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MQTT2EdgePeer : une communication Edge Peer-to-Peer robuste et évolutive
Infrastructure pour la publication/abonnement thématique
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RÉSUMÉ

Ces dernières années, il y a eu une croissance sans précédent du nombre d’appareils Internet des

objets (IoT), ce qui a entraîné une adoption généralisée d’appareils interconnectés dans divers

secteurs tels que les domaines résidentiel, médical, des transports, agricole et industriel. Cette

montée en flèche des dispositifs IoT a créé à la fois des opportunités et des défis, nécessitant une

attention particulière aux aspects de communication dans la conception des protocoles et des

systèmes IoT. Un facteur critique à prendre en compte dans la conception de la communication IoT

est la nécessité d’une utilisation efficace de la bande passante. Les appareils IoT ont généralement

des ressources de bande passante limitées, qui doivent être gérées avec soin pour s’adapter au

volume croissant de données générées et transmises par ces appareils. Une autre considération

cruciale dans la conception de la communication IoT est l’importance d’une faible latence. De

nombreuses applications IoT nécessitent un échange de données en temps réel ou quasi réel

pour une prise de décision et une réactivité rapides. Par conséquent, minimiser la latence, ou le

délai de transmission des données, devient essentiel pour répondre aux exigences strictes des

applications IoT sensibles à la latence. Dans cette étude, nous introduisons MQTT2EdgePeer, un

nouveau système de publication/abonnement basé sur un sujet construit sur un réseau superposé

peer-to-peer structuré pour une diffusion efficace des messages. La diffusion des messages est

facilitée par des approches basées sur des coordonnateurs à saut unique et à sauts multiples.

MQTT2EdgePeer s’intègre de manière transparente au protocole MQTT standard, permettant

une connexion sans effort pour toutes les applications IoT. L’implémentation et le déploiement

de MQTT2EdgePeer à la périphérie sont présentés, accompagnés d’évaluations expérimentales

qui incluent une analyse comparative avec une approche traditionnelle d’arbre à racine unique.

Les résultats obtenus valident l’efficacité de MQTT2EdgePeer sous divers aspects, notamment la

répartition de la charge, la latence, l’utilisation de la bande passante, l’évolutivité et la tolérance

aux pannes.

Mots-clés: Internet des objets, Publier/S’abonner, Pub/Sub thématique, MQTT, Peer-to-Peer,

Edge Computing
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ABSTRACT

In recent years, there has been an unprecedented growth in the number of Internet of Things

(IoT) devices, resulting in a widespread adoption of interconnected devices across various

sectors such as residential, medical, transportation, agriculture, and industrial domains. This

surge in IoT devices has brought forth both opportunities and challenges, necessitating careful

consideration of communication aspects in the design of IoT protocols and systems. One

critical factor to consider in the design of IoT communication is the need for efficient bandwidth

utilization. IoT devices typically have limited bandwidth resources, which must be carefully

managed to accommodate the increasing volume of data generated and transmitted by these

devices. Another crucial consideration in IoT communication design is the importance of low

latency. Many IoT applications require real-time or near real-time data exchange for timely

decision-making and responsiveness. Therefore, minimizing latency, or the time delay in data

transmission, becomes essential to meet the stringent requirements of latency-sensitive IoT

applications. In this study, we introduce MQTT2EdgePeer, a novel topic-based publish/subscribe

system constructed upon a structured peer-to-peer overlay network for efficient dissemination of

messages. The dissemination of messages is facilitated through both single-hop and multi-hop

coordinator-based approaches. MQTT2EdgePeer seamlessly integrates with the standard MQTT

protocol, allowing effortless connection for any IoT applications. The implementation and

deployment of MQTT2EdgePeer at the edge are presented, accompanied by experimental

evaluations that include a comparative analysis with a traditional single rooted tree approach.

The results obtained validate the efficacy of MQTT2EdgePeer in various aspects, including load

distribution, latency, bandwidth usage, scalability, and fault-tolerance.

Keywords: Internet of Things, Publish/Subscribe, Topic-based Pub/Sub, MQTT, Peer-to-Peer,

Edge Computing
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INTRODUCTION

The Internet of Things (IoT) is a paradigm that refers to a ubiquitous network of heterogeneous

devices that are interconnected via the Internet. The recent advancements in IoT technologies,

including hardware, software, and networking, have facilitated its rapid proliferation, with

projections of up to 75 billion interconnected devices by 2025 (Alam, 2018; Jamali, Bahrami,

Heidari, Allahverdizadeh & Norouzi, 2020). The integration of IoT technology has found

widespread adoption across various sectors, such as smart homes, healthcare, transportation,

agriculture, and industrial applications, leading to a paradigm shift in people’s daily lives. By

enabling efficient, productive, and safe functioning of processes and systems, IoT has gained

traction in the scientific community. A smart city represents a prime example of IoT application

in a large-scale environment, where all objects, such as vehicles, traffic lights, surveillance

cameras, and other IoT devices, cooperate and exchange data to make informed decisions. In

such a setting, vehicles exchange data, such as location, speed, traffic intensity, weather, and road

conditions, with nearby devices to optimize their speed and select the most efficient route to their

destination. Traffic lights are scheduled based on data received from vehicles and surveillance

cameras to mitigate traffic congestion. Overall, the deployment of smart city IoT systems results

in increased efficiency and productivity, reduced fuel consumption and commuting time, and

enhanced safety by minimizing the risk of vehicle collisions.

Internet of Things (IoT) systems are designed to handle vast amounts of data generated by IoT

objects, while the traditional approach of transmitting all the data to the cloud is unreasonable due

to the limited network bandwidth capacity (Ai, Peng & Zhang, 2018). Recently, there has been a

trend in IoT systems to shift the communication and computation environment from the cloud to

the edge, which has emerged as a promising approach (Satyanarayanan, 2017). Edge computing

provides a decentralized distributed computing environment near edge/IoT devices, which can

perform with lower latency and lower costs compared to the centralized model. IoT devices,

with their affordable cost and sufficient computational power, can run applications and even
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operating systems (Taivalsaari & Mikkonen, 2017). Although edge computing cannot match the

computation and storage capacity of cloud servers, it offers advantages such as short-distance

communication and faster response time, which are highly desirable for many IoT systems.

Developing IoT systems is extremely challenging due to the heterogeneity and diversity of

IoT devices and networks (Razzaque, Milojevic-Jevric, Palade & Clarke, 2015). The most

ubiquitous approach for constructing communication infrastructure in IoT systems is based on the

publish/subscribe (pub/sub) paradigm (Gargees & Scott, 2018; Redondi, Arcia-Moret & Manzoni,

2019; Lv, Wang, Zhu, Deng & Gu, 2019; Diro et al., 2020; Hasenburg & Bermbach, 2020).

The pub/sub model provides a highly decoupled communication system that can efficiently

manage the massive flow of events among IoT entities, as it introduces a message-oriented

middleware (MoM) for IoT device communication. In contrast to the request-reply messaging

model, the pub/sub paradigm maintains a decoupling between the message producer (publisher)

and consumer (subscriber), with the third component (broker) mediating messages between

publishers and subscribers.

The implementation of pub/sub for IoT typically involves deploying a server, such as an

edge-based or cloud-based broker, to relay messages between IoT devices (i.e., publishers and

subscribers). While the pub/sub MoM efficiently decouples communications, a single broker

design can limit the system in terms of resource provisioning (i.e., computation, communication,

and storage), scalability, and fault-tolerance. Increasing the number of brokers can improve

the system limitations compared to the single broker design. However, it still faces challenges

such as message dissemination, message routing, load balancing, scalability, and resiliency.

Therefore, our research focuses on building a distributed, robust, and scalable pub/sub system

that leverages the capabilities of brokers’ networks to address the aforementioned challenges.
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0.1 Contribution

The thesis introduces MQTT2EdgePeer, a robust and scalable peer-to-peer (P2P) edge com-

munication infrastructure for topic-based pub/sub. The system utilizes novel one-hop and

multi-hop message dissemination approaches to efficiently distribute load among peers, thereby

reducing latency and bandwidth usage for the entire system. Additionally, it remains available

by providing a fault-tolerance mechanism and easily scales up over the unmanaged P2P overlay

network. Finally, the system integrates MQTT, the standard IoT communication protocol, to

make it accessible to any IoT system with an MQTT client.

0.2 Thesis organization

The thesis is organized with the following structure: Chapter 1 introduces the research by

highlighting the main themes explored and conducting a comprehensive review of the existing

literature. In Chapter 2, the architecture of the proposed system is discussed in detail, providing

a thorough explanation of the problem statement and the objectives defined. Moving forward,

Chapter 3 provides a detailed account of the software tools and libraries employed during the

development of the proposed methodology. Chapter 4 focuses on the evaluation of the proposed

approach within a practical Internet of Things (IoT) environment.





CHAPTER 1

BACKGROUND AND LITERATURE REVIEW

The chapter provides an introduction to key concepts that will be covered in the rest of the thesis.

These include the IoT general concepts (Section 1.1), pub/sub middleware (Section 1.2), and

overview of pub/sub systems (Section 1.3). It also explains the connections between the IoT and

these systems, and gives a summary of existing research in the area.

1.1 IoT general concepts

In this section, we provide the definition of computing models, communication models, protocols,

resource management, middleware, and how to evaluate middleware using benchmarks.

1.1.1 Cloud computing

Cloud computing has become a vital aspect of modern-day computing, and its significance has

been increasing exponentially. The combination of hardware and software resources at data

centers and their delivery to end-users as services over the Internet has made it possible to offer

various services that were previously impossible or too expensive.

The three main categories of cloud services, SaaS, PaaS, and IaaS, provide users with different

types of cloud services, each with unique characteristics. SaaS, which delivers software directly

to end-users, has been adopted by many businesses and individuals. Examples of popular SaaS

offerings include Google’s Gmail and Microsoft’s Outlook. PaaS, on the other hand, provides

developers with a development platform that enables the creation of cloud-based applications.

PaaS offerings such as AWS Lambda and Azure Functions have gained popularity as they

enable developers to create, deploy, and run applications without worrying about underlying

infrastructure.

IaaS provides virtual resources such as virtual machines, virtual storage, and virtual networks as

a cloud service, allowing businesses to access computing resources on-demand without the need
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to invest in physical hardware. Examples of IaaS services include Microsoft’s Azure Virtual

Machines, Amazon’s Elastic Compute Cloud (EC2), and Google Compute Engine (GCE).

The flexibility and scalability of cloud computing services make them an attractive option for

businesses looking to reduce their infrastructure costs, improve their efficiency, and enhance

their agility. Moreover, cloud computing has made it possible to offer advanced services such as

artificial intelligence, big data analytics, and the Internet of Things (IoT), which were previously

out of reach for most businesses due to their high costs and technical complexities.

1.1.2 Edge computing

Edge computing, a relatively new paradigm, involves storing and processing data at the network

edge (Yu et al., 2018). The concept behind edge computing is to leverage the proximity of

end-users to reduce network traffic, latency, and bandwidth usage.

The proliferation of IoT devices has resulted in an exponential increase in data generation at the

edge, creating the need for an efficient and scalable way of processing and managing data. Edge

computing offers an effective solution to this challenge by providing a distributed computing

infrastructure that moves processing closer to where the data is generated.

One of the key advantages of edge computing is the ability to offload traffic from the IoT-to-

cloud and cloud-to-IoT, resulting in reduced network congestion and improved performance.

Additionally, resource provisioning at the edge, including computation and storage, ensures that

data is processed and analyzed at the source, reducing latency and response times.

1.1.3 Fog computing

Fog computing is a paradigm that involves the horizontal-level union distribution of resources,

such as storage and computation services, between cloud and objects at any point on the network

(Ai et al., 2018). Fog computing differs from edge computing in several ways.
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Firstly, fog computing enables resource coordination and distribution throughout networks and

among devices at the edge. In contrast, servers and application placement are integral parts of

the edge architecture.

Secondly, fog computing involves collaboration between the cloud and edge, whereas the

separation from the cloud is a characteristic of edge computing.

Fog computing provides several benefits compared to traditional cloud computing. By moving

computation and data storage closer to the edge, fog computing offers improved response times,

reduced latency, and network congestion. Additionally, fog computing can handle the increasing

volume of data generated by IoT devices, allowing for more effective and efficient processing

and analysis.

1.1.3.1 Cloudlet

Cloudlet refers to a smaller and more limited version of common cloud servers located at the

network edge that is accessible by nearby IoT devices (Satyanarayanan, Bahl, Caceres & Davies,

2009). It provides the ability to host latency-sensitive and computation-intensive applications,

such as wearable cognitive aid systems, at the edge (Ha et al., 2014; Satyanarayanan et al.,

2015a).

Furthermore, computation at the edge through cloudlet reduces traffic to/from the cloud and

increases the resilience of IoT systems in case of cloud unavailability or failure (Satyanarayanan

et al., 2013, 2015b).

Cloudlet provides several advantages, such as reducing network congestion, providing lower

latency, and enhancing data privacy and security. Additionally, it enables new IoT applications

that require high computation power and low latency.
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1.1.4 Communication models

There are three main communication models for building IoT devices. The first model is device-

to-device (machine-to-machine) communication, which involves low packet data transmission

through a direct connection between devices. However, it suffers from the limitation of different

protocols of various device manufacturers. An example of this model is shown in Figure 1.1

(A), which illustrates the direct connection between a light bulb and a light switch from different

manufacturers through a wireless network.

To address the limitation of the device-to-device model, cloud services are used to connect devices

to cloud servers. Figure 1.1 (B) shows the device-to-cloud model, where cloud application

services enable the connection among devices with different communication protocols (i.e.,

HTTP, CoAP, DTLS, TLS, TCP, UDP). However, the performance of this model is highly

dependent on network features such as bandwidth and distance. To address this issue, a

proxy/middleware is deployed to refine and control the flow of data between the devices and the

cloud server.

This leads to the third model, which is the device-to-gateway or device-to-application-layer

gateway (ALG). The device-to-gateway model enables partial computations at the application

layer, along with network flexibility and security improvements. Figure 1.1 (C) illustrates the

local gateway control data communication between front-end sensors/devices and far-end cloud

services, at a near-end region.

1.1.5 Communication Protocols

In this subsection, we will provide a brief explanation of several IoT protocols, detailing their

features and outlining their benefits.
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Figure 1.1 An example of different communication models

for IoT systems.

Taken from (Yu et al., 2018)

1.1.5.1 MQTT

MQTT is a protocol for publish/subscribe communication based on topics (MQTT, 2023).

