS based on its user experience through 𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 function. The

reputation 𝑅 of CS at certain charging request 𝑡 will be either positive (𝑅𝑡 = +) or negative (𝑅𝑡 =

-) based on fulfillment of 𝑆𝑜𝐶𝑑𝑒𝑠, the actual charging power 𝛼 at CS premises and the availability

of reserved time slot 𝑇𝐴 as agreed in reservation.

𝐸𝑉 → 𝑆𝐶𝑝𝑎𝑦𝑚𝑒𝑛𝑡 : 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 =
{
𝑅𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑆𝑚

}
.

Figure 4.3 Ev charging protocol

4.4 Blockchain-based protocol

In this section, we propose BlockEV, a complete blockchain-based EV charging protocol, which

includes EV’s CS selection decision as well as its interaction with the selected CS on the

blockchain network with smart contract functionality including reservation, authentication,

payment and reputation. Furthermore, this section also explains the CS reputation mechanism.
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Algorithm 4.2 EV charging protocol

1 Initialize 𝑙𝑖𝑠𝑡𝐶𝑆 ← 0, 𝑚 ← 0

2 while true do
3 𝐶𝑆𝑚 → RSU :

{
𝐼𝐷𝐶𝑆𝑚 | |𝑝𝑘𝐶𝑆𝑚 | |𝐶𝑒𝑟𝑡𝐶𝑆𝑚

}
4 if 𝐶𝑒𝑟𝑡𝐶𝑆𝑚 = 𝑣𝑎𝑙𝑖𝑑 then
5 𝑙𝑖𝑠𝑡𝐶𝑆.𝑎𝑑𝑑 (𝐶𝑆𝑚)
6 end if
7 i = i + 1

8 end while
9 Blockchain-Based Protocol:

10 Initialize 𝐼𝐷, 𝑙𝑜𝑐, 𝑇𝑠, 𝑇𝑒, 𝛼, 𝑇𝑤, 𝐶𝑚, 𝐶𝑝, 𝑇𝑠, 𝑅𝑁, 𝑡
11 𝐼𝐷, 𝑙𝑜𝑐, 𝑇𝑠, 𝑇𝑒, 𝛼, 𝑇𝑤, 𝐶𝑚, 𝐶𝑝, 𝑇𝑠, 𝑅𝑁 ← 0

12 𝑡 ← 1

13 while 𝑡𝑟𝑢𝑒 do
14 step 1: CSs broadcast charging information to RSUs
15 𝐶𝑆𝑚 → 𝑅𝑆𝑈 : {𝐼𝐷𝐶𝑆𝑚 | |𝑙𝑜𝑐𝐶𝑆𝑚 | |𝑇𝑠 | |𝑇𝑒 | |𝛼 | |𝑇𝑤 | |𝐶𝑚𝐶𝑆𝑚 | |𝐶𝑝𝐶𝑆𝑚}

16 step 2: RSUs retrieve 𝑅𝑒𝑝 from blockchain network

17 𝑅𝑆𝑈 ← 𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛 : 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑖 =
{
(𝑅𝐶𝑆𝑚)𝑙𝑖𝑠𝑡

}
18 𝑅𝑒𝑝𝐶𝑆𝑚 =

∑𝑁
𝑖=1 𝑅𝑡𝑖

𝑁
19 𝑅𝑆𝑈𝑠 → 𝐸𝑉𝑠 : {𝐼𝐷𝐶𝑆𝑚 | |𝑙𝑜𝑐𝐶𝑆𝑚 | |𝑇𝑠 | |𝑇𝑒 | |𝛼 | |𝑇𝑤 | |
20 𝐶𝑚𝐶𝑆𝑚 | |𝐶𝑝𝐶𝑆𝑚 , 𝑅𝑒𝑝𝐶𝑆𝑚}
21 step 3: EV selects CS based on its requirements.

22 EV solves optimization problem (4.21a) s.t. (3.7b) - (4.21h).

23 step 4: EV makes reservation with selected CS.

24 𝑆𝐶𝑟𝑒𝑠 → 𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛 : {𝑇𝐴 | |𝑆𝑜𝐶𝑐𝑢𝑟𝑟 | |𝑆𝑜𝐶𝑑𝑒𝑠 | |𝐶𝑚 | |

25 𝐶𝑝 || 𝑇𝑠 || deposit}𝐸𝑉
⋃ {

𝐶𝑚 | |𝐶𝑝 | |𝑇𝑠 | | (𝑅𝑁)𝑝𝑘𝐸𝑉

}
𝐶𝑆
.

26 step 5: CS authenticates EV.
27 𝑆𝐶𝑎𝑢𝑡ℎ : 𝑚𝑎𝑡𝑐ℎ (𝑑𝑒𝑐𝑠𝑘𝐸𝑉 ((𝑅𝑁)𝑝𝑘𝐸𝑉 ), 𝑅𝑁).
28 step 6: EV pays CS after charging.

29 𝐸𝑉 → 𝐶𝑆𝑚 : 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 = {𝑇𝑡𝑜𝑡𝑎𝑙 (𝐶𝑚𝐶𝑆𝑚 + 𝐶𝑝𝐶𝑆𝑚)

30 t = t + 1

31 end while

4.4.1 EV charging protocol

Although blockchain-based bidding EV charging protocol has been proposed in the literature

(Knirsch et al., 2018), it does not always ensure the availability of reserved time slot at selected

CS and can result in time slot conflict between two EVs. Also, it incurs high storage and
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transaction cost in the blockchain network which impacts the profitability of the CSs taking part

in the protocol. We propose BlockEV to address these problems.

Fig. 4.3 presents the protocol interaction among different entities in EV charging network.

A public blockchain network is employed to support the smart contract functionality for the

interaction between EVs and CSs. Moreover, the blockchain network is also used as a storage

layer to provide auditability and traceability of reservation and payment information. At the

basic level, the blockchain-based EV charging algorithm will work as in Algorithm. 4.2. More

detail about blockchain-based CS selection protocol is given below:

CS registration: All of the CSs will first generate a set private (𝑠𝑘𝐶𝑆𝑚) and public key (𝑝𝑘𝐶𝑆𝑚).

They will register themselves to the RSUs deployed geographically by providing their 𝐼𝐷, public

key and digital certificate (𝐶𝑒𝑟𝑡𝐶𝑆𝑚) to the RSUs, namely,

𝐶𝑆𝑚 → 𝑅𝑆𝑈𝑠 : 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝐶𝑆𝑚 =
{
𝐼𝐷𝐶𝑆𝑚 | |𝑝𝑘𝐶𝑆𝑚 | |𝐶𝑒𝑟𝑡𝐶𝑆𝑚

}

Once the request has been received, RSUs will check the validity of the 𝐶𝑒𝑟𝑡𝐶𝑆𝑚 for 𝑚𝑡ℎ CS and

add it in the list of available CSs.

Blockchain-Based Protocol:

• Step 1: All of the CSs periodically publish their charging information to the RSUs connected

to it at current time 𝑡. This charging information includes the CS ID, charging price, location,

start and end time of available charging slots, charging power and expected waiting time,

namely,

𝐶𝑆𝑚 → 𝑅𝑆𝑈𝑠 : 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑖 =
{
𝐼𝐷𝐶𝑆𝑚 | |𝑙𝑜𝑐𝐶𝑆𝑚 | |𝑇𝑠 | |𝑇𝑒 | |𝛼 | |𝑇𝑤 | |𝐶𝑚𝐶𝑆𝑚 | |𝐶𝑝𝐶𝑆𝑚

}
.

Every charging information at time 𝑡 + 1 will replace the charging information at 𝑡. Therefore,

the RSU will replace the charging information of 𝐶𝑆𝑚 at time 𝑡 + 1 by newly arrived charging

information at 𝐶𝑆𝑚.

• Step 2: Once the RSUs receive the charging information from the CSs connected to them,

they will retrieve the reputation information (rating) of the CSs from the blockchain network,

namely,
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𝑅𝑆𝑈 → 𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛 : 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑖 =
{
𝑅𝑒𝑝𝐶𝑆𝑚

}
.

where 𝑅𝑒𝑝𝐶𝑆𝑚 is the reputation of𝑚
𝑡ℎ CS. The blockchain network will reply with reputation

value corresponding to the requested CS 𝐼𝐷, namely,

𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛 → 𝑅𝑆𝑈 : 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑖 =
{
𝑅𝑒𝑝𝐶𝑆𝑚

}
.

After retrieving the information from the blockchain network, the RSUs will add correspond-

ing reputation value to CS charging request and broadcast it to the EVs within its range,

namely,

𝑅𝑆𝑈𝑠 → 𝐸𝑉𝑠 : 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑖 =
{
𝐼𝐷𝐶𝑆𝑚 | |𝑙𝑜𝑐𝐶𝑆𝑚 | |𝑇𝑠 | |𝑇𝑒 | |𝛼 | |𝑇𝑤 | |𝐶𝑚𝐶𝑆𝑚 | |𝐶𝑝𝐶𝑆𝑚 | |𝑅𝑒𝑝𝐶𝑆𝑚

}
.

• Step 3: After receiving the broadcast CS charging information from the RSUs, the individual

EVs who are willing to charge their vehicle will make the CS selection by solving an

optimization problem based on their individual service requirements in terms of < charging

price, traveling time, waiting time, charging time, reputation >. EV will calculate the cost

parameters associated with the 𝑚𝑡ℎ CS by,

𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑃𝑟𝑖𝑐𝑒 = 𝐶𝑚𝐶𝑆𝑚 + 𝐶𝑝𝐶𝑆𝑚 , (4.5)

𝑡𝑟𝑎𝑣𝑒𝑙𝑖𝑛𝑔𝑇𝑖𝑚𝑒 = min
∀𝑖∈𝑁

𝑑 (𝐸𝑉,𝐶𝑆𝑚), (4.6)

𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑇𝑖𝑚𝑒 =
(𝑆𝑜𝐶𝑑𝑒𝑠 − 𝑆𝑜𝐶𝑐𝑢𝑟)

𝛼𝐶𝑆𝑚
. (4.7)

where d is the distance function, while 𝑆𝑜𝐶𝑑𝑒𝑠 and 𝑆𝑜𝐶𝑐𝑢𝑟 are the desired and current state of

charge of EV respectively. EV will then use these parameters to solve a decision optimization

problem to find the best-suited CS. We formally formulate the EV’s efficient CS selection

optimization problem in Section. 4.5. It should be noted that the EV has not shared any

information with the CSs or RSUs and therefore its private information, e.g., location, current

energy etc. is secure.

• Step 4: Once an individual EVs has made a decision about CS selection based on its

requirement, it will reserve the charging slot with the selected CS through smart contract



95

reservation function. The EV will send the information as an input to reservation function

as follows.

𝐸𝑉 → 𝑆𝐶𝑟𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 : 𝑖𝑛𝑝𝑢𝑡 =
{
𝑇𝐴 | |𝑆𝑜𝐶𝑐𝑢𝑟𝑟 | |𝑆𝑜𝐶𝑑𝑒𝑠 | |𝐶𝑚 | |𝐶𝑝 | |𝑇𝑠𝑒𝑙 | |𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑛𝑖𝑡

}
.

where 𝑇𝐴 is expected arrival time, while 𝑇𝑠𝑒𝑙 is the selected available time slot. 𝑆𝑜𝐶𝑐𝑢𝑟𝑟 and

𝑆𝑜𝐶𝑑𝑒𝑠 are current and desired SoC at the end of charging, whereas 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑛𝑖𝑡 is the amount

EV needs to deposit at the time of reservation. Similarly, the CS will send the information as

an input to reservation function as follows.

𝐶𝑆 → 𝑆𝐶𝑟𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 : 𝑖𝑛𝑝𝑢𝑡 =
{
𝐶𝑚 | |𝐶𝑝 | |𝑇𝑠𝑒𝑙 | | (𝑟𝑎𝑛𝑑𝑜𝑚𝑛𝑢𝑚𝑏𝑒𝑟)𝑝𝑘𝐸𝑉

}
.

where random number will be generated by CS to authenticate the EV at its premises and

will be encrypted by the public key of EV i.e., 𝑝𝑘𝐸𝑉 . Once the reservation function is called,

a transaction will be sent to the blockchain network as,

𝑆𝐶𝑟𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 → 𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛 :
{
𝑇𝐴 | |𝑆𝑜𝐶𝑐𝑢𝑟𝑟 | |𝑆𝑜𝐶𝑑𝑒𝑠 | |𝐶𝑚 | |𝐶𝑝 | |𝑇𝑠𝑒𝑙 | |𝑑𝑒𝑝𝑜𝑠𝑖𝑡

}
𝐸𝑉

⋃
{
𝐶𝑚 | |𝐶𝑝 | |𝑇𝑠𝑒𝑙 | | (𝑟𝑎𝑛𝑑𝑜𝑚𝑛𝑢𝑚𝑏𝑒𝑟)𝑝𝑘𝐸𝑉

}
𝐶𝑆
.

It should be noted that even at the time of reservation, CS does not know about the identity

of EV. The identity of EV will only be revealed after reaching the CS premises. In the

auction-based reservation mechanism in (Knirsch et al., 2018), the CS is not sure if it has

won the bid and is selected by the EV. This motivate CSs to bid multiple times for the same

time slot thus, leading to availability issue for more than one EV. However, in our work, once

the reservation has been made, no time slot availability conflict will occur because in the

normal protocol settings, when an EV will make a remote reservation with CS, the smart

contract will assure CS that reservation has been made and thus, CS will not be allowed to

reserve the same time slot for another EV after making reservation with actual EV user.

Conflicting Reservation: Even if the CS is allotting the same time slot for more than one

EV, the EVs will get their deposit back directly from the smart contract in case of acquiring

no charging service from CS and they can provide a bad review to CS, which will decrease

its probability to be selected by EV next time.
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• Step 5: Once the reservation has been made by EV it will reach the selected CSs within

predefined time and authenticate itself to CS through smart contract’s authentication function

to make sure it is the same EV who made the reservation. The EV will decrypt the random

number with its private key and send the information as an input to authentication function

as follows.

𝐸𝑉 → 𝑆𝐶𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 : 𝑖𝑛𝑝𝑢𝑡 =
{
𝑑𝑒𝑐𝑠𝑘𝐸𝑉 ((𝑟𝑎𝑛𝑑𝑜𝑚𝑛𝑢𝑚𝑏𝑒𝑟)𝑝𝑘𝐸𝑉 )

}
.

where 𝑑𝑒𝑐𝑠𝑘𝐸𝑉 represents decryption function with the private key of EV. The CS will send

the original random number as an input to authentication function as follows.

𝐶𝑆 → 𝑆𝐶𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 : 𝑖𝑛𝑝𝑢𝑡 = {𝑟𝑎𝑛𝑑𝑜𝑚𝑛𝑢𝑚𝑏𝑒𝑟}.

Based on this information, the smart contract will automatically authenticate the EV at CS

premises. It should be noted that the real identity of EV will be released at this step i.e., after

reaching the CS premises. Thus, the private information of EV is not released to any entity

before reaching the selected CS premises. Moreover, information is also not revealed to other

CSs, which were being considered during selection process but were not selected.

In this work, we only consider privacy from EV’s point of view as CS is broadcasting its

parameter publicly. Sharing the location of CS will leak the private information related to that

certain CS even if we hide its identity therefore, we consider it a potential open problem i.e.,

how to provide the privacy to EV and CS at the same time, while ensuring CS availability.

• Step 6: After authenticating the EV at the premises, the CS will start charging the vehicle.

It has been assumed that each EV has smart meter which takes real-time value of charged

energy. The starting and ending time of the charging will be sent as an input to the payment

function of the smart contract as follows.

𝐸𝑉 → 𝑆𝐶𝑝𝑎𝑦𝑚𝑒𝑛𝑡 → 𝐶𝑆: 𝑖𝑛𝑝𝑢𝑡 = {𝑇𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑒𝑛𝑑}.

