
Local learning for dynamic ensemble selection

by

Mariana DE ARAUJO SOUZA

MANUSCRIPT-BASED THESIS PRESENTED TO ÉCOLE DE
TECHNOLOGIE SUPÉRIEURE IN PARTIAL FULFILLMENT FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY
Ph.D.

MONTREAL, JULY 28, 2023

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

Mariana DE ARAUJO SOUZA, 2023

This Creative Commons license allows readers to download this work and share it with others as long as the

author is credited. The content of this work cannot be modified in any way or used commercially.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mr. Robert Sabourin, Thesis supervisor

Département de génie des systèmes, École de technologie supérieure

Mr. George Darmiton da Cunha Cavalcanti, co-Supervisor

Centro de Informática, Universidade Federal de Pernambuco

Mr. Rafael Menelau Oliveira e Cruz, co-Supervisor

Département de génie logiciel et des TI, École de technologie supérieure

Mr. Maarouf Saad, President of the board of examiners

Département de génie électrique, École de technologie supérieure

Mr. Alessandro Lameiras Koerich, Member of the jury

Département de génie logiciel et des TI, École de technologie supérieure

Mr. Carlos Manuel Milheiro de Oliveira Pinto Soares, External examiner

Departamento de Engenharia Informática, Universidade do Porto

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

ON "JUNE 30, 2023"

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

ACKNOWLEDGEMENTS

Firstly, I would like to express my immense gratitude to my advisor, Prof. Robert Sabourin, and

my co-advisors, Prof. George Darmiton and Prof. Rafael Cruz. Their expertise, guidance, and

patience throughout the program were invaluable to the completion of this work.

My gratitude also goes to the members of my thesis committee for evaluating this work and

providing constructive feedback.

I would also like to thank my colleagues at LIVIA (Laboratoire d’imagerie, de vision et

d’intelligence artificielle), for their comradery and their help throughout the research. Special

thanks to Le Thanh Nguyen-Meidine and Luiz Gustavo Hafemann for being very supportive

friends.

Finally, I am forever grateful to my family for their encouragement and unconditional support

throughout the years. I would not have come this far without them.

Apprentissage local pour la sélection dynamique d’ensembles

Mariana DE ARAUJO SOUZA

RÉSUMÉ

Les techniques de sélection dynamique reposent sur l’idée que les classificateurs d’un ensemble

sont experts dans différents domaines de l’espace des caractéristiques. En tant que telles, elles

tentent d’identifier uniquement le(s) classificateur(s) le(s) plus compétent(s) pour étiqueter un

échantillon de requête donné, généralement sur la base de l’hypothèse de localité, c’est-à-dire

en supposant que des instances similaires partagent un ensemble similaire de classificateurs

capables de les étiqueter correctement. Par conséquent, la réussite de la tâche de sélection

dynamique est étroitement liée à la distribution locale des données, car elle établit la qualité de

la région définie pour la tâche de sélection dynamique et peut affecter la manière dont l’expertise

locale des classificateurs est perçue. Ainsi, des caractéristiques telles que le chevauchement

des classes locales et la rareté des données peuvent conduire à une région locale mal définie

présentant une hypothèse de localité faible, entravant ainsi la recherche d’un expert local.

Ainsi, dans cette thèse, plusieurs techniques qui intègrent le contexte local dans le système de

classificateurs multiples sont proposées pour améliorer la sélection dynamique des classificateurs

dans des scénarios difficiles. À cette fin, la définition d’une région locale adéquate est abordée

en caractérisant les données locales et en définissant les régions à l’aide de différentes méthodes

pour traiter les distributions complexes et avec des échelles multiples pour fournir un contexte

ample au système. La présence d’experts locaux est également prise en compte en produisant le

pool sur la frontière locale afin d’obtenir des classificateurs plus spécialisés, et en apprenant

la tâche de sélection dynamique de bout en bout à partir des interactions des classificateurs et

des relations entre les données locales afin de stimuler la recherche d’experts locaux. Ainsi,

en exploitant les informations provenant de la distribution des données locales, la capacité des

techniques de sélection dynamique à trouver des experts locaux peut être renforcée, ce qui

améliore sa robustesse et ses performances sur des problèmes complexes.

Dans le chapitre 2, la technique du pool local en ligne (OLP) est proposée pour résoudre la

difficulté que présentent les techniques de sélection dynamique dans la recherche d’experts

locaux dans les zones de chevauchement. À cette fin, la technique OLP génère plusieurs modèles

linéaires à proximité de l’instance interrogée avec différents degrés de localité pour produire

des classificateurs capables de reconnaître la frontière locale. Pour identifier les zones de

chevauchement des classes, une mesure de dureté de l’instance est calculée par mémorisation

pour tous les échantillons disponibles, et les classificateurs sont conçus de manière à "couvrir"

entièrement la région cible. Les résultats expérimentaux montrent que l’utilisation de la réserve

locale générée a permis d’améliorer les techniques de sélection de classificateurs dynamiques

évaluées par rapport à une réserve générée globalement, ce qui suggère l’avantage d’avoir des

classificateurs localement spécialisés dans la réserve pour la tâche de sélection dynamique.

L’approche proposée donne également des résultats similaires à ceux de plusieurs méthodes

d’apprentissage de pointe.

VIII

Au chapitre 3, une méthode d’ensemble local basée sur l’OLP a été proposée, l’OLP++,

pour remédier aux limitations que la première méthode présentait sur les données de haute

dimension en raison de sa définition de la région locale sensible aux effets de la malédiction de

la dimensionnalité. À cette fin, l’approche OLP++ exploite les partitions de données obtenues

à partir d’algorithmes basés sur les arbres pour la définition de la localité, puis produit les

experts locaux sur les différents nœuds impurs du chemin de décision qu’une instance de requête

donnée traverse dans le(s) arbre(s), introduisant ainsi un contexte local de plus en plus large

à l’ensemble local. Les résultats expérimentaux montrent que la définition de la région basée

sur la partition récursive de l’OLP++ a permis d’identifier les instances limites plus souvent

que la définition de la région basée sur les plus proches voisins de l’OLP, ce qui suggère une

amélioration de la distribution des données utilisée pour apprendre les règles linéaires locales.

La définition de région de l’OLP++ conduit également à un ensemble local plus diversifié et à

une performance statistiquement supérieure à celle de l’OLP sur les données de haute dimension.

L’OLP++ surpasse également la forêt aléatoire de référence et plusieurs techniques de sélection

dynamique locale, ce qui confirme les avantages de l’approche proposée pour le traitement des

données de haute dimension dans le contexte de la sélection dynamique.

Enfin, au chapitre 4, un nouveau système dynamique de classification multiple est proposé

pour traiter les données éparses et superposées, car l’OLP++ présente une lacune en raison

de sa dépendance à l’égard de partitions prédéfinies qui n’ont pas été optimisées pour la

tâche de sélection dynamique. La technique proposée de sélection dynamique d’ensemble par

réseau neuronal graphique (GNN-DES) résout ce problème en apprenant la tâche de sélection

dynamique de bout en bout à l’aide d’un réseau neuronal graphique (GNN) multiétiquettes,

qui est responsable de la sélection des experts locaux. En apprenant à partir des relations

locales des échantillons, représentées dans un graphe, et des interdépendances des classificateurs,

modélisées dans les méta-étiquettes, le GNN peut apprendre implicitement un espace intégré où

l’hypothèse de localité est plus forte sans nécessiter une définition explicite de la région locale.

Les résultats expérimentaux démontrent que les techniques classiques de sélection dynamique

ont généralement du mal à traiter les données éparses et superposées, et que le GNN-DES est

plus performant que la sélection statique de base et que plusieurs techniques basées sur les

similarités dans l’espace des caractéristiques. Une analyse plus poussée montre également que

le GNN-DES gère mieux les données éparses et les données qui se chevauchent. a obtenu de

meilleurs résultats que les techniques concurrentes sur les problèmes où l’hypothèse de localité

est plus faible en présence d’un chevauchement de classes, ce qui suggère que l’exploitation de

la distribution locale des données et des interactions des classificateurs peut faciliter la tâche de

sélection dynamique dans des scénarios difficiles.

Mots-clés: Systèmes de classification multiples, Sélection dynamique, Apprentissage local,

Chevauchement de classes, Dureté des instances, Rareté des données, Méta-apprentissage,

Réseaux de neurones graphiques

Local learning for dynamic ensemble selection

Mariana DE ARAUJO SOUZA

ABSTRACT
Dynamic selection techniques are based on the idea that the classifiers from an ensemble are

experts in different areas of the feature space. As such, they attempt to single out only the most

competent one(s) to label a given query sample generally based on the locality assumption,

i.e., assuming that similar instances share a similar set of classifiers able to correctly label

them. Therefore, the success of the dynamic selection task is strongly linked to the local data

distribution, as it establishes the quality of the defined region for the dynamic selection task

and may affect how the classifiers’ local expertise is perceived. As such, characteristics such as

local class overlap and data sparsity may lead to a poorly defined local region presenting a weak

locality assumption, thus hindering the search for a local expert.

Thus, in this thesis, several techniques that integrate the local context into the multiple classifier

system are proposed to improve the dynamic selection of classifiers over challenging scenarios.

To that end, the definition of an adequate local region is addressed by characterizing the local

data and defining the regions using different methods to tackle complex distributions and with

multiple scales to provide ample context to the system. The presence of local experts is also

addressed by producing the pool over the local border to yield more specialized classifiers, and by

learning the dynamic selection task in an end-to-end manner from the classifiers’ interactions and

the local data relations to boost the search for local experts. Thus, by leveraging the information

from the local data distribution, the dynamic selection techniques’ ability to find local experts

may be enhanced, improving its robustness and performance over complex problems.

In Chapter 2, the Online Local Pool (OLP) technique is proposed to tackle the difficulty the

dynamic selection techniques present in searching for local experts in overlap areas. To that

end, the OLP technique generates several linear models in the vicinity of the query instance

with different locality degrees to produce classifiers able to recognize the local border. To

identify the class overlap areas, an instance hardness measure is computed in memorization

for all the available samples, and the classifiers are so that they fully “cover” the target region.

Experimental results demonstrate that using the generated local pool provided an improvement

to the evaluated dynamic classifier selection techniques compared to a globally generated pool,

suggesting an advantage in having locally specialized classifiers in the pool for the dynamic

selection task. The proposed approach also performs similarly to several state-of-the-art learning

methods.

In Chapter 3, a local ensemble method based on the OLP was proposed, the OLP++, to address

the limitations the former presented over high dimensional data due to its local region definition

being susceptible to the effects of the curse of dimensionality. To that end, the OLP++ approach

leverages the data partitions obtained from tree-based algorithms for the locality definition,

and then produces the local experts over the different impure nodes from the decision path

that a given query instance traverses in the tree(s), therefore introducing an increasingly wider

X

local context to the local ensemble. Experimental results show that the OLP++’s recursive

partition-based region definition successfully identified borderline instances more often than

the OLP’s nearest neighbors-based region definition, suggesting an improvement in the data

distribution used to learn the local linear rules. The OLP++’s region definition also leads to a

more diverse local ensemble and a statistically superior performance compared to the OLP over

the high dimensional data. The OLP++ also outperforms the random forest baseline and several

local-based dynamic selection techniques, further suggesting the advantages of the proposed

approach for dealing with high dimensional data in the context of dynamic selection.

Lastly, in Chapter 4, a novel dynamic multiple classifier system is proposed to deal with sparse

and overlapped data as the OLP++ presents a shortcoming due to its reliance on pre-defined

partitions that were not optimized for the dynamic selection task. The proposed Graph Neural

Network Dynamic Ensemble Selection (GNN-DES) technique addresses this issue by learning

the dynamic selection task in an end-to-end manner using a multi-label Graph Neural Network

(GNN), that is responsible for the selection of the local experts. By learning from the samples’

local relationships, represented in a graph, and the classifiers’ inter-dependencies, modeled in the

meta-labels, the GNN may implicitly learn an embedded space where the locality assumption is

stronger without requiring an explicit local region definition. Experimental results demonstrate

that the classical dynamic selection techniques generally struggle over sparse and overlapped

data, and that the GNN-DES outperforms the static selection baseline and several techniques

based on similarities in the feature space. Further analysis also shows the GNN-DES better

deals with performed better than the contending techniques over the problems where the locality

assumption is weaker in the presence of class overlap, suggesting that leveraging the local data

distribution and the classifiers’ interactions can aid the dynamic selection task in challenging

scenarios.

Keywords: Multiple classifier systems, Dynamic selection, Local learning, Class overlap,

Instance hardness, Data sparsity, Meta-learning, Graph neural networks

TABLE OF CONTENTS

Page

INTRODUCTION .1

0.1 Problem statement . 3

0.2 Objectives . 4

0.3 Contributions . 5

0.4 Organization of the thesis . 6

CHAPTER 1 LITERATURE REVIEW .. 13

1.1 Overview of dynamic selection techniques . 13

1.1.1 Region of competence definition . 13

1.1.1.1 Clustering . 15

1.1.1.2 Nearest neighbors . 16

1.1.1.3 Potential function . 17

1.1.1.4 Recursive partitioning . 17

1.1.1.5 Fuzzy hyperboxes . 18

1.1.2 Competence estimation . 19

1.1.3 Classifier selection . 20

1.2 The Oracle model . 20

1.3 Local data characterization for dynamic selection . 21

CHAPTER 2 ONLINE LOCAL POOL GENERATION FOR DYNAMIC

CLASSIFIER SELECTION . 23

2.1 Introduction . 24

2.2 Instance Hardness Analysis . 28

2.3 The Proposed Method . 32

2.3.1 Overview . 33

2.3.2 Step-by-step Analysis . 38

2.4 Experiments . 43

2.4.1 Comparison with DCS techniques . 44

2.4.1.1 Performance in Memorization . 46

2.4.1.2 Performance in Generalization . 48

2.4.1.3 Discussion . 51

2.4.2 Comparison with State-of-the-art Models . 55

2.4.3 Computational Complexity . 57

2.5 Conclusion . 60

CHAPTER 3 OLP++: AN ONLINE LOCAL CLASSIFIER FOR HIGH

DIMENSIONAL DATA . 63

3.1 Introduction . 64

3.2 Problem statement . 66

3.3 Proposed method . 68

XII

3.3.1 Offline phase . 71

3.3.2 Online phase . 73

3.3.3 Illustrative example . 74

3.4 Related work . 79

3.5 Experiments . 84

3.5.1 Experimental setup . 84

3.5.1.1 Datasets . 84

3.5.1.2 Performance evaluation . 85

3.5.2 Comparison against the OLP . 85

3.5.2.1 Borderline sample detection . 86

3.5.2.2 Region size . 87

3.5.2.3 Local pool diversity . 89

3.5.2.4 Average performance . 91

3.5.2.5 Time complexity . 93

3.5.3 Comparison against other local ensemble methods . 95

3.5.3.1 Impact of the local pool in the decision rule . 95

3.5.3.2 Comparison against the state-of-the-art . 97

3.5.3.3 Comparison against the best result from OpenML 101

3.6 Conclusions .103

3.7 Supplementary material .105

3.7.1 Self-generating Hyperplanes (SGH) method .105

3.7.2 OpenML results .105

CHAPTER 4 A DYNAMIC MULTIPLE CLASSIFIER SYSTEM USING

GRAPH NEURAL NETWORK FOR HIGH DIMENSIONAL

OVERLAPPED DATA .109

4.1 Introduction .110

4.2 Background .114

4.3 Graph Neural Network Dynamic Ensemble Selection technique .119

4.3.1 Description . 121

4.3.1.1 Memorization .123

4.3.1.2 Generalization .129

4.3.2 Illustrative example . 131

4.4 Related work .136

4.5 Experimental protocol .140

4.5.1 Research questions .140

4.5.2 Datasets .140

4.5.3 Performance measures . 141

4.5.4 Classifier models and hyperparameters .143

4.6 Experimental results .145

4.6.1 Ensemble and graph characteristics .145

4.6.2 Overall performance .148

4.6.3 Further analysis .153

XIII

4.6.3.1 Feature space vs. decision space .154

4.6.3.2 Neighborhood labelset intersection vs. supervised

labelset intersection .155

4.6.3.3 Comparison against decision space-based techniques 157

4.6.4 Lessons learned .160

4.7 Conclusion . 161

4.8 Supplementary material .163

4.8.1 Including validation data into the known graph 𝐺T .163

4.8.2 Additional results .163

CONCLUSION AND RECOMMENDATIONS . 167

APPENDIX I ON EVALUATING THE ONLINE LOCAL POOL GENERATION

METHOD FOR IMBALANCE LEARNING . 171

APPENDIX II MULTI-LABEL LEARNING FOR DYNAMIC MODEL TYPE

RECOMMENDATION .189

APPENDIX III LOCAL OVERLAP REDUCTION PROCEDURE FOR

DYNAMIC ENSEMBLE SELECTION .215

BIBLIOGRAPHY .239

LIST OF TABLES

Page

Table 2.1 Main characteristics of the datasets used in the experiments. 31

Table 2.2 Majority voting of the classifiers from LP for the query instance from

Figure 2.5b. 43

Table 2.3 Mean and standard deviation of the hit rate, i.e., the rate at which

the right Perceptron is chosen by (a) OLA, (b) LCA and (c) MCB

using the 𝐺𝑃, 𝐿𝑃 and 𝐿𝑃𝑒 configurations. The row Wilcoxon shows

the result of a Wilcoxon signed rank test over the mean hit rates

of the GP configuration and the two proposed configurations. The

significance level was 𝛼 = 0.05, and the symbols +, − and ∼ indicate

the method is significantly superior, inferior or not significantly

different, respectively. Best results are in bold. 47

Table 2.4 Mean and standard deviation of the accuracy rate of using

OLA for a pool with 100 Perceptrons generated using Bagging

(Breiman, 1996) (column Bagging), a pool of 100 Perceptrons

generated using Bagging and pruned with the DFP method (Oliveira,

Cavalcanti & Sabourin, 2017) (column FIRE-DES), the 𝐺𝑃
configuration, the 𝐿𝑃 configuration and the 𝐿𝑃𝑒 configuration.

The row Wilcoxon (Bagging) shows the result of a Wilcoxon

signed rank test over the mean accuracy rates of Bagging and each

remaining method. The same test was performed in comparison

with the FIRE-DES configuration and the 𝐺𝑃 configuration (rows

Wilcoxon (FIRE) and Wilcoxon (GP), respectively). The significance

level was 𝛼 = 0.05, and the symbols +, − and ∼ indicate the

method is significantly superior, inferior or not significantly different,

respectively. In 𝐿𝑃𝑚𝑐, the 𝐿𝑃𝑒 is used for 2-class problems, while

the 𝐿𝑃 is used for multi-class ones. Best results are in bold. 50

Table 2.5 Mean and standard deviation of the accuracy rate of using LCA for

a pool with 100 Perceptrons generated using Bagging (Breiman,

1996) (column Bagging), a pool of 100 Perceptrons generated using

Bagging and pruned with the DFP method (Oliveira et al., 2017)

(column FIRE-DES), the 𝐺𝑃 configuration, the 𝐿𝑃 configuration

and the 𝐿𝑃𝑒 configuration. The row Wilcoxon (Bagging) shows

the result of a Wilcoxon signed rank test over the mean accuracy

rates of Bagging and each remaining method. The same test was

performed in comparison with the FIRE-DES configuration and

the 𝐺𝑃 configuration (rows Wilcoxon (FIRE) and Wilcoxon (GP),

XVI

respectively). The significance level was 𝛼 = 0.05, and the symbols

+, − and ∼ indicate the method is significantly superior, inferior or

not significantly different, respectively. In 𝐿𝑃𝑚𝑐, the 𝐿𝑃𝑒 is used for

2-class problems, while the 𝐿𝑃 is used for multi-class ones. Best

results are in bold. 51

Table 2.6 Mean and standard deviation of the accuracy rate of using MCB

for a pool with 100 Perceptrons generated using Bagging (Breiman,

1996) (column Bagging), a pool of 100 Perceptrons generated using

Bagging and pruned with the DFP method (Oliveira et al., 2017)

(column FIRE-DES), the 𝐺𝑃 configuration, the 𝐿𝑃 configuration

and the 𝐿𝑃𝑒 configuration. The row Wilcoxon (Bagging) shows

the result of a Wilcoxon signed rank test over the mean accuracy

rates of Bagging and each remaining method. The same test was

performed in comparison with the FIRE-DES configuration and

the 𝐺𝑃 configuration (rows Wilcoxon (FIRE) and Wilcoxon (GP),
respectively). The significance level was 𝛼 = 0.05, and the symbols

+, − and ∼ indicate the method is significantly superior, inferior or

not significantly different, respectively. In 𝐿𝑃𝑚𝑐, the 𝐿𝑃𝑒 is used for

2-class problems, while the 𝐿𝑃 is used for multi-class ones. Best

results are in bold. 52

Table 2.7 Mean and standard deviation of the accuracy rate of MLP, SVM, RF

(Breiman, 2001), AdaBoost (Freund & Schapire, 1997), Oblique DT

ensemble (Zhang & Suganthan, 2017) and the 𝐿𝑃𝑚𝑐 configuration.

The row Wilcoxon shows the result of a Wilcoxon signed rank test

over the mean accuracy rates of the proposed configuration and each

of the remaining methods. The significance level was 𝛼 = 0.05,

and the symbols +, − and ∼ indicate if the compared method is

significantly superior, inferior or not significantly different from the

proposed method, respectively. Best results are in bold. 57

Table 2.8 Mean and standard deviation of the accuracy rate of the Randomized

Reference Classifier (RRC) (Woloszynski & Kurzynski, 2011), the

META-DES (Cruz, Sabourin, Cavalcanti & Ren, 2015a), the META-

DES.Oracle (META-DES.O) (Cruz, Sabourin & Cavalcanti, 2017a),

the FIRE-KNORA-U (F-KNU) (Oliveira et al., 2017) and the 𝐿𝑃𝑚𝑐

configuration. The row Wilcoxon shows the result of a Wilcoxon

signed rank test over the mean accuracy rates of the proposed

configuration and each of the remaining methods. The significance

level was 𝛼 = 0.05, and the symbols +, − and ∼ indicate if the

compared method is significantly superior, inferior or not significantly

different from the proposed method, respectively. Best results are in

bold. 58

XVII

Table 3.1 Notation used in the proposed method’s description. 69

Table 3.2 Description of the decision paths obtained for the sample depicted in

(a) Figure 3.6b and (b) Figure 3.6c . 75

Table 3.3 Summary of the related work cited in this section, including their

region definition approach, the amount and size of the defined target

region(s), and at which phases the local information is incorporated

into the system. 82

Table 3.4 Characteristics of the datasets used in the experiments. 84

Table 3.5 Average disagreement score and cosine distance of the local pool

obtained from the OLP technique, with different DCS techniques,

and the proposed method over all datasets from Table3.4. 91

Table 3.6 Average balanced accuracy rate of the OLP with OLA, LCA and

MCB, and the proposed method. The row Win-tie-loss indicates the

amount of datasets over which the proposed technique obtained a

higher, equal or lower average performance than the column-wise

technique. The row P-value shows the p-value of the Wilcoxon

signed-rank test between the proposed method and the column-wise

technique. Best results are in bold. 92

Table 3.7 (a) Description of the symbols and (b) complexity analysis of the

OLP and the proposed adaptation, in training (offline phase) and test

(online phase) time. 94

Table 3.8 Summary of the pairwise comparison between the performances of the

proposed method (with the decision rules given by the local pool, LP),

row-wise, and the aggregated decision rules from the corresponding

trees’ partitions only, column-wise, in terms of balanced accuracy

rate. The row P-value indicates the p-value of a Wilcoxon signed

rank test, with the results below 𝛼 = 0.05 in bold. The Win-tie-loss
row shows the amount of datasets over which the proposed technique

yielded a higher, similar or lower average performance than the

column-wise configuration. 97

Table 3.9 Hyperparameter setting of the local ensembles included in the

comparative analysis. The pool of classifiers used in all DS techniques

but the FLT and OLP+MCB is the RF baseline. 99

Table 3.10 Mean balanced accuracy rate of the evaluated local ensembles over

all folds for each dataset, ordered by increasing dimensionality. Best

results are in bold. .100

XVIII

Table 3.11 Summary of the pairwise comparison between the performances of

the proposed method and the evaluated local ensembles in terms of

balanced accuracy rate over all datasets. The row P-value indicates

the p-value of a Wilcoxon signed rank test, with the results below

𝛼 = 0.05 in bold. The Win-tie-loss row shows the amount of datasets

over which the proposed technique yielded a higher, similar or lower

average performance than the column-wise technique. 101

Table 3.12 Information regarding the best performing execution retrieved from

the OpenML database (Vanschoren, van Rĳn, Bischl & Torgo, 2013)

for each dataset. # Instances and # Features indicate the amount

of samples and dimensionality of the datasets, respectively. The IR
column shows the imbalance ratio, or the ratio between the majority

class and the minority class sample counts, of each problem. From

the OpenML registered executions over each dataset, column Run ID
indicates the identifier of the best performing one in terms of balanced

accuracy rate. The Avg. perf. column shows the balanced accuracy

rate obtained in the indicated run, averaged over all folds. The P. value
column indicates the resulting p-value obtained from the Kruskal-

Wallis test with 95% confidence on the per-fold performances of the

(indicated) best run and the proposed technique’s best performing

configuration (𝑇 = 100, 𝐿 = 1). 107

Table 4.1 Notation pertaining to representation learning on graphs.116

Table 4.2 Notation pertaining to the GNN-DES technique. 121

Table 4.3 Characteristics of several DES techniques. The column Acronym
indicates the acronym adopted in this work. .139

Table 4.4 Characteristics of the datasets used in the experiments. .142

Table 4.5 Hyperparameter setting of the local ensembles included in the

comparative analysis. The pool of classifiers used in all DS techniques

but the FLT, OLP and OLP++ is the same used as in the static selection

baselines. .144

Table 4.6 Average balanced accuracy rate of the techniques over each dataset,

using the Bagging ensemble. .149

Table 4.7 Average balanced accuracy rate of the techniques over each dataset,

using the AdaBoost ensemble. .150

Table 4.8 P-value of the pairwise Wilcoxon signed-rank test between the

techniques, using the (a) Bagging ensemble, and (b) AdaBoost

XIX

ensemble. Values below 𝛼 = 0.05 are in bold. The symbols − and +
indicate whether the column-wise technique yielded a statistically

inferior or superior performance to the row-wise technique.152

Table 4.9 P-value of the pairwise Wilcoxon signed-rank test between the

proposed method and the three decision space-based techniques over

the datasets with the lowest excess neighborhood labelset and the

highest excess neighborhood labelset. Values below 𝛼 = 0.05 are in

bold. The symbols - and + indicate whether the proposed technique

yielded a statistically inferior or superior performance to the other

technique, respectively. .159

Table 4.10 Average F1 score of the techniques over each dataset, using the

AdaBoost ensemble. Best results are in bold. The row Win-tie-loss
indicates the amount of datasets over which the GNN-DES obtained

a higher, equal, and lower, respectively, average F1 score than the

column-wise technique. The row P-value indicates the resulting

p-value of the Wilcoxon signed-rank test between the GNN-DES and

the column-wise techniques, and values below 𝛼 = 0.05 are in bold.165

Table 4.11 Summary of the comparative analysis over the average F1 score of the

proposed method against the evaluated techniques for each group of

datasets using the AdaBoost ensemble. Low is the group of datasets

that have 𝐼𝑅 < 3, and Medium-high is the group of datasets that

datasets have 𝐼𝑅 ≥ 3. Best results are in bold. The row Win-tie-loss
indicates the amount of datasets over which the GNN-DES obtained

a higher, equal, and lower, respectively, average F1 score than the

column-wise technique. The row P-value indicates the resulting

p-value of the Wilcoxon signed-rank test between the GNN-DES and

the column-wise techniques, and values below 𝛼 = 0.05 are in bold.166

LIST OF FIGURES

Page

Figure 0.1 Thesis organization. The arrows indicate the reading flow of the

thesis. Solid arrows show the chapters’ dependencies, and dashed

arrows show the suggested additional readings which help the

comprehension of the following work. 7

Figure 1.1 Usual steps in a dynamic selection scheme. xq is the query sample,

𝐷𝑆𝐸𝐿 is a labeled dataset (training or validation set), 𝜃𝑞 is the RoC

of xq, 𝐶 is the pool of classifiers, 𝛿𝛿𝛿 is the competence vector and 𝐶′

is the set of selected classifiers. 13

Figure 1.2 Categorization with regards to the definition method applied in the

RoC definition step. 14

Figure 2.1 Mean accuracy rate of OLA and LCA for each group of kDN value,

for all datasets from Table 2.1. The neighborhood sizes of the DCS

techniques and the kDN measure are 𝑘𝑠 = 𝑘ℎ = 7. 32

Figure 2.2 Overview of the (a) offline and (b) online phases of the proposed

method. T is the training set, 𝐻 is the set of hardness estimates, xq
is the query sample, 𝜃𝑞 is its Region of Competence (RoC), 𝑘𝑠 is

the size of 𝜃𝑞, 𝐿𝑃 is the local pool, 𝑀 is the pool size of 𝐿𝑃 and 𝜔𝑙

is the output label of xq. In the offline phase, the hardness value of

all instances in T is estimated and stored in 𝐻. In the online phase,

𝜃𝑞 is first obtained and evaluated based on the hardness values in 𝐻.

If it only contains easy instances, the k-NN rule is used to label xq
in the last step. Otherwise, the local pool is generated in the second

step, and xq is labelled via majority voting of the classifiers in 𝐿𝑃
in the third step. 35

Figure 2.3 Local pool generation step. The inputs to the generation scheme

are the training set T , the query sample xq, the size 𝑘𝑠 of the query

sample’s RoC and the local pool size 𝑀. The output is the local

pool 𝐿𝑃. In the m-th iteration, the query sample’s neighborhood 𝜃𝑚

of size 𝑘𝑚 is obtained and used as input to the SGH method, which

yields the subpool 𝐶𝑚. The classifiers from 𝐶𝑚 are then evaluated

over 𝜃𝑚 using a DCS technique. The classifiers’ notation refers a

classifier 𝑐𝑚,𝑘 as the k-th classifier from the m-th subpool (𝐶𝑚). The

most competent classifier 𝑐𝑚,𝑛 in subpool 𝐶𝑚 is then selected and

added to the local pool 𝐿𝑃. This process is then repeated until 𝐿𝑃
contains 𝑀 locally accurate classifiers. 36

XXII

Figure 2.4 P2 Problem dataset, with theoretical decision boundaries in grey.

The training set is depicted in (a), and in (b) the same set is shown

with hard instances in large markers and easy instances in small ones. 38

Figure 2.5 Two different scenarios of the online phase. In (a), the query instance

xq belongs to Class 2. Since all instances in its neighborhood 𝜃𝑞

are easy (small markers), the k-NN rule is used to label xq. On the

other hand, all instances in the query sample’s neighborhood 𝜃𝑞 in

(b) are deemed hard (large markers). Thus, the local pool 𝐿𝑃 will

label the query instance xq, which belongs to Class 1. 39

Figure 2.6 Local pool generation. (a) First, (b) second, (c) third, (d) fourth,

(e) fifth, (f) sixth and (g) seventh iteration of the method, with

its respective neighborhoods (𝜃𝑚) and generated local subpools

𝐶𝑚 formed by the depicted classifiers (𝑐𝑚,𝑘). The arrows indicate

in which part of the feature space the classifiers label as Class 1.

Each local subpool 𝐶𝑚 is obtained using the SGH method with its

respective neighborhood 𝜃𝑚, which increases in each iteration, as

input. The final local pool 𝐿𝑃, formed by the best classifiers in each

subpool 𝐶𝑚, is shown in (h). 41

Figure 2.6 Local pool generation. (a) First, (b) second, (c) third, (d) fourth,

(e) fifth, (f) sixth and (g) seventh iteration of the method, with

its respective neighborhoods (𝜃𝑚) and generated local subpools

𝐶𝑚 formed by the depicted classifiers (𝑐𝑚,𝑘). The arrows indicate

in which part of the feature space the classifiers label as Class 1.

Each local subpool 𝐶𝑚 is obtained using the SGH method with its

respective neighborhood 𝜃𝑚, which increases in each iteration, as

input. The final local pool 𝐿𝑃, formed by the best classifiers in each

subpool 𝐶𝑚, is shown in (h). 42

Figure 2.7 Mean percentage of instances in difficult regions for all datasets

from Table 2.1. The Estimated bar indicates the times the local

pool was used to classify an instance, while the True bar indicates

the percentage of instances with true kDN value above zero. The

lines 𝑡𝑟𝑢𝑒 and 𝑒𝑠𝑡 indicate the averaged values of all datasets for

the estimated and true percentage of hard instances, respectively. 49

Figure 2.8 Example of pool generation for multi-class problems. In all scenarios,

𝑥𝑞 belongs to Class 1. In (a) and (c), the query instance’s (xq)

neighborhood 𝜃1 was obtained using k-NN with 𝑘1 = 7. In (b) and

(d), 𝜃1 was obtained using a version of k-NNE with 𝑘1 = 7 as well.

These neighborhoods were used as input to the SGH method, which

XXIII

yielded the corresponding subpool of classifiers depicted in the

images. 54

Figure 3.1 Two class two-dimensional toy problem. The training instances

are shown in round markers, while the test sample is in a diamond

shape. The region in grey was obtained using (a) the KNN classifier,

(b) a Decision Tree, and (c-d) a Decision Tree with random feature

sampling at each split (similar to the Random Forest), all fitted to

the training set. The instances that belong to the target region in

grey are shown in larger markers and highlighted in red. 67

Figure 3.2 Two class 10-dimensional toy problem, projected onto its only two

fully informative features. The training instances are shown in

round markers, while the test sample is in a diamond shape. The

target regions which contain the instances highlighted in red were

obtained using (a) the KNN classifier, (b) a Decision Tree, and (c-d)

a Decision Tree with random feature sampling at each split (similar

to the Random Forest), all fitted to the 10D training set. 69

Figure 3.3 Overview of the (a) offline and (b) online phases of the proposed

method. T refers to the training set and 𝐴𝑗 ∈ A refers to one

tree from a set of decision trees fitted to the data. 𝑇 , 𝑘 and 𝐿 are

hyperparameters of the technique which indicate the number of

trees, minimum region size and number of regions/levels per tree,

respectively. x𝑞 is an unknown sample whose decision path through

𝐴𝑗 leads to the data partition 𝜃ℓ
𝑞, 𝑗 at the leaf node. If the partition

is pure the system predicts the output 𝑦̂𝑞 based on the local class

distribution, otherwise the local pool 𝐿𝑃 is generated to obtain the

prediction 𝑦̂𝑞. 70

Figure 3.4 Toy example of the data partitions, within the dashed lines, from the

decision path a given query sample (in a diamond shape) traverses

in a tree 𝐴𝑗 . (a) 𝜃1
𝑞, 𝑗 = T , from the (root) node in 𝜂𝑞, 𝑗 [1], (b) 𝜃2

𝑞, 𝑗 ,

from the node in 𝜂𝑞, 𝑗 [2], (c) 𝜃3
𝑞, 𝑗 , from the node in 𝜂𝑞, 𝑗 [3], and (d)

𝜃ℓ=4
𝑞, 𝑗 , from the (leaf) node in the last position 𝜂𝑞, 𝑗 [4]. 72

Figure 3.5 2D problem used to illustrate the proposed method. (a) shows the

training set, with added noise, and (b) the same set with the decision

tree’s classification border in purple. The theoretical class borders

are dashed. 74

Figure 3.6 Two examples of query instances, depicted in a diamond shape and

highlighted in black. The training instances in larger markers and

highlighted in red belong to the rectangular partitions defined at

XXIV

the leaf node where the unknown samples fall, shown in light grey.

(b) shows a query sample from the orange class in a homogeneous

partition, while (c) shows a query sample from the green class in a

heterogeneous partition. The circular regions depicted in dark grey

in (b-c) show the region definition that would be obtained for the

same instances using the KNN, with 𝐾 = 7. 76

Figure 3.7 Demonstration of the locality reduction procedure and resulting local

linear rules given by the local pool obtained for the query sample

from Figure 3.6c. The instances in larger markers and highlighted

in red belong to the partitions defined at the (a) leaf level, (b) level

immediately above the leaf level, and (c) the level above that in

the decision path taken by the query sample in the fitted tree. The

regions used for the local pool generation within the proposed

adaptation are shown in light grey, while the regions obtained by the

KNN within the original OLP are shown in dark grey. The depicted

hyperplanes form the local pool and were generated using the SGH

method over the rectangular region. The arrows indicate the area of

the feature space where the classifiers label as the green class. 78

Figure 3.8 Mean and standard deviation of the proportion of test samples

considered in borderline areas by the OLP and the proposed method

for each dataset from Table 3.4, sorted by increasing number of

features. 87

Figure 3.9 Average proportion of training samples in the local region of the

test instances considered in class overlap areas at the (a) first, (b)

second and (c) third iteration. 88

Figure 3.10 Average (a) disagreement score and (d) cosine distance between the

linear classifiers included in the local pool in the OLP, with each of

the three DCS techniques, and in the proposed method. 90

Figure 3.11 Average balanced accuracy rate of the proposed method (with the

decision rules given by the local pool, LP), x-axis, and the aggregated

decision rules from the corresponding trees’ partitions only, y-

axis, over all datasets from Table 3.4 and with (𝑇 = 100, 𝐿 = 1),

(𝑇 = 50, 𝐿 = 2) and (𝑇 = 33, 𝐿 = 3). 96

Figure 3.12 Number of datasets over which the null hypothesis, that the median

balanced accuracy rate of the indicated local ensemble method and

the best performing execution in the OpenML database are the same,

was rejected or not (with 𝛼 = 0.05). .102

XXV

Figure 3.13 Toy example illustrating the SGH method. (a) shows the data input to

the technique. (b) shows the first iteration of the technique, with the

samples used to generate the indicated linear classifier highlighted

in red, and the arrow indicating where the latter labels as the green

class. (c) illustrates the second iteration of the technique, also with

the linear classifier produced using the samples highlighted in red.

The final pool yielded by the SGH method is shown in (d).106

Figure 4.1 Illustrative two-class toy problems. Circles indicate the training

samples and diamonds the query instances, whose k-neighbors

(𝑘 = 7) are highlighted in red and within the region defined with the

dashed lines. (a,c) is a 2-dimensional problem with two informative

features, and (b,d) is a 10-dimensional problem obtained from the

2-dimensional one by adding six redundant features and two random

features. We show only the two informative features in (b,d).112

Figure 4.2 Example of weak and strong linkage applied in the proposed method.

Weak links (dashed) are built between close samples from different

classes while strong links are built between close samples from

the same class. The instance highlighted in red presents mostly

weak links, indicating an ambiguous decision region. The instance

highlighted in green presents only strong links, suggesting a safe

decision region. .120

Figure 4.3 General steps of the GNN-DES technique. .122

Figure 4.4 Description of the GNN-DES in (a) memorization and (b)

generalization. .123

Figure 4.4 Description of the GNN-DES in (a) memorization and (b)

generalization. .124

Figure 4.5 Edge weight function for strong and weak links (Eq. (4.6)). The

strong and dotted lines indicate the edge weight values for distances

below and above the 𝑑𝑚𝑎𝑥 cut-off point, respectively. 127

Figure 4.6 Illustrative example of the procedure the meta-learner performs

during the training step. The vector x𝑖 indicate the i-th sample’s

representation in the feature space and the vector u𝑖 its meta-labels.

The samples from x1 1-hop neighborhood (𝑙 = 1) are circled in green,

and the sampled instances among them have a green connection.

Similarly, the samples from x1 2-hop neighborhood (𝑙 = 2) are

circled in purple, and the sampled instances among them have a

purple connection. .130

XXVI

Figure 4.7 Training data and the ensemble of Decision Stumps (with decision

borders in blue) in the original feature space. .132

Figure 4.8 2-dimensional representation (obtained using UMAP) of the training

data and the known graph in (a) the decision space, and (b) the

embedded space. .133

Figure 4.9 2-dimensional representation (obtained using UMAP) of the

evaluation graph in (a) the decision space, and (b) the embedded

space. The query sample is depicted with a diamond marker.134

Figure 4.10 Query instance (diamond) and respective neighbors (square) obtained

using the KNN (𝐾 = 7) over the (a) feature space, (b) decision

space, and (c) embedded space, shown in the original feature space.135

Figure 4.11 Query instance (diamond) and respective neighbors (square) obtained

using the KNN (𝐾 = 7) over the embedded space (with graph edges),

shown in the embedded space in two dimensions obtained with

UMAP. .136

Figure 4.12 Labelset cardinality of the instances with respect to the (a) Bagging

ensemble and the (b) AdaBoost ensemble. The dashed line indicates

the average over all datasets. .146

Figure 4.13 Average correlation coefficient of the (a) Bagging ensemble and (b)

AdaBoost ensemble. The dashed line indicates the average over all

datasets. 147

Figure 4.14 Average nodes’ degree in the known graph 𝐺T obtained using the

(a) Bagging ensemble and (b) AdaBoost ensemble. The dashed line

indicates the average over all datasets. 147

Figure 4.15 Win-tie-loss distribution of the average balanced accuracy rate of the

proposed GNN-DES technique vs. the DES techniques using the (a)

Bagging ensemble, and (b) AdaBoost ensemble. The dashed lines

indicate the critical values of the sign test considering a sample size

of 𝑛 = 35 for 𝛼 = 0.1, 𝛼 = 0.05 and 𝛼 = 0.01 from left to right,

respectively. 151

Figure 4.16 Overall comparison between the feature and decision spaces (FS

and DS, respectively) in each dataset (circle). (a) shows the overall

average supervised labelset intersection in both spaces. (b) shows

the average proportion of test instances in overlap regions, and

(c) the average supervised labelset intersection of the samples in

XXVII

overlap regions. The 𝐹/𝑁 indicates the ratio between the number

of features and samples of each dataset. .155

Figure 4.17 Neighborhood labelset intersection (Eq. (4.14)) vs. the supervised

labelset intersection (Eq. (4.13)) in the (a,c) feature space (FS) and

(b,d) decision space (DS), averaged over (a-b) all instances and (c-d)

samples in overlap regions, for each dataset. The 𝐹/𝑁 indicates the

ratio between the number of features and samples of each dataset.156

Figure 4.18 Average excess neighborhood labelset (Eq. (4.15)) in overlap regions

in the feature and decision spaces for each dataset. The win-tie-loss

summary is done w.r.t. the proposed GNN-DES technique and the

(a) KNOP, (b) META-DES and (c) CHADE. .158

Figure 4.19 Win-tie-loss distribution of the average balanced accuracy rate of

the proposed GNN-DES technique vs. the three DES techniques

using the AdaBoost ensemble considering the (a) bottom and (b)

top half of the datasets ordered by the average excess neighborhood

labelset in overlap regions. The dashed lines indicate the critical

values of the sign test considering a sample size of (a) 𝑛 = 18 for

𝛼 = 0.1, 𝛼 = 0.05 and 𝛼 = 0.01, and (b) 𝑛 = 17 for 𝛼 = {0.1, 0.05}
and 𝛼 = 0.01, from left to right. .159

LIST OF ALGORITHMS

Page

Algorithm 2.1 General procedure of the Self-generating Hyperplanes (SGH)

method. 30

Algorithm 2.2 Online Local Pool (OLP) technique: offline phase. 36

Algorithm 2.3 Online Local Pool (OLP) technique: online phase. 37

Algorithm 3.1 Online Local Pool++ (OLP++) technique: offline phase. 72

Algorithm 3.2 Online Local Pool++ (OLP++) technique: online phase. 73

Algorithm 4.1 GraphSAGE forward propagation (Adapted from (Hamilton,

Ying & Leskovec, 2017)). .118

Algorithm 4.2 Graph Neural Network Dynamic Ensemble Selection (GNN-

DES) technique - Step 1: meta-label assignment. .125

Algorithm 4.3 Graph Neural Network Dynamic Ensemble Selection (GNN-

DES) technique - Step 2: graph construction. 127

Algorithm 4.4 Graph Neural Network Dynamic Ensemble Selection (GNN-

DES) technique - Step 5: graph expansion. 131

Algorithm 4.5 Procedure for including validation data into the known graph164

LIST OF ABBREVIATIONS

ADA AdaBoost ensemble

AUC Area under the ROC curve

BalancedRF Balanced Random Forest

BR Binary Relevance

CD Critical Difference

CHADE Chained Dynamic Ensemble

DCS Dynamic Classifier Selection

DES-C Dynamic Ensemble Selection-Clustering

DES-KNN Dynamic Ensemble Selection KNN

DES-RRC Randomized Reference Classifier

DES Dynamic Ensemble Selection

DESC Dynamic Ensemble Selection-Clustering

DESP Dynamic Ensemble Selection Performance

DFP Dynamic Frienemy Pruning

DKNN Dynamic Ensemble Selection-KNN

DS Decision Space

DS Decision Stump

DS Dynamic Selection

DSEL Dynamic Selection Dataset

XXXII

DT Decision Tree

ENL Excess Neighborhood Labelset

ENN Edited Nearest Neighbors

ETS École de Technologie Supérieure

FIRE Frienemy Indecision Region

FLT Forest of Local Trees ensemble

FS Feature Space

G-mean Geometric Mean

GCN Graph Convolutional Network

GNN-DES Graph Neural Network Dynamic Ensemble Selection

GNN Graph Neural Network

GP Global Pool

HDSSS High-Dimensional Small Sample-Sized

IR Imbalance Ratio

K-NN K-Nearest Neighbors

k-NN k-Nearest Neighbors

k-NNE k-Nearest Neighbor Equality

KDN K-Disagreeing Neighborhood

kDN k-Disagreeing Neighbors

KDNi K-Disagreeing Neighbors-imbalance

XXXIII

KNE K-Nearest Oracles Eliminate

KNN K-Nearest Neighbors

KNNE K-Nearest Neighbors Equality

KNOP K-Nearest Output Profiles

KNORA-B K-Nearest Oracles Borderline

KNORA-BI K-Nearest Oracles Borderline-Imbalance

KNORA-E K-Nearest Oracles Eliminate

KNORA-U K-Nearest Oracles Union

KNU K-Nearest Oracles Union

LCA Local Class Accuracy

LCard Labelset Cardinality

LP Local Pool

LSC Local Set Cardinality

LSCi Local Set Cardinality-imbalance

MCB Multiple Classifier Behavior

MCS Multiple Classifier Systems

META-DES Meta-learning for Dynamic Ensemble Selection

MLP Multi-Layer Perceptron

MV Majority Voting

NLI Neighborhood Labelset Intersection

XXXIV

OLA Overall Local Accuracy

OLP Online Local Pool

OVO One-Versus-One

PCC-DES Probabilistic Classifier Chain Dynamic Ensemble Selection

RF Random Forest

ROC Receiver Operation Characteristic

RoC Region of Competence

RRC Randomized Reference Classifier

SGH Self-Generating Hyperplanes

SLI Supervised Labelset Intersection

SS Static Selection

SVM Support Vector Machine

LIST OF SYMBOLS AND UNITS OF MEASUREMENTS

T Training set

V Validation set

𝐶 Pool of classifiers

𝑐 𝑗 j-th classifier from the pool

𝐿𝑃 Local pool

Ω Set of the problem’s classes

𝜔𝑙 l-th class from the problem

x𝑖 Feature vector of the i-th instance

𝑦𝑖 True label of the i-th instance

x𝑞 Feature vector of the query instance

𝑦𝑞 True label of the query instance

𝑦̂𝑞 Predicted label of the query instance

𝜃𝑞 Region of Competence (RoC) of the query instance

𝐾 RoC size

𝑘 RoC size

𝛼 Significance level

𝐿𝑃 Local Pool

𝑀 Local pool size

𝐻 Instance hardness estimates

XXXVI

𝑘ℎ Neighborhood size for instance hardness

𝑘𝑠 Initial neighborhood size for local pool

R Set of classes’ centroids

r𝑖 Centroid of i-th class

𝜃𝑚 m-th region

𝐶𝑚 m-th subpool

𝑐𝑚,𝑘 k-th classifier from 𝐶𝑚

A Set of decision trees

𝐴𝑗 j-th decision tree

𝑇 Number of decision trees

𝐿 Number of tree levels

𝑘 Minimum leaf size

𝜂𝑞, 𝑗 Decision path of query in 𝐴𝑗

𝜃𝑙
𝑞, 𝑗 Data partition at the 𝑙-th node in path 𝜂𝑞, 𝑗

𝜃ℓ
𝑞, 𝑗 Data partition at the leaf node in path 𝜂𝑞, 𝑗

𝐺 Graph

𝑉 Set of vertexes

𝐸 Set of edges

𝑣𝑖 i-th vertex

e𝑖, 𝑗 Attributes of the edge between 𝑣𝑖 and 𝑣 𝑗

XXXVII

h𝑙
𝑖 Hidden representation of 𝑣𝑖 at the l-th layer

N(𝑣𝑖) Set of neighboring nodes of 𝑣𝑖 in 𝐺

W𝑙 Learnable parameters at the l-th layer

𝜎() Non-linear activation function

𝛼𝑙
𝑖, 𝑗 Attention coefficient at the l-th layer between 𝑣𝑖 and 𝑣 𝑗

𝐺T Known graph

𝐺𝑁𝑁 Meta-learner

𝑝𝑖,𝑘 Output probability from 𝑐𝑘] to x𝑖

p𝑖 Output probabilities for x𝑖

𝑑𝑖, 𝑗 Normalized L1 distance between p𝑖 and p 𝑗

𝑜𝑖,𝑘 Value of the network’s k-th output node for input x𝑖

𝑢𝑖,𝑘 Indication of (in)correct classification of x𝑖 from 𝑐𝑘

u𝑖 Meta-labels of x𝑖

𝐺𝑞 Evaluation graph

𝑈𝑖 Meta-labelset of i-th sample

v𝑖 Meta-feature vector of i-th sample

𝑡 Output class probability threshold

𝑝𝑜 Proportion of samples from opposite class

𝐿𝑆 Local set

x𝑛𝑒 Nearest enemy

XXXVIII

𝑇𝑃𝑅 True positive rate

𝑇𝑁𝑅 true negative rate

𝑃 Number of positive class instances

𝑁 Number of negative class instances

𝑇𝑃 Number of true positives

𝑇𝑁 Number of true negatives

𝐹𝑃 Number of false positives

INTRODUCTION

Multiple Classifier Systems (MCS) integrate the responses of several classifiers with the purpose

of leveraging their complementarity so that the combined system outperforms each individual

learner (Kittler, Hatef, Duin & Matas, 1998; Woźniak, Graña & Corchado, 2014). Several

studies found in the literature demonstrate the effectiveness of MCS in improving the recognition

rates over monolithic classifiers (Kuncheva, 2002, 2014; Zhou, 2012) and solving real-world

problems (Gao, Shan, Hu, Niu & Liu, 2019; Goel, Sharma, Khatri & Damodaran, 2020; Cao,

Geddes, Yang & Yang, 2020).

MCS are usually divided into three phases (Cruz, Sabourin & Cavalcanti, 2018a): generation,

selection and aggregation. In the generation phase, the classifiers that comprise the pool of

classifiers are generated. The second phase, called selection, is when the classifiers in the pool

are singled out for performing the classification task. Lastly, in aggregation, the responses of all

selected classifiers are combined to produce the system’s output.

The generation phase of an MCS is responsible for generating the classifiers, with the goal of

producing an accurate and diverse pool. Diversity is an intuitive characteristic of an ensemble of

classifiers, which is considered diverse if the models make different mistakes in different regions

of the feature space (Kuncheva & Whitaker, 2003). This characteristic is important to MCS since

there is no point in producing and combining identical classifiers. Most generation techniques

use one or more of the following approaches for obtaining a diverse pool of classifiers (Duin,

2002): different initializations, different hyperparameters, different architectures, different model

types (i.e., producing an heterogeneous pool), different training sets (obtained from the original

dataset via sampling (Breiman, 1996; Schapire, Freund, Bartlett & Lee, 1997), data partitioning

(Kuncheva, 2000), etc.), or different feature representations (e.g, by extracting different features

from the same raw data (Bashbaghi, Granger, Sabourin & Bilodeau, 2017), or sampling the

original feature space (Ho, 1998)).

2

In the selection phase of an MCS, the classifiers to be used in the classification task are

singled out. This phase is optional, so all classifiers in the pool may be used for labeling

the test samples. The classifier selection may be either static or dynamic. In static selection

techniques, the classifiers are selected in training, so the same selected ensemble is used

to label all query instances. The ensemble selection can be performed using optimization

algorithms, such as greedy search (Partalas, Tsoumakas & Vlahavas, 2008) and evolutionary

algorithms (Dos Santos & Sabourin, 2011), with the fitness function usually based on accuracy

rate (Ruta & Gabrys, 2005; Dos Santos, Sabourin & Maupin, 2009) and/or diversity metrics

(Giacinto & Roli, 2001; Dos Santos & Sabourin, 2011). Dynamic selection techniques, on the

other hand, perform the selection in generalization, aiming at selecting the classifier(s) that are

best fit for labeling each query sample in particular according to its(their) perceived, or estimated,

competence in the task. The competence estimation of the classifiers may be based on several

criteria, including local accuracy (Woods, Kegelmeyer Jr & Bowyer, 1997), ensemble diversity

(Soares, Santana, Canuto & de Souto, 2006), classifier behavior (Giacinto, Roli & Fumera,

2000), probabilistic models (Giacinto & Roli, 2001; Woloszynski & Kurzynski, 2011), ranking

(Woods et al., 1997), data complexity (Brun, Britto, Oliveira, Enembreck & Sabourin, 2016),

and meta-learning (Cruz et al., 2015a; Pinto, Soares & Mendes-Moreira, 2016), among others.

In the aggregation phase, the responses of the selected classifiers (or all classifiers, if no selection

took place) are combined to form the final output of the MCS. The combination can be performed

over the classifiers’ output labels for the query sample, as in voting schemes, or their output

class supports, as in probabilistic and fuzzy-based approaches (Kittler et al., 1998). There are

three approaches to combining the responses of the classifiers (Duin, 2002): fixed rules, such as

majority voting, mean, product and sum, trained combiners, in which a classifier is trained to

learn the aggregation function and combine the responses, as in the Mixture of Experts (ME)

paradigm (Jacobs, Jordan, Nowlan & Hinton, 1991; Armano & Hatami, 2010b), and dynamic

3

weighting, in which a weight is assigned to each classifier according to the perceived confidence

in their responses.

0.1 Problem statement

The focus of this thesis is on dynamic selection approaches, which were shown to work quite

well over a wide range of problems, including class imbalanced (Oliveira, Cavalcanti, Porpino,

Cruz & Sabourin, 2018) and ill-defined (Britto, Sabourin & Oliveira, 2014) distributions. They

were also shown to outperform static selection schemes in several occasions (Cruz et al., 2015a;

Woloszynski & Kurzynski, 2011).

The reasoning behind dynamic selection techniques is that each classifier in the pool may be

an expert in different regions of the feature space, so it could be advantageous to single out

only the most competent one(s) in the area where the query sample is located. Thus, most

techniques rely on the locality assumption to solve the dynamic selection task, that is, it is

expected that similar instances are correctly labeled by a similar set of classifiers from the pool.

These techniques require defining a local region, called Region of Competence (RoC), using

clustering (Soares et al., 2006), nearest neighbors rule (Ko, Sabourin & de Souza Britto Jr, 2007;

Cavalin, Sabourin & Suen, 2012), distance-based potential function (Woloszynski & Kurzynski,

2011), recursive partitioning (Souza, Sabourin, Cavalcanti & Cruz, 2023), and/or fuzzy

hyperboxes (Davtalab, Cruz & Sabourin, 2022), and then estimating over the RoC the competences

of the classifiers in the pool according to some criteria (Cruz et al., 2018a).

So, to properly achieve the dynamic selection of classifiers for a given unknown sample, three

tasks need to be accomplished: (a) the RoC must be defined so that the local data aids the search

for the local experts, (b) there must be at least one expert in that local region to be found in

the pool, and (c) the local experts must be identified and singled out through their estimated

competences. On the one hand, while several works in the literature address different selection

4

criteria to tackle (c) (Ko et al., 2007; Soares et al., 2006; Brun et al., 2016; Cruz et al., 2015a),

the effectiveness of the competence estimation and classifier selection depends directly on the

defined RoC and the models available in the pool. On the other hand, the local data distribution

plays an important role in fulfilling (a) and (b), and therefore (c), as the presence of unreliable

samples (Pereira, Britto, Oliveira & Sabourin, 2018) and class overlap (Oliveira et al., 2017)

affect the quality of the defined RoC and how the classifiers’ local expertise is perceived.

As such, the success of the dynamic selection task is strongly linked to the local context of the

data. Characteristics such as local class overlap (Cruz, Oliveira, Cavalcanti & Sabourin, 2019a;

Cruz, Sabourin & Cavalcanti, 2018b) and noise (Cruz, Sabourin & Cavalcanti, 2015b) were

already shown to hinder the techniques’ recognition rates. The locality definition can also be

negatively affected by high dimensionality and class ambiguity (Zhang, 2022; Vandaele, Kang,

De Bie & Saeys, 2022). Moreover, as with other local methods, the dynamic selection techniques

may be sensitive to overlap and data sparsity (Sánchez, Mollineda & Sotoca, 2007), with the

latter being often associated with increased complexity in the class boundary (Lorena, Costa,

Spolaôr & De Souto, 2012; Ho & Basu, 2002). Thus, incorporating local data information into

the system could enhance the dynamic selection techniques’ ability to find local experts, and

thus improve its robustness and performance over challenging scenarios.

0.2 Objectives

The objective of this thesis is to develop techniques that better integrate the local context into the

multiple classifier system to improve the dynamic selection of classifiers. As the actual selection

of the classifiers requires the definition of a local region and the presence of local experts in the

pool, this thesis proposes to embed the local information into the system so that the latter adapts

to the surrounding context and approaches the task with a local perspective of the problem from

the beginning of the selection process.

5

The presence of local experts in the pool is addressed in two different ways. In the first, the local

context is integrated into the generation step by producing the classifiers on the fly in the local

region of each query sample in order to encourage the presence of local experts in the area, if

there is any class overlap in the latter. That way, the availability of classifiers that recognize

the local border in the pool is increased, which might make it easier for the dynamic selection

scheme to select a local expert to label the query. In the second, the local context is incorporated

into the system by representing the data in a graph structure which is then used as input to

a multi-label graph neural network (GNN) responsible for learning the ensemble’s dynamic

combination rule in an end-to-end manner. Since the network uses the classifiers’ interactions

and the instances’ relationships to learn the dynamic selection task, it enforces the samples’ local

relations subject to how similar their set of competent classifiers are, which in turn encourages

the search for true experts in each local area.

Moreover, three venues are explored in the local region definition step: the most common nearest

neighbors rule, recursive partitioning to deal with sparse data, and an implicit region definition

via node representation learning to tackle high dimensional and overlapped data. In all of them,

the local information is not limited to a single fixed region size, but rather in multiple scales in

order to provide ample context to the system. Furthermore, the class overlap in the local region

is identified and characterized so that the system is able to focus on these areas and thus perform

better over the ambiguous scenarios known to affect the selection task.

0.3 Contributions

The main contributions of this thesis are the investigation of the role the local data distribution

plays in the performance of dynamic selection techniques and the ensuing development of

techniques that integrate local information into these systems to enhance their performance

over challenging scenarios. As the thesis is manuscript-based, each chapter presents a distinct

6

contribution that works towards achieving the thesis’ objective and comprising its main

contributions. The chapter-specific contributions are the following:

• In Chapter 2, a novel local ensemble method that locally produces on the fly the pool of

classifiers in overlap areas of the feature space is presented. Experiments showed the local

pool provided an improvement to several dynamic selection schemes compared to using a

globally generated pool, and achieved a statistically similar performance to most evaluated

state-of-the-art techniques.

• In Chapter 3, a local ensemble method based on the OLP is presented, the OLP++ framework,

to deal with the OLP’s shortcomings over high dimensional data. The proposed technique

uses recursive partitioning to define the local regions, and generates the local pool on different

nodes in ambiguous branches of decision trees. Experiments showed the OLP++ surpassed

the OLP and several dynamic techniques over high dimensional small sample sized (HDSSS)

datasets.

• In Chapter 4, an evaluation of the performance of several dynamic selection techniques using

different ensembles over HDSSS problems is carried out, and a dynamic multiple classifier

system is presented to address their limitations associated with a weaker locality assumption

in sparse and overlapped data. The instances’ relationships are encoded into a graph, and the

classifiers’ interactions into multiple meta-labels, and both information are leveraged by a

multi-label GNN to learn the dynamic combination rule. Experiments showed the proposed

approach performed better over locally challenging scenarios.

0.4 Organization of the thesis

Figure 0.1 shows an overview of the proposed organization for the manuscript-based thesis. The

boxes in blue represent the main contributions of the thesis, while the black boxes indicate the

works associated with the main topic which help contextualize some of the aspects within the

proposed approaches.

7

Figure 0.1 Thesis organization. The arrows indicate the reading flow of the thesis. Solid

arrows show the chapters’ dependencies, and dashed arrows show the suggested additional

readings which help the comprehension of the following work.

In the first chapter, a literature review on local ensemble learning is presented, more specifically

the approaches that employ dynamic ensemble selection. As this thesis relates to local learning,

the review is mainly focused on the local aspects of the techniques.

8

Chapter 2 presents the first main contribution of the thesis, the Online Local Pool (OLP) technique.

Motivated by the dynamic selection techniques’ struggle to single out local experts , the OLP

technique generates several linear decision borders in the vicinity of each query on the fly, if in a

class overlap area. The region over which the local classifiers are generated is defined using the

nearest neighbor rule, with an increasing neighborhood size, applied in the feature space. The

class overlap detection, which triggers the generation of the local pool, is performed using an

instance hardness measure from the literature. Moreover, the linear models are produced using

the Self-Generating Hyperplanes (SGH) (Souza, Cavalcanti, Cruz & Sabourin, 2017) technique,

which guarantees each known sample in the region is correctly labeled by at least one classifier

in the pool. Experiments showed that the performance of three dynamic selection techniques

improved when using the local pool instead of a globally generated pool, which suggests an

advantage in having highly specialized classifiers in the pool for the dynamic selection task. The

OLP also yielded a similar performance to several state-of-the-art methods. The contents of this

chapter were published in the Pattern Recognition journal (Souza, Cavalcanti, Cruz & Sabourin,

2019b).

In Appendix I the OLP is then evaluated over imbalanced problems, as its local approach to

pool generation suggests a reduced impact from the effects of a global disproportion between

the class sizes. Two additions to the OLP technique are also evaluated, both individually and

jointly: a class-balanced nearest neighbors rule, and a class-sensitive local overlap-reducing

pre-processing technique. Experimental results showed that the OLP alone could yield an

improvement over the baseline over imbalanced problems in some cases, but even more so when

using the two evaluated modifications, demonstrating the impact the local data distribution and

region definition have on the technique’s performance. The contents of this appendix were

published in the Proceedings of the International Joint Conference on Neural Networks (ĲCNN)

(Souza, Cavalcanti, Cruz & Sabourin, 2019a).

9

A problem-independent dynamic model type recommendation framework for the OLP was

proposed in Appendix II, with the purpose of choosing the most indicated model type to

compose the local pool for each particular local data distribution. To that end, the framework

characterizes each sample’s local region from a set of different problems using 12 data complexity

measures and identifies which classifier models among 5, within the OLP framework, yielded

a correct classification. A multi-label classifier is then trained using this meta-data, and in

generalization, the same complexity measures are extracted from a given query sample over

the target problem so that the meta-learner may recommend the model type to be produced in

the region. Experiments showed that always using the best model type yielded a significant

improvement to the OLP technique, further suggesting that the local data distribution plays an

important role in the production of the local experts. However, the using the meta-learner’s

recommendations did not significantly outperform the original OLP, which may indicate the

meta-features used in the recommender system were insufficient or inadequate for it to properly

function in a problem-independent context. The contents of this appendix were published in

the Proceedings of the International Joint Conference on Neural Networks (ĲCNN) (Souza,

Sabourin, Cavalcanti & Cruz, 2020).

In Chapter 3, a novel version of the OLP is proposed for dealing with high dimensional data,

motivated by the susceptibility of the OLP’s local region definition to high dimensional spaces.

Instead of relying on the nearest neighbors rule, which can suffer from the curse of dimensionality,

the OLP++ defines the locality using the recursive partitioning procedure from decision trees.

Thus, the regions used for the local pool generation are the different impure nodes from the

decision path that a given query sample traverses in the tree(s). By using different node levels

from the path, each classifier in the local pool has a moderately distinct view of the target

region, introducing thus diversity to the pool, without resorting to a dissimilarity metric, which

might be susceptible to high dimensional spaces. Experiments showed that the partition-based

region definition was more successful in detecting the overlap areas of the feature space in

10

most of the 39 HDSSS problems evaluated, which indicates that it could often obtain a better

data distribution for learning the local decision rules compared to the nearest neighbors rule.

The OLP++ also statistically outperformed the OLP and the Random Forest (Breiman, 2001)

ensemble, and yielded a competitive performance compared to other local-based ensembles,

further suggesting the suitability of the proposed approach for dealing with high dimensionality.

The contents of this chapter were published in the Information Fusion journal (Souza et al.,

2023).

Another supporting work on local instance characterization is presented in Appendix III

motivated in part by the analysis of Appendix I with regards to the local class overlap’s impact

on local methods, especially when dealing with imbalanced classes. A novel dynamic ensemble

selection is proposed which attempts to quantify the local unreliability of each instance using

two instance hardness measures, adapted or not to class imbalanced data, which convey the

degree of local overlap in its vicinity. These measures are then used to choose which samples

to remove in the local region during the search for a competent classifier, so that the most

reliable ones remain for the competence estimation procedure. Experimental results showed that

the instance characterization was successful in boosting the performance of the baseline, with

certain measures working well for different types of data distributions, and showed that the local

overlap characterization could be successfully used to improve the local data distribution for

the dynamic selection task. The contents of this appendix were published in the Proceedings

of the 2022 International Joint Conference on Neural Networks (ĲCNN) (Souza, Sabourin,

Cavalcanti & Cruz, 2022).

In Chapter 4, the issue of better defining the locality in sparse (and overlapped) data from

Chapter 3 is revisited, as the OLP++ presents a large drawback: while the recursive partitioning

region definition was superior to the fixed-sized nearest neighbors rule of the OLP, the quality of

the local decision rules depends directly on the pre-defined partitions. Thus, as the partitioning

11

is not optimized for the dynamic selection task, a poorly defined region (e.g. a very large

partition, as often occurred in (Souza et al., 2023)) may lead to an equally bad ensemble with

a weak locality assumption, meaning that the local samples may not share a similar enough

set of competent classifiers. So, in Chapter 4, the Graph Neural Network Dynamic Ensemble

Selection (GNN-DES) technique is proposed in which, instead of generating the local experts, a

multi-label GNN is trained in an end-to-end manner to dynamically select the local experts from

an existing pool using information from both the local data characterization and the classifiers’

inter-dependencies. That way, the meta-classifier may define the locality implicitly by learning

an embedded space where the locality assumption for the dynamic selection task is stronger, as

it can leverage information from two distinct sources. Experiments over 35 HDSSS datasets

using different ensemble methods showed the dynamic selection techniques generally struggled

over the sparse and overlapped data. However, the GNN-DES was shown to statistically surpass

the baseline and most evaluated techniques, including the OLP++. Moreover, further analysis

showed that the GNN-DES could better deal with unfavorable local data contexts compared

to the contending techniques, which suggests that integrating the instances’ local relations and

the classifiers’ interactions into the dynamic selection pipeline may be advantageous to tackle

challenging scenarios.

In the last chapter, a general conclusion for this work and possible future works are presented.

CHAPTER 1

LITERATURE REVIEW

1.1 Overview of dynamic selection techniques

Dynamic selection techniques can be usually divided into three steps (Cruz et al., 2018a): the

region of competence definition, in which the Region of Competence (RoC) of a given query

sample is obtained, the competence estimation, in which the competence of each classifier in

the pool is computed over the RoC, and the classifier(s) selection, in which the classifier(s)

deemed the most competent one(s) are selected to perform the classification task. This process

is illustrated in Figure 1.1, in which xq is the query sample, 𝐷𝑆𝐸𝐿 is the training or validation

set, 𝜃𝑞 is the neighborhood of x𝑞, 𝐶 is the pool of classifiers, 𝛿𝛿𝛿 is the vector with the classifiers’

competence estimates, and 𝐶′ is the set of selected classifiers. Techniques that select only one

classifier are called Dynamic Classifier Selection (DCS) techniques, while the ones that single

out multiple models are called Dynamic Ensemble Selection (DES) techniques.

Figure 1.1 Usual steps in a dynamic selection scheme. xq is the query sample, 𝐷𝑆𝐸𝐿 is a

labeled dataset (training or validation set), 𝜃𝑞 is the RoC of xq, 𝐶 is the pool of classifiers, 𝛿𝛿𝛿
is the competence vector and 𝐶′ is the set of selected classifiers.

1.1.1 Region of competence definition

Most dynamic selection techniques are local-based in the sense that they rely on the locality

assumption to perform the selection task. As such, the first step in the selection process for these

14

techniques is to define the RoC, a region where the competence of the classifiers in the pool is

estimated. As this thesis concerns local learning for dynamic selection techniques, and the RoC

definition step determines the local context to be considered in the selection task, the ways in

which it can be performed are presented in more detail in this section.

However, it is worth noting that, while crucial for local-based techniques, the RoC definition

step is not performed in a few techniques found in the literature because they do not rely on local

information to perform the selection task. The Chained Dynamic Ensemble (CHADE) (Pinto

et al., 2016) and the Probabilistic Classifier Chain Dynamic Ensemble Selection (PCC-DES)

(Narassiguin, Elghazel & Aussem, 2017) techniques define the selection task as a multi-label

meta-problem in which the meta-labels indicate the classifiers that are competent to label a

given instance. Both techniques then train a multi-label classifier to learn the dynamic ensemble

combination rule without explicitly taking into account the samples’ local context. While

this approach could be interesting in scenarios where the local information does not aid the

selection task, these techniques completely disregard the local context and can perform poorly

against simple local accuracy-based techniques (Pinto et al., 2016). They can also present a

high computational overhead due to the use of a meta-learner ensemble (Pinto et al., 2016) and

Monte Carlo sampling (Narassiguin et al., 2017).

Figure 1.2 Categorization with regards to the definition method applied in the RoC

definition step.

15

To present an overview of the RoC definition procedure, the approaches can be categorized

as illustrated in Figure 1.2 with respect to the definition method used for delimiting the target

region. The RoC definition methods found in the literature are discussed next.

1.1.1.1 Clustering

Based on the clustering-and-selection approach (Kuncheva, 2000), clustering-based dynamic

selection techniques define the RoC using a clustering method over the DSEL in memorization.

Then, the classifiers in the pool are evaluated over each cluster and their corresponding

competence estimates are computed and stored. In generalization, the cluster whose centroid

is closest to the query sample is defined as its RoC , so the classifiers’ competencies over that

cluster are used for selecting the best one(s).