It provides a communication infrastructure that is fully decoupled, making it well-suited for

IoT systems and edge computing. The protocol employs hierarchical subscriptions, using

human-readable strings as topics. MQTT allows clients to initiate connections with brokers,

which monitor connections for link/device failure. MQTT has different commands to control

packets, such as connect, subscribe, publish, unsubscribe, disconnect, etc.

The protocol also provides three levels of Quality of Service (QoS). Level-0 has no message

delivery guarantee, while level-1 provides a message delivery guarantee with the possibility

of message redundancy. Level-2 provides strict message delivery guarantees and ensures that

messages are received only once.

Some other MQTT features include persistent sessions and queuing messages to avoid information

loss due to client-broker connection interruption, retained messages to provide an immediate

update for new subscribers, last will testament messages to notify clients about unexpected
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connection loss of another client, wild cards enable flexible and efficient subscription and

filtering of MQTT messages, and the keep-alive function to ensure client-broker connectivity.

1.1.5.2 MQTT-S

MQTT-S is a protocol based on the standard MQTT pub/sub protocol, specifically designed

for low-cost and low-power sensor/actuator (SA) nodes over bandwidth-constrained networks

such as ZigBee and TinyOS (Hunkeler, Truong & Stanford-Clark, 2008). All functionalities

of MQTT are included in MQTT-S, except QoS, as the MQTT-S gateway (GW) cannot delay

receiving acknowledgement from the client API. To optimize performance for devices with

limited resources such as processing, storage, and battery, MQTT-S performs processing at the

gateway/broker side. MQTT-S also adopts an approach (i.e., splitting) to reduce message size,

as wireless sensor networks (WSN), particularly ZigBee, have a packet-size constraint of 60

bytes. Connect messages are split into three short messages, with clients registering the topic

and receiving the topic ID from the GW. As each client has a mapping table in the GW, it only

sends the topic ID with a two-byte length instead of sending the entire topic.

1.1.5.3 AMQP

The Advanced Message Queuing Protocol (AMQP) was introduced by (Vinoski, 2006) as a

standard protocol for asynchronous messaging. AMQP is a binary protocol that includes both

network and semantic protocols that specify the message and its implementation. Its binary

nature allows for the transfer of more data in a single packet, making it suitable for messaging

systems. The protocol employs the chain of responsibility pattern, allowing processors to modify

or route messages. Moreover, brokers can make routing decisions, providing a distributed and

scalable messaging infrastructure.

AMQP, composed of messaging clients, brokers, exchanges, queues, bindings, routing keys, and

channels, provides various guaranteed messaging modes, including at-most-once, at-least-once,

and exactly-once, ensuring message delivery and reliability. Additionally, AMQP supports
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multiple application-defined routing topologies, which offer flexibility while requiring some

application setup. This sophisticated system provides a scalable and adaptable messaging

infrastructure that can accommodate a diverse range of communication scenarios.

1.1.6 Middleware

IoT middleware solutions, such as pub/sub, facilitate the development of large-scale IoT

applications by managing the data flow among devices, services, and applications (Eugster,

Felber, Guerraoui & Kermarrec, 2003). Implementing middleware is a crucial process that

directly affects the system’s performance. A well-designed middleware leads to efficient and

fast deployment, while a poorly implemented or configured one can degrade the system’s

performance.

A message-oriented middleware (MOM) based on the pub/sub paradigm is commonly used

to build the communication infrastructure for IoT systems, typically deployed over the cloud.

However, in many scenarios, an edge-based deployment (edge computing) of the MOM is better

than a cloud deployment (Garcia Lopez et al., 2015; Shi & Dustdar, 2016). MQTT, as the

standard communication protocol for IoT systems, poses some challenges when deployed at the

edge, such as client-broker mobility, topology changes (churn), and scattered resources, which

add extra complexity to the systems (Satyanarayanan, 2017).

1.1.7 Resource Management

Resource management is a critical aspect of edge computing that primarily deals with the

resource constraints of IoT devices such as CPU, memory, storage, battery, and bandwidth. Its

key components include task scheduling, load balancing, resource allocation, and quality of

service (QoS). The main objective of resource management is to minimize resource consumption,

latency, and service costs while enhancing the scalability, reliability, and performance of IoT

systems. Distributed storage systems like Amazon Dynamo (DeCandia et al., 2007) represent a

notable example of resource management that stores vast amounts of IoT system information.
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Dynamo is a fully decentralized distributed key-value data store that emphasizes high availability.

It employs a combination of techniques such as replication and partitioning to address issues

related to failure and gossiping to detect failures. Another example of resource management is

presented by Khare et al. (2018), who introduced a QoS approach to enhance the scalability of

the communication infrastructure of IoT systems using a topic-based pub/sub middleware. Their

approach provides a balance between data propagation and computation load by considering

QoS for each topic.

1.1.8 Benchmarks

There are many middleware solutions available for deployment into IoT systems. Benchmarking

approaches are used to determine which middleware performs correctly in which conditions and

also to reduce the cost of evaluation by making it reusable for testing other middleware solutions.

A necessary step in building a generic benchmark is to integrate it invisibly into IoT middleware

without considering its internal implementation. Zilhão, Morla & Aguiar (2018) developed a

scalable, generic benchmark architecture for IoT middlewares (i.e., publish/subscribe). They

compared two pub/sub middlewares: OM2M (Alaya, Banouar, Monteil, Chassot & Drira, 2014;

OM2M, 2023) and Fiware (FIWARE, 2023), employing both qualitative metrics (e.g., query

possibility, supported communication model) and quantitative metrics (e.g., publish time) for

measurement. The qualitative evaluation focuses on characteristics and functionalities, while

the quantitative evaluation focuses on performance factors (Pereira, Cardoso, Aguiar & Morla,

2018). Moreover, the selected metrics are independent of the protocols used (e.g., MQTT, HTTP,

etc.).

1.2 Publish/Subscribe middleware

This section provides an introduction to pub/sub middleware and presents an architecture that is

adopted by various middleware. Additionally, it describes the different layers that constitute the

architecture.
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1.2.1 Introduction

The publish/subscribe communication pattern, widely used in various domains, particularly in

IoT (i.e., pub/sub middleware), operates based on a message-oriented approach. In the system,

two primary roles exist: the publisher and the subscriber. Each subscriber informs the system of

its interest in receiving specific messages that can be published by any publisher. The interaction

between the publisher and subscriber is mediated by the pub/sub system, which matches each

message with its interested subscriber(s) and then delivers the message to its subscribers via a

notification. The pub/sub system decouples communication in three dimensions (Eugster et al.,

2003). The first dimension is space decoupling, as publishers and subscribers are unaware of

each other (anonymity feature). Second, they are time decoupled, as there is no need to connect to

the system simultaneously. Third, they send/receive messages asynchronously while performing

concurrent activities, providing synchronization decoupling. Decoupling and anonymity features

make the pub/sub middleware suitable for mass dissemination of information in large-scale IoT

systems.

1.2.2 Architecture

The pub/sub middleware can be divided into three functional layers: overlay network layer,

routing layer, and matching layer. The functionality of the middleware is determined by the

implementation of these layers. For example, the scalability of the pub/sub system depends on how

the routing layer utilizes the overlay network layer to propagate messages (Baldoni & Virgillito,

2005). Figure 1.2 illustrates the layered organization of the pub/sub middleware. The application

is implemented at the top of the pub/sub middleware, and the details of the middleware layers are

described in subsections (1.2.3, 1.2.4, and 1.2.5). At the bottom, the transport layer facilitates

data transmission among the system components by employing arbitrary network protocols such

as TCP and UDP.
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Figure 1.2 Layered organization of the Pub/Sub middleware.

Taken from Baldoni & Virgillito (2005); Esposito et al. (2013)

1.2.3 Matching layer (subscription model/language)

The matching layer, situated at the top of the pub/sub system, matches publications with interested

subscribers based on the subscription model/language. There are various approaches to designing

the subscription model, and the challenge is to set a trade-off between the expressiveness and

complexity of the model.

1.2.3.1 Topic-based

Topic-based pub/sub is a communication pattern where publishers publish messages by associat-

ing them with specific topics, and subscribers receive them by subscribing to relevant topics.

This creates a channel for transmitting messages between the publisher of a topic and all its

subscribers (Baldoni & Virgillito, 2005). Despite its simplicity, topic-based pub/sub suffers from

low expressiveness of the subscription language. To address this issue, some approaches employ
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a hierarchy mechanism or wildcard instead of a flat subscription (Oki, Pfluegl, Siegel & Skeen,

1993; CORBA & Specification, 1999; Baehni, Eugster & Guerraoui, 2004).

Figure 1.3 demonstrates an example of topic-based pub/sub, where publishers on the left side

publish their messages with topics a, b, and c, and the pub/sub system matches messages with

interested subscribers on the right side based on the look-up table.

Publish/Subscribe System

Topic Subscriber

a s1, s3

b s2

c s2, s3Publisher1

Publisher2

Publisher3

Subscriber1 (s1)

Subscriber2 (s2)

Subscriber3 (s3)

b

c

b, c

Figure 1.3 Topic-based pub/sub example

1.2.3.2 Content-based

Content-based pub/sub systems (Segall, Arnold, Boot, Henderson & Phelps, 2000) operate by

subscribing to messages based on their content, applying specific constraints for the matching

process. These systems prioritize the design of sophisticated subscription languages that offer

enhanced flexibility and expressiveness. However, this comes at the expense of increased com-

plexity in matching and additional runtime overhead (Carzaniga, Rosenblum & Wolf, 2001; Mühl,

2002; Pietzuch & Bacon, 2002; Aekaterinidis & Triantafillou, 2006; Li, Muthusamy & Jacobsen,

2008). An example of a content-based pub/sub system is a stock trade application, where publish-
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ers disseminate stock information with various attributes such as company name, price, and date.

Subscribers can receive only the desired stock information by subscribing to specific attribute

constraints, such as company name="Apple", price<100, and date=2021-08-30.

1.2.3.3 Other subscription models

Apart from topic-based and content-based subscription models, there are other less significant

models in the realm of pub/sub systems. An example of such a model is the attribute-based

model, which is a subset of content-based pub/sub. Unlike content-based matching, which

can involve the entire message content, the attribute-based model matches only attributes, as

demonstrated by (Li, Ye, Kim, Chen & Lei, 2011). Another model is the type-based model,

which restricts the type within the pub/sub system instead of the application side, as proposed by

(Eugster, Guerraoui & Sventek, 2000; Eugster, Guerraoui & Damm, 2001). Some approaches

also use XML documents to enhance the flexibility of the content-based model, while they often

entail intensive computations, as found in studies by (Chand & Felber, 2004, 2005).

1.2.4 Routing layer

The routing layer is crucial in the pub/sub system as it is responsible for identifying subscribers

and delivering messages to them. Achieving scalability is a major challenge in message routing,

and it requires a trade-off between performance and the number of brokers. This trade-off

should consider the overheads of the message (such as the number of hops), memory (such as

the amount of stored information), and limitations of the subscription language (such as the

type of constraints) (Baldoni & Virgillito, 2005). Routing algorithms can be categorized as

deterministic or probabilistic depending on whether they need to maintain routing structures

when subscription changes occur. Deterministic routing is ideal for networks with frequent

topology changes or node churn; however, it is only suitable for small-size networks with limited

dynamicity. In contrast, random routing is the primary strategy for handling a high rate of

dynamicity in large networks, and it is the focus of probabilistic approaches such as gossip

protocols.
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1.2.4.1 Deterministic routing

Subscription flooding is a deterministic routing algorithm that disseminates publications from

publishers to all nodes, which results in minimum memory overhead. This algorithm is a good

option when there are mass subscriptions to most publications due to its less memory overhead.

However, its drawback is the growth of message overhead with increasing scalability, and it is

not suitable for a high rate of subscription changes (Segall et al., 2000; Carzaniga et al., 2001;

Mühl, 2002). Selective routing is a better strategy to address the message overhead issue, where

a subset of subscribers is stored in each node. Filter-based routing is a subset of selective routing

that includes only nodes with a path to subscribers. Rendezvous-based routing is another type

of selective routing that maintains forwarder nodes, called rendezvous nodes, responsible for

matching. Rendezvous approaches (Castro, Druschel, Kermarrec & Rowstron, 2002; Li & Gao,

2011; Zhao, Kim & Venkatasubramanian, 2013) leverage the benefits of managed subscriptions

instead of balanced subscriptions propagation (Baldoni & Virgillito, 2005). They build a

distributed single root tree (DSRT) for each topic to distribute correspondent messages from

the root, i.e., rendezvous point, to subscribers along tree paths. They also can have a clustering

space where there would be a rendezvous point at each cluster. Although DSRT approaches

(Zhuang, Zhao, Joseph, Katz & Kubiatowicz, 2001; Castro et al., 2002; Li & Gao, 2011) can

handle a large number of subscribers, they can have root contention issues in case of a high rate

of publications.

1.2.4.2 Probabilistic routing

The complexity of probabilistic (random) routing is comparatively lower than deterministic

routing. Gossiping (epidemic) protocols are widely used in pub/sub systems with probabilistic

routing (Eugster & Guerraoui, 2002; Costa, Migliavacca, Picco & Cugola, 2003; Baehni et al.,

2004; Costa & Picco, 2005). In gossip-based protocols, each node exchanges information

randomly with other nodes in each round, without storing or tracking subscription changes

and node churns. They benefit from perfectly random message distribution, which is suitable

for systems with mobility and numerous nodes. Redundancy and message overhead are the
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two primary pitfalls of random routing. To mitigate these issues, some approaches filter each

gossip by sending it only to subscribers, called informed-gossiping (Eugster & Guerraoui, 2002;

Baldoni & Virgillito, 2005).

1.2.5 Overlay network layer

Distributed pub/sub systems at the application layer level are characterized by the virtual

organization of nodes, known as the overlay. The overlay network layer is responsible for the

organization of nodes in a specific configuration to disseminate publications from publishers to

interested subscribers. The physical-level formation of the nodes may vary, as the application

level governs the formation of the pub/sub system. The organization can operate in a peer-to-peer

(P2P) or federated manner, with or without centralized management, respectively, as documented

in prior literature (Castro et al., 2002; Tam, Azimi & Jacobsen, 2004; Muthusamy & Jacobsen,

2005; Baldoni, Beraldi, Quema, Querzoni & Tucci-Piergiovanni, 2007; Muthusamy & Jacobsen,

2013). The overlay network has a direct influence on the pub/sub system’s performance, notably

its latency, scalability, and routing, by regulating the node degrees, number of hops, and path

diameters, as evidenced in existing research (Chen & Tock, 2015; Chen, Jacobsen & Vitenberg,

2016; Chen, Tock & Girdzĳauskas, 2018). The overlay network is classified into four categories:

structured P2P overlay, unstructured P2P overlay, hybrid overlay (structured and unstructured

combination), and broker overlay.