Based on the payment and reservation information, the smart contract will calculate the total

price of charging as well as any monetary penalty imposed on the EV or CS. Once the EV has

paid for the charging service to CS, it will leave the CS premises and enter in the driving phase

again.
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Reputation: The final step of this protocol is to define the reputation mechanism through which

EVs can rate the CSs based on their experience with CS. It has been assumed that an honest EV

will always provide an honest reputation review to CS for its services. In this protocol, we only

emphasize on the reputation review of CSs and not the EVs because our main aim is to provide

privacy to the EV users. If the reputation reviews against EV IDs can be seen by everyone on

the blockchain network, the privacy of EV will not be preserved. Moreover, reputation review

for EV is not possible as BlockEV does not share the ID of EV with any entity in the network

and without sharing the EV ID, reputation is not possible. Therefore, we propose a reputation

mechanism for CS in order to enforce the good behavior of CS in favor of EVs. The reputation

𝑅 of CS at certain charging request 𝑡 will be either positive (𝑅𝑡 = +) or negative (positive (𝑅𝑡

= -)) based on fulfillment of 𝑆𝑜𝐶𝑑𝑒𝑠, the actual charging power 𝛼 at the CS premises and the

availability of reserved time slot 𝑇𝐴 as agreed in reservation. The reputation value (between 1 to

10) of certain CS will be sent as an input to the payment function of the smart contract as follows.

𝐸𝑉 → 𝑆𝐶𝑝𝑎𝑦𝑚𝑒𝑛𝑡 : 𝑖𝑛𝑝𝑢𝑡 =
{
𝑅𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑆𝑚

}
.

Therefore, in the step 2 of the protocol, the RSU will retrieve all the reputation information

against the CS 𝐼𝐷 and calculate the average reputation value (𝑇𝑅𝐶𝑆𝑚) as,

𝑇𝑅𝐶𝑆𝑚 =

∑𝑁
𝑖=1 𝑅𝑡𝑖

𝑁
(4.8)

where N is total number of reviews 𝐶𝑆𝑚 got from the EVs.

It must be noted that the EV is assumed to be honest in the protocol participation and we assume

that EV will always rate the CS in an honest manner. Considering the malicious or semi-honest

EV scenario, a wrong reputation value can be written in the blockchain network. This problem

can be solved in future by using the decentralized storage technologies and smart contract with

admin rights, where the reputation value can be changed or overwritten.

Benefits of blockchain: In this work, introducing blockchain network will remove the need

of trusted intermediary central management, which will enable EV to make reservation at CS
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without sharing any private information. Moreover, as no entity in the network is keeping EV’s

private information, EV cannot be tracked with time. Finally, as the reservation and payment

data will be stored on the blockchain network, if any party tries to misbehave, this deviation

from normal behavior can be traced back and the malicious party can be held accountable for

their action thus, ensuring traceability, accountability and data integrity.

4.4.2 Economic perspective

The global economy is increasingly competitive, with growing demands that cannot be sustainably

met by conventional energy systems. Thus, in order to meet the current economy demands, the

trend is now moving towards a peer to peer (P2P) electricity trading, where the traditional energy

consumers are becoming prosumers, who can both consume and generate energy. Blockchain-

based P2P energy trading has been emerged as a possible solution to the challenges in the energy

sector, asserted by energy sector decision makers and utility companies (Andoni et al., 2019).

The energy market operations will be more efficient and transparent with the help of blockchain

(Andoni et al., 2019). The most popular use case of blockchain-based power grids today is the

Brooklyn Micro-grid (Andoni et al., 2019). It is one of the first projects, leveraging blockchain

technology for P2P energy trading, developed by LO3 Energy Inc. The aim of this project is to

study how the blockchain technology may enable the instant trading of solar energy between

neighborhoods.

Blockchain-based EVs charging network is also an example of P2P energy trading between

CSs and EVs. Blockchain technology enables automated buying, selling, and scheduling of

transactions among EVs and CSs with the help of smart contracts, based on their preferences.

Moreover, real-time demand and supply in the EV charging network via smart contracts will

automate the encrypted sale and purchase, thus leading to a secure business model (Andoni

et al., 2019). The proposed blockchain-based EV charging network allows EVs to select the

charging station and schedule their charging slot without the need of any third party. Therefore,

EVs are communicating and charging themselves in a competitive P2P market with CSs, where

the CSs are offering competitive prices for the charging services to EVs. Unlike (Knirsch et al.,
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2018) where all the CSs need to participate in the bid by writing the offered services on the

blockchain network, the proposed model writes the transaction on the blockchain network once

the deal is confirmed among EVs and CSs, thus leading to cost-effective solution for both EVs

and CSs. From the business perspective, EVs will be able to make the independent charging

decision based on the best price and other service requirements. From the CSs perspective, the

deposit amount from EVs at the time of reservation will ensure the profit of CSs even if the EVs

deviates from the normal behavior. Therefore, the proposed model enables the a competitive

business model, which allows CSs to take part in the market by offering their services and allows

EVs to select the CSs, best suited for their service requirements.

4.5 Charging station selection

In this section, we narrow down our focus on the theoretical formulation of CS selection problem

in the proposed BlockEV. We formulate a decision optimization problem to select the CS based

on EV’s service requirements, while minimizing the overall cost associated with the CS in terms

of price, travelling time, waiting time and charging time. Selecting a CS in a random manner is

not a good solution to employ because it can result in the selection of CS with high price, more

travelling time, waiting time or charging time etc. In this paper, we have analyze the detailed

cost composition of EV’s service requirements and use this cost model to devise a decision

optimization problem, where the aim is to minimize all these cost to increase the QoS with

enhanced user comfort. Thus, an EV is solving the decision optimization problem efficiently to

select the best-suited CS for charging itself by minimizing all the overall cost associated with

the service requirements.

4.5.1 Problem formulation

We consider the problem of how to minimize the overall cost of an charging an EV by efficiently

selecting the CS, while keeping the privacy of EV user. The RSUs receive the service information

from the CSs connected to it and broadcast it to the EVs in its range. This information is then

used by the individual EV to decide the optimal CS. An EV user needs to decide via which
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CS it needs to recharge its batteries such that the total monetary as well time cost to reach and

charge itself at selected CS, are jointly minimized. In this work, we model the EV’s decision

for selecting an optimal CS as a decision optimization problem in which an EV user needs to

decide a CS based on its service requirements. The total cost of the requirements that needs

to be minimized has four components: monetary cost, waiting time cost, traveling time cost,

charging time cost.

Decision Variable: LetM be the total number of CSs that are offering the charging service to

the EV users. A binary decision variable 𝑦𝑚 is considered which corresponds to the selection of

𝑚𝑡ℎ CS for an individual EV user. We require that for every decision model solution, a single

CS should be selected through solving the optimization problem by EV user. Let 𝑦 = (𝑦𝑚)∀𝑚∈M ,

the set of all possible decision variables is given by Equation. (4.9):

Y = { 𝑦 |
∑
𝑚∈M

𝑦𝑚 = 1 and 𝑦𝑚 ∈ {0, 1} , ∀𝑚 ∈ M } (4.9)

Overall Cost: The overall cost of an EV user, which needs to be jointly minimized is given by:

(1) The charging monetary cost refers to the price EVs need to pay for parking as well as

to charge their vehicle at the charging station. Let 𝐶𝑚∈R
+ and 𝐶𝑝∈R

+ denote the EV’s per

unit time electricity charging cost and parking cost respectively at 𝑚𝑡ℎ CS. Moreover, let M

= {1, 2, 3, ..., 𝑀} be the total number of CSs near an individual EV, offering charging service.

The EV should choose the CS with minimum charging price as given in Equation. (4.10),

𝐶𝑝𝑟𝑖𝑐𝑒 (𝐸𝑉,𝐶𝑆𝑠𝑒𝑙) = min
∀𝑚∈M

(𝐶𝑚 (𝐸𝑉,𝐶𝑆𝑚) + 𝐶𝑝 (𝐸𝑉,𝐶𝑆𝑚)) (4.10)

where 𝐶𝑝𝑟𝑖𝑐𝑒 is the total price of selected CS, while 𝐶𝑆𝑠𝑒𝑙 is the selected CS. Thus, the total

monetary cost to charge an EV is given by Equation. (4.11),

𝐶𝑚𝑜𝑛 (𝑦) = 𝑦𝑚T𝑐ℎ (𝐶𝑚 + 𝐶𝑝) (4.11)
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where T𝑐ℎ is the total time required to charge an EV. In this work, we only consider fast charging

scenario at the CS premises therefore, we omit the parking time once the EV has been charged

to its desired state.

(2) The traveling time cost refers to the cost incurred while reaching the 𝑚𝑡ℎ CS. Let M =

{1, 2, 3, ..., 𝑀} be the total number of CSs around an individual EV. The EV should choose the

CS with minimum distance as given in Equation. (4.12),

𝑑𝑚 (𝐸𝑉,𝐶𝑆𝑠𝑒𝑙) = min
∀𝑚∈M

𝑑 (𝐸𝑉,𝐶𝑆𝑚) (4.12)

Moreover, the travel time between current location of EV and CS is a function of distance 𝑑𝑚,

and other factors, e.g., weather, speed, traffic conditions etc. The travel time can be calculated

by Equation. (4.13),

𝑇𝑡𝑟𝑖𝑝 = 𝑓 (𝑑𝑚, F ) (4.13)

where F denotes the factors including speed of EV, weather and traffic conditions etc and can

be represented as Equation. (4.14) (Chen, Zhang, Pourbabak, Kavousi-Fard & Su, 2016),

F = 𝜏𝑖 𝑗 (1 + 𝛿(
𝑉

𝐶
)𝜃) (4.14)

where 𝜏𝑖 𝑗 represents free flow time, V for traffic flow and C for road capacity. 𝛿 and 𝜃 are

experimental coefficients and its value can be taken from (Chen et al., 2016). Thus, the total

cost of traveling can be represented by Equation. (4.15),

𝐶𝑡𝑟𝑎 (𝑦) = 𝑦𝑚𝑊𝑇𝑇𝑡𝑟𝑖𝑝 (4.15)

where𝑊𝑇 represents the weight to convert the traveling time cost to monetary cost. This traveling

time (𝑇𝑡𝑟𝑖𝑝) information can also be retrieved by google maps3 as it provides multiple paths to a

single destination. A path with minimum traveling time can be chosen.

3 https://www.google.com/maps
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(3) The charging time cost refers to the charging time for an EV to reach its required battery

capacity. The total time to charge an EV vehicle is given by Equation. (4.16),

𝑇𝑡𝑜𝑡 =
(𝑆𝑜𝐶𝑑𝑒𝑠 − 𝑆𝑜𝐶𝑐𝑢𝑟) + 𝐸𝑡𝑟𝑎

𝛼𝑚
(4.16)

where 𝑆𝑜𝐶𝑚𝑎𝑥 is the desired state of charge, while 𝑆𝑜𝐶𝑐𝑢𝑟 is the current state of charge of

the EV’s battery. 𝛼𝑚 is the charging power at the 𝑚𝑡ℎ CS. 𝐸𝑡𝑟𝑎 denotes the electricity amount

consumed during travel to the CS and is represented by Equation. (4.17),

𝐸𝑡𝑟𝑎 = 𝑑𝑚𝛽 (4.17)

where 𝑑𝑚 is the distance between EV and 𝑚𝑡ℎ CS. 𝛽 denotes consumption of energy per meter

and is specific to EV model. Thus the total cost of EV charging time is given by Eqn. (4.18),

𝐶𝑐ℎ𝑎𝑟 (𝑦) = 𝑦𝑚𝑊𝐶𝑇𝑡𝑜𝑡 (4.18)

where𝑊𝐶 represents the weight to convert the charging time cost to monetary cost.

(4) The waiting time cost refers to the time an EV needs to wait before starting the battery

charging. Normally, a CS has multiple ports where the EVs are charged in parallel. Thus, the

total cost of EV waiting time is given by Equation. (4.19),

𝐶𝑤𝑎𝑖𝑡 (𝑦) = 𝑦𝑚𝑊𝑊𝑇𝑤𝑎𝑖𝑡 (4.19)

where𝑊𝑊 represents the weight to convert the waiting time cost to monetary cost, while 𝑇𝑤𝑎𝑖𝑡

is the total time EV needs to wait at the selected CS. The waiting time at the CS is normally

forecasted with the help of machine learning techniques. In this work, we assume that the CS

has already forecasted this parameter using the past data and provided this information to the EV

in the broadcast design.
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Optimization Problem: The objective functions that need to be minimized can be represented

as Equation. (4.20),

C(𝑦) = 𝐶𝑚𝑜𝑛 (𝑦) + 𝐶𝑡𝑟𝑎 (𝑦) + 𝐶𝑐ℎ𝑎𝑟 (𝑦) + 𝐶𝑤𝑎𝑖𝑡 (𝑦) (4.20)

Thus, we formulate our optimization problem as follows,

min 𝐶 (𝑦) (4.21a)

subject to 𝑦 ∈ Y. (4.21b)

T𝑐ℎ (𝐶𝑚 + 𝐶𝑝) ≤ B,∀𝑚 ∈ M, (4.21c)

𝑇𝑡𝑟𝑖𝑝 ≤ T𝑚𝑎𝑥
𝑡𝑟𝑖𝑝 ,∀𝑚 ∈ M, (4.21d)

𝑇𝑡𝑜𝑡 ≤ T𝑚𝑎𝑥
𝑐ℎ𝑎𝑟 ,∀𝑚 ∈ M, (4.21e)

𝑇𝑤𝑎𝑖𝑡 ≤ T𝑚𝑎𝑥
𝑤𝑎𝑖𝑡 ,∀𝑚 ∈ M, (4.21f)

M∑
𝑚=1

𝑦𝑚 = 1,∀𝑚 ∈ M, (4.21g)

𝑆𝑜𝐶𝑐𝑢𝑟𝑟 − 𝑑𝑚𝛽 > 0 (4.21h)

where B represents the maximum budget of EV, while T𝑚𝑎𝑥
𝑡𝑟𝑖𝑝 , T𝑚𝑎𝑥

𝑐ℎ𝑎𝑟 and T𝑚𝑎𝑥
𝑤𝑎𝑖𝑡 are the maximum

travel time, charging time and waiting time respectively. Constraint (4.21c) states that the total

charging cost should be less than the defined EV charging budget B. Constraints (4.21d), (4.21e)

and (4.21f) ensures that the cost of traveling, charging and waiting time should be within defined

thresholds i.e., T𝑚𝑎𝑥
𝑡𝑟𝑖𝑝 , T𝑚𝑎𝑥

𝑐ℎ𝑎𝑟 and T𝑚𝑎𝑥
𝑤𝑎𝑖𝑡 respectively. Constraint (4.21g) ensures that only one CS

should be selected. Finally, constraint (4.21h) states that the EV’s remaining SoC should be

enough to reach the selected CS.
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4.5.2 Discussion

It should be noted that the optimization problem will be solved off-chain by the individual

EVs as the CS selection decision needs to be made in real time. Solving this optimization

problem in smart contract on public blockchain will incur a significant delay as well as storage

and transaction cost. After solving the optimization problem off-chain, the EV will make a

remote reservation with selected CS through smart contract on public blockchain network as an

anonymous entity to ensure the availability of the selected time slots and the real identity of the

EV will only be revealed after reaching the selected CS. Thus, EV will select the best-suited CS

off-chain, while the protocol to reserve a charging slot, authenticate EV and payment will run on

the blockchain network.

As the CS decision is a binary variable and there are integer variables in equality constraints, the

optimization problem formulated in Equation. (4.21a) is an Integer Linear Program (ILP). As

the optimization problem formulated in Equation. (4.21a) is not bounded by any lower bound

therefore, it is trivially solvable. In order to solve this optimization problem, we propose the

direct invocation of an available optimization solver such CPLEX.

Practicality: Our solution can be easily implemented with a simple client-side software

application, which retrieves the charging parameters from different RSUs through an Application

Programming Interface (API) in real-time. This information can be used by software application

to select the best CS by solving an optimization problem. Moreover, a blockchain client

functionality can be easily added in this software application, where a user can send transaction

with a valid blockchain address. Similarly, CSs can also be equipped with a software application,

which enables them to communicate with EVs with valid blockchain address through smart

contract.
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4.6 Security analysis

In this section, we analyze the privacy and security properties of our proposed protocol in terms

of privacy and security requirements explained in Section. 5.2.3. After that, we evaluate the

performance of our proposed blockchain-based protocol.

