
IoT Traffic Modelling and QoS Prediction Framework using

Advanced Deep Learning

by

Aroosa Hameed

MANUSCRIPT-BASED THESIS PRESENTED TO ÉCOLE DE
TECHNOLOGIE SUPÉRIEURE IN PARTIAL FULFILLMENT FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY
Ph.D.

MONTREAL, AUGUST 8, 2022

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

Aroosa Hameed, 2023

This Creative Commons license allows readers to download this work and share it with others as long as the

author is credited. The content of this work cannot be modified in any way or used commercially.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mr. Aris Leivadeas, Thesis supervisor

Department of Information and Communications Technologies, École de technologie supérieure

Mr. Kim Khoa Nguyen, Chair, Board of Examiners

Department of Electrical Engineering, École de technologie supérieure

Mr. Christian Desrosiers, Member of the Jury

Department of Information and Communications Technologies, École de technologie supérieure

Mr. Petros Spachos, External Examiner

School of Engineering, University of Guelph

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

ON "AUGUST 1, 2023"

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

FOREWORD

This doctoral dissertation unfolds as a comprehensive compilation of scholarly articles. Over the

course of this research study, three journal articles were written and submitted for review. Their

presentation within this thesis maintains high consistency with their original form to adhere to

the structure and design of the articles as they were published. However, minor adjustments were

undertaken, such as modifications to figures and their positioning to conform to the Ecole de

Technologie Superieure’s dissertation format. The first chapter provides the research objectives,

contributions, and the methodologies that we used in this research. Next, a separate chapter

reviews the current and highly relevant literature that aligns with the research problems tackled

in this doctoral study. Chapters 2, 3, and 4 present the articles that have been published and

those that have been submitted for review. Following these chapters, the conclusion about these

papers and their future research directions is provided.

ACKNOWLEDGEMENTS

First of all, I would like to express my profound gratitude to my supervisor, Prof. Aris Leivadeas,

whose invaluable guidance and unwavering support have been pillars of my academic journey.

His profound knowledge, dedication, and consistent encouragement have played an instrumental

role in shaping my research. I am truly fortunate to have this opportunity to work under his

supervision. His belief in my abilities has been a constant source of motivation, which has

inspired me to push boundaries and strive for excellence. Further, I extend my sincere thanks to

my thesis committee members: Prof. Christian Desrosiers, Prof. Kim Khoa Nguyen and Prof.

Petros Spachos for evaluating this thesis and participating in the defense. I am also grateful to all

of my colleagues at the Laboratoire en architecture de systèmes informatiques (LASI) for their

insightful discussions. Also, I would like to thank all my cherished friends, both in and outside

of Canada for their continual motivation during my PhD. Above all, I owe an immense debt

of gratitude to my parents whose love is immeasurable, and this thesis would not have existed

without their support. Finally, I would like to thank the Fonds de recherche du Québec (FRQNT)

and DRUID-NET research project for the financial support throughout my PhD journey.

Modélisation du trafic IdO et cadre de prédiction de la qualité de service à l’aide de
l’apprentissage profond avancé

Aroosa Hameed

RÉSUMÉ

L’Internet des Objets (IdO) désigne des milliards d’appareils physiques connectés à l’internet

dans le monde, qui collectent et partagent tous des données. L’IdO englobe une grande variété

d’appareils tels que les appareils domestiques intelligents (thermostats, réfrigérateurs et systèmes

de sécurité), les machines industrielles, les moniteurs de santé portables et même les technologies

des villes intelligentes. L’expansion des dispositifs IdO apporte de nombreux avantages, mais

pose également des défis liés aux caractéristiques de ressources limitées de beaucoup de ces

dispositifs. Ces limitations, notamment la puissance de calcul, la mémoire et l’efficacité

énergétique, peuvent avoir un impact sur les performances et la réactivité, en particulier dans le

contexte d’applications cruciales et sensibles au facteur temps. L’avènement d’informatique en

périphérie du réseau (PdR) offre une solution prometteuse à ces défis. En plaçant les ressources

informatiques à proximité des dispositifs IdO, le PdR peut minimiser la latence et permettre un

traitement efficace des données. Pourtant, la nature imprévisible de la génération de données

IdO, compte tenu de la diversité des types d’appareils et de leurs cycles d’activité, introduit

son propre ensemble de complexités. En outre, l’utilisation de communications sans fil et de

bandes de fréquences sans licence aggrave les problèmes liés à l’efficacité de la transmission

des données, aux interférences et à la capacité limitée, ce qui peut entraîner une augmentation

du temps de latence au sein des réseaux IdO. À ce cadre de communication complexe s’ajoute la

connectivité réseau variable des appareils mobiles IdO tels que les drones ou les robots, qui

contribue aux complications existantes. Il devient donc impératif de prévoir les caractéristiques

variables dans le temps des appareils IdO pour mieux gérer les ressources et assurer la qualité

de service (QdS). Le regroupement d’appareils IdO similaires peut améliorer les estimations de

la charge de travail et faciliter l’allocation des ressources. En outre, les modèles de prédiction

de la QoS qui intègrent des données de séries temporelles sur la génération de paquets et les

caractéristiques du réseau peuvent contribuer à une meilleure compréhension des exigences et

des limites de la plateforme IdO.

Dans cette thèse, nous considérons d’abord la catégorisation du trafic provenant des dispositifs

IdO en classes distinctes. Cette approche est destinée à faciliter la gestion et la compréhension

de la gamme variée de données provenant de divers dispositifs IdO dans un environnement

de ville intelligente. Nous modélisons le problème d’identification du trafic des dispositifs

IdO comme un problème d’apprentissage classification multiple et proposons un modèle

d’apprentissage en deux étapes comme solution. Afin de capturer les nuances du comportement

des appareils IdO, nous suggérons un ensemble de caractéristiques étendu, qui comprend des

caractéristiques au niveau du flux, du paquet et de l’appareil. Ces caractéristiques décrivent

les caractéristiques et le comportement des péripheriques IdO dans le contexte d’une ville

intelligente. De plus, nous proposons un algorithme de prétraitement de pondération personnalisé

pour déterminer la contribution des caractéristiques des données de trafic au processus de

X

classification. Ensuite, un mécanisme de sélection des caractéristiques basé sur l’ANOVA et la

méthode de corrélation basée sur le coefficient de Pearson sont utilisés pour une compréhension

plus approfondie des caractéristiques du trafic (caractéristiques). Enfin, nous proposons un

algorithme d’apprentissage innovant en deux étapes, qui utilise la régression logistique à l’étape

0 pour catégoriser initialement les données, et un réseau de perceptron multicouche (MLP) à

l’étape 1 pour affiner la classification. Ce processus en deux étapes permet une classification

plus précise des dispositifs IdO, comme cela a été démontré avec deux ensembles de données

réels différents sur le trafic IdO.

Le deuxième aspect du travail présenté dans cette thèse concerne la prédiction efficace de

diverses mesures de QdS, telles que le débit, le taux de livraison des paquets, le taux de

perte de paquets et la latence pour un ensemble diversifié d’applications IdO. Nous proposons

un modèle de transformateur temporel au sein d’un système unifié, conçu pour prédire les

mesures de qualité de service typiques. Cette prédiction est modélisée comme un problème de

prévision de séries temporelles, utilisant à la fois des configurations univariées et multivariées.

Nous générons un ensemble de données composé d’informations sur le trafic en temps réel

provenant de cinq applications IdO distinctes : Chauffage, ventilation et climatisation (HVAC),

éclairage intelligent, voix sur protocole Internet (VoIP) pour un assistant virtuel, surveillance et

intervention d’urgence. Le modèle de transformateur temporel proposé tire parti d’un module

d’attention pour prédire les séquences de QdS à court et à long terme, ce qui permet d’extraire

plus efficacement les dépendances temporelles. Ce deuxième aspect de la thèse se concentre

uniquement sur la prédiction des métriques de QdS par application IdO avec des nœuds de

capteurs statiques.

La troisième partie de cette thèse étend la direction susmentionnée et concerne la prédiction des

métriques de qualité de service dans un cadre où les passerelles IdO sont des robots mobiles. À

cette fin, nous mettons en œuvre trois applications IdO dans un environnement réel sous huit

configurations de réseau distinctes qui tiennent compte de la mobilité des robots, de la puissance

de transmission des dispositifs IdO et des fréquences de canal spécifiques à l’application utilisée.

Pour prédire le comportement de la qualité de service de diverses mesures dans un environnement

aussi dynamique, nous proposons un transformateur temporel espacé fédéré (FeD-TST). Ce

cadre permet aux clients locaux de former des modèles individuels avec leur ensemble de

données de qualité de service unique pour chaque configuration de réseau, puis de mettre à

jour un modèle global associé par le biais de l’amalgame des modèles locaux. Pour chaque

client, un modèle transformateur temporel espacé est formé, qui comprend plusieurs composants,

notamment les modules d’encodage et de décodage, le module d’attention clairsemée multi-têtes

et le module d’attention clairsemée masquée. Enfin, le cadre génère des prévisions univariées ou

multivariées, dont l’efficacité est ensuite évaluée sur la base d’un ensemble de données de test.

Par conséquent, la principale contribution de cette thèse peut être résumée en fournissant aux

dispositifs IdO des mécanismes de classification du trafic et de prédiction de la qualité de service

pour un ensemble d’applications IdO. Les méthodologies que nous proposons tiennent compte

des différents modèles de génération de données IdO, de la mobilité des appareils et des réseaux

d’accès au sein d’un écosystème IdO, tandis que des évaluations expérimentales approfondies

indiquent que nos approches proposées sont plus performantes que les techniques de pointe

XI

actuelles en termes de performance et d’efficacité. En outre, nos approches proposées peuvent

fournir des informations tangibles sur les besoins en ressources et les limitations rencontrées au

niveau de l’accès au réseau IdO et au sein de l’infrastructure périphérique.

Mots-clés: Classification des dispositifs IdO, Prédiction de la qualité de service, Informatique

en périphérie du réseau, Apprentissage profond, Prévision des séries temporelles, Apprentissage

fédéré

IoT Traffic Modelling and QoS Prediction Framework using Advanced Deep Learning

Aroosa Hameed

ABSTRACT

The Internet of Things (IoT) refers to the billions of physical devices around the world that are

connected to the internet, all collecting and sharing data. IoT includes a wide variety of devices

such as smart home devices like thermostats, refrigerators, and security systems, industrial

machines, wearable health monitors, and even smart city technologies. The expansion of IoT

devices brings numerous benefits, yet it also poses challenges arising from the resource-limited

characteristics of many such devices. These limitations, including constrained computing power,

memory, and energy efficiency, can impact performance and responsiveness, particularly in

the context of crucial, time-sensitive applications. The advent of Edge Computing (EC) offers

a promising solution to these challenges. By situating computational resources in proximity

to IoT devices, EC can minimize latency and enable efficient data processing. Nonetheless,

the unpredictable nature of IoT data generation, given the diversity of device types and their

activity cycles, introduces its own set of complexities. Moreover, the employment of wireless

communication and unlicensed frequency bands compounds issues related to data transmission

efficiency, interference, and limited capacity, potentially leading to increased latency within IoT

networks. Adding to this intricate communication framework is the variable network connectivity

of mobile IoT devices such as drones or robots, which contributes to the existing complications.

Therefore, it becomes imperative to predict the time-varying characteristics of IoT devices to

better manage resources and ensure Quality of Service (QoS). Grouping similar IoT devices

can improve workload estimates and facilitate resource allocation. Moreover, QoS prediction

models that incorporate time series data of packet generation and network characteristics can

contribute to a better understanding of the IoT platform’s requirements and limitations.

In this thesis, we first consider the categorization of traffic from IoT devices into distinct classes.

This approach is intended to facilitate the managing and understanding of the diverse range

of data coming from various IoT devices within a smart city environment. We model the IoT

devices traffic identification problem as a multi-classification learning problem, and propose a

two stage learning model as a solution. In order to capture the nuances of IoT device behavior,

we suggest an extended feature set, which includes flow, packet, and device-level features. These

features describe the characteristics and behavior of IoT devices in a smart city context. We

further propose a custom weighting pre-processing algorithm to determine the contribution

of traffic data features to the classification process. Subsequently, an ANOVA-based feature

selection mechanism and the Pearson’s coefficient-based correlation method are employed for

a more profound understanding of the traffic characteristics (features). Lastly, we propose

an innovative, two-stage learning algorithm, which utilizes logistic regression at stage 0 to

initially categorize the data, and a Multi-Layer Perceptron (MLP) network at stage 1 to refine

the classification. This two-stage process allows for more accurate classification of IoT devices,

as demonstrated with two different real IoT traffic datasets.

XIV

The second aspect of the work presented in this thesis involves the efficient prediction of various

QoS metrics, such as throughput, Packet Delivery ratio (PDR), Packet Loss Ratio (PLR) and

latency for a diverse set of IoT applications. We propose a temporal transformer model within

a unified system, designed to predict typical QoS metrics. This prediction is model as a time

series forecasting problem, utilizing both univariate and multivariate setups. We generate a

dataset comprised of real-time traffic information from five distinct IoT applications: Heating,

Ventilation, and Air Conditioning (HVAC), smart lighting, Voice over Internet Protocol (VoIP)

for a virtual assistant, surveillance, and emergency response. The proposed temporal transformer

model leverages an attention module to predict both short-term and long-term QoS sequences,

thereby more effectively extracting time dependencies. This second aspect of the thesis focuses

solely on predicting QoS metrics per IoT application with static sensor nodes.

The third part of this thesis extends the aforementioned direction and concerns the prediction of

QoS metrics in a setting where the IoT gateways are mobile robots. To this end, we implement

three IoT applications in a real-world environment under eight distinctive network configurations

that consider robot mobility, IoT device transmission power, and the application-specific channel

frequencies used. To predict the QoS behavior of various metrics in such a dynamic environment,

we propose a Federated Temporal Sparse Transformer (FeD-TST) framework. This framework

enables local clients to train individual models with their unique QoS dataset for each network

configuration, subsequently updating an associated global model through the amalgamation of

local models. For each client, a Temporal Sparse Transformer model is trained, which comprises

of several components, including the encoder and decoder modules, the multi-head sparse

attention module, and the masked sparse attention module. Finally, the framework generates

univariate or multivariate forecasts, and the effectiveness of which is then evaluated based on a

test dataset.

Hence, the major contribution of this particular thesis can be summarized as providing IoT

devices with traffic classification and QoS prediction mechanisms for an array of IoT applications.

Our proposed methodologies take into account the varied patterns of IoT data generation, device

mobility, and access networks within an IoT ecosystem, while extensive experimental evaluations

indicate that our proposed approaches outperform current state-of-the-art techniques in terms of

performance and efficiency. Additionally, our proposed approaches can provide tangible insights

into the resource requirements and limitations encountered at the access level of the IoT network

and within the edge infrastructure.

Keywords: IoT device classification, QoS prediction, edge computing, deep learning, time

series forecasting, federated learning

TABLE OF CONTENTS

Page

INTRODUCTION .1

0.1 Context and Motivation .1

0.2 Problem Statement . 5

0.3 Research Objectives . 7

0.4 Contributions . 8

0.5 Methodology . 10

0.6 Publications . 12

0.7 Thesis Organization . 14

CHAPTER 1 RELATED WORK . 15

1.1 IoT Device Traffic Multi Classification in a Smart City Scenario . 15

1.2 IoT QoS Prediction per Application based on Temporal Transformer 19

1.3 IoT QoS Prediction based on Mobility using Federated Learning . 22

1.3.1 Conclusion and originality of the research . 26

CHAPTER 2 A DEEP LEARNING APPROACH FOR IOT TRAFFIC MULTI-

CLASSIFICATION AT THE EDGE . 29

2.1 Abstract . 29

2.2 Introduction . 30

2.3 Related work . 34

2.4 Problem Setup . 38

2.4.1 Feature description . 40

2.4.1.1 Device level features . 40

2.4.1.2 Flow level features . 41

2.4.1.3 Packet level features . 41

2.4.2 Statistical characteristics of the features . 42

2.4.3 Feature correlation . 42

2.5 Proposed Classification Framework . 44

2.5.1 Overview . 44

2.5.2 Data Preprocessing . 46

2.5.3 Feature selection . 47

2.5.4 Proposed two-stage learning model . 47

2.5.4.1 Stage 0 classifier . 47

2.5.4.2 Stage 1 classifier . 48

2.6 Classification Algorithm . 50

2.6.1 Algorithm Description . 50

2.6.2 Asymptotic Analysis . 51

2.7 Performance Evaluation . 53

2.7.1 Model Implementation and Frameworks . 53

2.7.1.1 Dataset Description . 53

XVI

2.7.1.2 Experiment setup . 54

2.7.1.3 Architecture models . 56

2.7.2 Results . 58

2.7.2.1 Impact of architectures . 58

2.7.2.2 Impact of features . 60

2.7.2.3 Performance of Architecture V . 64

2.7.3 Limitations . 70

2.8 Conclusion . 70

CHAPTER 3 TOWARDS QOS PREDICTION BASED ON TEMPORAL

TRANSFORMERS FOR IOT APPLICATIONS . 73

3.1 Abstract . 73

3.2 Introduction . 74

3.3 Related Work . 76

3.3.1 Deep Learning for QoS Prediction . 77

3.3.2 Deep Learning for Time Series Forecasting . 79

3.3.3 Limitations of the Related Work . 80

3.4 Problem Formulation of QoS Prediction . 81

3.5 Edge Computing Infrastructure and Dataset Construction . 83

3.5.1 Applications and Edge Computing Infrastructure . 83

3.5.2 Feature Engineering . 85

3.5.3 Data Preprocessing . 87

3.6 Proposed Temporal Transformer Framework . 87

3.6.1 Overview of Proposed Framework . 88

3.6.2 Temporal Transformers . 89

3.6.2.1 Input and Output of the Temporal Transformer 89

3.6.2.2 QoS Positional Encoding . 91

3.6.2.3 Encoder Module . 92

3.6.3 Algorithm Description . 94

3.6.4 Complexity Analysis . 96

3.6.5 Implementation Cost . 98

3.7 Performance Evaluation . 99

3.7.1 Model Implementation and Frameworks . 99

3.7.1.1 Evaluation setup . 99

3.7.1.2 Evaluation Metrics .100

3.7.1.3 Baselines . 101

3.7.1.4 Hyper-parameter Tuning .102

3.7.2 Explanatory Data Analysis .103

3.7.3 Results .105

3.7.3.1 Univariate time series forecasting .105

3.7.3.2 Multivariate time series forecasting .113

3.8 Conclusion .116

XVII

CHAPTER 4 FED-TST: FEDERATED TEMPORAL SPARSE TRANSFORM-

ERS FOR QOS PREDICTION IN DYNAMIC IOT NETWORKS 117

4.1 Abstract . 117

4.2 Introduction .118

4.3 Related Work . 121

4.4 System Model and Problem Statement .124

4.4.1 System Model .124

4.4.2 Modeling of Network Uncertainties .124

4.4.3 Problem Formulation of QoS Forecasting .125

4.5 Use Case and Dataset Generation . 127

4.6 Proposed Model .129

4.6.1 Overview of FeD-TST .129

4.6.2 Sparse Scaled Dot-Product Attention . 131

4.6.3 Temporal Sparse Transformer .133

4.6.3.1 Input and output of the TST Model .133

4.6.3.2 QoS Temporal Positional Embedding .135

4.6.3.3 Long-Term Temporal QoS Extraction .135

4.6.4 Proposed FeD-TST . 137

4.6.4.1 Initialization . 137

4.6.4.2 Training of the local TST models on Clients138

4.6.4.3 Uploading of the local TST model weights .138

4.6.4.4 Aggregation of the model weights .138

4.7 Experimental Evaluation .138

4.7.1 Model Implementation and Frameworks .139

4.7.1.1 Network Configurations and Datasets .139

4.7.1.2 Baseline Methods .139

4.7.1.3 Performance Metrics .140

4.7.1.4 Implementation Details .140

4.7.1.5 Results . 141

4.7.2 Impact of Network Configurations . 141

4.7.3 Communication Cost .143

4.7.4 Univariate Results .143

4.7.5 Multivariate Results .148

4.8 Conclusion .150

CONCLUSION AND RECOMMENDATIONS .153

5.1 Conclusions .153

5.2 Future Work .156

5.2.1 Extending IoT device classification .156

5.2.2 Extending QoS Prediction using Federated Learning . 157

APPENDIX I APPENDIX OF CHAPTER 4 .159

BIBLIOGRAPHY .173

LIST OF TABLES

Page

Table 2.1 List of abbreviations . 33

Table 2.2 Comparison of related works . 34

Table 2.3 Summary of the key notation . 39

Table 2.4 Description of features in both datasets . 41

Table 2.5 Statistical characteristics of IoT traffic features . 43

Table 2.6 Configurations used in the experiments . 55

Table 2.7 Description of model architectures applied to the multi-classification

problem . 55

Table 2.8 Classification performance metrics vs features employed . 62

Table 3.1 Experimentation’s parameters . 82

Table 3.2 Description of raw features in dataset . 85

Table 3.3 Hyperparameters used in all methods for the univariate throughput

prediction across all datasets .100

Table 3.4 Statistical characteristics of QoS datasets for all IoT applications102

Table 3.5 Univariate forecasting results for throughput, best results are

highlighted in bold .105

Table 3.6 Univariate forecasting results for PDR, best results are highlighted in

bold .105

Table 3.7 Univariate forecasting results for PLR, best results are highlighted in

bold .106

Table 3.8 Univariate forecasting results for Latency, best results are highlighted

in bold . 107

Table 3.9 Multivariate forecasting results for throughput, best results are

highlighted in bold .109

XX

Table 3.10 Multivariate forecasting results for PDR, best results are highlighted

in bold .110

Table 3.11 Multivariate forecasting results for PLR, best results are highlighted

in bold .114

Table 3.12 Multivariate forecasting results for Latency, best results are

highlighted in bold .114

Table 4.1 IoT applications parameters for data generation . 127

Table 4.2 Network configurations with different complexities .129

Table 4.3 Univariate forecasting results for throughput, best results are

highlighted in bold .142

Table 4.4 Univariate forecasting results for PDR, best results are highlighted in

bold .145

Table 4.5 Univariate forecasting results for PLR, best results are highlighted in

bold .146

Table 4.6 Univariate forecasting results for Latency, best results are highlighted

in bold .148

Table 4.7 Multivariate forecasting results for Throughput, best results are

highlighted in bold .149

LIST OF FIGURES

Page

Figure 0.1 Paradigm of the thesis contributions . 8

Figure 0.2 The Thesis Methodology . 12

Figure 2.1 Overview of our previous work vs. proposed work contributions

(shown in the purple boxes) . 35

Figure 2.2 Probability distributions of IoT traffic flow features of Dataset 1 42

Figure 2.3 Correlation between IoT traffic features of Dataset 1 . 44

Figure 2.4 Overview of proposed two-stage classification framework 45

Figure 2.5 Operational flow of the proposed work . 45

Figure 2.6 Samples of IoT traffic traces from dataset 1 . 54

Figure 2.7 Performance comparison at stage 0 . 58

Figure 2.8 Performance comparison at stage 1 . 61

Figure 2.9 Feature ranks provided by the feature selection methods . 62

Figure 2.10 Performance comparison per device for architecture V . 65

Figure 2.11 Confusion matrix for stage 0 of architecture V of dataset 1 66

Figure 2.12 Training vs. validation accuracy of architecture V for 100 epochs 67

Figure 2.13 Training vs. Testing loss functions for stage 1 of architecture V 68

Figure 2.14 Comparison of performance metrics for stage 1 of architecture V

over 100 epochs . 69

Figure 3.1 Overview of Proposed System for QoS Prediction . 88

Figure 3.2 Overview of univariate input and output of prediction . 90

Figure 3.3 Probability distribution plots of QoS data for all IoT applications104

Figure 3.4 MSE of univariate throughput prediction across all datasets106

Figure 3.5 MAE of univariate throughput prediction across all datasets 107

XXII

Figure 3.6 PDR prediction for surveillance application .109

Figure 3.7 PLR prediction for surveillance application .110

Figure 3.8 MAE of multivariate throughput prediction across all datasets112

Figure 3.9 MAE of multivariate PDR prediction across all datasets .114

Figure 4.1 Sensor nodes location deployed in FIT IoT-LAB .128

Figure 4.2 Federated learning driven IoT QoS Forecasting System .130

Figure 4.3 Proposed Temporal Sparse Transformer (TST) Model for IoT QoS

Forecasting . 131

Figure 4.4 Overview of Sliding window for Input and Output of FeD-TST Model133

Figure 4.5 Network configuration impact on QoS forecasting . 141

Figure 4.6 Communication Cost .144

LIST OF ALGORITHMS

Page

Algorithm 2.1 Preprocessing Algorithm . 51

Algorithm 2.2 Learning Algorithm . 52

Algorithm 3.1 QoS Prediction Algorithm . 94

Algorithm 3.2 Temporal Transformer Algorithm . 95

LIST OF ABBREVIATIONS

AdaGrad Adaptive Gradient

Adam Adaptive Moment Estimation

AQI Air Quality Index

ANOVA Analysis of Variance

ABC Artificial Bee Colony

ANN Artificial Neural Networks

ARIMA Auto Regressive Integrated Moving Average

BiLSTM Bidirectional Long Short-Term Memory

BoW Bag-of-Word

CBR Case Based Reasoning

CF Collaborative Filtering

CMMPP Coupled Markov Modulated Poisson Processes

CNN Convolutional Neural Network

DT Decision Tree

DL Deep Learning

DNN Deep Neural Network

DODAGs Destination Oriented Directed Acyclic Graphs

DFP Device FingerPrinting

DEQP2 Distributed Edge Quality of Service Prediction

XXVI

DEDP Distributed Edge Differential Privacy

DNS Domain Name System

DF Do not Fragment Flag

DHCP Dynamic Host Configuration Protocol

ESN Echo State Network

EC Edge Computing

ECNs Edge Computing Networks

Edge-PMAM Edge QoS forecasting with Public Model and Attention Mechanism

FNR False Negative Rate

FPR False Positive Rate

FL Federated Learning

FFN Feed Forward Network

FeD-TST Federated Temporal Sparse Transformer

FC Fully Connected

GRU Gated Recurrent Unit

GARCH Generalized Autoregressive Conditional Heteroskedasticity

GTID Georgia Tech ID

GB Gradient Boosting

HVAC Heating, Ventilation, and Air Conditioning

HE Homomorphic Encryption

XXVII

IAT Inter Arrival Time

ICMP Internet Control Message Protocol

IoT Internet of Things

IP Internet Protocol

IID Independent and Identically Distributed

ISP Internet Service Provider

KNN k-Nearest Neighbors

KT Keras Tuner

KPIs Key Performance Indicators

LPWAN Low Power Wide Area Networks

LSTM Long Short-Term Memory

LR Logistic Regression

LSH Locality-Sensitive Hashing

LSTNet Long-and Short-term Time-series Network

ML Machine Learning

MLP Multi-Layer Perceptron

MSP Multi-Step Prediction

MLP-ANN Multi-Layer Perceptron Artificial Neural Network

MSS Maximum Segment Size

M2M Machine-to-Machine

XXVIII

MEC Multi-Access Edge Computing

MAPE Mean Absolute Percentage Error

MSE Mean Square Error

MANET Mobile Ad-hoc Network

MHA Multi-Head Attention

NARX Nonlinear Auto Regressive Exogenous

NB Naive Bayes

NOP No Option

OP Output Layer

PDR Packet Delivery Ratio

PLR Packet Loss Ratio

PCAP Packet CAPture

PE Positional Encoding

QoS Quality of Service

RF Random Forest

RFID Radio Frequency Identification

RNN Reccurrent Neural Network

RNCF Recurrent Neural Network-based Collaborative Filtering

ReLU Rectified Linear Units

RFE Recursive Feature Elimination

XXIX

RELU Rectified Linear Unit

RL Reinforcement Learning

RPL Routing Protocol for Low power and Lossy Network

RMSE Root Mean Square Error

SMPC Secure Multi-Party Computation

Seq2Seq Sequence-to-Sequence

SES Simple Exponential Smoothing

SSP single-Step Prediction

SDN Software-Defined Networking

SQL Structured Query Language

SVM Support Vector Machines

TCN Temporal Convolutional Network

TST Temporal Sparse Transformer

TSF Time Series Forecasting

TTL Time-to-Live

Trainlm Levenberg-Marquardt

Traincgf Conjugate Gradient with Fletcher-Reeves updates

Trainrp Resilient Backpropagation

TAN Topology-Aware Neural

TCP Transmission Control Protocol

XXX

TLS Transport Layer Security

UDP User Datagram Protocol

VAR Vector AutoRegression

VoIP Voice over Internet Protocol

WS Window Size

WSO Window Size Option

WSN Wireless Sensor Networks

xgBOOST eXtreme Gradient Boosting

Zstd Zstandard

5G Fifth-Generation

INTRODUCTION

0.1 Context and Motivation

The Internet of Things (IoT) refers to a network of physical devices, vehicles, appliances, and

other objects that are embedded with sensors, software, and connectivity capabilities, allowing

them to collect and exchange data over the Internet. These devices can interact with their

environment, communicate with each other, and often operate autonomously. This paradigm

provides a great benefit to the general public by creating a system of interrelated computing,

sensing, and communication, that facilitates and improves every aspect of our daily life. It

comprises of everyday objects ranging from simple sensors and actuators to lights, cameras,

door locks, thermostats, power switches and household appliances, with shipments projected to

reach nearly 20 billion by 2020 (Nordrum, 2016). IoT is foreseen to reach 500 billion devices

that are connected to the Internet by 2030 (Cisco Systems, 2017), while the global mobile traffic

is expected to grow 325 EB per month in 2028 (Ericsson, 2022).

The proliferation of IoT plays a crucial role in collecting and transmitting data, however at the

same time it creates several challenges. The IoT devices consisting of local nodes such as sensors

and actuators are typically designed with resource limitations due to factors such as cost, size,

power consumption, and network connectivity. These constraints can limit their computational

power, memory capacity, energy efficiency, and communication capabilities. As a result, when

it comes to demanding or time-sensitive applications, such as those in critical infrastructures

(i.e., healthcare, industrial automation, transportation, etc.) the local nodes may struggle to

provide the required level of performance and responsiveness. For instance, mission-critical

applications often necessitate real-time data processing and rapid response times. However, the

limited computational resources and processing capabilities of the IoT devices may hinder their

ability to handle complex computations or analyze data in real-time. This can result in delays or

latency issues, which are unacceptable for applications that rely on immediate decision-making

2

or control actions. Thus, the local nodes cannot meet and cannot guarantee the required high

performance and/or fulfilment of time constraints, for mission-critical IoT-enabled applications.

Edge Computing (EC) arises as a promising solution because it is a distributed computing

paradigm that brings computational and communication resources closer to the edge of the

network. By deploying resources near to IoT devices and endpoints, EC offers faster and more

responsive services, reducing latency and enabling efficient data processing. It complements

the resource limitations of IoT devices, making it ideal for the mission-critical applications.

Additionally, EC facilitates computational offloading, allowing the transfer of computational

task to a more powerful edge nodes, resulting in faster data transmissions and reducing latency.

Yet, this approach brings its own challenges such as resource estimation and in the context of IoT,

this becomes a difficult task because IoT devices generate data randomly (i.e., various rates and

times) due to their diverse types and their dynamic activity cycles. For example, a weather sensor

is designed to monitor environmental conditions such as temperature, humidity, and rainfall. It

typically transmits data only when there is a significant change in the weather conditions i.e., if

the temperature suddenly rises or falls beyond a certain threshold, the sensor will send data to

indicate this change. Similarly, a smart fridge is equipped with sensors and connectivity features

to provide various functionalities such as temperature monitoring, inventory management, and

food quality tracking. It periodically transfers smaller amounts of data at regular intervals.

For instance, it might send notifications about items that need to be replenished. In contrast,

a security camera is responsible for capturing and monitoring video footage for surveillance

purposes. It continuously captures and streams high volumes of video data in real-time. The

camera sends a constant stream of data to ensure continuous monitoring and recording of the

surroundings. As a result of this diversity, the data generated by IoT devices is highly variable in

both size and frequency. Also the IoT devices affiliated with different applications adhere to

varying data generation modes as well, such as poll-based, periodic, or event-driven. Depending

3

on the mode type and amount of data being generated at any given moment, the processing

resources needed could be fluctuating significantly.

Furthermore, IoT access networks typically rely on wireless communication and the use of

unlicensed bands further increases the potential for interference from other devices operating in

the same frequency range. Due to the wireless and lossy nature of IoT access networks, there is

also a possibility of reduced data transmission efficiency. Unstable connections or interference

can lead to data packets being lost or delayed, impacting the overall efficiency of the transmission

process. Also in the scenarios where a significant number of IoT devices are connected to the

network, the limited capacity of the access network becomes a concern. When a large number

of devices are active simultaneously, the network may struggle to accommodate and efficiently

handle the increased load, resulting in potential delays and reduced performance. This can lead

to increased communication delays in IoT access networks. The constrained nature of these

networks, combined with potential interference and limited capacity, can further exacerbate

delays in transmitting data between devices and the EC infrastructure.

Moreover, some IoT devices, such as robots, drones, or other mobile systems, are designed to

move and operate in various locations. This introduces an additional layer of complexity in

the data generation and transmission process compared to stationary devices. For example, in

an emergency response scenario, drones or mobile robots are often deployed to capture aerial

footage, survey affected areas, and assess the extent of damage or danger. As drones move

across the scene, their network connectivity may change depending on their distance from

access points or obstructions in the environment, such as buildings or natural obstacles. These

changes in network connectivity can impact the quality and reliability of the communication

and result in delays or disruptions in data transmission. This can impact the timeliness and

accuracy of the information relayed to emergency responders. For instance, in a search and

rescue operation, a drone providing live video feed from a remote location may experience

4

intermittent connectivity or reduced video quality due to its mobility, making it challenging

for responders to make informed decisions or assess the situation accurately. With device

mobility, the QoS can change rapidly, leading to fluctuations in data transfer rates, latency, or

even occasional disconnections. This variability in QoS can affect the overall effectiveness of

different IoT applications or services. Thus, the constant changes in communication quality and

network accessibility due to device mobility further complicate the communication of the IoT

devices with the rest of the infrastructure (i.e., EC).

Therefore, the ability to predict the time-varying characteristics of IoT devices, such as their

activity and signaling patterns, becomes increasingly important. These patterns could give us an

insight into when and how much data will be generated and transferred, aiding in better resource

management techniques. Moreover, grouping or classifying similar IoT devices together allows

for more accurate workload estimations and ensures a certain level of Quality of Service (QoS).

For instance, devices of the same type likely have similar data generation and transmission

patterns. By understanding these patterns, we can predict the network traffic more efficiently. In

addition to this, categorizing IoT devices also aids in anticipating the resources needs both at

the access level of the IoT network e.g., spectrum requirements for the data transmission and

within the edge infrastructure e.g., computational and communication resources. Furthermore,

the QoS requirements for IoT applications can vary extensively depending on their specific

function and nature. Therefore, developing an efficient QoS prediction model is crucial. This

model should incorporate the time series data of packet generation by IoT devices (i.e., when

packets are transmitted/received) as well as the network characteristics of the access network

(i.e., frequency channel, etc.). Such a model can provide insights into the expected QoS based

on past and current trends, thereby aiding in understanding the requirements and the limitations

of an IoT platform.

5

0.2 Problem Statement

It is extremely difficult to design an effective traffic classification mechanisms for a diverse range

of IoT devices and accurately predict the QoS requirements for various IoT applications within a

dynamic IoT environment due to the following challenges as:

1. The diverse data generation patterns exhibited by IoT devices can be highly unpredictable

and random in nature. Different types of IoT devices, such as sensors, actuators, cameras,

or wearable, have varying data generation patterns and characteristics. Additionally, these

devices often operate on dynamic cycles, meaning their activity levels can vary over time.

For example, a sensor may generate data periodically, while a camera may capture images

only when motion is detected. This dynamic and random nature of IoT data generation

makes it difficult to categorize the IoT devices and their traffic characteristics.

2. IoT devices rely on wireless access networks to establish connectivity and exchange data

with the edge infrastructure or the cloud. However, wireless networks which may consist of

various technologies such as WiFi, cellular networks, or Low Power Wide Area Networks

(LPWAN) inherent ambiguity and are subject to various dynamic factors that can affect

the quality of the connection and the available resources. These factors include signal

strength variations, interference from other devices, and network congestion caused by the

simultaneous operation of multiple devices. Failing to account for the dynamic nature of

the wireless access network can lead to sub-optimal resource allocation decisions. For

example, if the resource allocation algorithm assumes a static and ideal network condition,

it may allocate resources based on inaccurate or outdated information. This can result in

inefficient utilization of resources, degraded network performance, and reduced QoS for the

IoT applications.

3. The IoT gateways or devices, including robots, drones, or other mobile devices, have the

ability to move or change their positions within the network environment. This mobility

introduces additional complexities and considerations for resource estimation. When

6

IoT gateways or devices are mobile, their movement can affect the performance of the

communication. The changing positions and locations of these mobile devices can result in

variations in signal strength, network connectivity, and communication quality.

The above challenges can lead to IoT traffic generation with time-varying characteristics and

Quality of Service (QoS) behavior for different IoT application. Hence, it is important to propose

solutions to solve these challenges at three different levels, namely, i) device, ii) application and

iii) mobility, such as:

1. At the device level, it is important to accurately understand the volume, frequency, and

characteristics of the IoT data generated by different IoT devices. Therefore, it is required

to classify IoT devices into different categories (i.e. hubs, cameras, air quality sensors

etc.) according to several network features (i.e., inter-arrival time, network and link layer

information, etc.). Without a clear understanding of the data patterns and activity levels, it

becomes difficult to classify the IoT devices.

2. At the application level, it is important to take into consideration that the heterogeneous

devices for different applications send data of different contexts, with different reporting

frequencies usually over a random access channel generating thus, high interference levels.

Furthermore, it is also necessary to take into account wireless access network related factors

such as signal strength fluctuations, interference levels, and network congestion levels.

Therefore, it becomes challenging to accurately predict typical QoS metrics for each IoT

application. In reality, it is expected that the QoS behavior of an IoT application, when

transmitting data, will be time-dependent showing a dynamic change in the values of key

Quality of Service (QoS) metrics. Hence, it is necessary to propose an efficient model that

will analyze and predict the QoS metrics using the time series data generated by the IoT

devices.

3. At the mobility level, it is expected that some IoT devices or gateways will be mobile (i.e.,

robots, drones, etc.). This mobility adds an additional layer of complexity towards the

7

prediction of the traffic characteristics of the IoT applications. Specifically, the mobility of

IoT devices may introduce signal loss, interference, or weak connectivity, which can in turn

degrade the reliability of communication. Unreliable communication can lead to packet

loss, increased latency, or disrupted data transmission, impacting the QoS of applications

that depend on real-time or continuous data exchange. Therefore, it is important to propose

an efficient QoS forecasting model, which will use the time series data of how packets are

generated by the IoT devices (i.e., when packets are transmitted/received) along with the

network characteristics of the access network (i.e., frequency channel, etc.) and the mobility

factor of the IoT devices.

0.3 Research Objectives

According to the challenges identified above, the main objective of this research is to design a

system that can accurately classify IoT traffic into different categories or types and develop a

framework for predicting the Quality of Service in IoT networks. To achieve the required target,

we decompose the main problem into several sub-problems. Each of the sub-problems is solved

separately and the combination of these solutions will allow thus to attain the main objective. In

particular in this thesis, we focus on the following three sub-objectives:

1. Classifying the IoT devices according to their network and traffic characteristics.

2. Predicting the QoS metrics of different IoT applications in a heterogeneous and highly

fluctuating communication environment with respect to different requirements in terms of

number of devices, packet length, context of message, and message frequency transmission.

3. Predicting the QoS metrics of various IoT applications in a dynamic wireless environment

by analyzing the impact of mobility, transmission power, and channel allocation in the

prediction accuracy.

8

Figure 0.1 Paradigm of the thesis contributions

0.4 Contributions

In a nutshell, the core contribution of the thesis is to propose an efficient traffic classification and

QoS prediction framework for different IoT applications with their specific needs and preferences.

In order to address the significant and challenging issues introduced above, the structure of the

thesis contributions is depicted in Figure 0.1 and is elaborated in more details in the remainder

of this section:

The first contribution of the thesis is the classification model at the device level, which focuses

on categorizing the IoT devices’ traffic into different classes. To do so, we propose a two stage

learning model in order to categorize the IoT traffic and devices connected within a smart city

environment. We model the IoT traffic categorization problem as a multi classification learning

problem. Then we provide an extended feature set including, flow, packet and device level

features to characterize the IoT devices in the context of a smart environment. After this, a

9

custom weighting based preprocessing algorithm is presented to determine the importance of

the IoT data values. Then the useful insights into traffic characteristics is provided using the

ANOVA based feature selection mechanism and the Pearson’s coefficient based correlation

method. Finally, a novel, two-stage learning algorithm is proposed that incorporates logistic

regression at stage 0 and Multi Layer Perceptron (MLP) network at the stage 1 to solve the multi

classification problem and we demonstrate its ability to accurately categorize the IoT devices for

two different datasets.

The second contribution is an efficient prediction of several QoS metrics during the transferring

of data of several IoT applications. Specifically, a temporal transformer model and a unified

system is proposed in order to predict typical QoS metrics of heterogeneous IoT applications

when they communicate with the Edge of the network. Firstly, we model the QoS prediction

problem as time series forecasting problem using both univariate and multivariate settings.

Secondly, a set of datasets is generated that contains the real-time traffic information of five

different IoT applications such as Heating, Ventilation, and Air Conditioning (HVAC), smart

lighting, Voice over Internet Protocol (VoIP) for a virtual assistant, surveillance and emergency

response. The applications communicate over a 802.15.4 access technology using the RPL

routing protocol. Following, we present the data cleaning, down-sampling and pre-processing of

the datasets and how the QoS datasets are constructed, which include four QoS metrics, namely

throughput, packet delivery ratio, packet loss ratio and latency. Thirdly, we propose the temporal

transformer model which leverages an attention module to provide a solution for both short-term

and long-term QoS sequence prediction by allowing to better extract any time dependencies.

Following, we provide the architectural details of temporal transformer model consisting of

input/output module, QoS positional embedding module and encoder module. Finally, the

performance evaluation of the transformer model through extensive experimentation using both

short-term and long-term dependencies is performed and show that our transformer based model

can guarantee a robust performance and accurate QoS prediction. It is worth mentioning that the

10

second contribution only considers QoS metrics prediction per IoT application with static sensor

nodes. The more general multi-parameter network scenario is part of the following contribution.

The third contribution of this thesis is to provide a secure data ownership while performing

the QoS forecasting with respect to mobile IoT gateways using the Federated Learning (FL)

approach (at the mobility level). Firstly, we deploy three IoT applications in a real testbed

under eight different network configurations with varying parameters including the mobility

of the gateways, the transmission power of the IoT devices and the channel frequency used

per each application. Following, the generated datasets of these network configurations are

pre-processed using normalization, down sampling and cleaning procedures and are prepared

as univariate or multivariate inputs. Secondly, we propose the FeDerated Temporal Sparse

Transformer (FeD-TST) framework, which allows local clients to train their local models with

their own QoS dataset for each network configuration; subsequently, an associated global model

can be updated through the aggregation of the local models. In particular each client is trained

using the Temporal Sparse Transformer (TST) model which involves several components, such

as the encoder module, the decoder module, the multi-head sparse attention module and a

masked sparse attention module. Both the encoder and decoder modules consist of multiple

identical sub-layers that are stacked to each other. Finally, a univariate or multivariate forecasts

is produced along with the evaluation based on the test dataset.

0.5 Methodology

In this thesis, we adhered to a standardized methodological approach for all the technical

contributions made. The methodology is depicted in the Figure 0.2 which consists of several

steps. The first step is that each technical contribution began with a comprehensive review of

the existing literature. We thoroughly surveyed pertinent scholarly articles, books, and other

resources relevant to the topic at hand, helping us to understand the current state of knowledge

and identify gaps in the field. Then we formulated the problem pertaining to each objective

11

listed in Section 0.3. This involved formulating IoT traffic categorization as a multi classification

problem and QoS prediction as a time series forecasting problem. Following this, we moved to

datasets generation step which served as the backbone of our research. For our first contribution

i.e., IoT traffic/devices classification, we relied on two open-source datasets consisting of IoT

network traces. For the second and third contributions i.e., QoS prediction, we generated two

original datasets published in (Santi et al., 2021) and (IoT-LAB, 2022) which are tailor-made to

address specific research needs. The datasets are generated in the FIT IoT-LAB which is an

open testbed that allows large-scale experiments and provides openly programmable IoT nodes

located on several sites. The process of gathering data for these original datasets was rigorous to

ensure the reliability and validity of our findings.

After collecting the datasets, the data preprocessing was performed for preparing and refining

the raw data into a usable format, including addressing issues such as missing values, outliers,

and inconsistencies. Next, we proposed deep learning based solutions to address the defined

problems. Following this, the next step involved training the optimal proposed model and the

purpose of this step was to adjust the model’s complexity to find the best balance between

under-fitting and overfitting. If the model did not achieve an optimal solution, it underwent a

hyperparameters tuning phase. The model was then trained with the selected hyperparameters

until the desired level of performance was achieved. Upon achieving an optimally trained model,

we passed the test dataset to the model for evaluation. This phase involved quantifying the

model’s performance using appropriate metrics and comparing the model’s outputs against

actual values.

After the evaluation phase, we interpreted the results. This interpretation provided context to

the numerical findings, helped us understand the implications of the model’s performance, and

offered insights into the problem we are investigating. Finally, the findings from our research

12

is disseminated including a detailed discussion of the results, implications, potential future

research directions, and a conclusion summarizing the thesis overall contributions.

Figure 0.2 The Thesis Methodology

0.6 Publications

The following publications appears in the chronological order of their submission:

13

1. Aroosa Hameed, John Violos, Nina Santi, Aris Leivadeas, Nathalie Mitton, "FeD-TST:

Federated Temporal Sparse Transformers for QoS prediction in Dynamic IoT Networks,"

(Under review with IEEE Transactions on Network and Service Management)

2. Aroosa Hameed, John Violos, Aris Leivadeas, Nina Santi, Rémy Grünblatt, and Nathalie

Mitton, "Toward QoS Prediction Based on Temporal Transformers for IoT Applications," in

IEEE Transactions on Network and Service Management, vol. 19, no. 4, pp. 4010-4027,

Dec. 2022, doi: 10.1109/TNSM.2022.3217170.

3. Aroosa Hameed, John Violos and Aris Leivadeas, "A Deep Learning Approach for

IoT Traffic Multi-Classification in a Smart-City Scenario," in IEEE Access, vol. 10, pp.

21193-21210, 2022, doi: 10.1109/ACCESS.2022.3153331.

4. Faical Sawadogo, John Violos, Aroosa Hameed and Aris Leivadeas, "An Unsupervised

Machine Learning Approach for IoT Device Categorization," 2022 IEEE International

Mediterranean Conference on Communications and Networking (MeditCom), Athens,

Greece, 2022, pp. 25-30, doi: 10.1109/MeditCom55741.2022.9928766.

5. Aroosa Hameed, John Violos, Nina Santi, Aris Leivadeas, Nathalie Mitton, "A Ma-

chine Learning Regression Approach for Throughput Estimation in an IoT Environ-

ment," 2021 IEEE International Conferences on Internet of Things (iThings), Mel-

bourne, Australia, 2021, pp. 29-36, doi: 10.1109/iThings-GreenCom-CPSCom-SmartData-

Cybermatics53846.2021.00020.

6. Stylianos Tsanakas, Aroosa Hameed, John Violos, and Aris Leivadeas, "An Innovative

Neuro-Genetic Algorithm and Geometric Loss Function for Mobility Prediction." 2021

in Proceedings of the 19th ACM International Symposium on Mobility Management and

Wireless Access (MobiWac ’21). Association for Computing Machinery, New York, NY,

USA, 25–32. https://doi.org/10.1145/3479241.3486706

7. Nina Santi, Rémy Grünblatt, Brandon Foubert, Aroosa Hameed, John Violos, Aris

Leivadeas, and Nathalie Mitton, "Automated and Reproducible Application Traces Genera-

14

tion for IoT Applications." 2021 in Proceedings of the 17th ACM Symposium on QoS and

Security for Wireless and Mobile Networks (Q2SWinet ’21). Association for Computing

Machinery, New York, NY, USA, 17–24. https://doi.org/10.1145/3479242.3487321

8. Aroosa Hameed and Aris Leivadeas, "IoT Traffic Multi-Classification Using Network and

Statistical Features in a Smart Environment," 2020 IEEE 25th International Workshop on

Computer Aided Modeling and Design of Communication Links and Networks (CAMAD),

Pisa, Italy, 2020, pp. 1-7, doi: 10.1109/CAMAD50429.2020.9209311.

0.7 Thesis Organization

The rest of this document is organized as follows. First, we provide the related work for each

contribution in Chapter 1. Then, each of the core sections focuses on one of the aforementioned

contributions: Chapter 2 is for the classification model of the IoT traffic at the device level using

various feature sets. Chapter 3 presents the QoS prediction at the application level, where each

application consists of a heterogeneous data generation distribution but with static sensor nodes.

Chapter 4 provides the last contribution of the thesis, which is the QoS prediction when mobility

and various network configurations are involved, using a more distributed and privacy aware FL

approach and temporal sparse transformers. Finally, the conclusion chapter summarizes our

findings and provides an outlook on current and future work.