1.2.5.1 Structured P2P overlay

A structured P2P overlay network is responsible for assigning a unique key to each node from

a virtual key space, providing a guaranteed path between each pair of nodes, facilitating node

discovery, and delivering a self-organized overlay network. Among pub/sub approaches, the

development of topic-based pub/sub systems based on P2P structured overlay with a distributed

hash table (DHT) is widely adopted, as reported in previous studies (Zhuang et al., 2001; Castro

et al., 2002; Li & Gao, 2011). DHT partitions topics uniformly among peers, where the peer

closest to each topic name hash becomes the RP or root of its spanning tree. The size and
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latency of the tree are influenced by tree members, including interested/non-interested peers.

Additionally, there exists a direct relationship between the popularity of a topic and its root load,

which can result in a hotspot for message dissemination. Two examples of real-world applications

that typically experience a high rate of publications for popular topics (hot-topic) are Twitter

(Sanlı & Lambiotte, 2015) and multiplayer online games (MOG) (Arantes, Potop-Butucaru,

Sens & Valero, 2010; Gascon-Samson, Kienzle & Kemme, 2015b).

1.2.5.2 Unstructured P2P overlay

The P2P unstructured overlay is a routing structure that employs probabilistic routing (i.e.,

gossiping) and provides an unmanaged topology. The topic-connected overlay (TCO), a widely

used method for constructing unstructured P2P pub/sub systems, maintains connections between

nodes with the same topic in sub-overlays, as evidenced in prior research (Chockler, Melamed,

Tock & Vitenberg, 2007). TCO effectively prevents publish messages from being forwarded to

non-interested nodes and is sometimes referred to as a relay-free overlay due to the absence of

intermediate relay nodes. TCO facilitates efficient routing and is a suitable choice for sensitive

data dissemination among a group of trusted users. However, TCO’s reliability is a significant

concern, as the topic connectivity can be disrupted by a single node failure, as previously

discussed (Chockler et al., 2007; Onus & Richa, 2011, 2016).

1.2.5.3 Hybrid overlay

The hybrid overlay is a combination of structured and unstructured overlays. Setty, Steen,

Vitenberg & Voulgaris (2012) propose a decentralized pub/sub system that integrates structured

and unstructured overlays using filter-based and gossip-based routing. The authors highlight

that the proposed architecture is highly robust with respect to scalability, efficiency, and fault

tolerance.
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1.2.5.4 Broker overlay

Pub/sub systems require a network of servers and an overlay construction at the application

layer in order to scale up to the size of the internet for running distributed applications. In the

context of pub/sub systems, a broker is a term used to refer to a server. A single broker provides

a client-server pub/sub system, while an overlay construction with a set of nodes and a managed

topology (such as flat or hierarchical) enables the creation of a distributed pub/sub system with a

broker overlay.

Figure 1.4 illustrates how publishers (represented by blue circles) and subscribers (represented

by green circles) are connected to local brokers (represented by gray squares), as well as the

interaction among brokers (represented by white squares) within the broker overlay of a pub/sub

system.
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Figure 1.4 Broker overlay of a pub/sub system
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1.3 Overview of pub/sub systems

In this section, we review some state-of-the-art topic-based publish/subscribe (pub/sub) systems

and classify them based on their characteristics into generic, cloud-based, edge-based, and

MQTT pub/sub systems. Furthermore, we present a comparative analysis of these pub/sub

systems through figures 1.6, 1.7, 1.8, 1.9, and 1.10, which demonstrate how modifying the

design of each system can make it suitable for different scenarios.

1.3.1 Generic pub/sub systems

This subsection provides an overview of pub/sub systems with a particular emphasis on the

following key areas: reliability, load balancing, exhaust-data handling, TCO, and peer-to-peer.

1.3.1.1 Pub/Sub proactive and reactive reliabilities

The reliability of distributed pub/sub systems can be maintained proactively or reactively in the

event of a failure (Chen, Vitenberg & Jacobsen, 2021). Proactive maintenance is exemplified by

topic-connected overlay systems with a k factor (kTCO), where k distinct paths exist between

each pair of nodes in the kTCO. On the other hand, reactive maintenance involves making

constant system adjustments to preserve reliability. However, the cost of such adjustments after

each churn event (i.e., when nodes join or leave frequently) is significant. In the case of a TCO

pub/sub system, the system may become inaccessible during reconstruction. Nonetheless, TCO

with a k factor as small as two can keep the system functional during maintenance in the event

of less than k node failures. Chen et al. (2021) examine the trade-off between low node degrees

and maintaining acceptable runtime for kTCO.

1.3.1.2 Pub/Sub GCD and GFD reliability variables

In distributed pub/sub systems, there exists a time gap between the moment a new subscriber

joins the system and when it receives its first message from the corresponding publisher(s). This

occurs because the system does not deliver publish messages to a newly joined subscriber until
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the subscribe message is propagated to all relevant publishers. The length of the subscription

gap (delay) is determined by the functions and algorithms of each pub/sub system. To reduce

this delay, Pedrosa & Rodrigues (2021) categorize the gap into two reliability variables: gapless

FIFO delivery (GFD) and gapless casual delivery (GCD). GFD only considers the order of the

messages, while GCD prevents anomalies resulting from publishers’ interactions and provides

stronger reliability. Several systems offer GFD (Bhola, Strom, Bagchi, Zhao & Auerbach,

2002; Zhao, Sturman & Bhola, 2004b) and GCD (Prakash, Raynal & Singhal, 1996; Cugola,

Di Nitto & Fuggetta, 2001; Pereira, Lobato, Teixeira & Pimentel, 2008; Nakayama, Duolikun,

Aikebaiery, Enokidoz & Takizaw, 2014; de Araujo, Arantes, Duarte Jr, Rodrigues & Sens,

2019) reliabilities. Pedrosa & Rodrigues (2021) explore the relationship between new and

previous subscriptions and propose an algorithm (LoCAPS) based on their previous work

(Santos & Rodrigues, 2019) that supports GCD reliability variable.

1.3.1.3 Pub/Sub load balancing

The popularity of topics in pub/sub systems can vary greatly, with some experiencing high

subscription rates and becoming hot topics, while others have relatively few subscribers. This

skewed distribution of subscriptions in DHT pub/sub systems can cause load imbalances

for brokers, which can in turn affect system performance, including throughput and latency.

This is particularly critical for real-world pub/sub applications, such as traffic monitoring and

stock market systems (Demers, Gehrke, Hong, Riedewald & White, 2006; Panagiotou et al.,

2016; Zacheilas et al., 2017). Load distribution has been shown to be an NP-hard problem

Garey & Johnson (2002); Dedousis, Zacheilas & Kalogeraki (2018). (Kreps, Narkhede, Rao

et al., 2011) propose a greedy algorithm for load distribution in Apache Kafka pub/sub brokers.

The algorithm works by migrating loads from the most overloaded brokers to the least overloaded

ones.
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1.3.1.4 Pub/Sub exhaust-data handling

The low/no value data density, also known as exhaust data, is a data type that includes a

significant portion of IoT system data types (Manyika et al., 2011). Pub/Sub systems over

structured overlays do not perform efficiently for low/no value data scenarios. The problem is

that they have no mechanism to stop or control subscription forwarding and tree constructions

when there are no or limited subscribers (Banno et al., 2015). In contrast to structured overlay

networks (DHTs) (Rowstron & Druschel, 2001; Ratnasamy, Francis, Handley, Karp & Shenker,

2001; Zhao et al., 2004a), unstructured overlay networks (relay-free) (Chockler et al., 2007;

Setty et al., 2012) provide the ability to control the subscription forwarding paths as subgraphs

connect publishers and subscribers. (Banno et al., 2015) take advantage of the relay-free overlay

with their Skip Graph approach for no/low subscriber detection and system adjustment.

1.3.1.5 Pub/Sub TCO

Minimizing the degree of the nodes is one of the main objectives when designing robust TCO

overlay networks. A lower node degree enables a reduction in maintaining outgoing links costs,

resource consumption, message queues, routing tables, overlay diameter, and message latency

(Chockler et al., 2007). Chockler et al. (2007) prove the NP-hardness of building TCO with

the minimum average node degree problem and propose a greedy algorithm for it. Designing a

mechanism to track changes is another issue for TCOs to ensure reliability and scalability while

preventing costly overlay reconstruction. Chen et al. (2016) introduce a divide-and-conquer

algorithm to construct a TCO overlay. It employs a bulk lightweight partitioning approach to

partition the network, builds sub-TCOs locally, and finally merges them into a single global TCO.

Their experiments show a reduction in TCO construction time from scratch with a negligible

node degree increase.
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1.3.1.6 Pub/Sub peer-to-peer

A peer-to-peer substrate serves as the underlying framework for object location and routing in

pub/sub systems. Castro et al. (2002) introduced Scribe, an expansive and entirely decentralized

event notification system constructed upon the foundation of Pastry (Rowstron & Druschel,

2001), a generic P2P routing system that operates on a self-organizing overlay network comprised

of interconnected nodes. Scribe encompasses the vital functionalities of topic and subscription

maintenance, as well as the facilitation of efficient multicast tree construction. (Setty et al.,

2012) presented a hybridized strategy that combines deterministic propagation across sustained

rings with probabilistic dissemination via a restricted count of random shortcuts. This distinctive

approach effectively addresses the constraints associated with scalability and fault-tolerance

inherent in peer-to-peer (P2P) methodologies. Furthermore, within the system, a predetermined

maximum dissemination fan-out is established for each topic, typically set at 2.

In contrast to (Castro et al., 2002; Setty et al., 2012), our approach implements coordinator-based

message dissemination instead of constructing spanning trees. Additionally, we introduce

shadow properties to enhance fault-tolerance, enable customization of fan-out ranges, and

ensure compatibility with the widely recognized MQTT protocol. This design is particularly

well-suited for edge deployment, allowing for seamless integration and efficient utilization of

edge computing resources.

1.3.2 Cloud-based pub/sub systems

In this subsection, we offer an overview of pub/sub systems designed for cloud deployment.

1.3.2.1 Scalable and elastic cloud pub/sub

The growth of smart IoT systems is increasing the demand for elastic and scalable pub/sub cloud

services. Elasticity is a concern for clients to match their demands with the pub/sub cloud

service resource provisioning, system scalability, and costs. Li et al. (2011) design a pub/sub
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cloud service that places brokers over a one-hop overlay, leverages subscription skewness by

assigning them to multiple brokers, and offers scalability and fault-tolerance.

1.3.2.2 Load balancing in cloud pub/sub

Consistent hashing approaches (Aurenhammer, 1991) guarantee the uniform distribution of

topics over pub/sub brokers. However, the approach is not efficient in some scenarios, specifically

when brokers experience different workloads. Gascon-Samson, Garcia, Kemme & Kienzle

(2015a) propose a pub/sub middleware with a novel load balancer to address the limitation of

the consistent hashing approach and improve scalability and elasticity for cloud-based systems.

1.3.3 Edge-based pub/sub systems

In this subsection, we present an overview of pub/sub systems with a focus on edge deployment.

1.3.3.1 Topic partitioning in edge pub/sub

Native proximity among edge nodes and clients provides lower latency for deploying pub/sub

systems compared to a cloud-based environment (Gupta, Landle & Ramachandran, 2021).

Consistent hashing is a prevalent approach for distributing load among pub/sub brokers,

producing a consistent hash of each topic that guarantees even load distribution. However, it

does not consider the client-broker vicinity and client mobility, which are key parameters for

reducing latency in edge systems. Moreover, constrained resources at the edge and the possibility

of hot spots with consistent hashing approaches have led to the development of load-aware

topic partitioning systems (Khare et al., 2018). To address these limitations, Gupta et al. (2021)

employ a technique (Dabek, Cox, Kaashoek & Morris, 2004; Ledlie, Gardner & Seltzer, 2007)

to estimate the load between each pair in the system and maintain it under a predefined threshold.
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1.3.3.2 Fog computing in edge pub/sub

Broker-based pub/sub systems can take advantage of fog (cloud-edge) computing (Bermbach

et al., 2017) for scalability and immediacy at the same time, by deploying system components

close to clients at the edge and inside or close to the cloud. There are two ways for message

dissemination in a pub/sub system with fog deployment. The first strategy provides lower

latency, where brokers at the edge are interconnected, and clients send/get messages to/from

edge brokers, while the second strategy enables higher scalability by forwarding extra data from

edge-to-cloud or cloud-to-edge. Hasenburg, Stanek, Tschorsch & Bermbach (2020) propose a

fog-based pub/sub system that controls the trade-off between latency and extra data forwarding.

They divide brokers into broadcast groups that flood messages among each other, while the

cloud mediates messages between groups as the relay.

1.3.3.3 Edge pub/sub and QoS

Pub/sub systems at the edge leverage client vicinity to provide lower latency as well as lower

bandwidth usage by pre-processing the data (i.e., data aggregation, data anonymity, data

refinement) before forwarding it to the cloud or replying to clients. Despite the lower latency

of pub/sub brokers at the edge, it does not guarantee the quality of service (QoS). Khare et al.

(2018) introduced a prediction model to determine the number of required brokers and the

placement of topics on them to keep the latency for subscribers below a specific QoS value.

1.3.3.4 Tail latency in edge pub/sub

When comparing communication models for IoT pub/sub systems, device-to-device communica-

tion of resource-constrained IoT devices does not guarantee the minimum latency compared

to other communication models (i.e., device-to-edge/gw, device-to-cloud). Some experiments

for distributed large-scale IoT systems also show that device-to-edge with a 1-hop broker

can bring lower latency than device-to-device communication (Abdelwahab & Hamdaoui,

2016). Although a one-hop relay transfers computation to the edge/cloudlet side instead of
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devices, it may experience long-tail end-to-end latency due to computation and communication

(Abdelwahab & Hamdaoui, 2016). It is possible to reduce tail end-to-end latency with a

migration strategy and statistical measurements when a relay dispatches data to long-range

devices. (Abdelwahab & Hamdaoui, 2016) employed a distributed flocking algorithm to enable

autonomous migration of broker clones among edge sites based on the latency and data statistics

of each host.

1.3.4 MQTT pub/sub systems

This subsection presents an overview of pub/sub systems that rely on the MQTT protocol.

1.3.4.1 Auto discovery for MQTT brokers

The MQTT protocol is a widely used option for IoT system implementation, providing a

pub/sub paradigm with a traditional client-server model, where publishers/subscribers connect

to a broker forming a star-shaped topology. To expand the broker network, some MQTT

implementations offer bridging mechanisms that connect MQTT brokers. However, a larger

network may increase the complexity of static bridge configuration setup and create looping

issues, which are challenging to debug in large networks. Manual configuration also limits

the system in terms of fault tolerance and scalability. To address these issues, Longo et al.