In order to check the security vulnerabilities of our proposed approach we employ STRIDE4

mnemonic: Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service,

and Elevation of Privilege. As EV and CS are making reservation and charging payment on

blockchain network, no malicious entity can spoof their identity during the charging process.

Moreover, as the information is stored in the blockchain network, no one can tamper with the

reservation and payment information. EV and CS are signing the transactions with their private

keys therefore, they cannot repudiate (claim not to make reservation or charging). As EV is not

communicating with any other entity during the CS selection process, no private information

of EVs has been disclosed to other entities in the network. Finally, as EV needs to send some

initial deposit and CS needs to spend some gas in running the 𝑟𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 function, no entity

can spam the reservation request in the network.

Table 4.1 Security comparison

Functionality BlockEV OCPP ISO15118 [6] [36] [37] [38]

No trusted intermediary � 𝑥 𝑥 � � � 𝑥
EV privacy � 𝑥 𝑥 � � � 𝑥

Availability guarantee � 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥
Traceability & Accountability � 𝑥 𝑥 𝑥 𝑥 � 𝑥

Protection against impersonation attack � 𝑥 𝑥 � � � �
Protection against forgery attack � 𝑥 𝑥 � � � �
Protection against MITM attack � 𝑥 𝑥 � � 𝑥 𝑥
Protection against tamper attack � 𝑥 𝑥 � � � �
Protection against DoS attack � 𝑥 𝑥 𝑥 � � 𝑥

Fake reservation attack � 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

4 https://www.microsoft.com/security/blog/2007/09/11/stride-chart/
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4.6.1 Security properties

Privacy of EV: The foremost security consideration is the EV user’s privacy while selecting the

CS, i.e, no entity in the network except the selected CS gets private information about EV. Here,

the private information of an EV can be specifically described as its exact location, SoC, energy

demand, charging routine etc.

Theorem 1. BlockEV ensures the privacy and pseudo-anonymity of the participating EVs.

Proof: In our proposed protocol, EV is not communicating any information with RSUs or CSs

before selecting a CS therefore, no entity in the network can learn about the identity of EV,

its current location or energy demand. Specifically, the EV uses its public key 𝑝𝑘𝐸𝑉 as the

pseudonym to communicate with the CS in order to guarantee the anonymity. The messages in

the protocol,

𝑅𝑆𝑈𝑠 → 𝐸𝑉𝑠 : 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑖 =
{
𝐼𝐷𝐶𝑆𝑚 | |𝑙𝑜𝑐𝐶𝑆𝑚 | |𝑇𝑠 | |𝑇𝑒 | |𝛼 | |𝑇𝑤 | |𝐶𝑚𝐶𝑆𝑚 | |𝐶𝑝𝐶𝑆𝑚 | |𝑅𝑒𝑝𝐶𝑆𝑚

}
.

𝐸𝑉 → 𝑆𝐶𝑟𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 : 𝑖𝑛𝑝𝑢𝑡 =
{
𝑇𝐴 | |𝑆𝑜𝐶𝑐𝑢𝑟𝑟 | |𝑆𝑜𝐶𝑑𝑒𝑠 | |𝐶𝑚 | |𝐶𝑝 | |𝑇𝑠𝑒𝑙 | |𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑛𝑖𝑡

}
.

𝐸𝑉 → 𝑆𝐶𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 : 𝑖𝑛𝑝𝑢𝑡 =
{
𝑑𝑒𝑐𝑠𝑘𝐸𝑉 ((𝑟𝑎𝑛𝑑𝑜𝑚𝑛𝑢𝑚𝑏𝑒𝑟)𝑝𝑘𝐸𝑉 )

}
.

𝐸𝑉 → 𝑆𝐶𝑝𝑎𝑦𝑚𝑒𝑛𝑡 → 𝐶𝑆: 𝑖𝑛𝑝𝑢𝑡 = {𝑇𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑒𝑛𝑑}.

are transmitted in the network with the associated 𝑝𝑘𝐸𝑉 , thus ensuring anonymity. Moreover,

the EV is making a remote reservation with the selected CS on blockchain network therefore, at

reservation time the identity of EV is still not revealed to CS. The identity of EV will only be

revealed to a selected CS after reaching the CS premises. Finally, when the EV leaves the CS

after charging, CS cannot track the position of EV in real time, to predict the charging routine or

driving patterns as EV leaves the charging station.

Mutual Authentication: After reaching CS premises, EV needs to authenticate itself to CS

by showing the secret random number shared between them at the time of reservation. Smart
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contract will take random number from EV and CS and after comparing the random number

in the 𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 function, smart contract will mutually authenticate both entities for the

corresponding reservation.

Theorem 2. The authentication in the proposed scheme is secure.

Proof: : In the proposed protocol, authentication for EV and CS is done with the help of smart

contract. After reaching the CS premises, the following messages are exchanged between EVs,

CSs and smart contract.

𝐸𝑉 → 𝑆𝐶𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 : 𝑖𝑛𝑝𝑢𝑡 =
{
𝑑𝑒𝑐𝑠𝑘𝐸𝑉 ((𝑟𝑎𝑛𝑑𝑜𝑚𝑛𝑢𝑚𝑏𝑒𝑟)𝑝𝑘𝐸𝑉 )

}
.

𝐶𝑆 → 𝑆𝐶𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 : 𝑖𝑛𝑝𝑢𝑡 = {𝑟𝑎𝑛𝑑𝑜𝑚𝑛𝑢𝑚𝑏𝑒𝑟}.

As only EV can decrypt the random number with its private key, no entity in the network can

forge the authentication. Finally, as the smart contract function compares the random number

𝑐𝑜𝑚𝑝𝑎𝑟𝑒(
{
𝑑𝑒𝑐𝑠𝑘𝐸𝑉 ((𝑟𝑎𝑛𝑑𝑜𝑚𝑛𝑢𝑚𝑏𝑒𝑟)𝑝𝑘𝐸𝑉 ) | | (𝑟𝑎𝑛𝑑𝑜𝑚𝑛𝑢𝑚𝑏𝑒𝑟)𝑝𝑘𝐸𝑉

}
) provided by EVs and

CSs automatically, no adversary can change this functionality on the blockchain network, thus

leading to secure authentication.

No trusted intermediary: In our proposed protocol, EVs are communicating and scheduling

the charging slot with CS directly through blockchain network and smart contract, unlike the

traditional intermediary controller to schedule EVs. All the CSs are working independently

and have equal rights to trade energy with EVs based on its available services without any

involvement of third party.

Data integrity and immutability: Once the reservation has been made between EV and CS

and is written on the blockchain network, no entity can modify or tampers with this information.

Similarly, the payment and reputation information written on the blockchain network will remain

immutable in future and will be helpful in auditability and traceability of the charging and

payment information.
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4.6.2 Security attacks analysis and comparison

In this subsection, we analyze our model against different security attacks. Malicious EV and

CS can launch external and internal attack. We now present how different security attacks can

be resisted by our proposed protocol.

Impersonation Attack: In the proposed protocol, if a malicious EV user tries to impersonate as

a legitimate EV user, it needs to make a reservation with a CS through a real blockchain address

by sending
{
𝑇𝐴 | |𝑆𝑜𝐶𝑐𝑢𝑟𝑟 | |𝑆𝑜𝐶𝑑𝑒𝑠 | |𝐶𝑚 | |𝐶𝑝 | |𝑇𝑠𝑒𝑙 | |𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑛𝑖𝑡

}
to the smart contract by signing

the transaction by its private key as
{
𝑇𝐴 | |𝑆𝑜𝐶𝑐𝑢𝑟𝑟 | |𝑆𝑜𝐶𝑑𝑒𝑠 | |𝐶𝑚 | |𝐶𝑝 | |𝑇𝑠𝑒𝑙 | |𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑛𝑖𝑡

}
𝑠𝑘𝐸𝑉

. The

knowledge of private key 𝑠𝑘𝐸𝑉 only belongs to a real EV user, which makes the blockchain

addresses and identities unique and cannot be used by any other party except the owner with

𝑠𝑘𝐸𝑉 thus, a malicious EV cannot impersonate a benign EV.

Forgery/False data injection Attack: In the proposed protocol, as the charging rate vary based

on the electricity load, a charging station as well as an EV can use fake values at the time of

broadcast information and actual reservation. The proposed scheme is able to detect any forgery

attempt with the help of smart contract. Lets take price as an example, the smart contract will

simply take
{
𝐶𝑚 | |𝐶𝑝

}
𝐸𝑉

and
{
𝐶𝑚 | |𝐶𝑝

}
𝐶𝑆

as an input from both EV and CS. If
{
𝐶𝑚 | |𝐶𝑝

}
𝐸𝑉

={
𝐶𝑚 | |𝐶𝑝

}
𝐶𝑆
, the reservation function will be executed. Similarly, if

{
𝐶𝑚 | |𝐶𝑝

}
𝐸𝑉

≠
{
𝐶𝑚 | |𝐶𝑝

}
𝐸𝑉

, the reservation will be terminated by the smart contract. Other values forgery analysis is similar

to the above analysis. Thus, the proposed protocol provides protection against CS trying to make

reservation with fake/forged information.

Tamper Attack: CS can try to change the reservation information once the reservation has

been made. One can consider a scenario where the electricity price was different at the time of

reservation however, the price changed at the actual charging time slot, thus a monetary incentive

can motivate CS to change price information. Fortunately, due to the tamper-proof feature of

blockchain, once the reservation information is written on the blockchain, it cannot be changed.

EV tamper attack analysis is similar to the above analysis. Thus, the proposed protocol provides

protection against tamper attacks thus, preserving data integrity.
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Repudiation Attack: As seen before, the blockchain transactions are signed by the private keys,

which makes the addresses and identities unique. Thus, neither EV nor CS can repudiate the

reservation or payment information, once these functions have been processed through a smart

contract and written in the blockchain network.

DoS Attack: In the proposed protocol, an EV can flood CSs with false charging requests

however, in our protocol EV needs to send 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑛𝑖𝑡 to make a reservation with smart contract.

The smart contract will not be executed until it verifies 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑛𝑖𝑡 i.e., if the requesting EV has

enough funds. Similarly, all the available CSs are registered with RSUs with valid certificates,

no fake CS can flood the network with fake broadcast CS information. Thus, the proposed

protocol provides protection against the DoS attack.

Man-in-the-Middle (MITM) Attack: According to the above analysis of tamper-proof data

integrity and resistance against repudiation attack, it can be easily assumed that the communication

between the EV and CS is verified through smart contract and valid information and messages

cannot be forged and modified. Moreover, EV and CS authenticate themselves with the help of

freshly generated random number. Thus, our proposed scheme can oppose MITM attack.

Fake Reservation Attack: As explained before, EVs need to deposit funds in the smart contract

in order to reserve a charging slot at the CS. In case of fake charging slot reservation, where

EV wants to reserve all the charging slots of the specific CS, it needs to deposit the funds for

each reservation. The deposit functionality makes it hard for a malicious EV to launch a fake

reservation attack.

We provide the detailed security analysis comparison of our proposed system with state-of-the-art

schemes and industry standard EV charging protocols in Table. 4.1. It can be seen that the

proposed scheme offers better security than all the proposed framework. Unlike previous works,

one of the novelty of the proposed framework is that it offers the guaranteed availability to the EV,

once it has made the remote reservation with the CS. Similarly, with the deposit functionality,

the proposed framework mitigates the fake reservation at the CS.
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4.7 Numerical results

In this section, we evaluate BlockEV in terms of performance and price. Firstly, we analyze the

computation time to solve the optimization problem and end-to-end delay, i.e., the time to run the

complete protocol. We then perform the price analysis for the proposed protocol and compare it

with them nearest CS strategy. Moreover, we also analyze the blockchain storage and transaction

overhead of the proposed design and compare it with state-of-the-art solutions. Finally, we

provide the gas cost estimation for the smart contract functions, i.e., the price associated with

calling a smart contract functions.

a) Pricing of CS b) Charging power of CS

Figure 4.4 Blockchain analysis

4.7.1 System setup

We run our experiments on 8𝑡ℎ Generation Intel 𝐶𝑜𝑟𝑒𝑇𝑀 i7-8650U Processor with 8 GB

RAM. We have implemented our prototype design in Python programming language using

CPLEX Python API to validate the feasibility and effectiveness of the proposed protocol. We

implement blockchain functionality through Go language implementation (Geth) and web3py

(https://web3py.readthedocs.io/en/stable/ ), a Python library to interact with Ethereum network.

Moreover, we use the Solidity programming language to implement the smart contract.
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Dataset and simulation settings: In the work, we have used a real dataset from US department

of energy website. We have considered the fast EV charging stations in New York as shown

in Fig. 4.5a. The dataset includes the CS location, ID, pricing information etc. We also

added the charging power of the CSs in our dataset specific to the charging network. The

waiting time at the CSs is chosen randomly and it varies from 10 sec to 20 sec (Bryden, Hilton,

Dimitrov, de León & Cruden, 2019) as this information was not available. In our experiments,

we considered the number of CSs ranging from 2 to 50, based on different experimental scenarios

and settings. The default value of transforming the waiting time, travelling time and charging

time to monetary cost is set to 0.1$ per minute. In addition, to perform the experiments, we

randomly selected the position of EV from the map shown in Fig. 4.5a. We calculate the

travelling time to a certain CS by assuming the average velocity of EV to be 50km/h. We repeat

our experiments 1000 times and represent our results in average of these experiments. Finally,

we plot the pricing and charging power dataset against the location of CSs in order to get the

distribution insights. It can be seen from Fig. 4.4a and Fig. 4.4b that the pricing and charging

power is scattered over all the available CSs. In our experiments, we select different random

locations of EVs and the results are averaged out.

4.7.2 Results

Computation time: We first investigate the CS selection mechanism in terms of computation

runtime in Fig. 4.5b. We implement the CS selection optimization problem formulated in

Equation. (4.21a) in the CPLEX using Python CPLEX API. We run these experiments several

time for different number of CSs to plot the average runtime values. It can be seen in Fig. 4.5b

that the computation time is low when EV needs to select a CS with small search space, i.e.,

small number of CSs. However, increasing the number of CSs results in more time to generate

a solution compared to small number of CSs. One can further reduce the computation run

times with the help of powerful computing servers as well as through optimized programming

implementation.
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We then perform the end-to-end latency analysis, i.e., the time when the CSs send the information

to RSUs till the EVs make the CS selection decision. This analysis is shown in Fig. 4.5c. We

perform this experiment by creating an API using Python-flask framework. This API generates

the data instances for each CS based on the real dataset explained above. This data includes the

CS ID, location, price, waiting time, charging power and available time-slots. It can be seen in

Fig. 4.5c that as the number of CSs increase, the overall end-to-end latency increases. It should

be noted that this end-to-end latency analysis does not include the time to mine the block as this

depends on the type of blockchain used.

Pricing analysis: We now investigate the impact of proposed CS selection mechanism on the

overall price and compare it with the price offered by nearest CS. We perform this experiment

1000 times and represent our results in average of these experiments. Fig. 4.5d shows the

comparison of the price per kWh for different number of CSs. It can be seen in the Fig. 4.5d

that BlockEV offers less price compared to the price offered by the nearest CS. This is because

the solution to the optimization problem defined in Eqn. 4.21a will ensure that the CS with

minimum price is selected among the solution space. Thus, BlockEV solution offers least price

in all cases.

Blockchain Transaction Overhead: We further investigate the transaction overhead of the

proposed protocol in Fig. 4.6a and Fig. 4.6b, in order to compare the total number of transactions

with the baseline (work in (Knirsch et al., 2018)). Our proposed protocol incurs 4 transactions

for one run of the protocol, therefore for G number of EVs, the total number of transactions

will be 4G. In (Knirsch et al., 2018), the total transaction overhead for one run of protocol is

2𝑀 + 𝑁𝑀𝑛, where M, N and n are number of EVs, CSs, and bids respectively. Fig. 4.6a shows

the comparison of transaction overhead for different number of EVs with 𝑀 = 5 and 𝑛 = 1. It

can be seen that our proposed protocol incurs less transaction overhead compared to the work in

(Knirsch et al., 2018). This is because the protocol in (Knirsch et al., 2018) proposes each CS

to send a bid transaction thus, increasing transaction overhead. Similarly, Fig. 4.6b shows the

comparison with respect to number of CSs. It can be seen that increasing CSs does not affect
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a) Random CSs in New York b) Computation time

c) End-to-End latency d) Pricing Comparison

Figure 4.5 Performance and pricing analysis

the transaction overhead because in our protocol, only single CS is taking part in blockchain

transaction unlike (Knirsch et al., 2018), thus providing better scalability.