This approach is applied in the DCS technique proposed in (Kuncheva, 2000) and in the DES

technique proposed in (Soares et al., 2006). In both techniques, the K-means algorithm is applied

in the feature space to define the local regions in memorization, and in generalization the query

instances are assigned to their closest cluster. As such, the size of the RoCs in these techniques

may differ depending on which data partition the query falls into. Other hybrid techniques

that couple ensemble generation and selection, such as the Cluster-oriented ensemble classifier

(Verma & Rahman, 2011) and the One-class clustering-based ensemble (Krawczyk & Cyganek,

2017), define the regions using clustering methods, the former using K-means and the latter

using fuzzy clustering, and assign members of the pool to them, which are then selected in

generalization according to the query’s proximity to the data partitions.

Using clustering methods for RoC defining is generally cost effective since the regions and

the classifiers’ competences over them are computed offline, and the distance calculation in

generalization is performed over the clusters’ centroids instead of over all DSEL samples

Kuncheva (2014). However, this approach tends to be more limited in the design of the

selected ensemble due to the local region granularity (Soares et al., 2006; de Souto, Soares,

Santana & Canuto, 2008).

16

1.1.1.2 Nearest neighbors

A very common way of defining the RoC is using the nearest neighbors rule. In this approach,

the distances between the query instance and all known samples in the DSEL are calculated,

and the 𝐾 (previously pre-set) closest ones are singled out as the query’s RoC 𝜃𝑞, which are

then used in the competence estimation step. The distance computation may be performed in

the feature space (Woods et al., 1997; Smits, 2002; Ko et al., 2007; Soares et al., 2006), in

the decision space (Cavalin et al., 2012), where each sample is represented by the classifiers’

response to it, or in both (Cruz et al., 2015a).

As the RoC definition can greatly impact the subsequent steps of the selection process, several

works propose applying different nearest neighbors rules to improve the performance of the

techniques. In (Cruz et al., 2018b) a local adaptive distance function that increases the distance

to the border samples is evaluated within the nearest neighbors rule to reduce the incidence

of noise in the RoC. An adaptive nearest neighbors rule is also used in (Didaci & Giacinto,

2004) where a distance metric based on the Linear Discriminant Analysis is applied to form

neighborhoods of varying sizes that present more homogeneous class posterior probabilities.

The K-Nearest Neighbors Equality (KNNE) (Sierra, Lazkano, Irigoien, Jauregi & Mendialdua,

2011), in which the same amount of nearest neighbors from each class are singled out, is used in

(Mendialdua, Martínez-Otzeta, Rodriguez-Rodriguez, Ruiz-Vazquez & Sierra, 2015) and (Cruz

et al., 2019a) to adapt the RoC definition to One-Versus-One (OVO) approaches for multi-class

problems, and to better characterize the local border, respectively.

Other techniques edit the RoC to filter out unwanted samples from the originally defined

neighborhood, possibly yielding RoCs of distinct sizes. In (Giacinto et al., 2000) the samples

with an output profile, i.e. their decision space representation, further from the query’s output

profile by more than a pre-set threshold are excluded from the RoC. In (Pereira et al., 2018) the

samples in the neighborhood are ranked according to their estimated Item Response Theory’s

(IRT) discrimination index, and the bottom half of the list is excluded from the RoC. In (Ko

et al., 2007) and (Oliveira et al., 2018) the RoC definition and competence estimation steps are

17

coupled, and one sample at a time is removed from the RoC iteratively based on distance alone

or considering also the class distribution, respectively, until a competent classifier is found.

Using the nearest neighbors rule may provide a more precise RoC definition due to the controlled

degree of locality, which in turn may yield more diverse ensemble compositions at the end of

the selection process (Soares et al., 2006). Nevertheless, the computational cost of calculating

the distances between the query and all samples in the DSEL can be quite high, especially for

large datasets.

1.1.1.3 Potential function

Differently from the clustering and nearest neighbors approaches, which define the RoC as a

subset of the DSEL set, potential function approaches use all samples from the DSEL set as

the RoC (Woloszynski & Kurzynski, 2011; Woloszynski, Kurzynski, Podsiadlo & Stachowiak,

2012; Antosik & Kurzynski, 2011). However, the influence of each sample in the competence

estimation of the classifiers is computed using a weighting scheme based on a potential function

model with its distance to the query sample as the argument. That way, the closer to the query

instance in the feature space, the higher the sample’s importance in the competence estimation

step. The Gaussian potential function is usually applied in these techniques.

The advantage of defining the RoC with a potential function is that there is no need to define the

size of the neighborhood or the number of partitions in which to divide the data. Nevertheless,

the computational cost is increased since the competence estimation is computed using the entire

DSEL set instead of only a subset of the dataset.

1.1.1.4 Recursive partitioning

Another way of defining the RoC is by recursively partitioning the feature space. In this approach,

a recursive algorithm, e.g. the Classification and Regression Tree (CART) (Breiman, 2017)

algorithm, is used to split the data, most commonly with a hyperplane, until a stopping criterion

18

is reached. In generalization, the RoC can then be defined from the data partition(s) the query

falls into within the tree-based structure.

A few hybrid approaches use recursive partitioning to define the local regions associated with

the members of the ensemble (Zhu, Wang, Li & Du, 2019; Burduk & Biedrzycki, 2022). In Zhu

et al. (2019), the feature space is recursively partitioned on the axis of the maximum within-class

scatter of the majority class to reduce the effects of the local class imbalance, and a classifier

is trained at each leaf to label the queries that fall into it. In (Burduk & Biedrzycki, 2022) the

feature space is split into disjoint regions using all splits obtained from an ensemble of decision

trees. The local rules of the combined ensemble are then defined for each subspace based on the

trees’ original local rules and the neighboring subspaces’ class distribution.

One advantage of recursive partitioning is the computational cost, which similarly to clustering

techniques is reduced compared to the nearest neighbors approach as the regions are pre-defined

in training time. Moreover, the partitioning process may not require the use of a distance metric,

which can be advantageous over sparse data as the latter is more susceptible to the distance

concentration phenomenon (François, Wertz & Verleysen, 2007). However, this process provides

less control over the degree of locality compared to the nearest neighbors rule, which may lead

to a weak locality assumption within the region for the dynamic selection task.

1.1.1.5 Fuzzy hyperboxes

We also find in the dynamic selection literature the RoC definition via fuzzy hyperboxes

(Davtalab et al., 2022). Fuzzy hyperboxes (Simpson, 1992) are hyper-rectangles defined in the

feature space by two samples that delimit their corners. Their coverage also extends outside the

interior structure according to a fuzzy membership function. The RoC definition step via fuzzy

hyperboxes works thus by defining the hyperboxes in the feature space during training time, so

that in generalization the membership values for the query can indicate which regions to use for

competence estimation.

19

How the hyperboxes are obtained, though, depends on the approach used in the dynamic selection

technique. In (Davtalab et al., 2022) two approaches are explored within the same framework

that assigns a group of (possibly overlapping) hyperboxes to each classifier according to its

performance in the region. So in the first approach, for each classifier, the samples that it

correctly labels are partitioned using the hyperbox learning algorithm, which expands the region

from one sample until a given maximum size or it is not expandable anymore. In the second

approach, the same mechanism is performed but the partitioning occurs over the misclassified

samples instead of correctly labeled samples. In generalization, the membership values for the

query sample are calculated and two highest associated with each classifier are used to estimate

its competence.

Fuzzy hyperboxes have similar advantages to clustering approaches with respect to computational

cost and increased (and varying) scope compared to the nearest neighbors rule, while also

defining local structures that work well in high dimensional spaces. Nevertheless, in dense

distributions where the neighborhood is representative of the unknown instance, the nearest

neighbors approach seems to provide a superior local region for dynamic selection schemes

(Davtalab et al., 2022).

1.1.2 Competence estimation

In the competence estimation step, the classifiers are evaluated (over the RoC, if defined) and,

according to the type of information used in the evaluation and the selection criterion of the

technique, a competence level is computed for either each classifier in the pool, in individual-

based measures, or certain subsets of the pool, in group-based measures. Individual-based

measures extract information regarding the performance of each base-classifier individually,

which may be based on one or more of the following criteria: ranking (Woods et al., 1997), local

accuracy (Woods et al., 1997; Smits, 2002; Ko et al., 2007), F1-score (Melo Junior, Macedo,

Nardini & Renso, 2019), probability (Giacinto & Roli, 1999; Woloszynski & Kurzynski, 2011),

classifier behavior (Giacinto et al., 2000), Oracle model (Ko et al., 2007), data complexity (Brun

et al., 2016) and meta-learning (Cruz et al., 2015a; Pinto et al., 2016; Narassiguin et al., 2017).

20

Group-based measures, on the other hand, estimate the competence for a group of classifiers in

order to capture their interaction with regards to ambiguity (Dos Santos, Sabourin & Maupin,

2008) and diversity (Soares et al., 2006), among other criteria.

1.1.3 Classifier selection

In the last step, the most competent classifier(s) is/are selected to label the query sample. In

DCS techniques, the classifier with the highest competence level is usually selected, though

in a few techniques that may only happen if its estimated competence is significantly greater

than the other classifiers’ (Giacinto et al., 2000; Giacinto & Roli, 1999). On the other hand,

in DES techniques a subset of the classifiers in the pool is also selected according to their

competence level. In some cases, there may be a competence threshold for selection (Ko et al.,

2007; Davtalab et al., 2022) where all classifiers with competence estimates above it are selected,

while in others a pre-set number of classifiers is singled out based on a ranked list (Soares et al.,

2006).

Another approach that works essentially as dynamic selection in the last step is dynamic

weighting, in which the classifiers’ estimated competencies are used to compute the weights

of their responses to be further used in the aggregation step. A few dynamic selection

techniques, such as CHADE (Pinto et al., 2016), apply this approach. However, it is not limited

to this literature as other ensemble methods such as the Mixture of Experts (ME) (Jacobs

et al., 1991; Armano & Hatami, 2010b) and the Adaptive Splitting and Selection (AdaSS)

(Jackowski & Wozniak, 2009; Lopez-Garcia, Masegosa, Osaba, Onieva & Perallos, 2019)

paradigms also use the dynamic weighting mechanism though within a different ensemble

framework.

1.2 The Oracle model

An important concept in the MCS literature is the Oracle, an abstract model that correctly

labels a given test sample if at least one classifier in the pool is able to do so (Kuncheva, 2002).

21

The Oracle is of particular relevance to dynamic selection techniques as it mimics the perfect

selection scheme since it is able to single out the correct classifier for each sample if it exists

in the pool. As such, the Oracle accuracy rate is widely regarded as the upper limit for the

accuracy of dynamic selection schemes and is used for indicating whether there is still room

for improvement or not. However, the gap in performance between the Oracle and dynamic

selection techniques observed in the literature (Cruz et al., 2018a, 2015a; Oliveira et al., 2017;

Souza et al., 2017) suggests that the Oracle may not be the best indicator of good performance

for local-based techniques as there is no guarantee the classifier selected by the Oracle is indeed

a local expert in the target region (Oliveira et al., 2017; Souza et al., 2017).

1.3 Local data characterization for dynamic selection

As previously discussed, most techniques rely on the locality assumption to solve the dynamic

selection task. While this approach works generally well over a vast array of problems, e.g.

class imbalanced distributions (Oliveira et al., 2018; Cruz, Souza, Sabourin & Cavalcanti,

2019b), certain data characteristics were already shown to negatively impact the techniques’

performance, such as local class overlap (Cruz et al., 2019a, 2018b) and noise (Cruz et al.,

2015b). Furthermore, their RoC definition method may be susceptible to class overlap and data

sparsity (Zhang, 2022; Vandaele et al., 2022), the latter of which possibly leading to an increased

complexity in the class boundary (Lorena et al., 2012; Ho & Basu, 2002).

As such, certain dynamic selection techniques introduce data characterization into the pipeline

to leverage the local information in order to tackle these challenging scenarios. In (Pereira et al.,

2018), the instances in the RoC are characterized using IRT coefficients, and the ones with the

lowest discrimination indexes are removed with the purpose of improving the local distribution.

The RoC is also characterized in (Oliveira et al., 2017), where a dynamic ensemble pruning

technique is applied in regions that present a local border, called indecision regions, to avoid the

selection of non-local experts. A different approach with a similar goal is proposed in (Oliveira

et al., 2018), where the RoC is edited in the search for a local expert without completely removing

the local border, characterized by pairs of different classes. In (Li, Wen, Li & Cai, 2019) the

22

RoC distribution is characterized using a must-link and a cannot-link graph to represent the local

class relations and take them into account in the competence estimation step.

While these techniques incorporate some form of data characterization to deal with complex

scenarios, they rely on a single pre-defined area of small scope which provides a limited view

of the local distribution and may restrict the search for local experts, if they exist, in case the

original region is not adequate to the dynamic selection task. Furthermore, albeit focused on

borderline regions, these techniques do not address sparse distributions, which were shown to

intensify the issues associated with local class overlap (Zhang, 2022; Vandaele et al., 2022;

Sánchez et al., 2007) and class boundaries’ complexity (Lorena et al., 2012; Ho & Basu, 2002),

and comprise several real-world problems such as medical imaging data (El-Sappagh, Saleh,

Sahal, Abuhmed, Islam, Ali & Amer, 2021) and DNA microarray data (Lorena et al., 2012),

therefore limiting the techniques’ application.

In the next chapter, an instance-based analysis of the behavior of three dynamic classifier

selection techniques using a globally-generated pool is performed, and the Online Local Pool

(OLP) technique is proposed to address the presence of local experts in class-overlapped target

regions.

CHAPTER 2

ONLINE LOCAL POOL GENERATION FOR DYNAMIC CLASSIFIER SELECTION

Mariana A. Souza1 , George D. C. Cavalcanti2 , Rafael M. O. Cruz1 , Robert Sabourin1

1 Laboratoire d’Imagerie, de Vision et d’Intelligence Artificielle (LIVIA),

École de Technologie Supérieure,

1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3

2 Centro de Informática,

Universidade Federal de Pernambuco,

1235 Av. Prof. Moraes Rego, Recife, Pernambuco, Brazil 50670-901

Article published in Elsevier’s Pattern Recognition Journal, Volume 85, January 2019

Abstract

Dynamic Classifier Selection (DCS) techniques have difficulty in selecting the most competent

classifier in a pool, even when its presence is assured. Since the DCS techniques rely only on

local data to estimate a classifier’s competence, the manner in which the pool is generated could

affect the choice of the best classifier for a given instance. That is, the global perspective in

which pools are generated may not help the DCS techniques in selecting a competent classifier

for instances that are likely to be misclassified. Thus, it is proposed in this work an online pool

generation method that produces a locally accurate pool for test samples in difficult regions of

the feature space. The difficulty of a given area is determined by the estimated classification

difficulty of the instances in it. That way, by using classifiers that were generated in a local scope,

it could be easier for the DCS techniques to select the best one for those instances they would

most probably misclassify. For the query samples surrounded by easy instances, a simple nearest

neighbors rule is used in the proposed method. In order to identify in which cases the local pool

is used in the proposed scheme, an analysis on the correlation between instance hardness and

DCS techniques is performed in this work, and it is proposed the use of an instance hardness

measure that conveys the degree of local class overlap near a given sample. Experimental

results show that the DCS techniques were more able to select the most competent classifier for

24

difficult instances when using the proposed local pool than when using a globally generated pool.

Moreover, the proposed technique yielded significantly greater recognition rates in comparison

to a Bagging-generated pool and two other global generation schemes for all DCS techniques

evaluated. The performance of the proposed technique was also significantly superior to three

state-of-the-art classification models and was statistically equivalent to five of them. 1

2.1 Introduction

Multiple Classifier Systems (MCS) aim to improve the overall performance of a pattern

recognition system by combining numerous base classifiers (Woźniak et al., 2014; Kittler et al.,

1998; Kuncheva, 2014). An MCS contains three phases (Britto et al., 2014): (1) Generation,

(2) Selection and (3) Integration. In the first phase, a pool of classifiers is generated using the

training data. In the second phase, a non-empty subset of classifiers from the pool is selected to

perform the classification task. In the third and last phase, the selected classifiers’ predictions are

combined to form the final system’s output. There are two possible approaches in the Selection

phase: Static Selection (SS), in which the same set of classifiers is used to label all unknown

instances, or Dynamic Selection (DS), which selects certain classifiers from the pool according

to each query sample.

1 The Online Local Pool (OLP) technique proposed in this work is an evolution of the technique

proposed in (Souza, 2018). The improvements were motivated by an instance-level data complexity

analysis performed afterward to assess the relationship between the performance of dynamic selection

techniques and an instance hardness measure found in the literature. The OLP thus improves upon the

initial idea in the previous work with the inclusion of local data complexity and instance characterization

for the local overlap detection step, which is crucial to the effectiveness of the approach. As such, an

offline phase is incorporated into the previous technique where the data is characterized on an instance

level using a hardness measure that conveys the degree of local class overlap. During generalization

(or the online phase of the OLP), the local class overlap detection is modified to rely on the data

characterization previously obtained in the offline phase. This allows for a better detection of the local

class overlap compared to the more limited class distribution analysis applied in the previous technique,

as experimental results have shown. In addition to the instance hardness analysis and the subsequent

proposal of the improved technique, an extensive comparative analysis which included not only the

baseline ensembles evaluated in the previous work but also nine state-of-the-art models (among which

monolithic classifiers and ensemble methods) was also included in the journal contribution to further

validate the OLP’s effectiveness over the evaluated problems.

25

The DS techniques, which have been shown to outperform static ensembles, specially on

ill-defined problems (Britto et al., 2014; Cruz et al., 2015a), are based on the idea that the

classifiers in the pool are individually competent in different regions of the feature space. The

aim of the selection scheme is, then, to choose the classifier(s) that is(are) best fit, according to

some criterion, for classifying each unknown instance in particular (Britto et al., 2014). The

amount of classifiers singled out to label a given sample separates the DS schemes in two groups

(Cruz et al., 2018a): Dynamic Classifier Selection (DCS) techniques, in which the classifier

with highest estimated competence in the pool is selected, and Dynamic Ensemble Selection

(DES) schemes, in which a locally accurate subset of classifiers from the pool is chosen and

combined to label the test sample.

In the context of DCS, the Oracle (Kuncheva, 2002) can be defined as an abstract model that

mimics the perfect selection scheme: it always selects the classifier that correctly labels a given

instance, if the pool contains such classifier. Thus, the Oracle accuracy rate is the theoretical

limit for DCS techniques.

The behavior of the Oracle regarding pool generation for DCS techniques was characterized

in a previous work (Souza et al., 2017). It was shown that even though the presence of one

competent classifier was assured for a given instance, the DCS techniques still struggled to select

it. This analysis was done using a pool generation method that guarantees an Oracle accuracy

rate of 100% on the training set. It was reasoned that the nature of the Oracle makes it not very

well suited to guide the generation of a pool of classifiers for DCS since the model is performed

globally, while DCS techniques use only local data to select the most competent classifier for

each instance. Thus, the difference in perspectives between the generation and the selection

may hinder the DCS techniques in the selection of a competent classifier, even when the latter is

guaranteed to be in the pool.

In addition to that, most works regarding DS use classical generation methods, which were

designed for static ensembles (Cruz et al., 2018a) and therefore do not take into account the

regional aspect of the competence estimation performed by the DS techniques. Thus, since local

26

information is not considered during the generation process, the presence of local experts is not

guaranteed in the final pool.

Based on these observations, it is proposed in this work an online pool generation method

which attempts to explore the Oracle’s properties on a local scope. Since the Oracle and DCS

techniques view the problem from different perspectives, using the Oracle model in a local

setting to match these perspectives may help the DCS techniques in the choice of the most

competent classifier for a given instance. This work focus only on DCS techniques since their

relationship to the Oracle was already characterized in (Souza et al., 2017), and so the results

can be further analyzed based on certain aspects presented in the previous work.

Thus, the main idea is to use the Oracle model to guide the generation of a pool specialized on

the local region where a given unknown sample is, if that region is deemed difficult. In this

context, a region is considered difficult if it contains an instance likely to be misclassified, as

indicated by an instance hardness measure. Therefore, if a query sample is located in a difficult

region of the feature space, a local pool (LP) is generated on the fly so that its classifiers fully

cover the surrounding area of that specific instance. Otherwise, a simple k-Nearest Neighbors

(k-NN) rule is used to label the query sample, since the classification task is less complex.

Hence, whenever an unknown sample is located in a difficult region, the proposed method uses

Oracle information in that area to generate locally accurate classifiers for that instance, in hopes

that the best classifier among them will be more easily selected by a DCS technique than if the

classifiers were generated with a global perspective.

To the best of our knowledge, there is no ensemble method designed to generate local experts for

dynamic selection techniques. However, a local learning algorithm with a similar strategy to

that of the proposed technique is presented in (Bottou & Vapnik, 1992). The learning algorithm

consists of generating a linear classifier for each unknown instance using its surrounding training

samples, and then labelling that instance with it. This model was used to analyze the trade-off

between capacity and locality of the learning algorithms and its impact on their recognition rates.

Although the learning algorithm provides a local perspective on the classification problem, its

27

concept was not used in the context of producing a pool of locally accurate classifiers for DS

techniques.

Other related works, such as the Mixture of Random Prototype-based Local Experts (Ar-

mano & Hatami, 2010a) and the Forest of Local Trees (Armano & Tamponi, 2018) techniques,

explore the divide-to-conquer approach of MCS by locally training their base classifiers in

different regions of the feature space and weighting the classifiers’ votes based on the distance

between the query sample and their assigned region. As opposed to these works, in which the

pool generation is paired to a selection based on dynamic distance weighting, our approach

consists of producing on the fly a locally accurate pool to be coupled with a DCS technique.

Furthermore, the generation process of these approaches do not guarantee the presence of local

experts in the vicinity of each borderline unknown sample, as the proposed method does.

Thus, with our proposed approach, we aim to find out in this work whether the presence of locally

generated pools is advantageous in DCS context. The research questions we intend to answer

are: (1) does the use of locally generated pools aid the DCS techniques in selecting the best

classifier for a given instance?, and (2) do the recognition rates improve as a result of this?. To

that end, the performances of the proposed scheme and of different ensemble methods that yield

globally-generated pools are assessed using DCS techniques over 20 public datasets, and the

results compared and analyzed. A comparative study with several state-of-the-art classification

models is also performed afterwards.

This work is organized as follows: in Section 2.2, an analysis on instance hardness for DCS

techniques is performed in order to observe the correlation between an instance hardness measure

and the mistakes made by these techniques. Once this relationship is established, Section 2.3

presents the proposed generation method, which explores the instance hardness information

obtained in the previous section. In Section 2.4 the proposed method is evaluated, and it

is analyzed whether the use of specialist subpools in difficult regions is beneficial for DCS

techniques. A comparative study with state-of-the-art classification models is also performed in

Section 2.4. Lastly, in Section 2.5 the results are summarized and future works are suggested.

28

2.2 Instance Hardness Analysis

Hardness is an aspect inherent to a problem that hinders a classifier, or a set of classifiers, in the

classification task. Instance hardness is then a characteristic of a sample’s problem that conveys

the likelihood of such sample being mislabelled by a classifier (Smith, Martinez & Giraud-

Carrier, 2014). Hardness measures attempt to quantify this characteristic based on different

sources of difficulty associated with data, as well as provide insights as to why some instances

or problems are difficult for most learning algorithms. Many data hardness measures were

proposed and also used to improve a vast number of methods in the literature (Dong & Kothari,

2003; Smith & Martinez, 2016; Singh, 2003).

In (Ho & Basu, 2002), the authors introduce a set of hardness measures obtained over the entire

training set. They also identify aspects that lead to a problem, as a whole, being difficult for

a classifier. The authors in (Garcia, de Carvalho & Lorena, 2015) propose a set of hardness

measures, also over the whole dataset, and use them, together with the ones from (Ho & Basu,

2002), to identify and remove noisy data in the training set.

In addition to characterizing the hardness of an entire set, efforts have been made to estimate

the difficulty of classifying each individual instance from a dataset. In (Smith & Martinez,

2011), the authors propose several instance hardness measures and use a subset of them in the

construction of noise filter which removes potentially noisy instances among the hard ones. A

hardness analysis on an instance level was done in (Smith et al., 2014), in which the authors

identify the most influential causes for an instance to be hard for many diverse classification

models. They also introduce more instance hardness measures and show the correlation between

them and the misclassification of the classifiers analysed. Moreover, they suggest the integration

of the error information of these classifiers in two different scenarios: in the training of a neural

network, so that the weight of the hard instances are smaller, and in a noise filter, based on

the same idea as the previous one. In (de Melo & Prudêncio, 2014), the authors propose two

instance hardness measures that take into account misclassification costs. These measures are

further used to define a measure of similarity between algorithms.

29

Although in (Smith & Martinez, 2011) a set of classifiers was used to evaluate the correlation

between the hardness measures and the instance hardness itself, the authors did not investigate it

for DCS techniques. Though an analysis on instance hardness regarding DS techniques was

performed in (Cruz, Zakane, Sabourin & Cavalcanti, 2017b), its focus was on the comparison

between these techniques and the k-NN classifier. Thus, an analysis on instance hardness in DCS

context is done in this section. The purpose of such analysis is to understand the correlation

between instance hardness measures and the errors made by DCS techniques, in order to identify

in which cases the DCS techniques fail to choose a competent classifier for a given instance.

This information will later be used to generate subpools specialized in the difficult regions of the

training set.

The chosen instance hardness measure to be analyzed is the k-Disagreeing Neighbors (kDN)

(Smith et al., 2014), which is defined in Equation 2.1, where xi is the instance being evaluated,

T is the dataset that contains it, 𝑘𝑁𝑁 () is the k-Nearest Neighbors (k-NN) rule and 𝑘ℎ is the

neighborhood size of the hardness measure. The kDN measure is the percentage of instances in

an example’s neighborhood that do not share the same label as itself. Therefore, a high kDN

value means the instance is in a local overlap region, making it harder to label it. The reason for

using this measure is because it denotes the most relevant source of instance hardness (overlap),

according to (Smith et al., 2014). Moreover, the kDN measure was the most correlated with

instance hardness according to the same article.

𝑘𝐷𝑁 (xi, T , 𝑘ℎ) =
|xj : xj ∈ 𝑘𝑁𝑁 (xi, T , 𝑘ℎ) ∧ 𝑙𝑎𝑏𝑒𝑙 (xj) ≠ 𝑙𝑎𝑏𝑒𝑙 (xi) |

𝑘ℎ
(2.1)

The pool generation technique used in this analysis was the Self-generating Hyperplanes (SGH)

method (Souza et al., 2017), a simple generation scheme which yielded a similar performance as

Bagging (Breiman, 1996) for most DCS techniques. The SGH generation method is described

in Algorithm 2.1. The input to the SGH method is only the training set T , and its output is

the generated pool of classifiers (𝐶). In each iteration (Step 3 to Step 15), the centroids of all

classes in T are obtained in Step 4 and stored in R. The two centroids in R most distant from

30

each other, ri and rj, are selected in Step 5. Then, a hyperplane 𝑐𝑚 is placed between ri and rj,

dividing both points halfway from each other. The two-class linear classifier 𝑐𝑚 is then tested

over the training set, and the instances it correctly labels are removed from T (Step 7 to Step 12).

Then, 𝑐𝑚 is added to 𝐶 in Step 13, and the loop is repeated until T is completely empty. That is,

the SGH method only stops generating hyperplanes when all training instances are correctly

labelled by at least one classifier in 𝐶, i.e., the Oracle accuracy rate for the training set is 100%.

Algorithm 2.1 General procedure of the Self-generating Hyperplanes (SGH) method.

input :T = {x1, x2, ..., xN} ; ⊲ Training dataset

output :𝐶 ; ⊲ Final pool

1 𝐶 ← {} ; ⊲ Pool initially empty

2 𝑚 ← 1 ; ⊲ Classifier count

3 while T ≠ {} do
4 R ← 𝑔𝑒𝑡𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠(T); ⊲ Calculate each class’ centroid

5 ri, rj ← 𝑠𝑒𝑙𝑒𝑐𝑡𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠(R); ⊲ Select the most distant centroids

6 𝑐𝑚 ← 𝑝𝑙𝑎𝑐𝑒𝐻𝑦𝑝𝑒𝑟 𝑝𝑙𝑎𝑛𝑒(ri, rj); ⊲ Generate hyperplane between centroids ri and rj
7 for every xn in T do
8 𝜔 ← 𝑐𝑚 (xn) ; ⊲ Test 𝑐𝑚 over training instance

9 if 𝜔 = 𝑦𝑛 then
10 T ← T − {xn} ; ⊲ Remove from T correctly classified instance

11 end if
12 end for
13 𝐶 ← 𝐶 ∪ {𝑐𝑚}; ⊲ Add 𝑐𝑚 to pool

14 𝑚 ← 𝑚 + 1

15 end while
16 return 𝐶

In order to evaluate the correlation between the instance hardness measures and the accuracy

of the DCS techniques, the hardness of each instance was computed using the entire dataset,

thereby obtaining the true hardness value of each instance. Afterwards, the accuracy of the

DCS techniques was obtained using 10 times 10-fold cross validation. The previous knowledge

regarding each instance’s hardness is then used to draw a relationship between this measure

and the frequency at which the DCS techniques misclassifies it. That way, an evaluation of

the relationship between the kDN measure and the error rate of the DCS techniques can be

performed.

31

The datasets used in this analysis are shown in Table 2.1. All of them are public datasets. Eleven

from the UCI machine learning repository (Bache & Lichman, 2013), three from the Ludmila

Kuncheva Collection (Kuncheva, 2004) of real medical data, three from the STATLOG project

(King, Feng & Sutherland, 1995), two from the Knowledge Extraction based on Evolutionary

Learning (KEEL) repository (Alcalá, Fernández, Luengo, Derrac, García, Sánchez & Herrera,

2011) and one from the Enhanced Learning for Evolutive Neural Architectures (ELENA) project

(Jutten, 2002). The DCS techniques used in this analysis were Overall Local Accuracy (OLA)

(Woods et al., 1997) and Local Class Accuracy (LCA) (Woods et al., 1997), which were the two

best performing DCS techniques in a recent survey on dynamic selection of classifiers (Cruz

et al., 2018a). For simplicity, the neighborhood sizes of both the kDN measure and the DCS

techniques were set to 𝑘ℎ = 𝑘𝑠 = 7.

Table 2.1 Main characteristics of the datasets used in the experiments.

Dataset No. of samples No. of features No. of classes Class sizes Source
Adult 48842 14 2 383;307 UCI

Blood Transfusion 748 4 2 570;178 UCI

Cardiotocography (CTG) 2126 21 3 1655;295;176 UCI

Steel Plate Faults 1941 27 7 158;190;391;72;55;402;673 UCI

German credit 1000 20 2 700;300 STATLOG

Glass 214 9 6 70;76;17;13;9;29 UCI

Haberman’s Survival 306 3 2 225;81 UCI

Heart 270 13 2 150;120 STATLOG

Ionosphere 315 34 2 126;225 UCI

Laryngeal1 213 16 2 81;132 LKC

Laryngeal3 353 16 3 53;218;82 LKC

Liver Disorders 345 6 2 145;200 UCI

Mammographic 961 5 2 427;403 KEEL

Monk2 4322 6 2 204;228 KEEL

Phoneme 5404 6 2 3818;1586 ELENA

Pima 768 8 2 500;268 UCI

Sonar 208 60 2 97;111 UCI

Vehicle 846 18 4 199;212;217;218 STATLOG

Vertebral Column 310 6 2 204;96 UCI

Weaning 302 17 2 151;151 LKC

In order to characterize the relationship between the kDN measure and the DCS techniques, all

samples from each dataset were grouped by their true hardness value and the mean accuracy rate

of both DCS techniques on each group was calculated. The results are summarized in Figure 2.1.

It can be observed in Figure 2.1 that the two DCS techniques misclassify the majority of all

instances with kDN above 0.5, on average. It can also be seen a great difference between the

accuracy rates of instances with kDN ∈ [0.4, 0.5] and kDN ∈ [0.5, 0.6], which is reasonable

32

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
kDN

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 ra
te

OLA
LCA

Figure 2.1 Mean accuracy rate of OLA and LCA for each group of kDN value, for all

datasets from Table 2.1. The neighborhood sizes of the DCS techniques and the kDN

measure are 𝑘𝑠 = 𝑘ℎ = 7.

since kDN values above 0.5 mean the majority of an instance’s neighbors belong to a different

class than its own class. This result shows the correlation between the kDN measure and

the classification difficulty by the DCS techniques, which was somewhat expected since the

measure and the techniques operate locally using the same mechanism of selecting the k nearest

neighbors. Moreover, Figure 2.1 shows that LCA correctly classifies a greater amount of the

easiest instances (𝑘𝐷𝑁 ≤ 0.5) than OLA, though it struggles more to correctly label the hardest

instances (𝑘𝐷𝑁 ≥ 0.5), on average.

2.3 The Proposed Method

In the previous section, it was shown the DCS techniques struggle to select a competent classifier

for instances in regions with overlap between the problem’s classes. Moreover, since the DCS

techniques rely only on a small region, an instance’s neighborhood, in order to select the most

competent classifier for this instance, a global perspective in the search for a promising pool for

DCS could be inadequate in such cases (Souza et al., 2017).

33

With that in mind, it is proposed the use of an Oracle-guided generation method on a local scope,

so that the model’s properties may be explored by the DCS techniques. The idea is to use a local

pool (LP) consisted of specialized classifiers, each of which selected using a DCS technique

from a local subpool that contains at least one competent classifier for each instance in class

overlap regions of the feature space. If the unknown instance’s Region of Competence (RoC)

is located in a difficult region, the LP is generated on the fly using its neighboring instances

and then used to label the query sample. However, if the query instance is far from the classes’

borders, no pool is generated and the output label is obtained using a simple nearest neighbors

rule.

The reasoning behind the proposed approach is that using locally generated classifiers for

instances in class overlap areas may be of help to the DCS techniques due to their high accuracy

in these regions. Moreover, most works regarding DCS use classical generation methods,

which were designed for static ensembles (Cruz et al., 2018a) and therefore do not take into

account the regional aspect of the competence estimation performed by the DS techniques. Thus,

matching the perspectives of the generation and the selection stages may be advantageous for

these techniques.

An overview of the proposed method is described in more detail in Section 2.3.1. Then, a

step-by-step analysis of the proposed method is presented using a 2D toy problem in Section

2.3.2.

2.3.1 Overview

The proposed technique is divided into two phases:

1. The offline phase, in which the hardness estimation of the training instances is performed.

The hardness value of the training samples is used to identify the difficult regions of the

feature space.

2. The online phase, in which the RoC of the query sample is evaluated using a hardness

measure in order to identify if the local area is difficult. If it is not, the sample is labelled

34

using a nearest neighbors rule. Otherwise, a pool composed of the most locally accurate

classifiers in that region, as indicated by a DCS technique, is generated and used to label the

unknown instance.

An overview of the proposed techniques’ phases is depicted in Figure 2.2, in which T is the

training set, 𝐻 is the set of hardness estimates, xq is the query sample, 𝜃𝑞 is its RoC, 𝑘𝑠 is the

size of 𝜃𝑞, 𝐿𝑃 is the local pool, 𝑀 is the pool size of 𝐿𝑃 and 𝜔𝑙 is the output label of xq. In the

offline phase (Figure 2.2a), the hardness of each instance xn ∈ T is estimated using a hardness

measure, and its value is stored in 𝐻, to be later used in the online phase. The online phase, in

which the query sample xq is labelled, is performed in three steps: RoC evaluation, local pool

generation and generalization, as shown in Figure 2.2b.

In the RoC evaluation step, the 𝑘𝑠 nearest neighbors in the training set T of the query sample xq

are selected to form the query sample’s RoC 𝜃𝑞. The dynamic selection dataset (DSEL), which

is a set of labelled samples used for RoC definition in DS techniques (Cruz et al., 2018a), was

not used in the proposed method because the SGH method did not present overfitting when

used for RoC definition (Souza et al., 2017). Then, the instances that compose 𝜃𝑞 are analyzed.

If all of them are not in an overlap region, that is, they all have hardness estimate 𝐻 = 0, the

method skips the local pool generation and goes directly to the generalization phase. The output

class 𝜔𝑙 of xq is then obtained using the k-NN rule with parameter 𝑘𝑠. However, if there is at

least one instance in 𝜃𝑞 located in an identified class overlap area, the query sample’s RoC is

considered to be a difficult region. Thus, the local pool 𝐿𝑃 containing 𝑀 classifiers is generated

in the second step and used to label xq in the generalization step via majority voting. The local

pool generation step is explained next.

Figure 2.3 shows the generation procedure of the local pool 𝐿𝑃. The pool size 𝑀 of the local

pool is an input parameter. The other inputs are the training set (T), the query sample (xq) and

the query sample’s RoC size (𝑘𝑠). The 𝐿𝑃 is constructed iteratively. In the m-th iteration, the

query sample’s neighboring instances in the training set are obtained using any nearest neighbors

method, with parameter 𝑘𝑚. These neighboring instances form the query sample’s neighborhood

35

a)

b)

Figure 2.2 Overview of the (a) offline and (b) online phases of the proposed method. T is

the training set, 𝐻 is the set of hardness estimates, xq is the query sample, 𝜃𝑞 is its Region

of Competence (RoC), 𝑘𝑠 is the size of 𝜃𝑞, 𝐿𝑃 is the local pool, 𝑀 is the pool size of 𝐿𝑃
and 𝜔𝑙 is the output label of xq. In the offline phase, the hardness value of all instances in T
is estimated and stored in 𝐻. In the online phase, 𝜃𝑞 is first obtained and evaluated based on

the hardness values in 𝐻. If it only contains easy instances, the k-NN rule is used to label xq
in the last step. Otherwise, the local pool is generated in the second step, and xq is labelled

via majority voting of the classifiers in 𝐿𝑃 in the third step.

𝜃𝑚, which is used as input to the SGH method (Algorithm 2.1 from Section 2.2). The SGH

method then returns a local subpool 𝐶𝑚 that fully covers the neighborhood 𝜃𝑚. That is, the

presence of at least one competent classifier 𝑐𝑚,𝑘 ∈ 𝐶𝑚 for each instance in 𝜃𝑚 is guaranteed.

The indexes in the classifiers’ notation indicates that the classifier 𝑐𝑚,𝑘 is the k-th classifier from

the m-th subpool (𝐶𝑚). Then, the most competent classifier 𝑐𝑚,𝑛 from 𝐶𝑚 in the region delimited

by the neighborhood 𝜃𝑞 is selected by a DCS technique and added to the local pool. The same

procedure is performed in iteration 𝑚 + 1 with the neighborhood size 𝑘𝑚+1 increased by 2. This

process is then repeated until the local pool contains 𝑀 locally accurate classifiers.

36

Figure 2.3 Local pool generation step. The inputs to the generation scheme are the training

set T , the query sample xq, the size 𝑘𝑠 of the query sample’s RoC and the local pool size 𝑀 .

The output is the local pool 𝐿𝑃. In the m-th iteration, the query sample’s neighborhood 𝜃𝑚

of size 𝑘𝑚 is obtained and used as input to the SGH method, which yields the subpool 𝐶𝑚.

The classifiers from 𝐶𝑚 are then evaluated over 𝜃𝑚 using a DCS technique. The classifiers’

notation refers a classifier 𝑐𝑚,𝑘 as the k-th classifier from the m-th subpool (𝐶𝑚). The most

competent classifier 𝑐𝑚,𝑛 in subpool 𝐶𝑚 is then selected and added to the local pool 𝐿𝑃.

This process is then repeated until 𝐿𝑃 contains 𝑀 locally accurate classifiers.

Algorithm 2.2 Online Local Pool (OLP) technique: offline phase.

input :T , 𝑘ℎ; ⊲ Training dataset and kDN neighborhood size

output :𝐻; ⊲ Estimated hardness values

1 for every xi in T do
2 𝐻 (𝑖) ← 𝑘𝐷𝑁 (xi, T , 𝑘ℎ) ; ⊲ Calculate hardness (Equation 2.1)

3 end for
4 return 𝐻

The pseudocode of the offline phase of the proposed method is shown in Algorithm 2.2. Its

inputs are the training set T and the kDN parameter 𝑘ℎ, which denotes the neighborhood size of

37

the hardness estimate. From Step 1 to Step 3, the hardness of each instance xi ∈ T is calculated

and stored in 𝐻, which is then returned in Step 4.

Algorithm 2.3 Online Local Pool (OLP) technique: online phase.

input :xq, T , 𝐻 ; ⊲ Query sample, training set and hardness estimates

input :𝑘𝑠 , 𝑀 ; ⊲ RoC size and pool size of local pool 𝐿𝑃
output :𝜔𝑙 ; ⊲ Output label of xq

1 𝜃𝑞 ← 𝑜𝑏𝑡𝑎𝑖𝑛𝑅𝑜𝐶 (xq, 𝑘𝑠 , T); ⊲ Obtain the query instance’s RoC

2 if {∃xi ∈ 𝜃𝑞 |𝐻 (𝑖) > 0} then
3 𝐿𝑃 ← {}; ⊲ Local pool initially empty

4 for every 𝑚 in {1, 2, ..., 𝑀} do
5 𝑘𝑚 ← 𝑘𝑠 + 2 × (𝑚 − 1) ; ⊲ Increase neighborhood size by 2

6 𝜃𝑚 ← 𝑜𝑏𝑡𝑎𝑖𝑛𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 (xq, 𝑘𝑚, T) ; ⊲ Obtain neighborhood of xq
7 𝐶𝑚 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑃𝑜𝑜𝑙 (𝜃𝑚); ⊲ Generate local subpool 𝐶𝑚

8 𝑐𝑚,𝑛 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 (xq, 𝜃𝑚, 𝐶𝑚) ; ⊲ Select best classifier in 𝐶𝑚

9 𝐿𝑃 ← 𝐿𝑃 ∪ {𝑐𝑚,𝑛}; ⊲ Add 𝑐𝑚,𝑛 to 𝐿𝑃

10 end for
11 𝜔𝑙 ← 𝑚𝑎 𝑗𝑜𝑟𝑖𝑡𝑦𝑉𝑜𝑡𝑖𝑛𝑔(xq, 𝐿𝑃) ; ⊲ Label xi with majority voting on 𝐿𝑃

12 else
13 𝜔𝑙 ← 𝑘𝑁𝑁 (xq, 𝑘𝑠 , T) ; ⊲ Label query sample using k-NN rule

14 end if
15 return 𝜔𝑙

1) RoC

Evaluation

2) Local Pool

Generation

3) Gener-

alization

The online phase, on the other hand, is described in more detail in Algorithm 2.3. Its inputs are

the query sample xq, training set T , the set of hardness estimates 𝐻, the RoC size 𝑘𝑠 and the

local pool size 𝑀 . In Step 1, the query sample’s RoC 𝜃𝑞 is obtained by selecting the 𝑘𝑠 closest

samples to xq in the training set. The RoC is then evaluated in Step 2. If all instances in 𝜃𝑞 are

not located in a difficult region, that is, their hardness value is zero, the method goes straight to

Step 13 and the query sample’s output label 𝜔𝑙 is obtained using the k-NN rule with parameter

𝑘𝑠 and returned in Step 15.

However, if there is one instance xi from 𝜃𝑞 whose hardness estimate 𝐻 (𝑖) is above zero, the

region is considered a difficult one and the method proceeds to Step 3. Each classifier in the

local pool 𝐿𝑃 is obtained in the loop that iterates 𝑀 times (Step 4 to Step 10). In each iteration,

the neighborhood size 𝑘𝑚 is calculated in Step 5. Then, the query sample’s neighborhood 𝜃𝑚 is

obtained using a nearest neighbors method in Step 6. The subpool 𝐶𝑚 is then generated in Step

7 using the SGH method with 𝜃𝑚 as training set. In Step 8, a DCS technique is then used to

38

select the most competent classifier 𝑐𝑚,𝑛 in 𝐶𝑚. The classifier 𝑐𝑚,𝑛 is added to 𝐿𝑃 in Step 9, and

then the loop continues until the local pool is complete. Finally, the query sample’s label 𝜔𝑙 is

obtained using majority voting over the locally accurate classifiers in 𝐿𝑃 and returned in Step 15.

2.3.2 Step-by-step Analysis

In order to better understand the generation process by the proposed technique, the latter was

executed over a 2D toy problem dataset. The P2 Problem (Valentini, 2005) was chosen for its

complex borders. Since the P2 problem has no overlap between the classes, noise was added to

the original distribution by randomly changing the labels of the samples near the class borders.

The dataset used in this analysis contains 1000 instances, 75% of which were used for training

and the rest for test. The parameters used in this demonstration were 𝑘ℎ = 𝑘𝑠 = 7 and 𝑀 = 7.

The method used for selecting the query instance’s neighborhood in 𝑔𝑒𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 () (Step

6 of Algorithm 2.3) for this example was the regular k-NN, and the DCS technique used to select

the most competent classifier (Step 8 of Algorithm 2.3) was OLA.

0 0.2 0.4 0.6 0.8 1
Feature 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fe
at

ur
e

2

Class 1
Class 2

a)

0 0.2 0.4 0.6 0.8 1
Feature 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fe
at

ur
e

2

Class 1
Class 2

b)

Figure 2.4 P2 Problem dataset, with theoretical decision boundaries in grey. The training

set is depicted in (a), and in (b) the same set is shown with hard instances in large markers

and easy instances in small ones.

39

The P2 Problem training set used in this analysis is shown in Figure 2.4a, with its theoretical

decision boundaries in grey. The hardness estimation in Step 1 to Step 3 of Algorithm 2.2

separates the training instances with estimated hardness above zero, that is, the instances closer

to the border between classes, and the remaining ones. Figure 2.4b shows the training instances

closer to the borders (large markers) and the instances with 𝐻 (𝑖) = 0 (small markers).

Two scenarios of the proposed scheme’s online phase can be observed in Figure 2.5a and Figure

2.5b. In the first, the input query instance xq of Algorithm 2.3 belongs to Class 2. The query

sample’s RoC 𝜃𝑞 is obtained selecting its k-nearest neighbors over the training set T in Step 1.

In this case, since all instances in 𝜃𝑞 have estimated hardness 𝐻𝑖 = 0, represented in Figure 2.5a

by small markers, xq is considered to be in an easy region of the feature space. Therefore, the

procedure goes to Step 13, in order to obtain the output label 𝜔𝑙 of xq using the k-NN rule over

the training set with parameter 𝑘𝑠. Then, the query sample’s label is returned in Step 15. In this

case 𝜔𝑙 = 2 since all 𝑘𝑠 neighbors of xq belong to this class.

0.5 0.55 0.6 0.65 0.7 0.75
Feature 1

0.7

0.75

0.8

0.85

0.9

0.95

Fe
at

ur
e

2

Class 1
Class 2
xq

q

a)

0.25 0.3 0.35 0.4 0.45 0.5
Feature 1

0.25

0.3

0.35

0.4

0.45

0.5

Fe
at

ur
e

2

Class 1
Class 2
xq

q

b)

Figure 2.5 Two different scenarios of the online phase. In (a), the query instance xq
belongs to Class 2. Since all instances in its neighborhood 𝜃𝑞 are easy (small markers), the

k-NN rule is used to label xq. On the other hand, all instances in the query sample’s

neighborhood 𝜃𝑞 in (b) are deemed hard (large markers). Thus, the local pool 𝐿𝑃 will label

the query instance xq, which belongs to Class 1.

40

In the second scenario, shown in Figure 2.5b, the query instance xq of Algorithm 2.3 belongs

to Class 1. Its RoC 𝜃𝑞 is obtained in Step 1, with more than half of its instances belonging to

the opposite class. Thus, a simple k-NN rule would misclassify this query sample. The query

instance’s RoC 𝜃𝑞 is then analyzed in Step 2. The hardness estimate 𝐻𝑖 of each neighbor is

verified in Step 2 of Algorithm 2.3, and since at least one of them is above zero, depicted in

Figure 2.5b in large markers, the local pool (LP) will be generated and used from this step

forward. Starting with an empty set (Step 3), each iteration from Step 4 to Step 10 adds a single

classifier to LP.

In the first iteration, the neighborhood size 𝑘1 is set to 7 in Step 5, and then the 𝑘1 nearest

neighbors of xq are selected to compose the query sample’s neighborhood 𝜃1 in Step 6. The local

subpool 𝐶1 is then generated using 𝜃1 as the input dataset to the SGH method. The resulting pool,

which guarantees an Oracle accuracy rate of 100% in 𝜃1, is shown in Figure 2.6a, containing

only one classifier, 𝑐1,1. Since there is only one classifier in 𝐶1, 𝑐1,1 is selected to compose 𝐿𝑃

in Step 8 and Step 9.

In the second iteration, the neighborhood parameter is increased by 2 in Step 5, and the resulting

neighborhood 𝜃2 contains 𝑘2 = 9 instances, as shown in Figure 2.6b. Then, the local subpool

𝐶2 is generated in Step 7, with 𝜃2 as the input parameter of the SGH method. Since only one

classifier was able to deliver an Oracle accuracy rate of 100% over 𝜃2, the resulting pool contains

only 𝑐2,1, which is selected in Step 8 to be added to 𝐿𝑃 in Step 9.

The neighborhood 𝜃3, obtained in Step 6 of the third iteration, contains 𝑘3 = 11 instances, as

Figure 2.6c shows. 𝐶3 is then generated in Step 7 so that it fully covers 𝜃3, resulting in only one

classifier (𝑐3,1), which is later added to 𝐿𝑃 in Step 9.

The fourth local subpool 𝐶4, depicted in Figure 2.6d, is generated in Step 7 of the fourth iteration,

with neighborhood 𝜃4 of size 𝑘4 = 13 as input to the SGH method. The only classifier generated,

𝑐4,1, is then added to 𝐿𝑃 in Step 9.

41

0.25 0.3 0.35 0.4 0.45 0.5
Feature 1

0.25

0.3

0.35

0.4

0.45

0.5

Fe
at

ur
e

2

Class 1
Class 2
xq

1
c1,1

a)

0.25 0.3 0.35 0.4 0.45 0.5
Feature 1

0.25

0.3

0.35

0.4

0.45

0.5

Fe
at

ur
e

2

Class 1
Class 2
xq

2
c2,1

b)

0.25 0.3 0.35 0.4 0.45 0.5
Feature 1

0.25

0.3

0.35

0.4

0.45

0.5

Fe
at

ur
e

2

Class 1
Class 2
xq

3
c3,1

c)

0.25 0.3 0.35 0.4 0.45 0.5
Feature 1

0.25

0.3

0.35

0.4

0.45

0.5

Fe
at

ur
e

2

Class 1
Class 2
xq

4
c4,1

d)

Figure 2.6 Local pool generation. (a) First, (b) second, (c) third, (d) fourth, (e) fifth, (f)

sixth and (g) seventh iteration of the method, with its respective neighborhoods (𝜃𝑚) and

generated local subpools 𝐶𝑚 formed by the depicted classifiers (𝑐𝑚,𝑘). The arrows indicate

in which part of the feature space the classifiers label as Class 1. Each local subpool 𝐶𝑚 is

obtained using the SGH method with its respective neighborhood 𝜃𝑚, which increases in

each iteration, as input. The final local pool 𝐿𝑃, formed by the best classifiers in each

subpool 𝐶𝑚, is shown in (h).

In the fifth iteration, the neighborhood 𝜃5 is obtained with parameter 𝑘5 = 15 in Step 6. In Step

7, the SGH method yields the local subpool 𝐶5, depicted in Figure 2.6e. Afterwards, the single

classifier 𝑐5,1 in 𝐶5 is added to 𝐿𝑃.

42

0.25 0.3 0.35 0.4 0.45 0.5
Feature 1

0.25

0.3

0.35

0.4

0.45

0.5

Fe
at

ur
e

2

Class 1
Class 2
xq

5
c5,1

e)

0.25 0.3 0.35 0.4 0.45 0.5
Feature 1

0.25

0.3

0.35

0.4

0.45

0.5

Fe
at

ur
e

2

Class 1
Class 2
xq

6
c6,1
c6,2

f)

0.25 0.3 0.35 0.4 0.45 0.5
Feature 1

0.25

0.3

0.35

0.4

0.45

0.5

Fe
at

ur
e

2

Class 1
Class 2
xq

7
c7,1
c7,2
c7,3

g)

0.25 0.3 0.35 0.4 0.45 0.5
Feature 1

0.25

0.3

0.35

0.4

0.45

0.5

Fe
at

ur
e

2

Class 1
Class 2
xq
c1,1
c2,1
c3,1
c4,1
c5,1
c6,1
c7,1

h)

Figure 2.6 Local pool generation. (a) First, (b) second, (c) third, (d) fourth, (e) fifth, (f)

sixth and (g) seventh iteration of the method, with its respective neighborhoods (𝜃𝑚) and

generated local subpools 𝐶𝑚 formed by the depicted classifiers (𝑐𝑚,𝑘). The arrows indicate

in which part of the feature space the classifiers label as Class 1. Each local subpool 𝐶𝑚 is

obtained using the SGH method with its respective neighborhood 𝜃𝑚, which increases in

each iteration, as input. The final local pool 𝐿𝑃, formed by the best classifiers in each

subpool 𝐶𝑚, is shown in (h).

The neighborhood 𝜃6 of the sixth iteration is obtained with 𝑘6 = 17 in Step 6. Then, the local

subpool 𝐶6 is generated in Step 7, resulting in two classifiers, 𝑐6,1 and 𝑐6,2, as shown in Figure

43

2.6f. In Step 8, both classifiers are evaluated over 𝜃6 using a DCS technique, OLA in this case.

The most accurate one (𝑐6,1) in 𝐶6 is returned and added to 𝐿𝑃 in Step 9.

Table 2.2 Majority voting of the classifiers from LP

for the query instance from Figure 2.5b.

𝑐1,1 𝑐2,1 𝑐3,1 𝑐4,1 𝑐5,1 𝑐6,1 𝑐7,1 Total
Class 1 x x x x x 5

Class 2 x x 2

In the last iteration, the local subpool 𝐶7 is generated in Step 7 using the neighborhood 𝜃7 with

𝑘7 = 19 instances. Then, the local subpool 𝐶7 is generated, yielding three classifiers that fully

cover 𝜃7. Each classifier in 𝐶7, shown in Figure 2.6g, is then evaluated using OLA, and the one

that performs best over 𝜃7 is selected. The selected classifier, 𝑐7,1 in this case, is then added to

the local pool, completing the generation process of 𝐿𝑃, depicted in Figure 2.6h.

After the generation process of the local pool, each classifier in it labels the query instance xq,

and the final label is obtained by majority vote in Step 11. Table 2.2 shows the vote of each

classifier in 𝐿𝑃. The final label returned in Step 11 by the local pool is 𝜔𝑙 = 1, which is the true

class of xq.

2.4 Experiments

In order to analyse and evaluate the performance of the proposed method, experiments were

conducted over the 20 datasets described in Table 2.1. All methods in the comparative study were

evaluated using 20 replications of each dataset. For the configurations that used pools generated

by the SGH method, each replication was randomly split into two parts: 75% for training and

25% for test. Since the SGH method did not present overfitting, both in global (Souza et al.,

2017) and local scope, the training set was used as the DSEL set. In the comparative study,

however, the methods that use a DS technique were tested using a pool of 100 Perceptrons

obtained using Bagging (Breiman, 1996), as it is often done in DS works (Cruz et al., 2015a).

44

For these configurations, the validation set was used as the DSEL in order to avoid overfitting,

so one third of the training set was randomly selected to compose the DSEL set.

This section is organized as follows. A comparative study with regards to DCS techniques is

performed in Section 2.4.1, with the purpose of analyzing whether the use of locally generated

pools is in fact advantageous in this context. In Section 2.4.2, the performances of the proposed

method and state-of-the-art models, including single models, static ensembles and DS techniques,

are also compared and analyzed. Lastly, the computational complexity of the proposed method

and the compared models are discussed in Section 2.4.3.

2.4.1 Comparison with DCS techniques

In this section, an experimental analysis on the proposed method is performed. The aim of

these experiments is to observe whether the DCS techniques are more prone to selecting the

best classifier in the pool when said pool is generated locally and whether the use of such pools

increase classification rates, in comparison to globally generated pools.

The DCS techniques chosen to evaluate the methods in these experiments were OLA, LCA and

MCB, since they outperformed the other evaluated DCS techniques in (Cruz et al., 2018a). The

RoC size 𝑘𝑠 for each of the DCS techniques is set to 7, since it yielded the best results in (Britto

et al., 2014).

The parameters of the proposed method were set to 𝑘𝑠 = 𝑘ℎ = 7 and 𝑀 = 7. Moreover, the

proposed scheme was tested with two neighborhood acquisition methods: the 𝐿𝑃 configuration

and the 𝐿𝑃𝑒 configuration. In the first, the 𝑔𝑒𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 () method from Algorithm 2.3

(Step 6) used was the regular k-NN. In the second configuration, the 𝑔𝑒𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 ()

procedure used was a version of the k-Nearest Neighbor Equality (k-NNE) (Sierra et al., 2011)

in which the returned neighborhood contains an equal amount of instances from all classes,

given that these classes are present in the query instance’s RoC 𝜃𝑞 from Algorithm 2.3 (Step 1).

45

The performance of the proposed method with regards to the DCS techniques is compared to

three globally generated pool configurations. The baseline method used in the comparison is a

Bagging-generated pool composed of 100 classifiers. The SGH method over the entire training

set is also included in the comparative study, since it provides another global approach for

generating classifiers. The pool generated by this technique is referenced as the global pool (GP).

Lastly, another related method, though it is not a generation one, is used in the comparison with

DCS techniques: the Frienemy Indecision Region Dynamic Ensemble Selection (FIRE-DES)

framework (Oliveira et al., 2017).

In the FIRE-DES framework, when a query sample is in an indecision region, that is, a

neighborhood that contains more than one class, the classifiers that correctly label instances

from different classes in the query sample’s RoC are pre-selected to form the pool used in

the DS technique. That is, if a border is detected in the query sample’s RoC, the selection

scheme searches only among the classifiers that cross this border. This is performed using

the Dynamic Frienemy Pruning (DFP), an online pruning method for DS techniques. The

FIRE-DES framework is designed for two-class problems, and it obtained a significant increase

in accuracy for most DS techniques, specially for highly imbalanced datasets, in which cases the

DFP method provided a considerable improvement in performance for those techniques.

In the FIRE-DES context, an unknown sample in an indecision region has, by definition, a

hardness value greater than zero, since at least one of its neighbors belongs to a different class,

regardless of its label. In the proposed method, such an instance is labelled using the local

pool, which is guaranteed to contain classifiers that cross the query sample’s RoC due to its

generation procedure (Figure 2.3). Thus, the same idea of using only locally accurate classifiers

for instances in overlap regions from the FIRE-DES framework indirectly applies to the proposed

method as well. Therefore, the FIRE-DES framework, coupled with the chosen DCS techniques,

is also included in the comparative study that follows. The pool used by this framework in the

experiments is the same as the one from the Bagging configuration, which contains 100 globally

generated classifiers.

46

The performance of the chosen configurations with regards to DCS techniques is evaluated in

memorization, using the hit rate measure, in Section 2.4.1.1, and in generalization, using the

accuracy rate over the datasets from Table 2.1, in Section 2.4.1.2.

2.4.1.1 Performance in Memorization

The proposed method was evaluated in memorization using the hit rate (Souza et al., 2017),

which is a metric derived from the SGH method that indicates how well the generated pool

integrates with the DCS techniques. In the SGH method, since the Oracle accuracy rate over the

training set is 100%, each training instance is assigned to a classifier in the pool that correctly

labels it. The hit rate is then obtained using the training set as test set, and comparing the chosen

classifier to the correct classifier indicated by the SGH method for each training instance. Thus,

the hit rate is the rate at which the DCS technique selects the correct classifier for a given known

instance.

Since the hit rate is defined specifically for pools generated using the SGH method, the hit

rate of the proposed method is only compared with the 𝐺𝑃 configuration, which uses a pool

generated by the SGH method with the entire training set as input. The hit rate of the proposed

configurations are calculated the same way as the 𝐺𝑃 configuration, with the only difference

being for instances not in difficult regions. In this case, the accuracy rate of the k-NN rule is

used to compute the measure. The comparison between the 𝐺𝑃 and the 𝐿𝑃 configurations is

relevant because it provides the answer to whether or not the generation over a local region

instead of over the entire problem is useful in the selection process of a DCS technique.

Table 2.3 shows the mean hit rate for OLA, LCA and MCB of the three configurations that use

the SHG method. In comparison with the 𝐺𝑃 configuration, both 𝐿𝑃 and 𝐿𝑃𝑒 configurations

obtained a greater overall hit rate for both DCS techniques. More specifically, for the 𝐿𝑃𝑒

configuration, nearly half of the datasets yielded a hit rate above 90%, whilst for the 𝐺𝑃 only

two of them at most obtained a similar hit rate for the three DCS techniques.

47

Table 2.3 Mean and standard deviation of the hit rate, i.e., the rate at which the right

Perceptron is chosen by (a) OLA, (b) LCA and (c) MCB using the 𝐺𝑃, 𝐿𝑃 and 𝐿𝑃𝑒

configurations. The row Wilcoxon shows the result of a Wilcoxon signed rank test over the

mean hit rates of the GP configuration and the two proposed configurations. The

significance level was 𝛼 = 0.05, and the symbols +, − and ∼ indicate the method is

significantly superior, inferior or not significantly different, respectively. Best results are in

bold.

(a)

Dataset GP LP LPe

Adult 86.91 (0.87) 86.10 (1.13) 91.41 (0.87)
Blood 79.59 (0.51) 73.11 (1.42) 80.96 (0.88)
CTG 92.50 (0.59) 92.66 (0.83) 92.95 (0.92)
Faults 76.88 (1.26) 74.85 (0.70) 70.92 (0.95)

German 71.05 (1.44) 89.25 (0.56) 91.86 (0.34)
Glass 76.21 (1.98) 63.07 (0.75) 69.71 (1.74)

Haberman 76.26 (1.10) 69.14 (2.45) 77.55 (0.93)
Heart 84.06 (1.92) 90.06 (1.24) 92.64 (0.54)

Ionosphere 86.46 (1.48) 87.26 (1.59) 87.97 (1.19)
Laryngeal1 84.75 (2.07) 87.16 (0.89) 89.82 (1.22)
Laryngeal3 74.81 (2.95) 79.63 (1.32) 76.44 (1.20)

Liver 67.22 (1.40) 79.16 (1.28) 83.92 (0.89)
Mammographic 82.72 (0.64) 70.32 (1.61) 84.02 (0.84)

Monk2 85.77 (3.60) 95.85 (0.32) 96.47 (0.33)
Phoneme 87.40 (0.46) 88.56 (0.23) 90.09 (0.29)

Pima 75.64 (1.55) 83.00 (0.63) 87.65 (0.28)
Sonar 80.00 (3.62) 92.48 (1.11) 93.81 (1.13)

Vehicle 76.14 (1.49) 78.25 (1.00) 77.32 (0.70)

Vertebral 82.39 (2.14) 87.42 (1.27) 89.38 (1.02)
Weaning 83.45 (1.33) 94.82 (0.45) 94.97 (0.35)
Average 80.51 83.11 86.00

Wilcoxon n/a ∼ +

(b)

Dataset GP LP LPe

Adult 86.77 (0.92) 89.99 (0.60) 91.27 (0.89)
Blood 80.20 (0.35) 79.43 (1.35) 80.27 (1.20)
CTG 92.63 (0.44) 94.03 (0.27) 93.30 (0.34)

Faults 76.84 (1.01) 74.85 (0.39) 71.25 (0.61)

German 75.75 (1.35) 90.01 (0.63) 91.90 (0.32)
Glass 77.95 (1.92) 67.73 (1.37) 69.17 (2.00)

Haberman 76.61 (1.46) 74.76 (1.84) 76.60 (1.04)

Heart 83.86 (2.40) 91.85 (0.79) 92.77 (0.68)
Ionosphere 87.34 (1.53) 92.32 (0.77) 92.11 (0.75)

Laryngeal1 84.81 (2.38) 88.55 (0.94) 89.83 (1.14)
Laryngeal3 73.98 (1.99) 80.28 (1.72) 78.37 (2.01)

Liver 70.62 (2.91) 79.69 (1.26) 84.10 (1.01)
Mammographic 82.83 (1.54) 80.82 (1.15) 82.07 (0.85)

Monk2 91.82 (3.61) 96.63 (0.27) 96.44 (0.32)

Phoneme 89.48 (0.44) 91.93 (0.32) 91.31 (0.23)

Pima 76.02 (1.67) 84.07 (0.48) 87.68 (0.27)
Sonar 83.46 (3.45) 93.37 (1.08) 94.27 (0.96)

Vehicle 77.98 (1.57) 77.11 (0.78) 76.60 (0.77)

Vertebral 84.33 (2.32) 89.87 (1.02) 89.85 (1.00)

Weaning 84.38 (1.72) 95.17 (0.51) 95.07 (0.36)

Average 81.88 85.63 86.21
Wilcoxon n/a + +

(c)

Dataset GP LP LPe

Adult 87.14 (0.73) 87.35 (1.19) 89.76 (0.59)
Blood 79.61 (0.51) 74.17 (1.48) 79.67 (0.81)
CTG 92.49 (0.63) 92.14 (0.44) 92.00 (0.37)

Faults 76.87 (1.26) 77.16 (0.84) 76.73 (0.49)

German 71.23 (1.47) 90.90 (0.61) 91.93 (0.58)
Glass 76.27 (1.99) 66.54 (1.44) 69.98 (1.61)

Haberman 76.35 (1.10) 69.03 (1.65) 76.77 (1.59)
Heart 83.96 (1.72) 89.10 (1.31) 91.85 (1.17)

Ionosphere 86.43 (1.43) 88.65 (0.77) 92.14 (0.75)
Laryngeal1 84.75 (1.93) 86.72 (1.11) 88.71 (0.90)
Laryngeal3 74.85 (2.90) 78.97 (1.48) 80.79 (1.37)

Liver 67.34 (1.28) 79.60 (1.24) 83.68 (1.10)
Mammographic 82.68 (0.73) 71.21 (1.48) 82.56 (1.04)

Monk2 86.67 (4.48) 95.69 (0.28) 95.35 (0.31)

Phoneme 87.40 (0.47) 89.12 (0.27) 90.10 (0.18)
Pima 75.82 (1.83) 83.52 (0.79) 87.54 (0.31)
Sonar 80.19 (3.63) 92.51 (0.91) 93.89 (1.03)

Vehicle 76.20 (1.51) 77.90 (0.78) 76.05 (0.76)

Vertebral 82.39 (2.19) 88.06 (1.27) 89.63 (1.24)
Weaning 83.36 (1.20) 94.06 (0.51) 93.88 (0.72)

Average 80.60 83.62 86.15
Wilcoxon n/a ∼ +

48

Moreover, a Wilcoxon signed rank test with a significance level of 𝛼 = 0.05 was performed

between the hit rate results for the 𝐺𝑃 and the two proposed configurations. It can be observed,

from the Wilcoxon rows, that the proposed configurations yielded a significantly greater hit

rate than the global configuration for LCA, and, in particular, the 𝐿𝑃𝑒 configuration obtained a

significant increase in the hit rate for OLA and MCB as well. This suggests that the use of the

local pools indeed facilitates the DCS technique in choosing the correct classifier for instances

in difficult regions.

2.4.1.2 Performance in Generalization

The mean percentage of test instances with true hardness value above zero is depicted in the

True bars of Figure 2.7 for all datasets. The true hardness value is obtained observing the

neighborhood of each test instance over the entire dataset. The mean percentage of test instances

deemed hard by the proposed method is also depicted in Figure 2.7 (Estimated bars). That is,

the Estimated bars show the frequency at which the proposed method generated and used local

pools, whilst the True bars show the actual proportion of instances in difficult regions for each

problem. It can be observed that, though the proportion of instances in difficult regions varies

greatly from problem to problem, the proposed method was mostly able to identify in which

cases the query sample was truly located in a difficult region and thus generated a local pool to

handle them.

The averaged value of the true and estimated percentage of hard instances is also indicated in

Figure 2.7 by the 𝑡𝑟𝑢𝑒 and 𝑒𝑠𝑡 lines, respectively. It can be observed that the mean percentage of

test instances truly located near the borders was 65.04%, while the proposed method generated

local pools for 64.46% of the test instances, on average.

We chose the Wilcoxon signed-rank test due to its robustness, as its result do not depend on

the algorithms originally included in the comparison (Benavoli, Corani & Mangili, 2016). It

can be observed from the Wilcoxon rows of Table 2.5 that both proposed configurations were

49

Adult Blood CTG Faults German Glass Haberm. Heart Ionosph. Laryn.1 Laryn.3 Liver Mammog.Monk2 Phoneme Pima Sonar Vehicle Verteb. Weaning

Dataset

0

10

20

30

40

50

60

70

80

90

100
Pe

rc
en

ta
ge

 o
f i

ns
ta

nc
es

Estimated
True

est
true

Figure 2.7 Mean percentage of instances in difficult regions for all datasets from Table 2.1.

The Estimated bar indicates the times the local pool was used to classify an instance, while

the True bar indicates the percentage of instances with true kDN value above zero. The

lines 𝑡𝑟𝑢𝑒 and 𝑒𝑠𝑡 indicate the averaged values of all datasets for the estimated and true

percentage of hard instances, respectively.

significantly superior to Bagging, and the 𝐿𝑃 configuration significantly outperformed the 𝐺𝑃

configuration using LCA.

The accuracy rate of Bagging, FIRE-DES, the GP configuration and the proposed configurations

were evaluated with OLA, LCA and MCB, and the results are presented in Table 2.4, Table

2.5 and Table 2.6. It can be observed that the proposed configurations (𝐿𝑃 and 𝐿𝑃𝑒) obtained

an average accuracy rate greater than Bagging, FIRE-DES and the 𝐺𝑃 configuration for all

DCS techniques. A Wilcoxon signed-rank test with a significance level of 𝛼 = 0.05 was also

performed for comparing the accuracy of the evaluated techniques.

Also, it can be observed in Table 2.4, Table 2.5 and Table 2.6 that, for two-class problems with

high percentage of difficult instances such as German, Liver, Monk2, Pima and Sonar (Figure

2.7), the use of local pools fairly increased the accuracy rate in comparison with the other

50

Table 2.4 Mean and standard deviation of the accuracy rate of using OLA for a pool with

100 Perceptrons generated using Bagging (Breiman, 1996) (column Bagging), a pool of 100

Perceptrons generated using Bagging and pruned with the DFP method (Oliveira et al.,
2017) (column FIRE-DES), the 𝐺𝑃 configuration, the 𝐿𝑃 configuration and the 𝐿𝑃𝑒

configuration. The row Wilcoxon (Bagging) shows the result of a Wilcoxon signed rank test

over the mean accuracy rates of Bagging and each remaining method. The same test was

performed in comparison with the FIRE-DES configuration and the 𝐺𝑃 configuration (rows

Wilcoxon (FIRE) and Wilcoxon (GP), respectively). The significance level was 𝛼 = 0.05,

and the symbols +, − and ∼ indicate the method is significantly superior, inferior or not

significantly different, respectively. In 𝐿𝑃𝑚𝑐, the 𝐿𝑃𝑒 is used for 2-class problems, while

the 𝐿𝑃 is used for multi-class ones. Best results are in bold.