(2020) have introduced a Spanning Tree Protocol-based algorithm, called MQTT-ST, which

allows brokers to be automatically organized in the network without creating loops and with

robustness in case of failure. Furthermore, Stagliano et al. (2021) have utilized MQTT-ST as the

overlay network of D-MQTT, a distributed implementation of MQTT, replacing the static bridge

configuration with an automatic broker discovery technique that involves sending discovery

messages periodically from each broker to others, and providing a routing algorithm to route

publish messages to only interested brokers. In contrast to the aforementioned studies, our

system employs a structured overlay network, which provides auto-discovery, self-organization,

scalability, and fault-tolerance.
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1.3.4.2 MQTT in industry

Distributed IoT systems implementation and deployment specifically in the industry domain

come with challenges such as communication, maintenance, scalability, and cybersecurity due to

their complexity and heterogeneous nature (Sisinni, Saifullah, Han, Jennehag & Gidlund, 2018).

Amoretti, Pecori, Protskaya, Veltri & Zanichelli (2020) develop a bridging mechanism and

introduce new authentication and authorization schemes to improve scalability and cybersecurity

for MQTT.

1.3.4.3 Cooperation of MQTT brokers

The term "edge-heavy data" refers to a set of characteristics in IoT systems at the edge, including

data production at the edge, data localization, and real-time data exchange (Okanohara, Hido,

Kubota, Unno & Maruyama, 2013). Figure 1.5 presents two sample architectures for edge-heavy

data distribution, where edge-based MQTT brokers offer lower latency and better throughput

than cloud-based brokers. However, heterogeneous MQTT brokers’ cooperation remains a

challenge, which can be addressed by the Interworking Layer of Distributed MQTT brokers

(ILDM) (Banno, Sun, Fujita, Takeuchi & Shudo, 2017). ILDM allows different brokers to

collaborate and offers API sets for the development of cooperation algorithms. Although some

MQTT implementations have introduced bridging and clustering mechanisms (Light, 2017a;

HiveMQ, 2023), it is not yet a part of the MQTT protocol (MQTT, 2023).

1.3.4.4 MQTT client-broker connections

In the distributed implementation of the MQTT protocol, clients need prior knowledge to connect

to the proper broker that hosts their interested topic. Hmissi & Ouni (2022) provides an approach

to transparently connect subscribers to the responsible broker at joining time. It checks the

broker’s address and status which hosts the client’s interested topics in specific intervals.



29

Figure 1.5 Samples data distribution architectures for

edge-heavy data

Taken from Banno et al. (2017)

1.3.4.5 Scalability and latency of MQTT brokers

Banno & Shudo (2020) perform a low-scale test over MQTT brokers to demonstrate the relation

between the number of MQTT brokers, throughput, and latency. Although the test is limited, it

emphasizes that there is a trade-off between system scalability and response time. To respect

the trade-off, they present a dynamic overlay that can form one-hop or multiple-hop connected

subgraphs over each topic by considering the topic load.
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Figure 1.6 List one of the pub/sub systems
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Figure 1.7 List two of the pub/sub systems
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Figure 1.8 List three of the pub/sub systems
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Figure 1.9 List four of the pub/sub systems
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Figure 1.10 List five of the pub/sub systems



CHAPTER 2

APPROACH

This chapter outlines the methodology used in our research. We present the main problem or gap

in knowledge that the research is addressing (2.1), the research goals and objectives (2.2), the list

of assumptions (2.3), the list of the specific questions that the research aims to answer (2.4), the

key components of the system and how they are integrated (2.5), the system’s overlay utilization

(2.6), the system’s commumications (2.7), the parameters that are used in the model (2.8), the

system’s protocol compatibility (2.9), the system’s fault-tolerance (2.10), and the algorithms

that are used in the research (2.11). Overall, the chapter provides a comprehensive overview of

the research project, from the problem being addressed to the methods and algorithms used to

investigate it.

2.1 Research problem

The performance of a distributed topic-based pub/sub system is directly influenced by the overlay

network and routing algorithm employed. These factors impact various aspects such as scalability,

robustness, fault-tolerance, and load balancing. In the previous chapter, we reviewed several

approaches that utilize distinguished overlay networks and message dissemination techniques.

Our focus is on the structured P2P overlay network and its application for building distributed

topic-based pub/sub. A common approach for routing pub/sub messages over the structured

P2P overlay network is to create a distributed single-root tree (DSRT) for each topic. DSRT

routes all pub/sub messages to the root (rendezvous point/RP), and the tree consists of nodes

among the path between subscribers to the root. However, message distribution from a single

point has a high potential to become a bottleneck by receiving a high load for a correspondent

topic. Additionally, DSRT approaches are fragile and undergo a significant tree reconfiguration

(reconstruction) cost in case of node churns and dynamic subscriptions. In summary, these issues

degrade and limit the functionality of DSRT approaches to run distributed pub/sub applications.
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From an IoT perspective, MQTT is a dominant protocol proposed for implementing IoT system

communications. It utilizes the pub/sub paradigm with the traditional client-server architecture.

The MQTT broker serves as the server side of the protocol that disseminates messages among

its connected MQTT clients (subscriber/publisher). Although the client-server design enables

lightweight and simple message distribution, it cannot efficiently support distributed large-scale

applications with a single broker. Distributed IoT applications require a network of MQTT

brokers to cooperate with each other for message dissemination. Some MQTT implementations

have features to connect MQTT brokers to each other. However, all settings and configurations

for connecting brokers need to be managed, which can cause other issues such as message loops

and difficult debugging. In other words, unmanaged decentralized mechanisms are not included

in the standard MQTT protocol to construct distributed IoT applications.

2.2 Design goals and hypothesis

In this thesis, we propose MQTT2EdgePeer as a novel approach to address the limitations of

existing DSRT approaches in building distributed MQTT brokers for large-scale IoT applications.

MQTT2EdgePeer is designed as a scalable and robust P2P edge communication infrastructure

for topic-based pub/sub. The system leverages the structured P2P overlay network to distribute

messages in a coordinated manner, ensuring load balancing, fault-tolerance, and scalability.

The overlay network is utilized as a fully unmanaged and self-organizing P2P infrastructure to

construct a distributed MQTT broker overlay network at the edge. MQTT2EdgePeer provides a

transparent distributed MQTT broker side that any existing IoT applications with a standard

MQTT client side can connect to. This enables IoT applications to leverage the benefits of the

distributed MQTT broker network without the need for additional configuration or changes in

the existing MQTT client side.

In this thesis, we focus on the implementation of a subset of the MQTT standard protocol,

including subscribe, unsubscribe, and publish operations, on the distributed MQTT broker

network built by MQTT2EdgePeer. Our experimental results demonstrate that the proposed
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approach is scalable and efficient, achieving better performance than the traditional DSRT-based

MQTT brokers, particularly in terms of load balancing, fault tolerance, and message delivery.

We aim to achieve the following objectives:

• Disseminate messages using two dispatching algorithms: Direct Dispatching (Section 2.11.1)

and Guided Dispatching (Section 2.11.2).

• Balance topic load by distributing messages from multiple points, instead of a single

rendezvous point per topic.

• Balance resource consumption among peers through Direct Dispatching and Guided Dis-

patching methods.

• Improve the fault-tolerance and scalability of the overlay through replication and maintenance

techniques.

• Build a distributed MQTT system over the improved structured P2P overlay network.

• Utilize the overlay for MQTT broker discovery, cooperation, routing, and message distribution.

2.3 Assumptions

We consider some assumptions in this thesis and list them as follows:

• The connections between MQTT clients and MQTT2EdgePeer are stable.

• The subscriber, publisher, and shadow nodes in the overlay network are stable.

• Shadow nodes constantly maintain correct lists of subscribers and related topics as they are

stable.

• Coordinator and root (rendezvous point) nodes are not stable and are susceptible to experi-

encing failures, such as network link outages, crashes of apps or devices, or other disruptive

events. It is important to consider these failure scenarios in order to analyze the robustness

and fault-tolerance of the system under study.
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2.4 Research questions

In this research, we aim to address the following research questions (RQs) related to MQTT2EdgePeer,

which facilitates a distributed peer-to-peer deployment of edge-located nodes:

• RQ1: Does MQTT2EdgePeer efficiently distribute heavy loads of hot topics?

• RQ2: Does MQTT2EdgePeer handle load dynamicity?

• RQ3: Does MQTT2EdgePeer support message distribution fault-tolerance?

• RQ4: Does MQTT2EdgePeer reduce the reconfiguration cost compared to the considered

base DSRT approach?

• RQ5: Does MQTT2EdgePeer provide a scalable and robust P2P overlay for the MQTT

protocol?

To answer these research questions, we perform experiments and compare our system with

Scribe as a DSRT baseline approach.

2.5 System Architecture

In this section, we describe the system architecture of MQTT2EdgePeer. Figure 2.1 depicts

the ring formation of nodes over the structured P2P overlay, the system components, and

the communication types. The system supports two types of communication: inter-overlay

(represented by red dashed lines) and MQTT (represented by blue dashed lines). All messages

inside the structured P2P overlay network are sent through the inter-overlay message type, while

all outer-overlay messages are sent by the MQTT message type. Clients, which can be one or

many, are able to communicate with any of the nodes inside the overlay by using the standard

MQTT client.

MQTT2EdgePeer consists of four major components: pub/sub peer, local MQTT broker, MQTT

logger, and MQTT log collector. A description of each component is provided in the following

subsections.
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Figure 2.1 MQTT2EdgePeer system architecture
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2.5.1 Pub/Sub peer

This component is the system’s main component responsible for building the pub/sub peer over

the structured P2P overlay. The pub/sub peer communicates with other peers in the overlay

through inter-overlay messages. The pub/sub peer has four available roles: publisher, subscriber,

coordinator, and shadow. Each peer is able to take the role of publisher or subscriber; however,

only one node is assigned as the coordinator per topic with a specific number of shadow nodes.

The coordinator maintains the list of subscribers and publishers of its correspondent topic, and

the shadow is the coordinator’s replica.

The coordinator handles membership changes and enables Direct Dispatching of publication

messages to a topic from publishers to all correspondent subscribers. Unlike single-root-tree

approaches that include both interested and non-interested nodes in the tree and dissemination

paths, our coordinator-based approach ensures the exclusion of non-interested nodes. This is

achieved by enabling publisher nodes to directly disseminate messages to subscriber nodes.

Furthermore, all information in a coordinator is replicated on a separate node, called shadow. The

shadow node assures the publishers always receive the correct list of subscribers. The replication

and synchronization mechanism between coordinator and its shadows leads to improvement of

the system fault-tolerance in case of failure in the coordinator node.

2.5.2 Local MQTT broker

The local MQTT broker component handles external MQTT messages between MQTT clients

and each node in the overlay network. It relays incoming MQTT messages from clients to

inter-overlay messages by transforming them into inter-overlay messages, and performs the same

function for outgoing messages from the overlay to MQTT clients. Clients are able to connect

to any node in the overlay to subscribe, unsubscribe, or publish messages for a topic 𝑡. The

overlay disseminates clients’ messages for topic 𝑡 to relevant peers. Consequently, all local

MQTT brokers in the overlay transparently cooperate with each other for routing messages.
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2.5.3 MQTT Logger

This component logs relevant metrics of the node, such as IP, port, memory usage, CPU usage,

network bandwidth usage, number of subscribers, number of messages, etc. It then publishes

the collected logs periodically to the MQTT log collector component through MQTT messages.

2.5.4 MQTT Log Collector

This component subscribes to predefined topics on each node in the overlay. It collects logs from

all nodes in the overlay and computes various performance metrics, such as the total number of

messages, the total number of subscribers, and the average usage of resources. These metrics

are used to analyze the performance of the overlay.

2.6 MQTT2EdgePeer structured P2P overlay network utilization

The design of MQTT2EdgePeer is based on utilizing the capabilities of Pastry structured

peer-to-peer (P2P) overlay network and its associated Application Programming Interfaces

(APIs) (Rowstron & Druschel, 2001). Although the system is built on top of Pastry, the overlay

network can be replaced with any other middleware that supports routing and self-organizing,

along with relevant APIs to access these features. Further information about the implementation

and APIs can be found in the chapter 3. In this section, we outline the processes involved in node

formation within the overlay network, the routing of messages, and the selection of coordinators

and shadows.

2.6.1 Formation of nodes and routing messages

The structured overlay network is a fully decentralized and self-organized system that organizes

nodes in a circular nodeId space, also known as the ring. The placement of nodes within the

ring is determined by a unique identifier (nodeId) that is assigned to each node. These nodeIds

can either be generated randomly or by hashing the node’s IP address, with the assumption that

they are uniformly distributed within the nodeId space.
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To facilitate auto-discovery of other nodes within the network, each node keeps track of its

immediate neighbors in the nodeId space. Furthermore, new nodes can join the overlay by

contacting a bootstrap node. The overlay uses the nodeId space and uniform distribution of

nodeIds to route messages. Each message has a destination address key that is used to identify

the recipient node. The message is then routed to the node with the numerically closest nodeId

to the message key within the nodeId space.

2.6.2 Coordinator and Shadow selection

MQTT2EdgePeer employs the structured overlay network’s capabilities to identify the coordinator

and its shadows for a specified topic. The system initially computes the hash address of the topic.

Subsequently, it identifies the node with the closest numerically nodeId to the hash address as the

coordinator, and the subsequent S (number of shadows) nodes are selected as the coordinator’s

shadows.

2.7 MQTT2EdgePeer communications

In this section, we provide an example in Figure 2.2 to clarify the communications of

MQTT2EdgePeer. First, MQTT client one sends a subscription message (1) for topic 𝑡

to node six using MQTT. Next, node six routes the subscription message (2, 3) to the candidate

coordinator of topic 𝑡 at node one and its shadow at node two using inter-overlay messages.

Then, MQTT client two publishes a message (4) for topic 𝑡 to node eight using MQTT. After

that, node eight routes publish request messages (5, 6) to the coordinator and its shadow for

topic 𝑡 and gets the subscriber list from them as reply messages (7, 8). Finally, node eight routes

the published message (9) to node six, and node six sends the published message (10) for topic 𝑡

to MQTT client one.
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2.8 Modeling and Parameters

In this section, we define the inter-overlay message types, their usage for coordinating message

dissemination, and the constraints to consider when modeling the system.

2.8.1 System Coordination

Eleven types of inter-overlay messages are defined to coordinate message dissemination within

the overlay network. These message types are presented in Table 2.1, all messages are routed

within the overlay network through specific topics, as described below.

• messageSub: A subscriber sends this message to the related coordinator and shadows. The

coordinator and shadows then add the subscriber information and topic to their respective

lists.