CHAPTER 1

RELATED WORK

In this chapter, we review the state-of-the-art approaches relevant to various aspects subject to

this thesis. We organize the discussion by outlining the pertinent literature associated with each

of our contributions. Firstly, we delve into the literature review related to the multi classification

of IoT devices and their traffic in a smart environment. Secondly, we survey a variety of

mechanisms for predicting or forecasting QoS for IoT applications at the Edge. Thirdly, we

present the literature corresponding to QoS predictions in a distributed context. Finally, we

conclude the chapter with a concise discussion emphasizing the gaps in the state-of-the-art and

the originality of our research. However, a thorough analysis of the state-of-the-art mechanisms

is reserved for each separate technical chapter, where we compare our propositions with existing

works relevant to each contribution.

1.1 IoT Device Traffic Multi Classification in a Smart City Scenario

The literature focusing on IoT traffic and device classification, forms a significant part of the

foundation for this thesis. It is noteworthy that most of the existing research in this area leans

towards the application of device fingerprinting or various machine learning approaches. Device

fingerprinting typically involves identifying unique attributes or ’fingerprints’ of IoT devices

to aid in their classification. On the other hand, machine learning-based approaches rely on

algorithms that can learn from and make decisions based on data. Both strategies have shown

potential in enhancing the classification accuracy and efficiency of IoT traffic and devices,

thereby contributing significantly to the evolution of smart environments.

The authors in (Pinheiro, de M. Bezerra, Burgardt & Campelo, 2019) developed an IoT Device

Fingerprinting (DFP) approach that can effectively differentiate between various kinds of network

traffic, specifically IoT and non-IoT traffic traces. Additionally, the model can identify individual

IoT devices using statistics of packet length such as mean, standard deviation, and the total

number of bytes transmitted for a 1 second window as time duration. For this, the proposed

16

approach employed five different models such as k-Nearest Neighbors (kNN), Decision Tree

(DT), Random Forest (RF), Support Vector Machine (SVM) and a Majority Voting. After

the performance evaluation, the authors concluded that the random forest classification model

achieved the best results in categorizing 21 IoT and 7 non-IoT devices as compared to other

models. However, this approach relies on a single feature i.e., the packet length, to distinguish

IoT traffic from encrypted traffic traces. While this simplicity can be an advantage in terms of

computational cost, it may not be sufficient to capture the complexity and diversity of IoT traffic

characteristics. The risk is that the model might perform poorly when faced with more complex

or varied scenarios that go beyond what the single feature can capture.

In another work by (Hui et al., 2022), authors provide a DFP model which differentiates the IoT

and non-IoT devices. The particular DFP model aimed to identify five distinct categories of IoT

devices by analyzing network traffic features across three levels: packet-level that includes the

packet number and size, traffic-level i.e., flow volume, and the mobility-level which consists of

location information and mobility entropy. They calculated 22 statistical features which were

employed to train seven different classifiers. However, the Random Forest classifier exhibited a

classification accuracy exceeding 95% in distinguishing devices based on the provided features.

However, as the number of IoT devices grows, the scalability of the system could be a concern.

The proposed work does not address how the classifiers would perform with a significantly larger

number of devices, or how they would manage real-time classification of a growing number of

devices.

The researchers in (Chowdhury, Aneja, Aneja & Abas, 2020) opted to extract 86 features solely

from the TCP/IP packet header information. Firstly, the authors assessed the variability, stability

and suitability of features and assigned score to each of feature. Then the features selection is

performed using the user defined threshold value. Finally, two machine learning models are

applied such as J48 and PART to classify the IoT devices using the selected feature sets. However,

the selection of features based on a user-defined threshold value could lead to sub-optimal

choices. If the threshold is set too high, important features might be excluded. If it is too low,

the model might become too complex, leading to overfitting and poor generalization to new data.

17

The authors in (Fan et al., 2020) introduced a semi-supervised model that derived feature vectors

of 219 dimensions from four attributes such as time interval, traffic volume, protocols (TCP,

UDP, ICMP, DNS, and DHCP), and Transport Layer Security (TLS) related features. These

features were computed from traffic traces and served as distinctive fingerprints for device

identification. After this, the proposed model utilized a Convolutional Neural Network (CNN)

architecture and achieved a remarkable accuracy on the UNSW dataset. However, the approach

uses feature vectors of 219 dimensions, which may make the model computationally intensive

and prone to the "curse of dimensionality," where the amount of data needed grows exponentially

with the number of features.

The researchers in (Bai, Yao, Kanhere, Wang & Yang, 2018a) divided network traffic data into

5-minute segments to compute six statistical characteristics from four network traffic aspects:

traffic volume, packet length, network protocols, and network traffic directions. The goal was to

classify the semantic category of IoT devices. An innovative classification model, which is a

cascade of Long Short-Term Memory (LSTM) and CNN, was developed for categorizing four

categories of devices. The researchers reported an average accuracy of 74.8% when utilizing the

UNSW dataset (Sivanathan et al., 2018), considering only 15 IoT devices. However, the choice

of 5-minute segments for traffic data might be arbitrary and may not capture all relevant patterns

in the data. For example, some important network events could span shorter or longer periods,

and this might affect the accuracy of the classification model.

In the study (Aneja, Aneja & Islam, 2018), the authors focused on DFP by exploiting the Inter

Arrival Time (IAT), which represents the time difference between the receipt of two successive

packets. It was noted that IAT is distinct for each device, given the variations in hardware and

software used. Their research proposed an innovative concept by generating graphs of IAT

for packets, each graph representing 100 IATs, and subsequently processing these graphs for

device identification. A CNN was employed to identify the devices, and the approach achieved

an accuracy rate of 86.7%. However, the experiments conducted as part of this work only

considered two devices. This is a very small sample size given the diversity and number of IoT

devices in practical settings. As a result, the ability to generalize the findings of this proposed

18

work to a wider variety of devices is questionable. Given that IoT devices can greatly vary

in terms of their network behavior, hardware, and software configurations, it is important to

validate the approach with a larger and more diverse set of devices to ensure its robustness and

applicability in real-world settings.

Furthermore, the authors in (Aneja, Aneja, Bhargava & Chowdhury, 2022) proposed a method

that involved the use of a statistical analysis of IAT values to create device fingerprints, which

facilitated the identification of network-connected devices through wire-side network traffic

traces. They used IAT values from a sequence of 1000 packets to generate these unique device

fingerprints. Utilizing a Residual Network (ResNet)-50 CNN model, their approach attained a

high level of precision, with an accuracy exceeding 97.7% in pinpointing individual devices in

the Georgia Tech ID (GTID) dataset. However, generating IAT values for a sequence of 1000

packets for each device could become computationally expensive, especially with an increasing

number of devices and this may limit the scalability of the approach.

Next, in the work by Kotak & Elovici (2021), the authors put forth a deep learning (DL)-based

model aimed at categorizing network-connected devices. They transformed TCP payload data

into unique fingerprints, represented as 28x28 pixel grey-scale images. This conversion process

entailed transforming a packet capture (PCAP) file (excluding the header) into a binary file with

hexadecimal values, which was then converted into an image. This process was performed

using data from a single TCP session to create these fingerprints. They then applied their

CNN-based model to network traffic traces from ten devices, encompassing both IoT and non-IoT

devices, in order to evaluate its classification capabilities. However, this approach relies on the

TCP payload data for creating fingerprints and in many practical scenarios, the payload data

might be encrypted, limiting the applicability of this approach. Moreover, the payload data

can vary significantly for different sessions of the same device, which might affect the model’s

performance.

Finally, Sivanathan et al. (2019) equipped a smart environment with 28 diverse IoT devices

and over a span of six months, the authors gathered and compiled the traffic traces from this

19

setup. Then, the authors offered insights into the inherent network traffic features, utilizing

statistical properties such as activity cycles, port numbers, signaling patterns, and cipher suites.

Finally, they devised a multi-stage, machine learning-based classification algorithm in which

the Naive Bayes algorithm is employed at the stage 1 and the random forest is employed at

the stage 2. The authors illustrate the model’s capacity to identify specific IoT devices based

on their network activity. However, the use of Naive Bayes in the first stage assumed that the

features are independent of each other and its performance can suffer if the naive assumption of

independence does not hold in the data.

1.2 IoT QoS Prediction per Application based on Temporal Transformer

In an pertinent literature, there is considerable focus on the QoS prediction techniques as well,

especially those that leverage machine and deep learning models, within the context of IoT and

web services. Scholars have advanced the field by developing cutting-edge methods for QoS

prediction, utilizing a combination of diverse CF approaches and machine learning strategies.

Therefore, in the rest of this Section, we present the most significant related studies regarding

QoS prediction.

For the CF based QoS approaches, Jia et al. (2022) predicts the response time and throughput by

introducing a prediction model that integrates both local and global location data of various

services and employed a CF based MLP to capture complex, high-dimensional non-linear

associations between users and web services. Moreover, they also utilize the dot product to aid

in the understanding of simpler, low-dimensional linear relationships. However, MLP requires

manual feature selection, which can be time-consuming and needs domain expertise. Next, the

authors in (Li, Wu, Chen, He & Hsu, 2022b) proposed a Topology-Aware Neural (TAN) model,

which leveraged the network topology among the users and services by using IP addresses

and autonomous systems, while it also used graph convolution to capture the cross correlation

among them and employed the BiLSTM for QoS prediction i.e., throughput, response time and

reliability. For this, firstly they projected features to a shared latent space, which is then used

as an input attribute to the model. The model is structured to embody the invocation process

20

by capturing path features and end-cross features via a designated path modeling layer and

an implicit cross-modeling layer. Following this, a gating layer integrates these features and

forwards them to the prediction layer, the role of which is to estimate unrecorded QoS values.

However, in the real-world application of this model, it might often be the case that data such

as IPs are not available for all users or services. This could be due to privacy considerations,

incomplete records, or other factors. As a result, the TAN model might only be applicable to a

subset of the total users or services, thereby limiting its utility. Furthermore, the need to remove

a substantial number of users/services from the experiment due to missing data could introduce

bias or impact the results in ways that are hard to quantify.

Wu et al. (2017) introduced a deviation-based neighborhood model specifically tailored for

context-aware QoS prediction i.e., response time in the realm of IoT. The method they propose

consists of two key stages: Firstly, carrying out a primary QoS prediction estimation, which

is grounded on deviations related to both the service and the user. Secondly, they conducted

refinements of these predictions by utilizing item-based CF. However, this approach struggles

with the data sparsity as it is a memory-based CF, particularly in its second stage where it refines

primary QoS predictions using item-based CF. Data sparsity refers to the problem of having a

large number of items (or services in the case of IoT) and users, but each user has only interacted

with or rated a small fraction of the items. As a result, the user-item interaction matrix (or

user-service interaction matrix in the IoT context) is mostly filled with unknown values which

makes it difficult for similarity estimation and feature capture.

Furthermore, the authors in (Chen, Yu, Zheng, Shen & Guo, 2022) introduced a context-aware

feature interaction strategy intended for the QoS prediction of IoT services i.e., response time and

throughput. The proposed methodology is designed to recognize both low-level and high-level

feature interactions using context-based data and user invocation records. It operates in three

stages: First, it comprehends low-order feature interactions by breaking down the sparse QoS

matrix between the user and service with the aid of a factorization machine. Second, it learns

high-order feature interactions both explicitly and implicitly via a MLP and a deep cross network.

Finally, it combines the results of both low and high-order feature interactions using a fusion

21

based on a parametric matrix. However, this approach might not inherently distinguish the

importance of different feature interactions. This means that all feature interactions could

be treated equally, which might not reflect their actual importance in predicting the QoS. By

assigning equal weight to all feature interactions, the model could over-emphasize unimportant

interactions and under-emphasize important ones. This could lead to less accurate predictions.

The authors in (Liang, Chen, Yin, Zhou & Ying, 2022) introduced a CF based response time

prediction, termed as Recurrent Neural Network-based Collaborative Filtering (RNCF). This

method specifically integrates a multi layer Gated Recurrent Unit (GRU) structure within

the neural CF framework to model the dynamic status of physical environments or network

conditions, and to distribute the invocation records over various time intervals. GRUs are

designed to handle the vanishing gradient problem better than simple RNNs, however, they

can still struggle with very long sequences of data. If the invocation records span long time

intervals, this could reduce the effectiveness of the method. It should be noted that most of these

above described CF based approaches performed the QoS prediction for either cloud services or

various web services and considered only response time, throughput and reliability as their QoS

metrics for prediction.

Next, there are various studies that applied machine learning techniques to predict the QoS

metrics for IoT. For this, the authors in (Abdellah, Abdulkareem Mahmood & Koucheryavy,

2020a) performed the delay forecasting in IoT communication by utilizing both multistep ahead

prediction (MSP) and single-step ahead prediction (SSP) methods with Time Series Nonlinear

Autoregressive with Exogenous Input (NARX) Recurrent Neural Networks. The accuracy of the

predictions were assessed using three distinct neural network training algorithms: Levenberg-

Marquardt (Trainlm), Conjugate Gradient with Fletcher-Reeves updates (Traincgf), and Resilient

Backpropagation (Trainrp) in term of Mean Square Error (MSE), Root Mean Square Error

(RMSE) and Mean Absolute Percentage Error (MAPE). However, they used a simulated dataset

of an IoT environment and simulated data might not capture all the complexities, noise, and

variability of real-world data. Next the authors in (Ateeq, Ishmanov, Afzal & Naeem, 2019a)

suggested the prediction of the delay metric using straight forward Deep Neural Network (DNN)

22

which encompasses forward and backward passes, as well as an examination of hyperparameters.

The analysis yielded promising outcomes, particularly with regards to the dimensions of the

training data, quantity of layers, number of neurons in each respective layer, and epochs. The

characteristics employed in this research were derived from various layers of the network,

including the application layer, the MAC layer, and the physical layer. The same authors in

(Ateeq, Ishmanov, Afzal & Naeem, 2019b) predicted the energy consumption and Packet Delivery

Ratio (PDR) using different regression models such as linear regression, gradient boosting,

random forest, and DNNs by drawing upon association among communication parameters.

However, the performance of DNNs could be influenced by the way the data is selected and

processed in the time domain. If not handled properly, this could lead to issues such as leakage

of future information into past data or overlooking temporal dependencies.

Additionally, Hou et al. (2021) proposed a throughput prediction method by deploying a CNN

combined with a target vectorization technique. This was chosen due to their throughput

distribution being centralized and focused around certain values. However, it should be noted

that the data for this study was produced from a simulated factory scenario and the model was

trained on a specific factory use case. Subsequently, the authors of (Abdellah, Artem, Muthanna,

Gallyamov & Koucheryavy, 2020b) conducted a study where they used a LSTM network to

predict the throughput of IoT traffic within a 5G communication network. The data for this

research was produced via an IoT traffic generator and included features such as timestamps,

byte counts, and packet counts. However, LSTM cannot handle the long term dependencies

adequately, as capturing dependencies over extremely long sequences for LSTM is challenging

due to the limitations in memory and computation.

1.3 IoT QoS Prediction based on Mobility using Federated Learning

Similar to the above subsection, which performs the literature review of our second objective i.e.,

to the QoS prediction of various IoT applications, this part of the section emphasizes more on

distributed QoS prediction by considering the mobility of IoT devices, which is the topic of our

third contribution. As the literature is similar and is already presented in the above section, we

23

just present the state-of-the-art literature specifically regarding the distributed QoS mechanisms

at the Edge and IoT.

The authors in (Zhang, Pan, Qi & He, 2021b) introduced a distributed edge Quality of Service

(QoS) prediction (DEQP2) model designed specifically for Edge Computing Networks (ECNs)

that emphasizes privacy preservation and utilized the Laplace vector mechanism for distributed

privacy protection processing at the edge. In this framework, a user engages edge services

by connecting to the nearest edge server, where corresponding QoS records are safeguarded.

Following this, the cloud center carries out QoS prediction based on CF. The DEQP2 model

harnesses the distributed characteristics of the EC paradigm, deploying the privacy-preserving

process to the edge servers. Subsequently, the authors proposed the Distributed Edge Differential

Privacy (DEDP) QoS prediction algorithm, which takes into account both user preferences and

the edge environment to create a more comprehensive predictive model.

The authors in (Zhang, Jin, Dong, Song & Bouguettaya, 2022) proposed Edge-Laplace QoS

prediction method, to address the user mobility and information leakage challenges often

faced in QoS prediction within mobile edge environments. Edge-Laplace QoS is designed to

precisely and efficiently predict the QoS of various web services and for this an edge region is

partitioned into various geographical locations to acquire accurate edge QoS data information

and accommodate the dynamic nature of the edge environment. Furthermore, to safeguard

the user privacy in these mobile edge environments, the authors applied a differential privacy

technique to add dynamic disguises to the original QoS data within the edge environment.

Moreover, a CF method is utilized to identify and utilize similar users’ access records based on

the geographic locations of their accessed servers for QoS prediction. However, both of these

above methods applied privacy protection mechanisms, which can potentially introduce noise

into the data, that may impact the accuracy of the QoS predictions. Therefore, there is a trade of

between privacy and accuracy.

Next, Qi et al. (2018) took into account a distributed scenario, where historical QoS data

is dispersed across multiple platforms. This refers to QoS values for the same services

24

that are collected from a multitude of users across various platforms. For this, the authors

integrate Locality-Sensitive Hashing (LSH) and one of its variants, MinHash, into mobile

service recommendations and propose a novel service recommendation methodology based

on a two-stage LSH. This approach aims to provide privacy-preserving and scalable mobile

service recommendations. However, Locality-Sensitive Hashing, despite its effectiveness, is not

immune to hash collisions, where different inputs produce the same output hash and this could

lead to inaccuracies. Further, this study is not taking into consideration the dynamic fluctuation

of QoS data over time which may occur in a varied environment.

The authors in (Zhang, Zhang, Luo & Luo, 2020b) present a privacy-preserved QoS prediction of

services methodology. The proposed prediction model is co-trained on both the user and server

end by employing FL techniques within a decentralized framework. To ensure user privacy, only

the parameters of the local model need to be shared with the central server, negating the need to

transmit substantial quantities of local data. Moreover, authors introduced a federated matrix

factorization algorithm with the goal of decreasing the necessary communication rounds by

augmenting the number of local training epochs of the model. However, matrix factorization

can struggle with the sparsity of data that impact the quality of the local models trained on each

device, which in turn affects the aggregated global model.

Li et al. (2022c) proposed a personalized federated tensor factorization framework for QoS

prediction of an IoT service in a distributed setting. Initially, they utilized tensors to depict

multidimensional QoS data and established a unique personalized model for each edge server.

Subsequently, each edge server conducts local tensor factorization and interacts with the

parameter master, learning information from other edge servers during the training process.

By ensuring coherence between the global public component and local personalized public

components, the global model is capable of learning information from edge servers throughout

the training phase. However, in this framework, the participant role is played by an edge server,

which is equipped to gather user data, as opposed to being a mobile user device.

25

Further, authors in (Jin, Zhang, Dong, Zhu & Bouguettaya, 2023) proposed a privacy-aware

QoS forecasting model called Edge-PMAM (Edge QoS forecasting with Public Model and

Attention Mechanism) that consists of four steps: Firstly, the authors gathered the edge location

information and QoS datasets to create a spatio-temporal edge user QoS dataset. Longitude and

latitude values in the edge location information actually helped to determine the geographical

distribution of edge servers. Secondly, they transformed the longitude and latitude values of

the edge servers into plane coordinate values using the Miller projection and used the K-means

clustering to decide the number of clusters of the plane coordinate data, based on the elbow

method or silhouette coefficient, hence dividing the whole area into different regions. Thirdly,

public model training is performed by using the public dataset of each region to train an LSTM

model with an attention mechanism to acquire the public model. The weight parameters of these

public models will be transferred to users of corresponding regions for personalized forecasting.

Fourthly, a personalized forecasting is performed. For this process, a user incorporates the

weight parameters from the public model associated with their specific region as the initial

parameters for their individual private model. The private model is then trained on the user’s

private data, which consists of the temporal QoS data generated by user and service interactions

and a continuous update of the weight parameters of the private model is performed. Each

user’s private model is optimized in a continuous fashion with the training iterations. However,

the effectiveness of the public model is based on the quality of the clusters determined by the

K-means algorithm, which is highly dependent on initial cluster centers and is susceptible to

converge to local optima, resulting in sub-optimal clustering and therefore affecting the model’s

performance.

Moreover, Zhang et al. established a decentralized QoS prediction framework using FL along

with the matrix factorization technique by encompassing a local model trained on the user side

and a global model jointly trained on the server side with a differential privacy in (Zhang, Zhang,

Luo & Ji, 2020a). The authors also incorporate a user reputation mechanism into the model

to assess the trustworthiness of different users, while aiming to forecast the response time and

26

throughput of various services. However, if the reputation scoring is not robust, it could unfairly

impact the contribution of certain users to the global model.

1.3.1 Conclusion and originality of the research

In conclusion, regarding the classification of the IoT traffic and devices, most existing methods

are based on two core strategies: device fingerprinting and machine learning techniques. While

these strategies have been effective to some extent in differentiating between IoT and non-IoT

devices and their traffic, there are different shortcomings associated with them. Some of the

existing methods rely heavily on a single feature, such as packet length, to distinguish between

different types of IoT traffic. This could limit the model’s ability to handle the complexity and

variability of IoT traffic, which can change depending on the type of device, its function, the

network conditions, etc. For instance, two different devices might send data packets of similar

length, but their network behavior can still be very different based on factors like transmission

frequency, protocol used, or interaction with other devices.

Furthermore, deciding on which features to include in the model is also a major challenge. The

wrong choice can lead to sub-optimal model performance or make the model overly complex,

leading to overfitting (where the model performs well on the training data but poorly on new,

unseen data). On the other hand, if the classification models involve high-dimensional feature

vectors then it can also be computationally intensive and making them unsuitable for scenarios

where computational resources or power are limited. Therefore, to address these issues, in this

thesis, we incorporate a fine-grained feature set at different network levels such as flow, device

and packet level. A fine-grained feature set can capture the detailed and diverse information

about the network traffic. However, to make the proposed model computationally efficient, a

systematic and effective feature selection mechanism i.e., ANOVA is employed, to ensure that

the most relevant and informative features are used for model training thus, enhancing the model

performance and reducing the risk of overfitting. In the existing literature, there are also some

studies that exhibits scalability problems i.e., with the increase in number of IoT devices. Hence,

the ability of these methods to process and classify data from a larger number of devices in

27

real-time becomes a concern. Accordingly, we propose a two stage learning framework that uses

the logistic regression at stage 0 and MLP at stage 1 to produced the classification results of IoT

traffic related to 28 different devices, which splits the complexity between the two stages.

Regarding the QoS prediction of IoT applications, there exist two approaches as either CF based

methods or machine learning based solutions. For the memory based CF methods, the data

sparsity problem is the most challenging one. For the matrix factorization based CF methods

feature association patterns can be captured in the data, however, only the interaction of linear

features is taken into account in such methods and the complicated interaction of nonlinear

features is ignored, which causes less efficient representation learning. Furthermore, most of

these CF-based techniques have been traditionally employed to predict QoS for web services.

The QoS metrics taken into consideration typically include response time, throughput, and

service reliability. However, their effectiveness when applied to IoT environments, which might

have different or additional considerations, is not explicitly mentioned and could be a matter of

further exploration.

On the other hand, for the neural network based solutions some of the works have not thoroughly

examined the actual prediction task with respect to time, especially in emerging IoT application

scenarios. This can become critical in the context of IoT, where time-series data play a significant

role. Moreover, some Machine Learning (ML) studies are primarily designed for short-term

sequence predictions. These models often encounter difficulties when dealing with long sequence

dependencies, meaning they have trouble learning from patterns that occur over large periods of

time or many data points. This limitation restricts their ability to train on long sequences of data,

which could be a crucial factor in many IoT applications where historical trends significantly

influence future outcomes. Therefore, in this thesis, we provide a detailed prediction of four QoS

metrics such as throughput, packet delivery ratio (PDR), packet loss ratio (PLR) and latency for

five heterogeneous IoT applications such as HVAC, VoIP, lighting, surveillance and emergency

application. Following, we provide the multistep prediction of each QoS in both univariate and

multivariate settings and in order to overcome the vanishing gradient problem in the training of

long QoS data sequences, we are introducing a temporal transformer architecture. To the best of

28

our knowledge, this was the first work which provided a transformer based QoS prediction for

IoT applications.

Regarding the QoS prediction with respect to mobility, some studies have implemented

specific privacy-preserving methods in their models. While these solutions are instrumental in

maintaining user confidentiality, they can have an adverse effect on the accuracy of the model.

Further, the studies that applied matrix factorization techniques in a distributed environment led

to the issue of data sparsity. Moreover, some of the related research has utilized FL, however,

the performance of their global model can be heavily influenced by the parameters of the

specific machine learning model used. Therefore, the task of correctly setting the parameters

for the machine learning model becomes vital. In this thesis, we solve these problems in such

a way that we propose a FL approach that trains the client models on diverse IoT devices and

sensors data, resulting in a more comprehensive QoS forecasting. For this, we introduce a

temporal transformer with sparse attention that can efficiently model long sequences by capturing

dependencies between different positions without suffering from the vanishing gradient problem.

CHAPTER 2

A DEEP LEARNING APPROACH FOR IOT TRAFFIC MULTI-CLASSIFICATION AT
THE EDGE

Aroosa Hameed1 , John Violos1 , Aris Leivadeas1

1Département de génie logiciel et des TI, École de Technologie Supérieure,

1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3

Paper published in IEEE Access, February 2022

2.1 Abstract

As the number of Internet of Things (IoT) devices and applications increases, the capacity of the

IoT access networks is considerably stressed. This can create significant performance bottlenecks

in various layers of an end-to-end communication path, including the scheduling of the spectrum,

the resource requirements for processing the IoT data at the Edge and/or Cloud, and the attainable

delay for critical emergency scenarios. Thus, a proper classification or prediction of the time

varying traffic characteristics of the IoT devices is required. However, this classification remains

at large an open challenge. Most of the existing solutions are based on machine learning

techniques, which nonetheless present high computational cost, whereas they are not considering

the fine-grained flow characteristics of the traffic. To this end, this paper introduces the following

four contributions. Firstly, we provide an extended feature set including, flow, packet and device

level features to characterize the IoT devices in the context of a smart environment. Secondly, we

propose a custom weighting based preprocessing algorithm to determine the importance of the

data values. Thirdly, we present insights into traffic characteristics using feature selection and

correlation mechanisms. Finally, we develop a two-stage learning algorithm and we demonstrate

its ability to accurately categorize the IoT devices in two different datasets. The evaluation results

show that the proposed learning framework achieves 99.9% accuracy for the first dataset and

99.8% accuracy for the second. Additionally, for the first dataset we achieve a precision and recall

performance of 99.6% and 99.5%, while for the second dataset the precision and recall attained

is of 99.6% and 99.7% respectively. These results show that our approach clearly outperforms

30

other well-known machine learning methods. Hence, this work provides a useful model deployed

in a realistic IoT scenario, where IoT traffic and devices’ profiles are predicted and classified,

while facilitating the data processing in the upper layers of an end-to-end communication model.

2.2 Introduction

Internet of Things (IoT) allows tens of billion devices to be connected over the Internet.

Nonetheless, the rapid increase of IoT devices has also resulted in a colossal increase of the data

generated by IoT devices. Specifically, the total data has quadrupled in just five years from 145 ZB

in 2015 to 600 ZB in 2020 (Ivanov, 2019). Furthermore, IoT not only enables new applications,

but introduces new types of devices as well. For example, in the context of a smart environment,

thousands of non-traditional Internet devices are used including smart sensors, alarms, traffic

lights, cameras, weather stations, etc. generating an unprecedented volume of data for a variety

of smart applications such as healthcare, industrial control, transportation and so on. However,

these IoT devices are usually of limited computational abilities (Mukhopadhyay & Suryadevara,

2014) and cannot manipulate locally the data generated.

This often urges the offloading of computational hefty IoT tasks to a remote infrastructure,

a process called task offloading (Saeik et al., 2021). Edge Computing (Mao, You, Zhang,

Huang & Letaief, 2017) is a viable solution for the task offloading as it allows to offer the

necessary networking and computational resources at the edge of the network enabling at the

same time the real time processing of the IoT data. However, as explained in (Dechouniotis

et al., 2020), it is extremely difficult to estimate the edge resources needed due to the fact that

(i) the IoT data are randomly generated, as a consequence of the different types of devices and

their dynamic cycle activity; and (ii) when there is a large number of IoT devices, the total

communication delay may be affected on account of the constrained nature of the IoT access

networks.

Hence, the importance to predict the time varying characteristics of the IoT devices (such as

activity patterns, signaling patterns etc.) becomes evident. Furthermore, the classification of

31

similar devices facilitates the estimation of the generated workload and can better guarantee a

specific level of Quality of Service (QoS). Therefore, by classifying the IoT devices into different

categories, the prediction of traffic characteristics can be more efficiently done. Additionally, a

more accurate prediction of the resource requirements at the IoT access network (i.e. spectrum)

and Edge infrastructures (i.e. computational and communication resources), can be achieved.

However, such an IoT device classification, often called device fingerprinting (Xu, Zheng,

Saad & Han, 2016), presents several challenges. In particular, the existing IoT classification

techniques do not consider the fine-grained characterization of IoT traffic, while they suffer from

high computational cost for the data extraction and processing, and are often affected by high

dimensional data and complexity. Accordingly, in this paper, we propose a two-stage based

deep learning architecture in order to classify the IoT devices by considering a fine-grained set

of network characteristics (features). To do so, firstly, we propose a two-step preprocessing

algorithm while employing a feature selection and prioritization technique for the feature set

under consideration. Our approach, facilitates the distribution of the features in the two stages

avoiding the high dimensionality and overfitting problems of the training data.

The novelty of this paper lies in proposing a very accurate but considerably more light-weighted

approach than the existing ones. Furthermore, the feature selection and prioritization along

with the combination of a deep learning model creates a unique and innovative approach for

the problem of the IoT device classification. The novelty of our approach is strengthened by

the fact that it can be generalized and applied in different datasets without losing any accuracy.

Thus, the reproducability of the results and the stability of our approach in different IoT contexts

fortify the originality introduced.

In particular, the major contributions and novelty of this paper can be summarized as follows:

1. In order to perform a classification of the IoT devices, we have suggested an extended

feature set comprising of flow, device, and packet level features. This approach provides a

fine grained characterization of the traffic flow with less computational complexity for the

classification.

32

2. A two step preprocessing algorithm is proposed that assigns relevance weights to the nominal

(representing the qualitative data with numeric codes) features and provides scaling of the

dataset using a MinMaxScaler method.

3. A statistical feature selection technique is employed to select the features with regard to their

contribution to the classification of IoT devices. Furthermore, an investigation of correlated

features at each level is provided using the Pearson correlation coefficient.

4. A two stage learning framework is presented with 99.9% accuracy for the first dataset

under consideration and 99.8% for the second one, which proves the generalization of our

approach. To determine the IoT device classification, we compute the classes for certain

nominal and multi valued attributes at learning stage 0 using logistic regression. Following,

we perform the final classification for numerical and single-valued features at stage 1 using

a multi layer perceptron (MLP) neural network. The MLP network takes as an input a

feature subset at each time and classifies IoT devices in a context of a smart environment.

Furthermore, to achieve the optimal or near optimal MLP architecture, a random search

based keras tuner is employed.

The rest of the paper is structured as follows: Section 2.3 highlights the related work in traffic

classification, covering the most important methods and technologies applied in the IoT traffic

classification domain. Section 2.4 provides the system model and necessary preliminaries for

comprehending the classification problem in the context of the IoT domain. Additionally, this

Section covers the description of the feature sets, their statistical characteristics and feature

correlation, information that is necessary for the domain of data analysis that our paper touches

upon. Section 2.5 presents the two-stage proposed learning framework for the IoT device

classification problem. Section 2.6 explains the algorithmic form of proposed preprocessing

and learning model along with their asymptotic analysis. Sections 2.5 and 2.6 fall under the

domains of deep learning, machine learning and problem complexity, presenting all the necessary

technical details. Section 2.7 provides the performance evaluation results for both datasets under

consideration. The conclusions and the future directions of this work are presented in Section

2.8. Finally, Table 2.1 presents the set of abbreviations used in this paper.

33

Table 2.1 List of abbreviations

Abbreviations Meaning
AdaGrad Adaptive Gradient

Adam Adaptive Moment Estimation

ANOVA Analysis of Variance

BoW Bag-of-Word

CMMPP Coupled Markov Modulated Poisson Processes

DF Do not Fragment Flag

DT Decision Tree

FC Fully Connected

FNR False Negative Rate

FPR False Positive Rate

GB Gradient Boosting

IaT Interarrival Time

IoT Internet of Things

IP Internet Protocol

KNN K Nearest Neighbor

LR Logistic Regression

LSTM Long short-term memory

ML Machine Learning

MLP-ANN Multi-Layer Perceptron Artificial Neural Network

MSS Maximum Segment Size

M2M Machine-to-Machine

NB Naive Bayes

NOP No Option

OP Output Layer

PDR Packet Drop Rate

QoS Quality of Service

RF Random Forest

ReLU Rectified Linear Units

RFE Recursive Feature Elimination

SVM Support Vector Machine

TTL Time-to-Live

TCP Transport Control Protocol

WS Window Size

WSO Window Size Option

34

Table 2.2 Comparison of related works

Category Ref Technology Traffic source Features
Aggregated (Laner & et al, 2013) Coupled Markov Modulated Simulated data for No. of devices, distribution, time period

Traffic Poisson Processes (CMMPP) 30000 devices

Models (Laner et al., 2015) Aggregated+SMM+CMMPP Fleet management time, packet size, direction, IP address, port no., APN

Fingerprinting Miettinen et al. (2017) ML based model + SDN Collected 27 IoT link protocol, network protocol, transport protocol,

based traffic monitoring devices data IP options, IP address, port numbers

Bezawada et al. (2018) Device Fingerprinting+DT, Collected data of Packet header features+ payload length, entropy, win.size

GBM and Majority voting 14 IoT devices

Meidan et al. (2017b) Device white listing + RF 17 devices data time to live statistical information

Aneja et al. (2018) 4 DFP models+CNN IPhone/ipad data 636 and 608 IAT graphs of Apple devices used for CNN

Apthorpe & et al (2017) Separate and label streams, Collected data from four smart devices IP addresses, TCP ports, DNS queries

examine traffic rate

Machine Lippmann & et al. (2003) KNN, DT, MLP, SVM OS identification data WS, TTL, DF, MSS, WSO, port no., NOP

Learning Kotak & Elovici (2021) Single layer neural n/w Traffic data from Sivanathan et al. (2019) TCP payloads converted to grayscale images

Hameed & et al. (2020) Regression approaches Real time IoT application data Node id, total messages transmitted and received,

timestamps, success rate, latency, PDR, throughput

Santos & et al (2018) Random Forest Traffic data from Sivanathan et al. (2019) Packet size, packet volume, IaT, duration, URG & PSH

Abdellah et al. (2020a) LSTM Simulation data Timestamp, bytes count, and the packets count

Shahid & et al (2018) RF, DT, SVM, KNN, NN, NB Generate data from four IoT devices packets sent, packets received, IaT between packets sent,

IaT between packets received

Lopez-Martin & et al (2017) CNN+LSTM RedIRIS dataset source & dest. port, payload, WS, timestamp, direction

Meidan et al. (2017a) GBM, RF, XGboost Network traffic data source IP, destination IP, port numbers

Sivanathan et al. (2019) NB+RF Classifier Collected data from smart lab port no., domain name, cipher suite, flow volume,

duration, rate, DNS interval, NTP interval

Hameed & et al. (2020) LR+GBM Traffic data from Sivanathan et al. (2019) IP and MAC addresses, port no., TTL, protocol, IaT,

packet size, traffic rate, burstiness)

2.3 Related work

For the IoT device classification, significant emphasis has been given into aggregated traffic

models, fingerprinting, and machine learning based solutions. The aggregated traffic models

resort to mathematical and statistical distribution-based methods, which involve several proba-

bility distributions and mathematical techniques like stochastic processes to model the traffic.

Following, the fingerprinting methods are used to identify the IoT devices leveraging information

from network traces in order to correlate datasets. In particular, this category of classification

identifies a device using information from the network packets during the communication over

the network.

Regarding the ML based schemes, they utilize existing algorithms to automatically learn complex

patterns from the IoT traffic data. The algorithms used in these schemes are classified according

to how the learning process is conducted. Four main classes are used to group ML algorithms:

supervised learning, unsupervised learning, semi-supervised learning, and reinforcement

learning. However, in the current literature, mostly supervised learning, unsupervised learning

or a combination of these two are utilized in order to analyze, predict and model the IoT traffic

and device characteristics.

35

Figure 2.1 Overview of our previous work vs. proposed work

contributions (shown in the purple boxes)

With respect to aggregated traffic models, Laner & et al (2013) proposed a Coupled Markov

Modulated Poisson Processes (CMMPP) framework to capture the traffic behavior of a single

machine-type communication along with the collective behavior of tens of thousands of devices.

In (Laner et al., 2015) a classification strategy is designed for a fleet management use case

incorporating three classes of M2M traffic states, namely periodic update, event-driven, and

payload exchange. The authors in (Orrevad, 2009) proposed a model that estimates the M2M

traffic volume generated in a wireless network-enabled connected home. However, the above

works do not consider the fine-grained characterization of the IoT traffic, whereas the complexity

of such methods grows linearly with the number of the devices. Furthermore, common

communication patterns identified can be attributed to any sensing device under a specific use

case (limitation 1).

There is also a significant effort to identify the type of the IoT devices using the fingerprinting

method. For example, “IoT Sentinel” (Miettinen et al., 2017) is a classification system that can

recognize and identify the IoT devices immediately after they are connected to a network using a

single attribute vector with 276 network features. The “IoT Sentinel” framework can be further

improved by extracting additional network features such as payload entropy, TCP payload length,

and TCP window size (Bezawada et al., 2018). Similarly, in (Meidan et al., 2017b) almost

36

300 network attributes are used from each TCP traffic session to classify the devices, using a

majority voting for every 20 consecutive sessions.

The work in (Aneja et al., 2018) utilized a deep learning approach in order to perform the

device fingerprinting using the packet interarrival time. However, this approach is computa-

tionally intensive as all packet level information is utilized without any selection strategy. In

(Apthorpe & et al, 2017), the traffic patterns of encrypted network flows are used to reveal the

existence of a specific device inside a home network. However, obtaining such a great number

of features require specialized hardware accelerators, thus resulting in high computational cost,

longer classification duration and limited scalability due to the need of a deep packet inspection

functionality (limitation 2).

Some related works also employed machine learning in order to perform traffic and device

classification. Lippmann & et al. (2003) compared the K-nearest neighbor (KNN), Support

Vector Machine (SVM), Decision Tree (DT) and Multilayer Perceptron (MLP), using the packet

header information and concluded that KNN and DT provide better results. Kotak & Elovici

(2021) classified nine different device flows based on the device type using artificial neuron

network. Regarding traffic classification, the authors in (Hameed & et al., 2020) predicted

the QoS behavior of five different IoT applications in a smart building context, using several

regression based ML approaches.

The work in (Santos & et al, 2018) shows how to classify traffic and perform device identification

using random forest. The list of key features used in the classification included the packet size,

volume of packets, inter-arrival time, duration, urgent and push flags. Additionally, the authors

in (Abdellah, Artem, Muthanna, Gallyamov & Koucheryavy, 2020c) performed a prediction

of the IoT network traffic using Long Term Short Memory (LSTM). The features of dataset

consisted of the timestamp, bytes count, and the packet count. A more comparative approach,

was introduced in (Shahid & et al, 2018), where the authors presented a method to recognize

the IoT devices using random forest, decision tree, SVM, k-nearest neighbors, simple neural

network and naive bayes approaches.

37

Lopez-Martin & et al (2017) classified the traffic applications using a multi-class neural network,

which is proven to be effective in complex data structures. The authors in (Meidan et al., 2017a)

proposed an individual binary classification model for each class in order to eliminate the

complexity issue of multi-class classification. Sivanathan et al. (2019) utilized the statistical

attributes, signaling patterns and cipher suites along with machine learning for IoT device

classification.

Nonetheless, these ML approaches are affected by the high data dimensionality, they are sensitive

to the hyper-parameter tuning and they require a large number of training data. Moreover, the

main constraint of the multi-class classification is scalability, as the high number of classes makes

the classifier more complex and updating requires full retraining (limitation 3). A summary of

the papers reviewed in this section is given in Table 2.2.

In our preliminary work (Hameed & et al., 2020), we tried to address some of these limitations

by relying on typical machine learning techniques, such as logistic regression and gradient

boosting. In this paper, we extend our preliminary framework to provide a more complete and

detailed IoT multi-classification approach based on a deep learning solution. As this research

is an extension of our previous study, we used the same IoT dataset (Sivanathan et al., 2019).

However, in order to prove the generalization of our proposed methodology we also performed

our experiments with a second IoT dataset (Ren et al., 2019). Additionally, herein, we include a

more extended feature set at three different levels such as: device, flow and packet.

This work also introduces a feature correlation mechanism, whereas specific features are selected

for training models which is not included in our previous work. Furthermore, for the new

two stage learning framework, we apply an optimal searched neural network architecture at

the second stage. Finally, a completely new performance evaluation section is presented. The

particular section includes a new set of results for both datasets, new experiments, and additional

comparisons with machine learning and deep learning approaches. The differences between our

previous and proposed work are given in Figure 2.1.

38

The extensions made in this paper are aligned in such a way to address the above cited limitations:

• To overcome limitation 1, we incorporate a fine-grained feature set at different network levels

i.e., flow, device and packet level.

• To address limitation 2 and the high computational costs of complex features, we employ a

statistical feature selection (i.e., ANOVA score) to select a subset of the available features at

a time instance 𝑡.

• To address limitation 3, we propose a two-stage learning framework. Firstly, a relevance

weighting-based preprocessing is performed for the available features, whereas different

subsets of the selected features are utilized across these two stages to avoid the high

dimensionality issue. Finally, the tuned hyperparameters are utilized in a neural network that

achieves 99.9% accuracy for the first dataset and 99.8% for the second.

2.4 Problem Setup

In this section, we describe and formulate the IoT traffic classification problem, where different

IoT devices are combined to their respective classes according to their distinctive characteristics.

To help the reader follow the modeling of our work, Table 2.3 summarizes the key notation used

throughout this paper.

In particular, a smart environment (e.g. smart city, home, grid, etc.) can be modeled as a

network of 𝑆 smart devices, generating 𝑀 traffic flows. The devices are represented by the set

𝐷 = {𝑑1, 𝑑2.., 𝑑𝑠}, where 𝑑𝑠 indicates the 𝑠𝑡ℎ smart device, where 1 ≤ 𝑠 ≤ 𝑆. Similarly, the

set 𝑇 = {𝑡1𝑑1
, 𝑡2𝑑2

, ..., 𝑡𝑚𝑑𝑠 } represents the generated traffic flows, where 𝑡𝑚𝑑𝑠 denotes the 𝑚𝑡ℎ traffic

flow in 𝑇 generated by the 𝑠𝑡ℎ device, with 1 ≤ 𝑚 ≤ 𝑀 such that 𝑀 ⊆ 𝑆. Furthermore, each

traffic flow is constituted by a number of packets denoted by 𝑃 = {𝑝1𝑚, 𝑝2𝑚, ..., 𝑝𝑘𝑚} where

𝑝𝑘𝑚 represents the 𝑘𝑡ℎ packet of the 𝑚𝑡ℎ flow.

Regarding the features, the set 𝐹 denotes the distinctive properties of the traffic flow 𝑡𝑚𝑑𝑠

which we want to classify. Each packet in 𝑃 is a 𝐷-dimensional set of the network elements

39

Table 2.3 Summary of the key notation

Symbols Meaning

𝐷 Set of devices

𝑆 Smart devices

𝑀 Traffic flows

𝑚𝑡ℎ Last traffic flows

𝑑𝑠 Last smart device in set 𝑆
𝑇 Set of generated traffic flow

𝑡𝑚𝑑𝑠 Last traffic flow generated by last device in set 𝑆

𝑃 Set of packets generated by traffic flow

𝑘𝑡ℎ Last packet generated in the traffic flow

𝑝𝑘𝑚 Last packet generated in the last flow

𝐹 Set of features

𝑓𝑖 Last feature in the feature set 𝐹
𝐺 Set of training instances

𝑋 Set of total sample instances

𝑥𝑟 Last instance of features in set 𝑋
𝐶 Set of classes or labels

𝑐𝑞 Last class of features in set 𝐶

𝑞𝑡ℎ Last class

𝑟𝑡ℎ Any input sample of set 𝑋
𝐷 Input vector of specific dimension

𝑓𝑖 Feature in feature space

𝑐𝑜𝑣 Covariance between two features

𝜎 Standard deviation

𝜌 Pearson’s correlation coefficient

𝑣 Feature vector

𝑝 Probability for a combination of independent variables

𝛽0 Intercept

𝛽𝑛 Regression coefficients

𝑦𝑖 Dependent variable

𝑥𝑛 Independent variable

𝑙𝑡ℎ Layer of neural network

𝑂 (𝑙)
𝑖 Output of the 𝑖𝑡ℎ neuron at 𝑙𝑡ℎ layer

𝑉 Nonlinear activation function

𝑤 Weight of a neural network connection

𝐵 Bias value applied at a layer

𝑂 (𝑛) Linear complexity

𝑡 Number of training examples

𝑒 Number of epochs

𝑑 Number of neurons in each layer

∩ Intersection between two sets

∉ Not element of

⇔ Equivalent of

40

under consideration. These elements are represented as a feature space 𝐹, such that 𝐹 =

{ 𝑓1, 𝑓2, 𝑓3, .., 𝑓𝑖}, where 𝑓𝑖 represents the 𝑖𝑡ℎ feature in the feature space 𝐹 with 1 < 𝑖 ≤ 11 (in

this work we assume 11 distinctive features).

The set 𝐹 consists of device, flow and packet level features, where 𝑓1 represents the interarrival

time, 𝑓2 denotes the source IP address, 𝑓3 is the destination IP address, 𝑓4 shows the transport

protocol used by each flow, 𝑓5 is the source port number, 𝑓6 denotes the destination port number,

𝑓7 is the Time-to-Live (TTL) information, 𝑓8 denotes the window size used by the transport

layer, 𝑓9 indicates the length of a packet, and 𝑓10 denotes the source Ethernet address, and 𝑓11 is

the destination Ethernet address.

Furthermore, we assume that we have a given training set 𝐺, including pairs of input samples

along with their class labels as 𝐺 = {(𝑥1, 𝑐1), (𝑥2, 𝑐2), . . . , (𝑥𝑟 , 𝑐𝑞)}. Accordingly, the set

𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑞} denotes the available classes, where 𝑐𝑞 ∈ 𝐶 represents the 𝑞𝑡ℎ class in 𝐶,

while 𝐶 ⊂ 𝐷 and 𝑞 ≤ 𝑛. Furthermore, 𝑥𝑟 ∈ 𝑋 is the 𝑟𝑡ℎ input sample of the total set of samples

𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑟}, such that 𝑋 ⊂ 𝑃 and 𝑟 ≤ 𝑘 . Hence, the IoT Traffic Classification problem

is defined as the task of estimating the class label 𝑐𝑞 to the input vector 𝑥𝑟 , where 𝑥𝑟 belongs to a

subset of a feature space 𝐹, 𝑥𝑟 ∈ 𝑋 ⊂ 𝐹. This task is accomplished using a classification rule or

function 𝑓 (𝑥) : 𝑋𝐷 → 𝐶 that can predict the label 𝐶 of unseen 𝐷 dimensional input vector 𝑥𝑟 .

2.4.1 Feature description

As mentioned earlier, the available features can be categorized as follows:

2.4.1.1 Device level features

In this category we consider the source and destination MAC addresses of the devices. Such

features are extracted directly from the traffic traces. These features offer a characterization of

the IoT traffic independent of the other two levels of features.

41

2.4.1.2 Flow level features

This includes features such as source and destination IP addresses, protocol type of a flow, source

and destination port numbers, the TTL information of a flow, and the window size used by the

flow. This set can be used to extract the packet level features of a flow described below.

2.4.1.3 Packet level features

This category includes the timestamp, the interarrival time (IaT), and the length of the packets.

The interarrival time is the amount of time that elapses between a packet reception and the arrival

of the one following it. As timestamp follows the normal (guassian) distribution, to calculate the

interarrival time feature, we analyzed and extracted the time between the successive incoming

traffic packets following a Gaussian’s distribution with an average rate of 1 (since at each time

unit one packet arrives). All of the above features along with their description are illustrated

in Table 2.4. To prove the generality of our approach, we used the same feature sets for both

datasets under consideration.

Table 2.4 Description of features in both datasets

Level Variable Features Description

Packet Level 𝑓1 IaT Avg. time b/w two consecutive packet receptions

𝑓9 Length The length of network packet

Flow 𝑓2 IP.src Source IP address

Level 𝑓3 IP.dst Destination IP address

𝑓4 Protocol Protocol used by the flow

𝑓5 Port.src Port number of the client

𝑓6 Port.dst Port number of the server

𝑓7 TTL Maximum number of hops left for each packet

to reach the destination

𝑓8 WS The amount of bytes the receiving

device is capable to receive

Device 𝑓10 MAC.src Source MAC address

destination Level 𝑓11 MAC.dst Destination MAC address

42

2.4.2 Statistical characteristics of the features

Each feature 𝑓𝑖 in the feature space 𝐹 has its own distribution, which is represented by the

number of different statistical characteristics over different smart devices. The analysis of

such distributions can be useful in order to identify which features are most important for the

classification. In this work, we considered three statistical characteristics of the distribution of

each feature, such as: mean, median and standard deviation. Table 2.5 summarizes the statistical

characteristics of each feature for both datasets. However, for illustration purposes we plot the

probability distribution of the features under consideration for the first dataset only, as shown in

Figure 2.2. As can be seen, the interarrival time shows a Gaussian distribution (as explained in

the previous subsection), while all other features illustrate an exponential distribution.