Dataset Bagging FIRE-DES GP LP LPe LPmc

Adult 84.97 (2.50) 83.84 (3.37) 88.15 (2.93) 83.32 (3.63) 87.75 (2.17) 87.75 (2.17)

Blood 75.48 (2.31) 69.28 (3.90) 75.53 (1.14) 73.78 (2.80) 77.21 (1.57) 77.21 (1.57)
CTG 88.83 (1.26) 88.50 (1.36) 90.24 (0.77) 92.20 (1.10) 89.98 (0.80) 92.20 (1.10)
Faults 66.52 (1.65) 65.33 (1.95) 71.91 (1.60) 72.40 (1.29) 65.93 (1.29) 72.40 (1.29)

German 70.34 (1.88) 68.56 (1.89) 70.04 (2.35) 72.16 (2.12) 74.04 (1.88) 74.04 (1.88)
Glass 61.42 (4.22) 59.43 (5.66) 66.79 (4.17) 67.83 (3.94) 60.75 (2.17) 67.83 (3.94)

Haberman 70.79 (5.12) 66.78 (4.81) 71.58 (5.24) 68.95 (4.19) 72.43 (2.24) 72.43 (2.24)

Heart 82.35 (3.44) 82.21 (4.32) 86.62 (2.18) 81.99 (4.79) 83.68 (3.27) 83.68 (3.27)

Ionosphere 86.70 (3.04) 86.53 (2.84) 87.16 (2.76) 91.76 (1.95) 91.99 (2.16) 91.99 (2.16)
Laryngeal1 82.92 (3.54) 81.89 (5.62) 80.38 (4.26) 77.74 (5.53) 80.57 (5.87) 80.57 (5.87)

Laryngeal3 70.73 (5.79) 66.46 (4.73) 72.25 (1.71) 71.74 (2.73) 64.66 (1.34) 71.74 (2.73)

Liver 64.59 (4.18) 65.00 (3.85) 58.37 (3.53) 60.12 (4.99) 67.21 (1.67) 67.21 (1.67)
Mammographic 82.57 (2.02) 79.06 (3.62) 82.60 (2.47) 75.53 (2.60) 82.36 (1.81) 82.36 (1.81)

Monk2 87.87 (3.97) 87.92 (3.13) 86.20 (3.74) 94.91 (0.97) 94.07 (0.76) 94.07 (0.76)

Phoneme 80.31 (0.68) 76.02 (1.17) 86.74 (0.73) 88.58 (0.63) 86.60 (0.67) 86.60 (0.67)

Pima 72.40 (2.73) 68.78 (3.03) 72.29 (2.39) 72.03 (1.68) 76.77 (2.26) 76.77 (2.26)
Sonar 80.96 (4.04) 79.90 (4.02) 80.00 (3.33) 83.27 (5.79) 75.00 (4.14) 75.00 (4.14)

Vehicle 73.61 (2.56) 74.43 (1.95) 70.09 (2.57) 74.39 (2.09) 69.74 (1.66) 74.39 (2.09)

Vertebral 85.38 (4.04) 84.49 (4.70) 81.41 (2.06) 85.19 (2.14) 86.47 (2.65) 86.47 (2.65)
Weaning 77.50 (3.36) 77.57 (3.40) 78.68 (3.71) 86.05 (1.73) 85.66 (2.37) 85.66 (2.37)

Average 77.31 75.59 77.85 78.69 78.64 80.02

Wilcoxon (Bagging) n/a - ∼ ∼ ∼ +

Wilcoxon (FIRE) + n/a ∼ + + +

Wilcoxon (GP) ∼ ∼ n/a ∼ ∼ +

configurations for the three DCS techniques, further suggesting the advantage of such pools over

the global one for instances in difficult regions.

51

Table 2.5 Mean and standard deviation of the accuracy rate of using LCA for a pool with

100 Perceptrons generated using Bagging (Breiman, 1996) (column Bagging), a pool of 100

Perceptrons generated using Bagging and pruned with the DFP method (Oliveira et al.,
2017) (column FIRE-DES), the 𝐺𝑃 configuration, the 𝐿𝑃 configuration and the 𝐿𝑃𝑒

configuration. The row Wilcoxon (Bagging) shows the result of a Wilcoxon signed rank test

over the mean accuracy rates of Bagging and each remaining method. The same test was

performed in comparison with the FIRE-DES configuration and the 𝐺𝑃 configuration (rows

Wilcoxon (FIRE) and Wilcoxon (GP), respectively). The significance level was 𝛼 = 0.05,

and the symbols +, − and ∼ indicate the method is significantly superior, inferior or not

significantly different, respectively. In 𝐿𝑃𝑚𝑐, the 𝐿𝑃𝑒 is used for 2-class problems, while

the 𝐿𝑃 is used for multi-class ones. Best results are in bold.

Dataset Bagging FIRE-DES GP LP LPe LPmc

Adult 86.88 (3.17) 85.72 (3.59) 87.40 (2.82) 84.71 (3.73) 87.11 (2.40) 87.11 (2.40)

Blood 76.14 (2.24) 71.06 (3.44) 75.74 (1.04) 77.95 (2.51) 76.89 (1.67) 76.89 (1.67)

CTG 88.38 (1.37) 88.18 (1.36) 90.30 (0.84) 92.22 (1.10) 90.58 (0.39) 92.22 (1.10)
Faults 66.00 (1.69) 65.67 (2.23) 71.99 (1.53) 73.20 (1.22) 66.28 (1.15) 73.20 (1.22)

German 70.66 (2.06) 70.40 (1.22) 70.84 (1.87) 72.88 (2.37) 74.08 (1.84) 74.08 (1.84)
Glass 56.13 (5.47) 56.04 (5.41) 69.43 (3.33) 67.45 (2.73) 62.55 (4.83) 67.45 (2.73)

Haberman 73.03 (3.58) 69.87 (4.87) 71.05 (1.91) 70.79 (3.71) 72.11 (2.12) 72.11 (2.12)
Heart 82.35 (4.84) 82.21 (4.77) 86.47 (2.85) 82.50 (5.54) 83.09 (3.32) 83.09 (3.32)

Ionosphere 86.14 (4.90) 86.19 (4.70) 87.27 (3.21) 91.53 (1.45) 92.44 (2.56) 92.44 (2.56)
Laryngeal1 81.23 (2.70) 80.09 (3.80) 80.94 (4.70) 79.25 (5.05) 80.57 (5.87) 80.57 (5.87)

Laryngeal3 71.57 (5.25) 68.88 (6.19) 72.58 (2.14) 73.48 (2.48) 67.42 (1.86) 73.48 (2.48)
Liver 64.59 (4.87) 66.74 (2.70) 58.37 (2.81) 62.21 (5.26) 66.98 (1.79) 66.98 (1.79)

Mammographic 82.00 (3.18) 78.89 (4.09) 81.63 (3.06) 80.05 (1.84) 82.57 (1.77) 82.57 (1.77)

Monk2 86.06 (3.06) 85.88 (3.16) 90.28 (2.18) 94.91 (0.97) 94.07 (0.76) 94.07 (0.76)

Phoneme 80.78 (0.65) 77.26 (0.89) 87.01 (0.77) 89.18 (0.50) 86.62 (0.69) 86.62 (0.69)

Pima 74.66 (2.39) 72.19 (3.63) 73.23 (3.39) 73.46 (1.01) 76.74 (2.24) 76.74 (2.24)
Sonar 76.35 (5.41) 75.87 (4.93) 78.08 (5.01) 82.98 (5.27) 76.35 (3.64) 76.35 (3.64)

Vehicle 72.03 (1.63) 72.41 (1.86) 70.75 (2.22) 73.51 (1.64) 71.34 (1.28) 73.51 (1.64)
Vertebral 84.55 (3.42) 85.51 (3.30) 82.31 (1.93) 85.32 (2.68) 86.47 (2.65) 86.47 (2.65)
Weaning 73.88 (2.78) 73.75 (3.51) 78.82 (3.05) 86.51 (1.90) 85.66 (2.37) 85.66 (2.37)

Average 76.67 75.64 78.22 79.70 78.99 80.08

Wilcoxon (Bagging) n/a - ∼ + + +

Wilcoxon (FIRE) + n/a + + + +

Wilcoxon (GP) ∼ - n/a + ∼ +

2.4.1.3 Discussion

From Table 2.4, Table 2.5 and Table 2.6, it can be observed that the two evaluated configurations

of the proposed method yielded quite distinct results: the 𝐿𝑃 configuration always surpassed,

by far most of the times, the 𝐿𝑃𝑒 configuration for the multi-class problems for both DCS

techniques. The reason for this difference in performance lies in the neighborhood selection

52

Table 2.6 Mean and standard deviation of the accuracy rate of using MCB for a pool with

100 Perceptrons generated using Bagging (Breiman, 1996) (column Bagging), a pool of 100

Perceptrons generated using Bagging and pruned with the DFP method (Oliveira et al.,
2017) (column FIRE-DES), the 𝐺𝑃 configuration, the 𝐿𝑃 configuration and the 𝐿𝑃𝑒

configuration. The row Wilcoxon (Bagging) shows the result of a Wilcoxon signed rank test

over the mean accuracy rates of Bagging and each remaining method. The same test was

performed in comparison with the FIRE-DES configuration and the 𝐺𝑃 configuration (rows

Wilcoxon (FIRE) and Wilcoxon (GP), respectively). The significance level was 𝛼 = 0.05,

and the symbols +, − and ∼ indicate the method is significantly superior, inferior or not

significantly different, respectively. In 𝐿𝑃𝑚𝑐, the 𝐿𝑃𝑒 is used for 2-class problems, while

the 𝐿𝑃 is used for multi-class ones. Best results are in bold.

Dataset Bagging FIRE-DES GP LP LPe LPmc

Adult 85.00 (2.53) 83.70 (3.25) 88.15 (2.93) 84.45 (3.98) 87.75 (2.18) 87.75 (2.18)

Blood 75.16 (2.07) 68.88 (3.24) 75.53 (1.14) 76.99 (2.15) 76.57 (1.90) 76.57 (1.90)

CTG 88.87 (1.24) 88.61 (1.54) 90.24 (0.77) 92.10 (1.20) 90.23 (0.36) 92.10 (1.20)
Faults 66.58 (1.37) 65.77 (2.32) 71.91 (1.60) 72.80 (1.29) 66.24 (0.86) 72.80 (1.29)

German 70.16 (2.41) 68.94 (2.72) 70.52 (2.08) 72.84 (2.36) 74.08 (1.84) 74.08 (1.84)
Glass 60.00 (5.83) 60.19 (6.45) 66.79 (4.17) 66.42 (4.27) 61.04 (2.89) 66.42 (4.27)

Haberman 72.17 (5.87) 68.36 (4.95) 71.71 (4.91) 69.80 (2.85) 72.37 (2.67) 72.37 (2.67)

Heart 81.10 (4.11) 81.32 (4.82) 86.18 (2.36) 82.06 (4.86) 83.09 (3.32) 83.09 (3.32)

Ionosphere 88.24 (2.56) 86.36 (2.55) 87.16 (2.71) 91.48 (1.40) 92.16 (2.39) 92.16 (2.39)
Laryngeal1 83.02 (4.29) 81.51 (6.44) 80.57 (4.59) 78.30 (5.03) 80.47 (5.75) 80.47 (5.75)

Laryngeal3 70.96 (5.62) 67.19 (4.71) 71.80 (1.58) 72.19 (2.65) 66.18 (1.41) 72.19 (2.65)
Liver 61.98 (4.86) 63.49 (5.01) 58.37 (3.49) 61.34 (4.71) 67.03 (1.32) 67.03 (1.32)

Mammographic 82.31 (2.32) 79.01 (3.40) 82.60 (2.47) 78.87 (2.55) 82.52 (1.65) 82.52 (1.65)

Monk2 88.06 (4.18) 87.69 (4.29) 87.96 (3.80) 94.91 (0.97) 94.07 (0.76) 94.07 (0.76)

Phoneme 80.53 (0.79) 76.12 (1.05) 86.73 (0.73) 88.98 (0.56) 86.68 (0.74) 86.68 (0.74)

Pima 72.73 (2.60) 68.36 (2.96) 72.71 (2.67) 72.92 (1.56) 76.74 (2.28) 76.74 (2.28)
Sonar 80.67 (4.11) 80.29 (4.13) 79.81 (3.09) 83.08 (5.42) 76.15 (3.33) 76.15 (3.33)

Vehicle 73.30 (2.54) 74.58 (2.45) 70.14 (2.52) 74.88 (1.57) 70.75 (1.65) 74.88 (1.57)
Vertebral 84.55 (4.75) 85.38 (4.86) 82.69 (2.22) 85.58 (2.38) 86.41 (2.71) 86.41 (2.71)
Weaning 76.38 (2.43) 76.05 (3.10) 79.21 (3.30) 86.38 (1.72) 85.59 (2.36) 85.59 (2.36)

Average 77.08 75.59 78.03 79.31 78.80 80.00

Wilcoxon (Bagging) n/a - ∼ + ∼ +

Wilcoxon (FIRE) + n/a ∼ + + +

Wilcoxon (GP) ∼ ∼ n/a ∼ ∼ +

schemes used in the online phase of the proposed method, as it can be observed in Figure 2.8, in

which two multi-class toy problems are depicted.

In Figure 2.8a, the neighborhood 𝜃1 of the query instance xq was obtained using the regular

k-NN rule. It can be observed that, since the border contains only two classes (Class 1 and Class

2), this is also the case for all two-class problems. Therefore, the SGH method, which generates

53

only two-class classifiers, returns a pool with only one classifier (𝑐1,1) that cover the entire

neighborhood 𝜃1. Figure 2.8b shows the same scenario, but with 𝜃1 being obtained using the

version of k-NNE used in this work, which returns the same amount of neighboring instances for

all classes in the original k-NN neighborhood. That is, the instances from classes too far from

the query sample are not included in this method, as Figure 2.8b shows. The generated pool also

contains only one classifier (𝑐1,1) that cover the instances in 𝜃1. In both presented cases, the

DCS technique would select the correct classifier for this query sample, which belongs to Class

1, though the classifier from Figure 2.8b seems better adjusted than the one from Figure 2.8a.

On the other hand, Figure 2.8c shows a similar situation, but with Class 3 much closer to the

other two classes. In this case, the neighborhood 𝜃1 returned by k-NN contains instances from

the three classes in the problem. Since the SGH method only generates two-class classifiers,

the coverage of 𝜃1 is incomplete. This is due to the fact that the most distant class in the input

set is selected more frequently to draw the hyperplanes. It can be observed in Figure 2.8c

that Class 3, which is the farthest class and thus the least relevant one, is much better covered,

with all classifiers recognizing it, than the other two classes. In fact, there is not one classifier

that separates Class 1 from Class 2 in the generated pool. However, since the DCS technique

evaluates the classifiers competence over 𝜃1 in the proposed technique, Class 3 only possesses

one instance, therefore its weight is much smaller than the remaining two classes in the classifiers’

score. That way, the classifier 𝑐1,3 would be selected by OLA, for instance, which would yield

the correct label of xq.

Figure 2.8d depicts the same scenario from Figure 2.8c, but with 𝜃1 obtained using k-NNE.

Since the original k-NN neighborhood already contained an instance from Class 3, this class is

also included in 𝜃1. This leads to the neighborhood containing 𝑘1 = 7 instances of each of the

three classes of the problem. The SGH method generates then two classifiers (𝑐1,1 and 𝑐1,2),

and, as in the previous case, the most distant and least relevant class (Class 3) is favoured by the

method, since all classifiers recognize it. The other two classes, which are closer to xq, do not

have a classifier in this subpool to distinguish among themselves. However, as opposed to the

previous case, the amount of instances of the farthest class is the same as the other two classes,

54

-0.2 -0.1 0 0.1 0.2 0.3 0.4
Feature 1

0.05

0.1

0.15

0.2

0.25

0.3

Fe
at

ur
e

2

Class 1
Class 2
Class 3
xq

1
c1,1

1
2

a)

-0.2 -0.1 0 0.1 0.2 0.3 0.4
Feature 1

0.05

0.1

0.15

0.2

0.25

0.3

Fe
at

ur
e

2

Class 1
Class 2
Class 3
xq

1
c1,1

1
2

b)

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
Feature 1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Fe
at

ur
e

2

Class 1
Class 2
Class 3
xq

1
c1,1
c1,2
c1,3

2

3

1

3

1

3

c)

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
Feature 1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Fe
at

ur
e

2

Class 1
Class 2
Class 3
xq

1
c1,1
c1,2

2
1

3

3

d)

Figure 2.8 Example of pool generation for multi-class problems. In all scenarios, 𝑥𝑞

belongs to Class 1. In (a) and (c), the query instance’s (xq) neighborhood 𝜃1 was obtained

using k-NN with 𝑘1 = 7. In (b) and (d), 𝜃1 was obtained using a version of k-NNE with

𝑘1 = 7 as well. These neighborhoods were used as input to the SGH method, which yielded

the corresponding subpool of classifiers depicted in the images.

which makes its as relevant as the closer classes for the DCS techniques, since the classifiers are

evaluated over the entire 𝜃1. In this example, as both classifiers correctly label two out of three

classes in the neighborhood, the DCS technique would choose one of them randomly, which

would in turn fairly degrade the performance of the system.

55

Therefore, a better approach for multi-class problems is to use the 𝐿𝑃, which evaluates over

the original neighborhood and is likely to give less weight to less relevant classes in the border

region. Hence, the 𝐿𝑃𝑚𝑐 columns in Table 2.4, Table 2.5 and Table 2.6 show the result of the

combined 𝐿𝑃𝑒 and 𝐿𝑃 configurations, in which the k-NNE is used for 2-class problems and

the k-NN for the multi-class problems. It can be observed from the Wilcoxon rows that this

scheme is significantly better than Bagging, FIRE-DES and the 𝐺𝑃 configurations for all DCS

techniques.

2.4.2 Comparison with State-of-the-art Models

A comparative study on the performances of the proposed method and nine state-of-the-art

models is presented in this section. The purpose of this study is to assess whether the proposed

method achieves similar recognition rates to the most well-performing models in the literature,

considering single models and other MCS.

Five static state-of-the-art classifiers feature in the comparative study: the Multi-layer Perceptron

(MLP) model with the Levenberg-Marquadt algorithm, the Support Vector Machine (SVM)

model with a Gaussian Kernel, the Random Forest (RF) (Breiman, 2001) classifier, the

AdaBoost (Freund & Schapire, 1997) classifier, and the Oblique Decision Tree (DT) ensemble

(Zhang & Suganthan, 2017). These models belong to the best performing families of classifiers,

according to (Fernández-Delgado, Cernadas, Barro & Amorim, 2014), and also were among

the best performing models in (Zhang & Suganthan, 2017). Since static models do not need a

DSEL dataset, it was used as a validation set for the MLP classifier and added to the training set

for the remaining static models.

Furthermore, four state-of-the-art DS techniques were also included in this analysis: the

Randomized Reference Classifier (RRC) (Woloszynski & Kurzynski, 2011), the META-DES

(Cruz et al., 2015a), the META-DES.Oracle (META-DES.O) (Cruz et al., 2017a) and the FIRE-

KNORA-U (F-KNU) (Oliveira et al., 2017). The latter consists of the FIRE-DES framework

coupled with the K-Nearest Oracles Union (KNORA-U) (Ko et al., 2007) selection technique.

56

The same Bagging-generated pool of 100 Perceptrons used in the previous section was used for

these techniques. The region of competence size was also set to 7, as in the previous experiments.

All classifiers were evaluated using the MATLAB PRTOOLS toolbox (Duin, Juszczak, de Ridder,

Paclik, Pekalska & Tax, 2004), and the parameters of the static models were set to the default. 2

Moreover, the proposed method’s configuration used for comparison in this analysis was the

𝐿𝑃𝑚𝑐 with LCA, since it yielded the highest mean accuracy rate in the previous experimental

study.

Table 2.7 shows the mean accuracy rate of the static classification models and the proposed

method, for all datasets from Table 2.1. It can be observed that the proposed configuration

yielded a higher overall accuracy rate than all static models but the Oblique DS ensemble. It

is important to remember, though, that no fine tuning of parameters was performed, and that

stands for all static models as well as the proposed technique. A Wilcoxon signed-rank test was

also performed over the results (row Wilcoxon), and it can be observed that the performance of

the proposed configuration was significantly superior to the MLP and SVM models.

Table 2.8 shows the mean accuracy rate of the four state-of-the-art DES techniques and the

proposed configuration. It can be observed that the proposed technique obtained a greater mean

accuracy rate in comparison with three of the four DES techniques. Moreover, according to a

Wilcoxon signed-rank test with significance level of 𝛼 = 0.05 (Wilcoxon row), the proposed

configuration obtained a significantly superior performance to the F-KNU technique. In

comparison to the remaining DES techniques, the proposed method yielded a statistically similar

performance.

2 Specific details on the hyperparameters:
MLP: Levenberg-Marquardt, hidden layer size: 10, loss: categorical cross entropy

SVM: Gaussian kernel, 𝛾: 1, 𝐶: 1

AdaBoost: Classification and Regression Trees (CART), pool size: 100

RF: Pool size: 50, features per split:
√

of features

Oblique DT: Pool size: 50, features per split:
√

of features

DS techniques: Perceptron/Bagging, pool size: 100, K: 7

57

Table 2.7 Mean and standard deviation of the accuracy rate of MLP, SVM, RF (Breiman,

2001), AdaBoost (Freund & Schapire, 1997), Oblique DT ensemble (Zhang & Suganthan,

2017) and the 𝐿𝑃𝑚𝑐 configuration. The row Wilcoxon shows the result of a Wilcoxon signed

rank test over the mean accuracy rates of the proposed configuration and each of the

remaining methods. The significance level was 𝛼 = 0.05, and the symbols +, − and ∼
indicate if the compared method is significantly superior, inferior or not significantly

different from the proposed method, respectively. Best results are in bold.

Dataset MLP SVM RF AdaBoost Oblique DT ens. LPmc

Adult 82.83 (3.61) 73.99 (2.88) 67.83 (8.34) 88.44 (2.05) 88.76 (1.43) 87.11 (2.40)

Blood 78.11 (1.63) 78.14 (1.08) 72.07 (3.00) 77.29 (1.74) 77.23 (0.95) 76.89 (1.67)

CTG 89.52 (1.46) 84.51 (0.53) 91.20 (0.94) 92.42 (1.69) 93.96 (0.68) 92.22 (1.10)

Faults 68.79 (4.45) 49.59 (0.30) 70.86 (2.35) 54.66 (2.43) 77.04 (2.06) 73.20 (1.22)

German 70.24 (3.08) 70.12 (0.19) 38.28 (6.78) 74.82 (1.94) 75.18 (1.88) 74.08 (1.84)

Glass 61.32 (7.20) 62.83 (3.47) 71.04 (4.59) 48.30 (5.98) 78.58 (3.14) 67.45 (2.73)

Haberman 70.72 (2.33) 74.34 (2.02) 69.41 (4.24) 68.62 (3.48) 72.04 (3.69) 72.11 (2.12)

Heart 75.15 (5.02) 58.82 (1.79) 62.94 (6.45) 84.26 (4.80) 86.32 (3.20) 83.09 (3.32)

Ionosphere 87.84 (4.30) 68.07 (2.24) 93.81 (2.16) 96.36 (1.50) 95.17 (1.32) 92.44 (2.56)

Laryngeal1 79.53 (6.16) 76.23 (3.26) 81.79 (4.55) 81.60 (3.29) 85.94 (2.90) 80.57 (5.87)

Laryngeal3 67.87 (5.36) 68.88 (2.78) 72.53 (2.93) 70.11 (2.88) 73.54 (3.25) 73.48 (2.48)

Liver 68.31 (4.80) 64.53 (3.82) 69.30 (4.52) 69.71 (3.49) 71.05 (4.11) 66.98 (1.79)

Mammographic 84.45 (2.94) 83.46 (2.87) 59.28 (8.08) 80.70 (2.25) 84.57 (1.45) 82.57 (1.77)

Monk2 99.49 (1.06) 95.28 (1.37) 89.54 (2.93) 100.0 (0.00) 96.90 (1.28) 94.07 (0.76)

Phoneme 83.51 (1.07) 87.43 (0.43) 90.34 (0.49) 90.66 (0.55) 89.65 (0.52) 86.62 (0.69)

Pima 74.35 (3.63) 71.46 (2.20) 76.25 (2.67) 75.42 (1.94) 77.21 (1.37) 76.74 (2.24)

Sonar 78.08 (5.49) 81.15 (4.02) 83.75 (5.38) 85.38 (5.16) 83.56 (5.56) 76.35 (3.64)

Vehicle 76.91 (2.38) 63.63 (2.85) 73.77 (2.21) 68.94 (3.30) 74.27 (2.43) 73.51 (1.64)

Vertebral 81.03 (4.15) 85.00 (2.76) 85.45 (3.63) 84.04 (2.48) 85.96 (3.80) 86.47 (2.65)
Weaning 78.42 (5.20) 69.74 (6.80) 86.97 (2.73) 87.76 (1.87) 86.38 (2.06) 85.66 (2.37)

Average 77.82 73.36 75.32 78.97 82.66 80.08

Wilcoxon - - ∼ ∼ + n/a

2.4.3 Computational Complexity

An analysis of the complexity of the proposed method versus the complexity of different DS

techniques is performed next using the Big-O (O) and Big-Omega (Ω) notations (Knuth, 1976)

to represent the worst and best running time scenarios, respectively. This analysis is made taking

into account the dataset size 𝑛, the classifiers pool size 𝑚, the dimensionality of the dataset 𝑑

and the neighborhood size 𝑘 . For simplicity, we consider that all base classifiers are from the

same model (Perceptron), and the cost of training the base classifier is denoted by 𝑙.

58

Table 2.8 Mean and standard deviation of the accuracy rate of the Randomized

Reference Classifier (RRC) (Woloszynski & Kurzynski, 2011), the META-DES

(Cruz et al., 2015a), the META-DES.Oracle (META-DES.O) (Cruz et al., 2017a),

the FIRE-KNORA-U (F-KNU) (Oliveira et al., 2017) and the 𝐿𝑃𝑚𝑐 configuration.

The row Wilcoxon shows the result of a Wilcoxon signed rank test over the mean

accuracy rates of the proposed configuration and each of the remaining methods.

The significance level was 𝛼 = 0.05, and the symbols +, − and ∼ indicate if the

compared method is significantly superior, inferior or not significantly different

from the proposed method, respectively. Best results are in bold.

Dataset RRC META-DES META-DES.O F-KNU LPmc

Adult 88.87 (2.27) 84.45 (6.41) 80.78 (7.33) 84.86 (2.85) 87.11 (2.40)

Blood 76.30 (1.41) 77.98 (1.81) 77.98 (1.20) 64.87 (2.56) 76.89 (1.67)

CTG 89.41 (0.71) 91.49 (0.66) 92.10 (1.12) 88.34 (0.94) 92.22 (1.10)
Faults 70.35 (1.06) 73.58 (1.57) 73.39 (1.61) 67.44 (1.74) 73.20 (1.22)

German 76.42 (2.14) 75.70 (1.69) 74.76 (1.82) 70.30 (1.01) 74.08 (1.84)

Glass 65.19 (4.39) 70.19 (3.44) 69.53 (5.17) 65.47 (3.73) 67.45 (2.73)

Haberman 74.08 (1.71) 73.82 (5.79) 75.26 (2.36) 57.24 (4.91) 72.11 (2.12)

Heart 86.62 (1.42) 86.47 (3.53) 81.10 (4.35) 85.51 (2.35) 83.09 (3.32)

Ionosphere 88.75 (2.24) 88.47 (2.19) 85.17 (5.10) 88.35 (1.91) 92.44 (2.56)
Laryngeal1 85.19 (3.08) 80.28 (4.95) 78.21 (6.14) 80.94 (5.30) 80.57 (5.87)

Laryngeal3 74.27 (3.40) 73.54 (3.31) 73.48 (3.63) 66.24 (4.13) 73.48 (2.48)

Liver 65.81 (4.34) 68.95 (3.25) 67.21 (3.57) 60.58 (3.99) 66.98 (1.79)

Mammographic 85.77 (2.08) 73.13 (15.9) 72.36 (18.2) 78.53 (2.58) 82.57 (1.77)

Monk2 85.23 (2.71) 96.76 (1.22) 96.76 (1.22) 85.32 (2.57) 94.07 (0.76)

Phoneme 74.08 (1.57) 87.49 (0.82) 89.34 (0.69) 73.89 (1.61) 86.62 (0.69)

Pima 76.95 (2.33) 77.40 (1.94) 76.98 (2.49) 67.29 (2.73) 76.74 (2.24)

Sonar 80.96 (2.92) 82.98 (3.38) 83.75 (2.96) 81.35 (2.93) 76.35 (3.64)

Vehicle 75.40 (1.97) 75.94 (2.21) 75.12 (2.11) 76.56 (1.84) 73.51 (1.64)

Vertebral 85.19 (3.01) 86.22 (3.45) 85.77 (2.79) 87.12 (3.98) 86.47 (2.65)

Weaning 81.84 (3.27) 84.28 (3.37) 82.89 (3.28) 81.12 (3.29) 85.66 (2.37)
Average 79.33 80.45 79.59 75.50 80.08

Wilcoxon ∼ ∼ ∼ - n/a

During the offline phase of the proposed method, the hardness value of all instances are estimated,

so the final cost of the proposed method in memorization is equal to applying the k-NN rule over

the training set, O(𝑛2𝑑). For the DS techniques, however, the training step includes generating a

pool of size 𝑚, which yields a cost of O(𝑚𝑙), and pre-processing the base classifiers outputs for

each sample in the training set, thus adding a cost of O(𝑚𝑛). As for the computational cost in

generalization, the analysis is conducted by dividing each algorithm into the DS techniques’s

three steps (Cruz et al., 2018a): region of competence definition, competence estimation and

classification. Then, the computational complexity of each part is obtained individually.

59

For the region of competence definition, the proposed method and all DS methods studied in

this work are based on the k-NN algorithm. Thus, it is of order O(𝑛𝑑). The two versions of

the META-DES framework also require a local competence estimation on the decision space,

resulting in a computational complexity of O(𝑛𝑑 + 𝑛𝑚) for these techniques.

In the competence level estimation, the cost involved to calculate the competence level of 𝑚 base

classifiers is equal to getting their performance on the query sample’s neighbors, O(𝑚𝑘). The

Randomized Reference Classifier (RRC) algorithm, however, uses the whole dataset to calculate

the competence level of the base classifiers, making this step of order O(𝑛𝑚).

In the proposed method, the SGH method is applied in each iteration over a different neighborhood,

resulting in 𝑚′′ classifiers. These classifiers are then evaluated over a neighborhood of size 𝑘 , so,

for each iteration, O(𝑘𝑚′′𝑑). The best classifier produced in each iteration is added to the local

pool, so, for a local pool size of 𝑚′ hyperplanes, the cost involved in this part is O(𝑚′′𝑘𝑚′𝑑).

The classification step using the proposed method is performed by applying the majority voting

rule over the 𝑚′ local classifiers, so the computational cost is of order O(𝑚′𝑑). In contrast,

the DCS techniques use only one classifier for classification, which yields a computational

complexity of O(𝑑). The DES techniques, however, can select an arbitrary number of base

classifiers, so in the worst case scenario, when all classifiers in the pool are selected, it has a

complexity of order O(𝑚𝑑).

This analysis explains why the proposed method was much faster in generalization than the DS

techniques using a Bagging-generated pool. In the best case scenario, when the sample is located

in an easy region, no local pool is generated, yielding a cost equal to the k-NN classifier’s, Ω(𝑛𝑑).

In the worst case, the computational cost is the sum of the three steps: O(𝑛𝑑 + 𝑚′′𝑑𝑘𝑚′ + 𝑚′𝑑).

However, DCS and DES techniques always require the computation of the three steps regardless

of whether or not the query sample is located in an easy region. For this reason, the average

running time of the proposed method was three times faster than the DCS techniques using

Bagging-generated pool, eight times faster than the KNORA-U and also around 14 times faster

than the RRC and META-DES techniques. However, the DCS techniques using the GP were 10

60

times faster than the proposed method, probably due to its reduced pool size (3.80 classifiers, on

average).

2.5 Conclusion

In (Souza et al., 2017), it was shown that the DCS techniques had difficulty in selecting a

competent classifier even though the presence of such a classifier in the pool was assured. The

generation method used in that work guaranteed an Oracle accuracy of 100%. It was concluded

that the Oracle model, being performed globally, did not help in the search for a good pool

of classifiers for DCS techniques, because the latter use only local data to select a competent

classifier for any given instance.

In this work, an instance hardness analysis was performed in order to draw a correlation between

hardness measures and the error rates of DCS techniques. Based on that relationship, an online

pool generation scheme was proposed with the purpose of increasing the accuracy rates of

the instances the DCS techniques had difficulty in labelling. The proposed technique involved

generating subpools for each identified difficult region in the feature space, so that another, more

locally accurate pool could be used for hard instances, in hopes that, by fully covering these

regions with a locally specialist pool, it would be easier for the DS techniques to select the best

classifiers for these samples. The instances deemed “easy", however, would be classified using a

simple k-NN rule.

Experiments were performed over 20 public datasets, and two configurations of the proposed

scheme were analyzed. It was shown that the use of local pools increased the hit rate of the

global pool (GP) for most datasets, suggesting the use of such pools indeed helps the DS in

selecting the most competent ones for a given query instance. The overall performances of

both configurations were compared with a pool of 100 Perceptrons generated using Bagging,

with an online pruned pool of originally 100 Bagging-generated Perceptrons and with the

GP. It was observed that a combination of both proposed configurations yields a significantly

increase in accuracy rate compared to the other tested methods for the three evaluated DCS

61

techniques, suggesting that, not only do the DCS techniques select the best classifier more

frequently, but also the recognition rates of the DCS techniques fairly increase when using a

local perspective during generation. The choice of which proposed configuration to use is based

on the characteristics of each problem, and this selection is necessary due to a limitation in

the SGH method. Furthermore, the proposed technique was compared to nine state-of-the-art

classification models, including five static and four DES techniques, and it yielded a significant

superior performance to three of the models and a statistically similar performance to five of

them.

Improvements to the proposed technique may involve developing an automatic scheme for

defining the input parameters and an adaptation for better dealing with multi-class problems.

Moreover, the impacts of data preprocessing on the performance of DS techniques over

imbalanced problems have been analyzed in (Roy, Cruz, Sabourin & Cavalcanti, 2018). Thus, a

study on the robustness of the proposed method to class imbalance and the suitability of using

data preprocessing techniques for imbalance learning may also be performed in future works.

In the next chapter, a novel version of the OLP, the OLP++ technique, is proposed to address the

locality definition in high dimensional spaces for the production and selection of local experts in

the presence of class overlap.

CHAPTER 3

OLP++: AN ONLINE LOCAL CLASSIFIER FOR HIGH DIMENSIONAL DATA

Mariana A. Souza1 , Robert Sabourin1 , George D. C. Cavalcanti2 , Rafael M. O. Cruz1

1 Laboratoire d’Imagerie, de Vision et d’Intelligence Artificielle (LIVIA),

École de Technologie Supérieure,

1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3

2 Centro de Informática,

Universidade Federal de Pernambuco,

1235 Av. Prof. Moraes Rego, Recife, Pernambuco, Brazil 50670-901

Article published in Elsevier’s Information Fusion Journal, Volume 90, February 2023

Abstract

Ensemble diversity is an important characteristic of Multiple Classifier Systems (MCS), which

aim at improving the overall performance of a classification system by combining the response

of several models. While diversity may be introduced through various manipulations at the data

level and the model level, some MCSs incorporate local information in order to increase it and/or

take advantage of it, based on the idea that the different classifiers in the ensemble may have

expertise in distinct areas of the feature space. Following a similar reasoning, we introduced in a

previous work an ensemble method which produces in test time a few experts in the local region

where each given query sample is located. These local experts, which are generated with slightly

differing views of the target area, are then used to label the corresponding unknown instance.

While the framework was shown to perform well especially over imbalanced problems, the

locality definition in the method is based on the nearest neighbors rule and Euclidian distance,

as is the case of various local-based ensembles, which may suffer from the effects of the curse of

dimensionality over high dimensional problems. Thus, in this work, we propose a local ensemble

method in which we leverage the data partitions given by decision trees for locality definition.

More specifically, the partitions defined at different levels of the decision path that a given query

instance traverses in the tree(s) are used as the regions over which the local experts are produced.

64

By using different node levels from the path, each classifier in the local pool has a moderately

distinct view of the target region without resorting to a dissimilarity metric, which might be

susceptible to high dimensional spaces. Experimental results over 39 high dimensional problems

showed that the proposed approach was significantly superior to our previous, distance-based

framework in balanced accuracy rate. Compared to other six local-based ensemble methods,

including dynamic selection and weighting schemes, the proposed method achieved competitive

results, outperforming the random forest baseline and two state-of-the-art dynamic ensemble

selection techniques. 3

3.1 Introduction

Multiple Classifier Systems (MCS) combine several base-classifiers with the purpose of

leveraging their complementarity in a way that the final response of the system outperforms each

individual model in the ensemble (Kittler et al., 1998). This view is intrinsically associated with

the concept of ensemble diversity, a desirable characteristic which may be intuitively thought

as how distinctly the components of the ensemble respond to samples in different areas of

the feature space (Kuncheva & Whitaker, 2003). Diversity may be achieved in multiple ways

during the ensemble generation process (Duin, 2002; Kuncheva, 2014), including using different

initial model configurations, hyperparameter settings, architectures, learning algorithms, sets of

samples and/or sets of features. Another important aspect to ensemble methods design is the

output aggregation step, which produces the final response of the system. Aggregation may be

done using a fixed combination rule, such as majority voting over the classifiers’ output labels or

average over the classifiers’ output probabilities (Kittler et al., 1998), or using a trained combiner

that is adapted to the problem (Duin, 2002), as in the mixture of experts (ME) paradigm (Jacobs

et al., 1991). Furthermore, the aggregation approaches may regard the outputs of all classifiers

in the ensemble as equally important, or they may make some distinctions among their responses,

for instance in the form of a weighting scheme, assuming their diversity entails different levels

of confidence in them (Duin, 2002).

3 Code available at: github.com/marianaasouza/olp_plusplus.

65

Some approaches do not take into account the different geometrical areas of the feature space

when building the MCS. For instance, the classical AdaBoost (Freund & Schapire, 1997)

ensemble produces the classifiers iteratively encouraging the specialization of the following

models on the samples the previously generated ones misclassify. While the models’ distinct

strengths are considered in the AdaBoost aggregation rule, they are not associated with any

defined geometrical area and thus the behavior of the MCS in generalization does not change

according to where a given unknown sample is located. Local approaches, on the other hand,

assume there are several regions of interest in the feature space (Bischl, Schiffner & Weihs, 2013),

and so one can encourage in generation and/or exploit in aggregation the classifiers’ distinct

strengths over each different region. That is the reasoning behind several local ensemble methods,

including Dynamic Selection (DS) techniques, dynamic weighting schemes and many hybrid

approaches, which adapt the classifiers’ importances for each test sample at hand according to

their perceived expertise around it (Armano & Tamponi, 2018; Britto et al., 2014; Cruz et al.,

2018a). However, in order to incorporate local information into the MCS, numerous ensemble

methods apply a (dis)similarity metric, usually the Euclidean distance, on the feature space,

which may introduce some hindering effects to the system when dealing with high dimensional

data, as part of the curse of dimensionality (Bellman, 2015).

In a previous work, we proposed a local-based dynamic approach to ensemble generation and

selection called the Online Local Pool (OLP) framework (Souza et al., 2019b). In the OLP,

several local experts are sequentially produced and singled out during generalization in the

area surrounding each query instance, with decreasing locality, if the instance is located near

the class borders. Otherwise, the K-Nearest Neighbors (KNN) is used to label the unknown

sample. That way, the OLP method attempts to guarantee the presence of highly specialized

classifiers over each region of interest, if it presents any label ambiguity. The OLP technique

yielded state-of-the-art performance compared to other local-based dynamic approaches and

was shown to work well specially in class-imbalanced scenarios (Souza et al., 2019a). However,

the region definition performed in both the detection of class overlap and the production of the

local pool are based on the nearest neighbors rule and the Euclidean distance which, similarly to

66

other local ensemble approaches, may present the effects of the curse of dimensionality on high

dimensional problems.

Thus, in this work, we propose a local ensemble method based on the OLP framework that is

better suited for dealing with high dimensional data. Instead of a distance-based region definition

procedure, we leverage the data partitions defined at several nodes, including but not restricted to

the leaves, of one or more decision trees fitted to the data in order to define the regions of interest

in the feature space. So, for each query instance, we use the region definitions from a number

of consecutive nodes within its decision path to fit the local pool of linear classifiers used to

produce its output label, unless the path contains a pure leaf, in which case the leaf’s local rule is

used. Hence, the border detection and region definition in the proposed technique are achieved

through the recursive partitioning of the feature space given by the tree-based algorithms, which

may be more adequate for high dimensional spaces compared to the distance-based alternative.

Moreover, using the regions defined at different levels of the trees iteratively reduces the locality

and aims at injecting diversity between the classifiers while attempting to preserve some degree

of consensus in the pool.

This work is organized as follows. In Section 3.2 we present the motivation for this work,

with the help of an illustrative example. In Section 3.3 we introduce the proposed method in

detail, including the pseudo-algorithm and a toy example. We discuss the related work found in

the literature in Section 3.4. The experimental analysis is conducted in Section 3.5, and our

concluding remarks are presented in Section 3.6.

3.2 Problem statement

We start by illustrating the possible issues associated with the local region definition process

given by the nearest neighbors rule using the Euclidean distance in high dimensional spaces,

which motivated the proposed approach based on the OLP framework for high dimensional data.

Figure 3.1 shows a two-class balanced toy problem of 300 points, 80% of which set apart for

training and the remaining for test, in a two-dimensional space. Both of the problem’s features

67

are informative. The colors orange and green represent the two classes in the problem, and all

training instances are depicted in round markers. The diamond shaped marker indicates a test

instance from the green class.

Each grey area in Figure 3.1 indicates the local target region defined by (a) the KNN classifier,

(b) the decision tree classifier, and (c-d) two decision trees with random feature sampling at

each split, as in the Random Forest algorithm, all fitted over the training set. In the case of the

trees, we show only the region defined on the leaf level. Moreover, the training instances that

compose the local target region are highlighted in red. To compare the regions formed by these

four classifiers, we set the minimum number of samples per leaf of all the trees to 𝐾 = 7, which

is the number of neighbors (hyperparameter) of the KNN.

a) b) c) d)

Figure 3.1 Two class two-dimensional toy problem. The training instances are shown in

round markers, while the test sample is in a diamond shape. The region in grey was

obtained using (a) the KNN classifier, (b) a Decision Tree, and (c-d) a Decision Tree with

random feature sampling at each split (similar to the Random Forest), all fitted to the

training set. The instances that belong to the target region in grey are shown in larger

markers and highlighted in red.

68

In the 2-dimensional (2D) space, we can first observe the well known geometrical differences

between the defined regions. While the KNN with Euclidean distance forms a (hyper-)sphere

around the query, the trees partition the space into (hyper-)rectangular regions. The KNN rule

also defines fixed-size regions, while the recursive partitions obtained from the trees can contain

a variable number of instances, as we can see in Figure 3.1. Moreover, the feature sampling

mechanism from the trees used in Figure 3.1(c-d) can yield different regions definitions, which

may be useful for providing a distinct view of the target area.

Now we take the toy problem and generate a similar one, taking all the points and the two

features, and augment the feature space by adding six redundant features (as random linear

combinations of the original two informative features) and two random features (as random

noise), yielding a 10-dimensional (10D) space. We use the two (original) features, which are

also the only informative features in this 10D problem, to plot the data in Figure 3.2.

We fit the same four classifiers over the new training data, and observe the region definition

yielded by each one of them. Because the 10-dimensional data is projected onto the same

two informative features from the previous 2D problem, the points are located in the same

places as in Figure 3.1, though now the region definitions can not be well depicted as in the 2D

case. However, we still highlight in red the samples that belong to the target regions defined

in the 10D space. It can be observed that the increase in dimensionality appears to have had a

negative impact on the KNN’s region definition, with most of the unknown instance’s neighbors

now being from an area where the opposite class is located, while the recursive partitioning

performed by the trees yielded a more adequate target region for the query.

3.3 Proposed method

With that issue in mind, we now present the proposed method based on the OLP framework for

high dimensional data. Instead of relying on the nearest neighbors rule, which may suffer from

the effects of the curse of dimensionality, we propose in this work to leverage the data partitions

69

a) b) c) d)

Figure 3.2 Two class 10-dimensional toy problem, projected onto its only two fully

informative features. The training instances are shown in round markers, while the test

sample is in a diamond shape. The target regions which contain the instances highlighted in

red were obtained using (a) the KNN classifier, (b) a Decision Tree, and (c-d) a Decision

Tree with random feature sampling at each split (similar to the Random Forest), all fitted to

the 10D training set.

yielded by tree-based algorithms to define the regions of interest used for generating diverse

local experts.

Table 3.1 Notation used in the proposed method’s description.

Symbol Meaning

T = {(x𝑛, 𝑦𝑛) |𝑛 ∈ N, 1 ≤ 𝑛 ≤ 𝑁} Training set

A = {𝐴 𝑗 | 𝑗 ∈ N, 1 ≤ 𝑗 ≤ 𝑇} Set of decision trees

𝐿 Number of tree levels, or local regions

𝑘 Minimum leaf size

x𝑞 Feature vector of query instance

𝑦𝑞 , 𝑦̂𝑞 True and predicted labels of query instance

𝜂𝑞, 𝑗 = [𝜈1, 𝜈2, ..., 𝜈ℓ] Path/ordered list of nodes that x𝑞 traverses in 𝐴 𝑗

𝜃𝑙𝑞, 𝑗 ⊂ 𝜃𝑙−1
𝑞, 𝑗 ⊂ ... ⊂ 𝜃1

𝑞, 𝑗 = T Data partition at the 𝑙-th node in path 𝜂𝑞, 𝑗
𝐿𝑃 Local pool

𝑐 Base-classifier

70

Table 3.1 indicates the notation used in this work. An overview of the offline and online phases of

the proposed technique is depicted in Figure 3.3. The offline phase is responsible for extracting

information regarding the local overlap of the data. To that end, we fit a predefined number 𝑇 of

trees over the training set T , as shown in Figure 3.3a, and use their data partitions to define the

local regions in the feature space and identify borderline samples. Another hyperparameter of

note in this phase is the minimum number of training instances within each leaf node. Since we

intend to use the trees’ nodes for local region definition, we set a minimum leaf size of 𝑘 in each

tree in order to avoid very small partitions.

a)

b)

Figure 3.3 Overview of the (a) offline and (b) online phases of the proposed method. T
refers to the training set and 𝐴𝑗 ∈ A refers to one tree from a set of decision trees fitted to

the data. 𝑇 , 𝑘 and 𝐿 are hyperparameters of the technique which indicate the number of

trees, minimum region size and number of regions/levels per tree, respectively. x𝑞 is an

unknown sample whose decision path through 𝐴𝑗 leads to the data partition 𝜃ℓ
𝑞, 𝑗 at the leaf

node. If the partition is pure the system predicts the output 𝑦̂𝑞 based on the local class

distribution, otherwise the local pool 𝐿𝑃 is generated to obtain the prediction 𝑦̂𝑞.

71

Figure 3.3b shows the general procedure of labelling a given unknown sample x𝑞, considering

only one tree 𝐴𝑗 . For each query instance, a region 𝜃𝑞 around it is defined and analyzed in

search of local class overlap. In the proposed technique, 𝜃ℓ
𝑞, 𝑗 is the partition at the last position,

or leaf node, of the decision path 𝜂𝑞, 𝑗 of x𝑞 in 𝐴𝑗 . Figure 3.4 provides a toy example of the

multiple data partitions defined at the nodes within the decision path that an unknown sample

traverses through a tree. If the leaf partition is pure, the sample is labelled according to the local

rule. If not, however, we generate a set of linear classifiers to label the instance using 𝐿 data

partitions defined in the decision path, backtracking from the leaf node. The local pool (𝐿𝑃) is

then used in a majority voting scheme to produce the final label of the sample. With more than

one tree (𝑇 > 1), all generated classifiers and/or votes from the local rules are taken into account

at the aggregation step for outputting the predicted label 𝑦̂𝑞. The offline and online phases are

explained in more detail next.

3.3.1 Offline phase

Algorithm 3.1 describes the offline phase of the technique, responsible for producing the tree

structures which are used for the region definition. The inputs to the procedure are the training

set T , number of decision trees 𝑇 and minimum leaf size 𝑘 , and it returns the set of trees

A = {𝐴1, 𝐴2, ..., 𝐴𝑇 } fitted to the training data. From lines 2 to 4, we train 𝑇 trees over T

with 𝑘 as the minimum number of samples per leaf. If more than one tree is being generated,

we train the 𝑇 trees with random feature sampling at each node, akin to the Random Forest

(RF) ensemble, in order to obtain different feature space partitions. This, together with the

use of multiple partitions within the same decision path, introduces diversity into the region

definition step. Since we mainly use the trees’ partitions to produce the local linear classifiers,

we consider these two sources of diversity to be enough for the region definition within the

proposed technique and thus do not perform sample bootstrapping, as in the original RF.

72

a) b)

c) d)

Figure 3.4 Toy example of the data partitions, within the dashed lines, from the decision

path a given query sample (in a diamond shape) traverses in a tree 𝐴𝑗 . (a) 𝜃1
𝑞, 𝑗 = T , from

the (root) node in 𝜂𝑞, 𝑗 [1], (b) 𝜃2
𝑞, 𝑗 , from the node in 𝜂𝑞, 𝑗 [2], (c) 𝜃3

𝑞, 𝑗 , from the node in

𝜂𝑞, 𝑗 [3], and (d) 𝜃ℓ=4
𝑞, 𝑗 , from the (leaf) node in the last position 𝜂𝑞, 𝑗 [4].

Algorithm 3.1 Online Local Pool++ (OLP++) technique: offline phase.

input :T , 𝑇, 𝑘 ; ⊲ Training dataset, number of trees and min. leaf size

output :A = {𝐴 𝑗 |1 ≤ 𝑗 ≤ 𝑇} ; ⊲ Set of 𝑇 trees

1 A ← {} for 𝑗 in {1, 2, ..., 𝑇} do
2 𝐴 𝑗 ← 𝑓 𝑖𝑡_𝑡𝑟𝑒𝑒(𝑘, T) ; ⊲ Fit tree over training set

3 end for
4 return A

73

3.3.2 Online phase

Algorithm 3.2 describes the online phase of the technique. It receives as input the query sample

x𝑞, the set of trees A and the number of levels 𝐿, and it returns the predicted label 𝑦̂𝑞 of x𝑞. The

local pool used to label the query sample is initialized empty (Line 1), as well as the predicted

labels that will be accounted for in the final voting scheme (Line 2). Then, each tree in A is

visited to obtain the neighborhood definitions and the label votes in the loop from Line 3 to Line

17. For each tree 𝐴𝑗 , we first get the sequence of nodes 𝜂𝑞, 𝑗 (or decision path) the query takes

from the root to the corresponding leaf (Line 4). We then obtain the position ℓ of the leaf node

in 𝜂𝑞, 𝑗 , which should be its last element. Afterwards, the set of training samples 𝜃ℓ
𝑞, 𝑗 that fall at

the leaf node (𝜂𝑞, 𝑗 [ℓ]) of the decision path is obtained.

Algorithm 3.2 Online Local Pool++ (OLP++) technique: online phase.

input :xq,A, 𝐿 ; ⊲ Query sample, tree ensemble, and number of levels

output : 𝑦̂𝑞 ; ⊲ Label prediction for xq
1 𝐿𝑃 ← {} ; ⊲ Local pool

2 𝑉𝑜𝑡𝑒𝑠 ← {} ; ⊲ Label votes

3 for every 𝐴 𝑗 in A do
4 𝜂𝑞, 𝑗 ← 𝑔𝑒𝑡_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑝𝑎𝑡ℎ(xq, 𝐴 𝑗) ; ⊲ Obtain the list of nodes xq traverses in 𝐴 𝑗

5 ℓ ← 𝑔𝑒𝑡_𝑙𝑒𝑛𝑔𝑡ℎ(𝜂𝑞, 𝑗) ; ⊲ Position of the leaf node in 𝜂𝑞, 𝑗
6 𝜃ℓ𝑞, 𝑗 ← 𝑔𝑒𝑡_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_ 𝑓 𝑟𝑜𝑚_𝑛𝑜𝑑𝑒(𝜂𝑞, 𝑗 [ℓ]) ; ⊲ Leaf node partition

7 for every 𝑖 in {1, 2, ..., 𝐿} do
8 if {∃x𝑛, x𝑚 ∈ 𝜃ℓ𝑞, 𝑗 |𝑦𝑛 ≠ 𝑦𝑚} ; ⊲ Leaf is non-homogeneous

9 then
10 𝑙 ← ℓ − 𝑖 + 1 ; ⊲ Position in 𝜂𝑞, 𝑗 of the node 𝑙 − 1 levels above the leaf

11 𝜃𝑙𝑞, 𝑗 ← 𝑔𝑒𝑡_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_ 𝑓 𝑟𝑜𝑚_𝑛𝑜𝑑𝑒(𝜂𝑞, 𝑗 [𝑙]) ; ⊲ Data partition that falls into the 𝑙-th node

in 𝜂𝑞, 𝑗
12 𝑐 ← 𝑆𝐺𝐻 (𝜃𝑙𝑞, 𝑗) ; ⊲ Generate a hyperplane in local partition

13 𝐿𝑃 ← 𝐿𝑃 ∪ 𝑐 ; ⊲ Add classifier to the local pool

14 𝑉𝑜𝑡𝑒𝑠 ← 𝑉𝑜𝑡𝑒𝑠 ∪ 𝑐(x𝑞) ; ⊲ Add classifier’s prediction to votes

15 else
16 𝑉𝑜𝑡𝑒𝑠 ← 𝑉𝑜𝑡𝑒𝑠 ∪ 𝑢𝑛𝑖𝑞𝑢𝑒({𝑦𝑛 |x𝑛 ∈ 𝜃ℓ𝑞, 𝑗 }) ; ⊲ Add label present in leaf partition to votes

17 end if
18 end for
19 end for
20 𝑦̂𝑞 ← 𝑚𝑜𝑑𝑒(𝑉𝑜𝑡𝑒𝑠) ; ⊲ Majority voting

21 return 𝑦̂𝑞

74

From Line 7 to Line 18 we follow the decision path level by level, from the leaf node, at position

ℓ, until the note at position ℓ − 𝐿 + 1 in 𝜂𝑞, 𝑗 . If the data partition at the leaf level 𝜃ℓ
𝑞, 𝑗 is pure, the

classifier generation is skipped and all the 𝐿 votes from the tree goes to the label present in the

leaf (Line 15). If not, we obtain the position 𝑙 in 𝜂𝑞, 𝑗 of the node to be used for generating a

classifier from the local pool. The position 𝑙 is updated in each iteration, backtracking in the

decision path to use the different region definitions from the nodes in 𝜂𝑞, 𝑗 . Then, the region 𝜃𝑙
𝑞, 𝑗 ,

or data partition, defined at the 𝑙-th node in 𝜂𝑞, 𝑗 is obtained in Line 10. The Self-generating

hyperplanes (SGH) method (Souza et al., 2017) (Line 11) is then used to produce a linear

classifier over the region 𝜃𝑙
𝑞, 𝑗 . The SGH is a generation method that produces a set of two-class

hyperplanes iteratively so that, for each input training sample, at least one classifier in the final

pool is able to correctly label it. We chose the SGH method to generate the classifiers as it

produces weakly fitted linear rules in very few iterations, which provides an advantage in terms

of time while possibly reducing the chance of overfitting, given the small number of instances

in the local region. A more in-depth introduction to the SGH method can be found in the

supplementary material. We take the first hyperplane 𝑐 the SGH generates and add it to the local

pool 𝐿𝑃 (Line 12). The predicted label 𝑦̂ of x𝑞 given by 𝑐 is added to the voting scores in Line

13. Lastly, in lines 19-20, the most frequent label within the predicted labels is returned as the

output class of the system.

3.3.3 Illustrative example

To better visualize the proposed technique we use a two-class 2D synthetic dataset, the P2

problem (Valentini, 2005), whose training set with 1600 samples, 800 from each class, is shown

in Figure 3.5a. The theoretical border of the problem is depicted with the dashed lines. Moreover,

a small percentage (2%) of label noise was added to the training set.

Figure 3.5 2D problem used to illustrate the proposed method. (a) shows the training set,

with added noise, and (b) the same set with the decision tree’s classification border in

purple. The theoretical class borders are dashed.

75

To simulate the proposed method’s steps, we use a single decision tree (𝑇 = 1), 𝑘 = 7 and 𝐿 = 3.

So, in the offline phase, the training set from Figure 3.5a is used as input to a decision tree,

which yields the class borders shown in purple in Figure 3.5b.

Table 3.2 Description of the decision paths obtained for the sample depicted in (a) Figure

3.6b and (b) Figure 3.6c

(a)

Decision path : x𝑞 = [0.0683, 0.0960]

Node 0 : (Feature 2 ≤ 0.1826)

Node 1 : (Feature 1 ≤ 0.8429)

Node 2 : (Feature 1 ≤ 0.2827)

Node 3 : (Feature 2 ≤ 0.1246)

Node 4 : (Feature 2 ≤ 0.1079)

(b)

Decision path : x𝑞 = [0.3021, 0.5086]

Node 0 : (Feature 2 > 0.1826)

Node 24 : (Feature 1 ≤ 0.3244)

Node 25 : (Feature 1 > 0.0539)

Node 37 : (Feature 2 > 0.5027)

Node 47 : (Feature 2 ≤ 0.7947)

Node 48 : (Feature 1 > 0.1727)

Node 56 : (Feature 1 > 0.2291)

Node 60 : (Feature 2 ≤ 0.693)

Node 61 : (Feature 1 > 0.2600)

Node 63 : (Feature 2 ≤ 0.5772)

In the online phase, we follow the two query samples shown in Figure 3.6a, depicted in a

diamond shape with black contour and shown individually in Figure 3.6b-c. The coordinates

and the decision paths each of these samples take within the tree are detailed in Table 3.2. The

query from Figure 3.6b belongs to the orange class, while the query from Figure 3.6c belongs to

the green class. The training samples that are contained in the leaf node where each unknown

instance falls is highlighted in red, with the local region itself shown in light grey. As we can

see, the query in Figure 3.6b (from the orange class) falls into a pure leaf, thus, all 𝐿 = 3 votes

from this tree goes towards the orange class. Since there is only one tree in this example, the

output label of the system for that sample is the orange class as well. This behavior would be

similar in the OLP, whose region defined with the KNN, shown in dark grey in Figure 3.6b,

would also only contain samples from the orange class, though in much smaller numbers. The

query in Figure 3.6c, however, falls into a non-homogeneous partition containing 6 samples

from the orange class and only one sample from the green class, which is the correct label of

this instance. Thus, the local pool will be generated to label it, leveraging the partitions already

76

a)

b) c)

Figure 3.6 Two examples of query instances, depicted in a diamond shape and highlighted

in black. The training instances in larger markers and highlighted in red belong to the

rectangular partitions defined at the leaf node where the unknown samples fall, shown in

light grey. (b) shows a query sample from the orange class in a homogeneous partition,

while (c) shows a query sample from the green class in a heterogeneous partition. The

circular regions depicted in dark grey in (b-c) show the region definition that would be

obtained for the same instances using the KNN, with 𝐾 = 7.

77

defined in the decision tree starting from the leaf level. The region definition given by the KNN,

shown in dark grey, contains the same amount of instances in this case, though with a different

class distribution.

Figure 3.7 shows the three classifiers from the local pool (𝐿𝑃) that were generated to label the

query instance from Figure 3.6b. The arrows indicate where the classifiers label as the green

class. First, the data partition defined at the first visited node, the leaf node, is shown in red

over the local region in light grey in Figure 3.7a. These data points are used to generate a linear

classifier using the SGH method, depicted in Figure 3.7a, which is added to the local pool. We

can see that this first hyperplane is still unable to correctly classify the query.

In the second iteration, the samples belonging to the data partition defined at the level immediately

above the leaf level, according to the decision path from Table 3.2b, are used as local region

as input to the SGH method. These samples are highlighted in red in Figure 3.7b, and the

region defined at that level is shown in light grey. We can see that the green class is in a greater

numerical disadvantage in this partition, though the locality reduction seem to have provided

more context w.r.t. the orange class local distribution. We can also observe that the region that

would be used in the original OLP, shown in dark grey, is already much smaller compared to the

one in the proposed adaptation. The first hyperplane the SGH produces in the rectangular region

is shown in Figure 3.7b, now able to label the query correctly.

At the last visited level, which corresponds to two levels above the leaf level in the decision path

(Table 3.2b), the partition defined at that node is shown in Figure 3.7c. We can see that the green

class is more well-represented at the local border. This neighborhood is used as input to the

SGH method, and the produced classifier, shown in Figure 3.7c, is also able to classify the query

instance correctly. The linear classifier is then added to the local pool, and in the aggregation

step, the system outputs the green class with two votes to one, which is the sample’s correct

label.

It should be noted that our goal with this example is to help visualize the proposed technique,

which is based on the OLP but focused on dealing with high dimensional data, and illustrate its

78

a) b)

c)

Figure 3.7 Demonstration of the locality reduction procedure and resulting local linear

rules given by the local pool obtained for the query sample from Figure 3.6c. The instances

in larger markers and highlighted in red belong to the partitions defined at the (a) leaf level,

(b) level immediately above the leaf level, and (c) the level above that in the decision path

taken by the query sample in the fitted tree. The regions used for the local pool generation

within the proposed adaptation are shown in light grey, while the regions obtained by the

KNN within the original OLP are shown in dark grey. The depicted hyperplanes form the

local pool and were generated using the SGH method over the rectangular region. The

arrows indicate the area of the feature space where the classifiers label as the green class.

79

procedures. An arguably simpler classification rule, as well as the OLP itself, would probably

be able to label correctly the samples shown in Figure 3.6 in this two-dimensional feature space.

3.4 Related work

MCSs are usually divided into three consecutive phases (Cruz et al., 2018a): generation, in

which the pool of base-classifiers is produced, selection, an optional step in which a subset

of the pool is singled out to perform the classification task, and aggregation, in which the

responses of the (selected) ensemble are joined to obtain the final output. Exploiting the local

expertise of the base-classifiers in an ensemble is a quite common approach in MCSs, often

based on the idea that the models’ distinct behaviors are associated with their competence

over certain areas of the feature space. Thus, the way the system responds in generalization

varies according to the region a given query instance is located, which often leads to their

characterization as dynamic techniques. In fact, local ensemble methods span several subareas of

the MCS literature, including Mixture of Experts (ME) (Jacobs et al., 1991; Armano & Hatami,

2010b), Adaptive Splitting and Selection (AdaSS) (Jackowski & Wozniak, 2009; Lopez-Garcia

et al., 2019) and classical Dynamic Selection (DS) techniques (Kuncheva, 2000; Woods et al.,

1997), as well as some hybrid approaches, each of which with a distinct way of incorporating

the local information into the system. The ME and AdaSS domains are both based on the

divide and conquer principle, which attempts to simplify a complex problem via splitting the

feature space into easier subproblems. In classical ME, which is defined for neural network

ensembles only, the base-classifiers and the gating network are trained together in a way that

encourages the localization of the models (Jacobs et al., 1991), while in the AdaSS, the data

partitions and their corresponding assignment of base-classifiers are optimized jointly via an

evolutionary algorithm (Jackowski & Wozniak, 2009). On the other hand, while classical DS

techniques and some hybrid approaches may be based on the divide and conquer idea (Zhu et al.,

2019; Armano & Tamponi, 2018; Kuncheva, 2000), the feature space partitioning is performed

decoupled from the other steps such as pool generation and selection, in the sense that one can

obtain such region definitions individually without changing the final ensemble structure. As

80

the proposed method fits within the latter category, we focus on these techniques in this work

while referring the reader to (Masoudnia & Ebrahimpour, 2014; Jackowski & Wozniak, 2009)

for more context on the ME and AdaSS approaches.

While the way the local information is embedded into the MCS varies greatly among these

techniques, they usually require the definition of one or several regions of interest, which can be

done by means of roughly four approaches: clustering (Verma & Rahman, 2011; Soares et al.,

2006; Kuncheva, 2000), nearest neighbors rule (Souza et al., 2019b; Woods et al., 1997; Ko

et al., 2007), potential function model (Armano & Tamponi, 2018; Woloszynski & Kurzynski,

2011), and recursive partitioning (Zhu et al., 2019; Biedrzycki & Burduk, 2020). With exception

of the latter, the use of a dissimilarity metric, usually the Euclidean distance, is quite common

in the region definition process, though it is not always applied on the original feature space

(Cavalin et al., 2012). As local methods, the region definition process has a considerable impact

on the response of these MCS (Cruz et al., 2018b; Soares et al., 2006). However, even though

the negative effects of high dimensionality over local-based methods has often been observed

in a wide variety of areas and applications, for instance in recent works on local explanation

methods over industrial data (Fries & Rydén, 2022) and disease diagnosis over biomedical

data (Yan, Li, Ma, Liao, Luo, Wang & Luo, 2022), the possible degradation associated with

the region definition step of local ensemble methods on high dimensional spaces has not been

investigated yet in this literature.

Another distinction can be done in terms of when the local information is taken into account,

which can happen in each one (or several) of the MCS phases. Ensembles based on the

divide and conquer principle tend to integrate the region definition in the generation phase

(Verma & Rahman, 2011; Armano & Tamponi, 2018; Zhu et al., 2019), so that each member of

the pool can specialize over a part of the feature space, therefore encouraging ensemble diversity

through localization. They also usually apply a dynamic selection or aggregation rule in order to

assign a higher importance to the base-classifiers that were encouraged to learn over a given area.

In the Space Partition Tree (SPT) framework, proposed in (Zhu et al., 2019) for dealing with

imbalanced problems, the feature space is recursively partitioned on the axis of the maximum

81

within-class scatter of the majority class until one of the stopping criteria is met. Then, a

cost-sensitive Support Vector Machine (SVM) is trained over each region defined at the leaves

of the tree-based structure, and for a given query instance the single SVM assigned to the leaf it

falls in is used to classify it. The Forest of Local Trees ensemble (FLT) (Armano & Tamponi,

2018) localizes the base-classifiers by sequentially selecting random prototypes as centroids to

the defined regions, in such a way that the probability of selecting a given instance as centroid is

updated according to its distance to the currently selected centroid. Each centroid is then used

to define a distance-based weighting function for the training samples during the fitting of the

model associated with that centroid. So, by encouraging the distance between the centroids, each

classifier specializes in different but overlapping areas of the feature space. In generalization, the

classifiers’ responses are weighted according to the distance between their designated centroid

and the test sample.

Another related work of note, which uses the local information at the generation step and is

reminiscent of the proposed method, is (Do, 2015), in which the author proposes to improve the

local rules defined at the leaves of a RF ensemble by fitting a linear SVM on them and using

the linear rules instead. The OLP (Souza et al., 2019b) also integrates the local information in

the generation phase, since all classifiers are produced around the target area, defined using the

nearest neighbors rule applied to the query sample with different region sizes. However, as the

entire pool is meant to contain only local experts on the region, the consensus is expected to be

quite high and so the aggregation is performed using a simple majority voting rule.

If taking into account the local information at the selection phase, dynamic selection techniques

assume the base-classifiers in the ensemble are local experts in different areas of the feature

space, so they attempt to identify which ones to use in each defined region by estimating their

competence there. Each DS technique defines competence according to one or multiple criteria,

which may include local accuracy (Woods et al., 1997; Ko et al., 2007), ensemble diversity

(Soares et al., 2006), classifier behavior (Giacinto et al., 2000; Cavalin et al., 2012), among

others. After assessing the competences of the classifiers in the target region, a subset of the

whole ensemble is used to label the given query instance according to a defined aggregation

82

rule. Distance-based dynamic weighting approaches are often applied at the aggregation phase

in order to assign different importance levels to the base-classifiers, as in the FLT. A different

local aggregation approach was proposed in (Biedrzycki & Burduk, 2020) for an ensemble of

decision trees trained over random disjoint samples of the training data. After a feature selection

step, the trees are fit and the space is partitioned into regions obtained from each split of every

tree in the ensemble. A local rule is then defined for each subspace based on the trees’ decisions

on both that subspace and its neighboring subspaces, weighted by the distances between the

midpoints of the defined regions.

Table 3.3 Summary of the related work cited in this section, including their

region definition approach, the amount and size of the defined target region(s),

and at which phases the local information is incorporated into the system.

Name Approach
Target

region
Size Phase of MCS Reference

Cluster-oriented

ensemble classifier
Clustering Single Inconstant

Generation,

Aggregation
(Verma & Rahman, 2011)

Clustering and selection Clustering Single Inconstant Selection (Kuncheva, 2000)

Clustering with accuracy

or diversity-based selection
Clustering Single Inconstant Selection (Soares et al., 2006)

K-nearest oracles union KNN Single Constant
Selection,

Aggregation
(Ko et al., 2007)

K-nearest oracles eliminate KNN Single Inconstant Selection (Ko et al., 2007)

K-nearest output profiles KNN Single Constant
Selection,

Aggregation

(Cavalin

et al., 2012)

Online local pool KNN Multiple
Multi-scaled

constant

Generation,

Selection
(Souza et al., 2019b)

Randomized reference

classifier DS

Potential

function
Single Constant Selection (Woloszynski & Kurzynski, 2011)

Forest of local trees
Potential

function
Multiple Constant

Generation,

Aggregation
(Armano & Tamponi, 2018)

Space partition tree
Recursive

partitioning
Single Inconstant

Generation,

Selection
(Zhu et al., 2019)

Decision trees integration

via dynamic regions

Recursive

partitioning
Multiple Inconstant Aggregation (Biedrzycki & Burduk, 2020)

Random forests

with local rules

Recursive

partitioning
Multiple Inconstant Generation (Do, 2015)

Proposed
Recursive

partitioning
Multiple

Multi-scaled

inconstant
Generation

Table 3.3 summarizes some key characteristics of the works on local-based MCS discussed in

this section, indicating their mechanism for region definition and the type of target region(s)

utilized, as well as the phases at which the local information is incorporated into the system.

Techniques that may take into account a single defined region or multiple defined regions in

generalization, are shown in the Target region column. Moreover, the target regions’ size may

be fixed or may vary from query instance to query instance, as identified in the Size column by

83

the Constant or Inconstant characteristics, respectively. In addition to that, the guided target

region size increase, characteristic of the OLP and the proposed method, are indicated with

Multi-scaled. Thus, since the multi-scale region definition in the OLP is fixed for all samples, its

target region size is described as Multi-scale constant, while the proposed methods’ variable

partition sizes lead to the Multi-scale inconstant characteristic.