• messagePub: A publisher sends this message to all its subscribers.

• messageUnSub: A subscriber sends this message to the related coordinator and shadows.

The coordinator and shadows then remove the subscriber information and topic from their

respective lists.

• messageSubReq: A publisher sends this message to the related coordinator and shadows. The

coordinator and shadows then add the publisher information and topic to their respective lists.

• messageSubRep: A coordinator and shadows send this message to the requesting publisher.

The publisher then adds the subscriber list and topic to their respective lists.

• messageNewSub: A coordinator sends this message to all related publishers who do not have

the new subscriber in their subscriber list. Publishers then add the new subscriber to their

respective lists.

• messageNewUnSub: A coordinator sends this message to all related publishers who have the

subscriber in their subscriber list. Publishers then remove the subscriber from their respective

lists.

• messageUpSub: A shadow sends this message to the related coordinator. The coordinator

then updates its respective list.
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• messageReSub: A coordinator sends this message to all its publishers. Publishers then reset

their respective lists.

• messagePubCW: A publisher/subscriber sends this message to the next subscribers in the

clockwise direction.

• messagePubCCW: A publisher/subscriber sends this message to the next subscribers in the

counterclockwise direction.

Table 2.1 Inter-overlay Messages

Notation Description
𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑆𝑢𝑏 Inter-overlay subscribe message

𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑃𝑢𝑏 Inter-overlay publish message

𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑈𝑛𝑆𝑢𝑏 Inter-overlay unsubscribe message

𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑆𝑢𝑏𝑅𝑒𝑞 Inter-overlay subscriber list request message

𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑆𝑢𝑏𝑅𝑒𝑝 Inter-overlay subscribe list reply message

𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑁𝑒𝑤𝑆𝑢𝑏 Inter-overlay new subscribe notice message

𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑁𝑒𝑤𝑈𝑛𝑆𝑢𝑏 Inter-overlay new unsubscribe notice message

𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑈𝑝𝑆𝑢𝑏 Inter-overlay updated subscribe list message

𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑅𝑒𝑆𝑢𝑏 Inter-overlay reset subscribe list message

𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑃𝑢𝑏𝐶𝑊 Inter-overlay clockwise publish message

𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑃𝑢𝑏𝐶𝐶𝑊 Inter-overlay counterclockwise publish message

2.8.2 Constraints

We consider two critical constraints for our edge/IoT system: latency and bandwidth. Latency

refers to the delay in transmitting data between devices, and it is a crucial factor in determining

the speed and responsiveness of the system. Bandwidth, on the other hand, refers to the amount

of data that can be transmitted over a network within a given time, and it is vital in ensuring

the efficient operation of the system. These constraints are particularly crucial for our edge/IoT

system, as it involves devices that require real-time data processing and transmission.

In order to examine the constraints of our system, we exclude any considerations regarding CPU

and memory constraints due to the availability of adequate computational resources to accom-

modate our solution. In addition, topic-based pub/sub systems demand lower computational
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and storage resources in comparison to content-based pub/sub systems, as the matching process

involves a simple hash map look-up. This strategy ensures the correct operation of our system,

eliminating computational bottlenecks that may impede its performance.

2.8.3 Latency Calculation

In our system, we track the latency of inter-overlay publication messages for evaluation purposes.

Specifically, we attach a creation time to each message at the time of its creation, which enables

us to calculate the latency when the message is received by the destination node. This approach

allows us to monitor the efficiency and reliability of the message delivery process in our system.

To determine the average message latency of our system, we collect data on the latency of

inter-overlay publication messages at each node. We then aggregate this data to calculate the

average latency across the entire system. This calculation is based on the total number of

publication messages at each node and the latency of each message.

2.8.4 Bandwidth Calculation

To accurately measure the bandwidth usage of our system, we track the incoming and outgoing

traffic at each node during message dissemination for evaluation purposes. This tracking allows

us to calculate the amount of data transmitted by each node, which we then aggregate to obtain

an overall estimate of bandwidth usage.

2.9 MQTT2EdgePeer compatibility with standard MQTT protocol

MQTT2EdgePeer is a system that provides support for the three core message types in the

MQTT standard protocol, including subscribe, unsubscribe, and publish. Unlike traditional

distributed MQTT-based applications, the MQTT2EdgePeer system enables clients to connect

to any nodes within the overlay network using a standard MQTT client implementation, without

requiring prior knowledge of the correspondent MQTT brokers in the network.
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The MQTT2EdgePeer system functions by taking control of the discovery of brokers, routing of

messages between brokers, and responding to MQTT clients. Specifically, the system employs a

decentralized approach in which brokers and clients interact in a peer-to-peer fashion, without

the need for a centralized broker or message broker registry.

This decentralized approach enables the MQTT2EdgePeer system to operate in a more efficient

and flexible manner compared to traditional MQTT-based systems, by providing clients with a

greater degree of autonomy and control over their interactions with the network. Furthermore,

the use of standard MQTT client implementation allows for easy integration with existing

systems, thereby minimizing the need for additional development and integration efforts.

2.10 MQTT2EdgePeer coordinator failure resiliency

MQTT2EdgePeer employs shadow nodes as a mechanism for enhancing the fault tolerance of

the system, in the event of coordinator node failures. A shadow node functions by maintaining a

complete copy of all data from its corresponding coordinator. To synchronize shadows with the

coordinator, whenever subscriber nodes or publisher nodes send membership change messages

or subscriber request list messages, respectively, to the corresponding coordinator and all its

shadows. The shadows subsequently send subscriber list update messages to the coordinator,

which then the coordinator combines its list with the received updates. Moreover, shadows

provide extra sources for publisher nodes to request and receive subscriber lists in addition to

the coordinator.

In the event of coordinator failure, MQTT2EdgePeer utilizes coordinator and shadow selection

technique 2.6.2. The first shadow is selected as the new coordinator, and the subsequent S nodes

(where S denotes the number of shadows) following the original coordinator remain or are chosen

as new shadows. The synchronization between the coordinator and its shadows, the provision

of subscriber lists from multiple sources, and the aforementioned coordinator and shadows

selection technique work in concert to enhance the overall fault-tolerance of MQTT2EdgePeer,

particularly in instances where coordinator nodes experience failure.
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2.11 Algorithms

This section provides full descriptions and examples of the proposed algorithms in this research.

2.11.1 Direct Dispatching algorithm

As shown in table 2.2 and algorithms 2.1 and 2.2, the Direct Dispatching algorithm takes as

input the current node’s Id, topic, publication, subscriber list expiry interval, and shadow count,

and then either sends the inter-overlay publication message to its subscribers (2.11.1.1) or sends

the inter-overlay subscriber list request message to the coordinator of the topic and its shadows

(2.11.1.2).

2.11.1.1 Sending publication

To initialize the algorithm 2.1 parameters, the subscriber list is set to the current node’s

subscriber list for topic 𝑡 (line 2). The next step is to apply a condition that checks the value of

the subscriber list for topic 𝑡 and the validity of the subscriber list expiry interval (line 3). The

subscriber list expiry interval parameter ensures that the publisher always routes inter-overlay

publication messages to a valid and up-to-date list of subscribers, even if there are node failures

or subscription changes. If the condition is met, the publisher sends the inter-overlay publication

message to every subscriber on the list (lines 4-6).

2.11.1.2 Requesting subscribers

The algorithm 2.2 presents the alternative for algorithm 2.1 in case of having invalid subscriber

list. First, the hash is calculated for topic 𝑡, the coordinator is determined as the closest node to

the hash of topic 𝑡 as we described in the section 2.6, and the shadow list for topic 𝑡 is initialized

with a new list (lines 2-4). The algorithm then determines the shadows in a loop by selecting the

next closest nodes to the hash of topic 𝑡 after the coordinator (lines 5-7). Finally, the publisher

sends inter-overlay subscriber list request messages to the coordinator of topic 𝑡 and its shadow

(lines 8-13). This allows the publisher to retrieve the list from multiple sources, which improves
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the reliability of the algorithm. To enable the retry process for sending publications in algorithm

2.1, the publication is attached to the request messages. Additionally, it will be received from

the coordinator and shadows in reply messages.

Table 2.2 Parameters of algorithms 2.1 and 2.2

Notation Description
node Current node Id

topic Topic 𝑡
publication Publication message content

𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟𝑠𝑡 List of all subscribers to topic 𝑡
ℎ𝑎𝑠ℎ𝑡 Hash of topic 𝑡
𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑜𝑟𝑡 Coordinator of topic 𝑡
𝑠ℎ𝑎𝑑𝑜𝑤𝑠𝑡 List of shadows of topic 𝑡
shadowsNum Number of shadows

subExpInt Expiration interval for subscriber list

Algorithm 2.1 Direct Dispatching (sending publication)

Input: node, topic, publication, subExpInt

Output: route 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑃𝑢𝑏 to 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟𝑠𝑡

1 Begin
2 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟𝑠𝑡 ← 𝑔𝑒𝑡𝑆𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟𝑠(𝑛𝑜𝑑𝑒, 𝑡𝑜𝑝𝑖𝑐);
3 if 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟𝑠𝑡 > 0 and 𝑐ℎ𝑒𝑐𝑘𝑆𝑢𝑏𝐿𝑎𝑠𝑡𝑈𝑝𝑑𝑎𝑡𝑒(𝑛𝑜𝑑𝑒, 𝑠𝑢𝑏𝐸𝑥𝑝𝐼𝑛𝑡) then
4 for 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟 ∈ 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟𝑠 do
5 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑃𝑢𝑏 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑃𝑢𝑏𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑛𝑜𝑑𝑒, 𝑡𝑜𝑝𝑖𝑐, 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛);

𝑟𝑜𝑢𝑡𝑒(𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑃𝑢𝑏, 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟);
6 end for
7 end if
8 End

2.11.1.3 Direct Dispatching example

To better understand algorithm 2.1, we provide an example in Figure 2.3. The example

demonstrates the ring formation of 12 nodes in a structured P2P overlay network. For simplicity,

we illustrate only the routing of inter-overlay publication messages from node 1, which acts as

the publisher for topic 𝑡, to its subscribers located at nodes 3, 5, 6, 9, 11, and 12 (𝑃𝑢𝑏(1)). In this
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Algorithm 2.2 Direct Dispatching (requesting subscribers)

Input: node, topic, publication, subExpInt, shadowsNum

Output: route 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑆𝑢𝑏𝑅𝑒𝑞 to 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑜𝑟𝑡 and 𝑠ℎ𝑑𝑜𝑤𝑠𝑡

1 Begin
2 ℎ𝑎𝑠ℎ𝑡 ← 𝑔𝑒𝑡𝐻𝑎𝑠ℎ(𝑡𝑜𝑝𝑖𝑐);
3 𝑐𝑜𝑜𝑑𝑖𝑛𝑎𝑡𝑜𝑟𝑡 ← 𝑔𝑒𝑡𝐶𝑙𝑜𝑠𝑒𝑠𝑡𝑁𝑜𝑑𝑒(ℎ𝑎𝑠ℎ𝑡, 1);
4 𝑠ℎ𝑎𝑑𝑜𝑤𝑠𝑡 ← [];

5 for 𝑤 ∈ {1, ..., 𝑠ℎ𝑎𝑑𝑜𝑤𝑠𝑁𝑢𝑚} do
6 𝑠ℎ𝑎𝑑𝑜𝑤𝑡 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑔𝑒𝑡𝐶𝑙𝑜𝑠𝑒𝑠𝑡𝑁𝑜𝑑𝑒(ℎ𝑎𝑠ℎ𝑡, 𝑤 + 1));

7 end for
8 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑆𝑢𝑏𝑅𝑒𝑞 ←

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑢𝑏𝑅𝑒𝑞𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑛𝑜𝑑𝑒, 𝑡𝑜𝑝𝑖𝑐, 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑜𝑟𝑡);
9 𝑟𝑜𝑢𝑡𝑒(𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑆𝑢𝑏𝑅𝑒𝑞, 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑜𝑟𝑡);

10 for 𝑠ℎ𝑎𝑑𝑜𝑤𝑡 ∈ 𝑠ℎ𝑎𝑑𝑜𝑤𝑠𝑡 do
11 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑆𝑢𝑏𝑅𝑒𝑞 ←

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑢𝑏𝑅𝑒𝑞𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑛𝑜𝑑𝑒, 𝑡𝑜𝑝𝑖𝑐, 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑠ℎ𝑎𝑑𝑜𝑤𝑡);
12 𝑟𝑜𝑢𝑡𝑒(𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑆𝑢𝑏𝑅𝑒𝑞, 𝑠ℎ𝑎𝑑𝑜𝑤𝑡);

13 end for
14 End

example, we assume that publisher node 1 has a valid list of subscribers and only routes publish

messages. In case of a lack of a valid subscriber list, the routing of inter-overlay subscriber list

request messages follows a similar pattern to the communication example shown in Figure 2.2 in

steps 5-6. Furthermore, the following steps in Figure 2.2 can also similarly be applied in this

example:

• Sending the MQTT subscription message in steps 1-3.

• Replying subscriber list in steps 7-8.

• Sending the MQTT publication message in steps 4 and 10.
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2.11.2 Guided Dispatching algorithm

The Guided Dispatching algorithm enhances the efficient dissemination of inter-overlay publi-

cation messages in structured P2P overlay networks. The algorithm utilizes subscriber nodes

in the routing paths, both clockwise and counterclockwise, to achieve multi-hop routing. This

approach effectively distributes the load among a larger number of nodes, resulting in improved

load distribution. By involving subscriber nodes and striking a balance between bandwidth

usage and latency, the Guided Dispatching approach can potentially reduce resource usage, such

as bandwidth in publisher and subscriber nodes. This is particularly beneficial when dealing

with a large number of subscribers. Therefore, Guided Dispatching significantly improves the

load distribution of publish messages compared to the single-hop Direct Dispatching approach.

The Guided Dispatching algorithm is presented in distinct parts for publisher (2.11.2.1, 2.11.2.2,

and 2.11.2.3) and subscriber nodes (2.11.2.4). Table 2.3 displays the relevant parameters for

each part of the algorithm.

2.11.2.1 Publisher node part

Algorithm 2.3 and 2.4 outlines the steps involved in the Guided Dispatching algorithm, specifically

the publisher node part. The algorithm takes node, topic, publication, subscriber list expiry

interval, and shadow count as input parameters, and uses these to route the inter-overlay

publication message to its subscribers in both clockwise and counterclockwise directions, or to

route the inter-overlay subscriber list request message to the corresponding coordinator of the

topic and its shadows.