Figure 2.2 Probability distributions of IoT traffic flow features of

Dataset 1

2.4.3 Feature correlation

One very important aspect of the performance of the classification is the correlation between the

features. Hence, in this work we consider the feature correlation from two perspectives. Firstly,

43

Table 2.5 Statistical characteristics of IoT traffic features

Datasets Measures 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9 𝑓10 𝑓11

Mean 0.45 0.67 0.59 0.50 0.35 0.38 0.37 0.07 0.16 0.74 0.69

Dataset 1 Median 0.50 0.85 0.75 0.65 0.06 0.13 0.24 0.02 0.03 0.86 0.81

S.D 0.22 0.28 0.25 0.45 0.37 0.37 0.26 0.18 0.30 0.28 0.28

Mean 0.39 0.001 5.21 0.29 0.38 0.44 0.33 0.09 0.01 0.61 0.46

Dataset 2 Median 0.38 1.45 1.43 0.33 0.11 0.67 0.25 0.01 0.01 0.69 0.39

S.D 0.39 0.03 0.002 0.12 0.36 0.34 0.20 0.22 0.01 0.19 0.18

we examine which features are correlated within the feature space. The correlation between two

features say, 𝑓𝑖 and 𝑓 𝑗 , is calculated using the Pearson’s correlation coefficient which is given as:

𝜌(𝑓𝑖 , 𝑓 𝑗) =
𝑐𝑜𝑣(𝑓𝑖, 𝑓 𝑗)
𝜎𝑓𝑖𝜎𝑓 𝑗

(2.1)

where 𝑐𝑜𝑣(𝑓𝑖, 𝑓 𝑗) is the covariance between features 𝑓𝑖 and 𝑓 𝑗 , whereas 𝜎(𝑓𝑖) and 𝜎(𝑓 𝑗) represent

the standard deviation of the 𝑖𝑡ℎ and 𝑗 𝑡ℎ feature respectively. The value of correlation coefficient

lies between −1 and 1. If there is no correlation between the features 𝑓𝑖 and 𝑓 𝑗 then 𝜌(𝑓𝑖 , 𝑓 𝑗) = 0.

A perfect negative correlation is found if 𝜌(𝑓𝑖 , 𝑓 𝑗) = −1 and a perfect positive correlation is found

if 𝜌(𝑓𝑖 , 𝑓 𝑗) = 1. We plot the correlation between features for the first dataset as a heat map, which

is shown in Figure 2.3.

As it can be seen, the source IP address is more correlated to TTL, destination port number,

source MAC addresses and destination IP addresses. Furthermore, the destination IP address

and source port number, the destination IP address and destination MAC address, the packet

length and destination MAC address, the source MAC address and source port number, the

source port number and destination port number are also highly correlated features.

Secondly, we find the correlation between the input vector features and the target class labels.

Then based on the relationship between independent variables (i.e., feature space) and dependent

variable (i.e., class label) we select the features for our learning (classification) framework. This

is further discussed in Section 2.5.3.

44

Figure 2.3 Correlation between IoT traffic features of Dataset 1

2.5 Proposed Classification Framework

2.5.1 Overview

The proposed classification framework consists of three key steps as shown in Figure 2.4 and

discussed in the following sections.

1. Preprocessing the IoT Traffic (Section IV-B): It is the first step executed and it aims at

providing the weighted preprocessing of dataset along with the rescaling, imputation and

transformation of traffic traces.

2. Selecting the most relevant features (Section IV-C): It consists of the selection of the

most important features, which are highly correlated to the class labels, using the ANOVA

filter based selection method.

3. Two-stage learning model (Section IV-D): Here the classification of the IoT traffic traces is

done using the proposed two stage learning model. At stage 0, the classification is performed

45

Figure 2.4 Overview of proposed two-stage classification

framework

Figure 2.5 Operational flow of the proposed work

by applying a logistic regression technique, while the tentative classes are provided. At

stage 1, a neural network is applied to provide the final classes.

The operational flow of the proposed work is provided in Figure 2.5.

46

2.5.2 Data Preprocessing

During the data preprocessing, a basic filtering of the dataset is performed in order to remove

some of the non-meaningful packets such as ping, DNS requests, etc. The features such as

TTL, window size, packet length are already numerical, whereas the interarrival time feature is

converted to seconds. Following, we observed that some of the features such as “set of port

numbers (𝑓5 and 𝑓6)”, “set of IP addresses (𝑓2 and 𝑓3)” and “set of MAC addresses (𝑓10 and

𝑓11)” are nominal and multi-valued (having more than one value with a single data instance).

As machine learning classifiers cannot deal with such data, we converted these features into a

numerical form using a two-step procedure.

Firstly, we perform the data cleaning by passing the nominal vectors to the Bag-of-Word (BoW)

model. Secondly, as the BoW assigns the same importance to each vector word, we have

proposed a relevance weighting to assign a prioritized importance to each word within each

vector. These relevance weights, attributed to each feature vector, are passed to the stage 0

classifier and is given by Equation (2.2):

𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒𝑊𝑒𝑖𝑔ℎ𝑡 = 𝑤 𝑓𝑤,𝑣 × 𝑣 𝑓𝑤,𝑣 (2.2)

where 𝑤 𝑓𝑤,𝑣 denotes the word frequency of a word 𝑤 within a vector 𝑣 and 𝑣 𝑓𝑤,𝑣 represents the

total vector frequency. Herein, the vectors consist of the “port numbers vector”, “IP addresses

vector”, and “MAC addresses vector”. The word frequency 𝑤 𝑓𝑤,𝑣 is defined as the number of

times that 𝑤 occurs in 𝑣 and is given using Equation (2.3):

𝑤 𝑓𝑤,𝑣 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑜 𝑓 𝑎 𝑤𝑜𝑟𝑑 𝑖𝑛 𝑎 𝑣𝑒𝑐𝑡𝑜𝑟

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑡ℎ𝑎𝑡 𝑣𝑒𝑐𝑡𝑜𝑟
(2.3)

Because frequent words are less informative than rare words, the vector frequency, 𝑣 𝑓𝑤,𝑣 is given

as Equation (2.4).

𝑣 𝑓𝑤,𝑣 = log
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑤𝑜𝑟𝑑 𝑤
(2.4)

47

After this step, we impute the missing values of features using their mean value and re-scale the

dataset between 0 and 1 using the MinMaxScaler technique.

2.5.3 Feature selection

The supervised feature selection is a way to choose the input features that are believed to be the

most useful to a model in order to predict the target variable. For our supervised feature selection

method, we resort to either wrapper methods or filter based methods. A wrapper based method,

such as Recursive Feature Elimination (RFE), selects the features that are performing well.

However, for the selection of features from our feature space 𝐹, we employed the filter-based

feature selection technique (Brownlee, 2020) which uses the statistical methods to score the

relationship between the features and the target labels i.e., class labels. Specifically, we have

selected the ANOVA (Analysis of Variance) F-value feature selection technique because our

input features are quantitative or become quantitative after preprocessing and the target class

labels are of categorical nature (i.e. 𝑐1 indicates a belkin wemo switch, 𝑐2 represents smart cam

and so on).

2.5.4 Proposed two-stage learning model

2.5.4.1 Stage 0 classifier

The Logistic Regression method is employed at stage 0, which takes the selected set of features

for the training, as given by the ANOVA F-value. The reason that we have selected this classifier

is that it has been proven to perform well for very large data sets (Backhaus, Erichson, Gensler,

Weiber & Weiber, 2023), as in the case of a smart environment. The logistic regression technique

investigates the association among the independent variables and the dependent variables of the

problem. In our scenario, the selected features are the independent variables and the device

categories (e.g. hubs, cameras, etc.) are the dependent variables. The goal is to estimate the

48

probability 𝑝 for a combination of independent variables using the following logit function:

𝑙𝑜𝑔𝑖𝑡 (𝑝) = 𝑙𝑛 𝑝

1 − 𝑝 (2.5)

where 𝑙𝑛 is the natural logarithm and 𝑝 denotes the probability of an independent variable. The

anti log of (2.5) allows us to find the estimated regression equation given by Equation (2.6):

𝑙𝑜𝑔𝑖𝑡 (𝑝) = 𝑙𝑛 𝑝

1 − 𝑝 = 𝛽0 + 𝛽1 ∗ 𝑥1 + 𝛽2 ∗ 𝑥2 + ... + 𝛽𝑛 ∗ 𝑥𝑛 ⇒

𝑝 =
𝑒𝛽0+𝛽1∗𝑥1+𝛽2∗𝑥2+...+𝛽𝑛∗𝑥𝑛

1 + 𝑒𝛽0+𝛽1∗𝑥1+𝛽2∗𝑥2+...+𝛽𝑛∗𝑥𝑛 (2.6)

where 𝛽0 is an intercept, 𝛽1, 𝛽2, and 𝛽𝑛 are the regression coefficients, 𝑥1 is the first independent

variable, 𝑥2 is the second independent variable, and 𝑥𝑛 is the 𝑛𝑡ℎ selected feature. In order to

calculate 𝛽 coefficients, we employed the Gradient Descent method (Henry, 2021). The general

form of Equation (2.6) is given as:

𝑝(𝑦𝑖 |𝑥1, 𝑥2, ..., 𝑥𝑛) = 1

1 + 𝑒−(𝛽0+𝛽1∗𝑥1+𝛽2∗𝑥2+...+𝛽𝑛∗𝑥𝑛) (2.7)

where 𝑦𝑖 represents the dependent variable i.e., the 𝑖𝑡ℎ IoT device class, which we predict based

on 𝑥1, 𝑥2, and 𝑥𝑛. After calculating the regression coefficients the testing component comes into

effect, where the classifier uses the regression coefficients and computes the estimated regression

for each testing instance using Equation (2.7). Finally, stage 0 classifier performs a first tentative

prediction.

2.5.4.2 Stage 1 classifier

In order to optimally classify the IoT devices, we architect the Multi-Layer Perceptron Artificial

Neural Network (MLP-ANN) (Okwu & Tartibu, 2021) based classification as our stage 1

classifier. MLP-ANNs are composed of multiple neurons that are arranged in the form of an

input, output, and hidden layers. In this work, the architecture of MLP-ANN consists of one

input layer with 11 neurons, because we have 11 different features to be passed as an input to the

49

neural network. Following, we optimize the number of hidden layers, while the output layer

consists of 𝑛 number of neurons depending on the number of labelled classes 𝑛 found in each of

the dataset.

MLP-ANN provides two major processes for the classification task. Firstly, it performs the

forward propagation process, which feeds the features to the input layer neurons. In our case, all

quantitative features along with the output from stage 0 classifier (i.e., tentative classes) are fed

to an input layer. Following, the input layer propagates these data to the hidden layers and then

to the output layer. The neurons in each of the neural network layer calculates the weighted sum

as output which is then passed to the activation function and is given by Equation (2.8).

𝑂 (𝑙)
𝑖 = 𝑉 (𝑙) (

∑
𝑗

𝑤 (𝑙)
(𝑖, 𝑗) ×𝑂

(𝑙−1)
𝑗 + 𝐵(𝑙)

𝑖) (2.8)

where the superscripts on variables represent the layer number and the subscripts represent the

neuron numbers in the respective layer. The 𝑤 (𝑙)
(𝑖, 𝑗) denotes the weight of a connection between

the 𝑖𝑡ℎ neuron of layer 𝑙 and the 𝑗 𝑡ℎ neuron of layer 𝑙 − 1; 𝐵(𝑙)
𝑖 represents the bias value applied

at the 𝑙𝑡ℎ layer for the 𝑖𝑡ℎ neuron; 𝑂 (𝑙)
𝑖 denotes the output of the the 𝑖𝑡ℎ neuron at the 𝑙𝑡ℎ layer

and 𝑉𝑙 represents the nonlinear activation function applied at layer 𝑙. This work applied the

Rectified Linear Units (ReLU) activation function at the input layer and the softmax activation

function at the output layer.

The above process continues till the output layer predicts a label, i.e., class of an IoT device,

which is then compared with the actual label and a loss value is calculated using a loss function

based on the categorical cross entropy. Secondly, a back propagation is done in which weights

are updated using the predicted output, desired output and their difference. The goal is to

minimize the loss by finding the optimal weights value. The optimization function that we

applied is based on the Adaptive Moment Estimation (Adam) because it is proved to be very

robust for large datasets.

To model an optimal MLP-ANN, we used the Keras tuner (O’ Malley et al., 2019) along with

the Random Search technique. For the hyper parameter optimization, we determine the optimal

50

number of hidden layers, the optimal number of neurons in each layer (i.e., a search between 22

and 512 neurons), and the learning rate (i.e., a search between 1e-2 and 1e-4) using a random

search tuner. Following, these parameters are passed to the Adam optimizer, since we want to

achieve the best performance along with the least computational complexity.

2.6 Classification Algorithm

2.6.1 Algorithm Description

The preprocessing algorithm (Algorithm 2.1) consists of the 𝑃𝑅𝐸𝑃 procedure, which firstly

generates the BoW representations using the function 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝐵𝑂𝑊 (). Then, the relevant

weights are calculated by employing the 𝑤𝑜𝑟𝑑_𝐹𝑟𝑒𝑞() and 𝑣𝑒𝑐𝑡𝑜𝑟_𝐹𝑟𝑒𝑞() functions, which

takes BoW as an input. Following, the features are scaled using the function 𝑀𝑖𝑛𝑀𝑎𝑥𝑆𝑐𝑎𝑙𝑒𝑟 ().
Algorithm 2.2 depicts the learning model consisting of two procedures, namely, 𝐿𝑂𝐺𝑅𝐸𝐺 and

𝑀𝐿𝑃. In the 𝐿𝑂𝐺𝑅𝐸𝐺 procedure, the input labels 𝑥 and output labels 𝑦 are split into training

and testing data using the function, 𝑠𝑝𝑙𝑖𝑡 (). Next, the filter-based feature selection is done using

the statistical method called ANOVA score and this is achieved by employing the 𝑆𝑒𝑙𝑒𝑐𝑡𝐾𝐵𝑒𝑠𝑡 ()
function. Then the 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛() generates and fit the model using the 𝑓 𝑖𝑡 () function.

The prediction is done using the 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 () which contains the 𝑥_𝑡𝑠𝑡 as testing dataset.

The 𝑀𝐿𝑃 procedure generates the classification results based on the MLP-ANN which takes

stage’s 0 results along-with the other features. At this stage, firstly the data are split using

𝑠𝑝𝑙𝑖𝑡 () and then a sequential model is created using the function, 𝑏𝑢𝑖𝑙𝑑_𝑚𝑜𝑑𝑒𝑙 (). Following,

the keras tuner is applied to search the number of models using 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑎𝑟𝑐ℎ(), which takes

the sequential model, the number of trials per search, the max trials allowed and the search

objective as an input. Then, the 𝑔𝑒𝑡𝐵𝑒𝑠𝑡𝑀𝑜𝑑𝑒𝑙 () returns the model with the highest validation

accuracy across all models given by the 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑎𝑟𝑐ℎ(). Finally, we fit the model with 𝑓 𝑖𝑡 ()
for 70 epochs and then call the 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 () function.

51

Algorithm 2.1 Preprocessing Algorithm

Input: 𝑓2, 𝑓3, 𝑓5, 𝑓6, 𝑓10, 𝑓11, 𝑑𝑒𝑣𝑖𝑐𝑒𝑠
// 𝑓2 and 𝑓3 are source and destination IP addresses; 𝑓5 and 𝑓6 are source and destination

port numbers; 𝑓10 and 𝑓11 are source and destination MAC addresses; and 𝑑𝑒𝑣𝑖𝑐𝑒𝑠
labels.

Output: x𝑛𝑜𝑟𝑚,𝑦

1 PREP(𝑓2, 𝑓3, 𝑓5, 𝑓6, 𝑓10, 𝑓11, 𝑑𝑒𝑣𝑖𝑐𝑒𝑠)
2 𝐵𝑂𝑊1 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝐵𝑂𝑊 (𝑓2, 𝑓3)
3 𝐵𝑂𝑊2 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝐵𝑂𝑊 (𝑓5, 𝑓6)
4 𝐵𝑂𝑊3 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝐵𝑂𝑊 (𝑓10, 𝑓11)
5 𝑤 𝑓 ← 𝑤𝑜𝑟𝑑_𝐹𝑟𝑒𝑞(𝐵𝑂𝑊1, 𝐵𝑂𝑊2, 𝐵𝑂𝑊3)
6 𝑣 𝑓 ← 𝑣𝑒𝑐𝑡𝑜𝑟_𝐹𝑟𝑒𝑞(𝐵𝑂𝑊1, 𝐵𝑂𝑊2, 𝐵𝑂𝑊3)
7 𝑟𝑒𝑙𝑤𝑒𝑖𝑔ℎ𝑡 ← 𝑤 𝑓 × 𝑣 𝑓
8 set 𝑥 ← 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 (𝐵𝑂𝑊1, 𝐵𝑂𝑊2, 𝐵𝑂𝑊3, 𝑟𝑒𝑙𝑤𝑒𝑖𝑔ℎ𝑡)
9 set 𝑦 ← 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 (𝑑𝑒𝑣𝑖𝑐𝑒𝑠)

10 set 𝑥𝑛𝑜𝑟𝑚 ← 𝑀𝑖𝑛𝑀𝑎𝑥𝑆𝑐𝑎𝑙𝑒𝑟 (𝑥)

2.6.2 Asymptotic Analysis

Proposition 1. The computational complexity of 𝑃𝑅𝐸𝑃 procedure is 𝑂 (𝑛)

Proof: The PREP procedure running time depends on the number of feature vectors, represented

as 𝑛. Lines 2-4 take a constant time as they split the vectors into words, thus𝑂 (1). Lines 5-6 and

8-9 are assignment statements and each requires 𝑂 (1) operations. For the 𝑟𝑒𝑙𝑤𝑒𝑖𝑔ℎ𝑡 statement

(line 7) the complexity is 𝑂 (1) ∗ 𝑂 (𝑛) = 𝑂 (𝑛). However, line 10 depends on the number of

feature vectors 𝑛 and thus, in the worst-case scenario needs 𝑂 (𝑛). Accordingly, the overall time

complexity of PREP procedure is linear i.e., 𝑂 (1) +𝑂 (1) +𝑂 (𝑛) +𝑂 (𝑛) = 𝑂 (𝑛).

Proposition 2. The computational complexity of 𝐿𝑂𝐺𝑅𝐸𝐺 procedure is 𝑂 (𝑛).

Proof: Line 2 is a simple assignment statement (i.e., 𝑂 (1)) and lines 3-4 require 𝑂 (𝑛)
computation time in the worst scenario. Regarding the training time (lines 5-6) of LOGREG

the complexity is 𝑂 (𝑡 ∗ 𝑛) where 𝑡 is the number of training examples and 𝑛 is the number of

selected data features used for the classifier training. Additionally, the testing time taken by line

52

Algorithm 2.2 Learning Algorithm

Input: 𝑥𝑛𝑜𝑟𝑚, 𝑦, 𝑦𝑝𝑟𝑒𝑑 , 𝑓1, 𝑓4, 𝑓7, 𝑓8, 𝑓9, 𝑑𝑒𝑣𝑖𝑐𝑒𝑠
// 𝑥𝑛𝑜𝑟𝑚 is the dataset instances, 𝑦 is the class labels, 𝑦𝑝𝑟𝑒𝑑 is the output of Stage 0

classifier passed to the Stage 1 classifier, 𝑓1 is the interarrival time, 𝑓4 is the IP protocol

used, 𝑓7 is the TTL, 𝑓8 and 𝑓9 are the window size and packet length, 𝑑𝑒𝑣𝑖𝑐𝑒𝑠 are the

class labels.

Output: 𝑦𝑝𝑟𝑒𝑑
// 𝑦𝑝𝑟𝑒𝑑 is the final output of Stage 1 classifier.

1 LOGREG(𝑥𝑛𝑜𝑟𝑚,𝑦)
2 set 𝑥𝑡𝑟 , 𝑥𝑡𝑠𝑡 , 𝑦𝑡𝑟 , 𝑦𝑡𝑠𝑡 ← 𝑠𝑝𝑙𝑖𝑡 (𝑥, 𝑦, 𝑡𝑒𝑠𝑡𝑠𝑖𝑧𝑒 ← 0.2)
3 set 𝑥𝑡𝑟 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝐾𝐵𝑒𝑠𝑡 (𝐴𝑛𝑜𝑣𝑎𝑠𝑐𝑜𝑟𝑒, 𝑥𝑡𝑟)
4 set 𝑥𝑡𝑠𝑡 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝐾𝐵𝑒𝑠𝑡 (𝐴𝑛𝑜𝑣𝑎𝑠𝑐𝑜𝑟𝑒, 𝑥𝑡𝑠𝑡)
5 set 𝑚𝑜𝑑𝑒𝑙 ← 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝑚𝑎𝑥𝑖𝑡𝑒𝑟 ← 3000)
6 set 𝑓 𝑖𝑡 ← 𝑚𝑜𝑑𝑒𝑙. 𝑓 𝑖𝑡 (𝑥𝑡𝑟 , 𝑦𝑡𝑟)
7 set 𝑦𝑝𝑟𝑒𝑑 ← 𝑚𝑜𝑑𝑒𝑙.𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝑥𝑡𝑠𝑡)
8 Output: 𝑦𝑝𝑟𝑒𝑑 ⊲ Stage 0

9 MLP(𝑦𝑝𝑟𝑒𝑑 , 𝑓1, 𝑓4, 𝑓7, 𝑓8, 𝑓9, 𝑑𝑒𝑣𝑖𝑐𝑒𝑠)
10 set 𝑥 ← 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 (𝑦𝑝𝑟𝑒𝑑, 𝑓1, 𝑓4, 𝑓7, 𝑓8, 𝑓9)
11 set 𝑦 ← 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 (𝑑𝑒𝑣𝑖𝑐𝑒𝑠)
12 set 𝑥𝑡𝑟 , 𝑥𝑡𝑠𝑡 , 𝑦𝑡𝑟 , 𝑦𝑡𝑠𝑡 ← 𝑠𝑝𝑙𝑖𝑡 (𝑥, 𝑦, 𝑡𝑒𝑠𝑡𝑠𝑖𝑧𝑒 ← 0.2)
13 set 𝑚 ← 𝑏𝑢𝑖𝑙𝑑_𝑚𝑜𝑑𝑒𝑙 ()
14 set 𝑡𝑢𝑛𝑒𝑟 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑎𝑟𝑐ℎ(𝑚, 𝑡𝑢𝑛𝑒𝑟.𝑜𝑏 𝑗 (𝑣𝑎𝑙𝑎𝑐𝑐), 𝑚𝑎𝑥𝑡𝑟 ← 3, 𝑠𝑒𝑎𝑟𝑐ℎ𝑡𝑟 ← 1)
15 set 𝑚𝑜𝑑𝑒𝑙 ← 𝑡𝑢𝑛𝑒𝑟.𝑔𝑒𝑡𝐵𝑒𝑠𝑡𝑀𝑜𝑑𝑒𝑙 (𝑛𝑢𝑚𝑚𝑜𝑑𝑒𝑙𝑠 ← 1)
16 set ℎ𝑖𝑠𝑡𝑜𝑟𝑦 ← 𝑚𝑜𝑑𝑒𝑙. 𝑓 𝑖𝑡 (𝑥𝑡𝑟 , 𝑦𝑡𝑟 , 𝑒𝑝𝑜𝑐ℎ𝑠← 70)
17 set 𝑦𝑝𝑟𝑒𝑑 ← 𝑚𝑜𝑑𝑒𝑙.𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝑥𝑡𝑠𝑡)
18 Output: 𝑦𝑝𝑟𝑒𝑑 : 𝐹𝑆 ← 𝑑𝑒𝑣𝑖𝑐𝑒𝑠 ⊲ Stage 1

7 is 𝑂 (𝑛). Thus, the LOGREG takes 𝑂 (1) + 𝑂 (𝑛) + 𝑂 (𝑡 ∗ 𝑛) + 𝑂 (𝑛) = 𝑂 (𝑛), which can be

beneficial for low latency applications that require a fast classification method.

Proposition 3. The computational complexity of 𝑀𝐿𝑃 procedure is 𝑂 (𝑛𝑑)

Proof: In the 𝑀𝐿𝑃 procedure, lines 10-12 consist of simple assignments i.e., 𝑂 (1). Line 13

indicates the 𝑏𝑢𝑖𝑙𝑑_𝑚𝑜𝑑𝑒𝑙 () function of the neural network and its complexity is𝑂 (𝑛 ∗ 𝑑 ∗ 𝑡 ∗ 𝑒),
where for proposition 3, 𝑛 represents the number of layers, 𝑑 denotes the number of neurons

in each layer, 𝑡 is the number of training examples and 𝑒 is the number of epochs. Because

53

we are using 80% training examples i.e., 664796 for 70 epochs, the complexity for this part is

𝑂 (𝑛∗𝑑∗664796∗70) = 𝑂 (𝑛𝑑). Following, 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑎𝑟𝑐ℎ() (line 14) takes𝑂 (𝑛) for the worst

scenario and line 15 takes a constant amount of time i.e.,𝑂 (1). Line 16 takes𝑂 (𝑡) and testing time

taken by the line 17 is𝑂 (𝑛). Thus, the 𝑀𝐿𝑃 takes𝑂 (1) +𝑂 (𝑛𝑑) +𝑂 (𝑛) +𝑂 (1) +𝑂 (𝑡) +𝑂 (𝑛) =
𝑂 (𝑛𝑑) time.

The overall complexity, 𝑇 of the proposed learning framework is represented in term of 𝑛 as:

𝑇 (𝑛) = 𝑂 (𝑛) +𝑂 (𝑛) +𝑂 (𝑛𝑑) = 𝑂 (𝑛). Thus, it is a linear time learning work.

2.7 Performance Evaluation

2.7.1 Model Implementation and Frameworks

2.7.1.1 Dataset Description

In this work, we have used two different datasets provided by (Sivanathan et al., 2018) and (Ren

et al., 2019) consisting of IoT traffic traces in a smart environment. The description of both

datasets is provided as follows:

Dataset 1 (Sivanathan et al., 2018) consists of network traffic traces from 28 smart devices. As

we have considered a subset of the network traffic, which is a total of 12000317 labeled instances

of 22 IoT devices, for this dataset we have 22 distinctive classes. The devices are namely, smart

phone, belkin wemo switch, belkin wemo motion sensor, dropcam, HP printer, iphone, laptop,

nest protect smoke alarm, netatmo welcome, netatmo weather station, PIX star photo frame,

samsung tab, samsung smartcam, smart things, TP link camera, TP link plug, TP link router,

triby speaker, withings smart baby monitor, withings smart scale, ipv4mcast and amazon echo.

Dataset 2 (Ren et al., 2019) consists of traffic traces of from 81 IoT devices which are located at

various US and UK locations. These devices belongs to cameras, smart hubs, home automation,

TVs, audio devices and home appliances categories. For the second dataset, a total of 40588450

labeled instances of 68 IoT devices were used in this work.

54

Figure 2.6 Samples of IoT traffic traces from dataset 1

A sample of the network trace used from the first dataset is provided in Figure 2.6. Nonetheless,

since we have used the same feature space for both datasets, Figure 2.6 reflects the traces from

the second dataset as well. The feature called "MAC address" of each device is used to provide

the label to each network trace in both of the datasets.

2.7.1.2 Experiment setup

The configuration settings used for our experiments and for both datasets are listed in Table

2.6. The proposed model was implemented in Python (version 3.8.2). In Table 2.6, the

No. of architectures represents the number of different classification solutions used during

our experimentation. These architectures/solutions are further explained in Section 2.7.1.3.

Following, the total number of instances provides the number of labelled instances used from

each dataset and the total number of classes represents the total number of distinct device types.

The reason that we have selected a subset of the labelled instances for each dataset, is because

these datasets span over a period of about two months and the training of such a large amount of

data can create several big data challenges. Furthermore, as shown later, we also managed to

achieve a very good performance by using only the specific subset of these datasets. Accordingly,

the selected subset of data under evaluation resulted in a slightly reduced number of classes for

each dataset.

Regarding the number of tuner trials, this value represents the keras tuner trials that we executed

for our proposed model. In more details, for the first dataset, we noticed that after 5 trials we

have achieved the best hyper-parameter configuration and for the second dataset after 3 trials.

The reason for executing several trials, is that the keras tuner uses a different set of parameters

55

(i.e. learning rate, number of layers and number of neurons in each layer) at each trial and then it

selects the best performing configuration. Nonetheless, we have not seen a significant variation

between the accuracy of the different trials. Lastly, we split both of the dataset instances into

three groups as: 60% training instances, 20% validation and 20% testing instances, which is a

common split ratio in the machine learning domain.

For the evaluation of the classification performance , we have considered the following well

known classification metrics:

Table 2.6 Configurations used in the experiments

N/W Settings No. of Architectures Total Instances Total Classes No. of Tuner Trials Data Split Metrics

Dataset 1 5 12000317 24 5 60:20:20 Precision/Recall/F1/Accuracy

Dataset 2 5 40588450 68 3 60:20:20 Precision/Recall/F1/Accuracy

Table 2.7 Description of model architectures applied to the multi-classification problem

Architecture Details

I: LR+GB Stage 0: LR - Stage 1: GB

II: NB+RF Stage 0: NB - Stage 1: RF

III: MLP Single Stage : MLP with IP(11)-FC (100)-FC(100)-OP(22)

IV: LR(RFE)+MLP Stage 0: LR along with RFE - Stage 1: MLP with IP(11)-FC(100)-FC(100)-OP(22)

V: LR(Anova)+MLP(Keras Tuner) Stage 0: LR along with Anova-score feature selection - Stage 1: MLP with IP(11)-FC (n)-FC (n)-OP(22)

1. Precision: It is the ability of a classifier to not label an instance that is actually negative as

positive and is given as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (2.9)

2. Recall: Recall calculates the rate of all the positive instances, which is also called true

positive rate and is given as:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (2.10)

3. F1-score: It is the harmonic mean of the precision and recall metrics and is given as:

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (2.11)

56

4. Accuracy: It is the proportion of correctly classified instances and is given as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
(2.12)

5. Confusion matrix: It is a table that is used to describe the classifier performance on a set of

test data for which the true values are known.

The values of recall, precision, F1-score, confusion matrix and accuracy are calculated between

[0,1] with 1 indicating the best and 0 the worst performance. However, a decrease from 1 towards

0 is good for the loss function of the network.

2.7.1.3 Architecture models

We have applied different composite models consisting of neural networks along with traditional

machine learning algorithms to see their suitability for the IoT traffic multi classification problem.

Table 2.7 provides the description of the different network architectures. The LR represents the

logistic regression algorithm and GB denotes the gradient boosting algorithm (architecture I)

(Hameed, Violos, Santi, Leivadeas & Mitton, 2021). The NB is Naive Bayes algorithm at stage

0 and RF denotes applying random forest at stage 1 (architecture II) (Sivanathan et al., 2019).

IP(x) stands for the input layer of neural network with x number of neurons. FC(x) denotes the

fully connected layer of neural network with x number of nodes (or neurons). OP(x) represents

the output layer of neural network with x number of classes i.e., neurons.

MLP represents the multi layer Perceptron neural network with an input layer consisting of

11 neurons, two fully connected layer and one output layer with 22 classes (architecture III).

LR(RFE)+MLP denotes the logistic regression at stage 0 with recursive feature elimination

method and MLP at stage 1 with one input layer, two fully connected layers and one output layer

(architecture IV). LR(Anova)+MLP (keras tuner) denotes the logistic regression at stage 0 with

the Anova based feature selection and MLP at stage 1 (architecture V), which is the two-stage

learning model proposed in this paper.

57

For comparison purposes, it is important to mention that the accuracy of existing works are

less than the proposed framework, as shown in the following subsection. For example, the

proposed framework in (Kotak & Elovici, 2021) achieves an accuracy of 99.0%, the authors

in (Lopez-Martin & et al, 2017) achieve 96% accuracy, while in (Meidan et al., 2017a) the

accuracy is 99.2%. However, for our evaluation, we compared the proposed framework with the

architecture I (Hameed et al., 2021) and architecture II (Sivanathan et al., 2019), which both use

the first dataset.

Additionally, to better illustrate the efficiency of our work, we also compare our proposed

architecture V with the architectures III and IV which are based on the MLP neural network. For

all the neural network-based architectures (i.e. III to V), the training was done with a number of

epochs between 50 and 100. The training was stopped earlier if an increase in the number of

epochs did not lead into an improvement of the loss function.

Furthermore, for the activation functions we used the ReLU along with the softmax activation

which was applied at the last output layer. The loss functions used was the categorical cross

entropy. Finally, the optimization was done with the Adaptive Gradient (AdaGrad) for the

architectures III and IV and with Adam for architecture V. The particular configurations gave the

best results for each of the examined architectures.

We have also experimented with different LSTM configurations. In particular, we executed five

tuner trials to find the best hyperparameters such as number of layers, LSTM units, learning rate,

etc. However, these models gave less accurate results, (i.e., 70% of accuracy). Moreover, we

also considered the AdaGrad optimizer for the architecture V but it produced an accuracy of

85% and we decided to show only the results of the best configuration, which uses the Adam

optimizer.

58

Figure 2.7 Performance comparison at stage 0

2.7.2 Results

2.7.2.1 Impact of architectures

2.7.2.1.1 Stage 0

Figure 2.7 illustrates the performance of the different network architectures at stage 0, in terms

of precision, recall and F1 score for both datasets. We have only considered the architectures I,

II, IV, and V for this part, because architecture III i.e., MLP does not consist of two stages. In

terms of the precision, our proposed architecture V provides the highest value i.e., 0.74 followed

by LR(RFE) + MLP with 0.72 and LR+GB with 0.69 value for the first dataset. Regarding the

second dataset, the same trend is noticed, as architecture V provides the highest value i.e., 0.87

followed by LR(RFE) + MLP with 0.83 and LR+GB with a value of 0.79.

In contrast, NB + RF performed poorly for both datasets, i.e., 0.6 for the first dataset and 0.4 for

the second. This means that 40% of the labelled instances were wrongly classified as positive

for the first dataset and 60% were wrongly classified as positive for the second. This can be

59

attributed to the fact that the precision values of some devices were zero and less than 0.17 for

many other. As an example, in the first dataset the most misclassified devices for the NB+RF

were the Belkin Switch, HP printer, Netatmo Welcome, PIX-STAR, Samsung tab and TP link

camera.

When looking into the recall metric, we see that the proposed architecture V also outperformed

the rest of the models, followed by the LR+GB and LR(RFE)+MLP for the first dataset. However,

for the second dataset, LR(RFE)+MLP(KT) is followed by LR(RFE)+MLP and LR+GB, while

architecture V remains the most efficient solution. Once again NB+RF gives the least average

recall for both datasets, with 0.61 and 0.29 for dataset 1 and 2. The reason for this behavior is

that the majority of instances were 100% misclassified. For instance, for the first dataset, out of

22 classes, instances of 8 classes were 100% incorrectly classified.

Lastly, we observe that the architecture V gives the highest value of F1 score among all

architectures at stage 0, with a value of 0.7 for the first dataset, followed by LR+GB and

LR(RFE)+MLP which both give an F1-score of around 0.65, whereas NB+RF achieves only

0.6. For the second dataset, our proposed architecture presents a F1-score of 0.89 followed by

LR(RFE)+MLP, LR+GB, and NB+RF which give a F1-score of 0.85, 0.80, and 0.28 respectively.

2.7.2.1.2 Stage 1

At this stage all five network architectures are considered as shown in Figure 2.8 for both datasets.

Moreover, we also included the accuracy in our evaluation metrics, since the output of Stage 1 is

our final classification. As it can be seen, our proposed architecture (LR(Anova)+MLP(KT))

attained an accuracy of 0.999, a precision of 0.996, a recall of 0.995 and a F1-score of 0.996 for

the first dataset. Regarding, the second dataset, it achieved an accuracy of 0.998, a precision of

0.996, a recall of 0.997 and a F1-score of 0.997. Furthermore, LR(RFE)+MLP(KT) provided

reasonable results followed by the other architectures for both of the datasets.

Once again, NB+RF continued to under-perform for both datasets at stage 1. Specifically, for the

dataset 1, the NB+RF achieved a performance of only 0.78 for recall, 0.8 for precision and 0.77

60

for F1-score because 3335 training instances of Belkin switch class, 374 instances of HP printer

class, 262 instances of the TP link camera class and 31 iPhone class instances were incorrectly

classified. Similarly, for the dataset 2, the particular model achieved a performance of only 0.33

for recall, 0.29 for precision and 0.31 for F1-score because many instances of devices such as

Tphilips Hub US, TP link bulb US, Sousvide US, TP link plug UK, T wemo plug UK, T wemo

plug US, Wans view cam wired US, wans view cam wired UK, smart thing hub UK,sousvide

UK,T philips hub UK,TP link bulb UK,TP link plug US were incorrectly classified.

Additionally, the NB+RF provided an accuracy of 0.77 for dataset 1 and 0.92 for dataset 2.

Further analysis showed that for the first dataset, there were 5 classes incorrectly classified out

of 22 and for the second dataset, there were 13 misclassified classes out of 68. As accuracy is

the ratio of these numbers, we corroborate the poor performance of architecture II as shown in

Figure 2.8.

After analyzing the results of stage 1, we conclude that our architecture V and its variation

(architecture VI) provide the best classification results in terms of all performance metrics for

both of the datasets. This is a significant observation that proves the robustness of our framework

that works equally well for different datasets with different number of classes. That is not the

case for architectures I-III, which presented a great deviation in the attained results between the

two datasets.

2.7.2.2 Impact of features

Figure 2.3 illustrated the correlation of the full set of features for the first dataset. However, it

is critical to understand which features have a higher importance (rank value) provided by the

feature selection method in the classification process. For this purpose, we provide the full set

of features along with their ranks, as calculated by Anova score and RFE for dataset 1, in Figure

2.9. The most important features selected for both datasets are provided in Table 2.8.

For the architectures I, II, III, we have used all features during the training and testing phases,

thus, we only compare the architectures IV and V to see the feature importance. Specifically, we

61

Figure 2.8 Performance comparison at stage 1

illustrate the ranks provided by the RFE for architecture IV and the ranks provided by the Anova

score for architecture V. The rank values are between 0 and 1. It can be seen that the highest rank

provided by Anova was 0.8 given to the feature 2 i.e., source IP address and the least rank given

by Anova score was 0.14 for feature 4 i.e., IP protocol used by device. For the RFE method, the

highest rank was provided to feature 2 i.e., 0.7 and the least to the feature 7 i.e., TTL information.

The features were selected in decreasing order of their ranks by the architectures.

In more details, Table 2.7 provides the information about the features utilized by each architecture

along with the performance metrics of each architecture for both datasets. The first three

architectures used all 11 features. However, as mentioned earlier, architecture IV selected the

features by RFE and architecture V selected the features by ANOVA method. For the first

dataset, the selected features by RFE for architecture IV consists of the source IP address (𝑓2),

interarrival time (𝑓1), source port number (𝑓5), destination Ethernet address (𝑓11), window size

(𝑓8), destination port number (𝑓6), source Ethernet address (𝑓10) and IP protocol used (𝑓4). In

contrast, the selected features by Anova for architecture V consists of source IP address (𝑓2),

packet length (𝑓9), window size (𝑓8), source Ethernet address (𝑓10), destination port number

(𝑓6), TTL (𝑓7), destination IP address (𝑓3), and source port number (𝑓5).

62

Figure 2.9 Feature ranks provided by the feature selection

methods

Table 2.8 Classification performance metrics vs features employed

Datasets Architecture Features Precision Recall F1 Accuracy

LR+GB 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5..., 𝑓11 0.900 1.000 0.940 0.990

NB+RF 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5..., 𝑓11 0.800 0.780 0.770 0.770

Dataset 1 MLP 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5..., 𝑓11 0.992 0.943 0.986 0.946

LR(RFE)+MLP 𝑓2, 𝑓1, 𝑓5, 𝑓11, 𝑓8, 𝑓6, 𝑓10, 𝑓4 0.994 0.964 0.979 0.986

LR(Anova)+MLP(Tuner) 𝑓2, 𝑓9, 𝑓8, 𝑓10, 𝑓6, 𝑓7, 𝑓3, 𝑓5 0.996 0.995 0.996 0.999

LR+GB 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5..., 𝑓11 0.997 0.972 0.984 0.990

NB+RF 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5..., 𝑓11 0.289 0.331 0.307 0.926

Dataset 2 MLP 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5..., 𝑓11 0.774 0.354 0.486 0.961

LR(RFE)+MLP 𝑓5, 𝑓6, 𝑓8, 𝑓10, 𝑓11 0.619 0.328 0.429 0.943

LR(Anova)+MLP(Tuner) 𝑓4, 𝑓5, 𝑓6, 𝑓7, 𝑓8 0.997 0.997 0.997 0.999

For the second dataset, the selected features by RFE in architecture IV are the source port

number (𝑓5), destination port number (𝑓6), window size (𝑓8), MAC address of source (𝑓10) and

63

MAC address of destination (𝑓11). For the architecture V, the selected features are the type of

protocol (𝑓4), port number of source (𝑓5), port number of destination (𝑓6), TTL (𝑓7) and window

size (𝑓8). Therefore, source IP address, packet length, window size, source Ethernet address,

destination port number, TTL, destination IP address, and source port number are more relevant

to classify labels for dataset 1 and the features as protocol, port number of source, port number of

destination,TTL and window size are more important for the classification in the second dataset.

To better illustrate the impact of feature selection in the resulted accuracy, we provide the

following formal logic representation for the first dataset. Nonetheless, the same logic can be

easily applied for the second dataset as well.

In more detail, we are representing the actual and selected feature sets of dataset 1 as: 𝑅 =

{ 𝑓2, 𝑓1, 𝑓5, 𝑓11, 𝑓8, 𝑓6, 𝑓10, 𝑓4} and 𝐴 = { 𝑓2, 𝑓9, 𝑓8, 𝑓10, 𝑓6, 𝑓7, 𝑓3, 𝑓5} respectively. According to

these sets, we model 𝑅 ∩ 𝐴 as follows:

𝑅 ∩ 𝐴 = {𝑥 |𝑥 ∈ 𝑅 : 𝑥 ∈ 𝐴} ⇔ { 𝑓2, 𝑓5, 𝑓8, 𝑓6, 𝑓10} (2.13)

The intersection 𝑅 ∩ 𝐴 gives the features that were used by both architectures. However, in order

to evaluate the impact of the feature selection in the overall performance, we need to identify the

features that were not included in both architectures, which is captured as follows:

𝑅 − 𝐴 = {𝑥 |𝑥 ∈ 𝑅 ∧ 𝑥 ∉ 𝐴} ⇔ { 𝑓1, 𝑓11, 𝑓4} (2.14)

Equation (2.14) provides the features that are only included by RFE and these are the interarrival

time, the destination MAC address and the IP protocol used. Since, architecture IV presented

an inferior performance than architecture V, we can safely say that these three features did not

provide a well aligned information with the features given by 𝑅 ∩ 𝐴. Following, we extract the

features included by the Anova score method but not from the RFE:

64

𝐴 − 𝑅 = {𝑥 |𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝑅} ⇔ { 𝑓9, 𝑓7, 𝑓3} (2.15)

As (2.15) suggests, the packet length, TTL and destination IP address are the features that they

are only considered by Anova and thus, by architecture V. Interestingly, we see that when these

features are included in 𝑅 ∩ 𝐴 such that (𝑅 ∩ 𝐴) ∪ (𝐴 − 𝑅) = 𝐴, the performance increased

significantly. Thus, the features { 𝑓9, 𝑓7, 𝑓3} have a positive impact in the performance of

architecture V as they increased the accuracy to 99.9%, precision to 99.6%, recall to 99.5% and

f1- score to 99.6% for dataset 1.

2.7.2.3 Performance of Architecture V

In this part of the evaluation, we present the detailed results of the proposed architecture V for

the first dataset, however, the accuracy, precision, recall and F1 score for both datasets can be

found in Table 2.8, as shown earlier.

2.7.2.3.1 Performance of stage 0

As we have proved the superior performance of our proposed two-stage classifier (architecture

V), in this part of the section we delve into the details of the performance of the particular

framework.

Accordingly, for the first dataset, Figure 2.10 illustrates the performance metrics per device

for stage 0. Some devices such as Belkin sensor, Dropcam and TP link router presents the

highest performance, i.e., recall=1; precision=1 and F1-score=1, all aggregated to 3. The lowest

precision is noticed for the belkin wemo switch i.e., 0.61, while the lowest recall and F1-score

are observed for the Samsung smartcam i.e., 0.53 and 0.65 respectively. Furthermore, for the

SmartCam the aggregated value is 2.04 since the F1 score is 0.65, the recall is 0.53, whereas the

precision is significantly high, i.e., 0.86. For the Netatmo weather station device, the aggregated

value is 2.09 as the precision is reasonably good, i.e., 0.88 but the recall and F1 score are

65

Figure 2.10 Performance comparison per device for

architecture V

relatively low i.e., 0.54 and 0.67. However, there were some devices such as withings scale,

triby speaker, nest alarm, and iPhone for which precision, recall and F1-score were zero. The

reason is that the instances of such devices were misclassified in other categories.

Following, we plot the confusion matrix of dataset 1 to give the overall performance of stage 0

as shown in Figure 2.11. The row entries of a confusion matrix depict the actual values and

the column entries depicts the predicted values for the 22 classes. All the diagonal entries

correspond to correct classification whereas entries above diagonal are all Type I error (also

called False Positive Rate (FPR)) and entries below are Type II error (also called False Negative

Rate (FNR)). The goal is to minimize the Type I and Type II errors close or equal to zero.

At the main diagonal there are four exception cases: (i) the worst classification is noticed for the

iPhone device, since 58% instances of the particular device were classified as Samsung galaxy

tab, 22% instances were misclassified as TP link router, and 20% were misclassified as amazon

echo thus depicting 100% FPR; (ii) for the nest protect smoke alarm the classification value is 0%

with 100% FPR because it was misclassified as Samsung tab; (iii) for the triby speaker, we notice

a 28% of misclassification as laptop (Type II error), and 72% of misclassification as netatmo

66

Figure 2.11 Confusion matrix for stage 0 of architecture V of

dataset 1

welcome (Type II error); (iv) for the withings smart scale, we noticed 87% of misclassification

as baby monitor (Type II error), 9.6% of misclassification as Samsung smartcam (Type II error),

1.9% of misclassification as Netatmo welcome, and 1.9% instances were incorrectly classified

as belkin wemo switch.

This behavior is attributed to the following reasons: (a) there were 50 instances of iPhone

compared to 3242, 87580 and 6231 of galaxy tab, TP link router and amazon echo instances; (b)

41 nest protect smoke alarm instances compared to 3242 instances of Samsung galaxy tab; (c)

771 triby speaker instances compared to 21815 laptop instances and 3995 instances of netatmo

welcome; and (d) 52 withings smart scale instances compared to 5912, 4895, 3995 and 4407

instances of baby monitor, Samsung smartcam, Netatmo welcome and belkin wemo switch

respectively. Thus, the prediction value for these devices is much higher as compared to iPhone,

nest protect smoke alarm, triby speaker and withings scale.

67

Figure 2.12 Training vs. validation accuracy of architecture

V for 100 epochs

2.7.2.3.2 Performance of stage 1

Figure 2.12 depicts the training and testing accuracy, over the 100 epochs for the first dataset.

The network model, i.e., optimized MLP at stage 1 of LR(Anova)+MLP (keras tuner), achieves

better training accuracy i.e., 0.9997292 and validation accuracy i.e., 0.99962693 as the number

of epochs increases. The initial accuracy values start from 0.998 at epoch 1 and the accuracy

value does not change significantly after epoch 60. Regarding the spikes noticed, Keras Tuner

estimates a close to optimal neural network topology using an exploitation versus exploration

approach.

In the exploitation stage, it tries to improve the neural network topology, which output the most

accurate results. In the exploration stage, it tries to randomly examine new neural network

68

Figure 2.13 Training vs. Testing loss functions for stage 1 of

architecture V

topologies that have not been explored yet. The exploration may help the optimisation process

to escape from a local optimal, resulting however to the spikes noticed in Figure 2.12. Yet, the

optimisation process manage to converge due to this exploitation stage.

Following, we have plotted the loss function for the training and testing datasets across the 100

epochs as shown in Figure 2.13. The learning curve shows the decay of the categorical cross

entropy loss function with respect to the number of epochs. This curve is helpful in predicting

whether our model is overfitted, underfitted or is fit to testing and training datasets. We see that

the loss function for both training and testing decays to low values i.e., 0.001193 for training and

0.001516 for the testing datasets at epoch 100. The spikes are due to the use of a random search

hyper tuner and the reasons discussed above. Furthermore, training and testing losses decrease

69

Figure 2.14 Comparison of performance metrics for stage 1

of architecture V over 100 epochs

and are stabilized around the same point i.e., after epoch 80 for training data. The model thus

successfully captures the classification patterns.

Next, Figure 2.14 depicts the performance metrics for 100 epochs at stage 1. The precision is

high as compared to the other two performance metrics i.e., 0.996923 at the epoch 100. It can

also be observed that the precision metric for the neural network does not exhibit significant

changes after the epoch 80. Regarding the recall, it is lower compared to the precision and

F1-score i.e., 0.9957 at epoch 100 and it shows a constant behavior after the epoch 95. For the

F1-score, the value is 0.9964 at the epoch 90 and it does not present any significant changes

after this point.