Apart from the OLP, whose difference to the proposed technique was already discussed, the two

methods that resemble the most the proposed approach are the Random forests with local rules

(Do, 2015) and the SPT (Zhu et al., 2019). In the former, the local classifiers trained over the

leaves of a RF ensemble to improve their local decision rule. In our case, however, we do not

specifically intend to improve the trees’ decision rules. Rather, we make use of the partitions

defined at several nodes, including but not restricted to the leaves, in order to generate, as in the

OLP, a pool of linear classifiers that have a diversely local view of the problem. W.r.t. the SPT

framework (Zhu et al., 2019), while the technique uses similar concepts to the proposed method,

the way they are applied and their aim are quite different. In the SPT, the splits in the feature

space are done in the axis of maximum scatter of the majority class subset, with the purpose of

recursively dividing it so that the imbalance ratio in each final region (or leaf) the local class

imbalance is smaller than the whole problem’s imbalance. The proposed technique, on the other

hand, uses the partitions given by a regular tree-based algorithm to obtain regions of increasing

size around each unknown sample in order to fit experts in the local area without the use of a

distance metric in high dimensional spaces. Moreover, in the SPT the classifiers in the pool are

trained in disjoint partitions of the data, one for each leaf level region, and in generalization only

the classifier trained in the region that an unknown instance is located labels it. In the proposed

method, as the entire local pool is produced in the target area, their responses are combined so

that their diversity, which is subject to the local region, can be leveraged in the decision rule.

84

3.5 Experiments

3.5.1 Experimental setup

3.5.1.1 Datasets

Table 3.4 presents the characteristics of the datasets used in the experiments. All 39 two-class

high dimensional datasets, each of which presenting at least 100 features, were obtained from the

OpenML repository (Vanschoren et al., 2013), more specifically from the study on the impact

of feature selection for classification (StudyID: 15). The column 𝐼𝑅 in Table 3.4 refers to the

problems’ imbalance ratio, that is, the ratio between the amount of majority class samples and

the amount of minority class samples in the dataset. The performance evaluation was conducted

using a 10-fold cross validation procedure, with one fold for test and the remaining for training,

using the same partitions provided in the OpenML repository for reproducibility.

Table 3.4 Characteristics of the datasets used in the experiments.

Dataset # Instances # Features IR Dataset # Instances # Features IR

AP_Endometrium_Breast 405 10935 5.64 OVA_Ovary 1545 10935 6.8

AP_Breast_Omentum 421 10935 4.47 AP_Breast_Prostate 413 10935 4.99

AP_Prostate_Uterus 193 10935 1.8 AP_Omentum_Uterus 201 10935 1.61

AP_Omentum_Lung 203 10935 1.64 leukemia 72 7129 1.88

OVA_Breast 1545 10935 3.49 tumors_C 60 7129 1.86

AP_Colon_Prostate 355 10935 4.14 gina_agnostic 3468 970 1.03

AP_Lung_Uterus 250 10935 1.02 gina_prior 3468 784 1.03

AP_Colon_Kidney 546 10935 1.1 scene 2407 299 4.58

AP_Endometrium_Prostate 130 10935 1.13 mfeat-pixel 2000 240 9

OVA_Uterus 1545 10935 11.46 mfeat-factors 2000 216 9

AP_Prostate_Kidney 329 10935 3.77 musk 6598 168 5.49

AP_Colon_Omentum 363 10935 3.71 tecator 240 124 1.35

AP_Omentum_Kidney 337 10935 3.38 yeast_ml8 2417 116 70.09

OVA_Endometrium 1545 10935 24.33 sylva_prior 14395 108 15.25

AP_Endometrium_Lung 187 10935 2.07 spectrometer 531 101 8.65

AP_Colon_Ovary 484 10935 1.44 fri_c4_250_100 250 100 1.27

AP_Omentum_Ovary 275 10935 2.57 fri_c4_100_100 100 100 1.13

AP_Breast_Kidney 604 10935 1.32 fri_c4_500_100 500 100 1.3

AP_Ovary_Uterus 322 10935 1.6 fri_c4_1000_100 1000 100 1.29

AP_Uterus_Kidney 384 10935 2.1

85

3.5.1.2 Performance evaluation

We evaluate the models in this work in terms of the balanced accuracy rate (that is, the macro-

averaged recall). The balanced accuracy rate for binary problems is defined as the average

between the true positive rate (𝑇𝑃𝑅) and the true negative rate (𝑇𝑁𝑅), as shown in (3.1). As

recommended in (Flach, 2019), we focus on one performance metric only, and the choice of the

balanced accuracy rate was due to the widely varying imbalance ratios of the problems in the

test bed, which range from 1.03 to 70.09.

Balanced accuracy rate =
𝑇𝑃𝑅 + 𝑇𝑁𝑅

2
(3.1)

For the statistical comparisons between the models’ performances over multiple datasets, we

also use the pairwise Wilcoxon signed-rank test, as recommended in (Demšar, 2006; Benavoli

et al., 2016), since it is non-parametric and its result does not depend on the group of techniques

included in the comparative analysis. In addition to that, pairwise comparisons between

the performances obtained over the folds of each dataset are done using the Kruskal-Wallis

non-parametric test, as in (Cruz et al., 2017a).

3.5.2 Comparison against the OLP

In this section, we perform a comparative analysis between the OLP and the proposed method

considering a small local pool size. The purpose of this analysis is to investigate how the

different locality definition approaches impact the resulting ensemble, and whether the proposed

technique can provide an improvement to the OLP over high dimensional datasets while still

yielding some of its desirable characteristics. To that end, we analyze back-to-back several

aspects yielded by both techniques, including the borderline sample detection, the local region

size, the pool diversity, the average performance and the time complexity.

We evaluated the OLP and the proposed technique with |𝐿𝑃 | = 3 local classifiers. Within the

OLP we used, as in previous works (Souza et al., 2019b,a), the following DCS techniques:

86

Overall Local Accuracy (OLA) (Woods et al., 1997), Local Class Accuracy (LCA) (Woods et al.,

1997) and Multiple Classifier Behavior (MCB) (Giacinto et al., 2000). We chose a small pool

size due to several reasons: first, to allow a level-by-level analysis of both techniques; second, to

control the locality defined in the tree nodes as it may present impure leaves on shallow branches;

and third, to perform a fair comparison against the OLP since its usually recommended number

of classifiers is also very small. Due to the chosen pool size, the local regions in the proposed

adaptation are obtained from the nodes of a single decision tree (𝑇 = 1), with the minimum

number of samples in each leaf being set to 𝑘 = 7, which is also the initial size of the local

region in the OLP, defined using the regular nearest neighbors rule.

3.5.2.1 Borderline sample detection

As the local pool is only generated for queries in class overlap regions, the way the latter are

defined has a direct impact on the border detection and response of the system. Figure 3.8

shows the average proportion of test samples considered in borderline regions by the OLP

and the proposed method for each dataset, sorted by increasing number of features. It can be

observed that except for a few datasets, namely AP_Breast_Prostate, AP_Prostrate_Kidney

and AP_Colon_Prostate, the local regions defined by the KNN were much more susceptible

to present samples from different classes compared to the DT-defined local regions. While

the optimization of the Gini index in the tree’s data partitioning could have had a role in the

comparatively lower ratio of borderline samples detected, the very high number of samples in

regions considered to be close the border as defined by the KNN suggests that the distance-based

detection was often negatively impacted due to the high data dimensionality. That is to say, in

certain datasets, the KDN measure and the local region definition obtained using the nearest

neighbors rule in the original feature space appears to have led the OLP technique to misidentify

many safe instances as borderline ones, likely due to the curse of dimensionality effects, such as

distance concentration (François et al., 2007; Radovanovic, Nanopoulos & Ivanovic, 2010).

However, as both approaches perceive local class overlap differently, distinct data complexity

profiles would yield different behaviors. For instance, we can observe that the DT obtained over

87

the musk, AP_Endometrium_Prostate and AP_Prostate_Uterus datasets had only pure leaves,

while the nearest neighbor rule in the AP_Breast_Prostate dataset did not identify any borderline

query sample. Taking into account both approaches w.r.t. local region definition, though, we

can see that some problems do appear to present a comparatively higher proportion of borderline

samples, such as the datasets tumors_C, fri_c4_100_100, fri_c4_250_100, fri_c4_500_100,

fri_c4_1000_100, AP_Omentum_Ovary, AP_Ovary_Uterus, leukemia, and gina_agnostic.

Figure 3.8 Mean and standard deviation of the proportion of test samples considered in

borderline areas by the OLP and the proposed method for each dataset from Table 3.4,

sorted by increasing number of features.

3.5.2.2 Region size

Figure 3.9 shows the average proportion of training samples in the regions of the detected

borderline test instances. We compute the region size per iteration of the local pool generation

procedure, with the first one referring to the smallest defined region (with highest locality)

88

and the last one referring to the largest defined region (with lowest locality). We can see that

for the regions defined with the highest locality (Figure 3.9(a)), the amount of samples in the

neighborhood of the query instances is somewhat similar for both the OLP and the proposed

method, likely due to the tree’s minimum leaf size which is set to the smallest 𝑘 value used in the

OLP. However, as the OLP’s region size is controlled directly in terms of number of instances, the

proportion of samples in the local region increases only slightly in the second and third iterations

(Figure 3.9(b-c)) whilst the proposed technique’s regions increase rapidly with each node jump.

In fact, the locality at the third iteration is greatly reduced on the majority of the datasets. In

some cases, such as AP_Breast_Prostate, AP_Colon_Prostate and AP_Prostate_Kidney, the

average proportion of samples in the region is close to 1.0, which may be an indication that most

test instances fall into shallow branches.

a) b) c)

Figure 3.9 Average proportion of training samples in the local region of the test instances

considered in class overlap areas at the (a) first, (b) second and (c) third iteration.

89

3.5.2.3 Local pool diversity

We now investigate how diverse the classifiers in the local pool are for both techniques. To

that end, we calculate the average disagreement (Skalak, 1996) of the classifiers in the local

pool used to label each test instance. The disagreement is a pairwise diversity metric defined

as the proportion of samples on which only one of the two classifiers are correct. The average

disagreement score for binary problems is calculated according to Equation 3.2, in which 𝑐𝑖

and 𝑐 𝑗 are two classifiers and (x, 𝑦) is a pair of features-label of a given sample in the set 𝐷. In

our analysis, we calculate the disagreement score over the training samples included in the first

defined local region (that is, with the highest locality). Since the disagreement score is calculated

only with respect to the classifier’s outputs, and the local pool is composed of linear classifiers,

we also calculate the cosine distance between them in order to improve the characterization of

their differences. The cosine distance is computed as 1 − cos 𝛽 where 𝛽 is the angle between the

hyperplanes defined by two linear classifiers. We average the pairwise cosine distance over all

pairs of classifiers in the local pool used to label each query instance, and then take the mean

over each test fold.

disagreement(𝑐𝑖, 𝑐 𝑗 , 𝐷) =
|{(x, 𝑦) ∈ 𝐷 : 𝑐𝑖 (x) ≠ 𝑐 𝑗 (x)}|

|𝐷 |
(3.2)

In terms of disagreement, we can observe that the local ensemble defined in the OLP had a high

degree of consensus, with the average disagreement score only reaching 0.1 over a few datasets

when using LCA. The proposed technique, on the other hand, presented a much higher average

disagreement score as the locality reduction is done at an increased rate compared to the OLP,

reaching an average score above 0.3 on 5 datasets. Averaged over all datasets, as shown in Table

3.5, the OLP yielded a disagreement score of 0.052, using LCA, while the proposed method

obtained an average disagreement of 0.2183.

With regards to the cosine distance, we can see from Figure 3.10b that OLP also presented a

quite low average cosine distance between the local linear classifiers, reaching an average above

90

a)

b)

Figure 3.10 Average (a) disagreement score and (d) cosine distance between the linear

classifiers included in the local pool in the OLP, with each of the three DCS techniques, and

in the proposed method.

91

0.3, which represents an angle of 𝛽 = 45◦, over two datasets only, gina_agnostic and gina_prior.

In the case of the proposed method, it can be observed that the cosine distance between the

classifiers in the local pool is much higher, as expected given the larger amount of instances that

are included at each tree level. Over all datasets, the average cosine distance from the OLP with

LCA (0.1567) represents an angle 𝛽 = 32.5◦, which intuitively seems as a slight difference in

the defined linear border. The proposed method, on the other hand, yielded an average cosine

distance of 0.5170, which represents an angle of 𝛽 = 61.12◦, much higher than the OLP but still

far from opposing decision rules.

Table 3.5 Average disagreement score and cosine distance of the local

pool obtained from the OLP technique, with different DCS techniques,

and the proposed method over all datasets from Table3.4.

Metric OLP+OLA OLP+LCA OLP+MCB Proposed

Disagreement 0.0235 0.0520 0.0455 0.2183

Cosine distance 0.0946 0.1567 0.1351 0.5170

3.5.2.4 Average performance

We now compare the overall performance of the OLP and the proposed method. Table 3.6

shows the average balanced accuracy rate of the OLP and the proposed method over each dataset

from Table 3.4. It can be observed that the proposed method yielded a higher average balanced

accuracy rate than the OLP over most datasets, considering all three DCS techniques. In fact, the

proposed method outperformed the OLP over the problems shown to have a larger proportion

of samples in overlap areas, according to Figure 3.8, with the exception of the tumors_C and

leukemia datasets.

Performing a Wilcoxon signed-rank test, we observe that the proposed method achieved a

performance significantly superior to that of the OLP considering all three DCS techniques,

with 𝛼 = 0.05. This suggests the local region definition given by a decision tree may be better

suited for high dimensional data within the proposed framework. This, however, may stem from

several distinct aspects. The feature space partition guided by the Gini index may yield a more

92

Table 3.6 Average balanced accuracy rate of the

OLP with OLA, LCA and MCB, and the proposed

method. The row Win-tie-loss indicates the amount

of datasets over which the proposed technique

obtained a higher, equal or lower average

performance than the column-wise technique. The

row P-value shows the p-value of the Wilcoxon

signed-rank test between the proposed method and

the column-wise technique. Best results are in bold.

Dataset OLP+OLA OLP+LCA OLP+MCB Proposed

fri_c4_1000_100 0.5948 0.5948 0.5948 0.8684
fri_c4_500_100 0.5489 0.5489 0.5489 0.8444
fri_c4_100_100 0.6050 0.6050 0.6050 0.7400
fri_c4_250_100 0.5994 0.5994 0.5994 0.7890
spectrometer 0.8544 0.7716 0.8544 0.8396

sylva_prior 0.9715 0.9300 0.9715 0.9573

yeast_ml8 0.5000 0.5000 0.5000 0.5385
tecator 0.9048 0.7866 0.8998 0.9006

musk 0.9328 0.8917 0.9328 1.0000
mfeat-factors 0.9861 0.9811 0.9861 0.9783

mfeat-pixel 0.9247 0.9225 0.9247 0.9700
scene 0.7588 0.7506 0.7588 0.8819
gina_prior 0.8198 0.7468 0.8194 0.8644
gina_agnostic 0.7143 0.6549 0.7151 0.8590
tumors_C 0.6708 0.6708 0.6708 0.6458

leukemia 0.9050 0.9050 0.9050 0.8475

AP_Omentum_Uterus 0.8731 0.8621 0.8793 0.8837
AP_Breast_Prostate 0.9702 0.9702 0.9702 0.9745
OVA_Ovary 0.7322 0.7027 0.7326 0.8181
AP_Uterus_Kidney 0.9263 0.8885 0.9263 0.9708
AP_Ovary_Uterus 0.7992 0.7904 0.8097 0.8373
AP_Breast_Kidney 0.9577 0.9490 0.9577 0.9465

AP_Omentum_Ovary 0.6220 0.5647 0.6220 0.6731
AP_Colon_Ovary 0.8772 0.8404 0.8808 0.9172
AP_Endometrium_Lung 0.9221 0.8705 0.9221 0.8731

OVA_Endometrium 0.6124 0.6594 0.6044 0.5985

AP_Omentum_Kidney 0.9170 0.9065 0.9170 0.9443
AP_Colon_Omentum 0.8497 0.8406 0.8497 0.9141
AP_Prostate_Kidney 0.9747 0.9747 0.9747 0.9747
OVA_Uterus 0.6944 0.6739 0.6910 0.6978
AP_Endometrium_Prostate 0.9512 0.9595 0.9512 0.9929
AP_Colon_Kidney 0.9743 0.9663 0.9741 0.9595

AP_Lung_Uterus 0.8689 0.8606 0.8651 0.9401
AP_Colon_Prostate 0.9370 0.9156 0.9370 0.9471
OVA_Breast 0.9161 0.9073 0.9190 0.9140

AP_Omentum_Lung 0.9008 0.9126 0.9046 0.8841

AP_Prostate_Uterus 0.9521 0.9310 0.9521 0.9819
AP_Breast_Omentum 0.8743 0.8459 0.8695 0.9015
AP_Endometrium_Breast 0.8983 0.7995 0.8983 0.9236
Average 0.8280 0.8065 0.8281 0.8716
Average rank 2.359 3.4231 2.4103 1.8077
Win-tie-loss 26-1-12 31-1-7 27-1-11 n/a

P-value 0.0009 < 10−4 0.0008 n/a

adequate border detection, as in the problems whose trees did not present any impure leaves

while the KNN found borderline instances such as in the musk dataset. Another important aspect

93

is the region size, which in the OLP is only slightly changed while in the proposed method it

may be drastically modified. This increases the diversity of the local pool and may produce

classifiers with a broader view of the problem, which is not likely to happen in the OLP. Both

of these characteristics may have a positive impact, with strictly local algorithms presenting

limitations (Zakai & Ritov, 2008), though with regards to the diversity of a localized pool, the

extent of its effect on the ensemble’s performance is yet to be investigated in the literature.

3.5.2.5 Time complexity

We now estimate the time complexity in Big-O notation of the proposed method and compare it to

the OLP technique, in memorization and generalization. To do so, we assume the corresponding

hyperparameters of both methods are the same, namely the local pool size and the neighborhood

size/minimum number of samples per leaf. Table 3.7 shows the symbols and the time complexity

of both algorithms. For simplicity, we also disregard the classifier selection scheme that may be

adopted in either technique. Moreover, since the number of classifiers is very small in the OLP

framework, for the proposed method we will assume only one tree, so 𝑇 = 1 and 𝐿 = |𝐿𝑃 | = 𝑝

(Table 3.7a).

We start with the offline phase. In the OLP, the instance hardness measure K-Disagreeing

Neighbors (KDN) (Smith et al., 2014) is used to identify the class borders. The KDN is

based on the KNN, and its leave-one-sample-out calculation requires computing a pairwise

distance between all samples from the training set. Thus, depending on the nearest-neighbor

implementation, the worst case scenario would be 𝑛 times the cost for each sample, which

is 𝑛𝑑𝑘 , so 𝑂 (𝑛2𝑑𝑘). In the proposed method, a single tree is fit over the training set, so the

computational cost would come entirely from that. The worst case scenario in the production of

the tree would entail obtaining the maximum amount of leaves, and therefore splits. With 𝑘 as

the minimum leaf size, the maximum amount of split nodes would be �𝑛/𝑘�1. Thus, the cost of

growing the tree in the worst case scenario would be (�𝑛/𝑘�1) × 𝑑𝑐 = 𝑂 (𝑛𝑑𝑐
𝑘).

94

In the online phase, the worst case scenario for both techniques is when the query instance is

assumed to be close to the class borders. For the OLP, the KNN is used to retrieve the sample’s

local region. Though it is used repeatedly, the computations can be performed only once. At

each local region, the SGH (𝑂 (𝑑𝑐)) is applied and one classifier is chosen to be added to the

pool. Thus, the cost at the online phase is 𝑛𝑑𝑘 × 𝑝 × 𝑑𝑐 = 𝑂 (𝑛𝑑𝑘 𝑝𝑐). In the proposed method,

the worst case scenario for the local region definition would be using a tree with maximum depth,

which would also mean the maximum number of leaves, each of which with 𝑘 training samples,

in an unbalanced structure. So the maximum depth would also be the maximum number of split

nodes, �𝑛/𝑘�1. As in the case of the KNN in the OLP, the path needs only to be obtained once.

Then, at each level (𝑝 times), the SGH is applied, so the cost of the proposed method in the

worst case scenario would be (�𝑛/𝑘�1) × 𝑝 × 𝑑𝑐 = 𝑂 (𝑛𝑝𝑑𝑐
𝑘).

Table 3.7 (a) Description of the symbols and (b) complexity analysis of the OLP and the

proposed adaptation, in training (offline phase) and test (online phase) time.

(a)

Symbol Meaning
𝑛 Training set size
𝑑 Problem dimensionality
𝑐 Number of classes
𝑘 Neighborhood size
𝑝 Local pool size

(b)

Phase OLP Proposed

Offline 𝑂 (𝑛2𝑑𝑘) 𝑂 (𝑛𝑑𝑐𝑘)
Online 𝑂 (𝑛𝑑𝑘 𝑝𝑐) 𝑂 (𝑛𝑝𝑑𝑐𝑘)

Of course, some details of implementation in both techniques can help reducing the computational

cost. The nearest neighbors can be obtained using more efficient algorithms instead of the brute

force method. Moreover, Table 3.7 shows the cost in the worst case scenario. In both techniques,

the local pool is only used to label instances that are identified as borderline, which are generally

much less numerous than safe samples. In fact, in (Souza et al., 2019b) we observed empirically

that the total execution time of the OLP was much lower than of several DS techniques. The

proposed method has the added advantage that in a scenario with a balanced tree, the decision

path is obtained with 𝑂 (𝑙𝑜𝑔(𝑛/𝑘)) instead of 𝑂 (𝑛/𝑘).

95

3.5.3 Comparison against other local ensemble methods

We now evaluate how the proposed technique behaves when scaling up the local pool size with

the use of a RF ensemble and compare it to other local ensembles. Due to the much larger

number of classifiers, we take a different approach in this analysis compared to the previous one

(Section 3.5.2). Instead of a white-box analysis, we perform a comparative analysis based on

performance between the proposed method and a few baselines, as well as some state-of-the-art

ensembles, in order to assess (a) whether the local decision rules already present in the trees

can be improved with the proposed pool of linear classifiers (𝐿𝑃), and whether the proposed

method presents some competitiveness w.r.t. high dimensional problems against (b) several

local ensembles with varying definitions of locality, and (c) the best result found in the OpenML

database. We investigate (a) in Section 3.5.3.1, (b) in Section 3.5.3.2 and (c) in Section 3.5.3.3.

3.5.3.1 Impact of the local pool in the decision rule

As opposed to the single DT case, using multiple trees within the proposed method introduces

a second source of diversity in the local region definition in addition to the locality reduction:

the random feature sampling at each node. Thus, with more diverse partitions being used to

generate the local pool, we evaluate the impact of its linear decision rules compared to the

different local rules already defined in the trees’ nodes used to produce the hyperplanes. That

is, considering the (singled-out) nodes of the trees as weak classifiers, we compare in terms of

performance the aggregated response given by their classification rules against the aggregated

response of the local pool, generated over the same partitions. That way, we can observe

the effect in performance the introduction of the local pool provides over the different set of

partitions we use in its creation. The comparative analysis is done so that the total number of

weak classifiers, either the nodes of the trees or the linear models in the 𝐿𝑃, is set to ≈ 100. The

evaluated configurations are then, in number of trees (𝑇)/ number of levels (𝐿): (𝑇 = 100, 𝐿 = 1),

(𝑇 = 50, 𝐿 = 2) and (𝑇 = 33, 𝐿 = 3).

96

Each point in Figure 3.11 represents the average balanced accuracy rate of a given (𝑇, 𝐿)

configuration over a dataset, with the x-axis indicating the performance obtained by the proposed

technique (that is, using the local pool generated over the trees’ partitions) and the y-axis

indicating the performance obtained from the local decision rules given by the (same) partitions

themselves. It can be observed that, in most cases, using the LP yielded a higher average

performance compared to the trees’ original local rules, specially for the problems over which

the performance was on the lower range.

Figure 3.11 Average balanced accuracy rate of the proposed method (with the decision

rules given by the local pool, LP), x-axis, and the aggregated decision rules from the

corresponding trees’ partitions only, y-axis, over all datasets from Table 3.4 and with

(𝑇 = 100, 𝐿 = 1), (𝑇 = 50, 𝐿 = 2) and (𝑇 = 33, 𝐿 = 3).

Table 3.8 summarizes the pairwise comparison between the proposed method and the corre-

sponding tree-based ensembles without the linear models. We can see that, for the same number

of trees/levels, using the local pool yielded a significantly superior performance, with 𝛼 = 0.05,

considering all three evaluated configurations. This suggests that the linear decision rules

given by the local pool can provide an improvement over the local rules defined in the trees’

97

partitions used for the pool generation procedure, even when taking into account only the leaf

nodes (𝑇 = 100, 𝐿 = 1). Considering all configurations, we observe that using the local pool

outperforms the trees’ local decision rules over the majority of the datasets in all cases, further

suggesting an advantage in using the linear classifiers over the trees’ partitions.

Table 3.8 Summary of the pairwise comparison between the

performances of the proposed method (with the decision rules given

by the local pool, LP), row-wise, and the aggregated decision rules

from the corresponding trees’ partitions only, column-wise, in terms

of balanced accuracy rate. The row P-value indicates the p-value of a

Wilcoxon signed rank test, with the results below 𝛼 = 0.05 in bold.

The Win-tie-loss row shows the amount of datasets over which the

proposed technique yielded a higher, similar or lower average

performance than the column-wise configuration.

Proposed 𝑇 = 100, 𝐿 = 1 𝑇 = 50, 𝐿 = 2 𝑇 = 33, 𝐿 = 3

𝑇 = 100, 𝐿 = 1
P-value 0.0004 0.0008 < 10−4

Win-tie-loss 26-6-7 24-6-9 30-5-4

𝑇 = 50, 𝐿 = 2
P-value 0.0082 0.0019 < 10−4

Win-tie-loss 24-6-9 24-6-9 31-4-4

𝑇 = 33, 𝐿 = 3
P-value 0.1700 0.0087 0.0001
Win-tie-loss 20-7-12 24-8-7 28-6-5

3.5.3.2 Comparison against the state-of-the-art

We now evaluate the performance of the proposed framework and of several ensemble methods

in order to assess whether there is any advantage in using the proposed local approach for high

dimensional data compared to some already existent in the literature. We chose the Random

Forest as our baseline, as although it does not explicitly enforce the locality aspect, the decision

rule of each tree in the ensemble is local, that is, mostly influenced by the close points to the

query (Bischl et al., 2013). The exact same RF ensemble is used as the pool of classifiers in

four of the DS techniques included in the comparative analysis, namely Dynamic Ensemble

Selection-Clustering (DES-C) (Soares et al., 2006), K-Nearest Oracles Union (KNU) (Ko et al.,

2007), K-Nearest Oracles Eliminate (KNE) (Ko et al., 2007), K-Nearest Output Profiles (KNOP)

(Cavalin et al., 2012), and Randomized Reference Classifier (RRC) (Woloszynski & Kurzynski,

2011). Because of that, and due to the very limited number of instances in some problems (such

98

as leukemia and tumors_C), we use the whole training set as the dynamic selection set (DSEL)

in the experiments. The DSEL is a set of labelled data used in dynamic selection techniques

for region of competence definition (Cruz et al., 2018a). We chose these techniques since they

define locality differently, as indicated in Table 3.3. We also include in the analysis the Forest of

Local Trees (FLT) ensemble (Armano & Tamponi, 2018) and the OLP technique. The latter is

used in this analysis as a reference for a non-tree based local ensemble method.

The hyperparameters of the local ensemble methods, shown in Table 3.9, were set according to

their default configuration in the Python libraries scikit-learn (Pedregosa, Varoquaux, Gramfort,

Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg et al., 2011) and DESLib (Cruz,

Hafemann, Sabourin & Cavalcanti, 2020) except for the FLT and the OLP. In the case of the

former we used the hyperparameters recommended in the original paper, while in the case of the

latter we picked the configuration with the highest overall balanced accuracy rate from Table 3.6.

All ensembles but the OLP’s contain 100 trees as base-classifiers. On our side, we include in

this analysis all configurations of number of trees/number of levels evaluated in Section 3.5.3.1.

Table 3.10 shows the average balanced accuracy rate of the evaluated techniques. It can be

observed that all DS techniques presented a general improvement, though a slight one in some

cases, over the original RF ensemble, which suggests an overall benefit in explicitly exploiting

the information around the target area. However, we can see from the performance of the

OLP+MCB that the relying heavily on the nearest neighbors information was detrimental in

most of the high dimensional problems.

With regards to the proposed method, we can observe that it obtained the highest overall balanced

accuracy rate and average rank with (𝑇 = 100, 𝐿 = 1), with (𝑇 = 50, 𝐿 = 2) yielding the second

highest overall performance and fourth highest rank, after the FLT. These two versions also

outperformed all tree-based ensembles on five of the nine problems identified in Section 3.5.2 as

having a comparatively higher proportion of samples in overlap regions. The version with fewer

trees, (𝑇 = 33, 𝐿 = 3), still yielded a better overall performance and higher rank than the RF

baseline.

99

Table 3.9 Hyperparameter setting of the local ensembles included in the comparative

analysis. The pool of classifiers used in all DS techniques but the FLT and OLP+MCB is

the RF baseline.

Local ensemble methods Hyperparameters

Random Forest (RF)

max_depth=𝑁𝑜𝑛𝑒
min_samples_split=2

max_features=
√

𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠
bootstrap=𝑇𝑟𝑢𝑒
max_samples=1.0
max_leaf_nodes=𝑁𝑜𝑛𝑒

Dynamic Ensemble Selection-Clustering (DES-C)

clustering=K-means(𝐾 = 5)

pct_accuracy=0.5
pct_diversity=0.33

metric_performance=𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑠𝑐𝑜𝑟𝑒
metric_diversity=𝑑𝑓

K-Nearest Oracles Union (KNU) K=7

K-Nearest Oracles Eliminate (KNE) K=7

K-Nearest Output Profiles (KNOP) K=7

Randomized Reference Classifier (RRC) mode=𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛

Forest of Local Trees (FLT)

max_depth=𝑁𝑜𝑛𝑒
min_samples_split=2

max_features=0.3
bootstrap=𝑇𝑟𝑢𝑒
max_samples=1.0
max_leaf_nodes=𝑁𝑜𝑛𝑒

Online Local Pool with Multiple Classifier Behavior (OLP+MCB)
K=7

|𝐿𝑃 | = 3

Comparing the individual pairs of results, Table 3.11 shows the resulting p-values of the Wilcoxon

signed rank test over the average performances, as well as their win-tie-loss summary. First, we

can see that two of the three versions of the proposed technique, namely (𝑇 = 100, 𝐿 = 1) and

(𝑇 = 50, 𝐿 = 2), significantly outperform the RF baseline with significance level 𝛼 = 0.05. The

version with fewer trees, (𝑇 = 33, 𝐿 = 3), yielded a statistically similar performance to the RF

baseline with 𝛼 = 0.05.

With respect to the other techniques, the (𝑇 = 100, 𝐿 = 1) version of the proposed method

obtained a statistically superior performance compared to the KNORAU, KNORAE, KNOP and

RRC with 𝛼 = 0.05, while the (𝑇 = 50, 𝐿 = 2) version significantly outperformed the KNORAU

and RRC with 𝛼 = 0.05. The KNOP presenting a comparatively better performance with respect

to the KNORAU and RRC could be due to the distance computations being performed in the

100

Table 3.10 Mean balanced accuracy rate of the evaluated local ensembles over all folds for

each dataset, ordered by increasing dimensionality. Best results are in bold.

Dataset
Local ensembles Proposed

RF DES-C KNORAU KNORAE KNOP RRC FLT OLP+MCB T=100,L=1 T=50,L=2 T=33,L=3

fri_c4_1000_100 0.8455 0.8634 0.8501 0.8428 0.8529 0.8455 0.9020 0.5948 0.8420 0.8354 0.8277

fri_c4_500_100 0.7993 0.8243 0.8084 0.7974 0.8136 0.8114 0.8771 0.5489 0.8136 0.8070 0.8107

fri_c4_100_100 0.7483 0.6958 0.7633 0.6842 0.7833 0.7267 0.7958 0.6050 0.7833 0.7933 0.7225

fri_c4_250_100 0.7114 0.7279 0.7260 0.7234 0.7123 0.7396 0.8432 0.5994 0.7461 0.7201 0.7282

spectrometer 0.8470 0.8522 0.8470 0.8554 0.8543 0.8554 0.8743 0.8544 0.8867 0.8978 0.9151
sylva_prior 0.9655 0.9705 0.9660 0.9722 0.9694 0.9666 0.9797 0.9715 0.9743 0.9726 0.9742

yeast_ml8 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5119 0.5000 0.5000 0.5000 0.5000

tecator 0.9323 0.9299 0.9323 0.9311 0.9323 0.9223 0.9455 0.8998 0.9064 0.9149 0.9161

musk 0.9995 1.0000 0.9995 1.0000 1.0000 0.9995 1.0000 0.9328 0.9980 0.9990 0.9999

mfeat-factors 0.9700 0.9697 0.9700 0.9725 0.9700 0.9700 0.9847 0.9861 0.9775 0.9772 0.9772

mfeat-pixel 0.9722 0.9747 0.9722 0.9722 0.9722 0.9722 0.9819 0.9247 0.9772 0.9697 0.9722

scene 0.7590 0.8105 0.7659 0.7881 0.7764 0.7602 0.8822 0.7588 0.8031 0.8068 0.8167

gina_prior 0.9470 0.9439 0.9453 0.9442 0.9473 0.9470 0.9526 0.8194 0.9574 0.9533 0.9507

gina_agnostic 0.9401 0.9370 0.9393 0.9343 0.9393 0.9401 0.9179 0.7151 0.9446 0.9406 0.9397

tumors_C 0.4667 0.5667 0.4542 0.6333 0.4542 0.4667 0.5167 0.6708 0.6458 0.6417 0.6792
leukemia 0.9500 0.9667 0.9500 0.9500 0.9667 0.9500 0.9567 0.9050 0.9833 0.9833 0.9833
AP_Omentum_Uterus 0.8965 0.9203 0.8965 0.9027 0.8965 0.8965 0.8884 0.8793 0.9072 0.9033 0.8938

AP_Breast_Prostate 0.9774 0.9774 0.9774 0.9774 0.9774 0.9774 0.9845 0.9702 0.9774 0.9774 0.9774

OVA_Ovary 0.7578 0.7757 0.7674 0.7664 0.7738 0.7578 0.5000 0.7326 0.8166 0.8358 0.8322

AP_Uterus_Kidney 0.9689 0.9785 0.9689 0.9689 0.9689 0.9689 0.9808 0.9263 0.9788 0.9785 0.9708

AP_Ovary_Uterus 0.8797 0.8904 0.8915 0.8889 0.8929 0.8797 0.8645 0.8097 0.9068 0.9174 0.8994

AP_Breast_Kidney 0.9755 0.9755 0.9774 0.9774 0.9774 0.9755 0.9692 0.9577 0.9769 0.9769 0.9769

AP_Omentum_Ovary 0.6811 0.6943 0.6749 0.6542 0.6802 0.6811 0.6836 0.6220 0.7394 0.7381 0.7308

AP_Colon_Ovary 0.9494 0.9554 0.9494 0.9451 0.9494 0.9494 0.9554 0.8808 0.9427 0.9434 0.9452

AP_Endometrium_Lung 0.9510 0.9593 0.9510 0.9593 0.9510 0.9510 0.9051 0.9221 0.9510 0.9510 0.9301

OVA_Endometrium 0.5071 0.5141 0.5071 0.5315 0.5071 0.5071 0.5000 0.6044 0.5311 0.5225 0.5294

AP_Omentum_Kidney 0.9501 0.9654 0.9501 0.9520 0.9563 0.9501 0.9731 0.9170 0.9654 0.9457 0.9438

AP_Colon_Omentum 0.9022 0.9147 0.9022 0.9039 0.9022 0.9022 0.9102 0.8497 0.8988 0.8909 0.9006

AP_Prostate_Kidney 0.9857 0.9786 0.9857 0.9857 0.9857 0.9857 0.9838 0.9747 0.9857 0.9857 0.9786

OVA_Uterus 0.6141 0.6332 0.6099 0.6441 0.6259 0.6141 0.5000 0.6910 0.6660 0.6831 0.6904
AP_Endometrium_Prostate 0.9857 0.9929 0.9929 0.9929 0.9929 0.9857 0.9786 0.9512 0.9857 0.9857 0.9857

AP_Colon_Kidney 0.9740 0.9740 0.9740 0.9759 0.9740 0.9740 0.9777 0.9741 0.9710 0.9785 0.9800
AP_Lung_Uterus 0.9327 0.9321 0.9327 0.9362 0.9285 0.9327 0.9446 0.8651 0.9439 0.9481 0.9442

AP_Colon_Prostate 0.9768 0.9697 0.9768 0.9697 0.9768 0.9768 0.9823 0.9370 0.9697 0.9697 0.9768

OVA_Breast 0.9430 0.9373 0.9416 0.9430 0.9430 0.9430 0.5000 0.9190 0.9533 0.9551 0.9557
AP_Omentum_Lung 0.9189 0.9174 0.9189 0.9260 0.9147 0.9189 0.9266 0.9046 0.9022 0.9043 0.8942

AP_Prostate_Uterus 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857 0.9786 0.9521 0.9857 0.9857 0.9857
AP_Breast_Omentum 0.9039 0.9275 0.9039 0.9212 0.9039 0.9039 0.9245 0.8695 0.9039 0.8976 0.8976

AP_Endometrium_Breast 0.9164 0.9248 0.9164 0.9248 0.9164 0.9164 0.9135 0.8983 0.9164 0.9164 0.9081

Average 0.8741 0.8776 0.8748 0.8752 0.8724 0.8694 0.8627 0.8281 0.8850 0.8847 0.8831

Average rank 6.8718 5.2821 6.4744 5.6282 5.8205 6.4872 4.7564 9.3462 4.7436 5.1923 5.3974

decision space instead of the feature space, so the technique may be less affected by the high

dimensionality of the problems.

Lastly, we can observe that all versions of the technique were statistically similar to the DES-C

and FLT methods. The former is set apart from the other techniques as it takes into account

the diversity of the classifiers as well as their local accuracy to assign an ensemble to a given

defined region. The FLT method is also set apart from the other techniques, as it uses a different

101

Table 3.11 Summary of the pairwise comparison between the performances of the

proposed method and the evaluated local ensembles in terms of balanced accuracy rate

over all datasets. The row P-value indicates the p-value of a Wilcoxon signed rank test,

with the results below 𝛼 = 0.05 in bold. The Win-tie-loss row shows the amount of

datasets over which the proposed technique yielded a higher, similar or lower average

performance than the column-wise technique.

Proposed RF DES-C KNU KNE KNOP RRC FLT OLP+MCB

T=100,L=1
P-value 0.0009 0.1798 0.0031 0.0249 0.0125 0.0013 0.7855 < 10−4

Win-tie-loss 23-8-8 20-5-14 22-7-10 21-5-13 20-8-11 23-8-8 18-0-21 32-1-6

T=50,L=2
P-value 0.0078 0.5158 0.0494 0.1602 0.0545 0.0345 0.7641 < 10−4

Win-tie-loss 22-7-10 18-5-16 19-6-14 19-5-15 20-6-13 20-7-12 20-0-19 33-1-5

T=33,L=3
P-value 0.0919 0.5435 0.201 0.1625 0.3528 0.2056 0.8071 < 10−4

Win-tie-loss 20-6-13 20-4-15 20-5-14 21-4-14 18-5-16 18-6-15 16-0-23 34-1-4

ensemble of trees that are optimized to fit well over different areas of the feature space. In

generalization, the closer to the query, the more important the classifier is considered, though

all trees contribute to the final response. So, through different means, both techniques actively

attempt to provide a certain degree of diversity, subject to the local accuracy, to the ensemble

responsible for labelling each sample, which could have had a positive impact on the performance

over the high dimensional data.

3.5.3.3 Comparison against the best result from OpenML

Lastly, we perform a comparative analysis against the results obtained from the best performing

execution, in terms of balanced accuracy rate, registered in the OpenML database (Vanschoren

et al., 2013) for each dataset in particular. That is, using the OpenML Python API (Feurer,

Van Rĳn, Kadra, Gĳsbers, Mallik, Ravi, Müller, Vanschoren & Hutter, 2021) we fetched, for

each dataset, the execution (or run) which yielded the highest macro-averaged recall, as well as

its label outputs in order to calculate the performance on each one of the folds. A run in the

OpenML database consists of the record of an execution of a given machine learning pipeline

over a given task, in this case the classification task over a dataset. The pipeline can include any

sort of model, pre-processing and hyperparameter optimization steps. Thus, it is reasonable

to expect that the best performance among all registered runs for each dataset were obtained

by tuning the pipeline to that individual problem. Our reason for comparing our technique

102

against the best result registered in the OpenML database is to use it as a reference for the upper

limit of performance in order to assess how the chosen local ensembles fare against it over

each high dimensional dataset, taking into consideration they were not specifically tuned. The

dataset-by-dataset highest average balanced accuracy rate retrieved from the OpenML database,

as well as its corresponding run ID, can be found in the supplementary material.

Figure 3.12 Number of datasets over which the null hypothesis, that the median balanced

accuracy rate of the indicated local ensemble method and the best performing execution in

the OpenML database are the same, was rejected or not (with 𝛼 = 0.05).

Since each performance result for each dataset may have been obtained from very different

classification pipelines, we perform now a dataset-by-dataset comparison taking into account

the balanced accuracy rate obtained over each fold. We performed a pairwise Kruskal-Wallis

test with a 95% confidence interval, between the best execution from the OpenML and each

local ensemble method, on the performances over the folds for each dataset individually. Figure

3.12 shows the number of problems over which the null hypothesis, meaning the median of the

per-fold balanced accuracy rates of the best execution and the local ensemble method are equal,

was rejected or not. It can be observed that, with the exception of the OLP+MCB, the local

ensemble methods obtained a statistically equivalent balanced accuracy rate over at least 60%

103

of the datasets, with the FLT and the proposed technique (𝑇 = 100, 𝐿 = 1) yielding a similar

performance to the best OpenML execution over 28 datasets, or approximately 72% of the test

bed. This suggests that, while the tree-based local ensemble methods, including the proposed

technique, were not tuned to each individual problem, they can often achieve a comparable

performance to the state-of-the-art on high dimensional problems.

3.6 Conclusions

In this work, we proposed a local ensemble method adapted for dealing with high dimensional

data. Instead of relying on the Euclidean distance and the nearest neighbors rule, which may

suffer from the effects of the curse of dimensionality, the proposed technique leverages the

data partitions obtained from tree-based algorithms for the locality definition. That way, in the

case an unknown instance falls into an impure leaf, the regions defined at multiple levels of its

decision path are used to produce the local pool responsible for labelling it. By using different

partitions from the same decision path, we introduce diversity to the pool subject to the locality

of the query in order to promote consensus between the classifiers.

The experimental analysis was conducted over 39 high dimensional problems. Results showed

that the proposed partition-based approach to region definition was often more successful in

identifying borderline instances compared to the nearest neighbors-based approach used in the

original Online Local Pool framework (OLP). We also observed that the local pool generated in

the proposed method presented a more distinct set of classifiers in comparison with the OLP. A

time complexity analysis also demonstrated that the proposed technique is less computationally

expensive than the OLP. Moreover, the proposed method significantly outperformed the OLP

using the same pool size.

Investigating the impact of the local pool’s decision rule compared to the trees’ already defined

local rules themselves showed that the former was able to significantly improve the average

performance of the latter. Furthermore, a comparative analysis against six state-of-the-art

local-based ensembles demonstrated the competitiveness of the proposed approach, which was

104

able to significantly outperform the random forest baseline in most cases, as well as two DS

techniques, in terms of balanced accuracy rate. The experimental results thus suggest that

leveraging the data partitions from decision trees for building local classifiers is advantageous

when dealing with high dimensional data.

In the current framework, since the partitions are defined in memorization time and there is little

control over their size, the classifier generated over it, which can be preprocessed offline, may

still not be an adequate local expert for all samples that fall into the region. Thus, in future

works, we aim on further adapting the local classifiers over the region according to each query

instance via local regularization, as a way to counter the rapid loss of locality observed in the

experiments. In addition, we may improve the aggregation step of the method, either using a

geometrical integration (Ksieniewicz, Zyblewski & Burduk, 2021) or using a dynamic weighting

scheme based on local data characterization (Campos, Morell & Ferri, 2012). In addition to that,

an adaptation of the proposed method for multi-class problems using a local-based classifier

combination technique for the one-versus-one (OVO) decomposition strategy (Galar, Fernández,

Barrenechea & Herrera, 2015) may be investigated in the future. Different recursive partitioning

mechanisms may also be investigated for improving the local region definition step, including

different split strategies within the trees’ construction. Lastly, the relationship between diversity

and consensus w.r.t. a locally generated ensemble may also be investigated in the future, with

the aim of optimizing the local data partitions to present a certain degree of both (Zhou, Wang,

Du & Li, 2022).

In the next chapter, a further analysis on the performance of several dynamic selection techniques

using different ensembles over HDSSS problems is carried out, and a dynamic multiple classifier

system is proposed to address their limitations associated with a weaker locality assumption in

pre-defined sparse and overlapped regions.

105

3.7 Supplementary material

3.7.1 Self-generating Hyperplanes (SGH) method

The SGH (Souza et al., 2017) is a pool generation method which produces linear decision rules

iteratively over a given input set, so that the generated ensemble contains at least one classifier

able to correctly label each known instance. The two-class linear rules are obtained using an

heuristic, which speeds up the generation process. Figure 3.13 illustrates the pool generation

procedure of the SGH method. The two-class dataset input to the technique is depicted in

Figure 3.13a. In the first iteration of the method, the centroids of each class, considering all

instances from the dataset (highlighted in red), are obtained, and a linear classifier is placed in

the midpoint that connects them. This classifier is illustrated in Figure 3.13b, with the arrow

indicating where it labels as the green class. Afterwards, the instances that are misclassified by

the classifier in Figure 3.13b are removed from the set.

In the second iteration, the remaining instances in the set, highlighted in red in Figure 3.13c,

are then used to generate a second linear classifier, which is placed in the midpoint between

the current classes’ centroids. Then, the instances that the recently generated classifier, shown

in Figure 3.13c, cannot label correctly are removed from the set. Since it is able to correctly

classify all remaining instances, the method stops and returns the pool shown in Figure 3.13d,

comprised of two binary classifiers that together have a theoretical upper limit on the accuracy

rate of 100% over the input set.

3.7.2 OpenML results

Table 3.12 presents additional information regarding the best execution in terms of balanced

accuracy rate found in the OpenML repository for each dataset, including the run ID, the

balanced accuracy rate averaged over all folds, and the resulting p-value of the Kruskall-Wallis

test between the per-fold balanced accuracy rates of the indicated (best) run and the best

performing configuration of the proposed method (𝑇 = 100, 𝐿 = 1). We also include in the table

106

a) b)

c) d)

Figure 3.13 Toy example illustrating the SGH method. (a) shows the data input to the

technique. (b) shows the first iteration of the technique, with the samples used to generate

the indicated linear classifier highlighted in red, and the arrow indicating where the latter

labels as the green class. (c) illustrates the second iteration of the technique, also with the

linear classifier produced using the samples highlighted in red. The final pool yielded by

the SGH method is shown in (d).

a few general characteristics of each dataset, namely the number of instances, the number of

features and the imbalance ratio (IR), for context.

107

Table 3.12 Information regarding the best performing execution retrieved from the

OpenML database (Vanschoren et al., 2013) for each dataset. # Instances and # Features
indicate the amount of samples and dimensionality of the datasets, respectively. The IR

column shows the imbalance ratio, or the ratio between the majority class and the minority

class sample counts, of each problem. From the OpenML registered executions over each

dataset, column Run ID indicates the identifier of the best performing one in terms of

balanced accuracy rate. The Avg. perf. column shows the balanced accuracy rate obtained

in the indicated run, averaged over all folds. The P. value column indicates the resulting

p-value obtained from the Kruskal-Wallis test with 95% confidence on the per-fold

performances of the (indicated) best run and the proposed technique’s best performing

configuration (𝑇 = 100, 𝐿 = 1).

Dataset
Dataset characteristics Best execution

Instances # Features IR Run ID Avg. perf. P-value

fri_c4_1000_100 1000 100 1.29 8878606 0.9187 0.0004

fri_c4_500_100 500 100 1.3 8878857 0.8982 0.0015

fri_c4_100_100 100 100 1.13 515054 0.8133 0.5645

fri_c4_250_100 250 100 1.27 8871859 0.8857 0.0006

spectrometer 531 101 8.65 593342 0.9482 0.1955

sylva_prior 14395 108 15.25 146301 0.9899 0.0041

yeast_ml8 2417 116 70.09 8866903 0.5990 0.3935

tecator 240 124 1.35 46665 0.9610 0.0431

musk 6598 168 5.49 1640440 1.0000 0.1468

mfeat-factors 2000 216 9 523441 0.9967 0.0327

mfeat-pixel 2000 240 9 123100 0.9944 0.0298

scene 2407 299 4.58 2105396 0.9710 0.0002

gina_prior 3468 784 1.03 147370 0.9614 0.6230

gina_agnostic 3468 970 1.03 6008253 0.9627 0.0191

tumors_C 60 7129 1.86 9201347 0.7216 0.4427

leukemia 72 7129 1.88 560987 1.0000 0.3173

AP_Omentum_Uterus 201 10935 1.61 9200768 0.9198 0.5677

AP_Breast_Prostate 413 10935 4.99 563992 0.9884 0.8278

OVA_Ovary 1545 10935 6.8 564743 0.8513 0.1508

AP_Uterus_Kidney 384 10935 2.1 554299 0.9883 0.3625

AP_Ovary_Uterus 322 10935 1.6 560900 0.9188 0.6768

AP_Breast_Kidney 604 10935 1.32 1782939 0.9793 0.6362

AP_Omentum_Ovary 275 10935 2.57 553590 0.7554 0.5961

AP_Colon_Ovary 484 10935 1.44 553594 0.9563 0.1795

AP_Endometrium_Lung 187 10935 2.07 554809 0.9677 0.5068

OVA_Endometrium 1545 10935 24.33 553263 0.8759 0.0001

AP_Omentum_Kidney 337 10935 3.38 564011 0.9839 0.2912

AP_Colon_Omentum 363 10935 3.71 549825 0.9356 0.2703

AP_Prostate_Kidney 329 10935 3.77 550689 0.9908 0.9136

OVA_Uterus 1545 10935 11.46 1672695 0.8430 0.0000

AP_Endometrium_Prostate 130 10935 1.13 550686 1.0000 0.1462

AP_Colon_Kidney 546 10935 1.1 555372 0.9853 0.1006

AP_Lung_Uterus 250 10935 1.02 592461 0.9441 0.9693

AP_Colon_Prostate 355 10935 4.14 566406 0.9875 0.3784

OVA_Breast 1545 10935 3.49 555253 0.9603 0.5959

AP_Omentum_Lung 203 10935 1.64 555388 0.9398 0.1477

AP_Prostate_Uterus 193 10935 1.8 563063 1.0000 0.1462

AP_Breast_Omentum 421 10935 4.47 555260 0.9538 0.1331

AP_Endometrium_Breast 405 10935 5.64 554691 0.9792 0.1453

CHAPTER 4

A DYNAMIC MULTIPLE CLASSIFIER SYSTEM USING GRAPH NEURAL
NETWORK FOR HIGH DIMENSIONAL OVERLAPPED DATA

Mariana A. Souza1 , Robert Sabourin1 , George D. C. Cavalcanti2 , Rafael M. O. Cruz1

1 Laboratoire d’Imagerie, de Vision et d’Intelligence Artificielle (LIVIA),

École de Technologie Supérieure,

1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3

2 Centro de Informática,

Universidade Federal de Pernambuco,

1235 Av. Prof. Moraes Rego, Recife, Pernambuco, Brazil 50670-901

Article submitted to Elsevier’s Information Fusion Journal, March 2023

Abstract

Dynamic selection techniques select a subset of the classifiers from a pool according to their

perceived competence in labeling each given query instance in particular. To do so, most

techniques rely on the locality assumption for the selection task, meaning that similar instances

should share a set of adequate classifiers, so their competencies are usually estimated over a local

region surrounding the query. However, as the local distribution is crucial to these techniques, a

poor region definition due to the presence of high dimensionality and class overlap can have a

negative impact on their performance, thus limiting their application. Thus, we propose in this

work a dynamic selection technique to better deal with sparse and overlapped data in which the

instance-instance and the classifier-classifier relationships are leveraged to learn the dynamic

classifier combination rule. The proposed technique uses a multi-label graph neural network

as a meta-learner, so both the data modeled as a graph, without directly defining the local

region, and the classifiers’ inter-dependencies modeled in the meta-labels are used to learn an

embedded space where the dynamic selection task is more straightforward. Experimental results

over 35 high dimensional datasets show that the proposed method significantly outperforms

the static selection baseline and most evaluated dynamic selection techniques when using a

110

diverse ensemble. Moreover, the proposed technique surpassed the contending state-of-the-art

techniques over the problems with the highest excess of incompetent classifiers in overlap regions,

further suggesting its suitability to deal with challenging local distributions. Code available at:

github.com/marianaasouza/gnn_des.

4.1 Introduction

Multiple classifier systems (MCS) attempt to improve the recognition rates of a set of individual

classifiers by combining their responses and capitalizing on their complementarity (Kittler et al.,

1998). How complementary they are can characterize the diversity of the ensemble, an intuitively

desirable aspect when composing an MCS. MCSs have been widely applied to solve real-world

problems such as intrusion detection (Gao et al., 2019; Gormez, Aydin, Karademir & Gungor,

2020), software defect prediction (Goel et al., 2020), and protein function prediction (Hakala,

Kaewphan, Björne, Mehryary, Moen, Tolvanen, Salakoski & Ginter, 2020; Cao et al., 2020),

among many others.

An MCS usually has three phases: generation, in which the pool of classifiers is produced,

selection, an optional step where a subset of the pool is singled out, and integration, in which

the selected classifiers are combined to yield the response of the system (Britto et al., 2014;

Cruz et al., 2018a). The selection may be done statically, meaning the same ensemble is

used to label all query samples, or dynamically, in which a different subset of classifiers may

be used for each individual test sample. Dynamic selection techniques were often shown to

outperform static selection (SS) techniques over various classification problems (Cruz et al.,

2015a; Woloszynski & Kurzynski, 2011).

The reasoning behind dynamic selection techniques is that, as the classifiers make different

mistakes in distinct areas of the feature space, the techniques usually estimate their competence

to label a given query according to some criteria evaluated in the local area around the sample

(Cruz et al., 2018a), sometimes taking special care for borderline or ambiguous regions (Oliveira

et al., 2018; Souza et al., 2022). Most dynamic selection techniques thus rely on the locality

111

assumption to solve the dynamic selection task, meaning that a similar set of classifiers should

be able to correctly label similar instances. However, this assumption may fail more often in

scenarios expected to be challenging to local methods, as in the presence of ambiguity and

distance concentration caused by class overlap and high dimensionality (Zhang, 2022; Vandaele

et al., 2022; Costa, Lorena, Peres & de Souto, 2009; Sánchez et al., 2007). This may limit the

application of the dynamic selection techniques over the problems that present these issues,

such as medical imaging data (El-Sappagh et al., 2021) and DNA microarray data (Osama,

Shaban & Ali, 2023; Lorena et al., 2012; Costa et al., 2009) used for disease detection.

We illustrate the matter in Figure 4.1, in which two toy problems are depicted. The first

toy problem, shown in Figure 4.1a and Figure 4.1c, presents two classes and two features

(both informative), while the second toy problem, shown in Figure 4.1b and Figure 4.1d, is a

10-dimensional toy problem obtained from the first problem by adding six redundant features

(using linear combinations of the two informative ones) and two random features (using random

noise). We show only the two informative features of the 10-dimensional problem in Figure 4.1b

and Figure 4.1d. In all images, the samples in circles belong to the training set, and the samples

in a diamond shape are query instances whose k-neighbors in the feature space are highlighted in

red and within the region defined with the dashed lines. Moreover, the query instances in Figure

4.1a-b and Figure 4.1c-d are matched, meaning they present the same description considering

the two informative features.

In the first pair (Figure 4.1a-b) we can see that the inclusion of the 8 non-informative features

increased the class overlap in the k-neighborhood of the 10-dimensional space compared

to the 2-dimensional space, though it still remained favorable to the correct (green) class.

Considering the effect of the local region definition on the dynamic selection task, an AdaBoost

(Freund & Schapire, 1997) ensemble of 10 decision stumps was generated for each problem, and

the average ratio of competent classifiers in common between the queries and their neighbors

was computed. For the first pair, the ratio went from 0.67 in the 2-dimensional problem to 0.51

in the 10-dimensional problem, a reduction that may not have a great impact on the dynamic

112

a) b)

0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
Feature 1

0.15

0.10

0.05

0.00

0.05

0.10

Fe
at

ur
e

2

c)

0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
Feature 1

0.15

0.10

0.05

0.00

0.05

0.10
Fe

at
ur

e
2

d)

Figure 4.1 Illustrative two-class toy problems. Circles indicate the training samples and

diamonds the query instances, whose k-neighbors (𝑘 = 7) are highlighted in red and within

the region defined with the dashed lines. (a,c) is a 2-dimensional problem with two

informative features, and (b,d) is a 10-dimensional problem obtained from the

2-dimensional one by adding six redundant features and two random features. We show

only the two informative features in (b,d).

selection task as the locality information still seems quite valuable for the instance in Figure

4.1b.

In the second pair of query instances (Figure 4.1c-d), we see that the region in the 2-dimensional

space already presents class overlap. The latter is also intensified in the corresponding 10-

dimensional space to the point of breaking the k-nearest neighbors classification rule for the

depicted query instance. For the second pair, the average ratio of competent classifiers in

113

common between the queries and their neighbors went from 0.44 in the 2-dimensional problem

to less than half of that (0.20) in the 10-dimensional problem. This reduction could certainly

hinder the dynamic selection techniques as the information in the local region obtained in the

10-dimensional space seems to be insufficient to properly choose a set of classifiers for the

query in Figure 4.1d. In such cases, we believe another source of information in addition to the

locality could be valuable to perform the dynamic selection task well. Thus, it is our intuition

that not only the instances’ but also the classifiers’ interactions could be used for that aim, and

that learning both jointly in an end-to-end manner could provide the system with the necessary

information to tackle these scenarios where the locality assumption is not reliable enough for

the task.

Thus, we propose in this work a dynamic selection technique that leverages the instance-instance

and classifier-classifier relationships to tackle the class overlap and high dimensionality jointly

while learning the dynamic selection rule. To do so, we encode the instance-instance relationships

in a graph structure where the edges connect the samples (nodes) with a similar ensemble

response, taking into account the class overlap, in order to model how much useful information for

the dynamic selection task the samples may share. The classifier-classifier relationships, on the

other hand, are encoded as multi-labels that indicate which classifiers correctly label each given

sample. The dynamic selection meta-problem is then learned subject to these relationships using

a graph neural network (GNN) with a multi-label output layer, providing an end-to-end solution

to the dynamic selection task instead depending on hand-crafted meta-features. Implicitly, the

meta-learner learns an embedded space where the instances with a similar set of competent

classifiers are close-by and is responsible for indicating the combination of the classifiers to be

used in the integration phase. That way, the framework exploits both the samples’ local class

connections and the classifiers’ inter-dependencies to learn the dynamic classifier combination

rule, which may improve its robustness to the challenges high dimensionality and class overlap

can pose for the dynamic selection task.

The main contributions of this work are then:

114

• A novel dynamic selection technique that uses a GNN multi-label meta-learner that takes

advantage of the samples’ relations, modeled as a graph, and classifiers’ relations, modeled

as meta-labels, to learn the dynamic selection task to better deal with high dimensionality

and class overlap;

• A comprehensive experimental analysis including 35 high dimensional datasets, two ensemble

methods of differing characteristics, and 10 dynamic selection techniques with different

types of locality definition;

• An investigation on the limitations of the state-of-the-art dynamic selection methods in the

presence of high dimensionality and class overlap and the scenarios in which the proposed

modeling of the samples’ and classifiers’ relations help overcome these issues.

This work is organized as follows. We present a brief background on graph convolutional

networks in Section 4.2. The proposed method is then introduced in Section 4.3. Section 4.4

presents the related work in the field of dynamic ensemble selection. In Section 4.5 and Section

4.6 we report and analyze the experiments conducted in this work. Lastly, our conclusions are

summarized in Section 4.7.

4.2 Background

Graphs are structures able to represent the different interactions between the individual data

elements, usually as a set of edges and nodes, respectively. Besides their high expressive power,

graphs are also quite prevalent as they can naturally model several real-world problems, such

as product recommendation (Berg, Kipf & Welling, 2017), traffic prediction (Zhang, Shi, Xie,

Ma, King & Yeung, 2018) and text classification (Kipf & Welling, 2017), among many others.

Because of that, tasks such as node and graph classification and link prediction have attracted a

lot of attention in the machine learning community (Xia, Sun, Yu, Aziz, Wan, Pan & Liu, 2021).

Nevertheless, learning from graph-structured data may be challenging as, in order to exploit the

complex relations encoded in the graph, its non-Euclidean structural information needs to be

incorporated into a machine learning pipeline. Graph embedding methods (Cai, Zheng & Chang,

115

2018; Hamilton, 2020) provide a solution to the issue by learning the graphs’ representation so

that the data information is encoded into a low-dimensional Euclidean space. This can be quite

advantageous as it allows the application of classical learning methods to extract information

from the complex structure of the graph and make predictions.

Traditional embedding methods, however, rely on shallow learning which, by means of matrix

factorization or random walks statistics (Cai et al., 2018), learn an embedding matrix that

functions as a “lookup” encoder for the nodes of the graph. Shallow methods present some

limitations including scalability, as the parameters of the encoder are learned for each node in

the graph, and the inability to produce embeddings for unseen nodes (Hamilton, 2020). On the

other hand, embedding methods based on deep learning models were shown to overcome most

or all of the limitations of the shallow approaches (Zhang, Cui & Zhu, 2022).

A subset of such models, graph convolutional networks define the convolution operation on

graphs, which combines node information and produces high-level node representations (Xia

et al., 2021). The convolution operation can be defined in the spectral domain, based on the

application of filters over the transformed graph signal, and on the spatial domain, based on the

aggregation of the neighboring nodes’ representation. The convolution operation in the spectral

domain, however, depends on the eigenfunctions of the adjacency matrix’s Laplacian, which

may limit the application of the model over a graph whose eigenfunctions are different from the

graph used for training. Spatial-based graph convolutional networks, on the other hand, perform

the graph signal filtering in the vertex domain instead of the frequency domain, which allows

the convolution operation to be generalized as certain aggregation functions applied to a node

and its neighbors. Thus, due to their flexibility and efficiency, the spatial-based models have

become quite popular (Zhang, Tong, Xu & Maciejewski, 2019), with recent works proposing an

ensemble of graph convolutional networks (Nagarajan, Stevens & Raghunathan, 2022) and a

message-passing mechanism for dealing with multi-relational graphs (Wang, Xu, Yu, Zhang, Li,

Yang & Wu, 2022). These techniques fuse graph information, in the form of multiple GNNs

as base-classifiers in the former and multiple node relations in the latter, differing from our

proposed approach which uses a GNN to learn a dynamic fusion rule for the outputs of a given

116

ensemble of classifiers. We briefly present a few spatial-based convolutional layers that are

relevant to this work next, using the notation presented in Table 4.1.

Table 4.1 Notation pertaining to

representation learning on graphs.

Symbol Meaning

𝐺 Graph

𝑉 Set of vertexes

𝐸 Set of edges

𝑣𝑖 i-th vertex

x𝑖 Attributes of 𝑣𝑖
e𝑖, 𝑗 Attributes of the edge between 𝑣𝑖 and 𝑣 𝑗
h𝑙𝑖 Hidden representation of 𝑣𝑖 at the l-th layer

N(𝑣𝑖) Set of neighboring nodes of 𝑣𝑖 in 𝐺
W𝑙 Learnable parameters at the l-th layer

𝜎 () Non-linear activation function

Graph Convolutional Network (GCN) (Kipf & Welling, 2017)

The GCN model proposed in (Kipf & Welling, 2017) uses a localized first-order approximation

of spectral graph convolution, which in practice yields an information diffusion procedure

performed in each layer of the network. As such, the model can be interpreted as a spatial-based

graph convolutional network, with its convolution step shown in Equation 4.1, in which 𝐿𝑖, 𝑗

is a scalar calculated as a function of the adjacency matrix with self-loops and the degrees

of nodes 𝑣𝑖 and 𝑣 𝑗 (Gilmer, Schoenholz, Riley, Vinyals & Dahl, 2017). Moreover, the model

originally uses the Rectified Linear Unit function as activation function 𝜎(). The model was

proposed for semi-supervised learning and performs node classification on graph data, a task

at which it was shown to be quite powerful despite its simplicity (Kipf & Welling, 2017; Xu,

Hu, Leskovec & Jegelka, 2019). However, the model in principle works only for transductive

learning, so it cannot produce embeddings for unseen nodes.

hi
𝑙+1 = 𝜎(W𝑙 ·

∑
𝑣 𝑗∈N (𝑣𝑖)

𝐿𝑖, 𝑗h𝑙
𝑗) (4.1)

117

GraphSAGE (Hamilton et al., 2017)

Another spatial-based GCN is the GraphSAGE model (Hamilton et al., 2017), which can also be

seen as an extension of the GCN for inductive learning. The model learns a set of functions that

aggregate the features from neighboring nodes to produce the node embeddings.

Equation 4.2 shows the convolution operation applied at the l-th layer in the GraphSAGE model.

The concatenation operation is referenced as 𝐶𝐶𝑇 (), and the function 𝐴𝐺𝐺𝑙 () is the aggregation

function at layer 𝑙, with the mean, max-pooling, and long short-term memory (LSTM) functions

among the options.

hi
𝑙+1 = 𝜎(W𝑙 · 𝐶𝐶𝑇 (h𝑙

𝑖 , 𝐴𝐺𝐺𝑙 ({h𝑙
𝑗 ,∀𝑣 𝑗 ∈ N (𝑣𝑖)})) (4.2)

During the forward propagation, the model aggregates, at each layer, information from nodes

from an increasing hop neighborhood. Algorithm 4.1 (adapted from (Hamilton et al., 2017))

describes the forward propagation procedure, where the representation of all nodes 𝑣𝑖 ∈ 𝑉 is

computed from the first layer 𝑙 = 1 to the last layer 𝐿 sequentially, so that the representations of

all vertexes at layer 𝑙 are obtained after their representations at layer 𝑙 − 1 are obtained. The

learnable parameters W𝑙 (and aggregator functions parameters, if trainable) are then optimized

using stochastic gradient descent using a proposed unsupervised loss or a regular supervised

loss. The training of the network can also be done in mini-batches by sampling and producing

the embeddings of the required nodes from each batch, making the model suitable to address

large graphs.

The network is thus optimized to learn a general mapping function between the nodes’ original

feature space and the embedded space so that the latter contains the structural information from

the original graph. In generalization, the model is then able to apply the trained aggregation

functions over unseen nodes, either from an expanded version of the original graph or an entirely

new graph, and produce their embeddings in the new feature space.

118

Algorithm 4.1 GraphSAGE forward propagation (Adapted from (Hamilton et al., 2017)).

input :𝐺 = (𝑉, 𝐸) ; ⊲ Graph with its set of vertexes and edges

input :𝑋 = {x𝑖 ,∀𝑣𝑖 ∈ 𝑉} ; ⊲ Input representation of the vertexes

input :𝐿, {W𝑙 ,∀𝑙 ∈ [1, 𝐿]} ; ⊲ Number of layers and their weight matrices

input :{𝐴𝐺𝐺𝑙 ,∀𝑙 ∈ [1, 𝐿]} ; ⊲ Aggregation functions

output :𝐻𝐿 = {h𝐿
𝑖 ,∀𝑣𝑖 ∈ 𝑉} ; ⊲ Nodes representation in the embedded space

1 h0
𝑖 ← x𝑖 ,∀𝑣𝑖 ∈ 𝑉 ; ⊲ Initial representation is the input features

2 for every 𝑙 in {1, ..., 𝐿} do
3 for every 𝑣𝑖 in 𝑉 do
4 h𝑙

N(𝑣𝑖)
← 𝐴𝐺𝐺𝑙 (h𝑙−1

𝑗 ,∀𝑣 𝑗 ∈ N (𝑣𝑖)) ; ⊲ Aggregate the neighbors’ representations from layer

𝑙 − 1

5 h𝑙
𝑖 ← 𝜎(W𝑙 · 𝐶𝐶𝑇 (h𝑙−1

𝑖 , h𝑙
N(𝑣𝑖)

)) ; ⊲ Obtain the representation at layer 𝑙

6 end for
7 Normalize h𝑙

𝑖 ,∀𝑣𝑖 ∈ 𝑉

8 end for
9 𝐻𝐿 ← h𝐿

𝑖 ,∀𝑣𝑖 ∈ 𝑉 ; ⊲ Representation of all vertexes at the last layer

10 return 𝐻𝐿

Graph Attention Network (Veličković, Cucurull, Casanova, Romero, Liò & Bengio, 2018)

In (Veličković et al., 2018) a GNN architecture with a self-attention mechanism was proposed

to naturally deal with graphs that present variable node degrees by allowing the assignment

of different weights to the neighbors. The network applies a shared attention mechanism that

integrates the graph structure through masked attention, so that the layer produces the nodes’

hidden representations by attending over their first-order neighbors. This allows the model to not

only be applicable in an inductive scenario, due to its shared parameters, but also to learn and

apply different importances to the nodes from a given neighborhood, as opposed to the previously

presented models. The latter characteristic is especially interesting from a local learning general

standpoint as the network is able to focus on the connections that are more relevant to the task

being learned, meaning the local operation is adaptively applied. It also provides an increase in

the model capacity (Veličković et al., 2018), which could be advantageous when dealing with

complex local distributions.