2.11.2.2 Sending publication

The algorithm initializes the parameters by setting the subscriber list with the current node

subscriber list of topic 𝑡 (line 2).
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Once the initialization of the Guided Dispatching algorithm is complete, the next step involves

evaluating the subscriber list of topic 𝑡 and the validity of the subscriber list expiry interval

by applying a condition (line 3). Similar to Direct Dispatching algorithm, the subscriber list

expiry interval parameter serves to ensure that the inter-overlay publication messages are always

routed to a valid and up-to-date list of subscribers, even in the event of node failures or changes

to the subscription list. This helps to maintain the reliability and effectiveness of the network

communication by minimizing the chances of message delivery failure due to outdated subscriber

lists or expired subscription intervals. The condition thus plays a critical role in enhancing the

overall performance and resilience of the Guided Dispatching algorithm in overlay networks.

Assuming the condition evaluating the subscriber list of topic 𝑡 and the validity of the subscriber

list expiry interval is satisfied (line 3), the Guided Dispatching algorithm can proceed to

disseminate multiple inter-overlay publish messages in both clockwise and counterclockwise

directions. This is achieved by determining the node index of each subscriber and their relative

position compared to the current node in terms of clockwise or counterclockwise (lines 4-13).

The algorithm then routes inter-overlay publication messages to subscribers located in both

directions as long as the number of outgoing messages does not exceed the fan-out parameter.

For the clockwise direction, the algorithm iterates over the clockwise subscriber list (line 14),

then retrieves and updates the number of subscribers to whom the publication message can be

sent before exceeding the fan-out value (line 15). Next, it checks whether the node has exceeded

the fan-out limit. If the limit has not been exceeded, the algorithm proceeds to obtain and update

the next subscriber nodes in the routing path to which the next node should send the publication

message (line 16). Finally, the algorithm generates and routes the publication message (lines

17-19), or alternatively, it stops the iteration if the fan-out limit has been exceeded (line 21).

For the counterclockwise direction, the same process as the aforementioned process for the

clockwise direction is applied (lines 24-33).



54

2.11.2.3 Requesting subscribers

Algorithm 2.4 provides an alternative condition to algorithm 2.3 when encountering an invalid

subscriber list. The entire process of requesting the subscriber list (lines 2-13) is similar to

algorithm 2.2, as described in the subsection 2.11.1.2.

2.11.2.4 Subscriber node part

The subscriber node part of the Guided Dispatching algorithm is presented in algorithm 2.5.

This algorithm takes node, topic, publication, fan-out, subCW, and subCCW as inputs, and is

responsible for routing inter-overlay publication messages to the next subscribers of topic 𝑡 in

either clockwise or counterclockwise directions.

In the clockwise direction, the algorithm performs an iteration over the clockwise subscriber list

(line 2), retrieving and updating the number of subscribers to whom the publication message

can be sent without exceeding the predetermined fanout value (line 3). Subsequently, it verifies

whether the fanout limit has been surpassed by the node (line 4). If the limit remains within

bounds, the algorithm proceeds to acquire and update the subsequent subscriber nodes along the

routing path, to which the next node must transmit the publication message (line 5). Ultimately,

the algorithm generates and routes the publication message (lines 6-7). Alternatively, if the

fanout limit has been exceeded, the iteration ceases (line 9).

Similarly, for the counterclockwise direction, the algorithm applies the same aforementioned

process employed for the clockwise direction (lines 12-21).
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Table 2.3 Parameters of algorithms 2.3, 2.4, and 2.5

Notation Description
node Current node Id

topic Topic 𝑡
publication Publication message content

𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟𝑠𝑡 List of all subscribers to topic 𝑡
ℎ𝑎𝑠ℎ𝑡 Hash of topic 𝑡
𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑜𝑟𝑡 Coordinator of topic 𝑡
𝑠ℎ𝑎𝑑𝑜𝑤𝑠𝑡 List of shadows of topic 𝑡
shadowsNum Number of shadows

subExpInt Expiration interval for subscriber list

fan-out Number of outgoing publication messages per node

𝑖𝑛𝑑𝑒𝑥𝑠𝑢𝑏 Index of subscriber

subCW Map of subscribers to topic 𝑡 in clockwise order with

node index

subCCW Map of subscribers to topic 𝑡 in counterclockwise order

with node index

sendCW List of clockwise send-to-subscribers

sendCCW List of counterclockwise send-to-subscribers
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Algorithm 2.3 Guided Dispatching (publisher node part - sending publication)

Input: node, topic, publication, subExpInt, fanout

Output: route 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑃𝑢𝑏𝐶𝑊 and 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑃𝑢𝑏𝐶𝐶𝑊 to 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟𝑠𝑡

1 Begin
2 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟𝑠𝑡 ← 𝑔𝑒𝑡𝑆𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟𝑠(𝑛𝑜𝑑𝑒, 𝑡𝑜𝑝𝑖𝑐);
3 if 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟𝑠𝑡 > 0 and 𝑐ℎ𝑒𝑐𝑘𝑆𝑢𝑏𝐿𝑎𝑠𝑡𝑈𝑝𝑑𝑎𝑡𝑒(𝑛𝑜𝑑𝑒, 𝑠𝑢𝑏𝐸𝑥𝑝𝐼𝑛𝑡) then
4 𝑠𝑢𝑏𝐶𝑊, 𝑠𝑢𝑏𝐶𝐶𝑊 ← {};

5 𝑠𝑒𝑛𝑑𝐶𝑊, 𝑠𝑒𝑛𝑑𝐶𝐶𝑊 ← [];

6 for 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟 ∈ 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟𝑠𝑡 do
7 𝑖𝑛𝑑𝑒𝑥𝑠𝑢𝑏 ← 𝑔𝑒𝑡𝑁𝑜𝑑𝑒𝐼𝑛𝑑𝑒𝑥(𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟);
8 if 𝑖𝑛𝑑𝑒𝑥𝑠𝑢𝑏 > 0 then
9 𝑠𝑢𝑏𝐶𝑊.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟, 𝑖𝑛𝑑𝑒𝑥𝑠𝑢𝑏);

10 else
11 𝑠𝑢𝑏𝐶𝐶𝑊.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟, 𝑖𝑛𝑑𝑒𝑥𝑠𝑢𝑏);
12 end if
13 end for
14 for 𝑠𝑢𝑏𝐶𝑊 ∈ 𝑠𝑢𝑏𝐶𝑊 do
15 𝑠𝑒𝑛𝑑𝐶𝑊 ← 𝑔𝑒𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑒𝑛𝑑𝐶𝑊 (𝑠𝑢𝑏𝐶𝑊, 𝑠𝑢𝑏𝐶𝑊, 𝑓 𝑎𝑛𝑜𝑢𝑡);
16 if (𝑐ℎ𝑒𝑐𝑘𝐹𝑎𝑛𝑜𝑢𝑡𝐶𝑊 (𝑠𝑒𝑛𝑑𝐶𝑊, 𝑠𝑢𝑏𝐶𝐶𝑊, 𝑓 𝑎𝑛𝑜𝑢𝑡)) then
17 𝑛𝑒𝑥𝑡𝐶𝑊 ← 𝑔𝑒𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑁𝑒𝑥𝑡𝐶𝑊 (𝑠𝑢𝑏𝐶𝑊, 𝑠𝑒𝑛𝑑𝐶𝑊, 𝑓 𝑎𝑛𝑜𝑢𝑡);
18 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑃𝑢𝑏𝐶𝑊 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑃𝑢𝑏𝐶𝑊𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑛𝑜𝑑𝑒, 𝑡𝑜𝑝𝑖𝑐,

𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑜𝑟𝑡 , 𝑛𝑒𝑥𝑡𝐶𝑊);

19 𝑟𝑜𝑢𝑡𝑒(𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑃𝑢𝑏𝐶𝑊, 𝑠𝑢𝑏𝐶𝑊 );

20 else
21 Break;

22 end if
23 end for
24 for 𝑠𝑢𝑏𝐶𝐶𝑊 ∈ 𝑠𝑒𝑛𝑑𝐶𝐶𝑊 do
25 𝑠𝑒𝑛𝑑𝐶𝐶𝑊 ← 𝑔𝑒𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑒𝑛𝑑𝐶𝐶𝑊 (𝑠𝑢𝑏𝐶𝐶𝑊, 𝑠𝑢𝑏𝐶𝐶𝑊, 𝑓 𝑎𝑛𝑜𝑢𝑡);
26 if (𝑐ℎ𝑒𝑐𝑘𝐹𝑎𝑛𝑜𝑢𝑡𝐶𝐶𝑊 (𝑠𝑒𝑛𝑑𝐶𝐶𝑊, 𝑠𝑢𝑏𝐶𝑊, 𝑓 𝑎𝑛𝑜𝑢𝑡)) then
27 𝑛𝑒𝑥𝑡𝐶𝐶𝑊 ← 𝑔𝑒𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑁𝑒𝑥𝑡𝐶𝐶𝑊 (𝑠𝑢𝑏𝐶𝐶𝑊, 𝑠𝑒𝑛𝑑𝐶𝐶𝑊, 𝑓 𝑎𝑛𝑜𝑢𝑡);
28 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑃𝑢𝑏𝐶𝐶𝑊 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑃𝑢𝑏𝐶𝐶𝑊𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑛𝑜𝑑𝑒, 𝑡𝑜𝑝𝑖𝑐,

𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑜𝑟𝑡 , 𝑛𝑒𝑥𝑡𝐶𝐶𝑊);

29 𝑟𝑜𝑢𝑡𝑒(𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑃𝑢𝑏𝐶𝐶𝑊, 𝑠𝑢𝑏𝐶𝐶𝑊 );

30 else
31 Break;

32 end if
33 end for
34 end if
35 End
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Algorithm 2.4 Guided Dispatching (publisher node part - requesting subscribers)

Input: node, topic, publication, subExpInt, shadowsNum

Output: route 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑆𝑢𝑏𝑅𝑒𝑞 to 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑜𝑟𝑡 and 𝑠ℎ𝑑𝑜𝑤𝑠𝑡

1 Begin
2 ℎ𝑎𝑠ℎ𝑡 ← 𝑔𝑒𝑡𝐻𝑎𝑠ℎ(𝑡𝑜𝑝𝑖𝑐);
3 𝑐𝑜𝑜𝑑𝑖𝑛𝑎𝑡𝑜𝑟𝑡 ← 𝑔𝑒𝑡𝐶𝑙𝑜𝑠𝑒𝑠𝑡𝑁𝑜𝑑𝑒(ℎ𝑎𝑠ℎ𝑡, 1);
4 𝑠ℎ𝑎𝑑𝑜𝑤𝑠𝑡 ← [];

5 for 𝑤 ∈ {1, ..., 𝑠ℎ𝑎𝑑𝑜𝑤𝑠𝑁𝑢𝑚} do
6 𝑠ℎ𝑎𝑑𝑜𝑤𝑡 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑔𝑒𝑡𝐶𝑙𝑜𝑠𝑒𝑠𝑡𝑁𝑜𝑑𝑒(ℎ𝑎𝑠ℎ𝑡, 𝑤 + 1));

7 end for
8 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑆𝑢𝑏𝑅𝑒𝑞 ←

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑢𝑏𝑅𝑒𝑞𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑛𝑜𝑑𝑒, 𝑡𝑜𝑝𝑖𝑐, 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑜𝑟𝑡);
9 𝑟𝑜𝑢𝑡𝑒(𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑆𝑢𝑏𝑅𝑒𝑞, 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑜𝑟𝑡);

10 for 𝑠ℎ𝑎𝑑𝑜𝑤𝑡 ∈ 𝑠ℎ𝑎𝑑𝑜𝑤𝑠𝑡 do
11 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑆𝑢𝑏𝑅𝑒𝑞 ←

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑢𝑏𝑅𝑒𝑞𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑛𝑜𝑑𝑒, 𝑡𝑜𝑝𝑖𝑐, 𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑠ℎ𝑎𝑑𝑜𝑤𝑡);
12 𝑟𝑜𝑢𝑡𝑒(𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑆𝑢𝑏𝑅𝑒𝑞, 𝑠ℎ𝑎𝑑𝑜𝑤𝑡);

13 end for
14 End
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Algorithm 2.5 Guided Dispatching (subscriber node part)

Input: node, topic, publication, fanout, subCW, subCCW

Output: route 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑃𝑢𝑏𝐶𝑊 to 𝑠𝑢𝑏𝐶𝑊 , or route 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑃𝑢𝑏𝐶𝐶𝑊 to 𝑠𝑢𝑏𝐶𝐶𝑊

1 Begin
2 for 𝑠𝑢𝑏𝐶𝑊 ∈ 𝑠𝑢𝑏𝐶𝑊 do
3 𝑠𝑒𝑛𝑑𝐶𝑊 ← 𝑔𝑒𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑒𝑛𝑑𝐶𝑊 (𝑠𝑢𝑏𝑐𝑤, 𝑠𝑢𝑏𝐶𝑊, 𝑓 𝑎𝑛𝑜𝑢𝑡);
4 if (𝑐ℎ𝑒𝑐𝑘𝐹𝑎𝑛𝑜𝑢𝑡𝐶𝑊 (𝑠𝑒𝑛𝑑𝐶𝑊, 𝑓 𝑎𝑛𝑜𝑢𝑡)) then
5 𝑛𝑒𝑥𝑡𝐶𝑊 ← 𝑔𝑒𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑁𝑒𝑥𝑡𝐶𝑊 (𝑠𝑢𝑏𝐶𝑊, 𝑠𝑒𝑛𝑑𝐶𝑊, 𝑓 𝑎𝑛𝑜𝑢𝑡);
6 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑃𝑢𝑏𝐶𝑊 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑃𝑢𝑏𝐶𝑊𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑛𝑜𝑑𝑒, 𝑡𝑜𝑝𝑖𝑐,

𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑜𝑟𝑡 , 𝑛𝑒𝑥𝑡𝐶𝑊);

7 𝑟𝑜𝑢𝑡𝑒(𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑃𝑢𝑏𝐶𝑊, 𝑠𝑢𝑏𝐶𝑊 );

8 else
9 Break;

10 end if
11 end for
12 for 𝑠𝑢𝑏𝐶𝐶𝑊 ∈ 𝑠𝑢𝑏𝐶𝐶𝑊 do
13 𝑠𝑒𝑛𝑑𝐶𝐶𝑊 ← 𝑔𝑒𝑡𝑆𝑒𝑛𝑑𝐶𝐶𝑊 (𝑠𝑢𝑏𝐶𝐶𝑊, 𝑠𝑢𝑏𝐶𝐶𝑊, 𝑓 𝑎𝑛𝑜𝑢𝑡);
14 if (𝑐ℎ𝑒𝑐𝑘𝐹𝑎𝑛𝑜𝑢𝑡𝐶𝐶𝑊 (𝑠𝑒𝑛𝑑𝐶𝐶𝑊, 𝑓 𝑎𝑛𝑜𝑢𝑡)) then
15 𝑛𝑒𝑥𝑡𝐶𝐶𝑊 ← 𝑔𝑒𝑡𝑁𝑒𝑥𝑡𝐶𝐶𝑊 (𝑠𝑢𝑏𝐶𝐶𝑊, 𝑠𝑒𝑛𝑑𝐶𝐶𝑊, 𝑓 𝑎𝑛𝑜𝑢𝑡);
16 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑃𝑢𝑏𝐶𝐶𝑊 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑃𝑢𝑏𝐶𝐶𝑊𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑛𝑜𝑑𝑒, 𝑡𝑜𝑝𝑖𝑐,

𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑜𝑟𝑡 , 𝑛𝑒𝑥𝑡𝐶𝐶𝑊);

17 𝑟𝑜𝑢𝑡𝑒(𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑃𝑢𝑏𝐶𝐶𝑊, 𝑠𝑢𝑏𝐶𝐶𝑊 );

18 else
19 Break;

20 end if
21 end for
22 End
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2.11.2.5 Guided Dispatching example

To provide a better understanding of the Guided Dispatching algorithm, we present an example

in Figure 2.4, where a structured P2P overlay network consists of 12 nodes arranged in a ring

formation, and the fan-out parameter is set to 2. In the first round, node 1 as the publisher

node of the algorithm routes two inter-overlay publication messages to subscribers of topic

𝑡 in the clockwise direction to node 3 (𝑃𝑢𝑏𝐶𝑊 (1)) and in the counterclockwise direction to

node 2 (𝑃𝑢𝑏𝐶𝐶𝑊 (1)), respecting the fan-out value. In the second round, node 3, the first

subscriber node in the clockwise direction, then routes the inter-overlay publication message to

the next two subscriber nodes, 5 and 6 (𝑃𝑢𝑏𝐶𝑊 (2)), in the same direction, following the fan-out

value. Similarly, node 12, the first subscriber node in the counterclockwise direction, routes the

inter-overlay publication message to nodes 11 and 9 (𝑃𝑢𝑏𝐶𝐶𝑊 (2)). The process continues until

all subscribers of topic 𝑡 receive the publication message.