70

2.7.3 Limitations

Even though our framework provides very encouraging results, it still presents some limitations

that stem from the intrinsic data nature of the IoT traffic multi-classification problem. This

includes the extra overhead of monitoring the infrastructure to collect the traces, the construction

of a training dataset, and the computational overhead for the model training. In addition to that a

classification task is a supervised learning approach. This means that if new types of IoT devices

are connected in the local network a new cycle of data collection, annotation and training should

begin in order to update the model.

2.8 Conclusion

In this work, we studied the problem of IoT traffic classification. To solve this problem we

have proposed a composite learning framework that consists of two stages. After an initial data

preprocessing, the network traces are passed to stage 0, where a feature selection mechanism

and a Logistic Regression classifier are applied. In particular, an ANOVA filter based selection

technique decides on the most important features to be used by the stage 0 classifier. The

tentative classification of the stage 0 classifier along with the remaining features were then

passed to the stage 1 classifier, which used an optimal multi-layer perceptron neural network

architecture that provides the final classification.

Following, a detailed experimentation and comparison with various composite architectures on

two different IoT datasets have been performed. We concluded that the proposed framework

can considerably increase the performance of the classification in terms of recall, precision,

F1-score, accuracy and confusion matrix metrics. Regarding the accuracy, our proposed model

achieved a 99.9% accuracy for the first dataset and a 99.8% accuracy for the second dataset,

proving the generalization aspects of our approach.

The particular model is of utmost importance in an IoT to Cloud continuum communication

model, where different IoT devices need to be classified and their traffic profiles be accurately

predicted. This precise classification can positively contribute to the proper estimation of the

71

required resources from the subsequent Edge and Cloud layers where the IoT traffic will be

processed and analyzed.

The future direction of this work lies in the combination of our proposed model with a resource

allocation mechanism that will be able to leverage this workload estimation and dynamically

change the allocation strategy at the access and Edge networks. Finally, we aim to include other

machine learning techniques such as K-means clustering along with unsupervised methods to

address the limitations of classifying new and unknown types of IoT devices.

CHAPTER 3

TOWARDS QOS PREDICTION BASED ON TEMPORAL TRANSFORMERS FOR IOT
APPLICATIONS

Aroosa Hameed1 , John Violos1 , Aris Leivadeas1 , Nina Santi2 , Rémy Grünblatt3 , Nathalie

Mitton2

1Département de génie logiciel et des TI, École de Technologie Supérieure,

1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3
2 INRIA Lille-Nord, France

3 SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, Évry, France

Paper published in IEEE Transactions on Network and Service Management, October 2022

3.1 Abstract

Internet of Things (IoT) devices generate a tremendous amount of time series data that is

extremely dynamic, heterogeneous and time dependent. Such types of data introduce significant

challenges for the real-time prediction of QoS metrics of IoT applications with different traffic

characteristics. To this end, in this paper, we propose a temporal transformer model and a

unified system to predict several QoS metrics of heterogeneous IoT applications when they

communicate with the Edge of the network. The transformer model also leverages an attention

module to provide a solution for both short-term and long-term sequence prediction of QoS

metrics that allows to better extract any time dependencies. In particular, in our framework,

we firstly generate a set of datasets containing real-time traffic information of five different

IoT applications such as Heating, Ventilation, and Air Conditioning (HVAC), lighting, Voice

over Internet Protocol (VoIP), surveillance and emergency response using the 802.15.4 access

technology and the RPL routing protocol. Following, we perform the data cleaning, down

sampling and pre-processing of the datasets and we construct the QoS datasets, which include

four QoS metrics, namely throughput, packet delivery ratio, packet loss ratio and latency. Finally,

we evaluate the transformer model through extensive experimentation using both short-term and

long-term dependencies and we show that our model can guarantee a robust performance and

accurate QoS prediction.

74

3.2 Introduction

The number of Internet of Things (IoT) applications have considerably increased, while generating

a tremendous amount of data. According to Cisco, the number of connected devices will reach

up to 14.7 billion by 2023 (Cisco, 2022). The devices are expected to continuously generate

large volumes of data requiring extensive analysis to capture valuable information that can help

in the intelligent decision making. However, the device’s CPU, memory, and disk capacity

restricts the data processing on the device itself. Thus, the data and the analysis processing

have to be offloaded to more resource powerful platforms, such as the newly introduced Edge

Computing (Pratap, Kumar & Kumar, 2021). Edge computing can facilitate the data processing

very close to the source of the data, reducing thus the overall latency perceived. In this way also,

the processing burden is shifted/offloaded to the Edge of the network through a process that is

called task offloading (Saeik et al., 2021). However, the amount of Edge resources needed for

each IoT application depends on the volume of the data generated from the IoT devices. This

creates an important challenge related to the accurate workload (e.g. throughput) profiling of an

IoT application.

At the same time, IoT applications consist of heterogeneous devices that send data of different

contexts, with different reporting frequencies usually over a random access channel generating

thus, high interference levels (Dechouniotis et al., 2020). All these add several levels of

complexity when it comes to the prediction of typical Key Performance Indicators (KPIs) in

IoT. Regarding the reporting frequency, IoT devices follow very dynamic models ranging from

periodic to event-based transmissions. Hence, the feature of time dependence make such data

different and more challenging than traditional data. Therefore, each IoT application, when

generating/offloading data, will have different instantaneous Quality of Service (QoS) behavior,

which will be time dependent. Hence, it is necessary to propose an efficient model that will

analyze and predict the QoS metrics using IoT time series data.

A time series data is a series of data points that are ordered by their chronological order. Time

dependency is a very important feature of the IoT time series data, since data are becoming

75

widespread in an IoT context (Marjani et al., 2017). Accordingly, the time feature is affecting the

way prediction and analysis of IoT data is done. One way to predict the data at a next time step

is to use the data from previous time steps in the short or long past (S. & Ram, 2022). Therefore,

there is huge interest in analyzing the IoT traffic profiles by applying various machine learning

techniques (Hameed et al., 2021).

For example, several studies applied traditional time series algorithms or deep learning models

to predict the IoT traffic behavior (Abdellah et al., 2020a)-(Lai, Chang, Yang & Liu, 2018). In

the studies (Abdellah et al., 2020a)-(Lopez-Martin, Carro & Sanchez-Esguevillas, 2019), the

authors applied diverse deep learning algorithms such as Recurrent Neural Network (RNN),

Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), attention mechanism,

regression techniques and stochastic gradient descent for the prediction of either specific or a set

of QoS metrics. Nonetheless, various research gaps can be identified in these existing studies.

Firstly, in (Abdellah et al., 2020a)-(Hameed et al., 2021) several QoS prediction mechanisms are

presented, however, without considering any time dependencies. Secondly, for the works (Fan

et al., 2019)-(Lopez-Martin et al., 2019), only a simple traffic prediction is provided, without

predicting typical QoS metrics found in an IoT context. Thirdly, no multivariate prediction of

QoS is provided for the studies (Hou et al., 2021), (Fan et al., 2019) and (Wu et al., 2021), which

is an important element to capture the dependencies among multiple QoS metrics. Additionally,

some works, such as (Hochreiter & Schmidhuber, 1997)-(Lai et al., 2018), applied deep learning

specifically for the time series forecasting task. These works proposed various learning networks

such as Temporal Convolutional Network (TCN), DeepAR, LSTNet and an improved versions of

LSTM as stacked LSTM and bidirectional LSTMs for time series forecasting problems. However,

this set of works lacks the ability to handle both the short and long-term dependencies at the

same time, while training over long sequences of data degrades the accuracy of the prediction.

To overcome the above described research gaps of the current studies, we deploy five different IoT

applications to investigate four different QoS metrics. Moreover, this research also investigates

the multivariate prediction of QoS metrics for each application. Last but not least, a novel model

that makes an efficient use of the time features of the IoT applications and accurately predicts

76

their QoS behavior, in a dynamic network environment, is proposed. The model also investigates

the short and long input sequence dependencies without any performance degradation. To this

end, the main contributions of this paper can be summarized as follows:

• We consider 5 different IoT smart building applications that present different requirements

in terms of number of devices, packet length, context of message, and message frequency

transmission. We deploy the applications in a real testbed (Adjih et al., 2015) comprised of

approximately 300 IoT devices and generate data over an IEEE 802.15.4 access network.

• We provide the predictions of four major QoS metrics such as Throughput, Packet Delivery

Ratio (PDR), Packet Loss Ratio (PLR) and Latency. As multivariate time series forecasting

poses a challenge of how to capture and leverage the dependencies among multiple variables,

we provide both univariate and multivariate multi-step prediction for all four QoS metrics of

the five IoT applications under consideration.

• We design and implement a QoS prediction mechanism based on Temporal Transformers

that models temporal dependencies within input sequences consisting of IoT data and that is

able to handle the long input sequences with the attention module to make prediction. The

model accurately provides the multi-step QoS prediction and its temporal relation with its

preceding QoS values from past observations.

The rest of the paper is organized as follows: Section 3.3 presents the related work and current

limitations. Section 3.4 gives a detailed information on the challenges of IoT time series data.

Section 3.5 summarizes the real time dataset generation of the considered IoT applications.

Section 3.6 presents the proposed model along with its algorithmic form and asymptotic analysis.

Section 3.7 provides the experimentation setup and illustrates the results and the efficiency of

the proposed solution. Finally, Section 3.8 concludes the paper.

3.3 Related Work

In the pertinent literature, there are various studies either for the prediction of IoT traffic along

with the QoS metrics or for the general time series forecasting task using machine learning or

deep learning approaches. Thus, in this section we divide the related work into two distinct

77

categories: i) deep learning models for QoS prediction and ii) deep learning models for general

time series forecasting.

3.3.1 Deep Learning for QoS Prediction

The authors in (Abdellah et al., 2020a), predicted the delay using a nonlinear autoregressive

exogenous (NARX) RNN following both a single-step and a multi-step ahead prediction. The

prediction accuracy is measured using MSE, RMSE and MAPE metrics. However, they used

a simulated dataset of an IoT environment. Furthermore, the delay metric is also predicted in

(Ateeq et al., 2019a) using a simple Deep Neural Network (DNN) consisting of forward with

backward passes and also providing the analysis of hyperparameters, which presented good

results such as size of training data, number of layers, number of neurons in each layer and

epochs. The features utilized by this work were extracted from the application layer, MAC layer

and physical layer of the network. The authors in (Said & Tolba, 2021) proposed a deep learning

model that predicts the throughput, delay, and packet loss of an IoT communication system. The

proposed model consists of three layers: The first layer includes a neural network for the Internet

as it represents the transmission medium between different networks in an IoT system. The

second layer consists of a number of neural network for each access network such as Wireless

Sensor Networks (WSN), Radio Frequency Identification (RFID) network and Mobile Ad-hoc

Network (MANET) in an IoT system. This layer predicts the individual performance of each

network. The third layer comprises the last neural network model which is used to predict the

final performance of the entire IoT system. The work in (Hou et al., 2021) attempted to predict

the throughput using a Convolutional Neural Network (CNN) with the target vectorization

technique as their throughput distribution was centralized and concentrated on several values.

This is why and in order to mitigate this centralized distribution they resorted to a vectorization

technique. However, the dataset was generated from a simulated factory scenario.

Fan et al. (2019) proposed a deep learning based Recurrent Neural Network (RNN) model using

an attention mechanism for the IoT data processing at the Edge. All input time series were fed

into the RNN and attention network to calculate the extrinsic correlations and to provide the final

78

prediction. The proposed model, called UrbanEdge, used four different datasets such as traffic

volume, building occupancy, electricity and Air Quality Index (AQI) consisting of time series

based sensor readings. The results proved that the proposed UrbanEdge model outperforms

several baseline methods such as Autoregressive Integrated Moving Average (ARIMA), Vector

Autoregression (VAR), LSTM and Sequence-to-Sequence (Seq2Seq). However, there is the

vanishing gradient problem for the training of the RNN and the model also requires a high

bandwidth for the transfer of the monitoring metrics.

The authors in (Wu et al., 2021), proposed EdgeLSTM, which is an Edge-based deep learning

system that utilizes grid LSTM along with Support Vector Machine (SVM). The pipeline of

this framework followed a data processing, a hyperparameter selection, and a construction of

multi-class SVM models to be trained using four different datasets. The output was to get the

results for four different tasks such as data prediction, network maintenance, anomaly detection

and mobility management. Abdellah et al. (2020b) performed the prediction of throughput of

IoT traffic in a 5G communication network using an LSTM network. The dataset is generated

using an IoT traffic generator. The features of the dataset includes the timestamp, bytes count

and packets count. Finally, the authors in (Lopez-Martin et al., 2019) proposed the forecasting

of IoT traffic by using a stochastic gradient descent algorithm and a neural network architecture

called gaNET. The dataset used in the paper consists of features such as obfuscated mobile

identification and timestamp of records.

There are also few recent studies that applied regression based approaches (Ateeq et al., 2019b),

(Hameed et al., 2021), to predict throughput and packet delivery ratio (PDR), since regression

based techniques tend to be a light weight alternative for the prediction of QoS metrics. However,

most of the IoT data used for the QoS prediction consist of time series sequences which are

better predicted using deep learning approaches, such as Recurrent Neural Networks (RNN) or

Long Short-Term Memory (LSTM) networks, that are specifically designed for handling time

series data.

79

3.3.2 Deep Learning for Time Series Forecasting

Regarding the time series data forecasting, various neural network based methods are developed

for sequence-to-sequence learning. Specifically, RNNs are well suited for the time series

forecasting as they consist of a memory cell that can be used to recall things from the past.

However, as explained before, the vanishing gradient problem persists over the longer time

series sequences. A variant of RNN is LSTM (Hochreiter & Schmidhuber, 1997) that uses a

gating mechanism for controlling an access to memory cell and mitigates the vanishing gradient

problem. There is also a stacked LSTM model (Sutskever, Vinyals & Le, 2014) for the time series

prediction. This model stacks LSTM layers on top of each other to learn longer dependencies.

Another extension to LSTM is the bidirectional LSTM (Cheng, Xie, Wu, Yu & Li, 2019) in

which two models are trained. The first model is used for learning the input sequence and the

second learns the reverse of that sequence.

Furthermore, a Temporal Convolutional Network (TCN) which combines the dilations and

residual connections with the causal convolutions needed for autoregressive prediction, was

proposed in (Bai, Kolter & Koltun, 2018b). The authors showed that TCN performed better than

RNN models for time series forecasting tasks. Salinas & et al (2020) proposed a model called

DeepAR for probabilistic forecasting using autoregressive recurrent networks that learns from

historical data of all time series in the dataset and provides the forecasting results. Another deep

learning model for multivariate time series forecasting, was proposed in (Lai et al., 2018) called

Long- and Short-term Time-series Network (LSTNet). This work combined the convolutional

layer along with recurrent layer to learn both local patterns and long-term dependencies among

multi-dimensional input variables. It also incorporated the autoregressive linear model along

with a non-linear model to make the framework more robust for the time series which violate

scale changes.

80

3.3.3 Limitations of the Related Work

As stated in Section I, the limitations of the above mentioned works can be summarized as

follows:

• Most of the studies provide the prediction of the IoT traffic type and do not predict the

QoS attributes (Fan et al., 2019)-(Lopez-Martin et al., 2019). There are only few studies

that provide the QoS prediction (Abdellah et al., 2020a)-(Hameed et al., 2021). However,

these works have not thoroughly examined the actual prediction task with respect to time,

especially in emerging IoT application scenarios.

• Some of the existing studies provide the prediction of IoT traffic or QoS attributes as a

univariate forecast (Hou et al., 2021), (Fan et al., 2019) and (Wu et al., 2021). However,

multivariate prediction can capture and use the dependencies among multiple variables to

predict the future QoS at a specific time step.

• The existing studies based on neural networks are mostly designed for a short-term sequence

prediction setting (Hochreiter & Schmidhuber, 1997)-(Salinas & et al, 2020). Specifically,

RNN based models have the vanishing gradient problem which prevents the training over

long sequences of data.

In this work, we solve the above mentioned challenges as follows: (i) Firstly, we provide the

detailed prediction of four QoS metrics such as throughput, packet delivery ratio (PDR), packet

loss ratio (PLR) and latency for five heterogeneous IoT applications such as HVAC, VoIP, lighting,

surveillance and emergency application; (ii) Secondly, we provide the multistep prediction of

each QoS in both univariate and multivariate settings; (iii) Thirdly, to overcome the vanishing

gradient problem in the training of long QoS data sequences, we are introducing a temporal

transformer architecture. To the best of our knowledge, this is the first work which provides a

transformer based QoS prediction for IoT applications.

81

3.4 Problem Formulation of QoS Prediction

In this section, we describe and formulate the QoS prediction problem, when we have multiple

QoS metrics such as throughput, PDR, PLR and latency to be predicted and when IoT devices

belonging to different IoT applications communicate with an Edge infrastructure. In particular,

the IoT applications are represented by the set 𝐴 = {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5} where 𝑎1 represents

the first IoT application, 𝑎2 represents the second IoT application and so on. Similarly, the

set 𝐷 = {𝑑1
𝑎1
, 𝑑2
𝑎2
, ..., 𝑑𝑚𝑎𝑖 } represents the data generated by each IoT application where 𝑑1

𝑎1

represents the first dataset in the set 𝐷 and it is generated by the IoT application 𝑎1. The

𝑑𝑚𝑎𝑖 denotes the 𝑚𝑡ℎ dataset generated and it is for the 𝑖𝑡ℎ IoT application where 𝑚 <= 5 and

𝑖 <= 5 as data is generated for five different IoT applications. Furthermore, each network

dataset generated for an 𝑖𝑡ℎ IoT application is constituted by a sending and receiving information

which is denoted as 𝐷 = {(𝑢1
𝑎1
, 𝑠1𝑎1

), (𝑢2
𝑎2
, 𝑠2𝑎2

), (𝑢3
𝑎3
, 𝑠3𝑎3

), (𝑢4
𝑎4
, 𝑠4𝑎4

), (𝑢5
𝑎5
, 𝑠5𝑎5

)} where (𝑢1
𝑎1
, 𝑠1𝑎1

)
represents the pair of sending and receiving information for IoT application 𝑎1. More specifically,

𝑈 = {𝑢1
𝑎1
, 𝑢2
𝑎1
, ..., 𝑢

𝑗
𝑎1
} denotes the set of the transmitting information by the IoT devices of

the IoT application 𝑎1. Similarly, 𝑆 = {𝑠1𝑎1
, 𝑠2𝑎1

, ..., 𝑠
𝑗
𝑎1
} represents the set of the receiving

information at the Edge server side, where 𝑠
𝑗
𝑎1

is the 𝑗 𝑡ℎ receiving information of the 𝑖𝑡ℎ IoT

application.

Regarding the features used, the set 𝑈𝐹 denotes the features related to the transmitting data

in the network by the IoT devices as: 𝑈𝐹 = {𝑢 𝑓1 , 𝑢 𝑓2 , 𝑢 𝑓3 , 𝑢 𝑓4 , 𝑢 𝑓5 , 𝑢 𝑓6} where 𝑢 𝑓1 denotes the

timestamp at which the packet is sent; 𝑢 𝑓2 is the sensor node ID that is sending the packet; 𝑢 𝑓3

represents the size of the UDP payload in bytes; 𝑢 𝑓4 is the IPv6 destination address (we use an

802.15.4 access network with 6LoWPAN); 𝑢 𝑓5 is the destination port; 𝑢 𝑓6 is the actual payload

in a hexadecimal format. In a similar way, the set 𝑆𝐹 represents the features related to the

receiving information at the Edge server side and is further expressed as 𝑆𝐹 = {𝑠 𝑓1 , 𝑠 𝑓2 , 𝑠 𝑓3 , 𝑠 𝑓4},
where 𝑠 𝑓1 represents the timestamp at which the packet is received; 𝑠 𝑓2 is the IPv6 address from

which the packet originates; 𝑠 𝑓3 denotes the receiver port on which the packet has been received;

and 𝑠 𝑓4 is the hexadecimal payload of the packet. Given the sets𝑈𝐹 and 𝑆𝐹, we computed the

QoS datasets for each IoT application. The throughput is represented as 𝑄 = {𝑞1
1
, 𝑞2

2
, ..., 𝑞𝑡𝑖}

82

where 𝑞𝑡𝑖 is the 𝑖𝑡ℎ throughput value at timestamp 𝑡, such that 0 < 𝑡 < 𝑇 , where 𝑇 represents

the total timestamps for which data are generated. The packet deliver ratio is represented as

𝑃 = {𝑝1
1
, 𝑝2

2
, ..., 𝑝𝑡𝑖} where 𝑝𝑡𝑖 is the 𝑖𝑡ℎ PDR value at timestamp 𝑡. The packet loss ratio is

denoted as 𝐸 = {𝑒1
1
, 𝑒2

2
, ..., 𝑒𝑡𝑖}, where 𝑒𝑡𝑖 is the 𝑖𝑡ℎ PLR value at timestamp 𝑡. Lastly, the latency

is denoted as 𝐿 = {𝑙1
1
, 𝑙2

2
, ..., 𝑙𝑡𝑖 }, where 𝑙𝑡𝑖 is the 𝑖𝑡ℎ latency value at timestamp 𝑡.

In the Time Series Forecasting (TSF) setting, let 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑁 }𝑇 represent the multivariate

QoS time series with 𝑁 variables, 𝑇 as timestamp and 𝑋 ∈ R𝑇×𝑁 . When 𝑁 = 1 it becomes a

univariate time series problem which can be represented, for the throughput 𝑄 for example, as

the 𝑖𝑡ℎ univariate QoS time series, given as 𝑋𝑇𝑖 = {𝑥1
1
, 𝑥2

2
, ..., 𝑥𝑡𝑖 } ∈ 𝑄𝑇 where 𝑥𝑡𝑖 is the 𝑖𝑡ℎ value of

the QoS metric collected at a timestamp 𝑡. Given the 𝑋 and a fixed window size 𝜏, with 𝜏 ∈ N,

this time series is split into a fixed length input as 𝑋 = {(𝑥𝑡
1
, 𝑥𝑡+1

2
, .., 𝑥𝑡+𝜏𝜏), (𝑥𝑡+1

1
, 𝑥𝑡+2

2
, .., 𝑥𝑡+𝜏𝜏), ...,

(𝑥𝑡+𝑖
1
, 𝑥𝑡+𝑖+1

2
, .., 𝑥𝑘+𝜏𝜏)} such that 0 < 𝑡 < 𝑇 , ∀𝑖 ∈ N and 𝑘 = 𝑇 − 𝜏.

Given the input time sequence as {𝑥𝑡
1
, 𝑥𝑡+1

2
, .., 𝑥𝑡+𝜏𝜏 } ⊂ 𝑋 , we consider the task of predicting

either only one step ahead value, such as to predict the value of 𝑥𝑡+𝜏+1
𝜏+1

or multistep values i.e.,

ℎ number of future values of QoS as 𝑋̃ = {𝑥𝑡
1
, 𝑥𝑡+1

2
, ..., 𝑥𝑇−1

ℎ−1
, 𝑥𝑇ℎ }, with ℎ ∈ N and 𝑥𝑡

1
trying to

predict the value of 𝑥𝑡+𝜏+1
𝜏+1

, and so on. Thus, the goal is to learn a precise forecasting model as

𝑀 : 𝑋𝑡,𝜏(𝑖) → 𝑋̃𝑡,ℎ(𝑖+𝜏) by minimizing some loss function.

Table 3.1 Experimentation’s parameters

Scenario No. of sensors No. of routers Duration (s) Packet Length (B) Generation Type Lambda Period (s)

Surveillance 10 3 10090 127 Exponential 196.74 —

Emergency Response 40 5 10090 127 Hybrid 0.0333 30.0

HVAC 100 5 10090 60 Periodic — 260.0

Lighting 100 5 10090 30 Exponential 0.00208 —

VoIP 10 1 10090 127 Hybrid 15.74 0.063532

83

3.5 Edge Computing Infrastructure and Dataset Construction

3.5.1 Applications and Edge Computing Infrastructure

Five different IoT applications and their respective datasets are considered in this work. These

applications are: 1) Emergency Response: The emergency system is used to monitor the critical

areas of the building such as gas pipes or fire alarms. If a situation occurs where the pipelines

reach high pressure, which may cause an explosion, then the IoT devices at a specific location

will detect this and send an alert with relevant contextual information to a control system to

remedy the situation. 2) Heating, Ventilation and Air Conditioning (HVAC): The HVAC

system provides various handling systems inside the building by controlling factors such as

temperature, humidity etc., in order to provide the necessary comfort and indoor air quality to the

occupants. 3) Surveillance: The surveillance systems involve cameras, monitoring and sensor

devices that are used to provide the required physical security at a specific location. 4) Voice over

IP (VoIP): The VoIP systems are used for providing automatic help desks or interactive voice

recognition. 5) Lighting: The lighting systems can be used to provide information regarding

room occupancy, while also reducing the total energy consumption of the building.

All of the above applications coexist in the same building and generate data at the same time.

This can create a very dynamic environment, especially when a random access channel is

considered that can create QoS uncertainties due to interference and re-transmissions. For each

of the IoT applications, the experiment involves three types of entities, or nodes, namely:

1. Server: This entity (node) represents a UDP server which collects and receives all of the

information regarding the packet exchanges in the network. For all of the experiments, one

central server is used, which is accessible through the internet via an IPv6 connection.

2. Border Routers: The sensor nodes are connected to the internet via border routers which

have two interfaces. The first interface is connected to the internet and the second is

connected to the sensors network, using the 802.15.4 as an access protocol and the IPv6

Routing Protocol for Low power and Lossy Networks (RPL) as the routing protocol. More

specifically, the border routers are the roots of the RPL’s Destination Oriented Directed

84

Acyclic Graphs (DODAGs) with a role similar to the ISP “box” for residential users that

have an interface connected to the Internet and another providing Wi-Fi connectivity. For

the experiment purposes, the total number of border routers is kept constant for each of the

individual application, however it may vary as it is a modifiable parameter.

3. Sensors: The sensors are nodes that are used to generate data following a specific

distribution, as shown in Table 3.1, according to the five IoT applications mentioned earlier.

The sensor data are transmitted to the server using the 802.15.4 technology via the RPL

routing mechanism. Further, each sensor can also be used to relay packets to border routers,

if it lies on the shortest path between a sensor and the DODAG root. Each sensor can have

several DODAG parents, creating multiple possible paths to the border routers.

We have defined a heterogeneous set of parameters for each IoT application to perform the data

generation experiments. These parameters include the number of sensors, number of border

routers, duration, packet length in bytes, generation type of packets, lambda value of their

generation type and time period in seconds, as shown in Table 3.1. The only common parameter

among the five applications is the duration of the experimentation, since the applications coexist

at the same time. The generation type represents the distribution according to which application

data are generated. If it is exponential, as for surveillance and lighting applications, then

the packets generated by each node follow an exponential distribution using the parameter

Lambda. If the generation type is Periodic i.e., for HVAC, then the packets are generated

periodically according to the Period parameter. If the generation type is hybrid i.e., for emergency

response and VoIP applications, then data follow a hybrid generation according to an exponential

distribution that follows a specific Lambda value and a periodic pattern. This behavior creates

another level of QoS uncertainty that can lead to considerable traffic fluctuations, as well

as spectrum and resource requirements. More details regarding the testbed and the dataset

generation can be found in (Santi et al., 2021).

85

Table 3.2 Description of raw features in dataset

Data Feature Description

node_name name of sensor node

timestamp time at which the packet is sent

Transmitting payload_size size of the UDP payload, in bytes

data (UDP) dest_address destination IPv6 address

dest_port contains the destination port

payload hexadecimal identifier of the packet

timestamp time at which the packet is received

Receiving IPv6_address source IPv6 address

Data (Server) receiver_port port on which the packet is received

payload hexadecimal identifier of the packet

3.5.2 Feature Engineering

The dataset generated for the five different IoT applications provide the receiving and transmitting

information of the packets within the network. Each application has its own database with UDP

and server tables. The UDP table contains information about packets as they are transmitted by

the sensors and the Server table contains information about packets as they are received by the

server. The raw features are highlighted in Table 3.2.

In order to extract the most useful features from the given raw data, we engineered several

features as described below:

1. Timestamp: It is the time that is associated with each packet in the network. Initially, data

were collected and added to the raw dataset at a nanosecond granularity. However, we

changed the granularity of the dataset from 1 nanosecond to 5 milliseconds, to better capture

the QoS metrics fluctuations. For example, it was not always possible to calculate the QoS

metrics for each nanosecond as in most of the nanosecond timestamps we did not have any

sending or receiving packets in the network that was causing the generation of many null

values for the QoS datasets. Thus, each of the below described features are computed for a

time interval 𝑡 of 5 milliseconds without however losing significant information.

86

2. 𝑡𝑖𝑚𝑒 𝑓 𝑖𝑟𝑠𝑡_𝑝𝑎𝑐𝑘 : It is the time at which the first packet is transmitted in a specific time interval

of 5 ms.

3. 𝑡𝑖𝑚𝑒𝑙𝑎𝑠𝑡_𝑝𝑎𝑐𝑘 : It is the time at which the last packet is transmitted to the server in a specific

time interval of 5 ms.

4. 𝑡𝑜𝑡𝑎𝑙𝑡𝑟𝑎𝑛𝑠_𝑝𝑎𝑐𝑘 : It is the total number of packets transmitted by a node during a specific

time interval of 5 ms.

5. 𝑡𝑜𝑡𝑎𝑙𝑟𝑒𝑐_𝑝𝑎𝑐𝑘 : It is the total number of packets received by the server during a specific time

interval of 5 ms.

6. Packet Delivery Ratio (PDR): It is the ratio of the received packets to the transmitted packets

per node for every 5 ms and it is given as:

𝑃𝐷𝑅 =
𝑡𝑜𝑡𝑎𝑙𝑟𝑒𝑐_𝑝𝑎𝑐𝑘

𝑡𝑜𝑡𝑎𝑙𝑡𝑟𝑎𝑛𝑠_𝑝𝑎𝑐𝑘
∗ 100 (3.1)

7. Packet Loss Ratio (PLR): It is the ratio of the lost packets to the received packets at the

server side and it is given as:

𝑃𝐿𝑅 =
𝑡𝑜𝑡𝑎𝑙𝑙𝑜𝑠𝑠_𝑝𝑎𝑐𝑘

𝑡𝑜𝑡𝑎𝑙𝑟𝑒𝑐_𝑝𝑎𝑐𝑘
∗ 100 (3.2)

8. Throughput: It is the rate of the total number of received packets (or their size) over a time

period of 5 ms:

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑡𝑜𝑡𝑎𝑙𝑟𝑒𝑐_𝑝𝑎𝑐𝑘

𝑡𝑖𝑚𝑒𝑙𝑎𝑠𝑡_𝑝𝑎𝑐𝑘 − 𝑡𝑖𝑚𝑒 𝑓 𝑖𝑟𝑠𝑡_𝑝𝑎𝑐𝑘
(3.3)

9. Transmission Latency: It is the average time taken by a transmitted packet to be successfully

received at the receiving side over a time period of 5 ms and is given as:

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 =

∑
𝑡_𝑝𝑎𝑐𝑘 (𝑡𝑖𝑚𝑒𝑟𝑒𝑐_𝑝𝑎𝑐𝑘 − 𝑡𝑖𝑚𝑒𝑡𝑟𝑎𝑛𝑠_𝑝𝑎𝑐𝑘)

𝑡𝑜𝑡𝑎𝑙𝑡𝑟𝑎𝑛𝑠_𝑝𝑎𝑐𝑘
(3.4)

87

3.5.3 Data Preprocessing

Each application dataset is stored in a SQLite3 database and compressed with the zstd compression

algorithm. We firstly decompress the dataset and read the sql table in the .csv format. Then

we engineer the QoS related features and create a second QoS dataset for each of the IoT

applications. However, before the QoS datasets are fed to our proposed transformer models

for training or validation purposes, several preprocessing operations are applied to refine their

quality and thereby the QoS forecasting performance. In particular, we remove any outliers that

are caused by some unseemly situations in the datasets. There are also some missing values in

the QoS dataset because it may occur that no packets are transmitted and received for some time

intervals. For instance, the HVAC and lighting applications are generating packets with very low

frequencies, as can be seen in Table 3.1. For the particular applications, the missing values are

filled by average values of their respective features.

Finally, the features of each application dataset is normalized in a particular range using the

min-max normalization given as:

𝑋_𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥 − 𝑥𝑚𝑖𝑛
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

(3.5)

where 𝑥 is the original QoS value of the metric/feature under consideration (e.g. Throughput,

PDR, PLR and Latency), 𝑥𝑚𝑖𝑛 represents the minimum value of that feature and 𝑥𝑚𝑎𝑥 denotes its

maximum value. Thus, the normalized data lie in the range from 0 to 1.

3.6 Proposed Temporal Transformer Framework

This section discusses the overview of the proposed temporal transformer for the QoS time

series prediction between the IoT devices and the Edge server. Following, the next paragraphs

discuss the details of the proposed model and present the description of each of its modules.

88

Figure 3.1 Overview of Proposed System for QoS Prediction

3.6.1 Overview of Proposed Framework

Given the ability of temporal transformer models to get the time dependencies of a dataset, we

proposed a framework which adopts the benefits of the particular model to process and estimate

the QoS metrics for IoT applications in an edge environment. In the proposed framework as

shown in Figure 3.1, we first generate the real IoT data for five different applications as discussed

already in the Section 3.5.1. Then, our second step is to take all of these raw datasets and engineer

the new useful features as discussed in Section 3.5.2. Then we process these data by performing

data cleaning, data down-sampling and data normalization. Then the new pre-processed QoS

datasets for the five IoT applications are divided into training sets, validation sets, and testing

sets. The total experimentation duration is lasted about one week. The training sets contain the

data generated in the first five days, while the both of validation and testing sets contain one day

data. The training and validation datasets are used to construct the optimal transformer network

by selecting the appropriate hyperparameters. Finally, after the temporal transformer model is

trained, the QoS metric prediction results are obtained by using the testing dataset.

89

3.6.2 Temporal Transformers

The base of our proposed temporal transformer lies in the transformer encoder architecture

which was initially proposed in 2017 for machine translation tasks (Vaswani et al., 2017)

(Zerveas & et al., 2021). However, we do not use the decoder part of the base transformer for

the following reasons. Firstly, the decoder module in the transformer architecture is suitable

when the output sequence length is not predefined such as for generative tasks e.g., machine

translation in Natural Language Processing (NLP) or summarization tasks. In contrast, in this

work, the task is to predict the future throughput, PDR, PLR or latency in defined time steps.

Secondly, using only the encoder part makes the proposed work suitable for solving several

types of problems for IoT applications, such as classification, regression and generative tasks.

Finally, the main purpose of the proposed temporal transformer is to learn the short as well as

the long-term dependency of the Throughput, PDR, PLR and latency with the time domain.

Thus, in our case, the temporal transformer consists of temporal inputs, positional embedding

and encoder modules, while the QoS prediction will be the final output.

3.6.2.1 Input and Output of the Temporal Transformer

As mentioned earlier, we are solving both the univariate and multivariate QoS prediction.

Therefore, the input to the transformer in these two cases will be different according to the

number of the sequential values to be predicted, as described in Section 3.4. For the temporal

transformer input, a rolling window strategy is applied for the QoS metric prediction. In case

of a univariate prediction, the individual sequence of either throughput, PDR, PLR or latency

is taken as series. In contrast for the multivariate prediction, all possible features along with

their timestamps are inserted as series input. Following, the series are divided into a number of

observations with a length that is specified by the selected window size and they are shifted

iteratively with a step size of 1.

Figure 3.2 illustrates the process of sampling the univariate input. There are two parameters

that are used to control the rolling window strategy: i) the rolling window size which is 8, as

90

Figure 3.2 Overview of univariate input and output of prediction

each of the rolling window sample has a length of 8 data samples; ii) the number of steps to be

forecasted which is basically a forecast horizon, which in the particular example is 3. Given

the rolling window samples as an input to the temporal transformer, the model can predict the

QoS metrics of the forecast horizon based on the windows of the previous samples. It is to be

noted that the window size and forecast horizon parameters used in Figure 3.2 were selected for

illustration purposes.

In the above example, a univariate prediction is performed. This means that if throughput is the

targeted QoS metric to be predicted, the rolling window samples will contain only throughput

series along with their timestamps. In case of multivariate prediction, the throughput will be

predicted based on the previous time steps of all involved features, namely the total transmitted

messages, total received messages, PDR, PLR, latency and throughput itself. This means that

the windowing samples are created using multiple features. However, the output generated by

the transformer model will be the forecast throughput value. The same procedure will be applied

for other QoS metric predictions, such as, PDR, PLR and latency.

91

3.6.2.2 QoS Positional Encoding

The position and order of the input sequence are very important elements for the QoS prediction.

Therefore, RNNs (such as LSTM) take the order of sequence inherently. The transformer on the

other hand, lies on the attention mechanism in order to learn the long-term dependencies and

to speed up the training time. In the attention mechanism, the attention scores are computed

for all of the time steps as we will discuss in the next subsection. In case the time steps are

not distinguished, the attention scores will be the same for all of the time steps. Hence, we

need to incorporate the positional information of the time steps before giving the input to the

transformer.

The positional encoding is the dimensional vector generated for each time step that describes the

position information in the input sequence. In this work, we applied the sinusoidal positional

encoding because the positional encoding provided by this scheme is fixed for each time step

and no additional weights are required to be trained. The sinusoidal encoding is described as

follows:

𝑃𝐸𝑝𝑜𝑠,2𝑖 = 𝑠𝑖𝑛(𝑝𝑜𝑠

10000(2𝑖/𝑑𝑚𝑜𝑑)
), 0 < 𝑝𝑜𝑠 < 𝑁 − 1 (3.6)

𝑃𝐸𝑝𝑜𝑠,2𝑖+1 = 𝑐𝑜𝑠(𝑝𝑜𝑠

10000(2𝑖 + 1/𝑑𝑚𝑜𝑑)
), 0 < 𝑝𝑜𝑠 < 𝑁 − 1 (3.7)

where 𝑃𝐸 denotes the positional encoding. 𝑝𝑜𝑠 is the position index of the time step of the

input sequence and its range lies between 0 and 𝑁 , which is the length of the input sequence.

2𝑖 represents the even dimensions of 𝑑𝑚𝑜𝑑 and 2𝑖 + 1 denotes the odd dimensions of the 𝑑𝑚𝑜𝑑 ,

which is the dense vector of each input time step provided by the input layer.

The positional encoding of each input sequence is added position-wise with the output of the

input layer as shown in Figure 3.2. This is then passed to the encoder module of the temporal

transformer.

92

3.6.2.3 Encoder Module

The encoder module consists of a stack of encoders, and all are identical to each other in term of

their architecture. The input of the encoder is firstly passed to the multi-head attention module

that looks at the QoS values such as 𝑥𝑡
1

and 𝑥𝑡+1
2

in the input sequence 𝑠𝑒𝑞1 as shown in Figure

3.2. It then provides the attention scores between these two QoS values and continues with

the same way for other QoS values in all other input sequences. These attention scores are

forwarded to the Add & Normalization layers, as shown in Figure 3.1. These layers are used to

stabilize the hidden states dynamics of the network and to reduce the training times. Finally,

the output of the normalization layer is fed to the feed forward network. Each of the layers and

sub-layers in the encoder module also have residual connections. We provide more details for

the encoder module, in the rest of this Section.

3.6.2.3.1 Multi-head attention

The main part of the transformer architecture is the Multi-Head Attention (MHA) mechanism.

The attention is based on the scaled dot product that is used to compute the weights among the

throughput, PDR, PLR or latency values in the input sequence as shown in Figure 3.1 and it is

computed as follows:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾,𝑉) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑄𝐾
𝑇

√
𝑑𝑘

)𝑉 (3.8)

Traditionally, 𝑄, 𝐾 and 𝑉 represent the query, key and value in the attention mechanism. In this

work, 𝑄 implies a certain value of QoS such as throughput, PDR, PLR or latency within the

input sequence at a specific time step. 𝐾 represents another QoS value within the input sequence,

and 𝑉 is the impact of the relation between the two QoS values within the same input sequence

at their specific time steps and positions. Finally, the 𝑑𝑘 represents the dimension of the key.

In this work, by using the scaled dot product between 𝑄 and 𝐾 , the attention scores are obtained

between various QoS values and then compressed with the softmax functionality. Lastly, the

93

matrix multiplication (dot product) with 𝑉 is performed. The above described attention process

is performed multiple times i.e., with a multi-head attention as shown in Equation (3.9).

ℎ𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑄
𝑖 , 𝐾𝑊

𝐾
𝑖 ,𝑉𝑊

𝑉
𝑖) (3.9)

In the above equation, ℎ𝑖 represents the 𝑖𝑡ℎ number of attention heads, with 𝑖 ∈ R; 𝑊𝑄
𝑖 is the

linear transformation of the query of the 𝑖𝑡ℎ attention head; 𝑊𝐾
𝑖 is the linear transformation

of the key of the 𝑖𝑡ℎ attention head and𝑊𝑉
𝑖 is the linear transformation of the value of the 𝑖𝑡ℎ

attention head.

Following, the concatenation of multiple attentions is done by using Equation (3.10) in order to

represent the importance between two QoS values in terms of their correlations.

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝑄, 𝐾,𝑉) = 𝑐𝑜𝑛𝑐𝑎𝑡 (ℎ1, ℎ2, ..., ℎ𝑛)𝑊0 (3.10)

where 𝑐𝑜𝑛𝑐𝑎𝑡 represents the concatenation operation of the attention heads; 𝑛 denotes the total

number of heads, where 𝑛 ∈ R, and𝑊0 is the linear transformation of the concatenated output.

3.6.2.3.2 Feed Forward Neural Network

Finally, the last component is the Feed Forward Network (FFN), which consists of the linear

transformations and the conv1D layer with the Rectified Linear Unit (ReLU) activation function.

The FFN is given as:

𝐹𝐹𝑁 (𝑥) = 𝑅𝑒𝑙𝑢(0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (3.11)

where𝑊1 and𝑊2 are the weights; 𝑏1 and 𝑏2 are the biases; and 𝑥 is the output of the multi-head

attention which is normalized by the Add & Normalization layer. The result of the Feed Forward

Network along with the output of the Add & Normalization layer provides the final prediction

result using a simple Dense (output) layer.

94

Algorithm 3.1 QoS Prediction Algorithm

Input: QoS training data set such as: {𝑑𝑡
1
, 𝑑𝑡+1

2
, .., 𝑑𝑡+𝜏𝜏 } ⊂ 𝐷𝑡𝑟𝑎𝑖𝑛, validation data set

𝐷𝑣𝑎𝑙 and testing data set 𝐷𝑡𝑒𝑠𝑡

Output: Future values of QoS as 𝑌 = {𝑦𝑡
1
, 𝑦𝑡+1

2
, ..., 𝑦𝑇−1

ℎ−1
, 𝑦𝑇ℎ }

1 set 𝑚 ← 𝑏𝑢𝑖𝑙𝑑_𝑚𝑜𝑑𝑒𝑙 (𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑣𝑎𝑙)
2 set 𝑡𝑢𝑛𝑒𝑟 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑎𝑟𝑐ℎ(𝑚, 𝑜𝑏 𝑗, 𝑚𝑎𝑥𝑡𝑟 , 𝑠𝑒𝑎𝑟𝑐ℎ𝑡𝑟) // 𝑜𝑏 𝑗 is the objective of tuner

which is to increase the validation accuracy;𝑚𝑎𝑥𝑡𝑟 are the maximum trials and

𝑠𝑒𝑎𝑟𝑐ℎ𝑡𝑟 are the search trials.

3 set 𝑚𝑜𝑑𝑒𝑙 ← 𝐵𝑒𝑠𝑡𝑀𝑜𝑑𝑒𝑙 (𝑡𝑢𝑛𝑒𝑟, 𝑛𝑢𝑚𝑚) // 𝑛𝑢𝑚𝑚 is the number of models search by

the tuner.

4 set ℎ𝑖𝑠𝑡𝑜𝑟𝑦 ← 𝑚𝑜𝑑𝑒𝑙. 𝑓 𝑖𝑡 (𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑣𝑎𝑙 , 𝑒𝑝𝑜𝑐ℎ𝑠)
5 set 𝑌 ← 𝑚𝑜𝑑𝑒𝑙.𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝐷𝑡𝑒𝑠𝑡)

3.6.3 Algorithm Description

Our proposed QoS prediction algorithm (Algorithm 3.1) consists of either univariate or

multivariate inputs that can be a QoS dataset in form of training data, validation data and testing

data. The first step is to build the transformer model using the 𝑏𝑢𝑖𝑙𝑑_𝑚𝑜𝑑𝑒𝑙 () function, which

takes the training and validation data as input. Following, the random search is performed with

the keras tuner to search the number of models, using the RandomSearch() function, which takes

the transformer model as an object, the search objective, the max trials allowed and the number

of trials per search as an input. Then, the 𝐵𝑒𝑠𝑡𝑀𝑜𝑑𝑒𝑙 () function takes the 𝑡𝑢𝑛𝑒𝑟 object and the

total number of search models by the tuner as input and it returns the best model which has the

highest validation accuracy across all models given by the 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑎𝑟𝑐ℎ() function. Lastly,

the best selected model is trained for a specific number of epochs using the 𝑓 𝑖𝑡 () function and

the final prediction of the QoS values are provided as 𝑌 using the 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 () function.

Algorithm 3.2 depicts the temporal transformer model and it consists of the three main modules

described above: 1) INPUT_EMBEDDING, which takes as an input the training dataset, the

sequence length of the input and the dimension used to represent the input sequence vector.

This module is used to take the input into a specific tensor shape for the transformer along

with providing the positional encoding of the time series input as well. In this module, firstly

95

Algorithm 3.2 Temporal Transformer Algorithm

Input: {𝐷𝑡𝑟𝑎𝑖𝑛, 𝑝𝑜𝑠, 𝑑𝑖𝑚, 𝑒𝑚𝑏𝑟𝑒𝑠, ℎ𝑠, 𝑛𝑢𝑚ℎ, 𝑑𝑟𝑎𝑡𝑒, 𝑓 𝑖𝑙, 𝑘𝑠, 𝑎𝑐𝑡, 𝑥, 𝑟𝑒𝑠}
// 𝐷𝑡𝑟𝑎𝑖𝑛 is the training dataset instances, 𝑝𝑜𝑠 is the input sequence length, 𝑑𝑖𝑚 is the

dimension representation, 𝑒𝑚𝑏𝑟𝑒𝑠 is the output of Module 1, ℎ𝑠 is the size of the head,

𝑛𝑢𝑚ℎ is the number of heads used, 𝑑𝑟𝑎𝑡𝑒 is the dropout rate, 𝑓 𝑖𝑙 is the number of filters,

𝑘𝑠 is the kernel size, 𝑎𝑐𝑡 is the activation function, 𝑥 is the output of Module 2 and 𝑟𝑒𝑠 is

the results of MHA module within the Module 2.

Output: {𝑥}
// 𝑥 is the predicted QoS value

1 INPUT_EMBEDDING(𝐷𝑡𝑟𝑎𝑖𝑛, 𝑝𝑜𝑠, 𝑑𝑖𝑚)

2 set 𝑖𝑛𝑝𝑢𝑡 ← 𝐼𝑛𝑝𝑢𝑡_𝐿𝑎𝑦𝑒𝑟 (𝐷𝑡𝑟𝑎𝑖𝑛)
3 set 𝑝𝑜𝑠← 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝑝𝑜𝑠, 𝑑𝑖𝑚)
4 set 𝑒𝑚𝑏𝑟𝑒𝑠 ← 𝐴𝑑𝑑 (𝑖𝑛𝑝𝑢𝑡, 𝑝𝑜𝑠) ⊲ Module 1

5 ENCODER_MODULE(𝑒𝑚𝑏𝑟𝑒𝑠, ℎ𝑠, 𝑛𝑢𝑚ℎ,𝑑𝑟𝑎𝑡𝑒, 𝑓 𝑖𝑙, 𝑘𝑠, 𝑎𝑐𝑡)
6 set 𝑥 ← 𝑙𝑎𝑦𝑒𝑟_𝑛𝑜𝑟𝑚(𝑒𝑚𝑏𝑟𝑒𝑠)
7 set 𝑥 ← 𝑀𝐻𝐴(ℎ𝑠, 𝑛𝑢𝑚ℎ, 𝑑𝑟𝑎𝑡𝑒, 𝑥)
8 set 𝑥 ← 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 (𝑥)
9 set 𝑟𝑒𝑠← 𝑥 + 𝑖𝑛𝑝𝑢𝑡 ⊲ MHA

10 set 𝑥 ← 𝑙𝑎𝑦𝑒𝑟_𝑁𝑜𝑟𝑚(𝑟𝑒𝑠)
11 set 𝑥 ← 𝑙𝑎𝑦𝑒𝑟_𝐶𝑜𝑛𝑣1𝐷 (𝑓 𝑖𝑙, 𝑘_𝑠, 𝑎𝑐𝑡, 𝑥)
12 set 𝑥 ← 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 (𝑑_𝑟𝑎𝑡𝑒, 𝑥) ⊲ Module 2

13 OUTPUT_MODULE(𝑥, 𝑟𝑒𝑠)
14 set 𝑥 ← 𝑙𝑎𝑦𝑒𝑟_𝐺𝑙𝑜𝑏𝑎𝑙𝐴𝑣𝑔𝑃𝑜𝑜𝑙𝑖𝑛𝑔1𝐷 (𝑥)
15 set 𝑥 ← 𝑙𝑎𝑦𝑒𝑟_𝐷𝑒𝑛𝑠𝑒(𝑥)
16 set 𝑥 ← 𝐴𝑑𝑑 (𝑥, 𝑟𝑒𝑠)
17 set 𝑥 ← 𝑙𝑎𝑦𝑒𝑟_𝑁𝑜𝑟𝑚(𝑥) ⊲ Module 3

the input layer is applied, which instantiates a tensor for the temporal input sequence of the

training dataset so that the input sequence is passed to the transformer model. Following, the

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔() function provides the position value for each of the input in the input

sequence and lastly the Add() layer of keras is used to provide the addition of the input along with

their position values. This layer also returns as an output the 𝑒𝑚𝑏𝑟𝑒𝑠, which are the embedding

results. 2) ENCODER_MODULE consists of two main procedures namely, Multi-Head

Attention and Feed Forward Network. The MHA procedure is from line 6 to line 9 and the

FFN procedure is from line 10 to line 12. In MHA, firstly, the normalization layer is applied to

96

normalize the embedding results, which are passed to the next layer which is the 𝑀𝐻𝐴() layer

that also takes as an input the size of the head, the number of heads and the dropout rate and it

returns the attention scores. Following the dropout function is applied using the dropout layer of

keras and then the residual connection is computed by adding the output from the dropout layer

with the initial input. Next, is the FFN which takes as input the residual connection values 𝑟𝑒𝑠

and it passes them to the normalization layer. The results of the normalization layer along with

the filters, kernel dimensions and activation function are passed to the Conv1D layer and the

final dropout is performed. 3) OUTPUT_MODULE is used to provide the final prediction of

the dataset. It takes the previous layer output i.e., 𝑥 along with the residual connection value

i.e., 𝑟𝑒𝑠 as an input. Firstly, the 𝑥 is passed to the 𝐺𝑙𝑜𝑏𝑎𝑙𝐴𝑣𝑔𝑃𝑜𝑜𝑙𝑖𝑛𝑔1𝐷 () layer, which is used

specifically for the temporal data and it takes the average among all time steps. Then, the output

is passed to the Dense() layer, the Add() layer, and the layer_norm() functions, in order to get the

predicted values of QoS as an output.