The attention layer operation is described in Equation (4.3), in which a indicates the parameters

of the attention mechanism, defined as a single layer feed-forward neural network, and 𝛼

119

(Equation (4.4)) represents the attention coefficients used to aggregate the neighbors’ hidden

representations. The model also originally uses the Leaky Rectified Linear Unit function as

activation function 𝜎().

hi
𝑙+1 = 𝜎(

∑
𝑣 𝑗∈N (𝑣𝑖)

𝛼𝑙
𝑖, 𝑗W𝑙 · h𝑙

𝑗) (4.3)

𝛼𝑙
𝑖, 𝑗 =

exp(𝜎(aᵀ · 𝐶𝐶𝑇 (W𝑙 · h𝑙
𝑖 , W𝑙 · h𝑙

𝑗)))∑
𝑣𝑚∈N (𝑣𝑖) exp(𝜎(aᵀ · 𝐶𝐶𝑇 (W𝑙 · h𝑙

𝑖 , W𝑙 · h𝑙
𝑚)))

(4.4)

4.3 Graph Neural Network Dynamic Ensemble Selection technique

We propose in this work the Graph Neural Network Dynamic Ensemble Selection (GNN-DES)

technique, which exploits both the local information shared between the instances and the

classifiers’ inter-dependencies so that the learned dynamic classifier combination rule can better

deal with class overlap and high dimensionality. To that end, we encode the relationships between

the instances, derived from the ensemble behavior towards each pair of samples, into a graph.

This allows mapping not only their similarities but also their class relations, thus outlining the

existing overlap. In addition to that, the relationships between the classifiers are encoded in the

problem’s meta-labels. We then train a multi-label GNN which learns the dynamic classifier

combination rule from the classifiers’ inter-dependencies and local class structure of the data

jointly. Internally, the GNN is expected to use both information to learn an embedded space

where the dynamic selection task is potentially easier, in the sense of the locality assumption.

Thus, in order to characterize the local relations in the data, we define two types of links between

the instances: weak links and strong links. Generally speaking, samples connected by weak

links are the ones for which the ensemble produces a similar response even though they belong

to different classes. These samples are weakly linked as they may share a subset of competent

classifiers but they may not be relied upon given the indicated class overlap. Strong link

120

connections, on the other hand, are formed between samples that belong to the same class and

have a similar ensemble response. These samples are the most indicated for drawing information

from as they may share a subset of competent classifiers without the issue of ambiguity. Each

sample has at least one strong link with an instance from its own class, the one with the most

similar ensemble response (or its nearest friend), and the maximum margin for the sample’s

connections is a function of this link.

Figure 4.2 Example of weak and strong linkage applied in the proposed method. Weak

links (dashed) are built between close samples from different classes while strong links are

built between close samples from the same class. The instance highlighted in red presents

mostly weak links, indicating an ambiguous decision region. The instance highlighted in

green presents only strong links, suggesting a safe decision region.

Figure 4.2 illustrates the linkage concepts used in the proposed method, with the dashed and

solid lines representing weak and strong links, respectively. The sample highlighted in red is

an example of instances in an ambiguous continuous decision space, that is, the classifiers’

responses for it differ little from the ones given to its nearest friend as well as four other

samples from the opposite class, thus yielding one strong link and four weak links. The instance

highlighted in green, on the other hand, has three strong connections in addition to the one with

121

its nearest friend, and no weak connection as all instances from the opposite class are much

further from it than its nearest friend.

With the meta-data thus encoded in the graph form following the basic principles described

above, a network with a GNN core and a multi-label output layer is trained as our meta-learner

for the dynamic selection task. Thus, given an unknown instance added to the original graph

used during training, the meta-learner outputs the weights of each classifier’s decision to produce

the instance’s predicted label.

We introduce the proposed technique in detail in Section 4.3.1. Then, in Section 4.3.2, we

present an illustrative example of the method using a synthetic dataset. Throughout this section,

we use the notation from Table 4.2 as well as from Table 4.1.

Table 4.2 Notation pertaining

to the GNN-DES technique.

Symbol Meaning

T Training set

Ω Set of the problem’s labels

𝐶 Pool of classifiers

𝐺T Known graph

𝐺𝑁𝑁 Meta-learner

𝑦𝑖 True label of x𝑖
𝑐𝑘 k-th classifier from 𝐶
𝑝𝑖,𝑘 Output probability from 𝑐𝑘 to x𝑖
p𝑖 Output probabilities for x𝑖
𝑑𝑖, 𝑗 Normalized L1 distance between p𝑖 and p 𝑗

𝑜𝑖,𝑘 Value of the network’s k-th output node for input x𝑖
𝑢𝑖,𝑘 Indication of (in)correct classification of x𝑖 from 𝑐𝑘
u𝑖 Meta-labels of x𝑖
x𝑞 Query/unknown instance

𝐺𝑞 Evaluation graph

𝑦̂𝑞 Predicted label for x𝑞

4.3.1 Description

Figure 4.3 describes the general steps of the proposed technique. In memorization, with a pool

of classifiers 𝐶 and the training set T as input, we first assign the meta-labels to the labeled

instances according to the correct or incorrect classification from each classifier in the pool (Step

1). As multiple classifiers can label correctly the same instance, the meta-problem is designed

as a multi-label problem.

122

Figure 4.3 General steps of the GNN-DES technique.

In Step 2, we encode the meta-data associated with the responses of the classifiers over the

labeled data into a graph representation (𝐺T). The nodes represent the instances, described

by their representation in the original feature space, and the edges represent their relationship,

defined using the posterior probabilities yielded by the classifiers and, in the case of the training

data alone, the available class labels. Then, in Step 3, the GNN is trained in a supervised manner

using the known graph 𝐺T , the meta-labels obtained from Step 1, and the original representation

of the instances.

In generalization, we add the unknown sample to the known graph to form the evaluation

graph (𝐺𝑞) in Step 4. Then, in Step 5, we induce the GNN using the query instance’s original

representation and 𝐺𝑞 to yield its output, which in turn indicates the weights to be used for each

classifier for the query sample’s prediction.

Figure 4.4 outlines all steps of the proposed framework. We refer to it as we describe in detail

the technique in Section 4.3.1.1 and Section 4.3.1.2.

123

a)

Figure 4.4 Description of the GNN-DES in (a) memorization and (b) generalization.

4.3.1.1 Memorization

Meta-label assignment

In Step 1 of Figure 4.4 we obtain the meta-labels of the known data. As we wish to learn how to

select a subset of competent classifiers to label each query sample in particular, the meta-labels

124

b)

Figure 4.4 Description of the GNN-DES in (a) memorization and (b) generalization.

in our framework represent the ability of a given classifier to correctly label a given sample. The

meta-labels are then obtained by evaluating the known data using the input set of classifiers 𝐶.

We encode the meta-labels of each sample x𝑖 in a vector form u𝑖, obtained according to Equation

(4.5). Thus, the meta-label assignment step yields a meta-label matrix 𝑈 of size |T | × |𝐶 |, in

which each row represents a sample and each column the indication of (in)correct classification

of a classifier from the pool.

𝑢𝑖,𝑘 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if 𝑐𝑘 (x𝑖) = 𝑦𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(4.5)

125

Algorithm 4.2 describes in more detail the meta-label assignment step of the proposed method.

Taking the training set, the validation set and the pool of classifiers, we start with the meta-labels

matrix empty. We then evaluate each labeled instance over each classifier in the pool from Step

2 to Step 6 of Algorithm 4.2 and return the meta-labels matrix 𝑈 in Step 7.

Algorithm 4.2 Graph Neural Network Dynamic Ensemble Selection (GNN-DES) technique -

Step 1: meta-label assignment.

input :T , 𝐶 ; ⊲ Training set, pool of classifiers

output :𝑈 ; ⊲ Meta-labels in matrix form

1 𝑈 ← [] ; ⊲ Empty matrix

2 for every x𝑖 in T do
3 for every 𝑐𝑘 in 𝐶 do
4 Set 𝑢𝑖,𝑘 from 𝑐𝑘 , 𝑦𝑖 according to Eq. (4.5)

5 end for
6 end for
7 return 𝑈 ; ⊲ Meta-labels matrix

Graph construction

In Step 2 of the proposed method, we construct the graph which encodes the local information

used as input to the meta-learner. In the graph, each vertex represents an instance, which is

described by its feature vector, and the edges connect the samples that are closely located in the

decision space, where the axes represent the responses of the set of classifiers.

Thus, to construct the graph we first project the labeled data into the continuous decision space,

meaning we obtain, for each instance, the output probabilities given by all classifiers, yielding

𝑃T = [p𝑖 ,∀x𝑖 ∈ T], where p𝑖 = [𝑝𝑖,1, 𝑝𝑖,2, ..., 𝑝𝑖,|𝐶 |], as shown in Figure 4.4 (Step 2). For

binary problems, which is the case presented in this section, only the output probabilities for the

positive class (represented here as 𝑝𝑖,𝑘 from classifier 𝑐𝑘 for sample x𝑖) are used to represent the

samples in the decision space, whereas for multi-class problems, the output probabilities for

all classes are used for representing the instances. We then calculate the pairwise L1 distance

between the representations in 𝑃T , normalized by the ensemble size, and also by the number

of labels in the multi-class scenario. We chose the L1 distance as it conveys how much the

ensemble collectively disagrees in its response to two samples, as this determines their linkage

126

based on our assumption w.r.t. their shared subset of competent classifiers. The normalized

pairwise distances then yield the distance matrix 𝐷T×T , which is used to build the strong and

weak links within the known graph 𝐺T according to Equation (4.6).

The edges in the known graph are drawn so that each instance has at least one strong link,

meaning they are connected to their nearest friend (i.e. sample from the same class in the

continuous decision space), and its maximum margin for connection 𝑑𝑚𝑎𝑥 is defined as the

distance to the nearest friend plus a preset threshold 𝜏 (Equation (4.6)). For the strong links,

the closer the ensemble response, the more reliable the connection between the instances, thus

their edge weights are defined as the samples’ similarity in the continuous decision space.

An instance’s weak links are formed with the samples from the opposite class that are also

located within its maximum margin for connection. While they may share a subset of competent

classifiers, justifying their linkage, the more similar the ensemble responses, the more ambiguous

the area is, thus, we penalize the connection accordingly. Thus, the edge weight of a strong link

follows a monotonically decrescent linear function with the distance until the maximum margin

𝑑𝑚𝑎𝑥 , aiming at rewarding the similar ensemble behavior over similar instances from the same

class. On the other hand, the weak link edge weight follows a monotonically crescent quadratic

function with the distance until the same threshold to highly penalize the local class overlap so

that the more similar the classifiers’ responses, the weaker the link. Both edge weight functions

are illustrated in Figure 4.5.

𝑒𝑖, 𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 − 𝑑𝑖, 𝑗 , if (𝑑𝑖, 𝑗 ≤ 𝑑𝑚𝑎𝑥
𝑖 ∨ 𝑑𝑖, 𝑗 ≤ 𝑑𝑚𝑎𝑥

𝑗) ∧ 𝑦𝑖 = 𝑦 𝑗 ,

𝑑2
𝑖, 𝑗 , if (𝑑𝑖, 𝑗 ≤ 𝑑𝑚𝑎𝑥

𝑖 ∨ 𝑑𝑖, 𝑗 ≤ 𝑑𝑚𝑎𝑥
𝑗) ∧ 𝑦𝑖 ≠ 𝑦 𝑗 ,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

𝑑𝑚𝑎𝑥
𝑖 = min(𝑑𝑖,𝑘 ,∀x𝑘 ∈ T |𝑦𝑘 = 𝑦𝑖) + 𝜏

(4.6)

Algorithm 4.3 shows the graph construction step performed in memorization (Step 2 of Figure

4.4), which results in the known graph 𝐺T . The vertexes and edges sets start empty (Steps 1-2).

Then, the training data is projected to the decision space (Step 3), and in Step 4 we calculate

127

Figure 4.5 Edge weight function for strong and weak links (Eq. (4.6)). The strong and

dotted lines indicate the edge weight values for distances below and above the 𝑑𝑚𝑎𝑥 cut-off

point, respectively.

Algorithm 4.3 Graph Neural Network Dynamic Ensemble Selection (GNN-DES) technique -

Step 2: graph construction.

input :T , 𝐶, 𝜏 ; ⊲ Training set, pool of classifiers, preset threshold

output :𝐺T ; ⊲ Known graph

1 𝑉 ← {} ; ⊲ Vertexes set

2 𝐸 ← {} ; ⊲ Edges set

3 𝑃T ← 𝑡𝑜_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑠𝑝𝑎𝑐𝑒(T , 𝐶) ; ⊲ Project T to the decision space

4 𝐷T×T ← 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑃T , 𝑃T) ; ⊲ Obtain pairwise distance matrix

5 for every x𝑖 in T do
6 𝑉 ← 𝑉 ∪ 𝑣𝑖 (x𝑖) ; ⊲ Add 𝑣𝑖 with its feature vector x𝑖 to 𝑉
7 for every x 𝑗 in T do
8 Calculate 𝑒𝑖, 𝑗 from 𝐷T×T , 𝜏, 𝑦𝑖 , 𝑦 𝑗 according to Eq. (4.6) if 𝑒𝑖, 𝑗 > 0 then
9 𝐸 ← 𝐸 ∪ 𝑒𝑖, 𝑗 ; ⊲ Add edge to graph

10 end if
11 end for
12 end for
13 𝐺T ← (𝑉, 𝐸) ; ⊲ Add vertexes and edges to 𝐺T
14 return 𝐺T

their pairwise distances in the projected space. From Step 5 to Step 13 we add to the vertexes set

𝑉 all training instances (Step 6), and compute their pairwise edge weight (Step 8), adding the

non-zero weighted edges to the edge set 𝐸 (Step 10). The known graph 𝐺T is then defined by 𝑉

and 𝐸 in Steps 14-15 and returned.

128

Meta-learner training

With the known graph 𝐺T and the meta-labels 𝑈 we fit the model in the meta-learner training

step of the proposed framework, depicted in Figure 4.4 as Step 3. We train the GraphSAGE

network in a supervised manner. We use the GraphSAGE model as it provides an efficient

general framework for inductive learning on graphs (Zhang et al., 2022; Hamilton et al., 2017).

As our meta-problem is multi-label, we set a dense layer as the output layer of the network with

the sigmoid function as activation, and each output node is associated with a given classifier

combination weight. The loss function optimized during training is the binary cross-entropy loss,

weighted so that the harder to classify the sample, measured in the number of classifiers in the

pool able to label it correctly, the higher its weight. The weights are included to encourage the

network to focus on the more difficult samples in cases where a large number of classifiers can

correctly label most of the samples. Equation (4.7) presents the loss function used to optimize

the meta-learner, where 𝑂 is the set of outputs, 𝑈 is the set of meta-labels, B is the training batch,

𝑤𝑖 the weight for the i-th sample, L𝐵𝐶𝐸 (u𝑖 , o𝑖) is the binary cross-entropy loss between the

meta-labels and the network’s output for the i-th sample, and 𝜖 a small value used for numerical

stability.

L(𝑂, 𝑈) =
1∑|B|

𝑖=1
𝑤𝑖 (u𝑖)

|B|∑
𝑖=1

𝑤𝑖 (u𝑖) × L𝐵𝐶𝐸 (u𝑖 , o𝑖)

𝑤𝑖 (u𝑖) =|𝐶 | −
|𝐶 |∑
𝑘=1

𝑢𝑖,𝑘 + 𝜖

(4.7)

Figure 4.6 broadly illustrates the procedure the meta-learner performs during the training step.

The vector x𝑖 indicate the i-th sample’s representation in the feature space and the vector u𝑖 its

meta-labels, as described in Table 4.2. Suppose the sample x1 is input to the network with the

GraphSAGE core of 𝐿 = 2 layers. For the first layer, the instances from x1’s 1-hop neighborhood

(𝑙 = 1, in green) are sampled, proportionally to their edge weights with x1. Then, the hidden

representation of x1, h1
1

is obtained using the aggregated representation of its sampled neighbors

129

(shown with green connections) and its original representation, so h1
1
= 𝑓 (x1, x2, x3, x4, x5),

with 𝑓 () described in more detail in Equation (4.2).

In the second layer of the GraphSAGE core, another set of instances are sampled, now in the

2-hop neighborhood (𝑙 = 2, in purple). The process repeats, with the hidden representations of

the sampled instances (shown with purple connections) being aggregated and used to obtain the

hidden representation of x1 in the second layer, h2
1
, so h2

1
= 𝑓 (h5, h6, h7, h8, h9), 𝑓 () described

in Equation (4.2). Then, in the last, dense output layer, the hidden representation of x1, h2
1
, is

used as input to produce the predicted meta-label vector û1. The latter is used with its ground

truth meta-label vector u1 to calculate the weighted binary cross-entropy for the sample and

adjust the network weights using gradient descent.

Thus, the meta-learner is optimized using both the samples relationships, provided by the graph,

and the classifiers’ relationships, provided by the meta-labels. We then expect that, internally,

it learns an embedded space where the locality assumption for the dynamic selection task is

improved, so that the dynamic combination rule can be yielded in a straightforward manner at

the output of the network.

4.3.1.2 Generalization

Graph expansion

The first step in generalization is to expand the known graph 𝐺T by adding the query instance

x𝑞, forming the evaluation graph 𝐺𝑞 (Step 4 of Figure 4.4). To that end, we project the unknown

instance to the continuous decision space using the pool of classifiers 𝐶. Then, we obtain the

distances between the projected sample and the labeled instances, building its (strong) links

according to Equation (4.8). The non-zero weighted edges, as well as the query vertex and its

description x𝑞 are added to 𝐺T to form the query graph 𝐺𝑞.

130

Figure 4.6 Illustrative example of the procedure the meta-learner performs during the

training step. The vector x𝑖 indicate the i-th sample’s representation in the feature space and

the vector u𝑖 its meta-labels. The samples from x1 1-hop neighborhood (𝑙 = 1) are circled

in green, and the sampled instances among them have a green connection. Similarly, the

samples from x1 2-hop neighborhood (𝑙 = 2) are circled in purple, and the sampled

instances among them have a purple connection.

𝑒𝑞, 𝑗 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 𝑑𝑞, 𝑗 , if 𝑑𝑞, 𝑗 ≤ 𝑑𝑚𝑎𝑥
𝑞 ,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

𝑑𝑚𝑎𝑥
𝑞 = min(𝑑𝑞,𝑘 ,∀x𝑘 ∈ T) + 𝜏

(4.8)

Algorithm 4.4 describes the graph expansion procedure. The new set of edges 𝐸 starts empty

(Step 1). Then, the query instance is projected to the continuous decision space in Step 2, and its

distance to the labeled data, also in the continuous decision space, is calculated in Step 3. From

Step 4 to Step 9, the edge weights between the query instance and the known data are calculated,

with the non-zero ones being added to the edge set (Step 7). Lastly, in Step 10, the query vertex

and its edges are added to the known graph to form the evaluation graph 𝐺𝑞.

131

Algorithm 4.4 Graph Neural Network Dynamic Ensemble Selection (GNN-DES) technique -

Step 5: graph expansion.

input :x𝑞 , 𝐶, 𝜏, 𝐺T ; ⊲ Query instance, pool of classifiers, preset threshold, known graph

input :𝑃T ; ⊲ Training data in the decision space representation

output :𝐺𝑞 ; ⊲ Evaluation graph

1 𝐸 ← {} ; ⊲ Edges set

2 p𝑞 ← 𝑡𝑜_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑠𝑝𝑎𝑐𝑒(x𝑞 , 𝐶) ; ⊲ Project xq to the decision space

3 𝐷𝑞×T ← 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(p𝑞 , 𝑃T) ; ⊲ Obtain pairwise distance between p𝑞 and 𝑃T
4 for every x 𝑗 in T do
5 Calculate 𝑒𝑞, 𝑗 from 𝐷𝑞×T , 𝜏 according to Eq. (4.8) if 𝑒𝑞, 𝑗 > 0 then
6 𝐸 ← 𝐸 ∪ 𝑒𝑖, 𝑗 ; ⊲ Add edge to graph

7 end if
8 end for
9 𝐺𝑞 ← 𝐺T ∪ (𝑣𝑞 (x𝑞), 𝐸) ; ⊲ Add query vertex and edges to the known graph

10 return 𝐺𝑞

Ensemble combination

The last step of the proposed technique, the ensemble combination, is depicted as Step 5 in

Figure 4.4. In this step, the evaluation graph is used as input to the meta-learner yielding the

output o𝑞 for the vertex 𝑣𝑞. Then, the output of the network is used to weigh the votes of their

respective classifiers, which are then aggregated to yield the predicted label 𝑦𝑞, according to

Equation (4.9), where �() is the indicator function.

𝑦̂𝑞 =argmax𝜔∈Ω

|𝐶 |∑
𝑘

𝑜𝑞,𝑘 × �(𝑐𝑘 (x𝑞) = 𝜔) (4.9)

4.3.2 Illustrative example

To illustrate the proposed method, we use a balanced 2-dimensional two-class toy problem with

a total of 50 instances. The dataset was split firstly into two sets, with 33% separated as test data

and the remaining 66% for training/validation. We then generate an ensemble 𝐶 with |𝐶 | = 6

classifiers, in this case a set of Decision Stumps obtained using AdaBoost (Freund & Schapire,

1997). Figure 4.7a depicts the training data and the classifiers’ decision borders (in blue).

132

Figure 4.7 Training data and the ensemble of Decision Stumps (with decision borders in

blue) in the original feature space.

In Step 1 of the proposed method (Figure 4.4a) we perform the meta-label assignment procedure,

thus identifying which classifiers are able to label each instance correctly. That is, we obtain the

Oracle information of the ensemble with respect to (w.r.t.) the training data, as the Oracle is the

abstract model that always selects the correct classifiers for each instance (Kuncheva, 2002).

Considering the input ensemble 𝐶, the Oracle accuracy rate, regarded as the theoretical upper

limit on the performance of the ensemble (Didaci, Giacinto, Roli & Marcialis, 2005) over the

toy’s test set was 100%.

Then, in Step 2 of the proposed method, we project the known data to the decision space using

the classifiers’ output probabilities. Then, we connect the samples over which the ensemble

yielded a similar response to obtain the edges of the known graph 𝐺T . The threshold used in this

example was 𝜏 = 0.05. Figure 4.8a shows the Uniform Manifold Approximation and Projection

for Dimension Reduction (UMAP) (McInnes, Healy & Melville, 2018) feature reduction of the

samples’ decision space representation and the known graph’s edges, obtained using Equation

(4.6) with 𝜏 = 0.05.

133

a) b)

Figure 4.8 2-dimensional representation (obtained using UMAP) of the training data and

the known graph in (a) the decision space, and (b) the embedded space.

With the known graph 𝐺T and the corresponding meta-labels 𝑈 at hand, we train the multi-label

GNN, as shown in Step 3 of Figure 4.4a. In this toy experiment, we trained the GraphSAGE

with two convolutional layers of size 16, neighborhood size for sampling of 5 in each layer, and

attentional aggregator function. Figure 4.8b shows the UMAP feature reduction of the learned

embedded representation of the known data, where we observe not only a greater separation

between the problem’s classes, but also between the samples from the same class itself. Since the

network is optimized in a supervised way, these small clusters may indicate a certain similarity

in the samples’ labelsets.

In generalization, we first expand the known graph with the query sample node, according to the

ensemble response (Step 4 of Figure 4.4b). Figure 4.9 shows the 2-dimensional representation

of the evaluation graph in the decision space and in the embedded space, with the query sample

indicated with a diamond marker. We can further observe the improvement in the embedded

space’s distribution compared to the decision space’s, as the depicted query appears to be placed

in a much better position in the former than in the latter. Using the evaluation graph as input to

the network in Step 5 of the proposed method we obtain the weights of each classifier to obtain

134

a) b)

Figure 4.9 2-dimensional representation (obtained using UMAP) of the evaluation graph

in (a) the decision space, and (b) the embedded space. The query sample is depicted with a

diamond marker.

the output label of the query instance according to Equation (4.9). In terms of performance,

the proposed method correctly labeled 15 of the 17 test samples, surpassing the AdaBoost

combination rule (labeling correctly 11 test samples), the feature space-based DES technique

K-Nearest Oracles Union (Ko et al., 2007) (labeling correctly 12 test samples), and the decision

space-based DES techniques K-Nearest Output Profiles (Cavalin et al., 2012) (labeling correctly

11 test samples), both with neighborhood size 𝐾 = 7.

To further visualize and assess the quality of the neighborhood produced over different feature

spaces for the dynamic selection task over the depicted test sample, we compute the average

intersection between the meta-labelset of the query and its neighbors, which indicates the degree

of support the neighborhood provides for the true meta-labels of the query. Figure 4.10 shows the

query instance (in diamond) and its neighbors (in squares) obtained in the feature space, decision

space, and embedded space, all represented in the original feature space. We can see from Figure

4.10 that the neighborhoods obtained over the feature space and the decision space contain at

most one instance from the query’s class, while the one obtained over the embedded space

135

yielded by the GNN is composed of samples from the green class only. Computing the average

meta-label support over the three neighborhoods, the neighborhood obtained in the original

feature space has an average meta-label intersection of 0.09, the one obtained in the decision

space has an average meta-label intersection of 0.00, and the one obtained in the embedded

space has an average meta-label intersection of 0.67. This suggests that the neighborhood in the

embedded space optimized for the dynamic selection task is more favorable to the latter than the

original feature space and decision space.

a) b) c)

Figure 4.10 Query instance (diamond) and respective neighbors (square) obtained using

the KNN (𝐾 = 7) over the (a) feature space, (b) decision space, and (c) embedded space,

shown in the original feature space.

Figure 4.11 depicts the same data on the embedded space after reducing its dimensionality

from 16 to 2 using UMAP. We can see that the network clustered the data mostly by class but

not necessarily to one cluster each, indicating that other sources of information are taken into

account in the optimization process, as intended. We can also observe the neighbors from Figure

4.10c in the vicinity of the query instance in the embedded space.

136

Figure 4.11 Query instance (diamond) and respective neighbors (square) obtained using

the KNN (𝐾 = 7) over the embedded space (with graph edges), shown in the embedded

space in two dimensions obtained with UMAP.

4.4 Related work

Dynamic selection techniques single out a subset of classifiers from a pool of classifiers

to label each query instance in particular, with the purpose of using only the ones deemed

competent enough for the task. The selection process is usually performed in three steps:

region of competence (RoC) definition, competence estimation and classifier selection (Cruz

et al., 2018a). In the first step, a local region around the query sample, called the region

of competence, is defined using clustering methods (Soares et al., 2006), nearest neighbors

rule (Cruz et al., 2015a; Ko et al., 2007; Cavalin et al., 2012; Souza et al., 2019b), potential

function model (Woloszynski & Kurzynski, 2011), recursive partitioning (Souza et al., 2023;

Biedrzycki & Burduk, 2020), and/or fuzzy hyperboxes (Davtalab et al., 2022) over a labeled

dataset, referred to as the dynamic selection set (or DSEL set). In the second step, the competence

of the classifiers in the pool is estimated in the RoC based on one or multiple criteria, including

local accuracy (Ko et al., 2007), classifier behavior (Cavalin et al., 2012), and ensemble diversity

(Soares et al., 2006), meta-learning (Cruz et al., 2015a; Pinto et al., 2016), among others. In the

last step, one or several classifiers are selected to perform the query instance’s classification. If

137

the former, the technique is referred to as a dynamic classifier selection (DCS) technique. If the

latter, we consider it a dynamic ensemble selection (DES) technique.

Local-based DES techniques were often shown to perform well over problems that present

challenging characteristics, including class imbalance, compared to static selection schemes

(Oliveira et al., 2017). However, the success of these techniques is strongly linked to the

distribution of the DSEL, in a global view, and the RoC, in an individual view. Characteristics

such as the size of the DSEL (Cruz et al., 2015b) and local class overlap in the RoC (Cruz et al.,

2018b; Souza et al., 2019a) were already shown to impact the performance of the local-based

dynamic selection techniques. This is somewhat expected as in general the RoC is defined using

a dissimilarity metric applied in a given space, most often the Euclidean distance applied in the

original feature space. Thus, these techniques assume that the samples’ similarity in the space

indicates they share a similar set of competent classifiers. Nevertheless, this assumption may

fail more frequently in complex distributions, as class overlap, data dimensionality and sparsity

were shown to negatively affect the performance of local methods (Costa et al., 2009; Sánchez

et al., 2007), and can impact the quality of the acquired region for the dynamic selection task.

Several local-based DES techniques which directly address certain issues, especially class

overlap, in the RoC data distribution were proposed in the literature. In (Pereira et al., 2018),

the instances from the RoC are filtered out according to their discrimination index, obtained by

applying Item Response Theory (IRT) over the pool of classifiers, with the purpose of using

only the most discriminative ones in the competence estimation step. The RoC is also edited in

(Oliveira et al., 2018) and (Souza et al., 2022), the former based on the local class distribution

and the latter based on instance characterization, to reduce the effects of the class imbalance in

overlap regions. In (Li et al., 2019), a must link and a cannot link graph are constructed in the

RoC to map the relationships between the instances, taking into account the class overlap in the

area. Each classifier’s competence is then estimated as a function of its overall local accuracy

and a score dependent on the RoC distribution and its response to it, which is maximized when

the classifier gives different responses to samples from different classes and similar responses to

samples from the same class or close to one another. While these local-based DES techniques

138

attempt to reduce the impact a poorly defined or complex RoC has on the selection task, they

still heavily (or in most cases, solely) depend on the previously defined local distribution and

disregard the relationship between the classifiers, which might be helpful in difficult cases where

the locality assumption fails.

We can also find in the literature a class of DES techniques that completely skips the RoC

definition step. Methods such as the Chained Dynamic Ensemble (CHADE) (Pinto et al., 2016)

and the Probabilistic Classifier Chain Dynamic Ensemble Selection (PCC-DES) (Narassiguin

et al., 2017) define the DES task as a multi-label problem in the meta-level, in which the meta-

labelset indicate the classifiers that are competent to label a given instance. Both techniques make

use of a multi-label classifier as the meta-learner which is responsible for yielding the ensemble

combination rule for each input query sample, without explicitly taking into account its local

context. In CHADE, a Classifier Chain ensemble (Read, Pfahringer, Holmes & Frank, 2011)

is used as the meta-learner, while in the PCC-DES a Probabilistic Classifier Chain ensemble

(Cheng, Hüllermeier & Dembczynski, 2010) and Monte-Carlo sampling are applied. Thus, these

techniques learn the inter-dependencies between the classifiers to solve the DES meta-problem

instead of relying on the locality assumption, which could be useful in situations where the

RoC presents a complex or unreliable distribution, though possibly lacking otherwise. However,

the order of the classifiers in the chain greatly affects the performance of the learner (Read

et al., 2011; Pinto et al., 2016). This issue can be reduced by using an ensemble of classifier

chains, though it increases significantly its cost. The PCC-DES technique has a particularly high

computational overhead in generalization as the DES task loss minimization requires a search

with a quadratic time cost on the sample size (Narassiguin et al., 2017).

Table 4.3 presents a non-exhaustive list of DES techniques and their characteristics w.r.t. their

use of local and classifiers’ inter-dependencies information. We can see that, as discussed

previously, defining the local region can be performed using several procedures, or can simply

not be performed at all, as is the case of CHADE and PCC-DES. Building more complex

structures to characterize the local relationships between the instances can also be performed,

as the GDEP does by building graphs in the already defined RoC, and the FH-DES does by

139

Table 4.3 Characteristics of several DES techniques. The column Acronym indicates the

acronym adopted in this work.

Name Acronym RoC definition
RoC definition

space

Multilabel

learning
DES-Clustering (Soares et al., 2006) DES-KMEANS Clustering Feature space No

K-Nearest Oracles Eliminate (Ko et al., 2007) KNE Nearest neighbors Feature space No

K-Nearest Oracles Union (Ko et al., 2007) KNU Nearest neighbors Feature space No

Dynamic Ensemble Selection-KNN (Soares et al., 2006) DKNN Nearest neighbors Feature space No

Online Local Pool (Souza et al., 2019b) OLP Nearest neighbors Feature space No

Randomized Reference Classifier (Woloszynski & Kurzynski, 2011) RRC Potential function Feature space No

Online Local Pool++ (Souza et al., 2023) OLP++
Recursive

partitioning
Feature space No

Fuzzy Hyperboxes DES (Davtalab et al., 2022) FH-DES Fuzzy hyperboxes Feature space No

K-Nearest Output Profiles (Cavalin et al., 2012) KNOP Nearest neighbors Decision space No

META-DES (Cruz et al., 2015a) META-DES Nearest neighbors
Feature &

decision spaces
No

Graph-based Dynamic Ensemble Pruning (Li et al., 2019) GDEP
Nearest neighbors

(Graph)
Decision space No

Chained Dynamic Ensemble (Pinto et al., 2016) CHADE - - Yes

Probabilistic Classifier Chain DES (Narassiguin et al., 2017) PCC-DES - - Yes

Proposed GNN-DES
Radius neighbors

(Graph)
Decision space Yes

defining fuzzy hyperboxes associated with the classifiers’ competences/incompetences. For the

local-based DES techniques, the most common space where the local region is defined is the

original feature space, though several techniques perform the RoC definition (additionally or

not) in the decision space. Lastly, the techniques that learn the inter-dependencies between the

classifiers define the DES task as a multi-label problem and use a meta-classifier that allows the

learning of the meta-labels jointly.

It can be observed that the proposed method, described in the last row of Table 4.3, combines the

local and the multi-label approaches to provide information regarding samples’ and classifiers’

relationships to the meta-learner and thus learn the dynamic classifier combination rule. Moreover,

the local information is encoded in a graph structure, similar to the GDEP, so that the local

class distribution is considered when dealing with overlapped areas. However, we encode all of

the data into one graph, as opposed to GDEP which characterizes each RoC individually with

two graphs, and introduce it to a GNN meta-learner which, as will be presented next, performs

convolutions with sampled neighbors from different depths in the graph. That way, the RoC

in the proposed method is not explicitly defined as a fixed region and is thus not constrained

to the same set of instances as in the GDEP. Another difference between the proposed method

140

and the local-based techniques is that the former is trained end-to-end, meaning that the system

learns a dynamic selection rule from the graph and meta-labels information alone, while the

other techniques require the definition of classifier competence criteria to be used directly or as

handcrafted meta-features (as in the META-DES technique).

4.5 Experimental protocol

4.5.1 Research questions

We assess in this work through an experimental analysis the following research questions:

• RQ1: How do the DES techniques perform in the presence of high dimensionality and class

overlap?

• RQ2: Does the DES techniques’ behavior relates to the ensemble characteristics and/or their

RoC definition procedure?

• RQ3: Does the proposed method surpass the static selection baseline and the different

dynamic selection methods?

• RQ4: Does learning from the interactions between the classifiers and between the instances

aid in overcoming the limitations of the current state-of-the-art techniques?

4.5.2 Datasets

Table 4.4 presents the characteristics of the datasets used in the experiments. We use the same

test bed from (Souza et al., 2023), excluding only the four datasets over which the AdaBoost

ensemble method generated fewer than the set amount of classifiers in the pool. The chosen

testbed contains two-class high dimensional small sample sized (HDSSS) datasets (with at least

100 features) taken from the OpenML repository (Vanschoren et al., 2013). The column 𝐼𝑅

in Table 4.4 refers to the problems’ imbalance ratio, that is, the ratio between the amount of

majority class samples and the amount of minority class samples in the dataset. The column 𝐹/𝑁

indicates the ratio between the datasets’ number of features and number of samples. The 𝐹/𝑁

ratio, which is also a data complexity measure (Lorena, Garcia, Lehmann, Souto & Ho, 2019),

141

conveys a problem’s data sparsity, which is associated with a higher classification difficulty as

low density areas can make the model induction harder (Lorena et al., 2019; Pascual-Triana,

Charte, Andrés Arroyo, Fernández & Herrera, 2021). High data sparsity was also linked to the

size and complexity of the class boundaries (Costa et al., 2009; Ho & Basu, 2002), which may

present a further challenge to the RoC definition for the DES techniques.

The performance evaluation was conducted using a 10-fold cross-validation procedure, with one

fold for test and the remaining for training, using the same partitions provided in the OpenML

repository for reproducibility. Due to the very limited number of instances in some problems

(such as leukemia and tumors_C), we use the whole training set to generate the pool of classifiers

and as the dynamic selection set (DSEL) in the experiments, similarly to (Cruz et al., 2019a;

Souza et al., 2023). The DSEL is a set of labeled data used in dynamic selection techniques for

the region of competence definition (Cruz et al., 2018a).

4.5.3 Performance measures

We evaluate the models over the binary problems from Table 4.4 in terms of the balanced

accuracy rate, or macro-averaged recall. The balanced accuracy rate for binary problems is

defined as the average between the true positive rate (𝑇𝑃𝑅) and the true negative rate (𝑇𝑁𝑅), as

shown in Equation (4.10). As recommended in (Flach, 2019), we focus on one performance

metric only. Moreover, we chose the balanced accuracy rate as the testbed contains problems

with widely varying imbalance ratios, ranging from 1.03 to 70.09, so the accuracy rate would

not be adequate the assess the performance. However, since the focus of this work is not to

investigate the effects of class imbalance, we found that the balanced accuracy rate is an adequate

metric as it is sensitive to the class imbalance but does not focus only on one class nor penalizes

too much a poor performance over one or the other. For the statistical comparisons between the

models’ performances over multiple datasets, we also use the pairwise Wilcoxon signed-rank

test, as recommended in (Demšar, 2006; Benavoli et al., 2016), since it is non-parametric and its

result does not depend on the group of techniques included in the comparative analysis.

142

Table 4.4 Characteristics of the datasets used in the experiments.

Ref. # Dataset Instances (N) Features (F) IR F / N

1 tumors_C 60 7129 1.86 118.82

2 leukemia 72 7129 1.88 99.01

3 AP_Endometrium_Lung 187 10935 2.07 58.48

4 AP_Omentum_Uterus 201 10935 1.61 54.4

5 AP_Omentum_Lung 203 10935 1.64 53.87

6 AP_Lung_Uterus 250 10935 1.02 43.74

7 AP_Omentum_Ovary 275 10935 2.57 39.76

8 AP_Ovary_Uterus 322 10935 1.6 33.96

9 AP_Omentum_Kidney 337 10935 3.38 32.45

10 AP_Colon_Prostate 355 10935 4.14 30.8

11 AP_Colon_Omentum 363 10935 3.71 30.12

12 AP_Uterus_Kidney 384 10935 2.1 28.48

13 AP_Endometrium_Breast 405 10935 5.64 27

14 AP_Breast_Prostate 413 10935 4.99 26.48

15 AP_Breast_Omentum 421 10935 4.47 25.97

16 AP_Colon_Ovary 484 10935 1.44 22.59

17 AP_Colon_Kidney 546 10935 1.1 20.03

18 AP_Breast_Kidney 604 10935 1.32 18.1

19 OVA_Endometrium 1545 10935 24.33 7.08

20 OVA_Uterus 1545 10935 11.46 7.08

21 OVA_Ovary 1545 10935 6.8 7.08

22 OVA_Breast 1545 10935 3.49 7.08

23 fri_c4_100_100 100 100 1.13 1

24 tecator 240 124 1.35 0.52

25 fri_c4_250_100 250 100 1.27 0.4

26 gina_agnostic 3468 970 1.03 0.28

27 gina_prior 3468 784 1.03 0.23

28 fri_c4_500_100 500 100 1.3 0.2

29 spectrometer 531 101 8.65 0.19

30 scene 2407 299 4.58 0.12

31 mfeat-pixel 2000 240 9 0.12

32 mfeat-factors 2000 216 9 0.11

33 fri_c4_1000_100 1000 100 1.29 0.1

34 yeast_ml8 2417 116 70.09 0.05

35 sylva_prior 14395 108 15.25 0.01

Balanced accuracy rate =
𝑇𝑃𝑅 + 𝑇𝑁𝑅

2
(4.10)

143

4.5.4 Classifier models and hyperparameters

We evaluate the DES techniques using two ensembles: 100 Perceptrons generated using Bagging

(Breiman, 1996), and 100 Decision Stumps generated using AdaBoost (Freund & Schapire,

1997). We evaluate the two different ensemble methods with different base-classifier models so

that they yield two pools with distinct characteristics, in terms of how strong and/or redundant

each set of classifiers is, in order to analyze how they impact the techniques’ behavior over the

HDSSS datasets.

The DES techniques used in the comparative analysis which use the two linear ensembles were

the K-Nearest Oracles Union (KNU) (Ko et al., 2007), K-Nearest Oracles Eliminate (KNE)

(Ko et al., 2007), Dynamic Ensemble Selection-KNN (DKNN) (Soares et al., 2006), K-Nearest

Output Profiles (KNOP) (Cavalin et al., 2012), META-DES (Cruz et al., 2015a), Randomized

Reference Classifier (RRC) (Woloszynski & Kurzynski, 2011), Chained Dynamic Ensemble

(CHADE) (Pinto et al., 2016). These techniques have different RoC definition procedures and

selection criteria and are often found among the best-performing DES techniques in the literature

(Cruz et al., 2018a). Moreover, given the extensive list of evaluated techniques and ensemble

methods, we do not include any clustering-based method in the experiments as they are generally

outperformed by the KNN-based and potential function-based methods (Cruz et al., 2018a)

and are more limited in the design of the selected ensemble due to the local region granularity

(Soares et al., 2006; de Souto et al., 2008). We also include in the experimental analysis three

local ensemble methods that generate their own pool of classifiers, namely the Online Local

Pool generation technique (OLP) (Souza et al., 2019b), and the tree-based OLP++ (Souza et al.,

2023) and the Forest of Local Trees (FLT)(Armano & Tamponi, 2018), as they integrate the

local information in both the generation and the integration part of the MCS.

Table 4.5 shows the hyperparameters of the DES techniques used in the comparative analysis.

The hyperparameters were set as recommended in their papers if no implementation is available

in the DESLib (Cruz et al., 2020) library, or otherwise to their default value. In addition to those,

we include in the analysis the Oracle model, an abstract selector which always chooses the correct

144

classifier for each instance, and we use as baselines two static combination approaches, the

majority voting (MV) for the Bagging ensemble, and the AdaBoost combiner for the AdaBoost

ensemble (ADA). The experiment was implemented in Python, using the libraries TensorFlow,

DESLib (Cruz et al., 2020), scikit-multilearn (Szymański & Kajdanowicz, 2019), scikit-learn

(Pedregosa et al., 2011) and StellarGraph (Data61, 2018).

Table 4.5 Hyperparameter setting of the local ensembles included in

the comparative analysis. The pool of classifiers used in all DS

techniques but the FLT, OLP and OLP++ is the same used as in the

static selection baselines.

Acronym Hyperparameters

KNU K=7

KNE K=7

DKNN

K=7

pct_accuracy=0.5
pct_diversity=0.3

KNOP K=7

META-DES

K=7

K𝑝 = 5

meta_classifier=𝑁𝑎𝑖𝑣𝑒𝐵𝑎𝑦𝑒𝑠
mode=𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛
h𝑐=1.0

RRC mode=𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛

CHADE meta_classifier=𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑟𝑒𝑒

FLT

max_features=0.3
sample_percent=100

max_number_leaves=∞

OLP

K=7

|𝐿𝑃 | = 5

selection=𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 (Giacinto et al., 2000)

OLP++
T=100

𝐿 = 1

GNN-DES

The technique is evaluated with 𝜏 = 0.05, which was chosen arbitrarily as it would amount to a

disagreement of a very small part of the ensemble (5% of the classifiers) over two samples. For

the training of the meta-classifier, a stratified random sample of 20% of the training set is used

for validation/early stopping. The validation nodes are connected to the known graph 𝐺T as

145

if unknown samples, using Equation (4.8). The procedure for including the validation data is

described in more detail in the supplementary material.

The GNN core contains two graph convolutional layers of 512 units, as in (Salehi & Davulcu,

2020), with attention aggregation function from (Veličković et al., 2018), as the local samples

may have distinct importances for the DES task, and one dense output layer, as in the fully

supervised model in (Hamilton et al., 2017), with sigmoid activation to produce the multi-label

output. A few adaptations were necessary to cope with the little amount of data in the HDSSS

problems: we sample only 5 instances at each convolutional layer, as opposed to the 25 and 10

applied in (Hamilton et al., 2017) over large graphs, and apply 𝐿2 regularization with 𝜆 = 0.01,

which we empirically found to aid the training process according to the validation loss curves.

The network is trained over 150 epochs, with a patience of 30 epochs, a batch size of 300, and

the adaptive learning rate is initially set to 0.005, as in (Veličković et al., 2018). We also perform

a sweep on the drop-out rate in the set {0.0, 0.2, 0.5} as in (Salehi & Davulcu, 2020), and the

model with the best micro-averaged multi-label precision score over the validation data is used

as the meta-learner in generalization.

4.6 Experimental results

4.6.1 Ensemble and graph characteristics

We start by analyzing the characteristics of the two evaluated ensembles and the resulting graphs’

degrees. Figure 4.12 shows the average labelset cardinality of instances of each dataset with

respect to both ensembles. The labelset cardinality (LCard) of an instance x𝑖 in our multi-label

meta-problem is the number of classifiers in the pool that correctly labels it, or in other words,

𝐿𝐶𝑎𝑟𝑑𝑖 =
∑|𝐶 |

𝑘=1
𝑢𝑖,𝑘 . We can observe that the bagged ensemble yielded a much higher average

labelset cardinality compared to the AdaBoost ensemble in most datasets. This is expected as

not only the base-classifier used in Bagging is stronger, but also the generation procedure in

AdaBoost enforces classifier specialization directly. This can be further observed in Figure 4.13,

which shows the average correlation coefficient measure (Kuncheva, 2014) of the two ensembles.

146

The correlation coefficient is a pairwise diversity metric that is defined for two-class classifiers

as shown in Equation (4.11), where 𝑐𝑘 and 𝑐𝑛 are two binary models and () is the indicator

function. We can see that the AdaBoost technique yielded a much more diverse ensemble

compared to the Bagging technique, with very few exceptions.

𝜌𝑘,𝑛 =
𝑎𝑑 − 𝑏𝑐√

(𝑎 + 𝑏) (𝑐 + 𝑑) (𝑎 + 𝑐) (𝑏 + 𝑑)
,

𝑎 =
1

|T |

∑
𝑖∈T

(𝑐𝑘 (x𝑖) = 𝑦𝑖 ∧ 𝑐𝑛 (x𝑖) = 𝑦𝑖),

𝑏 =
1

|T |

∑
𝑖∈T

(𝑐𝑘 (x𝑖) = 𝑦𝑖 ∧ 𝑐𝑛 (x𝑖) ≠ 𝑦𝑖),

𝑐 =
1

|T |

∑
𝑖∈T

(𝑐𝑘 (x𝑖) ≠ 𝑦𝑖 ∧ 𝑐𝑛 (x𝑖) = 𝑦𝑖),

𝑑 =
1

|T |

∑
𝑖∈T

(𝑐𝑘 (x𝑖) ≠ 𝑦𝑖 ∧ 𝑐𝑛 (x𝑖) ≠ 𝑦𝑖).

(4.11)

a) b)

Figure 4.12 Labelset cardinality of the instances with respect to the (a) Bagging ensemble

and the (b) AdaBoost ensemble. The dashed line indicates the average over all datasets.

One consequence of the classifiers’ correlated responses is the degree of the nodes in the

known graph 𝐺T in the proposed method. Figure 4.14 shows the average node degree in 𝐺T

obtained from both ensembles. We can see that the ensemble generated using Bagging yielded a

147

a) b)

Figure 4.13 Average correlation coefficient of the (a) Bagging ensemble and (b) AdaBoost

ensemble. The dashed line indicates the average over all datasets.

a) b)

Figure 4.14 Average nodes’ degree in the known graph 𝐺T obtained using the (a)

Bagging ensemble and (b) AdaBoost ensemble. The dashed line indicates the average over

all datasets.

graph much more connected than the AdaBoost ensemble. This could be an indication that the

distances are quite close to one another in the decision space of the bagged ensemble, which is

expected if the classifiers tend to respond similarly to the same instances. Moreover, having

148

an average degree that is too high reduces the locality information encoded in the graph which

could negatively impact the learning of the dynamic selection rule.

4.6.2 Overall performance

In terms of performance, Table 4.6 and Table 4.7 show the average balanced accuracy rate of the

techniques using both ensembles (with the caveat that the FLT, OLP and OLP++ techniques

use a different ensemble altogether). It can be observed that using the bagged ensemble, the

performances of the techniques were quite similar, except for the FLT, OLP and OLP++. In fact,

observing the win-tie-loss distribution of the proposed method using the bagged ensemble in

Figure 4.15a, we see a large number of ties with the techniques that use the same ensemble, with

the exception of the DKNN. Performing a pairwise Wilcoxon-signed rank test over the results for

all techniques, we can see in Table 4.8a that, using the bagged ensemble, all techniques except

for the OLP yield a statistically similar performance to the majority voting combiner, including

the proposed method, with 𝛼 = 0.05.

As the bagged ensemble presents a high degree of correlation between the classifiers, as shown

in Figure 4.13, several issues may be at play to obtain such results. First, distinguishing between

very similar classifiers might be in general more difficult during the selection process. We can

also see that in only 10 datasets did the Oracle accuracy rate reach a perfect score, suggesting

that the bagged ensemble was not able to fully cover the data, possibly as a consequence of its

lack of diversity. Moreover, we already expected the local region definition in the feature space

to be affected by the high dimensionality, as the comparative results of the feature space-based

techniques and the majority voting combiner in Table 4.8a suggest. However, a less diverse

ensemble also provides a decision space with correlated features, which in turn hinders the

techniques that rely on the classifiers’ responses for the local region definition. In the case of the

OLP, though it does not use the correlated ensemble, its poor performance can be explained as it

relies solely on the local information for producing the pool, so the local region definition in

the original feature space, which can be challenging in HDSSS problems, greatly affects the

method’s behavior.

149

Table 4.6 Average balanced accuracy rate of the techniques over each dataset, using the

Bagging ensemble.

Ref. # Oracle MV KNU KNE DKNN KNOP META-DES RRC CHADE FLT OLP OLP++ GNN-DES

1 1.0000 0.6208 0.6208 0.6333 0.6583 0.6333 0.5958 0.6208 0.6583 0.5167 0.6833 0.5542 0.6208

2 1.0000 0.9667 0.9667 0.9667 0.9667 0.9667 0.9667 0.9667 0.9667 0.9567 0.9300 0.9667 0.9667
3 0.9962 0.9022 0.9022 0.8984 0.9067 0.9022 0.9022 0.9022 0.9022 0.9051 0.9141 0.9510 0.9022

4 0.9958 0.8748 0.8787 0.8707 0.8835 0.8787 0.8748 0.8748 0.8748 0.8884 0.8609 0.9030 0.8748

5 0.9962 0.8883 0.8883 0.8927 0.8990 0.8844 0.8883 0.8883 0.8921 0.9266 0.8990 0.9022 0.8883

6 0.9962 0.8965 0.8965 0.8965 0.8926 0.8965 0.8965 0.8965 0.8926 0.9446 0.8644 0.9401 0.8965

7 0.9752 0.6631 0.6506 0.6122 0.6156 0.6577 0.6702 0.6702 0.6727 0.6836 0.6386 0.7392 0.6568

8 0.9912 0.8221 0.8263 0.8261 0.8239 0.8263 0.8261 0.8221 0.8266 0.8645 0.8049 0.8709 0.8221

9 1.0000 0.9285 0.9285 0.9223 0.9179 0.9285 0.9285 0.9285 0.9285 0.9731 0.9190 0.9591 0.9285

10 0.9983 0.9823 0.9823 0.9668 0.9668 0.9823 0.9823 0.9823 0.9823 0.9823 0.9525 0.9768 0.9823
11 0.9903 0.8765 0.8765 0.8719 0.8774 0.8765 0.8765 0.8765 0.8765 0.9102 0.8417 0.9110 0.8765

12 0.9981 0.9567 0.9567 0.9567 0.9609 0.9567 0.9567 0.9567 0.9567 0.9808 0.9301 0.9689 0.9567

13 1.0000 0.9581 0.9581 0.9581 0.9566 0.9581 0.9581 0.9581 0.9581 0.9135 0.8882 0.9081 0.9581
14 1.0000 0.9801 0.9801 0.9801 0.9801 0.9801 0.9801 0.9801 0.9801 0.9845 0.9702 0.9774 0.9801

15 0.9813 0.9216 0.9216 0.9216 0.9230 0.9216 0.9216 0.9216 0.9187 0.9245 0.8636 0.8962 0.9216

16 0.9871 0.9169 0.9169 0.9158 0.9102 0.9169 0.9169 0.9169 0.9169 0.9554 0.8815 0.9519 0.9169

17 1.0000 0.9720 0.9739 0.9739 0.9759 0.9720 0.9720 0.9720 0.9739 0.9777 0.9704 0.9740 0.9739

18 0.9918 0.9701 0.9701 0.9706 0.9701 0.9687 0.9701 0.9701 0.9687 0.9692 0.9576 0.9755 0.9701

19 0.9679 0.5798 0.5900 0.5967 0.5816 0.5968 0.5957 0.5889 0.5734 0.5000 0.5784 0.5315 0.5882

20 0.9753 0.7099 0.7130 0.7335 0.7276 0.7130 0.7085 0.7060 0.7088 0.5000 0.6823 0.6225 0.7126

21 0.9730 0.7426 0.7493 0.7447 0.7488 0.7555 0.7511 0.7454 0.7470 0.5000 0.7301 0.7831 0.7527

22 0.9859 0.9471 0.9460 0.9440 0.9440 0.9490 0.9471 0.9471 0.9442 0.5000 0.9200 0.9498 0.9475

23 1.0000 0.5408 0.5408 0.4983 0.4883 0.5592 0.5267 0.5408 0.5100 0.7958 0.5950 0.7767 0.5408

24 0.9964 0.9409 0.9409 0.9449 0.9313 0.9409 0.9378 0.9409 0.9409 0.9455 0.9120 0.9168 0.9409

25 1.0000 0.5740 0.5740 0.5643 0.5497 0.5740 0.5558 0.5760 0.5695 0.8432 0.5903 0.7377 0.5740

26 0.9954 0.7650 0.7694 0.7493 0.7659 0.7692 0.7584 0.7707 0.7593 0.9179 0.7198 0.9369 0.7648

27 0.9963 0.8114 0.8232 0.8207 0.8324 0.8285 0.8266 0.8247 0.8094 0.9526 0.8214 0.9441 0.8160

28 0.9895 0.6167 0.6183 0.5925 0.6171 0.6137 0.6117 0.6182 0.6107 0.8771 0.5695 0.7938 0.6155

29 1.0000 0.9141 0.8895 0.8968 0.8905 0.8711 0.8868 0.9130 0.9224 0.8743 0.8545 0.8664 0.9141

30 0.9919 0.8425 0.8472 0.8567 0.8517 0.8517 0.8515 0.8510 0.8423 0.8822 0.7566 0.7639 0.8446

31 0.9950 0.9761 0.9761 0.9789 0.9783 0.9764 0.9761 0.9761 0.9758 0.9819 0.9192 0.9697 0.9761

32 1.0000 0.9917 0.9917 0.9919 0.9919 0.9917 0.9917 0.9917 0.9917 0.9847 0.9836 0.9625 0.9917

33 0.9969 0.6490 0.6471 0.5997 0.6447 0.6466 0.6470 0.6524 0.6318 0.9020 0.6017 0.8421 0.6471

34 0.9208 0.5158 0.5158 0.5319 0.5319 0.5158 0.5158 0.5156 0.5158 0.5119 0.5000 0.5000 0.5158

35 0.9993 0.9857 0.9862 0.9805 0.9896 0.9857 0.9857 0.9868 0.9857 0.9797 0.9687 0.9550 0.9857

Avg. 0.9909 0.8343 0.8347 0.8303 0.8329 0.8356 0.8331 0.8357 0.8339 0.8488 0.8135 0.8622 0.8349

Avg. rank n/a 6.6714 5.8857 7.0857 5.9429 5.8429 6.7286 6.0857 7.1429 4.6714 10.1429 5.4857 6.3143

Using the AdaBoost ensemble, on the other hand, yielded more diverse results. Table 4.7

shows the average balanced accuracy rate obtained by the techniques over each dataset. For a

complementary analysis, the results regarding the performance over the minority class alone

can be found in the supplementary material. We can see that using the more diverse AdaBoost

ensemble the overall performance of all techniques was larger compared to the bagged ensemble,

though not for every problem. The Oracle’s performance was also better, obtaining a perfect

score in all but two datasets. Moreover, using the AdaBoost ensemble, the techniques based

on the similarities in the decision space representation (GNN-DES, META-DES, and KNOP)

obtained the three highest average ranks, with the proposed method in the first place. The

150

Table 4.7 Average balanced accuracy rate of the techniques over each dataset, using the

AdaBoost ensemble.

Ref. # Oracle ADA KNU KNE DKNN KNOP META-DES RRC CHADE FLT OLP OLP++ GNN-DES

1 1.0000 0.4833 0.5208 0.5667 0.5292 0.4958 0.4375 0.5208 0.4667 0.5167 0.6833 0.5542 0.5333

2 1.0000 0.9442 0.9342 0.9075 0.8950 0.9442 0.9442 0.9075 0.9217 0.9567 0.9300 0.9667 0.9342

3 1.0000 0.9394 0.9478 0.9593 0.9471 0.9522 0.9561 0.9522 0.9481 0.9051 0.9141 0.9510 0.9522

4 1.0000 0.9072 0.9131 0.8914 0.8962 0.8822 0.8926 0.9173 0.9010 0.8884 0.8609 0.9030 0.9030

5 1.0000 0.9213 0.9314 0.9385 0.9361 0.9046 0.9008 0.9162 0.9091 0.9266 0.8990 0.9022 0.9109

6 1.0000 0.9356 0.9397 0.9128 0.9244 0.9317 0.9359 0.9196 0.9196 0.9446 0.8644 0.9401 0.9401

7 1.0000 0.7557 0.7557 0.6734 0.6974 0.7622 0.7521 0.6799 0.7445 0.6836 0.6386 0.7392 0.7480

8 1.0000 0.9340 0.9258 0.8676 0.8971 0.9416 0.9519 0.9095 0.8942 0.8645 0.8049 0.8709 0.9374

9 1.0000 0.9707 0.9707 0.9520 0.9457 0.9645 0.9645 0.9727 0.9630 0.9731 0.9190 0.9591 0.9626

10 0.9983 0.9733 0.9859 0.9733 0.9733 0.9788 0.9805 0.9788 0.9913 0.9823 0.9525 0.9768 0.9859

11 1.0000 0.9236 0.9067 0.8860 0.8808 0.9147 0.9201 0.9129 0.9050 0.9102 0.8417 0.9110 0.9229

12 1.0000 0.9865 0.9824 0.9763 0.9782 0.9843 0.9843 0.9824 0.9885 0.9808 0.9301 0.9689 0.9824

13 1.0000 0.9540 0.9609 0.9397 0.9469 0.9609 0.9623 0.9594 0.9580 0.9135 0.8882 0.9081 0.9594

14 0.9917 0.9816 0.9774 0.9774 0.9774 0.9831 0.9759 0.9774 0.8393 0.9845 0.9702 0.9774 0.9845
15 1.0000 0.9342 0.9398 0.9404 0.9278 0.9490 0.9476 0.9398 0.9509 0.9245 0.8636 0.8962 0.9460

16 1.0000 0.9556 0.9417 0.9274 0.9230 0.9574 0.9574 0.9457 0.9406 0.9554 0.8815 0.9519 0.9599
17 1.0000 0.9763 0.9762 0.9683 0.9684 0.9761 0.9798 0.9744 0.9759 0.9777 0.9704 0.9740 0.9816
18 1.0000 0.9682 0.9740 0.9774 0.9778 0.9706 0.9711 0.9730 0.9629 0.9692 0.9576 0.9755 0.9725

19 1.0000 0.6271 0.7585 0.6371 0.5784 0.7137 0.7134 0.6965 0.8088 0.5000 0.5784 0.5315 0.7370

20 1.0000 0.7510 0.8288 0.7024 0.7411 0.8163 0.8096 0.8980 0.8376 0.5000 0.6823 0.6225 0.8128

21 1.0000 0.8252 0.8252 0.7370 0.7645 0.8405 0.8433 0.8621 0.8240 0.5000 0.7301 0.7831 0.8255

22 1.0000 0.9473 0.9617 0.9522 0.9551 0.9622 0.9607 0.9539 0.9070 0.5000 0.9200 0.9498 0.9632
23 1.0000 0.7667 0.6675 0.5792 0.7183 0.7458 0.7442 0.6908 0.6067 0.7958 0.5950 0.7767 0.7400

24 1.0000 0.9223 0.8961 0.9008 0.9175 0.9166 0.9371 0.9315 0.8290 0.9455 0.9120 0.9168 0.9271

25 1.0000 0.8078 0.7104 0.6792 0.7019 0.8179 0.8052 0.6458 0.7422 0.8432 0.5903 0.7377 0.8094

26 1.0000 0.8607 0.8039 0.7725 0.7647 0.8980 0.9000 0.7028 0.6892 0.9179 0.7198 0.9369 0.8969

27 1.0000 0.8649 0.8563 0.8441 0.8363 0.9032 0.9107 0.8140 0.7165 0.9526 0.8214 0.9441 0.9104

28 1.0000 0.8520 0.7591 0.6371 0.6868 0.8640 0.8639 0.6159 0.7733 0.8771 0.5695 0.7938 0.8609

29 1.0000 0.8649 0.8964 0.8535 0.8639 0.8759 0.8938 0.8921 0.8826 0.8743 0.8545 0.8664 0.8853

30 1.0000 0.9648 0.8563 0.8215 0.8178 0.9531 0.9560 0.7926 0.5776 0.8822 0.7566 0.7639 0.9300

31 1.0000 0.9861 0.9786 0.9753 0.9542 0.9856 0.9878 0.9519 0.8017 0.9819 0.9192 0.9697 0.9825

32 1.0000 0.9850 0.9867 0.9867 0.9894 0.9800 0.9850 0.9933 0.9761 0.9847 0.9836 0.9625 0.9900

33 1.0000 0.8856 0.7396 0.6492 0.6644 0.9015 0.9077 0.5822 0.7967 0.9020 0.6017 0.8421 0.8946

34 1.0000 0.5146 0.5000 0.4975 0.5000 0.4996 0.4998 0.5102 0.5665 0.5119 0.5000 0.5000 0.4996

35 1.0000 0.9801 0.9827 0.9664 0.9785 0.9797 0.9834 0.9814 0.8610 0.9797 0.9687 0.9550 0.9800

Avg. 0.9997 0.8814 0.8712 0.8408 0.8473 0.8888 0.8890 0.8530 0.8393 0.8488 0.8135 0.8622 0.8903
Avg. rank n/a 5.3143 5.3571 8.3857 8.0143 4.9000 4.2857 6.3286 7.6857 5.9000 10.5857 7.1143 4.1286

AdaBoost combiner (ADA) also yielded the fourth highest rank followed by the KNU and the

other techniques that perform the local region definition in the feature space, in addition to

CHADE. The surpassing of the decision space-based techniques might be due to the improvement

in the data representation with the increase in diversity, while the worse performance of the

feature space-based compared to the static selection baseline suggests the high dimensional

representation still poses a challenge to these local-based techniques.

The win-tie-loss summary of the results with respect to the proposed method, shown in Figure

4.15b, confirms the trend, with the proposed method only losing more often than winning

151

against the META-DES. Comparing the techniques two at a time, we can see in Table 4.8b

that the proposed technique yielded a statistically superior performance to all techniques except

the KNOP, META-DES and FLT, being the only one to surpass the AdaBoost combiner with

𝛼 = 0.05.

a) b)

Figure 4.15 Win-tie-loss distribution of the average balanced accuracy rate of the

proposed GNN-DES technique vs. the DES techniques using the (a) Bagging ensemble,

and (b) AdaBoost ensemble. The dashed lines indicate the critical values of the sign test

considering a sample size of 𝑛 = 35 for 𝛼 = 0.1, 𝛼 = 0.05 and 𝛼 = 0.01 from left to right,

respectively.

Thus, so far we could observe a few points. First, the behavior of the DES techniques over

HDSSS when using ensembles that present different degrees of diversity. The more diverse pool

was able to boost the techniques’ performances in most cases, especially for the ones based on

similarities in the decision space. This suggests that using a diverse ensemble and the local

information in the decision space can help the DES technique deal somewhat better with the

high dimensionality, which answers our RQ2. However, and answering our RQ1, the techniques

still struggled compared to the static baseline using either pool of classifiers, with most of them

obtaining a statistically similar performance. This further indicates the challenge they face over

HDSSS distributions and points to some limitations in their applicability.

W.r.t. our RQ3, we observed that the proposed method was the only one to significantly surpass

the AdaBoost static combiner with 𝛼 = 0.05, suggesting that using another source of information,

152

Table 4.8 P-value of the pairwise Wilcoxon signed-rank test between the techniques, using

the (a) Bagging ensemble, and (b) AdaBoost ensemble. Values below 𝛼 = 0.05 are in bold.

The symbols − and + indicate whether the column-wise technique yielded a statistically

inferior or superior performance to the row-wise technique.

(a)

MV KNU KNE DKNN KNOP META-DES RRC CHADE FLT OLP OLP++ GNN-DES

MV n/a 0.1152 0.3988 0.6406 0.1434 0.5215 0.0597 0.2379 0.1518 0.0002(-) 0.1714 0.3753

KNU n/a 0.1817 0.7869 0.4959 0.1316 0.7580 0.0296(-) 0.1340 0.0001(-) 0.1472 0.3506

KNE n/a 0.4811 0.0809 0.4173 0.1612 0.1791 0.1110 0.0010(-) 0.0964 0.2040

DKNN n/a 0.8186 0.7370 0.6642 0.3943 0.1442 0.0005(-) 0.1427 0.9543

KNOP n/a 0.0515 0.5469 0.0977 0.0900 < 10−4(-) 0.1383 0.1058

META-DES n/a 0.3383 0.5103 0.1140 0.0003(-) 0.1383 0.1981

RRC n/a 0.2051 0.1518 0.0001(-) 0.1819 0.3836

CHADE n/a 0.1472 0.0001(-) 0.1614 0.0664

FLT n/a 0.0051(-) 0.4809 0.1565

OLP n/a 0.0003(+) 0.0001(+)

OLP++ n/a 0.1819

GNN-DES n/a

(b)

ADA KNU KNE DKNN KNOP META-DES RRC CHADE FLT OLP OLP++ GNN-DES

ADA n/a 0.3853 0.0002(-) 0.0001(-) 0.0964 0.0997 0.2193 0.0048(-) 0.5124 < 10−4(-) 0.0125(-) 0.0423(+)

KNU n/a < 10−4(-) 0.0001(-) 0.1140 0.0825 0.0574 0.0092(-) 0.8570 < 10−4(-) 0.3720 0.0332(+)

KNE n/a 0.2619 0.0001(+) 0.0001(+) 0.2415 0.6583 0.1495 0.0001(-) 0.1518 < 10−4(+)

DKNN n/a 0.0001(+) 0.0001(+) 0.4175 0.9478 0.3021 < 10−4(-) 0.2102 < 10−4(+)

KNOP n/a 0.1177 0.0607 0.0019(-) 0.6465 < 10−4(-) 0.0097(-) 0.6174

META-DES n/a 0.0168(-) 0.0020(-) 0.2725 < 10−4(-) 0.0064(-) 0.5888

RRC n/a 0.1085 0.6702 < 10−4(-) 0.8506 0.0069 (+)

CHADE n/a 0.3505 0.0948 0.2516 0.0004(+)

FLT n/a 0.0059(-) 0.4711 0.1340

OLP n/a 0.0003(+) < 10−4(+)

OLP++ n/a 0.0015(+)

GNN-DES n/a

the interactions between the classifiers, in addition to the local information can be advantageous

when performing the dynamic selection task over sparse data. However, it yielded a statistically

similar performance to the two other techniques that carry out a dissimilarity search in the

decision space, KNOP and META-DES.

Thus, in the following section, we investigate the local distribution with respect to the overlap

in the problem and in the meta-problem considering both the feature and decision spaces that

could explain the differences in the performance of the DES techniques. We also assess whether

the proposed method was more able to overcome the locally difficult scenarios compared to

153

the other techniques due to its joint learning of the classifiers’ inter-dependencies and samples’

interactions.

4.6.3 Further analysis

We now investigate the problems’ local characteristics in the feature space and in the decision

space which can help understand the behavior of some of the evaluated techniques. Since local

methods can be strongly sensitive to class overlap and data sparsity (Sánchez et al., 2007), and

the latter is often associated with an increased class boundary complexity (Lorena et al., 2012;

Ho & Basu, 2002), we expect the DES techniques to behave differently depending on the local

difficulty present in the problem (and the meta-problem) for each HDSSS dataset. This analysis

is done over the results using the AdaBoost ensemble as it yielded a comparatively more diverse

performance of the DES techniques.

Thus, we further analyze the experimental results using the following local measures: the

K-disagreeing neighbors (KDN) (Smith et al., 2014), the supervised labelset intersection (SLI),

and the neighborhood labelset intersection (NLI). The first is defined as the proportion of samples

in a given instance’s neighborhood of size K that does not share its label, conveying the degree

of local class overlap for that instance. The KDN measure is shown in Equation (4.12), where

𝐾𝑁𝑁 () is the nearest neighbors function and �() is the indicator function.

The second measure, called the supervised labelset intersection, we define as the average

pairwise intersection between a given query sample’s labelset and each of its neighbors’ labelsets,

normalized by the number of classifiers |𝐶 |. The measure is shown in Equation (4.13), where

𝑢𝑞,𝑘 and 𝑢𝑖,𝑘 are the meta-label representation of the query’s and one of its neighbors’ labelset

w.r.t. the competence of classifier 𝑐𝑘 . The SLI then describes how good of an indication the

neighborhood provides of the query instance’s competent classifiers in the meta-problem.

Lastly, the third measure, the neighborhood labelset intersection, we define as the average

intersection between the labelsets of each pair of instances from a given neighborhood of size

K, also normalized by the number of classifiers |𝐶 |. The neighborhood labelset intersenction

154

is described in Equation (4.14), where 𝑢𝑖,𝑘 and 𝑢 𝑗,𝑘 are the meta-label representation of two

samples’ labelsets w.r.t. the competence of classifier 𝑐𝑘 , with both of them belonging to the

neighborhood of the query instance. Thus, the NLI conveys the degree of consensus in the

neighborhood w.r.t. the ability of the classifiers, disregarding the query instance’s labelset.

These measures are used to assess the difficulty of the ensemble selection task based on the

surrounding context in the feature and decision spaces. In all cases, we extract these measures

with 𝐾 = 7, as it was used for several DES techniques in the previous section.

𝐾𝐷𝑁 (x𝑞) =
1

𝐾

∑
𝑖

�(𝑦𝑞 = 𝑦𝑖),∀x𝑖 ∈ 𝐾𝑁𝑁 (x𝑞) (4.12)

𝑆𝐿𝐼 (x𝑞) =
1

𝐾 |𝐶 |

∑
𝑖

|𝐶 |∑
𝑘=1

�(𝑢𝑞,𝑘 = 1 ∧ 𝑢𝑖,𝑘 = 1),∀x𝑖 ∈ 𝐾𝑁𝑁 (x𝑞) (4.13)

𝑁𝐿𝐼 (x𝑞) =
2

𝐾 (𝐾 − 1) |𝐶 |

∑
𝑖

∑
𝑗 ,𝑖≠ 𝑗

|𝐶 |∑
𝑘=1

�(𝑢𝑖,𝑘 = 1 ∧ 𝑢 𝑗,𝑘 = 1),∀x𝑖 , x 𝑗 ∈ 𝐾𝑁𝑁 (x𝑞) (4.14)

4.6.3.1 Feature space vs. decision space

We can see in Figure 4.16a that the decision space neighborhood provides, on average, a

higher supervised labelset intersection for the test instances, meaning the query samples and

their corresponding neighborhoods share on average a larger number of competent classifiers

compared to the neighborhood obtained in the feature space. This might help explain why the

decision space-based DES techniques outperformed on average the feature space-based DES

techniques over the HDSSS datasets, as in general the similarities in the former provided a better

indication of the competence of the classifiers compared to the latter.