In this example, we assume that publisher node 1 has a valid list of subscribers and only routes

publish messages. In case of a lack of a valid subscriber list, the routing of inter-overlay

subscriber list request messages follows a similar pattern to the communication example shown

in Figure 2.2 in steps 5-6.
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Figure 2.4 Guided Dispatching example with fan-out=2



CHAPTER 3

IMPLEMENTATION

This chapter is dedicated to the development of MQTT2EdgePeer, a system designed for efficient

and reliable communication at the edge. The chapter is divided into four sections. First, the

various programming languages and libraries used during the development process are discussed.

Second, the development tools used to increase productivity and efficiency during system

development are described. The third section outlines the steps involved in configuring, setting

up, and running MQTT2EdgePeer. Finally, the chapter concludes with a discussion on the

logging mechanisms implemented in the system to facilitate easy monitoring.

3.1 Programming languages and libraries

In the development of MQTT2EdgePeer, we utilized several programming languages and

libraries, which are described in this section.

3.1.1 JAVA

We developed the proposed algorithms in the previous chapter and implemented most parts of

the MQTT2EdgePeer system using the Java programming language. Java is widely used for

object-oriented programming and benefits from cross-platform support (i.e., Windows, UNIX,

Mac), automatic memory management, multi-threading, etc. There are several versions of the

Java Development Kit (JDK) available for developing Java applications. In this thesis, we used

OpenJDK version 1.8 for development.

3.1.2 Python

We used Python to develop the MQTT log collector component of the MQTT2EdgePeer system.

We chose to use Python version 3.8 due to its fast runtime and ease of development, which

facilitated the component’s development.
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3.1.3 Bash

Bash is a Unix shell and command language that provides a convenient interface for executing a

sequence of commands. We employed Bash to automate the deployment, running, and testing

the system.

3.1.4 FreePastry

FreePastry (Rice, 2009) is an open-source implementation of the Pastry (Rowstron & Druschel,

2001) structured peer-to-peer overlay network, written in the Java programming language. It

provides a self-organizing and efficient routing overlay network of Pastry nodes. In the FreePastry

overlay, each Pastry node has a unique identifier and receives messages that have the closest

destination Id to its node Id. While we developed MQTT2EdgePeer on top of the FreePastry

version 2.1 structured peer-to-peer overlay network, it can be implemented on any structured

P2P overlay network that provides the same capabilities and APIs.

3.1.4.1 Primary APIs

We describe the three main APIs of the structured overlay network utilized by MQTT2EdgePeer

as follows:

• route(msg, key): This API is utilized to route a message to the node with the closest nodeId

to the given key.

• deliver(msg, key): This API is invoked when a message is delivered to the node with the

closest nodeId to the key.

• forward(msg, key,nextId): This API is invoked before forwarding a message to a node with

a nodeId that matches nextId.

3.1.5 Moquette

We utilized Moquette (Moquette, 2023) to develop the local MQTT broker component of the

MQTT2EdgePeer system. Moquette is a lightweight, server-side implementation of the MQTT
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protocol, developed using the Java programming language. We chose to use Moquette due to

its lightweight nature and its implementation in Java, which made it a suitable choice for our

system.

3.1.6 Aiomqtt

We utilized Aiomqtt (Aiomqtt, 2023), which is an asynchronous wrapper for the Paho Python

MQTT client library (Eclipse, 2023), to establish MQTT client connections between the MQTT

log collector component and the local MQTT broker component of the system.

3.1.7 eMQTT-Bench

We utilized eMQTT-Bench (eMQTT Bench, 2023), a lightweight and efficient MQTT bench-

marking tool, to generate numerous MQTT clients and transmit/receive MQTT messages. This

tool proved to be fast and reliable for testing MQTT systems.

3.2 Development tools

To increase productivity and efficiency during system development, we utilized various tools to

set up our development environment.

3.2.1 Intellĳ IDEA

IntelliJ IDEA is an integrated development environment that supports several programming

languages, including Java and Python. We chose to use IntelliJ IDEA because it offers automatic

code completion, which accelerates the development process and helps to write clean and concise

code.
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3.2.2 Gradle

We utilized Gradle as our build tool to automate building the system and generating output

files for deployment. Gradle is a simple and efficient build tool for Java applications, which is

configured to determine project dependencies, repositories, versions, and other build-related

settings.

3.3 Configuration

This section outlines the steps involved in configuring, building, and running MQTT2EdgePeer.

3.3.1 Construct a Pastry node

The provided Java code in Figure 3.1 demonstrates how to create and join a new node to a Pastry

peer-to-peer structured overlay network. The code consists of several steps:

Firstly, a node identifier is generated using the IPNodeIdFactory class and the specified values

for the host IP address, host binding port, and environment.

Secondly, a SocketPastryNodeFactory object is created using the previously generated NodeId-

Factory, along with the specified host port value and environment value.

Thirdly, a new PastryNode object is created using the PastryNodeFactory created in the previous

step.

Finally, the newly created PastryNode is booted by calling the boot() method with the bootstrap

node’s bootAddress parameter, which joins the node to the Pastry overlay network and enables it

to communicate with other nodes in the network.
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Figure 3.1 Set up a Pasty node

3.3.2 Build the MQTT2EdgePeer on a Pastry node

In Figure 3.2, a sample Java code is provided to illustrate the construction of MQTT2EdgePeer

on top of a pastry node, with the process being carried out in several distinct steps. A description

of each of these steps is presented below:

At first, the broker is created by instantiating a Server object. After that, a new PubSubPeer

object is created with two parameters: Pastry node and Moquette mqttBroker. The PubSubPeer

class represents a publish-subscribe peer, which is a component in the MQTT2EdgePeer that

enables the communication between a publisher and a subscriber. Next, the broker port is

configured by creating a Properties object and setting the property to the value of the broker

port. A list of InterceptHandler objects is created using Collections.singletonList(). In this case,

the list only contains the peer object created earlier. Finally, the MQTT broker is started, which

takes the conf and userHandlers parameters. The conf parameter is the configuration for the

broker, while the userHandlers parameter is a list of InterceptHandler objects that the broker

will use to intercept and handle MQTT messages.
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The diagram presented in Figure 3.3 illustrates the class structure of the PubSubPeer component,

as well as the methods employed for managing inter-overlay and MQTT communications.

Figure 3.2 Build the MQTT2EdgePeer on a Pastry node
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Figure 3.3 Diagram of classes
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3.3.3 Run MQTT2EdgePeer

We developed several Bash scripts to simplify the deployment and execution of MQTT2EdgePeer

on multiple Pastry nodes, due to the large scale of the project. The following are brief descriptions

of these Bash files:

• node-builder.sh: The program takes several inputs, such as the number of Pastry nodes, the

dispatching approach for MQTT2EdgePeer, the address of the bootstrap node, the port number

of the node, and the port number of the first MQTT broker. It then starts MQTT2EdgePeer

on the Pastry nodes with different process IDs on the target machine, using sequential port

numbers.

• node-builder-batch.sh: The program takes several inputs, such as the number of Pastry

nodes, the dispatching approach for MQTT2EdgePeer, the IP address of the bootstrap node,

the port number of the first node, the port number of the first MQTT broker, and the number

of batches. It then starts MQTT2EdgePeer on Pastry nodes with the same process ID for

each batch on the target machine, using sequential port numbers. The number of nodes in

each batch equals the number of nodes divided by the number of batches.

• emqtt-sub.sh: The program takes several inputs, such as the number of subscriber nodes, the

host IP address, the client ID prefix, the port number of the first MQTT broker, the number

of clients, the topic, and the number of topics. It then starts the Emqtt-bench to subscribe to

each topic on each host and broker port number.

• emqtt-pub.sh: The program takes several inputs, such as the number of publisher nodes, the

host IP address, the client ID prefix, the port number of the first MQTT broker, the number of

clients, the topic, the number of topics, and the payload size. It then starts the Emqtt-bench

to publish messages to each topic on each host and broker port number.

3.4 Logging

We developed the MQTT log collector using the Python programming language to gather logs

from the MQTT logger component of MQTT2EdgePeer. The MQTT log collector takes inputs

such as the host IP address, the port number of the first MQTT broker, the collecting time
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interval, and the output file name and directory path. Then, it runs the collector by subscribing

to MQTT2EdgePeer nodes through the logging topic. After that, the MQTT logger component

publishes logs to the log collector at specific time intervals. Figure 3.4 displays sample results

of the MQTT log collector.

Figure 3.4 Results of MQTT log collector





CHAPTER 4

EVALUATION

This chapter presents the results of experiments carried out to evaluate MQTT2EdgePeer. The

experiments were conducted using a testbed consisting of hardware and software components

that were configured to simulate a distributed IoT environment. The methodology involved

preparing the testbed, running experiments, and analyzing the results.

4.1 Methodology

This section provides an overview of the methodology used to evaluate the performance of

the system in an edge network. The methodology included the development of a testbed,

which involved separating nodes, calculating bandwidth, and simulating latency. Additionally,

an experimental design was created to test the system under varying conditions, and various

evaluation techniques were employed to analyze the results. The following subsections provide

more detail on each aspect of the methodology.

4.1.1 Testbed

To evaluate the performance and functionality of our system, we have deployed it on a real-world

testbed. Our testbed comprises a high-performance server with an AMD EPYC 7401P 24-core

processor with 48 threads, 256GB of RAM, and running on Ubuntu 22.04.2 LTS. The server is

configured to act as a cluster for our system, with each node running on a single process.

The choice of a real-world testbed for our evaluation is motivated by the need to assess our

system’s performance and robustness under real-world conditions. Real-world testbeds enable

us to evaluate our system in a controlled environment that closely mimics the actual deployment

scenario, which is critical to identifying and addressing potential issues early on.
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4.1.2 Node separation and profiling

The experimental approach was used to evaluate the performance of the MQTT2EdgePeer system.

The system was deployed on a server with up to 50 nodes. To ensure efficient management of

the nodes, each node was run on a separate process. The system was profiled to evaluate critical

performance metrics.

4.1.2.1 Bandwidth calculation

We computed the bandwidth usage by analyzing the total incoming and outgoing data by bit per

second on each process ID representing a node in our system.

4.1.2.2 Latency simulation

We simulated random latency between each pair of nodes within the ring, assuming deployment

on an edge network. The simulated latency values ranged from 1 to 10 milliseconds, emulating a

test-bed with numerous nodes in close proximity, such as a large-scale enterprise network within

the same city. Subsequently, we calculated the average latency of all delivered messages for each

process ID. In our server-based experiments, clock synchronization is implicitly guaranteed as

everything was run on the server.

4.1.2.3 Message delivery calculation

We profiled all published messages that were delivered to their corresponding subscriber nodes.

Next, we calculated the delivery rate and the total number of delivered messages on each process

ID.

4.1.3 Baseline

We compared our proposed approaches, Direct Dispatching and Guided Dispatching, with an

alternative DSRT approach to Scribe called Scribe S. Additionally, we explored different values
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for the fan-out parameter in the Guided Dispatching approach, including 5, 10, 25, and ∞.

The fan-out value determines the maximum number of outgoing publish messages from each

publisher or subscriber node involved in the message dissemination process. The infinity symbol

represents the total number of nodes in the overlay network, providing a theoretical upper limit

for the fan-out parameter. It can also be concluded that Guided Dispatching with an infinite

fan-out value is equivalent to Direct Dispatching.

4.1.4 Experiment design

We designed diverse experiments to examine the system’s performance and address the research

questions posed in chapter two. In this regard, we evaluated the system’s performance by

manipulating the number of nodes in the ring, the number of topics, the number of subscribers, and

the number of publishers under different conditions. Furthermore, we assessed the effectiveness

of the system’s fault tolerance mechanism during the failure of root and coordinator nodes.

4.1.5 Experiment evaluation

We conducted an in-depth analysis of the system’s performance using five distinct experiments

to demonstrate its scalability, dynamicity, fault-tolerance, and robustness while integrated with

the MQTT protocol.

4.1.6 Experiment setup

The configuration for all experiments consisted of up to 50 nodes, 14 publishers, 7 topics, 50

subscribers, and a 4KB publish message payload size. We set an approximate equivalency

between the number of subscribers, publishers, and topics by a percentage of the total number of

nodes inside the overlay as each subscriber or publisher was linked by a single distinguished MQTT

client to a single node within the overlay (i.e., 14 publishers ≡ 28% of 50 nodes). Additionally,

every subscriber and publisher transmitted subscription and publication messages to all topics,

resulting in a total of up to 98 publishers and 350 subscribers (i.e., total publishers=14×7).
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4.1.7 Data visualization

To evaluate the different approaches based on bandwidth usage and latency, we utilized box

plots. A box plot displays the distribution of a dataset, including the minimum and maximum

values, the median (50th percentile), and the first and third quartiles (25th and 75th percentiles).