3.6.4 Complexity Analysis

Proposition 1: The computational complexity of Algorithm 3.1 is 𝑂 (𝑛2𝑑).

Proof : Line 1 of Algorithm 3.1 uses the 𝑏𝑢𝑖𝑙𝑑_𝑚𝑜𝑑𝑒𝑙 () function, which is the temporal

transformer model and its time complexity is 𝑂 (𝑛2𝑑) as it is represented and proved by the

proposition 3. Following, line 2 takes 𝑂 (𝑛) as 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑎𝑟𝑐ℎ() searched all 𝑛 number of

models for the worst scenario and line 3 takes a constant amount of time i.e., 𝑂 (1). Next, the

𝑚𝑜𝑑𝑒𝑙. 𝑓 𝑖𝑡 () function in line 4 takes 𝑂 (𝑡) time in the worst case, where 𝑡 represents the length

of the training dataset which is always more than the validation dataset. Lastly, line 5 predicts

the QoS for a given testing dataset in 𝑂 (𝑛) times. Hence, the overall complexity of Algorithm

3.1 is: 𝑂 (𝑛2𝑑) +𝑂 (𝑛) +𝑂 (1) +𝑂 (𝑡) +𝑂 (𝑛) = 𝑂 (𝑛2𝑑).

Proposition 2: The computational complexity of INPUT_EMBEDDING is 𝑂 (𝑛𝑑).

Proof : In the INPUT_EMBEDDING module of Algorithm 3.2, line 2 is a simple assignment

statement, as the input layer is used to instantiate the tensor of size 𝐷𝑡𝑟𝑎𝑖𝑛 and it takes 𝑂 (1). The

97

computational complexity of line 3 depends on the length of the input sequence say 𝑛 and the

dimension representation of the input sequence say 𝑑 and thus, it takes 𝑂 (𝑛𝑑). Lastly, line 4 is

performing an addition operation using the Add() layer. Its complexity depends on the number

of input sequences and the length of tensor provided by line 2. Since the 𝐴𝑑𝑑 () layer takes as

input a list of tensors, which all have the same shape, and returns a single tensor, the number of

input sequences and the length of tensor provided by line 2 are of the same length and thus the

complexity is 𝑂 (𝑛). Accordingly, the overall time complexity of INPUT_EMBEDDING module

is linear i.e., 𝑂 (1) +𝑂 (𝑛𝑑) +𝑂 (𝑛) = 𝑂 (𝑛𝑑).

Proposition 3: The computational complexity of ENCODER_MODULE is 𝑂 (𝑛2𝑑).

Proof: The computational complexity of the encoder module depends on the MHA and FFN. The

complexity of MHA procedure is 𝑂 (𝑛2𝑑). Line 6 is the normalization of the previous layer and

takes𝑂 (𝑛). Line 7 takes𝑂 (𝑛2𝑑) since it performs the dot product in the self attention mechanism

of an 𝑛 by 𝑑 matrix multiplied by a 𝑑 by 𝑛matrix. resulting in an𝑂 (𝑛2𝑑) complexity. Lines 8 and

9 takes𝑂 (𝑛) time each because line 8 is applying a dropout operation to 𝑛 number of neurons and

line 9 is performing an addition operation which is performed in 𝑂 (𝑛) time. Next, lines 10-12

depend on the number of filters, kernel size and previous layer outputs and thus, in the worst case

scenario these lines will exhibit a complexity of 𝑂 (𝑛) +𝑂 (𝑛𝑑) +𝑂 (𝑛) = 𝑂 (𝑛𝑑). Lastly, we will

have 𝑁 number of encoder modules which are executed in parallel to perform the computations.

Hence, the overall complexity of ENCODER_MODULE is 𝑂 (𝑛2𝑑) +𝑂 (𝑛𝑑) = 𝑂 (𝑛2𝑑).

Accordingly, the overall complexity of the proposed temporal transformer model depends on the

complexity of its three modules. As we have proved, module 1 gives a complexity of 𝑂 (𝑛𝑑) and

module 2 gives a complexity of 𝑂 (𝑛2𝑑). The OUTPUT_MODULE (module 3) presents a linear

complexity of𝑂 (𝑛) as all layers in lines 14-17 depend on the length of the output of the previous

layer and perform basic operations such as average, activation, addition and normalization which

take in the worst case 𝑂 (𝑛) time. Thus, the time complexity of Algorithm 3.2 is represented in

terms of 𝑛 as: 𝑂 (𝑛𝑑) +𝑂 (𝑛2𝑑) +𝑂 (𝑛) = 𝑂 (𝑛2𝑑).

98

3.6.5 Implementation Cost

The implementation cost of the proposed framework can be divided into three parts; the model

infrastructure, the data support and the deployment cost. The model infrastructure cost includes

the physical resources required to run the proposed model at the edge and provide timely and

accurate QoS predictions. A commodity computer has sufficient computing power, memory,

and storage for the inference, data preprocessing and the parameter storage of the temporal

transformer. Similar is also the answer for the metering process in the UDP server that collects

the information of packet exchanges in the network. Both services can be deployed and run in

the same commodity computer. Regarding the networking requirements, these are limited to the

transfer of some kilobytes of monitoring data per minute between border routers and the UDP

server. This is an insignificant overhead in the edge infrastructure.

Data support costs concern the costs of developing a data pull script with the corresponding

preprocessing modules such as data cleaning, down-sampling and normalization. This is a

one-time cost incurred by a data engineer to develop an extract-transform-load pipeline in

order to extract the measurements and provide them in the appropriate format to the temporal

transformer. The deployment cost concerns the labor cost of a data engineer to deploy the

model in the commodity computer that runs at the edge. This labor cost also includes all the

configurations, testing and preparation steps needed to install and run the operating system,

various software, the python modules, the dependencies and establish the communication with

the rest of the infrastructure.

To add up the three types of costs and calculate the total implementation cost, we begin

with the cost of model infrastructure that comes down to a commodity computer which is

approximately $1.000 1. In the implementation cost we should also add the electricity cost which

is approximately $160.16 per year. 2 and the maintenance cost which ranges from $40 to $90 per

1 https://www.amazon.com/Workstation-Pc/s?k=Workstation+Pc

2 https://www.pcmag.com/how-to/power-hungry-pc-how-much-electricity-computer-consumes

99

hour for the work of a technician 3. The data support cost is significantly higher due to the work

of the data engineer. We estimate a senior data engineer can implement the proposed model,

the data preprocessing and the extract-transform-load process in one man-month which results

in a cost close to $9.649 4. The deployment cost is reduced to the manual work of a network

engineer that will integrate and run the python scripts in the edge infrastructure. This work is

calculated to last approximately one week and costs $1.665 5. Last but not least, we should not

underestimate the training cost of the temporal transformer. Google cloud incurs a charge that

begins from $0.218 per training hour for a general purpose machine with 4GB of RAM. 6

3.7 Performance Evaluation

3.7.1 Model Implementation and Frameworks

3.7.1.1 Evaluation setup

Each dataset is zero-mean normalized and standardized. Under the time series prediction

settings, we forecast the four following QoS metrics as: (i) Throughput; (ii) PDR; (iii) PLR

and (iv) Latency. Additionally, the prediction is performed in two time series settings as: (i)

Univariate and (ii) Multivariate. The window size for both settings is set to be 30. The total data

generation lasted seven days. All of the five datasets are divided into three parts as follows: i)

training dataset, which contains the first five days of data; ii) validation dataset, which contains

the sixth day data and iii) testing dataset which contains the seventh day data. All of the models

were trained and tested on two compute clusters offered by Compute Canada namely, Cedar

and Beluga. For the Beluga cluster, we trained, validated and tested the models on a NVIDIA

V100 with 16GB GPU and for the cedar cluster, we utilized the NVIDIA P100 with 16GB GPU

respectively.

3 https://www.thumbtack.com/p/computer-repair-prices

4 https://www.indeed.com/career/data-engineer/salaries

5 https://www.indeed.com/career/network-engineer/salaries

6 https://cloud.google.com/vertex-ai/pricing

100

Table 3.3 Hyperparameters used in all methods for the univariate throughput prediction

across all datasets

Models Hyperparameters Min. value Max. value Best selected value

HVAC VoIP Lighting Emergency Surveillance

MLP Number of neurons 8 512 64 392 288 40 504

Dropout rate 0 0.5 0.1 0.3 0.2 0.1 0.1

Learning rate 1e-2 1e-4 0.01 0.0001 0.001 0.001 0.0001

Stacked LSTM Number of neurons 8 128 24 72 104 96 16

Dropout rate 0 0.5 0.4 0.001 0.1 0.4 0.4

Learning rate 1e-2 1e-4 0.001 0.0001 0.01 0.0001 0.0001

Number of layers 2 6 3 2 4 3 5

Bidirectional LSTM Number of neurons 8 512 32 16 24 64 352

Dropout rate 0 0.5 0.5 0.4 0.1 0.1 0.2

Learning rate 1e-2 1e-4 0.01 0.01 0.01 0.001 0.001

Temporal Transformer head size 4 256 28 32 128 4 2

Number of heads 4 32 6 18 24 4 3

Dropout rate 0 0.5 0.2 0.5 0.2 0.5 0.2

Number of transformer blocks 4 16 16 8 4 4 2

Linear layer neurons 4 128 96 84 52 64 116

Linear layer dropout 0 0.5 0.2 0.5 0.2 0.5 0.2

Filter dimensions 4 64 96 28 52 64 8

Number of attention layers 1 15 4 5 2 2 3

3.7.1.2 Evaluation Metrics

We used three metrics to measure the prediction performance of our proposed method against all

of the baseline methods as described below, namely the Root Mean Square Error (RMSE), Mean

Square Error (MSE) and Mean Absolute Error (MAE). For all of these metrics a smaller value

indicates a better prediction performance. MAE is the sum of the absolute value of differences

between the actual QoS values represented as 𝑦 𝑗 and predicted QoS values represented as 𝑦 𝑗 ,

divided by the total number of QoS predictions as defined below:

𝑀𝐴𝐸 =
1

𝑛

𝑛∑
𝑛=1

|𝑦 𝑗 − 𝑦 𝑗 | (3.12)

MSE is an average of the squared errors between the predicted QoS values and the targeted

(actual) QoS values divided by the total number of QoS predictions. RMSE is the square root of

MSE as given below:

𝑀𝑆𝐸 =
1

𝑛

𝑛∑
𝑛=1

(𝑦 𝑗 − 𝑦 𝑗)2 (3.13)

101

𝑅𝑀𝑆𝐸 =

√√
1

𝑛

𝑛∑
𝑛=1

(𝑦 𝑗 − 𝑦 𝑗)2 (3.14)

3.7.1.3 Baselines

For comparison purposes, we evaluate our proposed model against the most popular deep

learning models that are appropriate for time series prediction, as presented in Section 3.3.2.

The baseline models are the following: i) Multi-layer Perceptron (MLP) is a feed forward

network, which consists of an input layer, an output layer and multiple hidden layers. This

network is fully connected, which means the identical units in each layer called neurons are

connected to every neuron in the next layer in a network, ii) stacked LSTM is composed of

multiple LSTM layers that are stacked in a multi-layer and a fully connected architecture. The

stacking of LSTM is done in such a way that the result of each LSTM layer is used as an input

for the subsequent LSTM layer in the stack, iii) Bidirectional LSTM is a combination of a

bidirectional RNN with an LSTM network. In this particular architecture, the input sequence is

processed in a forward as well as in a backward direction in each of the network layers. The

details of how MLP, stacked LSTM and bidirectional LSTM work is provided in the Appendix of

this document. iv) LSTNet is a multivariate time series prediction framework proposed in (Lai

et al., 2018), that models the short and long-term temporal patterns with Deep Neural Networks.

This particular model uses the Convolution Neural Network and the Recurrent Neural Network

along with the auto regressive component for the extraction of the short-term local dependency

patterns among variables and the long-term patterns for time series patterns. To compare our

proposed framework with this existing LSTNet model, we have used the same configuration that

the authors provided in term of their architecture.

For the univariate prediction, we used the MLP, stacked LSTM and bidirectional LSTM as our

baseline methods and for the multivariate prediction, we used the stacked LSTM, bidirectional

LSTM and LSTNet as baseline methods. We have used only one method from the literature

i.e., LSTNet because to the best of our knowledge there is no other existing method that can

102

provide the QoS prediction, while handling the long-term dependencies at the same time in an

edge computing environment. In contrast, LSTNet was designed specifically for time series

forecasting while providing a multivariate prediction. Furthermore, the MLP did not provide

good accuracy in case of a multivariate prediction and we have excluded it for the second part

of the evaluation. Finally, it should be noted that we have also considered some traditional

time series methods such as Autoregressive Integrated Moving Average (ARIMA), Simple

Exponential Smoothing (SES) and Prophet. However, all these forecasting techniques presented

a poor accuracy performance and therefore, we decided not to include them in our performance

evaluation.

Table 3.4 Statistical characteristics of QoS datasets for all IoT applications

QoS Throughput PDR PLR Latency

Metrics Mean S.D Median Mean S.D Median Mean S.D Median Mean S.D Median

HVAC 0.253958 0.204743 0.190762 0.331391 0.390711 0.000033 0.232914 0.237775 0.124958 0.044852 0.058928 0.029333

VoIP 0.323644 0.108589 0.304021 0.532645 0.207119 0.548382 0.501071 0.060243 0.494923 0.004661 0.001512 0.004562

Lighting 0.164938 0.185021 0.094540 0.100024 0.226347 0.000000 0.038439 0.101123 0.000000 0.041879 0.075346 0.011554

Emergency 0.061513 0.061542 0.043207 0.258011 0.226774 0.173908 0.134196 0.127102 0.085104 0.066475 0.073212 0.031021

Surveillance 0.337204 0.167844 0.330451 0.290765 0.126342 0.294597 0.079721 0.128798 0.035209 0.380338 4.870949 0.000468

3.7.1.4 Hyper-parameter Tuning

For the hyper-parameter search and tuning, we performed a random search of the search space

using the keras tuner. In particular, for all methods and all datasets, the input length of the input

time series sequence is set as 30. In other words, the rolling window sample is set to be 30,

which we believe is a sufficient value for long-term prediction. The hyperparameters that were

searched for the baseline models consist of the number of neurons, dropout rate, learning rate

and number of layers. For the stacked LSTM, the number of neurons were selected from the

range 8 to 128 with a step of 8. For the MLP and bidirectional LSTM, the number of neurons

were selected between 8 and 512, with the same step. For the dropout rate, the value is taken

from the {0, 0.1, 0.2, 0.3, 0.4, 0.5} range with the default value set to be 0.5 whereas, the

learning rate was selected from the {1e-2, 1e-3, 1e-4} set for all baseline methods. Additionally,

the number of layers was selected between 2 to 6 for the stacked LSTM. Lastly, for the baseline

103

method found from the literature i.e., LSTNet, we used the already provided hyperparameters in

(Lai et al., 2018).

For the proposed temporal transformer model, we have fine-tuned the following hyperparameters:

head size, number of heads, dropout rate, number of transformer blocks, number of neurons for

the linear layers, dropout rate for the linear layers, filter dimensions and number of attention

layers. The search space set for each of the hyperparameters is set as follows. For the head size,

the minimum value was set at 4 and the maximum at 256 with a step size of 4. For the number

of heads, an optimal value was found within the range of 4 to 32 with a step of 2. The dropout

rate was selected between 0 and 0.5 with a step size of 0.1 and the number of transformer blocks

was chosen from the range {4, 8, 12, 16}. For the linear layer, which is included as part of the

transformer architecture, the number of neurons was selected between 4 and 128 with a step of 8

and their dropout rate was chosen between 0 and 0.5 with a step of 0.1.

Regarding the neural network optimizer, the Adam optimizer was used for all baseline methods

and for our transformer model. As random search is performed to select the best values for

the hyperparameters, the total number of trials considered for this search is 5 with an epoch

value of 100. Finally, keras tuner selected the best trial that gave the best set of hyperparameters

for all of the application datasets. Table 3.3 summarizes the hyperparameters and the best

selected value from keras tuner for all five application datasets. It is to be noted that the same

hyperparameters with the same corresponding search range were used for both univariate and

multivariate prediction. However, due to space constraints and illustration purposes, Table 3.3

provides the hyper-parameter tuning of the univariate prediction.

3.7.2 Explanatory Data Analysis

In this part, we provide the explanatory analysis of the applications’ datasets along with their

properties. The statistical properties of each dataset are presented in Table 3.4. In Figure 3.3,

the density plots for each of the QoS metrics within each dataset are also presented. The density

plots are used to observe the distribution of the datasets with a continuous interval. For the

104

Figure 3.3 Probability distribution plots of QoS data for all

IoT applications

emergency application, we have a positively skewed distribution for all four QoS metrics and

this is because the mean in the datasets of throughput, PDR, PLR and latency are greater than

their median values. For the HVAC application, the throughput, PLR and latency also exhibit a

skewed distribution and more specifically a right skewness however, PDR presents a multi-modal

distribution as it has three different peaks. For the lighting application, the throughput and

latency both datasets are rightly skewed, but PDR and PLR are both multi-modal datasets. For

the surveillance application, the throughput is multi-modal with more than 12 modes, PDR

exhibits a normal distribution, PLR and latency both are rightly skewed. Lastly, for the VoIP

application, we have a normal distribution for all of the three QoS metrics i.e., throughput, PDR

and PLR, however, the latency dataset is slightly skewed towards right as the mean in latency

data i.e., 0.004661 is slightly higher than the median value i.e., 0.004562.

105

Table 3.5 Univariate forecasting results for throughput, best results are highlighted in bold

Methods MLP Stacked LSTM Bidirectional LSTM Temporal Transformer

Metrics MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE

HVAC 3.91e-3 2.11e-5 4.60e-3 3.56e-3 2e-5 4.48e-3 4.57e-3 2.82e-5 5.31e-3 2.57e-3 1.17e-5 3.42e-3
VoIP 4.20e-3 3.49e-5 5.91e-3 2.89e-3 1.53e-5 3.92e-3 2.87e-3 1.52e-5 3.9e-3 1.67e-3 4.27e-6 2.07e-3

Lighting 1.62e-3 6.13e-6 2.47e-3 1.83e-3 6.67e-6 2.58e-3 1.87e-3 6.52e-6 2.55e-3 9.63e-4 1.49e-6 1.22e-3
Emergency 1.29e-3 6.86e-6 2.62e-3 1.3e-3 6.88e-6 2.62e-3 1.28e-3 6.87e-6 2.62e-3 1.43e-4 30e-8 1.73e-4
Surveillance 6.22e-2 6.92e-3 8.32e-2 2.76e-2 2.03e-3 4.5e-2 1.28e-2 7.74e-4 2.78e-2 1.26e-2 7.72e-4 2.78e-2

Table 3.6 Univariate forecasting results for PDR, best results are highlighted in bold

Methods MLP Stacked LSTM Bidirectional LSTM Temporal Transformer

Metrics MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE

HVAC 4.41e-3 2.60e-5 5.10e-3 4.40e-3 2.65e-5 5.15e-3 4.35e-3 2.54e-5 5.04e-3 4.15e-3 2.73e-5 5.23e-3

VoIP 2.71e-5 1.0e-9 3.16e-5 2.31e-5 1.0e-9 2.93e-5 2.43e-5 9.47e-10 3.08e-5 2.31e-5 8.55e-10 2.93e-5
Lighting 2.47e-4 1.40e-7 3.74e-4 2.64e-4 1.44e-7 3.80e-4 2.65e-4 1.37e-7 3.70e-4 2.63e-4 1.37e-7 3.70e-4

Emergency 1.32e-4 3.0e-8 1.73e-4 1.32e-4 3.0e-8 1.73e-4 1.31e-4 2.9e-8 1.71e-4 8.06e-5 9.0e-9 9.73e-5
Surveillance 3.20e-5 2.0e-9 3.89e-5 2.05e-5 1.0e-9 2.65e-5 3.40e-5 1.96e-9 4.43e-5 2.0e-5 6.96e-10 2.53e-5

3.7.3 Results

3.7.3.1 Univariate time series forecasting

For the univariate TSF, we included a representative range of the 5 IoT datasets to ensure the

diversity and applicability of our transformer model with respect to the dimensionality and

length of the time series samples, as well as the number of samples. Table 3.5 shows the MAE,

MSE and RMSE achieved by the baseline methods and transformer model. As it can be seen, the

transformer model worked well for the throughput prediction as compared to the other models

across all datasets. We have also plotted the MSE and MAE values of all methods in Figures 3.4

and 3.5 to better illustrate the results. It should be noted that the y axis of both figures goes from

large values towards small values and we also include the data points for the transformer model

to better position its efficiency.

Our first observation, is that all applied models give the least values for all error metrics for the

emergency application followed by the lighting application. In contrast, for the surveillance

application, the models achieve higher error values followed by the VoIP and HVAC applications.

106

Figure 3.4 MSE of univariate throughput prediction across all datasets

The main reason for having less accurate results for surveillance, VoIP and HVAC applications

is that the datasets of these applications contain several extreme values also known as outliers.

Hence, as deep learning models do not learn easily such extreme values, such behavior can

cause performance degradation. We can also detect the outliers from the statistical properties of

the datasets as shown in Table 3.4. For instance, for the surveillance application, the throughput

dataset has a standard deviation value of 0.167844 and a mean value of 0.337204. This is

because the more extreme outliers exist in the dataset, the more the standard deviation is affected

with respect to the mean value. Similarly, for the VoIP and HVAC applications, the standard

deviations are also highly affected as they appear to be 0.108589 and 0.204743 respectively,

while their corresponding mean values are 0.323644 and 0.253958.

Table 3.7 Univariate forecasting results for PLR, best results are highlighted in bold

Methods MLP Stacked LSTM Bidirectional LSTM Temporal Transformer

Metrics MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE

HVAC 2.76e-5 1.22e-9 3.50e-5 2.36e-5 8.37e-10 2.89e-5 2.72e-5 1.16e-9 3.41e-5 2.27e-5 8.10e-10 2.84e-5
VoIP 2.39e-5 1.0e-9 3.32e-5 2.61e-5 1.30e-9 3.60e-5 1.77e-5 1.0e-9 2.42e-5 1.70e-5 5.82e-10 2.41e-5

Lighting 2.74e-6 3.74e-11 6.12e-6 3.80e-6 3.37e-11 5.81e-6 3.86e-6 3.32e-11 5.76e-6 3.75e-6 3.32e-11 5.76e-6
Emergency 1.83e-12 5.40e-24 2.32e-12 2.16e-12 7.5e-24 2.74e-12 1.88e-12 5.3e-24 2.32e-12 1.80e-12 5.2e-24 2.30e-12
Surveillance 2.33e-3 5.46e-6 2.34e-3 2.67e-5 1.65e-9 4.06e-5 4.76e-4 2.45e-7 4.96e-4 2.57e-5 1.39e-9 3.73e-5

107

Figure 3.5 MAE of univariate throughput prediction across all datasets

Table 3.8 Univariate forecasting results for Latency, best results are highlighted in bold

Methods MLP Stacked LSTM Bidirectional LSTM Temporal Transformer

Metrics MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE

HVAC 2.47e-02 9.07e-04 3.01e-02 2.60e-02 9.26e-4 3.04e-02 2.31e-02 7.27e-04 2.70e-02 3.36e-03 1.56e-05 3.95e-03
VoIP 9.69E-01 5.58e+02 2.36e+01 1.34e-03 2.75e-06 1.66e-03 1.42e-03 3.14e-06 1.77e-03 1.27e-03 2.28e-6 1.51e-03

Lighting 4.45e-02 4.09e-03 6.40e-02 4.44e-02 4.04e-03 6.36e-02 4.4166e-2 4.04e-03 6.36e-02 2.34e-02 1.09e-03 3.30e-02
Emergency 4.63e-02 3.73e-03 6.10e-02 4.90e-02 4.07e-03 6.38e-02 4.84e-02 4.06e-03 6.37e-02 3.86e-02 2.67e-03 5.17e-02
Surveillance 2.74e-04 1.20e-07 3.46e-04 2.76e-04 2.35e-06 1.53e-03 2.63e-04 1.15e-07 3.39e-04 1.54e-04 3.16e-08 1.78e-04

In contrast, for the lighting and emergency applications, such kind of extreme values appear

more frequent and cannot be considered outliers, as the outliers by their nature are rare events

that happen in a dataset. Therefore, the deep learning models adapt better to those frequent

extreme events to some extend and produce better performance for the lighting and emergency

datasets as compared to the other application datasets.

To better understand which model is able to capture this behavior more accurately, we shift

our focus on Figures 3.4 and 3.5. It becomes apparent that the temporal transformer provides

the least error in the prediction of throughput values as compared to all other algorithms and

108

for all datasets. This happens for the following two reasons: (i) For a longer input window

size, also called input sequence length, i.e., 30 in this work, the prediction ability of the deep

learning models decreases, which leads to a rise in the error metrics. This also reveals a real

problem faced by the time series forecasting. However, our transformer model is well suited for

solving such long sequence dependency problems and thus, exhibiting a superior performance

for the throughput prediction; (ii) The attention mechanism in the transformer architecture allows

to learn the relation of temporal and positional features to specific throughput values at each

timestamp and emphasizes on their importance.

Following, the results for the PDR prediction are presented in Table 3.6. As it can be seen, once

more the transformer model performed better for almost all of the applications. Nonetheless,

there are two applications for which other models also provide promising results and these are:

(i) for the HVAC dataset the bidirectional LSTM provides the least MSE and RMSE values as

2.54e-5 and 5.04e-3. The reason that the transformer could not match these values are probably

because our model tried to learn the outliers and this had an impact on the relation between the

features as provided by the attention module of the transformer, which can lead to higher errors

than the bidirectional LSTM model. At the same time, MSE and RMSE are more sensitive to

the outliers as the squaring of high errors will lead to lower performance; (ii) for the lighting

application, MLP provides the least MAE value i.e., 2.47e-4, however, its MSE and RMSE are

also affected by the outliers. Nonetheless, the impact of the outliers for the particular application

was less on the transformer model which led to the least attained MSE and RMSE values.

Next for illustration purposes, in Figure 3.6 we also plot the predicted values (orange curves)

and the collected true values (blue curves) for the PDR dataset of the surveillance application.

In order to not further increase the length of the paper, we have just selected the surveillance

application as it has more fluctuations and presents a more interesting behavior for the QoS

metrics prediction. From the figure, we notice that the PDR data is usually noisy which means

that we have peaks and troughs (i.e., fall of data points in downward direction). This means that

the PDR of the surveillance application is sometimes higher and sometimes very lower than the

normal pattern. This is because of the exponential distribution pattern of the application and the

109

Figure 3.6 PDR prediction for surveillance application

high network contention, since the rest of the IoT devices belonging to other applications may

transmit at the same time. From this, we can deduct that the peaks and troughs are not normal

patterns of the dataset and therefore, it is not necessary that all peaks and troughs appear the

one after another by following a specified and periodic behavior. Given this type of fluctuating

dataset, we see from the figure that the the transformer model predicts the peaks and troughs of

data adequately and this is mainly because of the attention module within the transformer that

learns very well about the temporal and positional features (i.e., at which timestamp certain PDR

values appear in the input sequence) of the time series dataset over the long input sequences.

Table 3.9 Multivariate forecasting results for throughput, best results are highlighted in

bold

Methods LSTNet Stacked LSTM Bidirectional LSTM Temporal Transformer

Metrics MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE

HVAC 8.74e-2 7.63e-1 8.73e-1 4.34e-3 2.81e-5 5.30e-3 3.38e-3 1.17e-5 3.42e-3 3.35e-3 1.71e-5 4.14e-3

VoIP 4.10e-2 3.91e-1 6.25e-1 4.27e-3 3.32e-5 5.76e-3 2.91e-3 1.55e-5 3.94e-3 2.87e-3 1.48e-5 3.85e-3
Lighting 4.46e-2 6.88e-1 8.29e-1 1.90e-3 7.18e-6 2.68e-3 1.89e-3 7.17e-6 2.68e-3 1.85e-3 7.10e-6 2.66e-3

Emergency 9.65e-2 1.45e-1 3.81e-1 1.64e-3 7.71e-6 2.78e-3 1.26e-3 6.72e-6 2.59e-3 1.23e-3 6.67e-6 2.50e-3
Surveillance 8.60e-3 9.14e-2 3.02e-1 1.28e-2 7.73e-4 2.78e-2 4.29e-3 3.65e-5 6.04e-3 2.91e-3 1.55e-5 3.93e-3

110

Figure 3.7 PLR prediction for surveillance application

Table 3.10 Multivariate forecasting results for PDR, best results are highlighted in bold

Methods LSTNet Stacked LSTM Bidirectional LSTM Temporal Transformer

Metrics MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE

HVAC 4.37e-2 5.07e-1 7.12e-1 3.07e-4 1.16e-7 3.41e-4 3.04e-4 1.15e-7 3.39e-4 2.94e-4 1.31e-7 3.62e-4

VoIP 2.84e-2 3.52e-1 5.93e-1 2.64e-5 1.12e-9 3.35e-5 2.31e-5 8.58e-10 2.92e-5 2.31e-5 8.57e-10 2.90e-5
Lighting 2.03e-2 6.54e-1 8.09e-1 2.70e-4 1.37e-7 3.70e-4 2.65e-4 1.37e-7 3.70e-4 2.52e-4 1.40e-7 3.74e-4

Emergency 3.39e-2 6.58e-1 8.11e-1 1.32e-4 2.96e-8 1.72e-4 1.64e-4 4.57e-8 2.14e-4 1.31e-4 2.80e-8 1.67e-4
Surveillance 1.63e-2 2.11e-1 4.59e-1 2.08e-5 7.28e-10 2.70e-5 3.72e-5 2.29e-9 4.79e-5 2.06e-5 7.20e-10 2.69e-5

Following, we provide the univariate PLR results for the five IoT applications in Table 3.7. As it

can be seen, the transformer model provides the least error values for almost all datasets for

this particular QoS metric as well. However, two particular cases are drawn from these results:

1) for the lighting application, the MLP model provides the least MAE, yet, MSE and RMSE

are higher than the transformer model and the reason for such behavior is the same as the one

explained for the PDR case; 2) for the emergency application, all algorithms provide the best

accuracy performance with respect to the other four applications. The reason for this is that

the particular dataset is not affected by outliers as the standard deviation value i.e., 0.127102

does not deviate a lot from the mean value i.e., 0.134196. Nonetheless, the transformer model

provides the best performance and for these types of applications.

111

Once more, we plot the actual vs. predicted values for the PLR data of the surveillance application

only in Figure 3.7, as it has more fluctuating patterns compared to the other applications. In

general, we can see that the transformer model can capture very well the general behavior of

the PLR dataset. There is only just a small difference between the actual and predicted values

when there are small PLR spikes as noticed at the 50ms, 150ms, 470ms, 550ms and 790ms time

instances. These spikes can by attributed to high network contention time instances which can

lead to an increased packet loss. Nonetheless, the transformer was able to closely follow the

unusual fluctuations between the time period from 450 ms to 900 ms. This is due to the fact that

the particular model can capture the time series features with long-term time dependency easily.

Following, we provide the univariate latency results for the five IoT applications in Table 3.8.

As it can be seen, the temporal transformer model performs better for all of the datasets and in

terms of all error metrics as compared to the baseline methods. From Table 3.8, we have the

following observations: (1) The latency datasets of all applications are positive (right) skewed.

The distribution is right skewed because of the lower bound in the dataset. So if the lower bound

of the dataset is extremely low relative to the rest of the data, then this will cause the data to

be skewed right. The lower bound for an application reveal that lower latency is experienced

during the transmission of the packets. Furthermore, the emergency application followed by

lighting and HVAC have more extreme smaller values for latency as their standard deviations

is less distant from their mean value than the surveillance and VoIP applications. However,

this does not affect the performance of the proposed temporal transformer model and it always

outer-performs the baseline methods for all skewed datasets in term of all error metrics. (2) The

second observation is that the second best model is the bidirectional LSTM as it performed well

for 3 out of 5 applications after the transformer model. The reason is that the particular model

is able to learn the input sequence in both forward and backward direction. However, for the

proposed transformer model the dependencies among input sequence are better learned using

the attention module of the model.

Overall, our proposed temporal transformer model achieves the best performance on 18 out of 20

settings for MAE, on 19 out of 20 settings for MSE, and on 19 out of 20 settings for the RMSE

112

Figure 3.8 MAE of multivariate throughput prediction across all datasets

case. Notably, for the throughput prediction, the transformer can increase the performance by

28% for HVAC, 42% for VoIP, 41% for lighting, 89% for emergency and 2% for the surveillance

applications from the second best performing model in terms of MAE. Furthermore, for the MSE,

we noticed an improvement of up to 96% and for the RMSE, we noticed an improvement of up to

93%. For the PDR prediction, the transformer model enhanced the performance by decreasing

the MAE by 5% for HVAC, 0.43% for VoIP, 38% for emergency and 2% for the surveillance

application from the second best performing baseline method, except the lighting application in

which the MLP improved the error rate by 6% in comparison to the transformers for the reasons

we discussed above. Moreover, for the PLR prediction, the transformers can reduce the MAE by

2% to 4% for the four applications, but once more the MLP shows a slightly better performance

for the lighting applications. Finally, for the latency predicted, the transformers provided an

improvement of 85% for HVAC, 5% for VoIP, 47% for lighting, 17% for the emergency and

41% for the surveillance application than the second best performing model in term of MAE.

Additionally, the proposed transformer provides 17% to 98% improvement in term of MSE and

9% to 85% improvement in terms of the RMSE metric.

113

3.7.3.2 Multivariate time series forecasting

In this part of the section, we present the obtained results under the multivariate setting.

Regarding the multivariate throughput prediction, the prediction results are provided in Table 3.9.

To better illustrate these results w.r.t. MAE, we plot them as well in Figure 3.8. Similar to the

univariate setting, the scale for MAE is logarithmic and goes from high i.e., 1.00E+00 to small

values i.e., 1.00E-03. From this plot, it is shown that the LSTNet method provides the worst

performance i.e., the highest MAE for all of the applications and this is because the particular

method is unable to deal with the dynamic periodic patterns or the non-periodic patterns of our

datasets. However, the bidirectional LSTM presents a good performance, similar to the one of

our proposed temporal transformer model. Specifically, the transformer model provides 1%

improvement for HVAC and VoIP application, 2% improvement for lighting and emergency

applications and a noticeably 32% improvement for the surveillance application as compared to

the best performing baseline method. The reason for the major improvement in the surveillance

application dataset is that the surveillance application has the long-term fluctuating patterns and

our transformer model is the most suitable approach for capturing and predicting this long-term

behavior.

Similarly, Table 3.10 shows that the temporal transformer achieves the least MAE values for

all applications in terms of PDR. However, there are two cases for which bidirectional LSTM

achieves the least performance in terms of MSE and RMSE values and these are for the lighting

and HVAC applications. There are several reasons for this. Firstly, such application datasets

contain extreme values for specific timestamps. Secondly, the PDR data of these two applications

are smaller compared to the other applications and the transformer requires a larger number

of training samples compared to the other baseline methods. Thirdly, the good performance

of the bidirectional LSTM can be attributed to the fact that it runs the given input sequence in

two ways from past to future and future to past. Thus, it is able to better learn even for datasets

that have smaller number of training samples. However, the transformers can closely follow the

performance of the bidirectional LSTM even in these situations. This can be corroborated by

Figure 3.9, which presents the MAE metric for all applications and it can be concluded that

114

the transformer performed consistently well, followed by the stacked LSTM for the emergency

and surveillance applications and by the bidirectional LSTM for the HVAC, VoIP and lighting

applications. Specifically, the proposed temporal transformers can lead to a decrease in the

MAE error that ranges from 1% to 5% as compared to the second best baseline method.

Figure 3.9 MAE of multivariate PDR prediction across all datasets

Table 3.11 Multivariate forecasting results for PLR, best results are highlighted in bold

Methods LSTNet Stacked LSTM Bidirectional LSTM Temporal Transformer

Metrics MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE

HVAC 5.24e-2 4.75e-1 6.89e-1 3.92e-5 2.09e-9 4.57e-5 4.73e-5 4.0e-9 6.33e-5 3.89e-5 2.09e-9 4.57e-5
VoIP 3.77e-2 3.87e-1 6.22e-1 2.21e-5 3.37e-5 1.14e-9 5.04e-5 5.93e-9 7.71e-5 2.20e-5 3.39e-5 1.15e-9

Lighting 4.03e-2 6.85e-1 8.28e-1 3.94e-6 3.33e-11 5.77e-6 4.14e-6 3.55e-11 5.96e-6 3.84e-6 3.32e-11 5.76e-6
Emergency 2.93e-2 6.27e-1 7.91e-1 1.90e-12 5.68e-24 2.38e-12 1.88e-12 6.27e-24 2.50e-12 1.87e-12 5.64e-24 2.37e-12
Surveillance 8.6e-3 1.06e-1 3.26e-1 2.44e-4 6.07e-7 2.46e-4 1.12e-3 2.0e-6 1.42e-3 1.89e-5 8.34e-10 2.89e-5

Table 3.12 Multivariate forecasting results for Latency, best results are highlighted in bold

Methods LSTNet Stacked LSTM Bidirectional LSTM Temporal Transformer

Metrics MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE

HVAC 8.40e-2 2.81e0 1.66e0 2.56e-2 9.28e-4 3.05e-2 2.32e-2 7.81e-4 2.79e-2 2.27e-2 7.33e-4 2.71e-2
VoIP 2.41e-2 2.68e-1 5.052e-1 1.35e-3 2.853e-6 1.69e-3 1.35e-3 2.85e-6 1.69e-3 9.24e-4 1.18e-6 1.09e-3

Lighting 7.13e-2 1.52e0 1.23e0 3.55e-2 2.56e-3 5.06e-2 3.63e-2 2.56e-3 5.06e-2 2.27e-2 1.07e-3 3.27e-2
Emergency 4.18e-2 6.65e-1 8.10e-1 6.35e-2 6.75e-3 8.22e-2 4.77e-02 3.88e-03 6.23e-02 3.88e-02 2.26e-03 4.75e-02
Surveillance 2.41e-02 2.68e-01 5.05e-01 2.53e-04 1.16e-07 3.40e-04 2.49e-04 9.66e-08 3.11e-04 1.56e-04 3.26e-08 1.81e-04

115

Moreover, we provide the results of the PLR prediction in Table 3.11. Over again, the transformer

model is the most dominant approach. Only for the VoIP application the stacked LSTM presents

a better performance in terms of MSE and RMSE, however the transformer model provides the

least MAE. This is because the stacked LSTM can also learn complicated nonlinear dependencies

between time steps and between multiple time series. These types of dependencies can be easily

produced when irregular network conditions are surfaced due to interference and available

bandwidth reduction in the IoT networks.

Lastly, Table 3.12 presents the results for the multivariate latency QoS for all of the applications.

It can be seen that the proposed model outer-performs all the baselines for all applications and

in terms of all metrics. The second best performing baseline method is bidirectional as it gives

reasonable results for 4 out of 5 applications. Once more, the LSTNet method shows poor

performance compared to the rest of the methods and this is because it is unable to capture all

the dependencies among input sequences and other QoS features in the datasets.

To conclude, regarding MAE, there is 1% to 92% improvements provided by our transformer

model. Furthermore, for latency, there is 2% to 37% improvement in term of MAE, 6% to

66.25% in term of MSE and 3% to 42% in term of RMSE provided by our proposed temporal

transformer model compared with the second best performing baseline method. Finally, our

proposed transformer model achieves the best performance on 20 out of 20 settings for the MAE

case, and on 16 out of 20 settings for the MSE and RMSE respectively, for the multivariate

forecasting task.

Regarding the impact of the problem setting as either univariate or multivariate on the prediction

of the QoS metrics, we observed that our proposed model performed better in the univariate

setting than the multivariate. This is because there are only 4 univariate cases and 8 multivariate

cases in which our proposed transformer model performed worse than the other models. It is to

be noted that multivariate models are good to model interesting inter-dependencies however, in

the expense of an additional complexity. One of the reason for this behavior is that some IoT

application’s QoS dataset may include outliers which can more adversely affect the multivariate

116

than the univariate forecasts. Moreover, it is easier to spot and control outliers in the univariate

context. Also, the QoS datasets showed a nonlinear behavior w.r.t. time thus, the univariate

setting can handle the non-linearities more properly than the multivariate model. Therefore,

it is better to use the univariate setting for predicting each of the individual QoS in real IoT

application scenario.

3.8 Conclusion

In this work, we investigated the QoS prediction problem by formulating it as a univariate and

multivariate time series forecasting problem. A new framework was introduced that promotes

an efficient QoS prediction for a number of coexisting and heterogeneous IoT applications

that stress the IoT access network creating several levels of QoS uncertainty. We firstly

generated five different real time datasets for HVAC, lighting, VoIP, surveillance and emergency

response applications. Following, we presented a novel transformer-based architecture, which

learns temporal representations and their complex dependencies in a long-term fashion, for the

prediction of four important QoS metrics, namely, throughput, PDR, PLR and latency. The

transformer architecture leverages the attention mechanism, which is effective at modelling

time series. Finally, we performed an extensive experimental evaluation in which we proved

that our proposed temporal transformer achieves superior performance for almost all of the five

IoT applications and for both univariate and multivariate settings, as compared with several

competitive time series baseline methods.

As future work, we aim to explore alternative attention techniques, such as sparse attention or

compressed attention and investigate their impact on the accuracy achieved. Furthermore, we

would like to predict several key QoS metrics, when mobile IoT devices are considered by the

applications, thus creating another level of uncertainty in the overall communication.

CHAPTER 4

FED-TST: FEDERATED TEMPORAL SPARSE TRANSFORMERS FOR QOS
PREDICTION IN DYNAMIC IOT NETWORKS

Aroosa Hameed1 , John Violos1 , Aris Leivadeas1 , Nina Santi2 , Nathalie Mitton2

1Département de génie logiciel et des TI, École de Technologie Supérieure,

1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3
2 INRIA Lille-Nord, France

Paper Under Review in IEEE Transactions on Network and Service Management, May 2023

4.1 Abstract

Internet of Things (IoT) applications generate tremendous amounts of data streams which

are characterized by varying Quality of Service (QoS) indicators such as throughput, delay,

etc. These indicators need to be accurately estimated in order to appropriately schedule the

computational and communication resources of the access and Edge networks. Nonetheless,

such types of IoT data may be produced at irregular time instances, while suffering from varying

network conditions and from the mobility patterns of the edge devices. At the same time, the

multipurpose nature of IoT networks may facilitate the co-existence of diverse applications,

which however may need to be analyzed separately for confidentiality reasons. Hence, in this

paper, we aim to forecast time series data of key QoS indicators, such as throughput, delay,

packet delivery and loss ratio, under different network configuration settings. Additionally,

to secure data ownership while performing the QoS forecasting, we propose the FeDerated

Temporal Sparse Transformer (FeD-TST) framework, which allows local clients to train their

local models with their own QoS dataset for each network configuration; subsequently, an

associated global model can be updated through the aggregation of the local models. In particular,

three IoT applications are deployed in a real testbed under eight different network configurations

with varying parameters including the mobility of the gateways, the transmission power and

the channel frequency. The results obtained indicate that the forecasting performance of our

proposed approach is more accurate than the identified state-of-the-art centralized and distributed

solutions.

118

4.2 Introduction

The proliferation of Internet of Things (IoT) applications generated a continuous stream of

time-stamped data of various granularity. These data need to be analyzed in order to take actions

and add the necessary intelligence to the IoT applications. Edge Computing can invoke this

intelligence much faster by placing communication and computational resources closer to the

source of data (Saeik et al., 2021). However, besides the analysis of the content of the data, there

is a second type of analysis, the network analysis, which is equally important (Hanes, Salguiero,

Grossetete, Barton & Henry, 2017). Through this analysis, the traffic characteristics of the

IoT applications can be learned and the network conditions can be estimated, in order to better

schedule the resources of the access and edge networks and to take preventive actions in case a

network performance drift is expected to happen.

However, this type of network analysis is a hectic and challenging process for various reasons.

First of all, IoT devices belonging to different applications follow disparate data generation modes

(i.e., poll-based, periodic, event-driven, etc.). Secondly, IoT access networks are usually wireless

and lossy, and they operate in unlicensed bands. This makes them prone to interference and

unstable connection. Lastly, the IoT gateways or the devices themselves can be mobile (i.e., robots,

drones, etc.), which can also affect the performance of the communication. These complexity

levels could lead to a varying Quality of Service (QoS) behavior for each application. Hence, it

is important to propose an efficient QoS forecasting model, which will use the time series data

of how packets are generated by the IoT devices (i.e., when packets are transmitted/received)

along with the network characteristics of the access network (i.e., frequency channel, etc.).

Time series forecasting is the task of analyzing the time-stamped data, both past and present,

to make accurate future predictions that can be used in strategic decision making. However,

time series forecasting becomes challenging when working with data that contains variables that

change frequently (as in the case of IoT access networks) and events that cannot be controlled

(Hahn, Langer, Meyes & Meisen, 2023) (as in the case of IoT data generation). In such scenarios,

119

it is important to utilize appropriate techniques to reduce uncertainty and enhance the accuracy

of the predictions.

However, due to the complexity and continuously shifting patterns of IoT data under different

controllable and uncontrollable factors, it is difficult to apply traditional ML approaches while

dealing with the non-stationary QoS forecasting problems. Additionally, the most prominent

Machine Learning (ML) techniques used to predict QoS metrics, such as (Ateeq et al., 2019a;

Hameed et al., 2021; Bardalai, Neog, Dutta, Medhi & Deka, 2022; Hou et al., 2021; Abdellah

et al., 2020a; White & Clarke, 2022; Liu, Sheng, Zhang, Chu & Xu, 2019; Liu, Sheng, Xu,

Chu & Zhang, 2022; Li, Wen & Wang, 2019; Jin et al., 2023; Zhang et al., 2020a), lack the

ability to handle both long and short term dependencies at the same time, as training over longer

sequences of past data degrades the accuracy of the prediction (S. & Ram, 2022). Recently, some

works also applied transformer models for time series forecasting (Hameed et al., 2022), because

of their ability to capture long-term dependencies in the data using the combination of positional

encoding and multi-head self attention mechanisms. Nonetheless, the transformer model requires

time and memory that grows quadratically with the sequence length, which excludes their use

on long sequences. Consequently, this motivated us to introduce a sparse transformer model,

that entails less complexity for long sequences without sacrificing performance.

Nonetheless, a typical problem of both transformer models (sparse and traditional) is that they

require large amount of data to be trained. In the IoT context, this could lead to stressing the

computing entity that has to gather the time series data and analyze them. Additionally, to

increase local efficiency and to respect confidentiality requirements, the data streams of different

IoT applications may have the exigency of being treated separately. Accordingly, these two

reasons inspired us to resort to a more distributed machine learning approach leveraging the

Federated Learning (FL) technique. FL allows multiple clients to train a shared global model, by

aggregating the local updates from decentralized and distributed clients, in order to improve the

global model’s accuracy, while tackling data scarcity and preserving the privacy of clients data

(Mangla, 2022). To the best of our knowledge, this is the first work that introduces an adaptation

of federated sparse transformers to forecast the QoS metrics of an IoT communication network.