Blockchain storage overhead: In this experiment, we compare the overall storage overhead

in the blockchain network with the baseline (work in (Knirsch et al., 2018)) in Fig. 4.6c and

Fig. 4.6d. In the reservation function, 𝑇𝐴 and 𝑇𝑠𝑒𝑙 can be represented by 2 bytes5 each. 𝐶𝑚 and

𝐶𝑝 can be represented by 2 bytes each (Knirsch et al., 2018), while 𝑆𝑜𝐶𝑑𝑒𝑠 and 𝑆𝑜𝐶𝑐𝑢𝑟𝑟 can

be represented by 1 byte each. Random number can be represented by 2 bytes. Similarly, the

5 https://www.ibm.com/support/knowledgecenter/
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a) Transaction overhead comparison for EVs b) Transaction overhead comparison for CSs

c) Communication overhead comparison for EVs d) Communication overhead comparison for CSs

Figure 4.6 Blockchain analysis

authentication transaction can be represented by 2 bytes, while 𝑇𝑠𝑡𝑎𝑟𝑡 and 𝑇𝑒𝑛𝑑 in the payment

transaction can be represented as 2 bytes each. Finally, the reputation transaction can be

represnted by a 30 bytes ID (Knirsch et al., 2018) and 1 byte for rating. In (Knirsch et al., 2018),

the total storage overhead for one run of protocol is 8 + 32𝑁𝑛 + 16 bytes, where N and n are

number of CSs, and bids respectively. Fig. 4.6c shows the storage overhead comparison for

different number of EVs. It can be seen that BlockEV incurs less storage overhead compared to

the baseline. Similarly, Fig. 4.6d shows the storage overhead comparison with respect to the

number of CSs. It can be seen that increasing CSs does not affect the storage overhead because

in BlockEV, EV is communicating with only single CS at a time unlike (Knirsch et al., 2018).
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We now provide a detailed transaction and storage overhead comparison of our proposed solution

with other schemes. We assume an EV charging network with N = 1000 EVs and M = 5 CS to

compare the transactions incurred by different schemes over a period of 1 day as shown in the

Table. 4.2.

Table 4.2 Blockchain transaction and storage comparison

Schemes Transaction overhead Transaction per day Storage per day

BlockEV 4𝑀 4000 784KB

(Knirsch et al., 2018) 2𝑀 + 𝑁𝑀𝑛 7000 1.288MB

(Gao et al., 2018) 10𝑀 10000 5.36MB

Storage overhead for EVs and CSs: In this work, we have considered Ethereum blockchain

to allow EVs and CSs to communicate through smart contracts. Thus, the private and public

keys (32 bytes and 64 bytes respectively) along with blockchain address (20 bytes) need to be

stored by both EVs and CSs in order to take part in EV charging protocol. Moreover, in order

to solve the decision optimization problem, EV needs to temporarily store the data to find the

best-suited CS. The RSU will broadcast the CS charging information to the EV which contains

the CS ID (30 bytes), location (6 bytes), start time of available charging slot (2 bytes), end time

of available charging slot (2 bytes), charging power (2 bytes), estimated waiting time (2 bytes),

charging cost per unit time (2 bytes), parking cost per unit time (2 bytes) and reputation (1 byte).

Adding them will result in a total of 49 bytes of broadcast information for one CS. Thus, the data

storage requirement for problem depends on the number of CSs. To generalize, the temporary

data storage requirement to solve the decision optimization problem can be represented as 49M,

whereM is the number of CSs.

Smart contract analysis: In order to evaluate the smart contract, we provide the gas cost

estimation of the functions. Gas cost is a unit that measures the amount of computational effort

that smart contract will take to execute certain operations. In order to calculate the gas cost, we

invoke the smart contract function with given input values. Once the transaction is added to

the blockchain network, we find the transaction with the help of transaction hash and find the

gas cost consumed to run the said function. As explained before, the smart contract includes
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four main functions: reservation, authentication, payment and reputation. Both EV and CS

send related information to the 𝑟𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 and 𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 function and the function is

executed and a transaction is written in the blockchain network if the information is matched

for both EV and CS. Once the charging is done, 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 function takes total charging time

information from the smart meter and transfers the coins from EV to CS. Finally, EV rates CS

through the 𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 function based on its user experience. We provide gas cost estimation

for functions in Table. 4.3.

Considering the gas cost and the associated dollar fee, one can say that this blockchain fee is

too expensive for EV charging. However this problem can be solved by using the blockchain

with low transaction fee, since our design can work with any blockchain with smart contract

functionality.

Table 4.3 Gas cost estimation for smart contract functions

Function Gas Units Gas Price (in Wei) Gas Cost (in Ethers)
reservation 35030 1000000000 0.00003503

authentication 24750 1000000000 0.00002475

payment 47900 1000000000 0.00004790

reputation 31390 1000000000 0.00003139

4.8 Conclusion

The untrusted centralized nature of energy markets and EV charging infrastructures results in

several privacy and security threats to EV user’s private information. In this work, we propose

BlockEV, a blockchain-based efficient CS selection protocol for EVs to ensure the security and

privacy of the EV users, availability of the CSs and enhanced overall EV user’s experience.

First, a blockchain-based framework is introduced to implement secure charging services and

trusted reservation for EVs with the execution of smart contract. Second, we theoretically

formulate the CS selection decision optimization problem. Evaluations show that our proposed

system incurs less blockchain transaction and storage overhead compared to existing schemes
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along with improved scalability. Moreover, we plan to extend this work by introducing the

privacy-preserving aspect in order to provide full privacy to the EV users and the CSs.
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This chapter describes our total order extension to content-based publish/subscribe systems.

Section 5.1 provides an introduction to security and privacy problems in EV charging network.

Section 5.2 introduces a blockchain-based EV charging architecture. Section 5.3 presents a

ring signature-based privacy-preserving reservation and payment scheme for the EV charging

network. Section 5.4 presents the CS information verification mechanism. Section 5.5 presents

the dispute resolution mechanism among EVs and CSs. Section 5.6 presents the security analysis

of the proposed protocol. Section 5.7 presents the evaluation and numerical results for the

proposed protocol.

5.1 Introduction

Electric vehicles (EVs) are among the emerging intelligent transportation system (ITS) ap-

plications in smart cities and have been recognized as a promising solution to reduce CO2

emissions compared to traditional gasoline vehicles (Goli & Eskandarian, 2014; Zhou et al.,

2017; Blum & Eskandarian, 2007; Pajic et al., 2018). With the number of EVs increasing rapidly,

by 2030 it is estimated that there will be 250 million EVs available annually (Liu et al., 2019).

Because of this dramatic growth, EV management may face many new challenges and therefore,

to provide vital comfort for EV drivers, there is a need to manage EV charging efficiently.
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Current charging networks allow EVs to communicate with charging stations (CSs) through

industry-standard protocols, such as the open charge point protocol (OCPP) and ISO 15118

(Antoun et al., 2020). These protocols are, however, not secure and pose serious privacy and

security risks. A trusted mobility operator facilitates the ISO 15118 protocol by performing

authentication and identification of EVs by maintaining their private information (Eiza et al.,

2018; Bao et al., 2018). Private information includes EV location, availability, identity, charging

and payment information, etc. Moreover, it also performs EV tracking to direct them to a desirable

CS, which raises serious concerns as EVs’ private information can be leaked unintentionally or

intentionally (Bao et al., 2018). Trusted central management reserves a charging slot for EVs

through the OCPP charging protocol by sharing EVs’ private information with selected CSs

(Antoun et al., 2020). In addition, despite the transport layer security (TLS) assurances in the

OCPP protocol, it is vulnerable to impersonation attacks where an attacker can pose as a CS to

ask for the EV’s private data (Antoun et al., 2020).

The tracking of an EV and collection of the private data associated with it by a trusted

centralized intermediary raises serious privacy and security concerns, as these private data

can be leaked/sold or used for malicious activities (Knirsch et al., 2018; Au et al., 2013). EV

locations may be exploited to target advertising by malicious businesses (Knirsch et al., 2018;

Cao et al., 2015). Similarly, attackers can use the EV owner’s private information to predict

behaviors such as workplace, working hours, and other important patterns as well as to track

positions (Knirsch et al., 2018; Clarke & Wigan, 2011). Moreover, these trusted intermediaries

are susceptible to single points of failure. These centralized EV charging protocols pose serious

security and privacy concerns for EVs as they require EVs to divulge private information to

central management and central scheduling to reserve a charging time slot. Because of the

aforementioned security and privacy concerns, a decentralized EV charging reservation protocol

is needed, in which EVs can communicate and reserve charging slots at the CS without revealing

their personal information while maintaining their privacy.

We propose the use of blockchain-based distributed ledger technology (DLT) (Pajic et al., 2018;

Li et al., 2019), to address the above-mentioned privacy and security problems. In the existing
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literature, privacy and security aspects of EV charging reservations are largely overlooked

(Knirsch et al., 2018; Danish et al., 2020c). As soon as the EV arrives at CS premises for

charging, its physical identity is exposed, i.e., its blockchain address can be linked with its

physical identity. The privacy of EV owners is particularly at risk due to the possibility of

personal information being leaked or sold to predict their daily habits and track their location.

Additionally, EV charging history and payment information can be retrieved using the exposed

blockchain address in a public blockchain setting. Therefore, it is necessary to ensure end-to-end

privacy preservation for EV owners. Additionally, the charging service payments via smart

contracts may disclose the blockchain address of the payer (EV) so that the CS can correlate it

with the physical identity of the payer. Therefore, it is also necessary to provide a design, that

hides the identity of the payer (EV) for smart contract-based payment mechanisms.

Furthermore, the existing works do not contain a mechanism for verifying whether charging

slots at CSs are available. To reserve a charging slot, EVs must trust the availability information

provided by CSs, which could lead to a reservation conflict. Moreover, there are no mechanisms

for resolving conflicts between EVs and CSs, and current works do not prevent disputes, such

as if a CS does not comply with the agreed service requirements or an EV does not pay the

required amount to a CS. As a result, there is a need to verify CSs information and resolve

conflicts between EVs and CSs without involving trusted third parties

In this paper, we propose a blockchain-based private CS reservation protocol that allows EV

owners to reserve a charging slot privately, without sharing their personal information or exposing

their blockchain addresses at the CS. EVs collaborate using ring signatures (Rivest et al., 2001)

to anonymously make a reservation at selected CS. To enforce charging reservations between

EVs and CSs, blockchain smart contracts are used. Additionally, a secure smart-contract-based

payment mechanism is implemented using a time-lock protocol, which aggregates the payer’s

transactions into an obfuscated public ledger, such that no outside observer can identify the

exact source of a blockchain transaction. The benefits provided by a blockchain include

anonymity, immutability, availability, transparency, and the ability to maintain trust in an

untrusted environment without a trusted third-party intermediary.
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In addition, the CS information verification protocol is implemented with the help of homomor-

phic encryption based secure multiparty computation (SMC), where EVs collaboratively verify

the available and occupied charging slots at nearby CSs by sharing their reservation information

with each other, given that no EV learns about the actual reserved charging slot information

of the other EVs. Finally, we propose a mechanism based on trusted execution environments

(TEEs) (Al-Bassam, Sonnino, Król & Psaras, 2018) that directly feed data into smart contracts

to resolve disputes. Data integrity is preserved through the execution and attestation of TEEs,

which are tamper-proof.

The proposed protocol aims to ensure EV anonymity and physical identity unlinkability on the

blockchain network in an untrusted environment along with the secure payment and conflict

resolution mechanism without the need for any trusted third party. This paper has the following

contributions:

1. We propose a blockchain-based end-to-end privacy-preserving CS reservation protocol,

which enables EVs to reserve a charging slot at the selected CS privately, without sharing

their private information with other entities in the network. Unlike previous protocols,

the proposed protocol protects the EV’s privacy by dissociating its real identity from the

blockchain address, thereby preserving the EV’s privacy.

2. We propose an SMC-based CS information verification protocol that allows EVs to

collaboratively verify the availability of charging slots from the CS by securely sharing

reservations in an untrusted environment. To the best of our knowledge, this problem has

not been addressed in previous works.

3. Based on time-lock deposit protocols, we propose a fair payment smart contract design

between EVs and CSs. EV drivers’ payments are fed into the smart contract, which

aggregates the balance in such a way that no CS is able to link charging service payments

with blockchain addresses, while still ensuring that CSs receive full payment for the services

they provide.

4. We propose a dispute settlement mechanism utilizing TEEs, where charging information

from EVs and CSs is securely fed to the dispute resolution smart contract. In the case of a
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possible conflict, the mechanism imposes a penalty for abnormal behavior both by EVs and

CSs.

5. We provide a detailed security analysis of the proposed protocol along with a detailed

comparison with industry standards and state-of-the-art schemes. To show the effectiveness

of the proposed scheme, we analyze the proposed protocol under different security threats.

6. We provide numerical results for the proposed protocol to demonstrate its effectiveness by

comparing it with other conventional schemes.

5.2 EV charging reservation problem

This section proposes a blockchain-based privacy-preserving EV charging network comprised

of CSs, EVs, RSUs, and a blockchain network. The EV charging network architecture is shown

in Fig. 5.1.

5.2.1 System model

We consider a network of M CSs from different competitive operators along with R RSUs,

deployed geographically in a city. M is a set of CSs, where 𝑚 ∈ M represents an arbitrary

CS. Similarly, R is a set of RSUs, where 𝑟 ∈ R represents an arbitrary RSU. A network of G

battery-operated EVs is also operating in the city, where 𝑔 ∈ G represents an arbitrary EV. Every

CS broadcasts its charging information to the R RSUs and every 𝑔 ∈ G receives this broadcast

information of CSs through the 𝑟𝑡ℎ RSU in their vicinity. Each 𝑔 needs to recharge its battery for

daily operations and using this broadcast information, it independently selects a CS to recharge

its battery (Danish et al., 2020c). Once the EV selects a CS based on its service requirements,

it makes a remote reservation at the selected CS for the required charging time slot. Once the

reservation is made, the EV goes to the CS premises to charge itself. EVs, RSUs, and CSs are

public entities, connected to a public blockchain network with smart contract functionalities.
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Figure 5.1 Blockchain-based privacy-preserving EV

charging network

5.2.2 Problem formulation

The main requirement when operating in a public environment is to ensure the privacy and

anonymity of the EV’s owner during the protocol’s communication. Prior works provided partial

anonymity and privacy, such that EV owners’ identities were revealed because of the links to

blockchain addresses, which exposed the history of EV charging and payments. In light of the

above security issues, we wish to ensure EV privacy in two ways. First, no entity within or

outside the network is allowed to access an EV’s private information or link any information to

an EV. In addition, once an EV has been charged and leaves the CS premises, no entity in or

outside the network can associate the EV’s physical identity with the blockchain address. In

summary, the research goals can be formally defined as follows.
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Goals:

• RSUs, CSs, or any external entity cannot link the reservation information to a certain EV,

i.e., the reservation mechanism should be anonymous and unlinkable.

• At CS premises, CS should not be able to link the blockchain address of EVs with the

physical identity of EV owners.

To achieve the goals presented above, we propose the use of ring signatures to ensure EV’s

anonymity and end-to-end privacy-preservation of EV’s identity. G EVs in the vicinity of any

given RSU collaborate using ring signatures to anonymously make a reservation at the selected

CS. RSUs and CSs are directly connected to a public blockchain network with a public account

to interact with the smart contract. EVs communicate with RSUs with the help of ring signatures

and subsequently, RSU makes reservations at CS on EV’s behalf on the blockchain network.