It also allows us to identify any outliers in the dataset, which are represented as individual points

outside the whiskers. Additionally, we depicted the total delivered and delivery rate using bar

plots, showcasing the differences between the approaches over time.

4.2 Experiments and analysis

This section presents the results of a series of experiments conducted to evaluate the performance

of the MQTT2EdgePeer system. We analyze these results to gain insights into the performance

of MQTT2EdgePeer and its potential as a solution for edge networks. Our analysis includes a

comparison of different approaches to message dissemination, as well as an evaluation of the

impact of subscriber, publisher, topic, and node count on latency and bandwidth usage. We also

examine the impact of failure of root and coordinator nodes on the total delivered and delivery

rate of publish messages.

To compare the results from the box plots in each experiment, we calculated the maximum

values, which represent the average of the highest latency or bandwidth for the worst nodes at all

levels of the experiment. Additionally, we calculated the load distribution from the box plots,

which is the average standard deviation across all levels of the experiment. It is also worth noting

that the similar results observed for Guided Dispatching (F=∞) and Direct Dispatching can be

attributed to the similarity between these two approaches, as described in subsection (4.1.3).

These findings shed light on the strengths and limitations of MQTT2EdgePeer and provide a

basis for further research in this area.
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4.2.1 Experiment one - Increasing the number of subscribers

In this experiment, we assessed the ability of MQTT2EdgePeer to handle changes in message

volume and distribute the load as the number of subscribers increased. We dynamically increased

the number of subscribers from 25% to 100% of the total node count in the overlay.

Figure 4.1 illustrates the results of experiment one regarding the average delivery latency

within the overlay. The data indicate that both Direct Dispatching and Guided Dispatching

with infinite fan-out (F=∞) exhibit maximum values that are comparatively lower than Scribe

S, regardless of the subscriber levels. It is worth noting that the median value for (A) is 0

due to a significant number of nodes having no subscribers or not being involved in message

dissemination. Additionally, an increase in subscribers, accompanied by a decrease in fan-out

values for Guided Dispatching, leads to a latency increase caused by the message dissemination

with more hops. Our findings confirm that Direct Dispatching outperforms Scribe S by reducing

the maximum values by 14% and improving load distribution and consistency by 11% on average

over the average delivery latency, for all subscriber counts.

The results of experiment one regarding the bandwidth usage of nodes within the overlay are

illustrated in Figure 4.2. As shown, both Direct Dispatching and Guided Dispatching with all

fan-out values exhibit lower maximum bandwidth usage values than Scribe S. As the number of

subscribers increases, Scribe S experiences a significant increase in the maximum bandwidth

usage due to the high message load on root nodes, which can be observed as outliers for

subscribers with 50%, 75%, and 100% of the total nodes. Additionally, Guided Dispatching with

lower fan-out values demonstrates lower bandwidth usage compared to Scribe S, particularly for

higher subscriber counts. On average, Guided Dispatching (F=5) displays 40% lower maximum

bandwidth usage values and 31% better load distribution and consistency compared to Scribe S

for all subscriber levels.

To summarize, the findings demonstrate the effective management of MQTT2EdgePeer in

handling dynamic increases in subscribers across all levels. Moreover, our analysis confirms

that Direct Dispatching provides the best performance in terms of average delivery latency
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compared to the multi-hop Scribe S and Guided Dispatching approaches. It is observed that

multi-hop approaches resulted in higher latencies in this experiment. On the other hand,

Guided Dispatching emerges as the optimal choice in terms of bandwidth usage. However, it is

noteworthy that a trade-off exists between the two metrics in the context of Guided Dispatching

approaches. Specifically, decreasing the fan-out degree results in an increase in average delivery

latency while reducing average bandwidth usage. This behavior is attributable to the involvement

of more hops for message dissemination, which leads to better load distribution, albeit higher

latency.
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Figure 4.1 Results of increasing the number of subscribers

for average delivery latency per node (experiment one)
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Figure 4.2 Results of increasing the number of subscribers

for bandwidth usage per node (experiment one)
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4.2.2 Experiment two - Increasing the number of publishers

In this experiment, we examined the impact of increasing the publisher count from 2 percent

to 28 percent of the total number of nodes within the overlay network on MQTT2EdgePeer’s

dynamicity and load distribution management. The distribution of nodes for average delivery

latency and bandwidth usage can be seen in Figures 4.3 and 4.4, respectively.

Figure 4.3 shows the results of experiment two for average delivery latency. As can be seen, at

publishers with 2 percent of nodes level, Direct Dispatching and Guided Dispatching approaches

have more nodes with higher average delivery latency above the median line compared to Scribe

S. This is attributed to the possibility of achieving a more evenly distributed load and randomized

latency between roots and subscribers when using Scribe S, particularly at lower publisher

count levels. However, by increasing the number of publishers, Direct Dispatching and Guided

Dispatching (F=∞) offer the same average delivery latency as Scribe S at publishers with 28%

of nodes level. It can also be observed that increasing fan-out value and publisher counts leads

to a decrease in maximum value and an improvement of node distribution for average delivery

latency.

The results of experiment two for bandwidth usage are observable in Figure 4.4. The results

demonstrate that at lower publisher levels, Scribe S exhibits the potential to offer better

load distribution and lower maximum bandwidth usage with root nodes compared to Direct

Dispatching and Guided Dispatching with publisher nodes. However, increasing the number

of publishers leads to an increase in the maximum bandwidth usage, number of outliers,

and deviation for Scribe S while Direct Dispatching and all Guided Dispatching approaches

experience lower maximum usage of bandwidth, fewer outliers, and better consistency and

spread of load. Moreover, Guided Dispatching (F=5) provides on average 45% lower maximum

bandwidth usage and 64% better consistency and spread of load compared to Scribe S for all

publisher levels.

The results of Experiment Two confirmed that increasing the number of publishers caused

Scribe S to experience high loads at root nodes, as demonstrated in Figures 4.3 and 4.4. Outlier
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nodes exhibited up to 7 ms of average delivery latency and up to 29 megabit bandwidth usage at

publishers with 28% of nodes level. In contrast, the Direct Dispatching and Guided Dispatching

(F=∞) approaches showed considerably lower maximum bandwidth usage and the same average

delivery latency at the highest publisher counts level, indicating MQTT2EdgePeer’s ability to

handle load distribution by increasing the number of publishers. Furthermore, it is evident that

increasing the number of publishers and decreasing the fan-out value for Guided Dispatching

approaches enhances load distribution and decreases the maximum bandwidth usage value.

However, this also leads to an increase in message delivery latency.
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Figure 4.3 Results of increasing the number of publishers for

average delivery latency per node (experiment two)
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Figure 4.4 Results of increasing the number of publishers for

bandwidth usage per node (experiment two)
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4.2.3 Experiment three - Increasing the number of topics

In this experiment, we increased the number of topics in order to examine how well MQTT2EdgePeer

handles dynamicity and load distribution management across nodes within a structured P2P

overlay.

Figure 4.5 depicts the results of increasing topics for the distribution of nodes over average delivery

latency. Direct Dispatching and Guided Dispatching (F=∞) experience lower average delivery

latency at all levels compared to Scribe S. Additionally, reducing the fan-out value for Guided

Dispatching leads to increasing latency regardless of topic level. Overall, Direct Dispatching

provides on average 7 percent lower maximum value and 26 percent better consistency and

distribution of nodes for average delivery latency compared to Scribe S at all levels.

The results of experiment two for the distribution of nodes over bandwidth usage are illustrated

in Figure 4.6. A cursory glance reveals that Direct Dispatching and Guided Dispatching with all

fan-out values maintained lower maximum values and better node distribution and consistency

with no outliers at all levels compared to Scribe S. Reducing the fan-out value consistently

impacts the distribution of load, Guided Dispatching with (F=5) having the lowest maximum

value and highest consistency and distribution of loads over bandwidth usage. On average,

this leads to a 75 percent improvement in maximum value and an 89 percent improvement in

consistency and distribution compared to Scribe S at all topic counts.

Based on the experimental findings, we can confirm that the system is capable of efficiently

managing dynamicity and distributing the load. Furthermore, we found that the fan-out value for

Guided Dispatching involves a trade-off between average delivery latency and bandwidth usage.

Reducing the value increases latency and decreases bandwidth, while increasing the fan-out

value leads to opposite results for latency and bandwidth.
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Figure 4.5 Results of increasing the number of topics for

average delivery latency per node (experiment three)
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Figure 4.6 Results of increasing the number of topics for

bandwidth usage per node (experiment three)
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4.2.4 Experiment four: Increasing the number of nodes

In this experiment, we evaluated the scalability of the MQTT2EdgePeer by increasing the

number of nodes within the structured P2P overlay network.

Figure 4.7 presents the distribution of nodes over the average delivery latency of publication

messages as the number of nodes is increased. The data show that Direct Dispatching and

Guided Dispatching (with F values of 25 and ∞, respectively) exhibit lower maximum values

for average delivery latency at all levels, compared to Scribe S. Additionally, the results indicate

that reducing the fan-out value for Guided Dispatching leads to higher maximum values for

average delivery latency. In terms of performance, Direct Dispatching outperforms Scribe S,

with an average reduction of 17% in the maximum value of latency and a 16% improvement in

the distribution and consistency of nodes across all node counts.

Figure 4.8 presents the distribution of nodes based on their bandwidth usage in experiment four.

The figure shows that Direct Dispatching and Guided Dispatching experience lower maximum

bandwidth usage at all levels compared to Scribe S. With the number of nodes in the overlay

increasing, the maximum bandwidth usage of Scribe S decreases. This can be attributed to two

factors: the involvement of non-interested nodes as message forwarders in the dissemination

process and the additional hops required to route publications from publishers to roots and

then propagate from roots to subscribers. However, non-interested newly joined nodes are not

involved in message dissemination for Direct Dispatching and Guided Dispatching, resulting

in better consistency across all levels. Direct Dispatching performs better than Scribe S, with

an average reduction of 44% in the maximum bandwidth usage and a 28% improvement in

distribution and consistency.

The data indicate that MQTT2EdgePeer can be scaled up by adding new nodes to the structured

P2P overlay network while maintaining consistency in load distribution. When new nodes are

added to the overlay network, they may not be immediately employed in message dissemination

between publishers and subscribers, resulting in minimum values of zero for average delivery
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latency and bandwidth usage. However, these new nodes can still serve as a coordinator or a

shadow.
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Figure 4.7 Results of increasing the number of nodes for

average delivery latency per node (experiment four)
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Figure 4.8 Results of increasing the number of nodes for

bandwidth usage per node (experiment four)
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4.2.5 Experiment five - failure of nodes (coordinator/root)

In this experiment, we tested MQTT2EdgePeer’s capability to deliver publication messages in

the event of coordinator node failure within the overlay network. The system was configured

with a coordinator shadow count of 3 for the purpose of this evaluation.

Figure 4.9 shows the results of node failures on message delivery over time. An analysis of

Figure 4.9 (B) reveals that all approaches have the same stable delivery rate for 30 seconds,

during which time they drop to different levels after the failure of all root (for Scribe S) and

coordinator (for Direct Dispatching and Guided Dispatching) nodes. Direct Dispatching and

Guided Dispatching with all fan-out values provide faster recovery and stabilize the delivery rate

of messages in a much shorter period of time compared to Scribe S, due to the fault-tolerance

mechanism of MQTT2EdgePeer that maintains shadow coordinators to recover the system

in case of coordinator failures. It is also observable that lower fan-out values for Guided

Dispatching lead to slower stabilization of the delivery rate, as more nodes are involved in

message dissemination at lower fan-out values.

Figure 4.9 (A) illustrates the results of total delivered publication messages over the entire

experiment period. Upon examining the results of delivered messages, it becomes clear that

Direct Dispatching and Guided Dispatching approaches consistently provide higher levels of

total delivered messages compared to Scribe S. These findings are consistent with delivery

rate and confirm that the faster reconfiguration of Direct Dispatching and Guided Dispatching

approaches leads to higher counts of delivered messages. Comparing all approaches with

Scribe S in terms of delivery rate and total message delivery counts, Guided Dispatching (F=∞)

shows approximately 94 percent faster recovery and about 48 percent higher counts of delivered

messages over the experiment period.

Based on the empirical findings presented in this experiment, it is concluded that MQTT2EdgePeer

maintains a high level of fault-tolerance and robustness in the event of coordinator failures.



91

Figure 4.9 Results of the failure of nodes for message

delivery (experiment five)





CONCLUSION AND RECOMMENDATIONS

In this thesis, we presented MQTT2EdgePeer a robust and scalable topic-based peer-to-peer

communication infrastructure for edge/IoT solutions. MQTT2EdgePeer propagates pub/sub

messages using MQTT brokers that are built on top of a structured peer-to-peer overlay

network. While most of the other MQTT-based distributed edge-IoT solutions use managed

static configuration or clustering approaches, MQTT2EdgePeer utilizes a fully unmanaged

peer-to-peer structured overaly network which is one of its kind in this area. Within the overlay

network, unlike conventional single root per topic approaches, MQTT2EdgePeer introduces novel

coordinator-based approaches for message dissemination. MQTT2EdgePeer avoids a high load of

message propagation from a single rendezvous point (root) by coordinating the communications

between publishers and subscribers with Direct Disptaching and Guided Dispatching methods.

Direct Dispatching and Guided Dispatching approaches distribute message dissemination load

by involving publishers instead of roots, therefore, provide lower average delivery latency and

bandwidth usage.

Additionally, the system benefits from a built-in fault-tolerance mechanism. This mechanism

ensures the delivery of messages despite any coordinator node failures, thereby increasing the

overall robustness of the system. Experimental results from the deployment of the system at

the edge confirm the benefits of MQTT2EdgePeer properties. Compared to an approach with a

single root per topic, our solution presents the best result under dynamic rates of subscriptions,

publications, and topics. Furthermore, our experiments demonstrate the scalability and fault-

tolerance of the system, as it can effortlessly scale up by joining new nodes to the structured

overlay network, and can immediately recover the delivery rate in case of coordinator node

failures.

In the future, we plan to implement advanced features of the MQTT protocol such as quality

of service, retained messages, wildcards, and last will. Additionally, we aim to leverage AI
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techniques to optimize the fan-out value of the Guided Dispatching approach for load distribution

improvement and reduced bandwidth usage without compromising latency. We also plan to

investigate the use of other overlay networks, such as structured, unstructured, and hybrid,

and assess their impact on the performance of MQTT2EdgePeer. These efforts will be part

of our ongoing work to further enhance the capabilities and scalability of our peer-to-peer

communication infrastructure for edge/IoT solutions.
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