120

More specifically, in this work, we deploy three different IoT applications in a real testbed to

predict typical QoS metrics. For this prediction, a sparse transformer-based architecture is

introduced that efficiently leverages the time dependency by investigating both the short and

long input sequence dependencies without any performance degradation. Finally, we explore the

effectiveness of our QoS forecasting sparse transformer in a FL setting in order to enhance the

accuracy while coping with the data heterogeneity, scarcity and privacy issues. Accordingly, the

main contributions of this work can be summarized as follows:

• We consider three different real time IoT applications that present different requirements in

terms of number of devices and data generation distribution.

• We deploy the applications in a real testbed comprised of 100 IoT devices and 3 mobile robots

generating data over an IEEE 802.15.4 access network, creating a lossy communication

under a random access network for different mobility, transmission power and frequency

channel configurations.

• We design and implement a QoS predictor based on the Sparse Temporal Transformer

approach that models the temporal dependencies within long input sequences of data and

computes the attention scores using only a subset of the input positions.

• We provide both univariate and multivariate predictions of four major QoS metrics such as

Throughput, Packet Delivery Ratio (PDR), Packet Loss Ratio (PLR) and Latency.

• We implement a FL scheme with multiple clients to enable the collaborative learning of

our sparse transformer models by leveraging the distributed historical data of different IoT

applications.

The remainder of the paper is structured as follows. Section 4.3 highlights relevant works on

QoS forecasting in an IoT/Edge environment. Section 4.4 introduces the system model and

problem statement. Section 4.5 describes the testbed implementation and the dataset generation.

In Section 4.6, the detailed design of our proposed solution, named FeD-TST, is provided.

Section 4.7 discusses the attained results, while Section 4.8 summarizes our conclusions and

offers some future directions.

121

4.3 Related Work

QoS forecasting can be a key concern in an IoT context. Accordingly, traditional ML approaches

used to play a major role in QoS prediction for their simplicity and interpretability. For instance,

the authors in (Ateeq et al., 2019a) predicted the delay of IoT applications in an IEEE 802.15.4

access network using a Deep Neural Network (DNN) with forward and backward passes.

Similarly, the authors in (Hameed et al., 2021) proposed the use of several regression based

approaches to predict the throughput of six different IoT applications in an IEEE 802.15.4 access

network. Additionally, the authors in (Bardalai et al., 2022) predicted the throughput of audio,

video and sensor data of an IoT healthcare application using an ARIMA/GARCH model. For

the throughput prediction, a Convolutional Neural Network (CNN) with a target vectorization

technique was also used in (Hou et al., 2021).

In terms of both single and multi-step ahead prediction, the authors in (Abdellah et al., 2020a)

predicted the delay of a simulated dataset of an IoT environment using a nonlinear autoregressive

exogenous (NARX) Recurent Neural Network (RNN). A different type of RNN called Echo

State Network (ESN) was also employed in (White & Clarke, 2022), for QoS forecasting at the

edge of an IoT network. The authors also introduced random noise into the internal states of the

network in order to provide more robust forecasts, while addressing the stability problem of

ESNs.

Regarding QoS prediction at the Multi-Access Edge Computing (MEC), Liu et al. (2019) provided

a multi QoS prediction framework using contextual factors. Firstly, they introduced a workload

prediction mechanism for future scheduling services using Support Vector Machine (SVM)

and optimized it with an Artificial Bee Colony (ABC) algorithm. Secondly, they performed

the multi QoS prediction using Case Based Reasoning (CBR), which is a problem-solving

methodology that involves using past experiences (cases) to solve new problems. This work was

further extended in (Liu et al., 2022) providing the QoS prediction for both real-time and future

MEC services, using CBR and an optimized SVM. In contrast, the authors in (Li et al., 2019)

122

introduced a matrix factorization method that predicts unknown QoS values using a location

based user cluster’s information and user’s reputation information.

So far, all of the above proposed methods are centralized, while the data privacy is not considered.

Accordingly, Jin et al. (2023) proposed a privacy-aware QoS forecasting model based on Long

Short-Term Memory (LSTM) and attention called Edge-PMAM (Edge QoS forecasting with

Public Model and Attention Mechanism). This work consisted of public and private models

for privacy aware and personalized QoS forecasting. The Edge regions were divided using

the Miller projection with k means clustering and for each region the model consisted of an

attention layer on top of a LSTM to improve the performance of the public and private models.

Furthermore, Zhang et al. (2020a) designed a QoS prediction model based on FL. The authors

firstly identified the untrustworthy users and then processed the unreliable data to predict the

QoS in a MEC setting.

However, the above mentioned studies have different limitations that can be summarized as

follows:

• The existing studies based on traditional ML approaches in (Ateeq et al., 2019a)-(Hou et al.,

2021) do not consider the temporal aspect of the prediction. In contrast, these studies employ

static models that treat each input sample independently, while not considering the sequential

or time-dependent nature of the data. Furthermore, they only forecast one of the two most

typical QoS metrics i.e., throughput or delay.

• The RNN models used in (Abdellah et al., 2020a), (White & Clarke, 2022) and (Jin

et al., 2023) can only handle the short term sequence prediction efficiently. Specifically,

during back-propagation, where gradients are propagated from the output to the input, the

gradients can diminish or vanish as they are repeatedly multiplied by weight matrices and

cause the vanishing gradient problem. As a result, the network struggles to update the

weights effectively, particularly for earlier time steps, limiting its ability to capture long-term

dependencies.

• The CBR approach used in (Liu et al., 2019) and (Liu et al., 2022) is difficult to be applied

in the context of IoT, where a vast amount of data is generated from various heterogeneous

123

devices. This could make building a comprehensive case base challenging, while the selection

of relevant cases from the case base is difficult in large and heterogeneous datasets.

• The work in (Li et al., 2019) and (Zhang et al., 2020a) used matrix factorization techniques,

which heavily depend on the data sparsity at the current time slots. Furthermore, the proposed

approach in (Li et al., 2019) assumed that the user clusters and user reputations remain fixed

over time. However, network conditions and user behavior can be dynamic, which may

require the model to be updated or retrained. Moreover, the work in (Zhang et al., 2020a)

used reputation mechanism which relies on assigning reputation scores to clients based on

their trustworthiness. However, determining the trustworthiness of users can be subjective

and prone to biases.

Herein, we solve the above mentioned challenges as follows: (i) Firstly, we provide the detailed

forecasting of four QoS metrics such as throughput, PDR, PLR, and latency by considering the

temporal aspects in both univariate and multivariate settings; (ii) Secondly, to overcome the

vanishing gradient problem in the training of long QoS data sequences, we are introducing a

temporal transformer with sparse attention. The particular architecture can efficiently model

long sequences by capturing dependencies between different positions without suffering from the

vanishing gradient problem. Additionally, the sparse attention mechanism further optimizes the

computational efficiency of our approach, particularly for resource-constrained IoT environments.

(iii) Thirdly, we employ a FL approach that trains the client models on diverse IoT devices and

sensors data, resulting in a more comprehensive QoS forecasting. Furthermore, our FL model

continuously updates the model using distributed data from IoT devices ensuring that the model

adapts to changing network conditions and application dynamics. Finally, the FL aggregates

model updates from multiple clients providing a more objective and collective perspective on

client behavior and trustworthiness.

124

4.4 System Model and Problem Statement

4.4.1 System Model

We consider a set 𝐴 of different IoT applications such that, 𝐴 = {𝑎1, 𝑎2, ..., 𝑎𝑘 }. For each

application 𝑎𝑘 ∈ 𝐴, there is a number of 𝑛 static sensor nodes denoted by the set 𝑆𝑘 =

{𝑠𝑘
1
, 𝑠𝑘

2
, ..., 𝑠𝑘𝑛} that generate data following a data distribution 𝐷𝑘 , with 𝑆1 ∪ 𝑆2 ∪ ... ∪ 𝑆𝑘 = 𝑆.

Furthermore, for each application, the dataset is generated for a specific duration 𝑇 . Each dataset

can be represented by a sequence of data points 𝑥𝑘𝑛,𝑡 that describe the data generated by sensor

𝑛, belonging to application 𝑘 at time step 𝑡 ∈ 𝑇 . To lighten the notation, the 𝑘 superscript that

denotes the application which a sensor node 𝑛 is associated with will be dropped in the rest of

the paper.

Similarly, we can represent the set of access points (APs), that form the edge computing

environment, as a set of mobile robots 𝑅 = {𝑟1, 𝑟2, ..., 𝑟𝑚}. Each mobile robot 𝑟𝑚 ∈ 𝑅 has a

set of coordinates 𝐺𝑚 = {(𝑥𝑚,1, 𝑦𝑚,1), (𝑥𝑚,2, 𝑦𝑚,2), ..., (𝑥𝑚,𝑇 , 𝑦𝑚,𝑇)} that represent its movement

trajectory over a period of time. The static sensor nodes continuously transmit their generated

data to the mobile robots for each application.

The sensors belonging to an application 𝑎𝑘 ∈ 𝐴, send their data to a unique robot 𝑟𝑚 for all

time steps 𝑇 , which is represented as a binary function 𝑧 : 𝐴 × 𝑅 × 𝑇 → {0, 1}. The function

𝑧(𝑎𝑘 , 𝑟𝑚, 𝑡) = 1 if application 𝑎𝑘 sends data to robot 𝑟𝑚 at timestamp 𝑡, and 𝑧(𝑎𝑘 , 𝑟𝑚, 𝑡) = 0

otherwise. In other words, there is one source and one destination of data for each sensor node

within each application at a specific timestamp.

4.4.2 Modeling of Network Uncertainties

One of the contributions of this work, is to find an appropriate prediction model that will be

able to accurately estimate major QoS metrics, under dynamic network conditions. Thus, four

different network dynamics/uncertainties are considered:

125

1. Interference: At each time slot that a pair of sensor nodes 𝑠𝑛, 𝑠𝑛′ ∈ 𝑆 utilizes the same

frequency channel, an interference level 𝐼𝑛,𝑛′ = 𝑓 (𝑃𝑛, 𝑑𝑛,𝑛′ , 𝜖) is created, where 𝑃𝑛 represents

the transmission power of sensor node 𝑠𝑛, 𝑑𝑛,𝑛′ is the distance between sensors 𝑠𝑛 and 𝑠𝑛′

and 𝜖 represents the characteristics of the wireless channel. In this work, we have tested

two different channel allocation techniques: i) all applications can use the same frequency

channel (inter and intra-application interference) or ii) each application is associated with a

different frequency channel (intra-application interference).

2. Transmission power: Each sensor 𝑠𝑛 ∈ 𝑆 can be set with a different transmission power 𝑃𝑛

to find a balance between transmission range and interference. Herein, the transmission

power can be either 0 or 12𝑑𝐵𝑚.

3. Mobility: The robots acting as the mobile access points can also create another level of

communication uncertainty. To evaluate the impact of mobility in the QoS prediction, two

mobility settings are available: i) static robots (i.e. 𝐺𝑚 = ∅) and ii) mobile robots (𝐺𝑚 ≠ ∅).

4. Heterogeneity of data: Finally, the QoS estimation can be affected by the way the data are

generated (i.e., event-based, periodic, or hybrid). Accordingly, during the generation of the

datasets all the above three data generation distribution have been used.

Based on the above described complexities, there are two interference models 𝐼 i.e., same

channel or different channel allocation, two power models 𝑃 i.e., either 0 or 12𝑑𝐵𝑚 and, two

mobility patters 𝐺 i.e., static and mobile. Hence, 𝜅 network configurations are examined, with

|𝜅 | = |𝐼 | × |𝑃 | × |𝐺 | = 2×2×2 = 8. For all these network configurations, the applications follow

a heterogeneous data generation with the three distributions mentioned above (e.g., event-based,

periodic, hybrid).

4.4.3 Problem Formulation of QoS Forecasting

In our proposed cross-device FL setting, the set 𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑙} represents the number of

clients, which are connected to a global server GS. Furthermore, the set 𝑄𝜅 = {𝑞𝑡
1
, 𝑞𝑡

2
, 𝑞𝑡

3
, 𝑞𝑡

4
}𝑇

represents the different QoS metrics attained for all network configurations 𝜅, where 𝑞𝑡
1

is the

throughput, 𝑞𝑡
2

is the PDR, 𝑞𝑡
3

is the PLR and 𝑞𝑡
4

is the latency metric at timestamp 𝑡 for the

126

different IoT applications. Then each client 𝑐𝑙 ∈ 𝐶 has its own local QoS dataset, which can be

represented as 𝐷𝑙 ⊆ 𝑄𝜅.

Specifically, 𝐷𝑙 is a multivariate QoS dataset, such as 𝐷𝑙 = {(𝑞1
1
, 𝑞1

2
, 𝑞1

3
, 𝑞1

4
), (𝑞2

1
, 𝑞2

2
, 𝑞2

3
, 𝑞2

4
), ...,

(𝑞𝑡𝑖 , 𝑞𝑡𝑖 , 𝑞𝑡𝑖 , 𝑞𝑡𝑖)} where each tuple (𝑞𝑡
1
, 𝑞𝑡

2
, 𝑞𝑡

3
, 𝑞𝑡

4
) represents a single observation in the dataset

at time 𝑡. For a univariate setting (i.e., only throughput), the QoS dataset is represented as

𝐷𝑙 = {𝑞1
1
, 𝑞2

1
, ..., 𝑞𝑡

1
} and similarly for the other metrics.

For each QoS dataset (either univariate or multivariate time series), a fixed length input sequence

of window size 𝜏 such that 𝜏 ∈ N, is used to predict the next values. To generalize, for any time

series 𝑋 the input sequence with a window size 𝜏 can be represented as {(𝑥𝑡+𝑖1 , 𝑥𝑡+𝑖2 , ..., 𝑥𝑡+𝑖𝜏) | 1 ≤
𝑖1 ≤ 𝑇 − 𝜏 + 1, 1 ≤ 𝑖2 ≤ 𝑇 − 𝜏 + 2, ..., 1 ≤ 𝑖𝜏 ≤ 𝑇 − 𝜏 + 𝜏}. Given this input sequence, we aim at

performing a multi-step forecasting ofΔQoS values in the future, i.e., 𝑋̃ = {𝑥𝑡
1
, 𝑥𝑡+1

2
, ..., 𝑥𝑇−1

Δ−1
, 𝑥𝑇Δ}.

Similarly, if Δ = 1 it becomes a one-step ahead problem. Hence, the forecasting is performed

using a learning model M, such as M : 𝑋 → 𝑋̃ which is parameterized by some weights W.

Thus, the goal is to minimize a loss function, between the real 𝑋 and predicted 𝑋̃ values.

Hence, in the FL context, each client 𝑐𝑙 will iteratively use its local training dataset 𝐷𝑙 and

training model M𝑙 in order to minimize the loss function, such as:

arg min
W𝑘

𝑙

L𝑘
𝑙 (M𝑘

𝑙 , 𝐷
𝑘
𝑙 ,W𝑘

𝑙) (4.1)

where L𝑘
𝑙 (.) represents the loss function at round/iteration 𝑘 , with 𝐾 = {1, 2, 3, ..., 𝑘 |𝑘 ∈ N},

with the M𝑘
𝑙 , 𝐷𝑘𝑙 , and W𝑘

𝑙 as its parameters. Each local weight W𝑘
𝑙 is then transmitted to the

server for updating the server’s global weight parameter W∗
𝑘 at iteration 𝑘 , which is called the

global update. Then, the learning problem tries to find an optimal model parameter vector W∗
𝑘

and the goal is to minimize the global loss function L∗ over the number of iterations 𝑘 using a

given dataset.

127

Table 4.1 IoT applications parameters for data generation

Application #Nodes Generation type Lambda Period(s)

VoIP 50 Periodic 0 0.0635

Surveillance 25 Exponential 196.74 1

Emergency Response 25 Hybrid 0.0333 30

4.5 Use Case and Dataset Generation

In order to create the QoS datasets, we implemented an IoT/Edge Computing use case composed

of 100 static transmitting sensor nodes that want to offload their data. Each sensor node belongs

to one of the three available IoT applications: i) VoIP, that emulates an automatic help desk

virtual assistant, ii) Surveillance, which includes a set of cameras for security, and iii) Emergency

Response, which monitors critical areas of a building (leakage on gas pipes, fire alarms, etc.).

The three applications produce data according to different distribution modes. Specifically,

the periodic mode generates data every 𝑖𝑡ℎ time instance, the event-based mode produces data

following an exponential law with an occurrence rate of 𝜆, and the hybrid mode which is a

combination of both periodic and event-based modes. Table 4.1 provides an overview of the

parameters used for the applications under consideration. Furthermore, each application is

associated with a unique mobile robot that receives this data while moving according to a

configured path.

The particular use case was implemented in the FIT IoT-LAB (Adjih et al., 2015), an open

testbed that allows large-scale experiments and provides openly programmable IoT nodes located

on several sites. We used the IoT-LAB M3, Zolertia Firefly and Decawave DWM1001 boards as

IoT nodes and the turtlebots as the mobile access points. All nodes communicate with each

other through the 802.15.4 wireless protocol, thereby rendering them suitable for our IoT and

Edge Computing use case. The locations of each sensor node in the experimental setup are

shown in Figure 4.1.

128

Figure 4.1 Sensor nodes location deployed in FIT IoT-LAB

As stipulated by the particular access protocol, the payload size was set to 127𝐵 for all applications

in all configurations. For the latter, and as explained in Section 4.4.2 there are eight network

configurations, which are presented in Table 4.2.

We collected all the data transmitted by the sensor nodes and the data received by the mobile

robots. These raw data include the features at sending side and features at receiving side.

Specifically, at the sending side we collected the timestamp at which a message is transmitted;

the name of the sensor node that transmits the message; the id of the transmitted message;

the transmission power; the frequency channel; the receiving robot; whether the message was

129

Table 4.2 Network configurations with different complexities

Configurations Mobility tx_power Channel Channel value

1 Mobile 0dBm Different {11,16,21}

2 Mobile 12dBm Different {11,16,21}

3 Mobile 0dBm Same {11}

4 Mobile 12dBm Same {11}

5 Static 0dBm Different {11,16,21}

6 Static 12dBm Different {11,16,21}

7 Static 0dBm Same {11}

8 Static 12dBm Same {11}

transmitted successfully or not; and the 𝑥 and 𝑦 coordinates of the robot. At the receiving side,

the following features were collected: timestamp; the name of the receiving robot; the message

id; the name of the transmitting sensor; the delay; the channel; and the coordinates of the robot.

Following, a feature engineer process was followed that resulted into the final QoS time series

datasets used for our experimentation. Specifically, the features engineered using the initial

raw data are: timestamp; robot name; total transmitted messages at specific timestamp; total

received messages at the specific timestamp; the time when the first message is transmitted; the

time when the last message is transmitted; PLR; Delay; PDR; and Throughput.

4.6 Proposed Model

4.6.1 Overview of FeD-TST

To forecast the QoS metrics of varying network uncertainties, we present FeD-TST, which

combines the Federated Learning with Temporal Sparse Transformer (TST). FeD-TST is a secure

distributed system for both univariate and multivariate Time Series Forecasting (TSF) as shown

in Figure 4.2.

In this framework, there is a central server and multiple client nodes. The clients will first train

their models locally based on the TST and then share their model weights with the other clients

130

Figure 4.2 Federated learning driven IoT QoS Forecasting System

via the central server. For each connected client and for each network configuration, the hidden

layer weights and parameters of the client model (i.e., TST) are represented as 𝜔. After the

uploading of this information, the global aggregation is performed at the FeD-TST server and

the global model parameters are sent back to each client. Following, each client loads these

global weights to its TST model’s hidden layers.

The TST model of each local client is illustrated in Figure 4.3. In the proposed TST, we first

generate the real time IoT data of the three different applications and eight different network

configurations as discussed in Section 4.5. Following, these datasets are pre-processed using

normalization, down sampling and cleaning procedures and are prepared as univariate or

multivariate inputs. The third step is to divide the dataset into training, validation and testing.

The training involves several components, such as the encoder module as shown in Figure 4.3a,

the decoder module as shown in Figure 4.3b, the multi-head sparse attention module as shown

131

Figure 4.3 Proposed Temporal Sparse Transformer (TST) Model

for IoT QoS Forecasting

in Figure 4.3c and a sparse attention module as shown in Figure 4.3d. Both the encoder and

decoder modules consist of multiple identical sub-layers that are stacked to each other. Finally,

uni/multivariate forecasts are produced along with the evaluation based on the test dataset. In

the rest of this section, we provide the details of each of the component of our proposed model.

4.6.2 Sparse Scaled Dot-Product Attention

The traditional transformer model utilizes the self-attention which is a form of a global attention

to model the long-term dependencies (Vaswani et al., 2017). In this work, the sparse scaled

dot-product attention is employed to overcome the shortcoming of the global attention, which

is to attend all the positions in the input QoS sequence leading to attend irrelevant or noisy

information that might not be beneficial for the QoS forecasting task. As shown in Figure

4.3d, a sparse scaled dot-product attention based on top-p selection is used to reserve the most

important QoS segments. The attention mechanism consists of three main parameters named

query, key and value, which consist the input of the sparse attention. Specifically, the query,

Q ∈ R𝑚×𝑑𝑞 is a query vector of a given input sequence of a certain QoS metric at a specific

time step to retrieve information from the key-value pairs. Each query vector is a transformed

132

version of the corresponding time step in the QoS input sequence and is computed using a

linear transformation. The key, K ∈ R𝑛×𝑑𝑘 is a vector for each time step in the QoS sequence

to determine the relevance of each element in the sequence with respect to the query. Finally,

the value, V ∈ R𝑛×𝑑𝑣 is a vector containing information associated with each time step in the

QoS sequence to compute the output of attention mechanism. The 𝑛 denotes the length of the

key-value pairs, 𝑚 is the length of the query vector, 𝑑 is the dimension of the corresponding

QoS vector, and 𝑑𝑞 = 𝑑𝑘 . To be more specific, Q, K and V are the linear mappings of the input

QoS sequence, such as {𝑥1
1
, 𝑥2

2
, 𝑥3

3
, ..., 𝑥𝑡𝑖 }, so that, Q = 𝑊Q𝑥𝑡𝑖 , K = 𝑊K𝑥𝑡𝑖 , V = 𝑊V𝑥𝑡𝑖 , where

𝑊Q ,𝑊K and𝑊V denote the learned weight matrices. To generate the attention scores, F , the

dot product of Q and K is performed which is then divided by
√
𝑑𝑘 as follows:

F = QK𝑇/
√
𝑑𝑘 (4.2)

The attention scores computed using the above equation represent the relation between different

QoS values e.g., 𝑥1
1

and 𝑥2
2

in the input sequence. For example, the larger the attention score

values are, the higher the relevance of the QoS values will be at a specific time step. After

computing the attention scores, the sparse attention performs a masking operation 𝑀 (.) on the

scores to select the top-p contributing values as follows:

𝑀 (F , 𝑝)𝑖 𝑗 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
F𝑖 𝑗 𝑖 𝑓 F𝑖 𝑗 ≥ 𝜃𝑖
−∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4.3)

The 𝜃𝑖 represents the 𝑝𝑡ℎ largest element of each row 𝑖 of the score matrix F . After obtaining

the highest attention values through the top-p selection, the softmax operation is applied to

normalize the scores as:

𝑆𝐴_𝑠𝑐𝑜𝑟𝑒𝑠 = 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥(𝑀 (F , 𝑝)) (4.4)

where 𝑆𝐴_𝑠𝑐𝑜𝑟𝑒𝑠 denotes the normalized sparse attention values and𝑀 (.) is assigned a negative

infinity value if the attention scores are less than the threshold value.

133

Figure 4.4 Overview of Sliding window for Input and Output of

FeD-TST Model

4.6.3 Temporal Sparse Transformer

4.6.3.1 Input and output of the TST Model

The QoS values are both the input and output of the TST, since past QoS values (input) will be

used to predict the future ones (output). Additionally, some contextual features are added only

to the input to help with the prediction of the future QoS values. Specifically, during the training

of the TST model, the input to the encoder module consists of 𝑛 contextual features, such as

{𝐹1, 𝐹2, ..𝐹𝑛}, along with the QoS values, both forming a set of 𝑋𝑇 input samples. Similarly,

the input samples for the decoder module consists of the same contextual features with however,

the actual (target) QoS values for a defined forecast horizon. In contrast, the output of the

134

decoder consists of the predicted QoS values. As mentioned earlier, we are solving both the

univariate and multivariate QoS forecasting. Therefore, if it is a univariate forecasting setting,

then the input sample consists of only one contextual feature i.e., timestamp and a forecasting

feature (i.e., throughput), thus, 𝑛 = 2. In case of multivariate forecasting, the QoS metric (i.e.,

throughput) will be forecasted based on the previous time steps of all contextual features, namely

the timestamp (𝐹1), total transmitted messages (𝐹2), total received messages (𝐹3), time first

message transmitted (𝐹4), time last message transmitted (𝐹5), PDR (𝐹6), PLR (𝐹7), latency

(𝐹8) and throughput (𝐹9) itself. This means that the input samples are created using multiple

contextual features and 𝑛 > 2. However, the final forecasting output generated by the TST model

will be the throughput values for the specific forecasting horizon. The same approach will be

applied for the other three QoS metrics, such as, PDR, PLR and latency.

The contextual features along with the QoS values form the time series vectors, and they need to

be converted into a suitable format to be used by the TST model. For this, the sliding window

technique is used and is depicted in detail in Figure 4.4. In the sliding window approach, the time

series vectors are divided into smaller windows of fixed length, also called input samples, and

each window is passed as an input to the TST model. Related to these input samples/windows,

there are two important parameters i) the rolling window size, which is the length of the sliding

window that determines the number of time series data values in each window and ii) the forecast

horizon, which is the number of future steps to be predicted.

In Figure 4.4, the first input sample called “Window 1" consists of the first 𝑘 values of a certain

QoS metric, thus one input sample has a dimension of 𝑘 × 𝑛 where 𝑛 is the number of features.

Given the Window 1 as an input to the TST model, the model can predict the QoS values for

𝑝 number of steps ahead, i.e., from the time step 𝑥𝑡+𝑘+1
𝑘+1

to 𝑥
𝑡+𝑘+𝑝
𝑘+𝑝 , based on the window of the

previous samples. The TST output contains the QoS values without the contextual features.

Here, the rolling window size is represented as 𝑘 and the forecast horizon as 𝑘 + 𝑝. For the next

input sample, the rolling window size is shifted iteratively with a step size of 1, represented as 𝑠,

with 𝑠 < 𝑘 . Thus, the next window consists of input samples from 𝑥𝑡+2
𝑠+1

to 𝑥𝑡+𝑘𝑠+𝑘 , and the expected

output contains QoS values for time steps 𝑥𝑡+𝑘+1
𝑠+𝑘+1

to 𝑥
𝑡+𝑘+𝑝
𝑠+𝑘+𝑝.

135

4.6.3.2 QoS Temporal Positional Embedding

The TST model encodes the temporal position information to extract the long-term temporal

dependencies from the time series QoS input sequences. The traditional attention mechanism can

also capture the relations among the QoS input sequence (Reza, Ferreira, Machado & Tavares,

2022), however, it neglects the ordering information in such time-series data. Therefore, in order

to make use of the order of the input sequence, there is a positional encoding added in the TST

model to add the location information to each input sequence value. The positional encoding

can be described as follows:

𝑃𝐸𝑝𝑜𝑠,2𝑖 = sin

(
𝑝𝑜𝑠

𝛼2𝑖/𝑑

)
(4.5)

𝑃𝐸𝑝𝑜𝑠,2𝑖+1 = cos

(
𝑝𝑜𝑠

𝛼2𝑖/𝑑

)
(4.6)

where 𝑝𝑜𝑠 is the positional index of the QoS value in the input sequence, 𝑖 is the length of

the QoS input sequence, 𝛼 is a user defined scalar and 𝑑 is the dimensionality of the encoded

position in the input sequence.

4.6.3.3 Long-Term Temporal QoS Extraction

To solve the long-term QoS forecasting problem, we propose a TST network to extract the

long-term temporal relations from the entire QoS input sequence. The TST model consists

of 𝜌 number of QoS TST encoders and the corresponding 𝜌 number of QoS TST decoders,

and its architecture is shown in Figure 4.3a and Figure 4.3b. Each QoS forecasting encoder

consists of the multi-head attention, fully-connected feed forward network, dropout (Pan,

Coen-Cagli & Schwartz, 2021) and layer normalisation (Liu, Ren, Zhang, Sun & Zou, 2021)

components. To express the 𝑖𝑡ℎ TST encoder, the abstract form is given as follows:

𝐸 (𝑖) = 𝑇𝑆𝑇 (𝐸 (𝑖−1)) = LN(FFN(𝐸̃ (𝑖)) + 𝐸̃ (𝑖)) (4.7)

136

where 𝐸 (𝑖) is the output of the 𝑖𝑡ℎ TST encoder, LN(.) is the operation of normalization layer,

FFN(.) represents the fully connected feed-forward network and it can be expanded into:

FFN(𝐸̃ (𝑖)) = 𝑚𝑎𝑥
(
0, 𝐸̃ (𝑖)𝑊1 + 𝑏1

)
𝑊2 + 𝑏2 (4.8)

where FFN(.) contains two fully-connected layers with dropout and a ReLU activation with

𝑊1, 𝑏1, 𝑊2 and 𝑏2 as its corresponding learnable parameters. The FFN(.) thus gives the

nonlinear transformation of its input. Additionally, 𝐸̃ (𝑖) denotes the intermediate feature of the

QoS encoder and can be represented as follows:

𝐸̃ (𝑖) = LN(𝑀𝐻𝑆𝐴(𝐸 (𝑖−1)) + 𝐸 (𝑖−1)) (4.9)

where 𝑀𝐻𝑆𝐴(.) is the multi-head sparse attention, which uses𝑚 different linear transformations

and analyzes the previous QoS encoder layer features i.e., 𝐸 (𝑖−1) . The multi-head sparse attention

process can be written as:

𝑀𝐻𝑆𝐴(𝐸 (𝑖−1)) = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ0, ℎ1, ℎ2, ..., ℎ𝑚)𝑊0 (4.10)

where 𝐶𝑜𝑛𝑐𝑎𝑡 is the concatenation operation performed on all attention heads,𝑊0 is the linear

transformation of the concatenated output, and ℎ𝑚 represents the 𝑚𝑡ℎ attention head and is given

as:

ℎ𝑚 = SA
(
𝑄𝑊𝑄

𝑚 , 𝐾𝑊
𝐾
𝑚 ,𝑉𝑊

𝑉
𝑚

)
(4.11)

where SA is the sparse attention as discussed in section 4.6.2 and is computed using Equations

4.2-4.4.

The QoS decoder of the TST has the same structure as the QoS encoder, however, two additional

operations are added. Firstly, a subsequent mask to the first attention block is added, which

ensures that the forecasting of the position 𝑖 in the input sequence can only rely on the known

outputs of positions which are less than 𝑖, thus avoiding the auto-regressive behavior. This

137

addition is given as:

𝐷̃ (𝑖) = LN(˜𝑀𝐻𝑆𝐴(𝐷 (𝑖−1)) + 𝐷 (𝑖−1)) (4.12)

where ˜𝑀𝐻𝑆𝐴 is the masked multi-head attention for the decoder and 𝐷 (𝑖−1) represents the

output from the previous decoder.

Secondly, an attention block is added to the decoder that performs the attention operation on the

output of the encoder block. Based on these discussed additions, the QoS decoder is given as:

𝐷 (𝑖) = LN(𝑀𝐻𝑆𝐴(𝐷̃ (𝑖) , 𝐸 (𝑖)) + 𝐷̃ (𝑖))
𝐷̂ (𝑖) = LN(𝐹𝐹𝑁 (𝐷 (𝑖)) + 𝐷 (𝑖))

(4.13)

where 𝐸 (𝑖) is the output from the 𝑖𝑡ℎ encoder and 𝐷̂ (𝑖) is the output from the 𝑖𝑡ℎ decoder.

4.6.4 Proposed FeD-TST

The key idea of FeD-TST scheme is that the clients co-train the TST model presented above,

while keeping the QoS data locally for each network configuration. To be more specific, FeD-TST,

as shown in Figure 4.2 consists of the following steps:

4.6.4.1 Initialization

The secure client and server connection is first established, along with the server’s selection

of a subset of clients from all connected clients to participate in the training for the following

round/iteration. After all clients are enumerated, the model parameters are initialized and

broadcast to each client, such as the number of encoder and decoder blocks 𝜌, the number of

communication rounds K, the number of local epochs E, the learning rate 𝜂, the loss function

L, the initial weight 𝑤0 which is the starting point of the global model’s parameters before the

training process begins, and the time step size 𝑠.

138

4.6.4.2 Training of the local TST models on Clients

After the initialization step, each local client trains a TST model using their respective local

QoS data for the 𝑘𝑡ℎ round, and the training results will be used for the next 𝑘 + 1 round. The

same process repeats at each round.

4.6.4.3 Uploading of the local TST model weights

When the training of each client’s local TST model is completed, each client extracts the

respective TST weights and then uploads them to the server for the next round 𝑘 + 1.

4.6.4.4 Aggregation of the model weights

According to the received TST model weights from each client, the server then performs the

aggregation mechanism, called Federated Averaging (FeDAvg), which aggregates the local model

updates from the participating clients and computes a global model update. The aggregated

results are then broadcast to each client. This iterative process is repeated until the loss function

converges or a maximum number of rounds is reached. The algorithmic implementation of all

the components presented in this Section along with their complexity analysis is provided in the

Appendix 1.

4.7 Experimental Evaluation

In this section, the evaluation of our proposed FeD-TST framework is provided. First, a brief

overview of the network configurations is provided and their respective datasets. Following, the

baseline comparative methods and the performance metrics are outlined . Lastly, the results of

all experiments are provided along with their the comparative analysis.

139

4.7.1 Model Implementation and Frameworks

4.7.1.1 Network Configurations and Datasets

Under the time series forecasting settings, we forecast the four following QoS metrics as: (i)

Throughput; (ii) PDR; (iii) PLR and (iv) Latency in two different time series settings such as

univariate and multivariate. The window size for both settings is set to be 30. For the network

configurations with mobility as a parameter, the duration of the corresponding QoS datasets

is 6 hours stipulated by the battery duration of the mobile robots. In contrast, for the network

configurations with static access points, the duration of the respective QoS datasets is 10 hours.

We applied the FeD-TST framework to each of the network configuration individually under

both univariate and multivariate settings. Finally, it is noted that we use 60% of the data for

training, 20% of the data for validation and the remaining 20% for testing purposes.

4.7.1.2 Baseline Methods

For comparison purposes, we evaluate our proposed FeD-TST model against the most popular

centralized and decentralized learning models that are appropriate for time series forecasting.

Regarding the centralized baselines we have used the i) LSTM, ii) Bidirectional LSTM (Bi-

LSTM), iii) Attention + BiLSTM, iv) Sequence to Sequence (Seq2Seq), v) Seq2Seq + Attention

(Li et al., 2022a), vi) Temporal Convolutional Networks (TCN) + BiLSTM (Chen, Kang,

Chen & Wang, 2020), and vii) Time2Vec + Transformer (Kazemi et al., 2019). Finally, for the

decentralized comparison we have employed the i) FL + LSTM, and the ii) FL + Multi-head

Attention (MHA), which is a temporal transformer model (Hameed et al., 2022) adapted to the

FL setting. The description of all these approaches along with the hyperparameters used are

provided in the Appendix 2.

140

4.7.1.3 Performance Metrics

In order to evaluate the performance of each method, three widely used metrics have been

selected: Mean Absolute Error (MAE), Mean Square Error (MSE), and Root Mean Square Error

(RMSE), given as:

𝑀𝐴𝐸 =
1

𝑛

𝑛∑
𝑖=1

|𝑦𝑖 − 𝑦𝑖 |

𝑀𝑆𝐸 =
1

𝑛

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2

𝑅𝑀𝑆𝐸 =

√√
1

𝑛

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2

(4.14)

where 𝑦𝑖 and 𝑦𝑖 are the forecasted QoS value and its corresponding ground truth. To further

evaluate the effectiveness of the proposed approach, we use the communication cost model as

proposed in (Xia, Ye, Tao, Wu & Li, 2021). The particular cost is modeled as 2 ·K ·N ·Ω ·M𝑠𝑖𝑧𝑒

where K is the total number of communication rounds, |LC| is the total number of client nodes,

Ω is the fraction of client nodes to be selected, M𝑠𝑖𝑧𝑒 is the size of the ML model. The latter is

equal to the total number of trainable parameters 𝑃M multiplied by the size of the parameters in

bits Υ i.e., (4bits, 8bits, 16bits, 32bits).

4.7.1.4 Implementation Details

We implemented the proposed FeD-TST model and all baseline federated approaches using the

Flower Federated Framework (Beutel et al., 2022) with 512 local clients for four QoS datasets

under eight network configurations, respectively. For each of the QoS forecasting, we trained

every algorithm for 30 communication rounds. All the centralized and decentralized models

were executed in a Python environment with open-source TensorFlow libraries. All models

were trained on high-performance Linux clusters offered by Compute Canada namely, Cedar

and Beluga. For the Beluga cluster, we trained, validated and tested the models on a NVIDIA

V100 with 16GB GPU and for the Cedar cluster, we utilized the NVIDIA P100 with 16GB GPU

respectively.

141

Figure 4.5 Network configuration impact on QoS forecasting

4.7.1.5 Results

For both of the time series forecasting settings, we present the accuracy efficiency of all

four different QoS metrics, while considering the eight different network configurations. In

particular, the results will be assessed with respect to the impact of network configurations, the

communication cost, and the forecasting efficiency of the FL model.

4.7.2 Impact of Network Configurations

To evaluate the impact of the network conditions on the prediction accuracy, we first plot the

MAE when using our proposed FeD-TST solution under all eight network configurations. As

shown in Figure 4.5, the forecasting error for the throughput is the least for the fifth network

configuration (i.e., Static_diff_channel_0dbm) followed by network configuration 8 (i.e., Static_-

same_channel_0dbm). This is because the robot access points remained stationary, which

reduced the variability in the network conditions leading to more stable transmissions. Thus, the

deep learning model can learn more easily such scenarios.

142

Table 4.3 Univariate forecasting results for throughput, best results are highlighted in bold

Configurations 1 2 3 4 5 6 7 8

Methods Metrics Mobile Mobile Mobile Mobile Static Static Static Static

LSTM MSE 0.002180008 0.058064374 0.017221582 0.019661525 0.007008886 0.000043146 0.028044095 0.007652375

MAE 0.031486913 0.199266738 0.082996892 0.073941417 0.075111779 0.001767353 0.130296992 0.053803794

RMSE 0.046690557 0.240965503 0.131231025 0.140219554 0.08371909 0.006568581 0.167463712 0.087477852

BiLSTM MSE 0.002149963 0.058196797 0.017138673 0.008286225 0.006855734 0.000059553 0.027234415 0.007399871

MAE 0.03109576 0.201700344 0.08100321 0.043326636 0.073171018 0.001759178 0.12784306 0.051513432

RMSE 0.046367696 0.241240122 0.130914755 0.091028704 0.08279936 0.007717055 0.165028528 0.086022505

ATT+BiLSTM MSE 0.002113405 0.06045324 0.016387171 0.008071625 0.007019641 0.000026737 0.028635743 0.007840934

MAE 0.03286028 0.203475403 0.078651295 0.043766762 0.074738003 0.001766987 0.132077915 0.055272665

RMSE 0.045971786 0.245872406 0.128012387 0.089842222 0.083783299 0.005170763 0.169220988 0.088549048

Seq2Seq MSE 0.002172816 0.058766967 0.017565562 0.007910387 0.006828733 0.000036975 0.028332603 0.007925499

MAE 0.034427306 0.202370203 0.082538805 0.045117619 0.074294335 0.001800946 0.131756 0.053090038

RMSE 0.046613471 0.24241899 0.132535134 0.088940356 0.082636146 0.006080671 0.168322913 0.089025274

Seq2Seq+ATT MSE 0.002108766 0.057875243 0.017857116 0.007336685 0.007259331 0.000011513 0.027428818 0.007885314

MAE 0.031982373 0.201074426 0.094457217 0.042848431 0.072002338 0.00172142 0.125179741 0.054124594

RMSE 0.045921299 0.24057274 0.13363052 0.085654454 0.085201709 0.003393085 0.165616478 0.08879929

TCN+BiLSTM MSE 0.00217524 0.05769644 0.016973583 0.007007257 0.007166868 0.000020477 0.02818864 0.008333666

MAE 0.035093832 0.198256349 0.081892429 0.045072616 0.076047148 0.001763019 0.133661025 0.062342796

RMSE 0.046639469 0.240200832 0.130282705 0.083709361 0.084657358 0.004525111 0.16789473 0.091288916

T2V+Transformer MSE 0.002094785 0.059257085 0.016875335 0.006954281 0.006820699 0.000048149 0.03231086 0.008300878

MAE 0.032487425 0.204504672 0.080115092 0.0402296 0.074963033 0.001738727 0.139963191 0.053888586

RMSE 0.045768823 0.243427782 0.129905099 0.083392333 0.082587524 0.006938978 0.179752218 0.091109152

FL+LSTM MSE 0.026109913 0.198509365 0.019059159 0.009396685 0.007740845 0.000105776 0.036035966 0.008500859

MAE 0.121700913 0.245523065 0.083601423 0.048500054 0.073999718 0.004875254 0.153384194 0.05503843

RMSE 0.161543608 0.444212198 0.13799575 0.096909925 0.087978683 0.010284722 0.189783856 0.092178144

FL+MHA MSE 0.002752693 0.093995392 0.029476583 0.013653285 0.015197324 0.000150662 0.063143753 0.035793204

MAE 0.038101345 0.248628452 0.130680636 0.061146908 0.101738915 0.007402018 0.198087156 0.147313178

RMSE 0.052466109 0.306586683 0.171687454 0.116847269 0.123277426 0.01227443 0.251284212 0.189190924

FeD-TST MSE 3.67E-05 0.007006747 0.000226781 0.006597863 3.48511E-05 0.001039662 0.003347858 0.001060865
MAE 0.004760905 0.079123348 0.001064445 0.040155964 0.000532004 0.027471544 0.001423224 0.000721199
RMSE 0.006055055 0.083706312 0.001505924 0.081227229 0.005090348 0.032243785 0.018297152 0.001002998

Next for the PDR and PLR, the FeD-TST provides better forecasting for the first network

configuration (i.e., Mobile_diff_channel_0dbm). The reason is that PDR and PLR can be

severely affected by the level of the interference. Thus, when using different frequency channels,

the likelihood of interference between the applications is reduced, leading to more reliable

transmissions and improved forecast accuracy. In contrast, when the interference becomes more

important the PDR and PLR change more significantly, affecting the overall accuracy of the

forecast. The same observation is drawn when the transmission power increases, which also

leads to higher interference and the forecasting accuracy decreases for such configurations.

Lastly for the latency, FeD-TST achieves the best forecasting for the third network configuration

(i.e., Mobile_same_channel_0dbm). In the particular configuration, we expect to see an increased

level of interference, which leads to more re transmissions and thus longer delays. However, the

proposed model managed to learn such complex behaviors providing good forecasting accuracy.

143

4.7.3 Communication Cost

In terms of communications cost, Figure 4.6 provides the comparison of the proposed FeD-

TST with the rest of the benchmarks, when varying the fraction of the dataset used by the

training process, from 10 to 100%. It should be noted, that the particular Figure illustrates the

communication of only one network configuration (i.e., Mobile_same_channel_0dbm), due to

space limitations. Nonetheless, similar results were obtained for the rest of the configurations as

well.

The key observation of the communication cost, is that for all federated learning based methods,

such as FL+LSTM, FL+MHA and our proposed FeD-TST, the cost remains constant for all

different fractions of the dataset used for the training. This is attributed to the fact that there is

no actual datasets transferred between the clients and server. Instead, only the updates of the

global and local agents are exchanged, resulting in a consistent and constant communication

cost. However, the communication costs of the centralized models increase with the fraction of

the dataset used in the training process. Among the centralized models, TCN+BiLSTM shows

the highest communication cost, as it has the highest number of trainable parameters compared

to the other models. Finally, the proposed FeD-TST gives the least communication cost of

8.2056𝐸 + 08, compared to the other FL approaches, as FL+MHA yields a communication cost

of 9.43992𝐸 + 08 and FL+LSTM of 9.81624𝐸 + 08.

4.7.4 Univariate Results

In Table 4.3, the three error metrics i.e., MSE, MAE and RMSE, when forecasting the throughput

for all methods and network configurations, are presented. From these results, the following

observations can be drawn. Firstly, the proposed FeD-TST model outperforms the other two

distributed solutions (i.e., FL+LSTM and FL+MSA) in almost all network configurations. There

are two main reasons for this efficiency: i) FL+LSTM can suffer from the vanishing gradients

when processing long sequences, which can make it difficult to learn long-term dependencies.

However, FeD-TST can avoid this problem by using the attention module, which is used to

144

Figure 4.6 Communication Cost

capture the dependencies between different throughput values in the input sequence. This

allows the FeD-TST model to learn which parts of the input sequence are more relevant for

the throughput forecasting at each time step. By propagating this information across the entire

sequence using the attention module, FeD-TST avoids the problem of vanishing gradients.

Furthermore, the attention module in FeD-TST is more effective than the gating mechanism in

FL+LSTM in terms of capturing long-term dependencies and patterns in the data, especially for

longer throughput input sequences. Moreover, FeD-TST uses the positional encoding mechanism

which encodes the position of each throughput value in the input sequence. This empowers the

FeD-TST to differentiate between various throughput observations in the sequence, even if they

have the same value and better handle the longer throughput sequences; ii) FL+MSA uses a

self-attention module, which computes the importance of each throughput value in the input

sequence based on its relationship with all the other throughput values in the sequence. This

means that the self-attention considers all throughput values in the sequence when computing

the attention weights. Thus, this can lead the self-attention to be affected by noisy or irrelevant

145

Table 4.4 Univariate forecasting results for PDR, best results are highlighted in bold

Configurations 1 2 3 4 5 6 7 8

Methods Metrics Mobile Mobile Mobile Mobile Static Static Static Static

LSTM MSE 0.018257154 0.037851512 0.000608792 0.001952939 0.001112278 0.01857656 0.076177719 0.001061075

MAE 0.080767698 0.156077519 0.001516378 0.003028177 0.001499788 0.080090836 0.245758619 0.003359817

RMSE 0.135119038 0.194554657 0.024673704 0.044192069 0.033350831 0.136295855 0.276003114 0.032574153

BiLSTM MSE 0.018449913 0.025352443 0.001411486 0.001915232 0.000599673 0.019455916 0.074454278 0.002206909

MAE 0.080295092 0.12848674 0.001740071 0.003789981 0.001141312 0.07880042 0.241632533 0.008116467

RMSE 0.135830455 0.159224505 0.037569752 0.04376336 0.024488231 0.139484464 0.272863113 0.046977751

ATT+BiLSTM MSE 0.018410313 0.024726183 0.00088561 0.001182298 0.000512866 0.018651737 0.076006 0.000577173

MAE 0.080084426 0.125214189 0.001705488 0.003541321 0.001272777 0.079920708 0.245711249 0.002313198

RMSE 0.135684608 0.157245613 0.029759198 0.03438456 0.02264655 0.136571364 0.275691856 0.024024419

Seq2Seq MSE 0.018686683 0.02546426 0.000627586 0.002250746 0.000353211 0.019352935 0.074024439 0.000891181

MAE 0.084082524 0.128587491 0.001882692 0.004034477 0.002321665 0.080620867 0.247234381 0.002561207

RMSE 0.136699243 0.159575247 0.025051661 0.047442024 0.018793907 0.139114827 0.272074326 0.029852654

Seq2Seq+ATT MSE 0.017895584 0.02488008 0.000994254 0.002043545 0.000256814 0.018469424 0.072522882 0.000677193

MAE 0.079086621 0.125329378 0.001816939 0.004525415 0.001136588 0.078296446 0.235733602 0.002153011

RMSE 0.133774376 0.157734206 0.031531789 0.045205586 0.016025408 0.13590226 0.269300728 0.026022931

TCN+BiLSTM MSE 0.018551141 0.024655612 0.000600939 0.001797786 0.000350983 0.019236453 0.074489966 0.001268126

MAE 0.082181067 0.125796429 0.00392316 0.003801887 0.001281348 0.081557265 0.2375388 0.007112032

RMSE 0.136202572 0.157021055 0.024514057 0.04240031 0.01873454 0.13869554 0.272928499 0.035610752

T2V+Transformer MSE 0.018813977 0.02562528 0.000637369 0.001975316 0.016922135 0.018765976 0.074159335 0.001057309

MAE 0.086577267 0.130660705 0.001173224 0.005953995 0.055162054 0.079134315 0.243209761 0.006711487

RMSE 0.137164053 0.16007898 0.025246166 0.044444524 0.130085105 0.136988963 0.272322117 0.032516286

FL+LSTM MSE 0.019515449 0.098753192 0.000603801 0.135606289 0.001285934 0.025663415 0.107867897 0.000866407

MAE 0.086151034 0.269703567 0.001251696 0.366929799 0.001705134 0.085382722 0.23624748 0.008104443

RMSE 0.139641225 0.314214915 0.024572313 0.368222237 0.035859846 0.160190925 0.32837072 0.029434759

FL+MSA MSE 0.02645552 0.048118532 0.006903093 0.022831427 0.003011749 0.020869514 0.095742323 0.001933012

MAE 0.122321516 0.17536521 0.071824536 0.118473649 0.008171082 0.091781527 0.254539758 0.009358659

RMSE 0.162651524 0.219359368 0.083084859 0.151100725 0.054879408 0.144462854 0.309422553 0.043966036

FeD-TST MSE 07.52E-13 0.024042883 4.86E-11 0.000736637 8.88E-11 0.023981718 5.03E-10 0.000481912
MAE 6.82E-07 0.123524003 6.07E-06 0.002928413 9.01E-06 0.089999422 1.95E-05 0.002050021
RMSE 8.67E-07 0.155057675 6.97E-06 0.027141048 9.42E-06 0.154860318 2.24E-05 0.021952493

throughput values in the sequence, even if they are not relevant for the forecasting. In contrast,

the sparse attention in FeD-TST only considers a subset of the throughput values in the input

sequence when computing the attention weights. This subset of values is typically chosen based

on their relevance for the forecasting, which means that noisy or irrelevant QoS values in the

sequence may be ignored by the model making FeD-TST more robust than FL-MSA.