In this work, we consider a VANET communication technology to disseminate the information

from CSs to EVs through RSUs with a reliable communication channel and consider a

publisher/subscriber (P/S) push model where a nearby RSU (publisher) sends the broadcast

information from CSs to the EVs (subscriber), within its radio coverage, without any explicit

query (Danish et al., 2020c). Since P/S VANET dissemination is not the focus of our work,

we refer the readers to (Cao et al., 2015) for detailed information. Furthermore, we consider

a CS information broadcast scenarios, where each CS is connected to RSUs via a reliable

communication channel and each CS periodically submits its charging parameters to the RSUs

(Danish et al., 2020c). These charging parameters include the cost of charging, available

charging slots, estimated waiting time, and charging power. This CS charging information is

then broadcast to the nearby EVs by the corresponding RSU.

5.2.3 Privacy and security requirements

The main aim of this work is to ensure the end-to-end privacy of the participating EVs in

charging slot reservation and charging information verification protocols. The security and

privacy requirements need to be fulfilled during the execution of the proposed protocols.

• No participant taking part in the protocol obtains the EV’s private information.
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• No participant taking part in the protocol obtains information about the EV’s blockchain

address.

• No participant in the protocol links the EV owner’s physical identity to the blockchain

address.

5.2.4 Threat model

This work considers rational and malicious participants that may threaten EV security and

privacy in the EV charging network. We define the roles of different adversaries in EV charging

networks as,

• Rational CS: We consider CS as a rational adversary in our proposed system, i.e., it can

try to gather private information on EVs at the time of EV reservation and charging. CSs

can sell EVs’ private information to maximize their gain. Moreover, they can broadcast

incorrect charging slot information to lure EVs to their premises to learn about their private

information.

• Malicious EV: A malicious EV may reserve a charging slot at a given CS but never show up

at the time of reservation. Moreover, EVs may agree for charging services from selected CSs

and later refuse to pay the incurred charging cost to CSs.

• Honest but Curious RSUs: Unlike previous works, we assume an honest-but-curious RSU

approach, where the RSU operates honestly however, it wants to learn about the private

information of EVs and it can leak this sensitive private information related to EVs.

Finally, we assume that the security protocols and cryptographic primitives are inherently

secured and cannot be compromised.

5.3 Proposed reservation scheme

This section explains the blockchain-based privacy-preserving reservation and payment scheme,

which allows EVs to make a reservation and payment at the selected CS anonymously. An

EV that wants to make a reservation at CS communicates with the RSU with the help of ring
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signatures and subsequently, the RSU helps the EV to make a reservation with the CS on the

blockchain network. In this way, the privacy and anonymity properties of EVs are ensured

against RSUs and CSs as CS will see the blockchain address of RSUs instead of EVs. A

Monero blockchain provides ring signatures-based anonymous transactions however, we do

not use Monero blockchain for EV reservation because it does not support smart contracts,

and the reservation information needs to be executed in the smart contract environment after

checking the validity of information provided by the CS. However, Monero can be used for

charging service payment between EVs and CSs. Fig. 5.2 shows the interaction among

entities in a privacy-preserving EV charging network. The CS selection mechanism has been

covered in (Danish et al., 2020c). Before we provide the detailed specification of the proposed

privacy-preserving reservation and payment protocol, we present the preliminary step of CS

registration and public/private key generation for EVs and CSs.

5.3.1 System initialization

CS registration: CSs are public entities, deployed geographically to provide charging services

to EVs. CSs broadcast their charging parameters to the RSUs, therefore, all the CSs will first

register themselves at the RSUs by generating a set of public (𝑝𝑘𝐶𝑆𝑚) and private keys (𝑠𝑘𝐶𝑆𝑚).

After receiving the 𝐼𝐷, public key, and digital certificate (𝐶𝑒𝑟𝑡𝐶𝑆𝑚) information from CS, RSUs

will validate it, and eventually, it will be added to the list of available CSs. The registration step

is necessary as it will ensure that only authentic CSs register their charging offers at RSUs, thus

enhancing security.

Once the CSs are registered, they start sending their charging offers along with the charging

parameters to EVs via RSUs. EVs use this charging parameter information to select the best CS

among all (Danish et al., 2020c). In our previous work, we have covered the charging station

selection problem, and this work focuses on the privacy-preserving charging slot reservations at

a selected CS after the CS selection by EVs. The protocol consists of three parts, i.e., reservation,

authentication, and payment.
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Figure 5.2 Privacy-preserving CS reservation protocol

Key generation: First, RSUs will generate their set of private and public keys independently by

Gen(1𝜆)→ (𝑝𝑘𝑖𝑅𝑆𝑈 , 𝑠𝑘
𝑖
𝑅𝑆𝑈), by employing elliptic curve cryptography (ECC), where 𝑝𝑘 , 𝑠𝑘 , and

𝜆 represent the public key, private key and security parameters, respectively. After that, RSUs

will share their public keys with the respective EVs along with their IDs and digital signature

certificates. This way, EVs can verify the identity of RSUs with which they communicate.

Similar to RSUs, EVs will also generate their set of private and public keys independently by

Gen(1𝜆)→ (𝑝𝑘𝑖𝐸𝑉 , 𝑠𝑘
𝑖
𝐸𝑉 ), using ECC. These public keys will be shared among EVs to use for

ring signatures.
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5.3.2 Reservation

EV-RSU communication channel: In this protocol, we employ a ring signature scheme among

EVs while communicating with the respective RSU. In our framework, we consider a RSU as an

honest but curious entity. Therefore, it is necessary to hide the EV identity. EVs who want to

make a reservation at CS collaborate with other EVs in the vicinity of the RSU to hide their

identity. RSU can verify the signer EV information easily from the ring signature and use this

information to reserve a charging slot at CS.

Signature Generation: Let 𝐺 = (𝐸𝑉1, 𝐸𝑉2, ..., 𝐸𝑉𝑛) be a list of 𝑛 ring users’ public keys.

A vehicle 𝐸𝑉𝑆 (S denotes the signer) that wants to communicate with the RSU to reserve a

charging slot at CS uses a message 𝑀 , its private key 𝑠𝑘𝑆, and 𝐺 to produce a signature (𝑀, 𝜎)

as shown in Algorithm. 5.1. 𝑀 is the selected reservation information, i.e., CS ID, charging

price, charging slot time, which is shared with the RSU in order to make a reservation along

with the deposit proof, which will be explained in Section V-A. EV selects a CS from a given

list of available CSs (Danish et al., 2020c) and uses the selected CS information as message 𝑀 .

At the basic level, the signatures will be generated as in Algorithm. 5.1. More details about the

generation of ring signature are as follows:

1. 𝐸𝑉𝑆 that wants to make a reservation first selects 𝑁 public keys to form a set 𝐺 =

(𝑝𝑘𝐸𝑉1 , 𝑝𝑘𝐸𝑉2 , ..., 𝑝𝑘𝐸𝑉𝑛).

2. 𝐸𝑉𝑆 then computes a key from 𝑀 and G using a publicly known hash function:

𝑘 = ℎ(𝑀 | | (𝑝𝑘1, 𝑝𝑘2, ..., 𝑝𝑘𝑛))

3. 𝐸𝑉𝑆 then picks a binary random glue value 𝑣, where,

𝑣 ∈ {0, 1}𝑏

4. 𝐸𝑉𝑆 then chooses 𝑛 − 1 random numbers 𝑥𝑖 ∈ {0, 1}𝑏 for all the available public keys in G

and computes 𝑦𝑖 by encrypting 𝑥𝑖 with the corresponding public key in G. At this point,
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signer does not generate its own 𝑥𝑠. Set 𝑦𝑖 is calculated as,

𝑦𝑖 = 𝐸𝑝𝑘𝑖 (𝑥𝑖)

, where 𝑦𝑖 = {𝑦1, 𝑦2,..., 𝑦𝑠−1, 𝑦𝑠+1,...,𝑦𝑛} and 𝑥𝑖 = {𝑥1, 𝑥2,..., 𝑥𝑠−1, 𝑥𝑠+1,...,𝑥𝑛}. It should be

noted that 𝐸𝑉𝑆’s 𝑥𝑠 and 𝑦𝑠 are not included in these sets at this point and will be calculated

in the following steps.

5. To find 𝑦𝑠, a combining function is solved as follows,

𝐶𝑘,𝑣 (𝑦1, ..., 𝑦𝑛) = 𝐸𝑘 (𝑦𝑛 ⊕ (...𝐸𝑘 (𝑦𝑠 ⊕ (...𝐸𝑘 (𝑦1 ⊕ 𝑣))) = 𝑣

6. 𝐸𝑉𝑆 then calculates 𝑥𝑠 by using its own private key 𝑠𝑘𝑆 to decrypt 𝑦𝑠 as,

𝑥𝑠 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑠𝑘𝑆 (𝑦𝑠)

7. Once these calculations are performed, the ring signature 𝜎 can be represented as,

𝜎 = {𝑝𝑘1, 𝑝𝑘2, ..., 𝑝𝑘𝑠, ..., 𝑝𝑘𝑛; 𝑣; 𝑥1, 𝑥2, ..., 𝑥𝑠, ..., 𝑥𝑛}

Once the signature is calculated by 𝐸𝑉𝑆, it will be sent to the corresponding RSU along with 𝑀

for signature verification and charging slot reservation.

Signature Verification: After the ring signature is generated by the 𝐸𝑉𝑆, the corresponding

RSU will receive 𝜎 = {𝑀; 𝑝𝑘1, 𝑝𝑘2, ..., 𝑝𝑘𝑠, ..., 𝑝𝑘𝑛; 𝑣; 𝑥1, 𝑥2, ..., 𝑥𝑠, ..., 𝑥𝑛} for verification and

after successful validation, it will reserve a charging slot for EV. At the basic level, the signature

verification is performed as in the Algorithm. 5.2. More details about the verification of a ring

signature are as follows:

1. RSU will compute a key using 𝑀 and all the available public keys using a publicly known

hash function as,

𝑘 = ℎ(𝑀 | | (𝑝𝑘1, 𝑝𝑘2, ..., 𝑝𝑘𝑛))
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2. With the help of all the available public keys in 𝜎, the RSU will compute 𝑦𝑖 by encrypting

𝑥𝑖 with the corresponding public keys as,

{𝑦1, 𝑦2, ..., 𝑦𝑛} = 𝐸𝑝𝑘𝑖 {𝑥1, 𝑥2, ..., 𝑥𝑛}

3. After calculating the values 𝑦𝑖, the RSU will verify the correctness of the following equation

𝐶𝑘,𝑣 (𝑦1, ..., 𝑦𝑛) = 𝐸𝑘 (𝑦𝑛 ⊕ (...𝐸𝑘 (𝑦𝑠 ⊕ (...𝐸𝑘 (𝑦1 ⊕ 𝑣))) = 𝑣

4. If the equation holds true, the ring signature verification algorithm will return 1 and

subsequently, the RSU will make a charging slot reservation at CS using a smart contract.

The ring signature generation is set-up free, i.e., the signer does not need the assistance of the

other ring members to put them in the ring; all he needs is knowledge of their regular public keys

(Rivest et al., 2001). Therefore, even under the dynamic vehicle movement where the vehicle

corresponding to the selected public key is moving far away from the CS, or has entered in the

vicinity of another RSU will not affect the ring signature’s process. Because, in the end, the

signature generator is sending the list of public keys to the verifier along with the signature.

CS reservation: Once the ring signature is verified by the RSU, it will call the smart contract

function to reserve the corresponding charging slot at the selected CS. Similarly, to hide an

EV’s identity and dissociate the EV’s physical identity from the blockchain address, the RSU is

making a reservation at the CS on behalf of the EV. To make a reservation, RSU will call the

smart contract function which incurs some gas cost therefore, before making the reservation, EV

needs to pay RSU to make a reservation along with a valid signature. Although ring signatures

provide privacy to the EV’s identity, we propose a mixing scheme, e.g., tornado cash1 for EVs

to pay RSUs for reservations. The mixing service helps the user to mix their cryptocurrency

using specially developed algorithms to secure the sender’s identity. This will provide an extra

layer of anonymity to EVs while paying RSUs.

1 https://app.tornado.cash/
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Algorithm 5.1 Ring signature generation

Input: G, M, 𝑠𝑘𝑆
Output: A ring signature 𝜎 = (𝑝𝑘1, 𝑝𝑘2, ..., 𝑝𝑘𝑠, ..., 𝑝𝑘𝑛; 𝑣; 𝑥1, 𝑥2, ..., 𝑥𝑠, ..., 𝑥𝑛)

1 Initialize 𝐺, 𝑥𝑖, 𝑣, 𝑀 , 𝑦𝑖 ← 0

2 𝐸𝑉𝑆 selects CS and sets charging information as 𝑀 (Danish et al., 2020c)
3 Step 1: Select public keys 𝐺 = {𝑝𝑘1, 𝑝𝑘2, ..., 𝑝𝑘𝑛}
4 Step 2: Calculate the key 𝑘 = ℎ(𝑀 | | (𝑝𝑘1, 𝑝𝑘2, ..., 𝑝𝑘𝑛))

5 Step 3: 𝐸𝑉𝑆 generates a random value 𝑣 ∈ {0, 1}𝑏

6 Step 4: 𝐸𝑉𝑆 generates n-1 random value 𝑥𝑖 ∈ {0, 1}𝑏

{𝑦1, ., 𝑦𝑠−1, 𝑦𝑠+1, ., 𝑦𝑛} = 𝐸𝑝𝑘𝑖 {𝑥1, ., 𝑥𝑠−1, 𝑥𝑠+1, ., 𝑥𝑛}
7 Step 5: 𝐸𝑉𝑆 solves the combining function to find 𝑦𝑠

𝐶𝑘,𝑣 (𝑦1, ..., 𝑦𝑠, ..., 𝑦𝑛) = 𝐸𝑘 (𝑦𝑛 ⊕ (...𝐸𝑘 (𝑦𝑠 ⊕ (...𝐸𝑘 (𝑦1 ⊕ 𝑣))) = 𝑣
8 Step 6: 𝐸𝑉𝑆 calculates 𝑥𝑠 from 𝑦𝑠 using its private key 𝑠𝑘𝑆, 𝑥𝑠 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑠𝑘𝑆 (𝑦𝑠)
9 Step 7: 𝐸𝑉𝑆 will send the ring signature

𝜎 = {𝑝𝑘1, 𝑝𝑘2, ..., 𝑝𝑘𝑠, ..., 𝑝𝑘𝑛; 𝑣; 𝑥1, 𝑥2, ..., 𝑥𝑠, ..., 𝑥𝑛} along with 𝑀 to the

corresponding RSU

The smart contract reservation function will first compare the reservation information taken as

input from CS and RSU before confirming and sending a transaction to the blockchain network.

This is to ensure that CS has not changed the charging parameters provided at the time of

selection by EVs, e.g., the selected time slot, and charging price (Danish et al., 2020c). If the

required information matches, then the function will be executed and a transaction will be sent

to the blockchain network, thus, the reservation will be written on an immutable distributed

ledger. Finally, once the reservation is made, the RSU will broadcast this occupied charging slot

information to all the EVs in the vicinity.

5.3.3 Ev authentication

After the charging slot is reserved at CS and information is stored on the blockchain, the EV

owner needs to reach the CS premises to charge the vehicle at the reserved time. As any EV can

reach CS at the said time to claim a charging slot, EV needs successful authentication by the CS

before starting vehicle charging. We propose a public key-based EV authentication mechanism

for the CS, where an EV can generate a fresh public key for authentication purposes and share
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it with the RSU along with message 𝑀. Once the RSU has made the reservation, the CS will

encrypt the corresponding blockchain transaction hash along with a freshly generated random

number with the EV’s public key and share it with the corresponding EV. The transaction hash

corresponds to the charging slot time. Upon receiving, the EV will decrypt it using its private

key and subsequently, it will show this information to the CS at the CS premises to authenticate

itself to start charging. It must be noted that the public key is freshly generated for one time use,

and it will not leak any private information about EV.

The idea of using a transaction hash along with a random number helps in reservation information

verification along with EV authentication. When CS encrypts this information with the EV’s

public key, the EV can easily verify the validity of reservation by looking at the content of the

successful transaction, i.e., charging slot time and charging price. Moreover, a random number

is necessary to ensure the validity of authentication instead of just sending a transaction hash.