We now take a look at the impact the problems’ class overlap has on both spaces. Figure 4.16b

shows the proportion of test samples in overlap regions for each dataset in the feature space and

the decision space. A sample is considered in an overlap region if its neighborhood contains

155

more than one class, i.e., its KDN score is between zero and one (0.0 < 𝐾𝐷𝑁 < 1.0). We can

observe that the neighborhoods obtained in the feature space present much more class overlap

compared to its counterpart in the decision space, on average. Moreover, Figure 4.16c shows the

average supervised labelset intersection of the instances in overlap regions in both spaces. We

can observe that, even though the decision space presented fewer overlap regions, they tend to

yield a lower average supervised labelset intersection than in the feature space. This suggests the

class overlap in the decision space, while less frequent, might be more hindering to the DES

task compared to the overlap in the feature space.

a) b) c)

Figure 4.16 Overall comparison between the feature and decision spaces (FS and DS,

respectively) in each dataset (circle). (a) shows the overall average supervised labelset

intersection in both spaces. (b) shows the average proportion of test instances in overlap

regions, and (c) the average supervised labelset intersection of the samples in overlap

regions. The 𝐹/𝑁 indicates the ratio between the number of features and samples of each

dataset.

4.6.3.2 Neighborhood labelset intersection vs. supervised labelset intersection

We further analyze the datasets’ local characteristics w.r.t. the DES meta-problem to understand

the aspects which can make the task more difficult. Figure 4.17a-b shows the neighborhood

labelset intersection against the supervised labelset intersection in both spaces, averaged over

all samples from each dataset. Observing the two measures together may indicate whether

156

a) b) c) d)

Figure 4.17 Neighborhood labelset intersection (Eq. (4.14)) vs. the supervised labelset

intersection (Eq. (4.13)) in the (a,c) feature space (FS) and (b,d) decision space (DS),

averaged over (a-b) all instances and (c-d) samples in overlap regions, for each dataset. The

𝐹/𝑁 indicates the ratio between the number of features and samples of each dataset.

the local regions present an excess labelset that does not belong to their corresponding query

samples’ labelset. That is, we can see how much the neighborhood consensus exceeds the

useful information it provides in the search for competent classifiers. Similarly to a single-label

classification case, in which the excess support for an opposite class in the neighborhood may

lead to misclassification based on a local rule, in the case of the local-based DES techniques the

excess support for other meta-labels in the neighborhood may lead to the selection of incompetent

classifiers for the query. We thus define the excess neighborhood labelset (ENL) (Equation

(4.15)), i.e. the difference between the average neighborhood labelset intersection and the

average supervised labelset intersection, as a measure that conveys how much the neighborhood

consensus is helpful for choosing the correct classifiers for a given query instance. It can

be observed that, in both spaces, the neighborhood labelset intersection is quite close to the

supervised labelset intersection, except for a few datasets, showing that the excess neighborhood

labelset is not a great issue considering the collective of all instances at once for most evaluated

problems. This suggests that in most cases the neighborhood consensus provides a good

indication of which classifiers to select for a given query.

157

𝐸𝑁𝐿 = 𝑁𝐿𝐼 − 𝑆𝐿𝐼 (4.15)

However, considering only the samples in overlap regions, we can see from Figure 4.17c-d that

for a large amount of the datasets, the neighborhood labelset intersection exceeds on average the

supervised labelset intersection, in both spaces. This suggests that in ambiguous regions the

excess neighborhood labelset problem is more prevalent, which in turn may make the DES task

more difficult for the samples located in those regions as it would incentivize the selection of

incompetent classifiers. We can also observe from Figure 4.17c-d that in the decision space the

excess neighborhood labelset in overlap regions is generally greater compared to the feature

space for most datasets. Thus, it seems that in the decision space regions, the class overlap

may lead to not only a small supervised labelset intersection but also a comparatively large

neighborhood labelset intersection, which can hinder the performance of the DES techniques

that rely on similarities in the decision space for RoC definition.

4.6.3.3 Comparison against decision space-based techniques

With the characterization of the local data in both spaces done, and the issues associated with

the class overlap and meta-problem shown, we now compare the performance of the proposed

method to its similar counterparts: the DES techniques that rely on the classifiers’ responses

as input to the system, namely the KNOP, META-DES, and CHADE. We focus this analysis

on the overlap instances in the decision space, as they present a difficult scenario to perform

the DES task. It is worth noting that the META-DES and KNOP yielded a statistically similar

performance to the proposed method over the whole testbed (Section 4.6.2), and that only

CHADE does not apply any dissimilarity metric within the decision space, though the proposed

method does not define a fixed RoC as META-DES and KNOP does. Moreover, the META-DES

is the only one among them that defines the RoC in both the feature and decision spaces.

Figure 4.18 shows the average excess neighborhood labelset in overlap regions in the feature

and decision spaces for each dataset. The marker colors indicate the win-tie-loss result for each

158

a) b) c)

Figure 4.18 Average excess neighborhood labelset (Eq. (4.15)) in overlap regions in the

feature and decision spaces for each dataset. The win-tie-loss summary is done w.r.t. the

proposed GNN-DES technique and the (a) KNOP, (b) META-DES and (c) CHADE.

dataset considering the proposed method against the KNOP, META-DES and CHADE. It can be

observed that the proposed method outperformed more often the first two techniques over the

datasets with higher excess neighborhood labelset in overlap regions in the decision space. This

suggests that the proposed method might be more competent in dealing with the problems in

which the local overlap poses a greater challenge to the DES task than the other two local-based

techniques.

Compared to the CHADE, we see that the latter outperformed the proposed method only over

a few datasets, most of them among the ones with high excess neighborhood labelset. As

opposed to the other three techniques, which take into account similarities in the feature and/or

decision space (a generally useful approach for the DES task, as seen in Figure 4.16a), CHADE

learns the inter-dependencies between the meta-labels to recommend an ensemble. Thus, in the

cases where the former fails, CHADE may still find a competent ensemble for a given query.

However, CHADE depends heavily on the order of the classifier chain to learn properly the

inter-dependencies, which may be one of the reasons it was not so competitive compared to the

other three techniques based on the decision space.

159

a) b)

Figure 4.19 Win-tie-loss distribution of the average balanced accuracy rate of the

proposed GNN-DES technique vs. the three DES techniques using the AdaBoost ensemble

considering the (a) bottom and (b) top half of the datasets ordered by the average excess

neighborhood labelset in overlap regions. The dashed lines indicate the critical values of the

sign test considering a sample size of (a) 𝑛 = 18 for 𝛼 = 0.1, 𝛼 = 0.05 and 𝛼 = 0.01, and

(b) 𝑛 = 17 for 𝛼 = {0.1, 0.05} and 𝛼 = 0.01, from left to right.

Table 4.9 P-value of the pairwise Wilcoxon signed-rank test between the proposed method

and the three decision space-based techniques over the datasets with the lowest excess

neighborhood labelset and the highest excess neighborhood labelset. Values below

𝛼 = 0.05 are in bold. The symbols - and + indicate whether the proposed technique yielded

a statistically inferior or superior performance to the other technique, respectively.

Low excess neighb. labelset High excess neighb. labelset

GNN-DES vs. KNOP 0.2837 0.0331(+)

GNN-DES vs. META-DES 0.0268(-) 0.0714

GNN-DES vs. CHADE 0.0047(+) 0.0093(+)

Splitting the datasets in half by the average excess neighborhood labelset in overlap regions and

obtaining the win-tie-loss distribution for each part in Figure 4.19, we can observe that, over the

datasets with higher ENL (Figure 4.19b), the proposed method obtains more wins than losses

compared to the three techniques. The Wilcoxon signed-rank test (Table 4.9) shows that over

these datasets the proposed technique significantly outperforms the KNOP and CHADE. For

the datasets on the bottom half in terms of excess neighborhood labelset, in Figure 4.19a, we

160

can see that the proposed technique loses more than wins against the KNOP and META-DES,

performing statistically worse than the latter, as shown in Table 4.9.

Thus, the results suggest that the proposed method can better deal with the datasets whose overlap

regions yield a larger excess of incompetent classifiers than the other local-based techniques,

answering our RQ4. This might be due to its use of not only local information but also the

classifiers’ relationship information, as the latter might be useful for learning to select the

classifiers when the former is not reliable enough.

4.6.4 Lessons learned

We summarize our findings from the experimental analysis in the following comments.

• In the first set of experiments (Sections 4.6.2 and 4.6.1) we evaluated the DES techniques

over several HDSSS datasets using two different ensemble methods. The ensembles were

characterized and also used to obtain the performance of a static baseline. We observed

that, though the DES techniques were shown in the literature to work well over ill-defined

problems (Britto et al., 2014), most of them performed similarly to the static baseline over

the HDSSS problems when given a highly correlated ensemble to select from. Thus, we

recommend analyzing the diversity of the ensemble before choosing to apply these techniques

over such problems;

• Also from the first set of experiments, we observed that when using a more diverse ensemble

the three techniques based on similarities in the decision space obtained an overall better

performance compared to the techniques based solely on the similarities in the feature space

and to the static baseline. Among them, the proposed method was the only DES technique

to significantly surpass the latter over the HDSSS testbed. Thus, when choosing a DES

technique to deal with an HDSSS problem, we suggest evaluating this family of techniques

first and picking the best from them, as they performed similarly overall, instead of testing all

available techniques as most of them belong to the family of feature space-based techniques

and those were shown to perform generally worse over the sparse data;

161

• In the second set of experiments (Section 4.6.3) we characterized the local regions in the

feature and decision spaces to assess how the class overlap and data sparsity affected the

meta-problem (i.e. the DES task) on a local level, and how the decision space-based

techniques performed over the problems with the least and the most unfavorable local

contexts. We observed that the proposed method outperformed the local-based techniques

over the problems where the overlap areas were the most misleading, as in suggesting the

selection of several incompetent classifiers. We can thus conclude that leveraging both the

instances’ and classifiers’ interactions in an end-to-end manner aided the proposed method in

overcoming the limitations of the classical techniques over the scenarios where the locality

assumption for the dynamic selection meta-problem is weaker, at the cost of not performing

as well as the other two techniques when the locality assumption is stronger. Thus, we

recommend analyzing the local characteristics to assess whether applying the proposed

approach instead of the other decision space-based techniques could be advantageous based

on how unfavorable to the DES task the local overlap regions are in the HDSSS problem;

• Lastly, and considering the results of the two sets of experiments, we can conclude that, as

other local methods are prone to do (Sánchez et al., 2007), the DES techniques generally

struggled over the evaluated high dimensional overlapped data. However, some approaches

stood out as positive to include in the dynamic selection pipeline when dealing with such

problems: using a diverse ensemble, leveraging the local information from the decision

space, and in some cases, the inter-dependencies between the classifiers. Thus, based on

the experimental results obtained over the HDSSS datasets, we believe these are interesting

approaches to be considered going forward in the research area of the DES techniques to

further improve their performance over high dimensional overlapped data.

4.7 Conclusion

We proposed in this work a dynamic selection technique that learns from the instance-instance

and classifier-classifier relationships to better deal with high dimensionality and class overlap,

which may hinder the local region definition for the DES task. The proposed technique uses a

162

multi-label GNN as a meta-learner, exploiting not only the local data structure in the form of a

graph, without directly defining the RoC, but also the classifiers’ inter-dependencies modeled

in the meta-labels to learn the dynamic classifier combination rule. Thus, the GNN may learn

internally an embedded space where the DES task is potentially easier, especially for the samples

that present a poor local distribution, so that it can still yield a good combination rule when the

locality assumption fails.

Experimental results over 35 high dimensional datasets with 10 DES techniques, in addition to

the proposed method, and a static selection baseline showed the former struggled to surpass

the latter when using a highly correlated ensemble. Using a more diverse ensemble, however,

the proposed method significantly outperformed the static baseline and most of the evaluated

DES techniques. Further analyzing the results showed that the feature space presented more

class overlap and less intersection of competent classifiers locally than the decision space, which

could justify the overall superior performance of the techniques based on similarities in the

latter against the former. Nevertheless, the local class overlap present in the decision space

was shown to provide more challenge to the DES task compared to the feature space, with the

regions presenting a higher excess of incompetent classifiers. The proposed method was able

to outperform the decision space-based techniques over the datasets the most afflicted by such

scenarios.

As future work, we may perform a sensitivity analysis on the proposed approach to investigate

the influence of hyperparameter variation and different linkage strategies in the graph design.

Moreover, we may further explore the impact that diversity has on the proposed method using

ensembles that directly optimize it, such as the Local Independence Training ensemble (Ross,

Pan, Celi & Doshi-Velez, 2020), as well as the effects of class imbalance on the performance of

the technique. We may also investigate the application of the proposed method in the context of

multi-view learning (Gupta, Khan, Singh, Tanveer, Kumar, Chakraborti & Pachori, 2020; Du,

Wang, Hu, Li & Chen, 2022), since the different views may provide enough ensemble diversity,

and the proposed technique presents the possible advantage of using the graph representation,

which allows a unified description of the samples’ relationships in all views.

163

4.8 Supplementary material

4.8.1 Including validation data into the known graph 𝐺T

Though not an essential part of the GNN-DES technique, validation data was used in the

experimental analysis of this work during the training of the GNN meta-learner, as stated in

the experimental protocol. This was done so that the training procedure could be stopped early

to avoid overfitting, as well as to be able to choose the version of the GNN with the highest

micro-averaged multi-label precision over an unlabeled set of nodes.

Thus, in this section, we provide the pseudocode (Algorithm 4.5) which describes in more detail

the procedure for including the validation set V into the known graph 𝐺T . With the validation

data included in the known graph 𝐺T , the validation nodes can be used to compute the validation

loss of the network during the fitting of the meta-learner, which allows a training procedure

based on early stopping. Moreover, in this work, we also computed the average multi-label

precision over the validation nodes at the end of each epoch and kept the parameters of the

version which yielded the highest score to be used as our meta-learner.

𝑒𝑖, 𝑗 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 𝑑𝑖, 𝑗 , if 𝑑𝑖, 𝑗 ≤ 𝑑𝑚𝑎𝑥
𝑖 ,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

𝑑𝑚𝑎𝑥
𝑖 = min(𝑑𝑖,𝑘 ,∀x𝑘 ∈ T) + 𝜏

(4.16)

4.8.2 Additional results

Table 4.10 presents the average performance of the evaluated techniques using the AdaBoost

ensemble over each dataset in terms of the F1 score, defined for binary problems as the harmonic

mean between the precision and the recall over the minority class (?). The win-tie-loss summary

for the GNN-DES with respect to the other techniques in terms of average F1 score is shown on

164

Algorithm 4.5 Procedure for including validation data into the known graph

input :𝐺T , 𝐶, 𝜏 ; ⊲ Known graph, pool of classifiers, preset threshold

input :T ,V ; ⊲ Training and validation sets

output :𝐺T ; ⊲ Known graph with validation data

1 𝑉 ← {} ; ⊲ Validation vertexes set

2 𝐸 ← {} ; ⊲ Validation edges set

3 𝑃V ← 𝑡𝑜_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑠𝑝𝑎𝑐𝑒(V, 𝐶) ⊲ Project V to the decision space

4 𝐷V×T ← 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑃V , 𝑃T) ; ⊲ Obtain pairwise distance matrix

5 for every x𝑖 in V do
6 𝑉 ← 𝑉 ∪ 𝑣𝑖 (x𝑖) ; ⊲ Add 𝑣𝑖 with its feature vector x𝑖 to 𝑉
7 for every x 𝑗 in T do
8 Calculate 𝑒𝑖, 𝑗 from 𝐷V×T , 𝜏 according to Eq. (4.16) if 𝑒𝑖, 𝑗 > 0 then
9 𝐸 ← 𝐸 ∪ 𝑒𝑖, 𝑗 ; ⊲ Add edge to graph

10 end if
11 end for
12 end for
13 𝐺T ← 𝐺T ∪ (𝑉, 𝐸) ; ⊲ Add validation vertexes and edges to 𝐺T
14 return 𝐺T

the Win-tie-loss row. The row P-value shows the resulting p-value of the Wilcoxon signed-rank

test between the GNN-DES and each column-wise technique.

It can be observed that, similarly to the performance over both classes (in terms of balanced

accuracy rate), the proposed technique also achieves the highest average rank in terms of F1

score among the evaluated techniques, suggesting it yields a generally good performance over

the minority class as well. It also statistically outperforms CHADE and the feature space-based

only dynamic selection techniques according to the pairwise Wilcoxon signed-rank tests. This

demonstrates the GNN-DES’s effectiveness in the presence of class imbalance in sparse and

overlapped data compared to several techniques that were often shown to work fairly well over

low-dimensional class imbalanced problems, such as KNU, RRC, DKNN and OLP (Oliveira

et al., 2017; Souza et al., 2019a, 2022). However, the proposed technique yields a statistically

similar performance (𝛼 = 0.05) to the static baseline (ADA), the decision space-based techniques

(KNOP and META-DES), and the tree-based dynamic ensembles (FLT and OLP++) in terms

of F1, indicating a competitive overall performance over the minority class samples in high

dimensional overlapped data compared to these techniques. The overall results thus suggest a

similar trend to the results reported in the main manuscript in terms of balanced accuracy rate.

165

Table 4.10 Average F1 score of the techniques over each dataset, using the AdaBoost

ensemble. Best results are in bold. The row Win-tie-loss indicates the amount of datasets

over which the GNN-DES obtained a higher, equal, and lower, respectively, average F1

score than the column-wise technique. The row P-value indicates the resulting p-value of

the Wilcoxon signed-rank test between the GNN-DES and the column-wise techniques, and

values below 𝛼 = 0.05 are in bold.

Ref. # ORACLE ADA KNU KNE DKNN KNOP META-DES RRC CHADE FLT OLP OLP++ GNN-DES

1 1.0000 0.3333 0.3900 0.3633 0.3800 0.3000 0.2467 0.4233 0.2333 0.2067 0.5138 0.2500 0.3571

2 1.0000 0.9257 0.9057 0.8557 0.8414 0.9257 0.9257 0.8557 0.8850 0.9400 0.9067 0.9600 0.9057

3 1.0000 0.9548 0.9584 0.9723 0.9639 0.9577 0.9621 0.9577 0.9534 0.9456 0.9438 0.9682 0.9577

4 1.0000 0.9191 0.9292 0.9128 0.9174 0.9048 0.9136 0.9339 0.9152 0.9202 0.8843 0.9269 0.9217

5 1.0000 0.8990 0.9096 0.9163 0.9156 0.8799 0.8742 0.8904 0.8822 0.9087 0.8699 0.8789 0.8865

6 1.0000 0.9382 0.9429 0.9153 0.9273 0.9342 0.9385 0.9240 0.9217 0.9477 0.8635 0.9391 0.9404

7 1.0000 0.8697 0.8568 0.7717 0.8568 0.8714 0.8699 0.8571 0.8123 0.8754 0.8105 0.8821 0.8648

8 1.0000 0.9200 0.9002 0.8319 0.8707 0.9262 0.9398 0.8795 0.8653 0.8311 0.7581 0.8402 0.9216

9 1.0000 0.9495 0.9480 0.9271 0.9205 0.9428 0.9428 0.9547 0.9253 0.9451 0.8897 0.9341 0.9361

10 0.9933 0.9569 0.9665 0.9569 0.9578 0.9588 0.9646 0.9588 0.9683 0.9713 0.9392 0.9703 0.9665

11 1.0000 0.8756 0.8484 0.8290 0.8139 0.8599 0.8646 0.8568 0.8421 0.8611 0.7545 0.8628 0.8615

12 1.0000 0.9732 0.9723 0.9639 0.9679 0.9726 0.9726 0.9723 0.9769 0.9658 0.9121 0.9560 0.9689

13 1.0000 0.9330 0.9344 0.9152 0.9241 0.9344 0.9408 0.9268 0.9191 0.8825 0.8509 0.8841 0.9268

14 0.9909 0.9707 0.9755 0.9755 0.9755 0.9766 0.9689 0.9755 0.7457 0.9832 0.9678 0.9755 0.9832
15 1.0000 0.9014 0.9032 0.9088 0.8953 0.9209 0.9158 0.9032 0.9092 0.8987 0.7850 0.8655 0.9099

16 1.0000 0.9480 0.9334 0.9165 0.9115 0.9500 0.9500 0.9368 0.9309 0.9458 0.8622 0.9423 0.9527
17 1.0000 0.9749 0.9748 0.9668 0.9667 0.9748 0.9787 0.9729 0.9748 0.9765 0.9690 0.9728 0.9805
18 1.0000 0.9635 0.9709 0.9747 0.9749 0.9672 0.9672 0.9691 0.9587 0.9666 0.9517 0.9728 0.9691

19 1.0000 0.9800 0.9763 0.9667 0.9794 0.9785 0.9781 0.9785 0.8987 0.9799 0.9711 0.9805 0.9777

20 1.0000 0.5848 0.6183 0.4455 0.5437 0.6424 0.6340 0.6301 0.4764 0.0000 0.4219 0.3790 0.6349

21 1.0000 0.7290 0.7085 0.5718 0.6296 0.7600 0.7646 0.6883 0.6396 0.0000 0.5515 0.6902 0.7317

22 1.0000 0.9784 0.9803 0.9792 0.9800 0.9829 0.9825 0.9809 0.9157 0.8747 0.9655 0.9810 0.9829

23 1.0000 0.7832 0.5993 0.5917 0.7156 0.7072 0.7260 0.6964 0.4183 0.8033 0.6210 0.7945 0.7232

24 1.0000 0.9116 0.8809 0.8856 0.9062 0.9044 0.9275 0.9193 0.7864 0.9342 0.9006 0.9016 0.9175

25 1.0000 0.7827 0.6410 0.6115 0.6512 0.7965 0.7820 0.6125 0.6793 0.8222 0.4750 0.6796 0.7831

26 1.0000 0.8585 0.7877 0.7520 0.7251 0.8968 0.8989 0.7560 0.7144 0.9195 0.7074 0.9359 0.8942

27 1.0000 0.8618 0.8509 0.8350 0.8237 0.9024 0.9094 0.8302 0.7400 0.9522 0.8181 0.9432 0.9077

28 1.0000 0.8317 0.7246 0.5842 0.6180 0.8479 0.8473 0.6022 0.7556 0.8603 0.4480 0.7560 0.8425

29 1.0000 0.7893 0.7972 0.7595 0.7831 0.7645 0.7739 0.7374 0.6836 0.8067 0.7629 0.8091 0.7822

30 1.0000 0.9581 0.6507 0.6791 0.7002 0.9086 0.9129 0.5930 0.3410 0.8632 0.6188 0.6881 0.8797

31 1.0000 0.9753 0.8980 0.9389 0.9270 0.9521 0.9525 0.8760 0.3668 0.9769 0.8865 0.9663 0.9630

32 1.0000 0.9846 0.9797 0.9799 0.9847 0.9795 0.9845 0.9804 0.9639 0.9820 0.9723 0.9600 0.9897
33 1.0000 0.8707 0.6933 0.5955 0.5965 0.8893 0.8959 0.5805 0.7700 0.8902 0.5198 0.8186 0.8814

34 1.0000 0.0400 0.0000 0.0000 0.0000 0.0000 0.0000 0.0400 0.0459 0.0400 0.0000 0.0000 0.0000

35 1.0000 0.9538 0.9387 0.9305 0.9325 0.9489 0.9494 0.8950 0.5844 0.9569 0.9335 0.9384 0.9525

Avg. 0.9995 0.8594 0.8270 0.7994 0.8137 0.8577 0.8587 0.8156 0.7543 0.8181 0.7716 0.8344 0.8587

Avg. rank n/a 4.8714 6.2571 8.6143 7.4714 5.0286 4.4286 6.8714 8.9429 4.8714 10.5286 5.7000 4.4143
Win-tie-loss n/a 21-0-14 22-3-10 30-1-4 28-1-6 17-2-16 16-1-18 24-2-9 32-0-3 16-1-18 32-1-2 21-1-13 n/a

P-value n/a 0.6942 0.0044 < 10−4 0.0001 0.8186 0.3298 0.0011 < 10−4 0.6882 < 10−4 0.0564 n/a

We now analyze the results by Imbalance Ratio (IR) range according to the categorization used

in (Fernández, García, del Jesus & Herrera, 2008), where a dataset has low imbalance if its IR is

below 3, medium imbalance if its IR is between 3 and 9 (both inclusive), and high imbalance if

its IR is above 9. Because of the number of datasets in the high imbalance category was too

low (only 4), we grouped the medium and high datasets into one group (medium-high) in order

166

to obtain more robust statistical results. Table 4.11 shows the summary of the comparative

results of the proposed technique against the evaluated methods in terms of average F1 score. It

can be observed that the proposed technique was among the top 3 techniques with the highest

average rank over the two groups of dataset, obtaining the highest rank over the datasets with

medium-high imbalance. This suggests the proposed method is an overall competitive approach

for dealing with the minority class in problems of varying imbalance levels.

Compared to the feature space-based only techniques (KNU, KNE, DKNN, RRC, OLP) and

CHADE, the proposed method statistically outperformed them in both groups of low and

medium-high class imbalance, further indicating its comparative effectiveness over the minority

class in high dimensional overlapped data. Compared to the remaining techniques, the GNN-DES

obtained a statistically similar performance over both groups of datasets.

All in all, the results in terms of F1 follow a similar trend to the one observed in the experimental

analysis presented in terms of balanced accuracy rate in this work, with the GNN-DES obtaining

an overall improved performance compared to the feature space-based methods and CHADE,

and an overall similar performance to the KNOP, META-DES and FLT, differing only against

the static baseline and the OLP++. We also observed that the degree of the problems’ imbalance

did not affect this trend, further supporting the experimental analysis presented in this work.

Table 4.11 Summary of the comparative analysis over the average F1 score of the

proposed method against the evaluated techniques for each group of datasets using the

AdaBoost ensemble. Low is the group of datasets that have 𝐼𝑅 < 3, and Medium-high is the

group of datasets that datasets have 𝐼𝑅 ≥ 3. Best results are in bold. The row Win-tie-loss
indicates the amount of datasets over which the GNN-DES obtained a higher, equal, and

lower, respectively, average F1 score than the column-wise technique. The row P-value
indicates the resulting p-value of the Wilcoxon signed-rank test between the GNN-DES and

the column-wise techniques, and values below 𝛼 = 0.05 are in bold.

Dataset group ADA KNU KNE DKNN KNOP META-DES RRC CHADE FLT OLP OLP++ GNN-DES

Low

Avg. rank 5.2631 6.3158 8.6053 7.4737 5.3158 4.4211 7.0000 8.8421 4.3684 10.5789 5.2105 4.6053

Win-tie-loss 14-0-5 11-1-7 15-0-4 15-0-4 10-1-8 8-0-11 12-1-6 18-0-1 8-0-11 17-0-2 11-0-8 n/a

P-value 0.1956 0.0421 0.0012 0.0053 0.5328 0.2579 0.0186 < 10−4 0.1819 0.0005 0.3955 n/a

Medium-high

Avg. rank 4.40625 6.1875 8.625 7.46875 4.6875 4.4375 6.71875 9.0625 5.46875 10.46875 6.28125 4.1875
Win-tie-loss 7-0-9 11-2-3 15-1-0 13-1-1 7-1-8 8-1-7 12-1-3 14-0-2 8-1-7 15-1-0 10-1-5 n/a

P-value 0.5282 0.0411 0.0005 0.0012 0.7960 0.8564 0.0214 0.0010 0.3936 0.0005 0.0525 n/a

CONCLUSION AND RECOMMENDATIONS

In this thesis, different ensemble frameworks were proposed to improve the dynamic selection of

classifiers by integrating local context information into the system. The importance of the local

distribution to the dynamic selection task was discussed, and key challenges directly associated

with this aspect were identified, namely the definition of an adequate local region and the presence

of local experts in the pool. A literature review on dynamic selection techniques was presented

in Chapter 1, focusing on the different RoC definition methods and the application of local

data characterization into the selection process, and the limitations of the current approaches

with regard to the key challenges were established. Different techniques that incorporate local

data information into the ensemble pipeline were then proposed in this thesis to address the

identified challenges. On the presence of local experts in the pool, producing the pool over the

local border was proposed to yield more specialized classifiers. Learning the dynamic selection

task in an end-to-end manner from the classifiers’ interactions and the local data relations was

also proposed to boost the search for local experts. On the definition of an adequate local region,

three approaches using different definition methods were proposed to tackle scenarios that affect

the selection task, including local class overlap and data sparsity. In all of them, the local data

is characterized and the region is defined with multiple scales to provide ample context to the

system.

In Chapter 2, an instance hardness analysis was performed to investigate the impact the local class

overlap has on the performance of several dynamic selection schemes, and based on that analysis,

the Online Local Pool (OLP) technique was proposed. The OLP generates linear classifiers on

the fly to produce locally specialized models able to recognize the local border if the latter is

detected in the target region. This is achieved by first characterizing the samples using an instance

hardness measure to identify the presence of local class overlap in different areas of the feature

space. Then, in generalization, the local regions over which the local classifiers are generated are

defined using the nearest neighbor rule with an increasing neighborhood size to incorporate the

168

local context to the ensemble with different locality degrees. Furthermore, the linear models are

produced using the SGH technique, which yields an Oracle accuracy rate of 100% over the input

data, in order to fully “cover” the area surrounding the query instance. Experiments showed the

local pool provided an improvement to several dynamic selection schemes compared to using a

globally generated pool, suggesting that using locally specialized classifiers instead of a globally

generated pool can be quite advantageous over class-overlapped regions. The OLP also yielded a

statistically similar performance to several state-of-the-art methods, including ensemble methods

and monolithic classifiers, further suggesting the competitiveness of the proposed approach.

In Chapter 3, another local ensemble method was proposed based on the OLP, called the

OLP++, to address the limitations the previous technique presented over high dimensional

data. Instead of relying on the nearest neighbors rule, which may be susceptible to the effects

of the curse of dimensionality, the proposed approach leverages the data partitions obtained

from tree-based algorithms for the locality definition. The OLP++ then produces the local

experts over the different impure nodes from the decision path that a given query sample

traverses in the tree(s), therefore introducing an increasingly wider local context to the ensemble.

Experiments showed that the OLP++’s recursive partition-based region definition identified

borderline instances with more success than the OLP’s nearest neighbors-based region definition,

suggesting an improvement in the local distribution over which the local linear rules are learned.

The OLP++ also yielded a more diverse set of local classifiers and obtained a statistically

superior performance compared to the OLP with the same pool size. Moreover, the OLP++

significantly outperformed the random forest baseline in most cases as well as several dynamic

selection techniques, using the random forest ensemble, and obtained a similar performance to

the other local-based ensemble methods, further suggesting its applicability for local ensemble

learning in high dimensional spaces.

169

Lastly, in Chapter 4, the issue of local learning in sparse data is revisited, as the OLP++ presents

a considerable shortcoming: the quality of the local decision rules depends directly on the

pre-defined partitions, which may not provide regions where the locality assumption is strong

for the dynamic selection task, especially in the presence of local class overlap. Thus, the Graph

Neural Network Dynamic Ensemble Selection (GNN-DES) technique is proposed to address

local learning for dynamic selection in sparse and overlapped distributions. In the GNN-DES, a

multi-label GNN is fit in an end-to-end manner to select the local experts from an existing pool

using information from the data’s local relationships, characterized in a graph structure, and the

classifiers’ interactions, encoded in the meta-labels. By optimizing the network directly to the

dynamic selection task using these two distinct sources of information, the meta-classifier may

implicitly learn an embedded space where the locality assumption is stronger compared to the

original feature space without requiring an explicit RoC definition. Experiments showed the

dynamic selection techniques generally struggled over the sparse and overlapped data, though the

GNN-DES and the other techniques that rely on the decision space representation fared better.

However, the GNN-DES was the only one to statistically surpass the static selection baseline,

which suggests that it might behave somewhat differently from the other local-based schemes

possibly due to the classifiers’ inter-dependencies learned by the multi-label meta-classifier. It

also statistically outperformed several other dynamic schemes, including the OLP++, further

suggesting its suitability to deal with sparse overlapped data. Further analysis of the local region

distribution showed that the GNN-DES performed better than the contending techniques over the

problems where the locality assumption was weaker in the presence of class overlap, suggesting

that leveraging the local data distribution and the classifiers’ interactions can aid the dynamic

selection task in challenging scenarios.

Overall, the contributions of this thesis have focused on improving the performance of dynamic

selection approaches by leveraging the local data distribution. This was achieved through data

characterization and improvements in the local region definition and the search for local experts.

170

These advancements may further stimulate the application of dynamic selection schemes to

real-world problems that present complex characteristics such as class overlap and data sparsity.

Thus, from this thesis, several future directions may be considered:

• Increasing the characterization of the instances’ local relationships to improve the graph

representation for the GNN-DES may be an interesting research direction. The samples’

relations in the GNN-DES were derived from similarities in the decision space, which the

experimental results from Chapter 4 were overall more adequate to be used in HDSSS

problems. However, it was observed that the locality assumption within a region defined in

the feature space was quite suitable in some cases, using the nearest neighbors rule in the

OLP and recursive partitioning in the OLP++, as well as the other evaluated techniques, even

over the same test bed. So it seems that different local methods may be able to describe more

representative relationships over different problems, or over distinct instances within the

same problem. Thus, there is an argument for modeling the samples’ local relationships in

multiple, and hopefully complementary, ways and encoding them in the graph, as the latter’s

high expressive power was not fully explored in this thesis.

• Another interesting research direction would be the development of a representation learning

framework where the embedded space is optimized for the OLP. It was observed in Chapter

2 and Chapter 3 that the presence of local experts could boost the performance of local

dynamic schemes. However, the OLP and OLP++ rely on region definition methods that were

not optimized for the task, and as such may be susceptible to poor local distribution. The

GNN-DES, on the other hand, is optimized for the dynamic selection task and may therefore

learn an embedded space where the local distribution is more favorable. Nevertheless, the

GNN-DES only works for a previously generated ensemble, which is usually produced with a

global perspective of the problem and may not guarantee a good availability of local experts

in all regions. Thus, developing a framework that learns an embedded space for producing

the local rules might be a worthwhile endeavor for future research.

APPENDIX I

ON EVALUATING THE ONLINE LOCAL POOL GENERATION METHOD FOR
IMBALANCE LEARNING

Mariana A. Souza1 , George D. C. Cavalcanti2 , Rafael M. O. Cruz1 , Robert Sabourin1

1 Laboratoire d’Imagerie, de Vision et d’Intelligence Artificielle (LIVIA),

École de Technologie Supérieure,

1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3

2 Centro de Informática,

Universidade Federal de Pernambuco,

1235 Av. Prof. Moraes Rego, Recife, Pernambuco, Brazil 50670-901

Article published in the Proceedings of the International Joint Conference on Neural Networks

(ĲCNN), 2019

Abstract

Imbalanced problems are characterized by a disproportion between the number of samples from

the classes in a classification problem. This difference in amount of examples may lead to a

bias toward the majority class, hindering the recognition of the underrepresented minority class.

Ensemble methods have been widely used for dealing with such problems, and have been shown

to perform well on them. In this context, Dynamic Selection (DS) approaches, which perform

the classification task on a local level, have been receiving some attention for their promising

results. More specifically, the Frienemy Indecision Region Dynamic Ensemble Selection++

(FIRE-DES++) framework, which has yielded state-of-the-art results on imbalanced problems,

use a data preprocessing technique for noise removal and a class-balanced neighborhood

definition for coping with imbalanced datasets. A different DS-based approach proposed in a

previous work, an online local pool generation method, generates on the fly locally accurate

classifiers for labelling samples near the class borders. Though the local generation of the

classifiers may reduce the impact of class imbalance on the performance of the technique, its

suitability for imbalance learning was not yet evaluated. Thus, in this work we evaluate how

well the online local pool generation method deals with imbalanced problems. We perform a

172

comparative analysis with a baseline technique using three Dynamic Classifier Selection (DCS)

techniques over 64 imbalanced datasets and four performance measures. We also evaluate the

use of the preprocessing and balanced neighborhood definition steps from the FIRE-DES++

on the online scheme to assess their impact on the performance of the method. Moreover, we

evaluate the online technique and its variants against seven state-of-the-art ensemble methods,

including both static and DS approaches. Experimental results show that the approach of locally

generating the classifiers is advantageous for imbalance learning, providing an improvement

to the DCS techniques and yielding state-of-the-art results. Furthermore, the addition of the

noise removal and the balanced neighborhood definition steps to the online scheme improved

the overall results of the technique, which indicates the advantage of including such steps in

DS-based techniques.

1. Introduction

Imbalanced distributions, in which a given class is underrepresented in comparison with the

remaining ones in the problem, may be encountered in many real-world classification problems,

such as biomedical diagnosis (Mazurowski, Habas, Zurada, Lo, Baker & Tourassi, 2008),

detection of fraudulent bank account transactions (Wei, Li, Cao, Ou & Chen, 2013), image

retrieval (Piras & Giacinto, 2012), text classification (Zheng, Wu & Srihari, 2004), and so

on. For two-class problems, the class with fewer instances is referenced as the minority or

positive class, while the class that contains the most instances is called the majority or negative

class. Since one class outnumbers the other, many traditional classification models may end up

biased in favor of the majority class, leading to a poor recognition rate of the examples from the

minority class (Prati, Batista & Silva, 2015).

Several techniques have been proposed to deal with imbalance learning, and they can be

categorized into four groups (Galar, Fernandez, Barrenechea, Bustince & Herrera, 2012;

Fernández, García, Galar, Prati, Krawczyk & Herrera, 2018): algorithm-level approaches,

data-level approaches, cost-sensitive learning frameworks, and ensemble based approaches.

Algorithm-level approaches adapt the existing learning algorithms so as to adjust their bias

173

toward the minority class. Data-level approaches, on the other hand, make use of resampling

techniques to rebalance the class distribution of the problem. Cost-sensitive frameworks combine

both data-level and algorithm-level approaches by adding cost to instances and modifying the

learning procedure to incorporate those costs. Finally, the ensemble-based approaches make

use of one of the previous approaches, usually data preprocessing, and an ensemble learning

algorithm.

Ensemble methods have been widely used for handling imbalanced problems. Classical exemples

are the cost-sensitive-based AdaCost (Fan, Stolfo, Zhang & Chan, 1999) and RareBoost (Joshi,

Kumar & Agarwal, 2001), and the preprocessing-based SMOTE-Boost (Chawla, Lazarevic,

Hall & Bowyer, 2003), RUSBoost (Seiffert, Khoshgoftaar, Van Hulse & Napolitano, 2010),

OverBagging (Wang & Yao, 2009) and UnderBagging (Barandela, Valdovinos & Sánchez, 2003),

among others. These techniques are based on Static Selection (SS), which defines the same

ensemble to be used in the labelling of all query instances of a problem. Dynamic Selection (DS)

approaches, on the other hand, single out the classifiers better fit for labelling each query sample

in particular, usually by evaluating the local competence of each classifier in the neighborhood

of that sample. Since they do not take the entire dataset into account when performing the

classification task, which may reduce the impact of the disproportion between the classes, DS

techniques are seen as a promising alternative for imbalance learning (Cruz et al., 2018a).

A few recent works on ensemble-based approaches apply DS for dealing with imbalanced

problems. The effect of using data preprocessing techniques combined with DS approaches

for imbalance learning has been studied in (Roy et al., 2018). In (Xiao, Xie, He & Jiang,

2012), a DS technique featuring cost-sensitive selection criteria was proposed for dealing

with imbalanced data applied to the customer classification problem. The K-Nearest Oracles

Borderline-Imbalance (KNORA-BI) (Oliveira et al., 2018) technique was also proposed as an

adaptation of the K-Nearest Oracles Eliminate (KNORA-E) Dynamic Ensemble Selection (DES)

technique for imbalanced distributions. The Frienemy Indecision Region Dynamic Ensemble

Selection++ (FIRE-DES++) framework (Cruz et al., 2019a), which yielded state-of-the-art

results over several public imbalanced datasets, makes use of a data preprocessing technique

174

for noise removal and a class-balanced neighborhood definition in order to better select the

classifiers in imbalanced local regions.

In a previous work (Souza et al., 2019b), an online local pool generation method was proposed

for dealing with samples in local class overlap regions of the feature space. The method

consists of iteratively generating hyperplanes on the fly using the instances in the neighborhood

of these samples, and then selecting the most competent ones using a Dynamic Classifier

Selection (DCS) technique. This online scheme yielded a statistically equivalent performance

to several classification models, including four state-of-the-art DES techniques (Souza et al.,

2019b). Though the online technique was not evaluated in the context of imbalance learning,

the class-balanced local generation of the classifiers combined with their local evaluation and

selection via DCS technique suggests that it may be somewhat robust to class imbalance.

So, in this work, we perform an evaluation of the online local pool generation technique

from (Souza et al., 2019b) with regards to imbalance learning. To that end, we compare its

performance with a baseline pool generation technique using three DCS techniques over 64

two-class datasets, in order to evaluate whether generating the classifiers locally provide any

advantage in imbalanced scenarios compared to only locally selecting them. The online scheme

is also evaluated using the two additional modules included in the FIRE-DES++ framework,

namely the DSEL pre-processing and the balanced region of competence definition, in order to

assess whether these modules have a positive impact on the performance of the online method

over imbalanced problems. Finally, the online local pool generation method and its variants

including the additional modules are evaluated against seven state-of-the-art ensemble methods,

four static and three DS-based, to assess its suitability for dealing with imbalance learning.

The rest of this work is organized as follows. In Section 2, the online pool generation method is

briefly introduced. The comparative analysis between the online method and its variants and the

FIRE-DES++ is then performed in Section 3. Lastly, the conclusions derived from this work are

summarized and future works are suggested in Section 4.

175

2. Online local pool generation technique

The online local pool generation technique proposed in (Souza et al., 2019b) is divided into

two phases: an offline phase, in which the borderline training samples are identified, and an

online phase, in which a pool of locally accurate classifiers is generated for labelling the query

instances located on overlap regions of the feature space. The offline and the online phases of

the method are described in Section 2.1 and Section 2.2, respectively.

2.1 Offline phase

In the offline phase, shown in Figure I-1, the borderline samples in the training set T are singled

out using the K-Disagreeing Neighborhood (KDN) measure, shown in Equation A I-1, where T

is the training dataset, xi and xj are training samples, 𝑦𝑖 and 𝑦 𝑗 are their respective labels and

𝑘ℎ is the neighborhood size. The KDN measure calculates the proportion of samples from a

different class in the neighborhood of a given sample. This measure indicates the degree of class

overlap in the region where the sample is located, and it is used in the online phase for deciding

whether to generate the local pool on the fly or not.

Figure-A I-1 Overview of the offline phase of the online local pool generation method. T
is the training set and 𝐻 is the set of KDN estimates, containing the KDN score (Equation

A I-1) of all instances in T .

KDN(xi, T , 𝑘ℎ) =
|{xj |xj ∈ KNN(xi, T , 𝑘ℎ) ∧ 𝑦𝑖 ≠ 𝑦 𝑗 }|

𝑘ℎ
(A I-1)

176

Algorithm overview

Algorithm-A I-1 Offline phase.

input :T , 𝑘ℎ; ⊲ Training dataset and KDN parameter

output :𝐻 ; ⊲ Estimated KDN scores

1 for every xi in T do
2 𝐻 (𝑖) ← 𝐾𝐷𝑁 (xi, T , 𝑘ℎ) ; ⊲ Calculate KDN score (Eq. A I-1)

3 end for
4 return 𝐻

The pseudocode of the offline phase of the online local pool generation scheme is shown in

Algorithm I-1. Its inputs are the training set T and the KDN neighborhood size 𝑘ℎ. From Step 1

to Step 3, the KDN score of each instance xi ∈ T is calculated and stored in 𝐻, which is then

returned in Step 4.

2.2 Online phase

The online phase of the method, described in Figure I-2, is divided in three steps: region of

competence estimation, local pool generation and generalization. In the first step, the region of

competence 𝜃𝑞 of the query sample xq is first obtained using regular KNN with a neighborhood

size of 𝑘𝑠 over the training set T .

The region of competence 𝜃𝑞 is then evaluated based on the KDN scores stored in 𝐻, which was

obtained in the offline phase. If none of the sample’s neighbors are borderline samples, that is, if

their KDN score is zero, then the procedure goes directly to the last step, generalization, and

the KNN classifier yields the output label 𝜔𝑙 of xq. If, however, any of the neighbors xi ∈ 𝜃𝑞

is a borderline sample, the region is identified as an overlap region and the local pool (LP) is

generated in the second step. The generation procedure of the local pool is explained next. Then,

the generated locally accurate classifiers in LP are combined using the majority voting rule to

obtain the output label 𝜔𝑙 in the generalization step.

Figure I-3 shows the generation procedure of the local pool (LP). The LP is constructed iteratively,

and in each iteration the most locally accurate classifier produced in that iteration is added to

177

Figure-A I-2 Overview of the online phase of the online local pool generation method. T
is the training set, xq is the query sample, 𝜃𝑞 is its region of competence, 𝑘𝑠 is the

neighborhood size, 𝐻 is the set of KDN estimates, LP is the local pool and 𝜔𝑙 is the output

label of xq. In the online phase, the region of competence 𝜃𝑞 is first defined and evaluated

based on the KDN scores in 𝐻, obtained in the offline phase. If 𝜃𝑞 does not contain

borderline samples, that is, it is not an overlap region, the KNN rule is used to label xq in

the last step. Otherwise, the local pool is generated in the second step, and xq is labelled via

majority voting of the classifiers in LP in the third step.

LP. In a given m-th iteration, the query sample’s neighboring instances in the training set T are

obtained using a nearest neighbors procedure with neighborhood size 𝑘𝑚, calculated based on

the region of competence size 𝑘𝑠. For two-class problems, the K-Nearest Neighbors Equality

(KNNE) (Sierra et al., 2011) is used. The KNNE is a variation of the regular KNN that selects

the same amount of samples from each of the classes in the problem. Figure I-4 illustrates this

procedure.

The query sample’s neighborhood 𝜃𝑚 is then used as input to the Self-Generating Hyperplanes

(SGH) method (Souza et al., 2017), a pool generation method that yields an Oracle (Kuncheva,

2002) accuracy rate of 100% over the input dataset. The SGH method then returns a local

subpool 𝐶𝑚 that fully covers the class-balanced neighborhood 𝜃𝑚. That is, the presence of at

least one competent classifier 𝑐𝑚,𝑘 ∈ 𝐶𝑚 for each instance in 𝜃𝑚 is guaranteed. The indexes

in the classifiers’ notation indicates that the classifier 𝑐𝑚,𝑘 is the k-th classifier from the m-th

subpool (𝐶𝑚). Then, the most competent classifier 𝑐𝑚,𝑛 from 𝐶𝑚 in the region delimited by

178

Figure-A I-3 Local pool generation step. T is the training step, xq is the query sample

and 𝑘𝑠 is the size of the query sample’s region of competence and LP is the final local pool,

which is obtained iteratively. In the m-th iteration, the query sample’s neighborhood 𝜃𝑚 of

size 𝑘𝑚 is obtained and used as input to the Self-Generating Hyperplanes (SGH) method

(Souza et al., 2017), which yields the subpool 𝐶𝑚. The classifiers from 𝐶𝑚 are then

evaluated over 𝜃𝑚 using a DCS technique. The classifiers’ notation refers a classifier 𝑐𝑚,𝑘 as

the k-th classifier from the m-th subpool (𝐶𝑚). The most competent classifier 𝑐𝑚,𝑛 in

subpool 𝐶𝑚 is then selected and added to the local pool LP. This process is then repeated

until LP contains a pre-defined amount of locally accurate classifiers.

the neighborhood 𝜃𝑞 is selected by a DCS technique and added to the local pool. The same

procedure is performed in iteration 𝑚 + 1 with the neighborhood size 𝑘𝑚+1 increased by 2. This

process is then repeated until the local pool contains a pre-defined amount of locally accurate

classifiers.

Algorithm overview

The online phase of the technique is described in more detail in Algorithm I-2. Its inputs are the

query sample xq, training set T , the set of KDN scores 𝐻, the region of competence size 𝑘𝑠 and

the local pool size 𝑀 .

Step 1 to Step 2 represent the region of competence evaluation step of the online phase (Figure

I-2). In Step 1, the query sample’s region of competence 𝜃𝑞 is obtained by selecting the 𝑘𝑠

179

(a) (b)

Figure-A I-4 Neighborhood definition of (a) KNN and (b) KNNE, with neighborhood size

𝐾 = 7. In (a) the 𝐾 closest examples to the query sample xq are selected, while in (b) the 𝐾
closest examples from each class are singled out.

Algorithm-A I-2 Online phase.

input :xq, T , 𝐻 ; ⊲ Query sample, training set and KDN estimates

input :𝑘𝑠 , 𝑀 ; ⊲ Neighborhood size and pool size of local pool (LP)

output :𝜔𝑙 ; ⊲ Output label of xq
1 𝜃𝑞 ← 𝑜𝑏𝑡𝑎𝑖𝑛𝑅𝑜𝐶 (xq, 𝑘𝑠 , T) ; ⊲ Obtain the query instance’s region of competence

2 if {∃xi ∈ 𝜃𝑞 |𝐻 (𝑖) > 0} then
3 𝐿𝑃 ← {} ; ⊲ Local pool initially empty

4 for every 𝑚 in {1, 2, ..., 𝑀} do
5 𝑘𝑚 ← 𝑘𝑠 + 2 × (𝑚 − 1) ; ⊲ Increase neighborhood size by 2

6 𝜃𝑚 ← 𝑜𝑏𝑡𝑎𝑖𝑛𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 (xq, 𝑘𝑚, T) ; ⊲ Obtain neighborhood of xq
7 𝐶𝑚 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑃𝑜𝑜𝑙 (𝜃𝑚) ; ⊲ Generate local subpool 𝐶𝑚

8 𝑐𝑚,𝑛 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 (xq, 𝜃𝑚, 𝐶𝑚) ; ⊲ Select best classifier in 𝐶𝑚

9 𝐿𝑃 ← 𝐿𝑃 ∪ {𝑐𝑚,𝑛} ; ⊲ Add 𝑐𝑚,𝑛 to 𝐿𝑃
10

11 end for
12 𝜔𝑙 ← 𝑚𝑎 𝑗𝑜𝑟𝑖𝑡𝑦𝑉𝑜𝑡𝑖𝑛𝑔(xq, 𝐿𝑃) ; ⊲ Label xi with majority voting on LP

13 else
14 𝜔𝑙 ← 𝐾𝑁𝑁 (xq, 𝑘𝑠 , T) ; ⊲ Label query sample using KNN rule

15

16 end if
17 return 𝜔𝑙

1) Region of

competence

evaluation

2) Local pool

generation

3) Gener-

alization

180

closest samples to xq in the training set. The region of competence is then evaluated in Step 2.

If all instances in 𝜃𝑞 are not borderline samples, that is, their KDN value is zero, the method

goes straight to Step 13 (generalization step of Figure I-2) and the query sample’s output label

𝜔𝑙 is obtained using the KNN rule with parameter 𝑘𝑠 and returned in Step 15.

However, if there is one instance xi from 𝜃𝑞 whose KDN estimate 𝐻 (𝑖) is above zero, the region

is considered an overlap one and the method proceeds to Step 3. Each classifier in the local pool

(LP) is obtained in the loop that iterates 𝑀 times, so Step 4 to Step 10 describe the local pool

generation procedure from Figure I-3. In each iteration, the neighborhood size 𝑘𝑚 is calculated

in Step 5. Then, the query sample’s neighborhood 𝜃𝑚 is obtained using a nearest neighbors

method in Step 6. For two class problems, the KNNE is used in this step.

The subpool 𝐶𝑚 is then generated in Step 7 using the SGH method with 𝜃𝑚 as training set.

In Step 8, a DCS technique is then used to select the most competent classifier 𝑐𝑚,𝑛 in 𝐶𝑚.

The classifier 𝑐𝑚,𝑛 is added to LP in Step 9, and then the loop continues until the local pool is

complete. Finally, the query sample’s label 𝜔𝑙 is obtained using majority voting over the locally

accurate classifiers in LP in Step 11 and it is then returned in Step 15.

3. Experiments

Experiments were conducted over the 64 two-class datasets presented in Table I-1 from the

Knowledge Extraction based on Evolutionary Learning (KEEL) repository (Alcalá et al., 2011).

Each dataset was evaluated using a stratified 5-fold cross validation, one fold for test and the

remaining for training, with the partitions already provided in the KEEL website. Since the

number of samples in each dataset is quite small, the training set was also used as the dynamic

selection dataset (DSEL) (Cruz et al., 2018a) in the experiments for all evaluated DS techniques,

as in (Cruz et al., 2019a). The DSEL is a set of labelled samples used for region of competence

definition in DS techniques.

The measures used to evaluate the performance of the techniques were the mean accuracy

rate and three frequently used measures for imbalance learning: the area under the Receiver

181

Table-A I-1 Main characteristics of the datasets used in the experiments.

Ref. Dataset # Feat. # Samples IR Ref. Dataset # Feat. # Samples IR
1 glass1 9 214 1.82 33 ecoli-0-2-6-7vs3-5 7 224 9.18

2 ecoli0vs1 7 220 1.86 34 glass-0-4vs5 9 92 9.22

3 wisconsin 9 683 1.86 35 ecoli-0-3-4-6vs5 7 205 9.25

4 pima 8 768 1.87 36 ecoli-0-3-4-7vs5-6 7 257 9.28

5 iris0 4 150 2 37 yeast-05679vs4 8 528 9.35

6 glass0 9 214 2.06 38 vowel0 13 988 9.98

7 yeast1 8 1484 2.46 39 ecoli-0-6-7vs5 6 220 10

8 haberman 3 306 2.78 40 glass-016vs2 9 192 10.29

9 vehicle2 18 846 2.88 41 ecoli-0-1-4-7vs2-3-5-6 7 336 10.59

10 vehicle1 18 846 2.9 42 led7digit-0-2-4-5-6-7-8-9vs1 7 443 10.97

11 vehicle3 18 846 2.99 43 glass-0-6vs5 9 205 11

12 glass0123vs456 9 214 3.2 44 ecoli-0-1vs5 6 240 11

13 vehicle0 18 846 3.25 45 glass-0-1-4-6vs2 9 205 11.06

14 ecoli1 7 336 3.36 46 glass2 9 214 11.59

15 new-thyroid1 5 215 5.14 47 ecoli-0-1-4-7vs5-6 6 332 12.28

16 new-thyroid2 5 215 5.14 48 ecoli-0-1-4-6vs5 6 280 13

17 ecoli2 7 336 5.46 49 cleveland-0vs4 13 177 12.62

18 segment0 19 2308 6 50 shuttle-c0vsc4 9 1829 13.87

19 glass6 9 214 6.38 51 yeast-1vs7 7 459 14.3

20 yeast3 8 1484 8.1 52 glass4 9 214 15.47

21 ecoli3 7 336 8.6 53 ecoli4 7 336 15.8

22 page-blocks0 10 5472 8.79 54 page-blocks-13vs4 10 472 15.86

23 ecoli-0-3-4vs5 7 200 9 55 glass-0-1-6vs5 9 184 19.44

24 yeast-2vs4 8 514 9.08 56 shuttle-c2-vs-c4 9 129 20.5

25 ecoli-0-6-7vs3-5 7 202 9.09 57 yeast-1458vs7 8 693 22.1

26 ecoli-0-2-3-4vs5 7 222 9.1 58 glass5 9 214 22.78

27 yeast-0-3-5-9vs7-8 8 506 9.12 59 yeast-2vs8 8 482 23.1

28 glass-0-1-5vs2 9 172 9.12 60 yeast4 8 1484 28.1

29 yeast-0-2-5-7-9vs3-6-8 8 1004 9.14 61 yeast-1289vs7 8 947 30.57

30 yeast-0-2-5-6vs3-7-8-9 8 1004 9.14 62 yeast5 8 1484 32.73

31 ecoli-0-4-6vs5 6 203 9.15 63 ecoli-0137vs26 7 281 39.14

32 ecoli-0-1vs2-3-5 7 224 9.17 64 yeast6 8 1484 41.4

Operation Characteristic (ROC) curve (AUC) (Fawcett, 2006), the F-measure (van Rĳsbergen,

1979) and the Geometric Mean (G-mean) (Kubat, Matwin et al., 1997). The F-measure and the

G-mean are described in Equation A I-2 and Equation A I-3, respectively, in which 𝑃 is the

number of test samples from the minority class (positive class), 𝑁 is the number of test samples

from the majority class (negative class), 𝑇𝑃 is the number of true positives, 𝑇𝑁 is the number of

true negatives, 𝑇𝑁 is the number of true negatives and 𝐹𝑃 is the number of false positives.

𝐹-𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑇𝑃

𝑃 + 𝑇𝑃 + 𝐹𝑃
(A I-2)

𝐺-𝑚𝑒𝑎𝑛 =

√
𝑇𝑃

𝑃
×

𝑇𝑁

𝑁
(A I-3)

182

The experiments were performed using the libraries scikit-learn (Pedregosa et al., 2011),

imbalanced-learn (Lemaître, Nogueira & Aridas, 2017) and DESLib (Cruz et al., 2020), which

provide implementations of several classification models in the Python 3.5 language.

The experimental analysis is divided into two parts. In Section 3.1, the online scheme and its

variants are evaluated and compared to the baseline technique using three DCS techniques. In

Section 3.2, the online technique and its variants are compared to seven state-of-the-art ensemble

methods, four of which being static ensembles and three being dynamic ensemble selection

frameworks.

3.1 Comparison with baseline technique

In this section, the online local pool generation technique is evaluated against the baseline

technique, Bagging (Breiman, 1996), with a pool size of 100 classifiers, with the Perceptron

as the base classifier (learning rate 𝛼 = 0.001 and number of iterations 𝑛𝑖𝑡𝑒𝑟 = 100), over three

DCS techniques. The DCS techniques used in the experiments were the Overall Local Accuracy

(OLA) (Woods et al., 1997), Local Class Accuracy (LCA) (Woods et al., 1997) and Multiple

Classifier Behavior (MCB) (Giacinto et al., 2000), all with a region of competence size of

𝐾 = 7. No Dynamic Ensemble Selection (DES) techniques were evaluated since the generation

procedure of the online scheme is not fit for selecting more than one classifier at a time (Souza

et al., 2019b).

The inclusion of the DSEL preprocessing and the balanced region of competence definition

from the FIRE-DES++, namely using the Edited Nearest Neighbors (ENN) (Wilson, 1972) with

𝐾 = 3, and the KNNE with 𝐾 = 7, respectively, to the online scheme is also evaluated in order to

assess its impact on the method’s performance. Thus, the online local pool generation technique

is evaluated in four versions: the original one (referenced as OLP), which defines the region of

competence using KNN and generates the classifiers using KNNE, the OLP+KNNE, which uses

KNNE for region of competence definition and for pool generation, the OLP+ENN, which is the

original OLP with the DSEL set pre-processed using ENN, and the OLP+KNNE+ENN, which

183

includes the two modifications previously mentioned. The pool size of all versions of the online

technique was set to 𝑀 = 5.

Table I-2 shows the mean performance of the online schemes and the baseline technique using

the three evaluated DCS techniques. It can be observed that the OLP and its variants obtained

a greater overall accuracy rate in comparison with Bagging using OLA and MCB. They also

statistically outperformed the baseline technique in this scenario according to a Wilcoxon

signed-rank test with a significance level of 𝛼 = 0.05.

In terms of AUC and G-mean, it can be observed that the baseline technique obtained a greater

performance overall using OLA and MCB, though its performance was statistically similar to

all versions of the online scheme. Using LCA, though, all versions of the OLP statistically

outperformed Bagging considering these performance measures.

As for the F-measure, the OLP+KNNE+ENN obtained the highest mean performance using

OLA and MCB, while using LCA the OLP+KNNE yielded the greater overall F-measure. The

two versions of the OLP coupled with the ENN also obtained a statistically superior performance

to Bagging using MCB. As in the previous case, all versions of the online scheme obtained a

statistically similar performance to Bagging using OLA, and a significantly superior performance

using LCA.

Thus, the results suggest that based on the same local evaluation by the DCS techniques, the

approach of locally generating the classifiers on the fly is at least as effective for imbalance

learning as dynamically selecting the classifiers from a globally generated pool obtained offline,

and at most a more advantageous approach (as in the case of using LCA).

It can also be observed from Table I-2 that the inclusion of a balanced region of competence and

a DSEL pre-processing improved the overall performance of the original online scheme. More

specifically, the addition of the KNNE alone improved significantly the OLP using LCA and

MCB in terms of accuracy, while using the ENN yielded a significant improvement using MCB

in terms of AUC and F-measure and using OLA and MCB in terms of G-mean.

184

Table-A I-2 Mean (a) accuracy rate, (b) AUC, (c) F-measure and (d) G-mean

of the evaluated techniques. Best results are in bold. The rows p-value show the

resulting p-value of a Wilcoxon signed-rank test with 𝛼 = 0.05 between the

performance of the indicated technique (Bagging or OLP) and the remaining

methods. The p-values below 𝛼 are underlined.

(a)

Technique Bagging OLP OLP+KNNE OLP+ENN OLP+KNNE+ENN

OLA

Avg. 92.81 93.95 93.98 93.62 93.66

p-value (Bag) n/a 0.000 0.000 0.000 0.000

p-value (OLP) - n/a 0.534 0.030 0.076

LCA

Avg. 92.55 92.63 92.90 92.18 92.47

p-value (Bag) n/a 0.802 0.273 0.169 0.692

p-value (OLP) - n/a 0.001 0.001 0.553

MCB

Avg. 92.95 94.00 94.11 93.84 93.84

p-value (Bag) n/a 0.000 0.000 0.000 0.000

p-value (OLP) - n/a 0.012 0.549 0.627

(b)

Technique Bagging OLP OLP+KNNE OLP+ENN OLP+KNNE+ENN

OLA

Avg. 0.819 0.808 0.809 0.815 0.817

p-value (Bag) n/a 0.470 0.583 0.849 0.700

p-value (OLP) - n/a 0.125 0.012 0.006

LCA

Avg. 0.771 0.797 0.798 0.795 0.794

p-value (Bag) n/a 0.000 0.000 0.003 0.004

p-value (OLP) - n/a 0.193 0.495 0.494

MCB

Avg. 0.823 0.808 0.810 0.821 0.823
p-value (Bag) n/a 0.174 0.405 0.553 0.354

p-value (OLP) - n/a 0.141 0.000 0.000

(c)

Technique Bagging OLP OLP+KNNE OLP+ENN OLP+KNNE+ENN

OLA

Avg. 0.672 0.673 0.675 0.682 0.684
p-value (Bag) n/a 0.241 0.209 0.104 0.057

p-value (OLP) - n/a 0.301 0.091 0.044

LCA

Avg. 0.606 0.634 0.640 0.630 0.633

p-value (Bag) n/a 0.011 0.003 0.025 0.010

p-value (OLP) - n/a 0.002 0.747 0.377

MCB

Avg. 0.680 0.678 0.681 0.693 0.694
p-value (Bag) n/a 0.093 0.051 0.005 0.006

p-value (OLP) - n/a 0.144 0.002 0.006

(d)

Technique Bagging OLP OLP+KNNE OLP+ENN OLP+KNNE+ENN

OLA
Avg. 0.773 0.738 0.739 0.753 0.755

p-value (Bag) n/a 0.297 0.416 0.935 0.858

p-value (OLP) - n/a 0.125 0.006 0.002

LCA
Avg. 0.680 0.732 0.730 0.730 0.725

p-value (Bag) n/a 0.000 0.000 0.001 0.002

p-value (OLP) - n/a 0.213 0.427 0.543

MCB
Avg. 0.781 0.738 0.740 0.759 0.762

p-value (Bag) n/a 0.161 0.399 0.540 0.353

p-value (OLP) - n/a 0.226 0.000 0.000

185

3.2 Comparison with the state-of-the-art

In this section, we compare the performance of the online local pool scheme and its variants

evaluated in the previous section with seven state-of-the-art ensemble techniques. The static

ensembles evaluated were AdaBoost (Freund & Schapire, 1997), RUSBoost (Seiffert et al.,

2010), Random Forest (RF) (Breiman, 2001) and Balanced Random Forest (BalancedRF) (Chen,

Liaw & Breiman, 2004), all with a pool of 100 decision trees and with the hyperparameters set to

the values suggested in (Fernández-Delgado, Cernadas, Barro & Amorim, 2014). The DES tech-

niques evaluated were the FIRE-KNORA-E++ (FKNE++) (Cruz et al., 2019a), the META-DES

(Cruz et al., 2015a) and the Randomized Reference Classifier (RRC) (Woloszynski & Kurzynski,

2011), also with a pool size of 100 classifiers, but with Perceptrons as base-classifiers. For

simplicity, the online techniques used in the comparative analysis were coupled with MCB, since

they obtained a greater overall performance in comparison with the other two DCS techniques

evaluated in the previous section.

Table I-3 shows the mean performance of the evaluated techniques with regards to accuracy rate,

AUC, F-measure and G-mean. It can be observed that the four versions of the OLP obtained the

greatest mean accuracy rates save for the RF. They also yielded the highest average ranks after

the RF according to a Friedman test.

In terms of AUC and F-measure, the BalancedRF obtained the highest average rank, while

the OLP+KNNE+ENN and the OLP+ENN yielded the second and third highest mean ranks,

respectively. The three alternate versions of the OLP also obtained the highest mean ranks in

terms of F-measure, with the META-DES and the OLP right after in the ranking.

Since the p-values indicated in Table I-3 were below the confidence level of 𝛼 = 0.05, a post-hoc

Bonferroni test with the same 𝛼 was performed and the results are shown in the critical difference

diagrams in Figure I-5. It can be observed that the OLP and its variants were significantly

superior to FKNE++, RUSBoost and BalancedRF and statistically equivalent to the remaining

state-of-the-art ensemble methods in terms of accuracy.

186

Table-A I-3 Mean performance of the evaluated state-of-the-art ensemble methods, the

online local pool scheme and its variants, the latter of which coupled with MCB. Best

results are in bold. The row Avg. rank indicates the average rank of each technique

according to a Friedman test over the evaluated techniques, and the p-value row indicates

the resulting p-value of the test.

Measure AdaBoost RUSBoost RF BalancedRF FKNE++ META-DES RRC OLP OLP+KNNE OLP+ENN OLP+KNNE+ENN

Accuracy

Avg. 93.37 92.57 94.30 86.87 92.79 93.71 93.77 94.00 94.11 93.84 93.84

Avg. rank 6.492 8.367 3.968 9.757 7.640 5.414 5.296 4.804 4.414 4.953 4.890

p-value 9.635 × 10−39

AUC

Avg. 0.805 0.815 0.797 0.880 0.829 0.825 0.811 0.808 0.810 0.821 0.823

Avg. rank 7.015 6.843 7.359 2.492 6.054 5.656 6.625 6.828 6.585 5.335 5.203

p-value 6.471 × 10−20

F-measure

Avg. 0.659 0.647 0.661 0.624 0.682 0.700 0.674 0.678 0.681 0.693 0.694

Avg. rank 6.835 7.632 5.945 7.179 6.6719 5.304 6.281 5.703 5.265 4.585 4.593

p-value 5.856 × 10−10

G-mean

Avg. 0.740 0.760 0.711 0.876 0.791 0.777 0.745 0.738 0.740 0.759 0.762

Avg. rank 7.101 6.656 7.679 2.304 6.00 5.664 6.687 6.937 6.671 5.226 5.070

p-value 6.909 × 10−24

In terms of AUC and G-mean, the BalancedRF significantly outperformed all evaluated

techniques. The two versions of the online scheme that use ENN were significantly superior to

RF only, while the other two had a similar performance to all techniques but the BalancedRF.

In terms of F-measure, the OLP+ENN and the OLP+KNNE+ENN significantly outperformed

RUSBoost, BalancedRF, AdaBoost and FKNE++, while the other two versions (OLP and

OLP+KNNE) were significantly superior to RUSBoost only.

Thus, the results from Figure I-5 suggest that the online local pool technique yields a statistically

similar performance to most of the evaluated state-of-the-art ensemble methods with regards to

imbalance learning. The addition of the ENN and the KNNE to the online scheme also provided

enough improvement to outperform few state-of-the-art techniques.

4. Conclusions and future work

In this work, we conducted an evaluation of the online local pool generation method from (Souza

et al., 2019b) with regards to imbalance learning, with the aim of assessing its suitability for

handling imbalanced problems. A total of 64 datasets of varying imbalance degrees and four

performance measures were used in the experiments. The comparative analysis featured three

variations of the online scheme incorporating the data pre-processing and the balanced region of

competence definition from the FIRE-DES++ (Cruz et al., 2019a) technique, in order to evaluate

187

(a) (b)

(c) (d)

Figure-A I-5 Critical difference diagram of Bonferroni-Dunn post-hoc test on the results

from Table I-3 in terms of (a) accuracy rate, (b) AUC, (c) F-measure and (d) G-mean. The

critical value (CD) was computed with a confidence level pf 𝛼 = 0.05.

the impact of these additional steps on the performance of the method. The online scheme was

also evaluated against four state-of-the-art static ensembles and three state-of-the-art dynamic

selection frameworks.

Experimental results show that the online pool generation method and its alternate approaches

performed generally better in terms of accuracy in comparison with the baseline technique,

Bagging, using three DCS techniques. In terms of AUC, F-measure and G-mean, the online

scheme was mostly statistically equivalent to Bagging when using OLA and MCB, and

significantly superior to it when using LCA, which suggests generating the classifiers locally is

an advantageous approach for dealing with imbalanced problems. Moreover, the inclusion of

a balanced region of competence definition to the online scheme improved its accuracy rate,

while the addition of a pre-processing step using the ENN improved the results in terms of

AUC, F-measure and G-mean.These results indicate that the noise removal provided by the ENN

188

and the use of balanced local regions is quite advantageous for local learning algorithms when

dealing with imbalanced problems.

The comparative analysis with the state-of-the-art showed that the online local pool technique

obtained a statistically similar performance to most evaluated state-of-the-art techniques, which

suggests it is suitable for dealing with imbalanced problems. Furthermore, the online technique

coupled with the additional modules of the FIRE-DES++ yielded a significantly superior

performance in comparison with a few of the evaluated techniques.

Future works may include the design of a dynamic local noise removal or prototype generation

procedure for better dealing with local imbalanced regions during the generation and the selection

of the local classifiers.