The second observation extracted from Table 4.3 is that the FeD-TST model also outperforms all

centralized solutions and for almost all network configurations. The reason is that the FeD-TST

enables the model to learn from multiple clients with potentially different data distributions.

This can help our model to better adapt to new data and be more robust to changes in the data

distribution over time. Furthermore, FeD-TST can leverage the collective knowledge of multiple

clients at the same time, in order to improve its performance on throughput forecasting.

146

The final observation, is that for the network configuration 6, the Seq2Seq+ATT model

performed slightly better than FeD-TST. This can attributed to the fact that the dataset generated

for configuration 6 may not have been diverse enough in terms of the throughput observations.

This can adversely impact the distributed learning, since FL models are trained on data that

are distributed across multiple clients, which can help improve generalization. However, if the

data distributions across the clients are too similar, the FL model may not be able to effectively

capture the underlying patterns in the data. Finally, the Seq2Seq+ATT model is a data-efficient

model and it can achieve good performance even with fewer homogeneous training samples.

Table 4.5 Univariate forecasting results for PLR, best results are highlighted in bold

Configurations 1 2 3 4 5 6 7 8

Methods Metrics Mobile Mobile Mobile Mobile Static Static Static Static

LSTM MSE 0.021792671 0.033600801 0.000170506 0.003800143 0.000898948 0.006792275 0.028396553 0.004032325

MAE 0.082623192 0.150432311 0.007338254 0.023558733 0.013402833 0.030336409 0.13075646 0.032339007

RMSE 0.14762341 0.183305213 0.013057785 0.061645296 0.029982454 0.082415258 0.168512768 0.063500594

BiLSTM MSE 0.020697191 0.034122424 0.000401793 0.004283569 0.000542852 0.006855659 0.041219532 0.003004725

MAE 0.080600034 0.151636813 0.008385715 0.024967082 0.012687792 0.027902375 0.158798501 0.031972674

RMSE 0.143865183 0.184722559 0.020044774 0.06544898 0.023299188 0.08279891 0.203025937 0.054815371

ATT+BiLSTM MSE 0.020245053 0.033294998 0.00014359 0.00421118 0.000547313 0.006935762 0.028205546 0.003443814

MAE 0.080818832 0.151242344 0.007237762 0.023958626 0.013155007 0.028010578 0.132771995 0.032751093

RMSE 0.142285113 0.182469171 0.011982922 0.064893606 0.023394728 0.083281221 0.167945069 0.058684019

Seq2Seq MSE 0.021252736 0.033916195 0.000523421 0.003230895 0.000885887 0.00682344 0.027612433 0.002580039

MAE 0.086687473 0.153022372 0.007574055 0.022760354 0.013292484 0.028000094 0.131795246 0.032047241

RMSE 0.145783182 0.184163502 0.022878392 0.056840967 0.029763853 0.082604119 0.166169893 0.050794084

Seq2Seq+ATT MSE 0.020900074 0.032672588 0.000460761 0.003551169 0.000549879 0.006830279 0.028939158 0.00355437

MAE 0.085837735 0.148762972 0.009517111 0.022397076 0.012634716 0.032682136 0.131375186 0.032834303

RMSE 0.14456858 0.180755604 0.021465339 0.059591688 0.023449497 0.0826455 0.170115131 0.059618536

TCN+BiLSTM MSE 0.020198194 0.031638767 0.000394537 0.002814738 0.000232801 0.006485215 0.028564665 0.003535622

MAE 0.078534621 0.148136144 0.008401207 0.022391848 0.012239431 0.02950272 0.132377563 0.033134242

RMSE 0.142120352 0.177872896 0.019862957 0.053054102 0.015257805 0.080530831 0.169010844 0.0594611

T2V+Transformer MSE 0.020911002 0.034417311 0.000920884 0.004394198 0.000889586 0.006719895 0.030964824 0.002978452

MAE 0.085307551 0.153888459 0.009341288 0.02465749 0.013932025 0.031952691 0.137978923 0.030472741

RMSE 0.14460637 0.18551903 0.030346072 0.066288749 0.029825929 0.081974968 0.175968248 0.054575195

FL+LSTM MSE 0.022094503 0.041293263 0.046052642 0.004675237 0.810819387 0.006800786 69.65638733 0.003036108

MAE 0.075020067 0.159862995 0.137425244 0.02439647 0.367824584 0.021475384 1.586332083 0.028901355

RMSE 0.148626059 0.203149363 0.214597806 0.068371393 0.867065966 0.082466155 8.330111504 0.055099569

FL+MSA MSE 0.026332522 0.053814277 0.002095943 0.009201947 0.144768745 0.008289964 0.042631045 0.006102875

MAE 0.09593612 0.185807839 0.013791043 0.049586143 0.285889983 0.040396597 0.162858874 0.05424583

RMSE 0.16227299 0.231979042 0.045781475 0.095926777 0.380484879 0.091049239 0.206472874 0.078120902

FeD-TST MSE 2.66E-14 0.038911376 1.91E-11 0.008929118 3.05E-05 3.67E-05 0.026158862 2.60E-11
MAE 1.37E-07 0.16107823 3.48E-06 0.070162557 0.00051405 0.004760905 0.127036972 3.57E-06
RMSE 1.63E-07 0.197259665 4.37E-06 0.094494008 0.005524271 0.006055055 0.161737015 5.10E-06

Similarly, Table 4.4 presents the error metric results for the PDR under all network configurations.

As it can be seen, the proposed FeD-TST model performs better than all other models for

all configurations except for the network configuration 6 (i.e., static robots, different channel

allocation, and 12𝑑𝐵𝑚 transmission power). Once more and for the reasons described above

the Seq2Seq+ATT model exhibited the best performance. This means that the Seq2Seq+ATT

147

model is able to well capture the temporal patterns that affect the PDR dataset, such as changes

in network congestion or interference, and make more accurate future forecasts.

Regarding PLR, and as seen in Table 4.5, FeD-TST provides the best results for 6 configurations.

Specifically, for the second (i.e., mobile robots, different channel, 12𝑑𝑏𝑚) and fourth network

configuration (i.e., mobile robots, same channel, 12𝑑𝑏𝑚), TCN+BiLSTM showcased the best

performance. In both configurations the access points are mobile and the transmission power is

high. Nonetheless, from the same Table and for the first (mobile robots, different channel, 0𝑑𝑏𝑚)

and third configuration (mobile robots, same channel, 0𝑑𝑏𝑚), it can be seen that FeD-TST

performed better. By looking close into these configurations, we can see that the transmission

power may have an impact on how the learning models perform.

Specifically, when a network configuration contains mobile access points the network topology

and data distribution can change over time. This means that the data may not be as sparse, as

all access points may have relevant information at different times. Also the sparsity of PLR

datasets can be influenced by the transmission power. When the transmission power is set to

0dBm, the signals do not travel far, resulting in a shorter propagation range, and higher PLR.

Since the FeD-TST model can handle large amounts of data more efficiently, the model may

have more information to work with, when there is a noticeable amount of PLR, allowing it to

attend the subset of important PLR values using the sparse attention. Therefore, it can perform

well on this type of PLR datasets. However, when the transmission power is set to 12dBm, the

signals can travel further, resulting in a more sparse PLR dataset. Hence, TCN+BiLSTM, which

uses convolutional layers to extract the features from the PLR input data, can capture well local

patterns, while the BiLSTM layer can effectively capture the longer-term temporal relationships

between the PLR values. Overall, TCN+BiLSTM performs better than the FeD-TST model in

scenarios where the dataset is more sparse.

For the latency dataset and as seen from Table 4.6, the FeD-TST is well suited for all net-

work configurations except configuration 8 (static robots, same channel, 12𝑑𝐵𝑚), where the

ATT+BiLSTM model gives the best performance. The reason is that when multiple robots are

148

Table 4.6 Univariate forecasting results for Latency, best results are highlighted in bold

Configurations 1 2 3 4 5 6 7 8

Methods Metrics Mobile Mobile Mobile Mobile Static Static Static Static

LSTM MSE 0.024408949 0.06017804 0.088636216 0.056182637 0.017420559 0.009039901 0.100882114 0.040418583

MAE 0.080140304 0.214223589 0.248948097 0.201964768 0.049288355 0.033133292 0.291552399 0.167005577

RMSE 0.156233636 0.245312127 0.297718349 0.237028769 0.131986964 0.095078395 0.317619448 0.201043734

BiLSTM MSE 0.024206015 0.0603612 0.088730471 0.084598273 0.01688086 0.009230823 0.101561174 0.041677659

MAE 0.079947131 0.214269641 0.249370197 0.198644096 0.047570767 0.033800875 0.291890608 0.165094546

RMSE 0.155582824 0.245685164 0.297876604 0.246165022 0.129926363 0.096077172 0.31868664 0.204151069

ATT+BiLSTM MSE 0.024179881 0.084598273 0.089001176 0.057675521 0.01729584 0.009121923 0.102110922 0.040280716
MAE 0.080108745 0.246165022 0.240791322 0.203930682 0.046483801 0.03072686 0.293887956 0.14324601
RMSE 0.155498813 0.290857822 0.298330648 0.240157283 0.131513648 0.095508757 0.319547997 0.200700563

Seq2Seq MSE 0.024997304 0.05980379 0.089389425 0.055409534 0.016375065 0.008770341 0.099581648 0.040978067

MAE 0.078904381 0.214706046 0.256589036 0.201288012 0.050110525 0.033967249 0.281536809 0.168885758

RMSE 0.158105358 0.244548135 0.298980642 0.235392298 0.127965093 0.093650097 0.315565599 0.202430399

Seq2Seq+ATT MSE 0.024013291 0.60308408 0.086830182 0.057301211 0.017024882 0.008396982 0.103578993 0.041083115

MAE 0.081703762 0.21346644 0.254700822 0.202772912 0.049581186 0.035931874 0.295579004 0.170103562

RMSE 0.154962224 0.245577704 0.294669615 0.239376713 0.130479431 0.091635047 0.321836904 0.2026897

TCN+BiLSTM MSE 0.032147098 0.062922512 0.09267886 0.054981224 0.016755645 0.009074548 0.103784816 0.04146944

MAE 0.11613974 0.213559675 0.255984481 0.199181873 0.046739142 0.034320761 0.29798527 0.16241555

RMSE 0.179296121 0.250843602 0.304432029 0.234480753 0.129443598 0.095260424 0.322156508 0.203640468

T2V+Transformer MSE 0.024686465 0.064907747 0.09201476 0.055858478 0.016280688 0.008851462 0.103110644 0.040447623

MAE 0.082032614 0.222181234 0.266272543 0.199272798 0.052664447 0.031812765 0.298888429 0.166716834

RMSE 0.15711927 0.254769988 0.303339347 0.236343982 0.1275958 0.094082209 0.321108461 0.201115943

FL+LSTM MSE 0.027547928 80687.98438 0.103246123 4.166488647 0.019056881 0.009888737 0.121394642 0.047525864

MAE 0.077818892 18.25476456 0.230045661 0.455275744 0.053534083 0.036810573 0.274667084 0.170613229

RMSE 0.165957242 283.6138611 0.32129097 2.016258478 0.138044104 0.099438779 0.348386973 0.217998505

FL+MSA MSE 0.024906835 0.115047574 0.245384723 0.098320305 0.023086162 0.01547756 0.136887431 0.07021708

MAE 0.077157654 0.27891928 0.433125585 0.257558107 0.077514783 0.060696498 0.318601936 0.196365908

RMSE 0.157818988 0.339186639 0.495363235 0.313560694 0.151941314 0.124408841 0.369983017 0.264985055

FeD-TST MSE 0.023777915 0.059448318 4.40E-05 0.054488377 0.001039662 7.52E-05 0.002381638 0.066853426

MAE 0.076379195 0.212089206 0.006626479 0.198644096 0.027471544 0.007280115 0.04880077 0.190088391

RMSE 0.15420089 0.243820257 0.006636661 0.233427456 0.032243785 0.00867211 0.048802029 0.2585603

operating on the same channel, they can interfere with each other’s signals. This becomes more

evident when the robots are static and they use high transmission power, increasing this way the

common serving area, which however will suffer from more dense interference levels. Inevitably,

this high interference will lead to a latency increase. Therefore, forecasting the latency in such a

network configuration is more challenging for federated learning models.

4.7.5 Multivariate Results

Table 4.7 presents the multivariate results for the throughput prediction for different network con-

figurations. As in the case of univariate prediction, our proposed model, Fed-TST outperformed

all of the rest methods and for almost all network configurations. Additionally, the prediction

errors are reduced compared to the univariate setting, since in this second set of results, the

FeD-TST model does not only capture the temporal dependencies of the forecasting variable e.g.,

throughput values but the temporal dependencies of all the other features at the same time (i.e.,

149

Table 4.7 Multivariate forecasting results for Throughput, best results are highlighted in

bold

Configurations 1 2 3 4 5 6 7 8

Methods Metrics Mobile Mobile Mobile Mobile Static Static Static Static

LSTM MSE 0.028607518 0.098101639 0.013346768 0.06513989 0.027364537 0.009801793 0.019369793 0.009325607

MAE 0.132310821 0.306853361 0.09260656 0.195485626 0.094224957 0.0679559 0.135783555 0.077761354

RMSE 0.169137572 0.313211812 0.115528215 0.255225175 0.1654223 0.099004003 0.139175403 0.096569184

BiLSTM MSE 0.02742663 0.101624222 0.013520551 0.070678015 0.027028323 0.00956266 0.011623326 0.009524192

MAE 0.129706767 0.312485707 0.093181167 0.211890758 0.085585064 0.065992332 0.103169602 0.0786563

RMSE 0.165609873 0.318785543 0.116277903 0.26585337 0.16440293 0.097788856 0.107811532 0.097591965

ATT+BiLSTM MSE 0.029332515 0.037467551 0.012400092 0.0409477 0.027625441 0.00918847 0.02887653 0.008108388

MAE 0.134291403 0.192225229 0.089390103 0.133535994 0.054213672 0.063080543 0.165644779 0.07195941

RMSE 0.171267378 0.193565365 0.111355702 0.202355382 0.166209028 0.095856508 0.169930955 0.090046588

Seq2Seq MSE 0.029094397 0.222091576 0.013109092 0.078138339 0.087997502 0.075132291 0.002492687 0.007884014

MAE 0.133091282 0.469024161 0.091876588 0.265520788 0.2902785 0.216263738 0.043581509 0.070501437

RMSE 0.170570797 0.471265929 0.114494943 0.279532357 0.296643729 0.274102701 0.049926819 0.08879197

Seq2Seq+ATT MSE 0.029802806 0.197385415 0.013370054 0.076762567 0.09746884 0.072463298 0.001641729 0.008784528

MAE 0.134996629 0.440116966 0.092956957 0.250004146 0.307147377 0.210497291 0.033518686 0.075263339

RMSE 0.172634893 0.444280784 0.115628948 0.277060583 0.3122 0.269190078 0.040518256 0.093725811

TCN+BiLSTM MSE 0.028206558 0.049226831 0.013811762 0.05078849 0.032273292 0.011554496 0.004679834 0.008682814

MAE 0.131378731 0.219623558 0.093851078 0.145438506 0.061250018 0.078781507 0.061909672 0.074983242

RMSE 0.167948081 0.221871203 0.117523452 0.225363019 0.179647688 0.10749184 0.068409315 0.09318162

FL+LSTM MSE 0.022230878 0.026630133 0.02434326 0.030587779 0.047000714 0.03989619 0.058205191 0.020379072

MAE 0.116344981 0.12812157 0.117841065 0.138585195 0.203050449 0.158704802 0.18743296 0.105792277

RMSE 0.148784027 0.162836522 0.155774087 0.17474249 0.216674656 0.199541911 0.241099924 0.142648384

FL+MSA MSE 0.055654656 0.219694048 0.123248108 0.834618747 0.290231615 0.079888575 0.062982544 0.022085747

MAE 0.202963769 0.439056277 0.317067206 0.88365382 0.483849257 0.249765113 0.208570436 0.107883148

RMSE 0.235912398 0.46871531 0.351067096 0.913574696 0.538731515 0.282645643 0.250963241 0.148612738

FeD-TST MSE 2.97E-05 0.000250346 0.002767468 1.40E-05 0.002059271 0.000360866 0.003959762 0.00255931
MAE 0.0043 0.012030067 0.039089505 0.003005067 0.041864872 0.015221067 0.050758883 0.034195092
RMSE 0.0054 0.015822316 0.052606728 0.003742877 0.045379192 0.018996468 0.062926643 0.050589621

throughput, PDR, PLR, latency, time first packet transmitted, time last packet transmitted, total

transmitted packets, total received packets). By modeling the temporal dependencies between

these multiple features, the FeD-TST is able to better forecast the future forecasting variable e.g.,

throughput values. Furthermore, the sparse attention mechanism is more useful in multivariate

settings, as these settings consist of multiple features which however, may or may not be relevant

to the target forecasting variable. Thus, the sparse attention efficiently attends only relevant

features and the FeD-TST model learns a more accurate representation of the input data, while

providing more accurate forecasts than the other models.

Only for the seventh network configuration (static robots, same channel, 0𝑑𝑏𝑚), the Seq2Seq+ATT

centralized model performed slightly better than the FeD-TST. By further analyzing this behavior,

we found that the size of the input sequence had an impact on the final performance of the

FeD-TST. In other words, the input sequence length may not provide enough information for the

150

model to effectively capture the temporal relationships among the multiple features, however an

increase in the input sequence length may reduce the forecasting error metrics.

Similar observations were drawn for PDR, PLR, and Latency, where the FeD-TST consistently

gave the best performance for the large majority of the network configurations. Nonetheless,

for page limitations purposes, we have decided to include the Tables of these multivariate

QoS forecasting in the Appendix 3 of this document. Overall, FeD-TST managed to find the

best accuracy performance with the minimum prediction error in 53 out of 64 univariate and

multivariate experiments performed, which proves that it can uniformly outperform the rest of

the centralized and distributed approaches in a dynamic and uncertain network environment.

4.8 Conclusion

In this work, we investigated the QoS forecasting problem by formulating it as a univariate

and multivariate time series forecasting problem in a federated learning setting. In particular,

a new framework, FeD-TST was introduced that promotes an efficient QoS forecasting for a

number of heterogeneous network configurations with various IoT applications that stress the

IoT access network creating several levels of QoS uncertainty. To evaluate our framework, we

firstly generated real-time datasets in a real testbed for eight different network configurations

that considered the mobility of robots acting as access points, the frequency channel, and

the transmission power allocation as configuration knobs. Following, we presented a novel

Federated learning based sparse temporal transformer based architecture (FeD-TST), which

learns temporal representations and their long term complex dependencies in a federated fashion,

for the forecasting of four important QoS metrics, namely, throughput, PDR, PLR and latency.

The FeD-TST allowed each local client to train their own local models on their respective datasets

and share only the model weights with a global server. By doing so, each client can benefit from

the knowledge gained by their peers and improve their model training, while still preserving the

privacy of their data. The TST architecture leverages the sparse attention mechanism, which

restricts the attention computation to a subset of input elements that are deemed important for the

output, resulting in a reduced time complexity. Finally, we performed an extensive experimental

151

evaluation in which we proved that our proposed FeD-TST achieves superior performance for

most of the network configurations for both univariate and multivariate settings, as compared

with several competitive benchmark methods.

As a future work, we aim to explore alternative attention techniques, such as compressed attention

and investigate their impact on the accuracy achieved. Furthermore, we would like to investigate

the aggregation strategies other than the FeDAvg at the server side to improve future forecasts of

several key QoS metrics.

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusions

The IoT is a network of interconnected physical devices, vehicles, appliances, and other items

that collect and exchange data over the internet, boasting the ability to interact with their

environment, communicate with each other, and often operate autonomously. This network

plays an essential role in the modern digitization of life, dramatically enhancing the public’s

daily experiences by providing a system of interrelated computing, sensing, and communication.

However, the exponential growth and diversity of IoT devices also bring several challenges,

including resource limitations, the demand for real-time data processing, network connectivity,

and data transmission efficiency. EC emerges as a potential solution to these challenges by

bringing computational and communication resources closer to the network’s edge, thereby

reducing latency and enabling efficient data processing. Despite these benefits, the unpredictable

data generation from IoT devices and potential interference in wireless communications pose

new challenges. Furthermore, the varying QoS requirements due to IoT device mobility and

the necessity of predicting the time-varying characteristics of IoT devices further reinforce an

uncertain communication. Therefore, this thesis revolved around solving these challenges and

made concrete contributions in three different aspects.

As a first step the challenge of classifying IoT devices based on their traffic characteristics was

presented in Chapter 2. For this, we proposed a composite learning framework that consisted of

two stages. Initially, the network traces were passed to an initial data preprocessing module.

Following preprocessing, the traces were given as input to Stage 0, where a feature selection

mechanism and a Logistic Regression classifier were employed. The feature selection process

utilized an ANOVA filter-based technique to identify the most relevant features for the Stage 0

classifier. The tentative classification results from Stage 0, along with the remaining features,

were then forwarded to the Stage 1 classifier. The Stage 1 classifier utilized an optimal multi-layer

154

perceptron neural network architecture to perform the final classification of the IoT traffic. This

architecture was carefully designed to provide accurate and efficient classification results. To

evaluate the performance of the proposed framework, we conducted detailed experiments and

comparisons. We used two different IoT datasets specifically created for a smart city scenario.

These datasets are utilized to assess the effectiveness of the composite architectures in comparison

to other existing approaches. The experimental results demonstrated that the proposed framework

significantly improved the classification performance across various evaluation metrics. These

metrics included recall, precision, F1-score, accuracy, and confusion matrix analysis. Notably,

the proposed model achieved a 99.9% accuracy for the first dataset and a 99.8% accuracy for

the second dataset, highlighting the robustness and generalization capabilities of the proposed

approach. Overall, the chapter 2 presented a comprehensive analysis of the problem of IoT

traffic classification. By introducing a composite learning framework and conducting thorough

experiments, we were able to demonstrate the effectiveness and superiority of the proposed

approach in accurately classifying the IoT devices based on their network characteristics, thus

contributing to advancements in the field of IoT data analysis and classification.

In Chapter 3, we focused on addressing the QoS prediction problem in the context of coexisting

and heterogeneous IoT applications that introduced varying levels of QoS uncertainty to the IoT

access network. To achieve efficient QoS prediction, we formulated the problem as a univariate

and multivariate time series forecasting task. To support our investigation, we generated five

distinct real-time datasets that represented different IoT applications such as HVAC, lighting,

VoIP, surveillance, and emergency response. These datasets served as the basis for evaluating the

performance of our proposed framework. We introduced a novel transformer-based architecture

specifically designed for QoS prediction. This architecture leveraged the power of attention

mechanisms to capture temporal representations and intricate dependencies over long-term

sequences. Four important QoS metrics, namely throughput, PDR, PLR, and latency were

predicted, while through an extensive experimental evaluation, it was demonstrated that our

155

proposed temporal transformer outperformed several competitive time series baseline methods.

The superiority of our approach was evident across all five IoT applications and for both univariate

and multivariate settings. In conclusion, the proposed method contributed a new framework

for efficient QoS prediction in the presence of diverse IoT applications. The transformer-based

architecture effectively modeled the temporal aspects and complex dependencies of the time

series data, resulting in superior performance compared to existing methods. This work opens up

possibilities for improved QoS management and resource allocation in IoT networks, ultimately

enhancing the reliability and performance of IoT applications.

Finally, in Chapter 4, we extended the QoS prediction problem solved in Chapter 3 by taking into

consideration the mobility of devices as well in a distributed setting. For this, we formulated

the problem as a time series forecasting (TSF) task, considering the complexities introduced

by heterogeneous network configurations and various IoT applications that impose different

levels of QoS uncertainty on the IoT access network. Firstly, real-time datasets in a real testbed

were generated, encompassing eight different network configurations. These configurations

incorporated factors such as the mobility of access points, frequency channel allocation, and

transmission power allocation as parameters and these datasets served as the basis for evaluating

the performance of our proposed framework. We introduced a novel architecture called FeD-TST

specifically designed for QoS forecasting. FeD-TST allowed each local client to train their own

models on their respective datasets and share only the model weights with a global server. The

TST architecture, within FeD-TST, leveraged a sparse attention mechanism that reduced time

complexity by focusing attention on a subset of input elements deemed important for the output.

Through an extensive experimental evaluation, we demonstrated the superior performance of

our proposed model across various network configurations, both in univariate and multivariate

settings. In conclusion, Chapter 4 contributed a new framework, FeD-TST, for efficient QoS

forecasting in the context of federated learning.

156

5.2 Future Work

The future work lies in two main research direction as follows:

5.2.1 Extending IoT device classification

In our current work, a large-scale IoT traffic analysis and identification was presented that

significantly enhanced the practicality of real-world IoT device identification and classification.

One possible direction can be considered as the integration of our IoT device classification

framework with a dynamic resource allocation mechanism. In this way, our framework can

accurately classify IoT traffic and predict traffic profiles. Thus, it can provide valuable insights

into the anticipated resource needs of different devices and services on the network. For example,

devices or services classified as high-priority or high-bandwidth may require more resources

compared to others. Furthermore, the dynamic resource allocation mechanism could leverage

this classification data to make informed decisions about resource distribution. For instance,

it could allocate more bandwidth to devices or services predicted to experience high traffic in

the near future, or it could conserve energy on devices that are predicted to be idle. These

allocations could also be continuously adjusted as new classification and prediction data comes

in. Ultimately, this integration could lead to a more intelligent, adaptive, and efficient IoT

network. It could help ensure that resources are not only used optimally but are also preemptively

allocated in anticipation of future demand, thereby improving the overall performance of the IoT

network.

Another possible future direction of this work is the exploration of unsupervised learning

methods, particularly used for dealing with new and unidentified types of IoT devices. When

the new IoT devices connect to the network, they may exhibit unique traffic patterns however,

our model, trained only on known devices, might not be able to classify them accurately. For

example, if a new type of IoT device is introduced to the network, and this device generates

157

traffic patterns that are substantially different from the ones the model was initially trained on.

The clustering algorithm e.g., K-means could recognize this as a new, distinct group of data

points and create a new cluster for these devices. This new cluster, in turn, would represent a

new class in our classification model, thereby enhancing the model’s ability to recognize and

classify this new type of device in the future.

5.2.2 Extending QoS Prediction using Federated Learning

While our FeD-TST approach has shown promising results, there is room to further refine and

optimize the federated learning process. This might include developing techniques to handle

non-IID data distributions among clients or exploring the alternative aggregation techniques

other than the FeDAvg to capture the knowledge gained across different local models. Another

possible direction is to explore methods that can further enhance privacy and security in FeD-TST.

The promising research methods in this context are advanced cryptography methods such as

Homomorphic Encryption (HE) or Secure Multi-Party Computation (SMPC) and differential

privacy techniques, which mathematically quantify the privacy leakage of a system. Another

possible future direction is an integration of other advanced machine learning methods, such as

Reinforcement Learning (RL), where a RL agent could be trained to optimize the prediction of

QoS metrics over time and to dynamically adjust its strategies based on the rewards (accuracy

of prediction) it receives. This approach could allow the model to make more sophisticated

predictions, while taking into account the changing network conditions.

APPENDIX I

APPENDIX OF CHAPTER 4

1. Algorithms and Computational Analysis

In this appendix we decompose the FeD-TST on its algorithmic implementation and provide its

complexity analysis. Four algorithms in total have been designed each representing a specific

module of the FeD-TST model. Algorithm I-1 executes the sparse attention module. The

algorithm begins by splitting the query, key, and value vectors into ℎ𝑛 separate heads (lines 2-4).

Next, it computes the dot product of 𝑞 and 𝑘 and applies an attention mask (line 5-7) to obtain a

masked similarity matrix 𝑀. The attention mask can be different depending on the attention

mode chosen. For instance, if the attention mode is casual, the mask will prevent the attention to

future positions. The masked similarity matrix 𝑀 is then normalized using a softmax function

to obtain the attention weights (line 8). These attention weights are then used to compute a

weighted sum of the value vectors (line 9). Finally, the resulting score vectors from all attention

heads are merged to obtain the output 𝑆𝐴_𝑠𝑐𝑜𝑟𝑒𝑠 (line 10).

Algorithm-A I-1 Sparse Attention Algorithm

Input: Q,K,V, ℎ𝑛, 𝑎𝑡𝑡 // Q,K,V, is the query, key and value vectors for the 𝑙𝑡ℎ client

at time 𝑇 , ℎ𝑛 denotes the number of heads and 𝑎𝑡𝑡 = 𝑠𝑡𝑟𝑖𝑑𝑒𝑑 is the attention

mode for the training.

Output: 𝑆𝐴_𝑠𝑐𝑜𝑟𝑒𝑠
1 SPARSE_MODULE(Q,K,V, ℎ𝑛, 𝑎𝑡𝑡)
2 set 𝑞 ← 𝑆𝑝𝑙𝑖𝑡_ℎ𝑒𝑎𝑑𝑠(Q, ℎ𝑛)
3 set 𝑘 ← 𝑆𝑝𝑙𝑖𝑡_ℎ𝑒𝑎𝑑𝑠(K, ℎ𝑛)
4 set 𝑣 ← 𝑆𝑝𝑙𝑖𝑡_ℎ𝑒𝑎𝑑𝑠(V, ℎ𝑛)
5 set 𝑤 ← 𝑀𝑈𝐿 (𝑞, 𝑘)
6 set 𝑚𝑎𝑠𝑘 ← 𝑔𝑒𝑡_𝑎𝑡𝑡𝑛_𝑚𝑎𝑠𝑘 (𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠, 𝑎𝑡𝑡 = 𝑠𝑡𝑟𝑖𝑑𝑒𝑑)
7 set 𝑀 ← 𝑚𝑎𝑠𝑘𝑖𝑛𝑔(𝑚𝑎𝑠𝑘, 𝑤)
8 set𝑊𝑒𝑖𝑔ℎ𝑡 ← 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑀)
9 set 𝑆𝐴← 𝑀𝑈𝐿 (𝑊𝑒𝑖𝑔ℎ𝑡, 𝑣)

10 set 𝑆𝐴_𝑠𝑐𝑜𝑟𝑒𝑠← 𝑀𝑒𝑟𝑔𝑒_ℎ𝑒𝑎𝑑𝑠(𝑆𝐴)

160

The second algorithm (Algorithm I-2) implements four modules of the TST, namely the INPUT

MODULE, ENCODER MODULE, DECODER MODULE, and OUTPUT MODULE. The

INPUT MODULE takes as input the training dataset instances 𝐷𝑇𝑙 for the 𝑙𝑡ℎ client at time 𝑇 ,

the input sequence length (𝑙𝑒𝑛), and the dimension representation for the training (𝑑𝑖𝑚). It then

creates the input layer by applying an embedding layer to 𝐷𝑇𝑙 . Then the positional encoding

(PE) is generated for the input sequence. Finally, to obtain the final input representation, it adds

the input layer with the positional encoding (line 2-4). The output of this module is passed to

the ENCODER MODULE.

Specifically, the ENCODER MODULE takes as an input the output from the INPUT MODULE

i.e., 𝑖𝑛𝑝𝑢𝑡_𝑟𝑒𝑠, an epsilon value 𝜖 , the number of heads ℎ𝑛, the attention mode as local or strided

𝑎𝑡𝑡, and the dropout rate 𝑑𝑝. Firstly, the input representation is normalized through the LN
function. Following, the space attention, as discussed in Algorithm I-1, is applied to the input

representation to obtain the encoder output. Then, the dropout operation is performed using the

DP layer to the encoder output (line 6-8). Finally, the encoder output and input representation

are added to obtain the residual connection, which is normalized using the LN function (line

9-10).

The DECODER MODULE takes as input the output from the INPUT MODULE i.e., 𝑖𝑛𝑝𝑢𝑡_𝑟𝑒𝑠,

the output from the ENCODER MODULE i.e., 𝑒𝑛𝑐_𝑟𝑒𝑠, an epsilon value 𝜖 , the number of heads

ℎ𝑛, the attention mode as local or strided 𝑎𝑡𝑡, the dropout rate 𝑑𝑝, the number of filters (𝑓 𝑖𝑙),
the kernel size 𝛿, and the activation function 𝜎. First, the input representation is normalized and

a masked SPARSE attention is performed to it in order to obtain the decoder’s output, which is

then applied to the dropout function (line 12-14). The residual connection output is obtained by

adding and normalizing the decoder’s output and the input representation (line 15-16). After

this, the SPARSE attention is applied again to the encoder output and the residual connection

output in order to obtain the encoder-decoder representation, which is later applied to a dropout

function (line 17-18). The next step involves the obtaining of the residual connection, which

is then normalized (line 19-20). Lastly, the 1D convolutional layer to the residual connection

161

Algorithm-A I-2 Temporal Sparse Transformer Algorithm

Input: {𝐷𝑇𝑙 , 𝑙𝑒𝑛, 𝑑𝑖𝑚, 𝑖𝑛𝑝𝑢𝑡_𝑟𝑒𝑠, 𝜖, ℎ𝑛, 𝑎𝑡𝑡, 𝑑𝑝, 𝑒𝑛𝑐_𝑟𝑒𝑠, 𝑓 𝑖𝑙, 𝛿, 𝑎𝑐𝑡, 𝑥, 𝑑𝑒𝑐𝑜𝑑𝑒𝑟_𝑟𝑒𝑠}

// 𝐷𝑇𝑙 is the training dataset instances for the 𝑙𝑡ℎ client at time 𝑇 , 𝑙𝑒𝑛 denotes the input

sequence length, 𝑑𝑖𝑚 is the dimension representation for the training, 𝑖𝑛𝑝𝑢𝑡_𝑟𝑒𝑠 is the

output of INPUT MODULE, 𝜖 is the epsilon value, ℎ𝑛 is the number of heads, 𝑎𝑡𝑡 is the

attention mode as local or strided, 𝑑𝑝 is the dropout rate, 𝑒𝑛𝑐_𝑟𝑒𝑠 is the output of

ENCODER MODULE, 𝑓 𝑖𝑙 is the number of filters, 𝛿 is the kernel size, 𝑎𝑐𝑡 is the

activation function, 𝑥 is the output of Module 3 and 𝑑𝑒𝑐𝑜𝑑𝑒𝑟_𝑟𝑒𝑠 is the results of SA
module within the Module 3.

Output: 𝑥 // 𝑥 is the final predicted value of QoS from the Module 4.

1 INPUT_MODULE(𝐷𝑇𝑙 , 𝑙𝑒𝑛, 𝑑𝑖𝑚)

2 set 𝑇𝑆𝑇𝑖𝑛𝑝𝑢𝑡 ← 𝐼𝑛𝑝𝑢𝑡_𝐿𝑎𝑦𝑒𝑟 (𝐷𝑇𝑙)
3 set 𝑃𝐸 ← 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝑙𝑒𝑛, 𝑑𝑖𝑚)
4 set 𝑖𝑛𝑝𝑢𝑡_𝑟𝑒𝑠← 𝐴𝑑𝑑 (𝑇𝑆𝑇𝑖𝑛𝑝𝑢𝑡 , 𝑃𝐸) ⊲ Module 1

5 ENCODER_MODULE (𝑖𝑛𝑝𝑢𝑡_𝑟𝑒𝑠, 𝜖 , ℎ𝑛, 𝑎𝑡𝑡, 𝑑𝑝)

6 set 𝑥 ← LN(𝑖𝑛𝑝𝑢𝑡_𝑟𝑒𝑠, 𝜖)
7 set 𝑥 ← 𝑆𝑃𝐴𝑅𝑆𝐸 (𝑥, ℎ𝑛, 𝑎𝑡𝑡)
8 set 𝑥 ← DP(𝑑𝑝, 𝑥)
9 set 𝑒𝑛𝑐_𝑟𝑒𝑠← 𝑥 + 𝑖𝑛𝑝𝑢𝑡_𝑟𝑒𝑠 ⊲ SA

10 set 𝑒𝑛𝑐_𝑟𝑒𝑠1 ← LN(𝑒𝑛𝑐_𝑟𝑒𝑠) ⊲ Module 2

11 DECODER_MODULE (𝑖𝑛𝑝𝑢𝑡_𝑟𝑒𝑠, 𝑒𝑛𝑐_𝑟𝑒𝑠, 𝜖 , ℎ𝑛, 𝑎𝑡𝑡, 𝑑𝑝, 𝑓 𝑖𝑙, 𝛿, 𝑎𝑐𝑡)
12 set 𝑥 ← LN(𝑖𝑛𝑝𝑢𝑡_𝑟𝑒𝑠, 𝑒𝑝𝑠)
13 set 𝑥 ← 𝑆𝑃𝐴𝑅𝑆𝐸 (𝑥, ℎ𝑛, 𝑎𝑡𝑡)
14 set 𝑥 ← DP(𝑑𝑝, 𝑥)
15 set 𝑑𝑒𝑐_𝑟𝑒𝑠← 𝑥 + 𝑖𝑛𝑝𝑢𝑡_𝑟𝑒𝑠
16 set 𝑑𝑒𝑐_𝑟𝑒𝑠1 ← LN(𝑑𝑒𝑐_𝑟𝑒𝑠)
17 set 𝑥 ← 𝑆𝑃𝐴𝑅𝑆𝐸 (𝑒𝑛𝑐_𝑟𝑒𝑠, 𝑑𝑒𝑐_𝑟𝑒𝑠1, 𝑑𝑒𝑐_𝑟𝑒𝑐1, ℎ𝑛, 𝑎𝑡𝑡)
18 set 𝑥 ← DP(𝑑𝑝, 𝑥)
19 set 𝑑𝑒𝑐𝑜𝑑𝑒𝑟_𝑟𝑒𝑠← 𝑥 + 𝑖𝑛𝑝𝑢𝑡_𝑟𝑒𝑠 ⊲ SA
20 set 𝑑𝑒𝑐𝑜𝑑𝑒𝑟_𝑟𝑒𝑠1 ← LN(𝑑𝑒𝑐𝑜𝑑𝑒𝑟_𝑟𝑒𝑠)
21 set 𝑥 ← 𝑙𝑎𝑦𝑒𝑟_𝐶𝑜𝑛𝑣1𝐷 (𝑓 𝑖𝑙, 𝛿, 𝜎, 𝑑𝑒𝑐𝑜𝑑𝑒𝑟_𝑟𝑒𝑠1)
22 set 𝑥 ← DP(𝑑𝑝, 𝑥) ⊲ Module 3

23 OUTPUT_MODULE(𝑥, 𝑑𝑒𝑐𝑜𝑑𝑒𝑟_𝑟𝑒𝑠)
24 set 𝑥 ← 𝑙𝑎𝑦𝑒𝑟_𝐺𝑙𝑜𝑏𝑎𝑙𝐴𝑣𝑔𝑃𝑜𝑜𝑙𝑖𝑛𝑔1𝐷 (𝑥)
25 set 𝑥 ← 𝑙𝑎𝑦𝑒𝑟_𝐷𝑒𝑛𝑠𝑒(𝑥)
26 set 𝑥 ← 𝐴𝑑𝑑 (𝑥, 𝑑𝑒𝑐𝑜𝑑𝑒𝑟_𝑟𝑒𝑠)
27 set 𝑥 ← 𝑙𝑎𝑦𝑒𝑟_𝑁𝑜𝑟𝑚(𝑥) ⊲ Module 4

162

output is applied along with the dropout operation to obtain the final decoder output (lines

21-22).

Finally, the OUTPUT MODULE applies a global average pooling to the output of the convolu-

tional layer, followed by a dense layer (lines 24-25). The output of the dense layer is added to

the output of the DECODER MODULE, and the result is passed through a normalization layer

(lines 26-27), which is the output of the TST algorithm (line 27).

The complete training processes of the FeD-TST framework are formally described in Algorithms

I-3 and I-4 that provide the Global Server GS and Local Client (LC) training algorithms

respectively. The inputs for Algorithm I-3 are the number of communication rounds K, the set

of local clients LC, where each local client is associated to a temporal instance 𝑡 ∈ 𝑇 over a

single network configuration 𝜅, the initial global weight matrix 𝑤0 with any arbitrary values,

and the fraction 𝑓 𝑟 of local clients to take part in each communication round. The algorithm

starts by initializing the global model weight matrix 𝑤𝑘𝑔 with 𝑤0 and setting the first round to

zero (line 1). Following, for each communication round the GS randomly selects a fraction of

local clients belonging to a subset Ω ⊆ LC (Line 2). At the same time, the GS shares the latest

global weight matrix 𝑤𝑘𝑔 with all the chosen local clients Ω. We denote 𝑤𝑙𝑡𝜅 as the weights from

local clients at time 𝑡 associated with a specific network configuration 𝜅. Next, each local client

trains its own local model in parallel at each network configuration to find the local weight for

that communication round (Line 3). The detailed steps of the Local client function are shown in

Algorithm I-4.

Specifically, the input of Algorithm I-4 includes a dataset 𝑋𝑡𝜅, the local epochs E, the global

model weight 𝑤𝑘𝑔 , the learning rate 𝜂, the hyper-parameter 𝜇 and the global communication

round K. First, the LC updates its local model weights matrix 𝑤𝑘
𝑙𝑡𝜅

with the latest available

global model weights matrix 𝑤𝑘𝑔 (Line 1). Afterwards, the LC trains its 𝑙𝑜𝑐𝑎𝑙_𝑚𝑜𝑑𝑒𝑙 (𝑤𝑘
𝑙𝑡𝜅
, 𝑋𝑡𝜅)

according to the defined local epochs E and sequences 𝑋𝑡𝜅 of window size 𝜏 (Line 2 - Line 10).

We rely on the Stochastic Gradient Descent (SGD) approach to update the local model weight

matrix, where 𝑤∗
𝑙𝑡𝜅

is the optimized local weight matrix , and ∇ is the gradient of the loss function

163

Algorithm-A I-3 Server (Global) Training Algorithm

Input: {GS,K, |LC|, 𝑤0, 𝑓 𝑟}
//GS is the global server, K is the total number of communication rounds, |LC| denotes

the total number of local clients, 𝑤0 is the initial global weight matrix and 𝑓 𝑟 is the

fraction of local clients included in each round.

Output: {GS}

//GS is the final global server

1 Initialize 𝑤𝑘𝑔 = 𝑤0 and 𝑘 = 0

2 for each communication round 𝑘 = {0, 1, ...,K − 1} do
3 GS randomly selects subset Ω of local clients LC such that Ω ⊆ LC and |Ω| = 𝑓 𝑟
4 /* LC performs training in parallel (Algorithm 4)*/

5 GS receives 𝑤𝑘+1
𝑙𝑡𝜅

from all clients LC
6 GS updates 𝑤𝑘+1

𝑔 to 1
|LC|

∑
𝑛𝑡𝜅∈LC 𝑤𝑘+1

𝑙𝑡𝜅
⊲ 𝐹𝑒𝐷𝐴𝑣𝑔

7 GS updates global_model (𝑤𝑘+1
𝑔)

8 end for

Algorithm-A I-4 Client (Local) Training Algorithm

Input: {LC, 𝑋𝑡𝜅, E, 𝑤𝑐𝑔, 𝜂, 𝜇,K}

// LC is the local client model, 𝑋𝑡𝜅 is the time series for the specific configuration 𝜅, E is

the local epochs, 𝑤𝑐𝑔 is the global model weight matrix, 𝜂 is the learning rate, 𝜇 is the

model hyper parameters and K is the global communication round.

Output: {LC}

// LC is the final local client model

1 Initialize 𝑤𝑘
𝑙𝑡𝜅
= 𝑤𝑘𝑔

2 LC performs training local_model (𝑤𝑘
𝑙𝑡𝜅
, 𝑋𝑡𝜅)

3 Timeseries_Sequence ← Split 𝑋𝑡𝜅 into Sequence 𝑋𝑡𝜅 of window size 𝜏
4 for each local epoch 𝑖 = {0, 1, ..., E − 1} do
5 for each 𝑋𝑡𝜅 ∈ 𝑋𝑡𝜅 do
6 𝑤∗

𝑙𝑡𝜅
← 𝑤𝑙𝑡𝜅 − 𝜂∇𝑙𝑜𝑠𝑠(𝑤𝑙𝑡𝜅 , 𝑋𝑡𝜅)

7 end for
8 end for
9 Obtain local weights 𝑤𝑘+1

𝑙𝑡𝜅
≈ 𝑎𝑟𝑔𝑚𝑖𝑛𝑤𝑙𝑡𝜅

𝑓 (𝑤∗
𝑙𝑡𝜅
, 𝑤𝑘𝑔) = LL(𝑤∗

𝑙𝑡𝜅
) + 𝜆

10 LC uploads 𝑤𝑘+1
𝑙𝑡𝜅

to GS

164

𝑙𝑜𝑠𝑠(𝑤𝑙𝑡𝜅 , 𝑋𝑡𝑘) of window size 𝜏 with the learning rate 𝜂 (Line 6). As a next step, instead of

updating the local model weight matrix 𝑤𝑘+1
𝑙𝑡𝜅

with the weight matrix 𝑤∗
𝑙𝑡𝜅

of the minimized local

loss function LL(𝑤∗
𝑙𝑡𝜅
), the proximal term 𝜆 is integrated into LL(𝑤∗

𝑙𝑡𝜅
) to limit the effect of

local model updates on the overall global model. The local model weights matrix 𝑤𝑘+1
𝑙𝑡𝜅

is then

updated with the minimum weights matrix: 𝑤𝑘+1
𝑙𝑡𝜅

≈ 𝑎𝑟𝑔𝑚𝑖𝑛𝑤𝑙𝑡𝜅
𝑓 (𝑤∗

𝑙𝑡𝜅
, 𝑤𝑘𝑔) (Line 9). Finally,

the LC sends the local model weight matrix back to the Global server (GS) (Line 10). Next,

the (GS) receives the weight matrices of the updated local models 𝑤𝑘+1
𝑙𝑡𝜅

and averages them to

update the global model weights, 𝑤𝑘+1
𝑔 (Lines 4-5) in Algorithm I-3. Finally, the (GS) updates

the 𝑔𝑙𝑜𝑏𝑎𝑙_𝑚𝑜𝑑𝑒𝑙 (𝑤𝑘+1
𝑔) with the local models weight matrices 𝑤𝑘+1

𝑙𝑡𝜅
(line 6 in Algorithm I-3)

for 𝑡 ∈ 𝑇 . The Algorithm I-3 is terminated at the end of all communication rounds or once the

loss function converges.

To assess the complexity of our proposed FeD-TST approach, we split the framework in two parts.

The first part, which gives the computational complexity of the local TST models (Algorithms

I-1 and I-2) and the second part, which analyzes the complexity of the Federated Learning

communication (Algorithms I-3 and I-4). For the latter, the complexity depends on the number

of clients |LC| participating in each round C of the federated training and can be calculated as

𝑂 (𝑙𝑜𝑔(LC)) (Zhang, Wei & Berry, 2021a). The computation complexity of the first part, in

order to update the weights matrix by the means of the TST model is given in the following

section.

1.1 Complexity Analysis

Proposition 1: The computational complexity of the Algorithm I-1 is 𝑂 (𝑛√𝑛)

Proof: The computational complexity of lines 2-4 is 𝑂 (𝑛) where 𝑛 is the number of dimensions

in the input tensors Q, K and V. Line 5 performs the multiplication operation on the 𝑞 and 𝑘

vectors and both are 1𝐷 vectors of length 𝑛, thus the complexity of this operation is 𝑂 (𝑛). Line

6 takes 𝑂 (𝑛√𝑛) as the operation get_attn_mask with a strided mode, attends only a subset of

the time steps. Line 7 executes the assignment of masking values and takes constant time i.e.,

165

𝑂 (1). Lastly, the complexity of lines 8-10 is 𝑂 (𝑛) because Softmax depends on the size of the

input vector 𝑀 as it involves exponentiating each element of the 𝑀 and performing a division.

Similarly, the MUL and Merge_heads operations also depend on the number of dimensions of

the input tensors such as𝑊𝑒𝑖𝑔ℎ𝑡𝑠 and 𝑆𝐴. Accordingly, the overall complexity of Algorithm 1

is represented in terms of 𝑛 as: 𝑂 (𝑛) +𝑂 (𝑛) +𝑂 (𝑛√𝑛) +𝑂 (1) +𝑂 (𝑛) = 𝑂 (𝑛√𝑛)

Proposition 2: The computational complexity of the Algorithm I-2 i.e., TST is 𝑂 (𝑛𝑑 + 𝑛√𝑛)

Proof: For the INPUT_MODULE, the computational complexity of line 2 is 𝑂 (1) because

the Input_Layer is used to instantiate a symbolic tensor as an input to the learning model

and does not involve any significant computations; the complexity of line 3 is 𝑂 (𝑛𝑑) as the

Positional_Encoding involves generating a matrix with sinusoidal values based on the length

of the input sequence say 𝑛 along with the dimension 𝑑 of that sequence (i.e., the dimension

for a univariate input sequence is 1 and for multivariate is 6) and it requires iterating over each

position and each dimension to calculate the sinusoidal value. Next, assigning the positional

encoding matrix to variable PE has a complexity of 𝑂 (1), as it is a constant-time operation.