This is because RSU cannot be trusted and this transaction hash can be leaked intentionally

or unintentionally to other entities including EVs and any EV can show transaction hash to

CS at its premises. Therefore, a freshly generated random number is equally important for EV

authentication.

5.3.4 Fair payment in trust-less environment

This subsection addresses the following problem: how can smart contract-based payments can

be executed between EVs and CSs while ensuring the unlinkability of an EV’s blockchain address

with its physical identity?

According to current blockchain-based EVcharging systemsDanish et al. (2020c); Xu, Chen&He

(2021); Baza & et al (2021), EVs arrive at CS premises and charge themselves. When the EV is

fully charged, it calls the smart contract function to pay CS for its charging services and departs.

Current designs have the problem that the CS can view the sender address of transactions on

the blockchain network, and in this way, the CS can link the physical identity of EVs with the
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blockchain address. With the blockchain address exposed, CS can see the charging history and

payment history of the EV, which is dangerous for privacy.

Algorithm 5.2 Ring signature verification

Input: M, 𝜎 = (𝑝𝑘1, 𝑝𝑘2, ..., 𝑝𝑘𝑛; 𝑣; 𝑥1, 𝑥2, ..., 𝑥𝑛)
Output: {0,1}

1 Initialize 𝐺, 𝑥𝑖, 𝑣, 𝑀 , 𝑦𝑖 ← 0

2 Step 1: RSU computes key 𝑘 = ℎ(𝑀 | | (𝑝𝑘1, 𝑝𝑘2, ..., 𝑝𝑘𝑛))
3 Step 2: RSU calculates 𝑦𝑖 from 𝑥𝑖 using public keys

{𝑦1, ., 𝑦𝑠−1, 𝑦𝑠+1, ., 𝑦𝑛} = 𝐸𝑝𝑘𝑖 {𝑥1, ., 𝑥𝑠−1, 𝑥𝑠+1, ., 𝑥𝑛}
4 Step 3: RSU checks the correctness of the equation

𝐶𝑘,𝑣 (𝑦1, 𝑦2, ..., 𝑦𝑛) = 𝐸𝑘 (𝑦𝑛 ⊕ (...𝐸𝑘 (𝑦𝑠 ⊕ (...𝐸𝑘 (𝑦1 ⊕ 𝑣))) = v
5 Step 4: If step 3 holds, RSU reserves charging slot at CS

As a solution, we propose an ether-mixer smart contract that takes one-time deposits from EVs

(e.g., at the start of every month) and aggregates them to ensure that blockchain addresses

are not linked to deposits. Additionally, to execute the payment functionality for the charging

services, the smart contract keeps track of each CS’s balance and then adds it to the address

associated with that CS. Furthermore, the smart contract will lock the amount of each CS for a

certain period of time, e.g., a day. The total amount transferred to CS at the end of the day is

not distinguishable from where the individual amounts originated. To ensure normal protocol

execution among EVs and CSs, we also propose a deposit from CSs. The deposit will also

ensure that conflict resolution protocols are followed properly, and a deviation from normal

behavior will incur a penalty paid to the honest party. To begin operations, the proposed smart

contract will be deployed by the RSU. Smart contracts have different functionalities such as

storing funds, calculating payments, and transferring funds. In addition, the contract will inherit

the reservation contract to access the reservation parameters. The deposit functionality of the

smart contract will work in such a way that it will allow EVs to deposit funds with the help of

the deposit() function, where EVs will transfer the chosen amount to the smart contract address.

The function will assign the deposited amount to the user’s EV balance and the total balance of

the smart contract will add up after every deposit. Every EV user’s balance will be tracked by an
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Algorithm 5.3 Fair payment smart contract design

1 Contract Deployment:
2 RSU deploys the contract on blockchain network

3 RSU broadcasts the contract address

4 Initialize 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑇𝑖𝑚𝑒, 𝑚𝑎𝑝𝑝𝑖𝑛𝑔(𝑎𝑑𝑑𝑟𝑒𝑠𝑠 => 𝑏𝑎𝑙𝑎𝑛𝑐𝑒) balances
5 function Deposit(amount, contract address)
6 𝐸𝑉 → 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 (𝑎𝑚𝑜𝑢𝑛𝑡, 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑎𝑑𝑑𝑟𝑒𝑠𝑠)
7 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑂 𝑓 (𝑚𝑠𝑔.𝑠𝑒𝑛𝑑𝑒𝑟)
8 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑠[𝑚𝑠𝑔.𝑠𝑒𝑛𝑑𝑒𝑟] = 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 + 𝑎𝑚𝑜𝑢𝑛𝑡
9 function BalanceOf(address)

10 return 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑠[𝑚𝑠𝑔.𝑠𝑒𝑛𝑑𝑒𝑟]
11 function WithdrawEV()
12 require (𝑚𝑠𝑔.𝑠𝑒𝑛𝑑𝑒𝑟 == 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑𝐸𝑉)
13 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 → 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 (𝑎𝑚𝑜𝑢𝑛𝑡, 𝐸𝑉𝑎𝑑𝑑𝑟𝑒𝑠𝑠)
14 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑠[𝑚𝑠𝑔.𝑠𝑒𝑛𝑑𝑒𝑟] = 0

15 function WithdrawCS()
16 require (𝑚𝑠𝑔.𝑠𝑒𝑛𝑑𝑒𝑟 == 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑𝐶𝑆)
17 require (𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑇𝑖𝑚𝑒 > 𝑛𝑜𝑤)
18 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 → 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 (𝑎𝑚𝑜𝑢𝑛𝑡, 𝐶𝑆𝑎𝑑𝑑𝑟𝑒𝑠𝑠)
19 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑠[𝑚𝑠𝑔.𝑠𝑒𝑛𝑑𝑒𝑟] = 0

20 function Payment(amount) 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑠[𝐸𝑉]− = 𝑎𝑚𝑜𝑢𝑛𝑡
21 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑠[𝐶𝑆]+ = 𝑎𝑚𝑜𝑢𝑛𝑡

array mapping of addresses and balances. Since these deposits will be made at the inception of

EV’s charging service, one cannot link the physical identity with a certain address.

Additionally, the same deposit amount will be used to pay for CS charging services. The RSU

will sign a random transaction hash with EV’s public key and share it with the EV as deposit

proof. When EVmakes a reservation at CS, it sends the transaction hash as proof of deposit. CSs

will also use the deposit function to deposit some money as a guarantee that they will execute the

protocol correctly. Penalties will be deducted for malicious behavior by CSs. The smart contract

also defines three other functions related to EV and CS deposits, i.e., BalanceOf(), WithdrawEV()

and WithdrawCS(). The BalanceOf() function will help EVs obtain their remaining balance and

will also help RSUs to check if EVs have sufficient balance to reserve a time slot at CS. The
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WithdrawEV() and WithdrawCS() functions will allow EVs and CSs to withdraw the deposited

amount back to their own account, respectively.

After the EV reaches the CS and charges itself, it must pay the CS to use the charging services.

RSU is notified through an offline channel that the charging has been completed based on certain

parameters. As a result, the RSU will verify the reservation smart contract parameters and

confirm with the CS. If both parties agree, the RSU will call the payment() function of the

proposed smart contract. The amount will be deducted from the account of EV and added to the

account of CS in this function. The amount will not be deposited into the CS account at this

time as RSU will lock CS’s balance for a certain period of time, e.g., one day. RSU will keep

following the same protocol for other EVs and add the amount to CS’s balance. At the end of

the day, RSU will call the withdrawCS() function to transfer the overall amount to CS’s address.

The withdrawCS() function can be called either by RSU or CSs themselves. The smart contract

functions are shown in the Algorithm. 5.3.

It should be noted that at the end of the day, CS does not know what amount pertains to which

EV once it receives payment for its charging services. The smart contract will aggregate the

amounts in such a way that no CS can link the amount with its associated blockchain address.

Because the CS is unaware of the blockchain address, it cannot link the blockchain address

to the EV’s physical identity at the CS premises. EVs communicate with RSUs through ring

signatures and RSUs cannot link the physical identity of EVs with their blockchain address,

therefore preserving end-to-end privacy for the EV owner.

5.4 CS information verification mechanism

In this section, we describe a mechanism for verifying the availability of charging slots at CSs. In

the protocol, CSs broadcast their charging slot availability information to EVs at the beginning,

which is used to select the best CS. Because EVs must trust the available information provided

by CSs to make a reservation, and there is no way to verify the validity of the information, there

is a possibility of a reservation conflict. In this work, we use homomorphic encryption, where
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the encrypted reservation information can be added up for each CS ID to obtain the total number

of charging slots available at each CS without having to know the actual reservation information

of each EV.

Algorithm 5.4 CS information verification

1 Initialize 𝐺, 𝐻, 𝑝, 𝑞, 𝑔, 𝑟
2 Key Generation:
3 𝐸𝑉𝑠 generates 𝑝 and 𝑞 and calculates 𝑛 = 𝑝𝑞

4 𝐸𝑉𝑠 calculates 𝜆 = 𝑙𝑐𝑚(𝑝 − 1, 𝑞 − 1) and 𝜇 = (𝐿(𝑔𝜆 mod 𝑛2))−1 mod 𝑛
5 𝐸𝑉𝑠 calculates public key (𝑛, 𝑔) and private key (𝜆, 𝜇)
6 Secure summation:
7 𝐸𝑉𝑠 encrypts message, [𝑥𝑠] = 𝐸 (𝑥𝑠) = 𝑔𝑥𝑠 .𝑟𝑛 mod 𝑛2 and sends it to next 𝐸𝑉1
8 𝐸𝑉1 encrypts [𝑥1] = 𝑔𝑥1 .𝑟𝑛 mod 𝑛2, perform product of [𝑥𝑠].[𝑥1] = [𝑥𝑠 + 𝑥1], and

forwards to next 𝐸𝑉2
9 𝑁𝑡ℎ EV forwards [𝑥𝑠 + 𝑥1 + 𝑥2,..., 𝑥𝑛−1].[𝑥𝑛] to 𝐸𝑉𝑠

10 Summation Result:
11 𝐸𝑉𝑠 decrypts final message with private key (𝜆, 𝜇)

12 𝑆𝑢𝑚 = 𝐿([𝑥𝑠 + 𝑥1 + 𝑥2, ..., 𝑥𝑛−1, 𝑥𝑛]
𝜆mod 𝑛2).𝜇 mod 𝑛

13 Repeat for other CSs and broadcast result to other EVs

One can argue that anonymity is already coming through the ring signature-based scheme,

however, CS information verification is a separate mechanism, and is not related to privacy-

preserving reservation. Sharing the reservation information with other EVs or a central entity

without encryption could lead to EV’s privacy leak and will invalidate the ring signature based

reservation mechanism, as everyone can see which EV has made reservation to which CS.

Set-up: Let 𝐺 = (𝐸𝑉1, 𝐸𝑉2, ..., 𝐸𝑉𝑖) be the list of EVs who made a reservation at one of the

CS in 𝐻, where 𝐻 = (𝐶𝑆1, 𝐶𝑆2, ..., 𝐶𝑆 𝑗 ). Let 𝑥 ∈ {0, 1} denote if a vehicle 𝐸𝑉𝑖 has made a

reservation at any 𝐶𝑆 𝑗 . To execute the protocol, an EV will be selected randomly from the list of

EVs to generate a public/private key pair using the Paillier crypto-system and is denoted as 𝐸𝑉𝑠.

It is assumed that all the EVs taking part in the protocol are honest. Moreover, the protocol will

run for one CS at a time. At the basic level, the verification algorithm will be executed as in the

Algorithm. 5.4. More details about the protocol are given below.
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5.4.1 Key generation

The 𝐸𝑉𝑠 will first generate the public/private key pair using the Paillier crypto-system by

generating two large prime numbers 𝑝 and 𝑞 independently and randomly. Let 𝑛 = 𝑝𝑞 and

𝜆 = 𝑙𝑐𝑚(𝑝 − 1, 𝑞 − 1). It will then choose a random number 𝑔 ∈ Z∗
𝑛2
, while ensuring that n

divides the order of 𝑔 by checking 𝜇 = (𝐿(𝑔𝜆 mod 𝑛2))−1 mod 𝑛, where 𝐿(𝑦) = (𝑦 − 1)/𝑛. After

calculating the values of 𝑔 and 𝜇, the public and private keys are defined as (𝑛, 𝑔) and (𝜆, 𝜇),

respectively. This public key is broadcast to all the other EVs, while EV keeps the private key to

itself.

5.4.2 Secure summation

𝐸𝑉𝑠 will start the protocol by generating a random number 𝑟 ∈ Z∗𝑛 and encrypting its ownmessage

𝑥 with the public key, i.e., [𝑥𝑠] = 𝐸 (𝑥𝑠) = 𝑔𝑥𝑠 .𝑟𝑛 mod 𝑛2, where 𝐸 () represents encryption

function and [𝑥𝑠] represents encrypted message. After encryption, 𝐸𝑉𝑠 will send the encrypted

message to the next 𝐸𝑉1. 𝐸𝑉1 will encrypt its own message 𝑥 with the public key, i.e., [𝑥1]

= 𝑔𝑥1 .𝑟𝑛 mod 𝑛2. After encryption, it will perform product of [𝑥𝑠].[𝑥1], which yield [𝑥𝑠 + 𝑥1].

Once it is calculated, 𝐸𝑉1 will send the encrypted sum to the next EV, i.e., 𝐸𝑉2 and finally, the

encrypted message [𝑥𝑠 + 𝑥1 + 𝑥2, ... , 𝑥𝑛−1] will reach the final 𝐸𝑉𝑛.

5.4.3 Summation result

𝐸𝑉1 will encrypt its own message 𝑥 with the public key, i.e., [𝑥𝑛] = 𝑔𝑥𝑛 .𝑟𝑛 mod 𝑛2 and send

the product [𝑥𝑠 + 𝑥1 + 𝑥2,..., 𝑥𝑛−1].[𝑥𝑛] back to 𝐸𝑉𝑠. 𝐸𝑉𝑠 will decrypt the message using the

private key pair (𝜆, 𝜇), i.e., 𝑠𝑢𝑚 = 𝐿([𝑥𝑠 + 𝑥1 + 𝑥2, ..., 𝑥𝑛−1, 𝑥𝑛]
𝜆mod 𝑛2).𝜇 mod 𝑛. This protocol

is repeated until all the reservation slots are calculated for each CS. After calculation, the

𝐸𝑉𝑠 broadcast this information to all other EVs and all the EVs can cross-verify the charging

information provided by CSs.
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Following this protocol, the 𝐸𝑉𝑠 is able to decrypt the final message to obtain the summation

without knowing the actual value of any EV. Therefore, privacy-preserving secure summation

can be achieved.

5.5 Conflict resolution mechanism

In this section, we discuss a conflict resolution mechanism that can be used to resolve disputes

between EVs and CSs, while penalizing abnormal behavior. Due to the lack of conflict resolution

mechanisms for EVs and CSs in current works and their inability to prevent disputes, it is

necessary to enable dispute resolution among EVs and CSs without the involvement of trusted

third parties. The solution to this problem is to use the hardware root of trust and TEEs, where

the program inside the hardware is virtually a black box that cannot be altered or observed by an

attacker or device (Al-Bassam et al., 2018).

We assume that each EV and CS has a smart meter, with a trusted computing base (TCB), where

the hardware root of a trust resides. Only the output generated from this TCB is trusted in

the EV’s and CS’s smart meters. These outputs from EVs and CSs are communicated with

RSUs using a secure link. This secure hardware runs the energy-related programs, i.e., how

much energy has been consumed by the CS and EV. This information is then directly fed to the

conflict resolution smart contract with the help of RSU. Based on the input, a smart contract

calculates and imposes a penalty on an abnormal party. Moreover, the authenticity and integrity

of this information are also checked periodically with the help of remote attestation, which

guarantees the security of the device. This remote attestation is performed by a security service

using standard token verification. If the remote attestation verification is successful, the token

is generated and signed with the security service’s secret key, which represents proof that the

information generated using the secure hardware can be trusted. Examples of such services are

Intel attestation services and Azure sphere security.