APPENDIX II

MULTI-LABEL LEARNING FOR DYNAMIC MODEL TYPE RECOMMENDATION

Mariana A. Souza1 , Robert Sabourin1 , George D. C. Cavalcanti2 , Rafael M. O. Cruz1

1 Laboratoire d’Imagerie, de Vision et d’Intelligence Artificielle (LIVIA),

École de Technologie Supérieure,

1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3

2 Centro de Informática,

Universidade Federal de Pernambuco,

1235 Av. Prof. Moraes Rego, Recife, Pernambuco, Brazil 50670-901

Article published in the Proceedings of the International Joint Conference on Neural Networks

(ĲCNN), 2020

Abstract

Dynamic selection techniques aim at selecting the local experts around each test sample in

particular for performing its classification. While generating the classifier on a local scope may

make it easier for singling out the locally competent ones, as in the online local pool (OLP)

technique, using the same base-classifier model in uneven distributions may restrict the local

level of competence, since each region may have a data distribution that favors one model over

the others. Thus, we propose in this work a problem-independent dynamic base-classifier model

recommendation for the OLP technique, which uses information regarding the behavior of a

portfolio of models over the samples of different problems to recommend one (or several) of

them in a per-instance manner. Our proposed framework builds a multi-label meta-classifier

responsible for recommending a set of relevant base-classifier models based on the local data

complexity of the region surrounding each test sample. The OLP technique then produces

a local pool with the model that yields the highest probability score of the meta-classifier.

Experimental results show that different data distributions favored different model types on

a local scope. Moreover, based on the performance of an ideal model type selector, it was

observed that there is a clear advantage in choosing a relevant base-classifier model for each

190

test instance in particular. Overall, the proposed model type recommender system yielded a

statistically similar performance to the original OLP with fixed base-classifier model. However,

the proposed framework struggled to recommend at least one relevant model type specially

for the samples with low labelset cardinality. Given the novelty of the approach and the gap

in performance between the proposed framework and the ideal selector, we regard this as a

promising research direction.

Code available at github.com/marianaasouza/dynamic-model-recommender.

1. Introduction

Multiple Classifier Systems (MCS) combine the responses of several classifiers in the hopes that

the combined system outperforms each individual base-classifier (Kittler et al., 1998; Woźniak

et al., 2014). MCS are usually divided into three phases (Cruz et al., 2018a): generation,

in which the base-classifiers from the pool are generated, selection, in which a subset of the

classifiers may be selected to perform the classification, and aggregation, in which the responses

of the selected base-classifiers are combined. The classifier selection may be either static or

dynamic, with the former being performed during training and the latter during generalization.

The reasoning behind dynamic selection techniques is that each classifier in the pool may be

a local expert in different regions of the feature space, so the dynamic selection schemes aim

at selecting the base-classifier(s) that are best fit for labelling each test instance in particular.

Dynamic selection techniques were shown to outperform static selection approaches specially

on ill-defined problems (Britto et al., 2014).

Yet since most pool generation methods used in dynamic selection schemes are classical

techniques designed for static selection (Cruz et al., 2018a), such as Bagging (Breiman, 1996)

and Boosting (Schapire et al., 1997), they generate the base-classifiers with a global perspective

of the problem, so producing a local expert in the vicinity of all test instances is not guaranteed.

Dynamic selection techniques were also shown to have difficulty in selecting a locally competent

classifier even when it exists in the pool (Oliveira et al., 2017; Souza et al., 2017). In a previous

work (Souza et al., 2019b), it was proposed an online local pool generation method (OLP).

191

The OLP produces hyperplanes on the fly in the area surrounding each test instance near class

borders, so as to guarantee the presence of locally accurate classifiers in the region and thus

facilitate their selection by the dynamic selection techniques. Using the locally generated pool

was shown to increase the frequency at which the most competent classifier is selected by the

evaluated dynamic selection schemes in comparison to using a globally generated pool (Souza

et al., 2019b), and also to work well over imbalanced problems (Souza et al., 2019a).

However, the production of local experts by the OLP technique was restricted by the base-

classifier model used in the pool, which in this case are only two class Perceptrons. To the

best of our knowledge, the choice of base-classifier model used in pool generation techniques

is always done a priori in the literature regarding ensemble methods. However, in uneven

distributions, each local region in the feature space may have different characteristics, such as

data topology, class balance, class overlap and data density, among others. Since the idea is

to select the base-classifier(s) that are experts in a given region, it would follow that the best

model to learn the data from that region depends on its local data distribution. For instance,

using the Perceptron as base-classifier may be far from ideal when trying to label a query sample

located near a non-linearly separable local class border, while it would make sense to use it

when labelling an instance near a linearly separable one. So, our hypothesis is that, by choosing

a relevant base-classifier model for each instance in particular, we may be able to produce more

locally competent base-classifiers in that region, and thus yield an improvement in performance

compared to using a fixed base-classifier model for all samples.

Thus, we propose a framework for base-classifier model recommendation in order to, given a

local data distribution, indicate which model is most suitable to be used for each test sample,

with the purpose of yielding a pool of local experts for the online local pool scheme. We wish to

answer the following research questions with our model type recommender system: (a) which

data characteristics affect the performance of each base-classifier model on a local scope?, and

(b) can we use this information to recommend a suitable model for each given query sample and

improve the online method’s performance? To do so, we use a problem-independent multi-label

meta-classifier, which is obtained using information from the behavior of the base-classifier

192

models over instances from previous datasets. We construct the multi-label set of the meta-

problem using the class probabilities of each base-classifier model over several problems. We

then associate its responses for each sample to its meta-features, which are comprised of local

complexity measures obtained over the neighborhood of the corresponding sample in the training

set, and train the multi-label meta-classifier afterwards. In generalization, the meta-features of

each query instance are first extracted using its neighboring samples in the training set, which

are then fed into the meta-classifier, who outputs the relevant base-classifier models for that

instance.

Our proposed framework is closely related to the algorithm recommendation area. Several

recommender systems for algorithm selection based on data complexity measures were proposed

in the literature. In (Garcia, Lorena, de Souto & Ho, 2018), the authors use a meta-regressor, built

with the extracted data complexity measures of several datasets, to select the best-performing

classification model for a given unknown problem. A somewhat similar framework is proposed

in (Deng, Chen & Pan, 2018), in which the authors propose a set of meta-features based on data

complexity extracted from a kernel matrix generated from the data, in order to recommend the

most suitable classification model using an NN rule. Another algorithm recommender system

was proposed in (das Dôres, Alves, Ruiz & Barros, 2016) for fault prediction in software projects.

The meta-data was obtained by extracting a set of meta-features, including simple, statistical

and data complexity measures, from the data of previous software projects and assigning

which model in the portfolio yielded the best performance, according to the balance criterion

(Menzies, Greenwald & Frank, 2006), over each project as the meta-label. However, none of

these recommender systems base their model recommendation procedure on the local data

characteristics within a given dataset. Moreover, they recommend the models for an entire

problem, not for each instance in particular. To the best of our knowledge, per-sample meta-

learning for algorithm recommendation was only explored in certain fields, such as combinatorial

search problems (Kotthoff, 2016) and collaborative filtering (Collins, Tkaczyk & Beel, 2018).

193

This work is divided as follows. Section 2 describes our proposed base-classifier model

recommender system. Experimental results are presented in Section 3. Lastly, we present our

concluding remarks in Section 4.

2. Proposed framework

2.1 Online local pool method

Before delving into the proposed model type recommender system, we briefly present the OLP

technique next. The OLP technique attempts to exploit the properties of the Oracle (Kuncheva,

2002) on a local scope in order to guide the generation of the local base-classifiers. The Oracle

is an ideal selector which always chooses the base-classifier in the pool that labels a given test

sample correctly, if such classifier exists. The OLP technique was shown to yield a similar

performance to state-of-the-art ensemble methods (Souza et al., 2019b), and also to perform

quite well on imbalanced distributions (Souza et al., 2019a).

In the offline phase of the OLP, the K-Disagreeing Neighbors (KDN) (Smith et al., 2014)

estimates of each training sample is computed, in order to identify which areas of the feature

space present a local class border. The KDN measure calculates the proportion of samples from

a different class in the neighborhood of a given sample.

The online phase of the OLP is described in Figure II-1, in which 𝑘𝑠 is the dynamic selection

neighborhood size, 𝐻 is the set of KDN estimates and 𝐿𝑃 is the local pool. It is divided in

three steps: region of competence estimation, local pool generation and generalization. In the

first step, the neighborhood 𝜃𝑞 of the query sample is first obtained using regular K-NN, with

size 𝑘𝑠 over the training set, and then evaluated based on the KDN scores stored in 𝐻, obtained

in the offline phase. If none of the sample’s neighbors are borderline samples, that is, if their

KDN score is zero, then the procedure goes directly to the third and last step, generalization,

and the K-NN classifier yields the predicted label 𝑦̂𝑞. If, however, any of the neighbors xi ∈ 𝜃𝑞

is a borderline sample, the region is identified as a borderline area and the local pool (LP) is

generated in the next step.

194

Figure-A II-1 Overview of the online phase of the online local pool generation method

(from (Souza et al., 2019a)). The symbols 𝑘𝑠, 𝐻 and LP mean the dynamic selection

technique’s neighborhood size, the set of KDN estimates, and the local pool, respectively.

In the second step, the LP is produced iteratively, and in each iteration the most locally competent

classifier produced in that iteration is added to the final pool (Figure II-2). In a given m-th

iteration, the query sample’s neighboring instances in the training set T are obtained using

a neighborhood size of 𝑘𝑚, calculated based on 𝑘𝑠. For two-class problems, the K-Nearest

Neighbors Equality (K-NNE) (Sierra et al., 2011), which selects the same amount of neighbors

from each class, is used in this step.

Figure-A II-2 Local pool generation step (from (Souza et al., 2019a)). The symbols 𝑘𝑠

and LP mean the dynamic selection technique’s neighborhood size and the local pool,

respectively.

195

The query sample’s neighborhood 𝜃𝑚 is then used as input to the Self-generating Hyperplanes

(SGH) method (Souza et al., 2017), a pool generation method that yields an Oracle accuracy

rate of 100% over the input dataset. The SGH then produces a local subpool 𝐶𝑚 in which the

presence of at least one competent classifier 𝑐𝑚,𝑘 ∈ 𝐶𝑚 for each instance in 𝜃𝑚 is guaranteed.

The indexes in the classifiers’ notation indicates that the classifier 𝑐𝑚,𝑘 is the k-th classifier from

the m-th subpool.

Then, the most competent classifier 𝑐𝑚,𝑛 from 𝐶𝑚 in the region delimited by the neighborhood 𝜃𝑞

is selected by a DCS technique and added to the local pool. The selection by a DCS technique is

performed at this stage, and not after the LP is completed, because the subpool generation by the

SGH method yields too diverse classifiers (Souza et al., 2017), so not only is it not fit for DES

techniques, but also it may generate classifiers that are near opposite to the local border (Souza

et al., 2019b). Thus, the dynamic selection is performed concurrently with the generation. The

same procedure using the SGH method is performed in iteration 𝑚 + 1 with the neighborhood

size 𝑘𝑚+1 increased by 2, in order to not only adjust the locality of the classifiers but also to

provide a different set of training samples and produce slightly diverse base-classifiers. This

process is then repeated until the local pool contains a predefined amount (𝑀) of locally accurate

classifiers.

In the last step, generalization, the predicted label 𝑦̂𝑞 of the query sample xq is produced (Figure

II-1). If the LP was generated, the responses of the base-classifiers in LP are combined using

the majority voting rule. Otherwise, the K-NN is used to obtain 𝑦̂𝑞.

2.2 Dynamic model type recommendation system

Though the OLP yielded promising results reported in previous works, it presents several

limitations, one of the greatest being its local pool generation procedure based on the SGH

method. Although the latter presents interesting qualities, the base-classifier generation is done

using an heuristic and, for this reason, it can only produce two-class Perceptrons, yielding

hyperplanes that are not always well adjusted to the border depending on the local data distribution

196

around the query sample. Since different classification model types fit the data in different ways,

our hypothesis is that locally training a suitable base-classifier model according to the local data

distribution may be advantageous for producing a more competent set of classifiers for the OLP.

Thus, we propose a dynamic base-classifier model recommender system which indicates, for

each test instance, the relevant base-classifier models considering the data complexity around

the sample.

The choice of a suitable base-classifier model to be trained for each instance can be formulated

as a meta-learning problem, in which:

• The meta-classes correspond to the model types that are suitable for a particular instance xi.

Since more than one base-classifier model may be suitable for each given sample xi, it is

associated with a meta-labelset 𝑈𝑖, or its corresponding meta-label vector ui, a binary vector

indicating the relevant models.

• Each element 𝑣𝑖, 𝑗 of the meta-feature vector vi corresponds to a different complexity measure

extracted in the neighborhood of the sample xi.

• A multi-label meta-classifier is trained on the meta-dataset to predict which base-classifier

models are relevant for a given query sample xq, according to its meta-feature vector vq

extracted in its neighborhood.

2.3 Meta-training step

In the meta-training step (Figure II-3), we obtain our meta-data by evaluating the OLP technique

with different model types and associating, for each instance, the information regarding which

ones were successful (meta-labels) to the complexity measures extracted in the sample’s

neighborhood (meta-features). We then join the meta-examples obtained from several problems

to form the meta-training set, which is used to train our meta-classifier. It is important to note that,

since for each instance in a given problem there may be more than one suitable base-classifier

model, our meta-learning problem is also a multi-label one. Thus, our meta-classifier must be

able to deal with this scenario. Figure II-4 shows in more detail the meta-feature extraction and

the algorithm evaluation for each dataset from Figure II-3 individually.

197

Figure-A II-3 Overview of the training phase of the proposed framework.

Figure-A II-4 Meta-feature extraction and algorithm evaluation for each dataset in the

meta-training phase. The threshold 𝑡 is used to define the relevance of each model for a

given sample.

2.3.1 Meta-feature extraction

In order to characterize the local data complexity of each sample in the evaluation set (Figure

II-4), we use 12 data complexity measures described in (Lorena et al., 2019). Our reasoning

for choosing these measures was based on the sort of information each of them brings for

characterizing a local data distribution. We selected a subset of measures that cover all data

complexity aspects described in (Lorena et al., 2019) with the exception of dimensionality, which

is problem-dependent and would not help characterizing a local area in a problem-independent

manner. Most of the chosen complexity measures were also shown to have a good discriminating

power for predicting algorithm performance on a global scope (Garcia et al., 2018; Muñoz,

198

Villanova, Baatar & Smith-Miles, 2018), specially the distance-based measures. The complexity

measures selected as meta-features for the proposed framework are:

• Maximum Individual Feature Efficiency (F3): This measure assesses the degree of ambiguity

of the feature which presents the smallest overlap of values between samples from different

classes.

• Collective Feature Efficiency (F4): The F4 measure gives an insight on the degree of efficiency

provided by a given set of features, and is calculated using the F3 measure iteratively over a

given set of points.

• Error Rate of Linear Classifier (L2): The L2 measure is defined as the error rate of a linear

SVM trained over the input dataset.

• Non-Linearity of a Linear Classifier (L3): The L3 measure tries to quantify the degree of

linearity of a problem’s class borders, and is defined as the error rate of a linear classifier

obtained with the original training set over prototypes generated via interpolation of the

training points.

• Fraction of Borderline Points (N1): The N1 measure is obtained by generating a minimum

spanning tree (MST) using the distance matrix from all points of the input set and then

calculating the proportion of samples that are connected to a sample from a different class,

thus conveying the size and degree of complexity of the decision boundary.

• Ratio of Intra/Extra Class Nearest Neighbor Distance (N2): The N2 measure estimates

the iter/intra class relationship of the data by computing the ratio between the sum of the

distances between the nearest neighbors (1-NN) of the same class and the sum of the distances

between the nearest neighbors that possess different labels, for the entire input set.

• Error Rate of the Nearest Neighbor Classifier (N3): The N3 measure is defined as the error

rate of the 1-NN classifier over the input dataset, computed using a leave-one-out procedure.

• Non-Linearity of the Nearest Neighbor Classifier (N4): The N4 measure is similar to the

L3 measure, in that it generates a few prototypes via interpolation and evaluates a classifier,

trained with the original training samples, over the newly generated prototypes. In the case

of the N4, the classifier used is the 1-NN.

199

• Local Set Average Cardinality (LSC): The LSC is defined as the average number of samples

within the local set (LS) of each instance in the input set. The LS of a given instance is the

set of samples that share the same label as the target instance while being closer to it than its

nearest enemy.

• Average density of the network (Den): The Density measure is computed using a graph

constructed so that each node is a training instance and each edge is a distance-based weighted

connection between them, with the edges with distance greater than a given threshold are

discarded, as well as all edges connecting samples from different classes. The measure is

then calculated as the normalized number of edges in the graph.

• Entropy of class proportions (C1): The C1 measure estimates the normalized entropy of the

class sizes, giving an insight into the class imbalance of the data.

• Imbalance ratio (C2): Also referred to as IR, the imbalance ratio of binary problems is

defined as the ratio between the number of samples in the majority class and the number of

samples from the minority class.

In the meta-feature extraction step, we calculate for each sample xi in the evaluation set (Figure

II-4) its neighborhood over the training set using the K-NN, with neighborhood size 𝑘′. We then

extract the 12 complexity measures over the neighborhood of xi, yielding the meta-feature vector

vi depicted in Figure II-5.

Figure-A II-5 Example of meta-feature vector.

2.3.2 Algorithm evaluation

All samples in the evaluation set are tested using the OLP m times, with m being the number of

model types considered in the meta-learning framework’s portfolio. So, for each sample xi, the

base-classifiers used in the executions that yielded the correct label 𝑦𝑖 with class probability

200

above a threshold 𝑡 are referenced as relevant for that sample. The vector of meta-labels ui

corresponding to the sample xi is illustrated in Figure II-6. Each column indicates the relevance

of the base-classifier model for that sample. A relevant model for a given sample xi is one

with which the OLP technique was able to correctly label with output class probability above a

threshold 𝑡. If the OLP with the base-classifier model was unable to classify the sample correctly,

or the class probability was below 𝑡, the model is deemed non-relevant to that sample and its

corresponding value in ui is 0. That way, we indicate to the meta-classifier which base-classifier

models are indeed more likely to successfully learn the local data distribution.

We then remove the samples for which all base-classifier models yielded the same response,

referred to in Figure II-4 as indistinctive samples. Since for these samples any model will

produce the same output, they do not help in discriminating between the base-classifier models.

Thus, similarly to (Cruz et al., 2015a), we remove the indistinctive samples in order for the

meta-classifier to focus on the distinctive ones.

Figure-A II-6 Example of meta-label vector. The assigned value is 1 if the model correctly

classified the sample with output class probability above a threshold 𝑡, or 0 otherwise.

2.3.3 Meta-classifier training

Lastly, the meta-classifier is trained with the meta-data. Since our meta-problem is a multi-label

one (Figure II-6), we need a multi-label learning method for dealing with it. For simplicity, we

chose to use the Binary Relevance (BR) method (Boutell, Luo, Shen & Brown, 2004), a problem

transformation approach in which we transform the problem into several binary datasets, one for

each label. Though limited, in the sense that it assumes the labels are independent, this approach

is simple and easily adapted to our problem. Thus, our meta-classifier is a set of m classifiers,

each one trained to indicate whether its corresponding model is relevant for a given input sample.

201

However, since using the BR method may yield highly imbalanced binary problems, we train the

meta-classifier applying class weights, with the weights being adjusted inversely proportional to

the class frequencies in order to reduce the impact of the class imbalance.

2.4 Generalization step

In the generalization phase (Figure II-7), the unseen training data is first analyzed and the

training samples qualified into borderline (hard) or not (easy) using its KDN estimate. Then,

in generalization, if the unknown sample xq is considered easy, it is labelled by the K-NN,

as in the original OLP technique. Otherwise, the local complexity measures are extracted

over the neighborhood of the sample 𝜃′𝑞 with size 𝑘′, the same as in the meta-training step.

The meta-feature vector vq is then used as input to the meta-classifier, which returns which

base-classifier models are relevant for the sample xq. Among the recommended models, the one

whose meta-classifier (within the BR ensemble) outputs the highest class probability is chosen to

be used. The OLP technique is then applied to the query sample with the chosen base-classifier

model and yields the predicted label 𝑦̂𝑞. If no model is recommended, the class probability rule

is applied to all models (as in the T-Criterion rule for the BR method (Zhang & Zhou, 2013)).

3. Experiments

3.1 Experimental protocol

The impact on the performance of the OLP using our meta-learning framework for choosing

a relevant base-classifier model according to the local data complexity is assessed using a

leave-one-dataset-out procedure, in order to achieve a problem-independent approach to our

model recommendation scheme. That is, we use one dataset from our testbed in the generalization

step and the remaining ones in the meta-training step for obtaining the meta-data. Within

each dataset, we use a 5-fold cross validation procedure, both for algorithm evaluation and

meta-feature extraction in the meta-training step and for evaluating the performance of the

method in test in generalization.

202

Figure-A II-7 Overview of the generalization phase of the proposed framework.

3.1.1 Datasets

For facilitating the comparison with previous works, we use the same testbed of 64 two-class

datasets from the Knowledge Extraction based on Evolutionary Learning (KEEL) repository

(Alcalá et al., 2011), presented in Table II-1. Each dataset was evaluated using a stratified 5-fold

cross validation procedure, one fold for test and the remaining for training, using the same

partitions provided in the KEEL website for reproducibility. Due to the small-sized datasets, we

use the training set as the DSEL set for the dynamic selection techniques evaluated, as in (Cruz

et al., 2019a; Souza et al., 2019a).

3.1.2 Classifier models

We consider 5 base-classifier models to be chosen by the meta-learning framework: Perceptron,

Decision Stump (DS), Decision Tree (DT), linear SVM (LSVM) and SVM with Gaussian

203

Table-A II-1 Main characteristics of the datasets used in the experiments.

Ref. Dataset # Feat. # Samples IR Ref. Dataset # Feat. # Samples IR
1 glass1 9 214 1.82 33 ecoli-0-2-6-7vs3-5 7 224 9.18

2 ecoli0vs1 7 220 1.86 34 glass-0-4vs5 9 92 9.22

3 wisconsin 9 683 1.86 35 ecoli-0-3-4-6vs5 7 205 9.25

4 pima 8 768 1.87 36 ecoli-0-3-4-7vs5-6 7 257 9.28

5 iris0 4 150 2 37 yeast-05679vs4 8 528 9.35

6 glass0 9 214 2.06 38 vowel0 13 988 9.98

7 yeast1 8 1484 2.46 39 ecoli-0-6-7vs5 6 220 10

8 haberman 3 306 2.78 40 glass-016vs2 9 192 10.29

9 vehicle2 18 846 2.88 41 ecoli-0-1-4-7vs2-3-5-6 7 336 10.59

10 vehicle1 18 846 2.9 42 led7digit-0-2-4-5-6-7-8-9vs1 7 443 10.97

11 vehicle3 18 846 2.99 43 glass-0-6vs5 9 205 11

12 glass0123vs456 9 214 3.2 44 ecoli-0-1vs5 6 240 11

13 vehicle0 18 846 3.25 45 glass-0-1-4-6vs2 9 205 11.06

14 ecoli1 7 336 3.36 46 glass2 9 214 11.59

15 new-thyroid1 5 215 5.14 47 ecoli-0-1-4-7vs5-6 6 332 12.28

16 new-thyroid2 5 215 5.14 48 ecoli-0-1-4-6vs5 6 280 13

17 ecoli2 7 336 5.46 49 cleveland-0vs4 13 177 12.62

18 segment0 19 2308 6 50 shuttle-c0vsc4 9 1829 13.87

19 glass6 9 214 6.38 51 yeast-1vs7 7 459 14.3

20 yeast3 8 1484 8.1 52 glass4 9 214 15.47

21 ecoli3 7 336 8.6 53 ecoli4 7 336 15.8

22 page-blocks0 10 5472 8.79 54 page-blocks-13vs4 10 472 15.86

23 ecoli-0-3-4vs5 7 200 9 55 glass-0-1-6vs5 9 184 19.44

24 yeast-2vs4 8 514 9.08 56 shuttle-c2-vs-c4 9 129 20.5

25 ecoli-0-6-7vs3-5 7 202 9.09 57 yeast-1458vs7 8 693 22.1

26 ecoli-0-2-3-4vs5 7 222 9.1 58 glass5 9 214 22.78

27 yeast-0-3-5-9vs7-8 8 506 9.12 59 yeast-2vs8 8 482 23.1

28 glass-0-1-5vs2 9 172 9.12 60 yeast4 8 1484 28.1

29 yeast-0-2-5-7-9vs3-6-8 8 1004 9.14 61 yeast-1289vs7 8 947 30.57

30 yeast-0-2-5-6vs3-7-8-9 8 1004 9.14 62 yeast5 8 1484 32.73

31 ecoli-0-4-6vs5 6 203 9.15 63 ecoli-0137vs26 7 281 39.14

32 ecoli-0-1vs2-3-5 7 224 9.17 64 yeast6 8 1484 41.4

kernel (GSVM). We compare the proposed framework with dynamic model type selection

against the original OLP method, which generates the base-classifiers using the Self-Generating

Hyperplanes (SGH) (Souza et al., 2017) technique and uses a dynamic classifier selection

technique embedded (we chose the Multiple Classifier Behavior (MCB) (Giacinto et al., 2000)

due to its superior performance in previous experiments). Moreover, we use the Decision Tree

as our BR meta-learner in the multi-label framework. We chose this classifier because of its

embedded feature selection, which allows us to analyze how correlated the local characteristics

(meta-features) are with the relevance of each base-classifier model.

204

3.1.3 Parameter setting

The pool size of the OLP, regardless of the base classifier used, is set to 𝑀 = 5. The

neighborhood size for the KDN and the neighborhood definitions within the OLP framework are

set to 𝑘ℎ = 𝑘𝑠 = 7. For the version that uses the SGH and MCB, the similarity and competence

threshold of the latter are set to 0.7 and 0.1, respectively.

For the meta-learning framework, we fix the class probabilities threshold 𝑡 at 0.7 in order to

regard a base-classifier model as relevant or not for a given sample. Moreover, the neighborhood

size for the meta-feature extraction is set to 𝑘′ = 50, providing enough samples for reliably

estimating the measures with a local scope (Kotsiantis, Kanellopoulos & Pintelas, 2006). The

meta-learner hyperparameters (maximum depth, minimum impurity decrease, minimum samples

per leaf) are obtained using a grid search in a 10-fold cross-validation procedure over the

meta-training set.

3.1.4 Performance measures

In order to evaluate the impact of the automatic choice of base-classifier model on the performance

of the OLP, we use the accuracy rate, the area under the Receiver Operating Characteristic (ROC)

curve (AUC) (Fawcett, 2006), the F-measure (van Rĳsbergen, 1979) and the Geometric Mean

(G-mean) (Kubat et al., 1997), the latter three being measures frequently used for performance

evaluation in imbalanced scenarios. Moreover, we use the Precision measure (Zhang & Zhou,

2013) for evaluating the performance of our multi-label meta-classifier, since for our scenario, it

is more important that the set of recommended base-models is mostly comprised of suitable

base-models than it contains a high proportion of unsuitable base-models, albeit including

all suitable ones. In this sense, the precision of the meta-learner is the lower bound of our

framework accuracy rate.

205

3.2 Multi-label meta-classifier analysis

We first analyze which characteristics (complexity measures) are more pertinent for recommend-

ing each base-classifier model. Figure II-8 shows the mean meta-feature importances obtained

from the multi-label meta-classifier (Decision tree). The importance of a feature in a DT is the

normalized total reduction of the Gini impurity given by that feature. Since we used the BR

method, the recommendation of each base-classifier model is given by an individual DT, so the

feature importances for each model are shown in Figure II-8.

(a) Perceptron (b) DS (c) DT

(d) LSVM (e) GSVM

Figure-A II-8 Mean feature importances of each component of the multi-label

meta-classifier over all datasets from from Table II-1.

Unsurprisingly, the most important meta-feature for recommending the LSVM is the L2 measure,

which computes the error rate of a linear SVM on the local region. For the DS, the most

important meta-feature appears to be the N1, which indicates the size of the local border. The

recommendation of the Perceptron, on the other hand, was highly influenced by the local class

balance and level of overlap in the target region. The level of class overlap and the linearity of

206

the border is mostly regarded for recommending the GSVM. The recommendation of the DT, on

the other hand, is quite different, with most meta-features being almost equally important.

(a) (b)

Figure-A II-9 (a) Mean frequency of selection of the base-classifier models and (b) mean

individual accuracy of each component of the BR meta-classifier over all datasets from

Table II-1.

Figure II-9(a) shows the mean frequency of selection for each base-classifier model by the

multi-label meta-classifier in generalization. It can be observed that the DS was overall selected

less often, with the most frequently selected model being the DT. The individual mean accuracy

rate of each component of the BR meta-classifier is shown in Figure II-9(b). It can be observed

that, while the DT was the most recommended base-classifier model, its meta-classifier yielded

the poorest accuracy rate, wrongly recommending the model half of the time, on average. The

recommendation of the Perceptron was also generally quite inaccurate. For the remaining

models, the mean accuracy rate was around 0.8, which suggests that the meta-features used for

characterizing their relevance in a subproblem are indeed important.

The performance of the multi-label meta-classifier in generalization is depicted in Figure II-10,

which indicates the mean precision of the meta-classifier per dataset. It can be observed that the

precision is quite high, especially for the highly imbalanced datasets (large reference number).

However, for the first few datasets, the precision is quite low, reaching below 0.5 for the glass0,

yeast1 and haberman (ref. 6, 7 and 8) datasets. This may be explained by the labelset cardinality,

207

that is, the average number of relevant classifiers per sample, which for these datasets, over

which the meta-classifier yielded a poor precision score, is very low. This suggests that the

multi-label meta-classifier struggles to recommend at least one relevant base-classifier model for

the samples with low labelset cardinality.

Figure-A II-10 Mean precision of meta-classifier for each dataset in Table II-1. The

horizontal dashed line indicates the average performance over all datasets.

3.2.1 Framework performance

We now analyze the performance of the framework as a whole. Table II-2 shows the mean

performance of the proposed framework (Proposed) and the online scheme using its original

fixed individual base-classifier model (SGH+MCB) and an ideal base-classifier model for each

sample. The results per dataset can be found in the Appendix. First, we can see that there is a

significant improvement in selecting an ideal base-classifier model for each instance in particular

in comparison to using the fixed model strategy for all instances, considering all performance

metrics used in this work. Thus, we confirm one of our hypotheses: that each local region may

favor certain types of classifiers and choosing the ideal one for each test sample is advantageous

for local ensembles. When we analyze the performance of the proposed technique, though, we

see that the selection of such ideal base-classifier model per instance is not so trivial. In terms

of accuracy, the proposed technique yielded a significantly inferior performance to using the

208

fixed model strategy. However, in terms of AUC, F-measure and G-mean, the performance was

statistically similar.

Table-A II-2 Average performance of the proposed framework

(Proposed) and the online scheme using the fixed individual

base-classifier model (SGH+MCB) and an ideal base-classifier

model for each sample. Best results excluding the ideal selector

ones are in bold. The row W-T-L shows the number of wins, ties

and losses of the proposed framework compared to using the

column-wise strategy. The rows p-value show the result of a

Wilcoxon signed rank test with 𝛼 = 0.05 between the indicated

strategy (row-wise: proposed and ideal selector) and the

column-wise strategy, with the symbols (+) and (-) indicating

whether the former is significantly superior or inferior to the latter.

Performance metric Proposed SGH+MCB Ideal

Accuracy

Mean 0.936 0.941 0.971

W-T-L n/a 14-20-30 0-5-59

p-value (proposed) n/a 0.008 (-) 0.000 (-)
p-value (ideal sel.) - 0.000 (+) n/a

AUC

Mean 0.805 0.810 0.882

W-T-L n/a 19-12-33 0-6-58

p-value (proposed) n/a 0.179 0.000 (-)
p-value (ideal sel.) - 0.000 (+) n/a

F-measure

Mean 0.674 0.682 0.825

W-T-L n/a 21-8-35 0-3-61

p-value (proposed) n/a 0.265 0.000 (-)
p-value (ideal sel.) - 0.000 (+) n/a

G-mean

Mean 0.740 0.740 0.851

W-T-L n/a 20-12-32 0-4-60

p-value (proposed) n/a 0.506 0.000 (-)
p-value (ideal sel.) - 0.000 (+) n/a

4. Conclusion

In this work, we presented a novel algorithm recommendation framework which dynamically

suggests a set of relevant model types for each instance in particular in a problem-independent

manner. Since each model learns differently from a given set of points, our recommender system

makes use of meta-learning and multi-label learning for recommending the models according

209

to the local data complexity surrounding each test sample. We then integrated the algorithm

recommender system to our online local pool generation technique (Souza et al., 2019b) and

evaluated the proposed framework’s performance over 64 binary problems.

Experiments showed that the local data characteristics affect the performance of each model

type differently on a local scope. Moreover, it was shown that it is highly advantageous to use a

suitable model type for each instance in particular, since the ideal model type selector yielded

a statistically superior performance compared to the fixed model type approach considering

all evaluated performance metrics. However, almost half of the components of our multi-label

meta-classifier were not very well fit to the data, which may explain why its overall precision was

high though it still struggled on harder recommendation scenarios. Overall, the performance

of the proposed model type recommendation framework was statistically similar to using the

original state-of-the-art online method, which uses a fixed base-classifier model for all test

samples. Given the upper limit provided by the ideal selector’s performance, and thus the margin

for improvement of the framework, we believe this to be a promising line of research.

Since this is a novel approach to model type recommendation, in the sense that it is done

dynamically according to the local structure of the data, there are many open challenges and

improvements to be made. Future works may involve using a more powerful multi-label classifier

that takes into account the label correlations of the meta-problem, as well as using a broader,

more descriptive set of meta-features and applying a meta-feature selection procedure that is

more suitable for multi-label learning.

210

Appendix: Detailed performance results

Table-A II-3 Mean and standard deviation of the accuracy rate of the evaluated

techniques over each dataset from Table II-1. Best results are in bold.

Ref. Proposed SGH+MCB Ideal Ref. Proposed SGH+MCB Ideal
1 0.76 (0.08) 0.77 (0.07) 0.91 (0.05) 33 0.96 (0.01) 0.96 (0.01) 0.98 (0.01)

2 0.98 (0.01) 0.97 (0.02) 0.99 (0.01) 34 1.00 (0.00) 0.99 (0.02) 1.00 (0.00)

3 0.96 (0.01) 0.97 (0.01) 0.98 (0.01) 35 0.97 (0.02) 0.97 (0.02) 0.99 (0.01)

4 0.73 (0.02) 0.76 (0.04) 0.86 (0.02) 36 0.97 (0.02) 0.96 (0.02) 0.98 (0.03)

5 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 37 0.91 (0.01) 0.91 (0.01) 0.95 (0.01)

6 0.79 (0.02) 0.84 (0.06) 0.94 (0.04) 38 0.99 (0.01) 0.99 (0.00) 1.00 (0.00)

7 0.72 (0.02) 0.75 (0.03) 0.90 (0.01) 39 0.97 (0.01) 0.97 (0.02) 0.98 (0.02)

8 0.69 (0.03) 0.71 (0.05) 0.87 (0.03) 40 0.90 (0.02) 0.91 (0.03) 0.94 (0.03)

9 0.98 (0.01) 0.97 (0.01) 0.99 (0.00) 41 0.95 (0.02) 0.97 (0.02) 0.98 (0.01)

10 0.75 (0.01) 0.79 (0.02) 0.92 (0.02) 42 0.97 (0.01) 0.95 (0.01) 0.97 (0.02)

11 0.79 (0.01) 0.80 (0.02) 0.93 (0.01) 43 0.99 (0.01) 0.99 (0.02) 0.99 (0.02)

12 0.93 (0.02) 0.93 (0.01) 0.98 (0.01) 44 0.98 (0.01) 0.97 (0.02) 0.98 (0.02)

13 0.95 (0.02) 0.96 (0.02) 1.00 (0.01) 45 0.90 (0.01) 0.92 (0.02) 0.96 (0.02)

14 0.91 (0.02) 0.92 (0.03) 0.96 (0.02) 46 0.91 (0.03) 0.90 (0.02) 0.95 (0.03)

15 0.98 (0.01) 0.99 (0.01) 1.00 (0.01) 47 0.98 (0.01) 0.97 (0.02) 0.99 (0.01)

16 0.98 (0.01) 0.99 (0.02) 1.00 (0.00) 48 0.98 (0.01) 0.97 (0.02) 0.99 (0.01)

17 0.95 (0.02) 0.96 (0.03) 0.98 (0.02) 49 0.93 (0.02) 0.94 (0.02) 0.98 (0.02)

18 0.99 (0.00) 0.99 (0.00) 1.00 (0.00) 50 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

19 0.97 (0.01) 0.96 (0.01) 0.97 (0.02) 51 0.93 (0.01) 0.94 (0.01) 0.96 (0.01)

20 0.93 (0.01) 0.95 (0.01) 0.97 (0.01) 52 0.96 (0.03) 0.97 (0.03) 0.98 (0.02)

21 0.90 (0.01) 0.92 (0.03) 0.96 (0.02) 53 0.98 (0.01) 0.99 (0.01) 0.99 (0.01)

22 0.97 (0.01) 0.97 (0.00) 0.99 (0.00) 54 1.00 (0.00) 0.99 (0.01) 1.00 (0.00)

23 0.97 (0.02) 0.97 (0.03) 0.97 (0.02) 55 0.98 (0.02) 0.97 (0.03) 0.99 (0.01)

24 0.94 (0.01) 0.96 (0.01) 0.98 (0.02) 56 0.99 (0.01) 0.99 (0.02) 0.99 (0.02)

25 0.96 (0.03) 0.94 (0.03) 0.98 (0.03) 57 0.94 (0.01) 0.95 (0.01) 0.96 (0.01)

26 0.97 (0.02) 0.97 (0.03) 0.98 (0.02) 58 0.98 (0.02) 0.98 (0.02) 1.00 (0.01)

27 0.91 (0.01) 0.90 (0.01) 0.95 (0.01) 59 0.97 (0.01) 0.98 (0.01) 0.98 (0.01)

28 0.87 (0.03) 0.87 (0.07) 0.92 (0.03) 60 0.96 (0.01) 0.97 (0.01) 0.98 (0.01)

29 0.96 (0.01) 0.97 (0.01) 0.98 (0.01) 61 0.96 (0.01) 0.97 (0.01) 0.98 (0.00)

30 0.93 (0.01) 0.93 (0.02) 0.96 (0.01) 62 0.98 (0.01) 0.98 (0.00) 0.99 (0.00)

31 0.96 (0.02) 0.97 (0.04) 0.99 (0.02) 63 0.99 (0.01) 0.99 (0.01) 0.99 (0.01)

32 0.95 (0.02) 0.97 (0.03) 0.98 (0.02) 64 0.98 (0.01) 0.98 (0.00) 0.99 (0.01)

211

Table-A II-4 Mean and standard deviation of the AUC of the evaluated techniques over

each dataset from Table II-1. Best results are in bold.

Ref. Proposed SGH+MCB Ideal Ref. Proposed SGH+MCB Ideal
1 0.73 (0.09) 0.74 (0.08) 0.89 (0.06) 33 0.83 (0.09) 0.85 (0.09) 0.90 (0.09)

2 0.97 (0.02) 0.96 (0.03) 0.99 (0.02) 34 1.00 (0.00) 0.95 (0.10) 1.00 (0.00)

3 0.95 (0.01) 0.97 (0.01) 0.98 (0.01) 35 0.89 (0.09) 0.89 (0.09) 0.93 (0.06)

4 0.69 (0.04) 0.74 (0.04) 0.84 (0.02) 36 0.89 (0.11) 0.89 (0.09) 0.92 (0.12)

5 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 37 0.67 (0.08) 0.63 (0.09) 0.81 (0.05)

6 0.77 (0.03) 0.82 (0.08) 0.94 (0.05) 38 0.95 (0.04) 0.98 (0.01) 1.00 (0.00)

7 0.67 (0.04) 0.69 (0.04) 0.86 (0.02) 39 0.87 (0.07) 0.87 (0.08) 0.92 (0.06)

8 0.57 (0.05) 0.58 (0.05) 0.79 (0.05) 40 0.52 (0.07) 0.53 (0.07) 0.68 (0.13)

9 0.96 (0.01) 0.95 (0.01) 0.99 (0.01) 41 0.80 (0.05) 0.87 (0.08) 0.90 (0.06)

10 0.66 (0.03) 0.68 (0.01) 0.87 (0.03) 42 0.88 (0.06) 0.78 (0.06) 0.90 (0.08)

11 0.70 (0.03) 0.73 (0.02) 0.89 (0.02) 43 0.95 (0.10) 0.95 (0.10) 0.95 (0.10)

12 0.88 (0.06) 0.90 (0.03) 0.96 (0.03) 44 0.90 (0.09) 0.89 (0.09) 0.90 (0.09)

13 0.94 (0.03) 0.94 (0.02) 0.99 (0.01) 45 0.55 (0.06) 0.54 (0.10) 0.72 (0.14)

14 0.87 (0.04) 0.87 (0.04) 0.94 (0.04) 46 0.55 (0.09) 0.49 (0.01) 0.69 (0.13)

15 0.95 (0.03) 0.97 (0.03) 0.99 (0.03) 47 0.88 (0.07) 0.86 (0.08) 0.92 (0.04)

16 0.94 (0.05) 0.97 (0.06) 1.00 (0.00) 48 0.90 (0.12) 0.87 (0.15) 0.93 (0.10)

17 0.87 (0.04) 0.90 (0.03) 0.94 (0.04) 49 0.58 (0.11) 0.68 (0.11) 0.85 (0.13)

18 0.99 (0.01) 0.98 (0.01) 0.99 (0.01) 50 1.00 (0.01) 1.00 (0.01) 1.00 (0.01)

19 0.89 (0.07) 0.89 (0.04) 0.91 (0.06) 51 0.62 (0.03) 0.64 (0.06) 0.70 (0.08)

20 0.82 (0.01) 0.82 (0.02) 0.91 (0.03) 52 0.74 (0.13) 0.84 (0.13) 0.88 (0.14)

21 0.73 (0.07) 0.77 (0.10) 0.86 (0.09) 53 0.89 (0.04) 0.90 (0.05) 0.90 (0.05)

22 0.92 (0.01) 0.92 (0.01) 0.96 (0.01) 54 0.97 (0.04) 0.95 (0.07) 1.00 (0.00)

23 0.87 (0.12) 0.89 (0.10) 0.88 (0.11) 55 0.85 (0.20) 0.79 (0.19) 0.95 (0.10)

24 0.82 (0.03) 0.87 (0.03) 0.92 (0.06) 56 0.95 (0.10) 0.95 (0.10) 0.95 (0.10)

25 0.86 (0.17) 0.80 (0.16) 0.92 (0.12) 57 0.51 (0.03) 0.49 (0.00) 0.55 (0.07)

26 0.85 (0.09) 0.87 (0.12) 0.88 (0.11) 58 0.80 (0.24) 0.75 (0.22) 0.95 (0.10)

27 0.60 (0.04) 0.61 (0.04) 0.75 (0.05) 59 0.70 (0.05) 0.74 (0.10) 0.77 (0.09)

28 0.54 (0.08) 0.48 (0.03) 0.60 (0.13) 60 0.61 (0.07) 0.63 (0.07) 0.73 (0.08)

29 0.88 (0.04) 0.89 (0.03) 0.91 (0.03) 61 0.59 (0.03) 0.63 (0.08) 0.65 (0.06)

30 0.72 (0.03) 0.75 (0.04) 0.81 (0.04) 62 0.84 (0.09) 0.74 (0.09) 0.94 (0.04)

31 0.87 (0.13) 0.89 (0.15) 0.93 (0.10) 63 0.80 (0.19) 0.85 (0.20) 0.85 (0.20)

32 0.80 (0.10) 0.86 (0.14) 0.86 (0.14) 64 0.73 (0.13) 0.67 (0.07) 0.83 (0.11)

212

Table-A II-5 Mean and standard deviation of the F-measure of the evaluated techniques

over each dataset from Table II-1. Best results are in bold.

Ref. Proposed SGH+MCB Ideal Ref. Proposed SGH+MCB Ideal
1 0.64 (0.12) 0.66 (0.12) 0.87 (0.08) 33 0.75 (0.12) 0.78 (0.10) 0.86 (0.11)

2 0.97 (0.03) 0.98 (0.01) 0.99 (0.01) 34 1.00 (0.00) 0.93 (0.13) 1.00 (0.00)

3 0.94 (0.01) 0.96 (0.01) 0.97 (0.01) 35 0.84 (0.15) 0.81 (0.12) 0.91 (0.07)

4 0.60 (0.06) 0.65 (0.06) 0.79 (0.03) 36 0.80 (0.17) 0.81 (0.13) 0.88 (0.19)

5 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 37 0.42 (0.16) 0.34 (0.20) 0.71 (0.06)

6 0.69 (0.04) 0.75 (0.11) 0.91 (0.06) 38 0.93 (0.07) 0.97 (0.01) 1.00 (0.00)

7 0.53 (0.06) 0.56 (0.05) 0.81 (0.03) 39 0.83 (0.11) 0.83 (0.11) 0.89 (0.10)

8 0.35 (0.09) 0.36 (0.09) 0.70 (0.08) 40 0.10 (0.20) 0.10 (0.20) 0.48 (0.30)

9 0.95 (0.02) 0.94 (0.02) 0.99 (0.01) 41 0.67 (0.08) 0.81 (0.13) 0.87 (0.05)

10 0.50 (0.05) 0.53 (0.02) 0.82 (0.05) 42 0.79 (0.10) 0.63 (0.10) 0.80 (0.11)

11 0.56 (0.05) 0.60 (0.03) 0.85 (0.02) 43 0.93 (0.13) 0.93 (0.13) 0.93 (0.13)

12 0.83 (0.07) 0.85 (0.02) 0.95 (0.04) 44 0.85 (0.11) 0.81 (0.12) 0.88 (0.12)

13 0.90 (0.05) 0.92 (0.03) 0.99 (0.01) 45 0.14 (0.17) 0.11 (0.23) 0.54 (0.31)

14 0.81 (0.05) 0.82 (0.07) 0.92 (0.05) 46 0.20 (0.24) 0.00 (0.00) 0.50 (0.30)

15 0.94 (0.03) 0.96 (0.04) 0.98 (0.03) 47 0.82 (0.11) 0.78 (0.12) 0.91 (0.04)

16 0.94 (0.06) 0.97 (0.07) 1.00 (0.00) 48 0.84 (0.15) 0.75 (0.21) 0.90 (0.13)

17 0.81 (0.07) 0.85 (0.08) 0.92 (0.05) 49 0.23 (0.29) 0.46 (0.26) 0.79 (0.19)

18 0.98 (0.01) 0.98 (0.01) 0.99 (0.01) 50 1.00 (0.01) 1.00 (0.01) 1.00 (0.01)

19 0.86 (0.09) 0.85 (0.06) 0.88 (0.08) 51 0.32 (0.06) 0.38 (0.13) 0.55 (0.17)

20 0.69 (0.02) 0.73 (0.02) 0.87 (0.04) 52 0.60 (0.23) 0.75 (0.21) 0.80 (0.20)

21 0.51 (0.10) 0.59 (0.18) 0.79 (0.13) 53 0.80 (0.05) 0.86 (0.08) 0.89 (0.06)

22 0.85 (0.02) 0.84 (0.01) 0.94 (0.01) 54 0.96 (0.04) 0.94 (0.08) 1.00 (0.00)

23 0.82 (0.17) 0.84 (0.16) 0.84 (0.15) 55 0.69 (0.37) 0.60 (0.37) 0.93 (0.13)

24 0.69 (0.02) 0.79 (0.03) 0.88 (0.09) 56 0.93 (0.13) 0.93 (0.13) 0.93 (0.13)

25 0.76 (0.26) 0.64 (0.21) 0.89 (0.17) 57 0.06 (0.10) 0.00 (0.00) 0.16 (0.20)

26 0.79 (0.15) 0.82 (0.17) 0.84 (0.15) 58 0.60 (0.49) 0.53 (0.45) 0.93 (0.13)

27 0.31 (0.10) 0.31 (0.08) 0.65 (0.10) 59 0.51 (0.10) 0.65 (0.17) 0.67 (0.15)

28 0.15 (0.18) 0.00 (0.00) 0.26 (0.33) 60 0.27 (0.15) 0.36 (0.16) 0.61 (0.16)

29 0.79 (0.05) 0.83 (0.06) 0.89 (0.05) 61 0.25 (0.06) 0.34 (0.20) 0.45 (0.15)

30 0.55 (0.07) 0.60 (0.08) 0.74 (0.05) 62 0.69 (0.15) 0.57 (0.14) 0.90 (0.04)

31 0.76 (0.20) 0.82 (0.25) 0.90 (0.13) 63 0.67 (0.37) 0.63 (0.37) 0.73 (0.39)

32 0.67 (0.18) 0.77 (0.23) 0.81 (0.22) 64 0.51 (0.26) 0.45 (0.14) 0.76 (0.15)

213

Table-A II-6 Mean and standard deviation of the geometric mean of the evaluated

techniques over each dataset from Table II-1. Best results are in bold.

Ref. Proposed SGH+MCB Ideal Ref. Proposed SGH+MCB Ideal
1 0.72 (0.10) 0.73 (0.09) 0.89 (0.07) 33 0.81 (0.11) 0.83 (0.11) 0.89 (0.11)

2 0.97 (0.03) 0.96 (0.03) 0.99 (0.02) 34 1.00 (0.00) 0.94 (0.12) 1.00 (0.00)

3 0.95 (0.01) 0.97 (0.01) 0.98 (0.01) 35 0.88 (0.11) 0.88 (0.11) 0.92 (0.07)

4 0.68 (0.05) 0.73 (0.05) 0.83 (0.02) 36 0.88 (0.13) 0.88 (0.10) 0.90 (0.15)

5 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 37 0.58 (0.15) 0.45 (0.25) 0.78 (0.06)

6 0.77 (0.04) 0.81 (0.09) 0.94 (0.05) 38 0.95 (0.04) 0.98 (0.01) 1.00 (0.00)

7 0.65 (0.05) 0.67 (0.04) 0.85 (0.02) 39 0.86 (0.09) 0.86 (0.09) 0.92 (0.07)

8 0.51 (0.07) 0.51 (0.07) 0.76 (0.07) 40 0.12 (0.23) 0.12 (0.23) 0.53 (0.30)

9 0.96 (0.01) 0.95 (0.01) 0.99 (0.01) 41 0.78 (0.07) 0.86 (0.08) 0.89 (0.07)

10 0.63 (0.04) 0.64 (0.01) 0.86 (0.03) 42 0.87 (0.07) 0.74 (0.08) 0.89 (0.09)

11 0.68 (0.05) 0.72 (0.02) 0.89 (0.02) 43 0.94 (0.12) 0.94 (0.12) 0.94 (0.12)

12 0.87 (0.07) 0.90 (0.03) 0.96 (0.04) 44 0.89 (0.11) 0.88 (0.11) 0.89 (0.11)

13 0.93 (0.03) 0.94 (0.02) 0.99 (0.01) 45 0.21 (0.26) 0.14 (0.28) 0.58 (0.32)

14 0.87 (0.04) 0.87 (0.04) 0.94 (0.04) 46 0.23 (0.28) 0.00 (0.00) 0.54 (0.30)

15 0.95 (0.03) 0.97 (0.03) 0.99 (0.03) 47 0.86 (0.09) 0.84 (0.09) 0.92 (0.04)

16 0.94 (0.06) 0.97 (0.06) 1.00 (0.00) 48 0.88 (0.14) 0.84 (0.20) 0.91 (0.12)

17 0.86 (0.04) 0.89 (0.04) 0.94 (0.04) 49 0.26 (0.32) 0.53 (0.28) 0.82 (0.17)

18 0.99 (0.01) 0.98 (0.01) 0.99 (0.01) 50 1.00 (0.01) 1.00 (0.01) 1.00 (0.01)

19 0.88 (0.08) 0.88 (0.05) 0.90 (0.07) 51 0.50 (0.08) 0.53 (0.11) 0.62 (0.14)

20 0.81 (0.01) 0.80 (0.02) 0.90 (0.04) 52 0.68 (0.17) 0.82 (0.17) 0.85 (0.18)

21 0.69 (0.10) 0.73 (0.14) 0.85 (0.11) 53 0.89 (0.05) 0.89 (0.05) 0.89 (0.05)

22 0.91 (0.01) 0.92 (0.01) 0.96 (0.01) 54 0.97 (0.04) 0.94 (0.07) 1.00 (0.00)

23 0.85 (0.13) 0.88 (0.11) 0.86 (0.13) 55 0.74 (0.39) 0.68 (0.37) 0.94 (0.12)

24 0.80 (0.05) 0.86 (0.04) 0.91 (0.07) 56 0.94 (0.12) 0.94 (0.12) 0.94 (0.12)

25 0.81 (0.23) 0.75 (0.21) 0.91 (0.14) 57 0.08 (0.16) 0.00 (0.00) 0.20 (0.25)

26 0.83 (0.11) 0.85 (0.13) 0.86 (0.13) 58 0.60 (0.49) 0.54 (0.45) 0.94 (0.12)

27 0.45 (0.10) 0.47 (0.10) 0.70 (0.08) 59 0.62 (0.10) 0.70 (0.14) 0.73 (0.13)

28 0.23 (0.28) 0.00 (0.00) 0.28 (0.35) 60 0.46 (0.14) 0.49 (0.13) 0.66 (0.12)

29 0.87 (0.05) 0.88 (0.04) 0.90 (0.04) 61 0.44 (0.07) 0.45 (0.25) 0.54 (0.11)

30 0.66 (0.05) 0.71 (0.05) 0.79 (0.05) 62 0.81 (0.11) 0.69 (0.13) 0.94 (0.04)

31 0.84 (0.18) 0.87 (0.19) 0.91 (0.12) 63 0.68 (0.37) 0.74 (0.39) 0.74 (0.39)

32 0.76 (0.14) 0.83 (0.19) 0.83 (0.19) 64 0.64 (0.22) 0.57 (0.13) 0.80 (0.13)

APPENDIX III

LOCAL OVERLAP REDUCTION PROCEDURE FOR DYNAMIC ENSEMBLE
SELECTION

Mariana A. Souza1 , Robert Sabourin1 , George D. C. Cavalcanti2 , Rafael M. O. Cruz1

1 Laboratoire d’Imagerie, de Vision et d’Intelligence Artificielle (LIVIA),

École de Technologie Supérieure,

1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3

2 Centro de Informática,

Universidade Federal de Pernambuco,

1235 Av. Prof. Moraes Rego, Recife, Pernambuco, Brazil 50670-901

Article published in the Proceedings of the International Joint Conference on Neural Networks

(ĲCNN), 2022

Abstract

Class imbalance is a characteristic known for making learning more challenging for classification

models as they may end up biased towards the majority class. A promising approach among the

ensemble-based methods in the context of imbalance learning is Dynamic Selection (DS). DS

techniques single out a subset of the classifiers in the ensemble to label each given unknown

sample according to their estimated competence in the area surrounding the query. Because

only a small region is taken into account in the selection scheme, the global class disproportion

may have less impact over the system’s performance. However, the presence of local class

overlap may severely hinder the DS techniques’ performance over imbalanced distributions as

it not only exacerbates the effects of the under-representation but also introduces ambiguous

and possibly unreliable samples to the competence estimation process. Thus, in this work, we

propose a DS technique which attempts to minimize the effects of the local class overlap during

the classifier selection procedure. The proposed method iteratively removes from the target

region the instance perceived as the hardest to classify until a classifier is deemed competent to

label the query sample. The known samples are characterized using instance hardness measures

that quantify the local class overlap. Experimental results show that the proposed technique

216

can significantly outperform the baseline as well as several other DS techniques, suggesting its

suitability for dealing with class under-representation and overlap. Furthermore, the proposed

technique still yielded competitive results when using an under-sampled, less overlapped version

of the labelled sets, specially over the problems with a high proportion of minority class samples

in overlap areas. Code available at https://github.com/marianaasouza/lords.

1. Introduction

Imbalanced classification problems are characterized by a disproportion in the number of

instances from the problems’ classes. Because one class is underrepresented compared to the

remaining one(s), some traditional classification models may become biased towards the more

well-represented labels (Prati et al., 2015). This bias may hinder the performance over the rarer

label, which is often also the most relevant class in real-world imbalanced problems, such as

fraudulent transactions detection (Wei et al., 2013) and biomedical diagnosis (Mazurowski et al.,

2008).

Methods specifically tailored to deal with imbalanced datasets may fall into one of the following

four categories (Fernández et al., 2018): algorithm-level approaches, which adapt traditional

classifiers to deal with the class disproportion; data-level approaches, which resample the data

to balance the distribution; cost-sensitive learning frameworks, which apply and incorporate

class-based costs to the learning procedure; and ensemble based approaches, which usually

couple ensemble methods with other methods, most commonly data-level and cost-sensitive

approaches.

Among the ensemble-based approaches, dynamic selection (DS) schemes were often shown to

perform rather well over imbalanced distributions (Oliveira et al., 2017), specially in combination

with pre-processing methods (Roy et al., 2018). DS techniques select a subset of the classifiers

in the ensemble for labelling each query sample in particular, with the aim of using only the

members that are perceived as competent in the area where the target instance is located. Their

local approach in generalization can be an advantage in imbalanced scenarios as the global class

217

disproportion may have a limited impact over the performance, similarly to other local methods

(García, Mollineda & Sánchez, 2008).

Also due to their local approach, however, the presence of local class overlap can degrade their

recognition rates not only over the positive (minority) class but also the negative (majority) class

(Prati, Batista & Monard, 2004; García, Sánchez & Mollineda, 2007). In fact, the use of local

adaptive distance and/or prototype selection methods that aim at minimizing the class overlap in

the target region, called the Region of Competence (RoC) in the DS literature, were shown to

improve their performance, including over highly imbalanced distributions (Cruz et al., 2019a;

Souza et al., 2019a).

Thus, in this work, we propose a dynamic selection technique which dynamically edits the

target region taking into account the instances’ characteristics with respect to (w.r.t.) the class

overlap surrounding them. Based on the K-Nearest-Oracles Eliminate (KNORA-E) (Ko et al.,

2007), the proposed method also searches for local oracles, that is, classifiers in the pool that

can correctly label all instances in the RoC. Until a competent model is found, the region is

iteratively reduced by removing from it the sample with the highest estimated classification

difficulty. Thus, the instances considered relatively more unreliable due to their ambiguity are

increasingly disregarded for estimating the competence of the classifiers.

The contributions of this work are then:

• A novel DS technique which integrates instance characterization, including two proposed

adaptations for imbalanced distributions, into the definition of the RoC for dynamically

reducing the class overlap in it.

• An experimental analysis over 64 imbalanced datasets in which we assess the performance

of the proposed technique against 11 DS techniques, as well as the impact of the proposed

dynamic overlap-reducing scheme compared to using a pre-processing technique with the

same goal.

This work is organized as follows. Section 2 presents a brief background on DS techniques.

Then, in Section 3 we lay out the problem statement. The proposed method is introduced in

218

Section 4. The experimental analysis is presented in Section 5. Lastly, we summarize our

conclusions in Section 6.

2. Background

Dynamic selection techniques select a subset of a pool of base-classifiers to label each given query

sample according to their perceived competence in the task, estimated over a region around the

target instance. DS techniques are usually performed in three steps: RoC definition, competence

estimation and classifier selection (Cruz et al., 2018a). In the first step, the RoC is defined over a

labelled set, called the DSEL set, using the nearest neighbors rule (Ko et al., 2007), clustering

methods (Soares et al., 2006), distance-based potential functions (Woloszynski & Kurzynski,

2011), among others. Then, the competence of the classifiers in the pool is estimated using the

samples in the RoC according to some criteria, for instance local accuracy (Ko et al., 2007).

Lastly, the classifier(s) deemed competent is(are) selected to label the query. If only one the

most competent one is selected, the method is a Dynamic Classifier Selection (DCS) technique

while if more than one can be selected the method is a Dynamic Ensemble Selection (DES)

technique, which requires a combination scheme to join the selected classifiers’ responses.

It has been observed in the literature that the RoC definition has a large impact over the

performance of the DS techniques (Cruz et al., 2018b), as the classifiers’ competence is

estimated as a function of the instances included in it. In fact, a few DS techniques present a

RoC editing scheme with the purpose of improving the classifiers’ competence estimation. The

Multiple Classifier Behavior (Giacinto et al., 2000) uses only the subset of instances from the

RoC that have a similar output profile, that is, the aggregate of classifiers’ responses, as the

query’s. In (Pereira et al., 2018), Item Response Theory (IRT) is applied over the ensemble to

filter out from a larger RoC the samples with low discrimination index. Lastly, the KNORA-E

(and several methods based on it (Oliveira et al., 2018)) also removes instances from the RoC,

but in an iterative way. We describe the KNORA-E technique next.

219

3. Problem statement

The KNORA-E technique attempts to find in the pool a classifier that can correctly label all

instances in the RoC, referred to as a local oracle. Fig. III-1 shows a toy example which we

use to illustrate the technique. It depicts the initial RoC 𝜃𝑞 = {x1, x2, ..., x7} obtained using the

K-Nearest Neighbors (KNN), the query sample x𝑞 and the pool of linear classifiers 𝐶 = {𝑐1, 𝑐2}.

The larger the index 𝑖 in x𝑖, the furthest from the query the sample x𝑖 is. The KNORA-E tries to

find a classifier in 𝐶 that can label all x𝑖 ∈ 𝜃𝑞 correctly. If there is none, it removes from 𝜃𝑞 the

instance that is the most distant from the query x𝑞, and repeats the search for a local oracle. This

process is repeated until at least one classifier is found to correctly label all remaining instances

in the RoC. In the example from Fig. III-1, the RoC is edited until the removal of x5, as with

𝜃𝑞 = {x1, x2, ..., x4} the classifier 𝑐2 would be considered a local oracle and selected to label x𝑞.

Figure-A III-1 Illustrative example. x𝑞 is a query instance that belongs to the locally

underrepresented blue class. The dashed line delimits its RoC 𝜃𝑞 = {x1, x2, ..., x7}, with the

distances to the query

𝑑 (x𝑞, x1) < 𝑑 (x𝑞, x2) < 𝑑 (x𝑞, x3) < 𝑑 (x𝑞, x4) < 𝑑 (x𝑞, x5) < 𝑑 (x𝑞, x6) < 𝑑 (x𝑞, x7). The

Perceptrons 𝑐1 and 𝑐2 form the pool of classifiers and label blue to their right and green to

their left, as indicated by the arrows.

As shown in this example, the RoC editing procedure from the KNORA-E may lead to the entire

elimination of one of the classes in the region, which can bias the selection towards the remaining

class, often the less sparse or under-represented one. Two methods based on the KNORA-E,

220

the K-Nearest Oracles-Borderline (KNORA-B) and K-Nearest Oracles-Borderline-Imbalanced

(KNORA-BI) propose to fix this issue by forcing the presence of all classes in the RoC. However,

the three methods still assume the samples that are the closest to the query are more relevant

for estimating the classifiers’ competences. This may not be true if the RoC presents a certain

degree of class overlap, as in the example from Fig. III-1. In fact, by disregarding the query’s

closest neighbor (x1), which is located in the most overlapped area of the RoC, the classifier 𝑐1

would be recognized as a local oracle and would correctly label x𝑞.

4. Proposed technique

We propose a dynamic selection technique based on the KNORA-E which performs the RoC

editing based on the samples’ estimated classification difficulty. The classification difficulty is

estimated using an instance hardness measure (Smith et al., 2014; Arruda, Prudêncio & Lorena,

2020) which attempts to capture the degree of class overlap where the instance is located. That

is, for a given unknown sample, we remove from the RoC the neighbors with higher instance

hardness first, instead of the ones with largest distance to the query, in the search for the nearest

local oracles. That way, the samples which are perceived as more reliable (that is, that are

easier to classify) have a larger impact on the classifiers’ competence estimation compared to the

more unreliable ones in the RoC. Thus, the proposed neighborhood editing procedure functions

similarly to a dynamic instance selection over the RoC in which the samples with higher class

ambiguity are sequentially removed until a competent classifier is found.

Algorithms III-1 and III-2 present in more detail the proposed dynamic selection scheme. The

instance hardness estimation step described in Algorithm III-1 occurs in memorization, while

the selection of the ensemble of classifiers (Algorithm III-2) happens in generalization.

4.1 Instance hardness estimation

With regards to the hardness estimation procedure, Algorithm III-1 requires the DSEL set and

returns the hardness estimates of each sample in the DSEL. The hardness estimate consists

of the score obtained from an instance hardness measure computed over the DSEL set. Thus,

221

from Line 1 to Line 4, the instance hardness of each sample x𝑖 in the DSEL (V) is estimated

and stored. The instance hardness measures that are computed in 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒_ℎ𝑎𝑟𝑑𝑛𝑒𝑠𝑠() are

explained next. The hardness estimates of all instances in the DSEL are then returned in Line 5.

Algorithm-A III-1 Instance hardness estimation.

input :V = {(x1, 𝑦1), (x2, 𝑦2), ..., (x𝑁 , 𝑦𝑁)} ; ⊲ DSEL set

output :𝐻 = {ℎ1, ℎ2, ..., ℎ𝑁 } ; ⊲ Hardness estimates

1 for every (x𝑖 , 𝑦𝑖) in V do
2 ℎ𝑖 ← 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒_ℎ𝑎𝑟𝑑𝑛𝑒𝑠𝑠((x𝑖 , 𝑦𝑖),V) ; ⊲ Estimate instance hardness

3 𝐻 ← 𝐻 ∪ ℎ𝑖 return 𝐻

4 end for

In order to characterize the hardness of the samples in the DSEL, we make use of instance

hardness measures found in the literature. We have selected two measures to investigate in this

work: the K-Disagreeing Neighbors (KDN) (Smith et al., 2014) and the Local Set Cardinality

(Arruda et al., 2020). We chose these measures because they attempt to convey the classification

difficulty associated with the local class overlap of the region where the sample is located.

Since the dynamic selection technique is based on the concept of local oracles, the information

regarding how ambiguous that region is may be valuable to assess the instance’s reliability for

the competence estimation step. Moreover, local class overlap was shown to correlate the most

with classification difficulty on the instance level in (Smith et al., 2014). Lastly, since both

measures are based on sample counts, their adaptation for class imbalanced scenarios can be

quite straightforward.

We describe next the two chosen measures, as well as their proposed adaptation for imbalanced

datasets. We also illustrate the hardness estimation using the example from Fig. III-1, and to

calculate the scores of the instances within the RoC we assume the total number of samples in

the DSEL set is |V| = 100 and its imbalance ratio (IR), that is, the ratio between the majority

and minority class sizes, is 𝐼𝑅 = 3.0.

222

4.1.1 K-Disagreeing Neighbors (KDN)

The KDN score indicates the proportion of neighbors of a given sample which belong to a

different class. The computation of the KDN measure is shown in (A III-1), in which the

k-neighborhood 𝜃𝑖 of the target instance x𝑖 is obtained over the remaining samples in the labelled

set V. Fig. III-2a shows the KDN scores, with 𝑘 = 3 and rounded to two decimal points, of the

instances from the toy example.

𝐾𝐷𝑁 ((x𝑖 , 𝑦𝑖),V, 𝑘) =
|{(x 𝑗 , 𝑦 𝑗) ∈ 𝜃𝑖 : 𝑦𝑖 ≠ 𝑦 𝑗 }|

𝑘
(A III-1)

Since the KDN measure disregards the differences between the classes’ frequencies, in highly

imbalanced scenarios the scores of the positive instances in overlap regions may be estimated

much higher than the negative samples. This could negatively impact their recognition rates, as

they would be removed first in the RoC editing procedure of the proposed technique. Thus, we

propose and evaluate an adaptation of the KDN measure which attempts to even out the scores

according to the classes’ frequencies. The adaptation, K-Disagreeing Neighbors-imbalance

(KDNi) is shown in (A III-2). It consists of the regular KDN score of the sample, according to

(A III-1), divided by the proportion of samples in the dataset that belong to the opposite class

of the target instance (𝑝𝑜). Since the KDN score includes the value 0.0, we add a very small

number 𝑒 = 10−3 to it before computing the KDNi. Moreover, as the KDNi score can reach

quite large values due to the division, we apply the function 𝑓 (𝑥) = 1 − 1/(1 + 𝑥) to bound the

base score from (A III-2) and keep it in the range (0.0, 1.0), with the higher values for harder

instances and lower values for easier samples.

𝐾𝐷𝑁𝑖((x𝑖 , 𝑦𝑖),V, 𝑘) =
𝐾𝐷𝑁 ((x𝑖 , 𝑦𝑖),V, 𝑘)

𝑝𝑜
(A III-2)

The KDNi scores of the example from Fig. III-1 are shown in Fig. III-2b. We can see, comparing

the KDNi scores to the original KDN scores, that the instances very close to the border had their

estimated hardness changed, while the ones further from the border changed little to nothing.

223

(a) KDN (b) KDNi

(c) LSC (d) LSCi

Figure-A III-2 Rounded instance hardness estimates of the samples from Fig. III-1,

according to each indicated measure.

4.1.2 Local Set Cardinality (LSC)

The LSC is an instance hardness measure based on the Local Set (LS) concept (Leyva,

González & Perez, 2014). The LS of a given sample is comprised of the instances whose

distance to it is smaller than the distance between the target sample and its nearest enemy, that

is, the closest instance from the opposite class. The LSC measure of an instance is then the

cardinality of its LS averaged by the number of samples in the dataset, as shown in (A III-3),

where 𝑑 () is the Euclidean distance and x𝑛𝑒 is the nearest enemy of x𝑖. In order to yield a higher

224

score to a harder to classify instance, we do as in (Lorena et al., 2019) and calculate the measure

as one minus the score shown in (A III-3). The LSC scores of the instances from Fig. III-1 are

shown in Fig. III-2c.

𝐿𝑆𝐶 ((x𝑖 , 𝑦𝑖),V) =
|{(x 𝑗 , 𝑦 𝑗) ∈ V : 𝑑 (x𝑖 , x 𝑗) < 𝑑 (x𝑖 , x𝑛𝑒)}|

|V|
(A III-3)

As the LSC measure also does not take into account the disproportion between the classes’ sizes,

we adapt it to imbalanced distributions. The Local Set Cardinality-imbalance is a straightforward

adaptation in which instead of dividing the size of the local set by the total number of instances

in the dataset |V|, we divide it by the number of samples that share the same label as the target

instance, as shown in (A III-4). As in the LSC score used in this work, we also compute the LSCi

as one minus the score shown in the equation for it to have a higher value for harder samples.

𝐿𝑆𝐶𝑖((x𝑖 , 𝑦𝑖),V) =
|{(x 𝑗 , 𝑦 𝑗) ∈ V : 𝑑 (x𝑖 , x 𝑗) < 𝑑 (x𝑖 , x𝑛𝑒)}|

|{(x 𝑗 , 𝑦 𝑗) ∈ V : 𝑦𝑖 = 𝑦 𝑗)}|
(A III-4)

Fig. III-2d shows the computed scores of the LSCi. We can see that the adaptation for imbalanced

scenarios with this measure affected more instances than in the KDN adaptation case.