Further, the complexity of line 4 is 𝑂 (𝑛), since the Add layer simply adds two input tensors

element-wise and this operation requires a constant amount of time for each element. Thus, the

overall complexity for the INPUT_MODULE is: 𝑂 (1) +𝑂 (𝑛𝑑) +𝑂 (𝑛) = 𝑂 (𝑛𝑑).

For the ENCODER_MODULE, the computational complexity of line 6 is 𝑂 (𝑛), where 𝑛

is the total number of elements in input_res; line 7 takes 𝑂 (𝑛√𝑛) as the sparse attention

with a strided mode, attends only a subset of positions say (√𝑛); line 8 is applying the

DP operation so its complexity is typically 𝑂 (𝑛), as it operates element-wise on the input

tensor 𝑥; lines 9 and 10 takes 𝑂 (𝑛), since line 9 performs the addition operation and line 10

is normalizing the enc_res. Hence, the overall complexity for the ENCODE_MODULE is

𝑂 (𝑛) +𝑂 (𝑛√𝑛) +𝑂 (𝑛) +𝑂 (𝑛) +𝑂 (𝑛) = 𝑂 (𝑛√𝑛).

For the DECODER_MODULE, the computational complexity of line 12 is𝑂 (𝑛); the complexity

of lines 13 and 17 is 𝑂 (𝑛√𝑛) as they use the strided sparse attention; the complexity of lines

14-16 and lines 18-20 is 𝑂 (𝑛) as these lines consist of the dropout, addition and normalization

166

operations for 𝑛 number of elements; the complexity of lines 18 and 19 depends on the number

of filters, kernel size, previous layer outputs and activation function which is typically applied

element-wise to the output of the convolution operation thus, in the worst case scenario these

lines will exhibit a complexity of 𝑂 (𝑛). The overall complexity of the DECODER_MODULE is

𝑂 (𝑛) +𝑂 (𝑛√𝑛) +𝑂 (𝑛) +𝑂 (𝑛) = 𝑂 (𝑛√𝑛).

For the OUTPUT_MODULE, the computational complexity shows a linear behavior i.e., 𝑂 (𝑛)
as the lines 24-27 depend only on the length of the output from the previous layers and perform

basic operations such as average, activation, addition and normalization.

Accordingly, the overall computational complexity of the proposed Algorithm I-2 is represented

in terms of 𝑛 as: 𝑇 (𝑛) = 𝑂 (𝑛𝑑) + 𝑂 (𝑛√𝑛) + 𝑂 (𝑛√𝑛) + 𝑂 (𝑛) = 𝑂 (𝑛𝑑 + 𝑛√𝑛) and can be

simplified as 𝑂 (𝑛√𝑛). This is because 𝑑 is constant in the complexity 𝑂 (𝑛𝑑) for both settings,

which means that the value of 𝑑 does not depend on the input sequence length 𝑛. In this case,

the complexity term 𝑂 (𝑛𝑑) can be simplified to 𝑂 (𝑛).

2. Baseline Algorithms & Hyperparameters

In this appendix, we provide more details on the baseline algorithms used for comparison, while

the hyperparameter configuration of each of these approaches is provided in Table I-1. It should

be noted that these parameters are the same for all network configurations and that the optimizer

used for all baselines and our proposed method is the Adam one, while the batch size was set to

be 100. Finally, for the federated learning based methods, we set the number of communication

rounds to be 30, the aggregation strategy for the server side was the FeDAvg algorithm and the

number of local epochs was 100.

1. LSTM: The LSTM takes a sequence of QoS observations as input and typically consists

of one or more LSTM layers, followed by one or more fully connected layers for the final

forecasting of QoS values. The LSTM network architecture includes three main components

(i) an input gate for determining how much new information should be allowed into the

memory cell; (ii) a forget gate to determine how much information should be discarded

167

Table-A I-1 Hyperparameters used in all methods for both time series settings across all

QoS datasets

Models Hyperparameters Value

Number of LSTM units 100

LSTM Activation function relu

Learning rate 1e-4

Batch size 100

BiLSTM Number of hidden units 100

kernel_initializer glorot_uniform

Learning rate 1e-5

Sequence length 30

ATT+BiLSTM Attention mechanism Self Attention

Number of LSTM units 30

BiLSTM activation tanh

Attention activation relu

Learning rate 0.0005

Batch size 100

Seq2Seq Number of encoder layers 3

Number of decoder layers 1

Number of hidden units 30

Learning rate 0.0008

Seq2Seq+ATT attention mechanism Self Attention

Number of hidden units 48

activation tanh

learning rate 0.0008

TCN+BiLSTM Number of TCN blocks 4

Number of filters 32

kernel size 16

padding ’causal’

activation ’tanh’

BiLSTM hidden units 30

learning rate 0.0001

T2V+Transformer Number of heads 2

Number of encoder layers 2

number of feed forward 64

Timesteps 30

Learning rate 0.0008

FL+LSTM number of clients ≥ 6

Fraction of clients 100%

Number of LSTM units 100

learning_rate 1𝑒 − 4

FL+MHA Head size 64

Number of heads 2

dropout rate 0.1

Number of transformer blocks 6

Linear layer neurons 1024

Filter dimensions 2

number of clients ≥ 6

Fraction of clients 100%

FeD-TST Number of attention heads 256

Head size 1024

Filter size 64

Number of transformer blocks 6

Number of MLP units 1024

Attention Mode strided

dropout rate 0.1

learning rate 1e-6

number of clients ≥ 6

Fraction of clients 100%

168

Table-A I-2 Multivariate forecasting results for PDR, best results are highlighted in bold

Configurations 1 2 3 4 5 6 7 8

Methods Metrics Mobile Mobile Mobile Mobile Static Static Static Static

LSTM MSE 0.025376484 0.015863674 0.012133694 0.033557826 0.010215931 0.001553181 0.240865166 0.024999889

MAE 0.126860133 0.098012105 0.096787978 0.15019938 0.086596898 0.029961921 0.488339741 0.12614061

RMSE 0.159299982 0.125951077 0.110153049 0.183187951 0.10107389 0.039410419 0.490780161 0.158113532

BiLSTM MSE 0.025236582 0.015690649 0.009789112 0.037502334 0.010475132 0.001242641 0.235032849 0.023964328

MAE 0.126581692 0.096840975 0.085831458 0.159663698 0.090752476 0.026729854 0.482312624 0.123556575

RMSE 0.158860261 0.125262319 0.09893994 0.193655192 0.102348093 0.03525112 0.484801866 0.154804159

ATT+BiLSTM MSE 0.025570284 0.020930944 0.001872818 0.056448757 0.003671356 0.000815777 0.285043016 0.020710045

MAE 0.127044161 0.120655717 0.034403121 0.195198673 0.041968134 0.022205845 0.531922871 0.114103137

RMSE 0.159907111 0.144675306 0.043276072 0.237589471 0.060591713 0.028561803 0.533894199 0.143909852

Seq2Seq MSE 0.025525104 0.0437667 0.027792311 0.056832227 0.2046942 0.077074158 0.328894673 0.020404245

MAE 0.126883348 0.180243128 0.161392866 0.208786351 0.447453349 0.253005704 0.571669152 0.113296365

RMSE 0.159765777 0.209204923 0.166710261 0.238395107 0.452431431 0.277622329 0.573493394 0.142843428

Seq2Seq+ATT MSE 0.025569492 0.032245812 0.017828528 0.046243408 0.190555137 0.087843576 0.319531187 0.022504165

MAE 0.126394561 0.146772905 0.12693602 0.188916556 0.431019692 0.274577396 0.563395886 0.11975392

RMSE 0.159904633 0.17957119 0.133523511 0.215042805 0.436526216 0.296384169 0.565270897 0.150013884

TCN+BiLSTM MSE 0.025064324 0.015246273 0.002248423 0.034247903 0.004607236 0.000689827 0.161620519 0.022040544

MAE 0.125900357 0.096963628 0.036923015 0.151996426 0.028721076 0.018581239 0.399189365 0.118625733

RMSE 0.158317162 0.1234758 0.047417542 0.185061889 0.067876624 0.026264548 0.402020546 0.148460581

FL+LSTM MSE 0.030039437 0.041287486 0.070088893 0.074822351 0.088905558 0.039511204 0.083336249 0.022051753

MAE 0.138459548 0.167551339 0.144682601 0.224284515 0.279592633 0.149327978 0.230864123 0.117232472

RMSE 0.173077464 0.202952102 0.264695406 0.273371756 0.298069835 0.198613957 0.288496435 0.148181751

FL+MSA MSE 0.151883692 0.045339461 0.05724353 0.454306275 0.195067286 0.144678041 0.081710711 0.483018905

MAE 0.354675621 0.168622926 0.153972432 0.638280272 0.337508738 0.32461971 0.225243196 0.667602837

RMSE 0.389722586 0.21293065 0.239256188 0.674022436 0.441664219 0.38036567 0.285850853 0.694995642

FeD-TST MSE 8.39E-08 0.000219183 0.006694946 2.54E-05 0.002069899 0.000359125 0.00343068 0.007323688
MAE 0.000216889 0.011904503 0.062316246 0.003934593 0.011523922 0.015154229 0.046734169 0.06500271
RMSE 0.000289732 0.014804841 0.081822649 0.005042353 0.045496136 0.018950595 0.058572009 0.085578553

from the memory cell and (iii) an output gate to ensure how much of the information in the

memory cell should be outputted. There is no global model in this case, as LSTM is trained

for each QoS dataset in a centralized manner.

2. Bidirectional LSTM (BiLSTM): The Bidirectional LSTM is a type of LSTM network

that can process a sequence of QoS inputs in both forward and backward directions, which

allows the model to capture both past and future context for each time step in the QoS

sequence. It consists of two LSTMs: one processing the input sequence in the forward

direction, and the other processing the input sequence in the backward direction. The output

of each LSTM is then concatenated to form the final output for each time step.

3. Attention + BiLSTM: This model combines the benefits of both BiLSTM and attention

mechanism to improve the forecasting accuracy. The Attention mechanism is used to help

the model focus on the most important parts of the input sequence during forecasts. It

assigns weights to different parts of the input sequence based on their relevance to the

current forecast, allowing the model to attend to the most informative parts of the input

169

sequence and ignore irrelevant information. Firstly, the model processes the input sequence

using the BiLSTM layer, which generates hidden representations for each element of the

sequence. Then, such hidden representations are used by the attention layer to get the

attention weights which are then applied to the hidden representations to obtain a weighted

sum. The weighted sum is then passed through a fully connected layer to produce the final

output (i.e., QoS forecast).

4. Sequence-to-Sequence: A Seq2Seq model comprises of two main components, namely

an encoder and decoder. The encoder takes the input sequence and converts it into a

fixed-length representation, which is typically a vector. This representation, also called the

context vector, captures the relevant information of the input sequence and is used by the

decoder component which generates the output sequence as one element at a time. At each

time step, the decoder takes the previously generated output element, along with the context

vector, and uses them to generate the next output element. This process is repeated until the

entire output sequence has been generated.

5. Sequence-to-Sequence + Attention: In this architecture (Li et al., 2022a), the attention

mechanism is added to the Seq2Seq architecture to improve the model’s ability to focus on

the most relevant parts of the input sequence during the decoding process. In the Seq2Seq

model with Attention, the input sequence is first passed through an embedding layer to

convert the discrete input tokens into continuous vector representations. The encoded

sequence is then fed into the attention mechanism, which generates a weighted context

vector based on the input sequence and the current decoder state. The context vector is

then concatenated with the decoder’s previous output and fed through the decoder RNN to

generate the next output token. This process is repeated iteratively until the entire output

sequence is generated.

6. Temporal Convolutional Networks + BiLSTM: In the Temporal Convolutional Networks

(TCN) (Chen et al., 2020) along with the BiLSTM layer, the TCN layers are used for feature

extraction which use causal convolutions to process the input sequence, with dilation factors

that increase exponentially across the layers. The output of the TCN layers is then fed into

the BiLSTM layer, which process the sequence in both forward and backward direction.

170

This allows the model to capture both short-term and long-term dependencies in the input

sequence. The final layer is a fully connected layer that maps the output of the BiLSTM

layer to the forecasting (output) format.

7. Time2Vec+Transformer: In this architecture (Kazemi et al., 2019), the Time2Vec model is

used to embed the time-series data into a continuous vector space, which is then fed into the

Transformer network for further processing. The Transformer network consists of multiple

layers, each with its own self-attention and feedforward components. The self-attention

component allows the model to focus on the most relevant parts of the input sequence, while

the feedforward component applies non-linear transformations to the input features. The

output of the Transformer network is then typically fed into one or more fully connected

layers to produce the final output.

8. FL+LSTM: In this network architecture, the LSTM model is trained in a decentralized

manner across multiple clients without sharing their local QoS data with a central server.

The training process in FL involves multiple rounds of communication between the clients

and the server, which aggregates the local updates received from the clients and sends the

global model parameters back to the clients for further training. Each client has its own

local LSTM model, and the server aggregates the local model updates to generate a global

LSTM model. During each round of communication, the clients train their local LSTM

models using their own local data and send the updated model parameters to the server.

The server aggregates the model updates using a weighted average based on the number of

samples and sends the updated global LSTM model back to the clients for further training.

This process continues for several rounds until convergence.

9. FL+MHA: In this architecture, we applied our previous temporal transformer model

(Hameed et al., 2022) in the federated setting. The temporal transformer network is

composed of the three following modules (i) an input embedding module, which takes the

input into a specific tensor shape for the transformer along with providing the positional

encoding, (ii) an encoder module consisting of a multi-head attention layer and feed-forward

layers and (iii) an output module, which is used to provide the final prediction of the QoS

dataset. So considering this transformer model, each local client has access to its own dataset

171

and trains a local temporal transformer network. These local models are then aggregated

by the server using federated averaging to obtain a global model that captures the overall

patterns and trends in the data. During training, the local models learn to capture the local

patterns and trends in their own datasets, while the global model learns to generalize them

across all the datasets. This approach allows for decentralized training while still capturing

the global patterns in the data.

Table-A I-3 Multivariate forecasting results for PLR, best results are highlighted in bold

Configurations 1 2 3 4 5 6 7 8

Methods Metrics Mobile Mobile Mobile Mobile Static Static Static Static

LSTM MSE 0.025038941 0.085829899 0.002392895 0.027448104 0.011076534 0.067128993 0.119673633 0.001883547

MAE 0.133605405 0.273123358 0.04587984 0.135984587 0.102786578 0.217031947 0.345302414 0.037316061

RMSE 0.158236978 0.292967402 0.048917222 0.165674695 0.105245114 0.259092634 0.345938771 0.043399853

BiLSTM MSE 0.158236978 0.292967402 0.048917222 0.165674695 0.105245114 0.259092634 0.345938771 0.043399853

MAE 0.132812767 0.26347576 0.035682182 0.148675127 0.097600599 0.214792671 0.336972344 0.034692373

RMSE 0.158153803 0.284322544 0.039330348 0.179501957 0.100934994 0.257189624 0.337591786 0.041591182

ATT+BiLSTM MSE 0.025100036 0.104297191 0.000298454 0.033911135 0.000634337 0.064385353 0.007021591 0.003547903

MAE 0.133864995 0.303442026 0.01312486 0.154987831 0.01701582 0.208894609 0.082569718 0.040551163

RMSE 0.158429908 0.322950756 0.017275817 0.184149764 0.025186057 0.25374269 0.083794934 0.059564274

Seq2Seq MSE 0.025047779 0.021822 0.008536431 0.0827658 0.10668844 0.073154119 0.084986213 0.001833366

MAE 0.133894046 0.123885804 0.090917699 0.27145796 0.326401588 0.231702971 0.291134455 0.037281562

RMSE 0.158264902 0.147722714 0.092392809 0.287690459 0.326631964 0.270470181 0.29152395 0.04281782

Seq2Seq+ATT MSE 0.025070594 0.025402517 0.006077862 0.068647046 0.11512791 0.074626937 0.103903783 0.001755035

MAE 0.134396355 0.134585947 0.076356004 0.241265618 0.339119511 0.234660944 0.321946763 0.036355348

RMSE 0.158336962 0.159381672 0.077960647 0.262005812 0.33930504 0.273179313 0.322341097 0.041893137

TCN+BiLSTM MSE 0.02506516 0.128794342 0.000631897 0.017174813 0.000720222 0.067145159 0.005607512 0.001262265

MAE 0.134126641 0.342004925 0.020054774 0.11020899 0.020433414 0.217653834 0.070392203 0.026720259

RMSE 0.158319801 0.358879287 0.025137552 0.13105271 0.026836948 0.25912383 0.074883327 0.035528375

FL+LSTM MSE 0.087703511 0.049748622 0.036141779 0.070266478 0.066877857 0.14487806 0.06205624 0.011543612

MAE 0.229409769 0.183092251 0.082843989 0.210182503 0.220609531 0.329201072 0.205156624 0.037259299

RMSE 0.296055824 0.22295104 0.190040812 0.264971823 0.258534551 0.380628496 0.248941362 0.10736721

FL+MSA MSE 0.050034031 0.053757463 3.119338512 5.649907589 8.785881996 0.14487806 0.060680598 0.099903829

MAE 0.180061623 0.189969048 1.746221423 2.345210314 2.918813229 0.329201072 0.201134384 0.198856756

RMSE 0.22368288 0.231856555 1.766164899 2.376953363 2.96409893 0.380628496 0.246334314 0.316075682

FeD-TST MSE 4.12E-07 3.27E-09 0.008334739 2.65E-05 0.00020217 1.68E-06 0.005168275 0.000906298
MAE 0.00050366 1.49E-05 0.065119371 0.004061751 0.010798856 0.001012479 0.059207294 0.022389103
RMSE 0.000641564 5.72E-05 0.091294795 0.005146937 0.014218667 0.00129578 0.071890719 0.030104777

3. Multivariate prediction for PDR, PLR and Latency

In this part of the appendix we include the results of the multivariate forecasting of the PDR,

PLR, and Latency QoS metrics. As shown in Tables I-2 and I-3, the FeD-TST consistently gives

the best performance for the large majority of the network configurations. In only one network

configuration (mobile robots, same channel, 0𝑑𝐵𝑚) FeD-TST did not manage to find the best

prediction accuracy for both QoS metrics. For this configuration, a high level of interference

and congestion is noticed since the robots are mobile and operate on the same channel. This

172

Table-A I-4 Multivariate forecasting results for Latency, best results are highlighted in

bold

Configurations 1 2 3 4 5 6 7 8

Methods Metrics Mobile Mobile Mobile Mobile Static Static Static Static

LSTM MSE 0.005637791 0.043465063 0.008396188 0.094484142 0.002421324 0.00004434 0.110441343 0.001464042

MAE 0.073327712 0.174966194 0.090718731 0.251945544 0.048501279 0.004837051 0.33225192 0.038033014

RMSE 0.075085226 0.208482765 0.091630717 0.307382729 0.049206954 0.006658817 0.332327162 0.038262798

BiLSTM MSE 0.001439423 0.033124764 0.005707397 0.075514612 0.002677222 0.000061788 7.016391754 0.001402291

MAE 0.030769233 0.148010391 0.074070212 0.223332865 0.050801641 0.006053792 2.459266663 0.036949068

RMSE 0.037939731 0.1820021 0.075547313 0.274799221 0.051741883 0.007860557 2.648847342 0.037447176

ATT+BiLSTM MSE 0.000344244 0.051534736 0.000069114 0.169493278 2.534987688 0.000297986 0.254173652 0.000295972

MAE 0.018082803 0.197647946 0.007791087 0.372243206 1.04771924 0.016313722 0.504086238 0.014796807

RMSE 0.018553823 0.227012634 0.008313497 0.411695614 1.592164516 0.017262263 0.504156376 0.017203839

Seq2Seq MSE 0.105809007 0.202318646 0.016844664 0.224655949 0.036616328 0.043741006 0.131628002 0.002322215

MAE 0.325255403 0.42963242 0.129758603 0.404872489 0.191155483 0.208386975 0.362794546 0.048175558

RMSE 0.325282964 0.449798451 0.129786996 0.473978849 0.191353933 0.209143505 0.362805736 0.048189364

Seq2Seq+ATT MSE 0.097825267 0.202831502 0.017442157 0.213285898 0.040685284 0.042646595 0.145325763 0.001978905

MAE 0.312745032 0.430422599 0.132059379 0.393857653 0.201548577 0.205651407 0.381142717 0.044481885

RMSE 0.31277031 0.450368185 0.132068757 0.461828862 0.201705934 0.206510519 0.381216163 0.04448489

TCN+BiLSTM MSE 0.000337262 0.017626127 0.780299902 0.053097963 0.00585584 0.000074349 0.087526544 0.000098222
MAE 0.017728718 0.105348373 0.342651963 0.200600296 0.034037738 0.006348549 0.29580424 0.00733645
RMSE 0.018364683 0.132763423 0.883345842 0.230429947 0.076523459 0.008622569 0.295848853 0.009910695

FL+LSTM MSE 0.104215905 0.074008435 0.062736414 0.0833028852 0.0606529861 0.0579579472 0.116129011 0.047641791

MAE 0.210479304 0.222253785 0.090594731 0.25273493 0.167973026 0.150502234 0.303388238 0.070485658

RMSE 0.322496265 0.271815836 0.250428975 0.288488924 0.246236875 0.240110695 0.340605199 0.218234643

FL+MSA MSE 0.09929058 0.31490236 0.03957324 0.38431263 0.95486623 0.09382478 0.11782001 0.03207614

MAE 0.18505890 0.530799746 0.082799196 0.550994515 0.945636034 0.188609883 0.299379557 0.138352171

RMSE 0.315104067 0.561161637 0.198930264 0.619929552 0.977172553 0.306308329 0.343249202 0.179098144

FeD-TST MSE 6.56E-06 1.56E-09 0.000033704 0.040740803 0.000081493 5.23E-07 0.070651543 0.089611024

MAE 0.001430776 2.77E-05 0.004033627 0.159722609 0.007586633 0.000555087 0.26576637 0.056043442

RMSE 0.002561764 3.95E-05 0.005805549 0.201843511 0.009027364 0.000722966 0.26580358 0.299351007

can result in a considerable decrease of the PDR and an increase of the PLR. In a multivariate

forecasting setting, where the PDR and PLR are being forecasted along with other features, the

presence of noise and irrelevant data can make the QoS forecasting challenging. Even though

Fed-TST model presents a sub-optimal performance the difference in the accuracy is marginal

showing that it can adequately perform even in such challenging settings.

Lastly, for the latency results, Table I-4 shows that the forecast can be accurately made from

the FeD-TST model for all network configuration but the last one (static robots, same channel,

12𝑑𝐵𝑚). TCN+BiLSTM is the model that achieves the highest performance for the particular

configuration and the reason is that this model can handle the complexity and non-linearity of

the data, as well as the interference and congestion caused by multiple access points operating

on the same frequency channel with a high transmission power of 12 dBm. Moreover, the model

effectively captured the interactions between different features and can make use of the relevant

information to make accurate forecasts.

BIBLIOGRAPHY

(2023). Neural network models (supervised). Retrieved from: https://scikit-learn.org/stable/

modules/neural_networks_supervised.html.

Abdellah, A. R., Abdulkareem Mahmood, O. & Koucheryavy, A. (2020a). Delay prediction

in IoT using Machine Learning Approach. 2020 12th International Congress on Ultra
Modern Telecommunications and Control Systems and Workshops (ICUMT), pp. 275-279.

doi: 10.1109/ICUMT51630.2020.9222245.

Abdellah, A. R., Artem, V., Muthanna, A., Gallyamov, D. & Koucheryavy, A. (2020b). Deep

Learning for IoT Traffic Prediction Based on Edge Computing. Distributed Computer
and Communication Networks: Control, Computation, Communications, pp. 18–29.

Abdellah, A. R., Artem, V., Muthanna, A., Gallyamov, D. & Koucheryavy, A. (2020c). Deep

Learning for IoT Traffic Prediction Based on Edge Computing. Distributed Computer
and Communication Networks: Control, Computation, Communications, pp. 18–29.

Adjih, C., Baccelli, E., Fleury, E., Harter, G., Mitton, N., Noel, T., Pissard-Gibollet, R.,

Saint-Marcel, F., Schreiner, G., Vandaele, J. & Watteyne, T. (2015). FIT IoT-LAB: A

large scale open experimental IoT testbed. 2015 IEEE 2nd World Forum on Internet of
Things (WF-IoT), pp. 459-464. doi: 10.1109/WF-IoT.2015.7389098.

Aneja, S., Aneja, N. & Islam, M. S. (2018). IoT Device Fingerprint using Deep Learning. 2018
IEEE International Conference on Internet of Things and Intelligence System (IOTAIS),
pp. 174-179. doi: 10.1109/IOTAIS.2018.8600824.

Aneja, S., Aneja, N., Bhargava, B. & Chowdhury, R. R. (2022). Device Fingerprinting Using

Deep Convolutional Neural Networks. Int. J. Commun. Netw. Distrib. Syst., 28(2),

171–198. doi: 10.1504/ĳcnds.2022.121197.

Apthorpe, N. & et al. (2017). A Smart Home is No Castle: Privacy Vulnerabilities of Encrypted

IoT Traffic.

Ateeq, M., Ishmanov, F., Afzal, M. K. & Naeem, M. (2019a). Predicting Delay in IoT

Using Deep Learning: A Multiparametric Approach. IEEE Access, 7, 62022-62031.

doi: 10.1109/ACCESS.2019.2915958.

Ateeq, M., Ishmanov, F., Afzal, M. K. & Naeem, M. (2019b). Multi-Parametric Analysis of

Reliability and Energy Consumption in IoT: A Deep Learning Approach. Sensors, 19(2).

doi: 10.3390/s19020309.

174

Backhaus, K., Erichson, B., Gensler, S., Weiber, R. & Weiber, T. (2023). Logistic Regression.

In Multivariate analysis an application-oriented introduction. Springer Fachmedien

Wiesbaden GmbH.

Bahad, P. & Saxena, P. (2020). Study of AdaBoost and Gradient Boosting Algorithms for

Predictive Analytics. International Conference on Intelligent Computing and Smart
Communication 2019, pp. 235–244.

Bai, L., Yao, L., Kanhere, S. S., Wang, X. & Yang, Z. (2018a). Automatic Device Classification

from Network Traffic Streams of Internet of Things. 2018 IEEE 43rd Conference on
Local Computer Networks (LCN), pp. 1-9. doi: 10.1109/LCN.2018.8638232.

Bai, S., Kolter, J. Z. & Koltun, V. (2018b). An empirical evaluation of generic convolutional

and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271.

Bardalai, P., Neog, H., Dutta, P. E., Medhi, N. & Deka, S. K. (2022). Throughput Predic-

tion in Smart Healthcare Network using Machine Learning Approaches. 2022 IEEE
19th India Council International Conference (INDICON), pp. 1-6. doi: 10.1109/INDI-

CON56171.2022.10040160.

Beutel, D. J. et al. (2022). Flower: A Friendly Federated Learning Research Framework.

Bezawada, B., Bachani, M., Peterson, J., Shirazi, H., Ray, I. & Ray, I. (2018). Behavioral

Fingerprinting of IoT Devices. Proceedings of the 2018 Workshop on Attacks and
Solutions in Hardware Security, (ASHES ’18), 41–50. doi: 10.1145/3266444.3266452.

Brownlee, J. (2020, Aug). How to choose a feature selection method for machine learning.

Retrieved from: https://machinelearningmastery.com/feature-selection-with-real-and-

categorical-data/.

Chen, Y., Kang, Y., Chen, Y. & Wang, Z. (2020). Probabilistic forecasting

with temporal convolutional neural network. Neurocomputing, 399, 491-501.

doi: https://doi.org/10.1016/j.neucom.2020.03.011.

Chen, Y., Yu, P., Zheng, Z., Shen, J. & Guo, M. (2022). Modeling feature interactions for

context-aware QoS prediction of IoT services. Future Generation Computer Systems,
137, 173-185. doi: https://doi.org/10.1016/j.future.2022.07.017.

Cheng, H., Xie, Z., Wu, L., Yu, Z. & Li, R. (2019). Data prediction model in wireless sensor

networks based on bidirectional LSTM. EURASIP Journal on Wireless Communications
and Networking, 2019(1), 1–12.

175

Chowdhury, R. R., Aneja, S., Aneja, N. & Abas, E. (2020). Network Traffic Analysis Based

IoT Device Identification. Proceedings of the 2020 4th International Conference on Big
Data and Internet of Things, (BDIOT ’20), 79–89. doi: 10.1145/3421537.3421545.

Cisco. (2022, Jan). Cisco. Retrieved from: https://www.cisco.com/c/en/us/solutions/collateral/

executive-perspectives/annual-internet-report/white-paper-c11-741490.html.

Cisco Systems. [Available online: http://www.audentia-gestion.fr/cisco/pdf/at-a-glance-c45-

731471.pdf]. (2017). Internet of Things at a Glance. Retrieved from: Whitepaper.

Dechouniotis, D., Athanasopoulos, N., Leivadeas, A., Mitton, N., Jungers, R. & Papavassiliou, S.

(2020). Edge Computing Resource Allocation for Dynamic Networks: The DRUID-NET

Vision and Perspective. Sensors, 20(8). doi: 10.3390/s20082191.

Ericsson. (2022). Mobile data traffic outlook.

Fan, L., Zhang, S., Wu, Y., Wang, Z., Duan, C., Li, J. & Yang, J. (2020). An IoT Device

Identification Method based on Semi-supervised Learning. 2020 16th International
Conference on Network and Service Management (CNSM), pp. 1-7. doi: 10.23919/C-

NSM50824.2020.9269044.

Fan, X., Xiang, C., Gong, L., He, X., Chen, C. & Huang, X. (2019). UrbanEdge: Deep

Learning Empowered Edge Computing for Urban IoT Time Series Prediction. Pro-
ceedings of the ACM Turing Celebration Conference - China, (ACM TURC ’19).

doi: 10.1145/3321408.3323089.

Hahn, Y., Langer, T., Meyes, R. & Meisen, T. (2023). Time Series Dataset Survey for Forecasting

with Deep Learning. Forecasting, 5(1), 315–335. doi: 10.3390/forecast5010017.

Hameed, A. & et al. (2020). IoT traffic multi-classification using network and statistical features

in a smart environment. 2020 IEEE 25th international workshop on computer aided
modeling and design of communication links and networks (CAMAD), pp. 1–7.

Hameed, A., Violos, J., Santi, N., Leivadeas, A. & Mitton, N. (2021). A Machine Learning

Regression Approach for Throughput Estimation in an IoT Environment. 2021 IEEE
International Conferences on Internet of Things (iThings) and IEEE Green Comput-
ing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing
(CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermat-
ics (Cybermatics), pp. 29-36. doi: 10.1109/iThings-GreenCom-CPSCom-SmartData-

Cybermatics53846.2021.00020.

176

Hameed, A., Violos, J., Leivadeas, A., Santi, N., Grünblatt, R. & Mitton, N. (2022).

Toward QoS Prediction Based on Temporal Transformers for IoT Applications.

IEEE Transactions on Network and Service Management, 19(4), 4010-4027.

doi: 10.1109/TNSM.2022.3217170.

Hanes, D., Salguiero, G., Grossetete, P., Barton, R. & Henry, J. (2017). IoT Fundamentals:
Networking Technologies, Protocol, and Use Cases for the Internet of Things. Cisco

Press.

Hauke, J. & Kossowski, T. (2011). Comparison of Values of Pearson’s and Spearman’s

Correlation Coefficients on the Same Sets of Data. Quaestiones Geographicae, 30(2),

87-93. doi: doi:10.2478/v10117-011-0021-1.

Henry, M. (2021). Review on gradient descent algorithms in deep learning approaches. SSRN
Electronic Journal. doi: 10.2139/ssrn.3817511.

Hochreiter, S. & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8),

1735-1780. doi: 10.1162/neco.1997.9.8.1735.

Hosmer, D. W., Lemeshow, S. & Cook, E. D. (2001). Applied Logistic Regression.

Hou, Y., Yano, K., Suga, N., Webber, J., Nii, E., Higashimori, T., Denno, S. & Suzuki, Y.

(2021). A Study of Throughput Prediction using Convolutional Neural Network over

Factory Environment. 2021 23rd International Conference on Advanced Communication
Technology (ICACT), pp. 429-434. doi: 10.23919/ICACT51234.2021.9370905.

Hui, S., Wang, H., Xu, D., Wu, J., Li, Y. & Jin, D. (2022). Distinguishing Between Smartphones

and IoT Devices via Network Traffic. IEEE Internet of Things Journal, 9(2), 1182-1196.

doi: 10.1109/JIOT.2021.3078879.

IoT-LAB, F. (2022, Aug). Files · main · DruidNet / IOT mobility traces · GITLAB. Re-

trieved from: https://gitlab.inria.fr/druidnet/iot-mobility-traces/-/tree/main/.

Ivanov, N. (2019, Jan). Unleashing the internet of things with in-memory computing: IOT NOW

news & amp; reports. Retrieved from: https://www.iot-now.com/2019/01/17/92200-

unleashing-internet-things-memory-computing.

Jia, Z., Jin, L., Zhang, Y., Liu, C., Li, K. & Yang, Y. (2022). Location-Aware Web Service

QoS Prediction via Deep Collaborative Filtering. IEEE Transactions on Computational
Social Systems, 1-12. doi: 10.1109/TCSS.2022.3217277.

177

Jin, H., Zhang, P., Dong, H., Zhu, Y. & Bouguettaya, A. (2023). Privacy-Aware Forecasting

of Quality of Service in Mobile Edge Computing. IEEE Transactions on Services
Computing, 16(1), 478-492. doi: 10.1109/TSC.2021.3137452.

Kazemi, M. et al. (2019). Time2Vec: Learning a Vector Representation of Time. arXiv e-prints,
arXiv–1907.

Khan, W. Z., Ahmed, E., Hakak, S., Yaqoob, I. & Ahmed, A. (2019). Edge

computing: A survey. Future Generation Computer Systems, 97, 219-235.

doi: https://doi.org/10.1016/j.future.2019.02.050.

Kotak, J. & Elovici, Y. (2021). IoT Device Identification Using Deep Learning. 13th International
Conference on Computational Intelligence in Security for Information Systems (CISIS
2020), pp. 76–86.

Lai, G., Chang, W.-C., Yang, Y. & Liu, H. (2018). Modeling Long- and Short-Term Temporal

Patterns with Deep Neural Networks.

Laner, M., Nikaein, N., Svoboda, P., Popovic, M., Drajic, D. & Krco, S. (2015). 8 - Traffic models

for machine-to-machine (M2M) communications: types and applications. In Antón-Haro,

C. & Dohler, M. (Eds.), Machine-to-machine (M2M) Communications (pp. 133-154).

Oxford: Woodhead Publishing. doi: https://doi.org/10.1016/B978-1-78242-102-3.00008-

3.

Laner, M. & et al. (2013). Traffic Models for Machine Type Communications. ISWCS 2013;
The Tenth International Symposium on Wireless Communication Systems, pp. 1-5.

Li, G., Li, F., Ahmad, T., Liu, J., Li, T., Fang, X. & Wu, Y. (2022a). Performance evaluation of

sequence-to-sequence-Attention model for short-term multi-step ahead building energy

predictions. Energy, 259, 124915. doi: https://doi.org/10.1016/j.energy.2022.124915.

Li, J., Wu, H., Chen, J., He, Q. & Hsu, C.-H. (2022b). Topology-Aware Neural Model for Highly

Accurate QoS Prediction. IEEE Transactions on Parallel and Distributed Systems, 33(7),

1538-1552. doi: 10.1109/TPDS.2021.3116865.

Li, S., Wen, J. & Wang, X. (2019). From Reputation Perspective: A Hybrid Matrix Factorization

for QoS Prediction in Location-Aware Mobile Service Recommendation System. Mobile
Information Systems, (1574-017X), 8950508. doi: 10.1155/2019/8950508.

Li, X., Li, S., Li, Y., Zhou, Y., Chen, C. & Zheng, Z. (2022c). A Personalized Feder-

ated Tensor Factorization Framework for Distributed IoT Services QoS Prediction

From Heterogeneous Data. IEEE Internet of Things Journal, 9(24), 25460-25473.

doi: 10.1109/JIOT.2022.3197172.

178

Liang, T., Chen, M., Yin, Y., Zhou, L. & Ying, H. (2022). Recurrent Neural Network Based

Collaborative Filtering for QoS Prediction in IoV. IEEE Transactions on Intelligent
Transportation Systems, 23(3), 2400-2410. doi: 10.1109/TITS.2021.3099346.

Lippmann, R. & et al. (2003). Passive Operating System Identification From TCP / IP Packet

Headers *.

Liu, F., Ren, X., Zhang, Z., Sun, X. & Zou, Y. (2021). Rethinking Skip Connection with Layer

Normalization in Transformers and ResNets. ArXiv, abs/2105.07205.

Liu, Z., Sheng, Q. Z., Zhang, W. E., Chu, D. & Xu, X. (2019). Context-Aware Multi-QoS

Prediction for Services in Mobile Edge Computing. 2019 IEEE International Conference
on Services Computing (SCC), pp. 72-79. doi: 10.1109/SCC.2019.00024.

Liu, Z., Sheng, Q. Z., Xu, X., Chu, D. & Zhang, W. E. (2022). Context-Aware and Adaptive

QoS Prediction for Mobile Edge Computing Services. IEEE Transactions on Services
Computing, 15(1), 400-413. doi: 10.1109/TSC.2019.2944596.

Lopez-Martin, M. & et al. (2017). Network Traffic Classifier With Convolutional and

Recurrent Neural Networks for Internet of Things. IEEE Access, 5, 18042-18050.

doi: 10.1109/ACCESS.2017.2747560.

Lopez-Martin, M., Carro, B. & Sanchez-Esguevillas, A. (2019). Neural network architecture

based on gradient boosting for IoT traffic prediction. Future Generation Computer
Systems, 100, 656-673. doi: https://doi.org/10.1016/j.future.2019.05.060.

Mangla, U. (2022). Application of Federated Learning in Telecommunications and Edge

Computing. In Ludwig, H. & Baracaldo, N. (Eds.), Federated Learning: A Comprehensive
Overview of Methods and Applications (pp. 523–534). Springer International Publishing.

doi: 10.1007/978-3-030-96896-0_25.

Mao, Y., You, C., Zhang, J., Huang, K. & Letaief, K. B. (2017). A Survey on Mobile

Edge Computing: The Communication Perspective. IEEE Communications Surveys &
Tutorials, 19(4), 2322-2358. doi: 10.1109/COMST.2017.2745201.

Marjani, M., Nasaruddin, F., Gani, A., Karim, A., Hashem, I. A. T., Siddiqa, A. & Yaqoob,

I. (2017). Big IoT Data Analytics: Architecture, Opportunities, and Open Research

Challenges. IEEE Access, 5, 5247-5261. doi: 10.1109/ACCESS.2017.2689040.

Meidan, Y., Bohadana, M., Shabtai, A., Guarnizo, J. D., Ochoa, M., Tippenhauer, N. O. & Elovici,

Y. (2017a). ProfilIoT: a machine learning approach for IoT device identification based

on network traffic analysis. Proceedings of the Symposium on Applied Computing.

179

Meidan, Y., Bohadana, M., Shabtai, A., Ochoa, M., Tippenhauer, N. O., Guarnizo, J. D. & Elovici,

Y. (2017b). Detection of unauthorized IoT devices using machine learning techniques.

arXiv preprint arXiv:1709.04647.

Miettinen, M., Marchal, S., Hafeez, I., Frassetto, T., Asokan, N., Sadeghi, A.-R. & Tarkoma,

S. (2017). IoT Sentinel Demo: Automated Device-Type Identification for Security

Enforcement in IoT. 2017 IEEE 37th International Conference on Distributed Computing
Systems (ICDCS), pp. 2511-2514. doi: 10.1109/ICDCS.2017.284.

Mukhopadhyay, S. C. & Suryadevara, N. K. (2014). Internet of Things: Challenges and

Opportunities. In Mukhopadhyay, S. C. (Ed.), Internet of Things: Challenges and
Opportunities (pp. 1–17). Cham: Springer International Publishing. doi: 10.1007/978-3-

319-04223-7_1.

Nordrum, A. (2016, Aug). Popular internet of things forecast of 50 billion devices by 2020 is

outdated. Retrieved from: https://spectrum.ieee.org/popular-internet-of-things-forecast-

of-50-billion-devices-by-2020-is-outdated#toggle-gdpr.

O’ Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., Invernizzi, L. et al. (2019). Keras-

Team/Keras-Tuner: A hyperparameter tuning library for Keras. Retrieved from: https:

//github.com/keras-team/keras-tuner.

Okwu, M. O. & Tartibu, L. K. (2021). Artificial Neural Network. In Metaheuristic Optimiza-
tion: Nature-Inspired Algorithms Swarm and Computational Intelligence, Theory and
Applications (pp. 133–145). Cham: Springer International Publishing. doi: 10.1007/978-

3-030-61111-8_14.

Orrevad, A. (2009). M2M Traffic Characteristics : When machines participate in communication.

Pan, X., Coen-Cagli, R. & Schwartz, O. (2021). Modeling Neural Variability in Deep Networks

with Dropout. bioRxiv. doi: 10.1101/2021.08.19.457035.

Pinheiro, A. J., de M. Bezerra, J., Burgardt, C. A. & Campelo, D. R. (2019). Identifying

IoT devices and events based on packet length from encrypted traffic. Computer
Communications, 144, 8-17. doi: https://doi.org/10.1016/j.comcom.2019.05.012.

Pratap, A., Kumar, A. & Kumar, M. (2021). Analyzing the Need of Edge Computing for

Internet of Things (IoT). Proceedings of Second International Conference on Computing,
Communications, and Cyber-Security, pp. 203–212.

180

Qi, L., Zhang, X., Dou, W., Hu, C., Yang, C. & Chen, J. (2018). A two-stage locality-sensitive

hashing based approach for privacy-preserving mobile service recommendation in

cross-platform edge environment. Future Generation Computer Systems, 88, 636-643.

doi: https://doi.org/10.1016/j.future.2018.02.050.

Ren, J., Dubois, D. J., Choffnes, D., Mandalari, A. M., Kolcun, R. & Haddadi, H. (2019).

Information Exposure From Consumer IoT Devices: A Multidimensional, Network-

Informed Measurement Approach. Proceedings of the Internet Measurement Conference,

(IMC ’19), 267–279. doi: 10.1145/3355369.3355577.

Reza, S., Ferreira, M. C., Machado, J. & Tavares, J. M. R. (2022). A multi-head

attention-based transformer model for traffic flow forecasting with a comparative anal-

ysis to recurrent neural networks. Expert Systems with Applications, 202, 117275.

doi: https://doi.org/10.1016/j.eswa.2022.117275.

S., B. D. C. & Ram, M. (2022). Recent advances in Time Series forecasting. CRC Press, Taylor

& Francis Group.

Saeik, F., Avgeris, M., Spatharakis, D., Santi, N., Dechouniotis, D., Violos, J., Leivadeas, A.,

Athanasopoulos, N., Mitton, N. & Papavassiliou, S. (2021). Task offloading in Edge and

Cloud Computing: A survey on mathematical, artificial intelligence and control theory

solutions. Computer Networks, 195, 108177.

Said, O. & Tolba, A. (2021). Accurate performance prediction of IoT communication systems for

smart cities: An efficient deep learning based solution. Sustainable Cities and Society,

69, 102830. doi: https://doi.org/10.1016/j.scs.2021.102830.

Salinas, D. & et al. (2020). DeepAR: Probabilistic forecasting with autoregres-

sive recurrent networks. International Journal of Forecasting, 36(3), 1181-1191.

doi: https://doi.org/10.1016/j.ĳforecast.2019.07.001.

Santi, N., Grünblatt, R., Foubert, B., Hameed, A., Violos, J., Leivadeas, A. & Mitton, N. (2021).

Automated and Reproducible Application Traces Generation for IoT Applications.

Proceedings of the 17th ACM Symposium on QoS and Security for Wireless and Mobile
Networks, (Q2SWinet ’21), 17–24. doi: 10.1145/3479242.3487321.

Santos, M. R. P. & et al. (2018). An efficient approach for device identification and traffic classi-

fication in IoT ecosystems. 2018 IEEE Symposium on Computers and Communications
(ISCC), pp. 00304-00309. doi: 10.1109/ISCC.2018.8538630.

Shahid, M. R. & et al. (2018). IoT Devices Recognition Through Network Traffic Anal-

ysis. 2018 IEEE International Conference on Big Data (Big Data), pp. 5187-5192.

doi: 10.1109/BigData.2018.8622243.

181

Singh, J. & Banerjee, R. (2019). A Study on Single and Multi-layer Perceptron Neural Network.

2019 3rd International Conference on Computing Methodologies and Communication
(ICCMC), pp. 35-40. doi: 10.1109/ICCMC.2019.8819775.

Sivanathan, A., Sivaraman, V., Vishwanath, A., Wĳenayake, C., Radford, A., Loi,

F. & Gharakheili, H. H. (2018, Aug). Data collected for IEEE TMC. Re-

trieved from: https://iotanalytics.unsw.edu.au/iottraces.html.

Sivanathan, A., Gharakheili, H. H., Loi, F., Radford, A., Wĳenayake, C., Vishwanath, A. & Sivara-

man, V. (2019). Classifying IoT Devices in Smart Environments Using Network

Traffic Characteristics. IEEE Transactions on Mobile Computing, 18(8), 1745-1759.

doi: 10.1109/TMC.2018.2866249.

Sutskever, I., Vinyals, O. & Le, Q. V. (2014). Sequence to Sequence Learning with Neural

Networks. (NIPS’14), 3104–3112.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł. & Polo-

sukhin, I. (2017). Attention is all you need. Advances in neural information processing
systems, 30.

Wang, Q., Xu, J., Chen, H. & He, B. (2017). Two improved continuous bag-of-word models.

2017 International Joint Conference on Neural Networks (ĲCNN), pp. 2851-2856.

doi: 10.1109/ĲCNN.2017.7966208.

Werneck Oliveira, G. W., Toscano Ney, R., Herrera, J. L., Macêdo Batista, D., Hirata, R.,

Galán-Jiménez, J., Berrocal, J., Murillo, J. M., Luiz Dos Santos, A. & Nogueira, M.

(2021). Predicting Response Time in SDN-Fog Environments for IIoT Applications.

2021 IEEE Latin-American Conference on Communications (LATINCOM), pp. 1-6.

doi: 10.1109/LATINCOM53176.2021.9647803.

White, G. & Clarke, S. (2022). Short-Term QoS Forecasting at the Edge for Reliable

Service Applications. IEEE Transactions on Services Computing, 15(2), 1089-1102.

doi: 10.1109/TSC.2020.2975799.

Wu, D., Xu, H., Jiang, Z., Yu, W., Wei, X. & Lu, J. (2021). EdgeLSTM: Towards Deep

and Sequential Edge Computing for IoT Applications. IEEE/ACM Trans. Netw., 29(4),

1895–1908. doi: 10.1109/TNET.2021.3075468.

Wu, H., Yue, K., Hsu, C.-H., Zhao, Y., Zhang, B. & Zhang, G. (2017). Deviation-based neighbor-

hood model for context-aware QoS prediction of cloud and IoT services. Future Genera-
tion Computer Systems, 76, 550-560. doi: https://doi.org/10.1016/j.future.2016.10.015.

182

Xia, Q., Ye, W., Tao, Z., Wu, J. & Li, Q. (2021). A survey of federated learning for edge

computing: Research problems and solutions. High-Confidence Computing, 1(1),

100008. doi: https://doi.org/10.1016/j.hcc.2021.100008.

Xu, Q., Zheng, R., Saad, W. & Han, Z. (2016). Device Fingerprinting in Wireless Networks:

Challenges and Opportunities. IEEE Communications Surveys & Tutorials, 18(1),

94-104. doi: 10.1109/COMST.2015.2476338.

Zerveas, G. & et al. (2021). A transformer-based framework for multivariate time series

representation learning. Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pp. 2114–2124.

Zhang, M., Wei, E. & Berry, R. (2021a). Faithful Edge Federated Learning: Scalability

and Privacy. IEEE Journal on Selected Areas in Communications, 39(12), 3790-3804.

doi: 10.1109/JSAC.2021.3118423.

Zhang, P., Jin, H., Dong, H., Song, W. & Bouguettaya, A. (2022). Privacy-Preserving QoS

Forecasting in Mobile Edge Environments. IEEE Transactions on Services Computing,

15(2), 1103-1117. doi: 10.1109/TSC.2020.2977018.

Zhang, Y., Zhang, P., Luo, Y. & Ji, L. (2020a). Towards Efficient, Credible and Privacy-Preserving

Service QoS Prediction in Unreliable Mobile Edge Environments. 2020 International
Symposium on Reliable Distributed Systems (SRDS), pp. 309-318. doi: 10.1109/S-

RDS51746.2020.00038.

Zhang, Y., Zhang, P., Luo, Y. & Luo, J. (2020b). Efficient and Privacy-Preserving Federated QoS

Prediction for Cloud Services. 2020 IEEE International Conference on Web Services
(ICWS), pp. 549-553. doi: 10.1109/ICWS49710.2020.00079.

Zhang, Y., Pan, J., Qi, L. & He, Q. (2021b). Privacy-preserving quality prediction

for edge-based IoT services. Future Generation Computer Systems, 114, 336-348.

doi: https://doi.org/10.1016/j.future.2020.08.014.