At the CS premises, charging services are provided to the EV. In the normal execution of the

protocol, the EV will charge itself and pay the CS for the charging services. However, there
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is a possibility that either EVs or CSs do not execute the protocol normally. In this case, the

normal party will notify the RSU about the possible conflict through an offline channel. A

smart meter in the EV normally consists of an application and a cryptographic component. The

cryptographic component in the smart meter creates the attestation tokens using the key stored

in the hardware root of trust, which is periodically sent to the security service to generate the

attestation proofs. To start the conflict resolution protocol, EV or CS will execute a program in

the TEE, which calculates the energy consumption over a period of time. The output of this

program along with the attestation proof will be sent to the RSU. Upon receiving the EV and CS

energy consumption information update from a smart meter, the RSU verifies the message by

checking for a valid signature and remote attestation proof in the message. After verification,

the RSU will call the conflict resolution smart contract function with the input generated by EV

or CS. Examples of programs running in the TEE can be used to calculate the state of charge of

an EV’s battery over a period of time, and the energy consumed by CS over a period of time.

The smart contract will take the input from the RSU and check if CS has provided the charging

services correctly or if EV is fully charged as per the reservation information. After verification,

the smart contract will deduct the balance from the abnormal party and transfer it to the normal

party. This contract will also inherit the reservation contract to access the charging parameters

stored at the time of reservation. These parameters will be used to compare the reservation

information with the information generated by the TEE program. The smart contract function

will be called by RSU similar to the reservation function to ensure end-to-end privacy for EV

users and to ensure the unlinkability of public blockchain addresses with EVs’ physical identity.

However, it must be noted that TEE is vulnerable to different security threats and one must not

rely 100% on TEE for trusted execution of the conflict resolution mechanism. Some common

attack patterns against TEE are physical attacks, privileged software attacks, software attacks on

peripherals, address translation attacks, cache timing attacks, and side channel attacks, etc. In

future, we plan to explore other privacy-preserving methodologies to implement the conflict

resolution mechanism.
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5.6 Security analysis

This section presents the security and privacy analysis of the proposed protocol. We first discuss

how the proposed protocol achieves the security requirements explained in Section. 5.2 followed

by a detailed analysis on resilience against multiple security attacks.

Algorithm 5.5 Conflict resolution mechanism

1 RSU deploys conflict resolution smart contract

2 𝐸𝑉 or 𝐶𝑆 notifies RSU about possible conflict

3 𝐸𝑉 or 𝐶𝑆 executes the program in TEE to measure energy consumption

4 RSU receives and verifies the digitally signed output and remote attestation

5 RSU provides input to the smart contract

6 Smart contracts penalize abnormal parties and balance is transferred to normal parties

5.6.1 Security properties

EV Privacy: The main objective of this work is to ensure EVs’ privacy at the time of charging

slot reservation and payment, i.e., no entity in the network knows the real ID of EVs or their

associated blockchain addresses.

Theorem 1. The proposed protocol ensures EV anonymity against RSUs and CSs.

Proof: In our proposed protocol, EV is communicatingwith RSUswith the help of ring signatures,

i.e., by signing message with multiple public keys as 𝜎 = (𝑝𝑘1, 𝑝𝑘2, ..., 𝑝𝑘𝑠, ..., 𝑝𝑘𝑛; 𝑣; 𝑥1, 𝑥2, ...

, 𝑥𝑠, ..., 𝑥𝑛). The ring signature guarantees the anonymity of EV as the message is signed by

many public keys and the probability of finding the author of the ring signature message is

approximately 1
𝑛 . If k private keys are exposed out of n public keys, this probability increases

to 1
𝑛−𝑘 . As the anonymity guarantee is directly proportional to the number of public keys used

to sign the message, more public keys can be used to decrease the probability in the case of

exposed private keys. Similarly, RSU is making a remote reservation at CS on behalf of EV by

using a smart contract. The privacy of EVs’ blockchain address will be preserved and unlike

previous work (Danish et al., 2020c), it will not be revealed to a selected CS even after reaching
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the CS premises. Thus, no entity in the network including the RSU and CS knows about the

EV’s identity inside or outside the blockchain, during or after charging slot reservation.

Identity Unlinkability: Compared to previous works, this work ensures the EV identity

unlinkability property, i.e., dissociation of the EV physical ID with the blockchain address. First,

the EV uses ring signatures to communicate with RSUs to hide their identity. Moreover, payment

to the RSU is done through crypto-mixing services, which provides additional anonymity to

EV. Finally, the RSU makes a remote reservation on the behalf of the EV, which ensures the

unlinkability of the EV’s ID with its blockchain address. Even if the CS colludes with the RSU

and shares the EV’s physical identity with RSU at its premises, the RSU cannot determine the

blockchain address of the EV because of ring signatures communication, thus ensuring identity

unlinkability property of EVs.

Moreover, one can also consider a scenario, where the security camera at the CS premises tries

to record the car’s activity based on the plate number. Again, similar to the physical identity of

the EV owner, plate number cannot be associated with the blockchain address. One can keep

track of when the car comes to the CS, or where it goes and try to learn the car’s activity, but

this comes under the category of physical security and is out of the scope of this work. The aim

of this work is to ensure the unlinkability of any physical asset with the blockchain address, and

based on the proposed scheme, one cannot link the plate number to the blockchain address, thus

preserving the privacy of EV owner. However, in case of small number of EVs coming to the

CS on a certain day or a period of days, one can see the balances of the addresses in the smart

contract transaction history, which got changed over this period of time. A statistical correlation

analysis of physical identities/plate number with the blockchain address can compromise the EV

owner’s privacy. We plan to analyze and solve this problem in future work.

Another thing to be noted is that ensuring the identity unlinkability will create the problem in

traceability. As we cannot link the blockchain address with the physical identity, we cannot trace

back the EV. To solve this problem, a government authority can be introduced which keeps track

of the identity and blockchain information in case something goes wrong.
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Authentication: The proposed scheme ensures secure EV authentication at CS premises. At

the time of reservation, CS generates a random number and encrypts it with the EV’s public key

along with the transaction hash as,

𝐶𝑆 → 𝐸𝑉 : 𝑖𝑛𝑝𝑢𝑡 =
{
𝐸𝑛𝑐𝑝𝑘𝐸𝑉 (𝑡𝑥𝑛ℎ𝑎𝑠ℎ, 𝑟𝑎𝑛𝑑)

}
.

The transaction hash contains the reserved charging slot information for a given EV. At the CS

premises, EV needs to decrypt and share the message with its private key, which is matched by

CS for authentication purposes as,

𝐸𝑉 → 𝐶𝑆 :
{
𝐷𝑒𝑐𝑠𝑘𝐸𝑉 (𝑖𝑛𝑝𝑢𝑡)

}
.

𝐶𝑆𝑐𝑜𝑚𝑝𝑎𝑟𝑒 : {(𝑡𝑥𝑛ℎ𝑎𝑠ℎ, 𝑟𝑎𝑛𝑑)𝐸𝑉 | | (𝑡𝑥𝑛ℎ𝑎𝑠ℎ, 𝑟𝑎𝑛𝑑)𝐶𝑆}.

As this encrypted message can only be decrypted with the private key possessed by EV, it cannot

be decrypted by malicious entities in the network, thus leading to secure authentication.

Data integrity: The reservation information related to EV is stored on the blockchain network.

As a blockchain is an immutable ledger, no entity in the network can tamper with the reservation

information, i.e., charging price, charging slot time, etc., thus, ensuring data integrity and

immutability. Moreover, as the information is immutable, it will be helpful in the auditability of

the reservation information.

No trusted intermediary: Unlike traditional centralized EV charging networks, in our protocol,

a smart contract-based blockchain network is employed for charging slot reservations. EVs

do not need to trust a centralized third party to schedule a charging slot. Moreover, as the

reservation information is stored in the blockchain network, i.e., immutable ledger, it is possible

to trace any reservation in case of a possible issue, thus ensuring traceability.

However, it must be noted that it is possible for two EVs to reserve the same charging time slot

at the CS. Considering the fact that RSU makes a reservation for EV at the CS, it is possible for
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the RSU to reserve same charging slot without having the knowledge of EVs. We plan to solve

this problem in the future work.

5.6.2 Security attacks analysis and comparison

Tamper Attack: Once the reservation information is stored on the blockchain network, it

cannot be changed or modified due to the tamper-proof feature of blockchain. Moreover, the

ring signatures cannot be modified or created by a malicious entity. A malicious entity will

generate 𝜎′ = {𝑝𝑘1, 𝑝𝑘2, ..., 𝑝𝑘𝑠, ..., 𝑝𝑘𝑛; 𝑣; 𝑥1, 𝑥2, ..., 𝑥𝑠, ..., 𝑥𝑛;𝑀}, which will result in a key

𝑘′ = ℎ(𝑀 | | (𝑝𝑘1, 𝑝𝑘2, ..., 𝑝𝑘𝑛)). Ring verification will fail if the this key is used to verify

the signatures, i.e., 𝐶𝑘 ′,𝑣 (𝑦1, 𝑦2, ..., 𝑦𝑛) = 𝐸𝑘 ′ (𝑦𝑛 ⊕ (...𝐸𝑘 (𝑦𝑠 ⊕ (...𝐸𝑘 (𝑦1 ⊕ 𝑣))) ≠ v. Similar

reasoning can be provided for false data injection attacks. Therefore, the proposed protocol

provides protection against tamper and false data injection attacks, thus, preserving data integrity.

Repudiation Attack: In our proposed protocol, the smart contract reservation function is

executed only once the charging parameter information obtained from EV and CS matches.

Once the smart contract executes the reservation function, the information will be written in the

blockchain network. Since each entity has a specific blockchain address and transactions are

signed by public keys, no entity in the network can repudiate the information once it is stored on

the blockchain network, thus the protocol protects against repudiation attacks.

DoS Attack: A malicious EV can flood RSUs with charging reservation requests, however, the

proposed protocol protects against these kinds of attacks as a legitimate EV user communicates

with the RSU by using a ring signature and it needs to provide payment proof before the

reservation information is stored on the blockchain network. The RSU will not execute the

smart contract function until it obtains the proof of payment from an EV. Thus, the payment

functionality before reservation mitigates possible DoS attacks.

Man-in-the-middle (MITM) Attack: In the proposed protocol, EVs communicate with

RSUs by using ring signatures. Based on the correctness and soundness properties of ring

signatures, an honest RSU verifier will always accept a valid ring signature and if someone tries



145

Table 5.1 Security comparison

Functionality Proposed (Danish et al., 2020c) OCPP ISO15118 [6] (Said et al., 2013) (Yang et al., 2013) (Bodet et al., 2012)
No trusted intermediary � � 𝑥 𝑥 � � � 𝑥

End-to-End privacy preservation � 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥
Identity unlinkability � 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

Traceability & Accountability � � 𝑥 𝑥 𝑥 𝑥 � 𝑥
Data Integrity � � 𝑥 𝑥 � � � �

CS Information Verification � 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

to change/modify the ring signature or message on the way, the RSU will reject it as a false one.

Thus, our design can oppose the MITM attack.

Fake Reservation Attack: Amalicious EV can make a fake charging reservation at CS and never

appear. As explained before, the proposed protocol requires payment proof from EVs to RSUs

before a charging request is written on the blockchain network. Therefore, this functionality

of funds deposited before each reservation makes it hard for a malicious EV to launch a fake

reservation attack.

Table. 5.1 provides a detailed comparison of the security properties of our proposed protocol

with state-of-the-art schemes. It must be noted that, unlike previous frameworks, our proposed

protocol offers end-to-end privacy preservation for EV, where the physical identity of EV cannot

be linked with its blockchain address.

5.7 Performance evaluation

This section evaluates the proposed protocol in terms of performance along with blockchain

transaction and storage overhead.

5.7.1 System setup

We run our experiments on an 8𝑡ℎ Generation Intel 𝐶𝑜𝑟𝑒𝑇𝑀 i7-8650U Processor with 8 GB

RAM. We have implemented ring signatures and the proposed authentication protocol in the

Python programming language to validate the effectiveness and feasibility of the proposed

protocol. We implemented the blockchain functionality through the Go language implementation
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(Geth) and web3py, a Python library to interact with the Ethereum network. Moreover, we use

the Solidity programming language to implement the smart contract.

5.7.2 Results

Computation time: We first investigate the performance of the proposed ring signature-based

protocol in terms of ring generation and verification runtime as shown in Fig. 5.3a. These

experiments are run multiple times to average out the runtime values with a different number of

public keys. Moreover, we use the ECC based ECDSA python module to generate public and

private keys. Fig. 5.3a shows that increasing the number of public keys increases the generation

and verification time of the ring signature at the RSU. Here the public keys corresponds to the

number of EVs, one public key per EV. For a large number of public keys, it can take up to 1

minute to generate a ring. However, the time seems reasonable assuming EV needs to reserve a

time slot once in a day. The generation time depends on the computation power, and there exists

a trade-off between the number of public keys and EV user’s privacy.

An EV can use a large number of public keys to generate a ring to ensure high anonymity.

One can reduce the computation time by using fewer public keys, however, it comes at a cost

of low anonymity. Using the large number of public keys to generate ring signature give rise

to a limitation. A statistical analysis can find a good compromise between the security and

computation time trade-off, which is one part of the future work. It is possible that two EVs

want to reserve the same time slot at the same time, which could result in possible conflict. We

plan to resolve this problem in future work.

We then perform RSU sensitivity analysis, i.e., the ring verification time with an increasing

number of EVs as shown in Fig. 5.3b. To perform this experiment, we generate an ECC-based

public/private key pair randomly for each EV to generate the ring signatures. We then calculate

the ring verification time with an increasing number of EVs while considering one RSU. Fig.

5.3b shows that increasing the number of EVs increases the overall verification time. Considering

the first in first out (FIFO) scenario, EVs need to wait in a queue to communicate with the RSU
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a) Ring generation and verification runtime b) RSU sensitivity analysis

Figure 5.3 Ring signatures analysis

to reserve a slot. However, parallel execution at the RSU server can further decrease the time.

Moreover, the waiting time also depends on the number of public keys used by each EV.

a) Authentication runtime b) Authentication overhead

Figure 5.4 Authentication analysis

It may also be noted that the experiments are performed on laptop however, in real-world

scenarios, the EV owners will use their mobile phones or in-vehicle infotainment to make the

charging reservations. The computation capability differs among these devices.
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Authentication analysis: We further analyze the proposed authentication method in terms of

computation time and overhead and compare it with the state-of-the-art methods. We generate

a set of ECC-based public/private keys to perform this experiment. Moreover, we ran this

experiment 1000 times to average out the result as shown in Fig. 5.4a and Fig. 5.4b. Fig. 5.4a

shows the computation time of the proposed authentication protocol and compares it with a

state-of-the-art solution. The runtime includes the encryption time of the message by EV and

decryption time by the selected CS to verify the authenticity. It can be seen in Fig. 5.4a that the

proposed protocol incurs more time to authenticate the EV compared to the work in (Danish

et al., 2020c). This is because, in the (Danish et al., 2020c) solution, EV communicates directly

with CS however, in our work, the EV communicates with the RSU, which incurs more time in

the exchange of messages during the authentication process. However, the authentication time

seems reasonable assuming EV needs to authenticate only once at the CS premises at the time

of charging.

Similarly, Fig. 5.4a shows the computation time of the proposed authentication protocol and

compares it with a state-of-the-art solution. The message size and encrypted message size are

high compared to the state-of-the-art (Danish et al., 2020c) solution. This is because, in the

(Danish et al., 2020c) solution, only a random number is used to authenticate EV. However, we

use a transaction hash along with a random number to authenticate EV at the selected CS in

our work. Although our proposed protocol incurs more computation time and storage overhead,

unlike the (Danish et al., 2020c) solution, our proposed authentication method also allows EVs

to validate the reservation information provided by the RSU at the time of reserving a time

slot at CS. Finally, considering the implementation of the protocol as a mobile application, the

increased authentication time and overhead are still reasonable.

Blockchain overhead: We now investigate the blockchain storage and transaction overhead of

the proposed protocol in Fig. 5.6b and Fig. 5.6a, respectively. Fig. 5.6a shows the number of

transactions incurred by the proposed protocol and compares it with a state-of-the-art solution.