4.2 Ensemble selection

Algorithm III-2 describes the dynamic ensemble of classifiers selection procedure. It takes as

input the query sample x𝑞, the region of competence (RoC) size 𝑘 , the DSEL set, the pool of

classifiers 𝐶 and the hardness estimates 𝐻 obtained in memorization, and returns the selected

ensemble of classifiers 𝐶′ ⊆ 𝐶. First, the RoC 𝜃𝑞 of size 𝑘 is obtained using the nearest

neighbors rule in Line 1. Then, in Line 2, the subset of classifiers in 𝐶 which correctly label all

instances in the RoC are singled out. If there are local oracles with regards to the original RoC

𝜃𝑞, they are returned in Line 9. Otherwise, the procedure enters the loop from Line 4 to Line

8 until there can be found a classifier able to correctly label all instances in the RoC. In Line

5, the hardness estimates of the instances in the current RoC 𝜃′𝑞, which starts as the original

225

𝜃𝑞, are obtained. The size of the current RoC 𝜃′𝑞 is then reduced by one in Line 6 by removing

from it the instance with highest hardness estimate. If there are more than one instance with the

maximum hardness score in the current RoC, the furthest one from the query sample is removed.

Then, we update the subset 𝐶′ with the classifiers in 𝐶 which have 100% accuracy over the

reduced RoC in Line 7. If at least one classifier is in 𝐶′, then the loop is exited and the procedure

returns the ensemble 𝐶′, which is aggregated using majority voting to produce the predicted

label of the query. However, if no local oracle is found at that iteration, the RoC editing process

is repeated with the current RoC 𝜃′𝑞.

Algorithm-A III-2 Ensemble of classifiers selection.

input :x𝑞 , 𝑘 ; ⊲ Query instance, RoC size

input :V = {(x1, 𝑦1), (x2, 𝑦2), ..., (x𝑁 , 𝑦𝑁)} ; ⊲ DSEL set

input :𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑀 } ; ⊲ Pool of classifiers

input :𝐻 = {ℎ1, ℎ2, ..., ℎ𝑁 } ; ⊲ Hardness estimates

output :𝐶′ ; ⊲ Selected ensemble of classifiers

1 𝜃𝑞 ← {(x𝑖 , 𝑦𝑖) ∈ 𝐾𝑁𝑁 (x𝑞 ,V, 𝑘)} ; ⊲ Obtain RoC

2 𝐶′ ← {𝑐 𝑗 ∈ 𝐶 : ∀(x𝑖 , 𝑦𝑖) ∈ 𝜃𝑞 , 𝑐 𝑗 (x𝑖) = 𝑦𝑖} ; ⊲ Select local oracles

3 𝜃′𝑞 ← 𝜃𝑞 ; ⊲ Current RoC

4 while 𝐶′ = ∅ do
5 𝐻′ ← {ℎ𝑖 ∈ 𝐻 : (x𝑖 , 𝑦𝑖) ∈ 𝜃′𝑞} ; ⊲ Obtain hardness of current RoC

6 𝜃′𝑞 ← 𝜃′𝑞 − {x𝑖 : ℎ𝑖 = 𝑚𝑎𝑥(𝐻′)}; ⊲ Remove hardest instance

7 𝐶′ ← {𝑐 𝑗 ∈ 𝐶 : ∀(x𝑖 , 𝑦𝑖) ∈ 𝜃′𝑞 , 𝑐 𝑗 (x𝑖) = 𝑦𝑖} ; ⊲ Select local oracles

8 end while
9 return 𝐶′

Now, going back to the example from Fig. III-1, we can see that based on the neighboring

samples’ instance hardness scores obtained in memorization (Fig. III-2), the proposed technique

would remove the sample x1 from the RoC (Line 6) in the first iteration of the loop from Line 4

to Line 8, if using the KDN, KDNi or LSCi measures. In this case, the edited RoC 𝜃′ obtained

after the first RoC edit is shown in Fig. III-3a. If using the LSC measure, the first sample to

be removed from the original RoC would be the x6, as it presents the same (highest) hardness

estimate as x1 but it is further away from the query. In the second iteration, however, x1 would

be removed as well based on the LSC scores of the remaining instances in the RoC. The RoC

configuration obtained after the removal of x1 in the case of using the LSC measure in shown in

Fig. III-3b. Using any of the presented instance hardness measures, we can see from Fig. III-3

226

that, after the removal of x1, the method reaches its stop criteria as in Line 7 the classifier 𝑐1 is

identified as a local oracle in 𝐶, since it labels all instances in the current RoC correctly. Thus,

the ensemble 𝐶′ which is returned in Line 9 contains the classifier 𝑐1, which is then used to

label the query instance.

(a) KDN, KDNi and LSCi (b) LSC

Figure-A III-3 Example from Fig. III-1 after (a) one and (b) two iteration(s) of the RoC

editing loop (Line 4 to Line 8 of Algorithm III-2) using the indicated measures. The dotted

area indicates the current RoC configuration at the time where a local oracle (𝑐1) is finally

found, right after the sample x1 is removed.

5. Experiments

5.1 Experimental protocol

5.1.1 Datasets

In order to evaluate the performance of the proposed technique over class imbalanced scenarios,

we use the 64 two-class datasets from the Knowledge Extraction based on Evolutionary Learning

(KEEL) repository (Alcalá et al., 2011) presented in Table III-1. The datasets present an IR

ranging from 1.82 to 41.40. Moreover, we obtained for each dataset the proportion of safe

instances according to the categorization proposed in (Napierala & Stefanowski, 2016) which is

227

based on the local class distribution of the positive class samples. A minority class sample is

considered safe if at least 4 of its 5 neighbors also belong to the minority class. The datasets in

Table III-1 are sorted in descending order of S (%), that is, the percentage of safe minority class

instances. We refer to the first 36 problems in Table III-1 as safe datasets, since at least half of

its positive class samples are safe (𝑆(%) ≥ 50), and the remaining problems as unsafe, as in

(García, Marqués & Sánchez, 2019).

For reproducibility, each dataset was evaluated using a stratified 5-fold cross validation procedure,

one fold for test and the remaining for training, using the same partitions provided in the KEEL

website. Due to the small-sized datasets and their high imbalance ratio, we use the training set

as the DSEL set for all dynamic selection techniques evaluated, as in (Cruz et al., 2019a; Souza

et al., 2019a).

5.1.2 Performance measures

We evaluate the models in this work in terms of two frequently used measures for imbalance

learning: the 𝐹1 score (van Rĳsbergen, 1979) and the Geometric Mean (G-mean) (Kubat et al.,

1997). For the statistical comparisons between the techniques’ performances over multiple

datasets, we use the pairwise Wilcoxon signed-rank test, as recommended in (Demšar, 2006).

5.1.3 Dynamic Selection techniques

We compare our proposed technique against 11 DES techniques, including the baseline KNORA-

E. The chosen techniques are shown in Table III-2. We use their implementation from the

Python library DESLib (Cruz et al., 2020), and evaluate them with the RoC size 𝑘 = 7, and

their remaining hyperparameters as the default. W.r.t. the proposed method, we use the same

RoC size, and evaluate it using each of the hardness measures presented in Section 4.1. The

only extra hyperparameter necessary is the neighborhood size of the KDN (as in (A III-1) and

(A III-2)), which we set to 𝑘 = 5 as recommended in (Smith et al., 2014).

228

Table-A III-1 Main characteristics of the datasets used in the experiments. Ref. is the

reference number used in this work for each dataset in the table. I and F refer to the number

of instances and features, respectively. IR refers to the imbalance ratio, and S indicates the

percentage of safe minority class instances in the whole dataset.

Ref. Dataset I F IR S Ref. Dataset I F IR S

1 ecoli-0_vs_1 220 7 1.86 99.30 33 yeast-2_vs_8 482 8 23.10 55.00

2 shuttle-c0-vs-c4 1829 9 13.87 99.19 34 yeast-2_vs_4 514 8 9.08 54.90

3 vowel0 988 13 9.98 98.89 35 led7digit-0-2-4-5-6-7-8-9_vs_1 443 7 10.97 51.35

4 iris0 150 4 2.00 98.00 36 shuttle-c2-vs-c4 129 9 20.50 50.00

5 segment0 2308 19 6.02 96.35 37 glass1 214 9 1.82 48.68

6 wisconsin 683 9 1.86 91.21 38 ecoli-0-2-6-7_vs_3-5 224 7 9.18 45.45

7 vehicle2 846 18 2.88 89.45 39 glass-0-1-6_vs_5 184 9 19.44 44.44

8 page-blocks-1-3_vs_4 472 10 15.86 82.14 40 glass-0-4_vs_5 92 9 9.22 44.44

9 ecoli2 336 7 5.46 76.92 41 ecoli-0-6-7_vs_3-5 222 7 9.09 40.91

10 vehicle0 846 18 3.25 75.38 42 ecoli-0-6-7_vs_5 220 6 10.00 40.00

11 ecoli-0-3-4-6_vs_5 205 7 9.25 75.00 43 yeast6 1484 8 41.40 37.14

12 ecoli-0-4-6_vs_5 203 6 9.15 75.00 44 yeast-0-2-5-6_vs_3-7-8-9 1004 8 9.14 34.34

13 ecoli-0-3-4_vs_5 200 7 9.00 75.00 45 yeast5 1484 8 32.73 34.09

14 newthyroid2 215 5 5.14 74.29 46 ecoli3 336 7 8.60 31.43

15 glass6 214 9 6.38 72.41 47 glass4 214 9 15.46 30.77

16 ecoli-0-1-4-7_vs_5-6 332 6 12.28 72.00 48 pima 768 8 1.87 28.73

17 ecoli-0-1-3-7_vs_2-6 281 7 39.14 71.43 49 vehicle1 846 18 2.90 23.04

18 page-blocks0 5472 10 8.79 70.30 50 glass5 214 9 22.78 22.22

19 ecoli-0-2-3-4_vs_5 202 7 9.10 70.00 51 yeast1 1484 8 2.46 22.14

20 ecoli4 336 7 15.80 70.00 52 vehicle3 846 18 2.99 17.45

21 ecoli-0-1-4-6_vs_5 280 6 13.00 70.00 53 yeast-0-3-5-9_vs_7-8 506 8 9.12 16.00

22 ecoli-0-1_vs_5 240 6 11.00 70.00 54 cleveland-0_vs_4 173 13 12.31 15.38

23 new-thyroid1 215 5 5.14 68.57 55 yeast-0-5-6-7-9_vs_4 528 8 9.35 7.84

24 yeast-0-2-5-7-9_vs_3-6-8 1004 8 9.14 67.68 56 yeast4 1484 8 28.10 7.84

25 glass-0-1-2-3_vs_4-5-6 214 9 3.20 66.67 57 yeast-1_vs_7 459 7 14.30 6.67

26 ecoli-0-1-4-7_vs_2-3-5-6 336 7 10.59 65.52 58 haberman 306 3 2.78 6.17

27 ecoli-0-3-4-7_vs_5-6 257 7 9.28 64.00 59 yeast-1-2-8-9_vs_7 947 8 30.57 3.33

28 glass0 214 9 2.06 58.57 60 glass-0-1-5_vs_2 172 9 9.12 0.00

29 ecoli-0-1_vs_2-3-5 244 7 9.17 58.33 61 glass-0-1-6_vs_2 192 9 10.29 0.00

30 ecoli1 336 7 3.36 57.14 62 glass2 214 9 11.59 0.00

31 yeast3 1484 8 8.10 55.83 63 glass-0-1-4-6_vs_2 205 9 11.06 0.00

32 glass-0-6_vs_5 108 9 11.00 55.56 64 yeast-1-4-5-8_vs_7 693 8 22.10 0.00

All techniques except for the OLP use the same pool of classifiers containing 100 Perceptrons

(learning rate 𝛼 = 0.001 and number of iterations 𝑛𝑖𝑡𝑒𝑟 = 100) that was generated using Bagging

(Breiman, 1996), as in (Souza et al., 2019a). To obtain the output class probabilities of the

base-classifiers, we apply the sigmoid function over the hyperplanes’ decision function.

Lastly, since the proposed technique performs a dynamic RoC definition that takes into account

the degree of class overlap associated with the location of each instance, the end result may

229

be similar to performing an instance selection/noise removal over the DSEL set. Thus, we

also include in the analysis the use of the Edited Nearest Neighbors (ENN) (Wilson, 1972)

pre-processing method, available in the Python library imbalanced-learn (Lemaître et al., 2017),

over the DSEL set only. The ENN, in this case, removes from the DSEL set the negative class

samples which contain a majority of its 𝑘 = 3 neighbors from the positive class.

Table-A III-2 Dynamic Ensemble Selection (DES) techniques included in the

comparative analysis.

Dynamic Ensemble Selection technique Reference

K-Nearest Oracles Eliminate (KNORA-E) (Ko et al., 2007)

K-Nearest Oracles Union (KNORA-U) (Ko et al., 2007)

Dynamic Ensemble Selection Performance (DESP) (Woloszynski & Kurzynski, 2011)

Dynamic Ensemble Selection Clustering (DESC) (Soares et al., 2006)

K-Nearest Output Profiles (KNOP) (Cavalin et al., 2012)

Dynamic Ensemble Selection KNN (DES-KNN) (Soares et al., 2006)

Meta-learning for Dynamic Ensemble Selection (META-DES) (Cruz et al., 2015a)

Randomized Reference Classifier (DES-RRC) (Woloszynski & Kurzynski, 2011)

Online Local Pool (OLP) (Souza et al., 2019b)

K-Nearest Oracles-Borderline (KNORA-B) (Oliveira et al., 2018)

K-Nearest Oracles-Borderline-Imbalanced (KNORA-BI) (Oliveira et al., 2018)

5.2 Experimental results

We start by observing the difference in the behavior of the baseline KNORA-E and the proposed

technique. Fig. III-4 shows the average proportion of test instances whose sample removal order

in the RoC editing scheme was different from the distance-based order from the KNORA-E, over

the safe and unsafe datasets. Of course, this does not necessarily mean the selected ensemble of

classifiers was different than the one KNORA-E would select. As expected due to the higher

local class overlap, changes in the sample removal order were much more frequent over the

unsafe datasets compared to the safe ones, considering all measures. Another trend we can

observe in Fig. III-4 is that the LSC-based measures have a larger effect on the ranking of the

RoC samples compared to the KDN-based. This is likely due to the local set size, which can vary

on a greater scale among close-by instances compared to the amount of disagreeing neighbors of

230

a small fixed k-neighborhood. More score variation in a small area leads to falling fewer times

on the tie rule, which is the distance-based ranking from the KNORA-E.

(a) Safe (b) Unsafe

Figure-A III-4 Average proportion of instances with a different sample removal order

from the baseline’s (KNORA-E) over the safe and unsafe datasets.

(a) 𝐹1 (b) G-mean

Figure-A III-5 Difference in performance between the proposed method, using the

indicated hardness measure, and the baseline technique (KNORA-E), averaged over the

indicated datasets (Table III-1).

As to whether the proposed RoC editing scheme was able to outperform the KNORA-E’s

distance-based procedure, Fig. III-5 shows the difference in average performance between the

proposed method, using the indicated instance hardness measure, to the baseline (KNORA-E),

231

averaged over each range of datasets. It can be observed that, in terms of 𝐹1, the proposed method

generally outperformed the baseline using the original hardness measures (KDN and LSC) ,

while using the adapted measures (KDNi and LSCi) yielded an overall superior performance

over the KNORA-E over the unsafest problems . This is understandable as the original measures

are expected to favor the majority class instances if the minority class is more spread out. The

adapted measures, on the other hand, favor the minority class regardless, which could explain

the lower 𝐹1 over the safest datasets. W.r.t. the G-mean, however, the overall performance

of the proposed method using the original measures is similar or slightly better compared to

the baseline until the last, hardest group , at which point its performance drops relative to the

KNORA-E, probably due to their bias towards the majority class in such problems. The gain in

performance when using the adapted measures is visible for most groups.

Table-A III-3 Average performance and mean rank of the DES techniques over the groups

of safe and unsafe datasets. Wins shows the total number of first positions. Solo wins count

as 1 while ties in the first position count as 1/# tied techniques. Best results are in bold.

(a) Safe

Measure F1 G-mean
Wins

Technique Mean Rank Mean Rank

Prop. (KDN) 0.835 6.903 0.891 7.083 4.115

Prop. (KDNi) 0.823 9.194 0.897 7.458 2.726

Prop. (LSC) 0.834 7.097 0.889 7.250 2.448

Prop. (LSCi) 0.821 9.708 0.899 7.694 2.726

KNORA-E 0.824 7.917 0.886 7.958 1.226

KNORA-U 0.831 7.778 0.884 7.931 1.572

DESP 0.833 7.403 0.884 7.889 3.572

DESC 0.828 8.472 0.881 9.069 7.418

KNOP 0.833 8.306 0.887 8.681 1.572

DES-KNN 0.834 6.278 0.884 6.542 8.190

META-DES 0.844 7.861 0.897 7.542 3.972

DES-RRC 0.836 8.361 0.889 8.514 7.172

OLP 0.852 6.194 0.886 9.444 19.200
KNORA-B 0.825 9.111 0.892 8.819 2.044

KNORA-BI 0.818 9.417 0.895 8.125 4.044

(b) Unsafe

Measure F1 G-mean
Wins

Technique Mean Rank Mean Rank

Prop. (KDN) 0.503 7.268 0.609 7.857 0.365

Prop. (KDNi) 0.523 5.732 0.667 4.000 9.865

Prop. (LSC) 0.509 7.393 0.626 7.839 1.365

Prop. (LSCi) 0.523 6.250 0.685 4.161 11.865
KNORA-E 0.508 7.250 0.636 6.964 4.143

KNORA-U 0.454 8.929 0.534 9.839 1.098

DESP 0.455 9.250 0.536 10.196 2.765

DESC 0.426 11.232 0.507 11.446 4.143

KNOP 0.444 9.571 0.533 9.768 0.765

DES-KNN 0.484 7.500 0.575 8.518 2.143

META-DES 0.507 6.482 0.613 6.893 7.098

DES-RRC 0.456 9.179 0.540 9.857 3.098

OLP 0.460 7.804 0.533 8.946 7.000

KNORA-B 0.500 8.018 0.635 7.589 0.143

KNORA-BI 0.496 8.143 0.653 6.125 0.143

232

We now include all other DES techniques from Table III-2 to the comparative analysis. Table

III-3 shows the average 𝐹1 and G-mean of each technique, as well as their average rank and total

number of wins, over the safe and unsafe datasets. It can be observed that, over the safe datasets,

the OLP yielded the highest overall 𝐹1 score and average rank, with the proposed technique

using the KDN and LSC obtaining the third and fourth highest scores, respectively, right after

the DES-KNN. In terms of G-mean, the DES-KNN obtained the highest rank, followed again by

the proposed method using the KDN, LSC and KDNi. Considering both performance measures,

the OLP obtained the highest number of wins over the safe datasets, though the proposed method

still obtained more wins than the baseline. Over the unsafe datasets, however, the proposed

method obtained the two highest mean performance and average ranks in both 𝐹1 and G-mean

when using the adapted hardness measures, as well as the two highest number of wins.

Table III-4 shows the p-values obtained from the pairwise Wilcoxon signed-rank test with

significance 𝛼 = 0.05, performed over the average performances of the DS techniques. First, we

can see that compared to the baseline, the proposed technique yielded a statistically similar 𝐹1

score over the safe datasets except when using the LSCi measure, which obtained a significantly

worse performance. As observed previously, the LSCi prompts a change in the RoC editing

order much more often than the KDN-based measures, all the while favoring the positive class,

so over the safe problems the precision may have been hindered. In fact, both adapted measures

obtained a poorer 𝐹1 score compared to the DES-KNN, META-DES and OLP over the safe

datasets. However, the proposed method using the original measures was significantly better

over the safe datasets than the KNORA-B and KNORA-BI. Moreover, in terms of G-mean, the

proposed technique significantly outperformed both the baseline and KNORA-B over the safe

datasets, using the KDN and LSC as hardness estimates.

Over the unsafe datasets, the proposed technique using the adapted measures obtained a

statistically similar 𝐹1 and a significantly better G-mean compared to the baseline, META-DES

and DES-KNN. It also significantly surpassed the OLP, KNORA-B and KNORA-BI when using

the LSCi measure in both 𝐹1 and G-mean. Compared to the remaining techniques, the proposed

method significantly outperformed them using all of the hardness measures investigated. This

233

Table-A III-4 P-value obtained from the Wilcoxon signed-rank test between the average

performances of the row-wise and column-wise techniques over the groups of safe and

unsafe datasets. Values below the significance 𝛼 = 0.05 are in bold. The symbols (+) and

(-) indicate whether the column-wise (proposed) method was statistically superior or

inferior, respectively, to the row-wise technique.

(a) Safe

Measure 𝐹1 G-mean

Technique Prop. (KDN) Prop. (KDNi) Prop. (LSC) Prop. (LSCi) Prop. (KDN) Prop. (KDNi) Prop. (LSC) Prop. (LSCi)

KNORA-E 0.066 0.265 0.099 0.025 (-) 0.028 (+) 0.172 0.047 (+) 0.364

KNORA-U 0.875 0.296 0.850 0.235 0.671 0.282 0.765 0.326

DESP 0.648 0.056 0.850 0.039 (-) 0.354 0.342 0.718 0.409

DESC 0.289 0.753 0.275 0.561 0.056 0.043 (+) 0.074 0.041 (+)

KNOP 0.220 0.303 0.299 0.174 0.112 0.129 0.214 0.129

DES-KNN 0.284 0.004 (-) 0.357 0.004 (-) 0.747 0.632 0.524 0.455

META-DES 0.987 0.007 (-) 0.838 0.005 (-) 0.789 0.747 0.717 0.712

DES-RRC 0.582 0.155 0.937 0.094 0.469 0.455 0.826 0.474

OLP 0.311 0.002 (-) 0.146 0.003 (-) 0.164 0.056 0.248 0.031
KNORA-B 0.027 (+) 0.862 0.005 (+) 0.249 0.035 (+) 0.170 0.025 (+) 0.352

KNORA-BI 0.028 (+) 0.352 0.006 (+) 0.925 0.250 0.143 0.239 0.180

(b) Unsafe

Measure 𝐹1 G-mean

Technique Prop. (KDN) Prop. (KDNi) Prop. (LSC) Prop. (LSCi) Prop. (KDN) Prop. (KDNi) Prop. (LSC) Prop. (LSCi)

KNORA-E 0.882 0.151 0.546 0.198 0.094 0.008 (+) 0.657 0.001 (+)

KNORA-U 0.034 (+) 0.010 (+) 0.040 (+) 0.021 (+) 0.004 (+) <0.001 (+) 0.005 (+) <0.001 (+)

DESP 0.019 (+) 0.016 (+) 0.043 (+) 0.038 (+) 0.001 (+) <0.001 (+) 0.002 (+) <0.001 (+)

DESC 0.001 (+) 0.001 (+) 0.002 (+) 0.001 (+) 0.001 (+) <0.001 (+) 0.001 (+) <0.001 (+)

KNOP 0.012 (+) 0.001 (+) 0.023 (+) 0.002 (+) 0.007 (+) <0.001 (+) 0.003 (+) <0.001 (+)

DES-KNN 0.172 0.116 0.452 0.264 0.029 (+) <0.001 (+) 0.019 (+) <0.001 (+)

META-DES 0.927 0.322 0.838 0.682 0.733 0.001 (+) 0.767 0.001 (+)

DES-RRC 0.016 (+) 0.010 (+) 0.031 (+) 0.022 (+) 0.003 (+) <0.001 (+) 0.004 (+) <0.001 (+)

OLP 0.202 0.024 (+) 0.096 0.048 (+) 0.024 (+) <0.001 (+) 0.007 (+) <0.001 (+)

KNORA-B 0.802 0.062 0.412 0.038 (+) 0.227 0.004 (+) 0.909 0.001 (+)

KNORA-BI 0.793 0.026 (+) 0.339 0.012 (+) 0.005 (+) 0.006 (+) 0.006 (+) 0.001 (+)

suggests that reducing the local overlap in the RoC in generalization may be advantageous for

the classifier selection step, specially over the unsafe datasets.

We now analyze the performance of the proposed technique relative to the use of the ENN. In

order to observe the impact of such procedure over the DS techniques, we only apply it to the

DSEL set, thus the pool of classifiers is the same as in the previous analysis. Fig. III-6a and

Fig. III-6b show the difference in average 𝐹1 and G-mean between the proposed method without

pre-processing and the baseline with pre-processing (KNORA-E + ENN). We can observe that

234

(a) 𝐹1 (b) G-mean

(c) 𝐹1 (d) G-mean

Figure-A III-6 Difference in performance between the proposed method using the

indicated hardness measure, (a-b) without and (b-c) with pre-processing (ENN), and the

baseline technique with pre-processing (KNORA-E + ENN), averaged over the indicated

datasets (Table III-1).

applying the ENN over the DSEL yielded a greater improvement to the KNORA-E method

compared to the proposed hardness-based RoC editing procedure. This may be due to the fact

that, after applying the ENN over the DSEL, the initial RoC contains more reliable samples since

the most unreliable ones in that area were already removed. Therefore, even if the proposed

technique eventually removes such samples, comparatively fewer instances will remain in the

RoC which may negatively impact the competence estimation. Thus, starting off the ensemble

selection procedure with a less overlapped RoC seems to provide a better overall performance for

the KNORA-E. However, for some datasets the dynamic sample removal used in the proposed

method still yielded slightly better average results, which may motivate the design of an approach

235

that can combine this desirable characteristic from a pre-processing procedure for an online RoC

editing scheme.

Fig. III-6c and Fig. III-6d show the difference in the mean performances of the proposed method

and the baseline, both using the ENN over the DSEL set now. We can see that the difference in

performance presents similar characteristics to the results obtained for both techniques without

the pre-processing (Fig. III-5), but with less improvement in general. With less local overlap in

the DSEL, it can be expected that the proposed RoC editing scheme will have a reduced impact

in performance.

Table-A III-5 Average performance and mean rank of the DES techniques with the ENN

pre-processing method over the groups of safe and unsafe datasets. Wins shows the total

number of first positions. Solo wins count as 1 while ties in the first position count as 1/#
tied techniques. Best results are in bold.

(a) Safe

Measure F1 G-mean
Wins

Technique Mean Rank Mean Rank

Prop. (KDN) 0.838 6.639 0.897 6.847 3.218

Prop. (KDNi) 0.823 9.639 0.900 7.931 1.468

Prop. (LSC) 0.837 6.750 0.895 6.847 3.318

Prop. (LSCi) 0.822 10.167 0.903 8.125 3.068

KNORA-E 0.828 7.292 0.894 6.847 5.468

KNORA-U 0.832 8.306 0.886 8.875 2.092

DESP 0.832 8.042 0.886 8.681 4.092

DESC 0.825 9.347 0.885 9.542 2.105

KNOP 0.836 8.139 0.891 8.708 4.592

DES-KNN 0.830 6.611 0.885 7.236 5.175

META-DES 0.845 8.083 0.900 8.014 7.890

DES-RRC 0.840 7.681 0.894 8.139 7.425

OLP 0.852 5.500 0.890 8.792 17.486
KNORA-B 0.832 8.319 0.903 7.611 1.801

KNORA-BI 0.823 9.486 0.902 7.806 2.801

(b) Unsafe

Measure F1 G-mean
Wins

Technique Mean Rank Mean Rank

Prop. (KDN) 0.535 6.250 0.653 6.464 1.254

Prop. (KDNi) 0.531 6.714 0.680 4.464 9.254

Prop. (LSC) 0.535 6.518 0.659 6.482 1.254

Prop. (LSCi) 0.530 7.321 0.697 4.500 6.254

KNORA-E 0.537 6.839 0.676 5.839 4.487

KNORA-U 0.465 10.107 0.549 11.518 0.654

DESP 0.478 8.982 0.564 10.250 0.654

DESC 0.462 10.339 0.558 10.768 5.000

KNOP 0.458 10.054 0.551 10.875 0.654

DES-KNN 0.520 7.107 0.623 8.232 1.154

META-DES 0.526 7.304 0.633 8.089 8.654

DES-RRC 0.472 9.500 0.559 10.946 2.654

OLP 0.498 6.661 0.579 8.464 11.100
KNORA-B 0.529 7.893 0.673 7.000 1.487

KNORA-BI 0.518 8.411 0.684 6.107 1.487

Applying the ENN over the DSEL for all DS techniques investigated in this work, we obtain the

results from Table III-5. We can see that the OLP still yielded the best average rank over the safe

datasets in terms of 𝐹1, as well as the highest number of wins considering both performance

236

measures, but the proposed method (with the KDN and LSC) and the baseline KNORA-E

obtained the highest rank in terms of G-mean. Over the unsafe datasets, the proposed method

obtained the two highest average ranks w.r.t. 𝐹1 using the original measures, and w.r.t. G-mean

using the adapted measures. The second highest number of wins was also achieved by the

proposed technique, using the KDNi. Interestingly using the original measures yielded a better

𝐹1 than using the adapted measures over the unsafe datasets, as opposed to the previous results

without the pre-processing, possibly due to the slightly less biased hardness estimation after

removing the most overlapped majority class samples.

Table-A III-6 P-value obtained from the Wilcoxon signed-rank test between the average

performances of the column-wise and row-wise techniques, with the ENN pre-processing

method, over the groups of safe and unsafe datasets. Values below the significance 𝛼 = 0.05

are in bold. The symbols (+) and (-) indicate whether the column-wise (proposed) method

was statistically superior or inferior, respectively, to the row-wise technique.

(a) Safe

Measure 𝐹1 G-mean

Technique Prop. (KDN) Prop. (KDNi) Prop. (LSC) Prop. (LSCi) Prop. (KDN) Prop. (KDNi) Prop. (LSC) Prop. (LSCi)

KNORA-E 0.404 0.006 (-) 0.297 <0.001 (-) 0.860 0.057 0.974 0.061

KNORA-U 0.366 0.195 0.535 0.133 0.039 (+) 0.072 0.133 0.091

DESP 0.582 0.052 0.620 0.036 (-) 0.107 0.248 0.142 0.342

DESC 0.049 (+) 0.912 0.046 (+) 0.683 0.011 (+) 0.034 (+) 0.010 (+) 0.026 (+)

KNOP 0.370 0.111 0.268 0.072 0.076 0.133 0.063 0.155

DES-KNN 0.740 0.003 (-) 0.918 0.003 (-) 0.249 0.887 0.138 0.813

META-DES 0.706 0.007 (-) 0.274 0.003 (-) 0.409 0.556 0.404 0.545

DES-RRC 0.881 0.049 (-) 0.994 0.030 (-) 0.465 0.666 0.620 0.700

OLP 0.104 0.001 (-) 0.072 0.002 (-) 0.164 0.134 0.212 0.126

KNORA-B 0.033 (+) 0.012 (-) 0.022 (+) <0.001 (-) 0.318 0.623 0.358 0.358

KNORA-BI 0.018 (+) 0.893 0.013 (+) 0.492 0.303 0.663 0.281 0.281

(b) Unsafe

Measure 𝐹1 G-mean

Technique Prop. (KDN) Prop. (KDNi) Prop. (LSC) Prop. (LSCi) Prop. (KDN) Prop. (KDNi) Prop. (LSC) Prop. (LSCi)

KNORA-E 0.793 0.501 0.546 0.130 0.161 0.269 0.168 0.029 (+)

KNORA-U 0.001 (+) 0.011 (+) 0.001 (+) 0.026 (+) <0.001 (+) <0.001 (+) <0.001 (+) <0.001 (+)

DESP 0.005 (+) 0.029 (+) 0.010 (+) 0.056 <0.001 (+) <0.001 (+) <0.001 (+) <0.001 (+)

DESC 0.001 (+) 0.003 (+) 0.001 (+) 0.009 (+) <0.001 (+) <0.001 (+) <0.001 (+) <0.001 (+)

KNOP 0.001 (+) 0.002 (+) 0.003 (+) 0.008 (+) <0.001 (+) <0.001 (+) <0.001 (+) <0.001 (+)

DES-KNN 0.190 0.445 0.241 0.707 0.006 (+) <0.001 (+) 0.003 (+) <0.001 (+)

META-DES 0.439 0.982 0.600 0.820 0.106 0.008 (+) 0.106 0.002 (+)

DES-RRC 0.003 (+) 0.053 0.005 (+) 0.068 <0.001 (+) <0.001 (+) <0.001 (+) <0.001 (+)

OLP 0.285 0.316 0.412 0.750 0.006 (+) 0.001 (+) 0.005 (+) 0.001 (+)

KNORA-B 0.305 0.927 0.316 0.733 0.716 0.179 0.733 0.029 (+)

KNORA-BI 0.136 0.206 0.136 0.259 0.101 0.592 0.127 0.094

237

Table III-6 shows the resulting p-values of the Wilcoxon signed-rank test on the average

performances of the techniques with the ENN over the safe and unsafe datasets. We can observe

that, over the safe datasets, the proposed method with the adapted measures was statistically

worse than several methods including the baseline while with the original measures it surpassed

the KNORA-B and KNORA-BI in terms of 𝐹1. Over the unsafe datasets, however, the proposed

method with the LSCi statistically outperformed all techniques except for the KNORA-BI, in

terms of G-mean.

5.3 Lessons learned

All in all, the results suggest that there is a performance improvement to be had by characterizing

the hardness of the instances in the RoC, and prioritizing the ones that seem more reliable for

the classifiers’ competence estimation. Using an overlap reducing pre-processing technique

tailored for imbalanced data seems to have an overall better impact over the classifier selection

procedure compared to the proposed dynamic RoC editing scheme alone, possibly due to the

region being less ambiguous from the start. However, we observed an advantage in not outright

removing the instances in memorization for some datasets. Moreover, the proposed technique

still presented a performance improvement after reducing the local class overlap in the data using

the pre-processing technique, which further supports the integration of instance characterization

into the RoC definition for DS techniques.

Furthermore, we observed that the instance characterization within the proposed method had a

large effect on performance, so choosing which hardness measure to use should be based on the

distribution of the positive class in the problem. For a minority class composed of mostly safe

samples, the original measures seemed to provide a good estimate of the instances’ reliability in

the region, even in the presence of high global imbalance ratios. On the other hand, over the

unsafe datasets, the adapted measures were a much more effective guide in the proposed RoC

editing scheme. Lastly, while the corresponding KDN-based and LS-based measures yielded

somewhat similar performances, likely because they both attempt to quantify the local class

238

overlap using a concept of neighborhood, we would recommend using the LS-based measures as

they not only presented slightly better overall results but also do not require any hyperparameter.

6. Conclusion

In this work, we proposed a Dynamic Selection technique which dynamically edits the target

region in the search for a local oracle. Motivated by the observation that a class-overlapped

region can hinder the system’s recognition rates, specially over the locally under-represented

class, the proposed method removes the samples perceived as most unreliable from the RoC one

by one until at least one classifier can label all remaining instances in it. For characterizing the

known instances in the problem, we use two instance hardness measures that convey the degree

of local overlap in the area. We also propose and evaluate an adapted version of these measures

as they can often be biased towards the majority class.

Experiments were conducted over 64 imbalanced datasets, which were split into two groups

according to the percentage of safe positive class instances in the problem. The proposed method

yielded very competitive results against a baseline and 10 other DS techniques, specially over

the unsafe datasets, which suggests that the overlap-reducing procedure on the RoC can improve

the competence estimation and thus the selection of the classifiers. Moreover, the most adequate

instance characterization to use within the proposed technique appears to depend on the positive

class distribution, as the original instance hardness measures present a high bias towards the

majority class on the unsafe problems.

Future work in this line of research may involve a further investigation on the impact of using

pre-processing methods to remove the local overlap for DS techniques, as opposed to dynamically

editing the RoC. This may lead to the study of a scheme which can provide some advantages

from both approaches, in order to improve the competence estimation of the classifiers and thus

the DS techniques’ recognition rates over all classes.

BIBLIOGRAPHY

Alcalá, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L. & Herrera, F.

(2011). KEEL data-mining software tool: data set repository, integration of algorithms and

experimental analysis framework. Journal of Multiple-Valued Logic and Soft Computing,

17(2-3), 255–287.

Antosik, B. & Kurzynski, M. (2011). New measures of classifier competence-heuristics and

application to the design of multiple classifier systems. Computer Recognition Systems 4,

pp. 197–206.

Armano, G. & Hatami, N. (2010a). Mixture of Random Prototype-Based Local Experts.

International Conference on Hybrid Artificial Intelligence Systems, (Lecture Notes in Computer

Science), 548–556.

Armano, G. & Hatami, N. (2010b). Mixture of Random Prototype-Based Local Experts. Hybrid
Artificial Intelligence Systems, (Lecture Notes in Computer Science), 548–556.

Armano, G. & Tamponi, E. (2018). Building forests of local trees. Pattern Recognition, 76,

380–390.

Arruda, J. L., Prudêncio, R. B. & Lorena, A. C. (2020). Measuring Instance Hardness Using

Data Complexity Measures. Brazilian Conference on Intelligent Systems, pp. 483–497.

Bache, K. & Lichman, M. (2013). UCI machine learning repository. [Online].

Barandela, R., Valdovinos, R. M. & Sánchez, J. S. (2003). New applications of ensembles of

classifiers. Pattern Analysis & Applications, 6(3), 245–256.

Bashbaghi, S., Granger, E., Sabourin, R. & Bilodeau, G.-A. (2017). Dynamic Selection of

Exemplar-SVMs for Watch-list Screening through Domain Adaptation. ICPRAM, pp. 738–745.

Bellman, R. E. (2015). Adaptive control processes. Princeton university press.

Benavoli, A., Corani, G. & Mangili, F. (2016). Should we really use post-hoc tests based on

mean-ranks? The Journal of Machine Learning Research, 17(1), 152–161.

Berg, R. v. d., Kipf, T. N. & Welling, M. (2017). Graph convolutional matrix completion. arXiv
preprint arXiv:1706.02263.

Biedrzycki, J. & Burduk, R. (2020). Decision Tree Integration Using Dynamic Regions of

Competence. Entropy, 22(10), 1129.

Bischl, B., Schiffner, J. & Weihs, C. (2013). Benchmarking local classification methods.

Computational Statistics, 28(6), 2599–2619.

Bottou, L. & Vapnik, V. (1992). Local learning algorithms. Neural computation, 4(6), 888–900.

240

Boutell, M. R., Luo, J., Shen, X. & Brown, C. M. (2004). Learning multi-label scene

classification. Pattern recognition, 37(9), 1757–1771.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

Breiman, L. (2017). Classification and regression trees. Routledge.

Britto, A., Sabourin, R. & Oliveira, L. (2014). Dynamic selection of classifiers - A comprehensive

review. Pattern Recognition, 47(11), 3665–3680.

Brun, A. L., Britto, A. S., Oliveira, L. S., Enembreck, F. & Sabourin, R. (2016). Contribution of

data complexity features on dynamic classifier selection. 2016 International Joint Conference
on Neural Networks (ĲCNN), pp. 4396–4403.

Burduk, R. & Biedrzycki, J. (2022). Subspace-based decision trees integration. Information
Sciences, 592, 215–226.

Cai, H., Zheng, V. W. & Chang, K. C.-C. (2018). A comprehensive survey of graph

embedding: Problems, techniques, and applications. IEEE Transactions on Knowledge and
Data Engineering, 30(9), 1616–1637.

Campos, Y., Morell, C. & Ferri, F. J. (2012). A local complexity based combination method for

decision forests trained with high-dimensional data. 2012 12th International Conference on
Intelligent Systems Design and Applications (ISDA), pp. 194–199.

Cao, Y., Geddes, T. A., Yang, J. Y. H. & Yang, P. (2020). Ensemble deep learning in

bioinformatics. Nature Machine Intelligence, 2(9), 500–508.

Cavalin, P. R., Sabourin, R. & Suen, C. Y. (2012). LoGID: An adaptive framework combining

local and global incremental learning for dynamic selection of ensembles of HMMs. Pattern
Recognition, 45(9), 3544–3556.

Chawla, N. V., Lazarevic, A., Hall, L. O. & Bowyer, K. W. (2003). SMOTEBoost: Improving

prediction of the minority class in boosting. European conference on principles of data
mining and knowledge discovery, pp. 107–119.

Chen, C., Liaw, A. & Breiman, L. (2004). Using random forest to learn imbalanced data.

University of California, Berkeley, 110, 1–12.

Cheng, W., Hüllermeier, E. & Dembczynski, K. J. (2010). Bayes optimal multilabel classification

via probabilistic classifier chains. Proceedings of the 27th international conference on machine
learning (ICML-10), pp. 279–286.

Collins, A., Tkaczyk, D. & Beel, J. (2018). A Novel Approach to Recommendation Algorithm

Selection using Meta-Learning. AICS, pp. 210–219.

241

Costa, I. G., Lorena, A. C., Peres, L. R. & de Souto, M. C. (2009). Using supervised complexity

measures in the analysis of cancer gene expression data sets. Brazilian Symposium on
Bioinformatics, pp. 48–59.

Cruz, R. M. O., Sabourin, R., Cavalcanti, G. D. C. & Ren, T. I. (2015a). META-DES: A dynamic

ensemble selection framework using meta-learning. Pattern Recognition, 48(5), 1925–1935.

Cruz, R. M. O., Hafemann, L. G., Sabourin, R. & Cavalcanti, G. D. C. (2020). DESlib: A

Dynamic ensemble selection library in Python. Journal of Machine Learning Research, 21(8),

1–5.

Cruz, R. M., Sabourin, R. & Cavalcanti, G. D. (2015b). A DEEP analysis of the META-DES

framework for dynamic selection of ensemble of classifiers. arXiv preprint arXiv:1509.00825.

Cruz, R. M., Sabourin, R. & Cavalcanti, G. D. (2017a). META-DES. Oracle: Meta-learning

and feature selection for dynamic ensemble selection. Information fusion, 38, 84–103.

Cruz, R. M., Zakane, H. H., Sabourin, R. & Cavalcanti, G. D. (2017b). Dynamic Ensemble

Selection VS K-NN: why and when Dynamic Selection obtains higher classification perfor-

mance? 2017 Seventh International Conference on Image Processing Theory, Tools and
Applications (IPTA).

Cruz, R. M., Sabourin, R. & Cavalcanti, G. D. (2018a). Dynamic classifier selection: Recent

advances and perspectives. Information Fusion, 41, 195–216.

Cruz, R. M., Sabourin, R. & Cavalcanti, G. D. (2018b). Prototype selection for dynamic

classifier and ensemble selection. Neural Computing and Applications, 29(2), 447–457.

Cruz, R. M., Oliveira, D. V., Cavalcanti, G. D. & Sabourin, R. (2019a). FIRE-DES++: Enhanced

online pruning of base classifiers for dynamic ensemble selection. Pattern Recognition, 85,

149–160.

Cruz, R. M., Souza, M. A., Sabourin, R. & Cavalcanti, G. D. (2019b). Dynamic ensemble

selection and data preprocessing for multi-class imbalance learning. International Journal of
Pattern Recognition and Artificial Intelligence, 33(11), 1940009.

das Dôres, S. N., Alves, L., Ruiz, D. D. & Barros, R. C. (2016). A meta-learning framework for

algorithm recommendation in software fault prediction. Proceedings of the 31st Annual ACM
Symposium on Applied Computing, pp. 1486–1491.

Data61, C. (2018). StellarGraph Machine Learning Library. GitHub.

Davtalab, R., Cruz, R. M. & Sabourin, R. (2022). Dynamic Ensemble Selection Using Fuzzy

Hyperboxes. 2022 International Joint Conference on Neural Networks (ĲCNN), pp. 1-9.

doi: 10.1109/ĲCNN55064.2022.9892635.

242

de Melo, C. E. C. & Prudêncio, R. B. C. (2014). Cost-Sensitive Measures of Algorithm

Similarity for Meta-learning. Intelligent Systems (BRACIS), 2014 Brazilian Conference on,

pp. 7–12.

de Souto, M. C., Soares, R. G., Santana, A. & Canuto, A. M. (2008). Empirical comparison of

dynamic classifier selection methods based on diversity and accuracy for building ensembles.

2008 IEEE international joint conference on neural networks (IEEE world congress on
computational intelligence), pp. 1480–1487.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of
Machine learning research, 7, 1–30.

Deng, L., Chen, W.-S. & Pan, B. (2018). Automatic Classifier Selection Based on Classification

Complexity. Chinese Conference on Pattern Recognition and Computer Vision (PRCV),
pp. 292–303.

Didaci, L. & Giacinto, G. (2004). Dynamic classifier selection by adaptive k-nearest-

neighbourhood rule. International Workshop on Multiple Classifier Systems, pp. 174–183.

Didaci, L., Giacinto, G., Roli, F. & Marcialis, G. L. (2005). A study on the performances of

dynamic classifier selection based on local accuracy estimation. Pattern Recognition, 38(11),

2188–2191.

Do, T.-N. (2015). Using local rules in random forests of decision trees. International Conference
on Future Data and Security Engineering, pp. 32–45.

Dong, M. & Kothari, R. (2003). Feature subset selection using a new definition of classifiability.

Pattern Recognition Letters, 24(9), 1215 - 1225.

Dos Santos, E. M. & Sabourin, R. (2011). Classifier ensembles optimization guided by

population oracle. 2011 IEEE Congress of Evolutionary Computation (CEC), pp. 693–698.

Dos Santos, E. M., Sabourin, R. & Maupin, P. (2008). A dynamic overproduce-and-choose

strategy for the selection of classifier ensembles. Pattern recognition, 41(10), 2993–3009.

Dos Santos, E. M., Sabourin, R. & Maupin, P. (2009). Overfitting cautious selection of classifier

ensembles with genetic algorithms. Information Fusion, 10(2), 150–162.

Du, Y., Wang, Y., Hu, J., Li, X. & Chen, X. (2022). An emotion role mining approach based on

multiview ensemble learning in social networks. Information Fusion, 88, 100–114.

Duin, R. P. W., Juszczak, P., de Ridder, D., Paclik, P., Pekalska, E. & Tax, D. M. (2004). Prtools,

a matlab toolbox for pattern recognition.

Duin, R. P. (2002). The combining classifier: to train or not to train? Object recognition
supported by user interaction for service robots, 2, 765–770.

243

El-Sappagh, S., Saleh, H., Sahal, R., Abuhmed, T., Islam, S. R., Ali, F. & Amer, E. (2021).

Alzheimer’s disease progression detection model based on an early fusion of cost-effective

multimodal data. Future Generation Computer Systems, 115, 680–699.

Fan, W., Stolfo, S. J., Zhang, J. & Chan, P. K. (1999). AdaCost: misclassification cost-sensitive

boosting. 6th International Conference on Machine Learning, pp. 97–105.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8), 861–874.

Fernández, A., García, S., del Jesus, M. J. & Herrera, F. (2008). A study of the behaviour of

linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets.

Fuzzy Sets and Systems, 159(18), 2378–2398.

Fernández, A., García, S., Galar, M., Prati, R. C., Krawczyk, B. & Herrera, F. (2018). Learning
from Imbalanced Data Sets. Springer International Publishing.

Fernández-Delgado, M., Cernadas, E., Barro, S. & Amorim, D. (2014). Do we Need Hundreds

of Classifiers to Solve Real World Classification Problems? Journal of Machine Learning
Research, 15, 3133-3181.

Fernández-Delgado, M., Cernadas, E., Barro, S. & Amorim, D. (2014). Do we need hundreds of

classifiers to solve real world classification problems. J. Mach. Learn. Res, 15(1), 3133–3181.

Feurer, M., Van Rĳn, J. N., Kadra, A., Gĳsbers, P., Mallik, N., Ravi, S., Müller, A., Vanschoren,

J. & Hutter, F. (2021). Openml-python: an extensible python api for openml. The Journal of
Machine Learning Research, 22(1), 4573–4577.

Flach, P. (2019). Performance evaluation in machine learning: the good, the bad, the ugly,

and the way forward. Proceedings of the AAAI Conference on Artificial Intelligence, 33,

9808–9814.

François, D., Wertz, V. & Verleysen, M. (2007). The concentration of fractional distances. IEEE
Transactions on Knowledge and Data Engineering, 19(7), 873–886.

Freund, Y. & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and

an application to boosting. Journal of Computer and System Sciences, 55, 119–139.

Fries, N. & Rydén, P. (2022). A comparison of local explanation methods for high-dimensional

industrial data: A simulation study. Expert Systems with Applications, 207, 117918.

Galar, M., Fernandez, A., Barrenechea, E., Bustince, H. & Herrera, F. (2012). A review on

ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches.

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
42(4), 463–484.

Galar, M., Fernández, A., Barrenechea, E. & Herrera, F. (2015). DRCW-OVO: distance-based

relative competence weighting combination for one-vs-one strategy in multi-class problems.

Pattern recognition, 48(1), 28–42.

244

Gao, X., Shan, C., Hu, C., Niu, Z. & Liu, Z. (2019). An adaptive ensemble machine learning

model for intrusion detection. IEEE Access, 7, 82512–82521.

Garcia, L. P., Lorena, A. C., de Souto, M. C. & Ho, T. K. (2018). Classifier Recommendation

Using Data Complexity Measures. 2018 24th International Conference on Pattern Recognition
(ICPR), pp. 874–879.

Garcia, L. P., de Carvalho, A. C. & Lorena, A. C. (2015). Effect of label noise in the complexity

of classification problems. Neurocomputing, 160, 108 - 119.

García, V., Sánchez, J. & Mollineda, R. (2007). An empirical study of the behavior of classifiers

on imbalanced and overlapped data sets. Iberoamerican Congress on Pattern Recognition,

pp. 397–406.

García, V., Mollineda, R. A. & Sánchez, J. S. (2008). On the k-NN performance in a challenging

scenario of imbalance and overlapping. Pattern Analysis and Applications, 11(3-4), 269–280.

García, V., Marqués, A. I. & Sánchez, J. S. (2019). Exploring the synergetic effects of sample

types on the performance of ensembles for credit risk and corporate bankruptcy prediction.

Information Fusion, 47, 88–101.

Giacinto, G. & Roli, F. (1999). Methods for dynamic classifier selection. Proceedings 10th
International Conference on Image Analysis and Processing, pp. 659–664.

Giacinto, G. & Roli, F. (2001). Design of effective neural network ensembles for image

classification purposes. Image and Vision Computing, 19(9), 699 - 707.

Giacinto, G., Roli, F. & Fumera, G. (2000). Selection of classifiers based on multiple

classifier behaviour. Joint IAPR International Workshops on Statistical Techniques in Pattern
Recognition and Structural and Syntactic Pattern Recognition, pp. 87–93.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. (2017). Neural message

passing for quantum chemistry. International conference on machine learning, pp. 1263–1272.

Goel, L., Sharma, M., Khatri, S. K. & Damodaran, D. (2020). Defect Prediction of Cross Projects

Using PCA and Ensemble Learning Approach. In Micro-Electronics and Telecommunication
Engineering (pp. 307–315). Springer.

Gormez, Y., Aydin, Z., Karademir, R. & Gungor, V. C. (2020). A deep learning approach

with Bayesian optimization and ensemble classifiers for detecting denial of service attacks.

International Journal of Communication Systems, 33(11), e4401.

Gupta, A., Khan, R. U., Singh, V. K., Tanveer, M., Kumar, D., Chakraborti, A. & Pachori, R. B.

(2020). A novel approach for classification of mental tasks using multiview ensemble learning

(MEL). Neurocomputing, 417, 558–584.

245

Hakala, K., Kaewphan, S., Björne, J., Mehryary, F., Moen, H., Tolvanen, M., Salakoski,

T. & Ginter, F. (2020). Neural network and random forest models in protein function

prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 19(3),

1772–1781.

Hamilton, W., Ying, Z. & Leskovec, J. (2017). Inductive representation learning on large graphs.

Advances in neural information processing systems, pp. 1024–1034.

Hamilton, W. L. (2020). Graph Representation Learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 14(3), 1-159.

Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832–844.

Ho, T. K. & Basu, M. (2002). Complexity measures of supervised classification problems.

IEEE transactions on pattern analysis and machine intelligence, 24(3), 289–300.

Jackowski, K. & Wozniak, M. (2009). Algorithm of designing compound recognition system on

the basis of combining classifiers with simultaneous splitting feature space into competence

areas. Pattern Analysis and Applications, 12(4), 415–425.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J. & Hinton, G. E. (1991). Adaptive mixtures of local

experts. Neural Computation, 3(1), 79–87.

Joshi, M. V., Kumar, V. & Agarwal, R. C. (2001). Evaluating boosting algorithms to classify

rare classes: Comparison and improvements. Proceedings IEEE International Conference on
Data Mining, pp. 257–264.

Jutten, C. (2002). The Enhanced Learning for Evolutive Neural Architectures Project. [Online].

King, R. D., Feng, C. & Sutherland, A. (1995). Statlog: comparison of classification algorithms

on large real-world problems. Applied Artificial Intelligence, 9(3), 289–333.

Kipf, T. N. & Welling, M. (2017). Semi-Supervised Classification with Graph Convolutional

Networks. International Conference on Learning Representations (ICLR).

Kittler, J., Hatef, M., Duin, R. P. W. & Matas, J. (1998). On combining classifiers. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20, 226–239.

Knuth, D. E. (1976). Big omicron and big omega and big theta. ACM Sigact News, 8(2), 18–24.

Ko, A. H.-R., Sabourin, R. & de Souza Britto Jr, A. (2007). A new dynamic ensemble selection

method for numeral recognition. 7th International Conference on Multiple Classifier Systems,
pp. 431–439.

Kotsiantis, S. B., Kanellopoulos, D. N. & Pintelas, P. E. (2006). Local Boosting of Decision

Stumps for Regression and Classification Problems. Journal of Computers, 1, 30-37.

246

Kotthoff, L. (2016). Algorithm selection for combinatorial search problems: A survey. In Data
Mining and Constraint Programming (pp. 149–190). Springer.

Krawczyk, B. & Cyganek, B. (2017). Selecting locally specialised classifiers for one-class

classification ensembles. Pattern Analysis and Applications, 20(2), 427–439.

Ksieniewicz, P., Zyblewski, P. & Burduk, R. (2021). Fusion of linear base classifiers in geometric

space. Knowledge-Based Systems, 227, 107231.

Kubat, M., Matwin, S. et al. (1997). Addressing the curse of imbalanced training sets: one-sided

selection. Icml, 97, 179–186.

Kuncheva, L. (2004). Ludmila Kuncheva Collection. [Online].

Kuncheva, L. (2014). Combining pattern classifiers: methods and algorithms. J. Wiley.

Kuncheva, L. I. (2000). Clustering-and-selection model for classifier combination. KES’2000.
Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and
Allied Technologies. Proceedings (Cat. No.00TH8516), 1, 185–188 vol.1.

Kuncheva, L. I. (2002). A theoretical study on six classifier fusion strategies. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 24(2), 281–286.

Kuncheva, L. I. & Whitaker, C. J. (2003). Measures of diversity in classifier ensembles and

their relationship with the ensemble accuracy. Machine Learning, 51(2), 181–207.

Lemaître, G., Nogueira, F. & Aridas, C. K. (2017). Imbalanced-learn: A Python Toolbox to

Tackle the Curse of Imbalanced Datasets in Machine Learning. Journal of Machine Learning
Research, 18(17), 1-5.

Leyva, E., González, A. & Perez, R. (2014). A set of complexity measures designed for applying

meta-learning to instance selection. IEEE Transactions on Knowledge and Data Engineering,

27(2), 354–367.

Li, D., Wen, G., Li, X. & Cai, X. (2019). Graph-based dynamic ensemble pruning for facial

expression recognition. Applied Intelligence, 49(9), 3188–3206.

Lopez-Garcia, P., Masegosa, A. D., Osaba, E., Onieva, E. & Perallos, A. (2019). Ensemble

classification for imbalanced data based on feature space partitioning and hybrid metaheuristics.

Applied Intelligence, 49(8), 2807–2822.

Lorena, A. C., Costa, I. G., Spolaôr, N. & De Souto, M. C. (2012). Analysis of complexity

indices for classification problems: Cancer gene expression data. Neurocomputing, 75(1),

33–42.

Lorena, A. C., Garcia, L. P., Lehmann, J., Souto, M. C. & Ho, T. K. (2019). How complex is your

classification problem? a survey on measuring classification complexity. ACM Computing
Surveys (CSUR), 52(5), 1–34.

247

Masoudnia, S. & Ebrahimpour, R. (2014). Mixture of experts: a literature survey. Artificial
Intelligence Review, 42(2), 275–293.

Mazurowski, M. A., Habas, P. A., Zurada, J. M., Lo, J. Y., Baker, J. A. & Tourassi, G. D. (2008).

Training neural network classifiers for medical decision making: The effects of imbalanced

datasets on classification performance. Neural networks, 21(2-3), 427–436.

McInnes, L., Healy, J. & Melville, J. (2018). UMAP: Uniform Manifold Approximation and

Projection for Dimension Reduction. arXiv preprint arXiv:1802.03426.

Melo Junior, L., Macedo, J. F., Nardini, F. M. & Renso, C. (2019). KNORA-IU: Improving the

Dynamic Selection Prediction in Imbalanced Credit Scoring Problems. Proceedings of the
31st International Conference on Tools with Artificial Intelligence (ICTAI), pp. 424–431.

Mendialdua, I., Martínez-Otzeta, J. M., Rodriguez-Rodriguez, I., Ruiz-Vazquez, T. & Sierra, B.

(2015). Dynamic selection of the best base classifier in One versus One. Knowledge-Based
Systems, 85, 298–306.

Menzies, T., Greenwald, J. & Frank, A. (2006). Data mining static code attributes to learn

defect predictors. IEEE transactions on software engineering, 33(1), 2–13.

Muñoz, M. A., Villanova, L., Baatar, D. & Smith-Miles, K. (2018). Instance spaces for machine

learning classification. Machine Learning, 107(1), 109–147.

Nagarajan, A., Stevens, J. R. & Raghunathan, A. (2022). Efficient ensembles of graph neural

networks. Proceedings of the 59th ACM/IEEE Design Automation Conference, pp. 187–192.

Napierala, K. & Stefanowski, J. (2016). Types of minority class examples and their influence on

learning classifiers from imbalanced data. Journal of Intelligent Information Systems, 46(3),

563–597.

Narassiguin, A., Elghazel, H. & Aussem, A. (2017). Dynamic ensemble selection with proba-

bilistic classifier chains. Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pp. 169–186.

Oliveira, D. V., Cavalcanti, G. D. & Sabourin, R. (2017). Online pruning of base classifiers for

dynamic ensemble selection. Pattern Recognition, 72, 44–58.

Oliveira, D. V., Cavalcanti, G. D., Porpino, T. N., Cruz, R. M. & Sabourin, R. (2018). K-nearest

oracles borderline dynamic classifier ensemble selection. 2018 International Joint Conference
on Neural Networks (ĲCNN), pp. 1–8.

Osama, S., Shaban, H. & Ali, A. A. (2023). Gene reduction and machine learning algorithms

for cancer classification based on microarray gene expression data: A comprehensive review.

Expert Systems with Applications, 213, 118946.

Partalas, I., Tsoumakas, G. & Vlahavas, I. P. (2008). Focused Ensemble Selection: A

Diversity-Based Method for Greedy Ensemble Selection. ECAI, pp. 117–121.

248

Pascual-Triana, J. D., Charte, D., Andrés Arroyo, M., Fernández, A. & Herrera, F. (2021).

Revisiting data complexity metrics based on morphology for overlap and imbalance: snapshot,

new overlap number of balls metrics and singular problems prospect. Knowledge and
Information Systems, 63(7), 1961–1989.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V. et al. (2011). Scikit-learn: Machine learning in

Python. Journal of machine learning research, 12(Oct), 2825–2830.

Pereira, M., Britto, A., Oliveira, L. & Sabourin, R. (2018). Dynamic ensemble selection by

k-nearest local oracles with discrimination index. 2018 IEEE 30th International Conference
on Tools with Artificial Intelligence (ICTAI), pp. 765–771.

Pinto, F., Soares, C. & Mendes-Moreira, J. (2016). Chade: Metalearning with classifier chains

for dynamic combination of classifiers. Joint european conference on machine learning and
knowledge discovery in databases, pp. 410–425.

Piras, L. & Giacinto, G. (2012). Synthetic pattern generation for imbalanced learning in image

retrieval. Pattern Recognition Letters, 33(16), 2198–2205.

Prati, R. C., Batista, G. E. & Monard, M. C. (2004). Class imbalances versus class overlapping:

an analysis of a learning system behavior. Mexican international conference on artificial
intelligence, pp. 312–321.

Prati, R. C., Batista, G. E. & Silva, D. F. (2015). Class imbalance revisited: a new experimental

setup to assess the performance of treatment methods. Knowledge and Information Systems,
45(1), 247–270.

Radovanovic, M., Nanopoulos, A. & Ivanovic, M. (2010). Hubs in space: Popular nearest

neighbors in high-dimensional data. Journal of Machine Learning Research, 11(sept),

2487–2531.

Read, J., Pfahringer, B., Holmes, G. & Frank, E. (2011). Classifier chains for multi-label

classification. Machine learning, 85(3), 333.

Ross, A., Pan, W., Celi, L. & Doshi-Velez, F. (2020). Ensembles of Locally Independent

Prediction Models. 3, 1-11.

Roy, A., Cruz, R. M., Sabourin, R. & Cavalcanti, G. D. (2018). A study on combining dynamic

selection and data preprocessing for imbalance learning. Neurocomputing, 286, 179–192.

Ruta, D. & Gabrys, B. (2005). Classifier selection for majority voting. Information fusion, 6(1),

63–81.

Salehi, A. & Davulcu, H. (2020). Graph Attention Auto-Encoders. 2020 IEEE 32nd International
Conference on Tools with Artificial Intelligence (ICTAI), pp. 989-996.

249

Sánchez, J. S., Mollineda, R. A. & Sotoca, J. M. (2007). An analysis of how training data

complexity affects the nearest neighbor classifiers. Pattern Analysis and Applications, 10(3),

189–201.

Schapire, R. E., Freund, Y., Bartlett, P. & Lee, W. S. (1997). Boosting the margin: a new

explanation for the effectiveness of voting methods. 14th International Conference on Machine
Learning, pp. 322–330.

Seiffert, C., Khoshgoftaar, T. M., Van Hulse, J. & Napolitano, A. (2010). RUSBoost: A

hybrid approach to alleviating class imbalance. IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, 40(1), 185–197.

Sierra, B., Lazkano, E., Irigoien, I., Jauregi, E. & Mendialdua, I. (2011). K Nearest Neighbor

Equality: Giving equal chance to all existing classes. Information Sciences, 181(23),

5158–5168.

Simpson, P. K. (1992). Fuzzy Min—MaX Neural NetWorks—Part 1: Classification. IEEE
Trans. on Neural Networks, 3(5), 776–786.

Singh, S. (2003). Multiresolution estimates of classification complexity. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 25(12), 1534–1539.

Skalak, D. B. (1996). The Sources of Increased Accuracy for Two Proposed Boosting Algorithms.

In Proc. American Association for Arti Intelligence, AAAI-96, Integrating Multiple Learned
Models Workshop, pp. 120–125.

Smith, M. R. & Martinez, T. (2011). Improving classification accuracy by identifying and

removing instances that should be misclassified. Neural Networks (ĲCNN), The 2011
International Joint Conference on, pp. 2690–2697.

Smith, M. R. & Martinez, T. (2016). A comparative evaluation of curriculum learning with

filtering and boosting in supervised classification problems. Computational Intelligence,

32(2), 167–195.

Smith, M. R., Martinez, T. & Giraud-Carrier, C. (2014). An instance level analysis of data

complexity. Machine Learning, 95(2), 225–256.

Smits, P. C. (2002). Multiple classifier systems for supervised remote sensing image classification

based on dynamic classifier selection. IEEE Transactions on Geoscience and Remote Sensing,

40(4), 801–813.

Soares, R. G., Santana, A., Canuto, A. M. & de Souto, M. C. P. (2006). Using accuracy

and diversity to select classifiers to build ensembles. The 2006 IEEE International Joint
Conference on Neural Network Proceedings, pp. 1310–1316.

Souza, M. A. (2018). An online local pool generation method for dynamic classifier selection.

(Master’s thesis, Universidade Federal de Pernambuco).

250

Souza, M. A., Cavalcanti, G. D., Cruz, R. M. & Sabourin, R. (2017). On the characterization

of the Oracle for dynamic classifier selection. International Joint Conference on Neural
Networks (ĲCNN), 2017, pp. 332–339.

Souza, M. A., Cavalcanti, G. D., Cruz, R. M. & Sabourin, R. (2019a). On evaluating the online

local pool generation method for imbalance learning. International Joint Conference on
Neural Networks (ĲCNN), 2019, pp. 1–8.

Souza, M. A., Cavalcanti, G. D., Cruz, R. M. & Sabourin, R. (2019b). Online local pool

generation for dynamic classifier selection. Pattern Recognition, 85, 132–148.

Souza, M. A., Sabourin, R., Cavalcanti, G. D. & Cruz, R. M. (2020). Multi-label learning

for dynamic model type recommendation. 2020 International Joint Conference on Neural
Networks (ĲCNN), pp. 1–10.

Souza, M. A., Sabourin, R., Cavalcanti, G. D. C. & Cruz, R. M. O. (2022). Local overlap

reduction procedure for dynamic ensemble selection. 2022 International Joint Conference on
Neural Networks (ĲCNN), pp. 1-9. doi: 10.1109/ĲCNN55064.2022.9892846.

Souza, M. A., Sabourin, R., Cavalcanti, G. D. & Cruz, R. M. (2023). OLP++: An online local

classifier for high dimensional data. Information Fusion, 90, 120-137.

Szymański, P. & Kajdanowicz, T. (2019). Scikit-multilearn: a scikit-based Python environment

for performing multi-label classification. Journal of Machine Learning Research, 20, 209-230.

Valentini, G. (2005). An experimental bias-variance analysis of svm ensembles based on

resampling techniques. IEEE Transactions on Systems, Man, and Cybernetics, Part B 35,

1252–1271.

van Rĳsbergen, C. (1979). Information Retrieval. Butterworth.

Vandaele, R., Kang, B., De Bie, T. & Saeys, Y. (2022). The Curse Revisited: When are

Distances Informative for the Ground Truth in Noisy High-Dimensional Data? International
Conference on Artificial Intelligence and Statistics, pp. 2158–2172.

Vanschoren, J., van Rĳn, J. N., Bischl, B. & Torgo, L. (2013). OpenML: Networked Science in

Machine Learning. SIGKDD Explorations, 15(2), 49–60.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P. & Bengio, Y. (2018). Graph

Attention Networks. International Conference on Learning Representations, 1–12.

Verma, B. & Rahman, A. (2011). Cluster-oriented ensemble classifier: Impact of multicluster

characterization on ensemble classifier learning. IEEE Transactions on Knowledge and Data
Engineering, 24(4), 605–618.

Wang, S. & Yao, X. (2009). Diversity analysis on imbalanced data sets by using ensemble

models. IEEE Symposium on Computational Intelligence and Data Mining, pp. 324–331.

251

Wang, Y., Xu, H., Yu, Y., Zhang, M., Li, Z., Yang, Y. & Wu, W. (2022). Ensemble

Multi-Relational Graph Neural Networks. 2298–2304.

Wei, W., Li, J., Cao, L., Ou, Y. & Chen, J. (2013). Effective detection of sophisticated online

banking fraud on extremely imbalanced data. World Wide Web, 16(4), 449–475.

Wilson, D. L. (1972). Asymptotic properties of nearest neighbor rules using edited data. IEEE
Transactions on Systems, Man, and Cybernetics, (3), 408–421.

Woloszynski, T. & Kurzynski, M. (2011). A probabilistic model of classifier competence for

dynamic ensemble selection. Pattern Recognition, 44(10), 2656–2668.

Woloszynski, T., Kurzynski, M., Podsiadlo, P. & Stachowiak, G. W. (2012). A measure of

competence based on random classification for dynamic ensemble selection. Information
Fusion, 13(3), 207–213.

Woods, K., Kegelmeyer Jr, W. P. & Bowyer, K. (1997). Combination of multiple classifiers using

local accuracy estimates. IEEE Transactions on Pattern Analysis and Machine Intelligence,

19(4), 405–410.

Woźniak, M., Graña, M. & Corchado, E. (2014). A survey of multiple classifier systems as

hybrid systems. Information Fusion, 16, 3–17.

Xia, F., Sun, K., Yu, S., Aziz, A., Wan, L., Pan, S. & Liu, H. (2021). Graph learning: A survey.

IEEE Transactions on Artificial Intelligence, 2(2), 109–127.

Xiao, J., Xie, L., He, C. & Jiang, X. (2012). Dynamic classifier ensemble model for customer

classification with imbalanced class distribution. Expert Systems with Applications, 39(3),

3668–3675.

Xu, K., Hu, W., Leskovec, J. & Jegelka, S. (2019). How Powerful are Graph Neural Networks?

1–17.

Yan, C., Li, M., Ma, J., Liao, Y., Luo, H., Wang, J. & Luo, J. (2022). A Novel Feature Selection

Method Based on MRMR and Enhanced Flower Pollination Algorithm for High Dimensional

Biomedical Data. Current Bioinformatics, 17(2), 133–149.

Zakai, A. & Ritov, Y. (2008). How Local Should a Learning Method Be? COLT.

Zhang, J., Shi, X., Xie, J., Ma, H., King, I. & Yeung, D. Y. (2018). GaAN: Gated Attention

Networks for Learning on Large and Spatiotemporal Graphs. 339–349.

Zhang, L. & Suganthan, P. N. (2017). Benchmarking ensemble classifiers with novel co-trained

kernel ridge regression and random vector functional link ensembles [research frontier]. IEEE
Computational Intelligence Magazine, 12(4), 61–72.

Zhang, M.-L. & Zhou, Z.-H. (2013). A review on multi-label learning algorithms. IEEE
transactions on knowledge and data engineering, 26(8), 1819–1837.

252

Zhang, S. (2022). Challenges in KNN Classification. IEEE Transactions on Knowledge and
Data Engineering, 34(10), 4663-4675.

Zhang, S., Tong, H., Xu, J. & Maciejewski, R. (2019). Graph convolutional networks: a

comprehensive review. Computational Social Networks, 6(1), 1–23.

Zhang, Z., Cui, P. & Zhu, W. (2022). Deep Learning on Graphs: A Survey. IEEE Transactions
on Knowledge and Data Engineering, 34(1), 249-270.

Zheng, Z., Wu, X. & Srihari, R. (2004). Feature selection for text categorization on imbalanced

data. ACM Sigkdd Explorations Newsletter, 6(1), 80–89.

Zhou, P., Wang, X., Du, L. & Li, X. (2022). Clustering ensemble via structured hypergraph

learning. Information Fusion, 78, 171–179.

Zhou, Z. (2012). Ensemble methods. Taylor & Francis.

Zhu, Z., Wang, Z., Li, D. & Du, W. (2019). Tree-based space partition and merging ensemble

learning framework for imbalanced problems. Information Sciences, 503, 1–22.