Since different schemes depend on the number of EVs and CSs, we consider 𝑁 = 1000 EVs

and 𝑀 = 5 CS to ensure common ground for comparison. Our proposed protocol incurs 2
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transactions, i.e., reservation and payment, therefore for G number of EVs, the total number

of transactions will be 2G compared to 4G and 2𝑀 + 𝑁𝑀𝑛 for the (Danish et al., 2020c)

solution and method presented in [9], respectively, where M, N, and n are the numbers of EVs,

CSs, and bids respectively. It can be seen from the plot that compared to the state-of-the-art

methods, our proposed protocol incurs less transaction overhead. Unlike the (Danish et al.,

2020c) solution, our design performs authentication off-chain, thus, leading to less transaction

overhead. Moreover, compared to (Knirsch et al., 2018), our proposed solution does not include

bids from CSs.

a) Verification computation time b) CS impact analysis

c) TEE computation time d) Gas cost analysis

Figure 5.5 CS information verification analysis
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Similarly, blockchain storage overhead analysis can be seen in Fig. 5.6b. Our storage overhead

analysis is similar to the work in BlockEV (Danish et al., 2020c). The only difference is that

we are not using any reputation or rating in our proposed protocol, which leads to low storage

overhead in our proposed protocol. Moreover, compared to the (Danish et al., 2020c) solution,

our proposed protocol incurs less transaction overhead, which leads to less storage overhead.

Fig. 5.6b shows that the proposed protocol incurs less storage overhead compared than BlockEV,

(Knirsch et al., 2018) and (Gao et al., 2018).

CS information verification analysis: We further investigate the performance of the proposed

CS information verification system. To perform the experiments, we use PHE, a Python-based

library to generate the keys through the Paillier cryptosystem, and to encrypt and decrypt the

EV’s reservation information. Moreover, we ran these experiments several times to average

out the results as shown in Fig. 5.5a and Fig. 5.5b. This verification time includes the key

generation, encryption and decryption time. Additionally, the experiments are performed with

localhost, therefore the delay in the network can change the overall verification time.

Fig. 5.5a shows the overall time to verify the CS information with an increasing number of

EVs for one CS. Fig. 5.5a shows that as the number of vehicles increases, the verification time

increases. An increasing number of EVs will result in more encryption operations before the

information can be decrypted, thus increasing the verification time. Similarly, Fig. 5.5b shows

the verification time with varying numbers of charging stations. It can be seen in the figure that

as the number of CS increases, the verification time increases. This is because the protocol

explained in algorithm 5.4 executes individually for each CS. This result shows the worst-case

scenario for multiple CS verification however, this time can be improved if EVs execute the

protocol in parallel for multiple CSs.

Conflict resolution analysis: We further investigate the performance of the TEE based conflict

resolution mechanism in terms of computation time. To perform the experiments, we assume

an Intel based TEE is installed on EV’s smart meter and communicates with the RSU server.

The RSU server is further connected to the blockchain network to provide input to the conflict
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a) Blockchain transactions b) Blockchain storage

Figure 5.6 Blockchain analysis

resolution smart contract. The experiments were executed on an Ubuntu 16.04.7 with a quad-core

Intel i7-8665U @1.9GHz processor and 8GB RAM. To simulate trusted execution environment

we implement Docker version 20.10.7 build f0df350 and SCONE along with its public CAS

scone-cas.cf version 5.6.0. Moreover, we run the experiments several times to average out the

results.

First the EV or CS will communicate with RSU on an offline channel about the possible dispute.

The RSU will then call the execution function on the EV’s or CS’s smart meter through the

web API as shown in Fig. 5.5c for RSU data processing. It takes approximately 2.01 seconds

for the enclave to process it because of network shielding, which allows network connections

to terminate inside the enclave. Once the connection is established, the function is run in

the enclave and a quote is generated for attestation of approximately 2 seconds. Finally, the

RSU performs remote attestation via an Intel Attestation Service (IAS) and this verification

takes approximately 1.901 seconds. Once remote attestation is performed, the RSU calls the

smart contract function to handle dispute. The TEE execution and remote attestation time are

reasonable, assuming a rare event of dispute.

Smart contract analysis: We provide a gas cost estimation to evaluate the smart contract

functionality of the proposed protocol and compare it with the state-of-the-art methods. The
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gas cost is a unit that measures the amount of computational effort that a smart contract will

take to execute certain operations. In our proposed protocol, a smart contract function named

𝑟𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 is called by RSU on behalf of EV to reserve a charging slot at the CS and write

it on the blockchain network. Fig. 5.5d shows comparison of the proposed reservation smart

contract function with the work in (Danish et al., 2020c). It can be seen in the table that the

required gas amount to execute the reservation function of the proposed scheme is lower than

that in (Danish et al., 2020c). It should be noted that the confirmation time of the transaction

depends on the gas price. Increasing the gas price results in low confirmation time, however, it

comes at the cost of a high transaction fee. We have also provided the gas cost with different gas

prices, i.e., 83, 88, and 146 Gwei, for cheap, average, and fast transactions, respectively. The

average confirmation time of a transaction in the blockchain decreases significantly by increasing

the Gwei gas price. We also provide the gas cost analysis of the payment functionality in Table

4.2. The average gas price, i.e., 88 Gwei is selected to calculate the overall gas price, however,

to increase the blockchain confirmation time, one can use a high gas price in Gwei.

Considering an average gas price of 88 Gwei, it takes 0.002911 ethers (almost 11 dollars, where

1 ETH = $3800) to reserve a charging slot on the blockchain network. In case of increased

Ethereum price, the price to reserve a charging slot will increase significantly. To decrease the

overall gas cost, one can use Layer 2 blockchain solutions, e.g., Loopring, which reduces the gas

fees to 1/30 - 1/100 of the gas fees on the Ethereum mainnet. Finally, any public blockchain

with cheap gas fee can be incorporated in our proposed design.

Table 5.2 Blockchain transaction and storage comparison

Function Gas cost Gas price (in Gwei) Gas price (in Ethers)

Contract deployment 674062 88 0.0559471

Deposit() 44020 88 0.0036537

WithdrawEV() 30383 88 0.0025218

WithdrawCS() 48162 88 0.0039974

Payment() 52727 88 0.0043763

UpdateT() 34120 88 0.002832
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5.8 Conclusions

The untrusted centralized nature of energy markets and EV charging infrastructures results in

several privacy and security threats to EV users’ private information. In this work, we proposed

a blockchain-based end-to-end privacy-preserving CS reservation and payment protocol, which

enables EVs to reserve a charging slot at the selected CS privately, without sharing their private

information or exposing their identity/blockchain address at CS premises, thus ensuring physical

identity unlinkability on the blockchain network. Additionally, we provided a decentralized

CS information verification protocol to mitigate possible charging slot conflict. Finally, we

proposed a dispute resolution protocol among EVs and CSs to ensure fairness and trust in the

EV charging network, and to enforce normal behavior in an untrusted environment. Security

analysis demonstrates that the proposed protocol ensures the end-to-end privacy of EV owners

with security against multiple attacks.





CONCLUSION AND RECOMMENDATIONS

Finally, this section provides a summary of the findings of this thesis in Section 6.1, as well as

an outlook on current and future work in Section 6.2.

6.1 Summary

Secure service provider selection methods for IoT applications did not get much attention in

the past. This was sufficient for earlier IoT applications as there were a few service providers.

However, this thesis argues that each individual IoT application is different when it comes

to functional and non-functional requirements. At the same time many service providers are

entering the market with differentiated business models and service abstractions, therefore,

depending on the QoS requirements for IoT applications, one service provider’s solution may be

better than the other. Thus, a service provider should be selected, based on the specific needs

and preferences of the end user IoT application. This thesis revolves around this hypothesis and

makes concrete contributions in three different aspects.

In Chapter 3, IoT large-scale data storage use-case is presented, which needs to be stored and

possess different service requirements in terms of data size, data retrieval frequency, price

and performance requirements, and are specific to the individual IoT application. Therefore, a

middleware is called upon, which performs the storage provider selection for the IoT application,

based on the application’s requirements and needs. These service requirements are captured in

the form of a cost function, and consequently an optimization problem is formulated, which

minimizes the overall cost associated with a service provider. To ensure the security, we integrate

blockchain technology, which enforces the normal operability of the middleware, and allows

IoT applications to verify the decision made by the middleware. Furthermore, to improve the

computational complexity arises by the middleware design, we propose a NN-based maintenance

strategy, which intelligently decides when to take the data storage decision, i.e., how often
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we find the solution to the optimization problem. We evaluate our middleware design, and

our results show that our middleware effectively reduces the price of IoT data storage, while

maintaining service requirements. Moreover, the solution to the optimization problem provides

relatively better accuracy compared to state-of-the-art with less computation time.

In Chapter 4, we investigate the problem of secure CS selection by EVs without sharing the

private information to a central entity or CS. Traditionally, these decisions are taken by the central

management system, which takes the EVs private information and schedule a charging station

slot at selected CS. However, this poses serious security threats to EV privacy, and to solve this

problem, we propose a decentralized CS selection mechanism. The service requirements of

EVs are captured in the form of a cost function, and consequently an optimization problem

is formulated, which minimizes the overall cost associated with a CS. We propose the use

blockchain technology to ensure the partial anonymity of EV owner at the time of reserving

a charging slot. EV owners reserves a charging slot remotely and pay for the availed services

through a smart contract functionality on the blockchain network. We evaluate our proposed

decentralized EV charging protocol with real-world New York CS dataset, and our results show

that our middleware effectively reduces the charging service price for an EV, while minimizing

the waiting time, charging time and travelling time. Moreover, as the user is not sharing any

private information with any entity in the network, the proposed protocol is providing anonymity

to the EV owner. Thus, compared to state-of-the-art schemes, our solution selects the best

charging station by fulfilling the EV user’s needs, while securing its identity.

Finally, in Chapter 5, we extend the work Chapter 4 and provides an end-to-end privacy-

preserving mechanism to secure the identity of the EV owner in a long run. In Chapter 4, when

an EV reaches CS to avail the charging service, CS can link the physical identity of the EV

owner with the blockchain address at the time of payment. This can pose serious threats to EV

owner security and privacy, as charging history can be retrieved with the blockchain address.
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To solve this problem, we propose a blockchain-based private CS reservation protocol that

allows EV owners to reserve a charging slot privately, without sharing their personal information

or exposing their blockchain addresses at the CS. EVs collaborate using ring signatures to

anonymously make a reservation at a selected CS. To enforce charging reservations between

EVs and CSs, blockchain smart contracts are used. Additionally, a secure smart contract based

payment mechanism is implemented using a time-lock protocol, which aggregates the payer’s

transactions into an obfuscated public ledger, such that no outside observer can identify the

exact source of a blockchain transaction. We evaluate our proposed protocol, and our results

show that the proposed protocol ensures end-to-end EV owners’ privacy with low blockchain

transaction and computation overhead.

6.2 Future work

We highlight some of the future work in both research directions.

6.2.1 Extending large-scale iot data storage selection

In our current middleware design for large-scale IoT data storage selection, both IoT application

and storage technologies are storing their parameters on the blockchain network. The current

design is not tailored to provide security to these parameters on the blockchain network. One

direction can be considered as how to store these parameters on blockchain network in such

a way that one can still verify the decision correctness of the middleware design. Moreover,

currently middleware is solving an optimization problem for different IoT applications as the

devices are power constraints and cannot perform huge calculations. Another direction can be

to shift this decision capability to IoT devices itself, so they do not need to share the private

data to storage technologies or the blockchain network. This can be done by a decentralized

optimization problem or by proposing lightweight algorithms to find the solution. Finally, the

parameters uploaded by the storage technologies are trusted values and cannot be verified. One
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direction can be to propose a mechanism which allows IoT applications to audit and verify the

validity of the parameters associated with the storage technologies. Once these parameters are

validated, one can implement smart contract functionality to automatically impose penalty, if

the storage technologies fail to meet the application’s promised QoS.

6.2.2 Extending decentralized EV charging network

In Chapter 4, we propose a decentralized CS selection mechanism, which uses a pub/sub

mechanism to push charging information to the EVs. This work assumes that the channel

is reliable when CSs broadcast the CS information to RSUs and RSUs then forwards this

information to EVs. However, this is not a straight forward method as it needs proper modelling

on physical and MAC layer. This work can be extended by proposing a reliable channel for

message broadcasting service. Moreover, the work also considers the reputation mechanism and

stores reputation directly on the blockchain network. The work does not solve the problem if a

malicious user provides wrong information about a certain EV and wrong reputation value is

stored and cannot be deleted. This problem can be addressed in future, where a mechanism is

provided to make sure that only correct reputation values are stored on the blockchain network.

One can also stores these values off-chain on decentralized storage technologies, e.g., IPFS or

Storj. Furthermore, the RSU has been considered trusted in this work. One can extend this work

by considering RSU as a malicious entity and provide the same security guarantee to the EV

owners.

In Chapter 5, we propose a decentralized CS reservation and payment mechanism, which uses

a ring signature mechanism to reserve a charging slot and time-lock mixing smart contract to

ensure anonymous payments. The protocol works well with large number of EV participants,

however, in case of small number of EVs coming to the CS on a certain day or a period of days,

one can see the balances of the addresses in the smart contract transaction history, which got

changed over this period of time. A statistical correlation analysis of physical identities/plate
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number with the blockchain address can compromise the EV owner’s privacy, One research

direction can be to solve this problem in future work. Moreover, the experiments in this work

are performed on laptop however, in real-world scenarios, the EV owners will use their mobile

phones or in-vehicle infotainment to make the charging reservations. The computation capability

differs among these devices, therefore, the computation time can be increased or decreased

depends on the device specifications in terms of performance. So, another research direction

is to test the protocol on hardware to see the possible performance and security aspects of the

proposed protocol. Also, in this work, using the large number of public keys to generate ring

signature give rise to a performance limitation, as it may take more than a minute to reserve a

charging slot. It is possible that two EVs want to reserve the same time slot at the same time,

which could result in possible conflict. This problem can be resolved by proposing a solution in

future work.

6.3 Other possible applications

The privacy-preserving selection services can also be proposed for other application including

ride-sharing application and P2P prosumer energy markets.

6.3.1 Ride-sharing application

Ride sharing services assist drivers to find proper riders for vacant seats on the road, providing

appealing benefits of shared travel cost and improved vehicle occupancy, which have revo-

lutionized transportation business, as witnessed by the success of Lyft Line, UberPool, and

Waze Carpool. To initialize a sharing trip, a driver sends a ride offer or a rider sends a ride

request to a trusted ride sharing server for finding rider-share partners with similar itineraries.

Selecting proper ride-share partners for drivers based on riders’ trip data is essential for ride

sharing services, but it also leads to the exposure of drivers’ and riders’ future locations and

trajectories, as the trusted server may not be fully trusted, i.e., it has numerous motivations
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to share the detailed trip data with their cooperators for monetary reasons. Therefore, it is

necessary to select the driver based on the service requirements of the rider, while ensuring

the location and identity privacy of the rider, with a minimal trust assumptions or without the

use of trusted third-party servers. Moreover, a privacy-preserving payment mechanism among

drivers and riders can also be considered to ensure anonymous riding history. Our proposed

privacy-preserving selection mechanism can be used to provide solution to the above mentioned

problems with proper modifications according to the application requirements.

6.3.2 P2P energy trading market

Recent years distribution systems have witnessed a rapid interconnection of distributed energy

resources (DER), solar energy generation and EVs in particular. Electricity customers equipped

with DERs are transforming their roles from pure electricity consumers to prosumers (they can

also sell energy), thus enabling P2P energy markets. However, the decision making for the

buyers to select an appropriate energy seller is not an easy task as many important fac- tors

need to be considered including price, seller availability, seller-buyer distance, the credit score,

and seller downtime etc. Moreover, the participating parties in the energy market cannot be

trusted for buyer’s and seller’s private information, as this information can be used to track the

vehicle’s location or user’s daily behavior. Therefore, it is necessary to select the seller based

on the service requirements of the buyer, while ensuring the location and identity privacy of

both parties. Our proposed privacy-preserving selection mechanism can be used to select the

appropriate seller in a P2P energy market.
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